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Preface

NEW ANALYTICAL APPROACHES
AND FTIR STRATEGIES : PRACTICAL SKILLS

“Creativity is so delicate a ower that praise tends to make it bloom, 
while discouragement often nips it in the bud. Any of us will put 
more and better ideas if our efforts are appreciated.”

                                                                                                           – Alexander Osburn –

Today, new analytical strategies and techniques are necessary to meet requirements
of modern technologies and new materials. Among them, Fourier transform infrared 
spectroscopy (FTIR) has grown to be a front-line tool throughout a many discovery.
In this sense, this book provides a thorough review of current analytical approaches, 
industry practices, and strategies in Fourier transform application.

In this edition, research groups from everywhere around the world report about devel-
opment of modern FTIR instruments and explain why the advent of FT instruments, 
why the development of fast Fourier transform, and why the co-evolution of desk top 
computation is essential for the versatility, sensitivity and robustness of FTIR. In accor-
dance with these, many laboratories develop, test and validate new IR instruments, as 
well as spectroscopic and microspectroscopic methods, with the goal of their adoption 
as routine analytical techniques in modern technologies.

Because of the rapid increase in commercially available Fourier transform infrared 
spectrometers and computers over the past ten years, it has now become feasible to use 
FTIR spectrometry in many disciplines such as: medicine, chemical technology, elec-
tronic engineering, computers and informatics, environmental protection, biological
sciences, materials science, Earth sciences, astronomy etc. In this book, authors of the 
chapters provide a glimpse of the new trends of modern technologies based on Fourier 
transform applications. Topics covered include:

- Development and application of different Fourier transform IR techniques, 
such as: infrared microspectroscopy, infrared imaging spectroscopy, 
photocurrent spectroscopy, reection-absorption infrared spectroscopy, 
infrared-mass spectrometry, solar infrared spectroscopy, Fourier transform
rheology, IR as a clinical tool, advanced electroanalytical methods, etc.   

- Descriptions of the various approaches, including: Fourier basis functions,
statistical analysis, fast Fourier transform, discrete Fourier transform,
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sciences, materials science, Earth sciences, astronomy etc. In this book, authors of the 
chapters provide a glimpse of the new trends of modern technologies based on Fourier 
transform applications. Topics covered include:

- Development and application of diff erent Fourier transform IR techniques, 
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 photocurrent spectroscopy, re ection-absorption infrared spectroscopy, 
 infrared-mass spectrometry, solar infrared spectroscopy, Fourier transform
 rheology, IR as a clinical tool, advanced electroanalytical methods, etc.   
- Descriptions of the various approaches, including: Fourier basis functions, 
 statistical analysis, fast Fourier transform, discrete Fourier transform,
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fractional Fourier transform, short time Fourier transform, which are used in
diff erent systems, along with the advantages and disadvantages of each
system.

- Illustrative examples of the FTIR applications to: cancer diagnostics, heart
sounds analyses, medical image registration, automatic identi cation of
protein-biomarkers, detection of threat chemicals, detection of atmospheric
trace gases, characterization of material properties, topography description of
surfaces and thin  lms obtained from non-standard optical measurements, a
pocket computer application, remote sensing in astronomy.

- Structure determination of compounds such as proteins, bioactive
oligosaccharide-metal complexes, or materials as cott on  bers, non-crystalline 
semiconductors, etc.

- Research into lignocelluloses biomass feed stocks, in textile processing,
digital communication systems, systems for broadband wireless
communications, in waste management, in agriculture to soil analysis, in
chemistry to selective catalytic reduction.

The chapters in the book provide a complete overview of the principles, theories and 
key applications of modern FTIR spectroscopy. In accordance with that, this book 
provides a mathematical and descriptive approach to modern FTIR spectroscopy, tak-
ing examples from various scienti c disciplines (medicine, biology, chemistry, envi-
ronmental protection, materials science, Earth sciences) and industry areas (chemical 
technology, electronic engineering, computers and informatics). The topics represent 
current industry benchmarks in speci c discovery activities that deal with: proteom-
ics, biomasses, biocomplexes, biomarkers, cott on  bers,  ber optic, semiconductors, 
chemicals, and other materials. The book also contains much practical advice about the 
acquisition and use of spectra. In addition, it provides a practical guide to experimental 
methods, up-to-date theory, and considerable reference data, critical for scientists who 
want to measure and interpret IR spectra. Besides, the text will help potential entry 
level users to understand the essential principals for successful data collection, includ-
ing optimization of the data collection time without compromising the data quality. 
Examples of the data requirements are given for diff erent types of research problems.

One of the strengths of infrared spectroscopy is that it is amenable to a variety of 
sample forms including solid  lms, powders, solutions, liquid, and so forth. Crystal 
structures are not necessary, nor are external molecular probes required. There are no 
problems associated with background  uorescence, light scatt ering, or the size of the 
molecules. Therefore, FTIR spectro-scopy is one of the most widely applied techniques 
for the investigation of various materials. In this book, authors have reported about re-
cent advances in FTIR spectroscopy, FT microspectroscopy and other FT spectroscopic 
techniques.

Fourier transform infrared microspectroscopy (FTIRM) is well established as an es-
sential analytical tool available to scientists in the micro-destructive analysis of small 
samples, and the recent introduction of mapping and imaging equipment allows for the 
collection of a large number of FTIR spectra on surface, providing a distribution map 
of identi ed compounds. Speci cally, FTIRM has been increasingly used to study cell 
wall developments, investigate the effi  ciency of the surface modi cation of polymers 
and other materials, identifying ecological contaminants, and predicting the physical 
properties of certain biopolymers, cott on  bers, semiconductors etc. 

XIPreface

The advancement in commercially available Fourier transform interferometers, as well
as personal computer systems, has enabled infrared spectroscopy to emerge as one of 
the most rapid growing spectroscopic techniques. FTIRM has emerged as a powerful 
tool to study molecular structure and structural interactions in biological systems. The 
book chapters will look initially at the reasons for FTIR spectroscopy becoming a ver-
satile tool for a biologist, i.e. it informs on chemical composition and can accept samples 
in a wide range of forms. Because of these advances, it is becoming more straightfor-
ward to extract secondary structural information from a protein infrared spectrum. In 
this review, topics are focused on new progress in infrared spectral analysis, and new 
frontier of infrared spectroscopy and their applications in protein structural analy-
sis. Since it can monitor absorption from all IR-active bonds of the biomolecules, FTIR 
spectroscopy not only can provide detailed information about protein structure, but 
can also be used to characterize molecule-protein recognition.

Similarly, some of the chapters provide selected applications of the FTIR to study cel-
lulose development in cott on bers, to predict cott on ber properties, and to investigate 
cellulose chemical modications. The application of the FTIR to investigate cellulose 
development in cott on bers can reveal very important information regarding the tran-
sition between the primary cell wall and the secondary cell wall.  Furthermore, when
using Principal Component Analysis (PCA) to analyze the FTIR spectra major diff er-
ences between cott on ber genotypes could be revealed. The Universal Attenuated To-
tal Reectance UATR-FTIR could be successfully used to optimize the treatment in
order to achieve a good wrinkle free performance while minimizing the impact of the 
treatment on the physical properties of the fabric (tensile and abrasion properties). 

One of the chapters will move on to discuss specic application in the area of plant bi-
ology and lignocelluloses chemistry, reviewing published studies which have used IR
absorbance bands to infer macromolecule structure e.g. lipids and proteins, and exam-
ine how FTIR spectroscopy has been used to predict the concentration of specic com-
pounds in complex samples using a variety of multivariate regression approaches. 

Also, the FTIR spectroscopic techniques (FTIRM, ATR-FTIR, LNT-FTIR and D2O-FTIR) 
and spectra-structure correlations were applied in the structure analysis of polysac-
charide-metal complexes, as well as for testing of samples homogeneity. Investigations
of the bioactive metal complexes are very interesting in medicine and pharmaceutical 
industry, with the aspects on therapy of different states of anemia or metabolism dis-
order. On the other hand, through the interaction of polysaccharides and metal ions in 
living organisms, the modi cation of the biological function of both compounds may 
be expected. The chapter represents further development in research of complex struc-
ture and its impact on pharmacobiological activity of the biocomplexes.

Some of the chapters compare the FTIR with other forms of FT spectroscopy, e.g. FT 
reection, FT Raman, FT mass spectrometry (FT-MS) etc., weighing the relative ad-
vantages and weaknesses. In the book many different ways in which samples can be 
presented and analyzed by FTIR are presented, e.g. reectance and transmission ap-
proaches, attenuated total reection, gas analysis and ow cells, and examples of how 
FTIR can be coupled to other common methods used, for example in biology (e.g. GC, 
HPLC, etc.), are shown. The extremely high resolution of FT-MS has very important ap-
plication in biomedical proteomics research. The high resolution not only dramatically 
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fractional Fourier transform, short time Fourier transform, which are used in
 different systems, along with the advantages and disadvantages of each
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sounds analyses, medical image registration, automatic identi cation of 
protein-biomarkers, detection of threat chemicals, detection of atmospheric
trace gases, characterization of material properties, topography description of 
surfaces and thin lms obtained from non-standard optical measurements, a
pocket computer application, remote sensing in astronomy.  

- Structure determination of compounds such as proteins, bioactive 
oligosaccharide-metal complexes, or materials as cott on bers, non-crystalline
semiconductors, etc.

- Research into lignocelluloses biomass feed stocks, in textile processing,
digital communication systems, systems for broadband wireless 
communications, in waste management, in agriculture to soil analysis, in
chemistry to selective catalytic reduction.     

The chapters in the book provide a complete overview of the principles, theories and 
key applications of modern FTIR spectroscopy. In accordance with that, this book 
provides a mathematical and descriptive approach to modern FTIR spectroscopy, tak-
ing examples from various scientic disciplines (medicine, biology, chemistry, envi-
ronmental protection, materials science, Earth sciences) and industry areas (chemical 
technology, electronic engineering, computers and informatics). The topics represent 
current industry benchmarks in specic discovery activities that deal with: proteom-
ics, biomasses, biocomplexes, biomarkers, cott on  bers, ber optic, semiconductors, 
chemicals, and other materials. The book also contains much practical advice about the 
acquisition and use of spectra. In addition, it provides a practical guide to experimental 
methods, up-to-date theory, and considerable reference data, critical for scientists who 
want to measure and interpret IR spectra. Besides, the text will help potential entry 
level users to understand the essential principals for successful data collection, includ-
ing optimization of the data collection time without compromising the data quality.
Examples of the data requirements are given for different types of research problems.

One of the strengths of infrared spectroscopy is that it is amenable to a variety of 
sample forms including solid lms, powders, solutions, liquid, and so forth. Crystal
structures are not necessary, nor are external molecular probes required. There are no 
problems associated with background uorescence, light scattering, or the size of the 
molecules. Therefore, FTIR spectro-scopy is one of the most widely applied techniques 
for the investigation of various materials. In this book, authors have reported about re-
cent advances in FTIR spectroscopy, FT microspectroscopy and other FT spectroscopic 
techniques.

Fourier transform infrared microspectroscopy (FTIRM) is well established as an es-
sential analytical tool available to scientists in the micro-destructive analysis of small
samples, and the recent introduction of mapping and imaging equipment allows for the 
collection of a large number of FTIR spectra on surface, providing a distribution map 
of identied compounds. Specically, FTIRM has been increasingly used to study cell 
wall developments, investigate the efficiency of the surface modication of polymers 
and other materials, identifying ecological contaminants, and predicting the physical 
properties of certain biopolymers, cott on bers, semiconductors etc.

Preface XV

The advancement in commercially available Fourier transform interferometers, as well 
as personal computer systems, has enabled infrared spectroscopy to emerge as one of 
the most rapid growing spectroscopic techniques. FTIRM has emerged as a powerful 
tool to study molecular structure and structural interactions in biological systems. The 
book chapters will look initially at the reasons for FTIR spectroscopy becoming a ver-
satile tool for a biologist, i.e. it informs on chemical composition and can accept samples 
in a wide range of forms. Because of these advances, it is becoming more straightfor-
ward to extract secondary structural information from a protein infrared spectrum. In 
this review, topics are focused on new progress in infrared spectral analysis, and new 
frontier of infrared spectroscopy and their applications in protein structural analy-
sis. Since it can monitor absorption from all IR-active bonds of the biomolecules, FTIR 
spectroscopy not only can provide detailed information about protein structure, but 
can also be used to characterize molecule-protein recognition.

Similarly, some of the chapters provide selected applications of the FTIR to study cel-
lulose development in cott on  bers, to predict cott on  ber properties, and to investigate 
cellulose chemical modi cations. The application of the FTIR to investigate cellulose 
development in cott on  bers can reveal very important information regarding the tran-
sition between the primary cell wall and the secondary cell wall.  Furthermore, when 
using Principal Component Analysis (PCA) to analyze the FTIR spectra major diff er-
ences between cott on  ber genotypes could be revealed. The Universal Att enuated To-
tal Re ectance UATR-FTIR could be successfully used to optimize the treatment in 
order to achieve a good wrinkle free performance while minimizing the impact of the 
treatment on the physical properties of the fabric (tensile and abrasion properties). 

One of the chapters will move on to discuss speci c application in the area of plant bi-
ology and lignocelluloses chemistry, reviewing published studies which have used IR 
absorbance bands to infer macromolecule structure e.g. lipids and proteins, and exam-
ine how FTIR spectroscopy has been used to predict the concentration of speci c com-
pounds in complex samples using a variety of multivariate regression approaches. 

Also, the FTIR spectroscopic techniques (FTIRM, ATR-FTIR, LNT-FTIR and D2O-FTIR) 
and spectra-structure correlations were applied in the structure analysis of polysac-
charide-metal complexes, as well as for testing of samples homogeneity. Investigations 
of the bioactive metal complexes are very interesting in medicine and pharmaceutical 
industry, with the aspects on therapy of diff erent states of anemia or metabolism dis-
order. On the other hand, through the interaction of polysaccharides and metal ions in 
living organisms, the modi cation of the biological function of both compounds may 
be expected. The chapter represents further development in research of complex struc-
ture and its impact on pharmacobiological activity of the biocomplexes.

Some of the chapters compare the FTIR with other forms of FT spectroscopy, e.g. FT 
re ection, FT Raman, FT mass spectrometry (FT-MS) etc., weighing the relative ad-
vantages and weaknesses. In the book many diff erent ways in which samples can be 
presented and analyzed by FTIR are presented, e.g. re ectance and transmission ap-
proaches, att enuated total re ection, gas analysis and  ow cells, and examples of how 
FTIR can be coupled to other common methods used, for example in biology (e.g. GC, 
HPLC, etc.), are shown. The extremely high resolution of FT-MS has very important ap-
plication in biomedical proteomics research. The high resolution not only dramatically 
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improves the reliability of protein identi cation but also the accuracy of protein quan-
titation. One of the chapters presents several examples of proteomics study that takes 
advantage of the high resolution off er by FT-MS. Particularly, the examples of proteome 
dynamic study with isotopomer analysis are described, and precise peptide and pro-
tein label-free quantitation with vigorous statistical assessment.

Fourier transform infrared imaging spectroscopy (FT-IRIS) off ers unique possibility 
to collect chemical information from biological samples. Development of the FTIR in-
struments has introduced this technique also for biosciences. Biologists and medical 
doctors are oft en not aware of the technical aspects of the measurement principle and 
about the data analysis methods. Lack of information impairs successful application of 
this technique and the full potential of the technique is not used. Thus, a part of this 
book which related to biosciences covers the data analysis methods available today. It is 
focused on important aspects of data preprocessing and the signi cance of the prepro-
cessing steps. The text covers commonly used univariate and multivariate techniques 
that can be used for qualitative and quantitative research. The text provides an over-
look of the potential and limitations of the analysis methods. Especially, this will help 
the readers to be aware of how to analyse the data and what type of data is needed for 
carrying the sophisticated data analysis with multivariate analysis methods.

Medical image registration with Fourier basis functions is one of the most interest-
ing, yet most challenging computer-aided tasks in medical image processing, aimed 
at bringing two or more data sets into spatial and/or temporal correlation. If the rep-
resented data are medical images, there are countless situations where it is of interest 
to att ain such correlation, as it has become routine practice in many diagnostic and 
image-guided therapeutic procedures. In one of the studies, intra-modality registra-
tion (Computed Tomography CT-CT, Magnetic Resonance MR-MR, Positron Emission 
Tomography PET-PET) in 3D was analyzed. For each modality the optimum number 
of coeffi  cients (transformation order) for the basis functions and the number of sub-
volumes to att ain a satisfactory registration within a reasonable computing time was 
determined.

When these techniques are applied to tissues, the resulting spectra are composed of 
characteristic absorption bands originating from all infrared-active vibrational modes 
of biological macromolecules present in the tissue, such as proteins, lipids, and nucleic 
acids. Each of these molecules provides a unique absorption spectral patt ern named 
 ngerprint through the entire infrared spectrum. This property off ers a way to iden-
tify the molecule type (qualitative analysis) and the amount or quantity of this mol-
ecule in the sample (quantitative analysis). This method can be used as a diagnostic 
tool, complementary to histopathology or immunochemistry. As the image contrast is 
based on the vibrational signature of the tissue components, spectral images does not 
require the use of added dyes or labeling methods for visualization of diff erent chemi-
cal components in the sample.

Today, cancer research is becoming a multidisciplinary topic. Complex structural and 
therapeutic problems require synergistic approaches employing an assortment of bio-
chemical manipulations, chromatographic separations, sequencing strategies, and 
much more FT infrared spectroscopy. This book provides a broad examination of cur-
rent FT strategies and techniques and their application to the study of occupational 
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and environmental carcinogens, chemopreventive agents, proteins, nucleic acids and 
glycoconjugates. Some chapters on FTIR instrumentation and methodologies are in-
cluded in the book.

FTIRM imaging combines a high spatially resolved morphological and biochemical 
information that offers a number of advantages for ex vivo assessment of the tissue and 
aids the histopathologist in the identication and classication of the subtle biochemi-
cal changes related to carcinogenesis. The purpose of this study was to investigate 
molecular changes associated with tumor tissues by FTIRM in order to develop its use 
in clinical practice. The development of clinical protocols for the routine examination 
of tissue histology or of localized tumors using IR microspectroscopic methods was 
used in medical diagnostics to identify glioma, colon, and cervix.

Similarly, some authors report on the use of Fast FTIR spectroscopy for study and iden-
tication of proteins; most of them considered potential biomarkers of ovarian cancer. 
In the chapter, statistical methods for detection of differences between IR spectra, and 
for detection of the protein biomarkers contained in a complex matrix like blood and 
serum samples were developed. Authors use data mining methods based on principal 
component analysis and support vector machines to develop automatic mathematical 
algorithms for identication of the proteins. It is demonstrated that the method exhib-
its excellent classication accuracy in detection and identication of the proteins.

Discrete Fourier transform was applied in heart sounds analyses, because there is a 
need for faster and more effective diagnose in the record and the analysis. In this study, 
from the heart sounds taken from the patient via electronic stethoscope, digital data 
have been acquired, and with the discrete Fourier transform, which is one of the signal 
processing methods, frequency analysis has been performed, and both sound graphic 
and frequency spectrum have been displayed on the pocket computer. As the devel-
oped system can be operated in a mobile way, it is appropriate for the medical doctors 
to use it in clinic.     

Fast Fourier transform was applied to digital communication systems. In this chap-
ter authors present new high performances architecture dedicated to multi-standards 
application for next generation of communication devices. From the combination of 
two algorithms, Radix and WFTA, authors achieved very important results in terms of 
timing performances and resources usage. The architecture is highly parametrizable 
depending on the applications constraints and can be employed in most of digital com-
munication systems.

In recent years, Fourier transform, as an effective signal processing technology, is more 
and more popularly applied to wireless communications. For OFDM systems, by an
IDFT at the transmitter, the whole frequency-selective wideband channel is divided 
into many at narrow band sub-channels, which is benet to overcome the effects of 
multi-path in wireless channels. In the chapter, DFT-S-OFDM system model, time-fre-
quency property of DFT-S-OFDM signals, the effects of carrier frequency-offset (CFO), 
the SIR and PAPR performances with that of OFDM systems, and DFT spread General-
ized Multi-Carrier (DFT-S-GMC) systems are described.

Recently, there has been a substantial amount of research to provide condition moni-
toring techniques for induction motors based on analyzing stator current signals. Short 
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that can be used for qualitative and quantitative research. The text provides an over-
look of the potential and limitations of the analysis methods. Especially, this will help
the readers to be aware of how to analyse the data and what type of data is needed for 
carrying the sophisticated data analysis with multivariate analysis methods.

Medical image registration with Fourier basis functions is one of the most interest-
ing, yet most challenging computer-aided tasks in medical image processing, aimed 
at bringing two or more data sets into spatial and/or temporal correlation. If the rep-
resented data are medical images, there are countless situations where it is of interest 
to attain such correlation, as it has become routine practice in many diagnostic and 
image-guided therapeutic procedures. In one of the studies, intra-modality registra-
tion (Computed Tomography CT-CT, Magnetic Resonance MR-MR, Positron Emission 
Tomography PET-PET) in 3D was analyzed. For each modality the optimum number 
of coefficients (transformation order) for the basis functions and the number of sub-
volumes to att ain a satisfactory registration within a reasonable computing time was 
determined.

When these techniques are applied to tissues, the resulting spectra are composed of 
characteristic absorption bands originating from all infrared-active vibrational modes 
of biological macromolecules present in the tissue, such as proteins, lipids, and nucleic 
acids. Each of these molecules provides a unique absorption spectral patt ern named 
ngerprint through the entire infrared spectrum. This property offers a way to iden-
tify the molecule type (qualitative analysis) and the amount or quantity of this mol-
ecule in the sample (quantitative analysis). This method can be used as a diagnostic 
tool, complementary to histopathology or immunochemistry. As the image contrast is
based on the vibrational signature of the tissue components, spectral images does not 
require the use of added dyes or labeling methods for visualization of different chemi-
cal components in the sample.

Today, cancer research is becoming a multidisciplinary topic. Complex structural and 
therapeutic problems require synergistic approaches employing an assortment of bio-
chemical manipulations, chromatographic separations, sequencing strategies, and
much more FT infrared spectroscopy. This book provides a broad examination of cur-
rent FT strategies and techniques and their application to the study of occupational 
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and environmental carcinogens, chemopreventive agents, proteins, nucleic acids and 
glycoconjugates. Some chapters on FTIR instrumentation and methodologies are in-
cluded in the book.

FTIRM imaging combines a high spatially resolved morphological and biochemical 
information that off ers a number of advantages for ex vivo assessment of the tissue and 
aids the histopathologist in the identi cation and classi cation of the subtle biochemi-
cal changes related to carcinogenesis. The purpose of this study was to investigate 
molecular changes associated with tumor tissues by FTIRM in order to develop its use 
in clinical practice. The development of clinical protocols for the routine examination 
of tissue histology or of localized tumors using IR microspectroscopic methods was 
used in medical diagnostics to identify glioma, colon, and cervix.

Similarly, some authors report on the use of Fast FTIR spectroscopy for study and iden-
ti cation of proteins; most of them considered potential biomarkers of ovarian cancer. 
In the chapter, statistical methods for detection of diff erences between IR spectra, and 
for detection of the protein biomarkers contained in a complex matrix like blood and 
serum samples were developed. Authors use data mining methods based on principal 
component analysis and support vector machines to develop automatic mathematical 
algorithms for identi cation of the proteins. It is demonstrated that the method exhib-
its excellent classi cation accuracy in detection and identi cation of the proteins.

Discrete Fourier transform was applied in heart sounds analyses, because there is a 
need for faster and more eff ective diagnose in the record and the analysis. In this study, 
from the heart sounds taken from the patient via electronic stethoscope, digital data 
have been acquired, and with the discrete Fourier transform, which is one of the signal 
processing methods, frequency analysis has been performed, and both sound graphic 
and frequency spectrum have been displayed on the pocket computer. As the devel-
oped system can be operated in a mobile way, it is appropriate for the medical doctors 
to use it in clinic.     

Fast Fourier transform was applied to digital communication systems. In this chap-
ter authors present new high performances architecture dedicated to multi-standards 
application for next generation of communication devices. From the combination of 
two algorithms, Radix and WFTA, authors achieved very important results in terms of 
timing performances and resources usage. The architecture is highly parametrizable 
depending on the applications constraints and can be employed in most of digital com-
munication systems.

In recent years, Fourier transform, as an eff ective signal processing technology, is more 
and more popularly applied to wireless communications. For OFDM systems, by an 
IDFT at the transmitt er, the whole frequency-selective wideband channel is divided 
into many  at narrow band sub-channels, which is bene t to overcome the eff ects of 
multi-path in wireless channels. In the chapter, DFT-S-OFDM system model, time-fre-
quency property of DFT-S-OFDM signals, the eff ects of carrier frequency-off set (CFO), 
the SIR and PAPR performances with that of OFDM systems, and DFT spread General-
ized Multi-Carrier (DFT-S-GMC) systems are described.

Recently, there has been a substantial amount of research to provide condition moni-
toring techniques for induction motors based on analyzing stator current signals. Short 
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Time Fast Fourier Transform (STFT) or MUSIC algorithms have been used to overcome 
that bad eff ect. The current spectrum analysis has some diffi  culties because of certain 
components of current signal that makes diagnoses diffi  cult. Fast FT is used to see 
the eff ects of the faults on the current spectrum. Increasing amount of sampled data 
for each situation is necessary to achieve bett er accuracy of fault diagnosis. Therefore, 
STFFT can be used instead of using a great number of data. 

Among many FT techniques, Fiber Optic Coupled/Grazing Angle Probe (FOC-GAP) 
of Fourier transform re ection-absorption infrared spectroscopy (FT-RAIRS) is a pow-
erful technique useful for development of new methodologies for detection of threat 
chemicals and pharmaceutical residues on surfaces. The technique can be used re-
motely, in situ and can detect nanograms of the target chemicals. It is solvent free and 
requires minimal sample preparation. Methodologies developed can achieve accurate 
predictions of the real concentration that is deposited on the substrates.

The Fourier spectra can be used to gain information on the rheological and morpho-
logical properties of the samples. Rheology is the science used to infer properties of 
complex  uids commonly encountered in polymer industry, in food processing, in 
pharmacology, in cosmetics etc. The mechanical properties of the  uid are determined 
by connecting the stress response of the material to the  ow deformation history. In 
one of the chapters, it will be shown that a proper choice of the Fourier domain greatly 
enhances the sensitivity of the experiments to the blend morphology, thus allowing 
the evaluation of details that are otherwise diffi  cult to be appreciated with time do-
main analysis. It will be demonstrated that Large Amplitude Oscillatory Shear (LAOS) 
response can be used to quantitatively characterize the blend morphology, at a lev-
el which cannot be att ained with linear Small Amplitude Oscillatory Shear (SAOS) 
techniques.

Fourier transform is very important in electrochemical (EC) sciences. Fast FT method 
was found as a very sensitive system in combination with electrochemical method for 
trace detection of compounds. In addition, FT provides an inverse transform, which al-
lows converting the complex frequency-domain signal EC data back into the time-do-
main without losing information. The FT allows to convert a time signal to the complex 
frequency domain, meaning that the spectral data contains information about both the 
amplitude and phase of the sinusoidal components that make up the EC signal.

FTIR spectroscopy was extensively used for interpreting the relationship observed be-
tween surface structure and the catalytic performance of the catalysts, especially, for 
disclosing the reaction mechanism over the catalysts. In this chapter, authors summa-
rize the FTIR studies used in the investigation of selective catalytic reduction.

Today, FTIR spectroscopy has a great signi cance in aspects of application in agricul-
ture, ecology, waste management, as well as in analysis of soil, air, atmospheric gases 
etc. In this book, authors report about recent advances of FTIR spectroscopy and other 
FT techniques in these areas.

Soil analysis is of the chief importance for agriculture as well as for soil management 
and conservation. The technological achievements in the infrared range over the last 
decade have now made this spectral range much more att ractive and an increasing 
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number of soil studies are conducted using this spectral range. This chapter reviews 
and compares the various mid-IR techniques that have been applied successfully to 
soil analysis: Transmitt ance, Diffuse reectance (DRIFT), Attenuated total re ectance
(ATR), Photoacoustic spectroscopy, Isotope ratio mass spectroscopy (IRMS) analysis.

The tremendous increase of waste due to economical and social increase in prosperity
and urban development, changes in the chemical composition of our goods and the
careless landlling of waste in dumps have caused serious environmental problems. 
The awareness of this issue emerged when soils and groundwater were contaminated 
by leachate emissions. FTIR spectroscopy has proven to be a powerful tool to comply 
with these purposes. The combination with multivariate statistical methods for data 
evaluation provides comprehensive information and the general applicability in waste 
management practice. This study is a synopsis of FTIR spectroscopic applications in 
waste management. It covers all relevant issues regarding process and quality control.

In the elds of atmosphere, application of Fourier transform IR technique is extremely 
important. The changing composition of the earth’s atmosphere is a matter of intense 
scientic research as we strive to understand details of the physical and chemical 
mechanisms that control our climate. Development of the ground-based solar Fourier 
Transform infrared spectrometer has enabled the study of trace gases in the atmo-
sphere. Fourier transform spectroscopy has been applied very successfully to the study 
of trace gases in the atmosphere by examining terrestrial atmospheric absorption lines 
in the infrared spectrum from the Sun. In this chapter, the reader will get a brief in-
troduction to the basic theory behind the retrieval of atmospheric trace gas amounts 
from atmospheric solar infrared transmission spectra and an overview of the previous
successes and current challenges in this eld of research. 

Thus, a remote infrared spectroscopy (RIRS) detection system was developed using 
a mid infrared (MIR) and near infrared (NIR) Fourier transform interferometer, an
infrared telescope and a cryocooled wide band, MCT detector. The system was used 
alone in passive mode IR emission measurements and was also coupled to a telescope 
enabled NIR-MIR thermal source for active mode measurements. Samples highly ener-
getic compounds (HEM), chemical agent simulant (CWAS), toxic industrial compounds 
(TIC) in the gas phase and on metal surfaces as thin lms and as solid phase samples 
were detected.

Finally, based on the presented topics, it can be said that these chapters describe new 
advances in the application of FTIR spectroscopy through the practical skills of re-
searchers, both academic and industrial. It covers recent advances in Fourier trans-
form application in chemistry, molecular biology, medicine, bioanalysis automation, 
nanotechnology, computing, as well as in agriculture, ecology and astronomy. At the 
same time, interest in the utilization of FTIR spectroscopy has grown tremendously 
because of its applications in microelectronics, sensors and semiconductors technology
to description of surfaces and characterization of very thin lms. Also, in digital com-
munication systems, development of new high performances architecture is dedicated 
to next generation of communication devices.

Completely self-contained, the book presents a clear guide to the development of new 
methodologies and analytical approaches to solving technological problems, clarifying 
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number of soil studies are conducted using this spectral range. This chapter reviews 
and compares the various mid-IR techniques that have been applied successfully to 
soil analysis: Transmitt ance, Diff use re ectance (DRIFT), Att enuated total re ectance 
(ATR), Photoacoustic spectroscopy, Isotope ratio mass spectroscopy (IRMS) analysis.

The tremendous increase of waste due to economical and social increase in prosperity 
and urban development, changes in the chemical composition of our goods and the 
careless land lling of waste in dumps have caused serious environmental problems. 
The awareness of this issue emerged when soils and groundwater were contaminated 
by leachate emissions. FTIR spectroscopy has proven to be a powerful tool to comply 
with these purposes. The combination with multivariate statistical methods for data 
evaluation provides comprehensive information and the general applicability in waste 
management practice. This study is a synopsis of FTIR spectroscopic applications in 
waste management. It covers all relevant issues regarding process and quality control.

In the  elds of atmosphere, application of Fourier transform IR technique is extremely 
important. The changing composition of the earth’s atmosphere is a matt er of intense 
scienti c research as we strive to understand details of the physical and chemical 
mechanisms that control our climate. Development of the ground-based solar Fourier 
Transform infrared spectrometer has enabled the study of trace gases in the atmo-
sphere. Fourier transform spectroscopy has been applied very successfully to the study 
of trace gases in the atmosphere by examining terrestrial atmospheric absorption lines 
in the infrared spectrum from the Sun. In this chapter, the reader will get a brief in-
troduction to the basic theory behind the retrieval of atmospheric trace gas amounts 
from atmospheric solar infrared transmission spectra and an overview of the previous 
successes and current challenges in this  eld of research. 

Thus, a remote infrared spectroscopy (RIRS) detection system was developed using 
a mid infrared (MIR) and near infrared (NIR) Fourier transform interferometer, an 
infrared telescope and a cryocooled wide band, MCT detector. The system was used 
alone in passive mode IR emission measurements and was also coupled to a telescope 
enabled NIR-MIR thermal source for active mode measurements. Samples highly ener-
getic compounds (HEM), chemical agent simulant (CWAS), toxic industrial compounds 
(TIC) in the gas phase and on metal surfaces as thin  lms and as solid phase samples 
were detected.

Finally, based on the presented topics, it can be said that these chapters describe new 
advances in the application of FTIR spectroscopy through the practical skills of re-
searchers, both academic and industrial. It covers recent advances in Fourier trans-
form application in chemistry, molecular biology, medicine, bioanalysis automation, 
nanotechnology, computing, as well as in agriculture, ecology and astronomy. At the 
same time, interest in the utilization of FTIR spectroscopy has grown tremendously 
because of its applications in microelectronics, sensors and semiconductors technology 
to description of surfaces and characterization of very thin  lms. Also, in digital com-
munication systems, development of new high performances architecture is dedicated 
to next generation of communication devices.

Completely self-contained, the book presents a clear guide to the development of new 
methodologies and analytical approaches to solving technological problems, clarifying 
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the mechanism of living cells, de nition of cosmic phenomena, or novel strategies to 
determine and characterize metabolite structures, as well as other strategies of the 
Fourier transform application.

The edition contains chapters that focus on many diverse types of IR spectroscopy, 
FTIR techniques and data processing routines, most of which can be performed on 
simple or complex macro- and microsystems. Thus, the book provides a glimpse into 
the new trends of engineering pertaining to control, management, computational intel-
ligence and network systems. 

In addition, this book will be highly useful for all IR spectroscopists, academic and in-
dustrial researchers needing a clear guide to Fourier transform application in valuable 
technologies. In this sense, suitable references are included in each chapter to assist in 
the understanding of the relevant FTIR problems, as well as to stimulate new interest 
in future studies and research.

Goran S. Nikolić    
University of Niš, Faculty of Technology

Leskovac, 
Serbia
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1.  Introduction 
Fourier transform infrared imaging spectroscopy (FT-IRIS) offers unique possibilities to collect 
chemical information from biological samples with high spatial resolution (generally ~10 µm) 
[1]. The development of FTIR instruments has introduced this technique also for biomedicine. 
FT-IRIS is a demanding technique that requires a good understanding of the measurement and 
analysis principles. Application of the technique can be divided into three phases: 1) sample 
preparation 2) data collection and 3) data analysis. Each of the three steps is crucial for the 
outcome of the study and significant sources of error may exist in all three steps. Biologists and 
medical doctors are often not aware of the technical aspects of the measurement principle or 
the data analysis methods. Therefore, lack of information may impair successful application of 
this technique, and the full potential of the technique is not achieved.  
This book chapter is written for an entry level user without the formal training for 
spectroscopy or data mining techniques. This chapter addresses important issues which 
should be considered when the FT-IRIS experiments are designed and data is analysed. We 
cover briefly: 1) the overall potential of FT-IRIS in qualitative and quantitative biomedical 
research, 2) essential issues to be taken into account in preparation and measurement of the 
biological samples and 3) different methods for analysis of acquired spectral data.  

2. Planning a new experiment 
FT-IRIS studies require careful planning of the study protocol beforehand. The first task is to 
define the aim of the study and to evaluate whether FT-IRIS is suitable for a planned 
experiment. FT-IRIS is a diverse technique that can be applied to numerous applications. 
Existing literature introduces numerous studies varying from simple qualitative 
applications to highly sophisticated applications of complex neural networks. FT-IR 
spectroscopy has been applied e.g. to cancer diagnostics [2-7], bone diseases [8-10], 
osteoarthritis [11-13], neurological diseases [14-16] and atherosclerosis [17,18]. Each and 
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every study is different and the used study protocols can be transferred only in rare cases 
directly to a new study. In general, sample preparation has the least variation, and also the 
measurement conditions can be standardized up to certain point, but the data-analysis has 
to by designed for each study individually.  

2.1 Sample preparation 
FT-IRIS studies are carried out either using thin histological sections (transmission 
measurement) or by using smooth, polished surfaces (reflection measurement). Histological 
tissue sections can be produced from: 1) fixated samples embedded into paraffin or other 
resins or 2) application of cryosectioning. Both techniques have their own advantages and 
limitations, which are discussed next.  

2.1.1 Chemically fixed histological samples 
Chemical fixatives have been used for decades in histology for preparing thin tissue sections 
for microscopy. Typical sample preparation involves formalin fixation and decalcification 
process. Samples are further dehydrated with ascending series of alcohol, and finally lipids 
are removed with xylene before sample is infiltrated with liquid paraffin [19]. Paraffin 
embedding is needed to create support for fragile sections in order to be able to cut 3-7 µm-
thick histological samples.  Embedded samples are easier to cut and, therefore, they have 
been used most often in histological studies. However, it should be realized that chemical 
fixatives introduce a few problems in FT-IRIS studies. Fixatives form chemical cross-links to 
protein structures preventing tissue deformation during the section processing. This is 
advantageous when only the morphology of the sample is considered, as is the case in 
traditional histology. However, since chemical fixatives alter the proteins and carbohydrates 
of the sample, they have potentially negative effects on spectroscopic analysis. It is known 
that the effect of chemical cross-linking can be seen in IR spectra [20, 21]. This clearly 
indicates that the fixation has permanently changed the tissue chemical properties. 
However, chemical fixation is typically done in a standardized manner within one study, 
and its effects can be assumed to be similar for each sample. Therefore, chemical fixation 
does not necessarily hinder the use of embedded sections. 
Another possible source of error is that residual traces of paraffin are evident in paraffin-
embedded sections even after chemical removal of paraffin [22]. Instead of chemical 
removal of paraffin, it is also possible to subtract paraffin after the measurements by using 
paraffin spectra [5]. Fortunately, a paraffin spectrum contains only a few narrow peaks. In 
order to minimize the contribution of paraffin residues to the analysis, one might also 
simply exclude the paraffin peak areas from the analysis.  
In addition, the fact that lipids and part of the solubilized proteins are most likely lost from 
the sample due to the sample processing must be taken into account. Thus, information 
arising from these compounds cannot be studied from the fixated samples. Taken together, 
these limitations should be taken into account when the use of chemically fixed tissue 
sections are planned in new FT-IRIS studies.  

2.1.2 Cryosections 
When cryosections are used in FT-IRIS measurements samples are not treated with fixatives 
prior to sectioning, and it requires only minimal sample preparation. Tissue is prepared and 
embedded into cryo-embedding medium. Subsequently, sample is frozen with liquid 
nitrogen and sectioned with a cryotome. However, here one should note that the accuracy of 
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section thickness of cryotome is not at the level of paraffin or plastic embedded samples. On 
the other hand, since the method does not require chemical processing of the sample, the 
sample is maintained close to its original biological form. Embedding media used for 
cryosectioning often stains the samples, which causes problems for data analysis. After 
cutting tissue samples with a microtome, sections have to be rinsed with water, but the lack 
of chemical cross-linking makes the thin sections pliant, and consequently sections wrinkle 
easily during the preparation. In general, repeated sectioning needs to be done until the 
good quality section is found for the final measurements.  
Advice: Chemical treatment of the sample is not needed with cryosections. Tissue is 
minimally altered compared to chemical fixation. Soluble proteins and lipids can also be 
studied when cryosections are used.  
Conclusions: Chemical fixatives alter the collected IR data. Different fixatives cause different 
alterations and therefore sample processing must be standardized between the specimens. 
Fixative-related alterations are not a problem with simple univariate analysis techniques, but 
they may cause potential artefacts when sophisticated multivariate techniques are used. 
Chemical fixation and embedding is also poorly suited for research problems when 
solubilized proteins or lipids are main interests of the study. Furthermore, a significant 
section thickness variation caused by a microtome itself exists both with embedded sections 
and cryosections. This variation has to be kept in mind in quantitative analysis and 
compensated, if necessary, with repeated measurements or with the reference sample 
technique [23]. Preparation of the cryosections is fast but the overall time consumption is 
considerable since the quality of cryosection is inferior to embedded sections. 

2.1.3 The effect of the variable section thickness 
Section thickness varies significantly between histological sections due to the various 
uncertainties (e.g. temperature changes during cutting, inadequate embedding media 
support, microtome-related inaccuracy and sample-related variation). In general, the 
variation is smaller with embedded samples. Section thickness variation affects directly the 
measurement results, since according to Beer-Lambert law, absorption is directly related to 
section thickness. Normalization (e.g. vector normalization) of the spectral data is usually 
conducted before qualitative multivariate analysis. Therefore, section thickness variation is 
usually not a problem with qualitative analyses. However, quantitative analysis requires a 
strict control of the section thickness since the thickness variation is one of the main sources 
of errors in the FT-IRIS experiments. Variation is particularly harmful in sample-to-sample 
correlation analysis where FT-IRIS measurements are correlated with the reference 
technique. The nature of section thickness error is random, and therefore its distribution can 
be assumed as Gaussian. Consequently, the section thickness error is not as significant when 
group means of different sample groups are compared. However, it is essential to keep in 
mind that the error caused by the section thickness variation can be greater than the 
biological variation itself.  
Advice: Evaluate whether the type of experiment you are conducting can be affected by the 
variable section thickness. If quantitative analysis from FT-IRIS spectra is carried out and 
compared with reference methods (correlation analysis), a good control of section thickness 
is essential. On the other hand, qualitative (multivariate) analysis is least affected by the 
section thickness variation. As a rule of thumb, section thickness artefact can be reduced by 
averaging multiple measurements from single specimen or by using homogenous reference 
material cut along with biological tissue, as described by Rieppo et al. (2004) [23]. 
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studied when cryosections are used.  
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Fixative-related alterations are not a problem with simple univariate analysis techniques, but 
they may cause potential artefacts when sophisticated multivariate techniques are used. 
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variable section thickness. If quantitative analysis from FT-IRIS spectra is carried out and 
compared with reference methods (correlation analysis), a good control of section thickness 
is essential. On the other hand, qualitative (multivariate) analysis is least affected by the 
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material cut along with biological tissue, as described by Rieppo et al. (2004) [23]. 
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2.2 Data collection 
Type of the experiment sets the requirements for data collection. Acquisition of spectral data 
has to be optimized for signal quality and the measurement time. Measurement of a single 
specimen can be very time consuming when high quality data is measured and large areas are 
covered. A simple univariate data analysis can be carried out with low quality data, but when 
sophisticated multivariate analysis is carried out, the signal-to-noise ratio has to be adequate. 
The length of the data collection is determined by four factors: 1) measured spatial area, 2) 
spectral resolution, 3) spatial resolution and 4) number of averaged scans. Spectral resolution, 
spatial area and spatial resolution are directly proportional to the data collection time. 

2.2.1 Spatial resolution 
Modern imaging instruments allow the use of different spatial resolutions. Data collection 
time increases significantly when spatial resolution is increased due to the decreased signal-
to-noise ratio and the increased amount of the measured pixels. Better spatial resolution 
requires more repeated scans to obtain equal signal-to-noise ratio. It is important to notice 
that spatial resolution is always limited by the diffraction due to the long wavelength used 
in mid-IR measurements. Spatial resolution can be approximated to be one-half of the used 
wavelength. Thus, best spatial resolution is achieved with the shortest wavelength of the 
measured spectrum (approx. 2.5 µm with 4000 cm-1), and the resolution decreases gradually 
as the wavelength increases. However, optimal spatial resolution requires synchrotron 
operated devices due to the poor S/N-levels at diffraction limited resolutions. 
Consequently, in practice with standard thermal globar IR light sources the resolution is 
limited to ~7-15 μm depending on the used wavelength (1700-700 cm-1). A true spatial 
resolution of the FT-IRIS device is defined as the minimum distance where two separate 
features can be fully separated from each other. Many FT-IRIS devices offer a better pixel 
resolution by magnification but that is only nominal resolution of the device (limited by 
sample stage movement or magnification), as actual signal, limited by the physical 
diffraction, arises from larger area. When planning FT-IRIS investigations one should 
carefully think whether there is a need for the smallest pixel sizes. For example, increase 
from 6.25 μm to 25 μm increases the number of measured pixels to 16-fold. Furthermore, if 
an equal signal-to-noise ratio is wanted, the measurement time is increased even more.  
Advice: High spatial resolution tremendously increases the measurement time. A very 
critical evaluation has to be carried out whether the diffraction limited resolution is needed 
for carrying the experiment. High quality spectral data is preferential to high spatial 
resolution in most cases. Better spatial resolution increases the measurement time mainly 
because the number of repeated scans has to be increased to simultaneously keep signal-to-
noise-ratio at an adequate level. 

2.2.2 Spectral resolution 
Spectral resolution is the accuracy (measured as wavenumbers) at which the spectral data is 
acquired. Depending on the type of experiment, spectral resolution is typically 4-16 cm-1. 
Sharp spectral features are only seen with a high spectral resolution. Therefore, it is 
advantageous to increase the spectral resolution up to a certain point. On the other hand, 
required measurement time is directly proportional to the spectral resolution. It is important 
to remember that as the resolution increases, so does the noise. Thus, number of repeated 
scans has to be increased if the S/N-ratio is kept unchanged, and therefore duration of the 
measurement is considerably longer. It has been demonstrated that more spectral features 
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can be seen with 4 cm-1 resolution compared to 8 or 16 cm-1. The effect is particularly evident 
when 2nd derivative spectra are used in the analysis (Figure 1). Most of the reported FT-IRIS 
studies have been conducted using either 4 or 8 cm-1 resolution. Application of the 2 cm-1 
resolution is not typically used for two main reasons: 1) protein features generally lack very 
sharp peaks, i.e., additional information is limited, and 2) measurement time becomes 
impractical due to poor signal-to-noise-ratio. 
 

 
Fig. 1. An IR absorbance spectrum of articular cartilage measured with 4 cm-1 spectral 
resolution (A) and second derivative spectra with 4 cm-1 (black) and 16 cm-1 (red) spectral 
resolutions (B) 

Advice: Simple univariate analysis can be carried out using spectral resolution of 8-16 cm-1. 
If second derivative spectra are used for analysis, spectral resolution should be increased to 
4-8 cm-1 to gain any advantage. From the theoretical point of view, a better spectral 
resolution reveals more information from the sample, but in practice measurement time is 
often a limiting factor. Signal-to-noise-ratio gets progressively worse as the spectral 
resolution increases. Spectral resolution can be considered as the most important parameter 
when a new FT-IRIS study is planned since it directly affects the subsequent possibilities for 
data analysis. Thus, data analysis methods (univariate vs. multivariate analysis) required 
need to be also planned beforehand. If numerous samples are measured, a careful balancing 
between the optimal spectral resolution, signal-to-noise ratio and measurement time is 
needed. Pilot studies are often essential to evaluate the spectral resolution needs against the 
time consumption. 

2.2.3 Standardized measurement conditions 
IR measurements are significantly affected by the carbon dioxide and water vapour of the 
atmosphere [24]. Humidity is substantially changed between winter and summer time 
causing a significant variance to the atmospheric conditions. Altered measurement 
conditions hinder the data quality when multivariate analyses are carried out. Standardized 
measurement conditions are, thus, essential for FT-IRIS measurements. Equipment is 
typically purged with N2-gas or dried air. For example, water vapour free air can be guided 
into spectrometer, microscope and sample compartment. Furthermore, thin histological 
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2.2.1 Spatial resolution 
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time increases significantly when spatial resolution is increased due to the decreased signal-
to-noise ratio and the increased amount of the measured pixels. Better spatial resolution 
requires more repeated scans to obtain equal signal-to-noise ratio. It is important to notice 
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measured spectrum (approx. 2.5 µm with 4000 cm-1), and the resolution decreases gradually 
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operated devices due to the poor S/N-levels at diffraction limited resolutions. 
Consequently, in practice with standard thermal globar IR light sources the resolution is 
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resolution of the FT-IRIS device is defined as the minimum distance where two separate 
features can be fully separated from each other. Many FT-IRIS devices offer a better pixel 
resolution by magnification but that is only nominal resolution of the device (limited by 
sample stage movement or magnification), as actual signal, limited by the physical 
diffraction, arises from larger area. When planning FT-IRIS investigations one should 
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from 6.25 μm to 25 μm increases the number of measured pixels to 16-fold. Furthermore, if 
an equal signal-to-noise ratio is wanted, the measurement time is increased even more.  
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critical evaluation has to be carried out whether the diffraction limited resolution is needed 
for carrying the experiment. High quality spectral data is preferential to high spatial 
resolution in most cases. Better spatial resolution increases the measurement time mainly 
because the number of repeated scans has to be increased to simultaneously keep signal-to-
noise-ratio at an adequate level. 
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can be seen with 4 cm-1 resolution compared to 8 or 16 cm-1. The effect is particularly evident 
when 2nd derivative spectra are used in the analysis (Figure 1). Most of the reported FT-IRIS 
studies have been conducted using either 4 or 8 cm-1 resolution. Application of the 2 cm-1 
resolution is not typically used for two main reasons: 1) protein features generally lack very 
sharp peaks, i.e., additional information is limited, and 2) measurement time becomes 
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need to be also planned beforehand. If numerous samples are measured, a careful balancing 
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needed. Pilot studies are often essential to evaluate the spectral resolution needs against the 
time consumption. 
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IR measurements are significantly affected by the carbon dioxide and water vapour of the 
atmosphere [24]. Humidity is substantially changed between winter and summer time 
causing a significant variance to the atmospheric conditions. Altered measurement 
conditions hinder the data quality when multivariate analyses are carried out. Standardized 
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sections absorb moisture from the environment. Therefore, it is beneficial to store the 
samples in a desiccator where steady environment can be maintained.  
Advice: Each measurement system and sample type has to be separately tested for the 
measurement stability. Temperature and humidity levels of the laboratory should be kept as 
constant as possible. Separate purge system can be used to obtain low humidity and carbon 
dioxide levels in the measurement chamber. It is good to keep in mind that the 
measurement environment is altered each time the specimen is changed. It is a good idea to 
measure the duration when steady measurement conditions are reached after the sample 
compartment has been opened. A regular quality control also ensures that the 
measurements are consistent with each other regardless of the measurement time. 

3. Data analysis – a crucial step to get the answers for your research problem 
Data-analysis is the most difficult part of the FT-IRIS experiments. A good quality data set is 
a prerequisite for successful spectral analysis. Raw spectral data gives only a little 
information without proper knowledge of spectral pre-processing and analysis. 
Chemometric methods vary and offer different approaches to gather specific information 
from the measured data. Analysis has to be designed to match the desired research 
problems. 

3.1 Spectral pre-processing 
Spectral pre-processing is an essential procedure prior to the actual spectral analysis. Pre-
processing is particularly needed when data from several studies are combined. Data has to 
be evaluated and filtered so that the non-biological variation between different 
measurements is minimized. Pre-processing routines include data quality analysis (signal-
to-noise-ratio criteria, water vapour limitations, removal of corrupted data), measurement 
area criteria (definition of the region of interest, removal of unwanted pixels), selection of 
spectral region (data truncation, masked areas) and baseline corrections. In general, spectral 
pre-processing should be conducted in a way that do not alter the actual biological 
information but reduces the variance caused by the measurement itself or by the 
measurement conditions. 
There exists different kind of baseline correction methods. Offset correction is simply 
conducted by setting, e.g., the minimum value of the spectrum (or alternatively a 
wavenumber that should not have any absorbance) to zero level. Linear baseline correction 
is done by fitting a line through two zero-absorbance points. The line is subsequently 
subtracted from the spectrum. Also polynomial-based fitting is used, but too heavy 
correction might alter not only the baseline but also the actual spectroscopic data. A more 
realistic model-based approach has also been used for data pre-processing. In Extended 
Multiplicative Signal Correction (EMSC), offset error, linear error and second order 
polynomial error are fitted simultaneously. The model uses a good quality reference 
spectrum when estimating the baseline errors, which makes EMSC a reliable method for 
baseline correction [25-28]. Application of second derivative spectra for the analysis 
eliminates the need for baseline correction as the differentiation removes most significant 
offset and linear baseline errors [27]. Proper pre-processing is essential, as baseline 
variations might hide the real biological variation if the baseline errors are not removed. 
Advice: Pay attention for the spectral pre-processing before actual data-analysis. Pre-
processing steps and demands depend on the data analysis method. 
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3.2 Univariate methods 
Univariate methods are the simplest and most used data analysis techniques in IR 
spectroscopy. Univariate analyses are usually carried out by using peak height, integrated 
peak area or peak ratio for quantitative spectroscopic measurements [29]. These methods are 
hindered by the fact that biological tissues are essentially composed of the same building 
components regardless of the tissue type. Therefore, univariate methods are not suitable for 
solving complex research problems. Biological tissues usually lack the distinctive spectral 
features, which hinders the possibilities of simple univariate analysis. It seems impossible to 
achieve specificity and sensitivity level of biochemical reference techniques with univariate 
based parameters in most biological research problems [30]. Univariate analysis is, however, 
useful if the tissue has major tissue constituents that can be isolated with a single parameter. 
For example, bone and partially also cartilage, are good examples of tissues where separate 
components can be measured with reasonable accuracy also with univariate methods [8, 9, 
31, 32]. Application of second derivative spectroscopy offers enhanced spectral features that 
potentially increase the parameter specificity. Second derivative spectroscopy increases 
significantly the spectral features, but the noise related to measurements is also significantly 
amplified. This sets higher demands for data quality. 

3.3 Multivariate methods 
Multivariate methods use more than one variable at a time. Multivariate methods offer 
means to increase parameter specificity since a larger part of the spectral information is 
exploited than in univariate analysis. Multivariate methods are suitable both for qualitative 
and quantitative analysis. The main difference between the univariate and multivariate 
methods is that the multivariate approach does not require accurate isolation of the 
differentiating spectral feature before the analysis is conducted. Univariate analysis is 
dependent on a priori knowledge of the spectral features and therefore the technique has 
limited efficiency. Multivariate techniques can handle the complete spectral data set with 
statistical means, and therefore the technique is more potential than user-limited univariate 
methods. Multivariate approach is often needed when specificity of the IR parameters has to 
be increased. This is commonly done by multivariate calibration, where a multivariate 
model is calibrated against some actual reference information. The model can be then used 
to obtain the same information from the spectroscopic data. Multivariate methods can also 
be used to separate two or more sample groups by spectral means. 

4. How to select appropriate analysis method for different research 
problems? 
A key element for successful use of the FT-IRIS is to be able to define the research question 
before actual experiments are started. Potential and the limitations of the FT-IRIS technique 
have to be kept in mind when study protocol is designed. Type of the research question 
determines the demands for sample harvesting and for type of analysis methods best suited 
for the particular research problem. 

4.1 Quantitative measurement of tissue constituents 
Quantitative measurement of different tissue constituents requires a specific parameter for a 
given compound. This is not a trivial demand to meet and often univariate parameters are 
not feasible. Multivariate models have a better chance to work since they do not require 
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information but reduces the variance caused by the measurement itself or by the 
measurement conditions. 
There exists different kind of baseline correction methods. Offset correction is simply 
conducted by setting, e.g., the minimum value of the spectrum (or alternatively a 
wavenumber that should not have any absorbance) to zero level. Linear baseline correction 
is done by fitting a line through two zero-absorbance points. The line is subsequently 
subtracted from the spectrum. Also polynomial-based fitting is used, but too heavy 
correction might alter not only the baseline but also the actual spectroscopic data. A more 
realistic model-based approach has also been used for data pre-processing. In Extended 
Multiplicative Signal Correction (EMSC), offset error, linear error and second order 
polynomial error are fitted simultaneously. The model uses a good quality reference 
spectrum when estimating the baseline errors, which makes EMSC a reliable method for 
baseline correction [25-28]. Application of second derivative spectra for the analysis 
eliminates the need for baseline correction as the differentiation removes most significant 
offset and linear baseline errors [27]. Proper pre-processing is essential, as baseline 
variations might hide the real biological variation if the baseline errors are not removed. 
Advice: Pay attention for the spectral pre-processing before actual data-analysis. Pre-
processing steps and demands depend on the data analysis method. 
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3.2 Univariate methods 
Univariate methods are the simplest and most used data analysis techniques in IR 
spectroscopy. Univariate analyses are usually carried out by using peak height, integrated 
peak area or peak ratio for quantitative spectroscopic measurements [29]. These methods are 
hindered by the fact that biological tissues are essentially composed of the same building 
components regardless of the tissue type. Therefore, univariate methods are not suitable for 
solving complex research problems. Biological tissues usually lack the distinctive spectral 
features, which hinders the possibilities of simple univariate analysis. It seems impossible to 
achieve specificity and sensitivity level of biochemical reference techniques with univariate 
based parameters in most biological research problems [30]. Univariate analysis is, however, 
useful if the tissue has major tissue constituents that can be isolated with a single parameter. 
For example, bone and partially also cartilage, are good examples of tissues where separate 
components can be measured with reasonable accuracy also with univariate methods [8, 9, 
31, 32]. Application of second derivative spectroscopy offers enhanced spectral features that 
potentially increase the parameter specificity. Second derivative spectroscopy increases 
significantly the spectral features, but the noise related to measurements is also significantly 
amplified. This sets higher demands for data quality. 

3.3 Multivariate methods 
Multivariate methods use more than one variable at a time. Multivariate methods offer 
means to increase parameter specificity since a larger part of the spectral information is 
exploited than in univariate analysis. Multivariate methods are suitable both for qualitative 
and quantitative analysis. The main difference between the univariate and multivariate 
methods is that the multivariate approach does not require accurate isolation of the 
differentiating spectral feature before the analysis is conducted. Univariate analysis is 
dependent on a priori knowledge of the spectral features and therefore the technique has 
limited efficiency. Multivariate techniques can handle the complete spectral data set with 
statistical means, and therefore the technique is more potential than user-limited univariate 
methods. Multivariate approach is often needed when specificity of the IR parameters has to 
be increased. This is commonly done by multivariate calibration, where a multivariate 
model is calibrated against some actual reference information. The model can be then used 
to obtain the same information from the spectroscopic data. Multivariate methods can also 
be used to separate two or more sample groups by spectral means. 

4. How to select appropriate analysis method for different research 
problems? 
A key element for successful use of the FT-IRIS is to be able to define the research question 
before actual experiments are started. Potential and the limitations of the FT-IRIS technique 
have to be kept in mind when study protocol is designed. Type of the research question 
determines the demands for sample harvesting and for type of analysis methods best suited 
for the particular research problem. 

4.1 Quantitative measurement of tissue constituents 
Quantitative measurement of different tissue constituents requires a specific parameter for a 
given compound. This is not a trivial demand to meet and often univariate parameters are 
not feasible. Multivariate models have a better chance to work since they do not require 
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fully separated, specific spectral features evident for researcher to be noticed. Univariate 
parameters are best suited in special situations where spectral differences between tissue 
components are evident, e.g., bone mineral and matrix content [8-10]. Major tissue 
constituents can probably be measured using univariate methods with reasonable 
specificity. However, if the studied compound is present only in small quantities, then only 
multivariate methods should be considered. Multivariate methods, such as principal 
component regression (PCR) and partial least squares (PLS) regression, offer more efficient 
means for quantitative analysis, since they can handle also overlapping spectral data. On the 
other hand, multivariate analysis needs good understanding of the background of the 
methods in use. Furthermore, in order to routinely use multivariate techniques to 
quantificate the composition of different tissue constituents, a comprehensive reference data 
set needs to be collected. This illustrates the complexity of FT-IRIS spectral analysis.  
Example: Univariate vs multivariate analysis of proteoglycan distribution of articular 
cartilage  
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Fig. 2. FT-IRIS analysis of proteglycan content of articular cartilage. Univariate analysis from the 
absorbance spectrum (A) produces a little worse result than the second derivative analysis (B). 
However, a multivariate PLS regression model is clearly the most efficient analysis method 
As a practical example, let us now consider univariate vs multivariate analysis techniques 
for determination of proteoglycan distribution in articular cartilage tissue. Univariate based 
solutions for FT-IRIS analyses of spatial proteglycan content in articular cartilage have been 
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used in several studies [30-33]. We have demonstrated that specificity for cartilage 
proteoglycans is significantly increased by taking advantage of the increased spectral 
separation of the second derivative spectroscopy. Furthermore, we have compared 
univariate results with the results of the PLS regression model. The PLS regression results 
were calculated using the whole collected spectral region. The results demonstrated that the 
PLS regression model is more consistent with the reference technique as compared to 
univariate methods [34] (Figure 2). 

4.2 Qualitative visualization of tissue morphology 
Tissue morphology is traditionally investigated through light microscopy of stained thin 
tissue sections. Morphological features are seen with specific staining patterns of different 
tissue types. FT-IRIS can produce similar information, but it does not require any staining. 
Image contrast is created with IR absorption of the tissue. Different tissue types absorb IR 
energy differently, i.e., their absorption spectra are different. However, it is often difficult to 
create contrast between different tissue types with univariate techniques. Therefore, if 
morphological features are one of the main interests of the study, multivariate techniques 
have to be considered. Application of the neural networks probably gives the most accurate 
results, but building such a model requires a large data pool and is a very time consuming 
procedure [3]. A large reference spectra data is collected and the model is trained to 
recognise spectral features of different tissue types. Nevertheless, neural networks are 
accurate and fast way to analyze specimens once the neural network is established. Simple 
multivariate techniques can be used also within a single specimen by using cluster analysis. 
The aim of cluster analysis methods is to minimize spectral differences within clusters while 
maximizing differences between clusters. Therefore, tissue types can be classified into their 
own groups by cluster analysis. Cluster analysis methods, such as K-means clustering or 
fuzzy c-means clustering, arrange data into desired number of user-determined clusters 
according to the spectral features [4]. Hierarchical cluster analysis allows unsupervised 
clustering without pre-determined number of clusters [4].  
Clustering methods are often used for isolating the regions of interest from the sample (e.g. 
cancer area from surrounding tissue). Clustering methods can be used with a limited 
number of samples but the calculations become very time consuming with large number of 
spectra or with large number of different samples. 
Advice: Morphological information can be gathered with multivariate clustering methods. 
Data clustering can be done with various multivariate techniques depending on the research 
application. Clustering methods become essential when large tissue sections are used and 
only a part of the data is interesting. Proper spectral pre-processing is essential prior to 
clustering. Any impurities or foreign material, e.g., such as embedding material, are likely to 
produce a new cluster, which is particularly harmful when fixed number of cluster is used. 

4.3 Classification studies 
Multivariate techniques are particularly useful when research problem can be simplified 
into few classes (disease vs. non-disease, tissue types 1,2,3,4 etc). Univariate based 
parameters have only limited capability for clustering purposes. Multivariate clustering 
methods are especially useful when different classes are sought (Figure 3). Spectral data can 
be assigned into subsets according to its spectral features either in unsupervised or 
supervised manner. In unsupervised techniques, only unlabeled data is used as an input. 
Clustering is done blind without knowing any additional information of the studied sample. 
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parameters are best suited in special situations where spectral differences between tissue 
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specificity. However, if the studied compound is present only in small quantities, then only 
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component regression (PCR) and partial least squares (PLS) regression, offer more efficient 
means for quantitative analysis, since they can handle also overlapping spectral data. On the 
other hand, multivariate analysis needs good understanding of the background of the 
methods in use. Furthermore, in order to routinely use multivariate techniques to 
quantificate the composition of different tissue constituents, a comprehensive reference data 
set needs to be collected. This illustrates the complexity of FT-IRIS spectral analysis.  
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Fig. 2. FT-IRIS analysis of proteglycan content of articular cartilage. Univariate analysis from the 
absorbance spectrum (A) produces a little worse result than the second derivative analysis (B). 
However, a multivariate PLS regression model is clearly the most efficient analysis method 
As a practical example, let us now consider univariate vs multivariate analysis techniques 
for determination of proteoglycan distribution in articular cartilage tissue. Univariate based 
solutions for FT-IRIS analyses of spatial proteglycan content in articular cartilage have been 
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used in several studies [30-33]. We have demonstrated that specificity for cartilage 
proteoglycans is significantly increased by taking advantage of the increased spectral 
separation of the second derivative spectroscopy. Furthermore, we have compared 
univariate results with the results of the PLS regression model. The PLS regression results 
were calculated using the whole collected spectral region. The results demonstrated that the 
PLS regression model is more consistent with the reference technique as compared to 
univariate methods [34] (Figure 2). 

4.2 Qualitative visualization of tissue morphology 
Tissue morphology is traditionally investigated through light microscopy of stained thin 
tissue sections. Morphological features are seen with specific staining patterns of different 
tissue types. FT-IRIS can produce similar information, but it does not require any staining. 
Image contrast is created with IR absorption of the tissue. Different tissue types absorb IR 
energy differently, i.e., their absorption spectra are different. However, it is often difficult to 
create contrast between different tissue types with univariate techniques. Therefore, if 
morphological features are one of the main interests of the study, multivariate techniques 
have to be considered. Application of the neural networks probably gives the most accurate 
results, but building such a model requires a large data pool and is a very time consuming 
procedure [3]. A large reference spectra data is collected and the model is trained to 
recognise spectral features of different tissue types. Nevertheless, neural networks are 
accurate and fast way to analyze specimens once the neural network is established. Simple 
multivariate techniques can be used also within a single specimen by using cluster analysis. 
The aim of cluster analysis methods is to minimize spectral differences within clusters while 
maximizing differences between clusters. Therefore, tissue types can be classified into their 
own groups by cluster analysis. Cluster analysis methods, such as K-means clustering or 
fuzzy c-means clustering, arrange data into desired number of user-determined clusters 
according to the spectral features [4]. Hierarchical cluster analysis allows unsupervised 
clustering without pre-determined number of clusters [4].  
Clustering methods are often used for isolating the regions of interest from the sample (e.g. 
cancer area from surrounding tissue). Clustering methods can be used with a limited 
number of samples but the calculations become very time consuming with large number of 
spectra or with large number of different samples. 
Advice: Morphological information can be gathered with multivariate clustering methods. 
Data clustering can be done with various multivariate techniques depending on the research 
application. Clustering methods become essential when large tissue sections are used and 
only a part of the data is interesting. Proper spectral pre-processing is essential prior to 
clustering. Any impurities or foreign material, e.g., such as embedding material, are likely to 
produce a new cluster, which is particularly harmful when fixed number of cluster is used. 

4.3 Classification studies 
Multivariate techniques are particularly useful when research problem can be simplified 
into few classes (disease vs. non-disease, tissue types 1,2,3,4 etc). Univariate based 
parameters have only limited capability for clustering purposes. Multivariate clustering 
methods are especially useful when different classes are sought (Figure 3). Spectral data can 
be assigned into subsets according to its spectral features either in unsupervised or 
supervised manner. In unsupervised techniques, only unlabeled data is used as an input. 
Clustering is done blind without knowing any additional information of the studied sample. 
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Data is re-arranged only on the basis of their spectral properties. In supervised clustering, 
known class information is also included as an input, e.g. disease vs. non-disease. Known 
information is used to seek spectral features that can be linked to the known information. 
Once the model is built and verified, the data analysis can be done with great speed. This 
type of application can be used if the specific feature is looked from the samples. 
Advice: Multivariate methods are powerful to find even the smallest chemical differences 
from the samples. However, analysis methods cannot automatically distinguish artefacts 
from true differences. Therefore, maintaining stabile measurement conditions and a proper 
spectral pre-processing is essential for application of multivariate techniques. 
 

 
Fig. 3. Pictures of the FT-IRIS k-means clustering map (A) and a histological cartilage section 
stained with type II collagen antibody (B) that shows a repaired cartilage defect and 
surrounding intact cartilage. Clustering of the FT-IRIS map is done by mathematical 
calculation without any user intervention or a priori information of the tissue properties. Grey 
colour represents repair tissue, pink shows most likely tissue originating from the periosteal 
flap used in repair surgery and green colour indicates the surrounding intact cartilage 

5. Conclusion 
Application of FT-IRIS offers new potential for biomedicine. Biologist and medical doctors 
require training for data mining techniques since the methodology is still relatively new in 
biomedicine. Multivariate methodology has increasingly been used in spectroscopy, and the 
research questions are becoming more demanding all the time. Recent progress in 
biospectroscopy has shown to be fast. From the theoretical point of view, FT-IRIS can be 
used for the research problems that cannot be answered with traditional imaging 
techniques. FT-IRIS links the tissue molecular information together with histological 
imaging. FT-IRIS instruments have rapidly developed and become available for numerous 
research groups worldwide. Utilization of the modern data mining techniques is likely to 
further increase the development of the biospectroscopy. 
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1. Introduction  
Spectroscopy of biomolecules has been founded at the end of last century by the researchers 
working in the field of optical spectroscopy applied to biosystems. Since this time, the 
interest of the activity has considerably grown up. Researchers have typically used 
traditional spectroscopic techniques, such as Raman scattering, IR absorption, UV/Vis 
absorption, circular dichroism, fluorescence, magnetic resonance, X-rays and neutron 
scattering. Recently, particular attention has been devoted to the applications of 
biomolecular spectroscopy in the fields of biomedical imaging, drug characterization for 
pharmaceutical applications, drug delivery and nanobiotechnology.  
Investigations of the bioactive metal complexes are very interesting in medicine and 
pharmaceutical industry, with the aspects on therapy of different states of anemia or 
metabolism disorder. On the other hand, polysaccharides and their derivatives, as the most 
abundant class of biomolecules, are known to have a large variety of biological functions. 
Through the interaction between these polyfunctional molecules and metal ions in living 
organisms, the modification of the biological function of both counterparts may be expected. 
The polysaccharide type compounds as ligands have received considerable interest. Simple 
sugars and their derivatives with reduced and oxidized groups form metal ion complexes of 
various composition and stability. One of the known roles of the oligo- or polysaccharide 
complexes is the transport of metal ions through cell membranes. For example, the 
commercial copper preparations based on polysaccharide dextran and its derivatives are 
used for such purpose in both human and veterinary medicine.  
In the field of biocoordination chemistry a lot of investigations are based on the synthesis 
and characterizations of different metal complexes of ligands they present in biological 
systems, or synthetic ligands, which will serve like the model-molecules for complex 
biomolecular structures. Bio- or synthetic ligands are mainly natural chemical compounds of 
macromolecular type. In this group of products of the special importance are chemical 
compounds of olygosaccharide pullulan, dextran and inulin with cations of the different 
biometals (Cu, Fe, Co and Zn). It is well known that raw microbiological exopolysaccharides 
dextran and pullulan, are glucose polymers with the large molar mass from a few millions 
g/mol, with own toxic and antigen characteristics so that they are not of pharmaceutical 
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importance. For commercial reasons raw polysaccharides were depolymerized to the 
products with adequate molar masses, with the aim of getting fractions with narrow molar 
mass distribution. Synthesis procedures for the complex formation of biometals with poly- 
or oligosaccharides are described in scientific and patent literature. However, the structure 
of the bioactive metal complexes with oligosaccharides has not been explained in details yet, 
despite a number of studies. The work represents further development in research of 
complex structure and pharmacobiological activity of the complexes. Some new results that 
are directly related to medical practice and structural physicochemistry of biomolecules 
based on the oligosaccharide-metal complex are presented in this publication. 
Different biometals (Cu, Fe, Co, Zn) complexes with inulin, pullulan and dextran 
oligosaccharides, as well as reduced or oxidised derivatives, have been analyzed by IR 
spectroscopy. Spectra-structure correlations of the complexes have been performed by using 
modern spectroscopic techniques: FTIR microspectroscopy, ATR-IR, LNT-IR and D2O-FTIR. 
The techniques are applying in the structure analysis of polysaccharide complexes, as well 
as for the confirmation of suggested types of complex structure and for the testing of 
homogeneities of samples. Results of IR microspectroscopic investigation shows that 
structural form of complexes and metal content considerably depends of constitution and 
ligands conformation, degree of crystallity, polymerization, polydispersity, and linearity of 
macromolecules. Also, stability of the synthesized complexes, as well as their 
pharmacological effect, depends of these parameters. FTIR investigation of the complexes by 
D2O isotopic exchange proved to be a very sensitive method for determining OH group 
coordination and is related to the hydrogen bond strength. Results of our investigations 
points to the complexes are crystal hydrate molecules. Correlation of physicochemical and 
spectroscopic investigations of these complexes, and structure of exopolysaccharide chain, 
are suggesting different model structures of the synthesized complexes. 
FTIR spectra and microscopy images were obtained by using an FTIR microspectroscopy 
system, ATR–FTIR spectrometer Bruker Tensor-27 in conjunction with a FTIR Bruker 
Hyperion-1000/2000 microscopy attachment equipped with the 4× viewing objective 
(objective magnification 4×, visible magnification 57×) and 15×IR Schwarzschild objective 
(objective magnification 15×, visible magnification 215×). The standard detector, a 250 μm 
liquid nitrogen cooled, mid-band mercury–cadmium–telluride (MCT) detector (ATR 
objective GMBH, Germany) with preamplifier,  with the range of the IR spectrum from 7000 
to 400 cm–1 was used. The spectra were measured with 2 cm–1 resolution and 200 scans co-
addition. The spectrometer was linked to a PC equipped with Bruker OPUS software to 
allow the automated collection of IR spectra. The measurements were conducted in the 
reflection mode. In the region from 4000–400 cm–1 all spectra were Interactive polynomials 
baseline corrected and area normalized. A Kubelka–Munk arithmetic method was applied 
to enhance the resolution in this spectral region. Deconvoluted spectra were smoothed by 
the 40 point Fourier filter method. The IR spectra were imported to GRAMS/AI 7 (Thermo 
Galactic, USA) for peak area integration.  
Thus, various tests can be performed by the Bruker Hyperion microscope, such as 
transmission, reflection, polarized, and ATR–IR measurements, the linear scan and mapping 
techniques in terms of software, and optic video technology for true video analysis. In 
addition, spatial resolution IR spectra and functional group imaging can also be acquired 
and analyzed. For measuring IR spectra by FTIR microscopy accurately, several primary 
parameters in the operation need to be selected and set first, which include aperture sizes, 
number of scans, resolution, velocity of motional mirror, and sampling background. 
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2. Character and spectroscopy of bioinorganic compound  
Metal ions in biological systems are divided into two classes (Nakamoto, 2009). The ions of 
first class (K, Na, Mg and Ca) are important in maintaining the structure of proteins by 
neutralizing negative charges of peptide chains and in controlling the function of cell 
membranes that selectively pass certain molecules. In the second class, ionic forms of Fe, Co, 
Cu, Zn, Mn, Mo, and so on exist in small to trace quantities, and are often incorporated into 
proteins (metalloproteins). The latter class is divided into two categories: (A type) transport 
and storage proteins and (B type) enzymes. Type A includes oxygen transport proteins such 
as hemoglobin (Fe), myoglobin (Fe), hemerythrin (Fe), and hemocyanin (Cu), electron 
transfer proteins such as cytochromes (Fe), iron–sulfur proteins (Fe), blue-copper proteins 
(Cu), and metal storage proteins such as ferritin (Fe) and ceruloplasmin (Cu). Type B 
includes hydrolases such as carboxypeptidase (Zn) and aminopeptidase (Zn, Mg), 
oxidoreductases such as oxidase (Fe, Cu, Mo) and nitrogenase (Mo, Fe), and isomerases such 
as vitamin B12 coenzyme (Co). 
During the last decades laboratory (with animals) and clinical researches have shown that 
many pathologic states of a body are accompanied by statistically reliable disturbances in 
the metabolism of metals at the molecular and body levels. Any chronic disease, the cause of 
which has not yet been established, can be due to abnormalities in metal metabolism. The 
determination of the amount of biometals in the body is suggested as the earliest diagnostic 
test of diseases (Grigorieva et al., 1983). 
The metals participating in metabolism can be divided into the following groups: a) inherent 
in a living body and involved in the sphere of essential biofunctions (Cu, Fe, Zn, Mn, Mo, 
Co, Mg, Ca, K, Na); b) introduced, often toxic, whose physiological role has not been fully 
elucidated and their presence in the body tissue and liquids is due to their abundance in 
nature and wide application by people (Al, Cr, Cd, Ni, Pb, etc.). For the first group of metals 
both positive and negative balances were detected in different pathologies, and for the 
second group, as a rule, only the positive balance was observed. One of the reasons for the 
abnormal accumulation and removal of metals from a human body may be the wide 
application of drugs in clinics and which, by their chemical nature, are good ligand–
complexing agents (up to 80% of all used drugs). Using non-steroidal antiinflammatory 
compounds (HL) and a copper-containing blood enzyme, ceruloplasmin (CuCPL), the 
ligands (drugs) were shown to take away competitively the metals from metal-containing 
and metal-activating enzymes: CuCPL + HL = CuL + CPL. Such an interaction results in a 
“discomfort” of an enzyme system in the body which is indicative of a side effect of drugs, 
i.e. complexing agents. For some diseases the shifts in metal metabolism are specific: 
rheumatoid arthritis (−) Fe, Zn; (+) Cu, Al, Mn, Mo, Cr; atherosclerosis (−) Cr, Mn, Zn; 
cancerogenesis (−) Cu, Fe, Mg; (+) Zn, Mn; diabetis (−) Cu, Mn, Cr; (+) Zn; etc. The 
correction in the concentration of these metals results in a therapeutic effect. The complex 
compounds of biometals with different types of drugs are the most promising tool for 
introducing the required metal into the body. It has been established that the application of 
antiinflammatory agents as complexes with some biometals decreases their toxicity and 
increases and prolongs their therapeutic effect (chemico-therapeutic synergism); 
antiulcerogenic, cytotoxic and other helpful properties, unusual to non-complexed agents, 
appear.  
To understand the roles of these metal ions in biological systems, it is first necessary to 
know the coordination chemistry (structure and bonding) of metal ions in their active sites. 
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Such information is difficult to obtain since these active sites are buried in a large and 
complex protein backbone. Although X-ray crystallography would be ideal for this purpose, 
its application is hampered by the difficulties in growing single crystals of large protein 
molecules and in analyzing diffraction data with high resolution. As will be discussed later, 
these difficulties have been overcome in some cases, and knowledge of precise geometries 
has made great contribution to our understandings of their biological functions in terms of 
molecular structure. In other cases where X-ray structural information is not available or 
definitive, a variety of physicochemical techniques have been employed to gain structural 
and bonding information about the metal and its environment. These include electronic, 
infrared, resonance Raman, ESR, NMR, ORD, CD, Moossbauer spectroscopy, EXAFS, and 
electrochemical, thermodynamic, and kinetic measurements.  
Infrared spectroscopy has been used extensively for the study of bioinorganic compound. In 
some cases, however, the vibrations of interest may not be enhanced with sufficient 
intensity. Then, one must resort to IR spectroscopy, which exhibits all vibrations allowed by 
IR selection rules. It should be noted, however, that IR measurements in aqueous media are 
generally limited to the regions where water does not absorb strongly. Furthermore, it is 
often necessary to use difference techniques to cancel out interfering bands due to the 
solvent and some solute bands. In the following, we will review typical results to 
demonstrate the utility of vibrational spectroscopy in deducing structural and bonding 
information about large and complex bioinorganic molecules. Marked progress has been 
made in chemistry of the bioinorganic complexes where the active site is modeled by 
relatively simple coordination compounds. Thus, we compare vibrational spectra of 
biological molecules and their model systems whenever appropriate or necessary. Since 
biospectroscopy is one of the most exciting areas of modern research, the volume of 
literature on biological compounds is increasing explosively. It is clearly not possible to 
cover all important topics in a limited space. Several excellent monographs (Parker, 1983; 
Nakamoto & Czernuszewicz, 1993) and review articles cited in each section should be 
consulted for further information. 
Infrared spectroscopy has been used particularly for the study of polysaccharide complexes 
with metal ions, especially the active sites of the ions in the complexes. FTIR spectroscopy 
opens up new possibilities for the fine structural analysis of polysaccharides and its 
derivatives, the establishment of the type of bonding between the elementary links and their 
rotational isomerism. Weak intermolecular interactions have a significant influence on the 
specifically valuable properties of biological molecules and polymer compounds. We had to 
restrict ourselves to a few examples of wide potentialities of the method of FTIR 
spectroscopy in investigating the relationships between the structure and the properties of 
extracellular polysaccharides and its complexes with different metal ions.  

3. Copper(II) ion and its significance 
Copper(II) ion is a biologically active, essential ion, creating ability and positive redox 
potential allow participation in biological transport reactions. Cu(II) complexes possess a 
wide range of biological activity and are among the most potent antiviral, antitumor and 
antiinflammatory agents (Vosburg & Cooper, 1941). On the other hand, condensed triazoles 
exhibit a range of pharamacological activities such as mitotic (Jackson & Polaya,1951), 
hypotensive (Walker et al., 1951), CNS stimulant (Lepetil, 1975), antiflammatory 
(Hardtmann & Kathawala, 1977) and analgesic activites (Kathawala, 1974; Clark et al., 1997). 
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Copper(II) ion is an essential component of several enzymes such as ceruloplasmin, 
cytochrome C oxidase, lysil oxidase, superoxid dismutase and tyrosinase that are required 
to maintain the host homeostasis (Platonova et al., 2004; Gaiduk et al., 2009). At the same 
time, copper ions can be involved in the reactions producing active radicals, which affect the 
structure of all types of biomolecules. Therefore, it is not suprising that cells lack free copper 
ions, while their safe transfer is realized by a special system, metabolic copper system, some 
genes of which have been recently cloned. 
Copper has an important role in the metabolism and transition of iron in the body. 
Microcytic hypochromic anemia is one of the outcomes of copper deficiency. There is a great 
number of hypocupremical drugs used commercially nowadays. As active substance, these 
drugs contain CuSO4 (Expert group, 2002). In the literature is known that metal complex 
with polysaccharides and their derivatives are of growing importance in medicine and 
pharmacy. New blood substitutes with hemostimulating and antianemic function, which are 
complexes of dextran and pullulan with Cu(II) ion differ from the existing analogues in 
good bio- and hemocompatibility and more pronounced and prolonged action (Klimovich et 
al., 1998; Gapanovich et al., 1998). These complexes are very stable during prolonged storage 
and are not toxic. Copper(II) ion is used in the treatment of microcytic hypochromic anemia. 
It is apsorbed from the lower part gastrointestinal tract. This active pharmaceutical 
compound has a repetitive dose schedule (0.6-2 mg daily).  

4. Bioactive copper-pullulan complex 
Pullulan is a linear exopolysaccharide of α-D-glucopyranose that is often described as a α-
(1→6) linked polymer of maltotriose subunits. This unique linkage pattern gives pullulan 
with distinctive physical properties. A number of potential applications have been reported 
for this biopolymer as a result of its good film-forming properties; pullulan can form thin 
films which are transparent, oil resistant and impermeable to oxygen. Pullulan may be used 
as a coating and packaging material, as a sizing agent for paper, as a starch replacer in low-
calorie food formulations, in cosmetic emulsions, and in other industrial and medicinal 
applications (Deshpande et al., 1992). Pullulan is derivatized easily to control its solubility or 
provide reactive groups. Consequently, pullulan and its derivatives have numerous 
potential food, pharmaceutical, and industrial applications.  
Bernier isolated water-soluble polysaccharides from the cultures of Aureobasidium pullulans 
and reported that α-D-glucopyranose is the major product of acid hydrolysis (Bernier, 1958). 
Based on the positive optical rotation and IR spectrum of pullulan was concluded that the 
polymer is a α-glucan in which α-(1→4) linkages predominate (Bender et al., 1959). 
Subsequent studies using IR, periodate oxidation, and methylation analysis established that 
pullulan is essentially a linear glucan containing α-(1→4) and α-(1→6) linkages in a ratio of 
2:1 (Sowa et al., 1963). Partial acid hydrolysates of pullulan include isomaltose, maltose, 
panose, and isopanose (Leathers, 2003). The discovery of the enzyme pullulanase provided a 
critical tool for the analysis of the structure of pullulan (Wallenfels et al., 1961). Pullulanase 
specifically hydrolyzes the α-(1→6) linkages of pullulan and converts the polymer almost 
quantitatively to maltotriose (Wallenfels et al., 1965). Based on this result, pullulan is 
frequently described as a polymer of α-(1→6) linked maltotriose subunits (Fig. 1). 
However, pullulan can also be viewed as a polymer of panose or isopanose subunits, which 
may reflect the biosynthetic origins of the molecule more accurately. Indeed, a number of 
enzymes that produce panose or isopanose from pullulan have been described since. Catley 
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Such information is difficult to obtain since these active sites are buried in a large and 
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(Catley et al., 1970) established that pullulan contains maltotetraose subunits (Fig. 2) in 
addition to the predominant maltotriose subunits. The frequency of maltotetraose subunits 
appears to vary on a strain-specific basis, from about 1% to 7% of total residues (Catley et 
al., 1986). The evidence suggests that maltotetraose subunits are distributed randomly 
throughout the molecule (Carolan et al., 1983). Unlike the maltotriose subunits in pullulan, 
maltotetraose residues are substrates for many α-amylases, and it has been proposed that 
hydrolysis of pullulan at these sites accounts for the decrease in molecular weight 
commonly observed in late cultures. 
 

 
Fig. 1. Molecular structure of a representative portion of pullulan, illustrating the primary 
structure of repeating linkages: (a) 2D model, (b) 3D model stick and ball 
 

 
Fig. 2. Molecular structure of the secondary (minor) repeating structure of pullulan, 
occurring in about 1–7% of total linkage subunits: (a) 2D model, (b) 3D model stick and ball 
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Many types of carbohydrate derivatives (reduced or oxidized) have been synthesized for 
biomedical applications. In addition, polysaccharides such as chitin (Tanodekaew et al., 
2004), chitosan (Pan et al., 2003; Yin et al., 2003), heparin (Ishihara et al., 2003; Kweon et al., 
2003), alginate (Leonard et al., 2003; Perets et al., 2003), inulin (Nikolic & Cakic, 2007), 
dextran (London, 2004; Serizawa et al., 2003; Lawrence et al., 1997) and pullulan (Ilic et al., 
2002; Kim et al., 2003; Nikolic at al., 2002) have been derivatized for biomedical applications. 
Pullulan is a polysaccharide that has been used in a drug delivery because of its solubility 
and biocompatibility. In addition, although the polysaccharides have many ionic groups, 
both anionic and cationic, pullulan is nonionic (Shingel, 2004).  
Reduced low-molar pullulan (RLMP), was chosen as a new material for complexing, and the 
subsequent interactions with Cu(II) ions were investigated. The complexing process begins 
in a weak alkaline solution (pH > 7), and involves OH groups in C(2) and C(3) or C(6) 
pullulan monomer units (α-D-glucopyranose). Complexes of Cu(II) ion with reduced low-
molar pullulan were synthesized in the water solutions, at the boiling temperature and at 
different pH values, ranging from 7.5–12. Cu(II) complexes were prepared from sodium 
salts, and investigated in the solid state. Fourier transform infrared spectroscopic data of 
synthesized complexes are rare in literature. FTIR spectroscopic characterization is now 
widely used to study the composition of the complex carbohydrate systems, the molecular 
interactions, a molecular orientation and conformational transitions of polysaccharides 
(Zhbankov, 1972; Panov et al., 1976; Panov & Zhbankov, 1988; Shingel, 2002; Zhbankov et al. 
1997). The major goal of this section is to use different FTIR spectroscopic techniques (FTIR, 
LNT-FTIR, ATR-FTIR, and FTIR microspectroscopy) as the main tools to verify the 
conformation and the structure of this type of ligand around the Cu(II) ions.  
Experimental.  

Pullulan of average molar mass 2 x 105 g mol-1 and reduced low-molar pullulan of average 
molar mass 6000 g mol-1 was obtained from PCI ‘‘Zdravlje Actavis Co.” (Leskovac, Serbia). 
CuCl2 x 2H2O was purchased from Merck (Darmstadt, Germany). Cu(II) complex synthesis 
with RLMP have been described in detail by Nikolic (Nikolic et al., 2008). For FTIR sample 
preparation the KBr pastille method was used. Fine pulverized, water-free samples (1 mg) 
were mixed with potassium bromide (150 mg, Merck) stored at 80 0C for 6 h, and then 
pressed at 200 MPa to obtain a transparent pellet. The reference measurement was 
performed with pure KBr. The dryness of the pastille was controlled by the band at ca. 1640 
cm-1, which is associated with the deformation vibrations of the O-H bond from water 
molecules (Nikolic et al., 1996; Bellamy, 1954). 
The FTIR spectra as an average of 40 scans were recorded at room (298 K) and liquid-
nitrogen (77 K) temperature on a BOMEM MB-100 FTIR spectrometer (Hartmann & Braun, 
Canada) equipped with a standard DTGS/KBr detector in the range of 4000–400 cm-1 with a 
resolution of 2 cm-1 by the Win–Bomem Easy software. The spectrometer was purged with 
dry N2. A Specac P/N 21525 variable-temperature cell was used for the LNT measurements. 
In the region all spectra were baseline-corrected and area-normalized. A Fourier self-
deconvolution based on the Griffiths/Pariente method was applied to enhance the 
resolution in a spectral region of 4000–400 cm-1. A gamma factor of 12 corresponding to a 
peak width of 24 cm-1 was used. Deconvoluted spectra were smoothed by the 30-point 
Savitzky–Golay filter method. 
In addition, FTIR microspectroscopy system, ATR-FTIR spectrometer Bruker Tensor-27 in 
conjunction with a FTIR Bruker Hyperion-1000/2000 microscopy attachment equipped with 
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a 15x objective and a 250 μm liquid-nitrogen cooled, narrow-band mercury–cadmium–
telluride (MCT) detector (ATR objective GMBH, Germany) with the range of the IR 
spectrum from 4000 to 400 cm-1 was used in this analysis. The spectra were measured with 4 
cm-1 resolution and 320 scans co-addition. The measurements were conducted in the 
reflection mode. In the region from 4000–400 cm-1 all spectra were Interactive polynomials 
baseline-corrected and area-normalized. A Kubelka/Munk arithmetic method was applied 
to enhance the resolution in this spectral region. Deconvoluted spectra were smoothed by 
the 40-point Fourier filter method.  
Results and discussion. 
The FTIR spectra of the RLMP and the synthesized Cu(II) complexes (Fig. 3) contain 
following characteristic bands: ν(O-H) 3400 cm-1, ν(C-H) 2930 cm-1, δ(HOH) 1640 cm-1, δ(C-
H) 1450 and 1345 cm-1, δ(O-H) 1420 cm-1, a complex band ν(C-O) and ν(C-C) 1200–1000 cm-

1, γ(C-H) 1000–700 cm-1. Between FTIR spectrum of RLMP and FTIR spectra of the 
synthesized complex on the different pH there is a clear difference in the area of vibrations 
of all types of OH groups and molecules H2O (Fig. 3). That is, in the spectrum RLMP has 
found the wide intensive band on the approx. 3400 cm-1 which is the result of valent 
vibrations OH groups and valent vibration of H2O constitutional molecules. The band on 
the 1640 cm-1 is the result δ(HOH) (Nikolic et al., 1996; Bellamy, 1954; Nikolic et al., 2007; 
Nikolic et al., 2008). 
The appearance of the spectrum in this region is different, as expected. In the spectrum of 
the complex which is synthesized on the pH 7.5 (Fig. 3) the centroid of this band is shifted, 
and decreased temperatures provoke a clear separation of two bands the frequency which 
is 3378 cm-1 and 3246 cm-1 (data from LNT-FTIR). By the complex which is synthesized on 
the pH 8 the frequencies of these bands have been 3453 cm-1 and 3333 cm-1, 3458 cm-1 and 
3348 cm-1 on the pH 10 and 3389 cm-1 and 3355 cm-1 on the pH 12. These bands are sensitive 
at the decreasing temperatures so those, according to this criterion, need attribute ν(OH) 
vibrations. These changes in ν(OH) region are results of complexing i.e. the deprotonation 
of the RLMP ligand OH group, most likely of different surroundings in the first 
coordination sphere of the Cu(II) ion. Exactly let us say we know that by the complexing 
Cu(II) ion with dextran (Dex) in the dependence on the pH form different types of the 
complex (pH 8: Cu(II)(Dex)2(H2O)2, pH 10: Cu(II)(Dex)2(H2O)(OH), pH 12: 
Cu(II)(Dex)2(OH)2) and the spectral picture in this region is very similar (Nikolic et al., 
2008). If in the case of the complex with RLMP would form similar complexes, bands in this 
region would need the attribute valent vibrations of the OH group and coordinate 
molecules H2O by the complex which is synthesized on the pH 7.5 with regard to the OH 
ligand group and the OH group in the first coordination sphere of the Cu(II) ion by the 
complex on the pH > 10. 
In the spectrum presented in Fig. 4a, of the complex which synthesized on the pH 7.5, one 
from two previous quoted bands would originate from ν(HOH), whose correct position 
could not be established and this is probably a low-frequent band 3246 cm-1 the absence of 
which in the spectrum of the complex was synthesized on the pH 12. In the area of δ(HOH) 
vibrations unlike RLMP where spectrum has only one band on the 1645 cm-1, in the 
spectrum of the complex which synthesized on the pH 7.5 in the area of δ(HOH) vibrations 
have two bands (1657 and 1642 cm-1) which points to two different types of H2O molecules 
(Fig. 4b). The higher frequency band 1657 cm-1 with the increasing pH diminishes the 
intensity. In other words the complex on the pH 10 and pH 12 is absent (Fig. 4b).  
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Fig. 3. FTIR spectra of RLMP, Mw = 6000 g mol-1 (1) and Cu(II) complexes with RLMP 
synthesized at boiling point and pH 7.5 (2), 8.0 (3), 10.0 (4) and 12.0 (5) 
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Fig. 3. FTIR spectra of RLMP, Mw = 6000 g mol-1 (1) and Cu(II) complexes with RLMP 
synthesized at boiling point and pH 7.5 (2), 8.0 (3), 10.0 (4) and 12.0 (5) 
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Fig. 4.  Stretching (a), bending in plane (b) and bending in plane OH plane (c) region from 
LNT-FTIR spectra of RLMP (1) and synthesized Cu(II)–RLMP complexes at boiling point 
and pH 8.0 (2), 10.0 (3), 12.0 (4) 

The spectral picture favors the suggested structure in Fig. 5 (type I). The complex which is 
synthesized on the pH 10 and pH 12 intensity bands from ν(HOH) and δ(HOH) diminishes 
with increasing pH. Expect the appearance band from δ(OH) from the first coordination 
sphere of Cu(II) ion whose intensity with increasing of pH growth; this band in the 
spectrum of the complex which synthesized on the pH 7.5 is absent. In addition to this, the 
fact is that in the area of δ(HOH) by the complex which is synthesized on the pH 10 and pH 
12 only one band exists, which points to one type of H2O molecule (like by RLMP) and band 
δ(OH) on the 1384 cm-1 (data from LNT-FTIR) (Fig. 4c).  
Spectroscopic FTIR study in a particular region of O-H (3400 and 1420 cm-1) and C-H (2900, 
1460, and 1350 cm-1) vibrations indicates different binding between the central metal ion and 
ligand, depending on pH and metal contents. Water protons take part in the formation of 
relatively weak hydrogen bonds (Nikolic et al., 1996; Bellamy, 1954; Nikolic et al., 2007; 
Nikolic et al., 2008). In the 1200–1000 cm-1 region, the spectra of RLMP and the complex 
comprise a number of highly fused bands. The enhancement of the resolution by using a 
Fourier self-deconvolution allows bands to be more accurately detected. The main bands 
found in the deconvoluted spectra of RLMP and the complex at ca. 1154, 1108 1079, 1042, 
and 1019 cm-1 are due to coupled valent vibrations of the C-O and C-C bonds and 
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deformational vibrations of the CCH, COH, and HCO bonds. The band at about 1150 cm-1 
has been assigned to valent vibrations of the C-O-C bond and glycosidic bridge. The broad 
peak at 1108 cm-1 should most likely be ascribed to the vibration of the C-O bond at the C(4) 
position of the glucopyranose units (Kacurakova et al., 1996). Complex vibrations involving 
the stretching of the C(6)-O(6) bond with participation of the deformational vibrations of the 
C(4)-C(5) bond result in the appearance of a band at 1079 cm-1 (Sivchik et al., 1979; 
Nikonenko et al., 2005; Zhbankov et al. 2005; aZhbankov et al., 2003; bZhbankov et al., 2003; 
Zhbankov et al., 2000). In the spectra of Cu(II) complex with RLMP band at 1079 cm-1 is less 
pronounced than in the spectra of RLMP. In the case of pullulan complexes, part of C(6) 
atoms participate in the formation of the C(6)-O-Cu(II) linkages; as a result, the band 
intensity at 1079 cm-1 for the Cu(II) complex with RLMP is reduced more than in the case of 
RLMP. The band at 1079 cm-1 in the FTIR spectra of RLMP is attributed to the antisymmetric 
stretching vibration of C(6)-O-C(1) glycosidic bridge. These findings suggest that the 1079 
cm-1 band for the Cu(II) complexes with RLMP can be considered as a characteristic for the 
type of interunit links and for the Ligand–Metal [C(6)-O-Cu(II)] linkage (Shingel, 2002; 
Zhbankov et al., 2000; aMitic et al., 2008; bMitic et al., 2008).  
In the case of the Cu(II)–RLMP complexes O-H groups participate in the formation of the 
Cu(II)–RLMP linkages. As a result, the band frequency at 3404 cm-1 for ν(O-H) vibrations in 
RLMP is reduced to approximately 3340 cm-1 (Fig. 3) in Cu(II)–RLMP. These findings also 
suggest that the band can be considered as characteristic for the type of Metal–Ligand links. 
The band at about 1042 and 1019 cm-1 found for polysaccharide in the spectra of RLMP and 
the complex were shown to relate to the crystalline and amorphous phases, respectively 
(Smits et al., 1998). The changes in intensity of these bands are strongly associated with the 
alterations in the macromolecular order. These bands in the spectra of RLMP and the 
complex can be responsible for more and less ordered structures, respectively. The major 
attention was focused on the bands in the 1160–1010 cm-1 region because the absorbance 
pattern due to ring vibrations in this spectral range is known to be individual for each 
carbohydrate structure.  
Moreover, we attempted to obtain the information about the conformations of these 
macromolecules in a solvent exhibiting a different influence on the system of intra- and 
intermolecular interactions. Special interest in the IR range for structural investigation is 
from 1000 to 700 cm-1. In the spectra of RLMP and the complexes, bands of negligible 
intensity are found in the region (950, 916, 860, 760 cm-1). According to the normal 
coordinate treatment on the RLMP model, these bands are interpreted as due to mixed CCH 
deformation vibrations coupled with CCO, OCO, and COC bending (Buslov et al., 1998; 
Zhbankov et al., 1997; Zhbankov, 1992; Zhbankov and Avsenev, 1984; Kiselev et al., 1977). 
Both the number and frequencies of the bands in the IR range depend on the conformation 
of the D-glucopyranose units. It is well known that the glucopyranose units exist in six 
different typical conformations (1C, C1, 1B, B1, 3B, and B3) (Panov & Zhbankov, 1976; 
Komar et al., 1968). The similarities of the γ(C-H) range indicate that there is no difference in 
the conformation of the glucopyranose unit in the RLMP and complex molecules, and they 
probably exhibit C1 chair conformation (916 and 850 cm-1).   
It appears that the intensity of the 996 cm-1 band in the pullulan spectra may indicate the 
extent of the interchain association. The band at 950 cm-1 belongs to the structure-sensitive 
region, and together with the band at 935 cm-1, characterizes the type of interunit bonds and 
angles. The band at 935 cm-1 was recently used to discover the co-existence of α-(1→6) and 
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α-(1→4) glycosidic linkages in the pullulan structure (Shingel, 2002; Zhbankov et al., 2000). 
A decrease of the band at 950 cm-1 indirectly confirms an occurrence of the conformational 
transitions in polysaccharide systems owing to rotational isomerism of pyranose rings about 
the glycosidic bond. For pullulans the band at 900 cm-1 described α-(1→6) linkages. α-(1→4) 
linkages were observed at 925 cm-1 (Shingel, 2002). Ring deformations and scaffold 
vibrations were observed at 710, 660, 600, 570, and 525 cm-1. In the experiment on the 
influence of the medium pH on a binding Cu(II) ion with different polysaccharides (Mitic et 
al., 2007; Norkus et al., 2002; Norkus et al., 2004), there is a possibility of gradual 
complexing, where their reforming starts at pH 8. Degradation of the Cu(II)–RLMP complex 
begins at pH values higher than 12. The Cu(II) ions form three different types of complexes 
with the deprotonated monomeric RLMP unit. Different structural models of the Cu(II)–
RLMP complexes of tetragonal distorted Oh coordination in the function of pH synthesis pH 
7–8 (type I), pH 8–10 (type II), and pH 10–12 (type III) are given in Fig. 5. 

 

 

 

 
Fig. 5. Structure model of Cu(II)–RLMP complexes, with six O-donor atoms in tetragonal 
distorted Oh environment of Cu(II) ions, with participation of: (a) C-2 and C-3 ligand OH 
groups, (b) C-2 and C-6 ligand OH groups, (c) C-3 and C-6 ligand OH groups 
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The reactivity of the RLMP depends primarily on the reactivity of the secondary, 
equatorially oriented hydroxyl groups (OH-2, OH-3, OH-4 and OH-6). The contents of the 
primary O-H groups in RLMP are slightly increased at lower Mw (about 2%). The reactivity 
of the polysaccharide C-atoms was determined by 13C NMR spectroscopy for pullulan it 
was C(6)>C(3)>C(2)> C(4) (Mahner et al., 2001). Carbohydrates without anchoring donor 
groups form a very weak complex with Cu(II) ion in an aqueous solution. The availability of 
more than one anchoring group can, however, prevent the coordination of the alcoholic O-H 
groups fulfilling the coordination sphere of the metal ion. The metal interaction with the set 
of the non-deprotonated OAH groups increases the complex stability. Mainly, the 
complexes were shown to form, in different protonation states, the deprotonation processes 
starting from pH 7 (Norkus et al., 2002). After deprotonation of one or more alcoholic O-H 
groups, the Cu(II) ion complexes having anionic character are usually very stable. In some 
cases, the formation of various amounts of alkoxo or hydroxo bridged dimeric (or 
oligomeric) species can be detected. The disugars bound the metal ions less efficiently than 
the monomeric units, while the trimetric ligands can probably simultaneously use terminal 
subunits to coordinate the metal ion. In aqueous solution, the RLMP complexes are formed 
by the displacement of the H2O molecules from the first coordination sphere of Cu(II) ion by 
the alcoholic OAH groups. In general, it seems to be true that at least three O-H groups in a 
favorable steric arrangement are required for the complex formation (Gyurcsik & Nagy, 
2000). The general leading rule is that the sugars in pyranose form (in RLMP C1-chair 
conformation) contain an equatorial–equatorial–equatorial (eq–eq–eq) sequence of three 
adjacent hydroxyl groups. The possible coordination sites are depicted on the model given 
in Fig. 5.  
The characterization of metal ion coordination equilibrium of polyalcohols and other sugar-
type ligands, containing alcoholic and aldehyde (or ketone) oxygen donor atoms, is difficult 
due to the low stability of the complexes in neutral or acidic aqueous solutions (Gyurcsik & 
Nagy, 2000; Nagy et al., 2003). The low electron densities on these donor oxygens cause the 
situation, in spite of their relatively large number in one ligand molecule, that they do not 
readily substitute the water molecules bonded in the first coordination sphere of the metal 
ions. With increasing pH, however, the hydrolysis of some metal ions prevents the 
coordination of the organic ligands. Thus, complex formation can only be expected in 
strongly alkaline solutions after deprotonation of alcoholic hydroxyl groups. The fact that in 
solutions of carbohydrates the species are in anomeric and conformational equilibrium and 
the isomers interact in different ways with metal ions makes the studies even more 
complicated. Any shift in the above equilibrium due to the metal ion coordination, thereby 
resulting in the changes in the fraction of the isomers having suitable positioned sequences 
of alcoholic hydroxyl groups in the total concentration of the ligand, will also influence the 
complex stability. 
The methods, such as FTIR, NMR, ESR, X-ray and UV–Vis made it possible to assign the 
binding hydroxyl or other groups and also to characterize the metal ion coordination of 
carbohydrates monitoring the ligand conformation or/and configuration changes forced by 
the complexation processes. FTIR spectra of the Cu(II)–RLMP complexes were recorded on 
room (RT) and on low nitrogen temperatures (LNT) in order to detect bands which are 
sensitive to the reduction temperatures respective bands which have originated from 
vibrations of all types OH groups and H2O molecules. In Fig. 6 RT-IR and LNT-IR spectra of 
the complex synthesized on the pH 7.5 have been presented in the comparison with RLMP.  
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FTIR spectra show the correlation between O-H stretch frequency and the hydrogen bond 
strength (3400–3200 cm-1) predict a red shift of the bonded O-H stretching band on cooling 
(from 3350 to 3246 cm-1) (Fig. 6). It is expected that the non-interacting O-H group (at 3378 
cm-1) is much less sensitive to cooling and consequently will show smaller red shifts. The 
red shift of the band is an indication of the involvement of the appropriate O-H proton in a 
weak hydrogen bond.  
 

 
Fig. 6. Stretching and bending region from RT (a) and LNT-FTIR (b and c) spectra of Cu(II)–
RLMP complex (type I, pH 7–8) (a – 298 K, b – 173 K, c – 77 K) 
In the LNT-FTIR spectra of the complex was synthesized on pH 7.5, two bands (3378 and 
3246 cm-1) are found in the region of ν(O-H) vibrations (Fig. 6). In the low-frequency region 
on LNT-FTIR spectra were presented in Fig. 6, sensitive on the reduction of temperature 
bands in the γ(OH) bending region from librations of coordinated water molecules on 
frequencies 847 cm-1 and 756 cm-1, show blue shift on cooling. The librations of the O-H 
group in this region of the complex synthesized on pH 12 were much less sensitive to 
cooling. The observation allowed one to suggest that the most probable water molecules are 
coordinated around Cu(II) in the complex type I (Fig. 5). The number and shape of these 
bands implies that in complexes type III there is the displacement of H2O molecules by the 
O-H groups in the first coordination sphere of the Cu(II) ion. The LNT-FTIR results confirm 
the structural models of complexes presented in Fig. 5. The results obtained from the 
structural studies of the investigated complexes were based on other spectroscopic 
techniques (Nikolic et al., 2005; Mitic et al., 2004; Nikolic et al., 2004; Nikolic et al., 2006; 
Bartkowiak et al., 1998; Cakic et al., 2008). 
The changes in number, frequencies, intensity, and width of the FTIR bands in the particular 
region of ν(O-H) vibrations (3400 cm-1), δ(C-H) vibrations (1500–1300 cm-1) and ν(C-O) 
vibrations (1200–1000 cm-1) (Fig. 3) were related to changes in the conformation and short-
range interactions of the RLMP. Very important changes can be observed in the range of 
1500–1300 cm-1 by detailed empirical analysis. Otherwise, the FTIR range is specific of 
bending vibrations of CH2-OH groups (Fig. 7). Namely, the exchange position and intensity 
of complex bands can be registered in this range, where C-H and O-H bending vibrations 
from the CH2-OH groups take part. The change of intensity on some bands was registered 
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only in synthesized Cu(II)–RLMP complexes. An approximate effect exists in the stretching 
of the FTIR range of C-H vibrations (3000–2800 cm-1, Fig. 3). The appearance of bands at 
about 1460 cm-1 and 1370 cm-1 from δ(C-H) vibrations and the band at about 1420 cm-1 from 
δ(O-H) vibrations are characteristic for one of more possible positions of the CH2-OH group, 
rotating around the C(5)-C(6) bond of the glucopyranose unit. The change of the angle 
between the methylene CH2-OH group and the polysaccharide chain axes, consequently 
decreases the intensity of the appropriate IR bands (ν(C-H) and δ(C-H) vibration). The 
Cu(II) ions in solution have a possible influence on the rotation of CH2-OH groups in the 
complexes (Cakic et al., 2004; Mitic et al., 2007; Nikolic et al., 2006). 
 

 
Fig. 7. Region of δ(CH) and δ(OH)  CH2OH grop vibrations in FTIR spectra of: (a) RLMP;  
(b) and Cu(II)–RLMP complexes 
We also applied FTIR spectroscopy to determine spectral manifestation of the changes in the 
complex structure caused by recrystallization from D2O and, thereby, complete the 
structural investigation of this modified polysaccharide. The FTIR spectra of the Cu(II) 
complexes with RLMP and recrystallized analogs from D2O were analyzed in order to find 
the specific spectral peculiarities that allow one to obtain the information about the structure 
and the conformation of these macromolecules in solvents that exhibit different influences 
on the system of intra- and intermolecular interactions. No effect of the conformation 
change was observed for the recrystallized Cu(II)–RLMP complex, especially in the range of 
1000–700 cm-1. When the a-D-glucopyranose units with C1 chair conformations are present, 
the FTIR spectra exhibit one band in the region between 925–885 cm-1 and another one 
around 860–820 cm-1, which are assigned to mixed CCH deformation vibrations (Shingel, 
2002; Nikolic et al., 2008). The results allowed one to suggest a predominant crystalline form 
of the recrystallized Cu(II)–RLMP complexes. 
Recently, FTIR spectroscopy was coupled with a microscope and a computer system, 
capable of microanalysis of minute samples by using a dedicated MCT detector. The 
resultant FTIR vibrational microspectroscopy can provide molecular information of samples 
with a high spatial resolution at microscopic level. Samples with microscopic size can be 
nondestructively analyzed by both vibrational microspectroscopies, particularly in the 
application of biomedical sciences (Kacurakova et al., 2001; Lin et al., 2007; Chiu et al., 2004; 
Nikolic et al., 2008). Thus, the use of vibrational microspectroscopy has extensively become 
a great potential over other spectroscopic techniques for noninvasive investigation of 
chemical components of ultrastructural samples (carbohydrates, lipids, proteins, 
nucleotides) (Mousia et al., 2001; Yu et al., 2005).  
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Analysis of Bioactive Olygosaccharide-Metal Complexes by Modern FTIR Spectroscopy:  
Copper Complexes 

 

29 

only in synthesized Cu(II)–RLMP complexes. An approximate effect exists in the stretching 
of the FTIR range of C-H vibrations (3000–2800 cm-1, Fig. 3). The appearance of bands at 
about 1460 cm-1 and 1370 cm-1 from δ(C-H) vibrations and the band at about 1420 cm-1 from 
δ(O-H) vibrations are characteristic for one of more possible positions of the CH2-OH group, 
rotating around the C(5)-C(6) bond of the glucopyranose unit. The change of the angle 
between the methylene CH2-OH group and the polysaccharide chain axes, consequently 
decreases the intensity of the appropriate IR bands (ν(C-H) and δ(C-H) vibration). The 
Cu(II) ions in solution have a possible influence on the rotation of CH2-OH groups in the 
complexes (Cakic et al., 2004; Mitic et al., 2007; Nikolic et al., 2006). 
 

 
Fig. 7. Region of δ(CH) and δ(OH)  CH2OH grop vibrations in FTIR spectra of: (a) RLMP;  
(b) and Cu(II)–RLMP complexes 
We also applied FTIR spectroscopy to determine spectral manifestation of the changes in the 
complex structure caused by recrystallization from D2O and, thereby, complete the 
structural investigation of this modified polysaccharide. The FTIR spectra of the Cu(II) 
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on the system of intra- and intermolecular interactions. No effect of the conformation 
change was observed for the recrystallized Cu(II)–RLMP complex, especially in the range of 
1000–700 cm-1. When the a-D-glucopyranose units with C1 chair conformations are present, 
the FTIR spectra exhibit one band in the region between 925–885 cm-1 and another one 
around 860–820 cm-1, which are assigned to mixed CCH deformation vibrations (Shingel, 
2002; Nikolic et al., 2008). The results allowed one to suggest a predominant crystalline form 
of the recrystallized Cu(II)–RLMP complexes. 
Recently, FTIR spectroscopy was coupled with a microscope and a computer system, 
capable of microanalysis of minute samples by using a dedicated MCT detector. The 
resultant FTIR vibrational microspectroscopy can provide molecular information of samples 
with a high spatial resolution at microscopic level. Samples with microscopic size can be 
nondestructively analyzed by both vibrational microspectroscopies, particularly in the 
application of biomedical sciences (Kacurakova et al., 2001; Lin et al., 2007; Chiu et al., 2004; 
Nikolic et al., 2008). Thus, the use of vibrational microspectroscopy has extensively become 
a great potential over other spectroscopic techniques for noninvasive investigation of 
chemical components of ultrastructural samples (carbohydrates, lipids, proteins, 
nucleotides) (Mousia et al., 2001; Yu et al., 2005).  
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More recently, FTIR and/or Raman microspectroscopic imaging systems have also been 
developed for applying to biosciences (Gierlinger & Schwanninger, 2007; Chenery & 
Bowring, 2003). ATR-FTIR spectra may be simultaneously collected at a time in a stepwise 
manner from different areas of a sample. The absorbance ATR-FTIR spectra of Cu(II)–RLMP 
complex which was synthesized at pH 7.5 are shown in Fig. 8. The absorbance of a band 
corresponding to a specific chemical component may be plotted as a map. ATR-FTIR spectra 
were presented in Fig. 8(A–C) from different areas of Cu(II)–RLMP complex and show high 
homogeneity of the sample.  
 

 
Fig. 8. ATR–FTIR spectra of Cu(II)–RLMP complex synthesized at pH 7.5 (type I) from 
different areas (A, B and C) of a sample 

A new imaging capability has been established not only to image heterogeneous regions of 
the samples and simultaneously provide spectroscopic and spatial information, but also to 
show visually the concentrations of components and to highlight their effect from the three 
dimensional plot. The application of microscopic FTIR imaging system to the ligand RLMP 
and Cu(II)–RLMP complexes, were synthesized at pH 7.5–12, is shown in Fig. 9. FTIR 
microscopy images of ligand RLMP, as well as images of the synthesized Cu(II)–RLMP 
complexes differ which also indicates that the complexation process and the creation of 
coordination compounds took place. FTIR microscopy images confirmed that the changes in 
the intensity of the analyzed bands are strongly associated with the alterations in the 
macromolecular order. These bands in the spectra of the complexes can be responsible for 
more and less ordered structures, respectively (Fig. 9). The changes in color contour may 
show the content and distribution of copper, and polysaccharides in Cu(II)–RLMP samples. 
Conclusions. 

The complexing process begins in a weak alkali solution (pH > 7.5), and involves OH 
groups in C(2) and C(3) or C(6) pullulan monomer unit (α-D-glucopyranose). A part of FTIR 
spectra, in the range on 1000–700 cm-1 of Cu(II) ion complexes with RLMP, indicates no 
influence of complexing process on the conformation change of C1 glucopyranose units. The 
IR band d(HOH) at the frequency of 1640 cm-1 indicated the existence of water molecules in 
a complex structure. 
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Fig. 9. FTIR microscopy images (250 μm x 300 μm) of RLMP, Mw = 6000 g mol-1 (1) and Cu(II) 
complexes with RLMP synthesized at boiling point and pH 7.5 (2), 8.0 (3), 10.0 (4), 12.0 (5) 

From LNT-FTIR it follows that non-interacting OH group is insensitive to temperature 
variation whereas a bonded OH shows a significant red shift upon cooling. In the low-
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frequency region on LNT-FTIR spectra, sensitive on the reduction of temperature bands in 
the γ(OH) bending region from librations of H2O molecules on frequencies 847 cm-1 and 756 
cm-1, show blue shift on cooling. 
Cu(II)–RLMP complexes are formed by the displacement of H2O molecules from the first 
coordination sphere of Cu(II) ion by the OH groups. Copper(II) ion with RLMP unit (Glc) 
forms three different types of complex (pH 7–8: Cu(II)(Glc)2(H2O)2, pH 8–10: 
Cu(II)(Glc)2(H2O)(OH), pH 10–12: Cu(II)(Glc)2(OH)2).  
The changes of the intensity on some bands were registered in RLMP complexes (in the 
ranges of a stretching vibration at about 2930 cm-1 and a bending vibration at about 1400 cm-1). 
The bands are characteristic of one of more possible positions of the CH2-OH group, rotating 
around C(5)-C(6) bond of the pullulan glucopyranose unit. 
FTIR microscopy images shows more and less ordered structures of the Cu(II)–RLMP 
complexes. ATR-FTIR microspectroscopic data shows homogeneity of the Cu(II)–RLMP 
samples. The results of the FTIR spectroscopic study by different techniques allowed one to 
suggest a predominant crystalline form of Cu(II)–RLMP complexes. 

5. Bioactive copper-dextran complex 
Dextran H(C6H10O5)xOH is a complex, branched glucan composed of chains of varying 
lengths (from 10 to 150 kDa). It is a polysaccharide similar to amylopectin (Belder, 1985). 
The straight chain consists of α-(1→6) glycosidic linkages between glucose molecules, while 
branches begin from α-(1→3) or α-(1→4) linkages (Fig. 10). Dextran is synthesized from 
sucrose by certain lactic-acid bacteria, the best-known being Leuconostoc mesenteroides and 
Streptococcus mutans. Dextran is an oral bacterial product that adheres to the teeth, creating a 
film called plaque; dental plaque is rich in dextrans. Dextran is also formed by the lactic acid 
bacterium Lactobacillus brevis to create the crystals of tibicos, or water kefir fermented 
beverage which supposedly has some health benefits. Dextran is freely soluble in water, 
methyl sulphoxide, formamide, ethylene glycol, glycerol, 4-methylmorpholine-4-oxide, and 
hexamethylphosphoramide. Some dextran fractions may adopt a certain degree of 
crystallinity and may only be brought into solution by strong heating. 
 

  
Fig. 10.  Molecular structure of a dextran: (a) 2D model, (b) 3D model stick and ball 
Dextran and its derivatives have been studied extensively (Zhbankov, 1972; Skornyakov & 
Komar, 1996). The Fourier-transform  infrared spectra of a series of branched dextrans also 
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were examined. The IR spectra of low molar dextran have been investigated in the range 
between 4000 and 400 cm–1 (Nikolic et al., 1996). The FTIR spectrum of reduced low molar 
dextran is presented in Fig. 11. Information on the glucopyranosyl units conformation in the 
polysaccharide can be acquired in the 1000–700 cm–1 region in which we expect the 
deformational γ(CH) vibrations bands. In this particular region, as it can be seen in Fig. 11, at 
least two weak bands around 911 and another 850 cm–1 are observed, which is the proof for 
C-1 conformation of glucopyranoside units of dextran. In the δ(OH) range of IR spectra one 
band at about 1645 cm–1, which is sensitive to deuteration, has appeared. The band 
originates from water molecules.  
 

 
Fig. 11. FTIR spectra of reduced low molar dextran, Mw = 5000 g mol-1  

Dextran is used medicinally as an antithrombotic (anti-platelet), to reduce blood viscosity, 
and as a volume expander in anemia (Lewis et al, 2008). These agents are used commonly by 
microsurgeons to decrease vascular thrombosis. The antithrombotic effect of dextran is 
mediated through its binding of erythrocytes, platelets, and vascular endothelium, 
increasing their electronegativity and thus reducing erythrocyte aggregation and platelet 
adhesiveness. Dextran also increases blood sugar levels. Biological active polysaccharides 
dextran  have  possibility to binding different  ions and metals in the solution and making of 
water-soluble complexes. These complexes have wide application in human medicine and 
veterine. These compounds have great importance in investigations today.  
Copper, essential biometal for living organisms, is a hematopoetical active element  of some 
metaloenzymes regulating the iron absorption in intestines, maintaining, at the same time, 
the iron in a reduced state and influencing the iron incorporation into hemoglobin (Lewis, 
1995). The copper amount necessary is usually supplemented by a normal diet in both 
humans and animals. It is known that copper deficiency causes a number of pathological 
states. Complex compounds of Cu(II) ion are important for prevention and treatment of 
some anemia caused by iron deficiency. 
The carbohydrate type compounds as ligands have been of a considerable interest. Simple 
sugars and their derivatives with reduced and oxidized groups form metal ion complexes of 
a various composition and stability. In both human and veterinary medicine commercial 
copper preparations based on polysaccharide dextran and its derivatives are used for such 
purpose (Ilic et al., 2003). According to literature data, dextran has the ability of complex 
formation with various biometals (Co, Zn, Ca and Mg) (Mitic et al., 2007; Cakic et al., 2006; 
Lugovaya et al., 1976; Gyurcsik & Nagy, 2000). Iron complexes with different polysaccha-
rides have special importance, and they have been described in detail (Ilic et al., 2002; 
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Nikolic & Cakic, 2007; Pekic & Cvetkovic, 1988; Cakic & Nikolic, 2003; Nikolic et al., 2002). 
The interaction of Cu(II), Ni(II) and Fe(III) ions with dextran may be used for their 
speciation by ultrafiltration (Solpan & Sahan, 1993). Synthesis procedures for the complex 
formation of Cu(II) ion with polysaccharides, including dextran, are described in scientific 
literature (Nikolic et al., 2005; Mitic et al., 2004; Mitic et al., 2007).  
In the section, we analyzed the IR spectra of Cu(II) ions complexes with reduced low molar 
dextran (RLMD). Fourier-transform IR spectra of dextran and its compounds with copper(II) 
ion, recorded at room temperature, were analyzed in order to obtain the information about 
the structure and the conformation of these polymer compounds. For IR sample preparation 
KBr pastille method was used. The IR spectra as an average of 40 scans were recorded at 
room (298 K) temperature on FTIR spectrometer BOMEM MB-100 (Hartman–Braun) 
equipped with a standard DTGS/KBr detector, in the range of 4000–400 cm−1 with the 
resolution of 2 cm−1, by Win-Bomem Easy software. FTIR microspectroscopy system, ATR-
FTIR spectrometer Bruker Tensor-27 in conjunction with a FTIR Bruker Hyperion-1000/2000 
microscopy attachment equipped with a 15x objective and a 250 μm liquid-nitrogen cooled, 
narrow-band mercury–cadmium–telluride detector (ATR objective GMBH, Germany) was 
used also in this analysis.  
Results and discussion. 

The plan for the synthesis of the Cu(II) complex with reduced dextran has required a 
detailed analysis of the synthesis procedure; both from the aspect of the reaction conditions 
of the synthesis and from the aspect of obtaining the stable and commercially applicable 
preparation of the complex. The analysis of the synthesis of similar complexes has pointed 
to the necessity of defining the physicochemical properties of commercial preparations. By 
their correlation, the undesired effects can be eliminated and thus a considerably improved 
pharmacological effect of the complex.  
The reactivity of the dextran primarily depends on the reactivity of the secondary, 
equatorially oriented hydroxyl-groups (OH-2, OH-3 and OH-4). The contents of the 
primary OH groups in dextran are slightly increased at lower molar masses (about 2%). As 
it is the case with the other glucans, the reactivity of the OH-2 group to the alkalizing 
reagents is higher than in the OH-3 and OH-4 groups. This is rationalized in the context of 
higher acidity of the OH-2 because of the proximity of anomeric centre (Gyurcsik & Nagy, 
2000). When the OH-2 and OH-4 ionize, reactivity to OH-3 is reduced; however, the 
substitution on the OH-2 and OH-4 abolish this action and induce the successive increase 
in the reactivity of OH-3. On applying these generalizations, it is necessary to exercise 
some precaution, since the potency of the base may affect the relative and absolute 
reactivities of the hydroxyl. Through derivatization of the dextran to the reduced form the 
large number of activation centers with will be at the disposal to the copper ions for the 
purpose of binding the complex is expected. This creates the possibility of achieving the 
considerably larger stability of the synthesized complex as well as of their pharmacological 
effect. 
For this reason, the choice and optimization of the low molar dextran in the capacity of the 
ligand have been made. Considering the importance of physicochemical parameters on the 
process and the synthesis results, the examination and optimization of ligands in relation to 
molar mass (Mw), as well as the reaction conditions of the synthesis (pH, T and t) were 
investigated and optimized (Mitic et al., 2007). The basic characteristics of synthesized Cu(II) 
complexes with RLMD are given in Table 1. 

Analysis of Bioactive Olygosaccharide-Metal Complexes by Modern FTIR Spectroscopy:  
Copper Complexes 

 

35 

Sample pH 
synth. 

Complex 
color 

Cu (%) 
(by AAS) 

Water 
solubility 

1 7.5 Light green 7.23 Soluble 
2 7.5 Green 19.85 Very soluble 
3 8.0 Green-blue 8.12 Soluble 
4 10.0 Blue-green 8.20 Sparingly soluble 
5 12.0 Dark blue 6.97 Slightly soluble 
6 7.5 Dark green 4.08 Slightly soluble 

Table 1.  Characteristics of copper-dextran complexes with RLMD  (Mw 5000 g/mol) as 
ligand, synthesized at boiling temperature  
On the basis of obtained experimental results (Table 1), a favorable result of Cu(II)-RLMD 
complexes synthesis is obtained with dextran oligomers Mw 5000, at boiling temperature 
and pH 7.5–8.0, within 7 min. Complexes obtained at pH > 8 present unfavorable effects of 
synthesis. Comparing the obtained complexes of Cu(II) with RLMD, either in solid state or 
in solution, it is obvious that, depending on pH values, various complex colors are obtained 
(Table 1). The change of the solutions color during the synthesis may be an indicator 
whether the syntheses of complexes were successful. The results obtained have shown that, 
in the range of pH 7.5–12, the color can vary from light green to dark blue. This is confirmed 
by the green solution color of the most stable complex of Cu(II) with RLMD (procedure 2, 
Table 1), in comparison with an indigo-blue alkali solution of decomposed Cu(II) at pH>12, 
where [Cu(OH)4]2− ions dominate.  
Water solubility of synthesized complexes of Cu(II) with RLMD is different. The most water 
soluble complex is obtained at pH 7.5 (Table 1). The solution is permanent and stable after a 
longer period of time (6 months). The complexes that are synthesized at higher pH are less 
soluble. The solution of the complexes obtained, following the procedure 5 (Table 1), after 
resting for long period of time, start layering, precipitate and become opalescent. Medium 
pH is changed after adding Cu–salts and Cu(II) content in a complex is much influenced by 
it. Syntheses are performed at the same temperatures and within the same reaction period, 
but at different pH values (Table 1). The highest Cu(II) content was got at pH 7.5. The 
possibility of obtaining Cu(II)–RLMD complexes with a higher Cu(II) content has been 
tested with the increased concentration of Cu–salts. The expected results have not been 
obtained.  
Solution pH probably has the influence on the way of binding of Cu(II) into a complex, i.e. 
on the type of a bond because, due to the change of pH value, the stability (Nikolic et al., 
2006), the color and the solubility of the complex obtained are also changed (Table 1). Thus, 
by the increase of solution pH values from 7.5 to 12, the percentage of the bounded Cu(II) 
with RLMD in complex decreases. Some authors (Tolmachev et al., 1975), in the paper of 
influence of medium pH on binding Cu(II) with dextran, point out the possibility of gradual 
complexing, i.e. gradual forming of coordination bounds, where their reforming starts at pH 
8. Thus, Cu(II) ions form of three different types of complexes  with dextran (Norkus et al., 
2002). Decomposition of Cu(II)-dextran complex begins at pH values higher than 12. 
The results of ATR-FTIR spectroscopic investigations show that spectra of Cu(II)–RLMD 
complexes and ligand are basically similar (Fig. 12). The similarities of the bending (C–H) 
range indicate that there is no difference in the conformation of the glucopyranose unit in 
the dextran and the complex molecule (916 and 850 cm–1), and they probably exhibit C-1 
chair conformation (Mitic et al., 2007).  
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microscopy attachment equipped with a 15x objective and a 250 μm liquid-nitrogen cooled, 
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Results and discussion. 

The plan for the synthesis of the Cu(II) complex with reduced dextran has required a 
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of the synthesis and from the aspect of obtaining the stable and commercially applicable 
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to the necessity of defining the physicochemical properties of commercial preparations. By 
their correlation, the undesired effects can be eliminated and thus a considerably improved 
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The reactivity of the dextran primarily depends on the reactivity of the secondary, 
equatorially oriented hydroxyl-groups (OH-2, OH-3 and OH-4). The contents of the 
primary OH groups in dextran are slightly increased at lower molar masses (about 2%). As 
it is the case with the other glucans, the reactivity of the OH-2 group to the alkalizing 
reagents is higher than in the OH-3 and OH-4 groups. This is rationalized in the context of 
higher acidity of the OH-2 because of the proximity of anomeric centre (Gyurcsik & Nagy, 
2000). When the OH-2 and OH-4 ionize, reactivity to OH-3 is reduced; however, the 
substitution on the OH-2 and OH-4 abolish this action and induce the successive increase 
in the reactivity of OH-3. On applying these generalizations, it is necessary to exercise 
some precaution, since the potency of the base may affect the relative and absolute 
reactivities of the hydroxyl. Through derivatization of the dextran to the reduced form the 
large number of activation centers with will be at the disposal to the copper ions for the 
purpose of binding the complex is expected. This creates the possibility of achieving the 
considerably larger stability of the synthesized complex as well as of their pharmacological 
effect. 
For this reason, the choice and optimization of the low molar dextran in the capacity of the 
ligand have been made. Considering the importance of physicochemical parameters on the 
process and the synthesis results, the examination and optimization of ligands in relation to 
molar mass (Mw), as well as the reaction conditions of the synthesis (pH, T and t) were 
investigated and optimized (Mitic et al., 2007). The basic characteristics of synthesized Cu(II) 
complexes with RLMD are given in Table 1. 
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Sample pH 
synth. 

Complex 
color 

Cu (%) 
(by AAS) 

Water 
solubility 

1 7.5 Light green 7.23 Soluble 
2 7.5 Green 19.85 Very soluble 
3 8.0 Green-blue 8.12 Soluble 
4 10.0 Blue-green 8.20 Sparingly soluble 
5 12.0 Dark blue 6.97 Slightly soluble 
6 7.5 Dark green 4.08 Slightly soluble 

Table 1.  Characteristics of copper-dextran complexes with RLMD  (Mw 5000 g/mol) as 
ligand, synthesized at boiling temperature  
On the basis of obtained experimental results (Table 1), a favorable result of Cu(II)-RLMD 
complexes synthesis is obtained with dextran oligomers Mw 5000, at boiling temperature 
and pH 7.5–8.0, within 7 min. Complexes obtained at pH > 8 present unfavorable effects of 
synthesis. Comparing the obtained complexes of Cu(II) with RLMD, either in solid state or 
in solution, it is obvious that, depending on pH values, various complex colors are obtained 
(Table 1). The change of the solutions color during the synthesis may be an indicator 
whether the syntheses of complexes were successful. The results obtained have shown that, 
in the range of pH 7.5–12, the color can vary from light green to dark blue. This is confirmed 
by the green solution color of the most stable complex of Cu(II) with RLMD (procedure 2, 
Table 1), in comparison with an indigo-blue alkali solution of decomposed Cu(II) at pH>12, 
where [Cu(OH)4]2− ions dominate.  
Water solubility of synthesized complexes of Cu(II) with RLMD is different. The most water 
soluble complex is obtained at pH 7.5 (Table 1). The solution is permanent and stable after a 
longer period of time (6 months). The complexes that are synthesized at higher pH are less 
soluble. The solution of the complexes obtained, following the procedure 5 (Table 1), after 
resting for long period of time, start layering, precipitate and become opalescent. Medium 
pH is changed after adding Cu–salts and Cu(II) content in a complex is much influenced by 
it. Syntheses are performed at the same temperatures and within the same reaction period, 
but at different pH values (Table 1). The highest Cu(II) content was got at pH 7.5. The 
possibility of obtaining Cu(II)–RLMD complexes with a higher Cu(II) content has been 
tested with the increased concentration of Cu–salts. The expected results have not been 
obtained.  
Solution pH probably has the influence on the way of binding of Cu(II) into a complex, i.e. 
on the type of a bond because, due to the change of pH value, the stability (Nikolic et al., 
2006), the color and the solubility of the complex obtained are also changed (Table 1). Thus, 
by the increase of solution pH values from 7.5 to 12, the percentage of the bounded Cu(II) 
with RLMD in complex decreases. Some authors (Tolmachev et al., 1975), in the paper of 
influence of medium pH on binding Cu(II) with dextran, point out the possibility of gradual 
complexing, i.e. gradual forming of coordination bounds, where their reforming starts at pH 
8. Thus, Cu(II) ions form of three different types of complexes  with dextran (Norkus et al., 
2002). Decomposition of Cu(II)-dextran complex begins at pH values higher than 12. 
The results of ATR-FTIR spectroscopic investigations show that spectra of Cu(II)–RLMD 
complexes and ligand are basically similar (Fig. 12). The similarities of the bending (C–H) 
range indicate that there is no difference in the conformation of the glucopyranose unit in 
the dextran and the complex molecule (916 and 850 cm–1), and they probably exhibit C-1 
chair conformation (Mitic et al., 2007).  
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Fig. 12. ATR-FTIR spectra of Cu(II)–RLMD complexes synthesized at pH 7-8 and pH 10-12 

 

 
Mid FTIR spectra of Cu(II)–RLMD complexes synthesized at different pH (pH 7–8, Fig. 13B, 
and pH 10–12, Fig. 13C) recorded at 298 K, show that the correlation between the O–H 
stretch frequency and the hydrogen bond strength. Spectroscopic IR study in particular 
region of OH (3400, 1420 cm–1) and C–H (2900, 1460, 1350 cm–1) vibrations indicates different 
binding between central metal ion and ligand, depending on pH and metal contents (Fig. 
13). The difference in frequencies, intensity, and shape of these bands in the region 3600–
3100 cm−1, implies that in complexes which were synthesized at pH 10–12 there is the 
displacement of H2O molecules by O–H groups in the first coordination sphere of the 
copper(II) ion. Dextran and complexes with Cu(II) ion have one crystallographic type of 
water molecule (1640 cm−1). Water protons take part in the formation of relatively weak 
hydrogen bonds (Cakic et al., 2002; Nikolic et al., 2006; Nikolic et al., 2008).  
 

 
The FTIR investigation corresponds with the results obtained by ESR spectrometry (Mitic et 
al., 2004), as well as with the results obtained by UV-VIS investigations (Mitic et al., 2007). 
ESR parameters of the spectra (A⎪⎪ = 187 × 10−4 cm−1, g⎪⎪ = 2.23 and g⊥ = 2.03), for the 
complexes synthesized at higher pH values, were close to the values for the frozen Cu(II)–
ethylene glycol complex, thus indicating the square-planar coordination of Cu(II) ion with 
four oxygen atoms. Although the Cu(II) ion content of complexes synthesized at lower pH 
values was much higher (up to 18.95% for the complex synthesized at pH 7.5) the ESR signal 
of these complexes was lacking due to strong spin–spin interactions of neighboring Cu(II) 
ions. ESR spectrum of complex containing 6.97% of copper synthesized at pH 10 is 
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presented to the left. The ESR spectra indicate the axial symmetry of synthesized complexes 
and were typical for the Cu(II) ion with one unpaired electron in 3d subshell. Asymmetric 
appearance of the hyperfine spectral lines originates from the unresolved spectral 
contributions of two natural isotopes, 63Cu and 65Cu. ESR spectral parameters (A⎪⎪ = 187 × 
10−2 cm−1, g⎪⎪ = 2.23 and g⊥ = 2.03 ) point to the tetragonal coordination of Cu(II) with four 
oxygen atoms from ligands in the same plane (Mitic et al., 2004; Nikolic et al., 2004). 
 

 
Fig. 13. FTIR spectra of: LM dextran (A); stable Cu(II)–dextran complex, with high metal 
content (≈ 18%), obtained at pH 7–8 (B); unstable Cu(II)–dextran complex, with low metal 
content (≈ 5%), obtained at pH 10–12 (C) 

In addition, depending on pH values, complexes of Cu(II) with RLMD also behave 
differently considering wavelength at which they show absorption maximum. This range of 
wavelengths in the VIS spectra is 650–700 nm (Mitic et al., 2007). Hypsochromic effect of 
complexes absorption maximums with increase of pH solutions confirms the presence of 
different types of complexes. Hexaqua copper(II) ion [Cu(H2O)6]2+ absorb at wavelength 
812.7 nm, while synthesized complexes absorb within the ranges of 650–700 nm. With 
increase in solution pH the absorption maximums change to shorter wavelengths 
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comparing with [Cu(H2O)6]2+ ion. Complex, which has been decomposed at pH values 
over 12, shows absorption maximum at 634 nm. Thereby, these spectrophotometric 
criteria can be applied for the confirmation of the success of complex synthesis. On the 
basis of the obtained results by spectroscopic investigations of this complexes, three 
different types of Cu(II) complexes structure with deprotonized dextran monomer unit 
(Glc–) are suggested depending on pH synthesis. At pH 7 to 8 [Cu(Glc)2(H2O)2] is formed; 
at pH 8 to 10 [Cu(Glc)2(OH)(H2O)]– is formed and at pH values over 10 [Cu(Glc)2(OH)2]2– 
is formed. 
 

 
Fig. 14. FTIR microscopy images (250 μm x 300 μm) of RLMD, Mw = 5.000 g mol-1 (1) and 
Cu(II) complexes with RLMD synthesized at boiling point and pH 7-8 (2), 8-10 (3) and 10-12 
(4) 
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The application of microscopic FTIR imaging system to the RLM dextran as ligand and 
Cu(II)–RLMD complexes, were synthesized at pH 7.5–12, is shown in Fig. 14. FTIR 
microscopy images of dextran, as well as images of the copper-dextran complexes differ 
which also indicates that the complexation process and the creation of coordination 
compounds took place (Mitic et al., 2010). FTIR microscopy images confirmed that the 
changes in the intensity of the analyzed bands are strongly associated with the alterations in 
the macromolecular order. These bands in the spectra of the complexes can be responsible 
for more and less ordered structures, respectively. The changes in color contour may show 
the content and distribution of copper, and polysaccharides in Cu(II)–RLMD samples. 
After physicochemical standardization of the most stable complex obtained according to the 
procedure 2 (Tab. 1), the preparation for the pharmacological test was provided. The 
preparation was tested pharmacologically with the aim of determining systemic acute 
toxicity expressed as a median lethal dose (LD50) and as an equivalent of Cu(II) dose per kg 
of a mouse body weight (Cakic et al., 2008). None of the applied complex doses at the 
concentration of 82–169 mg equivalent of Cu(II) per kg of a mouse’s body weight was lethal 
in the tested mice. Therefore, in this case, a median lethal dose could not be determined. The 
application of higher doses has caused the mortality of one part of experimental animals. 
Thus, in this range, the preparation toxicity LD50 of 1419–1661 was determined, which 
corresponds to the equivalent of Cu(II) dose of 281–329 mg per kg of the body weight, in the 
concentration 5–20% of the complex solution. Toxicity investigations of various commercial 
copper salts show a wide range of values for LD50. The level of the acute toxicity is higher 
for more soluble than for less soluble Cu(II) salts. The results of our pharmacological 
investigations point to the lower toxicity of Cu(II) complex with RLMD, what is much better 
than in the case of commercially applicable inorganic copper salts. 
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1. Introduction 
The Fourier-transform mass spectrometry (FTMS) instrument offers a mass resolution 
higher than most of other mass spectrometers. This high resolution is in part due to the 
better stability offered by a superconductor magnet in FTMS than a radio frequency voltage 
utilized in many other mass spectrometers. The extremely high resolution of FTMS has very 
important application in biomedical proteomics research. The high resolution not only 
dramatically improves the reliability of protein identification but also the accuracy of 
protein quantitation.  
In this chapter, we present several examples of proteomics study that takes advantage of the 
high resolution offered by FTMS. Particularly, we describe examples of proteome dynamic 
study with isotopomer analysis, and precise peptide and protein label-free quantitation with 
rigorous statistical assessments.  
In protein dynamic studies, FTMS readily resolves all of the isotopomer peaks for peptides. 
The well-resolved isotopomer peaks allow a direct integration of the intensities of different 
isotopologue envelopes without the need of a deconvolution algorithm. With the high-
resolution data, we were able to show that protein turnover measurement revealed more 
subtle changes in the dynamics of a proteome. 
The high resolution of FTMS helps to reduce the interference of contaminant peaks (Fig. 1). 
The ability to resolve the targeted peptide isotopomer peaks from interfering ones greatly 
facilitates the implementation of a label-free quantitative proteomics method that relies on 
peptide cross reference between liquid chromatography runs and the integration of 
extracted ion chromatographic intensities (Lipton et al., 2002). With both high confidence in 
peptide identification and quantitation, we showed that the major source of variability lies 
more in sample preparation than in liquid chromatography/mass spectrometry analysis. 
Such a result has a direct consequence in the statistical approaches utilized to assign 
significance in label-free quantitative proteomics.   
Two sections are presented in this chapter. The first one briefly discusses the general aspect 
of a protein turnover analysis followed by examples of proteome dynamics study in acid 
stressed and iron limited mycobacterial cells. The second one describes the utilization of 
high-resolution FTMS data for label-free quantitation of proteins with a rigorous statistical 
assessment of significance in differential protein abundances.  
The spectra shown in the panels a to e of Fig. 1 are for a tryptic peptide from a superoxide 
dismutase in M. smegmatis (MSMEG_6427; Mn) with a sequence of AFWNVVNWDDVQNR. 
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The panels a and b are the ion-trap mass spectrometry (ITMS) MS2-scan spectra for a +2 
precursor ion of the peptide in the nanoLC/LTQ-FT and the nanoLC/LTQ respectively. 
Shown atop of panel a is the peptide sequence labeled with the detected y-series ions in the 
MS2-scan spectra. For clarity, only y-series ion fragments are shown with labels. The panels 
c to e show the MS-scan spectra obtained with a FTMS scan (c), an ITMS zoom MS-scan (d), 
and an ITMS full MS-scan (e), respectively. Only an m/z range of 880 to 885 is shown for the 
+2 peptide charge state. The three short arrows in the panels c, d, and e indicate the first 
three isotopic peaks of the +2 peptide charge state. The asterisks in panel c indicate the 
isotopic peaks probably not related to the peptide. The theoretical molecular weight of the 
peptide is shown atop of panel c. The long dashed arrows point to the respective MS-scans 
from which a precursor ion is selected for the MS2 scans.  Adapted from (Li, 2010a). 
 

 
Fig. 1. A resolution and a signal-to-noise ratio in MS-scan and MS2-scan spectra are 
compared between a nanoLC/LTQ-FT and a nanoLC/LTQ mass spectrometry systems 

2. Protein turnover analysis with FTMS 
2.1 Protein turnover 
Protein turnover is a fundamental cellular process in all cell types having important 
implications in many aspects of biological science (Larrabee et al., 1980; Wilkinson, 2005). 
Advancement of high resolution proteomic technologies has provided the possibility to 
study protein turnover for multiple proteins simultaneously in complex cellular protein 
extracts (Beynon, 2005; Cargile et al., 2004; Pratt et al., 2002; Rao et al., 2008a; Rao et al., 
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2008b; Vogt et al., 2005). We showed that a combination of protein abundance and turnover 
data provides a highly interesting insight into the dynamic process of and interconnection 
among protein synthesis, degradation, and secretion (Rao et al., 2008a). 
Protein turnover shares an equally important role with gene transcription and protein 
translation. Synthesis of new proteins and degradation of old ones form a dynamic process 
in an organism. Turnover does not only help to clear old proteins but also aid in a fast 
adaptation to a new condition or environment by adjusting the rate of protein synthesis and 
degradation (Goldberg & Dice, 1974). Apart from this, turnover also brings new proteins 
into action with reduced strain on the resources of an organism because preexisting cellular 
materials are reused. Some early global protein turnover studies identified different E. coli 
proteins that might have different turnover rates. One of those earlier studies showed that a 
dynamic state for individual proteins existed in non-growing as well as growing cells 
(Larrabee et al., 1980). Studies of turnover offer a dynamic view of the abundances of 
proteins. When being applied to a larger scale of the proteome, protein turnover analysis 
allows one to study the dynamic nature of the entire proteome (Li, 2010a). 
Mass spectrometry continues to serve as a major approach for a protein turnover study due 
to its wide availability and flexibility to analyze both single-cell cultures and multi-cellular 
organisms. Except for the required administration of stable isotope-labeled metabolites, 
amino acids, or water to the study subjects, mass spectrometry-based approaches do not 
require any genetic manipulation of the study subjects. The avoidance of genetic 
manipulation of the study subjects helps to minimize any unwanted perturbation to a 
biological system and delivers the most physiologically relevant results. A range of 
methodologies has been established to measure protein turnover based on stable isotope 
labeling and mass spectrometry (Doherty & Beynon, 2006). 

2.2 High-resolution mass spectrometry for protein turnover analysis 
The advent of highly automated high-resolution mass spectrometry technology promises to 
bring about in-depth insight into the dynamic nature of a proteome at the global level. The 
work done by Pratt et al. (Pratt et al., 2002) demonstrated the determination of protein 
degradation rate constants in a steady state population of yeast grown in a chemostat. The 
authors used isotope labeling along with 2D gel analysis to study protein turnover and 
advocated that protein turnover is ‘a missing dimension in proteomics.’ Another study done 
by Cargile et al. (Cargile et al., 2004) labeled E. coli cells with 13C to study the relative 
synthesis over degradation ratio (S/D). These earlier works demonstrated the global 
analysis of protein turnover with individual protein identifications but their data were not 
correlated with abundance values.  
With one-dimensional SDS/PAGE fractionation and subsequent nanoLC/LTQ-FTMS 
analysis, Rao et al. determined the global turnover profiles of Mycobacterium smegmatis, a 
non-pathogenic surrogate of Mycobacterium tuberculosis, under acid-shock and iron-
limitation conditions (Rao et al., 2008b). A dynamic range of 3-orders of magnitude was 
demonstrated for relative turnover measurements. The study provided direct evidence that 
relative turnover in growing mycobacterium cells, with or without stress, was highly 
heterogeneous. The results obtained in that study addressed the long-standing question 
whether a ‘dynamic state’ exists in growing bacteria (Borek et al., 1958), and illustrated the 
benefits and needs to study protein turnover at the global level with the most advanced 
mass spectrometry technology. 
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In the work by Rao et al. (Rao et al., 2008b), the cells were grown with two different 
methodologies for both different types of stresses. For the pH stress the cells were initially 
grown in [14N]-containing media at pH 7.0. Once the cells are in the initial log phase, the 
cells were divided into two flasks and the media was doped with 50% [15N] and the pH was 
reduced to 5.0 in one of the flasks. The cells were harvested after one doubling and analyzed 
for protein turnover using LC/LTQ-FTMS. For low iron analysis, the cells were first grown 
in [15N]-containing media until mid-log phase. The cells were then collected by 
centrifugation and the media was then exchanged with [14N]-containing media. The cells 
were then allowed to grow to one doubling and harvested to be analyzed by LC/LTQ-
FTMS. 
In either the complete isotope swapping (iron-limitation experiments) or the partial isotope 
labeling conditions, the isotopologue envelopes and the individual isotopomer peaks of a 
peptide are clearly resolved. The complete resolution of the isotopomer peaks and the 
isotopologue envelops for the old proteins and the de novo synthesized proteins facilitates 
simple calculation of the abundances of the new and old fractions of a peptide (Fig. 2). 

 
Fig. 2. Calculation of isotopologue intensities for a representative tryptic peptide 
ANLLGLSAPEMTTLVGGLR (MH22+, 23 N atoms) of protein KatG (MSMEG6346) in 
shocked (pH5) and control (pH7) cultures (panel a), and in starved (low-iron) and control 
(high-iron) cultures (panel b). AL, AH, and AM represent the isotopologue intensities with 
light label (99.6At%[14N]), heavy label (99At%[15N]) and medium label (50At%[15N]) 
respectively. Red arrows and text labels indicate de novo synthesized proteins. Blue arrows 
and text labels indicate old proteins. Adapted from (Rao et al., 2008b) with permission 
Turnover analysis of M. smegmatis under both stressful conditions revealed two different 
patterns (Rao et al., 2008b). In the low pH condition, many proteins had increased turnover 
at pH 5.0 as compared to pH 7.0. It was an obvious reaction since the bacteria has to readjust 
its proteome in order to counter the stress posed by increased proton concentrations. The 
correlation coefficient for the low pH shock cells was small which indicated that the proteins 
in the cells exposed to pH 5.0 underwent extensive readjustment in different directions. In 
the low iron stress the correlation coefficient being high suggested that either there was not 
much rearrangement of turnover values or all the proteins had changes in a similar 
direction. KatG and Tpx, which are important for protection of mycobacterial cells against 
oxidative stress, had low protein turnover values in both low iron as well as low pH 
conditions. A study on M. tuberculosis Tpx suggested that it might be an important protein 

957.03 959.03 961.02 963.01 965.00 967.00 968.99

0

5

10

15

20

25

30

35

In
te

ns
ity

 (x
10

6  c
ou

nt
s)

m/z

Starved (low-iron)
Control (high-iron)

AL

AH

957.03 959.03 961.02 963.01 965.00 967.00 968.99

0

20

40

60

80

100

120

140

In
te

ns
ity

 (x
10

6  c
ou

nt
s)

m/z

Shocked (pH5)
Control (pH7)

AM
AL

ba 

Precision Quantitative Proteomics with Fourier-Transform Mass Spectrometry 

 

49 

against oxidative stress because Tpx mutants were unable to survive in the macrophages in 
an infected mouse model. However, it would be interesting to analyze how the low 
turnover of Tpx correlates with the survival of mycobacteria in the cell.  
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Fig. 3. Average isotopomer profiles and selected isotopomer ranges to calculate the 
abundances of peptides in M. tuberculosis. AL,PCS and AM,PCS are peptide abundance for old 
and new proteins respectively. Each panel was the stacked column graph of the normalized 
isotopomer profiles of the detected peptide charge states (PCSs) having the same number of 
N atoms (n). Profiles are shown for n equal to 11 (a), 16 (b), 20 (c), and 26 (d) respectively. 
The blue and red arrows indicate the M ranges for calculating AL,PCS and AM,PCS respectively 

An open question is how the protein turnover values correlate with protein abundances. To 
investigate the correlation between protein abundance and protein turnover values in M. 
tuberculosis, Rao et al. analyzed M. tuberculosis cells in an iron replete and iron depleted 
condition using the high resolution LC/LTQ-FTMS instrument (Rao et al., 2008a). The 
approach employed many large-scale quantitative proteomics techniques to make it readily 
accessible for protein turnover studies at the global level. The concomitant measurement of 
protein turnover and abundance was previously shown by Gerner et al. with 2D gel 
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Fig. 2. Calculation of isotopologue intensities for a representative tryptic peptide 
ANLLGLSAPEMTTLVGGLR (MH22+, 23 N atoms) of protein KatG (MSMEG6346) in 
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respectively. Red arrows and text labels indicate de novo synthesized proteins. Blue arrows 
and text labels indicate old proteins. Adapted from (Rao et al., 2008b) with permission 
Turnover analysis of M. smegmatis under both stressful conditions revealed two different 
patterns (Rao et al., 2008b). In the low pH condition, many proteins had increased turnover 
at pH 5.0 as compared to pH 7.0. It was an obvious reaction since the bacteria has to readjust 
its proteome in order to counter the stress posed by increased proton concentrations. The 
correlation coefficient for the low pH shock cells was small which indicated that the proteins 
in the cells exposed to pH 5.0 underwent extensive readjustment in different directions. In 
the low iron stress the correlation coefficient being high suggested that either there was not 
much rearrangement of turnover values or all the proteins had changes in a similar 
direction. KatG and Tpx, which are important for protection of mycobacterial cells against 
oxidative stress, had low protein turnover values in both low iron as well as low pH 
conditions. A study on M. tuberculosis Tpx suggested that it might be an important protein 
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against oxidative stress because Tpx mutants were unable to survive in the macrophages in 
an infected mouse model. However, it would be interesting to analyze how the low 
turnover of Tpx correlates with the survival of mycobacteria in the cell.  
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Fig. 3. Average isotopomer profiles and selected isotopomer ranges to calculate the 
abundances of peptides in M. tuberculosis. AL,PCS and AM,PCS are peptide abundance for old 
and new proteins respectively. Each panel was the stacked column graph of the normalized 
isotopomer profiles of the detected peptide charge states (PCSs) having the same number of 
N atoms (n). Profiles are shown for n equal to 11 (a), 16 (b), 20 (c), and 26 (d) respectively. 
The blue and red arrows indicate the M ranges for calculating AL,PCS and AM,PCS respectively 

An open question is how the protein turnover values correlate with protein abundances. To 
investigate the correlation between protein abundance and protein turnover values in M. 
tuberculosis, Rao et al. analyzed M. tuberculosis cells in an iron replete and iron depleted 
condition using the high resolution LC/LTQ-FTMS instrument (Rao et al., 2008a). The 
approach employed many large-scale quantitative proteomics techniques to make it readily 
accessible for protein turnover studies at the global level. The concomitant measurement of 
protein turnover and abundance was previously shown by Gerner et al. with 2D gel 
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electrophoresis for separation and fluorography and autoradiography for quantitation of 
individual gel spots without any protein quantification (Gerner et al., 2002). With the 
advanced nanoLC/LTQ-FTMS system and a label-free quantitation approach, Rao et al. 
demonstrated that protein abundance and turnover could both be measured with a dynamic 
range of at least 3-orders of magnitude in an automated fashion (Rao et al., 2008a).  
The study compared the sensitivity of relative turnover and relative abundance 
measurements to detect a dynamic response of M.  tuberculosis when the cell culture was 
shifted from an iron-starved to iron-sufficient condition. An unlabeled iron-depleted M.  
tuberculosis culture was grown to late-log phase and diluted with a fresh iron-replete 
medium that was labeled with [15N]-labeled nitrogen source (Rao et al., 2008a). The 
incorporation of the [15N]-labeled nitrogen source into the newly synthesized proteins 
resulted in a complete separation between the old and the newly synthesized peptide 
isotopologue profiles (Fig. 3). Similar to that shown in Fig. 2 for M. smegmatis, the complete 
separation of the isotopologue profiles and the isotopomers allows the quantitation of the 
abundances of old proteins, newly synthesized proteins, and the total proteins.  
In this work, we are able to obtain both the protein abundance and turnover values to more 
comprehensively assess the dynamic response of the H37Rv cells when they were shifted 
from iron-starved stationary-phase to fresh low- and high-iron media. This is achieved by 
applying both the isotope chasing and a label-free quantitation method (Rao et al., 2008a).   
The results indicated that a relative turnover measurement was much more sensitive to 
monitor the dynamic response of the M. tuberculosis cells. Meanwhile, a combination of 
turnover and abundance measurements provided insight into the correlation of protein 
synthesis, degradation, and secretion. A further principal component analysis of the M. 
tuberculosis proteome dynamics reveals that protein relative turnover properties are 
orthogonal to protein relative abundance properties (Rao & Li, 2009a). Thus, a study of 
protein turnover at the global level would likely bring forward new findings that can be 
missed with a protein abundance analysis alone. 
The data obtained from the comparison of protein abundance and protein turnover values 
showed that protein turnover is a much more sensitive measurement to discern the changes 
in the proteome than abundance measurements. Upon the transfer of late-log phase cells 
from a low iron to a high iron media, protein abundance measurements showed that out of 
the 104 proteins that we identified, only 5 proteins were upregulated and 16 proteins were 
downregulated in the HI media. Relative abundance of KatG was upregulated in cells 
grown in the high iron media.  
Protein turnover analysis of the proteins compared between cells grown in a low iron and a 
high iron media showed that more proteins had increased synthetic activity in the high iron 
grown cells. The S/D had increased for 24 proteins in the cells grown in the low iron media. 
Eight proteins had decreased turnover. However, for cells grown in the high iron media, 56 
proteins had increased S/D and 5 proteins had decreased S/D. A comparison of protein 
abundance measurements to protein turnover measurements clearly suggests that protein 
turnover does give more information to uncover the dynamic response of the proteome  
(Fig. 4). 
In addition to providing the information about synthesis and degradation of proteins, the 
protein turnover analysis can also provide information regarding whether a protein has 
been secreted when the protein turnover values are analyzed together with the protein 
abundance measurements. In our study of proteome dynamics, we found that some proteins 
had low changes in relative abundances even though their synthesis had increased 
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significantly. As stated before the relative abundance of a protein in the cell can be affected 
not only by synthesis or degradation but also by a secretion process. In our turnover 
analysis, we found discrepancies between protein abundance values of certain proteins and 
their turnover values. A previous proteomic study of M. tuberculosis culture filtrates showed 
many of those proteins to be secreted into the culture filtrate. Proteins such as FbpC2, KatG, 
and the mammalian cell entrance protein Rv0172 were also predicted to be secreted (Malen 
et al., 2007).  
 

 
a) 
 

  
 b) c) 

Fig. 4. M-A plots representing the total protein abundances in high iron (HI) versus low-iron 
(LI) cells (panel a), the newly synthesized protein abundances versus the old protein 
abundances in LI cells (panel b) and in HI cells (panel c) respectively. The proteins with 2-
fold significant (p <.05) change in relative abundance are marked with black triangles and 
diamonds. The M–axis represents the relative abundance values and the A-axis represents 
the average abundance values. Adapted from (Rao et al., 2008a) with permission 

These results support that protein turnover in combination with abundance analysis could 
predict the secretion of proteins and reveal the interconnected roles of protein synthesis, 
degradation, and secretion in determining the protein abundances in cells. These analyses 
illustrate that protein turnover can divulge information that classical proteomics does not 
provide. The integration of data from transcriptome studies, abundance measurements and 
turnover analyses will likely provide a more complete picture of the dynamics associated 
with the proteome. To some extent, it will probably reconcile the discordances between 
transcriptome and proteome analyses. 
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2.3 Implication of proteome turnover studies in mycobacteria 
With the advent of high-precision and automated mass spectrometry instrumentation to 
support large-scale proteomic studies, protein turnover analysis at the global level 
potentially has an increasing importance for biomedical research. One example is the 
application of protein turnover analysis to study M. tuberculosis, especially at its non-
replicating or dormant state. Whereas over a hundred research articles have been 
published on mycobacterial proteomes, only a few dealt with non-replicating M. 
tuberculosis (Cho et al., 2006; Rosenkrands et al., 2002). Information about protein turnover 
in non-replicating and dormant M. tuberculosis is scarce in the literature. With the 
potential importance of proteome dynamics in bacterial cell sporulation or dormancy 
(Bernlohr, 1967; Bernlohr, 1972; Mandelstam, 1958; Spudich & Kornberg, 1968), a study of 
mycobacterial protein turnover at the global level (Rao et al., 2008a; Rao et al., 2008b) will 
likely help to advance our understanding of the molecular basis of M. tuberculosis 
persistence (Rao & Li, 2009b).  
Over the last century, a variety of control and eradication measures have been implemented 
against tuberculosis such as vaccination, aggressive chemotherapy, and public health 
surveillance. But tuberculosis still remains a major global health problem to continue to 
cause nearly 2 million deaths and 9 million new infection cases per year. Ca. one third of the 
world population is infected with M. tuberculosis. A majority of the infected individuals 
remain asymptomatic whereas they carry a lifetime risk to develop an active disease i.e., the 
latent tuberculosis infection. The state of latency represents the greatest obstacle to eradicate 
the tuberculosis disease.  
The metabolic requirement of M. tuberculosis in latency is unclear and difficult to study 
because the bacilli presumably remain dormant in a granuloma (Pagan-Ramos et al., 
2006). The anti-tuberculosis drugs used today have their maximum effect against the 
growing but not the dormant bacilli. The long therapeutic regime required to treat latent 
tuberculosis infection is probably explained by the lack of a direct target that is specific to 
dormant M. tuberculosis. There are new drug treatment regimes and several new anti-
tuberculosis drugs in a development pipeline that aim to shorten the treatment period 
and to overcome multi-drug resistant strains (Murphy & Brown, 2008). Most of these new 
drugs are still based on existing classes of antimicrobial compounds to target the 
conventional pathways and molecular machinery that are critical for the growth of M. 
tuberculosis. These drugs could still be countered by drug resistant strains that emerge 
from the non-adherence of a prolonged regime against latent tuberculosis infection. Thus, 
the need to discover novel drug targets, especially those against dormant bacteria, is 
urgent. 
A ‘simple but nonetheless vexing problem’ in target discovery against non-replicating M. 
tuberculosis is that many methods rely on a growth-inhibition measurement to assess the 
effect of drug treatment (Murphy & Brown, 2008). Rao et al. showed that a protein-
turnover measurement was much more sensitive than a protein relative abundance 
measurement alone to uncover protein synthesis activities in M. tuberculosis (Rao et al., 
2008a); those data suggest that protein dynamics analysis with turnover and abundance 
measurements could potentially add a valuable alternative to the drug target discovery 
problem for non-replicating M. tuberculosis. The sensitive protein turnover analysis could 
also be useful to detect and validate drug treatment effects at an early phase, during 
which the most relevant drug effect can be isolated from other non-specific cell stress 
responses. 
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3. Label-free quantitation of proteins  
There is an increased use of LC/MS instrumentation for proteomics studies at a large scale. 
The depth of a proteomic analysis, i.e. the number of protein species that can be precisely 
identified and characterized in an experiment, depends on the precision and sensitivity of a 
mass spectrometry instrument. The impact of the precision and sensitivity of an LC/MS 
instrument on a proteomic study is manifested in many areas of proteomic studies. For 
example, in the analysis of intracellular bacterial proteomes, FTMS-based approach clearly 
identified more proteins from scarce and complex intracellular bacterial samples compared 
to many other proteomic methods. 
The precise retrieval of biological information from a large LC/MS dataset critically 
depends on algorithms for data interpretation, which remains a current bottleneck in the 
rapid advance of proteomics technology (Mortensen et al., 2010). The quantitation of 
differentially regulated proteins represents a major type of proteomics application in 
biological studies. Protein quantitation with LC/MS data includes three conceptually 
different methods i.e., spectral counting, differential stable isotope labelling, and label-free 
LC/MS measurements by using extracted ion chromatographic intensities (Mueller et al., 
2008). Due to the increased time and complexity of sample preparation in stable isotope 
labelling, cost of labelling reagents, and requirement of higher starting sample amount, 
however, researchers are increasingly using label-free proteomics for faster and simpler 
protein quantitation (Zhu et al., 2010). 
Most of proteomics studies infer proteins with ≥2 identified peptides as reliable protein 
identifications and usually disregard proteins with a single-peptide hit as unreliable for 
quantitation. This “two-peptide” rule was recently challenged with the evidence that it 
reduced protein identifications more in a target database than in a decoy database and thus 
increased false discovery rates in protein identification (Gupta & Pevzner, 2009). Indeed, it 
was shown that proteins with a single-peptide hit could represent 30% of the proteins 
identified with ≥2 MS2 spectrum matches at p <.01 (Li & Roxas, 2009). Because those single-
peptide proteins had ≥2 MS2 spectrum matches (p <.01) in multiple LC/MS analyses under 
the same condition, they had an adequate level of statistical confidence to be included for 
quantitation.  
But the inclusion of single-peptide proteins in a differential quantitative proteomics analysis 
raises two issues. The first is that a conventional statistical test such as a t-test can not be 
applied toward these single-peptide proteins when the t-test relies on multiple quantified 
peptides as replicates to calculate the t-statistic for the protein relative abundance (Li & 
Roxas, 2009). The second is that many single-peptide proteins are at a lower abundance and 
thus noisy. More stringent thresholds are needed to control the false discovery rate when 
these single-peptide proteins are included for the selection of differentially regulated 
proteins. 
Pavelka et al. applied a power law global error model (PLGEM) and the signal-to-noise ratio 
(STN) statistic (Pavelka et al., 2004) to select differentially regulated proteins based on a 
spectral counting quantitation method (Pavelka et al., 2008). The PLGEM-STN statistic 
utilized a re-sampling approach to estimate the null distribution from replicates of a sample. 
After the error model was calculated from a pool of re-sampling statistics that constituted 
the null distribution, a set of STN thresholds was applied at a specified confidence level 
toward samples with any level of replicates. The PLGEM-STN method is attractive in that it 
could be applied toward samples with no replicates if several replicates for one sample are 
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provided to estimate the null distribution. It is also applicable to proteins with any number 
of identified peptides. The PLGEM-STN method, however, has not been demonstrated for 
label-free quantitation with extracted ion chromatographic intensities. 
In the work described in the following, the PLGEM-STN statistic was applied toward a 
LC/MS dataset obtained with a high-resolution mass spectrometer (Roxas & Li, 2009). The 
peptide and protein abundances were quantified with a label-free approach based on 
extracted ion chromatographic intensities. The false discovery rate was estimated at 
different confidence levels of the PLGEM-STN statistics.  
The PLGEM-STN statistic alone did not provide a desired level of false discovery rate 
control. Insufficient stringency in false discovery rate control was similar to the situation 
when a t-test statistic was used alone (Li & Roxas, 2009). With the combination of a t-test 
and the rule of minimum number of permuted significant pairings (MPSP), however, the 
false discovery rate was significantly reduced in that study. 
The combination of MPSP and PLGEM-STN was further tested to control the false discovery 
rate. PLGEM-STN does not require that a protein have to have at least two detected 
peptides for an assessment of statistical significance. Thus, the combination of MPSP and 
PLGEM-STN has the potential to extend the selection of differentially regulated proteins to 
those with lower fold-changes and to those with single-peptide hits. Similarly, a fold-change 
threshold can be applied toward proteins with any number of detected peptides. With a 
control, the statistical significance of a differentially regulated protein can also be assessed 
based on a fold-change threshold. Therefore, the combination of MPSP and fold-change 
thresholds was also tested and compared with the PLGEM-STN-MPSP approach. 
It is important to use the high-resolution FTMS instrument to acquire data for the label-free 
quantitation so that proteins with a single peptide hit can be quantified based on peptide 
cross reference and extracted ion chromatographic intensity. Proteins with fewer than three 
peptide hits are typically difficult to quantify by the spectral count method. 

3.1 Purpose of the study 
There are two purposes to investigate the combination of the PLGEM-STN statistic or a fold-
change threshold with the MPSP method to identify differentially regulated proteins. One 
was to extend the selection of differentially regulated proteins to those that had single-
peptide hits. The other was to select differentially regulated proteins at smaller fold-changes 
and at a false discovery rate ≤.05. The approaches to achieve this two-fold purpose were 
investigated under a scenario where the number of sample replicates was small. When the 
number of sample replicates is small, other typical statistics such as a t-test might not 
perform well to provide the necessary specificity in the label-free quantitation of 
differentially regulated proteins. Therefore, it was found necessary to insert an additional 
measure, such as the MPSP rule to compensate for the lack of sample replicates (Li & Roxas, 
2009). Even when more sample replicates are available, the additional use of MPSP might 
still further increase the specificity although this possibility will need to be tested. 

3.2 Results 
With a null distribution built from the labelled control sample to establish thresholds, 
different approaches were experimented with to select differentially regulated proteins by 
using the combination of MPSP, PLGEM-STN, and fold-change methods. Differentially 
regulated proteins were selected from the unlabeled sample pair SP and RP.  
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The following two subsections of Results are described. Subsection 3.2.1 analyzes the source 
of variability in the peptide and protein quantitation processes. Subsection 3.2.2 performs 
multi-step extended selection of differentially regulated proteins.  

3.2.1 Source of variability 
An observed differential abundance of a PCS or protein between samples arose not only 
from the difference in biological samples but also from measurement noise that included the 
variability from multiple steps that involve LC/MS injection replicates, sample preparation 
replicates, biological replicates, or the data processing method. The multi-step experimental 
procedures are summarized in Fig. 5. 
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Fig. 5. Experimental outline of the label-free protein quantitation approach to assess the acid 
stress response between the unlabeled stressed culture (S) and the unlabeled reference 
culture (R) with the [15N]-labeled culture as control (C) 

The biological sample model used in the study was the proteome response of an acid 
stressed M. smegmatis culture (S) in reference to a neutral pH culture (R) (Roxas & Li, 2009) 
(Fig. 5). Both S and R cultures were unlabeled. The proteins from a [15N]-labelled control 
culture (C) were used as an internal standard to mix with the proteins from the unlabeled 
cultures. Because the proteins from the control culture were analyzed repeatedly with two 
other unlabeled samples, the repeated analyses of the labelled control provided replicates to 
construct a null distribution.  
In the null distribution, there were no true differentially regulated proteins. The null 
distribution was thus useful to model the noise in the experiment. The error model was 
derived from the null distribution that consists of at least two replicates of sample 
preparation. The error model was preferred not to derive from the unlabeled protein 
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provided to estimate the null distribution. It is also applicable to proteins with any number 
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when a t-test statistic was used alone (Li & Roxas, 2009). With the combination of a t-test 
and the rule of minimum number of permuted significant pairings (MPSP), however, the 
false discovery rate was significantly reduced in that study. 
The combination of MPSP and PLGEM-STN was further tested to control the false discovery 
rate. PLGEM-STN does not require that a protein have to have at least two detected 
peptides for an assessment of statistical significance. Thus, the combination of MPSP and 
PLGEM-STN has the potential to extend the selection of differentially regulated proteins to 
those with lower fold-changes and to those with single-peptide hits. Similarly, a fold-change 
threshold can be applied toward proteins with any number of detected peptides. With a 
control, the statistical significance of a differentially regulated protein can also be assessed 
based on a fold-change threshold. Therefore, the combination of MPSP and fold-change 
thresholds was also tested and compared with the PLGEM-STN-MPSP approach. 
It is important to use the high-resolution FTMS instrument to acquire data for the label-free 
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stressed M. smegmatis culture (S) in reference to a neutral pH culture (R) (Roxas & Li, 2009) 
(Fig. 5). Both S and R cultures were unlabeled. The proteins from a [15N]-labelled control 
culture (C) were used as an internal standard to mix with the proteins from the unlabeled 
cultures. Because the proteins from the control culture were analyzed repeatedly with two 
other unlabeled samples, the repeated analyses of the labelled control provided replicates to 
construct a null distribution.  
In the null distribution, there were no true differentially regulated proteins. The null 
distribution was thus useful to model the noise in the experiment. The error model was 
derived from the null distribution that consists of at least two replicates of sample 
preparation. The error model was preferred not to derive from the unlabeled protein 
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samples SP and RP, because each of these two unlabeled samples had only LC/MS run 
replicates but no sample preparation replicates. The use of only LC/MS replicates to model 
the noise is likely to underestimate the noise level in the experiment. 
The experimental procedures were divided into six stages (I-VI). Briefly, equal amounts of 
protein extract from the S culture triplicates were pooled. Equal amounts of protein extract 
from the R culture triplicates were also pooled. Into these two pooled unlabeled protein 
samples, an equal amount of protein extract from the C culture was added. This resulted in 
the two pooled samples i.e., SP and RP. The proteins differentially expressed between the S 
and R cultures were determined based on comparison of the abundances of the unlabeled 
proteins i.e., AS and AR, between samples SP and RP. For the purpose of false discovery rate 
assessment, the abundances of the [15N]-labeled proteins i.e., AcS and AcR, were quantified 
and compared between SP and RP in the same way as between AS and AR. The proteins found 
differentially expressed between AS and AR were considered positives, because they 
reflected the difference between the S and R cultures. The proteins found differentially 
expressed between AcS and AcR in the labeled form were false positives, because difference 
was not expected from the identical C sample that was run concurrently with two unlabeled 
samples in separate runs. 
To assist in the assessment of the source of variability in the label-free quantitation of the 
LC/MS data, another three samples were used in addition to SP and RP. The three additional 
samples were the biological replicates of the S culture sample, namely SA, SB, and SC. SP was 
generated by pooling SA, SB, and SC.  
The 3rd of the five fractions of an SDS/PAGE gel lane was processed for LC/MS analysis for 
the protein samples SA, SB, SC, SP, and RP with duplicate injections for each sample (Li & 
Roxas, 2009). The five samples with two LC/MS injections per sample resulted in 10 LC/MS 
runs. These 10 LC/MS runs of the 3rd fraction allowed the quantitation of 349 proteins for 
the 3rd fraction (Li & Roxas, 2009). Because a protein was quantified in both the unlabeled 
form (for culture S or R) and the labelled form (for culture C), there were 20 quantitation 
categories for each protein (Table 1). Thus, these 349 proteins and the 20 quantitation 
categories formed a 349 x 20 matrix. The 349 x 20 matrix was examined by a clustering 
analysis (Eisen et al., 1998). The clustering analysis provides an overview of the correlation 
among the protein samples and LC/MS injections, thus reveals the major source of 
variability.  
From the dendrogram of the 20 quantitation categories shown in Fig. 6, it could be seen that 
the distance between each pair of duplicate LC/MS injections was the shortest compared to 
those between any other sample pairings. The closest distance of the duplicate LC/MS 
injections for a sample indicated that the variability between LC/MS injections was the 
smallest, which also indicated that the label-free data analysis methodology (Li & Roxas, 
2009) did not introduce a more significant variability. 
 

Unlabeled protein samples from 
culture S or R 

[15N]-labeled protein samples 
from control culture C 

 

SP RP SA SB SC cSP cRP cSA cSB cSC 
Quantitation 

category 
SP,1 

SP,2 
RP,1 

RP,2 
SA,1 
SA,2 

SB,1 

SB,2 
SC,1 

SC,2 
cSP,1 
cSP,2 

cRP,1 
cRP,2 

cSA,1 
cSA,2 

cSB,1 
cSB,2 

cSC,1 
cSC,2 

Table 1. Twenty quantitation categories arising from the duplicate LC/MS analyses of the 
3rd gel fraction for samples SA, SB, SC, SP, and RP along with the labeled control in them 
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Fig. 6. Clustering of the 20 quantitation categories based on the 349 proteins quantified from 
the 3rd gel fraction for the five protein samples SP, RP, SA, SB, and SC (Li & Roxas, 2009) 

In Fig. 6, it was also apparent that the unlabeled and labelled quantitation categories were 
separated into two distinct branches represented by nodes I and II, respectively. The 
separation of the unlabeled and labelled quantitation categories into the two distinct clusters 
indicated that the difference between cultures C and S or C and R was larger than the 
difference between S and R. From the tree branch under node II, it could be seen that the 
distance between the unlabeled protein samples SP and RP was larger than the distance 
among the S culture replicates i.e., SA, SB, SC. The result indicated that the difference between 
cultures S and R exceeded the difference among the S culture replicates, suggesting that the 
variability in biological sample replicates was less than the actual difference between the 
biological samples treated with different conditions. 
Therefore, the clustering result in Fig. 6 indicated that the variability increased in the order 
of LC/MS injections < sample preparation replicates (under node I) ~ biological replicates 
(under node III) < biological samples (between nodes III and IV). Because these differences 
were evaluated based on the proteomic quantitation data, a variability observed among 
biological replicates also included the variability introduced during sample preparation for 
LC/MS analysis. The similarity between the variability observed among the sample 
preparation replicates and the variability observed among the biological replicates 
suggested that the variability among biological replicates was not larger than the variability 
among sample preparation replicates. 
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Fig. 6. Clustering of the 20 quantitation categories based on the 349 proteins quantified from 
the 3rd gel fraction for the five protein samples SP, RP, SA, SB, and SC (Li & Roxas, 2009) 

In Fig. 6, it was also apparent that the unlabeled and labelled quantitation categories were 
separated into two distinct branches represented by nodes I and II, respectively. The 
separation of the unlabeled and labelled quantitation categories into the two distinct clusters 
indicated that the difference between cultures C and S or C and R was larger than the 
difference between S and R. From the tree branch under node II, it could be seen that the 
distance between the unlabeled protein samples SP and RP was larger than the distance 
among the S culture replicates i.e., SA, SB, SC. The result indicated that the difference between 
cultures S and R exceeded the difference among the S culture replicates, suggesting that the 
variability in biological sample replicates was less than the actual difference between the 
biological samples treated with different conditions. 
Therefore, the clustering result in Fig. 6 indicated that the variability increased in the order 
of LC/MS injections < sample preparation replicates (under node I) ~ biological replicates 
(under node III) < biological samples (between nodes III and IV). Because these differences 
were evaluated based on the proteomic quantitation data, a variability observed among 
biological replicates also included the variability introduced during sample preparation for 
LC/MS analysis. The similarity between the variability observed among the sample 
preparation replicates and the variability observed among the biological replicates 
suggested that the variability among biological replicates was not larger than the variability 
among sample preparation replicates. 
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3.2.2 Extended selection of differentially regulated proteins 
This subsection describes the multiple steps leading to the extended selection of 
differentially regulated proteins from all quantified proteins including those with only a 
single-peptide hit. The proteins with a single-peptide hit represent 1/3 of the identified 
proteins (Li & Roxas, 2009). Therefore, it is desirable to have a procedure to select regulated 
proteins from all of the proteins including those with a single-peptide hit to maximize the 
potential of the global protein expression profiling.  
Establishing a null distribution 
Based on the evaluation with the clustering analysis (Fig. 6), the variability among sample 
preparation replicates appeared to be comparable with that among biological replicates. 
Samples SP and RP represented the average of triplicate biological replicates for cultures S 
and R respectively, because each of them was the pooled sample of three biological 
replicates. The pooling process further reduced the biological variability between SP and RP. 
Therefore, the [15N]-labelled control sample replicates (Table 1) were adequate to represent a 
null distribution in which there was no differentially regulated protein.  
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Fig. 7. APRO scatter plots, local variability, and thresholds for selecting differentially 
regulated proteins. The blue dots represent the APRO scatter plot of AS vs. AR corresponding 
to the unlabeled proteins in sample SP vs RP. AS is the average of AS,1 and AS,2. AR is the 
average of AR,1 and AR,2. The red dots represent the APRO scatter plot of AcS vs. AcR 
corresponding to the labeled proteins in control sample replicate cSP vs cRP. AcS is the 
average of AcS,1 and AcS,2. AcR is the average of AcR,1 and AcR,2. AS,1, AS,2, AR,1, AR,2, AcS,1, AcS,2, 
AcR,1, and AcR,2 were the APRO values for the eight quantitation categories defined in Table 1. 
To evaluate the local noise of APRO measurement, the relative standard deviation (rSTD) for 
each protein was calculated from its four unlabeled APRO values AS,1, AS,2, AR,1, and AR,2 (the 
blue trace) or its four labeled APRO values AcS,1, AcS,2, AcR,1, and AcR,2 (the pink trace). The 
rSTD- APRO traces were smoothed with a 100-point moving box. The grey straight lines 
indicated a 3-fold (solid line) and a 2-fold (dashed line) change threshold. The solid red and 
green curves represent the fold-change thresholds established with the PLGEM-STN 
statistics based on the local variance in the null distribution (the pink-dot scatter plot) 
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The null distribution afforded an estimation of measurement noise. The determined 
measurement noise was then used to estimate the false discovery rate for the selected 
differentially regulated proteins between samples SP and RP. The null distribution provided 
a reference for setting thresholds to maximize the selection of differentially regulated 
proteins (positives) while minimizing false positives. In Fig. 7, such a null distribution was 
illustrated with the scatter plot represented by the pink dots.   
To investigate the relationship between measurement variability and protein abundance 
APRO, relative standard deviation (rSTD) was plotted against the mean APRO value for each 
protein in the unlabeled protein samples (blue trace) or the labelled control protein samples 
(pink trace) (Fig. 7). The rSTD-APRO trace in pink reflected the local noise of the null 
distribution. The local noise of the null distribution was mainly due to the variability that 
was introduced during sample preparation (Fig. 6). The rSTD-APRO trace in pink clearly 
suggested that the APRO measurement noise had a reciprocal dependence on the APRO 
amplitude. The rSTD-APRO trace in blue reflected both sample preparation variability and 
biological sample difference between cultures S and R. Thus, the blue trace had higher rSTD 
values than the pink trace throughout the APRO range. 

Modelling local noise in the null distribution 

Because of the reciprocal dependence of APRO rSTD on the APRO value, a universal 3-fold-
change cut-off missed some positives at higher APRO values where a <3-fold change was 
already significantly different from the local noise. Missed positives at higher APRO values 
could be observed in Fig. 7 by examining the spread of the two scatter plots in the high APRO 
ranges. At APRO >1000, the rSTD was a few times smaller than that at APRO of ~100. From the 
figure, it could be seen that it was possible to detect a < 2-fold change for the proteins with 
APRO >1000. To the contrary, at APRO <10, a 3-fold change threshold was not sufficient to 
eliminate many false positives. Therefore, a criterion adaptive to the dependence of APRO 
noise on APRO values would uncover more differentially regulated proteins. This extended 
selection of differentially regulated proteins could be achieved by penalizing proteins with 
higher APRO values less than proteins with lower APRO values. Such an adaptive criterion, 
however, requires a systematic modelling of the noise to establish the thresholds according 
to local variability (Pavelka et al., 2004). 
In this study, the PLGEM-STN statistic was experimented with for the selection of 
differentially regulated proteins quantified with label-free proteomics based on protein 
extracted ion chromatographic intensities. There were two reasons for the choice of the 
PLGEM-STN method.  
First, the PLGEM-STN method allowed statistical analyses of the proteins quantified with a 
single PCS because the PLGEM-STN statistic did not rely on multiple PCSs of a protein like 
a t-test (Li & Roxas, 2009). Because single-peptide proteins constituted a third of the 
quantified proteins, being able to quantify these single-peptide proteins was important to 
maximize the potential value of the data. Second, the PLGEM-STN method took into 
account the dependence of APRO noise on APRO levels. A threshold adjustable to the local 
dependence of APRO noise on APRO levels allowed the selection of differentially regulated 
proteins with a smaller fold-change threshold at a higher APRO level.  
Therefore, the PLGEM-STN method potentially could select more differentially regulated 
proteins by applying a smaller fold-change threshold in the higher APRO range where the 
variability was smaller. This possibility was tested as described below. 
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Fig. 7. APRO scatter plots, local variability, and thresholds for selecting differentially 
regulated proteins. The blue dots represent the APRO scatter plot of AS vs. AR corresponding 
to the unlabeled proteins in sample SP vs RP. AS is the average of AS,1 and AS,2. AR is the 
average of AR,1 and AR,2. The red dots represent the APRO scatter plot of AcS vs. AcR 
corresponding to the labeled proteins in control sample replicate cSP vs cRP. AcS is the 
average of AcS,1 and AcS,2. AcR is the average of AcR,1 and AcR,2. AS,1, AS,2, AR,1, AR,2, AcS,1, AcS,2, 
AcR,1, and AcR,2 were the APRO values for the eight quantitation categories defined in Table 1. 
To evaluate the local noise of APRO measurement, the relative standard deviation (rSTD) for 
each protein was calculated from its four unlabeled APRO values AS,1, AS,2, AR,1, and AR,2 (the 
blue trace) or its four labeled APRO values AcS,1, AcS,2, AcR,1, and AcR,2 (the pink trace). The 
rSTD- APRO traces were smoothed with a 100-point moving box. The grey straight lines 
indicated a 3-fold (solid line) and a 2-fold (dashed line) change threshold. The solid red and 
green curves represent the fold-change thresholds established with the PLGEM-STN 
statistics based on the local variance in the null distribution (the pink-dot scatter plot) 
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The null distribution afforded an estimation of measurement noise. The determined 
measurement noise was then used to estimate the false discovery rate for the selected 
differentially regulated proteins between samples SP and RP. The null distribution provided 
a reference for setting thresholds to maximize the selection of differentially regulated 
proteins (positives) while minimizing false positives. In Fig. 7, such a null distribution was 
illustrated with the scatter plot represented by the pink dots.   
To investigate the relationship between measurement variability and protein abundance 
APRO, relative standard deviation (rSTD) was plotted against the mean APRO value for each 
protein in the unlabeled protein samples (blue trace) or the labelled control protein samples 
(pink trace) (Fig. 7). The rSTD-APRO trace in pink reflected the local noise of the null 
distribution. The local noise of the null distribution was mainly due to the variability that 
was introduced during sample preparation (Fig. 6). The rSTD-APRO trace in pink clearly 
suggested that the APRO measurement noise had a reciprocal dependence on the APRO 
amplitude. The rSTD-APRO trace in blue reflected both sample preparation variability and 
biological sample difference between cultures S and R. Thus, the blue trace had higher rSTD 
values than the pink trace throughout the APRO range. 

Modelling local noise in the null distribution 

Because of the reciprocal dependence of APRO rSTD on the APRO value, a universal 3-fold-
change cut-off missed some positives at higher APRO values where a <3-fold change was 
already significantly different from the local noise. Missed positives at higher APRO values 
could be observed in Fig. 7 by examining the spread of the two scatter plots in the high APRO 
ranges. At APRO >1000, the rSTD was a few times smaller than that at APRO of ~100. From the 
figure, it could be seen that it was possible to detect a < 2-fold change for the proteins with 
APRO >1000. To the contrary, at APRO <10, a 3-fold change threshold was not sufficient to 
eliminate many false positives. Therefore, a criterion adaptive to the dependence of APRO 
noise on APRO values would uncover more differentially regulated proteins. This extended 
selection of differentially regulated proteins could be achieved by penalizing proteins with 
higher APRO values less than proteins with lower APRO values. Such an adaptive criterion, 
however, requires a systematic modelling of the noise to establish the thresholds according 
to local variability (Pavelka et al., 2004). 
In this study, the PLGEM-STN statistic was experimented with for the selection of 
differentially regulated proteins quantified with label-free proteomics based on protein 
extracted ion chromatographic intensities. There were two reasons for the choice of the 
PLGEM-STN method.  
First, the PLGEM-STN method allowed statistical analyses of the proteins quantified with a 
single PCS because the PLGEM-STN statistic did not rely on multiple PCSs of a protein like 
a t-test (Li & Roxas, 2009). Because single-peptide proteins constituted a third of the 
quantified proteins, being able to quantify these single-peptide proteins was important to 
maximize the potential value of the data. Second, the PLGEM-STN method took into 
account the dependence of APRO noise on APRO levels. A threshold adjustable to the local 
dependence of APRO noise on APRO levels allowed the selection of differentially regulated 
proteins with a smaller fold-change threshold at a higher APRO level.  
Therefore, the PLGEM-STN method potentially could select more differentially regulated 
proteins by applying a smaller fold-change threshold in the higher APRO range where the 
variability was smaller. This possibility was tested as described below. 
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Average

PLGEM-STN- 
MPSP 

FP (cSP/cRP) 31 68 22 46 42 13 
P (SP/RP) 141 155 134 148 145 101 0.01 

FDR 0.22 0.44 0.16 0.31 0.29 0.13 

FP (cSP/cRP) 6 15 3 9 8 2 
P (SP/RP) 47 50 46 51 49 44 0.002 

FDR 0.13 0.30 0.07 0.18 0.16 0.05 

Table 2. Numbers of differentially regulated proteins selected with PLGEM-STN alone or in 
combination with MPSP 
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Fig. 8. Receiver operating characteristic analysis of the PLGEM-STN approach with (red 
curve) or without (blue curve) the combination with MPSP. Positives are the differentially 
regulated proteins selected from the comparison of protein abundances between samples SP 
and RP. False positives are the differentially regulated proteins selected from the comparison 
of proteins abundances between samples cSP and cRP. True positives are estimated by 
subtracting false positives from the positives. For each approach, i.e. PLGEM-STN-MPSP or 
PLGEM-STN, 37 data points at different confidence levels (C.L.) are plotted in this figure, 
starting from C.L.=0.0001 up to C.L.=0.01. The increment is 0.001 between C.L. of 0.0001 and 
0.003 (30 data points). Between C.L. of 0.003 and 0.01, the increment is 0.01 (7 data points) 

Table 2 shows the result of the PLGEM-STN analysis for the unlabeled samples SP and RP 
and the labelled sample replicates cSP and cRP. cSP and cRP were the labelled control samples 
analyzed concurrently with SP and RP, respectively. The differentially regulated proteins 
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found between SP and RP were positives (P), and those found between cSP and cRP were 
false positives (FP). Because each protein sample was analyzed with duplicate LC/MS 
injections, permutation of the four LC/MS injections for a sample pair resulted in four 
permuted sample pairings (Li & Roxas, 2009). These four permuted sample pairings were 
numbered as I to IV in Table 2. In each column for a permuted sample pairing in Table 3, the 
numbers of false positives and positives and the false discovery rate (FDR) were listed. The 
false positives were determined as the differentially regulated proteins for the sample pair 
cSP/cRP. The positives were determined as the differentially expressed proteins for the 
sample pair SP/RP.  
In Table 2, the positives and false positives were selected with the PLGEM-STN method at 
the confidence level of 0.01 and 0.002, respectively. The results indicate that the numbers of 
positives or false positives were not the same among the four permuted sample pairings. To 
estimate an average false discovery rate, the numbers of positives and false positives were 
respectively averaged among the four permuted sample pairings. The false discovery rate 
was then calculated as the ratio of the average number of false positives divided by the 
average number of positives. The false discovery rate was determined at two different 
PLGEM-STN confidence levels (Table 2). With a receiver operating characteristic analysis, 
the PLGEM-STN approach is examined over a broader confidence level range (Fig. 8) and 
will be compared with another approach that is to be described below. 

Incorporating the MPSP rule  

Initially, the PLGEM-STN approach was carried out by comparing the duplicate LC/MS 
injections from the two samples R and S without permutation pairings. But the false 
discovery rate stayed high unless the sensitivity was severely compromised to reduce the 
false discovery rate. For example, at a confidence level of 0.0001, only 16 differentially 
regulated proteins were selected at 6% false discovery rate (data not shown). With all of the 
permutation pairs and a combination of PLGEM-STN and MPSP, 44 differentially regulated 
proteins were selected at a false discovery rate of 5% (Table 2). Therefore, a high sensitivity 
is achieved to uncover differentially regulated proteins by utilizing all possible permutation 
pairs with a combination of PLGEM-STN and MPSP. 
Because of the variable numbers of positives and false positives among the four permuted 
sample pairings, it was necessary to determine a consensus list of differentially regulated 
proteins from the four permuted sample pairings. Previously, the rule of MPSP was applied 
to determine the consensus list of differentially regulated proteins from four permuted 
sample pairings (Li & Roxas, 2009). The MPSP rule required that only those proteins that 
were found differentially regulated in a certain number of permuted sample pairings were 
counted as positives (for SP/RP) or false positives (for cSP/cRP). When a sample pair such as 
SP/RP had no sample replicates but had duplicate LC/MS injections, MPSP was found to be 
optimum at four (Li & Roxas, 2009). Setting MPSP at four meant that a differentially 
regulated protein had to be found differentially regulated in all of the four permuted sample 
pairings.  

Selecting differentially regulated proteins with a PLGEM-STN-MPSP approach 
The application of the MPSP rule towards the PLGEM-STN results decreased both false 
positives and positives (Table 2). But the false discovery rate was also decreased relative to 
that when only the PLGEM-STN statistic was applied. From Table 2, it could be seen that the 
number of true positives, which was estimated from the difference between the numbers of 
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Table 2 shows the result of the PLGEM-STN analysis for the unlabeled samples SP and RP 
and the labelled sample replicates cSP and cRP. cSP and cRP were the labelled control samples 
analyzed concurrently with SP and RP, respectively. The differentially regulated proteins 
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found between SP and RP were positives (P), and those found between cSP and cRP were 
false positives (FP). Because each protein sample was analyzed with duplicate LC/MS 
injections, permutation of the four LC/MS injections for a sample pair resulted in four 
permuted sample pairings (Li & Roxas, 2009). These four permuted sample pairings were 
numbered as I to IV in Table 2. In each column for a permuted sample pairing in Table 3, the 
numbers of false positives and positives and the false discovery rate (FDR) were listed. The 
false positives were determined as the differentially regulated proteins for the sample pair 
cSP/cRP. The positives were determined as the differentially expressed proteins for the 
sample pair SP/RP.  
In Table 2, the positives and false positives were selected with the PLGEM-STN method at 
the confidence level of 0.01 and 0.002, respectively. The results indicate that the numbers of 
positives or false positives were not the same among the four permuted sample pairings. To 
estimate an average false discovery rate, the numbers of positives and false positives were 
respectively averaged among the four permuted sample pairings. The false discovery rate 
was then calculated as the ratio of the average number of false positives divided by the 
average number of positives. The false discovery rate was determined at two different 
PLGEM-STN confidence levels (Table 2). With a receiver operating characteristic analysis, 
the PLGEM-STN approach is examined over a broader confidence level range (Fig. 8) and 
will be compared with another approach that is to be described below. 

Incorporating the MPSP rule  

Initially, the PLGEM-STN approach was carried out by comparing the duplicate LC/MS 
injections from the two samples R and S without permutation pairings. But the false 
discovery rate stayed high unless the sensitivity was severely compromised to reduce the 
false discovery rate. For example, at a confidence level of 0.0001, only 16 differentially 
regulated proteins were selected at 6% false discovery rate (data not shown). With all of the 
permutation pairs and a combination of PLGEM-STN and MPSP, 44 differentially regulated 
proteins were selected at a false discovery rate of 5% (Table 2). Therefore, a high sensitivity 
is achieved to uncover differentially regulated proteins by utilizing all possible permutation 
pairs with a combination of PLGEM-STN and MPSP. 
Because of the variable numbers of positives and false positives among the four permuted 
sample pairings, it was necessary to determine a consensus list of differentially regulated 
proteins from the four permuted sample pairings. Previously, the rule of MPSP was applied 
to determine the consensus list of differentially regulated proteins from four permuted 
sample pairings (Li & Roxas, 2009). The MPSP rule required that only those proteins that 
were found differentially regulated in a certain number of permuted sample pairings were 
counted as positives (for SP/RP) or false positives (for cSP/cRP). When a sample pair such as 
SP/RP had no sample replicates but had duplicate LC/MS injections, MPSP was found to be 
optimum at four (Li & Roxas, 2009). Setting MPSP at four meant that a differentially 
regulated protein had to be found differentially regulated in all of the four permuted sample 
pairings.  

Selecting differentially regulated proteins with a PLGEM-STN-MPSP approach 
The application of the MPSP rule towards the PLGEM-STN results decreased both false 
positives and positives (Table 2). But the false discovery rate was also decreased relative to 
that when only the PLGEM-STN statistic was applied. From Table 2, it could be seen that the 
number of true positives, which was estimated from the difference between the numbers of 
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positives and false positives, remained about the same. Therefore, the combination of the 
MPSP rule with the PLEGM-STN method reduced the false discovery rate by 2-3 times 
without compromising the sensitivity.    
As summarized in Fig. 8, the receiver operating characteristic analysis clearly shows that the 
PLGEM-STN-MPSP approach significantly reduces false positives to improve the specificity 
without significantly affecting the sensitivity. Compared to the use of the PLGEM-STN 
statistic alone, the combination of PLGEM-STN and MPSP performs better in controlling 
false discovery rates without compromising the sensitivity to select differentially regulated 
proteins. 

Selecting differentially regulated proteins with a fold-change-MPSP approach 
 

Fold-change 

Permuted sample pairings
Fold 

change 
FP, P, 

and FDR 
I II III IV 

Average 
Fold-change- 

MPSP 

FP (cSP/cRP) 68 77 118 45 77 22 

P (SP/RP) 171 154 186 147 165 104 2 

FDR 0.40 0.50 0.63 0.31 0.47 0.21 

FP (cSP/cRP) 30 33 47 20 33 9 

P (SP/RP) 66 70 85 60 70 42 3 

FDR 0.45 0.47 0.55 0.33 0.47 0.21 

FP (cSP/cRP) 17 24 32 10 21 1 

P (SP/RP) 42 50 53 35 45 26 4 

FDR 0.40 0.48 0.60 0.29 0.47 0.04 

Table 3. Number of differentially regulated proteins selected with a fold-change threshold 
alone or in combination with MPSP 
The use of MPSP with fold-change criteria was also examined (Table 3). With fold-change 
criteria alone, the false discovery rate did not drop below 46% at 2- to 4-fold changes. With 
the combination of MPSP and the fold-change criteria, the false discovery rate was reduced 
from 46% to 21% at 2- and 3-fold changes. At a 4-fold change, the false discovery rate was 
reduced to 4%. Compared to the combination of PLGEM-STN and MPSP, however, the 
combination of fold-change and MPSP reduced more true positives at the similar false 
discovery rate of 4-5%. Therefore, the application of MPSP with the fold-change criteria 
reduced sensitivity. The reduced sensitivity was due to the increase in the fold-change 
threshold. 
With the 4-fold-change-MPSP and the PLGEM-STN-MPSP approaches, 26 and 44 proteins 
were respectively selected as differentially regulated at a false discovery rate of 4% or 5% 
(Tables 2 and 3). Among these 26 and 44 proteins, there were 55 unique proteins (Li, 2010b). 
These 55 unique proteins included all of the 20 high-confidence differentially regulated 
proteins identified previously with an empirical fold-change and abundance level cut-off 
approach (Roxas & Li, 2009).  
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Fig. 9. Comparison of the 26 and 44 differentially regulated proteins respectively selected by 
the 4-fold-change-MPSP and PLGEM-STN-MPSP approaches at a 5% false discovery rate. 
(A) Overlap of the two sets of differentially regulated proteins. Panels B-D show the 
distributions of (B) the number of detected PCSs, (C) the fold changes, and (D) the 
abundances of the quantified proteins. The blue square, the purple diamond, and the tan 
triangle markers represent the differentially regulated proteins selected by 4-fold-change-
MPSP only, by both, and by PLGEM-STN-MPSP respectively. The protein number was from 
1 to 55 on the x-axis representing the 55 unique proteins ranked according to their APRO in 
each of the three groups (blue, purple, or tan) 

Comparing the PLGEM-STN-MPSP and fold-change-MPSP approaches 
Only 15 proteins were common between the two sets of differentially regulated proteins 
selected with the 4-fold-change-MPSP and the PLGEM-STN-MPSP approaches (Fig. 9A). 
The 4-fold-change-MPSP approach selected more single-PCS proteins than the PLGEM-
STN-MPSP approach (Fig. 9B). The PLGEM-STN-MPSP approach selected proteins with a 
fold-change as low as 1.8-fold (Fig. 9C). However, these differentially regulated proteins 
selected with PLGEM-STN-MPSP had a protein abundance higher than most of the 
differentially regulated proteins selected with the 4-fold-change-MPSP approach (Fig. 9D). 
Thus, the two approaches complement each other and could be used simultaneously. 

3.3 Discussions 
3.3.1 Motivation of the extensive label-free quantitative proteomics analysis  
Despite the relative complexity in label-free proteomics data analysis and the demand of 
more stringently controlled LC/MS experimental conditions, there are strong motivations 
stemming from biological and experimental perspectives to use the label-free approach, as 
discussed below. 
As shown in Fig. 6, the unlabeled and labelled quantitation categories are separated into two 
distinct clusters. One includes the quantitation categories from the labelled control culture C 
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positives and false positives, remained about the same. Therefore, the combination of the 
MPSP rule with the PLEGM-STN method reduced the false discovery rate by 2-3 times 
without compromising the sensitivity.    
As summarized in Fig. 8, the receiver operating characteristic analysis clearly shows that the 
PLGEM-STN-MPSP approach significantly reduces false positives to improve the specificity 
without significantly affecting the sensitivity. Compared to the use of the PLGEM-STN 
statistic alone, the combination of PLGEM-STN and MPSP performs better in controlling 
false discovery rates without compromising the sensitivity to select differentially regulated 
proteins. 

Selecting differentially regulated proteins with a fold-change-MPSP approach 
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FP (cSP/cRP) 30 33 47 20 33 9 
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FP (cSP/cRP) 17 24 32 10 21 1 

P (SP/RP) 42 50 53 35 45 26 4 

FDR 0.40 0.48 0.60 0.29 0.47 0.04 

Table 3. Number of differentially regulated proteins selected with a fold-change threshold 
alone or in combination with MPSP 
The use of MPSP with fold-change criteria was also examined (Table 3). With fold-change 
criteria alone, the false discovery rate did not drop below 46% at 2- to 4-fold changes. With 
the combination of MPSP and the fold-change criteria, the false discovery rate was reduced 
from 46% to 21% at 2- and 3-fold changes. At a 4-fold change, the false discovery rate was 
reduced to 4%. Compared to the combination of PLGEM-STN and MPSP, however, the 
combination of fold-change and MPSP reduced more true positives at the similar false 
discovery rate of 4-5%. Therefore, the application of MPSP with the fold-change criteria 
reduced sensitivity. The reduced sensitivity was due to the increase in the fold-change 
threshold. 
With the 4-fold-change-MPSP and the PLGEM-STN-MPSP approaches, 26 and 44 proteins 
were respectively selected as differentially regulated at a false discovery rate of 4% or 5% 
(Tables 2 and 3). Among these 26 and 44 proteins, there were 55 unique proteins (Li, 2010b). 
These 55 unique proteins included all of the 20 high-confidence differentially regulated 
proteins identified previously with an empirical fold-change and abundance level cut-off 
approach (Roxas & Li, 2009).  
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Fig. 9. Comparison of the 26 and 44 differentially regulated proteins respectively selected by 
the 4-fold-change-MPSP and PLGEM-STN-MPSP approaches at a 5% false discovery rate. 
(A) Overlap of the two sets of differentially regulated proteins. Panels B-D show the 
distributions of (B) the number of detected PCSs, (C) the fold changes, and (D) the 
abundances of the quantified proteins. The blue square, the purple diamond, and the tan 
triangle markers represent the differentially regulated proteins selected by 4-fold-change-
MPSP only, by both, and by PLGEM-STN-MPSP respectively. The protein number was from 
1 to 55 on the x-axis representing the 55 unique proteins ranked according to their APRO in 
each of the three groups (blue, purple, or tan) 

Comparing the PLGEM-STN-MPSP and fold-change-MPSP approaches 
Only 15 proteins were common between the two sets of differentially regulated proteins 
selected with the 4-fold-change-MPSP and the PLGEM-STN-MPSP approaches (Fig. 9A). 
The 4-fold-change-MPSP approach selected more single-PCS proteins than the PLGEM-
STN-MPSP approach (Fig. 9B). The PLGEM-STN-MPSP approach selected proteins with a 
fold-change as low as 1.8-fold (Fig. 9C). However, these differentially regulated proteins 
selected with PLGEM-STN-MPSP had a protein abundance higher than most of the 
differentially regulated proteins selected with the 4-fold-change-MPSP approach (Fig. 9D). 
Thus, the two approaches complement each other and could be used simultaneously. 

3.3 Discussions 
3.3.1 Motivation of the extensive label-free quantitative proteomics analysis  
Despite the relative complexity in label-free proteomics data analysis and the demand of 
more stringently controlled LC/MS experimental conditions, there are strong motivations 
stemming from biological and experimental perspectives to use the label-free approach, as 
discussed below. 
As shown in Fig. 6, the unlabeled and labelled quantitation categories are separated into two 
distinct clusters. One includes the quantitation categories from the labelled control culture C 
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(under node I). The other includes the quantitation categories from the two unlabeled 
cultures S and R (under node II). Thus, there was a larger difference between the labelled 
(C) and either of the two unlabeled samples (S or R) than between the two unlabeled 
cultures (S and R). The number of differentially regulated proteins between the labelled 
culture and either of the unlabeled culture was about three times as many as that between 
the two unlabeled cultures. Compared to the difference between the two unlabeled cultures, 
the difference between the labelled culture and either of the unlabeled cultures was larger. 
This larger difference was probably because the labelled culture was cultured in a synthetic 
minimal medium while the two unlabeled cultures were grown in a commercial 7H9 broth 
that was richer in ingredients. Another factor was that the acidic growth condition was a 
relatively mild stress so that not many proteins were differentially regulated.   
The apparent difference in proteome profile for cells cultured in different media is actually a 
strong motivation for this study. In microbiological works, it is not always convenient to 
make a [15N]-labelled medium with complex ingredients required to cultivate bacteria under 
more physiologically relevant conditions. Even some of the stable-isotope-labelled media 
are technically feasible to make, they often bear a costly price tag. For microbiological 
works, one might not want to be restricted by the type of medium that can be used because 
of the stable isotope labelling limitation. For example, some mycobacteria are difficult to 
cultivate on simple synthetic media and prefer complex media. Thus, unlabeled media are 
always convenient choices if the down-stream proteomic analysis is established to proceed 
with the quantitation.  
For such reasons, the focus of this study was on the comparison of protein expression 
profiles between the two unlabeled cultures S and R. The labelled control culture C was 
used as an internal standard to estimate false discovery rates. 

3.3.2 The use of a [15N]-labeled internal standard for null distribution construction 
The label-free quantitation scheme presented in this study incorporated a labelled internal 
control to provide replicates for noise modelling without a requirement of other unlabeled 
sample replicates. The inclusion of a labelled internal control facilitates the estimation and 
control of false discovery rates.    
Internal standards are commonly used to improve reliability of quantitative proteomics such 
as to aid in removing outlier data and to detect fluctuation in instrument performance 
(Mirzaei et al., 2009). Compared to other synthetic peptide internal standards(Mirzaei et al., 
2009; Winter et al., 2010), the [15N]-labelled control culture C provides more comprehensive 
peptide internal standards. For most of the peptides, the extracted ion chromatographic 
intensities can be matched among the three protein samples originated from the two 
unlabeled (S and R) cultures and the labelled (C) culture. The C protein sample was mixed 
and run together with either S or R protein sample, so that the reliability of the internal 
standards was improved. 
To construct the null distribution for the error model in PLGEM-STN, it would be ideal to 
have the labelled internal standard identical to an unlabeled sample in protein composition. 
As mentioned above, however, that requirement could restrict the culturing conditions 
available for biological experiments. Thus, it is acceptable and sometimes necessary to use a 
labelled protein mixture sample as internal standard, even though the internal standard 
sample might be somewhat different from the unlabeled samples in protein abundance 
profiles.  
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Nevertheless, the null distribution is only utilized to establish the relation between the 
signal-to-noise ratio and the peptide abundance in the PLGEM-STN method. There is no 
requirement of direct one-to-one comparison between the labelled and unlabeled version of 
a protein during this process. Therefore, the difference in proteome composition between 
the labelled internal standard sample C and the two unlabeled samples S and R is not 
expected to affect the modelling parameters derived from the null distribution constructed 
from the labelled C sample.  
One could choose to run multiple replicates of an unlabeled sample and use the replicates to 
construct the null distribution. That approach would require more LC/MS runs as discussed 
previously (Li & Roxas, 2009). 

3.3.3 Label-free data analyses and selection of differentially regulated proteins 
The LC/MS data used in this work was acquired with a high-resolution mass spectrometer 
that resolved peptide peaks from a complex sample mixture to allow the determination of 
the extracted ion chromatographic intensities of peptides and proteins. Repeated LC/MS 
injections showed the highest reproducibility among several other types of replicates, 
indicating that the major variability of the label-free quantitation did not lie within the 
LC/MS separation and the data analysis method. Rather, sample preparation replicates 
represented a major source of the variability. With a labelled control sample to run 
concurrently with each of the unlabeled samples, replicates for the labelled control sample 
were obtained. The control sample replicates provided data to model the noise in the label-
free quantitation with extracted ion chromatographic intensities.  
We performed a two-step normalization procedure in which the information about the 
abundance of a peptide or protein in a sample was preserved (Li, 2010b). The preservation 
of the information about the abundance of a peptide or protein in the samples is critical for 
performing the PLGEM-STN analysis. In addition, because protein extracted ion 
chromatographic intensity was represented by the sum of the PCS extracted ion 
chromatographic intensities belonging to that protein, the summation weighed the low-
intensity PCSs less than the high-intensity PCSs. Such a summation of PCS extracted ion 
chromatographic intensities probably suppressed noise from lower-intensity PCSs. When a 
protein abundance ratio is calculated as the average of PCS abundance ratios without 
weighing, the noise from a lower-intensity PCS would be amplified. We have avoided this 
potential issue by summing the PCS intensities to represent protein abundances before 
calculating protein abundance ratios.   
Single-peptide proteins made up about 35% of the quantified proteins (Li, 2010b). Selection 
of differentially regulated proteins from these single-peptide proteins required a 
significance assessment method that did not rely on multiple-peptide detection to calculate 
a statistic about the confidence of a protein differential abundance. The use of a statistic that 
does not rely on the detection of multiple peptides is especially useful when the sample 
replicates were too low to use a typical statistical test such as a t-test. PLGEM-STN was a 
method that fits this criterion.   
However, PLGEM-STN alone was not strict enough to control the false discovery rate 
without further diminishing the number of positives (Fig. 8). The lack of stringency by using 
the PLGEM-STN method alone was similar to that by using the t-test alone (Li & Roxas, 
2009). In that prior study, the lack of specificity with a t-test alone was overcome by 
introducing the rule MPSP. The MPSP rule simply requires that a protein be selected as 
differentially regulated only when it was repeatedly found so in certain number of 
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(under node I). The other includes the quantitation categories from the two unlabeled 
cultures S and R (under node II). Thus, there was a larger difference between the labelled 
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always convenient choices if the down-stream proteomic analysis is established to proceed 
with the quantitation.  
For such reasons, the focus of this study was on the comparison of protein expression 
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sample might be somewhat different from the unlabeled samples in protein abundance 
profiles.  
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significance assessment method that did not rely on multiple-peptide detection to calculate 
a statistic about the confidence of a protein differential abundance. The use of a statistic that 
does not rely on the detection of multiple peptides is especially useful when the sample 
replicates were too low to use a typical statistical test such as a t-test. PLGEM-STN was a 
method that fits this criterion.   
However, PLGEM-STN alone was not strict enough to control the false discovery rate 
without further diminishing the number of positives (Fig. 8). The lack of stringency by using 
the PLGEM-STN method alone was similar to that by using the t-test alone (Li & Roxas, 
2009). In that prior study, the lack of specificity with a t-test alone was overcome by 
introducing the rule MPSP. The MPSP rule simply requires that a protein be selected as 
differentially regulated only when it was repeatedly found so in certain number of 
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permuted sample pairings. The MPSP rule was introduced to deal with datasets with small 
replicates where other more sophisticated statistical tests could not be applied (Li & Roxas, 
2009). Although the MPSP rule was originally used in combination with a t-test statistic and 
a fold-change threshold, this study shows that it can be used in combination with other 
types of statistical tests such as the PLGEM-STN method (Fig. 8).   
The combination of the MPSP rule allowed the selection of differentially regulated proteins 
at a false discovery rate <5%, which would have been impossible for a fold-change method 
(Table 3). The MPSP rule significantly reduced false positives while keeping the number of 
true positives relatively constant, thus effectively improving the statistical confidence of the 
selected differentially regulated proteins by lowering the false discovery rate (Table 3). The 
results suggest that MPSP is a rule that can be used in combination with different types of 
statistics to select differentially regulated proteins.     
The label-free quantitation simplified cell culturing and sample preparation. Another useful 
aspect of the label-free quantitation is that peptide cross-reference could be used to increase 
the number of proteins quantified in all of the samples run under the same condition 
(Andreev et al., 2007). Lipton et al. introduced the concept of accurate mass and elution time 
peptide tag for global protein quantitation using high resolution mass spectrometry (Lipton 
et al., 2002). One advantage of this method over using the spectral counting method is that 
the large number of identifications that occur in a LC/MS injection can be used as the basis 
for improved quantitation of another LC/MS injection (Andreev et al., 2007; Fang et al., 
2006; Strittmatter et al., 2003). The accurate mass and elution time peptide tag approach uses 
the extracted ion chromatographic intensities as the quantitative measurement of peptides 
and proteins. The linear response of peptide extracted ion chromatographic intensities to 
protein quantities was demonstrated (Hochleitner et al., 2005; Lundrigan et al., 1997; Wang 
et al., 2006). This method was thus used to improve the comparability of proteins quantified 
between samples, among LC/MS injections, and for different isotopic forms of a protein 
(Rao et al., 2008a). The quantitation of 349 proteins from a single gel fraction for several 
samples clearly demonstrated the power of the peptide cross-reference feature in extracted 
ion chromatographic intensity-based label-free quantitative proteomics (Li & Roxas, 2009). 
One drawback of extracted ion chromatographic intensity-based label-free quantitative 
proteomics is that the success of an analysis critically depends upon the reproducibility of 
LC/MS runs that have to be maintained across multiple samples. The reproducibility of 
LC/MS runs across multiple samples is a prerequisite to reliable peptide cross reference 
(Andreev et al., 2007). With the advancement in LC/MS instrumentation and the availability 
of improved LC/MS chromatogram alignment methods (Fischer et al., 2006; Podwojski et 
al., 2009), the reproducibility of LC/MS runs is unlikely to remain an obstacle for the 
increasing use of label-free quantitative proteomics.   

3.4 Summary 
A label-free quantitative proteomics scheme was demonstrated to select differentially 
regulated proteins with single-peptide hits and <2-fold changes at a 5% false discovery rate.  
The scheme incorporated a labeled internal control into multiple unlabeled samples to 
facilitate error modeling when there were no replicates for the unlabeled samples. The error 
modeling allowed the use of the PLGEM-STN statistic to facilitate the selection of 
differentially regulated proteins with single-peptide hits. The PLGEM-STN statistic also 
facilitated the selection of differentially regulated proteins at different fold-change 
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thresholds according to the local abundance level of the proteins. While the PLGEM-STN 
statistic uncovered more differentially regulated proteins at higher abundance with smaller 
fold-changes, the PLGEM error modeling of local variance versus abundance over-penalized 
the proteins with lower abundance. With a constant fold-change threshold, however, 
differentially regulated proteins with higher abundance were overlooked. Thus, the results 
from this study showed that the PLGEM-STN and a constant fold-change threshold were 
complementary to each other and could be used simultaneously. But, neither the PLGEM-
STN nor the 4-fold-change criterion alone was stringent enough for selecting differentially 
regulated proteins at a 5% false discovery rate.  
MPSP was introduced and shown to be a rule that could decrease false discovery rates when 
being used in combination with the PLGEM-STN statistic or the 4-fold-change threshold. 
The MPSP rule played a critical role in extending the selection of differentially regulated 
proteins to those with single-peptide hit or with a lower fold-change in label-free proteomics 
when sample replicates were limited. Although the approaches were demonstrated for a 
representative replicate-limited scenario, they potentially can also be applicable to a 
situation where more sample replicates are available. 

4. Conclusion 
This chapter presents several examples of proteomic studies utilizing the LTQ-FTMS 
instrument. The instrument typically provides a high resolution (> 500,000), a large mass 
range (one order magnitude in a single scan), and high mass accuracy (< 2 ppm) in many 
experiments.  
The protein turnover studies benefit greatly from the high resolution in a large mass range, 
which allows the resolution of isotopomers and isotopologue profiles that could possibly be 
generated by almost any degree and type of stable isotope labeling. The well resolved full-
range spectra simplify the data processing steps and improve data quality. Because a 
spectral count method reports the MS2 events mostly on monoisotopic peaks, it is usually 
not suitable for protein turnover study. Therefore, a high-resolution mass spectrometer such 
as an FTMS instrument is highly desired for protein turnover studies. 
The high mass accuracy is critical in the implementation of a label-free proteomics approach. 
The label-free quantitative proteomics relies on a cross reference of peptides between runs 
and an integration of extracted ion chromatographic intensities.  The peptide cross reference 
allows the quantitation of a peptide in a run in which the peptide is not identified but is 
identified in another run. It is based on the accurate mass and reproducible liquid 
chromatographic elution time of the peptide in multiple runs. The cross reference allows 
more peptides to be quantified.  It also improves the comparability of samples because the 
same peptides, thus the same proteins, are quantified in multiple samples. 
The label-free quantitation is useful not only for protein differential expression studies, but 
also for proteome dynamics studies where the abundances of newly synthesized proteins 
are to be quantified separate from those of the total proteins and the old proteins.  
Thus, the label-free quantitation approach is universally applicable to different proteomic 
studies. The assessment of statistical significance in such a quantitation approach is 
challenging especially for the proteins with few peptides identified and when the replicates 
are limited. A combination of the MPSP rule with a global error modeling method and a 
fold-change threshold proves to be effective in controlling the false discovery rates in 
protein differential analysis.  
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1. Introduction 
Non-food biomass crops e.g. switchgrass (Panicum virgatum L.), Miscanthus x giganteus, and 
short-rotation coppice poplar (Poplus spp.) and willow (Salix spp.) offer a sustainable source 
of energy and platform chemicals (Sims et al., 2006). The majority of the energy stored in the 
crop biomass is in the cell wall which constitutes the largest fraction of lignocellulosic 
biomass. The three polymers that constitute the bulk of plant cell wall (cellulose, 
hemicellulose and lignin) rank amongst the most abundant biopolymers on the planet and 
their proportional concentrations range generally between 40 – 50%, 10 – 40% and 5 – 30% of 
biomass by weight respectively (McKendry, 2002). The absolute and relative concentrations 
of the components of the cell wall have a great influence on biomass quality i.e. its 
suitability for conversion to heat, power and chemical products. However, because biomass 
can be utilised by a number of conversion routes with differing feedstock demands 
measures of feed-stock quality are often quite specific to how the material is to be used. For 
example, biomass can be processed thermochemically. These routes include combustion or 
co- combustion with coal to generate heat and electricity (Allison et al., 2010). Alternatively, 
biomass can be converted by fast pyrolysis to bio-char, which is receiving much attention as 
a soil improver and a means of sequestering carbon from the atmosphere into the soil (Laird, 
2008; Woolf et al., 2010), and bio-oil, a liquid fuel (Bridgwater, 2003; Mohan et al., 2006). 
Biomass can also be gasified to produce a combustible gas which has application for the 
generation of heat and power, and for the chemical synthesis of liquid transport fuels and 
industrial chemicals (Ptasinski et al., 2007). These thermochemical processes demand feed-
stocks with low moisture content and high energy density, often equating with high levels 
of the poly aromatic polymer, lignin.  
In contrast, non-thermochemical processes e.g. the production of bioethanol and industrial 
platform chemicals by biological conversion processes are often inhibited by high levels of 
lignin. High concentrations of lignin in the feedstock necessitate harsh chemical and heat 
pre-treatments of the biomass prior to enzymic saccharification. This increases energy inputs 
and often damages the polysachharide components of the cell wall giving rise to inhibitory 
products (Carroll and Somerville, 2009; Chang, 2007; Fahmi et al., 2007; Fahmi et al., 2008; 
Grabber, 2005). There is therefore considerable pressure to optimise feedstock composition 
and at present the most feasible way to achieve this at a commercial scale is by breeding 
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improvement (Clifton-Brown et al., 2008), although agronomic practice may also influence 
composition (Hodgson et al., 2010). Crop breeding places huge demands on the analyst in 
terms of large sample numbers and there is a demand for methods that can cope with high 
rates of sample throughput whilst being of low unit cost.  
Biomass is traditionally assessed in terms of cell wall fibre content measured by direct, or as 
they are often called, gravimetric methods. The different types of fibre are isolated by 
successively harsh chemical treatments which selectively and sequentially remove the 
different classes of structural carbohydrates until only lignin remains. The proportion of 
each fibre fraction in the biomass is quantified by sample weight change. Measurements of 
this type are not entirely quantitative as treatments are not wholly selective, and it is often 
impossible to directly compare cell wall parameters measured by different methods 
(Hatfield et al., 1999). In addition, these procedures are time consuming, costly and of low 
through put (Giger-Reverdin, 1995). The acetyl bromide method for the quantification of 
lignin is an indirect method that has gained in popularity over recent years. The method 
was first published by Johnson et al. in 1961 (Johnson et al., 1961) and a modified version of 
the method has been used to analyse lignin in a wide range of species (Fukushima and 
Dehority, 2000) from relatively small samples of tissue. Lignin is dissolved from purified cell 
wall material by extraction into a solution of acetyl bromide in concentrated acetic acid at 
50C, reacted with hydroxylamine and quantified by absorbance change at 280 nm. 
Quantification requires reference to a standard curve that is set up using known amounts of 
standard lignin extracted from similar plant material with acetyl bromide (Fukushima and 
Dehority, 2000) or acidic dioxane (Fukushima and Hatfield, 2001). The concentrations of 
lignin detected in samples by this method are comparable with those obtained using the 
widely accepted gravimetric Klason method (Hatfield and Fukushima, 2005) and the 
method has the advantage that it is more readily worked into a high-throughput scheme 
(Foster et al., 2010). Adapting direct and indirect methods for high rates of sample 
throughput is often complex and most likely requires investment in expensive robotised 
laboratory equipment that may be beyond the resources of many groups (Foster et al., 2010). 
Consequently many researchers have turned to less expensive technology for new high-
throughput methods. 
Infrared (IR) spectrometry offers researchers and breeders an alternative approach that is 
robust and rapid. The majority of the carbon based molecules in animals and plants are 
highly active in the IR. At its simplest mid-IR spectroscopy is a useful analytical approach in 
its own right that provides structural information on samples of pure compounds. 
Generally, the approach taken is to correlate IR spectra with analytical data obtained from 
the same samples using multivariate regression methods. This approach although 
seemingly complex overcomes possible nonlinear relationships between absorption and 
concentration that are encountered in the IR. Such deviations from the Beer-Lambert law 
may be caused by spectral shifts due to hydrogen bonding, co-variance with other 
components in the sample and poor design in older instruments (Hsu, 1997). The regression 
models produced can be then applied to predict the concentrations of the cell wall 
components in new samples. Properly executed, this approach has been shown to be rapid 
and robust and therefore reduces the requirement for standard chemical analysis.  
Two types of IR spectroscopy have found application for the measurement of chemical 
composition in biomass: mid-infrared spectroscopy and near infrared reflectance 
spectroscopy (NIRS). NIRS has a longer history of being used to predict chemical 
composition in bulk plant samples as until recently the method was more applicable to bulk 
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plant samples. Mid-IR spectroscopy in contrast to NIRS informs on fundamental molecular 
vibrations, rather than on harmonic and overtone absorptions, and for this reason gives a 
better insight into the molecular bonds present in the sample. Over recent years the technique 
has been revolutionised by the development of Fourier transform instruments (FTIR) and by 
improvements in methods for sample presentation and many groups are choosing analysis 
by FTIR in preference to NIRS. Several reports have shown that the combination of FTIR and 
multivariate analysis is highly effective. For example, spectra of wood can be used to 
discriminate between tree species (Huang et al., 2008). Recently, we reported on using FTIR 
to predict the concentration of lignin and hydroxycinnamic acids (Allison et al., 2009), 
nitrogen and alkali index (Allison et al., 2009) in samples of grasses by partial least squares 
regression. In addition to the analysis of bulk samples, FTIR has long had application in the 
field of microscopy. For example, FTIR microscopy has been used to identify and characterise 
cell wall mutants and transgenic plants altered in cell wall biosynthetic genes (Chen et al., 
1998; McCann et al., 2007; Mouille et al., 2003; Stewart et al., 1997).  
Although it is not intended to discuss FTIR microscopy in depth in this chapter because it is 
not a method of choice for high-throughput screening it deserves some brief discussion and 
comparison with allied methods. For the study of biological samples FTIR microscopy is 
often used as a transmission technique where the IR beam passes through the sample. 
Special objectives are available (see Section 4) which work through contact with the sample 
but this results in damage to most biological specimens. FTIR microscopy is best suited to 
the high resolution mapping of chemical composition at the level of the cell. In this type of 
study high rates of sample through-put and the prediction of composition in bulk samples 
are not usually experimental objectives. Earlier FTIR microscope instruments took a long 
time to acquire spectra because the beam passing through the sample filled only part of the 
detector. New developments in FTIR microscope detector design have decreased spectral 
acquisition time substantially and many groups have taken advantage of focal plane array 
(FPA) detectors. These were originally developed for military use and they allow the 
simultaneous acquisition of many spectra. Over the last decade, FPA detectors have grown 
from arrays of 8x8 elements to 16 x 16 and now 64 x 64 or even 128 x 128 element detectors 
are available for groups with sufficient funds. FPA-FTIR microscopes allow very rapid 
chemical mapping over large areas but the technique is not without fundamental problems. 
FTIR microscopy is incompatible with water, which prevents the analysis of living samples, 
and the analyst must be judicious in the use of chemical fixatives to preserve the structure of 
sectioned materials as the absorption peaks from these substances may mask important 
features in the spectral data. Furthermore, spatial resolution in the IR is limited to 2 – 5 µm 
by wavelength and whilst this does not prevent resolution of most plant cells, which range 
generally between 10 – 50 µm in diameter, cellular components and structures may be 
substantially smaller than this size and therefore below the limit of resolution. Raman 
microscopy, which will not be discussed in any depth here, offers a solution to many of 
these problems. For many years Raman microscopy was considered an expensive and 
unusual technique despite offering a spatial resolution of better than 1 µm (Schmidt et al., 
2010). In addition, Raman microscopy is not affected by water thus making possible the 
analysis of living samples and samples where cellular structure has been preserved 
cryogenically. The relatively low signal strength of Raman emission were problematic and 
often led to poor signal and lengthy analysis times. This matter has been largely overcome 
by improvements in instrument design and new sensitive Raman techniques e.g. surface 
enhanced Raman (Knauer et al., 2010) may result in Raman soon becoming the best way to 
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analysis of living samples and samples where cellular structure has been preserved 
cryogenically. The relatively low signal strength of Raman emission were problematic and 
often led to poor signal and lengthy analysis times. This matter has been largely overcome 
by improvements in instrument design and new sensitive Raman techniques e.g. surface 
enhanced Raman (Knauer et al., 2010) may result in Raman soon becoming the best way to 
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study and understand the structural organisation of the cell wall at the cellular level. The 
resolution and flexibility of Raman imaging has been demonstrated recently by several 
groups studying the ultra-structure and composition of cell wall in tree species and corn 
stover (Agarwal, 2006; Gierlinger and Schwanninger, 2006; Sun et al., 2010).  
In this review we discuss the principles underlying IR spectroscopy, the developments in 
instrumentation and sample presentation methods that have led to Fourier transform 
instruments becoming much more compatible with high through-put analysis, and we 
present data showing how FTIR is being used to assist breeding improvement work in 
Aberystwyth.   

2. The interaction of matter and IR energy 
To understand IR spectroscopy it is necessary to have some insight into how energy 
interacts with the molecules present in living cells. The bonds in molecules are not rigid nor 
of fixed length and both, bond length and their angle to each other vary about a mean 
position and vibrate with specific frequencies. Covalent molecules absorb energy in the IR 
when the frequency of the energy correlates exactly with the vibrational frequency of a 
chemical bond within the molecule. This absorbance of energy by the molecule causes an 
increase in the amplitude, but not the frequency of the bond’s vibration about its mean 
centre. By definition, absorption of IR energy can only occur when it causes a change to the 
bond’s electric dipole moment, i.e. the bond’s polarity, or the separation of positive and 
negative electrical charges comprising the covalent bond. Simple homonuclear molecules 
e.g. N2 and O2 cannot absorb in the IR because there is no dipole moment to change. In 
contrast, it is common for many bonds in covalent heteronuclear molecules to exhibit some 
degree of polarity e.g. H2O and CO2 and most organic compounds absorb strongly in the IR 
with characteristic absorption frequencies.  
The visible, IR and ultraviolet parts of the electromagnetic (EM) spectrum are defined by 
frequency (υ; the number of wave-cycles passing through a point in one second) measured 
in Hertz (Hz) and wave length (λ; the length of one complete wave-cycle). The mid-IR 
region stretches between 3 x 10–4 and 3 x 10–3 cm and is of greatest practical use to the 
organic chemist because this range corresponds to the fundamental frequencies of molecular 
vibrations. Frequency and wavelength are related to each other by equation 1, where c is the 
velocity of light in a vacuum, and has the value 2.997 x 108 m s-1: 

 c=λυ (1) 

Experiments in the early part of the 20th Century demonstrated that when interacting with 
matter EM radiation is best described as discrete packets of energy called quanta. The 
energy (E) of a quantum is directly proportional to its frequency and is calculated by the 
Bohr equation (equation 2) where h is the Planck constant (h = 6.626 x 10-34 Joules-second). 
Substitution of equation 1 into equation 2 shows that energy decreases with increasing wave 
length. 

 E = hυ (2) 

In IR spectroscopy wavelength is often expressed as its reciprocal, wave number (cm-1), 
which equates to the number of waves per centimetre. In the mid-IR wave numbers span 
from 4000 – 400 cm-1; this is a more convenient notation and has the advantage of being 
proportional with energy.  
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The infrared spectrum of a sample of a pure compound shows the position of absorptions 
within the IR spectrum and therefore indicates the functional groups in the molecule. The 
spectrum can be presented in terms of transmission, where the y axis ranges from 0 – 100% 
transmission over a range of wave numbers, or in terms of absorption, in which percentage 
transmission (%T) is converted to absorption (A) by the simple relationship shown in 
equation 4.    

 A = log10 (100/%T) (3) 

For qualitative analysis absorption has the advantage of being proportional to the 
concentration of the analyte, which can be calculated by equation 4, the Beer-Lambert Law 
in which c is the molar concentration of analyte, ε the molar extinction coefficient (L mol-1 
cm-1) and l the light path through the sample (cm). 

 A = εcl (4) 

Even simple compounds have relatively complex IR spectra showing many absorption 
bands. This is because there may be many bonds within an individual molecule that are able 
to absorb in the mid-IR. Bonds within a molecule can vibrate in two ways corresponding to 
the movements of atoms sharing a bond. Atoms can move relative to each other causing the 
bond to vary in length, this causes bond stretching, or one atom can move out of plane 
relative to the other, causing bond bending. For reasons not explained here the maximum 
number of absorptions in the mid-IR that might be expected from a pure compound 
comprised of N atoms can be calculated by equation 5 for linear molecules such as CO2 and 
by equation 6 for non-linear molecules such as H2O. 

 Linear = 3 N – 5 (5) 

 Non-linear = 3 N – 6 (6) 

Not all possible vibrational modes are active in the IR, for example CO2 would be expected 
to have 3 N – 5 absorption bands in its spectrum, in reality it has two as one of the possible 
stretching modes is symmetrical and not IR active, furthermore the two bending modes are 
degenerate and show as one combined band. Other reasons why fewer than the theoretical 
number of IR bands are seen in the spectrum include the absorption not being in the 4000–
400 cm–1 range; an absorption being too weak to be observed and absorptions being too 
close to each other to be resolved on the instrument. The vibration frequency of the 
absorption in wave numbers ( v ) is proportional with the force constant or bond stiffness (k, 
dyne cm-1) and the masses of the atoms (in grams) sharing the bond (equation 7). 
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3. The Fourier transform infrared spectrometer 
Modern mid-IR spectrophotometers are almost exclusively Fourier transform instruments as 
this design offers greater sensitivity and considerably faster scan speeds compared with the 
older and now largely obsolete dispersive instruments. The main difference between the 
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two designs is the manner in which the IR beam is produced which is passed through the 
sample. Dispersive instruments are based on a monochromator; this device splits a 
polychromatic beam produced by the source into a beam of very narrow wave number. As 
the instrument scans over a wave number range the monochromator shifts the wave 
number of the beam through the scan range. This of course means that the time required for 
each scan is dependant on how quickly the monochromator can be made to work and at any 
one point in the scan the beam transmitted through the sample is only a small portion of the 
sources output. In contrast, a beam covering the entire wave number range of the source is 
passed through the sample in a Fourier transform instrument. Therefore scan time and beam 
intensity are considerably faster and brighter respectively. The heart of a Fourier transform 
instrument is an interferometer. Most commonly this is a Michelson interferometer (Figure 
1). In this device IR light from a Nernst or Globar source is split at a beam splitter into two 
beams of equal intensity, one beam is reflected onto a stationary mirror whist the other is 
reflected onto a moving mirror. The two beams are recombined to form the transmitted 
beam at the beam splitter, and this beam is at 90to the input beam. The moving mirror 
produces a varying optical path difference between the two beams resulting in constructive 
and destructive interference when they are combined. A helium neon laser beam is included 
in the FTIR spectrophotometer to provide a reference beam of known wave number that can 
be used to measure precisely the displacement of the moving mirror. This laser is not shown 
in Figure 1 for the purpose of simplicity. Two types of detector are commonly used in the 
mid-IR: The deuterium triglycine sulphate (DTGS) detector works at room temperature and 
has the advantage of great stability and ease of use. For more demanding work increased 
sensitivity of the mercury cadmium telluride (MCT) may be necessary but this type of 
detector requires cooling to near liquid nitrogen temperatures in order to work. The 
resulting interferogram (Figure 2) contains the source’s frequency information modulated in 
a time domain as a function of the moving mirror’s displacement.  
The entire spectrum is therefore measured simultaneously in the interferogram and FTIR 
instruments offer considerable speed benefits compared to dispersive instruments which 
mechanically scan from one wave number to another. An interferogram can be obtained in 
only a few seconds compared to many minutes so allowing many interferograms to be 
collected in a comparatively short time. These are averaged allowing great improved signal 
to noise ratios and increased sensitivity. The absorbance spectrum of the sample is produced 
from the interferogram by Fourier-transformation; the process requires that the analyst also 
records an interferogram where no sample is present in the beam path. The ratio of the 
resulting absorbance spectra corresponds to the absorbance spectrum of the sample alone. 
Key developments in technology were necessary for Fourier transform based instruments to 
become practical. Firstly, the development of Fast Fourier transformation (FFT) by Cooley 
and Tukey (Cooley and Tukey, 1965) offered an algorithm for Fourier transformation that 
was several orders of magnitude simpler that previous calculation routes whilst only 
slightly less accurate. Without FFT the lengthy computation would have required unfeasibly 
powerful and expensive computers. Even the much shorter computation underlying FFT 
however required the technology to wait for development of affordable desk-top computers 
to supply the necessary computing power before FTIR based instruments could become 
practical. In addition, not only does the computer handle the FFT allowing generation of 
spectra it also allows the analyst the ability to manipulate spectra for integration, base-line 
correction and averaging, and to analyse the spectra using multivariate approaches such as 
principal components analysis (PCA) and multivariate regression. 
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Fig. 1. Schematic of a Michelson interferometer 
 

 
Fig. 2. Typical interferogram  (courtesy of Analytical Spectroscopy by R. P. W. Scott, 
Essential Infromation for the Analytical chemist http://www.analyticalspectroscopy.net/) 

4. The development of effective sample analysis techniques 
Samples of plant material are generally prepared by oven or freeze-drying to eliminate 
water which has high absorption in the IR; the dry samples are then finely ground. 
Generally, the finer that samples can be ground the better but often the analyst finds that for 
fibrous samples there is trade off between particle size and sample through-put and it is 
often necessary to determine empirically the maximum size of particle that permits robust 
analysis. Furthermore, the milled sample must be truly representative of the whole sample 
and chemical differences between particles of different sizes must be accounted for. It is a 
good idea to have access to a number of mills differing in design as each offers a 
combination of through-put and effectiveness that is highly sample specific. The preparation 
of samples by grinding is often the rate limiting step in IR analysis. 



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

76 

two designs is the manner in which the IR beam is produced which is passed through the 
sample. Dispersive instruments are based on a monochromator; this device splits a 
polychromatic beam produced by the source into a beam of very narrow wave number. As 
the instrument scans over a wave number range the monochromator shifts the wave 
number of the beam through the scan range. This of course means that the time required for 
each scan is dependant on how quickly the monochromator can be made to work and at any 
one point in the scan the beam transmitted through the sample is only a small portion of the 
sources output. In contrast, a beam covering the entire wave number range of the source is 
passed through the sample in a Fourier transform instrument. Therefore scan time and beam 
intensity are considerably faster and brighter respectively. The heart of a Fourier transform 
instrument is an interferometer. Most commonly this is a Michelson interferometer (Figure 
1). In this device IR light from a Nernst or Globar source is split at a beam splitter into two 
beams of equal intensity, one beam is reflected onto a stationary mirror whist the other is 
reflected onto a moving mirror. The two beams are recombined to form the transmitted 
beam at the beam splitter, and this beam is at 90to the input beam. The moving mirror 
produces a varying optical path difference between the two beams resulting in constructive 
and destructive interference when they are combined. A helium neon laser beam is included 
in the FTIR spectrophotometer to provide a reference beam of known wave number that can 
be used to measure precisely the displacement of the moving mirror. This laser is not shown 
in Figure 1 for the purpose of simplicity. Two types of detector are commonly used in the 
mid-IR: The deuterium triglycine sulphate (DTGS) detector works at room temperature and 
has the advantage of great stability and ease of use. For more demanding work increased 
sensitivity of the mercury cadmium telluride (MCT) may be necessary but this type of 
detector requires cooling to near liquid nitrogen temperatures in order to work. The 
resulting interferogram (Figure 2) contains the source’s frequency information modulated in 
a time domain as a function of the moving mirror’s displacement.  
The entire spectrum is therefore measured simultaneously in the interferogram and FTIR 
instruments offer considerable speed benefits compared to dispersive instruments which 
mechanically scan from one wave number to another. An interferogram can be obtained in 
only a few seconds compared to many minutes so allowing many interferograms to be 
collected in a comparatively short time. These are averaged allowing great improved signal 
to noise ratios and increased sensitivity. The absorbance spectrum of the sample is produced 
from the interferogram by Fourier-transformation; the process requires that the analyst also 
records an interferogram where no sample is present in the beam path. The ratio of the 
resulting absorbance spectra corresponds to the absorbance spectrum of the sample alone. 
Key developments in technology were necessary for Fourier transform based instruments to 
become practical. Firstly, the development of Fast Fourier transformation (FFT) by Cooley 
and Tukey (Cooley and Tukey, 1965) offered an algorithm for Fourier transformation that 
was several orders of magnitude simpler that previous calculation routes whilst only 
slightly less accurate. Without FFT the lengthy computation would have required unfeasibly 
powerful and expensive computers. Even the much shorter computation underlying FFT 
however required the technology to wait for development of affordable desk-top computers 
to supply the necessary computing power before FTIR based instruments could become 
practical. In addition, not only does the computer handle the FFT allowing generation of 
spectra it also allows the analyst the ability to manipulate spectra for integration, base-line 
correction and averaging, and to analyse the spectra using multivariate approaches such as 
principal components analysis (PCA) and multivariate regression. 

Application of Fourier Transform Mid-Infrared Spectroscopy (FTIR)  
for Research into Biomass Feed-Stocks 

 

77 

 

Sample

Detector

IR Source

Fixed Mirror

Incident Beam Moving Mirror

Transmitted Beam

 
Fig. 1. Schematic of a Michelson interferometer 
 

 
Fig. 2. Typical interferogram  (courtesy of Analytical Spectroscopy by R. P. W. Scott, 
Essential Infromation for the Analytical chemist http://www.analyticalspectroscopy.net/) 

4. The development of effective sample analysis techniques 
Samples of plant material are generally prepared by oven or freeze-drying to eliminate 
water which has high absorption in the IR; the dry samples are then finely ground. 
Generally, the finer that samples can be ground the better but often the analyst finds that for 
fibrous samples there is trade off between particle size and sample through-put and it is 
often necessary to determine empirically the maximum size of particle that permits robust 
analysis. Furthermore, the milled sample must be truly representative of the whole sample 
and chemical differences between particles of different sizes must be accounted for. It is a 
good idea to have access to a number of mills differing in design as each offers a 
combination of through-put and effectiveness that is highly sample specific. The preparation 
of samples by grinding is often the rate limiting step in IR analysis. 



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

78 

Traditionally, analysis by IR spectroscopy was highly time-consuming. In this approach 
small amounts of ground sample are ground with a larger quantity of an IR transparent salt 
such as KBr in a pestle and mortar. The mixture is then pressed hydraulically into 
transparent discs with between 5 – 10 tonnes of pressure (Kacurakova et al., 2000; Xu et al., 
2007). At all stages it is essential that the amount of water in the disk is kept to a minimum 
and spectra must be taken quickly as the discs are hydroscopic and soon become opaque 
due to the absorption of water from the atmosphere. This process is time-consuming but 
allows spectra of a high quality to be obtained. It’s use has been reported by several groups 
engaged on the structural study of various cell wall components including pectin and 
hemicellulose; (Kacurakova et al., 2000; Sun and Tomkinson, 2002; Xu et al., 2006; Xu et al., 
2007), cellulose (Liu et al., 2006), lignin (Gosselink et al., 2004; Sun et al., 2002; Sun et al., 
2002; Xu et al., 2007), pyrolysis char (Hu et al., 2008) and lignin (Faix, 1991; Jung and 
Himmelsbach, 1989; Monties, 1989; Nakanishi and Kawakami, 1991; Stewart et al., 1997). 
Alternatively, samples can be ground with an oily mulling agent (typically Nujol) and 
smeared onto salt disks prior to spectral acquisition. 
In recent years a much more rapid method of analysing powdered samples has become 
widely available and this has made the use of FTIR for larger sample numbers more 
practicable (Allison et al., 2009; Gosselink et al., 2004). The method relies on crushing a 
powdered sample against a flattened face of a trapezoid crystal of diamond, germanium or 
zinc selenide mounted in a rugged plate. The accessory is most often placed in the 
spectrophotometers sample bay and the IR beam is passed through the crystal by a series of 
mirrors. Because the IR beam hits the walls of the crystal at a very shallow angle it is 
reflected within the crystal and exits the far side where it passes to the detector. The 
technique is known as attenuated total reflectance (ATR). Most ATR accessories are of the 
single bounce design but for samples of only low absorption it is possible to purchase multi-
bounce ATR accessories. Spectra are obtained from the sample only when they are placed in 
direct contact with the crystal and it is important that the particle size of the sample is 
sufficiently small and uniform to allow spectral acquisition to be reproducible. Because the 
IR beam only penetrates a few microns from the crystal surface it is possible to directly 
analyse aqueous samples. All methods require for spectra to be collected in a two step 
process; first, a blank spectrum is collected with no sample in place, next a sample spectrum 
is collected and the spectrum of the sample is obtained by calculating the ratio of the two 
measurements. Using ATR an operator using a manual spectrophotometer can comfortably 
collect spectra from approximately 200 samples comfortably in one day. 

5. Spectral interpretation and multivariate analysis 
The handling and interpretation of the IR spectral data is as much a part of compositional 
analysis as sample preparation and spectral acquisition and is discussed in this chapter in 
order for the reader to have a clear insight into the entire process. From the information 
provided in Section 2 it would appear relatively straight forward for the analyst to assign 
absorption peaks in the spectrum of a pure sample to particular chemical moieties or 
molecular structures. In practice, IR spectra are more complex than might be expected. 
Often additional absorption bands are present in the spectrum due to overtones or 
combinations of the fundamental vibrations. In addition, the spectra of larger molecules 
have an additional level complexity caused by the coupling of vibrations over part or the 
entire molecule. When two oscillating bonds share a common atom, the vibrations of the 
two bonds are coupled and as one bond contracts, the other bond contracts or expands, as in 
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asymmetrical and symmetrical stretching. When coupling occurs, the spectral position of 
bands due to particular bonds become shifted rather than superimposed as might be 
expected. These shifted vibrations are known as skeletal vibrations and give information on 
the entire molecule rather than on specific functional groups within the molecule. However, 
despite these complexities spectral interpretation can generally be achieved without 
resorting to first principles by remembering the principles underlying equation 7, and by 
reference to either a text book on the subject e.g. Stuart (2005) or to one of the collections of 
IR spectral fingerprints e.g. Movasaghi et al. (2008).  
Spectra from samples of complex mixtures such as plant cell wall preparations or ground 
samples of dried lignocellulosic crops, present an additional level of difficulty to interpret as 
it is next to impossible to deconvolute the superimposed spectra of the individual 
components in the sample. Prior knowledge of the likely composition of the sample often 
allows the identification of spectral features known to be associated with likely components 
e.g. in plant material the presence of bands at 1590 cm-1 and 1610 cm-1 are correlated with 
lignin (Monties, 1989), and if no knowledge of sample composition exists IR spectra 
provides clues as to the kind of compounds which may be present. The analyst can thus 
make an informed decision on the best methods to use for initial chemical analysis of the 
sample. 
Whilst useful for qualitative analysis, these approaches are not sufficiently robust to allow 
the prediction of composition in spectra from large numbers of samples as they are too 
easily influenced by co-variance between chemical components in the samples and by 
random differences in the spectral data. The goal of using IR spectra to predict chemical 
composition in complex samples has been made possible by the adoption of multivariate 
approaches to data analysis and the availability of powerful and affordable desk top 
computers to handle the data processing and file storage. The simplest and possibly the 
most commonly used multivariate approach is PCA. This was first described in theoretical 
terms by Karl Pearson in 1901 (Pearson, 1901) and later made into a practical reality by 
Hotelling in 1933 (Hotelling, 1933). PCA allows the variance in the spectra data at hundreds 
of wave numbers to be condensed into a much smaller number of new principal 
components which explain most of the variance in the original data. Because there are fewer 
variables the data can be more easily explored graphically or statistically for correlation with 
experimental, environmental and sample effects. PCA works best with highly correlated 
data and spectral data is highly correlated. Any single data point in a spectrum is highly 
influenced by the value of its immediate neighbours. PCA is of great value for the biologist 
and analytical chemist hoping to understand how differences between samples in 
geographic location, growth year, species or some experimental treatment such as the 
addition of fertiliser, have an effect on chemical composition. This is illustrated by Figure 3A 
which shows a plot of the first and second principal components obtained from 194 mid-IR 
spectra of reed canary grass and switchgrass samples collected at the end of two consecutive 
growth years. The two components plotted in this figure represent the majority of the 
variance in the data set. The data points are coded according to species and it is quite 
apparent that spectral differences exist between the two grass species and these differences 
are accounted for primarily by the variance explained by principal component 2. The 
separation of the data points is however only partial showing that chemical differences 
between samples from the two species occur in only a proportion of cases. The analyst 
would usually wish to explore this further and establish whether this was the result of 
processing and sample preparation  e.g. differences in sample moisture content, or whether 
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sufficiently small and uniform to allow spectral acquisition to be reproducible. Because the 
IR beam only penetrates a few microns from the crystal surface it is possible to directly 
analyse aqueous samples. All methods require for spectra to be collected in a two step 
process; first, a blank spectrum is collected with no sample in place, next a sample spectrum 
is collected and the spectrum of the sample is obtained by calculating the ratio of the two 
measurements. Using ATR an operator using a manual spectrophotometer can comfortably 
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5. Spectral interpretation and multivariate analysis 
The handling and interpretation of the IR spectral data is as much a part of compositional 
analysis as sample preparation and spectral acquisition and is discussed in this chapter in 
order for the reader to have a clear insight into the entire process. From the information 
provided in Section 2 it would appear relatively straight forward for the analyst to assign 
absorption peaks in the spectrum of a pure sample to particular chemical moieties or 
molecular structures. In practice, IR spectra are more complex than might be expected. 
Often additional absorption bands are present in the spectrum due to overtones or 
combinations of the fundamental vibrations. In addition, the spectra of larger molecules 
have an additional level complexity caused by the coupling of vibrations over part or the 
entire molecule. When two oscillating bonds share a common atom, the vibrations of the 
two bonds are coupled and as one bond contracts, the other bond contracts or expands, as in 
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asymmetrical and symmetrical stretching. When coupling occurs, the spectral position of 
bands due to particular bonds become shifted rather than superimposed as might be 
expected. These shifted vibrations are known as skeletal vibrations and give information on 
the entire molecule rather than on specific functional groups within the molecule. However, 
despite these complexities spectral interpretation can generally be achieved without 
resorting to first principles by remembering the principles underlying equation 7, and by 
reference to either a text book on the subject e.g. Stuart (2005) or to one of the collections of 
IR spectral fingerprints e.g. Movasaghi et al. (2008).  
Spectra from samples of complex mixtures such as plant cell wall preparations or ground 
samples of dried lignocellulosic crops, present an additional level of difficulty to interpret as 
it is next to impossible to deconvolute the superimposed spectra of the individual 
components in the sample. Prior knowledge of the likely composition of the sample often 
allows the identification of spectral features known to be associated with likely components 
e.g. in plant material the presence of bands at 1590 cm-1 and 1610 cm-1 are correlated with 
lignin (Monties, 1989), and if no knowledge of sample composition exists IR spectra 
provides clues as to the kind of compounds which may be present. The analyst can thus 
make an informed decision on the best methods to use for initial chemical analysis of the 
sample. 
Whilst useful for qualitative analysis, these approaches are not sufficiently robust to allow 
the prediction of composition in spectra from large numbers of samples as they are too 
easily influenced by co-variance between chemical components in the samples and by 
random differences in the spectral data. The goal of using IR spectra to predict chemical 
composition in complex samples has been made possible by the adoption of multivariate 
approaches to data analysis and the availability of powerful and affordable desk top 
computers to handle the data processing and file storage. The simplest and possibly the 
most commonly used multivariate approach is PCA. This was first described in theoretical 
terms by Karl Pearson in 1901 (Pearson, 1901) and later made into a practical reality by 
Hotelling in 1933 (Hotelling, 1933). PCA allows the variance in the spectra data at hundreds 
of wave numbers to be condensed into a much smaller number of new principal 
components which explain most of the variance in the original data. Because there are fewer 
variables the data can be more easily explored graphically or statistically for correlation with 
experimental, environmental and sample effects. PCA works best with highly correlated 
data and spectral data is highly correlated. Any single data point in a spectrum is highly 
influenced by the value of its immediate neighbours. PCA is of great value for the biologist 
and analytical chemist hoping to understand how differences between samples in 
geographic location, growth year, species or some experimental treatment such as the 
addition of fertiliser, have an effect on chemical composition. This is illustrated by Figure 3A 
which shows a plot of the first and second principal components obtained from 194 mid-IR 
spectra of reed canary grass and switchgrass samples collected at the end of two consecutive 
growth years. The two components plotted in this figure represent the majority of the 
variance in the data set. The data points are coded according to species and it is quite 
apparent that spectral differences exist between the two grass species and these differences 
are accounted for primarily by the variance explained by principal component 2. The 
separation of the data points is however only partial showing that chemical differences 
between samples from the two species occur in only a proportion of cases. The analyst 
would usually wish to explore this further and establish whether this was the result of 
processing and sample preparation  e.g. differences in sample moisture content, or whether 
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these differences reflected or factors influencing the growth and development of the plants 
during their growth in the field. Re-plotting these data but coding the data points by growth 
year would result in an identical distribution of data points but show no separation of the 
data according to growth year by these components (data not shown).  
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Fig. 3. (A) PCA of 194 mid-infrared attenuated total reflectance absorbance spectrums of 
samples of reed canary over the spectral range of 500- 4000 cm-1 (□ = switchgrass, ● = reed 
canary grass). (B) Scatter plots showing measured vs. PLS model predicted values for 
nitrogen content in the training (●) and test (+) spectral data. (Data from Allison et al., 2009) 
PCA is obviously a highly useful tool for evaluating differences and similarities between 
samples. In addition, the analyst may identify the wave numbers where these differences 
occur. This information is contained in the PCA loadings, a matrix of data produced during 
the PCA process that shows the influence of each of the original variables i.e. absorbance’s at 
groups of wave numbers, on each of the new components. Analysis of the loadings for 
principal component 2 would in this case identify the discriminatory wave numbers 
between the two species and perhaps make it possible to identify the class of chemical that 

Application of Fourier Transform Mid-Infrared Spectroscopy (FTIR)  
for Research into Biomass Feed-Stocks 

 

81 

differed most between the two species. This very powerful way to look at chemical data will 
also reveal not just increases or decreases in given compounds but changes in the 
concentrations of several chemical  components simultaneously.  
PCA and other methods of this kind e.g. canonical correlation, cluster analysis and 
multidimensional scaling are therefore excellent tools for exploring structure relationships 
within the spectral data but they cannot be used to determine the concentration of 
components within the sample mixture. For that it is necessary to employ a multivariate 
regression approach. Many approaches have been developed over the years e.g. see Otto 
(2007), and currently many analytical chemists rely on regression by partial least squares 
(PLS). Other methods such as principal components regression and multivariate linear 
regression offer subtle differences in capability but the way in which they are employed is 
similar. Multivariate regression requires the analyst to provide a training set of data from 
samples that have been also been analysed using standard chemical methods. The variance 
in these training data is arranged by PLS into new orthogonal components (latent variables) 
but unlike PCA these new latent variables not only capture variance but also achieve 
correlation with the analytical data. To ensure that the correlation is genuine and based on 
the chemical components being measured rather than to some selective fitting of noise the 
process is controlled by cross validation. The mathematics underlying these calculations is 
complex and many analytical scientists rely on software from specialist suppliers or 
instrument manufacturers, although it is also possible to find free-ware packages on the 
internet. The PLS regression is judged for predictive accuracy using an independent test set of 
spectral data from chemically analysed samples that were excluded from the PLS regression 
fitting process. This gives the user confidence that predictions made with the model will be 
accurate. Confidence in predictions made using the model is obtained by chemically 
analysing a small percentage of all samples and checking the agreement between te real and 
predicted values, and by monitoring the variance presented by new samples to ensure that 
they are adequately explained by the existing model. Figure 3B shows a plot of predicted vs. 
measured nitrogen content for the 194 samples of reed canary grass and switchgrass. 
Theoretical perfect fit is displayed as a dotted line in the figure. 

6. Example of process 
In this example using previously unpublished data we show how FTIR spectra can be used 
to develop predictive PLS models for several combustion parameters in samples of coal. 
This may seem to be a curious choice for illustration but the procedure by which the data 
are analysed and models developed are essentially identical to those employed for 
developing models to predict aspects of cell wall  composition in less ancient biomass. The 
purpose of this study was to explore the possibility of using FTIR for the process monitoring 
of coal and biomass destined for co-firing. Two similar studies were published in 2009 
which used NIRS (Kim et al., 2009) and FTIR (Geng et al., 2009) and these provide a useful 
comparison for these findings. Sixty nine samples of powdered coal were provided by 
E.ON. It was known that the coal samples were from a number of locations but details of 
their origins were not disclosed. The coal samples had been subjected to proximate analysis 
and values were supplied of the mass fractions of moisture, volatiles, ash and sulphur, see 
Table 1.  With only minor exceptions the data were normally distributed. Triplicate IR 
spectra were taken from each sample from 600 cm-1 to 4000 cm-1 using a Golden Gate ATR 
accessory fitted with a single bounce diamond crystal (Specac, U.K.) placed in the sample 
compartment of an Equinox 55 FTIR spectrophotometer (Bruker Optik GmbH, Germany). 
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Fig. 3. (A) PCA of 194 mid-infrared attenuated total reflectance absorbance spectrums of 
samples of reed canary over the spectral range of 500- 4000 cm-1 (□ = switchgrass, ● = reed 
canary grass). (B) Scatter plots showing measured vs. PLS model predicted values for 
nitrogen content in the training (●) and test (+) spectral data. (Data from Allison et al., 2009) 
PCA is obviously a highly useful tool for evaluating differences and similarities between 
samples. In addition, the analyst may identify the wave numbers where these differences 
occur. This information is contained in the PCA loadings, a matrix of data produced during 
the PCA process that shows the influence of each of the original variables i.e. absorbance’s at 
groups of wave numbers, on each of the new components. Analysis of the loadings for 
principal component 2 would in this case identify the discriminatory wave numbers 
between the two species and perhaps make it possible to identify the class of chemical that 
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differed most between the two species. This very powerful way to look at chemical data will 
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PCA and other methods of this kind e.g. canonical correlation, cluster analysis and 
multidimensional scaling are therefore excellent tools for exploring structure relationships 
within the spectral data but they cannot be used to determine the concentration of 
components within the sample mixture. For that it is necessary to employ a multivariate 
regression approach. Many approaches have been developed over the years e.g. see Otto 
(2007), and currently many analytical chemists rely on regression by partial least squares 
(PLS). Other methods such as principal components regression and multivariate linear 
regression offer subtle differences in capability but the way in which they are employed is 
similar. Multivariate regression requires the analyst to provide a training set of data from 
samples that have been also been analysed using standard chemical methods. The variance 
in these training data is arranged by PLS into new orthogonal components (latent variables) 
but unlike PCA these new latent variables not only capture variance but also achieve 
correlation with the analytical data. To ensure that the correlation is genuine and based on 
the chemical components being measured rather than to some selective fitting of noise the 
process is controlled by cross validation. The mathematics underlying these calculations is 
complex and many analytical scientists rely on software from specialist suppliers or 
instrument manufacturers, although it is also possible to find free-ware packages on the 
internet. The PLS regression is judged for predictive accuracy using an independent test set of 
spectral data from chemically analysed samples that were excluded from the PLS regression 
fitting process. This gives the user confidence that predictions made with the model will be 
accurate. Confidence in predictions made using the model is obtained by chemically 
analysing a small percentage of all samples and checking the agreement between te real and 
predicted values, and by monitoring the variance presented by new samples to ensure that 
they are adequately explained by the existing model. Figure 3B shows a plot of predicted vs. 
measured nitrogen content for the 194 samples of reed canary grass and switchgrass. 
Theoretical perfect fit is displayed as a dotted line in the figure. 

6. Example of process 
In this example using previously unpublished data we show how FTIR spectra can be used 
to develop predictive PLS models for several combustion parameters in samples of coal. 
This may seem to be a curious choice for illustration but the procedure by which the data 
are analysed and models developed are essentially identical to those employed for 
developing models to predict aspects of cell wall  composition in less ancient biomass. The 
purpose of this study was to explore the possibility of using FTIR for the process monitoring 
of coal and biomass destined for co-firing. Two similar studies were published in 2009 
which used NIRS (Kim et al., 2009) and FTIR (Geng et al., 2009) and these provide a useful 
comparison for these findings. Sixty nine samples of powdered coal were provided by 
E.ON. It was known that the coal samples were from a number of locations but details of 
their origins were not disclosed. The coal samples had been subjected to proximate analysis 
and values were supplied of the mass fractions of moisture, volatiles, ash and sulphur, see 
Table 1.  With only minor exceptions the data were normally distributed. Triplicate IR 
spectra were taken from each sample from 600 cm-1 to 4000 cm-1 using a Golden Gate ATR 
accessory fitted with a single bounce diamond crystal (Specac, U.K.) placed in the sample 
compartment of an Equinox 55 FTIR spectrophotometer (Bruker Optik GmbH, Germany). 
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Each spectrum represented an average of 32 scans at a resolution of 4 cm-1. Spectra were 
averaged, smoothed and derivatised to the first Savitsy- Golay derivative using a window of 
25 wave numbers and a second order polynomial fit before being normalised to unit 
variance. All spectral processing was performed using MatLab (version 7.10; Mathworks) 
and the PLS toolbox (version 6.0; Eigenvector Research, Inc.). 
 

 Xa Xm Xs Xv 
Mean 10.81 11.93 1.124 31.01 
Minimum 2.30 4.00 0.120 24.10 
Maximum 41.10 25.90 2.390 35.60 
SD 4.70 3.72 0.648 2.56 

Table 1. Values, range and standard deviation (SD) of Q, calorific value (corrected for ash 
and moisture content); Xa, ash mass fraction; Xcl, chlorine mass fraction; Xm, moisture mass 
fraction; Xs, sulphur mass fraction and Xv, volatile mass fraction for 69 samples of 
powdered coal. Data supplied by E.ON 

Figure 4A shows the complete set of 207 spectra taken from the 69 samples before 
averaging, derivatisation and normalisation. Derivatisation is a commonly employed 
practice in spectroscopy as it improves the separation of non-resolved peaks. In NIRS it is 
not unusual to derivatise spectra to the 3rd or 4th derivative. In FTIR however, the peaks are 
better resolved and derivatisation beyond the 1st or 2nd derivative typically offers no 
advantage. The spectra shown in Figure 4B are much more tightly grouped and it is 
apparent that this regime of pre-processing has improved the noise in the data considerably. 
Other processes which might have been applied include scatter correction, baseline 
correction offsets and general least squares regression which serves to decrease noise 
between chemically similar data points. The 69 spectra were divided into two groups; one 
group of 59 spectra that were used to develop the partial least squares regression model and 
an independent test set of 10 spectra which were excluded from the model but which were 
used to assess model predictive accuracy. The PLS modes were developed using SIMPLS 
algorithms (de Jong, 1993) and the PLS toolbox software. Models were cross validated using 
venetian blinds cross validation protocol (7 data splits) and developed to an optimal number 
of latent variables to ensure that the models were based on variance explaining the 
parameter of interest rather than on noise in the data. In each case the best number of latent 
variables to include was indicated by a minimal value of the root mean square error of cross 
validation (RMSECV). This measure of error can be interpreted as the standard deviation of 
the unexplained variance in the cross validated regression, and has the useful property of 
being in the same units as the response variable. This measure of error is a much better 
indication of model fit than root mean square error of calibration (RMSEC) as the latter does 
not indicate when the model is over-fitted to the data. The models were tested for predictive 
accuracy by measuring the root mean square error of prediction (RMSEP) using the 
independent data test set. For RMSECV, n relates to the number of spectra in the training 
data set, yi is an observed value obtained by chemical analysis and ˆ ly a value predicted from 
the cross validated regression model. RMSEC can be calculated using the same equation by 
substituting the values of ˆ ly  with the predicted values from the non-cross validated. 
Similarly, RMSEP is calculated by using values from the independent data test set. 
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Fig. 4. (A) Triplicate ATR-FTIR spectra (207 spectra) of 69 the samples of powdered coal. (B) 
First derivative averaged spectra after Savitsky-Golay smoothing and normalisation (69 spectra) 
Plots of regression fits for these four models are shown in Figure 5 and the parameters of the 
four models in Table 2. All of the models are sufficiently good to be used for prediction of 
these parameters in unknown samples. Ideally, the variance in spectra from the unknown 
samples would be compared with those used to develop the model in question. This ensures 
that the model is capable of making an accurate prediction. Some of the samples detected as 
dissimilar would be analysed chemically and these data incorporated into a new model better 
able to make predictions. In all circumstances a proportion of the unknown samples, perhaps 5 
– 10% of the total number should be analysed chemically to validate model predictions.  

B
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Fig. 4. (A) Triplicate ATR-FTIR spectra (207 spectra) of 69 the samples of powdered coal. (B) 
First derivative averaged spectra after Savitsky-Golay smoothing and normalisation (69 spectra) 
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Fig. 5. PLS regression fits (red line) for the spectral data from the coal samples for A, 
moisture; B, volatiles; C, sulphur and D, ash mass fractions. Black and red symbols indicate 
samples in the training and test data sets respectively. The green line denotes a 1:1 
regression fit 
 

Model Calibration Validation 
 LV % Var

x 
% Var

y 
R2 RMSEC 2

cvR RMSECV PredBias 2
pR  RMSEP 

Xm 9 78.7 99.5 0.995 0.228 0.781 1.802 -0.08 0.888 1.181 
Xv 7 76.3 97.4 0.974 0.435 0.714 1.490 -0.35 0.869 0.782 
Xs 5 62.3 95.9 0.935 0.137 0.827 0.286 0.05 0.887 0.290 
Xa 5 69.5 93.2 0.932 0.785 0.762 1.504 0.02 0.928 0.831 

Table 2. Summary of the PLS models developed to measure moisture (Xm), volatiles (Xv), 
sulphur (Xs) and ash (Xa) mass fractions. Details are shown of the number of latent variables 
in each model (LV), the percentage variation included from the spectral (% Var x) and non-
spectral data (% Var y), predictive bias (Pred Bias) and model goodness of fit is shown for 
correlation, cross validation and prediction as root mean square error (RMSEC, RMSECV 
and RMSEP) and as determination coefficients (R2, 2

cvR  and 2
pR ) 
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7. Conclusions 
Mid-IR spectrophotometry has become a potentially useful predictive tool for the plant 
breeder, biologist and engineer as it offers high rates of sample through-put, low unit cost 
and robust and accurate analysis. Key to this approach has been the development of modern 
Fourier transform spectrophotometers, the advent of modern personal computers and the 
availability of chemometrics software. Whilst many still prefer to use near-IR spectral 
analysis for the prediction of compositional parameters mid-IR gives the analyst additional 
information on the molecules within the sample which may be more difficult to discern 
using NIRS.  
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Fig. 5. PLS regression fits (red line) for the spectral data from the coal samples for A, 
moisture; B, volatiles; C, sulphur and D, ash mass fractions. Black and red symbols indicate 
samples in the training and test data sets respectively. The green line denotes a 1:1 
regression fit 
 

Model Calibration Validation 
 LV % Var

x 
% Var

y 
R2 RMSEC 2

cvR RMSECV PredBias 2
pR  RMSEP 

Xm 9 78.7 99.5 0.995 0.228 0.781 1.802 -0.08 0.888 1.181 
Xv 7 76.3 97.4 0.974 0.435 0.714 1.490 -0.35 0.869 0.782 
Xs 5 62.3 95.9 0.935 0.137 0.827 0.286 0.05 0.887 0.290 
Xa 5 69.5 93.2 0.932 0.785 0.762 1.504 0.02 0.928 0.831 

Table 2. Summary of the PLS models developed to measure moisture (Xm), volatiles (Xv), 
sulphur (Xs) and ash (Xa) mass fractions. Details are shown of the number of latent variables 
in each model (LV), the percentage variation included from the spectral (% Var x) and non-
spectral data (% Var y), predictive bias (Pred Bias) and model goodness of fit is shown for 
correlation, cross validation and prediction as root mean square error (RMSEC, RMSECV 
and RMSEP) and as determination coefficients (R2, 2

cvR  and 2
pR ) 
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7. Conclusions 
Mid-IR spectrophotometry has become a potentially useful predictive tool for the plant 
breeder, biologist and engineer as it offers high rates of sample through-put, low unit cost 
and robust and accurate analysis. Key to this approach has been the development of modern 
Fourier transform spectrophotometers, the advent of modern personal computers and the 
availability of chemometrics software. Whilst many still prefer to use near-IR spectral 
analysis for the prediction of compositional parameters mid-IR gives the analyst additional 
information on the molecules within the sample which may be more difficult to discern 
using NIRS.  
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1. Introduction 
Fourier Transform Infrared microscopy (FTIR) has become an essential analytical tool 
available to scientists to study various materials.  Specifically FTIR has been increasingly 
used to study cell wall developments in plants, investigate the efficiency of the surface 
modification of polymers, identifying contaminants, and predicting the physical 
properties of certain polymers and biopolymers, etc.  This chapter reviews some selected 
application of the FTIR to study cellulose development in cotton fibers and to predict 
cotton fiber physical properties.  Cotton fiber maturity is a major yield component and an 
important fiber quality trait that is directly linked to the quantity of cellulose deposited 
during the secondary cell wall (SCW) biogenesis. Cotton fiber development consists of 
five major overlapping stages: differentiation, initiation, polar elongation, secondary cell 
wall development, and maturation. The transition period between 16 and 21 dpa (days 
post anthesis) is regarded to represent a major developmental stage between the primary 
cell wall and the SCW.  Fourier Transform Infrared spectroscopy was used to investigate 
the structural changes that occur during the different developmental stages.  The IR 
spectra of fibers harvested at different stages of development (10, 14, 17, 18, 19, 20, 21, 24, 
27, 30, 36, 46, and 56 dpa) show the presence of vibrations located at 1,733 cm-1 (C=O 
stretching originating from esters or amides) and 1,534 cm-1 (NH2 deformation 
corresponding to proteins or amino acids). The results converge towards the conclusion 
that the transition phase between the primary cell wall and the secondary cell wall occurs 
between 17 and 18 dpa in fibers from TX19 cultivar, while this transition occurs between 
21 and 24 dpa in fibers from TX55 cultivar. The Universal Attenuated Total Reflectance 
FTIR (UATR-FTIR) was used to evaluate the cotton fiber properties.  One hundred and 
four cotton samples were selected. Thirty FTIR spectra were acquired from each sample 
and analyzed.  Partial Least Square (PLS) analysis of the FTIR spectra was performed and 
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1. Introduction 
Fourier Transform Infrared microscopy (FTIR) has become an essential analytical tool 
available to scientists to study various materials.  Specifically FTIR has been increasingly 
used to study cell wall developments in plants, investigate the efficiency of the surface 
modification of polymers, identifying contaminants, and predicting the physical 
properties of certain polymers and biopolymers, etc.  This chapter reviews some selected 
application of the FTIR to study cellulose development in cotton fibers and to predict 
cotton fiber physical properties.  Cotton fiber maturity is a major yield component and an 
important fiber quality trait that is directly linked to the quantity of cellulose deposited 
during the secondary cell wall (SCW) biogenesis. Cotton fiber development consists of 
five major overlapping stages: differentiation, initiation, polar elongation, secondary cell 
wall development, and maturation. The transition period between 16 and 21 dpa (days 
post anthesis) is regarded to represent a major developmental stage between the primary 
cell wall and the SCW.  Fourier Transform Infrared spectroscopy was used to investigate 
the structural changes that occur during the different developmental stages.  The IR 
spectra of fibers harvested at different stages of development (10, 14, 17, 18, 19, 20, 21, 24, 
27, 30, 36, 46, and 56 dpa) show the presence of vibrations located at 1,733 cm-1 (C=O 
stretching originating from esters or amides) and 1,534 cm-1 (NH2 deformation 
corresponding to proteins or amino acids). The results converge towards the conclusion 
that the transition phase between the primary cell wall and the secondary cell wall occurs 
between 17 and 18 dpa in fibers from TX19 cultivar, while this transition occurs between 
21 and 24 dpa in fibers from TX55 cultivar. The Universal Attenuated Total Reflectance 
FTIR (UATR-FTIR) was used to evaluate the cotton fiber properties.  One hundred and 
four cotton samples were selected. Thirty FTIR spectra were acquired from each sample 
and analyzed.  Partial Least Square (PLS) analysis of the FTIR spectra was performed and 
the results showed that micronaire and surface area (calculated from the AFIS data) could 
be predicted from the FTIR measurements with very high coefficients of determination.  
However, the prediction of fiber maturity is probably not possible with the UATR-FTIR.  
It was concluded that, to be able to predict the fiber maturity with the FTIR, it would be 
necessary to perform the measurements in the transmission mode rather than in the 
reflectance mode. 
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2. Fourier transform infrared spectroscopic approach to the study of the 
secondary cell wall development in cotton fiber 
“With kind permission from Springer Science + Business Media: Cellulose, Fourier 
transform infrared spectroscopic approach to the study of the secondary cell wall 
development in cotton fiber, 17, 2010, 309-320, Noureddine Abidi, Luis Cabrales, Eric 
Hequet”. 

2.1 Introduction 
Fiber maturity is a major yield component and an important fiber quality trait that is 
directly linked to the quantity of cellulose deposited during the Secondary Cell Wall (SCW) 
biogenesis, and to the organization and orientation of crystalline microfibrils.  It is inuitively 
obvious to hypothesize that immature fibers (having a thin, poorely developed secondary 
wall) will be fragile, and therefore, are likely to break during the multiple mechanichal 
stresses involved in transforming fibers into yarns.  Immature fibers generate short fibers 
and neps (entanglement of fibers) that result in yarn defects and decreased productivity in 
the spinning mills.  Therefore, studying cotton fiber maturity and understanding the link 
between SCW biogenesis and cotton fiber maturity is very important.  This study was 
designed to investigate the structural changes occurring during the growth and 
development of cotton fibers. 
Cotton fiber development consists of five major overlapping developmental stages 
(Wilkin & Jernstedt, 1999): differentiation, initiation, polar elongation, secondary cell wall 
deposition, and maturation. The day of flowering is referred to as anthesis and the term 
“days post-anthesis” (dpa) is often used to describe the cotton fiber development. Fiber 
initiation, which commences at 0 dpa, signals the onset of fiber morphogenesis.  Fiber 
growth is characterized by the synthesis of the primary cell wall and an increase in fiber 
length up to ~30 mm within 3 weeks after anthesis. The stage of secondary cell wall 
development commences in general around 21 dpa and continues for a period of ~3 to 6 
weeks post-anthesis. This phase is marked by a massive deposition of a thick cellulosic 
wall (Wilkin & Jernstedt, 1999). The transition period between 16 and 21 dpa is considered 
to represent a developmental switch in emphasis from primary to secondary cell synthesis 
during cotton fiber development. During these developmental stages, important 
structural changes occur leading to cellulose macromolecules formation (β(1→4) 
glucopyranose).  
Tokumoto et al. (2002) reported on the changes in the sugar composition and molecular 
mass distribution of matrix polysaccharides during cotton fiber development.  The results 
showed that the extractable matrix (pectic and hemicellulosic) polysaccharides accounted 
for 30 - 50% of total sugar content during the elongation stage and less than 3% during the 
cell thickening stage.  With respect to the amount of cellulose present during fiber 
development, it was reported that the secondary wall thickening and maturation stages are 
characterized by a dramatic increase in the amount of cellulose (Tokumoto et al., 2002).  The 
primary cell wall was reported to contain between 35 and 50% cellulose (Timpa & Triplett 
1993; Meinert & Delmer, 1977).  However, the secondary cell wall is composed of nearly 
100% cellulose (Haigler et al., 2005). 
The composition of the cotton fiber cell wall exhibits a continuous change throughout the 
development of the fiber (Meinert & Delmer, 1977).  Several studies have been focused on 
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the analysis of the composition of the cell wall extracts (Tokumoto et al., 2002; Timpa & 
Triplett 1993; Meinert & Delmer 1977; Maltby et al., 1979; Huwyler et al., 1979, Gokani et al., 
1998).  However, limited research has been conducted on intact fibers.  In previous research, 
we reported on the usefulness of Fourier Transform Infrared (FTIR) and Thermogravimetric 
Analysis (TGA) to investigate cotton fiber development (Abidi et al., 2008).  The results 
showed that these two analytical techniques could be used to evaluate the cell wall 
composition and structure during fiber development.  In addition, because of the 
nondestructive character of the FTIR analysis other testing could be performed on the same 
set of samples.  
Fourier Transform Infrared spectroscopy (FTIR) has emerged as a key technique for the 
study of plant growth and development (McCann et al., 2007; Yong et al., 2005; Carpita et 
al., 2001; Zeier & Schreiber, 1999; Chen et al., 1998; McCann et al., 1997; Séné et al., 1994; 
McCann et al., 1993; McCann et al., 1992). Zeier and Schreiber (1999) used FTIR to  
characterize isolated endodermal cell walls from plant roots and assigned FTIR frequencies 
to functional groups present in the cell wall, including the relative amounts of the cell wall 
biopolymers suberin and lignin, as well as cell wall carbohydrates and proteins.  FTIR 
absorption spectra indicated structural differences for three developmental stages of the 
endodermal cell wall under study. The authors concluded that FTIR could be used as a 
direct and non-destructive method suitable for the rapid investigation of isolated plant cell 
walls. The approach has since been successfully applied to screen large numbers of mutants 
for a broad range of cell wall phenotypes using FTIR of leaves of Arabidopsis thaliana and flax 
(Linum usitatissimum) (Chen et al., 1998).  In this study, Chen and co-workers reported that 
principal component analysis (PCA) of FTIR spectra can distinguish between mutants that 
are deficient in cell wall sugars. Also, FTIR and Fourier-Transform Raman spectroscopy 
have been successfully used to investigate the primary cell wall architecture at a molecular 
level (Séné et al. 1994).  Dynamic changes in cell wall composition of hybrid maize 
coleoptiles (Zea mays) were investigated by FTIR (McCann et al., 2007). The authors reported 
that neural network algorithms could correctly classify infrared spectra from cell walls 
harvested from individuals differing at one-half-day interval of growth. 
The aim of the work reported in this paper has been 2-fold: 1) to investigate the structure 
and composition of fiber during different phases of development; and 2) to elucidate the 
effect of cultivar on the developmental stages of the cotton fiber. 

2.2 Experimental 
2.2.1 Materials 
For this study, two independent replications (10 plants each) of two cotton cultivars 
(Gossypium hirsutum L. cv. TX19 and TX55) were planted in a greenhouse with day/night 
cycles varying from 13/11 to 11/13 hours and day/night temperatures of about 31oC / 
24oC.  Plants were grown in 20-L (5 gallons) pots of Sungrow SB 300 potting mix that had 
been amended with Peters 15-9-12 slow release fertilizer prior to potting.  Plants were 
watered as needed.  On the day of flowering (0 dpa), individual flowers were tagged, and 14 
developing bolls per cultivar and per replication were harvested at 10, 14, 17, 18, 19, 20, 21, 
24, 27, 30, 36, 46, and 56 dpa. The pericarp was immediately removed (excised with scalpel) 
and isolated ovules were transferred into cryogenic vials and stored in a Cryobiological 
Storage System filled with liquid nitrogen for analyses.  Each replication was tested 
independently.  
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2.2.2 Methods 
2.2.2.1  Sample dehydration 
Frozen cotton fiber samples were dehydrated using the procedure described in (Abidi et al., 
2008; Muller & Jackset al., 1975; Rajasekaran et al., 2006). Frozen samples were first rinsed 
with water and then washed with acidified solution of 2,2-dimethoxypropane (one drop of 
HCl in 50 ml of 2,2-dimethoxypropane), followed by five exchanges for 15 minutes each in 
100% acetone.  In a slightly acidic solution, 2,2-dimethoxypropane is instantly hydrolyzed 
by water to form methanol and acetone (Muller & Jacks, 1975). 
2.2.2.2 FTIR measurements 
The FTIR spectra of cotton fiber samples were recorded in an environmentally-controlled 
laboratory maintained at relative humidity of 65±2% and 21±1oC using the Spectrum-One 
equipped with an UATR (Universal Attenuated Total Reflectance) accessory (Perkin-
Elmer, USA). The UATR-FTIR was equipped with a ZnSe-Diamond crystal composite that 
allows collection of FTIR spectra directly on a sample without any special preparation. 
The instrument is equipped with a “pressure arm” which is used to apply a constant 
pressure to the cotton samples positioned on top of the ZnSe-Diamond crystal to ensure a 
good contact between the sample and the incident IR beam and prevent the loss of the 
IR beam. The amount of pressure applied is monitored by the Perkin-Elmer FTIR 
software. 
Thirty FTIR spectra per sample were acquired for each developmental stage to produce a 
total of 180 spectra (30 spectra x 3 replications per dpa x 2 greenhouse replications).  All 
FTIR spectra were collected at a spectrum resolution of 4 cm-1, with 32 co-added scans over 
the range from 4,000 to 650 cm-1.  A background scan of clean ZnSe-Diamond crystal was 
acquired before scanning the samples. 

2.2.2.3 FTIR spectra analysis 
The Perkin-Elmer software was used to perform spectra normalization, baseline corrections, 
and peak integration.  FTIR spectra were then exported to Excel and were subjected to 
Principal Component Analysis (PCA) with leverage correction and mean-center cross 
validation boxes checked using Unscrambler V. 9.6 Camo Software AS (CAMO Software AS, 
Norway). 

2.2.2.4 Scanning electron microscope 
Hitachi Scanning Electron Microscopy (TM-1000, Hitachi Japan) with an accelerating voltage 
of 15kv was used to visualize the frozen and dehydrated samples.  Fibers were placed either 
on a carbon disc or on a microscopy slide and no coating was performed prior to 
visualization. 

2.3 Results and discussion 
2.3.1 Fourier transform infrared analysis 
Figures 1a and b show a series of FTIR spectra of fibers respectively from TX19 and TX55 
cultivars during the elongation stage (10, 17, and 19 dpa), during the SCW formation stage 
(20, 24, and 30 dpa), and during the maturation stage (56 dpa). Compared to the FTIR 
spectra of mature cotton fibers, several additional vibration bands are noticed in the FTIR 
spectra of developing cotton fibers. 
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Fig. 1a. FTIR spectra of developing cotton (Gossypium hirsutum L. cv. TX19) fibers at different 
days post-anthesis (dpa) 

The vibrations located at 2,918 and 2,850 cm-1 are attributed to –CH2 asymmetric vibrations 
and could originate from the presence of wax substances present on the surface of the 
primary cell wall (Abidi et al., 2008).  The intensities of these two peaks start decreasing at 
19 dpa for both cultivars. This result is in agreement with our previous findings (Abidi et al., 



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

92 

2.2.2 Methods 
2.2.2.1  Sample dehydration 
Frozen cotton fiber samples were dehydrated using the procedure described in (Abidi et al., 
2008; Muller & Jackset al., 1975; Rajasekaran et al., 2006). Frozen samples were first rinsed 
with water and then washed with acidified solution of 2,2-dimethoxypropane (one drop of 
HCl in 50 ml of 2,2-dimethoxypropane), followed by five exchanges for 15 minutes each in 
100% acetone.  In a slightly acidic solution, 2,2-dimethoxypropane is instantly hydrolyzed 
by water to form methanol and acetone (Muller & Jacks, 1975). 
2.2.2.2 FTIR measurements 
The FTIR spectra of cotton fiber samples were recorded in an environmentally-controlled 
laboratory maintained at relative humidity of 65±2% and 21±1oC using the Spectrum-One 
equipped with an UATR (Universal Attenuated Total Reflectance) accessory (Perkin-
Elmer, USA). The UATR-FTIR was equipped with a ZnSe-Diamond crystal composite that 
allows collection of FTIR spectra directly on a sample without any special preparation. 
The instrument is equipped with a “pressure arm” which is used to apply a constant 
pressure to the cotton samples positioned on top of the ZnSe-Diamond crystal to ensure a 
good contact between the sample and the incident IR beam and prevent the loss of the 
IR beam. The amount of pressure applied is monitored by the Perkin-Elmer FTIR 
software. 
Thirty FTIR spectra per sample were acquired for each developmental stage to produce a 
total of 180 spectra (30 spectra x 3 replications per dpa x 2 greenhouse replications).  All 
FTIR spectra were collected at a spectrum resolution of 4 cm-1, with 32 co-added scans over 
the range from 4,000 to 650 cm-1.  A background scan of clean ZnSe-Diamond crystal was 
acquired before scanning the samples. 

2.2.2.3 FTIR spectra analysis 
The Perkin-Elmer software was used to perform spectra normalization, baseline corrections, 
and peak integration.  FTIR spectra were then exported to Excel and were subjected to 
Principal Component Analysis (PCA) with leverage correction and mean-center cross 
validation boxes checked using Unscrambler V. 9.6 Camo Software AS (CAMO Software AS, 
Norway). 

2.2.2.4 Scanning electron microscope 
Hitachi Scanning Electron Microscopy (TM-1000, Hitachi Japan) with an accelerating voltage 
of 15kv was used to visualize the frozen and dehydrated samples.  Fibers were placed either 
on a carbon disc or on a microscopy slide and no coating was performed prior to 
visualization. 

2.3 Results and discussion 
2.3.1 Fourier transform infrared analysis 
Figures 1a and b show a series of FTIR spectra of fibers respectively from TX19 and TX55 
cultivars during the elongation stage (10, 17, and 19 dpa), during the SCW formation stage 
(20, 24, and 30 dpa), and during the maturation stage (56 dpa). Compared to the FTIR 
spectra of mature cotton fibers, several additional vibration bands are noticed in the FTIR 
spectra of developing cotton fibers. 

Applications of Fourier Transform Infrared Spectroscopy to Study Cotton Fibers 

 

93 

 

 

 

 

Fig. 1a. FTIR spectra of developing cotton (Gossypium hirsutum L. cv. TX19) fibers at different 
days post-anthesis (dpa) 

The vibrations located at 2,918 and 2,850 cm-1 are attributed to –CH2 asymmetric vibrations 
and could originate from the presence of wax substances present on the surface of the 
primary cell wall (Abidi et al., 2008).  The intensities of these two peaks start decreasing at 
19 dpa for both cultivars. This result is in agreement with our previous findings (Abidi et al., 
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2008). We reported that the percent contribution of the primary cell wall to the total weight 
of the fiber decreased as wall thickness increases (increased fiber maturity, thus secondary 
cell wall). Therefore, the relative importance of the vibration bands attributed to 
noncellulosic substances (e.g. waxes which are located essentially on the primary cell wall) 
is less. 
 

 

 

 

Fig. 1b. FTIR spectra of developing cotton (Gossypium hirsutum L. cv. TX55) fibers at 
different days post-anthesis (dpa) 
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In addition to O-H bending vibration of water molecules located at 1,627 cm-1, the FTIR 
spectra of fibers showed strong absorption between 3,000 cm-1 and 3,600 cm-1 (which is 
attributed to O-H stretching vibration). This absorption band is composed of two vibrations 
located at 3,285 cm-1 (attributed to intermolecular hydrogen bonds) and 3,335 cm-1 
(attributed to intra-molecular hydrogen bonds) (Liang & Marchessault, 1959).  The intensity 
of the vibration 3,280 cm-1 decreased in the FTIR spectra of fibers older than 17 dpa from 
TX19 cultivar while for fibers from TX55 the decrease occurred at 19 dpa.  The decrease in 
intensity of 3,280 cm-1 band is associated with an increase in the intensity of the vibration 
located at 3,335 cm-1. 
The vibration located at 1,733 cm-1 is attributed to C=O stretching vibration and could 
originate from esters or amides (Abidi et al., 2008).  The integrated intensity of this peak 
(I1733) was calculated between 1,780 cm-1 and 1,701 cm-1 and was reported as function of 
dpa for both cultivars TX19 and TX55 (Fig. 2a). As exhibited in this chart, for fibers from 
TX19 cultivar I1733 decreased sharply between 10 and 18 dpa and leveled-off at 19 dpa. 
However, for fibers from TX55 cultivar a continuous decrease is observed between 10 and 
24 dpa. The statistical analysis (analysis of variance) showed significant effects of the 
developmental stage (dpa) and the cultivar on the integrated intensity (Table 1). These 
results indicate that the structural changes that occur during fiber development are 
influenced by the cultivar. 
 
 

 
Fig. 2a. Evolution of the integrated peak intensity (I1733) as function of developmental stages 
(dpa) 
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of the fiber decreased as wall thickness increases (increased fiber maturity, thus secondary 
cell wall). Therefore, the relative importance of the vibration bands attributed to 
noncellulosic substances (e.g. waxes which are located essentially on the primary cell wall) 
is less. 
 

 

 

 

Fig. 1b. FTIR spectra of developing cotton (Gossypium hirsutum L. cv. TX55) fibers at 
different days post-anthesis (dpa) 
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In addition to O-H bending vibration of water molecules located at 1,627 cm-1, the FTIR 
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24 dpa. The statistical analysis (analysis of variance) showed significant effects of the 
developmental stage (dpa) and the cultivar on the integrated intensity (Table 1). These 
results indicate that the structural changes that occur during fiber development are 
influenced by the cultivar. 
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Parameter df F Probability Integrated intensity I1733  ¥ 
Intercept 1 574.4213 0.000001  
Cultivar 1 71.1905 0.000001  
dpa (days post anthesis) 12 60.0900 0.000001  
10    9.5049 a 
14    7.7578 b 
17    4.7894 c 
18    3.5184 d 
19    2.7784 de 
20    2.1827 de 
21    1.5740 ef 
24    0.6320 f 
27    0.4391 f 
30    0.4388 f 
36    0.2263 f 
46    0.1651 f 
56    0.0881 f 
Cultivar *dpa 12 7.0895 0.000016  
Error 26    

df, degrees of freedom; F, variance ratio; ¥ Values not followed by the same letter are significantly 
different with α = 5% (according to Newman-Keuls tests). 

Table 1. Variance Analysis: Effect of developmental stage (day post-anthesis) and cultivars 
on the integrated intensity of the peak 1,733 cm-1 (I1733) 
The vibration located at 1,627 cm-1 is attributed to O-H bending of adsorbed water 
molecules (Abidi et al., 2008).  The integrated intensity of this peak (I1627) was calculated 
between 1,701 cm-1 and 1,576 cm-1. The change in the integrated intensity I1627 as function of 
dpa is reported in Fig. 2b for both cultivars. The statistical analysis (analysis of variance) 
showed a significant effect of the developmental stage and the cultivar on the integrated 
intensity (Table 2). For fibers from TX19 cultivar, the amount of adsorbed water decreased 
between 10 and 18 dpa, no significant changes are observed between 19 and 56 dpa. 
However, for fibers from TX55 cultivar the amount of adsorbed water decreased linearly 
until the fibers reached 24 dpa.  The decrease in the amount of adsorbed water could be 
attributed to the decrease of the surface area and to reduced accessibility of water molecules 
to the internal hydroxyl groups to establish hydrogen bonding.  This could be the result of 
increased polymerization reactions of glucose units to form cellulose macromolecules 
followed by increased crystallinity.  Hsieh et al. reported that the degree of crystallinity of 
two cotton fiber cultivars (Maxxa and SJ-2) increases beginning 24 dpa (Hsieh et al., 1997). 
The results indicated that the big change in crystallinity occurred between 24 and 28 dpa, 
and no significant changes occurred thereafter. These results are in agreement with our FTIR 
results, which indicate that no change in the amount of adsorbed water is noticed between 
27 and 56 dpa. In this developmental stage, fibers from both cultivars have nearly the same 
amount of adsorbed water. This could indicate that the remaining water molecules are those 
which are strongly bonded to cellulose macromolecules via hydrogen bonding. 
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Fig. 2b. Evolution of the integrated peak intensity (I1627) as function of developmental stage 
(dpa) 
 

Parameter df F Probability Integrated intensity I1627  ¥ 
Intercept 1 1755.569 0.000001  
Cultivar 1 52.774 0.000001  
dpa (days post anthesis) 12 46.508 0.000001  
10    30.7341 a 
14    31.4025 a 
17    23.1798 b 
18    17.8545 c 
19    15.6207 cd 
20    13.8401 cde 
21    12.3703 ed 
24    6.8814 fg 
27    5.7146 g 
30    5.3511 g 
36    11.6973 def 
46    10.3251 defg 
56    8.7280 efg 
Cultivar*dpa 12 4.916 0.000334  
Error 26    

df, degrees of freedom; F, variance ratio, ¥ Values not followed by the same letter are significantly 
different with α = 5% (according to Newman-Keuls tests). 
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Fig. 2b. Evolution of the integrated peak intensity (I1627) as function of developmental stage 
(dpa) 
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The vibration located at 1,534 cm-1 is attributed to NH2 deformation and likely indicative of 
proteins or amino acids (Abidi et al., 2008). The integrated intensity of this peak (I1534) was 
calculated between 1,575 cm-1 and 1,487 cm-1 and the evolution of I1534 as function of dpa for 
both TX19 and TX55 showed a behavior similar to I1733 (Fig. 2c).  An abrupt decrease is 
observed between 10 and 18 dpa for fibers from TX19 cultivar and a continuous decrease 
between 10 and 24 dpa for fibers from TX55 cultivar.  The statistical analysis (analysis of 
variance) showed a significant effect of both the developmental stage (dpa) and the cultivar 
on the integrated intensity (Table 3). 
 

 
Fig. 2c. Evolution of the integrated peak intensity (I1534) as function of developmental stage 
(dpa) 

The vibration located at 1,236 cm-1 is attributed to C=O stretching or NH2 deformation 
(Abidi et al., 2008). This vibration decreased in intensity during fiber development. The 
disappearance of this band is accompanied by the appearance of a vibration at 1,204 cm-1 at 
20 dpa for fibers from TX55 cultivar and as sharp band at 17 dpa for fibers from TX19 
cultivar.  It is important to point out that the vibration located at 1,204 cm-1 appears only 
beginning 17 dpa for fibers from TX19 cultivar and beginning 20 dpa for fibers from TX55 
cultivar. This vibration has been attributed by Ilharco et al. (1997) to C-O-C stretching mode 
of the pyranose ring. This vibration appears almost simultaneously with the vibration 
located at 900 cm-1 (attributed to β-linkage). Consequently, these two vibrations could be 
considered as the secondary cell wall’s fingerprint. 
Other vibrations located at 1,148, 1,096, and 1,048 cm-1 are present only as shoulders in the 
spectra of fibers from TX19 cultivar at 10 and 14 dpa and become sharper beginning at 17 
dpa.  It is also noteworthy the shift at 17 dpa of the vibration 1,148 cm-1 to 1,161 cm-1, the 
vibration 1,096 cm-1 to 1,105 cm-1, and the vibration 1,048 cm-1 to 1,056 cm-1.  However, for 
fibers from TX55 cultivar the shift of these vibrations to higher wavenumbers occurred at 20 
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dpa. The vibration located at 1,161 cm-1 is assigned to the anti-symmetric bridge C-O-C 
stretching vibration (Ilharco et al., 1997). The vibration located at 1,105 cm-1 is assigned to 
anti-symmetric in-plane ring stretching band (Ilharco et al., 1997). The vibration located at 
1,056 cm-1 is attributed to C-O stretching mode (Abidi et al., 2008). 
 

Parameter df F Probability Integrated intensity I1534  ¥ 
Intercept 1 474.3505 0.000001  
Cultivar 1 49.8492 0.000001  
dpa (days post anthesis) 12 48.3051 0.000001  
10    9.3057 a 
14    8.0100 a 
17    5.4175 b 
18    3.8020 c 
19    3.1142 c 
20    2.7056 c 
21    2.1114 c 
24    0.7674 d 
27    0.3300 d 
30    0.0455 d 
36    0.0000 d 
46    0.0000 d 
56    0.0000 d 
Cultivar*dpa 12 4.3089 0.000888  
Error 26    

df, degrees of freedom; F, variance ratio, ¥ Values not followed by the same letter are significantly 
different with α = 5% (according to Newman-Keuls tests). 

Table 3. Variance Analysis: Effect of developmental stage (day post-anthesis) and cultivars 
on the integrated peak intensity of the peak 1,534 cm-1 (I1534) 
The vibration located at 1,017 cm-1, attributed to C-O stretch, is shifted to 1,031 cm-1 at 17 
dpa for fibers from TX19 cultivar.  However, for fibers from TX55 cultivar, this shift occurs 
at 19 dpa. 
The vibrations located at 1,003 cm-1 and 985 cm-1 appeared at 30 dpa in the spectra of fibers 
from TX19 cultivar but only at 56 dpa in the spectra of fibers from TX55 cultivar.  These 
vibrations are attributed to C-O and ring stretching modes (Liang & Marchessault, 1959). 
The vibration located at 900 cm-1 is attributed to β-linkage (Abidi et al., 2008).  This vibration 
is present only as a small shoulder in the FTIR spectra of fibers from both cultivars at 10 dpa 
but becomes sharper in the FTIR spectra of fibers from TX19 cultivar at 17 dpa and in the 
FTIR spectra of fibers from TX55 cultivar at 19 dpa. 
The vibration located at 710 cm-1 is attributed to CH2 rocking vibration in cellulose Iβ 
(Schwanninger et al., 2004).  Using 2D FTIR spectroscopy, Salmén et al. (2005) reported that 
the peak around 710 cm-1 (which is characteristic of cellulose Iβ found in native cotton) has a 
linear correlation with the percentage of cellulose Iβ of the crystalline part. We calculated the 
peak height of the vibration 710 cm-1 from all FTIR spectra and we reported the data as 
function of dpa for both genotypes as shown in Fig. 2d.  The statistical analysis shows 
significant effects of the type of cultivar [F(1,26)=122.318, p=0.000001] and the 
developmental stage [F(12,26)=121.334, p=0.00001]. There is also an interaction 
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developmental stage * type of cultivar [F(12,26)=5.986, p=0.00008].  For fibers from TX19 
cultivar the peak height of the vibration 710 cm-1 increases linearly between 10 and 30 dpa. 
No major change is noticed between 30 and 56 dpa. This indicates that the cellulose 
synthesis during the secondary cell wall development is accompanied by structural 
organization (increased crystallinity). However, for fibers from TX55 cultivar, the major 
change of the peak height occurred only beginning 21 dpa.  This indicates that for fibers 
from TX55 cultivar, the structural organization of the cellulose is initiated few days later 
than in fibers from TX19 cultivar. 
 

 
Fig. 2d. Evolution of the peak height for 710 cm-1 as function of developmental stage (dpa) 
Figures 2e and f show the relationships between the integrated intensity of the peak 1,627 
cm-1 (corresponding to adsorbed water) and the peak height of the vibration 710 cm-1 for 
fibers from TX19 and TX55, respectively.  This relationships show that the decrease of the 
amount of adsorbed water is associated with an increase in the structural organization of the 
cellulose (increased crystallinity). 
Principal Components Analysis (PCA) was performed on the FTIR spectra in order to 
identify distinct groups of spectra.  The effect of this process is to concentrate the sources of 
variability in the data into the first 2 PCs (PC1 and PC2).  The plots of PC1 against PC2 
scores are depicted in Fig. 3a and b, respectively for fibers from TX19 and TX55 cultivars.  
For fibers from TX19 cultivar, two groups of FTIR spectra could be identified: group 1 
includes FTIR spectra of fibers at 10, 14, and 17 dpa; and group 2 includes FTIR spectra of 
fibers from 18 to 56 dpa.  For fibers from TX55 cultivar, two groups of FTIR spectra could 
also be identified: group 1 includes FTIR spectra of fibers from 10 to 21 dpa and group 2 
includes FTIR spectra of fibers from 24 to 56 dpa.  It is important to note that the transition 
between the two groups of FTIR spectra is different for these cultivars: for TX19, the 
transition occurs at 17 dpa and for TX55 the transition occurs at 21 dpa.  Several studies 
have reported that the transition period between 16 and 21 dpa represents the 
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developmental switch in emphasis from primary to secondary cell wall synthesis during 
cotton fiber development (Wilkin & Jernstedt, 1999). 
 

 
Fig. 2e. Relationship between the integrated peak intensity (I1627) and the peak height for 710 
cm-1 (Gossypium hirsutum L. cv. TX19) 
 

 
Fig. 2f. Relationship between the integrated peak intensity (I1627) and the peak height for 710 
cm-1 (Gossypium hirsutum L. cv. TX55) 
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Fig. 3a. Principal Component Analysis of FTIR spectra of fibers from TX19 in the range 4,000 
– 650 cm-1 

 
Fig. 3b. Principal Component Analysis of FTIR spectra of fibers from TX55 in the range 4,000 
– 650 cm-1 
The FTIR data seem to indicate that the secondary cell wall synthesis in fibers from TX19 
cultivar could start between 17 and 18 dpa. However, it could start between 21 and 24 dpa 
in fibers from TX55 cultivar.  These data indicate that the FTIR spectroscopy technique has a 
potential use as screening tool for cotton fiber cultivars that have potentials for early 
maturation.  

2.3.2 Scanning electron microscopy 
Scanning electron microscopy micrographs of single fibers from selected developing stages 
are exhibited in Fig. 4.  As illustrated in these micrographs, single cotton fibers at 17 dpa 
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from both cultivars appear transparent consisting mainly of primary cell walls.  Single fiber 
from TX19 at this developmental stage appears slightly thicker than that of TX55.  At 20 dpa, 
fibers from TX19 are thicker than those from TX55, signaling that the secondary cell wall 
synthesis in TX19 cultivar is well underway at this stage.  Fibers from TX55, however, 
appear thicker only beginning at 24 dpa. 
 

 

 

 
Fig. 4. Scanning electron microscopy micrographs of developing cotton fibers (A) TX19 17 
dpa, (B) TX19 20 dpa, (C) TX19 24 dpa, (D) TX55 17 dpa, (E) TX55 20 dpa, (F) TX55 24 dpa 
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Fig. 4. Scanning electron microscopy micrographs of developing cotton fibers (A) TX19 17 
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2.4 Conclusion 
Fourier Transform Infrared spectroscopy was used to investigate the structural changes that 
occur during cotton fiber development starting at 10 days post-anthesis.  FTIR spectra show 
pronounced differences during fiber development.  The evolution of the integrated 
intensities of specific vibration bands located at 1,733, 1,534, and 1,627 cm-1 as function of 
developmental stages could be used to monitor the development of the secondary cell wall.  
FTIR results indicate that the two cultivars investigated (TX19 and TX55) exhibited different 
structural evolution.  The results converge towards the conclusion that the transition phase 
between the primary cell wall and the secondary cell wall occurs between 17 and 18 dpa in 
fibers from TX19 cultivar, while this transition occurs between 21 and 24 dpa for fibers from 
TX55 cultivar.  FTIR findings were supported by thermogravimetric characterization of 
fibers at different stages of development, changes in sugar composition as measured by 
High Performance Liquid Chromatography, and cellulose content as determined by the 
anthrone method (data not shown). 

3. Cotton fiber physical properties prediction using FTIR 
3.1 Introduction 
There is universal interest in measuring cotton fiber properties that are useful to predict the 
performance of the fiber as an industrial raw material.  In addition, significant efforts are 
being made to develop, through breeding and biotechnology, new cotton varieties that 
provide superior fiber properties.  The “missing link” in these efforts is a scientific 
understanding of the relationships between the desired properties and the fiber 
structure/morphology.  Among fiber properties, maturity is paramount for several reasons. 
The effect of maturity on the dye uptake is well known and constitutes the basis of the 
Goldthwait test (Goldthwait et al., 1947).  Similarly, it is known that fine and mature fibers 
make it possible to spin a finer yarn.  But maturity and fineness of cotton fibers are also 
essential qualitative characteristics if one wants to better understand the propensity of 
rupture of fibers when they are subjected to stress.  It is intuitively obvious to hypothesize 
that immature fibers (having a thin, poorly developed secondary wall) will be fragile.  Thus, 
they are likely to break during multiple mechanical stresses involved in transforming the 
fibers from the field to the yarn.  These generate short fibers and neps (entanglements of 
fibers), which will result in yarn defects and decreased productivity. 
The dominant tools used today to evaluate fiber properties are the High Volume 
Instruments (HVI) and the Advanced Fiber Information System (AFIS). The HVI is a fast 
instrument while the AFIS is relatively slow. Therefore, most of the cotton breeders rely 
only on HVI measurements. The HVI provides micronaire, length, strength, and color of the 
lint while the AFIS provides length, maturity, and fineness distributions as well as the nep 
count and the trash content. While the information provided by the HVI is necessary, it is 
not sufficient to provide answers about the structure/morphology that are needed to 
achieve new breakthroughs.  The AFIS would be more appropriate but its relatively slow 
speed and high cost makes it non affordable by most of the cotton breeding programs. In an 
earlier work, Thermogravimetric Analysis was used to study the relationship between 
cotton fiber thermal properties and maturity and fineness (Abidi et al., 2007).  The results 
showed that, low micronaires (immature and/or finer fibers), and low maturity ratios 
(immature fibers) are associated with high weight losses in the region 225 - 425oC.  Both low 
micronaire and low maturity fibers exhibit high surface area for a given weight of fibers. 
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Therefore, the quantity of the non-cellulosic compounds, mostly present on and in the 
primary cell wall, is quite large. This leads to higher weight losses in the region 225 - 425oC 
because in addition to the pyrolysis reactions of cellulose, the decomposition of non-
cellulosic compounds also takes place between 225 - 425oC.  Furthermore, it was showed 
that it is possible to estimate the width of the primary cell wall, by comparing the weight 
losses of two cotton fibers that are identical except for having different maturities (i.e. 
different degrees of secondary cell wall development). 
Our hypothesis is that the FTIR spectroscopy has the potential to assess quickly and 
accurately some fiber properties related to cotton fiber maturity and fineness. Ramey (1982) 
used Near-infrared reflectance (NIR) to estimate some quality components of natural fibers. 
The author explored the use of the NIR to predict the cross-sectional area, the specific 
surface, micronaire, and causticaire maturity index of cotton fibers. A Neotec Model 41 
Grain Quality Analyzer was used to conduct the study. This instrument was equipped with 
1.53, 1.97, and 2.32 μm central wavelength filters. The approximate wavelengths for data 
collection were 1.49 to 1.51, 1.90 to 1.93, 2.16 to 2.19, and 2.26 to 2.30 μm. The author 
concluded that meaningful estimates of the four mentioned fiber properties could be 
obtained with near-infrared reflectance. In addition, the author indicated that, except for 
micronaire, when performing near-infrared reflectance measurements, technician and 
instrument time per specimen is less than the usual procedures. 
Montalvo and Von Hoven (2004) made a comprehensive review on both the reference 
methods and the application of NIR to predict cotton fiber properties (fineness, maturity, 
and micronaire).  The authors indicated that successful application of NIR spectroscopy to 
cotton fiber quality measurements has been limited by shortcuts in the development and 
validation of NIR instruments and methodologies. 
In this study, we used the Universal Attenuated Total Reflectance Fourier Transform 
Infrared (UATR-FTIR) to predict cotton fiber properties. The FTIR spectra were acquired in 
the mid-infrared range (4,000 – 650 cm-1). After baseline correction and spectra 
normalization, the Partial Least Square was used to predict micronaire, maturity, and 
surface area. 

3.2 Materials 
One hundred and four cotton bales representing the two principal cultivated species were 
selected.  These cotton samples were the same cotton samples used in our previous study 
(Hequet et al., 2006).  The vast majority of the bales originated in the U.S.A., but some 
foreign-grown cotton bales were also selected (Egypt, Uzbekistan, Pakistan, Cameroon, 
Syria, Benin, and Australia).  The bales were opened and ten samples per bale were taken.  
Each sample was tested using a HVI Uster 900A.  For each bale, a total of 40 micronaire tests 
and 100 length and tenacity tests were done.  This allowed us to conclude that the intra-bale 
variability was acceptable and that we had a wide range of fiber properties (Table 4). The 
same samples were also tested on the AFIS with 5 replications and 3,000 fibers tested per 
replication. This totaled 150,000 fibers per bale. 
A representative sample of approximately 30 kg (70 pounds) was taken from each bale.  
Each sample was homogenized according to the protocol used by the ICCSC (International 
Cotton Calibration Standard Committee, 1999 (USDA, 1999) to produce reference cottons.  
From the card web produced, 20 samples were taken.  Samples 1 to 5 were re-sampled (8 
pinches per sample).  This new sample was delicately mixed manually then 2 fibrograph 
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2.4 Conclusion 
Fourier Transform Infrared spectroscopy was used to investigate the structural changes that 
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combs were formed.  We chose to sample with the fibrosampler because this method, 
unlike Lord’s method, is not length biased.  This procedure was repeated for samples 6-
10, 11-15 and 16-20.  A sample was then taken from each of the 8 combs produced.  For 
each comb, a minimum of 500 cross sections were analyzed following the procedure 
described in (Hequet et al., 2006).  When the CV% of the averages between combs was 
higher than 2%, eight other combs were produced and 500 additional cross sections (per 
comb) were analyzed.  The original CV% was confirmed in almost every case. From this 
point forward the 104 cottons homogenized according to the ICCS protocol will be called 
reference cottons. 
 

 Micronaire UHML 
(inch) UI (%) Tenacity 

(cN/tex) Elongation (%) 

Average : 4.2 1.08 81.9 29.4 5.4 

Minimum 2.6 0.96 78.6 21.6 3.6 

Maximum 5.7 1.31 84.5 41.3 8.3 

Intra-bale CV% :      

Average 0.7 0.9 0.6 1.9 3.5 

Minimum 0.0 0.4 0.2 0.8 1.4 

Maximum 2.2 2.2 1.1 3.1 7.7 

Table 4. HVI fiber properties of the 104 bales: Basic statistics 

3.3 Methods 
3.3.1 FTIR measurements 
Spectrum-One equipped with an UATR (Universal Attenuated Total Reflectance) accessory 
was used to acquire the FTIR spectra of the cotton fiber samples (PerkinElmer, USA).  The 
UATR-FTIR was equipped with a ZnSe-Diamond crystal composite that allows collecting 
the FTIR spectra directly on a sample without any special preparation.  The FTIR 
spectrometer was placed in a conditioned laboratory at 65±2%RH and 21±1oC and all the 
FTIR spectra were acquired in this environment.  Cotton samples were placed on top of the 
ZnSe-Diamond crystal and a pressure was applied on the sample to ensure a good contact 
between the sample and the incident IR beam and to prevent loss of the IR beam.  The 
amount of pressure applied was kept the same and it was monitored through the FTIR 
software included in the Perkin-Elmer software package.  Therefore, all samples were 
subjected to the same pressure. 
A representative sample was taken from each reference cotton. Thirty spectra from each 
sample were acquired and analyzed.  All the FTIR spectra were collected at a spectrum 
resolution of 4 cm-1, with 32 co-added scans, over the range of 4,000 - 650 cm-1. A 
background scan of clean ZnSe-Diamond crystal was acquired before acquiring the spectra 
of the sample. The Perkin-Elmer software was used to perform the baseline corrections of 
the spectra.  
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3.3.2 FTIR spectra analysis 
The raw FTIR spectra were normalized (centered and scaled) and averaged. Then, the PLS1 
(Partial Least Square) was run with a full cross-validation (The Unscrambler V. 9.6 Camo 
Software AS, USA). An uncertainty test was performed for each test. Full cross validation 
means that the same samples are used both for model estimation and testing. One sample is 
left out from the calibration data set and the model is calibrated on the remaining data 
points. Then the value for the left-out sample is predicted and the prediction residuals are 
computed. The process is repeated with another subset of the calibration set, and so on until 
every sample has been left out once; then all prediction residuals are combined to compute 
the validation residual variance and RMSEP (Root Mean Square Error of Prediction). 
RSMEP can be interpreted as the average prediction error. Therefore, we can give the 
predicted Y-values an estimated precision of two times the RSMEP. 

3.4 Results and discussion 
For each sample in addition to the FTIR measurements, the following fiber properties were 
selected: HVI micronaire, image analysis of the cross-sections (perimeter and theta), and the 
AFIS data (calculated Area mm2/mg). PLS1 (Partial Least Square) procedure, was used to 
predict these fiber maturity-related parameters.  Partial Least Square regression is a method 
that relates the variations in one response variable (micronaire for example) to the variations 
of several predictors (X variables = absorbance for the different wavelengths) with 
explanatory or predictive purposes.  This method performs particularly well when the 
various X-variables express common information, i.e. when there is a large amount of 
correlation, or even collinearity between them, which is the case with the FTIR spectra.  
Partial Least Square regression is a bilinear modeling method where information in the 
original FTIR data is projected onto a small number of underlying (“latent”) variables called 
PLS components.  The Y-data are actively used in estimating the “latent” variables to ensure 
that the first components are those that are most relevant for predicting the Y-variables.  
Interpretation of the relationship between X-data and Y-data is then simplified as this 
relationship is concentrated on the smallest possible number of components. 

3.4.1 Prediction of the micronaire 
Cotton fiber micronaire is a function of fineness and maturity.  It is based on the 
measurement of an air flow that passes through a porous plug of cotton fibers.  The 
micronaire is proportional to the inverse of the specific surface of the cotton fibers.  It should 
be noted that the definition of fiber fineness in cotton does not relate directly to fiber 
perimeter.  Indeed, fiber fineness (expressed in millitex) is the weight in mg of 1,000 meters 
of fibers.  Therefore a fine fiber may have a small perimeter and a high maturity ratio.  
Conversely, a fine fiber may have a large fiber perimeter and a low maturity ratio (which 
implies a large lumen in the fiber).  In a similar manner, high micronaire readings indicate 
coarse fibers (high weight per unit length), while low micronaire readings indicate fine 
fibers (low weight per unit length). 
Figure 5a shows the relationship between the FTIR and the HVI micronaire.  With a 
coefficient of determination of 0.9252, the FTIR measurements lead to very good prediction 
of the micronaire (FTIR prediction = 0.9253*Micronaire + 0.3349).  It should be noted that the 
coefficient of determination of the validation (R2 = 0.8677) set is nearly as good as the 
coefficient of determination of the calibration set (fig. 5b). 
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3.3.2 FTIR spectra analysis 
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Fig. 5a. FTIR HVI micronaire prediction (calibration) versus HVI micronaire 
 

 
Fig. 5b. FTIR HVI micronaire prediction (validation) versus HVI micronaire 

3.4.2 Prediction of fiber perimeter and theta 
Fiber perimeter and theta were determined by image analysis (Hequet et al., 2006).  Theta, 
degree of secondary cell wall thickening, is defined as the ratio of the area of the cell wall to 
the area of a circle having the same perimeter as the fiber cross-section.  The measurement of 
theta leads to the determination of the maturity ratio M (θ = M*0.577). Figure 6a shows the 
prediction of the fiber perimeter with FTIR (FTIR prediction = 0.6529*Perimeter + 18.308). 
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The coefficient of determination (R2 = 0.6529) of the calibration set is not very good.  For the 
validation set, the coefficient of determination (R2 = 0.4548) is much lower (Fig. 6b).  These 
results reveal that the PLS1 model is not valid. 
 

 
Fig. 6a. FTIR Perimeter Image Analysis prediction (calibration) versus Perimeter Image 
Analysis 

 

 
Fig. 6b. FTIR Perimeter Image Analysis prediction (validation) versus Perimeter Image 
Analysis 



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

108 
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Fig. 5b. FTIR HVI micronaire prediction (validation) versus HVI micronaire 

3.4.2 Prediction of fiber perimeter and theta 
Fiber perimeter and theta were determined by image analysis (Hequet et al., 2006).  Theta, 
degree of secondary cell wall thickening, is defined as the ratio of the area of the cell wall to 
the area of a circle having the same perimeter as the fiber cross-section.  The measurement of 
theta leads to the determination of the maturity ratio M (θ = M*0.577). Figure 6a shows the 
prediction of the fiber perimeter with FTIR (FTIR prediction = 0.6529*Perimeter + 18.308). 

Applications of Fourier Transform Infrared Spectroscopy to Study Cotton Fibers 

 

109 

The coefficient of determination (R2 = 0.6529) of the calibration set is not very good.  For the 
validation set, the coefficient of determination (R2 = 0.4548) is much lower (Fig. 6b).  These 
results reveal that the PLS1 model is not valid. 
 

 
Fig. 6a. FTIR Perimeter Image Analysis prediction (calibration) versus Perimeter Image 
Analysis 

 

 
Fig. 6b. FTIR Perimeter Image Analysis prediction (validation) versus Perimeter Image 
Analysis 
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Figure 7a shows the prediction of theta (maturity) with FTIR (FTIR prediction = 
0.8107*Theta + 0.0955).  The coefficient of determination (R2 = 0.8106) of the calibration set is 
acceptable.  However, the coefficient of determination (R2 = 0.6981) of the validation set is 
much lower than the one of the calibration set, revealing that a good prediction of maturity 
with this method (reflectance) is probably not possible (Fig. 7b). 
 

 
Fig. 7a. FTIR Theta Image Analysis prediction (calibration) versus Theta Image Analysis 

 

 
Fig. 7b. FTIR Image Analysis Theta prediction (validation) versus Theta Image Analysis 
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3.4.3 Prediction of the surface area 
The results obtained with the AFIS for both Standard fineness and maturity are very similar 
to the one obtained with image analysis.  From AFIS data, the surface area (expressed in 
mm2/mg) was calculated.  Fig. 8a and b shows the prediction of the surface area by FTIR 
(FTIR prediction = 0.9191*surface area + 26.264).  Both the coefficient of determination of 
calibration set (R2 = 0.9191) and the validation (R2 = 0.8645) are good. 
Estimating the specific surface with two drastically different methods (the micronaire and 
the AFIS) led to the same conclusion.  It is possible to predict with the FTIR the Area in mm2 
per mg of fibers. 
 

 
Fig. 8a. FTIR Area (mm2/mg) prediction (calibration) versus Area (calculated from AFIS data) 

 
Fig. 8b. FTIR Area (mm2/mg) prediction (validation) versus Area (calculated from AFIS data) 
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acceptable.  However, the coefficient of determination (R2 = 0.6981) of the validation set is 
much lower than the one of the calibration set, revealing that a good prediction of maturity 
with this method (reflectance) is probably not possible (Fig. 7b). 
 

 
Fig. 7a. FTIR Theta Image Analysis prediction (calibration) versus Theta Image Analysis 

 

 
Fig. 7b. FTIR Image Analysis Theta prediction (validation) versus Theta Image Analysis 
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3.4.3 Prediction of the surface area 
The results obtained with the AFIS for both Standard fineness and maturity are very similar 
to the one obtained with image analysis.  From AFIS data, the surface area (expressed in 
mm2/mg) was calculated.  Fig. 8a and b shows the prediction of the surface area by FTIR 
(FTIR prediction = 0.9191*surface area + 26.264).  Both the coefficient of determination of 
calibration set (R2 = 0.9191) and the validation (R2 = 0.8645) are good. 
Estimating the specific surface with two drastically different methods (the micronaire and 
the AFIS) led to the same conclusion.  It is possible to predict with the FTIR the Area in mm2 
per mg of fibers. 
 

 
Fig. 8a. FTIR Area (mm2/mg) prediction (calibration) versus Area (calculated from AFIS data) 

 
Fig. 8b. FTIR Area (mm2/mg) prediction (validation) versus Area (calculated from AFIS data) 
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3.5 Conclusion 
In this study we investigated the use of the Universal Attenuated Total Reflectance Fourier 
Transform Infrared spectroscopy to evaluate the cotton fiber properties.  One hundred and 
four cotton samples were tested and 30 FTIR spectra were acquired and analyzed from each 
sample.  The Partial Least Square (PLS) procedure was performed on the FTIR spectra.  The 
results showed that the micronaire and the surface area (calculated from the AFIS data) 
could be predicted from the FTIR measurements with very high coefficient of determination.  
Two drastically different techniques to estimate the surface area of the cotton fiber 
(micronaire and AFIS data) led to the same conclusion.  However, the prediction of fiber 
maturity is probably not possible with FTIR because of the low coefficient of the 
determination.  It was concluded that, to be able to predict the fiber maturity with the FTIR, 
it is necessary to perform the measurement in the transmission mode. 
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1. Introduction  
Registration is one of the most interesting, yet challenging computer-aided tasks in medical 
image processing, aimed at bringing two or more data sets into spatial and/or temporal 
correlation. If the represented data are medical images, there are countless situations where 
it is of interest to attain such correlation, as it has become routine practice in many 
diagnostic and image-guided therapeutic procedures. 
For example, one of the most frequent clinical applications is to align two scans of a given 
patient, e.g. for easy identification of equivalent structures on both registered images, 
follow-up of disease, etc. Another use of image registration is commonplace during brain 
activation studies, where several functional Magnetic Resonance (fMRI) or Positron 
Emission Tomography (PET) scans are repeated on the same or different subjects while 
receiving sensorial or cognitive stimulations. In order to perform a statistical analysis on the 
brain images, it is often necessary to register all data sets with respect to a brain atlas.  In this 
way, both statistical power and signal-to-noise ratio are enhanced in what is known as intra-
modality registration (Friston et al, 2006). 
One of the most exciting applications is inter-modality registration, e.g. correlating PET and 
MR (Magnetic Resonance) scans of a same subject, or PET vs. CT (Computed Tomography). 
PET imaging provides distinctive functional and metabolic information, but lacks the high 
anatomical resolution which is in turn provided by conventional MR or CT. Thus PET/CT 
registration is synergic, since it facilitates the location of malignancies in their anatomical 
context. Moreover, this modality combination is often useful for Radiotherapy Planning 
(Townsend, 2008). 
An automatic image registration algorithm normally includes a floating image to be aligned 
to the coordinate system of a reference image. To do this, a spatial transformation function –
containing a number of parameters-, must be proposed and applied to the former data set. 
The parameters are chosen in such a way that a proposed similarity measure between both 
data sets is optimized. This measure may be –for example-, the Normalized Mutual 
Information (NMI) or the Cross Correlation Coefficient. 
Methods which apply rigid-body transformations perform reasonably well for registering 
images of the head (brain) and extremity portions. In a 3D space, a rigid-body 
transformation involves only six parameters, e.g. three translations (Δx, Δy, Δz) and three 
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rotation angles (θx, θy, θz). A natural extension of the rigid approach is the use of affine 
transformations that include scaling and shearing (Maintz & Viergever, 1998). 
However, those simple transformations often yield unacceptable results when dealing with 
deformable body regions such as thorax and abdomen. Even with a careful repositioning on 
the scanner table, the body region of interest may displace between different scans with 
respect to the scanner coordinate system, due to various reasons, which may include 
voluntary and involuntary motion (e.g. respiration, cardiac function), misplacement errors, 
variations in morphology and physiology, etc. 
Several non-rigid or deformable methods have been widely explored to treat this problem 
(Crum et al, 2004)(Rueckert & Aljabar, 2010). This is an open field of research, both for its 
complexity and situations of interest. Unlike rigid models, deformable registration is 
particularly difficult to validate with clinical images, where internal fiducial markers are not 
available. Besides, the optimization of the objective function may be non-unique or even 
physically meaningless. 
Nevertheless, the main complexity of a deformable system lies on its many degrees of 
freedom. In an extreme situation, it would be necessary to propose a 3D independent 
transformation for each image voxel. In this case, the number of transformations would be 
three times the number of voxels. To treat this problem a set of approximations is 
implemented, otherwise the optimization would be very costly in such a parameter space. 
Most methods apply a rigid transformation as a first approximation, and then improve 
registration with a non-rigid approach with a small set of basis functions. 
These functions form the basis for a vector space, where any function can be represented as 
a linear combination of those basis functions.  They can be polynomial {1, t, t2}, just like 
those used to build splines (Bookstein 1989). For instance, spline basis functions are used 
when fiducial markers are available or with physical model-based algorithms (e.g. elastic 
deformations, viscous fluids, etc) (D’Agostino et al, 2003). 
One particular kind of functions that make up an orthonormal basis are trigonometric 
{sin(nπx), cos(nπx)}, where n ≥ 0 is the order of the basis function. In this chapter we present 
a systematic analysis for the deformable registration problem using trigonometric Fourier 
basis functions (Ashburner & Friston, 1999). With these functions, the typical size of the 
deformation field can be easily controlled, ranging from long to short wavelengths. By 
combining this approach with a volume subdivision scheme, we expect to apply a small set 
of basis functions at a given stage of the algorithm. In principle, given that Fourier functions 
make a complete set, any arbitrary deformation may be approximated only by increasing 
the number of basis functions. 
In our study, we analyze intra-modality registration (CT-CT, MR-MR, PET-PET) in 3D. For 
each modality, we determine the optimum number of coefficients (transformation order) for 
the basis functions and the number of subvolumes to attain a satisfactory registration within 
a reasonable computing time. 
As a similarity measure, we calculate the Normalized Mutual Information (NMI) for 
different transformation orders and applying the algorithm in the thoraco-abdominal 
region. Each clinical volume data set was artificially deformed using a known displacement 
field, in order to simulate an inhalation expansion, and then co-registered to its original 
counterpart, taken as the reference image.  In order to evaluate its clinical usefulness, we 
also apply this method to co-register two scans of the same subject, each one acquired on 
different dates. In a previous work, we established and tried this methodology in 2D (Osorio 

Medical Image Registration with Fourier basis Functions 

 

119 

et al, 2007). In this chapter, we extend it to 3D, including parameter optimization analysis 
(Osorio et al, 2010). 

2. The image registration process 
The aim of a registration procedure is to attain spatial alignment of one or more images –
which we shall call “floating” (B), with respect to another one taken as the “reference” 
image (A). In a very general framework, given image A with coordinates rA, and image B 
with coordinates rB, we search the transformation: 

T : rB    →     rA 

such that:       T(rB) = rA    and   maxT[S(A,B)]    

where S(A,B) is a similarity measure between A and B, usually represented by an objective 
function.  For most cases, the similarity measure is critical for the success and general 
performance of the registration process. Its choice depends on the use of extrinsic or 
intrinsic image properties (e.g. fiducial markers or pixel intensity values), body region, 
modalities, matrix dimensions, etc. If the registration algorithm is iterative, another essential 
component is the optimizer for function S, which necessarily involves multiple evaluations in 
a multidimensional parameter space (Hill & Batchelor, 2001). The process is complete when 
a termination criterion is met. 
Transformation T describes a spatial mapping from rB to rA. In terms of elasticity, 
transformations may be rigid, affine, projective or curve (van den Elsen et al, 1993). The 
simplest transformation is the rigid one, requiring only 6 parameters in 3D (3 translations + 
3 rotation angles). An affine transformation keeps parallelism between lines, introducing 
scaling and shearing (12 parameters in 3D). After a general projective transformation, line 
straightness is conserved, though parallelism is lost. Finally, a curved transformation 
produces a deformation that may be arbitrarily complex, though some constraints may 
apply to preserve smoothness and topology (e.g. each voxel should keep the same 
neighbours after applying the deforming transformation). As introduced in the previous 
section, the rigid model provides satisfactory results when the body region is limited to the 
head and some limb portions. To account for non-rigid displacements that may happen in 
the body, we adopt the scheme described in the next section. 

3. Fourier-based registration: theoretical grounds 
We have devised the following algorithm for non-rigid registration of image volumes A and 
B, each consisting of a stack of tomographic slices: 
1. Pre-processing: segmentation, resampling, filtering. 
2. An initial registration is carried out by applying an affine transformation 

(rigid+scaling), B ->A, optimizing the Normalized Mutual Information as a similarity 
measure (to be described later on). 

3. B is divided into k sub-volumes Br (k=8 in 3D). 
4. An independent transformation is applied to each portion Br , with a rigid and a non-

rigid component. 
5. The global transformation Tglobal=S (T1 ∪ T2...∪ Tk ) is obtained after assembling the 

transformations Tr . 
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counterpart, taken as the reference image.  In order to evaluate its clinical usefulness, we 
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et al, 2007). In this chapter, we extend it to 3D, including parameter optimization analysis 
(Osorio et al, 2010). 

2. The image registration process 
The aim of a registration procedure is to attain spatial alignment of one or more images –
which we shall call “floating” (B), with respect to another one taken as the “reference” 
image (A). In a very general framework, given image A with coordinates rA, and image B 
with coordinates rB, we search the transformation: 

T : rB    →     rA 

such that:       T(rB) = rA    and   maxT[S(A,B)]    

where S(A,B) is a similarity measure between A and B, usually represented by an objective 
function.  For most cases, the similarity measure is critical for the success and general 
performance of the registration process. Its choice depends on the use of extrinsic or 
intrinsic image properties (e.g. fiducial markers or pixel intensity values), body region, 
modalities, matrix dimensions, etc. If the registration algorithm is iterative, another essential 
component is the optimizer for function S, which necessarily involves multiple evaluations in 
a multidimensional parameter space (Hill & Batchelor, 2001). The process is complete when 
a termination criterion is met. 
Transformation T describes a spatial mapping from rB to rA. In terms of elasticity, 
transformations may be rigid, affine, projective or curve (van den Elsen et al, 1993). The 
simplest transformation is the rigid one, requiring only 6 parameters in 3D (3 translations + 
3 rotation angles). An affine transformation keeps parallelism between lines, introducing 
scaling and shearing (12 parameters in 3D). After a general projective transformation, line 
straightness is conserved, though parallelism is lost. Finally, a curved transformation 
produces a deformation that may be arbitrarily complex, though some constraints may 
apply to preserve smoothness and topology (e.g. each voxel should keep the same 
neighbours after applying the deforming transformation). As introduced in the previous 
section, the rigid model provides satisfactory results when the body region is limited to the 
head and some limb portions. To account for non-rigid displacements that may happen in 
the body, we adopt the scheme described in the next section. 

3. Fourier-based registration: theoretical grounds 
We have devised the following algorithm for non-rigid registration of image volumes A and 
B, each consisting of a stack of tomographic slices: 
1. Pre-processing: segmentation, resampling, filtering. 
2. An initial registration is carried out by applying an affine transformation 

(rigid+scaling), B ->A, optimizing the Normalized Mutual Information as a similarity 
measure (to be described later on). 

3. B is divided into k sub-volumes Br (k=8 in 3D). 
4. An independent transformation is applied to each portion Br , with a rigid and a non-

rigid component. 
5. The global transformation Tglobal=S (T1 ∪ T2...∪ Tk ) is obtained after assembling the 

transformations Tr . 
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Fig. 1. Flowchart of the whole registration algorithm 

Fig. 1 shows a diagram of this algorithm. After the initial affine approach in steps 2 and 4, 
the non-rigid stage is performed by a n-order Fourier expansion along each dimension: 

 ( )
, , 1

( ) ( )
n

x ijk ijk ijk ijk
i j k

T x a bϕ ψ
=

⎡ ⎤= + +⎣ ⎦∑r r r   (1) 

 ( )
, , 1

( ) ( )
n

y ijk ijk ijk ijk
i j k

T y c dϕ ψ
=

⎡ ⎤= + +⎣ ⎦∑r r r   (2) 

 ( )
, , 1

( ) ( )
n

z ijk ijk ijk ijk
i j k

T z e fϕ ψ
=

⎡ ⎤= + +⎣ ⎦∑r r r  (3) 

where:   

( ) sin sin sin ,ijk
π jyπ ix πkz

X Y Z
ϕ ⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
r  

Medical Image Registration with Fourier basis Functions 

 

121 

and: 
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X,Y,Z are the image dimensions and a, b, c, d, e, f the coefficients to find up to order n. The 
initial condition is randomly chosen with a Gaussian distribution N(0,σ2). 
With this approach, functions ϕijk represent the transformation subset that keeps the volume 
boundary invariant, whereas functions ψijk represent the transformations with null gradient 
on that boundary. 

4. Subdivision scheme 
Once the rigid transformations are applied, the independent subvolumes were assembled 
using quaternion interpolation (Walimbe et al, 2004). Since there is no standard 
interpolation method adopted for non-rigid transformations, in this work we propose the 
strategy shown on Fig. 2.  It consists of a hierarchical scheme where each volume is divided 
into 8 equal subvolumes, this process being repeated s times.  In what follows, we shall refer 
to the variable s as the subdivision number. In this way we build up a global transformation 
which is smooth, continuous and differentiable. A detailed description of this strategy is 
developed in the Appendix of Osorio et al (2010). 
 

 
Fig. 2. a) Sub-volume assembling method. b) subvolumes before and c) after assembling.  
Figures show a 2D section of the 3D volume 

5. Similarity measure and optimization 
The metric adopted for this project is the Normalized Mutual Information, widely explored 
in the literature (Pluim et al, 2003), (Maes et al, 1997), (Studholme et al, 1999): 
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where pi , pj are the marginal probability distributions and pij is the joint distribution, using 
the partial volume method as interpolator (Chen et al, 2003). 
The extended Downhill Simplex method was chosen as optimizer of the objective function 
(Press et al, 1992), (Zagrodsky et al, 2001). The program terminates when the change in the 
NMI is less than 10-4 between consecutive iterations. 

6. Image data 
Three tomographic modalities were studied: CT, MR and FDG1-PET of thorax and abdomen. 
For each one of those, we carried out a systematic analysis of the performance of intra-
modality registration. CT studies were acquired with a HiSpeed scanner (GE, Milwaukee, 
USA) (matrix size: 512x512x47, voxel size: 0.7x0.7x7 mm3).  MRI studies were performed 
with a Signa Advantage 0.5 scanner (GE, Milwaukee, USA) (matrix size: 256x256x24) (voxel 
size 1.7x1.7x9 mm3). The PET scanner used was a Quest 250 (UGM, Philadelphia, USA) 
(matrix size: 128x128x50, voxel size: 2x2x4 mm3). All studies were completed at the 
Fundación Escuela de Medicina Nuclear (Mendoza, Argentina). 
With the purpose of evaluating algorithm registration performance in a systematic way and 
for different initial conditions, we devised the following strategy. Each selected data set was 
slightly deformed using TPS (Thin-Plate Splines) (Bookstein, 1989)(Rohr et al, 2001) with a 
regular grid of 432 control points and average displacement of 27 mm (max. 40 mm), 
simulating a moderate thorax expansion during inhalation. This artificially deformed 
volume was selected as the floating image to be registered to the reference image (original, 
non-deformed version). This procedure was repeated for each modality, in order to find the 
parameters which maximize the NMI in a reasonable computing time. 
Once the optimal Fourier order and subdivision number were found, we applied the 
algorithm to co-register pairs of thoraco-abdominal studies of a selected subject, which were 
acquired on different dates. In this way we had two data sets corresponding to the same 
body region, but displaying so evident anatomical discrepancies that would justify the 
application of a non-rigid model. 

7. Error estimation 
The error measure was chosen as the absolute average displacement over the whole image 
volume: 
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where ui and vi are the voxel coordinates for the floating and reference images, respectively, 
and N is the total number of voxels. 

                                                 
1 FDG:  18F-labelled FluoroDeoxiGlucose 
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8. Registration of TPS-deformed image pairs 
Fig. 3 shows the results corresponding to CT-CT registration after artificial deformation of 
the floating image. Shown are overlays of initial rigid registration and Fourier registration 
for transaxial slices.  Coronal and sagittal overlays are shown in Fig. 4, which provide a 
visual assessment of our non-rigid approach. Bone structures remain unaltered during the 
process, which is consistent with a real situation. 
 

 
Fig. 3. CT vs. CT deformed with TPS (a) Rigid registration. (b) Fourier registration, n=2, s=4 
(c) NMI (circles) and error ε (squares) vs. Fourier order for s=1. (d) NMI and error ε vs. 
number of subdivisions for n=2. (e) Computing time for Fig. 3c. (f) Computing time for  
Fig. 3d 
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Fig. 3. CT vs. CT deformed with TPS (a) Rigid registration. (b) Fourier registration, n=2, s=4 
(c) NMI (circles) and error ε (squares) vs. Fourier order for s=1. (d) NMI and error ε vs. 
number of subdivisions for n=2. (e) Computing time for Fig. 3c. (f) Computing time for  
Fig. 3d 
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Fig. 4. Coronal and sagittal views of CT vs. TPS-deformed CT before (a) and after (b) Fourier 
registration 

The graphs in Fig. 3 show the NMI, ε and computing time as a function of both the 
transformation order n and the subdivision number s.  For all graphs, n,s=0 and n,s=0.5 
refer to initial centre-of-mass alignment and rigid registration, respectively. Let us keep in 
mind that non-rigid registration comes into play when n ≥ 1. As expected, the NMI 
increases and ε decreases at higher n. Looking for further optimization in the parameter 
space in a reasonable computing time, we set n=2 and plotted NMI vs. s.  In this way, 
maximum NMI was attained at (n=2, s=4) for CT-CT registration.  Each registration cycle 
was run 12 times, starting with different deformations, and the graphs show average 
values with their corresponding error bars. The computing time shows an exponential 
increase for n>1. 
From the above results, we chose n=2 as the most appropriate transformation order, since at 
higher n values, error ε hardly decreases at the expense of long execution times. For the 
same reason, a suitable subdivision number was chosen at s=3,4.  These results were also 
confirmed by visual inspection of the registered data sets. 
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Fig. 5. MRI vs. MRI deformed with TPS (a) Rigid registration. (b) Fourier registration, n=2, 
s=4 (c) NMI (circles) and error ε (squares) vs. Fourier order for s=1. (d) NMI and error ε vs. 
number of subdivisions for n=2. (e) Computing time for Fig. 5c. (f) Computing time for  
Fig. 5d 

Similar results were obtained for the MR-MR situation (Fig. 5). As for PET vs. PET, since it is 
a smaller dataset, no further improvement is obtained for s>3, when few voxels remain in 
each subvolume to calculate the NMI with enough statistical power. 
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Fig. 5. MRI vs. MRI deformed with TPS (a) Rigid registration. (b) Fourier registration, n=2, 
s=4 (c) NMI (circles) and error ε (squares) vs. Fourier order for s=1. (d) NMI and error ε vs. 
number of subdivisions for n=2. (e) Computing time for Fig. 5c. (f) Computing time for  
Fig. 5d 

Similar results were obtained for the MR-MR situation (Fig. 5). As for PET vs. PET, since it is 
a smaller dataset, no further improvement is obtained for s>3, when few voxels remain in 
each subvolume to calculate the NMI with enough statistical power. 
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Fig. 6. PET vs. PET deformed with TPS (a) Rigid registration. (b) Fourier registration, n=2, 
s=4 (c) NMI (circles) and error ε (squares) vs. Fourier order for s=1. (d) NMI and error ε vs. 
number of subdivisions for n=2. (e) Computing time for Fig. 6c. (f) Computing time for  
Fig. 6d 

9. Clinical studies  
Once the optimum parameters were chosen from the previous analysis with TPS-deformed 
datasets, we selected three pairs of clinical studies to evaluate our method for intra-subject, 
intra-modality registration in real situations. 
For each modality, the first study was taken as reference to which the second study was 
registered. Fig. 7 shows the results for all modalities, which were qualified by expert 
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radiologists as “acceptable” by visual inspection. The reader should keep in mind that in 
this case we lack from a “gold standard” for error calculation for obvious reasons, so this 
evaluation cannot be considered a validation test. 

10. Error estimation with digital fiducial markers 
Our choice for error estimation as described in Section 7, includes large portions of the field-
of-view that are not relevant to registration process itself, such as the background that 
surrounds the body region of interest.  To check if this has a significant impact on error 
calculation, 10 digital spheres were inserted in selected anatomical locations inside the CT, 
MR and PET volume data sets, so as to simulate easily identifiable internal fiducials. Next 
we applied a TPS deformation on such “marked” volumes and carry out the registration 
cycle as described in Section 8.  
 

 
Fig. 7. Intra-modality registration of two clinical scans (same subject, different sessions). 
From left to right:  Rigid registration, Fourier registration, Image difference after rigid 
registration, Image difference after Fourier registration. From top to bottom: CT, MRI and 
PET 

After registration of both data sets, we measured the distance between center-of-masses for 
homologous spheres. Finally, the Mean Root Square Error (MRSE) was calculated using Eq. 
5. In this case the summation is limited to the available sphere centers.  In order to control 
for the effect of the additional deformation induced by the adjustments of the spheres on the 
registration, two different sphere sizes were studied:  big (8 mm φ) and small (2 mm φ). The 
results are summarized in Table I, showing that the effect of the sphere size on the global 
error is quite small. This means that the spheres themselves are not affecting the registration 
process in a significative fashion. 
We can see from Table 1 that the typical errors are between 1.5 mm and 2.5 mm, which are 
slightly smaller than the average displacements calculated for the whole volumes,  as shown 
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in Figs. 3d, 5d and 6d. These results are of the same order as the ones found in recent 
approaches (Andronache et al, 2008), (Sohn et al, 2008) , using more complex methods such 
as a combination of cross-correlation  and mutual information in the former and local 
matching of anatomical features in the latter. The computing time (as seen in Figs, 3, 5 and 
6) is between 400 secs and 1000 secs, which is also of the same order as the time reported in 
the former reference. 
 

 2 mm φ Sphere 8 mm φ Sphere Error whole image 
MRSE (CT) 2.55 mm 2.44 mm 2.62 mm 
MRSE (MRI) 1.29 mm 1.55 mm 2.99 mm 
MRSE (PET) 1.98 mm 1.58 mm 2.80 mm 

Table 1. Mean Root Square Error (MRSE) for the three modalities (CT, MRI, PET). The errors 
in the second and third columns are evaluated after the registration with images that 
includes a set of  6 to 10 spheres. Sphere diameters are 2 mm and 8 mm. The error in the last 
column was evaluated over the whole image. The parameters of the algorithm were n=2, s=4 
for CT and n=2, s=3 for MRI and PET 

11. Discussion and conclusions 
Our systematic analysis shows how the similarity measure (NMI) behaves with both the 
order of the transformation n and the number of subdivisions s. For intra-modality 
registration, and for the three modalities studied, we found that maximum NMI is attained 
for n ≥ 3 (s=1).  For n=2 the NMI is only slightly inferior, however the computing time 
becomes an order of magnitude longer if calculation is performed up to n = 3 (Figs. 3e, 4e, 
5e), as the number of Fourier parameters to be optimized is 6n3 in 3D  (Eqs. 1-3).   
As expected, the similarity measure increases with the number of subdivisions s, 
accompanied by a decrease in error ε (Figs. 3d-5d). The improvement in registration quality 
was also confirmed by visual assessment for both CT-CT and MRI-MRI by comparing 
results using s=3 versus s=4.   For PET-PET, NMI and ε does not get better for s>3, because 
further subdivision results in sub-volumes with too sparse data for that modality. Only 
slight improvements in the NMI and ε were recorded for n>3 and s>3, but at a very high 
computational cost and providing negligible visual improvements. One issue of concern is 
that rigid structures such as bone in CT should remain so after registration. Since the 
characteristic size of the deformation applied is greater than typical bone structures, they do 
not deform noticeably (Fig. 4). 
Regarding calculation time, by setting optimal parameters (n=2, s=3), and using an ordinary 
computer2, the time for co-registering two CT volumes (matrix dimensions 512×512×47) is ~ 
600 secs. (~ 200 secs. if s=2). For MRI-MRI, somewhat shorter times were measured, whereas 
for PET-PET, execution took slightly over 400 secs. (Figs. 3f,5f,6f). Such computation times 
were attained without any specific optimization technique. Let us note that the algorithm 
leads naturally to parallelization because the subvolumes can be processed independently. 
In that way, the computing time can be substantially reduced. 
In principle, the use of Fourier basis functions allows arbitrary deformations on any given 
image volume; the combination of  this method with a subdivision scheme allows to 
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accommodate small image portions in a progressive fashion, without affecting the rest of the 
image data (Walimbe et al, 2004), (Likar & Pernus, 2001).  Obviously, as the subdivision 
creates small subvolumes with fewer and fewer pixels, similarity measures like the NMI or 
the CCC become affected in their performance (Andronache et al, 2008). 
In general, the proposed registration method rendered acceptable results for small and 
moderate deformations (~ 25mm). A preliminary study suggests that it is fairly robust, even 
in the presence of Gaussian noise (Osorio et al, 2007). We evaluated its performance using 
clinical images after deformation with Thin-Plate Splines, as well as image pairs 
corresponding to different scan sessions for a same subject. The selected studies were 
thoracic and abdominal scans for three common tomographic modalities. Obviously, not 
only organ deformations and displacements may come about between scan sessions, but 
also significant variations in anatomy and function, due to normal or pathological 
conditions. In these cases, the outcome of any non-rigid registration method offers an 
approximation whose usefulness must be assessed for each particular situation. 
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1. Introduction 
Cancer is one of the leading causes of death in the world. Currently, the gold standard in 
most cancer diagnosis is histopathological evaluation, which involves the removal of tissue 
biopsies and examination by pathologists. This process includes tissue staining and 
morphological pattern recognition. During tissue transformation, it is expected that 
substantial modifications occur at molecular level before visible morphological changes 
become apparent. Histological examination requires extensive human observations to 
recognize both the constitutive histologic entities and the pathologic state. Early detection of 
cancer is the most important factor in the prevention of cancer and a guarantee in most cases 
of an effective treatment and in some cases for a complete cure. Moreover, the histological 
assessment must be performed while surgery is ongoing to determine whether the tissue 
has been removed or spared. For example, brain tissue cannot be removed with a large 
safety distance from the tumor. The resection of brain tumors is strongly limited to the 
border of the tumor. The main objective is a detection of the source of the pathological 
variation at molecular level in order to further understand the molecular carcinogenic 
process in a range of cancers. Indeed, tumor tissues are mostly heterogeneous in nature, and 
this heterogeneity further depends on the stage of disease and its aggressiveness. The 
emergence of a novel technique, complementary to histopathology and 
immunohistochemistry, can thus help in the early diagnostic of tissue transformation during 
carcinogenesis. 
Fourier-transform infrared microspectroscopy (FTIRM) has emerged as a powerful tool to 
study molecular structure and structural interactions in biological systems. When this 
technique is applied to tissues, the resulting spectra is composed of characteristic absorption 
bands originating from all infrared-active vibrational modes of biological macromolecules 
present in the tissue, such as proteins, lipids, and nucleic acids (Parker, 1971). Each of these 
molecules provides a unique absorption spectral pattern named fingerprint through the 
entire infrared spectrum. This property offers a way to identify the molecule type 
(qualitative analysis) and the amount or quantity of this molecule in the sample 
(quantitative analysis) (beljebbar et al., 2008). This method can be used as a diagnostic tool, 
complementary to histopathology or immunochemistry (Fernandez et al., 2005). As the 
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1. Introduction 
Cancer is one of the leading causes of death in the world. Currently, the gold standard in 
most cancer diagnosis is histopathological evaluation, which involves the removal of tissue 
biopsies and examination by pathologists. This process includes tissue staining and 
morphological pattern recognition. During tissue transformation, it is expected that 
substantial modifications occur at molecular level before visible morphological changes 
become apparent. Histological examination requires extensive human observations to 
recognize both the constitutive histologic entities and the pathologic state. Early detection of 
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variation at molecular level in order to further understand the molecular carcinogenic 
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this heterogeneity further depends on the stage of disease and its aggressiveness. The 
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immunohistochemistry, can thus help in the early diagnostic of tissue transformation during 
carcinogenesis. 
Fourier-transform infrared microspectroscopy (FTIRM) has emerged as a powerful tool to 
study molecular structure and structural interactions in biological systems. When this 
technique is applied to tissues, the resulting spectra is composed of characteristic absorption 
bands originating from all infrared-active vibrational modes of biological macromolecules 
present in the tissue, such as proteins, lipids, and nucleic acids (Parker, 1971). Each of these 
molecules provides a unique absorption spectral pattern named fingerprint through the 
entire infrared spectrum. This property offers a way to identify the molecule type 
(qualitative analysis) and the amount or quantity of this molecule in the sample 
(quantitative analysis) (beljebbar et al., 2008). This method can be used as a diagnostic tool, 
complementary to histopathology or immunochemistry (Fernandez et al., 2005). As the 
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image contrast is based on the intrinsic vibrational signature of the tissue components, 
spectral images does not require the use of added dyes or labelling methods for 
visualization of different chemical components in the sample (Bates, 1976). Indeed, FT-IRM 
imaging combined a high spatially resolved morphological and biochemical information 
that offer a number of advantages for ex-vivo assessment of tissue and aid the 
histopathologist in the identification and classification of subtle biochemical changes related 
to carcinogenesis (Petibois & Déléris, 2006; Cohenford & Rigas, 1998; Kneipp et al., 2000; 
Yano et al., 2000). With the fast image acquisition provided by modern mid-infrared 
imaging systems, it is now envisaged to analyze tumor biopsies in delays compatible with 
surgery (Levin & Bhargava, 2005). Other advantages of this method are that it is objective 
and provides reproducible diagnosis, minimize inter-observer variability. Indeed, IR 
spectroscopy can detect and monitor characteristic changes in molecular composition and 
structure that accompany transformation from normal to cancerous state (Afanasyeva et al., 
1998, Diem et al., 1999, Franck et al., 1998). The identification and quantification of these 
specific molecular changes within tissues can provide diagnostic information for aiding in 
early detection of diseases and their optimized treatment. Correlations of morphologic and 
biochemical tissue differences could be used to identify variations that occur between 
healthy and diseased tissues. The development of clinical protocols for the routine 
examination of tissue histology or of localized tumors using IR microspectroscopic methods 
has been largely used in medical diagnostics to identify neoplasia in breast, (Ci et al, 1999) 
cervix, (Wong et al, 1991) colon, (Rigas et al, 1990) lung, (Yano et al, 2000) stomach, (Li et al., 
2005) and glioma. (Krafft , 2006, 2007; Amharref et al, 2006; Beljebbar et al., 2008).  
Infrared spectra contain many overlapping bands and so data interpretation cannot be made 
by simple visual inspection and alternative approaches are needed. Because of the high 
complexity of the FTIR spectra obtained from tissues, multivariate statistical methods are 
required to extract biochemical information related to tissue. This would permit to 
objectively differentiate distinct tissue structures and for identifying origin that gave rise to 
the specific tissue pathology. These methods have had a major impact on the quantitative 
and qualitative analysis of infrared spectral data. They have been shown to improve 
analysis precision, accuracy, reliability, and applicability for infrared spectral analyses 
relative to the more conventional univariate methods of data analysis. Rather than 
attempting to find and use only an isolated spectral feature in the analysis of spectral data, 
multivariate methods derive their power from the simultaneous use of multiple intensities 
(i.e. multiple variables) in each spectrum (Mourant, et al., 2003). During the last decade, it 
has been recognized that FT-IR, in combination with the appropriate multivariate analysis 
strategies, has considerable potential as a metabolic fingerprinting tool for the rapid 
detection and diagnosis of disease or dysfunction (Goodacre et al, 2004; Diem et al., 1999). 
Multivariate imaging techniques including Unsupervised Hierarchical Cluster Analysis 
(UHCA) (Jackson et al., 1998; Mohlenhoff et al., 2005), K-means clustering (Lasch et al., 2004; 
Zhang et al., 2003), Principal Components Analysis (PCA) (Lasch and Naumann, 1998), 
Linear Discriminant Analysis (LDA) (Mansfield et al, 1999), Fuzzy C-means clustering 
(Lasch et al., 2004; Mansfield et al., 1997) and neural networks (Lasch & Naumann, 1998) 
have proven to be invaluable in the identification of spectral groups or "clusters" which can 
be directly compared to stained tissue sections. In multivariate methods, the information of 
the entire spectrum can be utilized for the analysis. The high correlation of spectral clusters 
with anatomical and histopathological features has been conclusively demonstrated for a 
number of different tissue types including. 
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The aim of this chapter was the monitoring and interpretation of molecular changes 
associated to C6 glioma growth and invasion by micro-FTIR imaging. Micro-FTIR maps 
were recorded on normal brain tissue and on glioma growth after injection of C6 glioma cell 
suspension in brain parenchyma. Multivariate statistical analysis were used to i) identify the 
molecular changes associated with the development of the glioma tumor ii) definition of the 
tumor and peritumoral margins, iii) grading of malignancy and prognosis based on the 
presence of necrosis. We have investigated the spatial distribution of molecular changes 
associated with C6 glioma progression using integrated intensity ratios of some specific 
bands associated to lipids and proteins in order to determine spectroscopic markers to 
successfully monitor the changes in the molecular composition associated to C6 glioma 
progression.  

2. FTIR characterization of normal brain tissues and C6 glioma progression 
using cluster analysis 
To investigate the potential of FTIR spectroscopy for clinical application, experimental 
animals are necessary. Rat C6 glioma cells are an experimental cell line that when injected 
into neonatal Wistar rats grow into an intracerebral tumor with pathological similarities to 
human glioblastoma (GBM) (Auer et al., 1981). This glioblastoma model was used in a 
variety of studies related to brain tumor biology including tumor growth (Nagano et al., 
1993; San-Galli et al., 1989), invasion (Nagano et al., 1993; Bernstein et al., 1991; Chicoine & 
Silbergeld, 1995), and evaluation of the therapeutic efficacy of cancer treatments (Barth 
1998). The glioma tumors were obtained by injection of C6 glioma cells suspension in brain 
parenchyma as described elsewhere (Grobben et al., 2002). All animals with implanted C6 
cells developed tumors with reproducible localization and size around the site of injection. 
These groups were sacrificed after 5, 7, 9, 12, 15, 19, days post-implantation (PI). After brain 
excision, tissue samples were snap-frozen by immersion in methyl-butane cooled down in 
liquid nitrogen and stored at - 80°C. Two adjacent sections were cut from each sample using 
a cryomicrotome. One section, 10 µm thick, was placed onto infrared transparent calcium 
fluoride (CaF2) slides for infrared imaging. The second section, 7 µm thick, was placed on a 
microscope glass slide and stained with hematoxylin and eosin (H&E) for histopathological 
image. Spectra were collected using an FTIR imaging system (SPOTLIGHT, Perkin-Elmer, 
France) coupled to a FTIR spectrometer (Spectrum 300, Perkin-Elmer, France). This system is 
equipped with a liquid N2 cooled Mercury-Cadmium-Telluride MCT line detector 
comprised of 16 pixel elements. The microscope was equipped with a movable, software-
controlled x, y stage. In this study, FTIR images were collected from selected sites with a 
spatial resolution of 25 µm/pixel, in transmission mode, in the 4000–720 cm-1 range, with a 
final spectral resolution of 4 cm-1, and 16 scans per pixel. After atmospheric correction, data 
were cut to high wavenumber fingerprint region (2600 to 3700 cm-1), converted to their first 
derivative, and smoothed using a seven point Savitzky-Golay algorithm in order to 
minimise the influence of background scatter in the spectra (Savitzky & Golay, 1964). The 
resulting spectra were then normalized using a Standard Normal Variate (SNV) procedure. 
A multivariate statistical analysis (Principal Component Analysis (PCA) and K-Means 
(KM)) was performed on this dataset. K-means clustering was performed on these principal 
component scores. Pseudo-color maps based on cluster analysis were then constructed by 
assigning a color to each spectral cluster. The cluster spectra were calculated by averaging 
absorbance spectra associated to each group and used for the interpretation of the chemical 
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image contrast is based on the intrinsic vibrational signature of the tissue components, 
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biochemical tissue differences could be used to identify variations that occur between 
healthy and diseased tissues. The development of clinical protocols for the routine 
examination of tissue histology or of localized tumors using IR microspectroscopic methods 
has been largely used in medical diagnostics to identify neoplasia in breast, (Ci et al, 1999) 
cervix, (Wong et al, 1991) colon, (Rigas et al, 1990) lung, (Yano et al, 2000) stomach, (Li et al., 
2005) and glioma. (Krafft , 2006, 2007; Amharref et al, 2006; Beljebbar et al., 2008).  
Infrared spectra contain many overlapping bands and so data interpretation cannot be made 
by simple visual inspection and alternative approaches are needed. Because of the high 
complexity of the FTIR spectra obtained from tissues, multivariate statistical methods are 
required to extract biochemical information related to tissue. This would permit to 
objectively differentiate distinct tissue structures and for identifying origin that gave rise to 
the specific tissue pathology. These methods have had a major impact on the quantitative 
and qualitative analysis of infrared spectral data. They have been shown to improve 
analysis precision, accuracy, reliability, and applicability for infrared spectral analyses 
relative to the more conventional univariate methods of data analysis. Rather than 
attempting to find and use only an isolated spectral feature in the analysis of spectral data, 
multivariate methods derive their power from the simultaneous use of multiple intensities 
(i.e. multiple variables) in each spectrum (Mourant, et al., 2003). During the last decade, it 
has been recognized that FT-IR, in combination with the appropriate multivariate analysis 
strategies, has considerable potential as a metabolic fingerprinting tool for the rapid 
detection and diagnosis of disease or dysfunction (Goodacre et al, 2004; Diem et al., 1999). 
Multivariate imaging techniques including Unsupervised Hierarchical Cluster Analysis 
(UHCA) (Jackson et al., 1998; Mohlenhoff et al., 2005), K-means clustering (Lasch et al., 2004; 
Zhang et al., 2003), Principal Components Analysis (PCA) (Lasch and Naumann, 1998), 
Linear Discriminant Analysis (LDA) (Mansfield et al, 1999), Fuzzy C-means clustering 
(Lasch et al., 2004; Mansfield et al., 1997) and neural networks (Lasch & Naumann, 1998) 
have proven to be invaluable in the identification of spectral groups or "clusters" which can 
be directly compared to stained tissue sections. In multivariate methods, the information of 
the entire spectrum can be utilized for the analysis. The high correlation of spectral clusters 
with anatomical and histopathological features has been conclusively demonstrated for a 
number of different tissue types including. 
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The aim of this chapter was the monitoring and interpretation of molecular changes 
associated to C6 glioma growth and invasion by micro-FTIR imaging. Micro-FTIR maps 
were recorded on normal brain tissue and on glioma growth after injection of C6 glioma cell 
suspension in brain parenchyma. Multivariate statistical analysis were used to i) identify the 
molecular changes associated with the development of the glioma tumor ii) definition of the 
tumor and peritumoral margins, iii) grading of malignancy and prognosis based on the 
presence of necrosis. We have investigated the spatial distribution of molecular changes 
associated with C6 glioma progression using integrated intensity ratios of some specific 
bands associated to lipids and proteins in order to determine spectroscopic markers to 
successfully monitor the changes in the molecular composition associated to C6 glioma 
progression.  

2. FTIR characterization of normal brain tissues and C6 glioma progression 
using cluster analysis 
To investigate the potential of FTIR spectroscopy for clinical application, experimental 
animals are necessary. Rat C6 glioma cells are an experimental cell line that when injected 
into neonatal Wistar rats grow into an intracerebral tumor with pathological similarities to 
human glioblastoma (GBM) (Auer et al., 1981). This glioblastoma model was used in a 
variety of studies related to brain tumor biology including tumor growth (Nagano et al., 
1993; San-Galli et al., 1989), invasion (Nagano et al., 1993; Bernstein et al., 1991; Chicoine & 
Silbergeld, 1995), and evaluation of the therapeutic efficacy of cancer treatments (Barth 
1998). The glioma tumors were obtained by injection of C6 glioma cells suspension in brain 
parenchyma as described elsewhere (Grobben et al., 2002). All animals with implanted C6 
cells developed tumors with reproducible localization and size around the site of injection. 
These groups were sacrificed after 5, 7, 9, 12, 15, 19, days post-implantation (PI). After brain 
excision, tissue samples were snap-frozen by immersion in methyl-butane cooled down in 
liquid nitrogen and stored at - 80°C. Two adjacent sections were cut from each sample using 
a cryomicrotome. One section, 10 µm thick, was placed onto infrared transparent calcium 
fluoride (CaF2) slides for infrared imaging. The second section, 7 µm thick, was placed on a 
microscope glass slide and stained with hematoxylin and eosin (H&E) for histopathological 
image. Spectra were collected using an FTIR imaging system (SPOTLIGHT, Perkin-Elmer, 
France) coupled to a FTIR spectrometer (Spectrum 300, Perkin-Elmer, France). This system is 
equipped with a liquid N2 cooled Mercury-Cadmium-Telluride MCT line detector 
comprised of 16 pixel elements. The microscope was equipped with a movable, software-
controlled x, y stage. In this study, FTIR images were collected from selected sites with a 
spatial resolution of 25 µm/pixel, in transmission mode, in the 4000–720 cm-1 range, with a 
final spectral resolution of 4 cm-1, and 16 scans per pixel. After atmospheric correction, data 
were cut to high wavenumber fingerprint region (2600 to 3700 cm-1), converted to their first 
derivative, and smoothed using a seven point Savitzky-Golay algorithm in order to 
minimise the influence of background scatter in the spectra (Savitzky & Golay, 1964). The 
resulting spectra were then normalized using a Standard Normal Variate (SNV) procedure. 
A multivariate statistical analysis (Principal Component Analysis (PCA) and K-Means 
(KM)) was performed on this dataset. K-means clustering was performed on these principal 
component scores. Pseudo-color maps based on cluster analysis were then constructed by 
assigning a color to each spectral cluster. The cluster spectra were calculated by averaging 
absorbance spectra associated to each group and used for the interpretation of the chemical 
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or biochemical differences between clusters. All data measured on normal brain and tumor 
development (from 7 to 21 days growth) were pooled in one dataset, processed at the same 
time and the results were displayed as pseudo-color maps with the same color scale. In this 
way, we can easily determine all their common and discriminating features by comparing 
their infrared maps. The rat brains analysed before 5 days after tumor implantation did not 
show any visible changes in the brain tissue (data not shown). Indeed, all animals died 
beyond 25 days post-implantation and therefore no data are available beyond this time 
point.  
Histological and FTIR analysis revealed that the tumor size dependent on the period 
elapsed after injection of glioma cells. Fig. 1 displays FTIR pseudo-color maps of brain tissue 
and their histopathological images. 13 clusters describing both normal brain and cancer 
features were extracted and pseudo FTIR maps were constructed with the same color scale. 
Different clusters in the FTIR images were correlated with features of the histopathological 
images. White color represents the area where no tissue was present. In the pseudo-color 
map obtained from glioma tumor obtained 7 days after C6 cells injection (fig. 1B). This 
pseudo-color map displays some normal structures associated to white matter and grey 
matter. Cluster 4 described white matter corresponding to corpus callosum (CC) and 
commissura anterior (CA). CC and CA present important lipid content due to high myelin 
level in these structures involved in communication within and between hemispheres. 
Several clusters (6, 1, 2, 8, and 11) describe the transition from white matter to gray matter 
(cortex). In fact, the CC is the largest white matter structure in the brain, consisting mainly 
of interhemispheric fibers. Gray matter is distributed at the surface of the cerebral 
hemispheres (cerebral cortex) and of the cerebellum (cerebellar cortex). It is predominantly 
composed of neuron cell bodies and unmyelinated axons. Comparison between pseudo-
color maps and the histopathology images (Fig. 1A and 1B) shows that the FT-IRM image 
provides more information on the cortex than standard histopathology. In fact, six layers 
were identified from the cortex in the pseudocolor FTIR map (fig. 1B), whereas, H&E 
staining did not allowed to discriminate between these layers in the cortex (fig. 2A). Luxol 
fast blue (LFB) staining was then used to visualize myelin distribution into brain tissues and 
to map particular sections within the cortex. In fig. 2B, LFB staining shows a gradation color 
density between brain structures. In stained preparations, myelin is intensely blue, so that 
white matter is well differentiated from gray matter. In fact, large fiber tracts like CC and 
some bundles in CP can be easily recognized. However, even with higher magnification it 
was very difficult to distinguish between all cortex layers because this staining is mainly 
restricted to fibers. 
Thus, the individual cell type cannot be recognized within the tissue. This LFB staining was 
then combined with cresyl violet (CV) coloration to stain not only rough endoplasmic 
reticulum (Nissl substance) but chromatin and nucleoli as well. This coloration was used in 
our study to visualize all different cell types present in the cortex (Fig. 2C). This pseudo-
color FTIR map (fig. 2D) was correlated with that obtained with LFB-CV staining (fig. 2C). 
With this coloration, six different layers were then identified in the cortex instead of five 
layers in the FT-IRM map (fig. 2D). On the other hand, when multivariate statistical analysis 
was applied only on FT-IRM data measured from normal brain tissue we were able to 
distinguish between five cortex layers. The cortex consists of a thin layer of gray substance 
which covers the two hemispheres and whose thickness varies between 2 and 4 mm. 
According to the cortical histological organization, one distinguishes 6 layers numbered 
from I to VI from top to bottom (Burwell, 2001). The outermost molecular layer (I) 
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or biochemical differences between clusters. All data measured on normal brain and tumor 
development (from 7 to 21 days growth) were pooled in one dataset, processed at the same 
time and the results were displayed as pseudo-color maps with the same color scale. In this 
way, we can easily determine all their common and discriminating features by comparing 
their infrared maps. The rat brains analysed before 5 days after tumor implantation did not 
show any visible changes in the brain tissue (data not shown). Indeed, all animals died 
beyond 25 days post-implantation and therefore no data are available beyond this time 
point.  
Histological and FTIR analysis revealed that the tumor size dependent on the period 
elapsed after injection of glioma cells. Fig. 1 displays FTIR pseudo-color maps of brain tissue 
and their histopathological images. 13 clusters describing both normal brain and cancer 
features were extracted and pseudo FTIR maps were constructed with the same color scale. 
Different clusters in the FTIR images were correlated with features of the histopathological 
images. White color represents the area where no tissue was present. In the pseudo-color 
map obtained from glioma tumor obtained 7 days after C6 cells injection (fig. 1B). This 
pseudo-color map displays some normal structures associated to white matter and grey 
matter. Cluster 4 described white matter corresponding to corpus callosum (CC) and 
commissura anterior (CA). CC and CA present important lipid content due to high myelin 
level in these structures involved in communication within and between hemispheres. 
Several clusters (6, 1, 2, 8, and 11) describe the transition from white matter to gray matter 
(cortex). In fact, the CC is the largest white matter structure in the brain, consisting mainly 
of interhemispheric fibers. Gray matter is distributed at the surface of the cerebral 
hemispheres (cerebral cortex) and of the cerebellum (cerebellar cortex). It is predominantly 
composed of neuron cell bodies and unmyelinated axons. Comparison between pseudo-
color maps and the histopathology images (Fig. 1A and 1B) shows that the FT-IRM image 
provides more information on the cortex than standard histopathology. In fact, six layers 
were identified from the cortex in the pseudocolor FTIR map (fig. 1B), whereas, H&E 
staining did not allowed to discriminate between these layers in the cortex (fig. 2A). Luxol 
fast blue (LFB) staining was then used to visualize myelin distribution into brain tissues and 
to map particular sections within the cortex. In fig. 2B, LFB staining shows a gradation color 
density between brain structures. In stained preparations, myelin is intensely blue, so that 
white matter is well differentiated from gray matter. In fact, large fiber tracts like CC and 
some bundles in CP can be easily recognized. However, even with higher magnification it 
was very difficult to distinguish between all cortex layers because this staining is mainly 
restricted to fibers. 
Thus, the individual cell type cannot be recognized within the tissue. This LFB staining was 
then combined with cresyl violet (CV) coloration to stain not only rough endoplasmic 
reticulum (Nissl substance) but chromatin and nucleoli as well. This coloration was used in 
our study to visualize all different cell types present in the cortex (Fig. 2C). This pseudo-
color FTIR map (fig. 2D) was correlated with that obtained with LFB-CV staining (fig. 2C). 
With this coloration, six different layers were then identified in the cortex instead of five 
layers in the FT-IRM map (fig. 2D). On the other hand, when multivariate statistical analysis 
was applied only on FT-IRM data measured from normal brain tissue we were able to 
distinguish between five cortex layers. The cortex consists of a thin layer of gray substance 
which covers the two hemispheres and whose thickness varies between 2 and 4 mm. 
According to the cortical histological organization, one distinguishes 6 layers numbered 
from I to VI from top to bottom (Burwell, 2001). The outermost molecular layer (I) 
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Fig. 2. Photomicrography of a brain tissue section (A) H & E staining, (B) stained with LFB; 
in this image CC and CP appears more lightly stained, (C) stained with LFB-CV, pointing 
out the cortical layers of the rat cortex. Pseudo-color FTIR map (D) based on K-means cluster 
analysis applied only on FTIR data measured from normal brain structures 

 containing non-specific fibers, corresponds to the yellow cluster. The external granular 
layer (II) is a rather dense layer composed of small cells. The external pyramidal layer (III) 
contains pyramidal cells, frequently in row formation. These three layers were encoded by 
cluster 11. The internal granular layer (IV) is usually a thin layer with cells similar to those 
in the external granular layer (cluster 8). The ganglionic layer (V) contains, in most areas, 
pyramidal cells that were fewer in number but larger in size than those in the external 
pyramidal layer (clusters 1 and 2). The fusiform layer (VI) consists of irregular fusiform cells 
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whose axons enter the adjacent white matter known as the CC (cluster 1 and 6). By 
correlating FT-IRM spectral maps with histopathology (H&E, LFB, and LFB-CV) of the 
adjacent tissue sections, we highlighted the potential of FT-IRM to identify the morphologic 
origin that gave rise to the specific spectral features found in this study. In fact, with standard 
staining (H&E), we were not able to discriminate between the different cortex layers. On the 
other hand, FT-IRM pseudo-color maps were clearly similar to LFB-CV staining for 
visualizing myelin distribution in healthy brain tissues (white and gray matters).  
Fig. 1B exhibit a particular structure (cluster 7) located in the caudate putamen (CP) 
corresponding to C6 cells injection site. This feature was associated to C6 cell growth. 
Histological interpretation however showed small abnormalities in rats sacrificed seven 
days after implantation of C6 cells (fig. 1A). Indeed, this abnormality is characterized by a 
diffuse structure within the brain parenchyma. The tumor cells appear scattered in the form 
of cells or grouped in clusters in the vicinity of the blood vessels.  At day 9, the viable tumor 
started to be visible in the implantation site, destroys the corpus callosum and grew into all 
the cortical layers (fig. 1D). The tumor area was encoded by clusters 12 and 13. On the other 
hand, clusters 5 and 7 were detected around the tumor. These clusters were associated to the 
proliferative and invasive character of glioma tumors. In fact, in our previous study, 
immunohistochemical Ki-67 and MT1-MMP staining were used to visualize the proliferative 
and invasive activities of glioma and were clearly correlated with the cluster that encoded 
the surrounding tumor area (Amharref et al., 2007). Histopathological staining confirms this 
FTIR result (fig. 1C), In fact, a Large focus of invasion (6mm) were well separated from the 
surrounding brain tissue. Tumor was hypercellular with cellular and nuclear pleomorphism 
and mitotic figures observed. From day 12, the tumor is fairly large and deeply situated 
within the cortex with massive infiltration into the brain tissue (fig. 1F, 1H, 1J). Most of 
cerebral cortex is destroyed by tumor tissue. At day 15, we observe the appearance of 
clusters 9 and 5 associated to the formation of necrosis and perinecrosis (fig. 1H). 
Histological image displayed oedematous zones as well as zones of necrosis with a 
pseudopalissading cells (> 8mm) (fig. 1G). Around necrotic zones, tumor shows a large cell 
density with an increase of the proliferation of endothelial cells and haemorrhagic zones. 
This necrotic zone increased until day 19 post-implantation (fig. 1J). Cluster 5 observed in 
the border of the necrotic zone seems to correlate with the pseudopalisading formation. 
Cluster 9 correlates to the center of the necrosis (full necrosis) of the tumor. The presence of 
necrosis is important for grading tumors and is often linked to a poorer clinical prognosis 
(Barker et al., 1996). Indeed, the most characteristic finding of glioblastoma is the necrotic 
foci surrounded by tumor cells (Kleihues et al., 1993). Pallisading cells delineate the foci of 
necrosis and lymphocytic infiltration, with the occasional formation of edema fluid (Auer et 
al., 1981). At day 19, we observed the transformation of the structure of the tumor (fig. 1J). In 
fact, cluster 12 was replaced partially by cluster 13. On the other hand, the tumor occupied 
almost the entire hemisphere as visualized on the tissue of section (fig. 1I).  
Fig. 3 shows class average spectra associated to normal brain structures and tumor 
development. The lipids spectra contain a large proportion of methyl, methylene and 
carbonyl bands in the region 2600-3700 cm-1. The bands at 2852 cm-1 and 2924 cm-1 were due 
to the symmetric CH2 stretching mode of the membrane lipid which is directly related to the 
lipid acyl, primarily saturated, chains. The band at 2956 cm-1 is associated to asymmetric 
CH3 stretching mode of the methyl group and less contribution of proteins. The =C–H 
stretching bands due to unsaturated acyl chains are found at 3014 cm−1. The bands at 3292 
cm-1 and 3080 cm-1 were linked to the Amide A (mainly N–H stretching) and Amide B (N–H  
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whose axons enter the adjacent white matter known as the CC (cluster 1 and 6). By 
correlating FT-IRM spectral maps with histopathology (H&E, LFB, and LFB-CV) of the 
adjacent tissue sections, we highlighted the potential of FT-IRM to identify the morphologic 
origin that gave rise to the specific spectral features found in this study. In fact, with standard 
staining (H&E), we were not able to discriminate between the different cortex layers. On the 
other hand, FT-IRM pseudo-color maps were clearly similar to LFB-CV staining for 
visualizing myelin distribution in healthy brain tissues (white and gray matters).  
Fig. 1B exhibit a particular structure (cluster 7) located in the caudate putamen (CP) 
corresponding to C6 cells injection site. This feature was associated to C6 cell growth. 
Histological interpretation however showed small abnormalities in rats sacrificed seven 
days after implantation of C6 cells (fig. 1A). Indeed, this abnormality is characterized by a 
diffuse structure within the brain parenchyma. The tumor cells appear scattered in the form 
of cells or grouped in clusters in the vicinity of the blood vessels.  At day 9, the viable tumor 
started to be visible in the implantation site, destroys the corpus callosum and grew into all 
the cortical layers (fig. 1D). The tumor area was encoded by clusters 12 and 13. On the other 
hand, clusters 5 and 7 were detected around the tumor. These clusters were associated to the 
proliferative and invasive character of glioma tumors. In fact, in our previous study, 
immunohistochemical Ki-67 and MT1-MMP staining were used to visualize the proliferative 
and invasive activities of glioma and were clearly correlated with the cluster that encoded 
the surrounding tumor area (Amharref et al., 2007). Histopathological staining confirms this 
FTIR result (fig. 1C), In fact, a Large focus of invasion (6mm) were well separated from the 
surrounding brain tissue. Tumor was hypercellular with cellular and nuclear pleomorphism 
and mitotic figures observed. From day 12, the tumor is fairly large and deeply situated 
within the cortex with massive infiltration into the brain tissue (fig. 1F, 1H, 1J). Most of 
cerebral cortex is destroyed by tumor tissue. At day 15, we observe the appearance of 
clusters 9 and 5 associated to the formation of necrosis and perinecrosis (fig. 1H). 
Histological image displayed oedematous zones as well as zones of necrosis with a 
pseudopalissading cells (> 8mm) (fig. 1G). Around necrotic zones, tumor shows a large cell 
density with an increase of the proliferation of endothelial cells and haemorrhagic zones. 
This necrotic zone increased until day 19 post-implantation (fig. 1J). Cluster 5 observed in 
the border of the necrotic zone seems to correlate with the pseudopalisading formation. 
Cluster 9 correlates to the center of the necrosis (full necrosis) of the tumor. The presence of 
necrosis is important for grading tumors and is often linked to a poorer clinical prognosis 
(Barker et al., 1996). Indeed, the most characteristic finding of glioblastoma is the necrotic 
foci surrounded by tumor cells (Kleihues et al., 1993). Pallisading cells delineate the foci of 
necrosis and lymphocytic infiltration, with the occasional formation of edema fluid (Auer et 
al., 1981). At day 19, we observed the transformation of the structure of the tumor (fig. 1J). In 
fact, cluster 12 was replaced partially by cluster 13. On the other hand, the tumor occupied 
almost the entire hemisphere as visualized on the tissue of section (fig. 1I).  
Fig. 3 shows class average spectra associated to normal brain structures and tumor 
development. The lipids spectra contain a large proportion of methyl, methylene and 
carbonyl bands in the region 2600-3700 cm-1. The bands at 2852 cm-1 and 2924 cm-1 were due 
to the symmetric CH2 stretching mode of the membrane lipid which is directly related to the 
lipid acyl, primarily saturated, chains. The band at 2956 cm-1 is associated to asymmetric 
CH3 stretching mode of the methyl group and less contribution of proteins. The =C–H 
stretching bands due to unsaturated acyl chains are found at 3014 cm−1. The bands at 3292 
cm-1 and 3080 cm-1 were linked to the Amide A (mainly N–H stretching) and Amide B (N–H  
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Fig. 3. Representative cluster mean FTIR spectra extracted from pseudocolor maps. Cluster 
averaged spectra were obtained by meaning absorbance spectra associated to each group. 13 
models describing normal and glioma brain development. Each cluster averaged spectrum 
assigned to one class was plotted with the same color than in pseudo-color map 
stretching) of proteins respectively. The band at 2874 cm−1 was related mainly to the 
symmetric stretch of proteins. The changes in frequencies, intensities and band shapes of 
these bands may provide further information about the structural changes associated with 
malignancy. In the malignant tissues, i) the intensity of the symmetric CH2 band decreased 
compared to the corresponding bands in normal brain structures (white matter and grey 
matter) and ii) the band ratio 3292/2852 cm-1 was higher in the glioma tumor and reduced in 
the normal brain tissues. Indeed, the intensity ratio 2924/2956 cm-1 was higher in the spectra 
associated to white matter and decreased from grey matter to C6 glioma tumors.  Band 2874 
cm-1 became better resolved in the spectra of malignant tissues because of diminished 
intensities of CH2 bands in this region. Therefore, the largest variances from spectra to  
spectra in IR spectroscopic maps of normal tissue were assigned to spectral contributions of 
lipids reflecting cell differentiation. This result confirms that the development of tumor was 
characterized by a reduction in total lipid content. This reduction was also observed in the 
invasive area (clusters 5 and 7), which is composed of healthy and tumoral cells. This result 
is in agreement with those obtained in brain diseases (Krafft et al., 2006; Kneipp et al., 2000). 
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This lipid reduction in malignant tissues could be related to the fast growth of tumor cells 
which need more energy (Wang et al., 2003). Indeed, it is known that, in developing brain 
tumors, structural and functional cell changes take place in which lipids play a crucial role. 
Yet, qualitative and quantitative aspects of lipid changes in brain tumors of different degree 
of malignancy are still the subject of numerous studies (Steiner et al., 2003; Krafft et al., 2006; 
Campanella, 1992). 
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Fig. 4. Dendrogram obtained from hierarchical cluster analysis on spectral cluster averages 
associated to different tissue types. Heterogeneity represents the discriminating distance 
given by arbitrary units (au) 
To distinguish between normal, tumor, and necrotic brain structures, cluster averaged 
spectra obtained from pseudo-color maps were input in the hierarchical cluster analysis 
using Ward’s clustering algorithm and the square Euclidian distance measure. The result, as 
shown on the dendrogram in Fig. 4, showed a clear distinction between all normal and 
tumor brain structures. Indeed, the class related to normal brain structures was divided to 
two sub-clusters associated to white matter (clusters 4 corresponding to higher lipid 
content) and the second sub-cluster related to grey matter described by clusters 1 and 6 
(intermediate cortex layers) and clusters 2, 8, and 11 (external cortex layers). We were also 
able to discriminate between glioma tumor (clusters 12, and 13) and necrosis (cluster 9) from 
peri-necrosis (clusters 3, 5, 7, and 10) in the second groups. In general, an increase in 
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associated to white matter and decreased from grey matter to C6 glioma tumors.  Band 2874 
cm-1 became better resolved in the spectra of malignant tissues because of diminished 
intensities of CH2 bands in this region. Therefore, the largest variances from spectra to  
spectra in IR spectroscopic maps of normal tissue were assigned to spectral contributions of 
lipids reflecting cell differentiation. This result confirms that the development of tumor was 
characterized by a reduction in total lipid content. This reduction was also observed in the 
invasive area (clusters 5 and 7), which is composed of healthy and tumoral cells. This result 
is in agreement with those obtained in brain diseases (Krafft et al., 2006; Kneipp et al., 2000). 
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To distinguish between normal, tumor, and necrotic brain structures, cluster averaged 
spectra obtained from pseudo-color maps were input in the hierarchical cluster analysis 
using Ward’s clustering algorithm and the square Euclidian distance measure. The result, as 
shown on the dendrogram in Fig. 4, showed a clear distinction between all normal and 
tumor brain structures. Indeed, the class related to normal brain structures was divided to 
two sub-clusters associated to white matter (clusters 4 corresponding to higher lipid 
content) and the second sub-cluster related to grey matter described by clusters 1 and 6 
(intermediate cortex layers) and clusters 2, 8, and 11 (external cortex layers). We were also 
able to discriminate between glioma tumor (clusters 12, and 13) and necrosis (cluster 9) from 
peri-necrosis (clusters 3, 5, 7, and 10) in the second groups. In general, an increase in 
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malignancy is accompanied by a reduction in total lipids that involves all main classes of 
lipids found in plasma membranes (Campanella, 1992). Changes in lipid and in 
phospholipids contents, as seen in glioblastoma as compared with adjacent tissue, could 
indicate an evolution in the undergoing pathological process. This loss of lipids, correlated 
with demyelination, observed in different disorders, could be used as a spectroscopic 
marker. Increased levels of cholesterol esters (cholesterol oleate and linoleate) have also 
been reported in glioma tissue (Koljenovic et al., 2002). Koljenoviv et al. demonstrated that 
the difference between meningioma and dura is mainly related to lipids, cholesterol 
linoleate and linoleic acid levels. Steiner et al. studied the discriminating constituents 
between normal and tumoral tissues (astrocytoma and glioblastoma) by infrared 
spectroscopy (Steiner et al., 2003). They demonstrated that changes mainly arise from 
differences in lipid constituents. The potential use of lipid measurements for judging the 
stage, and hence the prognosis, of low grade tumors is suggested by the apparent gradual 
increase in lipid content over time. This increase, believed to be associated with necrosis, 
could thus be used in low grade tumors as an early marker of disease prior to the patient 
becoming symptomatic (Krafft et al., 2006; Koljenovic et al., 2005; Steiner et al., 2003). During 
tumor development, tissue composition and concentration of lipids decreased. Kraft et al. 
have investigated the lipid content of the white matter of human brain tissue using near 
infrared Raman spectroscopy (Krafft et al., 2005). They reported that the brain lipids can be 
divided into three principal classes: neutral lipids, phospholipids and sphingolipids. 

3. Distribution of molecular changes in brain constituents associated to 
tumor growth and invasion  
We have investigated the spatial distribution of molecular changes associated to C6 glioma 
progression using FT-IR micro-spectro-imaging in order to better understand the tissue 
transformation during carcinogenesis. Integrated intensity ratios bands were used in the 
region of 3700–2800 cm−1 to characterize differences between healthy and pathological brain. 
Maps of absorbance intensity ratios of bands in the region from 3000 to 2800 cm−1 due to 
CH2 and CH3 stretching vibrations (mainly due to membrane lipid which is directly related 
to the lipid acyl, primarily saturated) and those due to CH2 and NH stretching vibrations 
(due to the protein-to-lipid ratios) were calculated and pseudo color maps scores were 
constructed (Fig. 5). These integrated absorbance intensity were correlated to molecular 
changes associated to tissue transformation. The comparison between the pseudo color 
scores maps and  histological image shows that high scores described the white matter 
structures such as CC and CA (colorbar).  These scores decreased in the grey matter and 
become null in the tumor tissues. This intensity ratio was correlated to myelin content. In 
fact, white matter presents important lipid content due to high myelin level. The 
concentration of myelin decreased from CC to cortex. In general, an increase in malignancy 
is accompanied by a reduction in total lipids that involves all main classes of lipids found in 
plasma membranes (Krafft et al., 2006). This loss of lipids was correlated with 
demyelination, observed in the scores maps associated to tumor. We have study the 
distribution of the intensity ratio 3292/2852 cm-1 corresponds to NH stretching vibration in 
proteins vs symmetric CH2 stretching mode of the membrane lipid. The results show that 
high score value was related to tumor at days 7, 12, 15, and 19 days PI. These scores 
decreased from invasion zone to normal brain structures (white matter and grey matter).  
The common underlying effects of malignancy are changes in the constituents that lead to  

Fourier Transform Infrared Microspectroscopy for  
Cancer Diagnostic of C6 Glioma on Animal Model 

 

141 
 
 

Fi
g.

 5
. B

io
ch

em
ic

al
 d

is
tr

ib
ut

io
n 

of
 th

e 
ch

an
ge

s 
in

 th
e 

m
ol

ec
ul

ar
 c

om
po

si
tio

n 
of

 ti
ss

ue
s 

th
ro

ug
h 

th
e 

ev
ol

ut
io

n 
of

 C
6 

br
ai

n 
gl

io
m

a.
 

M
ap

s 
of

 a
bs

or
ba

nc
e 

in
te

ns
ity

 ra
tio

s 
of

 b
an

ds
 in

 th
e 

re
gi

on
 fr

om
 3

00
0 

to
 2

80
0 

cm
−1

 d
ue

 to
 C

H
2 a

nd
 C

H
3 s

tr
et

ch
in

g 
vi

br
at

io
ns

 
(m

ai
nl

y 
du

e 
to

 m
em

br
an

e 
lip

id
 w

hi
ch

 is
 d

ir
ec

tly
 re

la
te

d 
to

 th
e 

lip
id

 a
cy

l, 
pr

im
ar

ily
 s

at
ur

at
ed

) a
nd

 th
os

e 
du

e 
to

 C
H

2 a
nd

 N
H

 
st

re
tc

hi
ng

 v
ib

ra
tio

ns
 (d

ue
 to

 th
e 

pr
ot

ei
n-

to
-li

pi
d 

ra
tio

) w
er

e 
co

ns
tr

uc
te

d 
an

d 
us

ed
 to

 id
en

tif
y 

w
hi

ch
 b

io
ch

em
ic

al
 m

ar
ke

rs
 c

ou
ld

 
be

 m
or

e 
po

te
nt

ia
l i

nd
ic

at
or

s 
of

 s
uc

h 
va

ri
at

io
ns

 b
et

w
ee

n 
no

rm
al

 a
nd

 tu
m

or
 d

ev
el

op
m

en
t 



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

140 

malignancy is accompanied by a reduction in total lipids that involves all main classes of 
lipids found in plasma membranes (Campanella, 1992). Changes in lipid and in 
phospholipids contents, as seen in glioblastoma as compared with adjacent tissue, could 
indicate an evolution in the undergoing pathological process. This loss of lipids, correlated 
with demyelination, observed in different disorders, could be used as a spectroscopic 
marker. Increased levels of cholesterol esters (cholesterol oleate and linoleate) have also 
been reported in glioma tissue (Koljenovic et al., 2002). Koljenoviv et al. demonstrated that 
the difference between meningioma and dura is mainly related to lipids, cholesterol 
linoleate and linoleic acid levels. Steiner et al. studied the discriminating constituents 
between normal and tumoral tissues (astrocytoma and glioblastoma) by infrared 
spectroscopy (Steiner et al., 2003). They demonstrated that changes mainly arise from 
differences in lipid constituents. The potential use of lipid measurements for judging the 
stage, and hence the prognosis, of low grade tumors is suggested by the apparent gradual 
increase in lipid content over time. This increase, believed to be associated with necrosis, 
could thus be used in low grade tumors as an early marker of disease prior to the patient 
becoming symptomatic (Krafft et al., 2006; Koljenovic et al., 2005; Steiner et al., 2003). During 
tumor development, tissue composition and concentration of lipids decreased. Kraft et al. 
have investigated the lipid content of the white matter of human brain tissue using near 
infrared Raman spectroscopy (Krafft et al., 2005). They reported that the brain lipids can be 
divided into three principal classes: neutral lipids, phospholipids and sphingolipids. 

3. Distribution of molecular changes in brain constituents associated to 
tumor growth and invasion  
We have investigated the spatial distribution of molecular changes associated to C6 glioma 
progression using FT-IR micro-spectro-imaging in order to better understand the tissue 
transformation during carcinogenesis. Integrated intensity ratios bands were used in the 
region of 3700–2800 cm−1 to characterize differences between healthy and pathological brain. 
Maps of absorbance intensity ratios of bands in the region from 3000 to 2800 cm−1 due to 
CH2 and CH3 stretching vibrations (mainly due to membrane lipid which is directly related 
to the lipid acyl, primarily saturated) and those due to CH2 and NH stretching vibrations 
(due to the protein-to-lipid ratios) were calculated and pseudo color maps scores were 
constructed (Fig. 5). These integrated absorbance intensity were correlated to molecular 
changes associated to tissue transformation. The comparison between the pseudo color 
scores maps and  histological image shows that high scores described the white matter 
structures such as CC and CA (colorbar).  These scores decreased in the grey matter and 
become null in the tumor tissues. This intensity ratio was correlated to myelin content. In 
fact, white matter presents important lipid content due to high myelin level. The 
concentration of myelin decreased from CC to cortex. In general, an increase in malignancy 
is accompanied by a reduction in total lipids that involves all main classes of lipids found in 
plasma membranes (Krafft et al., 2006). This loss of lipids was correlated with 
demyelination, observed in the scores maps associated to tumor. We have study the 
distribution of the intensity ratio 3292/2852 cm-1 corresponds to NH stretching vibration in 
proteins vs symmetric CH2 stretching mode of the membrane lipid. The results show that 
high score value was related to tumor at days 7, 12, 15, and 19 days PI. These scores 
decreased from invasion zone to normal brain structures (white matter and grey matter).  
The common underlying effects of malignancy are changes in the constituents that lead to  

Fourier Transform Infrared Microspectroscopy for  
Cancer Diagnostic of C6 Glioma on Animal Model 

 

141 
 
 

Fi
g.

 5
. B

io
ch

em
ic

al
 d

is
tr

ib
ut

io
n 

of
 th

e 
ch

an
ge

s 
in

 th
e 

m
ol

ec
ul

ar
 c

om
po

si
tio

n 
of

 ti
ss

ue
s 

th
ro

ug
h 

th
e 

ev
ol

ut
io

n 
of

 C
6 

br
ai

n 
gl

io
m

a.
 

M
ap

s 
of

 a
bs

or
ba

nc
e 

in
te

ns
ity

 ra
tio

s 
of

 b
an

ds
 in

 th
e 

re
gi

on
 fr

om
 3

00
0 

to
 2

80
0 

cm
−1

 d
ue

 to
 C

H
2 a

nd
 C

H
3 s

tr
et

ch
in

g 
vi

br
at

io
ns

 
(m

ai
nl

y 
du

e 
to

 m
em

br
an

e 
lip

id
 w

hi
ch

 is
 d

ir
ec

tly
 re

la
te

d 
to

 th
e 

lip
id

 a
cy

l, 
pr

im
ar

ily
 s

at
ur

at
ed

) a
nd

 th
os

e 
du

e 
to

 C
H

2 a
nd

 N
H

 
st

re
tc

hi
ng

 v
ib

ra
tio

ns
 (d

ue
 to

 th
e 

pr
ot

ei
n-

to
-li

pi
d 

ra
tio

) w
er

e 
co

ns
tr

uc
te

d 
an

d 
us

ed
 to

 id
en

tif
y 

w
hi

ch
 b

io
ch

em
ic

al
 m

ar
ke

rs
 c

ou
ld

 
be

 m
or

e 
po

te
nt

ia
l i

nd
ic

at
or

s 
of

 s
uc

h 
va

ri
at

io
ns

 b
et

w
ee

n 
no

rm
al

 a
nd

 tu
m

or
 d

ev
el

op
m

en
t 



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

142 

an altered metabolism and biochemical composition in the malignant tissues. This study 
confirms the absorption intensity ratios were correlated with the histological state of the 
sample. Such a result may indicate the change of lipid and protein distribution in 
pathological tissues with respect to healthy one. There are some papers considering the 
pathological state of tissues by analysis of the changes in band intensities in the region from 
3700 to 2800 cm−1. Eckel et al. have analyzed breast cancer tissues (Eckel et al., 2001). They 
have considered the 3300 cm−1 band which corresponds to NH stretching vibration in 
proteins as a good criterion for distinguishing between non-cancerous and cancerous parts 
of tissue. Liu et al. applied IR absorption of human breast tissues in vitro and studied the 
CH stretching region of lipids and NH absorption region from 3600 to 2700 cm−1 (Liu et al., 
2006). Gazi et al. used Synchrotron-FTIRM imaging to study prostate cancer cells and 
analyzed the distribution of lipid absorption intensities (CH2 and CH3) in the region from 
3000 to 2800 cm−1 (Gazi et al., 2005) Krafft et al. have evaluated the usefulness of the lipid-to-
protein ratio (2850/1655 cm−1) as a spectroscopic marker to discriminate between normal 
and tumor tissue, as well as between low- and high-grade glioma tissues. They 
demonstrated that this ratio is maximal for normal brain tissue and decreases with the 
progression of the disease (Krafft et al., 2007). The intensity ratio 3014/2874 cm-1 was higher 
in the invasion zone and peritumor part of the necrosis and decreased in the tumor and 
normal brain tissues. This intensity ratio can be used to provide an objective method to 
delineate lesion margins that would reduce unnecessary tissue excisions. 

4. Conclusion 
This study demonstrated that FT-IRM imaging, with high spatially resolved morphological 
and biochemical information can be used as a diagnostic tool, complementary to 
histopathology in order to understand the molecular changes associated to C6 glioma 
progression. Cluster analysis allowed investigation of C6 glioma progression (from day 7 to 
day 19 post implantation). Different clusters in the FTIR images were correlated with 
features of the histopathological images such as white and grey matters, tumor, peritumor, 
and necrosis. Our results showed that 7 days  after tumor implantation, FTIR investigations 
displayed a very small abnormal zone associated with the proliferation of C6 cells in the 
caudate putamen. From this day, rats developed solid and well-circumscribed tumors. 
Additionally, we have identified one peculiar structure all around the tumour. This 
structure was attributed to infiltrative events, such as peritumoral oedema observed during 
tumor development. The presence of necrotic areas was visible from day 15. In fact, the 
grade of malignancy and prognosis, in particular GBM multiforme, is based on the presence 
of necrosis. By combining intensity ratios of specific bands with imaging technique, we were 
able to take in account the variance due to the heterogeneity of brain tissues. We have 
monitored the changes in the intensity ratios of specific bands related to lipid and proteins. 
Our results reported that by correlating pseudocolor map scores with H&E staining it was 
possible to screen histological changes associated with tissue transformation. In fact, the 
integrated intensity in the 2800 to 3000 cm-1 spectral region described normal brain 
structures such as white matter (CC and CA) and some cortex layers (grey matter). The 
intensity decreased in the tumor tissues. Intensity ratio 3292/2852 cm-1 allowed the 
identification of tumor part of the tissue. The invasion zone was described by the 3014/2874 
cm-1 ratio. These constituents can be used as spectroscopic markers for early detection of 
tissue abnormality and discrimination among normal, invasion, tumor and necrosis. 
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in the invasion zone and peritumor part of the necrosis and decreased in the tumor and 
normal brain tissues. This intensity ratio can be used to provide an objective method to 
delineate lesion margins that would reduce unnecessary tissue excisions. 

4. Conclusion 
This study demonstrated that FT-IRM imaging, with high spatially resolved morphological 
and biochemical information can be used as a diagnostic tool, complementary to 
histopathology in order to understand the molecular changes associated to C6 glioma 
progression. Cluster analysis allowed investigation of C6 glioma progression (from day 7 to 
day 19 post implantation). Different clusters in the FTIR images were correlated with 
features of the histopathological images such as white and grey matters, tumor, peritumor, 
and necrosis. Our results showed that 7 days  after tumor implantation, FTIR investigations 
displayed a very small abnormal zone associated with the proliferation of C6 cells in the 
caudate putamen. From this day, rats developed solid and well-circumscribed tumors. 
Additionally, we have identified one peculiar structure all around the tumour. This 
structure was attributed to infiltrative events, such as peritumoral oedema observed during 
tumor development. The presence of necrotic areas was visible from day 15. In fact, the 
grade of malignancy and prognosis, in particular GBM multiforme, is based on the presence 
of necrosis. By combining intensity ratios of specific bands with imaging technique, we were 
able to take in account the variance due to the heterogeneity of brain tissues. We have 
monitored the changes in the intensity ratios of specific bands related to lipid and proteins. 
Our results reported that by correlating pseudocolor map scores with H&E staining it was 
possible to screen histological changes associated with tissue transformation. In fact, the 
integrated intensity in the 2800 to 3000 cm-1 spectral region described normal brain 
structures such as white matter (CC and CA) and some cortex layers (grey matter). The 
intensity decreased in the tumor tissues. Intensity ratio 3292/2852 cm-1 allowed the 
identification of tumor part of the tissue. The invasion zone was described by the 3014/2874 
cm-1 ratio. These constituents can be used as spectroscopic markers for early detection of 
tissue abnormality and discrimination among normal, invasion, tumor and necrosis. 
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1. Introduction 
Fast Fourier transform infrared (FTIR) spectroscopy has been used widely for the study of 
vibrations of protein molecules (Arrondo et al. 1993; Goormaghtigh et al. 1994; Haris & 
Chapman, 1994; Siebert, 1995; Barth & Zscherp, 2002; Petibois et al., 2006). Valuable 
information can be obtained of the secondary structure of the protein since peak positions 
and their relative amplitude are affected by the number of hydrogen bridges that sustain 
this secondary structure (Byler & Sussi, 1989; Fabian et al., 2001; Fabian et al., 2002). 
However, the spectral lines of proteins are usually broadened due to different molecular 
interactions thus making the identification of the structure difficult. Furthermore, 
identification of a particular protein within a complex matrix like a blood or a serum sample 
based on FTIR spectra is particularly challenging. Namely, direct application of automatic 
classification techniques is not a simple task, due to large numbers of attributes 
(measurements at different wavenumbers). Recently, principal component analysis (PCA) 
has been used as a statistical method for the feature extraction in the analysis of 
spectroscopic data aimed at detection of several complex organic samples (Hybl et al., 2003; 
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1. Introduction 
Fast Fourier transform infrared (FTIR) spectroscopy has been used widely for the study of 
vibrations of protein molecules (Arrondo et al. 1993; Goormaghtigh et al. 1994; Haris & 
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and their relative amplitude are affected by the number of hydrogen bridges that sustain 
this secondary structure (Byler & Sussi, 1989; Fabian et al., 2001; Fabian et al., 2002). 
However, the spectral lines of proteins are usually broadened due to different molecular 
interactions thus making the identification of the structure difficult. Furthermore, 
identification of a particular protein within a complex matrix like a blood or a serum sample 
based on FTIR spectra is particularly challenging. Namely, direct application of automatic 
classification techniques is not a simple task, due to large numbers of attributes 
(measurements at different wavenumbers). Recently, principal component analysis (PCA) 
has been used as a statistical method for the feature extraction in the analysis of 
spectroscopic data aimed at detection of several complex organic samples (Hybl et al., 2003; 
Melikechi et al.; 2008, Lazarevic et al., 2009). In these methods, the spectroscopic data can be 
represented in a three-dimensional (or arbitrary dimension) space of eigenvector projections 
of the matrices corresponding to a series of experimental data measured for different 
selected wavelengths (Massart et al., 2003). In this regard, each point of this space represents 
a full set of spectroscopic measurements corresponding to one sample. Differences between 
the spectra can be then visualized graphically as different points in the space of 
eigenvectors. Linear discriminant analysis (LDA) or support vector machines (SVM), an 
advanced machine learning technique, can be subsequently used for automatic observing 
these differences between spectra. LDA generates linear models that separate classes based 
on the assumption that class-wise distributions are multivariate Gaussian with the same 
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covariance matrix (independent of the class label). SVM are classification algorithms that 
automatically assign a class label to a vector of data with theoretically best generalization 
(ability to predict the class outside the training data), independently of the data distribution. 
SVM generate a hyperplane in the transformed feature space (a non-linear transformation 
applied to the original data) such that the separation plane is as far from the data closest to it 
as possible. By using non-linear transformation, the likelihood that the training data can be 
separated by a hyperplane increases. By maximizing the distance between the data and the 
hyperplane, we achieve the smallest complexity of the classifier and hence, according to 
computational learning theory, maximize the generalization capability of the classification 
model. In this study, we propose to use the output of PCA analysis as input of LDA and 
SVM and to perform an automatic identification of protein molecules based on their FTIR 
spectra.  
We use the proposed methodology to distinguish among the fast Fourier transform infrared 
(FTIR) spectra of proteins reported as possible biomarkers of ovarian cancer: monoclonal 
antibodies (MAB) and antigens (AG) of ovarian cancer marker CA125, Osteopontin (OPN), 
Leptin and insulin-like growth factor II (IGF2) (Mor et al., 2005; Schorge et al., 2004;  
Sutphen et al., 2004). We also complete a similar study on the common protein Bovine 
Serum Albumin (BSA) and human plasma samples for comparison purposes. We show that 
despite the presence of broadening mechanisms and evident similarities in the FTIR spectra 
of these proteins, the proposed method provides an automatic and effective identification of 
the proteins with almost perfect accuracy. This statistical procedure can also be applied to 
other spectroscopic methods such as fluorescence, NIR-VI absorbance spectroscopy and 
laser-induced breakdown spectroscopy.  
As an important application we also perform deuteration of proteins and study the 
differences in the FTIR spectra introduced by this process using the PCA and LDA 
methods. FTIR spectra of deuterated versions of the proteins have been used extensively 
for the study of the secondary structure (Baenziger & Methot, 1995; Dave et al., 2002; Nie 
et al., 2005). Deuteration occurs by simple dilution of proteins in heavy water that 
contains the deuterium isotope of hydrogen (2H). We have studied in details the changes 
induced by deuteration in the FTIR spectra of BSA and ovarian cancer biomarkers 
referred above.  We have also explored the use of temperature and ultrasound to increase 
the changes. We use PCA and LDA methods to differentiate undeuterated and deuterated 
versions of the same protein. We propose that these methods can be used for 
identification of proteins within a matrix containing a large variety of proteins like a 
blood or serum sample. Furthermore, we propose a FTIR based immunoassay that uses 
the developed data analysis method and deuterated versions of the corresponding 
monoclonal antibodies for detection of protein biomarkers contained in a complex matrix 
like blood, plasma or serum samples.  

2. Experimental method  
For measuring the FTIR spectra we use an attenuated total reflection (ATR) FTIR 
spectrophotometer NICOLET 6700 (Thermo Industries, Inc). Drops of the samples are 
deposited over an aperture on the top of the device. This aperture connects to the surface of 
a diamond prism where the total reflection occurs. Samples under study are distilled and 
deionized water, heavy water (99.8% purity Deuterium oxide from Alfa Easer) and high 
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purity proteins (Sigma): BSA, 15 mM saline solution of MAB to AG CA125, AG CA125, 
Leptin, OPN and IGF2. Usually water masks most of the contribution from the proteins. To 
eliminate water peaks the samples are dried through simple evaporation of the solvent 
before collecting data. A drop of 5 μL of the solution is deposited over the aperture of the 
spectrophotometer. The samples are then left to dry at room temperature during 30 minutes. 
The drying process is monitored by taking spectra every 5 minutes until solvent (water of 
heavy water) contribution is depleted. When the drying process is complete the spectra do 
not show further changes. The dried protein sample forms a film over the aperture of 
several tens of micrometers good enough for total reflection spectroscopy. The spectra are 
collected with a resolution of 4 cm-1. One hundred scans are averaged for each spectrum. 
The spectra show high reproducibility and a signal to noise value usually larger than 100. To 
collect data for the data analysis we repeat the spectroscopy experiment 40 times for each 
specimen. The deuteration of the proteins is performed using the dilution method at 
different concentrations and different dilution times. For solid samples like BSA we prepare 
directly a heavy water solution of the protein. For the solution samples we mix equal 
volumes of D2O and the original protein solution. Deuteration can be improved by adding 
additional drops to the previously dried sample. Deuteration can also be improved by 
changing the temperature or using ultrasound. For this purpose we use an ultrasound 
cleaner with temperature control (Fisher Scientific FS20). The temperature is monitored with 
an independent thermocouple.  

3. Classification methodology 
We propose a statistical framework for automatic classification of the FTIR spectra of 
different proteins. The framework is illustrated in figure 1. 
 

FTIR data

Dimensionality reduction (PCA)

principal components

Classification (SVM, LDA)

classified FTIR spectra

 
Fig. 1. Statistical framework for automatic FTIR spectra classification 

The first step in the framework corresponds to dimensionality reduction, in which we 
reduce the number of frequencies in FTIR spectra using PCA. Principal components 
obtained through PCA are them used as an input to the classification module, which 
provides final classification of particular FTIR spectra. 



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

148 

covariance matrix (independent of the class label). SVM are classification algorithms that 
automatically assign a class label to a vector of data with theoretically best generalization 
(ability to predict the class outside the training data), independently of the data distribution. 
SVM generate a hyperplane in the transformed feature space (a non-linear transformation 
applied to the original data) such that the separation plane is as far from the data closest to it 
as possible. By using non-linear transformation, the likelihood that the training data can be 
separated by a hyperplane increases. By maximizing the distance between the data and the 
hyperplane, we achieve the smallest complexity of the classifier and hence, according to 
computational learning theory, maximize the generalization capability of the classification 
model. In this study, we propose to use the output of PCA analysis as input of LDA and 
SVM and to perform an automatic identification of protein molecules based on their FTIR 
spectra.  
We use the proposed methodology to distinguish among the fast Fourier transform infrared 
(FTIR) spectra of proteins reported as possible biomarkers of ovarian cancer: monoclonal 
antibodies (MAB) and antigens (AG) of ovarian cancer marker CA125, Osteopontin (OPN), 
Leptin and insulin-like growth factor II (IGF2) (Mor et al., 2005; Schorge et al., 2004;  
Sutphen et al., 2004). We also complete a similar study on the common protein Bovine 
Serum Albumin (BSA) and human plasma samples for comparison purposes. We show that 
despite the presence of broadening mechanisms and evident similarities in the FTIR spectra 
of these proteins, the proposed method provides an automatic and effective identification of 
the proteins with almost perfect accuracy. This statistical procedure can also be applied to 
other spectroscopic methods such as fluorescence, NIR-VI absorbance spectroscopy and 
laser-induced breakdown spectroscopy.  
As an important application we also perform deuteration of proteins and study the 
differences in the FTIR spectra introduced by this process using the PCA and LDA 
methods. FTIR spectra of deuterated versions of the proteins have been used extensively 
for the study of the secondary structure (Baenziger & Methot, 1995; Dave et al., 2002; Nie 
et al., 2005). Deuteration occurs by simple dilution of proteins in heavy water that 
contains the deuterium isotope of hydrogen (2H). We have studied in details the changes 
induced by deuteration in the FTIR spectra of BSA and ovarian cancer biomarkers 
referred above.  We have also explored the use of temperature and ultrasound to increase 
the changes. We use PCA and LDA methods to differentiate undeuterated and deuterated 
versions of the same protein. We propose that these methods can be used for 
identification of proteins within a matrix containing a large variety of proteins like a 
blood or serum sample. Furthermore, we propose a FTIR based immunoassay that uses 
the developed data analysis method and deuterated versions of the corresponding 
monoclonal antibodies for detection of protein biomarkers contained in a complex matrix 
like blood, plasma or serum samples.  

2. Experimental method  
For measuring the FTIR spectra we use an attenuated total reflection (ATR) FTIR 
spectrophotometer NICOLET 6700 (Thermo Industries, Inc). Drops of the samples are 
deposited over an aperture on the top of the device. This aperture connects to the surface of 
a diamond prism where the total reflection occurs. Samples under study are distilled and 
deionized water, heavy water (99.8% purity Deuterium oxide from Alfa Easer) and high 

Statistical Analysis for Automatic Identification of Ovarian Cancer Protein-Biomarkers  
Based on Fast Fourier Transform Infrared Spectroscopy 

 

149 

purity proteins (Sigma): BSA, 15 mM saline solution of MAB to AG CA125, AG CA125, 
Leptin, OPN and IGF2. Usually water masks most of the contribution from the proteins. To 
eliminate water peaks the samples are dried through simple evaporation of the solvent 
before collecting data. A drop of 5 μL of the solution is deposited over the aperture of the 
spectrophotometer. The samples are then left to dry at room temperature during 30 minutes. 
The drying process is monitored by taking spectra every 5 minutes until solvent (water of 
heavy water) contribution is depleted. When the drying process is complete the spectra do 
not show further changes. The dried protein sample forms a film over the aperture of 
several tens of micrometers good enough for total reflection spectroscopy. The spectra are 
collected with a resolution of 4 cm-1. One hundred scans are averaged for each spectrum. 
The spectra show high reproducibility and a signal to noise value usually larger than 100. To 
collect data for the data analysis we repeat the spectroscopy experiment 40 times for each 
specimen. The deuteration of the proteins is performed using the dilution method at 
different concentrations and different dilution times. For solid samples like BSA we prepare 
directly a heavy water solution of the protein. For the solution samples we mix equal 
volumes of D2O and the original protein solution. Deuteration can be improved by adding 
additional drops to the previously dried sample. Deuteration can also be improved by 
changing the temperature or using ultrasound. For this purpose we use an ultrasound 
cleaner with temperature control (Fisher Scientific FS20). The temperature is monitored with 
an independent thermocouple.  

3. Classification methodology 
We propose a statistical framework for automatic classification of the FTIR spectra of 
different proteins. The framework is illustrated in figure 1. 
 

FTIR data

Dimensionality reduction (PCA)

principal components

Classification (SVM, LDA)

classified FTIR spectra

 
Fig. 1. Statistical framework for automatic FTIR spectra classification 

The first step in the framework corresponds to dimensionality reduction, in which we 
reduce the number of frequencies in FTIR spectra using PCA. Principal components 
obtained through PCA are them used as an input to the classification module, which 
provides final classification of particular FTIR spectra. 



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

150 

3.1 Principal component analysis (PCA)  
PCA is a powerful technique for dimensionality reduction in machine learning and data 
mining (Jolliffe, 2002). The central idea of PCA is to reduce the dimensionality of a data set 
consisting of a large number of interrelated variables (with non-diagonal covariance matrix), 
while retaining as much as possible of the variation present in the data set. This reduction is 
achieved by transforming to a new set of variables, which are called the principal 
components (PC). The PC are uncorrelated, and ordered in such a way that the first few 
retain most of the variation present in all of the original variables. 
Suppose that X is a N-dimensional matrix of k-dimensional random variables [x1; x2; xN], 
and that the variances of the k random variables and the structure of the covariances or 
correlations between the k variables are of interest. Assume that we intend to approximate 
the vector xi as a linear combination of m<k predetermined variables. In other words, 
assume that we would like to determine m

i ij jj 1
ˆ a== ∑x v , such that the mean square error 

( )2
i iˆE −x x  is minimized. It can be proven that the mean square error is minimized when 

vi, i = 1,…,m are eigenvectors corresponding to m largest  eigenvalues of the covariance 
matrix of X, and when aij are principal values projections of vector xi with respect to its 
mean and first m eigenvectors. The vector ix̂  contains m variables and thus it is typically 
stated that m “most significant” features are extracted out of k original coordinates. 
The covariance matrix C of x can be estimated as: 

 T1C X X
N 1

=
−

 ,   (1) 

Its eigenvectors (column vectors) and corresponding eigenvalues satisfy the following 
condition: 

 C vj=λj vj      ,  (2) 

We can formally define eigenvector matrix and the diagonal matrix of eigenvalues 
respectively as: 

 V=[v1 v2… vk] ,  (3) 

 ( )1 kdiag ,...,λ λΛ = .  (4) 

Therefore we can compute the coefficients aij as aij=xi vj. Computation of PCA for high-
dimensional data by definition may be very cumbersome, since it has O(k3) complexity, 
where k is the number of dimensions. The reason for such computational complexity is the 
requirement to compute eigenvalues and eigenvectors of a k*k matrix  

T1C X X
N 1

=
−

. To make computation feasible, we will follow recently proposed approach 

(Bishop, 2006) that can extract up to N-1 principal components with the largest eigenvalues, 
when N < k. 
Define * T1C XX

N 1
=

−
, and let U and *Λ  be respectively matrices of eigenvectors and 

eigenvalues of C* such that: 

 * *C U U= Λ   ,  (5) 
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If we assume TV X U=  and consider the estimated covariance matrix C, we can easily 
obtain that: 

 T T T * T * *1CV X XX U X C U X U V
N 1

= = = Λ = Λ
−

  ,  (6) 

In other words, V is the eigenvector matrix of C and *Λ  is corresponding diagonal matrix of 
eigenvalues. Since C* is of size N*N, using this technique would allow huge computational 
savings when N<<k.  Note that vectors in V are not necessary normalized (to have a unit 
norm). Hence, to achieve orthonormal eigenvectors, an additional normalization step is 
required. 

3.2 Linear Discriminant Analysis (LDA) 
LDA (Krzanowski, 1988; Seber, 1984) is a statistical technique that classifies objects by 
computing the logarithm of the likelihood function (likelihood is the probability of the class 
given the observed data). Here, data from each class is assumed to belong to a multivariate 
Gaussian distribution. The Gaussian distributions corresponding to different classes are 
assumed to have the different means but the same covariance matrix, leading to the linear 
discrimination.  
Formally, given the estimates of the prior probabilities pj, and means µj for each class j, and 
the estimate of the covariance matrix C, the logarithmic likelihood for a sample specified by 
a vector yi can be computed as  

 ( ) ( )T 1
j i j i j

1 1l( j) ln C lnp y C y , j 1,...,c
2 2

−= − + − − − =μ μ  ,  (7) 

where c is the total number of classes. 
Using eq. (7), the classification of an example from a test set, specified by vector newy  , is 
performed according to: 

 1 T 1 T
new j j j j j j new

1c arg max l( j) arg max ln p C C
2

− −⎛ ⎞= = − +⎜ ⎟
⎝ ⎠

yμ μ μ  . (8) 

Hence, the separation plane between classes i and j can be described as a hyperplane: 

 ( )1 1 T 1 T 1 T
ij i j i j i i j j

1 1f ( ) C C y lnp ln p C C 0
2 2

− − − −⎛ ⎞= − + − − + =⎜ ⎟
⎝ ⎠

y μ μ μ μ μ μ .  (9) 

For each class, we can define a decision margin as a minimal distance between a sample 
from a class and the separation planes. 
Let yi,j, i =1,…,nj be row feature vectors from the training set belonging to class j and let nj  
be the number of vectors in class j. We estimate the class priors, means, and the covariance 
matrix as: 

j
j

j 'j ' 1, ,c

np
n=

=
∑ …
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3.3 Support Vector Machines (SVM) 
LDA provides optimal classification with linear decision boundaries if its assumption of 
class-specific Gaussian distributions with identical covariances is satisfied. However, if this 
assumption is not satisfied, the optimal decision boundaries could be obtained by using 
SVM (Vapnik, 2000). The main idea of SVM is to construct a separation hyperplane, which 
optimally separates data examples belonging to two classes, such that the minimal distance 
between points and the separation hyperplane is maximized. Such constructed hyperplane 
provides the best generalization of unknown examples. SVM use structural risk 
minimization principle and aim to achieve zero training error while minimizing the 
complexity of the model. However, if linear separation is not possible, SVM work towards 
minimization of the number of misclassified examples on the training set by introducing the 
slack variables and regularization. Formally, SVM learning can be represented as the 
following quadratic programming problem (Bishop, 2006):  

 ( )
oi
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, ,d i 1
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i 0 i i

i

1min C s.t.
2
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where, w is vector defining the separation hyperplane, d0 is the intercept of the separation 
hyperplane, ci∈{-1,1} is a class label of the ith example determined by attribute vector xi, iξ is 
the slack variable corresponding to the ith example, C is a preset regularization constant, and 
y i= f ( ix ) is a vector representing a non-linear function of ix . In general, ix  and w can be 
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An example xnew from the test set is subsequently classified according to the following 
equation: 

 ( )T
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where newy =f (xnew), which can be expressed using the Lagrangian multipliers as: 
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where Ns denotes the number of support vectors—points closest to the separation 
hyperplane (i.e., number of non-zero Lagrangian multipliers). 
Similar as in the case of LDA, with SVM we can explicitly calculate the separation planes in 
the transformed space specified by: 
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If we select features in the transformed space to be proportional to eigenvalues and 
eigenfunctions of a symmetric non-negative definite kernel, then, due to the Mercer’s 
theorem, we can write ( )T

i j i jK ,=y y x x  where K is symmetric non-negative-definite 
function of two vectors (Bishop, 2006). Then, due to the Mercer’s spectral theorem for non-
negative definite symmetric kernels, SVM learning and classification can be stated directly 
using original (non-transformed) feature vectors as: 
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This makes possible using implicit and infinitely dimensional transformation f. Popular 
choices of kernel function include: 
• Linear kernel: ( ) TK , =u v u v ; 
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This makes possible using implicit and infinitely dimensional transformation f. Popular 
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• Polynomial kernel (p is a prespecified parameter):  ( ) ( )pTK , 1= +u v u v ; 

• Exponential kernel (σ is a pre-specified parameter):  ( )
2

2
1

2K , e
− −

σ=
u v

u v . 
The original SVM technique is designed for a two-class problem. For a multiclass problem 
(i.e., c>2) we use Directed Acyclic Graph SVM (DAG-SVM) method (Platt et al., 2000) 
which for a c-class problem trains c(c-1)/2 two-class support machines and the class 
decision is performed based on successive elimination of classes as a result of a two-class 
comparison. In comparison to one-to-rest classifiers, the application of DAG-SVM is more 
practical, since it does not result in imbalanced training sets (Hsu & Lin, 2002; Jiang et al. 
2005). 

3.4 Classification accuracy evaluation 
To validate the accuracy of the classification model on the data unseen during the 
learning process, we use a four-fold cross validation, that can be described as follows 
(Bishop, 2006): 1) split randomly the dataset into four subsets; 2) set aside one of the 
subsets as the test set while the other three subsets are chosen to form the training set; 3) 
Utilize the training set to learn the classification model  and employ the test set to 
evaluate the accuracy of classification on data unseen during the learning process; 3) 
repeat the process four times so that each of the four subsets has a chance to be a test set; 
4) use averaged results from the four classification experiments as an overall measure of 
the model performance.  
As a measure of performance, we utilize overall classification accuracy, the ratio of correctly 
classified samples for all classes versus the number of all classified samples in the test set 
(Bramer, 2007), defined as: 

 correctly classified samples from all classesOverall Accuracy 100[%].
total number of samples

= ×   (20) 

4. Classification of proteins using PCA and SVM analysis of their FTIR 
spectra  
Figure 2 depicts the FTIR spectra from dried MAB to CA125, BSA, human plasma, MAB to 
ILGF2, MAB to Leptin and MAB to OPN. All spectra exhibit a similar structure. The origin 
of the peaks has been well documented in the literature (reviewed by Barth & Zscherp, 
2002). The spectra have several distinctive regions. The first region corresponds to the 
interval 2800-3500 cm-1. A NH2 region around 3200 cm-1 is strongly overlapped with OH 
stretching band. The region 1800-2700 cm-1 is relatively free of peaks. Amide bands are 
characteristics in the region 1200-1700 cm-1. Those arise from the amide bonds that link the 
amino acids. The amide I centered about 1740 cm-1 corresponds to the stretching mode of the 
C=O bond of the amide. It may have some contribution from CN stretching and CCN 
deformations. The amide peak II centered around 1550 cm-1 corresponds to the bending 
mode of the NH bond of the amide with contributions from C=O in plane bending and NC 
stretching. Amide III mode is the in-phase combination of NH in-plane bending and CN 
stretching. Other smaller peaks corresponding to CC stretching and CO bending are 
observed in this region. The characteristics of these peaks provide information about the 
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secondary structure of the proteins since the hydrogen bonds that establish this structure, 
are mostly associated to the CO and NH bonds. The wide peak in the region 400-800 cm-1 
corresponds to librations with contribution from other rotational and low energy vibrational 
lines. In figure 3 we show the results of the use of the first two PCA variables to represent 
the data presented in figure 2. Despite the evident similarities between the spectra the data 
are perfectly separable even with the use of only the first two PCA variables. For MAB to 
Leptin, ILGF2 and OPN the separation is larger. 
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Fig. 2. FTIR spectra of MAB to AG CA125, BSA, human plasma, MAB to ILGF2, MAB to 
Leptin and MAB OPN 

 

 
Fig. 3. Two-dimensional PCA of the data presented in figure 2 
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Fig. 2. FTIR spectra of MAB to AG CA125, BSA, human plasma, MAB to ILGF2, MAB to 
Leptin and MAB OPN 
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From figure 4 we can see that even the first two principal components are sufficient to 
achieve perfect separation of protein classes.  Therefore, even the application of linear SVM 
is able to provide perfect accuracy on both training and test sets (100% accuracy). The result 
does not depend on the number k of principal components used (k>1). The average number 
of support vectors per class is relatively small (Figure 4) and practically does not depend on 
the number of principal components used, which indicates good generalization and stability 
of the proposed technique. The results demonstrate the possibility of automatic classification 
of proteins using PCA and linear SVM with accuracy of nearly 100%. Hence, this justifies the 
application of the conceptually simpler LDA technique. Namely, LDA is also capable of 
achieving 100% accuracy using as little as 2 principal components. Hence, below we discuss 
the use of LDA to separate the FTIR spectra of proteins and their deuterated versions aimed 
at the development of a FTIR based immunoassay. 
 

 
Fig. 4. Support vector per class as a function of the number of PCA components after 
Lazarevic et al. (2009). Reproduction authorized by the International Society for Optical 
Engineering SPIE 

5. FTIR of deuterated proteins  
Deuterium is a stable isotope and can be used as a labeling agent. Deuteration occurs by 
simple dilution of proteins in heavy water that contains the deuterium isotope of 
hydrogen (2H). Hydrogen atoms on the surface of the protein are exposed to a fast 
exchange with deuterium atoms while hydrogen atoms deeply buried within the protein 
molecule exchange at a low pace. As an effect by substituting hydrogen atoms by 
deuterium atoms vibration modes of OH (hydroxyl peaks), NH2 (amide peaks), NH 
and/or CH can be affected.  Deuteration also induces the appearance of a strong peak in 
the region around 2400 cm-1. This region is usually free of peaks for most of the proteins. 
Besides its evident advantages and extensive use for the study of the secondary structure 
deuteration of proteins can have another important application still not considered in the 

Statistical Analysis for Automatic Identification of Ovarian Cancer Protein-Biomarkers  
Based on Fast Fourier Transform Infrared Spectroscopy 

 

157 

literature. Indeed, the FTIR spectrum of a deuterated protein is different from the non-
deuterated one, and this can be used for their identification within a matrix containing a 
large variety of proteins, e.g., a blood, plasma or serum sample. Furthermore, as we 
demonstrate, the use of PCA and LDA can identify these differences automatically with 
high accuracy. 
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Fig. 5. FTIR spectra of non-deuterated BSA and partially deuterated BSA  

As it is well known, the spectrum of water exhibits the stretching symmetric and 
antisymmetric modes at 3253 cm-1 and 3315 cm-1, respectively, the bending mode at 1647 cm-

1 and libration peaks observed below 700 cm-1. The spectrum also exhibits a small peak at 
2094 cm-1 that corresponds to the interaction between bending and libration modes. The 
heavy water spectrum exhibits a similar structure of peaks but all the peaks are shifted by a 
factor of 1.37 in close correspondence to the factor of 1.41 calculated from the differences of 
masses between hydrogen and deuterium atoms. The spectral widths of the D2O lines are 
also reduced by a factor of 1.35 comparing to those of water. Of special interest are the peaks 
of the stretching vibration of deuterium oxide molecule which are centered at 2401cm-1 and 
2471 cm-1. Proteins FTIR spectra are usually free of peaks in this area (see figure 2). 
Deuterated proteins can have peaks in this region, a feature that can be used for protein 
identification and calibration. As a consequence, shifts of spectral lines, changes in relative 
amplitudes and changes in the spectral widths are expected for deuterated proteins 
(Marcano et al., 2008).  
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As it is well known, the spectrum of water exhibits the stretching symmetric and 
antisymmetric modes at 3253 cm-1 and 3315 cm-1, respectively, the bending mode at 1647 cm-

1 and libration peaks observed below 700 cm-1. The spectrum also exhibits a small peak at 
2094 cm-1 that corresponds to the interaction between bending and libration modes. The 
heavy water spectrum exhibits a similar structure of peaks but all the peaks are shifted by a 
factor of 1.37 in close correspondence to the factor of 1.41 calculated from the differences of 
masses between hydrogen and deuterium atoms. The spectral widths of the D2O lines are 
also reduced by a factor of 1.35 comparing to those of water. Of special interest are the peaks 
of the stretching vibration of deuterium oxide molecule which are centered at 2401cm-1 and 
2471 cm-1. Proteins FTIR spectra are usually free of peaks in this area (see figure 2). 
Deuterated proteins can have peaks in this region, a feature that can be used for protein 
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In figure 5 we show the FTIR spectra of the dried BSA sample from solutions of distilled 
double dionized water (dash line) and D2O (solid line) prepared at concentration of 42 
μg/mL. The amide I peak (1644 cm-1) remains almost unaltered while the amplitude of the 
amide II peak (1530 cm-1) decreases. This peak corresponds to NH bending vibrations 
which are strongly affected by substitution of hydrogen by deuterium atoms. Amplitude 
increase is observed for other peaks in the region 1200-1300 cm-1. Remarkable is the 
presence of the peaks in the region 2400-2500 cm-1 which is free of peaks not only for BSA 
but also for a  number of antibody proteins (see figure 2). These peaks correspond to 
stretching OD vibration. Correspondingly, the hydroxyl peaks in the region 3000-3500 cm-1 
are reduced. 
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Fig. 6. Details of the FTIR spectra of BSA as a function of temperature in the regions  
1200-1700 cm-1 and 2200-2600 cm-1 

Increase in temperature deepens the changes observed. In figure 6 we show details of the 
FTIR spectra of BSA in the regions 1200-1700 cm-1 (a) and 2200-2600 cm-1 (b), respectively, 
after heating the solution from 25 oC up to 75 oC. High temperature breaks the hydrogen 
bonds opening the protein molecule and exposing it to wide deuteration. The effect is small 
up to a certain temperature (60 oC in our case) but when the thermal energy is enough to 
break the hydrogen bonds the effect increases substantially. For the sample heated up to 75 
oC the peaks at 2400 cm-1 are more than 5 times larger than the one for 55 oC (see figure 6b). 
The amide II peak is depleted as well as other peaks at 1200 cm-1(see figure 6a). The 
depletion is also remarkable for the hydroxyl peaks at 3500 cm-1.  Deuteration can be 
significantly increased by the use of ultrasound. Ultrasound shakes the molecule exposing 
its hydrogen bonds to deuteration. In figure 7 we show the results of deuteration of BSA in 
D2O at concentration of 500 mg/mL by using ultrasound during 120 minutes at room 
temperature. After exposing to ultrasound the solution is put to rest for long term dilution 
(1 week) at 6 oC. The changes in the absorbance FTIR are remarkable. The peak at 2466 cm-1 
dominates the center of the spectrum. The amide II peaks is almost depleted and the peak at 
1434 cm-1 triples its amplitude value.  
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Fig. 7. FTIR spectrum of highly deuterated BSA obtained using ultrasound 
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Fig. 8. FTIR spectra of deuterated MAB to Leptin and MAB to AG CA125 

We have studied the effects of deuteration on MAB to Leptin, MAB to AG CA125, AG 
CA125, Leptin, OPN and IGF2. All these proteins are originally diluted in saline solution by 
the supplier of chemicals. For deuteration we use 5 μL of the sample and diluted it into 5 μL 
of heavy water. One drop of this diluted solution is then deposited to dry over the 
spectrometer. In figure 8 we show the FTIR spectra of MAB to Leptin (8a) and MAB to AG 
CA125 (8b) from the original saline solution (dot lines) and heavy water dilution (solid 
lines). The spectra are normalized with respect to the amplitude of the amide I peak. Again 
we observe the surge of the DO peak in the region around 2400 cm-1 and also changes in the 
relative amplitudes of hydroxyl and amide II peaks. Reduction in the spectral width of the 
peak is also observed.  
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In figure 5 we show the FTIR spectra of the dried BSA sample from solutions of distilled 
double dionized water (dash line) and D2O (solid line) prepared at concentration of 42 
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presence of the peaks in the region 2400-2500 cm-1 which is free of peaks not only for BSA 
but also for a  number of antibody proteins (see figure 2). These peaks correspond to 
stretching OD vibration. Correspondingly, the hydroxyl peaks in the region 3000-3500 cm-1 
are reduced. 
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We have studied the effects of deuteration on MAB to Leptin, MAB to AG CA125, AG 
CA125, Leptin, OPN and IGF2. All these proteins are originally diluted in saline solution by 
the supplier of chemicals. For deuteration we use 5 μL of the sample and diluted it into 5 μL 
of heavy water. One drop of this diluted solution is then deposited to dry over the 
spectrometer. In figure 8 we show the FTIR spectra of MAB to Leptin (8a) and MAB to AG 
CA125 (8b) from the original saline solution (dot lines) and heavy water dilution (solid 
lines). The spectra are normalized with respect to the amplitude of the amide I peak. Again 
we observe the surge of the DO peak in the region around 2400 cm-1 and also changes in the 
relative amplitudes of hydroxyl and amide II peaks. Reduction in the spectral width of the 
peak is also observed.  
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Fig. 9. FTIR spectra of AG CA125 exposed to different amount of D2O 

We have also studied the effect of deuteration of ovarian cancer AG CA125, OPN, IGF2 and 
leptin. In figure 9 we show the effect of deuteration over the ovarian cancer AG CA125 after 
adding drops of D2O (figure 9a) subsequently. The sample is left to dry after addition of 
each drop and before recording the spectra. We observe decrease in the relative amplitude 
of several peaks all over the spectrum. In figure 9b we plot the relative amplitudes of five of 
these peaks as a function of the amount of D2O used. Similar results are obtained for leptin, 
OPN and IGF2. 
Figures 5-9 demonstrate that deuteration of proteins is relatively easy to achieve by simple 
dilution in heavy water for both the monoclonal antibody proteins and their corresponding 
antigens. If required the impact of deuteration can be increased by increasing the 
temperature or by applying ultrasound.  

6. Use of PCA method for detection of deuterated proteins 
As expected, using PCA to perform feature extraction can lead to distinguish with high 
efficiency between deuterated and undeuterated versions of the same protein. In figure 10 
we plot the tridimensional principal projection of the FTIR data from AG Leptin exposed to 
1, 2 and 3 drops of D2O. A good separation between the data is obtained. The absolute 
distance between the data increases with the number of D2O drops as correspond to larger 
deuteration effect as suggested by figure 10. However, the effect depends on the type of 
protein. In figure 11 we show the result for BSA. In this case, the distance between the 
unexposed sample PCA data and the exposed ones does not change monotonically with the 
numbers of D2O drops. This may be related to parasitic D-H exchange with water of the 
surrounding the sample atmosphere over the time of the experiment. Nevertheless, a very 
clear separation between BSA samples with different numbers of D2O drops is achieved 
with 100% classification accuracy using LDA with four-fold cross-validation. 
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Fig. 10. Tridimensional PCA representation of the FTIR data from AG Leptin exposed to 
successive drops of D2O. Non-exposed to D2O data are included for comparison 
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Fig. 11. Tridimensional PCA of FTIR spectra of BSA exposed to 1, 2 and 3 drops of D2O. The 
non-exposed to D2O samples is included for comparison 

Different regions of the spectra contribute differently to the separation. In figure 12 we show 
the plot of the PCA loadings (absolute value of components for eigenvectors v1-v3 from Eq. 2 
as functions of the wave-numbers. The larger the absolute value of the PCA loading is the 
larger is the importance of the corresponding spectral region for a more efficient separation. 
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We have also studied the effect of deuteration of ovarian cancer AG CA125, OPN, IGF2 and 
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dilution in heavy water for both the monoclonal antibody proteins and their corresponding 
antigens. If required the impact of deuteration can be increased by increasing the 
temperature or by applying ultrasound.  
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protein. In figure 11 we show the result for BSA. In this case, the distance between the 
unexposed sample PCA data and the exposed ones does not change monotonically with the 
numbers of D2O drops. This may be related to parasitic D-H exchange with water of the 
surrounding the sample atmosphere over the time of the experiment. Nevertheless, a very 
clear separation between BSA samples with different numbers of D2O drops is achieved 
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Different regions of the spectra contribute differently to the separation. In figure 12 we show 
the plot of the PCA loadings (absolute value of components for eigenvectors v1-v3 from Eq. 2 
as functions of the wave-numbers. The larger the absolute value of the PCA loading is the 
larger is the importance of the corresponding spectral region for a more efficient separation. 
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In the figure we see the importance of the low wavenumbers region (400-600 cm-1), the 
amide peaks region (1300-1600 cm-1) and the DO peak region (2400-2500 cm-1). 
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Fig. 12. PCA variables as functions of the wavenumbers corresponding to the data of  
figure 11 

7. Detecting a protein antibody in a complex matrix 
The proposed methods can be used to detect the presence of a particular protein in a 
complex matrix, such as blood, plasma, serum or other biomedical samples. The efficiency 
of separation can be increased by using deuterated versions of the proteins. In figure 13a 
we show the FTIR spectra of pure human plasma (stars), plasma with added non-
deuterated (diamonds) and deuterated (squares) MAB to CA125 at a concentration of 50 
μg/ml normalized by the amplitude of the peak at 3275 cm-1.  The differences are more 
remarkable for the deuterated samples comparing to the non deuterated ones. In figure 13b 
we show the tridimensional PCA plot corresponding to these data. Despite the similarities 
of spectra, the data are separable in the PCA coordinates space. The separation is larger for 
the deuterated version of the protein. The absolute distance between the centers of data 
cluster in the PCA coordinates space corresponding to plasma and the cluster 
corresponding to deuterated MAB to CA125 is more than twice larger than the distance of 
the center of the plasma cluster to the non-deuterated protein data cluster. Although the 
concentration used is relatively high, the result demonstrates possibilities of detection of 
proteins embedded in a complex matrix and the increase in sensitivity when using 
deuterated versions of the proteins.  
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The spectral changes in deuterated proteins and the statistical and data mining methods 
used for their analysis can be applied to develop new kinds of immunoassays for detection 
of antigen proteins. The immunoassays are aimed at detection of a particular antigen 
protein embedded in a complex matrix, such as blood, serum or a plasma sample. Figure 
14 describes two such immunoassays. Figure 14a depicts an immunoassay where non-
deuterated protein antibodies are deposited over a glass substrate (step 1). The plate is 
then exposed to the sample. The antibody proteins on the plate capture their 
corresponding antigens from the sample (step 2). Finally, the system is exposed to the 
presence of the deuterated versions of the antibody proteins. These deuterated antibodies 
are then attached to the trapped antigens forming a sandwich structure which is wash 
away to remove non captured proteins (step 3). This sandwiched structure can then be 
analyzed using an FTIR spectrophotometer. In a second type of immunoassay the first 
step is the same (see figure 14b). Then, the plate is exposed to the sample which has been 
previously diluted in heavy water.  Deuterated antigens can then be captured by their 
antibody protein deposited on a plate. The rest of the sample can be washed away. 
Finally, the presence of the antigens can be detected by performing the FTIR experiment 
over the treated plate. 
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Fig. 13. a) Normalized FTIR spectra of plasma and plasma containing deuterated and non-
deuterated MAG AG CA125, b)Tridimensional PCA plot of FTIR data from plasma and 
deuterated and non-deuterated versions of the protein MAB to CA125 

Several steps need to be completed before developing a FTIR-based immunoassay of 
practical use. Deuteration can affect the bioactivity of the proteins. In this regard, the affinity 
constant between the antibody and antigen can depend on the level of deuteration. The level 
of deuteration can be also affected by parasitic D-H exchanges that can mask the real results. 
Practical comparison with well established immunoassays such as ELISA must be 
completed. However, we show that the use of deuteration techniques in combination with 
statistical methods, such as PCA, LDA and SVM, will play a crucial role in the developing of 
this new kind of FTIR-based immunoassays aimed at detection of a targeted protein in a 
complex biosample.  
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constant between the antibody and antigen can depend on the level of deuteration. The level 
of deuteration can be also affected by parasitic D-H exchanges that can mask the real results. 
Practical comparison with well established immunoassays such as ELISA must be 
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Fig. 14. Proposed FTIR based immunoassays for detection of a given antigen 

8. Conclusions 
In this study, we demonstrate that using combination of PCA analysis and statistical and 
data mining classification techniques (LDA and SVM) it is possible to automatically 
determine a class of the FTIR sample of an unknown protein using a small number of 
principal components. In such a case, using conceptually simpler LDA analysis (that relies 
on stronger assumptions about the data than SVM) is justified. The full advantage of non-
linear SVM could, however, be expected in case of more complex and noisy spectroscopic 
data. The proposed data analysis technique is computationally fast and can in principle be 
applied in on-line learning classification framework. Work in progress includes testing the 
proposed technique on larger datasets to exclude the small variability of samples (the 
sample bias) as a potential reason for extremely high classification accuracy. We show that 
the techniques distinguish between different proteins with similar FTIR spectra and 
between deuterated and non-deuterated versions of the same protein. Furthermore, we 
demonstrate the use of the method for separation and identification of proteins embedded 
in a complex matrix of proteins such as plasma. We show that deuteration increases the 
sensitivity of the method. Finally, we propose an immunoassay that is aimed to utilize the 
demonstrated sensitivity of the methodology to detect a particular antigen protein in a 
complex biosample. 
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Fig. 14. Proposed FTIR based immunoassays for detection of a given antigen 

8. Conclusions 
In this study, we demonstrate that using combination of PCA analysis and statistical and 
data mining classification techniques (LDA and SVM) it is possible to automatically 
determine a class of the FTIR sample of an unknown protein using a small number of 
principal components. In such a case, using conceptually simpler LDA analysis (that relies 
on stronger assumptions about the data than SVM) is justified. The full advantage of non-
linear SVM could, however, be expected in case of more complex and noisy spectroscopic 
data. The proposed data analysis technique is computationally fast and can in principle be 
applied in on-line learning classification framework. Work in progress includes testing the 
proposed technique on larger datasets to exclude the small variability of samples (the 
sample bias) as a potential reason for extremely high classification accuracy. We show that 
the techniques distinguish between different proteins with similar FTIR spectra and 
between deuterated and non-deuterated versions of the same protein. Furthermore, we 
demonstrate the use of the method for separation and identification of proteins embedded 
in a complex matrix of proteins such as plasma. We show that deuteration increases the 
sensitivity of the method. Finally, we propose an immunoassay that is aimed to utilize the 
demonstrated sensitivity of the methodology to detect a particular antigen protein in a 
complex biosample. 
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1. Introduction    
The heart is one of the two crucial centers for human life. Thus, any disorder concerning the 
heart which may be able to occur is of prime importance to human health. The mortality rate 
stemming from heart diseases took the second lead after brain embolism in the world from 
1985 to 2006 (Jiang & Choi, 2006). Being such significant to humans, the heart organ is 
consisted of two cycles. At the moment of the closure of mitral and tricuspid valves, 
ventricular contraction comes out, alias one cycle begins with systole and ends with diastole 
(Sharif et al., 2000). Auscultation with stethoscope is a preferential method that the doctors 
use in order to differentiate normal cardiac systems from the abnormal ones that come out  
(Sinha et al., 2007). The listened heart sounds are formed through the flow of blood entering 
and exiting the heart and with the movements of cardiac valves connected to this flow. The 
sounds comprised of this blood flow are listened by the physicians via stethoscope. The 
heart sounds are interpreted and it is determined whether the patient has any disorder 
about the heart. On the other hand, auscultation method has some limitations. Auscultation 
depends on the physician’s interpretation of different heart sounds, hearing skill, experience 
and expertize (Kandaswamy et al., 2004). The required experience and expertize are 
achieved as a result of long examinations and diagnoses made by the physicians. Even 
though one physician has the necessary training so as to conduct auscultation and to 
diagnose cardiac disorders, he is still in need of clinical experience. Lacking experience and 
expertize are especially a difficulty for the newly graduates and medical interns. However,  
unsuitable conditions of the environment and incompatibility of  the patient can also lead to 
deficiency in the diagnosis process. Because of these difficulties which may be experienced, 
auscultation method that is listening with a stethoscope has been insufficient in the 
exploration of heart abnormalities.  
As the auscultation method fail to meet the needs of the physicians, they also make use of 
Electrocardiography (ECG) data along with stethoscope. ECG method, generated through 
the advancement of the technology, is a procedure helping physicians in the diagnosis of the 
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1. Introduction    
The heart is one of the two crucial centers for human life. Thus, any disorder concerning the 
heart which may be able to occur is of prime importance to human health. The mortality rate 
stemming from heart diseases took the second lead after brain embolism in the world from 
1985 to 2006 (Jiang & Choi, 2006). Being such significant to humans, the heart organ is 
consisted of two cycles. At the moment of the closure of mitral and tricuspid valves, 
ventricular contraction comes out, alias one cycle begins with systole and ends with diastole 
(Sharif et al., 2000). Auscultation with stethoscope is a preferential method that the doctors 
use in order to differentiate normal cardiac systems from the abnormal ones that come out  
(Sinha et al., 2007). The listened heart sounds are formed through the flow of blood entering 
and exiting the heart and with the movements of cardiac valves connected to this flow. The 
sounds comprised of this blood flow are listened by the physicians via stethoscope. The 
heart sounds are interpreted and it is determined whether the patient has any disorder 
about the heart. On the other hand, auscultation method has some limitations. Auscultation 
depends on the physician’s interpretation of different heart sounds, hearing skill, experience 
and expertize (Kandaswamy et al., 2004). The required experience and expertize are 
achieved as a result of long examinations and diagnoses made by the physicians. Even 
though one physician has the necessary training so as to conduct auscultation and to 
diagnose cardiac disorders, he is still in need of clinical experience. Lacking experience and 
expertize are especially a difficulty for the newly graduates and medical interns. However,  
unsuitable conditions of the environment and incompatibility of  the patient can also lead to 
deficiency in the diagnosis process. Because of these difficulties which may be experienced, 
auscultation method that is listening with a stethoscope has been insufficient in the 
exploration of heart abnormalities.  
As the auscultation method fail to meet the needs of the physicians, they also make use of 
Electrocardiography (ECG) data along with stethoscope. ECG method, generated through 
the advancement of the technology, is a procedure helping physicians in the diagnosis of the 
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heart disorders. ECG is the wave form taking the record of the electrical activity of the heart 
via electrodes attached to the skin. A simple and cheaply method, ECG is constantly used by 
the physicians. ECG records and their analysis that are used to detect defects in the heart are 
relatively a good method.  On the other hand, if the likely generating system of heart is 
utterly acting with small heart defects, it may look very difficult to diagnose these 
abnormalities with the analysis of ECG records as nearly no change in the ECG will be 
discovered. However, it was determined that this situation has almost led to changes among 
the sounds produced by the heart (Sinha et al., 2007). As it is not possible to detect some 
heart abnormalities with ECG, listening to heart sounds with auscultation method has 
earned more importance. Owing to the reasons explained above, there is a need for faster 
and more accurate diagnosis in the record and analysis of these heart sounds. 
The very first phase of developing the system that will help the physicians interpret the heart 
sounds accurately is the signal processing methods. When the studies based on these methods 
are searched, it can be seen that Fourier analysis has been used in many of the studies. Thanks 
to the Fourier analysis, it is possible to examine sound signals in the frequency space. In 
studies especially done on the classification of heart sounds, the frequency analysis of these 
digitized heart sounds are processed and then passed to classification stage with various 
artificial intelligence methods. If we survey some of the studies in literature that used heart 
sounds and Fourier transform together, in one study Segaier et al. developed a digital 
algorithm in order to detect the first heart sound (S1) and the second heart sound (S2) and to 
characterize systolic murmurs. The study done on the pediatry patients, Short-Time Fourier 
Transform (STFT) was used so as to carry out the analysis of the heart sounds taken from the 
patients (El-Sagaier et al., 2005). In another study, Folland et al., in the moment of auscultation, 
applied Fast Fourier Transform (FFT) and Levinson-Durbin algorithm to heart sounds to 
analyse the abnormalities in the heart sounds; and applied the data to the Multilayer 
Perceptron (MLP) and Radial Basis Function (RBF) artificial neural networks to classify 
abnormal sounds. Eventually, it was determined that in the classification of the heart sounds, 
the sensitivity levels that the MLP and RBF neural networks have gained were 84% and 88% 
consecutively (Folland et al., 2002). In another study, Debbal ve Breksi-Reguig have done the 
time-frequency analysis of S1 and S2 heart sounds, and applied Wigner distribution and 
wavelet transform techniques to the heart sounds. They made a comparison between FFT and 
STFT and with these techniques they implemented (Debbal & Breksi-Reguing 2007). In one of 
the study by Abdel-Alim et al., they made a classification of heart sounds that belonged to 
different cardiac valve disorders with the use of a feed forward artificial neural network. In the 
course of analysis of these sounds, discrete wavelet transform, FFT, and linear prediction 
coding methods were employed.  In the end, the classification success was found out to be 
%95.7 (Abdel-Alim et al., 2002). 
In this study, the heart sounds achieved through a stethoscope were initially computed, and 
they were subjected to Discrete Fourier Transform (DFT) and next the graphics and the 
frequency spectrum in the time domain that belonged to the heart sounds were drawn on 
the pocket computer. Thus, frequency spectrum of normal and abnormal heart sounds was 
obtained via DFT, so it was aimed to prepare the physicians with some more data in the 
course of auscultation. 

2. Structure of the heart and heart sounds 
Heart is an empty muscle that pumps the blood to the blood vessels in the whole body 
(Sharif et al., 2000). The most significant and primary duty of the heart is to dispatch and 
pump the blood to the circulation system like a pump (Ahlström, 2006). 
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As it can be seen in figure 1, the heart is composed of two parts: the right heart and the left 
heart. The right heart pumps the blood into lungs. This cycle is called as pulmonary cycle. On 
the other side, the left heart is the part that provides all the organs and the whole body with 
the oxygen and nutrients (Sharif et al., 2000). In addition, there are four chambers in the heart 
that are known as the right and the left atriums and ventricles. These two atriums are the 
places where the blood entering the heart is stored. The ventricles, on the other hand, convey 
the blood to the whole body like a pump. As the heart contracts, the blood makes a pressure 
towards the valve and moves from the atrium to the ventricle (Barschdorff et al., 1990). 
 

 
Fig. 1. Structure of the Heart 

The relation among the volume, pressure and flow of the blood in the heart determines the 
opening and the closing of the valves. Normal heart sounds occur in the course they close. 
Besides, the sounds occurring in the heart and in the vessels with the flow are constituent of 
the heart sounds, too. But, as a matter of fact, how they occur is still a matter of discussion 
(Ahlström, 2006). 
The abnormalities in the heart structure mostly reflect to the sounds that the heart produce 
(Leung et al., 2000). The formation of heart sounds and murmurs are generally developed 
through the actions of myocardial walls, the opening and closing of cardiac valves, and the 
blood flow into and out of the ventricles (Kemaloğlu & Kara, 2002). 
While the sinoatrial node contracts itself and the contraction spreads to the atria, the 
pressure of left atrium surpasses the pressure of left ventricle. This contraction is then 
extended to the ventricles. This moment is the time when ventricle starts to depolarize. The 
contraction spreading into the ventricle contracts the muscles of the ventricle and leads to a 
contraction in the ventricle. The pressure in the left ventricle starts to rise and as soon as it 
reaches to the pressure of the left valve, the atrium and the valve ventricles close. At that 
moment, S1 comes out. Mitral valve normally closes earlier than the triscuspid valve. For 
that reason, S1 has two elements namely mitral and triscuspid. The frequency band is 20–45 
Hz and the period is 50–100 ms. 
The ventricle pressure goes on rising, and as the pressure goes over the pressure of aorta, 
firstly aorta valve and next pulmonary valve open.  Soon after starts the period of sending the 
blood out of ventricles. As the ventricle muscles relax, the ventricle pressure starts to decrease. 
At the moment that the internal pressure in the ventricle goes below the aorta pressure, the 
aorta valve closes. The pulmonary valve closes respectively. The closure of these two valves 
forms the S2 sound. The frequency band is 50–70 Hz and the period is 25–50 ms. 
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heart disorders. ECG is the wave form taking the record of the electrical activity of the heart 
via electrodes attached to the skin. A simple and cheaply method, ECG is constantly used by 
the physicians. ECG records and their analysis that are used to detect defects in the heart are 
relatively a good method.  On the other hand, if the likely generating system of heart is 
utterly acting with small heart defects, it may look very difficult to diagnose these 
abnormalities with the analysis of ECG records as nearly no change in the ECG will be 
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Heart is an empty muscle that pumps the blood to the blood vessels in the whole body 
(Sharif et al., 2000). The most significant and primary duty of the heart is to dispatch and 
pump the blood to the circulation system like a pump (Ahlström, 2006). 
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As it can be seen in figure 1, the heart is composed of two parts: the right heart and the left 
heart. The right heart pumps the blood into lungs. This cycle is called as pulmonary cycle. On 
the other side, the left heart is the part that provides all the organs and the whole body with 
the oxygen and nutrients (Sharif et al., 2000). In addition, there are four chambers in the heart 
that are known as the right and the left atriums and ventricles. These two atriums are the 
places where the blood entering the heart is stored. The ventricles, on the other hand, convey 
the blood to the whole body like a pump. As the heart contracts, the blood makes a pressure 
towards the valve and moves from the atrium to the ventricle (Barschdorff et al., 1990). 
 

 
Fig. 1. Structure of the Heart 

The relation among the volume, pressure and flow of the blood in the heart determines the 
opening and the closing of the valves. Normal heart sounds occur in the course they close. 
Besides, the sounds occurring in the heart and in the vessels with the flow are constituent of 
the heart sounds, too. But, as a matter of fact, how they occur is still a matter of discussion 
(Ahlström, 2006). 
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through the actions of myocardial walls, the opening and closing of cardiac valves, and the 
blood flow into and out of the ventricles (Kemaloğlu & Kara, 2002). 
While the sinoatrial node contracts itself and the contraction spreads to the atria, the 
pressure of left atrium surpasses the pressure of left ventricle. This contraction is then 
extended to the ventricles. This moment is the time when ventricle starts to depolarize. The 
contraction spreading into the ventricle contracts the muscles of the ventricle and leads to a 
contraction in the ventricle. The pressure in the left ventricle starts to rise and as soon as it 
reaches to the pressure of the left valve, the atrium and the valve ventricles close. At that 
moment, S1 comes out. Mitral valve normally closes earlier than the triscuspid valve. For 
that reason, S1 has two elements namely mitral and triscuspid. The frequency band is 20–45 
Hz and the period is 50–100 ms. 
The ventricle pressure goes on rising, and as the pressure goes over the pressure of aorta, 
firstly aorta valve and next pulmonary valve open.  Soon after starts the period of sending the 
blood out of ventricles. As the ventricle muscles relax, the ventricle pressure starts to decrease. 
At the moment that the internal pressure in the ventricle goes below the aorta pressure, the 
aorta valve closes. The pulmonary valve closes respectively. The closure of these two valves 
forms the S2 sound. The frequency band is 50–70 Hz and the period is 25–50 ms. 



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

170 

When the internal pressure of the ventricle drops below the pressure of atrium, mitral and 
triscuspid valves open and the ventricles are filled with blood. As the ventricles are filled 
with blood, the vibrations of the ventricle muscles form the third heart sound (S3). It could 
be heard in the young while it is an indicator of disorder of myocard function in the 
overaged.  This sound arises almost after 150 ms after the closure sound of aorta. 
In the last parts of blood fulfillment of the ventricles, the flow of blood that was again 
quickened with depolarization of the atrium revibrates the ventricle walls and in some 
pathologic cases, this causes the fourth heart sound (S4). S4 is normally not heard in the 
adults but could be taken in children. 
Four sounds seen in figure 2 are known as the simple heart sounds. Apart from these 
sounds, some sounds as murmur may occur in some heart disorders. These sounds are in 
the frequency band of 100–600 Hz and are long-time compared to the simple heart sounds 
(Kemaloğlu & Kara 2002). 
 

 
Fig. 2. The First, Second, Third and Fourth Heart Sounds 

The sounds that are named as murmur and caused by the blood passing through the 
cardiovascular system loudly are the significant examples of abnormal sounds. The timing 
of the murmur and the level of height have remarkable significance concerning the situation 
of the heart. For instance; in the course of diastole a murmur marks erroneous functionality 
of the heart valve. On the other hand, in the course of systole, the murmurs may be related 
with the healthy and pathological heart depending on the acoustic character of the murmur 
(Ölmez & Dokur, 2003). 
The murmurs are formed through irregular blood flow and as a result of narrowing and 
leaking valves or the existence of the abnormal passages in the heart. Eventually, the blood 
flow that comes out leads to steady and  irregular vibrations that are transmitted from the 
cardiac and tissues belonging to the chest to surface of the chest (Ahlström, 2006). 
While defining the heart sounds, we need to draw attention to the frequency, density and 
the quality of the sound. For that reason, it is a must to listen to the heart sounds carefully 
that are used as reference S1 and S2 and to determine the place accurately in the course of 
listening. These sounds experience the systole and diastole phases as the heart operates, and 
the sound differentiations in these places provide related information in connection with the 
disorders in the heart (Say, 2002). 

3. Fourier transform 
When the signals in the real world are searched, it could be said that the signals that are 
encountered practically are the time domain signals and the size measured is the function of 
the time. For that reason, the signal needs to be transferred to a different domain through an 
application of mathematical transform and some information from the constituents that 
represent the signal in the domain can be obtained about the signal. For example, the 
frequency spectrum (frequency constituents) of the signal is gained with Fourier transform. 
The information hidden in the time domain is brought out in the frequency domain (Say, 
2002). 
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The Fourier display of the signals plays an extremely substantial role in signal processing in 
both continuous time and discrete time. Thus, it supplies a method to match the signals to a 
domain and makes it possible to study on them. Fourier transform allows for a distinctive 
way to interpret the signal and systems (Hayes, 1999). 
Fourier transform is a method of analysis that was developed by Jean B. Joseph Fourier, a 
French physicist and a mathematician, in 1987 when he was studying on the Fourier’s 
research about heat and dispersion and it plays an important part in the signal processing 
(Swanson, 2000). In the study that Fourier conducted in 1807, he said that it could be 
achieved through selecting and gathering the sinus and cosine waves among the continuous 
and periodical signals (Smith 1997). 
The Fourier transform that is used to determine the frequency constituent of the raw signal 
in the time domain can be defined with the two equities as follows: 

 ( ) ( ). .j tX x t e dtωω
∞

−

−∞

= ∫  (1) 

 1( ) ( ). .
2

j tx t X e dωω ω
π

∞

−∞

= ∫  2 fω π=  (2) 

With Fourier transform, the signal is extricated into complex exponential functions that have 
various frequencies. In the equations t, specifies time; ω, specifies angular frequency and f 
specifies the frequency. x, specifies the signal in the time domain,  X specifies the signal in 
the frequency domain.  In the equation 1 given above, the Fourier transform of x(t) and in 
the equation 2, inverse Fourier transform are displayed. 
When the equation 1 is viewed, it is seen that x(t) signal is multiplied with an exponential 
term in a certain f frequency and the integral of this multiplication is taken from minus 
infinity to plus infinity all over the time. It should be taken into account that the effect of the 
f frequency constituent to the integration will be the same no matter when it may come out 
among these times. The integration result will not change whether the f frequency 
constituent comes out in the course of t1 or t2.  Fourier transform only indicates whether a 
certain frequency constituent exists or not. Just a spectral constituent of a signal can be 
gained through Fourier transform (Say, 2002). 
Today, given that, the signal processing is held by computer algorithm and the computers 
may work in limited length and with discrete signals, it is noticed that the Fourier transform 
to be used will be discrete time Fourier , in other words, DFT (Smith, 1997). 

3.1 Discrete Fourier Transform 
On the contrary to some arrays defined theoretically, the Fourier transform of real arrays 
may not be calculated. Thus, it is not convenient for the digital signals to use Fourier 
transform. That the frequency is displayed analogically and it requires infinite number 
samples are some of the basic reasons of this ineptitude. 
Due to these difficulties, if the importance of Fourier transform in signal processing is taken 
into account, a more practical transform needs to be defined. The new transform defined as 
normal spaced N frequency point (Ωk) around a unit disc and N sample of x(n) arrays is 
called as DFT (Kayran & Ekşioğlu, 2004). 
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DFT is in essence a kind of transform such as Fourier arrays transform and Fourier integral 
transform. The transform feature is very powerful for the time arrays, which also allows for 
inverse transform. As can be noticed from its name, it owns utterly similar characteristics 
with Fourier integral transform. It especially defines the spectrum of a time array (Cochran 
et al., 1967). 
This transform that also allows inverse transform includes distinctive qualities. The 
principal quality is the equivalent of multiplication of two DFT in the time domain is the 
total convolution of arrays. In addition, many spectrum analysis methods are based on DFT 
(Kayran & Ekşioğlu, 2004). 
DFT is defined through the equation 3 given below: 

 
1

0
exp( 2 / )

N

r k
k

A X jrk Nπ
−

=
= −∑  0,..., 1r N= −  (3) 

Here, Ar, symbolizes rth coefficient of the DFT and Xk symbolizes kth sample of a time arrays 
composed of N sample. Xk’s may be complex numbers while Ar’s are always complex 
numbers. The formation of the formula that is consistent with the notation given in the 
equation 3 is mostly shown with the formula given in the equation 4: 
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Since Xk’s are commonly the values of discrete time points of a function, r arrays are 
sometimes referred as the frequency of DFT. DFT, too, is termed as “discrete time, finite 
range Fourier transform”. 
If we take a look at the inverse transform of equation 4: 
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This relation (equation 6) is termed as the inverse of DFT (Cochran et al., 1967). 
In the figures between 3 and 7 below, the flow diagram of DFT algorithm that was taken as a 
basis in the programming of the pocket computer was given. The main module seen in 
figure 3 calls for four modules, which are used in the calculation process.  
The next module, shown in figure 4, sets up the twiddle factor arrays, that is the 
computation and storage of the sample values of cosines and sinus over one cycle, with 
argument starting from zero with increment of 2П/N. This module is named as twid_fac. i 
variable, here, is used as loop counter. On the condition that  i variable reaches N that is the 
data size, the loop is terminated. The tfc and tfs arrays whose sizes are equal to N are used to 
hold the sample values of sinus and cosines respectively. 
The next module seen in figure 5 reads the real and imaginary parts of the complex input 
data, and in turn transfers them into N dimensioned xr and xi arrays. It is assumed that the 
real parts of the input data are stored before the imaginary parts in the input file. If the data 
is real, the data in the xi array is initialized to 0 and the data in the xr array is read. This 
module is called in-put. 
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Fig. 3. The Main Module for Direct Implementation of the DFT 
 
 

 
 
Fig. 4. The Twiddle Factor Module 
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Fig. 5. The Input Module 
The next module that is dir_dft module is given in figure 6.  dir_dft module is used in the 
calculation of DFT coefficients. The calculation has been achieved via two nested loops. 
While the outer loop controls the frequency index, the inner loop controls the access of the 
data values. In each outer loop’s iteration only one coefficient is calculated. The real and 
imaginary parts of the coefficients are stored, respectively, in arrays XR and XI, each of size 
N. The access of correct twiddle factor values is carried out using the mod function. Inside 
the inner loop, each coefficient is computed according to the DFT definition. 
 

 
Fig. 6. The DFT Module 
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The last module, shown in Figure 7, prints the real and imaginary parts of the coefficients, 
respectively, from the arrays XR and XI, one coefficient in each iteration. This module is 
called out-put (Sundararajan, 2001). 
 

 
Fig. 7. The Output Module 
DFT calculations are used in many scientific and engineering applications (Winograd, 1976). 
For the effective and advantageous use of DFT, some of its basic properties need to be 
learnt. It is beneficial to talk about its features shortly. The first characteristic of DFT is the 
linearity feature. DFT is a linear transform.  Another feature of its is the symmetry feature. 
DFT values that are made of real values and equal to a periodical array are complex and 
periodical.  One more feature is the principle of similarity concerning the selectivity of time 
and frequency. The indefinity principle of DFT is connected with the terms in the time and 
frequency domain of DFT. It is equal to the well-known indefiniteness principle in physics. 
This term is not the result of physical properties, but it is the result of a chief mathematical 
formulation. The final feature is the conditions of link-equivalence between DFT and Fourier 
Transform. Since DFT is the approximate of the continuous Fourier transform, researchers 
are concerned with it. The validity of this approximation is certainly based on the related 
wave form (Kayran & Ekşioğlu, 2004). 

4. DFT application on pocket computer 
In this study, the frequency analysis of the heart sounds taken from the patient via electronic 
stethoscope was actualized, and on the pocket computer it was displayed both in the time 
and frequency domain.  Just as the system was completely developed mobile, it was aimed 
that the physicians may use it in the course of clinical examination. The physician using the 
system in the course of clinical examination will be able to make a more accurate and fast 
diagnose through listening to the heart sounds and following the heart sounds both in the 
time and frequency domain on the device. 

4.1 Digitization of the sound 
In order to play and store the heart sounds on the computer media, we need to have some 
kind of file formats.  Because of these formats, multimedia file can be listened and stored on 
the computer. The wav (Waveform Audio Format) format to be used in our study is a kind 
of sound file.  It is a commonly used sound file format. Unlike the other sound formats, the 
sound in the wav file format cannot be stored by compressing; it can only be stored through 
digitizing.  As this file format is not compressed, it holds a lot of space. On the other hand, 
the sound quality is quite good. In this study, the wav sound format has been selected as it 
saves the digitized sound with its original state before compressing. 
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of sound file.  It is a commonly used sound file format. Unlike the other sound formats, the 
sound in the wav file format cannot be stored by compressing; it can only be stored through 
digitizing.  As this file format is not compressed, it holds a lot of space. On the other hand, 
the sound quality is quite good. In this study, the wav sound format has been selected as it 
saves the digitized sound with its original state before compressing. 
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One wav file is in general consisted of two parts. In the first part, there is general information 
concerning the data. The second part is the part where the original data starts. 
In figure 8, the structure of a wav file format in general has been given (a. Güraksn, 2009). 
 

Field Name  Field Size in Bytes  

Chunk ID 4 
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Format 4 

Subchunk1 ID 4 
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Num Channels 2 
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Fig. 8. The Canonical wav File Format 
The heart sounds taken from the patient are digitized through a piece of code written 
accordingly to the mentioned format. During the digitization process, the digital data that 
are in the hexadecimal basis are obtained by reading wav format and are then  converted 
into decimal basis. Thanks to the obtained digital format of the sound, it is made possible to 
draw a graphic of the sound on the pocket computer and DFT can be applied to the sound. 
With the help of a software that operates on the pocket computer, the digital data obtained 
from the wav sound format are turned into sound graphic in another code, and again with 
the help of another programming code it is subjected to DFT. 

4.2 Raw data obtainment 
The sounds used in this study were taken by using Littmann 4100 model electronic 
stethoscope from Afyon Kocatepe University with the 07.AFMYO.01 numbered scientific 
research project (a. Güraksn, 2009). With model 4100 Littmann electronic stethoscope, it is 
possible to record 6 different heart sounds. Thanks to this, the sounds taken continuously 
from six patients are stored within the stethoscope itself. In addition, the saved sounds will 
be able to be transferred to pocket computer with the help of infra-red technology within the 
stethoscope. The sounds recorded with Littmann 4100 model electronic stethoscope are 

The Analysis of Heart Sounds and a 
Pocket Computer Application via Discrete Fourier Transform 

 

177 

stored in e4k format. This format was converted into wav format on the pocket computer via 
a program given by Littmann. After converting the heart sounds into wav format, we pass to 
the next phase of signal processing. By and large, there are some stethoscopes in the market 
that are able to convert the stored sounds directly into wav format. By using such a kind of 
stethoscope, there will be no need to use a second transform.  In order for the sounds taken 
by stethoscope to be processed, HP iPAQ hx2000 pocket computer that allows for infrared 
transaction was used. 

4.3 Drawing DFT graphics of the data of heart sounds on pocket computer 
The aim of this study is to get the frequency domain graphic that was obtained by DFT and 
the time domain  graphic of the heart sounds taken from the patients drawn on the pocket 
computer. The software developed for this purpose was prepared through the use of 
programming language of C# in Microsoft Visual Studio 2005 media. 
As you can see in figure 9, firstly the sound was taken from the patient by using the 
Littmann 4100 model electronic stethoscope. Next, the sound to be analysed in a program 
written in Visual Studio 2005 media was digitized, and it was subjected to DFT method. In 
the final stage, the graphics of the processed heart sounds both in the time domain and 
frequency domain on the pocket computer were drawn. The user interfaces of the software 
developed on the pocket computer were shown below in figures between 10 and 13. 
 

 
Fig. 9. Flow Diagram of the System 
On the introduction screen of the software produced with C# programming language in 
Microsoft Visual Studio 2005 medium, there appears a selection screen shown in figure 10 
on which you could select one of the heart sounds that was at first taken via Littmann 4100 
model electronic stethoscope and converted into wav format on the pocket computer. 
On this screen, the heart sound that belongs to a patient is selected, and the selected heart 
sound is prepared with the algorithm adapted to the pocket computer from wav format to 
the signal processing phase. After that, it moves to graphic interface.  On the graphic 
interface, after selecting the button named as “Graph”, the software on the computer 
subjects the sound data that was digitized beforehand to DFT. After this process is 
completed, the data obtained from the DFT is sent into another array. As the signal 
processing phase is finished, the graphic of the processed heart sound in the time domain is 
drawn on the upper screen of the pocket computer (the graphic plane writes as “SND” on  
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Fig. 10. The selection of patient’s heart sound data to be examined 
the left), and the frequency spectrum obtained as a result of DFT is drawn on the lower 
screen of the pocket computer (the graphic plane writes as “DFT” on the left). This process 
almost takes between 5 and 10 seconds. The screen display obtained by drawing on the 
pocket computer of the time domain graphic and frequency spectrum that belongs to a 
normal heart sound has been given in figure 11. 
 

 
Fig. 11. The screen display with drawing of time domain graphic and frequency spectrum of 
heart sounds taken from a normal heart 
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In figure 12 and 13, the screenshots of time domain graphics and frequency spectrum that 
belong to the heart sounds in which in turn Pulmonary Stenosis and Mitral Stenosis 
disorders were detected were shown on the pocket computer. 
 

 
Fig. 12. The screenshot with drawing of a time domain graphic and frequency spectrum of a 
heart sound that owns Pulmonary Stenosis Heart Disorder 
 

 
Fig. 13. The screenshot with drawing of a time domain graphic and frequency spectrum of a 
heart sound that owns Mitral Stenosis Heart Disorder 
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When there is a comparison between the frequency spectrums of normal heart sound and 
the heart sounds that have mitral and pulmonary stenosis heart disorders, it is noticed that 
the heart sounds taken from the normal heart possess less frequency constituents. (b. 
Güraksn et al., 2009). Because a healthy heart produces a periodical sound while a heart 
that has any kind of disorder produces some different sounds other than S1 and S2 sounds. 
Thus, these sounds include noise. The irregular and turbulent blood flows that cause all 
these sounds lead to inclosure of high frequency constituents in heart sounds. 

5. Conclusion 
In this actualized study, the heart sounds gained with the use of electronic stethoscope were 
digitized and then subjected to DFT. Finally, the graphic in the time domain and frequency 
spectrum that belong to the heart sounds was obtained on the pocket computer. Thus, 
frequency spectrum of normal and abnormal heart sounds was gained via DFT. As a result, 
the physicians were prepared with more data in the course of auscultation. By providing the 
physicians with alternative methods other than listening, it was aimed to help them make a 
more accurate and faster diagnosis. 
The basic purpose in this study is not to diagnose the heart sounds directly. Instead, it was 
aimed to form a substructure for the prediction methods that may be used in the diagnosis 
phase. This formed structure sets a substructure for the artificial intelligence programs such 
as neural network, support vector machines, neuro-fuzzy, which are used for classification. 
(c. Güraksn et al., 2009). The obtained DFT data can simply be made use of in the 
classification mechanisms. 
Acknowledgement The authors wish to acknowledge the Afyon Kocatepe University 
Scientific Research Council with the Project number “07.AFMYO.01” for the collection of the 
heart sounds used in this study. 
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1. Introduction

Since the beginning of humanity, people have always wanted to communicate with each other.
Today, this objective remains the same although a huge technological step has been taken since
the first communication link. More recently, with the development of electronics systems, the
number of interconnected devices has considerably increased and the quest of performances
becomes more and more a reality.
In this context, digital communication systems have provided an efficient alternative to
classical analog devices. For example, in the telecommunication domain, as analog television
was a great technological progress less than a century ago, 3D HD television sets are currently
being commercialized and will progressively replace the old devices.
The proliferation and variety of such digital devices have also led to the elaboration of
multiple standards destined to ease the exchange of information between the different
devices. Unfortunately, there are still too many standards to improve the portability and
interconnections between different systems. The existence of such an amount of various
standards is related to economical and technological constraints but also to political and
strategical reasons which makes the interoperability between standards very difficult. This
generally imposes the engineers to design as many circuits as standards which seems very
inefficient and may be seen as a waste of time and money. This solution is even worse as a
particular standard does not differ completely from another one. There are generally a lot of
similarities between standards in terms of proposed algorithms and functions. It is sometimes
sufficient to modify some parameters of a specific algorithm to change from one standard to
another.
For example, in current communication systems, many applications referring to several
standards make use of Orthogonal Frequency Division Multiplexing (OFDM) modulations
(Weinstein & Ebert, 1971) such as Digital Terrestrial Television Broadcasting (DTTB), Digital
Audio Broadcasting (DAB), Wireless Local or Personal Area Network (WLAN-WPAN),
HomePlug 1.0 and HomePlug AV, HyperLAN, 802.11 standards, Digital Subscriber Line
standards (xDSL), 3GPP, Long Term Evolution (LTE), etc.
The OFDM principle is mainly based on the use of the Fast Fourier Transform (FFT) and its
Inverse (IFFT) (P. Duhamel & M. Vetterli, 1990). However, the sizes of FFT employed in all
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standards is related to economical and technological constraints but also to political and
strategical reasons which makes the interoperability between standards very difficult. This
generally imposes the engineers to design as many circuits as standards which seems very
inefficient and may be seen as a waste of time and money. This solution is even worse as a
particular standard does not differ completely from another one. There are generally a lot of
similarities between standards in terms of proposed algorithms and functions. It is sometimes
sufficient to modify some parameters of a specific algorithm to change from one standard to
another.
For example, in current communication systems, many applications referring to several
standards make use of Orthogonal Frequency Division Multiplexing (OFDM) modulations
(Weinstein & Ebert, 1971) such as Digital Terrestrial Television Broadcasting (DTTB), Digital
Audio Broadcasting (DAB), Wireless Local or Personal Area Network (WLAN-WPAN),
HomePlug 1.0 and HomePlug AV, HyperLAN, 802.11 standards, Digital Subscriber Line
standards (xDSL), 3GPP, Long Term Evolution (LTE), etc.
The OFDM principle is mainly based on the use of the Fast Fourier Transform (FFT) and its
Inverse (IFFT) (P. Duhamel & M. Vetterli, 1990). However, the sizes of FFT employed in all
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these standards are various. DVB standards use 2048, 4096, 8192, 16384 or 32768 points FFT,
Homeplug standards require 128 or 3072 points FFT, the chinese DTV standard employs a
3780 points FFT. Moreover, some of these communication systems need to implement several
FFT sizes within a particular standard. It is the case for SC-FDMA or for all Time Domain
Synchronous OFDM (TDS-OFDM) systems (J. Wanget al., 2003), in which a second FFT size is
often needed for synchronization.
In order to develop a multi-standards receiver, the solution which is usually retained by
manufacturers consists in implementing various Intellectual Properties (IPs) blocks, each
associated to a unique function and a unique standard. This solution is often under-optimized
in the sense that it does not allow the reuse of components within the chip and thus constitutes
a waste of hardware resources.
Another approach is to design a generic and unique system capable of dealing with the
specifications of different standards. This circuit has to be designed in such a way that it
must be able to adapt itself to a particular standard or a dedicated application.
This concept, known as dynamic reconfigurability, provides not only a high flexibility but also
permits to considerably reduce the time to market and the design effort.
Dynamic reconfigurability is a powerful concept since it enables a circuit to change its
functionality on the fly according to the users’ needs or the environmental conditions.
The dynamic reconfiguration may be performed at different granularities depending on
the technology. For example, some circuits allow to be reconfigured at a gate level by
modifying the contents of a logic equation. This is typically the case of FPGAs circuits (Field
Programmable Gate Array) which are widespread circuits that constitute a good alternative
to ASICs (Application Specific Integrated Circuits). Other circuits may be reconfigured at a
higher level of granularity, for example at a functional level. In this case, a specific operator
(or function) is modified to change the behavior of an application.
In general, the level of performances depends on the granularity of reconfiguration. If the
granularity is very fine, the flexibility is high but the timing performances are very low since
a lot of resources have to be reconfigured. As a consequence, the time which is necessary to
reconfigure the system constitutes a real issue and limits the use of such circuits in real time
embeddded systems where timing constraints are generally tight.
Nevertheless, some circuits make intensive use of reconfiguration at a high level of granularity
and permit to obtain not only high performances but also flexibility. This is generally
performed by reconfiguring specific operators or group of operators in order to change the
design functionality.
In this article, we present a new system capable of dealing with multi communication
standards. The basis of this work has consisted in developing a unique FFT operator which
is capable of being reconfigured to adapt to the different standards’ specification. In our case,
the FFT operator should be able to compute FFTs of size 2K, 4K, 8K and 3780 points.
In section 2, the nature of the FFT operator will be presented as well as the different
possibilities for its implementation. Section 3 will describe the proposed reconfigurable
architecture and obtained performances after implementation. An optimization is presented
in section 4 with its performances results.

186 Fourier Transforms - New Analytical Approaches and FTIR Strategies

2. FFT Algorithms

The Fourier transform is a very useful operator for image or signal processing. Thus it has
been extensively studied and the litterature about this subject is very rich. The Discrete Fourier
Transform (DFT) is used for the digital signal processing and its expression is given in (1)

X(k) =
∞

∑
n=−∞

x(n)ej2π nk
N (1)

It appears obvious that this expression can not be computed in a finite time due to the infinite
bounds. From that, the usully computed expression is the N-points Fast Fourier Transform
given in (2)

X(k) =
N−1

∑
n=0

x(n)ej2π nk
N (2)

The expression of the FFT is bounded and computable with a finite algorithmic complexity.
This complexity is expressed as an order of multiplications and additions. Computing
a N-points FFT without any simplification requires an algorithmic complexity of O(N2)
multiplications and O(N2) where O denotes the "order of" multiplications and additions.
Note that the real number of additions is N(N − 1) which is O(N2). This reduction of
complexity is however not sufficient for the large FFT sizes that are used in many digital
communications standards.
A great reduction of this complexity can be achieved by using an efficient algorithm. It exists
many FFT algorithms through the litterature like the Radix algorithm (J. W. Cooley & J. W.
Tukey, 1965), the Prime Factor Algorithm (PFA) also called Good Thomas Algorithm (I. J.
Good, 1958). We also can cite the algorithms of Rader-Brenner (C. M. Rader, 1968), Bruun’s
(G. Bruun, 1978) or the Winograd Fourier Transform Algorithm (WFTA) (S. Winograd, 1978).
The most known and used of them is unmistakably the Radix algorithm. However other
algorithms like the WFTA can be very convenient for specific FFT sizes. In this section, we
focus on the development of the Radix algorithm. The Mixed-Radix algorithm will then be
introduced. We also present two advantages of the WFTA and propose a way to combine the
Radix and WFTA algorithms.

2.1 The radix algorithm
In 1965 Cooley and Tukey proposed a new way to compute the FFT for sizes that are power of
2, this is the birth of the Radix algorithms. The basic principle is based on the decomposition
of a FFT of size N in two FFTs of size N

2 .

2.1.1 Decimation in time / Decimation in frequency
This decomposition can be achieved by two means which are called Decimation In Time (DIT)
and Decimation In Frequency (DIF) depending on the regrouped terms. Equation (3) present
the decomposition for the DIT while equations (4) and (5) are for the DIF. Thanks to this the

algorithmic complexity becomes reduced to O( N
2

2
) since N = 2.
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X(k) =
N−1

∑
n=0

x(n)ej2π nk
N

= DFT N
2

[
x(2n�)

]
+ ej2π k

N DFTN/2
[
x(2n� + 1)

]
with n� ∈

{
0, ...,

N
2
− 1

}
(3)

This decomposition is called DIT because the N time samples are reordered in two groups of
N/2 samples. One group contains the even indexed samples, while the second one contains
the odd indexed samples. FFT of size N/2 are then computed for each group. The frequency
samples are computed in order.

X(2k�) =
N−1

∑
n=0

x(n)ej2π n2k�
N

= DFT N
2

[
x(n) + x(n +

N
2

)
]

with k� ∈
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0, ...,
N
2
− 1

}
(4)

X(2k� + 1) =
N−1

∑
n=0

x(n)ej2π n(2k�+1)
N

= DFT N
2

[(
x(n)− x(n +

N
2

)
)

ej2π n
N

]
with k� ∈

{
0, ...,

N
2
− 1

}

This decomposition is called DIF because the even indexed frequency samples are computed
by the first N/2-points FFT while the odd indexed samples are computed by the second one.
The time samples are not reordered before computation. In order to simplify these equations
all terms in ej2π x

N are usually expressed as Wx
N .

x(0)

x(N − 2)

N/2

N/2-point

FFT

Even index

x(1)

x(N − 1)

N/2

N/2-point

FFT

Odd index

+

+

+

+

W 0
N

W
N
2 −1

N

W
N
2

N

WN−1
N

X(0)

X(N2 − 1)

X(N2 )

X(N)

N/2 N/2

N/2 N/2

Fig. 1. Radix-2 Decimation In Time

188 Fourier Transforms - New Analytical Approaches and FTIR Strategies

Figure (1) represents the computation of the previous DIT. With this structure it is still
necessary to perform N multiplications by the twiddle factors Wk

N to compute the N FFT
outputs. However it is possible to use a property of the twiddle factors expressed in (5), to
remove half of these multiplications, by replacing some additions by substractions.

W
x+ N

2
N = −Wx

N (5)

Then the opimized DIT decomposition will be computed as presented in figure (2)
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Fig. 2. Simplified Radix-2 Decimation In Time

Figure (3) presents the computation scheme for the DIF decomposition. In this last one, it
appears that the N time samples are precomputed in order while the frequency samples
are reordered in an even indexed group and an odd indexed group. This decomposition
also requires N

2 multiplications by the twiddle factors and use the same Radix-2 butterfly
in pre-computation that was used for the post computation of the DIT computation.
For these last two schemes, the algorithmic complexity is again reduced of N

2 multiplications

but is still O( N
2

2). However, if the FFT size is power of 2, this decomposition can be performed
until requiring O( N

2 log2(N)) 2-points FFT butterflies. Because the computation of a 2-points
FFT, represented figure (4), does not involve any multiplication, such decomposition requires
only multiplications by the twiddle factors. This leads to an algorithmic complexity of
O( N

2 log2(N)).
Figure 5 shows the result of such a decomposition for a 8-points FFT with both decimations.
The first thing that we can observe on this picture is that many of N

2 log2(N) twiddle factors
are W0

N = 1 which allows a reduction of the algorithmic complexity. A second important
point is the high regularity in the data flow mapping. The data reordering is also very regular
and can be determined by the "bit reversed" algorithm.
While all this study has been led for the Radix-2 algorithm, it is possible to generalize it to
other Radix, and to the Radix-4 in particular.
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2.1.2 Radix-R algorithm
As the Radix-2 butterfly computes a FFT of size 2, the Radix-4 butterfly does the same for FFTs
of size 4. The four outputs of this butterfly only need trivial multiplications by {−1, 1,−j, j}
as presented in the equation (6).

X(0) = x(0) + x(1) + x(2) + x(3)

X(1) = x(0) + jx(1) − x(2) − jx(3)

X(2) = x(0) − x(1) + x(2) − x(3) (6)

X(3) = x(0) − jx(1) − x(2) + jx(3)
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This butterfly however presents a gain regarding the algorithmic complexity when it is used
instead of the Radix-2 by reducing the necessary number of stages in the decomposition. The
major drawback of using this algorithm is that it is suitable for FFT sizes that are power of 4,
which reduces considerably the field of applications.
As with the Radix-2 or the Radix-4 algorithm, it is possible to use the Radix-R algorithm for
other R values. Nevertheless, the Radix-R butterfly will require no trivial multiplications
into the butterfly and thus increase its algorithmic complexity. The equation 7 shows that
Radix-3 butterfly computation requires 4 complex multiplications by coefficients around the
unit circle. Pay attention not to confuse these coefficients with the twiddle factors needed
between the stages.

X(0) = x(0) + x(1) + x(2)

X(1) = x(0) + W1
3 .x(1) + W2

3 .x(2) (7)

X(2) = x(0) + W2
3 .x(1) + W1

3 .x(2)

Except for R multiple of 2, where it may be decomposed by using R = 2 or R = 4, a Radix-R
butterfly requires (R − 1)2 muliplications and R(R − 1) additions. Thus the complexity
becomes O(R2logR(N)). This is the reason why sizes which are power of two are promoted
in most of digital communication standards.

2.2 Mixed-radix algorithm
The Radix-2 algorithm proposed by Cooley and Tukey can be derived to provide the
mixed-Radix algorithm (R. C. Singleton, 1969) (G. L. DeMuth, 1989). This last one employs
the combination of different Radix-R algorithms allowing the computation of more FFT sizes.
For example, to compute a 12-points FFT, the size N can be decomposed in N = 2 × 2 × 3.
In this configuration, the FFT will be computed by a first and a second stage of six Radix-2
butterflies and a third stage of four Radix-3 butterflies. Nevertheless this FFT can also be
computed by other decompositions such as N = 2 × 3 × 2, N = 3 × 2 × 2, N = 3 × 4 or
N = 4 × 3. Due to the reduced number of computation stages and to the optimal complexity
of the Radix-4 butterfly, the last two decompositions will require the lower complexity.
To summarize, the complexity of a Radix or Mixed-Radix algorithms will depend on the
complexity of the Radix-R butterflies that are used and the number of twiddle factors
necessary between the stages.

2.3 Advantages of the Winograd fourier transform algorithm
In 1978, S. Winograd presented his works on the computation of the DFT by using cyclic
convolution and introduced the Winograd Fourier Transform Algorithm which reduces the
algorithmic complexity of the FFT. This reduction is achieved thanks to two points.
The first gain comes from the computation of butterfly of size R, which may be computed with
a complexity of O(R) instead of O(R2). The algorithms for R ∈ {2, 3, 4, 5, 7, 8, 9} are available
in (S. Winograd, 1978).
The second optimization is performed thanks to an ingenious mapping of the data flow. This
mapping does not implement any twiddle factors between stages. However, this mapping
can only be realized for FFT sizes which can be decomposed in several terms Ri that must be
mutually primes. This is the major constraint of this type of optimization.
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Fig. 5. 8-points FFT by using Radix-2 algorithm with DIT or DIF

2.1.2 Radix-R algorithm
As the Radix-2 butterfly computes a FFT of size 2, the Radix-4 butterfly does the same for FFTs
of size 4. The four outputs of this butterfly only need trivial multiplications by {−1, 1,−j, j}
as presented in the equation (6).

X(0) = x(0) + x(1) + x(2) + x(3)

X(1) = x(0) + jx(1) − x(2) − jx(3)

X(2) = x(0) − x(1) + x(2) − x(3) (6)

X(3) = x(0) − jx(1) − x(2) + jx(3)

190 Fourier Transforms - New Analytical Approaches and FTIR Strategies

This butterfly however presents a gain regarding the algorithmic complexity when it is used
instead of the Radix-2 by reducing the necessary number of stages in the decomposition. The
major drawback of using this algorithm is that it is suitable for FFT sizes that are power of 4,
which reduces considerably the field of applications.
As with the Radix-2 or the Radix-4 algorithm, it is possible to use the Radix-R algorithm for
other R values. Nevertheless, the Radix-R butterfly will require no trivial multiplications
into the butterfly and thus increase its algorithmic complexity. The equation 7 shows that
Radix-3 butterfly computation requires 4 complex multiplications by coefficients around the
unit circle. Pay attention not to confuse these coefficients with the twiddle factors needed
between the stages.

X(0) = x(0) + x(1) + x(2)

X(1) = x(0) + W1
3 .x(1) + W2

3 .x(2) (7)

X(2) = x(0) + W2
3 .x(1) + W1

3 .x(2)

Except for R multiple of 2, where it may be decomposed by using R = 2 or R = 4, a Radix-R
butterfly requires (R − 1)2 muliplications and R(R − 1) additions. Thus the complexity
becomes O(R2logR(N)). This is the reason why sizes which are power of two are promoted
in most of digital communication standards.

2.2 Mixed-radix algorithm
The Radix-2 algorithm proposed by Cooley and Tukey can be derived to provide the
mixed-Radix algorithm (R. C. Singleton, 1969) (G. L. DeMuth, 1989). This last one employs
the combination of different Radix-R algorithms allowing the computation of more FFT sizes.
For example, to compute a 12-points FFT, the size N can be decomposed in N = 2 × 2 × 3.
In this configuration, the FFT will be computed by a first and a second stage of six Radix-2
butterflies and a third stage of four Radix-3 butterflies. Nevertheless this FFT can also be
computed by other decompositions such as N = 2 × 3 × 2, N = 3 × 2 × 2, N = 3 × 4 or
N = 4 × 3. Due to the reduced number of computation stages and to the optimal complexity
of the Radix-4 butterfly, the last two decompositions will require the lower complexity.
To summarize, the complexity of a Radix or Mixed-Radix algorithms will depend on the
complexity of the Radix-R butterflies that are used and the number of twiddle factors
necessary between the stages.

2.3 Advantages of the Winograd fourier transform algorithm
In 1978, S. Winograd presented his works on the computation of the DFT by using cyclic
convolution and introduced the Winograd Fourier Transform Algorithm which reduces the
algorithmic complexity of the FFT. This reduction is achieved thanks to two points.
The first gain comes from the computation of butterfly of size R, which may be computed with
a complexity of O(R) instead of O(R2). The algorithms for R ∈ {2, 3, 4, 5, 7, 8, 9} are available
in (S. Winograd, 1978).
The second optimization is performed thanks to an ingenious mapping of the data flow. This
mapping does not implement any twiddle factors between stages. However, this mapping
can only be realized for FFT sizes which can be decomposed in several terms Ri that must be
mutually primes. This is the major constraint of this type of optimization.
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For a FFT of size N that can be decomposed in N = R1 × R2 which are mutually primes, the
mapping will be determined by the following rules.
First the input data vector [x(0)...x(N − 1)] have to be reordered in a two dimensionnal matrix
of size (R1, R2). The position (rn , cn) of the sample x(n) in this matrix is given by the relation
(8).

rn = n mod R1

cn = n mod R2 (8)

Then the computation of the Winograd butterfly R1 will be computed over the R2 groups of
data which will be taken column-wide and similarly for the R2 butterfly.
If the FFT size has to be decomposed in I > 2 terms (still mutually primes), this mapping can
be applied with a two dimentionnal matrix of size (R1, ∏I

i=2 Ri). Thus the computation of the
∏I

i=2 Ri = N
R1

will be performed using the same algorithm with the dimensions (R2, ∏I
i=3 Ri)

for the R1 groups generated by the first grouping.

2.4 Combined radix and WFTA algorithms
As the decomposition of the FFT in small-N FFTs was explained previously, it is possible to
regroup and compute these small-N FFT as desired. So it is possible to compute a part of the
FFT using the WFTA algorithm and the other part using the Mixed-Radix algorithm. However
the decomposition has to be properly performed in order to take advantage of the properties
of these two algorithms.
As the WFTA has better performances than the Radix algorithm, it is preferable to first regroup
the mutally primes factors and compute a small FFT with the WFTA. Then the other terms will
require a Mixed-Radix mapping. However the first advantage of the WFTA which reduce the
complexity of the butterflies have to be use for Radix-R butterflies when R /∈ {2, 4}1.
Another optimization can be achieved by an efficient organization of the Radix/WFTA FFT.
The number of different twiddle factors NbW that will have to be stored in memory for the FFT
computation can be reduced if the different stages are well organized. This number of different

coefficients is O(
i0

∏
i=1

(Ri) for the stage i0, i0 �= 1 with the DIT computation, or for the I − i0 ,

i0 �= 1 for the DIF. For i0 = 1 all the coefficients are W0
N = 0.

3. Proposed architecture

3.1 Presentation
In order to design the most flexible architecture capable of implementing the FFT, we
decomposed the algorithm in several WFTA or Radix blocks depending on the considered N
size. For example, a 64-points FFT may be decomposed in N = 4 × 4 × 4 computation stages,
each stage being configured using the Radix-4 butterfly. In the case of a 3780-points FFT, it may
be decomposed in N = 3 × 3 × 3 × 4 × 5 × 7 which leads to implement the WFTA-3, Radix-4,
WFTA-5 and WFTA-7 butterflies (Z.-X. et al., 2002).
Such decompositions make it possible to consider a reconfigurable WFTA/Radix pipelined
architecture that allows to compute several sizes of FFT by reconfiguring each stage’s butterfly.

1 in fact the WFTA butterfly complexity is the same as the Radix butterfly for R = 2 or R = 4
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In this section, we focus on the presentation of an architecure dedicated to a multiple Digital
Terrestrial Television Broadcasting (DTTB) demodulation. The concerned sandards are DVB-T
(ETSI, 2004), ISDB-T (ARIB, 2001) and DTMB (Chinese National Standard, 2006) for which the
possible FFT sizes are 2048 (2K), 4096 (4K), 8192 (8K) and 3780 points. Nevertheless, it is
possible to adapt the architecture to other FFT sizes. Table (1) presents a way to decompose
these sizes by implenting the different Radix or WFTA butterflies. The presence of a Radix-8
butterfly is necessary to compute the 8192-points FFT in six stages, but another stage of
computation can be added in order to split this butterfly in two by using Radix-4 and Radix-2
butterflies.
As shown in section 2.4, the number of different twiddle factors coefficients that will have
to be computed depends on the placement of the different butterflies. To provide the output
samples in order, a DIT computation is considered. With such a decomposition, the quantity
of required twiddle factors will be minimized by placing the higher radix butterflies at the last
stages of computation. Moreover, as the second advantage of the WFTA can be employed in
the 3780 decomposition for the 3× 4× 5× 7 = 420 part, all these 420-points FFT computations
have to be processed in the last stages.

Butterflies Configuration
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

3780 WFTA-3 WFTA-3 WFTA-3 Radix-4 WFTA-5 WFTA-7
2048 Radix-2 Radix-4 Radix-4 Radix-4 Radix-4 Radix-4
4096 Radix-4 Radix-4 Radix-4 Radix-4 Radix-4 Radix-4
8192 Radix-4 Radix-4 Radix-4 Radix-4 Radix-4 Radix-8

Table 1. A possible decomposition of the concerned FFT sizes

Thus, such a decomposition in six stages of computation may be performed by the 6-stages
reconfigurable architecture presented in figure (6).
Each stage is built on a reconfigurable WFTA/Radix module implementing the corresponding
butterfly. The module may be reconfigured depending on the chosen FFT size. The butterfly
input and output data are stored in the symbol memory. The address decoders select the
memory address to read the inputs and write the results. A twiddle block is also implemented
at each stage of the computation (except for the last one). This block is located between
the butterfly module and the symbol memory and performs the multiplications by the
appropriate twiddle factors. The input and output buffers are used to respectively store the
time domain and frequency domain OFDM samples. Finally, the “memory data and address”
multiplexers switch the memories between stages of computation.

3.2 Operating description
The N complex samples corresponding to the Sn OFDM time domain symbol are stored in
the input buffer. During this storage, the WFTA/Radix module of the first stage processes
its computation according to the required configuration (Radix-2, WFTA3 or Radix-4). This
process is performed on the N previously stored samples that constitute the Sn−1 OFDM
symbol.
Each subsequent module performs the same operation in parallel until the WFTA/Radix
module in the stage 6, that operates on the Sn−6 OFDM symbol. While these computations are
performed, the frequency domain samples corresponding to the FFT of the Sn−7 are available
at the output buffer.
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In this section, we focus on the presentation of an architecure dedicated to a multiple Digital
Terrestrial Television Broadcasting (DTTB) demodulation. The concerned sandards are DVB-T
(ETSI, 2004), ISDB-T (ARIB, 2001) and DTMB (Chinese National Standard, 2006) for which the
possible FFT sizes are 2048 (2K), 4096 (4K), 8192 (8K) and 3780 points. Nevertheless, it is
possible to adapt the architecture to other FFT sizes. Table (1) presents a way to decompose
these sizes by implenting the different Radix or WFTA butterflies. The presence of a Radix-8
butterfly is necessary to compute the 8192-points FFT in six stages, but another stage of
computation can be added in order to split this butterfly in two by using Radix-4 and Radix-2
butterflies.
As shown in section 2.4, the number of different twiddle factors coefficients that will have
to be computed depends on the placement of the different butterflies. To provide the output
samples in order, a DIT computation is considered. With such a decomposition, the quantity
of required twiddle factors will be minimized by placing the higher radix butterflies at the last
stages of computation. Moreover, as the second advantage of the WFTA can be employed in
the 3780 decomposition for the 3× 4× 5× 7 = 420 part, all these 420-points FFT computations
have to be processed in the last stages.

Butterflies Configuration
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Thus, such a decomposition in six stages of computation may be performed by the 6-stages
reconfigurable architecture presented in figure (6).
Each stage is built on a reconfigurable WFTA/Radix module implementing the corresponding
butterfly. The module may be reconfigured depending on the chosen FFT size. The butterfly
input and output data are stored in the symbol memory. The address decoders select the
memory address to read the inputs and write the results. A twiddle block is also implemented
at each stage of the computation (except for the last one). This block is located between
the butterfly module and the symbol memory and performs the multiplications by the
appropriate twiddle factors. The input and output buffers are used to respectively store the
time domain and frequency domain OFDM samples. Finally, the “memory data and address”
multiplexers switch the memories between stages of computation.

3.2 Operating description
The N complex samples corresponding to the Sn OFDM time domain symbol are stored in
the input buffer. During this storage, the WFTA/Radix module of the first stage processes
its computation according to the required configuration (Radix-2, WFTA3 or Radix-4). This
process is performed on the N previously stored samples that constitute the Sn−1 OFDM
symbol.
Each subsequent module performs the same operation in parallel until the WFTA/Radix
module in the stage 6, that operates on the Sn−6 OFDM symbol. While these computations are
performed, the frequency domain samples corresponding to the FFT of the Sn−7 are available
at the output buffer.
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As soon as the Sn symbol is completely stored, the different computation stages must be
completed. Memories are then circularly switched i.e. the previously input buffer becomes the
symbol memory 1, the symbol memory i becomes the symbol memory i + 1 and the output
buffer becomes the new input buffer. This permutation is performed by the two memory
multiplexers, one for the data bus, the other for the address bus.
When the algorithm requires the twiddle factors multiplications, these operations are
computed by the twiddle block at the output of the butterfly, before being stored in the symbol
memory.

3.3 Presentation of the Processing Blocks
3.3.1 WFTA/radix module
Each WFTA/Radix module is composed of three stages. A first stage aims to compute
additions, a second performs the multiplications by coefficients and the last adder stage
generates the output results. The figure (7) presents the architecture of such a module.
First, the set of butterfly inputs are stored in the butterfly input register. As soon as possible,
the adder/substractor starts to process two values. These values are either the time domain
samples stored in the register or a previous result which comes from a reconfigurable delay
block. The second stage performs a multiplication of the results coming from the first stage by
the coefficients which are stored in the coefficient memory. As the coefficients are either real or
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pure imaginary, only two real multipliers are necessary to implement the complex multiplier.
Since there are only few coefficients, their resource utilization is negligible compared to the
resources required by symbol memories. Finally, the output adder/substractor part operates
similarly to the first one and provides the butterfly outputs.

3.3.2 Twiddle blocks
As no twiddle factors are needed at the output of the last stage, the twiddle block does not
appear on the figure 6. The architecture of the twiddle blocks is depicted in figure (8). This
block just performs the complex multiplications by the twiddle factors stored in the associated
memory. When multiplications are not necessary, a multiplication by W0

N = 1 is computed to
maintain a constant propagation delay through the architecture.
Such a multiplication can be implemented by either four real multipliers and four real adders
or three real multipliers and five real adders.

Data Formating

Twiddle factors
Memory

Data from the butterfly module
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Fig. 8. Twiddle block
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As soon as the Sn symbol is completely stored, the different computation stages must be
completed. Memories are then circularly switched i.e. the previously input buffer becomes the
symbol memory 1, the symbol memory i becomes the symbol memory i + 1 and the output
buffer becomes the new input buffer. This permutation is performed by the two memory
multiplexers, one for the data bus, the other for the address bus.
When the algorithm requires the twiddle factors multiplications, these operations are
computed by the twiddle block at the output of the butterfly, before being stored in the symbol
memory.

3.3 Presentation of the Processing Blocks
3.3.1 WFTA/radix module
Each WFTA/Radix module is composed of three stages. A first stage aims to compute
additions, a second performs the multiplications by coefficients and the last adder stage
generates the output results. The figure (7) presents the architecture of such a module.
First, the set of butterfly inputs are stored in the butterfly input register. As soon as possible,
the adder/substractor starts to process two values. These values are either the time domain
samples stored in the register or a previous result which comes from a reconfigurable delay
block. The second stage performs a multiplication of the results coming from the first stage by
the coefficients which are stored in the coefficient memory. As the coefficients are either real or
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pure imaginary, only two real multipliers are necessary to implement the complex multiplier.
Since there are only few coefficients, their resource utilization is negligible compared to the
resources required by symbol memories. Finally, the output adder/substractor part operates
similarly to the first one and provides the butterfly outputs.

3.3.2 Twiddle blocks
As no twiddle factors are needed at the output of the last stage, the twiddle block does not
appear on the figure 6. The architecture of the twiddle blocks is depicted in figure (8). This
block just performs the complex multiplications by the twiddle factors stored in the associated
memory. When multiplications are not necessary, a multiplication by W0
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maintain a constant propagation delay through the architecture.
Such a multiplication can be implemented by either four real multipliers and four real adders
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3.3.3 Symbol memories, address decoders
The symbol memories have to be connected to the right stage depending on the computation
step. Then, during the computation stage, the memory will send data to the butterfly while
recording data from the twiddle block. The time domain samples are overwritten by the
frequency domain samples. Nevertheless, the read and write addresses are always different
at the same time, due to the butterfly latency. For that purpose, a Simple Dual Port Random
Acces Memory (SDP-RAM) have been implemented. The size of this Random Access Memory
(RAM) has been defined according to the maximum number of points to be computed in the
design (8192 samples). Each complex sample is coded into 32 bits (16 bits for the real part
and 16 bits for the imaginary part). Thus, the size of the symbol memory has been set to
2 × 16 × 8192 bits which corresponds to 32kB.
The address decoders compute the right sequence of memory address that have to be read
and written. Thus an address decoder block is dedicated to a stage of computation. As the
size of the FFT can be reconfigured, these blocks also have to be reconfigured.

3.4 Performances of the 6-Stages architecture
The complete architecture has been simulated and implemented on an Altera stratix
EP3SE50F484C2. This FPGA has been envisaged as a prototyping circuit for future
implementation in an Application Specific Integrated Circuit (ASIC). The considered FPGA
exhibits a lot of logical resources as well as dedicated blocks that are optimized for MAC
(Multiplications/Accumulations) operations and memory. Thus, it is perfectly suited for the
considered types of applications.

3.4.1 Resources usage
Implementation results for the 6-stages architecture are provided in Table (2). In this table, the
implemented architecture is compared to commercial IPs provided by Altera (Altera, 2009) in
terms of resource usage.

Logic Cells Registers Memory bits DSP blocks
Available on Stratix III 38,000 38,000 5,455,872 384
6-stages architecture 4,077 2,544 3,769,080 44

Altera 2K IP 4,138 6,943 208,329 40
Altera 4K IP 4,557 7,530 425,563 40
Altera 8K IP 5,270 8,670 884,785 48

Table 2. Resources Utilization for the 1-Stage and the 6-Stages Architecture After
Implementation on Stratix III

It seems important to notice that the proposed architecture requires less logic cells, registers
and DSP block than its counterparts. This is especially true if we consider that this architecture
is also able to compute different sizes of FFT (2K, 3780, 4K, 8K).
Another interesting point is that the memory resource is the most consuming in this
architecture. This is mainly due to the parallelization of several stages in the architecture.
Thus the equivalent of six OFDM symbols must be stored in memory.
Globally, implementation results demonstrate the feasibility of implementing such
architectures on reconfigurable circuits without consuming too many resources. This makes
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it possible to envisage the implementation of this architecture onto ASICs which generally
present higher performances and exhibit more logical resources.

3.4.2 Time performances
The time that is required to store a complete symbol into the input buffer RAM is the OFDM
symbol duration TOFDM. This duration depends on the sampling frequency, the size of the
IFFT and the guard interval duration, used for the transmission. The minimun TOFDM and
associated maximum OFDM throughput for each standard and FFT sizes are provided in
Table (3).

DVB ISDB TDMB

3780
Duration (μs) - - 555

Throughput (symb/s) - - 1802

2048
Duration (μs) 231 259 -

Throughput (symb/s) 4329 3861 -

4096
Duration (μs) 462 519 -

Throughput (symb/s) 2165 1927 -

8192
Duration (μs) 924 1039 -

Throughput (symb/s) 1082 962 -

Table 3. Minimum OFDM symbol duration with Guard Interval and corresponding
throughput

The architecture must, at least, respects these performances to be suitable in the OFDM
receiver. Table (4) describes the number of clock cycles required to compute a complete stage
of the FFT. According to this table, it may be seen that the WFTA-7 stage demands the most
important computation time per sample.

FFT size 3780 2K 4K 8K
WFTA7 11351 - - -
WFTA5 7570 - - -
WFTA3 3787 - - -
Radix-8 - - - 16398
Radix-4 3787 2055 4103 8199
Radix-2 - 2055 - -

Table 4. Module Execution Time in Number of Clock Cycles.

In order to provide a comparison between the proposed architecture and existing solutions,
several implementation tests have been led. The obtained results are presented in Table (5)
which summarizes the symbol rate as well as the computation latencies for the proposed
architecture according to different configurations. The comparison has been performed with
different IPs of Altera implementing the corresponding sizes of DFT. The maximum rate
that may be achieved is conditioned by the WFTA/Radix Module 6 which exhibits the most
important complexity.
Regarding Table (5), for each FFT size, the 6-stages architecture delivers a similar symbol rate
than the commercial IPs. Note that a significant difference remains for the 8192 points FFT.
This is due to the internal structure of our proposed architecture that only consists of 6 stages
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Proposed 6-stages Altera IP
Architecture

Symbol rate 2K 48,661 48,828
@ 100MHz 4K 24,372 24,414

(OFDM symbols / s)
8K 6,098 12,207

3780 8,809 NC

Latency
2K 10,282 6,144
4K 20,522 12,288

(clock cycles)
8K 49,201 24,576

3780 30,289 NC

Table 5. Symbol Rate and Latency According to Different Configurations

of computations. In order to compute a 8K FFT, it is then necessary to use a Radix-8 Module
which requires much more computing cycles compared to Radix-4 or Radix-2 Modules.
Concerning the latency, an increase has to be deplored in the proposed architecture. This is
mainly due to the time that is necessary to store a complete symbol into an intermediate buffer
between two consecutive stages of computation. Nevertheless, the drawback of latency may
be compensated by the high symbol rate which is available at the output of the design.

4. Optimization for the studied applications

The previous architecture is optimized for a high symbol rate. However, it is possible to
modify it by reducing the number of stages from six to one as described in figure (9).

4.1 Operating description
According to the figure (9), during the storage of a current symbol in the input buffer, the
unique WFTA/Radix Module will be reconfigured to compute the different stages of the
whole FFT. The connected symbol memory is employed for the computation of all stages.
At the end of the computation, the input buffer becomes the new symbol memory, the symbol
memory becomes the output buffer with the FFT transform results and the previous output
buffer becomes the new input buffer which will store the new incoming OFDM symbol.
This operating mode allows a flexible number of computation stages. Thus the 8192-points
FFT may be computed by using only Radix-4 and Radix-2 algorithms in seven stages of
computation (8192 = 4 × 4 × 4 × 4 × 4 × 4 × 2).
The used module can be implemented in 6 possible configurations: Radix-8, WFTA7, WFTA5,
Radix-4, WFTA3 and Radix-2. All combinations of these possibilities can be envisaged to
compute several FFT sizes. The number of stages is related to the number of terms in the
FFT size decomposition. Nevertheless, an increase of this number implies a reduction of the
symbol rate.
Furthermore, for particular sizes of FFT which are neither power-of-2 nor adapted to the
WFTA mapping algorithm, new Twiddle factors have to be calculated and stored in the
twiddle block memory. In order to take into account all possible configurations, it is possible
to implement an external memory which contains all these coefficients and load them in the
Twiddle memory block according to the chosen FFT size.
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4.2 Reconfiguration of the architecture
As the reconfiguration of the WFTA/Radix Modules for the 6-stages architecture occurs only
when the FFT size is modified, the reconfiguration is completely static. On the other hand,
the Butterfly module of the 1-stage architecture must be reconfigured during runtime. This
reconfiguration is possible almost instantaneously. In fact, only the control of the resources
has to be reconfigured. Thus it is possible to reconfigure it by using a multiplexed control.
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4.3 Resources Usage for the 1-Stage architecture
The 1-stage architecture has been implemented into the same FPGA target. The corresponding
resources usage is summarized in Table (6). In this configuration, the obtained results are more
competitive than Altera IPs, especially for memory usage. This may easily be seen when
comparing the number of memory bits in the 8K mode. Moreover, it is clear that logical
resources are reduced significantly.

Logic Cells Registers Memory bits DSP blocks
Available on Stratix III 38,000 38,000 5,455,872 384

1-stage architecture 811 548 622,896 8
Altera 2K IP 4,138 6,943 208,329 40
Altera 4K IP 4,557 7,530 425,563 40
Altera 8K IP 5,270 8,670 884,785 48

Table 6. Resources Utilization for the 1-Stage and the 6-Stages Architecture After
Implementation on Stratix III

4.4 Timing considerations for the 1-Stage architecture
The execution times and latency that are depicted in Tables (4) and (5) are given for the 6-stages
architecture but are still available for the 1-stage architecture. On the other hand, a comparison
between the symbol rate performances achieved by the 1-stage architecture and the required
symbol rate imposed by the DTTB standards are provided in Table (7).

FFT 1-stage architecture
DVB-T/H ISDB-T TDMB FLOSize @ 100MHz

2048 8110 4329 3861 - -
4096 4062 2164 1926 - 1200
8192 1742 1082 962 - -
3780 2935 - - 1801 -

Table 7. OFDM Symbol Rate Comparison Between Studied Standards and Proposed
Architecture

According to these results, we may conclude that the optimized structure is still suitable for
the FFT computation of the considered standards. However a compomize is always possible
by combining the two methods seen in sections 3 and 4

5. Conclusion

In this chapter, we have presented two algorithms that may be combined to compute a FFT.
Depending on the size of this transform, some advantages can be exploited by taking into
account a meticulous organization in the algorithms combination. Thus, an optimal reduction
of the algorithmic complexity will imply an optimal use of the hardware resources. Moreover,
an architecture has been proposed for the computation of these algorithms. This architecture is
able to deal with a large amount of FFT sizes, decomposable in product terms that are 2,3,4,5,7
or 8. A growth either of the largest FFT size or of the number of reconfigured sizes imply the
use of more memory resources which is the most delicate point of the architecture.
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A major advantage of this architecture is its possibility to be dynamically reconfigured
from one to another FFT size. This allows to reuse the same circuit to compute several
FFT sizes within the same modulation/demodulation standard, as it is necessary with the
DTMB standard or the SC-FDMA modulation. As explained in section 4, this architecture
provides a high flexibility that permits to achieve the best compromize between hardware
resources and computation throughput. For prototyping purposes, this architecture has been
successfully simulated and implemented in a FPGA. Nevertheless, the architecture targets an
implementation in ASIC circuits whose technology exhibits higher performances than FPGA.
Furthermore, the field of application is wide for this architecture. As mainly expressed, the
convergence of multiple standards in a same device may be performed without implementing
several modulation or demodulation circuits. Another example may be to envisage an
implementation of OFDM/MIMO (Multiple Input Multiple Output) systems since the
number of FFTs directly varies with the number of antennas in this type of applications.
Finally, these concepts may also be used in a software radio context since it deals with
reconfiguration of resources according to the channel or to environmental changes.

6. References

Weinstein, S. B. & Ebert, P. M. (1971). Data transmission by frequency-division multiplexing
using the discrete fourier transform, In : IEEE Transactions on Communication
Technology, vol 19, pp. 628-634

J. Wang, Z. Yang, C. Pan, M. Han & L. Yang (2003). A combined code acquisition and symbol
timing recovery method for TDS-OFDM , In : Broadcasting , IEEE Transactions on, vol.
49, pp. 304-308

I. J. Good (1958). The interaction algorithm and practical Fourier analysis , In : J. R. Statist.
Soc., ser. B, vol.20, pp. 361-372

P. Duhamel & M. Vetterli (1990). Fast Fourier transforms: a tutorial review and a state of the
art, In : Signal Processing, vol. 19, pp. 259-299

J. W. Cooley & J. W. Tukey (1965). An algorithm for the machine calculation of complex fourier
series , In : Proc. Math. Comp., pp. 297-301

S. Winograd (1978). On computing the Discrete Fourier Transform, In : Proc. Math. Comp., pp.
175-199

C. M. Rader (1968). Discrete Fourier transforms when the number of data samples is prime, In
: Proc. IEEE, vol. 56, pp. 1107-1108

G. Bruun (1978). z-Transform DFT filters and FFTs, In : IEEE Trans. on Acoustics, Speech and
Signal Processing (ASSP), vol. 26, pp. 56-63

R. C. Singleton (1969). An algorithm for computing the mixed-radix fast fourier transform, In
: IEEE Transactions on audio and electroacoustics, vol 17, NO.2, pp. 93-103

G. L. Demuth (1989). Algorithms for defining mixed radix FFT flow graphs, In : IEEE
Transactions on acoustics, speech and signal processing, vol 37, NO.9, pp. 1349-1358

ETSI (2004). Digital Video Broadcasting-Terrestrial (DVB-T); Framing structure, channel
coding and modulation for DTV, In : ETSI standard, Nov. 2004

ARIB (2001). Integrated Services Digital Broadcasting-Terrestrial (ISDB-T); specification on
channel coding, framing structure and modulation, In : ARIB standard, May 2001

201Towards a Reconfigurable FFT : Application to Digital Communication Systems



4.3 Resources Usage for the 1-Stage architecture
The 1-stage architecture has been implemented into the same FPGA target. The corresponding
resources usage is summarized in Table (6). In this configuration, the obtained results are more
competitive than Altera IPs, especially for memory usage. This may easily be seen when
comparing the number of memory bits in the 8K mode. Moreover, it is clear that logical
resources are reduced significantly.

Logic Cells Registers Memory bits DSP blocks
Available on Stratix III 38,000 38,000 5,455,872 384

1-stage architecture 811 548 622,896 8
Altera 2K IP 4,138 6,943 208,329 40
Altera 4K IP 4,557 7,530 425,563 40
Altera 8K IP 5,270 8,670 884,785 48

Table 6. Resources Utilization for the 1-Stage and the 6-Stages Architecture After
Implementation on Stratix III

4.4 Timing considerations for the 1-Stage architecture
The execution times and latency that are depicted in Tables (4) and (5) are given for the 6-stages
architecture but are still available for the 1-stage architecture. On the other hand, a comparison
between the symbol rate performances achieved by the 1-stage architecture and the required
symbol rate imposed by the DTTB standards are provided in Table (7).

FFT 1-stage architecture
DVB-T/H ISDB-T TDMB FLOSize @ 100MHz

2048 8110 4329 3861 - -
4096 4062 2164 1926 - 1200
8192 1742 1082 962 - -
3780 2935 - - 1801 -

Table 7. OFDM Symbol Rate Comparison Between Studied Standards and Proposed
Architecture

According to these results, we may conclude that the optimized structure is still suitable for
the FFT computation of the considered standards. However a compomize is always possible
by combining the two methods seen in sections 3 and 4

5. Conclusion

In this chapter, we have presented two algorithms that may be combined to compute a FFT.
Depending on the size of this transform, some advantages can be exploited by taking into
account a meticulous organization in the algorithms combination. Thus, an optimal reduction
of the algorithmic complexity will imply an optimal use of the hardware resources. Moreover,
an architecture has been proposed for the computation of these algorithms. This architecture is
able to deal with a large amount of FFT sizes, decomposable in product terms that are 2,3,4,5,7
or 8. A growth either of the largest FFT size or of the number of reconfigured sizes imply the
use of more memory resources which is the most delicate point of the architecture.

200 Fourier Transforms - New Analytical Approaches and FTIR Strategies

A major advantage of this architecture is its possibility to be dynamically reconfigured
from one to another FFT size. This allows to reuse the same circuit to compute several
FFT sizes within the same modulation/demodulation standard, as it is necessary with the
DTMB standard or the SC-FDMA modulation. As explained in section 4, this architecture
provides a high flexibility that permits to achieve the best compromize between hardware
resources and computation throughput. For prototyping purposes, this architecture has been
successfully simulated and implemented in a FPGA. Nevertheless, the architecture targets an
implementation in ASIC circuits whose technology exhibits higher performances than FPGA.
Furthermore, the field of application is wide for this architecture. As mainly expressed, the
convergence of multiple standards in a same device may be performed without implementing
several modulation or demodulation circuits. Another example may be to envisage an
implementation of OFDM/MIMO (Multiple Input Multiple Output) systems since the
number of FFTs directly varies with the number of antennas in this type of applications.
Finally, these concepts may also be used in a software radio context since it deals with
reconfiguration of resources according to the channel or to environmental changes.

6. References

Weinstein, S. B. & Ebert, P. M. (1971). Data transmission by frequency-division multiplexing
using the discrete fourier transform, In : IEEE Transactions on Communication
Technology, vol 19, pp. 628-634

J. Wang, Z. Yang, C. Pan, M. Han & L. Yang (2003). A combined code acquisition and symbol
timing recovery method for TDS-OFDM , In : Broadcasting , IEEE Transactions on, vol.
49, pp. 304-308

I. J. Good (1958). The interaction algorithm and practical Fourier analysis , In : J. R. Statist.
Soc., ser. B, vol.20, pp. 361-372

P. Duhamel & M. Vetterli (1990). Fast Fourier transforms: a tutorial review and a state of the
art, In : Signal Processing, vol. 19, pp. 259-299

J. W. Cooley & J. W. Tukey (1965). An algorithm for the machine calculation of complex fourier
series , In : Proc. Math. Comp., pp. 297-301

S. Winograd (1978). On computing the Discrete Fourier Transform, In : Proc. Math. Comp., pp.
175-199

C. M. Rader (1968). Discrete Fourier transforms when the number of data samples is prime, In
: Proc. IEEE, vol. 56, pp. 1107-1108

G. Bruun (1978). z-Transform DFT filters and FFTs, In : IEEE Trans. on Acoustics, Speech and
Signal Processing (ASSP), vol. 26, pp. 56-63

R. C. Singleton (1969). An algorithm for computing the mixed-radix fast fourier transform, In
: IEEE Transactions on audio and electroacoustics, vol 17, NO.2, pp. 93-103

G. L. Demuth (1989). Algorithms for defining mixed radix FFT flow graphs, In : IEEE
Transactions on acoustics, speech and signal processing, vol 37, NO.9, pp. 1349-1358

ETSI (2004). Digital Video Broadcasting-Terrestrial (DVB-T); Framing structure, channel
coding and modulation for DTV, In : ETSI standard, Nov. 2004

ARIB (2001). Integrated Services Digital Broadcasting-Terrestrial (ISDB-T); specification on
channel coding, framing structure and modulation, In : ARIB standard, May 2001

201Towards a Reconfigurable FFT : Application to Digital Communication Systems



Chinese National Standard (2006). Framing Structure, Channel Coding and Modulation for
Digital Television Terrestrial Broadcasting System, In : Chinese National Standard GB
20600-2006

Z.-X. Yang, Y.-P. Hu, C.-Y. Pan & L. Yang (2002). Design of a 3780-point IFFT processor for
TDS-OFDM, In : Proc. IEEE, vol. 48, pp. 57-61

Altera (2009). In : FFT mega core function user guide

202 Fourier Transforms - New Analytical Approaches and FTIR Strategies

11 

Fourier Transform Based Transmission 
Systems for Broadband Wireless 

Communications 
Mingqi Li, Yun Rui and Zhiyong Bu 

Shanghai Institute of Microsystem and Information Technology, & Shanghai Advanced 
Research Institute, Chinese Academy of Sciences, CAS 

China 

1. Introduction 
In recent years, Fourier Transform (FT), as an effective signal processing technology, is more 
and more popularly applied to wireless communications. By the FT technologies, it can not 
only reduce the implementation complexity of traditional transmission systems, but also 
bring in some new features, thus constructing new transmission systems. The current main-
stream transmission schemes utilizing DFT technologies include Orthogonal Frequency-
Division Multiplexing (OFDM) [1], Discrete Fourier Transform Spread Orthogonal 
Frequency Division Multiplexing (DFT-S-OFDM) [2] and Filter bank modulation [3]. For 
OFDM systems, by an IDFT at the transmitter, the whole frequency-selective wideband 
channel is divided into several flat narrow band sub-channels, which is benefit to overcome 
the effects of multi-path in wireless channels. For DFT-S-OFDM system, the uplink 
transmission scheme for 3GPP-Long Term Evolution (3GPP-LTE) standard, besides the 
IDFT served the same function as in the OFDM systems, additional DFT processing is 
performed to the transmitted constellation symbols before OFDM modulation. In this way, 
the whole modulation method can be viewed as a DFT-based interpolation processing, and 
the modulated signals can be regarded as single carrier signals with low Peak-to-Average 
Power Ratio (PAPR) property. For filter-bank systems, the FT can be used both to reduce 
implementation complexity and to construct the cyclic prefix (CP) based block transmission 
scheme, which has merits of both the filter-bank systems with robustness against to multiple 
access interference (MAI) and the CP based block transmission systems with simple 
frequency equalization. 
The chapter is organized as follows. Firstly, the implementation structure of OFDM 
transmitter, time-frequency description of OFDM signals, and effects of timing- and 
frequency-offset and channel multi-path are discussed detailed. Then, we present DFT-S-
OFDM system model, describe time-frequency property of DFT-S-OFDM signals, analyze 
the effects of carrier frequency-offset (CFO) quantitatively and compare the SIR and PAPR 
performances with that of OFDM systems. Next, a DFT spread Generalized Multi-Carrier 
(DFT-S-GMC) system is presented. The time-frequency properties of DFT-S-GMC signal, the 
DFT-based implementation method and the receive SINR are addressed. Finally, 
conclusions are collected. 
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DFT-based implementation method and the receive SINR are addressed. Finally, 
conclusions are collected. 
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2. OFDM transmission systems 
OFDM plays a significant role in modern broadband communication systems. The 
wireline high-speed access technology, i.e. Asymmetric Digital Subscriber Line (ADSL), 
was the first widely used application for the FT-based OFDM system. Several other 
wireless standards, such as the IEEE 802.11a Wireless Local Area Network (WLAN) and 
IEEE 802.16 (WiMAX) series, have adopted OFDM as a key transmission technology. IEEE 
802.20 working group on mobile broadband wireless access uses OFDM as the wireless 
high speed transmission technology. In the area of cellular mobile communications, 
OFDM was also adopted as a basic downlink transmission scheme of 3GPP-Long-Term 
Evolution (3GPP-LTE) standard and the incoming 3GPP-LTE-Advanced standard [6].  
OFDM is also widely applied in the areas of audio and video broadcasting. Digital Audio 
Broadcasting (DAB), initiated as a European research project in 1980s, adopts coded 
OFDM as the transmission technology. DVB-T based on OFDM in an 8 MHz channel is 
now a popular technology for terrestrial video broadcast in the world. An additional new 
application area of OFDM is in Ultra-Wideband (UWB) personal area networks [4]. 

2.1 OFDM system model 
Figure 1 illustrates the principle structure of OFDM transmitter. Assume that the user-
specific K  data symbols are { }ka , 0 1k K≤ ≤ − . After the OFDM modulation, the transmit 
signals can be expressed as 
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2.2 Time-frequency properties of OFDM signal 
2.2.1 Time-frequency description of OFDM signal 
Fig. 2 describes the time-frequency property of OFDM signal. According to the 
implementation principle, OFDM is a block-based transmission scheme. As a result, each 
OFDM symbol has a rectangle waveform in time-domain. The rectangle waveform can be 
expressed as 

 ( ) 1 , | | / 2
0 ,

t T
p t

otherwise
        <⎧⎪= ⎨        ⎪⎩

 (2) 

By the properties of the Fourier transform, the spectrum of each sub-carrier has a sinc-
function shape in frequency-domain. Namely, the Fourier transform of ( )p t  
is ( ) ( )sincP f Tf f= π π . As it is shown, the spectrum function ( )P f  has following properties 
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Equation (3) shows that ( ) ( ) ( ), ,....,P f P f f P f n f− Δ − Δ  are orthogonal to each other, and 
1f TΔ = .  This means although the spectrum of sub-carriers are overlapped each other, the 

orthogonality among each sub-carriers can be maintained when the sub-carrier spacing is 
set to be fΔ . 
 

 
Fig. 2. The time-frequency property of OFDM signal 

2.2.2 Cyclic prefix and frequency-domain equalization 
When the transmitted signal in time domain is ns  and the discrete Channel Impulse 
Response (CIR)  is 1
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where nw  is the Additive White Gaussian Noise (AWGN).  
According to the DFT theory, the frequency-domain multiplication is equivalent to the time-
domain circular-convolution. When the signal ns , , 0,..., 1n ns s n N= = − , is passed through 
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the channel, only linear-convolution with the CIR occurs. To mimic circular-convolution, we 
can copy a partial of samples in the tail of ns� , and pad to the head of ns�  to construct a CP. 
Usually the length of CP is kept greater or at least equal to the length of the channel delay 
spread, i.e., L . Consequently, by performing DFT to the time-domain signal nr , we can get 
the frequency-domain received signal in the k -th sub-carrier 

 , 0,..., 1k k k kR b H W k N= + = −  (5) 

where kH  is channel frequency response and 1 2 /
0

L j ik N
k iiH h e− π

== ∑ . kW  is the AWGN in 
frequency domain. kb  is the transmitted modulated symbol in the k -th sub-carrier as 
described in Equation (1). 
To recover the transmitted symbol, we can apply single-point frequency-domain 
equalization to each sub-carrier. For example, using ZF equalization, the desired signal can 
be denoted as 
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2.2.3 Effects of time and frequency offset on demodulated signal 
a. Effect of timing offset 
Symbol timing is one of the key factors in OFDM synchronization, which decides the 
accurate selection of FFT window starting position for OFDM demodulation. As shown in 
Fig. 3, the ideal synchronization position of symbol timing is the first sample of the 
transmitted signal removing the CP. If the FFT window is opened at the permitted zone, the 
received signal will produce no Inter-Symbol Interference (ISI), only inducing the common 
phase rotation on demodulated symbols. While the initial location is selected outside the 
permitted area, it inevitably will produce the ISI, thus resulting in the Inter-sub-carrier 
Interference (ICI). 
Assuming over the AWGN channel, if the symbol timing position is captured in the 
permitted zone, then the output demodulation signal on the 'k -th sub-carrier of the m -th 
OFDM symbol is expressed as 
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where ξ  is the timing offset. However, if the symbol timing position is outside the 
permitted zone, for example delay ξ  samples, then the output demodulation signal on the 
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where the second item on the right side is for ICI, and the third part is for ISI. As shown in 
Fig. 4, the constellations of the demodulated signals are divergent besides the phase 
rotation.  
 

 
Fig. 3. OFDM symbol timing 
 

 
Fig. 4. The constellation of demodulated signal with timing offset 
b. Effect of carrier frequency offset 
In OFDM system, the existed CFO will lead to frequency shift of the received signal. If the 
offset of the sub-carrier frequency is integral multiple of sub-carrier spacing, the 
orthogonality among sub-carriers is still maintained, just with a shift relative to the sub-
carrier for the data symbols. However, if the frequency offset is a fractional sub-carrier 
spacing, the ICI will be introduced. For OFDM systems composed of a large number of sub-
carriers, sub-carrier bandwidth is relatively much smaller compared with the channel 



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

206 

the channel, only linear-convolution with the CIR occurs. To mimic circular-convolution, we 
can copy a partial of samples in the tail of ns� , and pad to the head of ns�  to construct a CP. 
Usually the length of CP is kept greater or at least equal to the length of the channel delay 
spread, i.e., L . Consequently, by performing DFT to the time-domain signal nr , we can get 
the frequency-domain received signal in the k -th sub-carrier 

 , 0,..., 1k k k kR b H W k N= + = −  (5) 

where kH  is channel frequency response and 1 2 /
0

L j ik N
k iiH h e− π

== ∑ . kW  is the AWGN in 
frequency domain. kb  is the transmitted modulated symbol in the k -th sub-carrier as 
described in Equation (1). 
To recover the transmitted symbol, we can apply single-point frequency-domain 
equalization to each sub-carrier. For example, using ZF equalization, the desired signal can 
be denoted as 

 ˆ , 0,..., 1k
k

k

Rb k N
H

= = −  (6) 

2.2.3 Effects of time and frequency offset on demodulated signal 
a. Effect of timing offset 
Symbol timing is one of the key factors in OFDM synchronization, which decides the 
accurate selection of FFT window starting position for OFDM demodulation. As shown in 
Fig. 3, the ideal synchronization position of symbol timing is the first sample of the 
transmitted signal removing the CP. If the FFT window is opened at the permitted zone, the 
received signal will produce no Inter-Symbol Interference (ISI), only inducing the common 
phase rotation on demodulated symbols. While the initial location is selected outside the 
permitted area, it inevitably will produce the ISI, thus resulting in the Inter-sub-carrier 
Interference (ICI). 
Assuming over the AWGN channel, if the symbol timing position is captured in the 
permitted zone, then the output demodulation signal on the 'k -th sub-carrier of the m -th 
OFDM symbol is expressed as 

 ( ), ,ˆ 2 /m k m ka a exp j k Nπξ′ ′ ′= − , 0, , 1k N′ = −…  (7) 

where ξ  is the timing offset. However, if the symbol timing position is outside the 
permitted zone, for example delay ξ  samples, then the output demodulation signal on the 

'k -th sub-carrier of the m -th OFDM symbol can be denoted as 

 

( )

( )( )

( )( ) ( )

, ' , '

1 1

, '
0 0; '
1 1

1,
0

ˆ exp 2 '/

1 exp 2 /

1 exp 2 / exp 2 '/

m k m k

N K

m k
n k k k
N K

m k g
n N k

Na a j k N
N

a j n N
N

a j n N N k N j nk N
N

ξ

ξ

ξ πξ

π ξ

π ξ π

− − −

= = =

− −

+
= − =

−
=

+ +

+ − − + −

∑ ∑

∑ ∑

 (8) 

Fourier Transform Based Transmission Systems for Broadband Wireless Communications 

 

207 
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offset of the sub-carrier frequency is integral multiple of sub-carrier spacing, the 
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bandwidth. Therefore, the small amount of frequency offset will result in substantial BER 
performance degradation. 
Assuming the normalized fractional CFO is ε , and then the demodulated signal can be 
expressed as 
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where α  is the attenuation experienced by all sub-carriers, and 
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The second part on the right side of Equation (9) is an ICI item. Fig. 5 shows the 
demodulated signal constellation under the AWGN channel with ε = 0.05. As shown in the 
figure, the CFO on one hand results in the whole constellation phase rotation, and on the 
other hand, due to the impact of ICI, a divergent phenomenon is generated among 
constellation points. 
 

 
Fig. 5. The constellation of demodulated signal with CFO = 0.05 

2.3 Performances analysis and numerical results 
a. SIR effects caused by the carrier frequency-offset 
According to Equation  (9), the SIR of 'k -th sub-carrier is given as 

 
2

O
k' 2

k'

SIR
E ICI

=
⎡ ⎤
⎢ ⎥⎣ ⎦

α
 (11) 

Fourier Transform Based Transmission Systems for Broadband Wireless Communications 

 

209 

where k'ICI  is the inter-sub-carrier interference on the 'k -th sub-carrier, and its variance can 
be expressed as[15] 
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b. Uncoded BER Performance of OFDM 
In order to evaluate the error probability, without loss of generality, we focus on the signal 
received on the first sub-carrier. Moreover, let us now consider the QPSK modulation. By 
the conditional SINR, the approximate BER becomes [14] 
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where M is the modulation order, and SNR  is the average received signal to noise ratio. Fig. 
6 shows simulation results of the impacts of the CFO on the BER performance of OFDM 
system with QPSK modulation over the AWGN channel.  
 

 
Fig. 6. BER of OFDM system with QPSK modulation under the impacts of the CFO over the 
AWGN channel 
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where k'ICI  is the inter-sub-carrier interference on the 'k -th sub-carrier, and its variance can 
be expressed as[15] 
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3. DFT-S-OFDM transmission systems 
In order to meet the emerged new requirements, many powerful and implementation-
efficient transmission schemes have been proposed for the standardization of the latest and 
future communication systems. For the downlink transmission, the OFDM scheme has been 
widely accepted due to its high spectral efficiency and flexible resource allocation. For the 
uplink transmission, however, the power efficiency is particularly critical for mobile 
terminals with the restriction on the transmission power and power consumption. 
Therefore, the PAPR performance becomes one of the most important criterions in selecting 
the transmission scheme for the uplink. From this point of view, the single-carrier based 
frequency division multiple access (SC-FDMA) scheme is favoured by future wideband 
wireless communications. In fact, one kind of SC-FDMA schemes, i.e., DFT-S-OFDM, is 
accepted as the uplink basic transmission scheme by the 3GPP-LTE standard and incoming 
3GPP-LTE-Advanced standard [5][6]. In order to reduce the PAPR, the DFT-S-OFDM 
scheme utilizes the DFT spreading processing on the transmitted constellation symbols 
before OFDM modulation. By this way, the modulation method can be view as a DFT-based 
interpolation processing, and the modulated signals can be regarded as single carrier 
signals. 

3.1 DFT-S-OFDM system model 
The structure of DFT-S-OFDM transmitter is shown in Fig. 7. Assume the user-specific K  
data symbols are{ }ma , 0 1m K≤ ≤ − . After the DFT based spreading, the output signals can 
be expressed as 
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Then according to the localized allocation pattern, the signal is converted into a time-
domain signal by N -point IDFT processing. N  is greater than K . After the CP padding, the 
time-domain signal, i.e., the SC-FDMA symbol, can be written as 
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where  k0 is the user-specific sub-carrier offset and gN  is the CP length.  
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3.2 Time-frequency properties of DFT-S-OFDM signals 
a. Time-frequency description of DFT-S-OFDM signal 
Figure 8 describes the time-frequency property of DFT-S-OFDM signal. For DFT-S-OFDM 
signals, the time-domain waveform can be viewed as a DFT-based interpolation of 
transmitted constellation symbols. Therefore, the energy distribution within one DFT-S-
OFDM symbol keeps the same transmission order of the constellation symbols in the time-
domain. In the frequency-domain, due to the DFT based spread spectrum processing, the 
spectrum of each transmitted constellation symbol is distributed on all occupied sub-
carriers, i.e., each sub-carrier contains only a part of spectrum component of the transmitted 
constellation symbol, which is substantially different form OFDM signals. 
 

 
Fig. 8. The time-frequency property of DFT-S-OFDM signal 
b. Effects of time and frequency offset on demodulated signal 
DFT-S-OFDM systems are subjected to the CFO and TO as well. Although the DFT-S-OFDM 
scheme is based on the OFDM technology, the effects of CFO on two systems are very 
different, because the DFT-S-OFDM systems can be viewed as transmitting symbols in the 
time-domain, whereas the OFDM systems are usually regarded as transmitting symbols in 
the frequency domain. 
1. Effect of time offset 
First, if the timing point is allocated inside the permitted zone, similar as the analysis for 
OFDM system, the received signal in the frequency domain for DFT-S-OFDM can be 
denoted as  

 ( )ˆ 2 / , 0,1,..., 1k kx x exp j k N k K= − = −πξ    (16) 

While after the K-point IDFT despreading, then the demodulated symbol can be given as 
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From the above expression, we can see that although the timing point is allocated inside the 
permitted zone, it not only induce the common phase rotation, but also brings the ICI on the 
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before OFDM modulation. By this way, the modulation method can be view as a DFT-based 
interpolation processing, and the modulated signals can be regarded as single carrier 
signals. 

3.1 DFT-S-OFDM system model 
The structure of DFT-S-OFDM transmitter is shown in Fig. 7. Assume the user-specific K  
data symbols are{ }ma , 0 1m K≤ ≤ − . After the DFT based spreading, the output signals can 
be expressed as 
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Then according to the localized allocation pattern, the signal is converted into a time-
domain signal by N -point IDFT processing. N  is greater than K . After the CP padding, the 
time-domain signal, i.e., the SC-FDMA symbol, can be written as 
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where  k0 is the user-specific sub-carrier offset and gN  is the CP length.  
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Fig. 7. DFT-S-OFDM transmitter 
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3.2 Time-frequency properties of DFT-S-OFDM signals 
a. Time-frequency description of DFT-S-OFDM signal 
Figure 8 describes the time-frequency property of DFT-S-OFDM signal. For DFT-S-OFDM 
signals, the time-domain waveform can be viewed as a DFT-based interpolation of 
transmitted constellation symbols. Therefore, the energy distribution within one DFT-S-
OFDM symbol keeps the same transmission order of the constellation symbols in the time-
domain. In the frequency-domain, due to the DFT based spread spectrum processing, the 
spectrum of each transmitted constellation symbol is distributed on all occupied sub-
carriers, i.e., each sub-carrier contains only a part of spectrum component of the transmitted 
constellation symbol, which is substantially different form OFDM signals. 
 

 
Fig. 8. The time-frequency property of DFT-S-OFDM signal 
b. Effects of time and frequency offset on demodulated signal 
DFT-S-OFDM systems are subjected to the CFO and TO as well. Although the DFT-S-OFDM 
scheme is based on the OFDM technology, the effects of CFO on two systems are very 
different, because the DFT-S-OFDM systems can be viewed as transmitting symbols in the 
time-domain, whereas the OFDM systems are usually regarded as transmitting symbols in 
the frequency domain. 
1. Effect of time offset 
First, if the timing point is allocated inside the permitted zone, similar as the analysis for 
OFDM system, the received signal in the frequency domain for DFT-S-OFDM can be 
denoted as  

 ( )ˆ 2 / , 0,1,..., 1k kx x exp j k N k K= − = −πξ    (16) 

While after the K-point IDFT despreading, then the demodulated symbol can be given as 
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From the above expression, we can see that although the timing point is allocated inside the 
permitted zone, it not only induce the common phase rotation, but also brings the ICI on the 
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demodulated symbols, which is shown in Fig. 9. This character is different from OFDM 
system. Furthermore, if the timing point is outside the permitted zone, it will cause both the 
ISI and ICI, which is similar with OFDM.   
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Fig. 9. The constellation of demodulated signal with timing offset 
2. Effect of CFO 
Considering CFO effects, following CP removing, the received N samples of SC-FDMA 
symbol for demodulation are 
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where nw is the complex-valued AWGN on the n -th time-domain sample. kH  is the 
channel frequency response (CFR) at the k -th sub-carrier, and 

( )1
0 exp 2 /L

k i iiH h j k N−
== ⋅ −∑ π τ . By DFT and single sub-carrier equalization, the output is 
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where ( )
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k m
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x a exp j mk K k K
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=
= − ≤ ≤ −∑ π .                               

Then, after the sub-carrier demapping, generally, the K elements extracted from the N -
sample output of DFT are processed by a K -point IDFT, and yields the estimated symbols 
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Because the energy of ICI inducing by CFO is distributed in all the sub-carriers, as shown in 
Fig.10, the CFO brings about not only the ICI and the linear phase rotation, but also the ISI 
and the attenuation on the demodulated symbols. 
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Fig. 10. The constellation of demodulated signal with CFO = 0.05 

3.3 Performances analysis and numerical results 
a. SIR effects caused by the carrier frequency-offset  
For DFT-S-OFDM systems with CFO and over a flat fading channel, the demodulated 
symbol can be given as [10] 

 ( )' ' ' ' 'ˆ 2 ' /m m m m ma a exp j m K ISI ICI= + +α π ε             (21) 

where 'mα , 'mISI  and 'mICI are the attenuation term, inter-symbol interference and inter-
sub-carrier interference on the 'm -th demodulated symbol respectively.  
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3.3 Performances analysis and numerical results 
a. SIR effects caused by the carrier frequency-offset  
For DFT-S-OFDM systems with CFO and over a flat fading channel, the demodulated 
symbol can be given as [10] 

 ( )' ' ' ' 'ˆ 2 ' /m m m m ma a exp j m K ISI ICI= + +α π ε             (21) 
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The SIR of the 'm -th demodulated symbol is 
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Fig. 11. SIR comparison between DFT-S-OFDM and OFDM system with CFO 
As shown in the figure, except the first symbol, all other demodulated symbols of DFT-S-
OFDM system have a much higher SIR than that of OFDM system under the same CFO 
condition. 
b. Uncoded BER Performance of CFO Effect [16] 
We first derive an exact closed-form BER expression for the DFT-S-OFDM system without 
channel coding. As we know, an arbitrary rectangular QAM can be viewed as two 
independent pulse amplitude modulation (PAM), i.e., I -ary and J -ary PAM’s, through two 
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quadrature branches. As a result, the average bit probability of the detected symbol ',m ja  in 
the presence of CFO can be obtained by averaging the bit error probabilities from [7] 
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where M  is the number of bits for the special modulated symbol, and '
j
mSINR denotes the 

SINR per modulated symbol, which can be obtained from the above subsection. In addition, 
erfc( )⋅  is the complementary error function, and x⎢ ⎥⎣ ⎦ denotes the largest integer to x . 
Similarly, the ( )JP l can be denoted as the above. Note that for 2I =  and 1J = ,  equation (26) 
reduces to the BER of a BPSK signal.  
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Fig. 12. BER comparison of the CFO effect for uncoded DFT-S-OFDM systems 
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Therefore, based on the derived SINR for the demodulated symbol in the above section, the 
closed-form BER expression in the presence of CFO for DFT-S-OFDM system can be given 
as 

 uncoded
1 1

0 0

1
DFT-S-OFDM

N D
j

m
j m

P P
Q

− −

′
= =′

= ∑ ∑      (28) 

Then, using the average BER of the DFT-S-OFDM system, we can compute the effective 
SINR by the mapping function as shown in (29). For the individual modulation, such as 
BPSK, the effective SINR can be denoted as  

 1 2[ ( )]uncoded uncoded
eff DFT-S-OFDMSINR erfc P−=         (29) 

As a result, the SNR degradation for DFT-S-OFDM system can be presented as  

 DFT-S-OFDM 10 210 log s
uncoded
eff

E
D

SINRσ
=

⋅
       (30) 

As can be seen from the figure, the theoretical result using the exact expression agrees well 
with the simulation results. This clearly shows that the exact expression for calculating the 
effective SINR in equation (29) can be used in order to assess the effect of the carrier 
frequency offset accurately.  
c. Turbo coded BER Performance of CFO Effect 
In this section, we will focus on the BER performance in the presence of CFO for the coded 
DFT-S-OFDM system. Due to the mathematical complexity of the iterative turbo decoding 
algorithm, the analytical derivation of the BER of turbo codes is not available. To simplify 
the analysis, the BER of coded system in AWGN channels can be approximated by an 
expression of the form [8] 

 Coded exp( )DFT S OFDMP − − = −
γ
β

      (31) 

where γ  is the received effective SINR. Parameters β  is mode-dependent, and can be 
obtained by fitting the curves to the exact simulated BER. As a result, the exponential 
effective SINR mapping (EESM) method is considered to incorporate the SINR of all the 
detected symbols. The formulation of the incorporated SINR can be expressed as [9]  

    
1 1

coded '
eff

0 0

1ln exp
jN D
m

j m

SINRSINR
D

− −

′= =

⎛ ⎞⎧ ⎫⎪ ⎪= − −⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠
∑ ∑β

β
        (32) 

Similar to (30), the SNR degradation can be also obtained. 
Fig.13 shows the BER performance in DFT-S-OFDM systems for turbo coded modulation, 
where the QPSK modulation and 1/2 coding rate is assumed. In addition, the EESM method 
in (32) is used to incorporate the SINR of all the detected symbols, which is different in the 
presence of CFO, and β  is achieved through the simulation. As we can see from the figure, 
the BER mapping curve for CFO 0.01=ε  and 0.1=ε  is very close to that without CFO over 
the equivalent SINR.  
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Fig. 13. BER performance with and without the CFO effect 

d. Post-processing SINR of DFT-S-OFDM [11] 
For DFT-S-OFDM system, the transmit signal vector without CP can be given as 

 
,

H m
N N M MS F T F D=     (33) 

where ,
m

N MT  is the mapping matrix for sub-carrier assignment, MF is the M point FFT matrix 
and H

NF  is the N point IFFT matrix, 1
T

MD d d= ⎡ ⎤⎣ ⎦� is the data vector. 
Then, at the receiver, the vector of detection metric after FDE is then given as 

 
�

�
, ,

, ,

( )H m H H m
M N M N M M

mmH H
W M W MM M M M

D F T H W HT F D Z

F H F D F H Z

= +

= +
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where  1 2{ , , , }NW diag= �ω ω ω  is the frequency domain equalizer, and  

 { }22 2
, 1 1 ( 1) ( 1), , ,m

W M m m m m m M m MH diag H H H+ + + − + −=� …ω ω ω          (35) 

     { }* * *
, 1 1 ( 1) ( 1), , ,m

W M m m m m m M m MH diag H H H+ + + − + −= …ω ω ω    (36) 

Hence, the SINR for DFT-S-OFDM with FDE is given as 
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Fig.13 shows the BER performance in DFT-S-OFDM systems for turbo coded modulation, 
where the QPSK modulation and 1/2 coding rate is assumed. In addition, the EESM method 
in (32) is used to incorporate the SINR of all the detected symbols, which is different in the 
presence of CFO, and β  is achieved through the simulation. As we can see from the figure, 
the BER mapping curve for CFO 0.01=ε  and 0.1=ε  is very close to that without CFO over 
the equivalent SINR.  
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Fig. 13. BER performance with and without the CFO effect 

d. Post-processing SINR of DFT-S-OFDM [11] 
For DFT-S-OFDM system, the transmit signal vector without CP can be given as 

 
,

H m
N N M MS F T F D=     (33) 

where ,
m

N MT  is the mapping matrix for sub-carrier assignment, MF is the M point FFT matrix 
and H

NF  is the N point IFFT matrix, 1
T

MD d d= ⎡ ⎤⎣ ⎦� is the data vector. 
Then, at the receiver, the vector of detection metric after FDE is then given as 
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�
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( )H m H H m
M N M N M M
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= +

= +
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where  1 2{ , , , }NW diag= �ω ω ω  is the frequency domain equalizer, and  

 { }22 2
, 1 1 ( 1) ( 1), , ,m

W M m m m m m M m MH diag H H H+ + + − + −=� …ω ω ω          (35) 

     { }* * *
, 1 1 ( 1) ( 1), , ,m

W M m m m m m M m MH diag H H H+ + + − + −= …ω ω ω    (36) 

Hence, the SINR for DFT-S-OFDM with FDE is given as 
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Furthermore, for ZF and MMES equalizer, the SINR expression can be simplified 
respectively as  
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and 
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4. DFT-S-GMC transmission systems 
4.1 DFT-S-GMC system model 
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Fig. 14. DFT-S-GMC transmitter 

The structure of the DFT-S-GMC transmitter is illustrated in Fig. 14 [12]. Assume that the 
input parallel modulated constellation symbol sequence is ( ){ }da k , 0 1k K≤ ≤ −  and 
0 1d D≤ ≤ − . Note that K  is the number of the user-specific occupied sub-bands, and D  is 
the number of inverse filter-bank transform (IFBT) symbols transmitted during each DFT-S-
GMC symbol. 
The input data sequence is passed through K-point DFT for spectrum spreading, yields the 
output signal 

 ( ) ( ) ( )
1

0

1' exp 2 '/ , 0 ' 1
K

d d
k

A k a k j kk K k K
K

−

=
= − ≤ ≤ −∑ π        (40) 

Then, the signals are sent to the sub-band mapping module, yields 
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where M  is the total number of sub-bands, 0k  is the user-specific sub-band offset, R  is the 
repetition factor. For DFT-S-GMC system, both distributed and localized mapping policy 
could be supported, which is corresponding to R greater than or equal to one respectively. 
After sub-bands mapping, an IFBT is performed on the data sequence, yields the output 
signal, i.e., the IFBT symbol, as 

 ( ) ( ) ( ) ( )
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0 1
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d d p
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g n b m j mn M f n

              n L
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=
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where ( )pf n  is the impulse response of the prototype filter for the filter bank, and can be set 
to a Square Root Raised Cosine (SRRC) function. The prototype filter is with a normalized 
energy, i.e. ( ) 21

0 1L
pn f n−

= =∑  and a length L which is integer times of M .  
Then, each IFBT symbol is zero-padded to form a Q -sample data block 

 ( ) ( ) , 0 1
0, 1

d
d

g n n L
g n

L n Q
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≤ ≤ −⎪⎩
     (43) 

where Q D N= × . 
Next, D  consecutive Q-sample data blocks will be processed by buffering and cyclic-shift 
cumulating with shift interval N , and the output can be described as 

 ( ) ( )( )
1

0

D

d Qd
s n g n dN

−

=
= −∑ , 0 1n Q≤ ≤ −         (44) 

where ( )( )Q
⋅  denotes modulus operation. 

4.2 Time-frequency properties of DFT-S-GMC signals 
From equation (44), the DFT-S-GMC symbol is formed by cyclically accumulating several 
IFBT symbols in time domain, and each IFBT symbol has a SRRC waveform. Therefore, as 
shown in Fig. 15, the spectrum of each sub-band has a Raised Cosine function shape in 
frequency-domain. Moreover, the sub-band spacing is specially designed and differs from 
any conventional filter-bank systems in that a certain guard band is inserted between 
neighbouring sub-bands. By adding some guard band between the sub-bands, the near-
orthogonality between neighbouring sub-bands is guaranteed, which further simplifies the 
detection algorithm greatly. Meanwhile, interferences among successive symbols for each 
sub-band could be easily mitigated in the receiver because of the shift orthogonality of 
prototype filter and the narrow-band single carrier transmission. Similar to DFT-S-OFDM 
systems, DFT-S-GMC systems also exploit DFT based spreading among sub-bands. 
Therefore, each sub-band contains only a part of spectrum component of transmitted 
constellation symbols, and transmitted signal over all occupied sub-bands can be viewed as 
single-carrier signal as a whole. 
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Fig. 14. DFT-S-GMC transmitter 

The structure of the DFT-S-GMC transmitter is illustrated in Fig. 14 [12]. Assume that the 
input parallel modulated constellation symbol sequence is ( ){ }da k , 0 1k K≤ ≤ −  and 
0 1d D≤ ≤ − . Note that K  is the number of the user-specific occupied sub-bands, and D  is 
the number of inverse filter-bank transform (IFBT) symbols transmitted during each DFT-S-
GMC symbol. 
The input data sequence is passed through K-point DFT for spectrum spreading, yields the 
output signal 
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Then, the signals are sent to the sub-band mapping module, yields 
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where M  is the total number of sub-bands, 0k  is the user-specific sub-band offset, R  is the 
repetition factor. For DFT-S-GMC system, both distributed and localized mapping policy 
could be supported, which is corresponding to R greater than or equal to one respectively. 
After sub-bands mapping, an IFBT is performed on the data sequence, yields the output 
signal, i.e., the IFBT symbol, as 
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where ( )pf n  is the impulse response of the prototype filter for the filter bank, and can be set 
to a Square Root Raised Cosine (SRRC) function. The prototype filter is with a normalized 
energy, i.e. ( ) 21

0 1L
pn f n−

= =∑  and a length L which is integer times of M .  
Then, each IFBT symbol is zero-padded to form a Q -sample data block 
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where Q D N= × . 
Next, D  consecutive Q-sample data blocks will be processed by buffering and cyclic-shift 
cumulating with shift interval N , and the output can be described as 
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where ( )( )Q
⋅  denotes modulus operation. 

4.2 Time-frequency properties of DFT-S-GMC signals 
From equation (44), the DFT-S-GMC symbol is formed by cyclically accumulating several 
IFBT symbols in time domain, and each IFBT symbol has a SRRC waveform. Therefore, as 
shown in Fig. 15, the spectrum of each sub-band has a Raised Cosine function shape in 
frequency-domain. Moreover, the sub-band spacing is specially designed and differs from 
any conventional filter-bank systems in that a certain guard band is inserted between 
neighbouring sub-bands. By adding some guard band between the sub-bands, the near-
orthogonality between neighbouring sub-bands is guaranteed, which further simplifies the 
detection algorithm greatly. Meanwhile, interferences among successive symbols for each 
sub-band could be easily mitigated in the receiver because of the shift orthogonality of 
prototype filter and the narrow-band single carrier transmission. Similar to DFT-S-OFDM 
systems, DFT-S-GMC systems also exploit DFT based spreading among sub-bands. 
Therefore, each sub-band contains only a part of spectrum component of transmitted 
constellation symbols, and transmitted signal over all occupied sub-bands can be viewed as 
single-carrier signal as a whole. 
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Fig. 15. The time-frequency property of DFT-S-GMC signal 

4.3 Frequency-domain implementation structure 
a. The frequency-domain equivalent implementation of the DFT-S-GMC transmitter 
As described in equation (44), it can be seen that transmitted symbols are multiplexed 
within each DFT-S-GMC symbol by both time and frequency dimensions. Taking Q-point 
FFT on the DFT-S-GMC modulation signal, the output signal can be expressed as 
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In fact, ( )mF q  is the frequency response of the prototype filter for m -th sub-band. 
Therefore, the DFT-S-GMC modulation signal can be expressed as 
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From equation (50), the frequency-domain implementation structure of DFT-S-GMC 
transmitter can be given by Fig. 16. 
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Fig. 16. Frequency-domain implementation structure of DFT-S-GMC transmitter 

b. The simplified frequency-domain equivalent implementation of the DFT-S-GMC 
transceiver 

From equation (49), the frequency response of the prototype filter for each sub-band has the 
energy over all Q  tones. However, in fact, the most energy of the frequency response is just 
over several tones. Therefore, by selecting a set of values with energy greater then a 
proportional of the total energy of ( )mF q , ( )mF q  can be simplified as 

 ( ) ( ) ( ) ( )
12 2

0
, ,

0,
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m m m
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F q F q F q q
F q =

otherwise

−

∈Ω =

⎧
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⎨
⎪
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∑ ∑ξ    (51) 

With proper designed prototype filter, the frequency response of the prototype filter for 
each sub-band can be simplified such that the number of total selected values for all sub-
bands is equal to the number of total tones Q. By this way, the signals for each sub-band can 
be even mapped to the tones directly and exclusively, and the simplified implementation 
structure is shown in Fig.17. 
As shown in Fig. 17, by tone mapping, rather than summation processing, the 
implementation complexity of DFT-S-GMC transmitter can be significantly reduced, and the 
performance loss is very limited as illustrated by the following simulation results. 
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4.3 Frequency-domain implementation structure 
a. The frequency-domain equivalent implementation of the DFT-S-GMC transmitter 
As described in equation (44), it can be seen that transmitted symbols are multiplexed 
within each DFT-S-GMC symbol by both time and frequency dimensions. Taking Q-point 
FFT on the DFT-S-GMC modulation signal, the output signal can be expressed as 
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In fact, ( )mF q  is the frequency response of the prototype filter for m -th sub-band. 
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b. The simplified frequency-domain equivalent implementation of the DFT-S-GMC 
transceiver 

From equation (49), the frequency response of the prototype filter for each sub-band has the 
energy over all Q  tones. However, in fact, the most energy of the frequency response is just 
over several tones. Therefore, by selecting a set of values with energy greater then a 
proportional of the total energy of ( )mF q , ( )mF q  can be simplified as 
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With proper designed prototype filter, the frequency response of the prototype filter for 
each sub-band can be simplified such that the number of total selected values for all sub-
bands is equal to the number of total tones Q. By this way, the signals for each sub-band can 
be even mapped to the tones directly and exclusively, and the simplified implementation 
structure is shown in Fig.17. 
As shown in Fig. 17, by tone mapping, rather than summation processing, the 
implementation complexity of DFT-S-GMC transmitter can be significantly reduced, and the 
performance loss is very limited as illustrated by the following simulation results. 
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Fig. 17. Simplified implementation structure of DFT-S-GMC transmitter 

4.4 Performances analysis and numerical results 
a. Post-processing SINR with frequency-domain equalization 
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Fig. 18. DFT-S-GMC receiver 

At the receiver side, shown in Fig. 18, after removing the CP, and going through the Q-point 
SC-FDE, the output signal vector can be given as [13] 
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Then, the post-processing SINR can be given by 
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where 2
nσ is variance of AWGN on demodulated symbols. 2

ISIσ  is the variance of the inter-

symbol-interference (ISI) within the d -th IFBT symbol, and can be expressed as  
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Fig. 19. The post-processing SINR of DFT-S-GMC with SC-FDE 
Both the theoretical and simulated post-processing SINR are shown in Fig.19 for the DFT-S-
GMC receiver with MMSE and ZF SC-FDE respectively. Over the same channel condition, 
with MMSE equalization, DFT-S-GMC receiver achieves higher SINR than that with ZF 
equalization in the low SNR range and with wider band transmission, due to the noise 
enhancement effects of ZF SC-FDE. 
b. Performance of frequency-domain implemented DFT-S-GMC transceiver 
 

System Parameters  Value 
Carrier frequency (GHz) 2 
Carrier Bandwidth (MHz) 5 
Sampling frequency (MHz) 5.6 
# of total sub-bands                  (M) 28 
# of useful sub-bands                             24 
Upsampling rate                     (N) 32 
# of IFBT symbols in each data block    (D) 16 
Sub-band BW (kHz)  200 
Sub-band 3dB-BW (kHz) 175 
Occupied BW (MHz) 4.8 
FFT size for FDE                    (Q) 512 
Prototype filter type SRRC 
Simulation parameters   
Channel model PB (3km/h) 
Channel coding(coding rate) Turbo (1/2) 
Modulation QPSK 
Equalization MMSE 
# of Tx/Rx antennas 1 / 1 

Table 1. Simulation specification 
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Fig. 17. Simplified implementation structure of DFT-S-GMC transmitter 

4.4 Performances analysis and numerical results 
a. Post-processing SINR with frequency-domain equalization 
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Fig. 18. DFT-S-GMC receiver 

At the receiver side, shown in Fig. 18, after removing the CP, and going through the Q-point 
SC-FDE, the output signal vector can be given as [13] 
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where 2
nσ is variance of AWGN on demodulated symbols. 2
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The simulation specification is shown in Table 1. As shown in the Fig.20, the BER 
performance of frequency-domain implemented DFT-S-GMC transceiver is almost the same 
as that of time-domain implemented DFT-S-GMC transceiver. 
 

 
Fig. 20. BER performance comparison of FD transceiver with TD transceiver 

As presented in the Table 2, the CM performance of frequency-domain implemented DFT-S-
GMC transmitter is very close to that of time-domain implemented DFT-S-GMC transmitter. 
Moreover, the CM of DFT-S-GMC is smaller 1.7 and 1.1dB than that of OFDM for QPSK and 
16QAM modulation respectively. 
 

 Systems 

 Frequency-domain 
DFT-S-GMC 

Time-domain 
DFT-S-GMC OFDM 

Used sub-carriers 
/sub-band(s) QPSK 16QAM QPSK 16QAM QPSK 16QAM 

16 / 1 0.5 1.5 0.5 1.5 3.2 3.2 
32 / 2 1.4 2.0 1.3 2.0 3.3 3.3 
64 / 4 1.6 2.2 1.6 2.2 3.4 3.4 

256 / 16 1.7 2.3 1.7 2.3 3.4 3.4 

Table 2. Cubic Metric (dB) comparison of frequency- and time-domain implemented DFT-S-
GMC system with OFDM system 

 
Computation complexity  
(# of real multiplications) 

# of used 
sub-band(s) 

TD transmitter/ 
receiver 

FD transmitter/ 
receiver 

Percentage of 
reduction 

28 18800/58688 15184/31008 19％/47％ 
1 18432/55404 9416/18868 49％/66％ 

Table 3. Complexity comparison of frequency- and time-domain implemented DFT-S-GMC 
transceiver 
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As shown in the Table 3, with frequency-domain implementation structure, the computation 
complexity of DFT-S-GMC transceiver with equalization can be reduced significantly, 
compared with that with time-domain implementation structure. For 28 and 1 sub-band(s) 
transmission, the computational complexity can be reduced about 47% to 66%. 

5. Conclusion 
In this chapter, the principle, implementation structure, time-frequency property of three 
Fourier Transform-based transmission systems, namely OFDM, DFT-S-OFDM and DFT-S-
GMC, are presented for broadband wireless communications. For OFDM systems, the 
spectrum of each sub-carrier has a sinc-function shape, spectrums of all sub-carriers are 
independent each other which cause high PAPR of transmitted signal; For DFT-S-OFDM 
systems, each sub-carrier contains only a part of spectrum component of transmitted 
constellation symbols, and the time-domain waveform can be viewed as a DFT-based 
interpolation of transmitted constellation symbols, which bring in lower PAPR of 
transmitted signal; For DFT-S-GMC systems, each DFT-S-GMC symbol is formed by 
cyclically accumulating IFBT symbols with SRRC waveform in the time domain, hence, the 
spectrum of each sub-band has a Raised Cosine function shape, and due to DFT based 
spreading among sub-bands , the transmitted signal over all occupied sub-bands can be 
viewed as single-carrier signal as a whole. Moreover, the effects of time and frequency offset 
on OFDM and DFT-S-OFDM systems are analyzed quantitatively. Theoretical analysis and 
simulation results show that except the first symbol, all other demodulated symbols of DFT-
S-OFDM system have a better SIR than that of OFDM system under the same CFO 
condition. Furthermore, the post-processing SINR of DFT-S-OFDM and DFT-S-GMC are 
addressed for different equalizer. The closed-from expressions of SINR are presented and 
verified by the simulation results. 
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1. Introduction 
The recent increase in attention of detection of chemical threats, explosives and narcotics has 
led to the development of instruments and sensors that can be effective in a variety of 
operating environments. Various approaches can be used for in situ analysis of explosives, 
including the widely used technique, Ion Mobility Spectrometry (IMS). The major 
advantages of IMS are its sensitivity in the picogram range, its continuous real time 
monitoring capability, its reasonable price due to instrumental simplicity and the ease of 
automation (Salleras, 1995). A main disadvantage of IMS is its limited linear range and that 
it cannot be used for quantitative analysis (Salleras, 1995). It is relatively easy to overload an 
IMS and, therefore, sample size must be controlled with care (Brambilla, 1997). Another 
weakness is the response variation that occurs with different background gas compositions 
and with different sample compositions (Salleras, 1995). However, spectroscopic techniques 
have the potential to afford the best selectivity for explosives. The infrared spectra of 
molecules can provide an information-rich fingerprint that allows for near unambiguous 
identification. A few years ago, direct detection by infrared absorption spectroscopy was not 
possible because of the limited sensitivity of this method. Fourier Transform Infrared 
Reflection Absorption Spectroscopy (IRRAS), operating at the grazing-angle, is the most 
sensitive optical absorption technique available for measuring low concentrations of 
chemical compounds adhered to reflective surfaces such as metals (Griffiths, 1986). The 
disadvantage of conventional spectroscopic techniques for applications such as explosives 
detection is that the test materials must be placed physically within the spectrometer’s 
sample compartment for measurement. FT-IRRAS combined with grazing angle probe 
(GAP) can now be used outside the boundaries of the sample compartment. Fiber-optic 
cables (FOCs) that transmit in the mid-IR (MIR) range have made it possible to develop a 
range of spectroscopic probes for in situ analysis (Melling, 2001; Melling, 2002; Mehta, 2003; 
Bacci, 2001). Thus, FTIR spectroscopy can now be effectively used outside the confinement 
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1. Introduction 
The recent increase in attention of detection of chemical threats, explosives and narcotics has 
led to the development of instruments and sensors that can be effective in a variety of 
operating environments. Various approaches can be used for in situ analysis of explosives, 
including the widely used technique, Ion Mobility Spectrometry (IMS). The major 
advantages of IMS are its sensitivity in the picogram range, its continuous real time 
monitoring capability, its reasonable price due to instrumental simplicity and the ease of 
automation (Salleras, 1995). A main disadvantage of IMS is its limited linear range and that 
it cannot be used for quantitative analysis (Salleras, 1995). It is relatively easy to overload an 
IMS and, therefore, sample size must be controlled with care (Brambilla, 1997). Another 
weakness is the response variation that occurs with different background gas compositions 
and with different sample compositions (Salleras, 1995). However, spectroscopic techniques 
have the potential to afford the best selectivity for explosives. The infrared spectra of 
molecules can provide an information-rich fingerprint that allows for near unambiguous 
identification. A few years ago, direct detection by infrared absorption spectroscopy was not 
possible because of the limited sensitivity of this method. Fourier Transform Infrared 
Reflection Absorption Spectroscopy (IRRAS), operating at the grazing-angle, is the most 
sensitive optical absorption technique available for measuring low concentrations of 
chemical compounds adhered to reflective surfaces such as metals (Griffiths, 1986). The 
disadvantage of conventional spectroscopic techniques for applications such as explosives 
detection is that the test materials must be placed physically within the spectrometer’s 
sample compartment for measurement. FT-IRRAS combined with grazing angle probe 
(GAP) can now be used outside the boundaries of the sample compartment. Fiber-optic 
cables (FOCs) that transmit in the mid-IR (MIR) range have made it possible to develop a 
range of spectroscopic probes for in situ analysis (Melling, 2001; Melling, 2002; Mehta, 2003; 
Bacci, 2001). Thus, FTIR spectroscopy can now be effectively used outside the confinement 



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

228 

of the sample compartment, making it available for field work (Mizaikoff, 2002). The 
attractive features of this technique include portability, simple design and rugged design, 
high sensitivity and short analysis time. These features lead to potential uses of Mid FTIR 
for airport screening and within the military. 
Sample preparation methodology constitutes a critical a step in the detection scheme pursed 
because a uniformly covered, thin film is needed for preparation of the standard samples on 
which precision relies on. Several approaches have been used in the lab for sample 
preparation including: standard preparation using an airbrush aerosol spray, sample 
smearing and direct transfer from solutions using micropipettes (Primera-Pedrozo, 2004). In 
the smearing method 20 μL aliquots of standard solutions were deposited over the plate 
then the solution is spread using a Teflon sheet. Smearing transfer method has led to detect 
TATP over stainless steel surface. This transfer method let to detect and quantify TATP for 
first time on metallic surfaces.  Despite the fact of tendency towards sublimation of TATP, a 
limiting value of 8 µg/cm2 could be detected. Samples ranging from micrograms/cm2 to 
nanograms/cm2 of 2,6-dinitrotuelene (DNT), 2,4,6-trinitrotoluene (TNT), pentaerythritol 
tetranitrate (PETN), nitroglycerine (NG) and triacetone triperoxide (TATP) have been 
detected using this new method of deposition. A smearing deposition was used for 
depositing the target explosives over substrates to be used as standards. The sample transfer 
method gave good sample distribution, reduced sample loss on transfer and was easy to 
manipulate giving good reproducible distributions (Primera-Pedrozo, 2004; Primera-
Pedrozo, 2009; Primera-Pedrozo, 2010; Pacheco-Londoño, 2010). Although, the smearing 
technique has given good results for explosives detection, many samples are needed for 
sample preparation transfer method because it depends on human error since the sample is 
placed using a piece of Teflon sheet and is distributed with the hands on the surface and 
sometimes good distribution is not found. In this case other samples have to be prepared.  
Another disadvantage of this transfer method is solvent interference since various solvents 
are adhered to the stainless steel plated producing poor distribution of the material over the 
surfaces.  The use of slow evaporating solvents makes the sample preparation more 
complicated. For these reasons the development of an automatic method for explosives 
transfers on the surfaces must be devised. Thermal ink jet (TIJ) was selected as transfer 
technique to avoid human errors during preparation of standards and to decrease the time 
for sample preparation.  In thermal ink jet a thin film resistor superheats less that 0.5% of the 
fluid in the chamber to form a gas bubble. This bubble rapidly expands (less than ten 
microseconds) and forces a drop to be ejected through an orifice (Beeson, 1998). 
When comparing the inkjet based method of sample transfer to the smearing method used 
in previous works (Primera-Pedrozo, 2004), the former has notable advantages. The loading 
concentration of the sample on the surface can be controlled by varying parameters such as:  
number of passes, dispensing frequency, applied energy, and pen architecture.  Precise 
delivery of the number of droplets with known volume and concentration controls the mass 
deposited. Also only one solution needs to be used, avoiding dilutions that can increase the 
analytical errors. 

2. Description of methodology 
FOC-GAP FTIR spectroscopy has made possible to develop new methods for detection of 
traces of chemical compounds on surfaces. Thermal inkjet (TIJ) technology is able to deposit 
very small amounts of chemical compounds, including energetic materials, in a specific 
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location on a surface (Primera-Pedrozo, 2005).  Aliquots of TNT and RDX solutions were 
deposited on stainless steel film.  A thin coating of the explosives can be produced by 
controlling the concentration of TNT or RDX, the number of drops dispensed and the 
distribution of drops on the surface. A Vector 22, a Bruker Optics FTIR fiber coupled to a 
Remspec Corp. Grazing Angle Probe head was used for the experiments. The spectra were 
recorded at 4 cm-1 resolution and 50 scans. The results of the experiments gave intense 
absorption bands in the fingerprint region of the infrared spectra that were used for 
quantification. Chemometrics routines were applied for enhancing quantitative analysis. 
The sample analysis setup is schematically presented in Fig. 1. A Remspec mid-IR grazing 
angle probe was used to collect the spectra. The grazing-angle head uses carefully aligned 
mirrors to deliver the mid-IR beam to the sample surface at the grazing angle 
(approximately 80° from normal), to collect the reflected beam, and to return it to a mid-IR 
detector (in this case, external liquid nitrogen cooled MCT detector). The signal is delivered 
from the spectrometer to the head by IR transmitting fiber optic cables. The grazing angle 
accessory is connected to the external beam port of the Bruker Vector 22 spectrometer by a 
1.5 m, 19–fiber chalcogenide glass optical bundle in the As-Se-Te system, which transmits 
throughout the mid–IR with the exception of a strong H-Se absorbance band at 2200 cm-1. 
The IR footprint produced by the grazing angle probe is elliptical with the intensity 
decaying from the middle towards the edges. The specially configured head illuminates a 
large spot on the sample surface. The spot is an ellipse 1 inch by six inches that is defined by 
a Gaussian distribution with a center spot about 1/8 inch by an inch. The electric signal 
from the MCT is delivered to the FTIR using an amplifier.  
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3. Evaluation of samples and standards 
FOP-GAP FTIR absorption-reflection spectroscopy may be successfully implemented in 
assessing sample loading distribution of solids deposited on substrates (Primera-Pedrozo, 
2008; Primera-Pedrozo, 2009). Two methods were used to prepare the samples by depositing 
the analytes onto the test surfaces: sample smearing and thermal inkjet transfer. Stainless 
steel (SS, non-magnetic, type 316) metal sheets with an effective or area for coverage of 46.3 
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of the sample compartment, making it available for field work (Mizaikoff, 2002). The 
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air-dried at room temperature before the experiments. Aliquots of 20 μL of standard 
solutions were placed at one side of the SS plate. A Teflon sheet was inclined towards the 
right or left and the smearing was done quickly. Fig. 2-a illustrates how the smearing is 
done. 
 

 
 (a)    (b) 

Fig. 2. Methods used for transferring a solid sample onto a substrate: (a) TIJ; (b) sample 
smearing 
This method is rapid and easily executed without specialized equipment. The amount is 
readily controlled and can be calculated without the need for an independent analysis. Once 
the solvent had evaporated, the spectrum of the sample was collected immediately. 
Solutions were dispensed using an ImTech Imaging System model I-Jet 312S, (ImTech, OR, 
USA) equipped with a HP 51645A inkjet cartridge, illustrated in Fig. 2-b. Aliquots of 10 mL 
were placed into the inkjet cartridge and the backpressure was set to 3 inches of water using 
an external backpressure controller. The solutions were dispensed over stainless plates at 
zero dot spacing (space between drops using HP ink) using a printing resolution of 600 dots 
per inch (dpi). Once the solvent had evaporated, the spectrum of the sample was collected. 

4. Cleaning validation of pharmaceutical batch reactors 
FOC-GAP FTIR spectroscopy can be used in cleaning validation applications for active 
pharmaceutical agents on metallic surfaces (Mirza, 1999); Mehta, 2002; Primera-Pedrozo, 
2005-b; Fierro-Mercado, 2010). A method based on smearing a known amount of the sample 
in solution was used for preparing samples and standards to develop cleaning validation 
methodologies using IR spectroscopy. The samples were deposited on the surface using 
smearing transfer method. Using this method ibuprofen was detected on stainless steel 
plates, a common material on pharmaceuticals reactors. This new technology combining to 
smearing can decrease the consuming time in cleaning validation process, being 
advantageous in an in process laboratory. Detection limit for this compound was 0.5 μg/cm2 
loading concentration. Grazing angle spectra of samples were collected for surface 
concentrations in the range of 0.1 – 20 μg/cm2 FT-IR spectra were collected from each plate 
using the grazing angle probe. The spectra are shown in Figure 3. Fingerprint signals 
intensities of the spectra decrease with lower ibuprofen loading concentrations. This 
amplified region was used for the chemometrics calculations (Beebe, 1998). The most intense 
band of ibuprofen in the region of 1760-1650 cm-1 was used for peak area and peak height 
calibration curve generation. This band is assigned to C=O stretch (Griffith, 1986; Lin-Vien, 
1991). 
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Fig. 3. Grazing angle FTIR spectra of ibuprofen on stainless steel for various surface loadings 

For quantification studies, two types of calibration curves were generated using two 
methods: measurement of the absorbance peak heights and integration of areas spectral 
region within the 1760 to 1650 cm-1 range. Fig. 3 shows the calibration curves of the 
absorbance peak heights. Results for peak areas are not shown. These plots exhibit a high 
degree of linear correlation. The calibration curve graph using height peaks shows better in 
linearity. However, the errors are higher for the calibration curve using peak areas. The 
calibration graphs using peak areas represents a better choice for quantitative analysis when 
compared to peak height analysis (Lavine, 2002; Kramer, 1998). 
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Fig. 4. Calibration curve of ibuprofen using peak height analysis 

The calibration model was built using the Quant 2 package, an add-on software package to 
the OPUS™ (Bruker Optics) data acquisition and analysis software. In this study, the model 
parameters were optimized in the spectral region 1770 – 1016 cm-1 and 3104 – 2750 cm-1. No 
spectral data preprocessing was done. The resulting model was cross-validated using the 
‘’leave one out’’ method in which each spectrum is omitted in turn from the training set and 
then tested against the model built with the remaining spectra. The results are illustrated 
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Fig. 3. Grazing angle FTIR spectra of ibuprofen on stainless steel for various surface loadings 
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Fig. 4. Calibration curve of ibuprofen using peak height analysis 

The calibration model was built using the Quant 2 package, an add-on software package to 
the OPUS™ (Bruker Optics) data acquisition and analysis software. In this study, the model 
parameters were optimized in the spectral region 1770 – 1016 cm-1 and 3104 – 2750 cm-1. No 
spectral data preprocessing was done. The resulting model was cross-validated using the 
‘’leave one out’’ method in which each spectrum is omitted in turn from the training set and 
then tested against the model built with the remaining spectra. The results are illustrated 
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graphically in Fig. 5. The root mean square error of the cross validation was 0.401, and R2 
was 0.9952. Clearly, low levels of ibuprofen can be detected and measured on a metal 
surface with quantitative results. 
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Fig. 5. Cross validation for Ibuprofen quantification on metallic surfaces 
Discriminant analysis (Huberty, 1994) was also performed to classify ibuprofen loading 
concentration in two groups (Fig. 6). The first one corresponds to concentrations < 2 μg/cm2 
and the second one to concentrations > 2 μg/cm2. Peak areas of signals in the range of 1273 – 
1978 cm-1 were used for the discrimination. This model was generated using 10 PLS and 
submitting the data to a pre-processing of straight line subtraction. Results show that 
discriminant analysis can be used to classify ibuprofen samples according to their surface 
concentration on the metal surfaces. The minimum amount of this API on the reactor after 
cleaning must be considered for future works. This will allow having a real model of 
discrimination. 
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Fig. 6. Discrimination study for ibuprofen: samples were separated according to surface 
loadings 
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Fig. 7. Variation coefficient with surface loadings for detection and quantification limit 
calculations 
The variation coefficient (Fig. 7) increases at low surface loadings. For 0.5 μg/cm2 loading 
concentration, the variation was higher than the others. This indicates that at this surface 
loading, the analytical response gets its minimum value and can be confused with the noise. 
This value can be considered as the detection limit. In order to verify this, an ANOVA test 
was performed for surface concentrations of 0.5, 1 y 2 μg/cm2, and for a 95.0% confidence 
level there was a statistically significant difference between these values. However at 99.0% 
confidence level, there was no difference for samples of 0.5 and 1 μg/cm2 (Statgraphics Plus 
for Windows™, 1999). 

5. Detection of explosives 
FOC-GAP-FTIR spectroscopy is suitable for development of methods for detection of traces 
of explosives on surfaces. A smearing transfer method can be used for depositing the target 
explosives on the substrates to be used as standards and samples. The sample transfer 
method is appropriate to compare with other methods of sample preparation due the fact 
that a mass balance is not needed in order to know the amount of the sample on the surface. 
Besides that, many plates were prepared, good reproducible distributions were found (the 
analyte was distributed almost homogeneous on the surface). Samples ranging from 
micrograms/cm2 to nanograms/cm2 of 2,6-dinitrotuelene (DNT), 2,4,6-trinitrotoluene 
(TNT), pentaerythritol tetranitrate (PETN), nitroglycerine (NG) and triacetone triperoxide 
(TATP) were deposited as on stainless steel surface. Methanol, acetone and acetonitrile were 
used as transfer solvents. The IR reflectance spectra were recorded at 4 cm-1 resolution and 
50 scans. The results of the experiments gave intense absorption bands in the fingerprint 
region of the IR spectra that were used to calculate the detection limit for each of the target 
explosives. The nitro band can be used for explosives detection since it acts as a vibrational 
signature of several classes of explosives: nitroaromatic, nitroaliphatic, nitramines and 
nitrate esters. Figs. 8 and 9 show the prominent signal of nitro explosives deposited on 
stainless steel surfaces. Only one signal in the range 1200 – 1400 cm-1 was significant for 
quantitative and qualitative analysis. This band can be attributed NO2 stretching vibration. 
Nitro stretching vibration of PETN and NG appears in the 1250 – 1320 cm-1 region. For 
nitroaromatic explosives such as TNT and 2,6-DNT the band appears at 1320 – 1360 cm-1 [42, 
43].  



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

232 

graphically in Fig. 5. The root mean square error of the cross validation was 0.401, and R2 
was 0.9952. Clearly, low levels of ibuprofen can be detected and measured on a metal 
surface with quantitative results. 
 

y = 0.9947x - 0.0048
R2 = 0.9952

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Pr
ed

ic
te

d 
co

nc
en

tr
at

io
n 

/ µ
g/

cm
2

True concentration / µg/cm2

 
Fig. 5. Cross validation for Ibuprofen quantification on metallic surfaces 
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Fig. 7. Variation coefficient with surface loadings for detection and quantification limit 
calculations 
The variation coefficient (Fig. 7) increases at low surface loadings. For 0.5 μg/cm2 loading 
concentration, the variation was higher than the others. This indicates that at this surface 
loading, the analytical response gets its minimum value and can be confused with the noise. 
This value can be considered as the detection limit. In order to verify this, an ANOVA test 
was performed for surface concentrations of 0.5, 1 y 2 μg/cm2, and for a 95.0% confidence 
level there was a statistically significant difference between these values. However at 99.0% 
confidence level, there was no difference for samples of 0.5 and 1 μg/cm2 (Statgraphics Plus 
for Windows™, 1999). 
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50 scans. The results of the experiments gave intense absorption bands in the fingerprint 
region of the IR spectra that were used to calculate the detection limit for each of the target 
explosives. The nitro band can be used for explosives detection since it acts as a vibrational 
signature of several classes of explosives: nitroaromatic, nitroaliphatic, nitramines and 
nitrate esters. Figs. 8 and 9 show the prominent signal of nitro explosives deposited on 
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This difference can be explained in terms of the fact that the group NO2 in PETN and NG is 
attached to an oxygen atom. However, in DNT and TNT, this nitro group is directly 
attached to the aromatic ring. The high electronegativity of the oxygen atom in PETN and 
NG attracts electron density from the nitro group leading to a lowering of the oscillator 
strength and causing a shift to lower frequencies. This effect is lower or not present in the 
aromatic ring for TNT and DNT. 
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Fig. 8. Grazing angle spectra of nitroexplosives: a. PETN; b. NG 

Fig. 10 includes the calculated classical detection limits for some nitroexplosives. For surface 
loadings near the detection limit only the NO2 signal can be observed without aid of 
software. The detection limit varies according to macro properties. Properties such vapor 
pressure, physical adsorption, sublimation rate and surface-adsorbate thermodynamics can 
influence the detection limit. A close relation between vapor pressure and limit detection is 
shown for nitro explosives. Table 1 shows the values for the vapor pressures near room 
temperature of the explosives studied. The amount of explosive on surface of stainless steel 
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and the residence time depends on this property, because at this loading concentration the 
explosive goes to vapor phase fast. This phenomenon is remarkably observed in TATP with 
detection limit of 8 μg/cm2. Some macro properties also can affect sublimation at room 
temperature and TATP detection limit.  
Fig. 11 illustrates that several TATP bands can be used for its detection with accuracy. It 
shows the prominent presence of the most intense bands of TATP in the IR fingerprint 
region. The band at 1205 cm-1 belongs to the C-O stretch, 1365 cm-1 is a deformation of CH3 
group and the band at 1471 cm-1 is an asymmetric deformation of CH3 group. The 
spectroscopic window used for TATP detection was spectral range of 1320-1407 cm-1. 
Forward selection analysis of variable significance affirms that the significant peaks were 
contained within the spectral range of 1330-1407 cm-1 (Beeson, 1998; Demuth, 1998). The best 
discriminant model was done using peak areas. It was selected based on statistical 
significance and the percent of cases correctly classified. The statistical significance value (p-
value) was p < 0.0001 and the percent of cases correctly classified was 90.6%. 
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This difference can be explained in terms of the fact that the group NO2 in PETN and NG is 
attached to an oxygen atom. However, in DNT and TNT, this nitro group is directly 
attached to the aromatic ring. The high electronegativity of the oxygen atom in PETN and 
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aromatic ring for TNT and DNT. 
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and the residence time depends on this property, because at this loading concentration the 
explosive goes to vapor phase fast. This phenomenon is remarkably observed in TATP with 
detection limit of 8 μg/cm2. Some macro properties also can affect sublimation at room 
temperature and TATP detection limit.  
Fig. 11 illustrates that several TATP bands can be used for its detection with accuracy. It 
shows the prominent presence of the most intense bands of TATP in the IR fingerprint 
region. The band at 1205 cm-1 belongs to the C-O stretch, 1365 cm-1 is a deformation of CH3 
group and the band at 1471 cm-1 is an asymmetric deformation of CH3 group. The 
spectroscopic window used for TATP detection was spectral range of 1320-1407 cm-1. 
Forward selection analysis of variable significance affirms that the significant peaks were 
contained within the spectral range of 1330-1407 cm-1 (Beeson, 1998; Demuth, 1998). The best 
discriminant model was done using peak areas. It was selected based on statistical 
significance and the percent of cases correctly classified. The statistical significance value (p-
value) was p < 0.0001 and the percent of cases correctly classified was 90.6%. 
 

1100 1175 1250 1325 1400 1475

A
bs

or
ba

nc
e 

  

Wavenumbers / cm-1

10µg/cm²
5 µg/cm²
2.5 µg/cm²

 
 

1100 1175 1250 1325 1400 1475

A
bs

or
ba

nc
e  

 

Wavenumbers / cm-1

2.5 µg/cm²

1.25 µg/cm²

0.3 µg/cm²

 
Fig. 9. Grazing angle spectra of nitroexplosives: a. 2,6-DNT; b. TNT 

b 

a 



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

236 

2.5

0.4 0.3 0.3

0

0.5

1

1.5

2

2.5

 µ
g/

cm
²

DNT   > NG   > TNT   > PETN 

Limit of detection and deceasing vapor presure trend
 

Fig. 10. Detection limits for selected nitroexplosives and correlation with decreasing vapor 
pressure of the energetic compound 

 
Explosive Vapor pressure(mm Hg) 

2,6-dinitrotoluene 5.67 x 10-4   at 25 °C 
2,4,6-trinitrotoluene 1.99 x 10-4    at 20 °C 

nitroglycerin 2.0 x 10-4    at 25 °C 
pentaerythritol tetranitrate 1.035 x10-10  at 25°C 

TATP 5.25 x 10-2   at 25 °C 

Table 1. Vapor pressure of nitroexplosives and TATP 

It is important to emphasize that measuring surface concentrations using the peak area 
method is conceptually simple and easy to use, but it has limitations. The method is 
univariate (the concentration is determined with a single spectral peak) and depends on a 
linear correlation between the concentration and the spectral response. The results can, 
therefore, be undermined by perturbations such as fluctuations caused by detector noise, 
temperature variations, or molecular interactions. Statistically based, multivariate 
calibrations use spectral features over a wide range. Information from a calibration spectral 
set (a training set) was compared to independently determined concentration data using 
partial least squares (PLS) regression. This method is based on the assumption that 
systematic variations in the spectra are a consequence of concentration changes. A 
calibration model for analysis of 2,6-DNT was built using the Quant 2 package, an add-on 
software package to the OPUSTM data acquisition and analysis software (Bruker Optics). The 
best spectral region was in the range of 1702 – 1269 cm-1. This range was used for model 
generation. No spectral data preprocessing was applied to the spectra. The results are 
illustrated graphically in Fig. 12. The root mean square error of the cross validation 
(RMSCV) was 0.957, and % R2 was 97.75. This calibration was used in order to predict 
unknown loading concentrations. For a deposited loading concentration 3.78 and 7.56 
μg/cm2, 3.58 and 7.35 μg/cm2 were detected, respectively. Clearly, low levels of explosives 
can be detected and measured on a metal surface with good results. So, chemometrics easily 
leads to a powerful technique for surface contamination detection and measurement. 
Moreover, classical detection limits do not apply any longer. Thus the reported values are 
on the conservative side. 
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Fig. 11. GAP spectra of TATP at three surface loadings: 20, 40 and 100 μg/cm2 
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Fig. 12. Partial least squares regression cross validation plot for 2,6-DNT 
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Fig. 13. Variation of % R2 with the number of PLS carried out 
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The importance of applying PLS that it is used to design and build robust calibration models 
for quantitative analysis. PLS regression is a quantitative spectral decomposition technique 
that is closely related to principal component (PC) regression. It uses the concentration 
information during the decomposition process. This causes spectra containing higher 
constituent concentrations to be weighted more heavily than those with low concentrations. 
The main idea of PLS is to get as much concentration information as possible into the first 
few loading vectors or number of PLS (Kramer, 1998; Otto, 1999).  
Fig. 13 shows how the calibration model improves with the addition of PLS. Five PLS 
executions were necessary to build a good calibration model. This indicates that the 
relationship that exists between the loading concentration and the spectral absorbance in 
this technique is multidimensional. The robustness of model calibration was evaluated 
using internal jackknifing validation [44]. Model with lower PLS than 6 was not capable to 
predict new data with good precision. Fig. 14 shows the appearance of TNT deposits under 
high magnification of a white light microscope. At these loading concentrations almost all 
the stainless steel surface was covered by crystals. Using this transfer method, positive and 
inverted bands were observed (Fig. 15). For loading concentrations > 8 μg/cm2, only 
positive bands were observed.  This fact can be attributed some changes in the refraction 
index of TNT. 
 

 
a. 20 μg/cm2 50 x 

 
b. 40 μg/cm2 100 x 

Fig. 14. Optical images for TNT deposited on stainless steel using smearing method 
 

Substance Sample 
Preparation Method Solvent Detection Limit 

(μg/cm2) 
TNT Smearing dichloromethane 0.3 

2,6-DNT Smearing acetone 0.3 
PETN Smearing methanol 0.3 

NG Smearing acetonitrile 0.4 
TATP Smearing dichloromethane 8.0 

Table 2. Detection limits of Explosives using FT-RAIRS on stainless steel 
The calibration model was built using the Quant 2 package, an add-on software package to 
the OPUSTM (Bruker Optics) data acquisition and analysis software. In this study, the model 
parameters were optimized in the spectral region 1668-1045 cm-1. No spectral data 
preprocessing was done. The resulting model was cross-validated using the ‘’leave one out’’ 
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method in which each spectrum is omitted in turn from the training set and then tested 
against the model built with the remaining spectra. The results are illustrated graphically in 
Fig. 16. The root mean square error of the cross validation was 0.918, and R2 was 0.9858. 
TNT can be detected and quantified on metallic surfaces and low concentrations as 500 
ng/cm2. Table 2 shows a summary of the detection limits of the explosives using smearing 
transfer method. The detection limit depends on the vapor pressure.  
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Fig. 15. FT absorption-reflection IR spectra of TNT on stainless steel using smearing transfer 
method 
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Fig. 16. Leave one out cross validation for TNT surface concentration deposited on stainless 
steel 

6. Sublimation studies of TATP deposited on metal surfaces 
The rapid sublimation of the TATP under normal atmospheric conditions presents a 
significant challenge in applying the fiber-optic grazing-angle method to surface detection 



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

238 

The importance of applying PLS that it is used to design and build robust calibration models 
for quantitative analysis. PLS regression is a quantitative spectral decomposition technique 
that is closely related to principal component (PC) regression. It uses the concentration 
information during the decomposition process. This causes spectra containing higher 
constituent concentrations to be weighted more heavily than those with low concentrations. 
The main idea of PLS is to get as much concentration information as possible into the first 
few loading vectors or number of PLS (Kramer, 1998; Otto, 1999).  
Fig. 13 shows how the calibration model improves with the addition of PLS. Five PLS 
executions were necessary to build a good calibration model. This indicates that the 
relationship that exists between the loading concentration and the spectral absorbance in 
this technique is multidimensional. The robustness of model calibration was evaluated 
using internal jackknifing validation [44]. Model with lower PLS than 6 was not capable to 
predict new data with good precision. Fig. 14 shows the appearance of TNT deposits under 
high magnification of a white light microscope. At these loading concentrations almost all 
the stainless steel surface was covered by crystals. Using this transfer method, positive and 
inverted bands were observed (Fig. 15). For loading concentrations > 8 μg/cm2, only 
positive bands were observed.  This fact can be attributed some changes in the refraction 
index of TNT. 
 

 
a. 20 μg/cm2 50 x 

 
b. 40 μg/cm2 100 x 

Fig. 14. Optical images for TNT deposited on stainless steel using smearing method 
 

Substance Sample 
Preparation Method Solvent Detection Limit 

(μg/cm2) 
TNT Smearing dichloromethane 0.3 

2,6-DNT Smearing acetone 0.3 
PETN Smearing methanol 0.3 

NG Smearing acetonitrile 0.4 
TATP Smearing dichloromethane 8.0 

Table 2. Detection limits of Explosives using FT-RAIRS on stainless steel 
The calibration model was built using the Quant 2 package, an add-on software package to 
the OPUSTM (Bruker Optics) data acquisition and analysis software. In this study, the model 
parameters were optimized in the spectral region 1668-1045 cm-1. No spectral data 
preprocessing was done. The resulting model was cross-validated using the ‘’leave one out’’ 

Applications of Fiber Optic Coupled-Grazing Angle Probe  
Reflection-Absorption FTIR Spectroscopy 

 

239 

method in which each spectrum is omitted in turn from the training set and then tested 
against the model built with the remaining spectra. The results are illustrated graphically in 
Fig. 16. The root mean square error of the cross validation was 0.918, and R2 was 0.9858. 
TNT can be detected and quantified on metallic surfaces and low concentrations as 500 
ng/cm2. Table 2 shows a summary of the detection limits of the explosives using smearing 
transfer method. The detection limit depends on the vapor pressure.  
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Fig. 15. FT absorption-reflection IR spectra of TNT on stainless steel using smearing transfer 
method 
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Fig. 16. Leave one out cross validation for TNT surface concentration deposited on stainless 
steel 

6. Sublimation studies of TATP deposited on metal surfaces 
The rapid sublimation of the TATP under normal atmospheric conditions presents a 
significant challenge in applying the fiber-optic grazing-angle method to surface detection 
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of the compound. Even under controlled laboratory conditions, where spectroscopy was 
carried out on freshly prepared samples, it proved impossible to develop PLS1 calibrations 
that met a high standard of robustness or usability. The rapid change in the surface 
concentration of TATP made it impractical to collect more than one spectrum from each 
sample and this further limited the possibilities of building a statistically useful data set. The 
samples were deposited on the surface using a smearing method. To carry out the 
experiments, TATP was synthesized in the laboratory. For the calibration curves TATP was 
dissolved in dichloromethane. A solution with an initial concentration of 0.23 g/mL was 
prepared and then dilutions were made until obtain 0.23 g/mL. The resulting average 
surface concentrations of TATP ranged from 8 to 200 μg/cm2. Since dichloromethane 
evaporates very fast (Boiling point = 39.8 °C), a thin sample film was observed after 
smearing. Once the solvent had evaporated, the spectrum of the sample was collected 
immediately to minimize the impact on the calibration of rapid TATP sublimation. The data 
was analyzed using chemometrics routines; in particular multivariate PLS was used. In 
other experiments done with stainless steel plates coated with 25-100 μg/cm2 TATP, spectra 
were recorded every 27 seconds at 20-30 °C and the sublimation behavior at the studied 
temperatures was observed. 
The readiness with which TATP sublimates (vapor pressure at room temperature = 7 Pa) 
under normal atmospheric conditions complicates the task of calibrating the detection of the 
compound on surfaces, as the surface concentration of TATP decreases over the timescale of 
the experiment. To explore this effect, experiments were performed with stainless steel 
plates initially given a nominal loading of 100, 80, 50, 20, and 10 μg/cm2 TATP. Immediately 
after deposition of the TATP, the probe head was positioned on the surface, and spectra 
were collected every 27 seconds. Fig. 17 shows successive spectra taken at 27 s intervals 
from an initial loading of 100 μg/cm2 TATP. 
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Fig. 17. Peak areas for the grazing-angle mid-IR spectra in the range from 100-1300 cm-1, for 
initial loadings of 100, 80, 50, 20, and 10 μg/cm2 

A peak-fitting model of the spectral region from approximately 1300-1100 cm-1 was fitted 
against each of the spectra in turn to give the total peak area for the selected region. Fig. 18 
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shows the result for samples of stainless steel substrates initially loaded with 10-100 μg/cm2, 
represented as a graph of peak areas versus time. The amount of TATP detected on the 
surface drops below the apparent detection limit of the technique within about 9 min. 
Standard were prepared as described in the Experimental Section. Grazing angle FT-IR 
spectra of freshly prepared samples were collected for a series of different surface 
concentrations, as shown in Table 1. When a PLS1 model was built from all of the 79 spectra 
listed, using the spectral region from 1066-1506 cm-1 and no spectral preprocessing, it 
proved impossible to develop a model that met a reasonable standard (the maximum 
obtainable value for R2 was about 0.75). In this study, the model parameters were optimized 
in the spectral region 1498 – 1113 cm-1. No spectral data preprocessing was done. When data 
used for the model was limited to loadings below 40 μg/cm2, it was possible to build a 
calibration with R2 = 0.869, and root mean square error of cross validation (RMSECV) = 3.69 
(obtained from a leave-one-out cross validation); the results are shown graphically in Fig. 
18. The graph shows the degree of scattering in the data. While some of this scattering may 
be attributable to variations in the amount of TATP deposited on each coupon, sublimation 
of the TATP during the experiment is another likely contributing factor. Given these 
limitations, the quality of the calibration that has been developed is surprisingly good and it 
is clearly quite possible to detect microgram quantities of TATP on metal surfaces using 
grazing angle FTIR methods. This is in agreement with previous results for a range of 
organic compounds on metal and glass surfaces (White, 1992; Lin-Vien, 1991). 
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Fig. 18.  “Leave-one-out cross” validation of predicted values vs. true values for TATP on 
stainless steel substrates. All data are shown illustrating point scattering at each value 
measured 

TATP quantification was done using the calibration generated by chemometrics. These 
results are shown in Table 3. Clearly, low levels of TATP can be detected and measured on a 
metal surface with quantitative results (Table 4). Attempts to build a separate calibration for 
the loadings of 40 μg/cm2 and above were unsuccessful may be attributable to the change in 
the nature of the surface coating at high loadings, from a thin film capable of generating a 
double-pass transmission spectrum to a bulk material generating diffuse surface reflectance 
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of the compound. Even under controlled laboratory conditions, where spectroscopy was 
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A peak-fitting model of the spectral region from approximately 1300-1100 cm-1 was fitted 
against each of the spectra in turn to give the total peak area for the selected region. Fig. 18 
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shows the result for samples of stainless steel substrates initially loaded with 10-100 μg/cm2, 
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surface drops below the apparent detection limit of the technique within about 9 min. 
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Fig. 18.  “Leave-one-out cross” validation of predicted values vs. true values for TATP on 
stainless steel substrates. All data are shown illustrating point scattering at each value 
measured 

TATP quantification was done using the calibration generated by chemometrics. These 
results are shown in Table 3. Clearly, low levels of TATP can be detected and measured on a 
metal surface with quantitative results (Table 4). Attempts to build a separate calibration for 
the loadings of 40 μg/cm2 and above were unsuccessful may be attributable to the change in 
the nature of the surface coating at high loadings, from a thin film capable of generating a 
double-pass transmission spectrum to a bulk material generating diffuse surface reflectance 
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independent of the thickness (Blaudez, 1998; Bradshaw, 1988; Hayden, 1987). Calibration 
curve is shown in Fig. 19. 
A true "transflectance" experiment is possible only when the layer of organic material is 
“very” thin, so that the IR radiation can pass all the way through it to be reflected from the 
substrate (e.g. the metal). If the coating is thicker than about 1 or 2 micrometers, the IR 
radiation does not reach the substrate and is reflected from the top surface of the organic 
material (as if it were a "bulk" sample of the organic material) to give diffuse reflectance 
(Kaihara, 2001). This changes the spectrum that is obtained from the organic material from 
the "transflectance" spectrum to a diffuse reflectance spectrum. The diffuse reflectance 
spectrum is not affected by the thickness of the coating, since it does not come from the 
whole coating but only from the top layer, and so it does not contribute to a useful 
calibration. 
 

TATP Loading (μg/cm2) Number of Spectra Included in Calibration 

5 1 No 

8 3 Yes 

10 4 Yes 

12 4 Yes 

15 4 Yes 

18 3 Yes 

20 7 Yes 

22 5 Yes 

25 3 Yes 

30 9 Yes 

35 7 Yes 

38 7 Yes 

40 8 No 

50 2 No 

60 2 No 

80 2 No 

90 2 No 

150 1 No 

200 1 No 

Table 3. List of TATP spectra collected for calibration 
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Deposited 
(μg/cm2) 

Detected by grazing angle 
(μg/cm2) 

Difference 

14.96 13.8 1.16 
17.96 16.5 1.46 
24.94 25.3 -0.36 
34.91 32.6 2.36 

Table 4. Quantification of TATP on metal plates by grazing angle Fiber optic FT-IR 
Discriminant analysis was also performed to classify the TATP loading concentration in two 
groups (Fig. 20). The first one corresponds to concentrations lower than 25 μg/cm2 and the 
second one to concentrations higher than 25 μg/cm2. Peak areas of signals in the range of 
1330-1407 cm-1 and 1407-1503 cm-1 were used for the discrimination. Forward selection 
analysis of variable significance affirms that the significant peaks were contained within the 
spectral range of 1330-1407 cm-1. The best discriminant model was selected based on 
statistical significance and the percentage of cases correctly classified. The percentage of 
cases correctly classified was 90.6% and the significance statistical p-value was < 0.0001. 
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Fig. 19. Calibration curve for TATP on SS surface using peak areas (1330-1407 cm-1) 
TATP sublimation behavior depends of the temperature as is expected. This is shown in Fig. 
21. For temperatures lower than 20 °C TATP sublimation rate is significantly low. Beyond 
this point the sublimation rate starts to increase very fast. The rate of sublimation for TATP 
was calculated in units of peak-area/second for the slope of the curve, taking into account 
the linear range of the graphs (Fig. 21-a and -b). Since the surface concentration is well 
approximated by the measured peak area in this range because these are proportional (Fig. , 
the mass transferred to the vapor phase is reasonably well estimated by the decrease in peak 
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Fig. 19. Calibration curve for TATP on SS surface using peak areas (1330-1407 cm-1) 
TATP sublimation behavior depends of the temperature as is expected. This is shown in Fig. 
21. For temperatures lower than 20 °C TATP sublimation rate is significantly low. Beyond 
this point the sublimation rate starts to increase very fast. The rate of sublimation for TATP 
was calculated in units of peak-area/second for the slope of the curve, taking into account 
the linear range of the graphs (Fig. 21-a and -b). Since the surface concentration is well 
approximated by the measured peak area in this range because these are proportional (Fig. , 
the mass transferred to the vapor phase is reasonably well estimated by the decrease in peak 
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areas in the MIR. This range was selected because here the rate decays more rapidly. These 
results can be confirmed in Fig. 19. The estimated value of the rate sublimation with 
temperature in the range of 20-30 °C is -0.0013 peak area-s-1 °C-1. This is equivalent to ~ -0.81 
μg cm-2 s-1 °C-1 in the range of 20-30 °C. These experiments confirm the fact that TATP 
sublimates very fast in the absence of vapor pressure reducing and stabilizing agents.  
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Fig. 20. Plot of peak area selected to construct the discrimination for grouping 67 
concentrations 
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Fig. 21. Plots of peak areas versus time (second) for 25, 50 and 100 μg/cm2 at: a: 20 ºC; b: 26 ºC 
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Fig. 22. a: Plot of peak areas versus time (s) for 25, 50 and 100 μg/cm2 at  30 ºC; b: 
sublimation rate for different temperatures 

7. Characterization studies of TNT deposited on metal surfaces by TIJ 
technology 
Although smearing transfer method gave almost a homogenous distribution of the 
explosives on surfaces, the method of mass transfer required the preparation of many 
samples. This was due to the fact that the sample transfer method is prone to uncontrolled 
operator errors. To circumvent the problem, Thermal inkjet technology (TIJ) was used for 
the experiments. TNT was selected as an explosive for dispensing on TIJ. 
Thermal Inkjet Technology is able to deposit very small amounts of chemical compounds, 
including energetic materials, in a specific location on a surface. Aliquots of TNT solutions 
were deposited on stainless steel film. A coating of TNT can be produced by controlling the 
concentration of TNT, the number of drops dispensed and the distribution of drops over the 
surface. The loading concentration of the sample on the surface can be controlled by varying 
parameters such as: number of passes, dispensing frequency, applied energy and pen 
architecture. Precise delivery of known number of droplets with known mass and 
concentration are known. Also only one solution can be used, avoiding dilutions that can 
increase the analytical errors. 
The precise amount of TNT on the surface can be known in different ways: one can be 
known if the drop weight of the solutions is known and the other using an alternative 
method for quantification (GC, UV or HPLC). In our study, the stainless steel sheets loaded 
with TNT samples were rinsed with 25-100 mL of acetonitrile to remove the entire TNT that 
was delivered on the surface. Then solutions were transferred a volumetric flask and filled 
to mark with solvent. Gas chromatography was used in our experiments as an alternative 
method in order to determine the surface loading concentration. The analysis was carried 
out using an Agilent Technologies 6890N, Network GC System with A micro cell 63Ni 
Electron Capture Detector (µECD). For GC separation, a capillary column was used: RTX-5 
(cross bonded 5% diphenil-95% diethyl polysiloxane) 15 m x 0.25 mm ID x 0.25 μm df, 
Restek Corp, Bellefonte, PA. The GC oven was held at 80 °C for 1 min and then programmed 
at 10 °C/min to 180 °C, followed by a 30 °C/min ramp to 300 °C. The temperature at the 
injection port was 250 °C. 
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areas in the MIR. This range was selected because here the rate decays more rapidly. These 
results can be confirmed in Fig. 19. The estimated value of the rate sublimation with 
temperature in the range of 20-30 °C is -0.0013 peak area-s-1 °C-1. This is equivalent to ~ -0.81 
μg cm-2 s-1 °C-1 in the range of 20-30 °C. These experiments confirm the fact that TATP 
sublimates very fast in the absence of vapor pressure reducing and stabilizing agents.  
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Fig. 21. Plots of peak areas versus time (second) for 25, 50 and 100 μg/cm2 at: a: 20 ºC; b: 26 ºC 
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Fig. 22. a: Plot of peak areas versus time (s) for 25, 50 and 100 μg/cm2 at  30 ºC; b: 
sublimation rate for different temperatures 

7. Characterization studies of TNT deposited on metal surfaces by TIJ 
technology 
Although smearing transfer method gave almost a homogenous distribution of the 
explosives on surfaces, the method of mass transfer required the preparation of many 
samples. This was due to the fact that the sample transfer method is prone to uncontrolled 
operator errors. To circumvent the problem, Thermal inkjet technology (TIJ) was used for 
the experiments. TNT was selected as an explosive for dispensing on TIJ. 
Thermal Inkjet Technology is able to deposit very small amounts of chemical compounds, 
including energetic materials, in a specific location on a surface. Aliquots of TNT solutions 
were deposited on stainless steel film. A coating of TNT can be produced by controlling the 
concentration of TNT, the number of drops dispensed and the distribution of drops over the 
surface. The loading concentration of the sample on the surface can be controlled by varying 
parameters such as: number of passes, dispensing frequency, applied energy and pen 
architecture. Precise delivery of known number of droplets with known mass and 
concentration are known. Also only one solution can be used, avoiding dilutions that can 
increase the analytical errors. 
The precise amount of TNT on the surface can be known in different ways: one can be 
known if the drop weight of the solutions is known and the other using an alternative 
method for quantification (GC, UV or HPLC). In our study, the stainless steel sheets loaded 
with TNT samples were rinsed with 25-100 mL of acetonitrile to remove the entire TNT that 
was delivered on the surface. Then solutions were transferred a volumetric flask and filled 
to mark with solvent. Gas chromatography was used in our experiments as an alternative 
method in order to determine the surface loading concentration. The analysis was carried 
out using an Agilent Technologies 6890N, Network GC System with A micro cell 63Ni 
Electron Capture Detector (µECD). For GC separation, a capillary column was used: RTX-5 
(cross bonded 5% diphenil-95% diethyl polysiloxane) 15 m x 0.25 mm ID x 0.25 μm df, 
Restek Corp, Bellefonte, PA. The GC oven was held at 80 °C for 1 min and then programmed 
at 10 °C/min to 180 °C, followed by a 30 °C/min ramp to 300 °C. The temperature at the 
injection port was 250 °C. 
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Calibration curves for GC-µECD were prepared with 1000 ppm standard solutions of TNT 
obtained from Restek Corp. Stock solutions of concentrations: 1, 0.5, 0.1, 0.05, 0.01 ppm 
diluted in HPLC grade acetonitrile (Sigma-Aldrich Chemical Co., Milwaukee) were 
prepared. All solutions were injected directly using glass syringes (Hamilton Series 7101) 
into the injection port, this analysis were carried out with three replicates for each 
concentration. Using TIJ method it was possible to generate standards samples with more 
uniform coverage, and one advantage is the fact that the surface loading concentration could 
be varied by changing the numbers of passes delivered to the sample without the need for 
serial dilutions. Fig. 23 shows the linear correlation of the variation of the number of passes 
for a 5292 ppm solution. A direct relationship is observed. 
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Fig. 23. Variation of the number of passes delivered to the surface for a TNT 5292 ppm 
solution 

For visualization of substrates after sample deposition, optical microscopy images were 
captured using Leica microscope (model LS). These images can be seen in Fig. 24. The 
images clearly reveal that TNT is collecting on the stainless steel surface as droplets and 
crystals. As the number of passes increases on the surface, the size of the droplets 
increases. At 1.25 μg/cm2 loading concentration, the surface is practically covered by 
crystals. 
The way how the sample is distributed on the surface plays an important role in the task of 
calibrating the detection of the TNT or other compound on surfaces. To explore this effect, 
experiments were performed by positioning the probe head on different parts on the 
surface, and spectra were collected. Fig. 25 shows how the analytical response varies with 
the loading concentration.  A peak-fitting model of the spectral region from approximately 
1583-1396 and 1418-1220 cm-1 was fitted against each of the spectra in turn to give the total 
peak area for the selected region. This confirmed that although the coating is not 
homogenous a pattern with TIJ is generated, giving a few errors. 
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a. TNT 0.39 μg/cm2 50 μm 
 

b. TNT 0.39 μg/cm2 50 μm 

 
c. TNT 1.25 μg/cm2 50 μm 

 
d. TNT 1.25 μg/cm2 50 μm 

Fig. 24. White light images of TNT deposits on stainless steel substrates using TIJ for 
deposition 

The asymmetric and asymmetric vibrational stretches of the nitro (NO2) group can be used 
for explosives detection since they act as vibrational signatures of several classes of 
explosives: nitroaromatic (TNT, DTNT), nitroaliphatic (CH3NO2), nitramines (RDX, HMX) 
and nitrate esters (nitroglycerine, PETN). Fig. 26 shows the prominent signals of TNT 
deposited on stainless steel surfaces. All nitro signals were significant for quantitative and 
qualitative analysis. Nitro symmetric stretching vibration of TNT band appears at 1320 – 
1360 cm-1 and nitro asymmetric stretching vibration is typically located in the wavenumber 
range: 1477 – 1600 cm-1. A completely inverted spectrum with all bands pointing 
downwards is finally obtained for 1.73 μg/cm2 and 3.58 μg/cm2 loading concentration (Fig. 
26). Fig. 27 shows TNT IRRAS spectra of two types of deposits. For very low surface 
loadings and for high surface concentrations (3.58 μg/cm2 shown in trace of Fig. 27-A), the 
typical downward looking percent transmission profiles are observed. However, IRRAS 
spectroscopic features of thins films on surfaces frequently show strongly variations of the 
relative intensities and wavelength shifts as the surface loadings changes. These effects were 
observed when the loading concentration of TNT was bellow 1.73 μg/cm2 (Fig. 27-B). 
Significant wavenumber shifts (> 10 cm-1) were found for the nitro vibrations bands. An 
inverted upward looking profile similar to an absorption spectrum of the bands is clearly 
seen in lower trace in Fig. 
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Fig. 23. Variation of the number of passes delivered to the surface for a TNT 5292 ppm 
solution 

For visualization of substrates after sample deposition, optical microscopy images were 
captured using Leica microscope (model LS). These images can be seen in Fig. 24. The 
images clearly reveal that TNT is collecting on the stainless steel surface as droplets and 
crystals. As the number of passes increases on the surface, the size of the droplets 
increases. At 1.25 μg/cm2 loading concentration, the surface is practically covered by 
crystals. 
The way how the sample is distributed on the surface plays an important role in the task of 
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experiments were performed by positioning the probe head on different parts on the 
surface, and spectra were collected. Fig. 25 shows how the analytical response varies with 
the loading concentration.  A peak-fitting model of the spectral region from approximately 
1583-1396 and 1418-1220 cm-1 was fitted against each of the spectra in turn to give the total 
peak area for the selected region. This confirmed that although the coating is not 
homogenous a pattern with TIJ is generated, giving a few errors. 
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Fig. 24. White light images of TNT deposits on stainless steel substrates using TIJ for 
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The asymmetric and asymmetric vibrational stretches of the nitro (NO2) group can be used 
for explosives detection since they act as vibrational signatures of several classes of 
explosives: nitroaromatic (TNT, DTNT), nitroaliphatic (CH3NO2), nitramines (RDX, HMX) 
and nitrate esters (nitroglycerine, PETN). Fig. 26 shows the prominent signals of TNT 
deposited on stainless steel surfaces. All nitro signals were significant for quantitative and 
qualitative analysis. Nitro symmetric stretching vibration of TNT band appears at 1320 – 
1360 cm-1 and nitro asymmetric stretching vibration is typically located in the wavenumber 
range: 1477 – 1600 cm-1. A completely inverted spectrum with all bands pointing 
downwards is finally obtained for 1.73 μg/cm2 and 3.58 μg/cm2 loading concentration (Fig. 
26). Fig. 27 shows TNT IRRAS spectra of two types of deposits. For very low surface 
loadings and for high surface concentrations (3.58 μg/cm2 shown in trace of Fig. 27-A), the 
typical downward looking percent transmission profiles are observed. However, IRRAS 
spectroscopic features of thins films on surfaces frequently show strongly variations of the 
relative intensities and wavelength shifts as the surface loadings changes. These effects were 
observed when the loading concentration of TNT was bellow 1.73 μg/cm2 (Fig. 27-B). 
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Fig. 25. Variation of the distribution of the TNT deposited on stainless steel using TIJ with 
the analytical response 

The reflected radiation depends of the nature of the film as well as the incident angle of 
the IR beam reaching the surface. The properties of the reflected IR light depend critically 
on localized optical characteristics of the film such as the local index of refraction. Sample 
heterogeneities give rise to local changes in the refractive index across the sample and 
affect the reflectance spectra. Typical Infrared Reflection Absorption Spectroscopy 
(IRRAS) spectra are reported in terms the measured absorbance defined as (Bradshaw, 
1988; Hayden, 1987): 

 A = Log (Rr/Rs)  (1) 

where: Rr is the reflectance of the of the plate (substrate) and Rs is the reflectance of the 
sample-substrate [22]. Fig. 26-A shows “normal” (vertical up) for low surface loadings 
(0.27- 0.47 μg/cm2). Fig. 26-B shows corresponding RAIS spectra for 1.73 and 3.58 μg/cm2 
illustrating downward pointing peaks. Figs. 27-A and B contains expanded views in the 
wavenumber range for Rr and Rs of 0.27 μg/cm2 and 3.58 μg/cm2. The metallic substrate 
reflects more than the sample (TNT), it means that Rr > Rs and a normal peak is found. 
This can be observed in Fig. 27-B. The inverted peak is found in 1561 because the 
difference between Rr and Rs in this frequency value is lower than in other values around 
this one in the frequency range 1548-1565 cm-1. This means that the sample is reflecting 
almost at the same level as the metal substrate. This fact can be explained based on 
changes in the refractive at the film-metallic surface interphase or by the way that TNT 
layers are packed on the surface. Another reason can be argued is the fact that these 
inverted bands are found when most of the coverage of the surface is TNT crystals and 
not amorphous TNT droplets. 
It is very important to emphasize that measuring surface concentrations using the peak 
area method is conceptually simple and easy to use, but it has some limitations. The 
method is univariate: the concentration is determined with a single spectral peak and it 
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depends on a linear correlation between the concentration and the spectral response. The 
results can, therefore, be undermined by perturbations such as fluctuations caused by 
detector noise, temperature variations, or molecular interactions. Statistically based, 
multivariate calibrations use spectral features over a wider range. Information from a 
calibration spectral set (a training set) was compared to independently determined 
concentration data using partial least squares regression (PLS). The method is based on 
the assumption that systematic variations in the spectra are a consequence of 
concentration changes. 
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Fig. 26. Grazing angle spectra of TNT: a. Positive bands (normal). b. Inverted bands 
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Fig. 25. Variation of the distribution of the TNT deposited on stainless steel using TIJ with 
the analytical response 

The reflected radiation depends of the nature of the film as well as the incident angle of 
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on localized optical characteristics of the film such as the local index of refraction. Sample 
heterogeneities give rise to local changes in the refractive index across the sample and 
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(IRRAS) spectra are reported in terms the measured absorbance defined as (Bradshaw, 
1988; Hayden, 1987): 
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(0.27- 0.47 μg/cm2). Fig. 26-B shows corresponding RAIS spectra for 1.73 and 3.58 μg/cm2 
illustrating downward pointing peaks. Figs. 27-A and B contains expanded views in the 
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depends on a linear correlation between the concentration and the spectral response. The 
results can, therefore, be undermined by perturbations such as fluctuations caused by 
detector noise, temperature variations, or molecular interactions. Statistically based, 
multivariate calibrations use spectral features over a wider range. Information from a 
calibration spectral set (a training set) was compared to independently determined 
concentration data using partial least squares regression (PLS). The method is based on 
the assumption that systematic variations in the spectra are a consequence of 
concentration changes. 
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Fig. 27. IRRAS symmetric and asymmetric Nitro stretching vibrations of TNT a: normal 
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Fig. 28. Graph of averaged predicted surface loading values versus true values obtained by 
the “leave-one-out” cross validation of a Quant2 calibration for TNT on steel surfaces 

Grazing angle FTIR spectra of prepared samples were collected for a series of different 
surface concentrations. When a PLS1 model was built from all of the 84 spectra listed, using 
the spectral region from 1028-1713 cm-1 and no spectral preprocessing, it was possible to 
build a calibration with R2 = 0.9959, and root mean square error of cross validation 
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(RMSECV) = 0.258 (obtained from a “leave-one-out” cross validation); the results are shown 
graphically in Fig. 28. According to these results TIJ-IRRAS combined with PLS can be used 
for TNT detection and quantification on metallic surfaces. 

8. Conclusion 
Fiber optic coupled FTIR spectroscopy has been shown to provide a useful technique for 
methods development for in situ detection explosives and active pharmaceutical 
ingredients and excipients on metallic surfaces. Very low detection limits (∼ 0.3 μg/cm2) 
were found for nitroexplosives and for organic peroxides. The present study was limited 
to highly reflective metallic surfaces such as stainless steel. However, since it is based on a 
grazing angle probe that is sensitive to adsorbates deposited on substrates regardless of 
the nature of the surface, and at least to first order, the methodology should be applicable 
for trace detection of explosives on other types of surfaces. The coupling of data 
acquisition to powerful non linear, multivariate analysis based on chemometrics routines 
such as partial least squares resulted in an even more robust analytical methodology. 
Explosives detection for this technique as applied to the target molecules used was found 
to be limited by the residence time of the substance on the surface. At low loading 
concentrations, high vapor pressure explosives escape to the vapor phase by sublimation 
even faster, limiting the low limit of detection achievable. The detection limit for TATP, 
high vapor pressure organic peroxide, was 8 μg/cm2. For nitroexplosives such as 2,6-
DNT, NG TNT, and PETN LODs found were 2.5, 0.4, 0.3, and 0.3 μg/cm2 respectively. The 
results are in good agreement with a decreasing low limit of detection when arranged in 
the order of decreasing vapor pressure. 
In this work we present the first method for detection and quantification of TATP on 
metallic surfaces. The method entails the coupling of optical fibers operating in the mid 
infrared (MIR) to a high performance interferometer. A grazing angle head coupled to 
liquid nitrogen cooled, MCT detector was used to excite and collect IR absorption spectra 
from stainless steel surfaces loaded with the organic peroxide. A smearing technique was 
used to prepare standards for surface loading of the explosive. 
The novel aspects of the methodology involve in situ, remote sensed, fiber optic coupling of 
a grazing angle probe to a high sensitivity FTIR interferometer. It must be noted that the 
sample must to be measured immediately after the smearing to avoid sublimation of TATP 
from the metal surface. The robustness of the new methodology relies on utilizing powerful 
Chemometrics routines and Discriminant Analysis for statistical enhancement of data. 
Discriminant Analysis can be used to quantify TATP by classifying loading concentration in 
two groups: the first one corresponds to concentrations lower than 25 μg/cm2 and the 
second one to concentrations higher than 25 μg/cm2. 
This work describes the first demonstration of a method for direct, in-situ detection and 
quantification of TATP on metallic surfaces. The rapid sublimation of TATP from the test 
surface has been demonstrated by tracking the decreasing intensities of the IR spectrum of 
TATP; the signal falls below the detection limit after about 9 minutes, from an initial value 
of 100 μg/cm2. This phenomenon limits the extent to which the surface concentration of 
TATP can be calibrated. However, it has been possible to show that TATP on metallic 
surfaces can be quantitatively detected in a matter of seconds using the grazing-angle FTIR 
approach. 
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Grazing angle FTIR spectra of prepared samples were collected for a series of different 
surface concentrations. When a PLS1 model was built from all of the 84 spectra listed, using 
the spectral region from 1028-1713 cm-1 and no spectral preprocessing, it was possible to 
build a calibration with R2 = 0.9959, and root mean square error of cross validation 
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(RMSECV) = 0.258 (obtained from a “leave-one-out” cross validation); the results are shown 
graphically in Fig. 28. According to these results TIJ-IRRAS combined with PLS can be used 
for TNT detection and quantification on metallic surfaces. 

8. Conclusion 
Fiber optic coupled FTIR spectroscopy has been shown to provide a useful technique for 
methods development for in situ detection explosives and active pharmaceutical 
ingredients and excipients on metallic surfaces. Very low detection limits (∼ 0.3 μg/cm2) 
were found for nitroexplosives and for organic peroxides. The present study was limited 
to highly reflective metallic surfaces such as stainless steel. However, since it is based on a 
grazing angle probe that is sensitive to adsorbates deposited on substrates regardless of 
the nature of the surface, and at least to first order, the methodology should be applicable 
for trace detection of explosives on other types of surfaces. The coupling of data 
acquisition to powerful non linear, multivariate analysis based on chemometrics routines 
such as partial least squares resulted in an even more robust analytical methodology. 
Explosives detection for this technique as applied to the target molecules used was found 
to be limited by the residence time of the substance on the surface. At low loading 
concentrations, high vapor pressure explosives escape to the vapor phase by sublimation 
even faster, limiting the low limit of detection achievable. The detection limit for TATP, 
high vapor pressure organic peroxide, was 8 μg/cm2. For nitroexplosives such as 2,6-
DNT, NG TNT, and PETN LODs found were 2.5, 0.4, 0.3, and 0.3 μg/cm2 respectively. The 
results are in good agreement with a decreasing low limit of detection when arranged in 
the order of decreasing vapor pressure. 
In this work we present the first method for detection and quantification of TATP on 
metallic surfaces. The method entails the coupling of optical fibers operating in the mid 
infrared (MIR) to a high performance interferometer. A grazing angle head coupled to 
liquid nitrogen cooled, MCT detector was used to excite and collect IR absorption spectra 
from stainless steel surfaces loaded with the organic peroxide. A smearing technique was 
used to prepare standards for surface loading of the explosive. 
The novel aspects of the methodology involve in situ, remote sensed, fiber optic coupling of 
a grazing angle probe to a high sensitivity FTIR interferometer. It must be noted that the 
sample must to be measured immediately after the smearing to avoid sublimation of TATP 
from the metal surface. The robustness of the new methodology relies on utilizing powerful 
Chemometrics routines and Discriminant Analysis for statistical enhancement of data. 
Discriminant Analysis can be used to quantify TATP by classifying loading concentration in 
two groups: the first one corresponds to concentrations lower than 25 μg/cm2 and the 
second one to concentrations higher than 25 μg/cm2. 
This work describes the first demonstration of a method for direct, in-situ detection and 
quantification of TATP on metallic surfaces. The rapid sublimation of TATP from the test 
surface has been demonstrated by tracking the decreasing intensities of the IR spectrum of 
TATP; the signal falls below the detection limit after about 9 minutes, from an initial value 
of 100 μg/cm2. This phenomenon limits the extent to which the surface concentration of 
TATP can be calibrated. However, it has been possible to show that TATP on metallic 
surfaces can be quantitatively detected in a matter of seconds using the grazing-angle FTIR 
approach. 
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The first method for detection and quantification of TNT on metallic surfaces using thermal 
inkjet technology as a transfer method was discussed. Spectroscopic characterization and 
thin layer deposits quantification was achieved using the powerful Grazing Angle Probe 
Fiber Coupled-FTIR developed for surface analysis. Chemometrics routines were applied as 
data enhancers in order to accomplish fully the difficult task proposed. Inkjet printing of 
explosives demonstrated to have the following important characteristics: precision in 
sample deposit, drop delivery with non-contact fluid transfer and high reproducibility. The 
methodology could be applied for development of standards in Trace Explosive Reference 
materials on surfaces. 
Sample transfer methods coupled to RAIRS promises to be an excellent support means 
when used as sensor for explosives detection on surfaces. A grazing angle head coupled to 
liquid nitrogen cooled, MCT detector was used to excite and collect IR absorption spectra 
from stainless steel surfaces loaded with the explosive. This case study suggests that MIR 
reflectance spectroscopy using a fiber-optic probe with grazing angle head is a viable 
method for detecting and measuring low (µg/cm2) quantities of organic contaminants on 
metallic surfaces. Adding chemometrics algorithms, which are developed and automated 
easily, leads to powerful techniques for surface contamination detection. 
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1. Introduction 
Spectroscopic methods are massively used in material physics, because as seen already from 
Einstein’s explanation of photoeffect phenomenon material response to light is wavelength 
sensitive. Such sensitivity is one of key characteristics for semiconductors and therefore 
spectral dependence of conductivity on light excitation is of strong interest. Band structure 
of electron configuration in semiconductors projects into the spectra of light absorption, 
emission or photocurrent. In Fig. 1. such projection into spectrum of absorption coefficient 
(details will be explained in paragraph 4.1) can be seen. Although absorption can be 
measured optically, very low light absorptance cannot easily be measured so the method of 
measurement of photocurrent upon light illumination is used instead. Basically the aim of 
the photocurrent spectroscopy is to obtain the curve like the one on the right of the Fig. 1. 
 

 
Fig. 1. On the left: band structure of density of electronic states of amorphous silicon  
On the right: optical absorption coefficient curve with indicated regions attributed to 
different electron transitions - desired result of photocurrent spectroscopy 

Photocurrent method based on the Fourier transform (F-T) and called FTPS (Fourier 
Transform Photocurrent Spectroscopy) is a spectroscopic method where monochromator is 
replaced by FTIR (Fourier Transform Infrared) spectrophotometer. This method was firstly 
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reported in 1997 (Tomm et al., 1997) and later (Poruba et al., 2001), (Vaněček et al., 2002) 
well promoted mainly for the purposes of R&D of thin film silicon photovoltaics where the 
quality of semiconducting layers are monitored. In earlier method CPM (Constant 
Photocurrent Method) keeping the photocurrent constant during the measurement by 
complicated modulation of light intensity was necessary (Vaněček et al., 1981). In FTPS 
method this condition is fulfilled automatically and also the measurement is much faster. 
The method can be more sensitive and more reproducible. Due to its first publications 
mainly on microcrystalline silicon people usually understand the FTPS simply as a method 
used for quality analysis of this material although its potential is not limited only to 
microcrystalline silicon and its use on amorphous silicon and many other non-crystalline 
semiconductors was successfully proven. Many practical issues of the use of FTPS are 
discussed in this chapter too. 
In general Fourier-transform (F-T) represents in optical spectroscopy strong alternative to 
the classical approach based on light dispersion (monochromator). One advantage (Felgett) 
is that in F-T spectroscopy light of single wavelength is not isolated but only “labeled” or 
“encoded” so that the measurement can be performed for all wavelengths simultaneously. 
The spectral distribution of measured effect is obtained subsequently after mathematic 
decoding. Second advantage (Jacquinot) is much higher limit for resolution with the same 
light throughput than in monochromators. These are main reasons why F-T spectroscopy is 
used for example in FTIR vibrational analysis. The FTIR measurements have standardized 
procedures and usually not deep understanding of principles is necessary. Since FTPS is not 
a standard application of FTIR instrument, many other issues except the main advantages 
have to be considered for correct measurement and interpretation. Understanding of them is 
based on some fundamental principles that are in condensed form discussed in next section. 

2. Principles of Fourier-transform spectroscopy 
In this paragraph we want to discuss in condensed form the principal issues important for 
correct measurement. For F-T spectrometers many alternatives exist, but most common and 
instructive is the F-T spectrometer based on Michelson’s interferometer, or ‘modulator’ as 
depicted in Fig. 2. Incoming light from source is partly transmitted and partly reflected by 
beamsplitter. Each part continues into separate delay line with mirrors at the ends. After 
reflection on the mirrors two beams superpose at the beamsplitter again but with mutual 
phase shift given by product of wavenumber1 ν and retardation Δ, i.e. mutual path 
difference of the two beams. One of the mirror moves linearly with velocity u, so that 
retardation is time dependent: Δ=u(t-t0). It follows from theory of light coherence that the 
intensity of light superposition will depend on retardation and thus will change in time t as 
cosine function: 

 ( )0( , ) ( ) 1 cos(2 2 ( ))I t B u t tν ν π ν= + ⋅ −  (1) 

The factor B(ν) is baseline and represents compound spectrum of additional effects i.e.: lamp 
radiance, transmittance and reflectance of beamsplitter and effects of other optical elements 
in the instrument.  Formula 1 can be regarded as ‘coding key’ that attributes to each 
wavenumber ν harmonic modulation in time with frequency f  that depends linearly on the 
                                                 
1 Used in infrared spectroscopy, unit is inverse centimeter cm-1, ν(cm-1)=107/λ(nm)  
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wavenumber according to formula 2. The modulation is for typical conditions (λ=500-
1600nm, u=0.16cm/s) in the range from 2 kHz to 6 kHz. If some of the factor in the 
experiment exhibits frequency dependence correction to that has to be done, see paragraph 3.6.  

 2f uν=  (2) 

When the vavenumber is ‘encoded’ into modulation frequency the light beam is ready for 
measurement. Then other elements in the measurement should be introduced: optical filter 
with spectral transmittance F(ν) and detector that transforms light intensity into electrical 
current. Its spectral dependence can be labeled as D(ν). We make one more step and we will 
also go from one discrete wavenumber to continuous spectrum so that we will add the signs 
of integration over ν. Then we get formula 3 where the electrical current J is a function only 
of time t. The example of such time evolution called interferogram is in Fig. 2. 

 0 0( ) ( ) ( ) ( ) cos 2 2 ( ) dJ t J D F B vu t tν ν ν π ν
∞

−∞

= + ⋅ ⋅ ⋅ ⋅ −⎡ ⎤⎣ ⎦∫  (3) 

It is very important that the detector is linear so that the current is a linear function of 
intensity and can be therefore represented in formula 3 linearly (y=D·x). Non-linear 
detectors (y=D·x+D´·x2+…) would introduce higher powers of cosine and would lead to 
parasitic contributions to the modulation at higher multiples of ν (higher harmonics) !  
In formula 3 we can easily recognize Fourier-transform (for precision we renormalize time 
as t’=(t-t0)·4πu ), so that we can directly write bidirectional formulae between time domain 
and wavenumber domain (with FT as a symbol for Fourier transform): 

 ( )( ) /2 ( ) ( ) ( )J t B F Dπ ν ν ν′ = ⋅ ⋅ ⋅FT  (4) 

 ( )( ) ( ) ( ) 2/ ( )B F D J tν ν ν π ′⋅ ⋅ = ⋅ FT  (5) 

Formula no. 5 finally gives simple instruction to calculate spectra from recorded 
interferogram. However only theoretically, because the interferogram is obviously not 
infinite in time and is sampled only in finite steps. The finite length has then effect on 
resolution through Rayleigh criterion: Two beams can be distinguished only if they differ in 
full retardation by full wavelength. Which transformed to domain of wavenumbers  means 
that the theoretical resolution (in cm-1) is inverse of max. retardation ΔMAX (in cm). In reality 
due to the Gibbs phenomenon and often used triangular apodization2 the theoretical limit of 
resolution will for given max. retardation ΔMAX (ΔMAX is twice the mirror path) be ~ 2/ΔMAX, 
that can go well below 0.1cm-1. These issues are important in FTIR but not in FTPS (typically 
resolution 32cm-1 and triangular apodization is used). According to Jacquinot advantage the 
F-T spectrometer can have up to 100 times higher light throughput than dispersive 
instrument for given resolution (Griffiths 1977). In reality the built-in sources are optimized 
only for high resolution where the light throughput is comparable with monochromator 
with low required resolution (for thin film Si resolution Δν/ν or Δλ/λ around 0.01 is 

                                                 
2 In F-T spectroscopy the spectra are not corrupted by convolution with instrument function but with F-
T of envelope function that can be artificially reshaped by so called apodization so that the convolution 
has better representation of sharp features, but lower resolution.  
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 ( )( ) ( ) ( ) 2/ ( )B F D J tν ν ν π ′⋅ ⋅ = ⋅ FT  (5) 

Formula no. 5 finally gives simple instruction to calculate spectra from recorded 
interferogram. However only theoretically, because the interferogram is obviously not 
infinite in time and is sampled only in finite steps. The finite length has then effect on 
resolution through Rayleigh criterion: Two beams can be distinguished only if they differ in 
full retardation by full wavelength. Which transformed to domain of wavenumbers  means 
that the theoretical resolution (in cm-1) is inverse of max. retardation ΔMAX (in cm). In reality 
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resolution will for given max. retardation ΔMAX (ΔMAX is twice the mirror path) be ~ 2/ΔMAX, 
that can go well below 0.1cm-1. These issues are important in FTIR but not in FTPS (typically 
resolution 32cm-1 and triangular apodization is used). According to Jacquinot advantage the 
F-T spectrometer can have up to 100 times higher light throughput than dispersive 
instrument for given resolution (Griffiths 1977). In reality the built-in sources are optimized 
only for high resolution where the light throughput is comparable with monochromator 
with low required resolution (for thin film Si resolution Δν/ν or Δλ/λ around 0.01 is 

                                                 
2 In F-T spectroscopy the spectra are not corrupted by convolution with instrument function but with F-
T of envelope function that can be artificially reshaped by so called apodization so that the convolution 
has better representation of sharp features, but lower resolution.  
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enough) and thus lower resolution with high throughput is possible only with external light 
source, see paragraph 3.3. 
 

                   
Fig. 2. On the left: Michelson’s interferometer. Light enters from left side, is splitted by 
beamsplitter (B), reflected at fixed (mF) and movable (mM) mirrors and then exits 
downwards. On the right: Example of interferogram – amplitude of signal in domain of 
time/mirror position 
The relation between resolution and spectral range is bidirectional and so it concerns the 
finite sampling density (sampling ‘resolution’). Due to Nyquist-Shannon-Kotelnikov 
theorem that says roughly that the maximal distinguishable frequency is half of the 
sampling frequency, F-T spectrometer is unable to distinguish between multiples of 15798/g 
cm-1, where 15798 is wavenumber of red laser and g is parameter called sample spacing3. 
This constraint unfortunately requires division of the spectrum by appropriate cut-off filters 
into parts from m·15798/g cm-1  to (m+1)·15798/g cm-1 that have to be measured separately. 
Fortunately modern instruments have g=0.5 and allow measurement up to 31600cm-1 which 
with using halogen light as a source needs no filtering and spectrum can be measured at 
once. But for example measurement of FTPS of thin films silicon with g=1 and halogen 
source requires adding long-pass filter with edge above 633nm (‘red glass’).  
Felgett (or multiplexing) advantage is basically the fact that we can measure all wavelengths 
simultaneously and thus measure much faster. It is also the reason why the FTPS can 
replace CPM method (see paragraph 4.5). These advantages have one important 
disadvantage. Like most measuring instruments F-T spectrometer has limited dynamic 
range, i.e. the ratio between highest and lowest values measured together and with small 
relative error. This is especially important in the case of steep absorption edge4 in 
photocurrent measurement of semiconductors that is investigated always in logarithmic 
scale.  The effective dynamic range is approximately 100 but can still vary a little according 
to the shape. In the case of slow slopes the dynamic range can be higher whereas in abrupt 
steep edges the dynamic range can be lower. Therefore for measurement of higher dynamic 
range spectra have to be measured with optical filters that reduce or eliminate strong parts 
of the spectra against weaker parts. Regarding the noise we can bring one argument that 
                                                 
3 In FTIR the sampling is made with the help of red laser (15798cm-1) interference. Sample spacing 
expresses distance of sampling points as a fraction of distance between 2 maxima of red laser 
interference. 
4 Due to the Gibbs phenomenon sharp steps are not perfectly represented by truncated F-T. 
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also supports the Felgett advantage:  Noise is proportional to the square root of spectral 
range, but signal as we can see from formula 3 is proportional linearly to the spectral range, 
so the signal to noise ratio in turn increases with spectral range (Griffiths 1977). Therefore it 
is better for enhancing the dynamic range to use filters that are not cut-off so they don’t 
totally eliminate high signal region but are ‘smooth’ and only reduce the high signal region 
and maintain nonzero signal in broad region. 
Summary: 
- each wavelength is modulated by different frequency f=2νu   
- resolution is limited by mirror path length and aperture dimensions and can easily go 

below 0.1cm-1 
- signal linearity is essential condition 
- optical cut-offs are necessary for combination of halogen source with sample spacing 

greater than 0.5 
- dynamic range is  ~100 and has to be enhanced by additional optical filtering 
- filtering by smooth filters is better than by cut-off filters 

3. FTPS experiment 
FTPS method is atractive due to its simple implementation to the research grade FTIR  
(Fourier-transform infrared) spectrometer that has option to external (e.g. photoacoustic) 
detector. FTIR spectrophotometers are since 1990’s widely used for optical vibrational 
spectroscopy (range from 400 to 25000 cm-1). They are user-friendly compact instruments 
including source, modulator and detector.  Advantage is if the instrument has an availability 
of sample spacing 0.5. Then, only a high-quality low-noise current preamplifier (with 
voltage output), suitable optical filters and sample holder and cables are necessary for 
measurement of solar cells. For layers on glass additional voltage source has to be used.  
 

  
Fig. 3. On the left: ‘simplest’ FTPS setup where sample S is inside the sample area, reference 
R is measured without sample and with filter F (generally different for sample and 
reference). On the right: ‘richest’ FTPS setup with beam reflected out by sliding mirror M1 to 
external focusing mirror M2 , two different positions for filter F0 , F1 , external source H, 
external mirror M4 , rotating mirror M3 , external A/D convertor and voltage source 
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Summary: 
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3. FTPS experiment 
FTPS method is atractive due to its simple implementation to the research grade FTIR  
(Fourier-transform infrared) spectrometer that has option to external (e.g. photoacoustic) 
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of sample spacing 0.5. Then, only a high-quality low-noise current preamplifier (with 
voltage output), suitable optical filters and sample holder and cables are necessary for 
measurement of solar cells. For layers on glass additional voltage source has to be used.  
 

  
Fig. 3. On the left: ‘simplest’ FTPS setup where sample S is inside the sample area, reference 
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external mirror M4 , rotating mirror M3 , external A/D convertor and voltage source 
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Other components such as external focusing mirror, external A/D converter or external 
light source can be used optionally, see Fig. 3. Special features (not shown here) are internal 
motorized filter wheel and grey filter wheel. Measurement of a sample (layer on glass) in 
sample area has advantage of possibility of measurement of transmittance directly by 
internal reference detector. Measurement is performed as a sequence of inteferogram scans.  
The time for one scan is based on mirror velocity and max. retardation. Recorded 
interferograms are corrected for the phase and summed together. Signal to noise of the 
calculated spectrum increases with number of scans. 1 scan at velocity 0.16cm/s and 
resolution 32 cm-1 takes approx. 1 second and typically few hundreds of scans are necessary 
for the most ‘difficult’ samples. The evaluation is performed according to simple logic that is 
obvious from the formula 5: We compare two measurements of compound spectrum 
B(ν)F(ν)D(ν) one from sample (indexed by 1) and one from reference (indexed by 0), see 
Fig. 3 and formula 6. The sample and reference can play a role of any factor in the formula. 
In FTIR the sample (and reference) plays a role of optical filter F(ν), in FTPS the sample 
plays a role of detector D(ν). Baseline is for both measurement the same and its effect cancels 
out, as seen in formula (6). Filters can be for both measurements generally different. We 
correct mathematically afterwards their effects by dividing the signal by the transmittance 
spectrum of the filter that was used for the measurement.  If we don’t know the 
transmittances of the filters, we have to use same filters for sample as for reference which in 
general means a limitation. 
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Obviously, the response of the reference detector D0(ν) has to be known too. Since in optics 
we calculate with photon fluxes rather than energy fluxes D means quantum efficiency of 
the photon - electron generation in the sample or detector. Absolute quantum efficiency of 
sample and reference detector is difficult to find out, so we always measure it relatively and 
additional procedures have to be used for absolute scaling, e.g. according to additional 
optical transmittance and reflectance measurement in medium absorption region. For the 
purposes of FTIR measurement, the knowledge of quantum efficiency of reference detector 
is not necessary and therefore it is usually unknown and for purposes of FTPS has to be 
found out. Typically the detectors are pyrodetectors, so they have flat response in energy 
flux (amperes per watt). By multiplying their response by photon energy (in electronvolts) 
we obtain quantum efficiency (no. of electrons per one photon). By this we obtain quantum 
efficiency for modulation frequencies close to zero. For obtaining quantum efficiency at real 
conditions of wavelength dependent modulation at 2-6 kHz frequency we could either do 
an approximate frequency dependence correction (paragraph 3.6) or rather do a calibration 
by frequency independent detector5. 

3.1 Sample preparation 
Generally three types of samples can be measured: 1) Layer of semiconductor on low 
alkaline glass (low-cost glass will cause problems with charging of impurities) is measured 
                                                 
5 Commercial calibrated c-Si detectors are unfortunately strongly frequency dependent, but can be used 
for low frequency calibration of e.g. thin film solar cells with low frequency dependence and these can 
then be used for calibration of reference detector in FTPS. 
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in coplanar configurations, i.e. two contacts on layer are evaporated by Al or NiCr or 
alternatively drawn by graphite paste. For smooth layers interdigitated contacts with thin 
gaps can be used, but for scattering layers spacing at least 1.5 mm is necessary (Poruba et. al 
2000), details in paragraph 5.1. Voltage typically in range from 50V to 500V is applied. Light 
is perpendicularly focused to sample so that it has to entirely fill the gap between contacts. 
Sample should be illuminated from layer side, only for ideal smooth layers or for 
comparative measurement illumination from substrate side is possible (paragraph 4.2). 
Advantage of these samples is possibility of transmittance measurement (Fig. 3) at the same 
time and easy and accurate interpretation of the results, details in paragraph 4.2. 
Disadvantage is that these samples do not correspond to material grown on real substrates. 
2) More close to real conditions e.g. in solar cell technology might be layers grown on 
conductive substrates as ZnO or SnO2 coated glass. These have to be measured in sandwich 
configuration when measured semiconductor layer is sandwiched between the conductive 
substrate and another planar electrode deposited on top. At least one of the electrodes has to 
be transparent for illumination. In this case the current flows perpendicularly to surface and 
thus only very small distance is between the electrodes. Usually also band bending effects 
are presented and so small voltages (up to 2V) have to be carefully chosen to compensate 
such effects (Poruba et al. 2003), (Holovský et al. 2010).   3) Solar cells on the other hand 
don’t require any preparation and typically are measured without any voltage applied 
(Poruba et al. 2001). Application of voltage is used to simulate real working conditions of 
solar cells (Bailat 2004). Monolithic multijunctions e.g. tandems or modules have to be 
selectively light-biased, more information in paragraph 5.3.  

3.2 Choice of the FTIR instrument 
The main requirements for the FTIR instrument used for FTPS are related to sample spacing, 
mirror velocity, beamsplitter, light source, optical windows and detector. As described 
above, the lowest possible sample spacing of 0.5 is strongly recommended and spacing of 1 
is necessity. Lowest mirror velocity at the lowest sample spacing in true linear mode6 should 
be 0.16 cm/s. FTPS measurement is in the visible and near-infrared range (0.4-2.5 μm) and 
so the choice of material for beamsplitter and windows is mainly quartz or sapphire, 
detector should be pyrodetector (e.g. thermoelectrically cooled deuterated triglycin 
sulphate), mirrors should be aluminum and light source should be halogen lamp. Choice of 
the halogen lamp is especially advantageous due to its intensity increase towards regions of 
low absorptance of semiconductors. Usually beamsplitter, source and detector are 
exchangeable so that the spectrophotometer can still be used for FTIR infrared range.  

3.3 External focusing mirror, external A/D converter and external light source 
The external A/D converters supplied by the same manufacturers can have better 
performance that the built-in A/D converters in terms of number of bits, possibility of gain 
ranging and signal to noise ratio that can be higher significantly. The use of external A/D 
converter can be for some instruments impossible for measurement in the sample area and 
has to be combined only with external focusing mirror. External focusing mirror is more 
flexible in terms of size of samples, additional light biasing etc. see Fig. 4. Also the beam can 

                                                 
6 Sometimes low speed modes are not true linear scans, but in principle fast step-scan modes (for step-
scan mode see paragraph 6) 
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6 Sometimes low speed modes are not true linear scans, but in principle fast step-scan modes (for step-
scan mode see paragraph 6) 
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be focused to smaller spot to get higher intensity. Typical focal length of internal mirror is 
~15 cm with the focused beam spot size 2x8 mm2. 
 

   
Fig. 4. On the left: FTPS setup with the use of external focusing mirror for measurement of 
maps of density of defects of PV modules. For selecting one spot shadowing stripes and bias 
light was used. On the right: sample holder for layers on glass and solar cells that have both 
contacts on the same side of glass substrate 

The external light source can significantly increase intensity of light and also enhance its 
intensity in blue region. Internal halogen source has typically power of 25W, dimensions 
of filament approximately 2x8 mm2, is intentionally kept at lower voltage and is coupled 
to the bench by mirror with high focal length for better resolution (~15cm). The photon 
flux at focus is around 2x1017cm-2s-1. If we use halogen lamp with 75W power with 
filament of comparably equal size7 and with combination of a mirror with lower focal 
length (~10cm) we get approximately 7 times higher intensity. Then the resolution is no 
more guaranteed by automatically controlled internal aperture and has to be checked 
according to formula 6 where d is largest dimension of light source (or entrance slit), f is 
focal distance and νMAX is maximal wavenumber in the spectrum. For details see (Griffiths 
& de Haseth 1986). 

 2( / 2 ) MAXd fν νΔ =  (6) 

For described external source and for νMAX=20000cm-1 resolution is Δν~32 cm-1 that is what 
is normally used. For maximizing intensity going to resolution Δν ~100cm-1 is possible and 
intensity grows 4 times. Conservative estimate of potential intensity increase of external 
source is 20 times. Advantage of external source is that the FTIR instrument is more 
thermally stable. Disadvantage is that the bench alignment can be done only for either 
source, see paragraph 3.7.  

3.4 Current preamplifier, voltage source and sample holder 
The choice of these components will strongly affect the signal to noise ratio and thus the 
sensitivity and speed of the measurement. For the voltage source there is no necessity to buy 
expensive sources. For low voltages simple battery source is better than expensive 
programmable sources. For high voltages (up to 500V) some high voltage source has to be 
used. The important issue is the scheme of serial connection of the voltage source, sample 
                                                 
7 12V halogen lamp nominally 100W designed for vehicles from manufacturer NARVA  
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and current preamplifier in terms of electromagnetic noise. The use of BNC 50Ω coaxial 
cables has proven to be much better compared to connection by twisted pair cables. The 
connection in series can be easily realized by the design of a sample holder where both outer 
wirings are connected to metal frame and each inner wire contacts one pole of the sample, 
see Fig. 4. Grounding of the metal frame usually reduces noise level too. In the case of 
measurement without voltage source (solar cells) shorting plug is used at one of the BNC 
connector. 
Most important is the choice of current preamplifier and state-of-the art instruments are 
recommended. Important parameters are: noise level, frequency cut-offs, input impedances 
and dynamic reserve. The noise level of preamplifier at high amplification is more critical 
for highly resistive samples of layers on glass (1-100GΩ). For amplification 107 V/A 
broadband noise should not be above 1 picoamper. On the other hand for measurement of 
solar cells and modules with generally low resisitivity (10-100Ω) dynamic reserve8 is critical. 
The frequency cut-offs are inequitable in all preamplifiers at high amplifications and cause 
frequency dependence of signal (see paragraph 3.6) and prevent from using high 
amplifications. Modulation frequency range is given by formula 2 and for our spectral range 
and range of mirror velocities (0.16– 0.47cm/s) frequency range in low signal (=high 
amplification) region is 1kHz – 10kHz. High amplifications cannot be used also due to 
increasing input impedance. Two different preamplifiers one with lower noise level and one 
with higher dynamic reserve were tested on solar cell and layers on glass and it was 
impossible to make any unambiguous preference, see Fig. 5. 
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Fig. 5. Left:  comparison of number of scans needed for signal to noise ratio S/N=1 for 
preamplifiers Standford Research 570 and KEITHLEY 428, data are based on real 
measurements of layers of amorphous (a-Si) and microcrystalline (μc-Si) silicon on glass and 
for a-Si solar cell. (‘ln’ = low noise mode, ‘hbw’= high bandwidth mode).  
Right: FTPS spectra of 250nm thick amorphous silicon measured only with 2 filters (long-
pass and short-pass), transmittances of the filters and source intensity spectrum included  

                                                 
8 Dynamic reserve express how larger can be broadband noise than the signal before overloading – 
depends on setting and location of frequency band filters 
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of filament approximately 2x8 mm2, is intentionally kept at lower voltage and is coupled 
to the bench by mirror with high focal length for better resolution (~15cm). The photon 
flux at focus is around 2x1017cm-2s-1. If we use halogen lamp with 75W power with 
filament of comparably equal size7 and with combination of a mirror with lower focal 
length (~10cm) we get approximately 7 times higher intensity. Then the resolution is no 
more guaranteed by automatically controlled internal aperture and has to be checked 
according to formula 6 where d is largest dimension of light source (or entrance slit), f is 
focal distance and νMAX is maximal wavenumber in the spectrum. For details see (Griffiths 
& de Haseth 1986). 

 2( / 2 ) MAXd fν νΔ =  (6) 

For described external source and for νMAX=20000cm-1 resolution is Δν~32 cm-1 that is what 
is normally used. For maximizing intensity going to resolution Δν ~100cm-1 is possible and 
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7 12V halogen lamp nominally 100W designed for vehicles from manufacturer NARVA  
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and current preamplifier in terms of electromagnetic noise. The use of BNC 50Ω coaxial 
cables has proven to be much better compared to connection by twisted pair cables. The 
connection in series can be easily realized by the design of a sample holder where both outer 
wirings are connected to metal frame and each inner wire contacts one pole of the sample, 
see Fig. 4. Grounding of the metal frame usually reduces noise level too. In the case of 
measurement without voltage source (solar cells) shorting plug is used at one of the BNC 
connector. 
Most important is the choice of current preamplifier and state-of-the art instruments are 
recommended. Important parameters are: noise level, frequency cut-offs, input impedances 
and dynamic reserve. The noise level of preamplifier at high amplification is more critical 
for highly resistive samples of layers on glass (1-100GΩ). For amplification 107 V/A 
broadband noise should not be above 1 picoamper. On the other hand for measurement of 
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The frequency cut-offs are inequitable in all preamplifiers at high amplifications and cause 
frequency dependence of signal (see paragraph 3.6) and prevent from using high 
amplifications. Modulation frequency range is given by formula 2 and for our spectral range 
and range of mirror velocities (0.16– 0.47cm/s) frequency range in low signal (=high 
amplification) region is 1kHz – 10kHz. High amplifications cannot be used also due to 
increasing input impedance. Two different preamplifiers one with lower noise level and one 
with higher dynamic reserve were tested on solar cell and layers on glass and it was 
impossible to make any unambiguous preference, see Fig. 5. 
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Fig. 5. Left:  comparison of number of scans needed for signal to noise ratio S/N=1 for 
preamplifiers Standford Research 570 and KEITHLEY 428, data are based on real 
measurements of layers of amorphous (a-Si) and microcrystalline (μc-Si) silicon on glass and 
for a-Si solar cell. (‘ln’ = low noise mode, ‘hbw’= high bandwidth mode).  
Right: FTPS spectra of 250nm thick amorphous silicon measured only with 2 filters (long-
pass and short-pass), transmittances of the filters and source intensity spectrum included  

                                                 
8 Dynamic reserve express how larger can be broadband noise than the signal before overloading – 
depends on setting and location of frequency band filters 
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3.5 Optical filters 
There are at least four reasons for using filters in FTPS: 1) Measurement with sample 
spacing greater than 0.5 requires using cut-off filters for both sample and reference (for 
details see paragraph 2). 2) Filters are necessary for improving dynamic range too. One 
possibility is to use cut-off filters, such as 2mm polished Si wafer for measurement of 
microcrystalline silicon (Poruba et al. 2002) or even set of filters for amorphous (Melskens et 
al. 2007) to eliminate more and more from high absorption region and to get to lower and 
lower absorptances. Alternative is to use less filters or even only one that only reduces light 
intensity at high absorption region. If the minimum of signal S that we want to measure is 
SMIN then transmittance of ideal filter would be 1 in region where S<100SMIN and 100SMIN/S 
where S>100SMIN then we would measure whole curve with dynamic range only 100. For 
example see spectrum of long-pass filter in Fig. 5.      3) Third reason for filtering is that F-T 
spectroscopy doesn’t reproduce spectrum where sharp step occur (absorption drop on the 
bandgap in amorphous Si at 1.75eV) and better results are obtained when using the filter 
that reduces the signal before the abrupt drop comes, see short-pass filter in Fig. 5.  4) Fourth 
reason for filtering is when it is necessary to keep low signal conditions. For that color or 
neutral density filters can be used (see section 4.5). The use of optical filters complicates 
strongly the automation of the FTPS because generally for different materials different filters 
have to be used. 

3.6 Frequency dependence correction 
Here we come to the main issue of FTPS. The frequency of modulation ranges from 1kHz to 
10kHz and is wavenumber dependent as seen from formula 2. If performance of any part of 
experiment (sample, reference, preamplifier) is frequency dependent a correction for this 
dependence has to be done in order to obtain results same as measured at modulation 
frequency close to zero. Because sample and reference has different frequency  dependence, 
formula 5 can be used only after such correction. We can suppose that the signal S at certain 
wavenumber ν and certain frequency f can depend on a frequency either according to 
formula 7 or formula 8, that means that the function Φ  describing frequency dependence 
can be wavenumber dependent and so has wavenumber as parameter.  

 ( , ( )) ( ,0) ( ( ))S f S fν ν ν ν= ⋅ Φ      (7) 

 ( , ( )) ( ,0) ( ( ), )S f S fν ν ν ν ν= ⋅ Φ  (8) 

Function Φ  is unknown and can be investigated only experimentally for each sample. In 
FTPS the way of investigating function Φ is to make additional measurements at different 
velocities and observe the signal change with velocity. But because we can go from velocity 
0.16 cm/s only to higher ones, function Φ can be found only around some central frequency, 
say 5kHz. Based on formulae 7 or 8 we can calculate signal at this frequency and so get from 
measured signal spectrum S(ν,f(ν)) to new spectrum S(ν, 5kHz) that corresponds to 
spectrum as if measured at one wavelength independent frequency 5kHz. Obviously we 
can’t get further to zero frequency. For some samples we can suppose that formula 7 holds 
and from it follows that S(ν, 5kHz) = S(ν, 0)· constant  and so we can get correct, but relative 
spectrum. This explains why even for ‘good’ frequency dependence (formula 7) we can’t 
measure absolutely. For high preamplification, major part of frequency dependence is 
caused by preamplifier for which  formula 7 holds. In practice it has only sense to assume 
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wavelength independent frequency dependence obeying formula 7. As we will see in 
paragraph 4.3 and 4.6 wavelength dependence as in formula 8 can occur only for 
photothermal ionization effects or for samples where carrier diffusion dominates. For 
correction we measure spectrum at three velocities and then in set of reference wavenumber 
points we quantify and fit (typically by exponential) the relative decrease of signal with 
frequency (calculated for each point by formula 2). In next step the average of the parameter 
of relative decrease is made and finally one of the three curves is corrected (virtually to 
5kHz). Only the curve that we want to correct (usually lowest velocity) has to be measured 
finely with enough scans but for the two other much less scans are necessary. Frequency 
dependence can be sometimes significant and can lead to shift of one end of the spectrum 
compared to opposite end as high as by 50%, so it is clear that the accuracy is strongly 
influenced by frequency dependence and so the error is usually at least few percents.  

3.7 Bench alignment 
For successful measurement correct bench alignment is necessary. Once properly done it 
does not have to be done for months. Alignment is done in commercial instruments 
automatically and instrument remembers alignment for each beamsplitter. It was found that 
the shape of a baseline spectrum depends on alignment and if bench is properly aligned the 
baseline (roughly spectrum of source) for quartz beamsplitter should monotonously 
decrease towards high wavenumbers. To do so and to enhance intensity in visible range, 
alignment in two steps first without filter and then with short-pass glass is necessary.  
When using external source, alignement should be done as follows: 1) Make proper 
alignment for internal source. 2) Mark on a screen that is placed into the focus the precise 
position of the focal point. 3) Manually align the mirror (M4 in Fig. 3) into axis of Michelson 
modulator.  4) Adjust the external source to obtain the same position and dimension of the 
focal point on the screen. 5) Make new alignment with external source. Then the bench will 
not be aligned for internal source. 
Summary: 
- research grade FTIR and low noise preamplifier are only necessary large investments 

for setting up FTPS method 
- high dynamic range or low noise of the preamplifier is more important for 

measurement of solar cells or layers on glass, respectively  
- proper choice of long-pass optical filters is main know-how in FTPS but prevents 

simple automation of the method 
- coaxial cables and grounded sample holder is necessary for low noise signal  
- frequency dependence correction is necessary for FTPS on thin film silicon 
- with external source the high troughput advantage allows 20 times higher intensity 
- proper two-step bench alignement is necessary for accurate measurements  

4. Interpretation of FTPS 
In the section 1 and Fig 1 we outlined the aim of optical spectroscopy in disordered 
semiconductors, e.g. amorphous silicon (a-Si) that is to get information about defect density 
and disorder. In section 3 we covered most of the technical issues regarding the successful 
measurement of a FTPS spectrum. Nice thing would be to show in this part a formula for 
FTPS signal as a function of defects and disorder. Unfortunately situation is much more 
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complex and to puzzle out its complexity a diagram (Fig. 6) is sketched where all the arrows 
represent one specific relation that will be discussed hereafter. In spite of the complexity of 
the diagram, the individual effects themselves are quite straightforward and well known in 
the field of semiconductors.  
 

 
Fig. 6. Diagram shows most of the possible effects playing between defects density and 
disorder as input that we want to know and FTPS signal as output that we measure 

4.1 From defects to absorption coefficient 
Defects and disorder (their origin base on material microstructure is beyond the scope of 
this article) are represented as electronic states in material and characterized by spatial 
density and energy. In non-crystalline semiconductors these are only two parameters fully 
characterizing the electronic structure of material, because due to high electron scattering 
on irregularities no momentum quantum number and its conservation exist. So the 
conditions for optical excitation between occupied and unoccupied state are only energy 
conservation and spatial overlap of the initial and final state. Mathematically the absorption 
coefficient can be expressed as convolution of spatial density of occupied and unoccupied 
states by formula 9, where W(ħw) is matrix element the form of which is not consensual9.  

 ( ) ( ) ( ) ( )V CW N N dEE Eα ω ω ω+= ∫  (9) 

This frequently used formula holds for undoped material under low light conditions (Fermi 
level EF is well defined and is close to the middle of the gap) and also low temperature limit 
is considered (states above EF are unoccupied, states below EF are all occupied).  

                                                 
9 W(E)=const, e.g. in (Davis 1970), W(E)= const·E , e.g. in (Jackson et al. 1985), W(E)=const/E , e.g. in 
(Vaněček et al. 1984) 
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material defect 
energy 

typ. good 
value 

scaling 
constant (cm-2)

method reference 

<1 cm-1 2.4-5x1016 CPM 
a-Si 1.2 eV 

<2 cm-1 1.2-2.5x1016 PDS 
(Wyrsch et al. 1991) 

0.8 eV <0.1 cm-1 ~ 1.7x1017 CPM (Vaněček et al. 2000) 
μc-Si 

0.7 eV <0.1 cm-1 3.6x1016 PDS (Klein et al. 2007) 

Table 1. Defect absorption energies, typical values for good quality materials and factors for 
recalculation into defect density (cm-3) for values obtained from constant photocurrent 
method (CPM) and photothermal deflection spectroscopy (PDS) 
In the band structure of amorphous materials the Gaussian humps in the middle represent 
defect states or unsaturated bonds and the tilt of the edges (band tails) represent mainly 
angular disorder of chemical bonds. Two vertical lines are called mobility edges, separate 
delocalized extended states and localized tail states and define electrical gap of the material. 
Y-axis in the Fig. 1 is in logarithm scale and only strong transitions are identified, i.e. only 
transition involving always at least one state from valence or conduction band. Transitions 
C1, C2, B1 and B2 project into region of subbandgap absorption on absorption coefficient. 
There exist more possibilities of defect density evaluation from this region (Wyrsch et al. 
1991). Often used is just taking the value of absorption coefficient at some physically defined 
energy and multiplying it by scaling constant, see Table 1. Transition B2 is much stronger 
than B1 due to its slower slope. Exponential part of absorption coefficient is according to 
(Shah 2010) function of both slopes of B1 and B2, but usually is attributed only to the slope 
of valence band tail. For its slope the Urbach energy E0 is defined by formula 10 (Street 
1991). For good quality non-crystalline silicon material E0 is never higher than 50 meV. 

 0( ) exp( / )c Eα ω ω= ⋅  (10) 

4.2 From structure to optical absorptance 
For evaluation of optical absorptance, as seen from Fig. 6 not only absorption coefficient 
discussed in paragraph 4.1, but also refraction index, material and interface morphology 
and obviously macroscopic sample structure have to be known. Exact knowledge of all 
parameters and accurate calculation of absorptance for arbitrary structures is insoluble 
problem and therefore simple well defined samples should be measured if absolute results 
and not only relative comparison is desired. Simplest example is smooth weakly absorbing 
layer on nonabsorbing semiinfinite substrate. For the purpose of absorption coefficient 
measurement approximate formulae no 11, 12 and 13 presented in (Ritter & Weiser 1986) 
can be used: 
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 { }( )2 2
2 2 2

1 ln 0.5 (1 )(1 / ) (1 ) (1 / ) 4R A T R A T R
d

α = − + + − + +  (13) 

Meaning of the symbols are: r01= √R1 · exp(iδ1) , r01= √R1 · exp(iδ1) , where r01, r12 are Fresnell 
coefficients of perpendicular reflectance on first and second interface, A, T, α, d are 
absorptance, transmittance, absorption coefficient and thickness respectively. Formula 13 is 
directly derived from the two previous and contains no cos function and so we can profit 
from advantage of absence of interference patterns in ratio A/T. Therefore it is advantageous 
for thin films to measure absorptance and transmittance spectra simultaneously. This 
formula however requires absolute measurement of A and T, that is not always possible and 
therefore scaling according to additional optical measurement is necessary. Also knowledge 
of R2 is necessary. Mathematic fit of e.g. Cauchy formula parameters of refraction index or 
assumption of some typical spectrum of refraction index (Vaněček 1995) is possible for 
calculation of R2. The least sophisticated, but still used is to approximate the formula 11 into 
simple form 14 or 15. Both formulae do not take interference pattern into account and 
should therefore be applied to smoothened curve of A. Formula 14 is very often used and 
indeed by analyzing its error we can find that neglecting the term with cos in formula 11 and 
further neglecting some other terms on a way to formula 14 and attributing the result to 
curve with averaged interference will result in error in α of -10% in low absorption region 
for amorphous silicon on glass. This formula however still requires knowledge of R1 and 
absolutely scaled A. Thus often R1 is assumed to be constant and then formula 15 is used. 
Then only saturation value AREL,MAX at high absorption where 1-e-αd→1 and thickness d have to 
be known. Then resulting α is correct except the region above and close to the maximum point. 

 1(1 )(1 )dA R e α−≅ − −  (14) 

 ( ),ln 1 /REL REL MAXA A dα ≅ − −  (15) 

So far theory for smooth, non scattering layer on glass was used. For measurement of 
samples with rough interfaces or even with bulk scattering as for example microcrystalline 
silicon, more complicated theory has to be used (Poruba et al. 2000). Sometimes effect of 
scattering can be well masked and for example accurate comparison between measurements 
of total and specular transmittance has to be done (Vaněček et al. 1998). Even more 
complicated is the evaluation of absorptance in solar cells where the transmittance of 
transparent conductive oxide layers (TCO) comes into play, but even here correction exists 
(Python 2009). Otherwise FTPS (and photocurrent in general) on real solar cells is useful 
mainly for comparative measurements of cells with same optical structure (TCO, roughness, 
back reflectors).  
Presented formulae are for total absorptance, but characterizing light absorption by its total 
value is not always precise because absorption is generally not homogeneous due to many 
effects: 1) due to exponential decrease of intensity in absorbing material, 2) due to standing 
waves in thin films 3) due to inhomogeneity of material and thus inhomogeneity of 
absorption coefficient itself, 4) due to inhomogeneously distributed defects, for example 
close to surfaces of grain boundaries. Last two cases are not accounted in above presented 
calculations and so the measurement in A/T mode is not legitimate and has an effect of non-
vanishing interference patterns (Vaněček et al. 1995). Moreover this effect depends on 
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position of highly absorbing sub-layer in the whole layer and if it is on the back side with 
respect to illumination, the non-vanishing interferences are not observed, inhomogeneity is 
masked but generally higher absorptance is observed, see Fig. 9.  

4.3 From absorptance to excess carrier generation 
Until now the analysis was based purely on optics. Now we want to look closely whether all 
absorbed photons create free charge carriers that can eventually contribute to photocurrent. 
In undoped amorphous silicon for example mobility of holes is much smaller and so only 
the transitions terminating above the conduction mobility edge can in principle contribute to 
photocurrent. But at room temperature the thermal excitation may release the carriers from 
small depth below the mobility edge above the edge and so enable them to be electrically 
collected. This two-step carrier generation is called photothermal ionization. The thermal 
ionization however has to be fast enough to be registered by phase correlated detection, 
because FTPS is (like other lock-in methods) based on measurement of modulated response 
that is correlated with excitation pulses and carriers excited too late are not accounted. In 
this point we get to the issue of frequency dependence dependent on wavelength (section 
3.6, formula 8). Based on theory developed for Modulated Photocurrent Method (Abe et al. 
1988), we can describe the effect of thermal excitation as a dispersion of the conduction 
mobility edge F down to energies ΔE below original mobility edge, analogical to Fermi-
Dirac function as in formula 16 where symbols ω, f0, kB and T have meaning of modulation 
frequency, attempt-to-escape frequency (in a range of 1012 Hz), Boltzmann constant and 
temperature, respectively.  
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In the work of Abe the electronic states below mobility edge having overlap with F 
contribute as frequency dependent photocurrent signal. But not only frequency dependent 
signals, but also frequency independent signals from displacement current from the same 
electronic state are considered in his theory. So, depending on parameters in formula 16 and 
depending on the ratio of displacement versus real currents, different transitions will have 
different effect in photocurrent. In his work mainly transitions C1 are studied at frequencies 
from 10Hz to 10kHz with strongest frequency dependence around 500Hz. Finally for 
studying the same effect directly for FTPS a comparison of photocurrent measurement by 
FTPS, CPM at 13Hz and DBP10 method for wide range of frequencies was done (Holovský et 
al. 2008), see Fig. 8. From the comparison we see the effects of frequency dependence and 
displacement currents in defect region and beginning of Urbach edge in DBP at different 
frequencies. We also see difference between FTPS and CPM at defect reference energy 1.2 eV 
well below factor 2. According to previous papers (Wyrsch et al. 1991), CPM itself gives 
values of defect absorptance approximately twice lower than optical absorption. Similarly, 
our measurements systematically show difference in defect absorptance between FTPS and 
Photothermal Deflection Spectroscopy by factor around 2 at energy 1.2eV for amorphous 
silicon. It means that photocurrent generation is calculated according to same optical 
                                                 
10 DBP stands for Dual Beam Photocurrent, method is explained in paragraph 4.5. 



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

270 

 { }( )2 2
2 2 2

1 ln 0.5 (1 )(1 / ) (1 ) (1 / ) 4R A T R A T R
d

α = − + + − + +  (13) 
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Then only saturation value AREL,MAX at high absorption where 1-e-αd→1 and thickness d have to 
be known. Then resulting α is correct except the region above and close to the maximum point. 
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So far theory for smooth, non scattering layer on glass was used. For measurement of 
samples with rough interfaces or even with bulk scattering as for example microcrystalline 
silicon, more complicated theory has to be used (Poruba et al. 2000). Sometimes effect of 
scattering can be well masked and for example accurate comparison between measurements 
of total and specular transmittance has to be done (Vaněček et al. 1998). Even more 
complicated is the evaluation of absorptance in solar cells where the transmittance of 
transparent conductive oxide layers (TCO) comes into play, but even here correction exists 
(Python 2009). Otherwise FTPS (and photocurrent in general) on real solar cells is useful 
mainly for comparative measurements of cells with same optical structure (TCO, roughness, 
back reflectors).  
Presented formulae are for total absorptance, but characterizing light absorption by its total 
value is not always precise because absorption is generally not homogeneous due to many 
effects: 1) due to exponential decrease of intensity in absorbing material, 2) due to standing 
waves in thin films 3) due to inhomogeneity of material and thus inhomogeneity of 
absorption coefficient itself, 4) due to inhomogeneously distributed defects, for example 
close to surfaces of grain boundaries. Last two cases are not accounted in above presented 
calculations and so the measurement in A/T mode is not legitimate and has an effect of non-
vanishing interference patterns (Vaněček et al. 1995). Moreover this effect depends on 
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position of highly absorbing sub-layer in the whole layer and if it is on the back side with 
respect to illumination, the non-vanishing interferences are not observed, inhomogeneity is 
masked but generally higher absorptance is observed, see Fig. 9.  

4.3 From absorptance to excess carrier generation 
Until now the analysis was based purely on optics. Now we want to look closely whether all 
absorbed photons create free charge carriers that can eventually contribute to photocurrent. 
In undoped amorphous silicon for example mobility of holes is much smaller and so only 
the transitions terminating above the conduction mobility edge can in principle contribute to 
photocurrent. But at room temperature the thermal excitation may release the carriers from 
small depth below the mobility edge above the edge and so enable them to be electrically 
collected. This two-step carrier generation is called photothermal ionization. The thermal 
ionization however has to be fast enough to be registered by phase correlated detection, 
because FTPS is (like other lock-in methods) based on measurement of modulated response 
that is correlated with excitation pulses and carriers excited too late are not accounted. In 
this point we get to the issue of frequency dependence dependent on wavelength (section 
3.6, formula 8). Based on theory developed for Modulated Photocurrent Method (Abe et al. 
1988), we can describe the effect of thermal excitation as a dispersion of the conduction 
mobility edge F down to energies ΔE below original mobility edge, analogical to Fermi-
Dirac function as in formula 16 where symbols ω, f0, kB and T have meaning of modulation 
frequency, attempt-to-escape frequency (in a range of 1012 Hz), Boltzmann constant and 
temperature, respectively.  
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In the work of Abe the electronic states below mobility edge having overlap with F 
contribute as frequency dependent photocurrent signal. But not only frequency dependent 
signals, but also frequency independent signals from displacement current from the same 
electronic state are considered in his theory. So, depending on parameters in formula 16 and 
depending on the ratio of displacement versus real currents, different transitions will have 
different effect in photocurrent. In his work mainly transitions C1 are studied at frequencies 
from 10Hz to 10kHz with strongest frequency dependence around 500Hz. Finally for 
studying the same effect directly for FTPS a comparison of photocurrent measurement by 
FTPS, CPM at 13Hz and DBP10 method for wide range of frequencies was done (Holovský et 
al. 2008), see Fig. 8. From the comparison we see the effects of frequency dependence and 
displacement currents in defect region and beginning of Urbach edge in DBP at different 
frequencies. We also see difference between FTPS and CPM at defect reference energy 1.2 eV 
well below factor 2. According to previous papers (Wyrsch et al. 1991), CPM itself gives 
values of defect absorptance approximately twice lower than optical absorption. Similarly, 
our measurements systematically show difference in defect absorptance between FTPS and 
Photothermal Deflection Spectroscopy by factor around 2 at energy 1.2eV for amorphous 
silicon. It means that photocurrent generation is calculated according to same optical 
                                                 
10 DBP stands for Dual Beam Photocurrent, method is explained in paragraph 4.5. 
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absorption coefficient as in paragraph 4.1 except the region of defect absorption where the 
photocurrent generation in amorphous silicon can be approximately twice lower. This 
principal discrepancy of different absorption coefficient for light propagation and for 
photocurrent generation shall not complicate our interpretation, because since the 
differences are in region of low homogeneous absorption ( 1-exp(-αd) ≈αd ) we make no 
error by assuming light propagation according to the same absorption coefficient as 
corresponds to photocurrent generation. Only we have to choose correct recalculation 
constant in Table 1 (for FTPS same as for CPM method).   
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Fig. 8. Left: Dual Beam Photocurrent (DBP) spectra on 2μm amorphous Si on glass converge 
at higher frequencies to FTPS under bias light, at 380Hz and 2kHz DBP show anomalous 
deviation due to displacement currents. Right: Similar effect of light bias on FTPS and CPM 
methods and their comparison on the same sample 

4.4 From structure to mobility lifetime distribution 
When the excess carriers are generated, their efficient conduction to the collection electrodes 
depends on ability of the sample to conduct electrical current. As seen in Fig. 6 it depends 
mainly on microscopic morphology, but also presence of surfaces and so on macroscopic 
geometry. And also on excess carrier distribution itself, but it will be subject of next 
paragraph. Photocurrent in semiconductor, i.e. difference between electrical current in dark 
and under illumination is in simplest case given by excess carrier density n multiplied by 
carrier mobility μ, see equation 17. Excess carrier density is result of competition between 
photogeneration G described in previous paragraphs and carrier recombination that 
depends in simplest approximation linearly on excess carrier density. Such simple equation 
has steady-state solution saying that excess carrier density is a product of photogeneration G  

 phj eE n eE Gμ μ τ= ⋅ ⋅ = ⋅ ⋅ ⋅  (17) 

and value τ called lifetime. Lifetime is a measure of recombination that in non-crystalline 
semiconductors is dominated by Shockley-Read-Hall recombination through active defects. 
Carrier mobility μ on the other hand depends on material disorder. So there are basically 
two material parameters that can influence conduction of generated carriers. In 
homogeneous samples usually also μ is homogeneous, but near surfaces τ is lower due to 
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surface defects. And of course in heterogeneous material both μ and τ are generally 
inhomogeneous. 

4.5 Carrier density and lifetime 
In last paragraph we defined lifetime as a value which after multiplication with generation 
gives excess carrier density. Now we will discuss the fact that lifetime is not a constant but a 
function of the excess carrier density. We discuss this phenomenon separately, because it 
makes the photocurrent measurement complicated. That is because activity of 
recombination centers is approximately given by positions of quasi-Fermi levels that depend 
on excess carrier density. As a consequence, conductivity on large scale is not linear with 
illumination, but rather sub-linear. Due to this phenomenon it is not possible to measure 
photocurrent for different monochromatic light of the same intensity because with different 
wavelength we could get photogeneration changes over many decades and so the lifetime 
would not be constant. On a small scale on the other hand we still assume linearity so that 
applying small harmonic light modulation will result in harmonic modulation of 
photocurrent. But for the non-linearity on the large scales there are  at least three methods 
that solve this problem: 1) Dual Beam Photocurrent (DBP) method applies large DC light 
with much higher intensity than the modulated monochromatic light so that lifetime is fixed 
by the level on DC intensity. Drawback of this method is that, as seen in Fig. 8 the spectra 
still depend on level of illumination. That is due to violating the low light condition defined 
on the beginning in paragraph 4.1. We assume that for monochromatic light this condition is 
still satisfied. 2) Constant Photocurrent Method (CPM), (Vaněček 1981) adjusts the intensity 
of modulated monochromatic light in order to keep photocurrent constant. It will for the 
constant mobility mean constant excess carriers density and so constant lifetime11. 3) FTPS 
method can be regarded as combination of both CPM and DBP, because as all the 
wavelengths are measured simultaneously, the level of modulated photocurrent does not 
change and even the illumination does not change. The only question is the low light 
condition that would not be normally satisfied. Fortunately this condition is critical in 
subbandgap region only where the long-pass optical filter eliminating majority of light has 
to be used (paragraph 3.5).   

4.6 From distributions to electrical current 
We already discussed all physical properties that play role in photoconductivity: absorption 
coefficient, amount of absorbed light, generated excess carriers, mobility lifetime product. 
We already discussed their properties and mutual dependencies. In principle none of these 
physical values are constant and can be distributed non-uniformly. In this paragraph we 
should put together these distributions to get the distribution of photocurrent in our sample. 
So far we have not accounted for time in our thinking because all the processes we have 
discussed can be regarded as infinitely fast. Carrier conduction through sample is however 
not always so fast with respect to modulation frequency in FTPS. Treatment of such 
situation accurately is complicated. In simplified case of uniform doping and uniform 
temperature without taking into account Poisson equation we solve drift-diffusion equation 
18 and continuity equation 19, where n , j , G , τ , E are excess carrier concentration, current 
                                                 
11 This implication may not hold only if both electrons and holes play significant role and total 
photocurrent is combination of both. This is not a case in non-crystalline silicon. 
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absorption coefficient as in paragraph 4.1 except the region of defect absorption where the 
photocurrent generation in amorphous silicon can be approximately twice lower. This 
principal discrepancy of different absorption coefficient for light propagation and for 
photocurrent generation shall not complicate our interpretation, because since the 
differences are in region of low homogeneous absorption ( 1-exp(-αd) ≈αd ) we make no 
error by assuming light propagation according to the same absorption coefficient as 
corresponds to photocurrent generation. Only we have to choose correct recalculation 
constant in Table 1 (for FTPS same as for CPM method).   
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Fig. 8. Left: Dual Beam Photocurrent (DBP) spectra on 2μm amorphous Si on glass converge 
at higher frequencies to FTPS under bias light, at 380Hz and 2kHz DBP show anomalous 
deviation due to displacement currents. Right: Similar effect of light bias on FTPS and CPM 
methods and their comparison on the same sample 

4.4 From structure to mobility lifetime distribution 
When the excess carriers are generated, their efficient conduction to the collection electrodes 
depends on ability of the sample to conduct electrical current. As seen in Fig. 6 it depends 
mainly on microscopic morphology, but also presence of surfaces and so on macroscopic 
geometry. And also on excess carrier distribution itself, but it will be subject of next 
paragraph. Photocurrent in semiconductor, i.e. difference between electrical current in dark 
and under illumination is in simplest case given by excess carrier density n multiplied by 
carrier mobility μ, see equation 17. Excess carrier density is result of competition between 
photogeneration G described in previous paragraphs and carrier recombination that 
depends in simplest approximation linearly on excess carrier density. Such simple equation 
has steady-state solution saying that excess carrier density is a product of photogeneration G  

 phj eE n eE Gμ μ τ= ⋅ ⋅ = ⋅ ⋅ ⋅  (17) 

and value τ called lifetime. Lifetime is a measure of recombination that in non-crystalline 
semiconductors is dominated by Shockley-Read-Hall recombination through active defects. 
Carrier mobility μ on the other hand depends on material disorder. So there are basically 
two material parameters that can influence conduction of generated carriers. In 
homogeneous samples usually also μ is homogeneous, but near surfaces τ is lower due to 
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surface defects. And of course in heterogeneous material both μ and τ are generally 
inhomogeneous. 

4.5 Carrier density and lifetime 
In last paragraph we defined lifetime as a value which after multiplication with generation 
gives excess carrier density. Now we will discuss the fact that lifetime is not a constant but a 
function of the excess carrier density. We discuss this phenomenon separately, because it 
makes the photocurrent measurement complicated. That is because activity of 
recombination centers is approximately given by positions of quasi-Fermi levels that depend 
on excess carrier density. As a consequence, conductivity on large scale is not linear with 
illumination, but rather sub-linear. Due to this phenomenon it is not possible to measure 
photocurrent for different monochromatic light of the same intensity because with different 
wavelength we could get photogeneration changes over many decades and so the lifetime 
would not be constant. On a small scale on the other hand we still assume linearity so that 
applying small harmonic light modulation will result in harmonic modulation of 
photocurrent. But for the non-linearity on the large scales there are  at least three methods 
that solve this problem: 1) Dual Beam Photocurrent (DBP) method applies large DC light 
with much higher intensity than the modulated monochromatic light so that lifetime is fixed 
by the level on DC intensity. Drawback of this method is that, as seen in Fig. 8 the spectra 
still depend on level of illumination. That is due to violating the low light condition defined 
on the beginning in paragraph 4.1. We assume that for monochromatic light this condition is 
still satisfied. 2) Constant Photocurrent Method (CPM), (Vaněček 1981) adjusts the intensity 
of modulated monochromatic light in order to keep photocurrent constant. It will for the 
constant mobility mean constant excess carriers density and so constant lifetime11. 3) FTPS 
method can be regarded as combination of both CPM and DBP, because as all the 
wavelengths are measured simultaneously, the level of modulated photocurrent does not 
change and even the illumination does not change. The only question is the low light 
condition that would not be normally satisfied. Fortunately this condition is critical in 
subbandgap region only where the long-pass optical filter eliminating majority of light has 
to be used (paragraph 3.5).   

4.6 From distributions to electrical current 
We already discussed all physical properties that play role in photoconductivity: absorption 
coefficient, amount of absorbed light, generated excess carriers, mobility lifetime product. 
We already discussed their properties and mutual dependencies. In principle none of these 
physical values are constant and can be distributed non-uniformly. In this paragraph we 
should put together these distributions to get the distribution of photocurrent in our sample. 
So far we have not accounted for time in our thinking because all the processes we have 
discussed can be regarded as infinitely fast. Carrier conduction through sample is however 
not always so fast with respect to modulation frequency in FTPS. Treatment of such 
situation accurately is complicated. In simplified case of uniform doping and uniform 
temperature without taking into account Poisson equation we solve drift-diffusion equation 
18 and continuity equation 19, where n , j , G , τ , E are excess carrier concentration, current 
                                                 
11 This implication may not hold only if both electrons and holes play significant role and total 
photocurrent is combination of both. This is not a case in non-crystalline silicon. 
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density, generation rate, lifetime and electric field respectively, other symbols have their 
usual meaning. Time enters the problem by time dependent generation G(t). Solving such 
equations is not realistically possible and so conditions for any simplification are desirable: 
1) time modulation is slow 2) lifetime is uniform in bulk, 3) absorption coefficient is uniform 
in bulk 4) absorption is low so that (except standing waves) the light intensity is uniform,    
5) samples are thick and so without standing waves, 6) there is no additional absorption due 
to surface defects 7) there is no additional recombination due to surfaces. 

 ( )Be n k T nμ= ⋅ ⋅ + ⋅∇j E  (18) 

 1 ( )n nG t
t e τ

∂
= ∇ ⋅ + −

∂
j  (19) 

a. If all 7 conditions are satisfied, solution of equations 18 and 19 leads to simple equation 
17 and total photocurrent density is equivalent to total generation and so equivalent to 
total optical absorptance and according to paragraph 4.2 we can use A/T mode and 
formula 13. The same will practically work even if samples are thin and condition 5 is 
not satisfied. 

b. If condition 7 is not satisfied and neither absorption is low (condition 4)  we will get the 
situation that was for electric field applied perpendicularly to illumination described by 
theory of DeVore (DeVore 1956). It is the effect of signal loss at high absorption region 
when carriers are generated close to surface. Same theory however describes well also 
situation in high absorption for thin samples (when neither conditions 5 is satisfied) see 
Fig 9. 

c. If the conditions 7 and 5 are not satisfied, and absorption is low or moderate (and not 
high as in previous case) the effect of standing waves with maxima close or far from 
surface will affect modulation of interference maxima in photocurrent. In this case the 
A/T mode may give some non-vanishing interference maxima in whole spectrum 
depending on the direction of illumination with respect to defective surface, see Fig. 9. 
Instead of A/T approach (formula 13) averaging of interference maxima and formula 14 
should be rather used. If instead of condition 7 condition 6 is not satisfied then the 
effects on non-vanishing inreferences in A/T mode are observed only in low absorption 
regions where additional absorptance is comparable with bulk absorptance (Vaněček et 
al. 1995). Arguing that these two effects compensate is not very safe, because they affect 
different regions, see Fig. 9. In these cases the sample thickness should be chosen big 
enough (1 μm or more) so that the surface areas with low mobility or with additional 
absorption have negligible effects compared to bulk absorptance and bulk 
photoconductivity. 

d. If one of the conditions 2 or 3 are not satisfied, for example in microcrystalline silicon, 
situation is overcomplicated and exotic effects can be studied e.g. by comparison of 
coplanar and sandwich arrangement (Unold et al. 2000) or by light biased CPM (Siebke 
et al. 1998). 

e. Concerning the 1st condition of slow modulation, we assume that it is satisfied when         
τ << f -1 (lifetime much shorter than time period of modulation) and then G(t)≈G  and 
thus ∂n/∂t≈0 in equation 18. For FTPS f--1=0.2ms and so for non-crystalline silicon where 
τ =1-10μs condition is well satisfied whereas for crystalline silicon wafers where 
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τ =0.1-10ms not and at least in combination with high or moderate absorption 
(condition 4) this leads to strong frequency dependence, and so for example using FTPS 
for photoelectric measurement on c-Si wafers is problematic, see Fig. 9. 
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Fig. 9. Left: Result of A/T of FTPS and Photothermal deflection specroscopy (PDS) for a 
350nm thick a-Si layer on glass with defective surface layer. We see non-vanishing 
interferences in film side measurement at low absorption in PDS and in whole range in 
FTPS. Deviation of PDS and FTPS in high absorption region is partly given by surface 
recombination. Right: Effect of high frequency modulation for c-Si solar cell observed by use 
of different mirror velocities 
Summary: 
- classical absorption coefficient in disordered materials  results from convolution of 

density of states in low temperature limit and under dark conditions  
- for optically homogeneous smooth layer A/T ratio has no interference maxima 
- generation of conductive excess carriers follows optical absorption coefficient except the 

region far from mobility edge below the gap where its contribution is frequency 
dependent 

- FTPS gives in defect absorption approximately twice lower value  
- photocurrent depends not only on optical absorptance, but also on distribution of 

mobility lifetime product 
- thus only for electrically (mobility, lifetime) and optically (absorption coefficient)  

homogeneous samples photocurrent is equivalent to optical absorptance and also A/T 
mode can be used 

- to reduce inhomogeneity effects induced by surfaces, thicker samples (1 micrometer or 
more) should be used 

- even for homogeneous samples measured photocurrent still depends on modulation 
frequency versus sample thickness and so FTPS measurement of thick samples with 
lifetime well above 0.2ms (c-Si wafers) can be problematic 

- moreover lifetime itself is generally dependent on excess carrier density and thus 
‘constant photocurrent’ methods like CPM or FTPS with long-pass filter are used. 
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density, generation rate, lifetime and electric field respectively, other symbols have their 
usual meaning. Time enters the problem by time dependent generation G(t). Solving such 
equations is not realistically possible and so conditions for any simplification are desirable: 
1) time modulation is slow 2) lifetime is uniform in bulk, 3) absorption coefficient is uniform 
in bulk 4) absorption is low so that (except standing waves) the light intensity is uniform,    
5) samples are thick and so without standing waves, 6) there is no additional absorption due 
to surface defects 7) there is no additional recombination due to surfaces. 
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a. If all 7 conditions are satisfied, solution of equations 18 and 19 leads to simple equation 
17 and total photocurrent density is equivalent to total generation and so equivalent to 
total optical absorptance and according to paragraph 4.2 we can use A/T mode and 
formula 13. The same will practically work even if samples are thin and condition 5 is 
not satisfied. 

b. If condition 7 is not satisfied and neither absorption is low (condition 4)  we will get the 
situation that was for electric field applied perpendicularly to illumination described by 
theory of DeVore (DeVore 1956). It is the effect of signal loss at high absorption region 
when carriers are generated close to surface. Same theory however describes well also 
situation in high absorption for thin samples (when neither conditions 5 is satisfied) see 
Fig 9. 

c. If the conditions 7 and 5 are not satisfied, and absorption is low or moderate (and not 
high as in previous case) the effect of standing waves with maxima close or far from 
surface will affect modulation of interference maxima in photocurrent. In this case the 
A/T mode may give some non-vanishing interference maxima in whole spectrum 
depending on the direction of illumination with respect to defective surface, see Fig. 9. 
Instead of A/T approach (formula 13) averaging of interference maxima and formula 14 
should be rather used. If instead of condition 7 condition 6 is not satisfied then the 
effects on non-vanishing inreferences in A/T mode are observed only in low absorption 
regions where additional absorptance is comparable with bulk absorptance (Vaněček et 
al. 1995). Arguing that these two effects compensate is not very safe, because they affect 
different regions, see Fig. 9. In these cases the sample thickness should be chosen big 
enough (1 μm or more) so that the surface areas with low mobility or with additional 
absorption have negligible effects compared to bulk absorptance and bulk 
photoconductivity. 

d. If one of the conditions 2 or 3 are not satisfied, for example in microcrystalline silicon, 
situation is overcomplicated and exotic effects can be studied e.g. by comparison of 
coplanar and sandwich arrangement (Unold et al. 2000) or by light biased CPM (Siebke 
et al. 1998). 

e. Concerning the 1st condition of slow modulation, we assume that it is satisfied when         
τ << f -1 (lifetime much shorter than time period of modulation) and then G(t)≈G  and 
thus ∂n/∂t≈0 in equation 18. For FTPS f--1=0.2ms and so for non-crystalline silicon where 
τ =1-10μs condition is well satisfied whereas for crystalline silicon wafers where 
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τ =0.1-10ms not and at least in combination with high or moderate absorption 
(condition 4) this leads to strong frequency dependence, and so for example using FTPS 
for photoelectric measurement on c-Si wafers is problematic, see Fig. 9. 
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Fig. 9. Left: Result of A/T of FTPS and Photothermal deflection specroscopy (PDS) for a 
350nm thick a-Si layer on glass with defective surface layer. We see non-vanishing 
interferences in film side measurement at low absorption in PDS and in whole range in 
FTPS. Deviation of PDS and FTPS in high absorption region is partly given by surface 
recombination. Right: Effect of high frequency modulation for c-Si solar cell observed by use 
of different mirror velocities 
Summary: 
- classical absorption coefficient in disordered materials  results from convolution of 

density of states in low temperature limit and under dark conditions  
- for optically homogeneous smooth layer A/T ratio has no interference maxima 
- generation of conductive excess carriers follows optical absorption coefficient except the 

region far from mobility edge below the gap where its contribution is frequency 
dependent 

- FTPS gives in defect absorption approximately twice lower value  
- photocurrent depends not only on optical absorptance, but also on distribution of 

mobility lifetime product 
- thus only for electrically (mobility, lifetime) and optically (absorption coefficient)  

homogeneous samples photocurrent is equivalent to optical absorptance and also A/T 
mode can be used 

- to reduce inhomogeneity effects induced by surfaces, thicker samples (1 micrometer or 
more) should be used 

- even for homogeneous samples measured photocurrent still depends on modulation 
frequency versus sample thickness and so FTPS measurement of thick samples with 
lifetime well above 0.2ms (c-Si wafers) can be problematic 

- moreover lifetime itself is generally dependent on excess carrier density and thus 
‘constant photocurrent’ methods like CPM or FTPS with long-pass filter are used. 



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

276 

5. Review of FTPS applications 
Two papers give broad overview about variety of use of o FTPS: (Vaněček & Poruba 2007), 
(Poruba et al. 2008). In the following we will discuss separately in detail some scientific and 
also industrial applications. 

5.1 Microcrystalline silicon 
In the paragraph 4.5 we discussed the capability of use of FTPS for amorphous silicon due to 
its specific properties. Microcrystalline silicon is heterogeneous material with significant 
amorphous fraction and therefore basically same arguments can be used in case of FTPS too. 
Probably the first impulse was relative simplicity and good sensitivity especially on μc-Si 
that has advantageous shape of absorptance and with using halogen lamp as a source only 
one additional measurement with silicon filter is needed. The first reports of FTPS was 
(Poruba et al. 2001) on μc-Si p-i-n solar cells, later (Vaněček et al. 2002) on μc-Si layers on 
glass and later (Poruba et al. 2003) also on solar modules and layers on ZnO coated glass. As 
interpretation of FTPS spectra Urbach slope as a measure of disorder and absorption 
coefficient at energy 0.8eV as a measure of defect concentration (see Table 1) can be used. 
The effect of surface or bulk scattering in both p-i-n cell and layer on glass can be large and 
has to be corrected, see Fig.10. For layers on glass the effect depends strongly on spacing of 
the electrodes and minimal spacing 1.5 mm is recommended, then correction based on 
known surface roughness (Poruba et al. 2000) is necessary. Method of evaluation of μc-Si 
solar cells avoiding the effect of ZnO was well developed by Python (Python 2009). 
Absolute scaling can be in the case of smooth layers on glass made by approach developed 
for ‘absolute CPM’ (Vaněček et al. 1995). Without knowledge of thickness or for solar cells 
the approximate scaling according to crystalline silicon can be used: value at 1.35 eV is 
either scaled directly to value of c-Si 245cm-1 and we can call it normalization back to 
crystalline fraction (Python 2009) or is scaled to value 245cm-1*Φc , where Φc is crystallinity12. 
For strong effect of scattering scaling at 1.2eV to 25cm-1 can be approximately done because 
the factor of enhancement due to light scattering changes only a little between 0.8eV and 
1.2eV (Poruba et al. 2008).  Broad study of microcrystalline silicon by FTPS was made at 
Université de Neuchâtel: (Bailat 2004), (Sculati-Meillaud 2006), (Python 2009) and 
correlation between FTPS and intragrain or grain boundary defects and solar cell 
deterioration was well verified. Microcracks in solar cells as another type of defects in solar 
cells are however not visible by FTPS method (Python et al. 2010). 

5.2 Application of FTPS in industry at Oerlikon Solar 
The power output of solar modules depends on several PECVD layers and also on several 
manufacturing steps before and after the PECVD deposition. To improve the module 
efficiency each layer and the interface between them has to be optimized. The optimization 
is simplified if a parameter search for each layer can be done and evaluated independently. 
A single layer is much faster to coat and in addition the evaluation is not affected by 
variations in the process steps required to manufacture a cell. The FTPS measurement is a 

                                                 
12 In region around 1.35 eV  scales approximately linearly with crystallinity, however more accurate is 
effective medium theory (Vaněček et al. 1998) and according to (Siebke et al. 1998) scaling in broad 
range of crystallinity is rather exponential 
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relatively fast method to evaluate the defect density, which is a necessary requirement for a 
high quality solar cell layer.  
The evaluation approach depends on the layer quality. On a coarse level poor depositions 
are always identified when the absorption at 0.8eV is very high e.g. above 1.0cm-1. For fine 
tuning of already good quality layers with absorption values in the range of 0.05cm-1, 
a comparison of only the same deposition setup and sample material is possible. Changes in 
the substrate e.g. with additional SnO2 layer or different glass type leads to a change in the 
absorption value. This is true even if two similar glass types are compared: Schott AF32eco 
and Schott AF45 are coated with mc-Si in the same run, however, the FTPS data in Figure 10 
shows a higher absorption for AF45 glass compared to AF32 type.  
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Fig. 10. Left: True absorption coefficient (a,b) and apparent absorption coefficient of 
6 different materials (c-h) from different labs that all exhibit similar deviation due to the 
effect of scattering. Right: Effect of substrate on defect absorption for layers made in a single 
deposition as an example of using FTPS for module optimization in industry at Oerlikon 
Solar 
Deposition on different substrate materials can have slightly increased absorption while still 
giving improved cell results. An explanation for this, is that the FTPS measurement is 
currently measured on AF32 glass samples placed on top off the module glass substrate. The 
module glass is of a different quality selected for the module requirements. The growth of 
the layer is affected by the different substrate surfaces. So a deposition parameter leading to 
a perfect layer on the Schott glass (for FTPS measurement) might lead to a non optimal layer 
on the large size module glass. 

5.3 Amorphous silicon 
FTPS on amorphous silicon is slightly more difficult than for μc-Si, because it requires 
different optical filters than just crystalline silicon, see Fig.5. Moreover Photothermal 
Deflection Spectroscopy (Jackson & Amer 1982) that is not enough sensitive for good quality 
μc-Si is usually enough sensitive for a-Si. The first published results of FTPS on a-Si 
appeared later and originated mainly from University of Delft, e.g. (Melskens et al. 2008). 
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its specific properties. Microcrystalline silicon is heterogeneous material with significant 
amorphous fraction and therefore basically same arguments can be used in case of FTPS too. 
Probably the first impulse was relative simplicity and good sensitivity especially on μc-Si 
that has advantageous shape of absorptance and with using halogen lamp as a source only 
one additional measurement with silicon filter is needed. The first reports of FTPS was 
(Poruba et al. 2001) on μc-Si p-i-n solar cells, later (Vaněček et al. 2002) on μc-Si layers on 
glass and later (Poruba et al. 2003) also on solar modules and layers on ZnO coated glass. As 
interpretation of FTPS spectra Urbach slope as a measure of disorder and absorption 
coefficient at energy 0.8eV as a measure of defect concentration (see Table 1) can be used. 
The effect of surface or bulk scattering in both p-i-n cell and layer on glass can be large and 
has to be corrected, see Fig.10. For layers on glass the effect depends strongly on spacing of 
the electrodes and minimal spacing 1.5 mm is recommended, then correction based on 
known surface roughness (Poruba et al. 2000) is necessary. Method of evaluation of μc-Si 
solar cells avoiding the effect of ZnO was well developed by Python (Python 2009). 
Absolute scaling can be in the case of smooth layers on glass made by approach developed 
for ‘absolute CPM’ (Vaněček et al. 1995). Without knowledge of thickness or for solar cells 
the approximate scaling according to crystalline silicon can be used: value at 1.35 eV is 
either scaled directly to value of c-Si 245cm-1 and we can call it normalization back to 
crystalline fraction (Python 2009) or is scaled to value 245cm-1*Φc , where Φc is crystallinity12. 
For strong effect of scattering scaling at 1.2eV to 25cm-1 can be approximately done because 
the factor of enhancement due to light scattering changes only a little between 0.8eV and 
1.2eV (Poruba et al. 2008).  Broad study of microcrystalline silicon by FTPS was made at 
Université de Neuchâtel: (Bailat 2004), (Sculati-Meillaud 2006), (Python 2009) and 
correlation between FTPS and intragrain or grain boundary defects and solar cell 
deterioration was well verified. Microcracks in solar cells as another type of defects in solar 
cells are however not visible by FTPS method (Python et al. 2010). 

5.2 Application of FTPS in industry at Oerlikon Solar 
The power output of solar modules depends on several PECVD layers and also on several 
manufacturing steps before and after the PECVD deposition. To improve the module 
efficiency each layer and the interface between them has to be optimized. The optimization 
is simplified if a parameter search for each layer can be done and evaluated independently. 
A single layer is much faster to coat and in addition the evaluation is not affected by 
variations in the process steps required to manufacture a cell. The FTPS measurement is a 

                                                 
12 In region around 1.35 eV  scales approximately linearly with crystallinity, however more accurate is 
effective medium theory (Vaněček et al. 1998) and according to (Siebke et al. 1998) scaling in broad 
range of crystallinity is rather exponential 
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relatively fast method to evaluate the defect density, which is a necessary requirement for a 
high quality solar cell layer.  
The evaluation approach depends on the layer quality. On a coarse level poor depositions 
are always identified when the absorption at 0.8eV is very high e.g. above 1.0cm-1. For fine 
tuning of already good quality layers with absorption values in the range of 0.05cm-1, 
a comparison of only the same deposition setup and sample material is possible. Changes in 
the substrate e.g. with additional SnO2 layer or different glass type leads to a change in the 
absorption value. This is true even if two similar glass types are compared: Schott AF32eco 
and Schott AF45 are coated with mc-Si in the same run, however, the FTPS data in Figure 10 
shows a higher absorption for AF45 glass compared to AF32 type.  
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Fig. 10. Left: True absorption coefficient (a,b) and apparent absorption coefficient of 
6 different materials (c-h) from different labs that all exhibit similar deviation due to the 
effect of scattering. Right: Effect of substrate on defect absorption for layers made in a single 
deposition as an example of using FTPS for module optimization in industry at Oerlikon 
Solar 
Deposition on different substrate materials can have slightly increased absorption while still 
giving improved cell results. An explanation for this, is that the FTPS measurement is 
currently measured on AF32 glass samples placed on top off the module glass substrate. The 
module glass is of a different quality selected for the module requirements. The growth of 
the layer is affected by the different substrate surfaces. So a deposition parameter leading to 
a perfect layer on the Schott glass (for FTPS measurement) might lead to a non optimal layer 
on the large size module glass. 

5.3 Amorphous silicon 
FTPS on amorphous silicon is slightly more difficult than for μc-Si, because it requires 
different optical filters than just crystalline silicon, see Fig.5. Moreover Photothermal 
Deflection Spectroscopy (Jackson & Amer 1982) that is not enough sensitive for good quality 
μc-Si is usually enough sensitive for a-Si. The first published results of FTPS on a-Si 
appeared later and originated mainly from University of Delft, e.g. (Melskens et al. 2008). 
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Principally only FTPS can replace slower method CPM that was especially designed for 
amorphous silicon (paragraph 4.5) and it was shown by comparison between CPM and 
FTPS on a-Si (Holovský et al. 2008). FTPS was also performed on layers on a-Si codeposited 
on different substrates including rough conductive and non transparent Al. Special 
sandwich arrangement with glass covered by conductive oxide together with transparent 
conductive liquid (glycerol) as front contact was used. Bias voltage -1.5 V on front contact 
was used to create homogeneous electrical field and to compensate band bending effects. 
Recalculation from optical absorption to absorption coefficient was done by Monte-Carlo 
optical simulator, details in (Holovský et al. 2010).  Measurement of multijunction solar cells 
monolithically interconnected was performed with the help of light biasing of the cells that 
are not measured, see Fig. 4. Results of such measurements can be found in (Poruba et al. 
2001), (Vaněček et al. 2007) and especially in (Holovský et al. 2007) the conditions and limits 
of measurements tandem cells are analyzed. In tandem cells it is not possible to spatially 
separate the light bias or measurement beam for individual sub-cells and so the modulated 
generation occurs in all sub-cells. Limits of discrimination of signal from not measured cells 
depend on quality of diode and also on modulation frequency vs. capacity of measured cell. 
This unfortunately might be a problem for FTPS where high frequency modulations are 
used. 

5.4 Nanocrystalline diamond, CIS and organic semiconductors 
Together with development of FTPS on μc-Si the method was also used for measurement of 
subbandgap absorptance of defects and dopants of nanocrystalline diamond layers 
prepared by MW PECVD (Kravets et al. 2002), (Kravets 2005). Main issue in interpretation 
of the FTPS on nanodiamond is the effect of photothermal ionization (paragraph 4.3). This 
effect can be reduced by use of step-scan mode (paragraph 6) of FTIR spectrometer when 
ultimate sensitivity is reached with much slower speed of measurement (Remeš et al. 2007). 
There has been efforts to use FTPS also for subbandgap absorption of chalcopyrite 
semiconductors (CIS, CIGS). FTPS spectra has been measured on solar cells only (Poruba et 
al. 2008), whereas measurement on layers on glass under room temperature has seemed 
impossible due to high dark conductivity. The Urbach slope as a measure of compositional 
disorder for interpretation of subbandgap region can be used (Wasim et al., 2001). 
FTPS has even been used for measurement of photogeneration down to very low values in 
organic solar cells based on polymer-fullerene blends (Vandewal et al. 2009). Study of 
structural changes induced by annealing has been done (Poruba et al. 2008). According to 
(Vandewal et al. 2008), frequency dependence is not an issue in case of organic solar cells.  

6. Discussion 
In the presented text we did not pointed much to an alternative step-scan mode of FTIR. In 
step-scan mode the linear motion of mirror is separated into steps and in between them the 
mirror is stationary. Modulation is then realized by slow vibrations of the fixed mirror 
(phase modulation) or external chopper with lock-in amplifier (amplitude modulation). This 
option will certainly solve the problem of frequency dependence (paragraph 4.3), but will 
slow down the measurement so that the advantage compared to CPM method will be 
weakened. But in some cases this solution brings ultimate sensitivity that is usually not 
necessary e.g. for thin film silicon. Usually disadvantage of step-scan mode is sample 
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spacing (see paragraph 2) that is higher than 0.5. Very promising in the point of reducing 
modulation frequencies are new approaches based on arrays of different luminescence 
diodes that are used for measurement of spectra of quantum efficiency of solar cells (Young 
et al. 2008) or LCD-based F-T spectrophotometer (US patent no 6031609). 

7. Summary 
The Fourier Transform Photocurrent Spectroscopy being firstly published in 1997 has 
relatively short history and in this chapter we briefly reviewed its today’s level of use and 
we more basically explained the general principles and conditions of use. Method is largely 
determined by the use of commercial FTIR spectrophotometer that is basis of the method. It 
can make the method attractive on one hand, but brings challenges on other hand. Future 
modern technology might show larger employment of the method. Principal advantages of 
F-T allow maintaining special condition of measurement such as constant photocurrent or 
constant illumination or allow achievement of high intensities. Method has so far been used 
for variety of materials: thin film silicon, nanocrystalline diamond, organic semiconductors 
and CIS compounds. In a laboratory FTPS can be sometimes replaced by CPM method (in 
most cases) or by Photothermal Deflection Spectroscopy (only non-absorbing substrates, 
lower sensitivity requirements) and its advantage over these methods is speed and 
sensitivity. Its disadvantage is wavelength dependent modulation frequency in range of 
kHz that requires correction procedure, complicates the interpretation of results and may 
even disqualify the method for specific types of materials. Despite that FTPS method has 
been proven to be useful in many scientific and also one industrial application. 
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1. Introduction  
Liquid multiphase systems such as polymer blends or emulsions are ubiquitous in many 
applications, including plastic production, food processing, pharmaceutical and cosmetic 
production. When the constituents of the multiphase system are incompatible the phases are 
immiscible, and, depending on their relative amount, the microstructure can consist of 
droplets in a matrix, elongated fibrils or a co-continuous structure (Utracki, 2003) as 
schematically shown in Figure 1. The morphology of the liquid multiphase system is 
important in the applications as it strongly affects processing properties, and the properties 
of the final products. With the term “morphology” we here indicate not only the overall 
form or shape of the physical structure of the system, but also the distribution and 
orientation of the phases, the interfacial area, and the volume of the interphase.  
Hence, a profound knowledge of the relation between processing parameters, material 
properties and morphology is essential to optimize the performances of the liquid 
multiphase systems.  
 

 
Fig. 1. Different morphologies of immiscible polymer blends (a) dilute droplet blends; (b) 
elongated fibrils; (c) co-continuous structure  

Substantial efforts were done in the last decades to set up experimental protocols aimed at 
evaluating the morphological properties of polymer blends and emulsions via rheological 
measurements. So far, the most reliable strategy for morphological characterization through 
rheological measurements is based on the dynamic small amplitude oscillatory shear 
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(SAOS) experiment: the samples are subjected to small amplitude shearing oscillations, and 
the measured shear stress response is used to gain information on the blend properties (e.g. 
Palierne, 1990).  
Here, we present an alternative technique we have recently proposed to characterize the 
liquid two-phase system morphology. This methodology is based on Large Amplitude 
Oscillatory Shear (LAOS) flows. This kind of analysis is often referred in the literature as 
Fourier Transform Rheology (FTR) (Wilhelm et al., 1998), since the stress response is usually 
analyzed in the Fourier domain. 
It will be shown that Fourier Transform Rheology possesses a high sensitivity in the 
characterization of the morphology, thus allowing evaluation of properties that might 
otherwise be hardly appreciated with traditional linear methodologies. 

2. Rheological oscillatory experiences 
2.1 Small Amplitude Oscillatory Shear 
A typical tool used for the characterization of complex liquids is based on oscillatory 
rheometry (Macosko, 1994). The basic working principle of an oscillatory rheological test is 
to impose a sinusoidal shear deformation, and measuring the resultant shear stress 
response. In a typical experiment, the sample is placed between two plates (or a cone and 
plate geometry) (Figure 2): while the bottom plate remains stationary, a rotation is imposed 
on the top plate, thereby allowing a time-dependent strain deformation on the sample: 

 ( ) 0 sint tγ = γ ω  (1) 

where ω is the oscillation frequency and γ0 is the strain amplitude. The oscillation period is 
thus T = 2π/ω. The resulting time-dependent shear stress, σ(t), is quantified by measuring 
the torque on the top plate. At low strain amplitudes, the stress response can be assumed to 
depend linearly on the strain deformation:  

 ( ) ( )0sin cos sint A t B t tσ = ω + ω = σ ω + δ  (2) 

 

 

ω

Fixed plate Pressure transducers

Torque
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For this reason Small Amplitude Oscillatory Shear (SAOS) tests are usually referred as linear 
rheological measurements. If the material behaves as an ideal elastic solid, then the stress is 
in phase with the imposed deformation wave (i.e. proportional to sin(ωt)), and the 
proportionality constant is the shear modulus of the material. On the other hand, if the 
material is a purely viscous fluid, the stress is proportional to the rate of the strain 
deformation (i.e. proportional to cos(ωt)), and the proportionality constant is the viscosity of 
the fluid. The applied strain and the measured stress are in this case out of phase with phase 
angle δ = π/2. 
Complex materials usually show a response that contains both in-phase and out-of-phase 
contributions. As a consequence, the total stress response at a given ω is characterized by 
both the sine and cosine components: 

 ( ) ( ) ( )0 0' sin " cost G t G tσ = ω γ ω + ω γ ω  (3) 

In equation 3, G’(ω) is the storage modulus which characterizes the solid-like behavior, 
whereas G”(ω) is the loss modulus that takes into account the fluid-like contributions. The 
complex modulus to the frequency can be thus defined: 

 ( ) ( ) ( )* ' "G G iGω = ω + ω  (4) 

where i is the imaginary unit. Using the relation between the complex modulus G*(ω) and 
the complex viscosity η*(ω), 

 ( )G* *ω =ωη  (5) 

and 

 ( )* ' "iη ω = η + η  (6) 

The absolute value of the complex viscosity is of course given by: 

 ( )
* 2 2

* ' "G G G+
η ω = =

ω ω
 (7) 

The frequency dependence of G’ and G” provides some important information about the 
microstructure of a material. For example, gels exhibit G’ that is larger than G” with both 
moduli independent of frequency. Polymer melts show G’ and G” at low frequencies that 
are dependent on ω2 and ω, respectively. For viscoelastic materials, the overlap frequency 
(the frequency at which G’ and G’ curves intersect) gives information about the relaxation 
time of the system. The plateau modulus, i.e. the value of G’ at high frequency, gives 
information about the strength of the structures formed in the material. 
For the case of dilute blends with Newtonian constituents, the dependence of G’ and G” can 
be described in terms of the Palierne model which may quantitatively associate the linear 
viscoelastic properties of polymer blends to its chemical-physical properties e.g. to the 
interfacial tension (Palierne, 1990: Graebling et al., 1993a; Graebling et al., 1993b; Lacroix et 
al., 1996). 
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thus T = 2π/ω. The resulting time-dependent shear stress, σ(t), is quantified by measuring 
the torque on the top plate. At low strain amplitudes, the stress response can be assumed to 
depend linearly on the strain deformation:  
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For this reason Small Amplitude Oscillatory Shear (SAOS) tests are usually referred as linear 
rheological measurements. If the material behaves as an ideal elastic solid, then the stress is 
in phase with the imposed deformation wave (i.e. proportional to sin(ωt)), and the 
proportionality constant is the shear modulus of the material. On the other hand, if the 
material is a purely viscous fluid, the stress is proportional to the rate of the strain 
deformation (i.e. proportional to cos(ωt)), and the proportionality constant is the viscosity of 
the fluid. The applied strain and the measured stress are in this case out of phase with phase 
angle δ = π/2. 
Complex materials usually show a response that contains both in-phase and out-of-phase 
contributions. As a consequence, the total stress response at a given ω is characterized by 
both the sine and cosine components: 

 ( ) ( ) ( )0 0' sin " cost G t G tσ = ω γ ω + ω γ ω  (3) 

In equation 3, G’(ω) is the storage modulus which characterizes the solid-like behavior, 
whereas G”(ω) is the loss modulus that takes into account the fluid-like contributions. The 
complex modulus to the frequency can be thus defined: 

 ( ) ( ) ( )* ' "G G iGω = ω + ω  (4) 

where i is the imaginary unit. Using the relation between the complex modulus G*(ω) and 
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and 
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The absolute value of the complex viscosity is of course given by: 
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The frequency dependence of G’ and G” provides some important information about the 
microstructure of a material. For example, gels exhibit G’ that is larger than G” with both 
moduli independent of frequency. Polymer melts show G’ and G” at low frequencies that 
are dependent on ω2 and ω, respectively. For viscoelastic materials, the overlap frequency 
(the frequency at which G’ and G’ curves intersect) gives information about the relaxation 
time of the system. The plateau modulus, i.e. the value of G’ at high frequency, gives 
information about the strength of the structures formed in the material. 
For the case of dilute blends with Newtonian constituents, the dependence of G’ and G” can 
be described in terms of the Palierne model which may quantitatively associate the linear 
viscoelastic properties of polymer blends to its chemical-physical properties e.g. to the 
interfacial tension (Palierne, 1990: Graebling et al., 1993a; Graebling et al., 1993b; Lacroix et 
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and G*i(ω), G*m(ω) and G*(ω) are, respectively, the complex moduli of the dispersed phase, 
matrix and blend at frequency ω, α is the interfacial tension, φ is the volume fraction of the 
dispersed phase and VR  is the volume average drop radius of the included phase: 
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where ψ(R) represents the drop size distribution. 
An example is reported in figure 3, where the elastic modulus for a blend composed by 
Poly-DiMethylSiloxane (PDMS) in Poly-IsoButylene (PIB) is reported with respect to the 
oscillation frequency, together with the elastic modulus of the neat constituents.  
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Fig. 3. Elastic modulus as a function of frequency for the pure components (PIB: square 
points; PDMS: triangles) and the polymer blend (full circles). The temperature is 30°C. The 
strain amplitude is 50% 
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The Palierne model is widely used to extract morphological or dynamical properties from 
oscillatory data, for example the average drop radius can be estimated (e.g. Das et al., 
2005) or alternatively the surface tension (e.g. Huitric et al., 1998; Vincze-Minya and 
Schausberger, 2007). As already remarked in the literature (Graebling et al. 1993a), 
however, it is difficult to achieve a more detailed description of the morphology of the 
included phase . Indeed, a complete description of the drop size distribution cannot be 
reliably obtained with this technique. To our knowledge, the size distribution inference 
for a polymer blend based on the Palierne method has been carried out only by Friedrich 
et al. (1995). The methodology there proposed is based on a Tikhonv regularization, and 
gave satisfactory results only for very dilute blends with unimodal drop radius 
distributions. 

2.2 Large Amplitude Oscillations 
The above mentioned limits of the traditional linear oscillatory experiences motivated the 
study of alternative experimental techniques that might be more sensitive to the material 
morphology. In this regard, Large Amplitude Oscillatory Shear flows (LAOS) proved to be a 
possible candidate for the morphological characterization. The capabilities of this technique 
to pinpoint nonlinear material characteristics have been already analyzed in other contexts 
(Neidhofer et al., 2004; Schlatter et al., 2005), proving to be quite effective. 
In the following we will briefly review some basic issues on LAOS  (see Wilhelm et al. 1999 
for details).When dealing with LAOS flows, the nonlinear dependences of the viscosity on 
the applied shear rate ( )η γ  can be expected to be important, and equation 3 is no longer 
valid.  
Due to the symmetry properties, the viscosity is independent of the shear direction and 
therefore it can only depend on the absolute shear rate (Wilhelm et al., 1999): 

 ( ) ( ) ( )η γ = η −γ = η γ  (11) 

The Taylor expansion for the viscosity at small shear rates is given in equation (12): 

 ( ) 2
0 1 2 ...η γ = η + η γ + η γ +  (12) 

If the applied shear deformation is a harmonic oscillation with a given frequency ω1, strain 
and strain rate are: 

 0 1 1 0 1sin cost tγ = γ ω ⇒ γ = ω γ ω  (13) 

Therefore, the absolute value of the shear rate signal γ  can be represented in terms of a 

proper Fourier series (Ramirez, 1985): 

 1 1
1 0

2 4 cos2 cos 4 ...
1 3 3 5

t t⎛ ⎞ω ω⎛ ⎞γ = ω γ + − +⎜ ⎟⎜ ⎟π π ⋅ ⋅⎝ ⎠⎝ ⎠
 (14) 

 1 1' 'cos2 'cos 4 ...a b t c tγ = + ω + ω +  (15) 
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matrix and blend at frequency ω, α is the interfacial tension, φ is the volume fraction of the 
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The Palierne model is widely used to extract morphological or dynamical properties from 
oscillatory data, for example the average drop radius can be estimated (e.g. Das et al., 
2005) or alternatively the surface tension (e.g. Huitric et al., 1998; Vincze-Minya and 
Schausberger, 2007). As already remarked in the literature (Graebling et al. 1993a), 
however, it is difficult to achieve a more detailed description of the morphology of the 
included phase . Indeed, a complete description of the drop size distribution cannot be 
reliably obtained with this technique. To our knowledge, the size distribution inference 
for a polymer blend based on the Palierne method has been carried out only by Friedrich 
et al. (1995). The methodology there proposed is based on a Tikhonv regularization, and 
gave satisfactory results only for very dilute blends with unimodal drop radius 
distributions. 

2.2 Large Amplitude Oscillations 
The above mentioned limits of the traditional linear oscillatory experiences motivated the 
study of alternative experimental techniques that might be more sensitive to the material 
morphology. In this regard, Large Amplitude Oscillatory Shear flows (LAOS) proved to be a 
possible candidate for the morphological characterization. The capabilities of this technique 
to pinpoint nonlinear material characteristics have been already analyzed in other contexts 
(Neidhofer et al., 2004; Schlatter et al., 2005), proving to be quite effective. 
In the following we will briefly review some basic issues on LAOS  (see Wilhelm et al. 1999 
for details).When dealing with LAOS flows, the nonlinear dependences of the viscosity on 
the applied shear rate ( )η γ  can be expected to be important, and equation 3 is no longer 
valid.  
Due to the symmetry properties, the viscosity is independent of the shear direction and 
therefore it can only depend on the absolute shear rate (Wilhelm et al., 1999): 

 ( ) ( ) ( )η γ = η −γ = η γ  (11) 

The Taylor expansion for the viscosity at small shear rates is given in equation (12): 

 ( ) 2
0 1 2 ...η γ = η + η γ + η γ +  (12) 

If the applied shear deformation is a harmonic oscillation with a given frequency ω1, strain 
and strain rate are: 

 0 1 1 0 1sin cost tγ = γ ω ⇒ γ = ω γ ω  (13) 

Therefore, the absolute value of the shear rate signal γ  can be represented in terms of a 

proper Fourier series (Ramirez, 1985): 
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By substituting Equation 15 into Newton’s equation for the viscosity leads to equation 16 
(Wilhelm et al., 1999) 

 ( ) ( )2
0 1 2 1... cos tσ = η γ γ = η + η γ + η γ + ω  (16) 

 ( )
( )

( )
0 1 1

12
2 1

' 'cos2 ...
cos

' 'cos2 ... ...

a b t
t

a b t

⎛ ⎞η + η + ω + +
⎜ ⎟σ = η γ γ = ω
⎜ ⎟η + ω + +⎝ ⎠

 (17) 

The terms in brackets in Equation 17 can be thus simplified and written as a sum of even 
harmonics: 

 ( )1 1 1" "cos2 "cos 4 ... cosa b t c t tσ = + ω + ω + ω  (18) 

By multiplying the terms in the brackets by cosω1t one ends up with the shear stress 
expression depending only on odd harmonics: 

 1 1 1cos cos3 cos5 ...A t B t C tσ = ω + ω + ω +  (19) 

where A, B, C are complex numbers. In a last step the non-linear torque signal is analyzed 
towards frequency components by Fourier transformation. Eventually, the signal can be 
described in terms of an odd function of the sinusoidal deformation 
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∑
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In equation (20) IRk, IIk and IAk are real coefficients. Straightforwardly, one can easily express 
the measured shear stress signal in the Fourier domain as: 

 ( ) ( ) ( ) ( )1

odd k

kFT
i t

k
k

t t e I k
+∞ =∞

− ω

=−∞−∞

σ ⇔ σ ω = σ = δ ω − ω∑∫  (21) 

In equation 21, δ(ω-kω1) is the Dirac delta located at ω = k ω1 (k ∈ Z), i is the imaginary unit, 
and Ik is the (complex) coefficient of the k-th harmonic. As the stress time series σ(t) is real 
valued, the condition Ik= I*-k (with * denoting the complex conjugate) holds. As a 
consequence of the assumption made in equation 19, only odd terms of the Fourier series 
could be in principle accounted for in equation 21 (Wilhelm et al., 1998). It is easy to show 
that the following relationship among the coefficients holds:  

 2 2
Aj k Rk IkI I I I= = +  (22) 

When dealing with SAOS flows only the first term of the summation in equation 21 is 
significant. Incidentally, one can notice that, as γ0 tends to zero, the linear behaviour is 
recovered, thus II1 = G’γ0 and IR1 = G”γ0, and IRk ≈ IIk ≈ 0 for any k >1. The appearance of 
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significant values for Ik (k > 1) marks the onset of nonlinearities in the stress response. As a 
further remark, it has been shown that, at vanishing amplitudes the following scaling for 
intensity of nth harmonic with strain has been observed for the constitutive equations so far 
investigated (Nam et al. 2008; Yu et al. 2008): 

 0
n

AnI ∝ γ  (23) 

This allows the definition of new scalars, based on the ratios of intensities of higher 
harmonics and first harmonic of the stress response. For example, coefficient Q is defined as 
(Hyun & Wilhelm, 2009) 

 3
2

1 0

1A

A

IQ
I

=
γ

 (24) 

This coefficient has been claimed to be helpful in distinguishing molecular architecture of 
polymers based on LAOS (Hyun & Wilhelm, 2009). 
From a practical point of view, the measurement of the stress, through the torque sensor of 
the rheometer, is usually performed discretely at finite sample intervals (Δt). Based on the 
sampling frequency, (r =1/Δt, number of data points collected per second), we obtain a time 
series σ(n) of discrete measurements collected at NP instants. 
Discrete Fourier transform of this time domain series will be a series of NST complex 
numbers evaluated through well consolidated FT techniques (Bracewell, 1986): 

 ( ) ( )
( )( )2 1 1

1
, 1

i k n
N

n
k n e k N

π − −∞ −

=
Σ = σ ≤ ≤∑  (25) 

The maximum frequency in the Fourier domain will correspond to the Nyquist frequency = 
2 π/Δt. With the property of the Fourier transform leading to meaningful N/2 (symmetric) 
terms, the resolution in the frequency domain is 2π/T. Therefore, sampling interval 
determines maximum frequency to which information can be obtained, while the duration 
of measurements determines the resolution of frequency. Larger T values also lead to higher 
signal to noise ratio. It should be remarked that some techniques are introduced in the 
literature in order to improve the sensitivity to the signal of the measurement (Wilhelm et 
al., 1999). 

3. FTR on polymer blends  
3.1 Theory 
In this section, we will focus on the theoretical aspects concerning the characterization 
through FTR of immiscible blends with low fraction of the dispersed phase. In this case the 
morphology of the included phase is globular: the basic element of such a dilute blend is 
thus a single drop dispersed in a matrix. Therefore, the study of single droplet behaviour is 
regarded as a reasonable starting point to model the complex behaviour of immiscible 
polymer blends. The overall rheological response, in fact, could be determined just on such a 
basis.  
The dynamic behaviour of dilute polymer blends subjected to LAOS flows can be modeled 
as recently proposed in the literature by considering the single droplet  dynamics together 
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By substituting Equation 15 into Newton’s equation for the viscosity leads to equation 16 
(Wilhelm et al., 1999) 
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In equation 21, δ(ω-kω1) is the Dirac delta located at ω = k ω1 (k ∈ Z), i is the imaginary unit, 
and Ik is the (complex) coefficient of the k-th harmonic. As the stress time series σ(t) is real 
valued, the condition Ik= I*-k (with * denoting the complex conjugate) holds. As a 
consequence of the assumption made in equation 19, only odd terms of the Fourier series 
could be in principle accounted for in equation 21 (Wilhelm et al., 1998). It is easy to show 
that the following relationship among the coefficients holds:  

 2 2
Aj k Rk IkI I I I= = +  (22) 
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significant. Incidentally, one can notice that, as γ0 tends to zero, the linear behaviour is 
recovered, thus II1 = G’γ0 and IR1 = G”γ0, and IRk ≈ IIk ≈ 0 for any k >1. The appearance of 

Fourier Transform Rheology: A New Tool to Characterize Material Properties 

 

291 

significant values for Ik (k > 1) marks the onset of nonlinearities in the stress response. As a 
further remark, it has been shown that, at vanishing amplitudes the following scaling for 
intensity of nth harmonic with strain has been observed for the constitutive equations so far 
investigated (Nam et al. 2008; Yu et al. 2008): 
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This allows the definition of new scalars, based on the ratios of intensities of higher 
harmonics and first harmonic of the stress response. For example, coefficient Q is defined as 
(Hyun & Wilhelm, 2009) 
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This coefficient has been claimed to be helpful in distinguishing molecular architecture of 
polymers based on LAOS (Hyun & Wilhelm, 2009). 
From a practical point of view, the measurement of the stress, through the torque sensor of 
the rheometer, is usually performed discretely at finite sample intervals (Δt). Based on the 
sampling frequency, (r =1/Δt, number of data points collected per second), we obtain a time 
series σ(n) of discrete measurements collected at NP instants. 
Discrete Fourier transform of this time domain series will be a series of NST complex 
numbers evaluated through well consolidated FT techniques (Bracewell, 1986): 
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The maximum frequency in the Fourier domain will correspond to the Nyquist frequency = 
2 π/Δt. With the property of the Fourier transform leading to meaningful N/2 (symmetric) 
terms, the resolution in the frequency domain is 2π/T. Therefore, sampling interval 
determines maximum frequency to which information can be obtained, while the duration 
of measurements determines the resolution of frequency. Larger T values also lead to higher 
signal to noise ratio. It should be remarked that some techniques are introduced in the 
literature in order to improve the sensitivity to the signal of the measurement (Wilhelm et 
al., 1999). 

3. FTR on polymer blends  
3.1 Theory 
In this section, we will focus on the theoretical aspects concerning the characterization 
through FTR of immiscible blends with low fraction of the dispersed phase. In this case the 
morphology of the included phase is globular: the basic element of such a dilute blend is 
thus a single drop dispersed in a matrix. Therefore, the study of single droplet behaviour is 
regarded as a reasonable starting point to model the complex behaviour of immiscible 
polymer blends. The overall rheological response, in fact, could be determined just on such a 
basis.  
The dynamic behaviour of dilute polymer blends subjected to LAOS flows can be modeled 
as recently proposed in the literature by considering the single droplet  dynamics together 
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with a proper stress expression (Rallison, 1984; Stone, 1994; Almusallam et al., 2000; Yu et 
al., 2002; Jackson and Tucker, 2003; Yu and Bousmina, 2003). For what matters the dynamics 
of the drop, a handy though effective phenomenological model has been proposed by 
Maffettone and Minale (1998) and applies to generic flow fields. The model is formulated in 
terms of at most six first-order, ordinary, differential equations, and is capable of describing 
drop deformation up to the nonlinear range. This model is known to be quite accurate for 
small-to-medium droplet deformation, but loses some quantitative accuracy as droplet 
deformation becomes large. We use here this model for its simplicity, even though 
significant distortion of drop shape is expected under LAOS. Still, the Maffettone and 
Minale model provides a useful basis for analyzing and interpreting the experimental 
results also when significant strain deformations occur (Guido et al. 2004). The drop is 
described as an ellipsoid by a second rank symmetric, positive definite, and time dependent 
tensor. The shape dynamics can be thus described by the evolution of tensor S which 
follows the equation: 
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In Equation 26, τ is the emulsion time (τ=ηR/Γ)  where η is the matrix viscosity, R the 
undistorted drop radius and Γ is the interfacial tension; I is the second rank unit tensor, D 
and Ω are the deformation rate and the vorticity tensors respectively, and I2 is the second 
scalar invariant of tensor S. The shear flows here considered give the following forms for the 
deformation and vorticity tensors: 
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In equation 27 the Capillary number is introduced: 
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This gives the ratio between the two competing forces affecting the drop shape in shear flow 
experiences: the driving force of deformation (i.e. the shear stress), and the resistance force 
supporting the shape of the drop, that is the interfacial tension. The dependence of the 
capillary number on time is understood. The functions f1 and f2 appearing in Eq. 26 are given 
by (Maffettone & Minale, 1998): 
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In equation 29 the ratio λ = ηd/ηm is defined, where ηd is the viscosity of the dispersed 
phase and ηm is the matrix viscosity. At rest the drop is spherical (S=I). Notice finally that 
within this description drop break-up is absent under shear flow for λ ≥ 3. 
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Once the state of the drop deformation is known, one can calculate the stress  of a dilute 
polymer blend according to Batchelor (1970): 
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In Eq. 30, p is the pressure, ∇v is the velocity gradient tensor and ∇vT its transpose, η is 
the viscosity of the continuous phase, V is the total volume of the system, n is the unit 
vector normal to the ellipsoid surface, representing the interface between the two phases, 
u is the velocity at the interface, dA is the area of an interfacial element, and the integrals 
are calculated over the whole interface of the system, S. Equation 26 can be used to predict 
the stresses if n and u are known. Predictions are obtained by integrating equations (26) 
and (29) for the drop morphology. The elastic interfacial term in equation (30) is 
calculated as suggested by Almusallam et al. (2004). The viscous term in the interface 
stress is neglected. 
Equation 30 is the sum of two conceptually different terms: the first one is due to the 
Newtonian matrix contribution and depends linearly on the velocity gradient, whereas the 
second term (the viscous and the elastic term) corresponds to the sum of interfacial 
contributions related to the entire drop population. The first part depends linearly on the 
applied shear rate, whereas the interfacial contribution is the only nonlinear term appearing 
in Equation 29. Under LAOS, the first term will not contribute to higher harmonics in the 
shear stress for its linear nature. Conversely, the interface contribution will give rise to 
higher harmonics in the power spectrum of σ(t) (Grosso and Maffettone, 2007). 
Consequently, the contribution to the higher harmonics in the Fourier spectrum of each 
drop with radius R is directly related to the interfacial contribution. In the frequency domain 
this can be written as: 
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with k odd and > 1.  
Simulations are performed by mimicking realistic conditions for PDMS in PIB samples with 
the relevant parameters reported in the Table 1. These parameter values are consistent with 
experiments carried out at a temperature T = 35 °C. The volume fraction is always assumed 
to be φ = 0.1.  
Figure 4 shows the tangential stress σ of two simulated polymer blends both in the time and 
in the Fourier domains. The imposed deformation amplitude and oscillation frequency are 
set respectively equal to γ0 = 800% and ω = 0.1 s-1. The two blends differ for drop radius. 
Figure (4.a) and (4.b) show the time evolution and the Fourier transform (namely the 
absolute values of power spectrum rescaled with respect the fundamental harmonic, thus 
I(ω1)=1) of a polymer blend consisting of equal drops with radius R1 = 1 μm, respectively, 
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with a proper stress expression (Rallison, 1984; Stone, 1994; Almusallam et al., 2000; Yu et 
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deformation becomes large. We use here this model for its simplicity, even though 
significant distortion of drop shape is expected under LAOS. Still, the Maffettone and 
Minale model provides a useful basis for analyzing and interpreting the experimental 
results also when significant strain deformations occur (Guido et al. 2004). The drop is 
described as an ellipsoid by a second rank symmetric, positive definite, and time dependent 
tensor. The shape dynamics can be thus described by the evolution of tensor S which 
follows the equation: 
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In equation 29 the ratio λ = ηd/ηm is defined, where ηd is the viscosity of the dispersed 
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In Eq. 30, p is the pressure, ∇v is the velocity gradient tensor and ∇vT its transpose, η is 
the viscosity of the continuous phase, V is the total volume of the system, n is the unit 
vector normal to the ellipsoid surface, representing the interface between the two phases, 
u is the velocity at the interface, dA is the area of an interfacial element, and the integrals 
are calculated over the whole interface of the system, S. Equation 26 can be used to predict 
the stresses if n and u are known. Predictions are obtained by integrating equations (26) 
and (29) for the drop morphology. The elastic interfacial term in equation (30) is 
calculated as suggested by Almusallam et al. (2004). The viscous term in the interface 
stress is neglected. 
Equation 30 is the sum of two conceptually different terms: the first one is due to the 
Newtonian matrix contribution and depends linearly on the velocity gradient, whereas the 
second term (the viscous and the elastic term) corresponds to the sum of interfacial 
contributions related to the entire drop population. The first part depends linearly on the 
applied shear rate, whereas the interfacial contribution is the only nonlinear term appearing 
in Equation 29. Under LAOS, the first term will not contribute to higher harmonics in the 
shear stress for its linear nature. Conversely, the interface contribution will give rise to 
higher harmonics in the power spectrum of σ(t) (Grosso and Maffettone, 2007). 
Consequently, the contribution to the higher harmonics in the Fourier spectrum of each 
drop with radius R is directly related to the interfacial contribution. In the frequency domain 
this can be written as: 
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with k odd and > 1.  
Simulations are performed by mimicking realistic conditions for PDMS in PIB samples with 
the relevant parameters reported in the Table 1. These parameter values are consistent with 
experiments carried out at a temperature T = 35 °C. The volume fraction is always assumed 
to be φ = 0.1.  
Figure 4 shows the tangential stress σ of two simulated polymer blends both in the time and 
in the Fourier domains. The imposed deformation amplitude and oscillation frequency are 
set respectively equal to γ0 = 800% and ω = 0.1 s-1. The two blends differ for drop radius. 
Figure (4.a) and (4.b) show the time evolution and the Fourier transform (namely the 
absolute values of power spectrum rescaled with respect the fundamental harmonic, thus 
I(ω1)=1) of a polymer blend consisting of equal drops with radius R1 = 1 μm, respectively, 
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whereas figure (4.c) and (4.d) refer to a blend with drop radius R2=5 μm. It is apparent that 
no significant difference can be appreciated in the time domain, the signals looking very 
close to a sinusoidal waveform in both cases. This result is not unexpected since, as already 
mentioned, the linear Newtonian matrix contribution dominates the response when 
observed in the time domain. 
On the contrary, the nonlinear features appear more evidently in the Fourier domain. The 
principal harmonic (corresponding to the forcing frequency ω = 0.1 s-1) is not reported 
entirely in order to magnify the harmonics appearing at higher frequencies. It is evident that 
Fourier analysis allows a clear detection of the nonlinearities that are otherwise not 
appreciable in the time domain.  By comparing Fig. (4.b) with Fig. (4.d), it can also be noted 
the significant dependence of higher harmonics of the shear stress on drop size.  
 

Polymer Formula 
Molecular

Weight 
[Da] 

Density
[Kg/m3]

Viscosity 
[Pa⋅s] 

Interfacial tension 
[mN/m] 

PDMS [ –Si(CH3)2O– ]n 200000 971 175 

PIB [ –CH2C(CH3)2– ]n 1300 894 57 
3 

Table 1. Main physical properties of PDMS/PIB system 
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Fig. 4. Tangential stress of a simulated polymer blend in a LAOS experience in the time 
domain (Figures 4.a and 4.b) and in the Fourier domain (Figures 4.c and 4.d) for two 
different drop radii: R1 = 1 μm (Figures 4.a and 4.c) and R2 = 5 μm (Figures 4.b and 4.d). The 
deformation amplitude is γ0=800% and ω1 = 0.1·2π s-1. The physical parameters are in Tab. 1 
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Figure 5 reports the absolute values I3A/γ03 and I5A/γ05 for a fixed value of the radius R=10 
μm versus the strain amplitude γ0. As the strain deformation tends to zero, both quantities 
approach a constant value thus confirming the asymptotic behaviour previously observed 
for other constitutive models (Nam et al. 2008; Ewoldt et al. 2008). It should be remarked 
that the limiting values depend on the blend properties (i.e. the phase viscosities, the surface 
tension and the drop radii).  
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Fig. 5. Scalars I3/γ03 and I5/γ05 vs the strain deformation γ0 for a simulated monodisperse 
polymer blend with radius R = 10 μm 

3.2 Experiments 
In this section we will show some experimental results that demonstrate the sensitivity of 
the FTR methodology when analyzing blend or emulsion morphology. The details of the 
experimental part can be found elsewhere (Carotenuto et al. 2008). 
The polymer blend is prepared with PDMS and PIB that are immiscible at room 
temperature. PIB/PDMS emulsion is a widely used model system largely studied in the 
literature by means of both rheological and optical techniques (Jansseune et al., 2000; Guido 
et al. 2004; Wannaborworn et al. 2002). All the experiments were performed at constant 
temperature T = 30°C. The main physical properties of the polymers are reported in Table 1. 
The value of the interfacial tension for the very same polymers is found in the literature 
(Sigillo et al., 1997).  PIB is the continuous phase and PDMS is the dispersed phase. All the 
experiments were carried out with a volumetric fraction, φ, of the dispersed phase fixed to 
0.1 thus leading to a globular morphology. This value is small enough to consider 
coalescence negligible. The viscosity ratio is equal to 3, and it is large enough to avoid 
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mentioned, the linear Newtonian matrix contribution dominates the response when 
observed in the time domain. 
On the contrary, the nonlinear features appear more evidently in the Fourier domain. The 
principal harmonic (corresponding to the forcing frequency ω = 0.1 s-1) is not reported 
entirely in order to magnify the harmonics appearing at higher frequencies. It is evident that 
Fourier analysis allows a clear detection of the nonlinearities that are otherwise not 
appreciable in the time domain.  By comparing Fig. (4.b) with Fig. (4.d), it can also be noted 
the significant dependence of higher harmonics of the shear stress on drop size.  
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Fig. 4. Tangential stress of a simulated polymer blend in a LAOS experience in the time 
domain (Figures 4.a and 4.b) and in the Fourier domain (Figures 4.c and 4.d) for two 
different drop radii: R1 = 1 μm (Figures 4.a and 4.c) and R2 = 5 μm (Figures 4.b and 4.d). The 
deformation amplitude is γ0=800% and ω1 = 0.1·2π s-1. The physical parameters are in Tab. 1 
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Figure 5 reports the absolute values I3A/γ03 and I5A/γ05 for a fixed value of the radius R=10 
μm versus the strain amplitude γ0. As the strain deformation tends to zero, both quantities 
approach a constant value thus confirming the asymptotic behaviour previously observed 
for other constitutive models (Nam et al. 2008; Ewoldt et al. 2008). It should be remarked 
that the limiting values depend on the blend properties (i.e. the phase viscosities, the surface 
tension and the drop radii).  
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polymer blend with radius R = 10 μm 

3.2 Experiments 
In this section we will show some experimental results that demonstrate the sensitivity of 
the FTR methodology when analyzing blend or emulsion morphology. The details of the 
experimental part can be found elsewhere (Carotenuto et al. 2008). 
The polymer blend is prepared with PDMS and PIB that are immiscible at room 
temperature. PIB/PDMS emulsion is a widely used model system largely studied in the 
literature by means of both rheological and optical techniques (Jansseune et al., 2000; Guido 
et al. 2004; Wannaborworn et al. 2002). All the experiments were performed at constant 
temperature T = 30°C. The main physical properties of the polymers are reported in Table 1. 
The value of the interfacial tension for the very same polymers is found in the literature 
(Sigillo et al., 1997).  PIB is the continuous phase and PDMS is the dispersed phase. All the 
experiments were carried out with a volumetric fraction, φ, of the dispersed phase fixed to 
0.1 thus leading to a globular morphology. This value is small enough to consider 
coalescence negligible. The viscosity ratio is equal to 3, and it is large enough to avoid 
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significant break-up phenomena under pure shear flow. Thus, the blend can be assumed to 
be stable, and its microstructure should not significantly vary in time during the 
experiments (negligible breakup and negligible coalescence). The blend morphology, i. e., 
the drop size distribution ψ(R), is then assumed to remain unchanged during LAOS 
experiments. 
The experiments were conducted on three different blend samples, which hereafter will be 
indicated with a capital letter A, B and C. The morphologies of the samples are supposed to 
have a similar (but not equal) morphology since their preparation followed the same 
protocol. 
Oscillatory shear measurements (both SAOS and LAOS) were performed in a conventional 
strain controlled rheometer (ARES, TA Instruments). Linear viscoelastic measurements were 
analyzed using the software provided by the rheometer manufacturer. LAOS experiments 
required a modification and improvement of the traditional rheometer data acquisition 
system. The raw data coming from both motor and transducer were acquired and digitized 
with a 16-bit analog-to-digital converter (National Instrument, PCI_6251). The motor signal 
was correlated to the imposed strain deformation, γ, while the transducer signal was 
associated with the measured torque. In order to maximize S/N, the rheometer was 
equipped with a very sensitive torque transducer (2KFRTN1) that could detect a torque 
ranging from 0.002 to 200 mN·m.   
Before starting the acquisition, two main parameters were set: the scan rate, r [=] pts/s, and 
the number of data points, Np. They were the same for both the channels (motor signal and 
transducer signal). The ratio between Np and r gives the time required for the entire 
acquisition, tacq = Np/r. The oscillation cycles collected during tacq depend on the imposed 
deformation frequency (ω1). Typical values of r and Np are 1000 pts/s and 80000 pts, 
respectively, thus tacq = 80 s. Thus, for an imposed deformation frequency ω1=0.1 Hz, 8 
complete cycles were acquired. It should be noted that the higher values of r and Np, the 
higher the S/N ratio (Wilhelm et al., 1999). It was however checked that acquisitions with 
larger amount of data (r = 5,000 pts/s and Np = 400,000 pts) did not show any significant 
increase in the quality of our data. 
Raw data coming from transducer were collected and subsequently transformed into the 
corresponding Fourier spectra. Odd multiples of the fundamental harmonic appear in the 
nonlinear regime (LAOS). For the polymer blend under investigation, the 3rd and the 5th 
overtones could be clearly detected in the shear stress Fourier spectrum for deformation 
amplitudes γ0 > 100%. The electric signal measured by the torque transducer is supplied in 
terms of potential difference units.  
LAOS data were analyzed according to the FTR protocols. The imposed sinusoidal 
deformation is γ(t)= γ0 sin(ω1 t), where ω1 = 2πΩ1=2π/T is the characteristic angular frequency 
with T the oscillation period.  
Linear viscoelastic measurements were carried out for a preliminary characterization of the 
microstructure of the samples. Oscillatory measurements were performed with frequency 
ranging from 0.1 to 10 Hz. Strain amplitudes up to 50% gave shear stress responses well 
within the linear region. It was found that traditional SAOS measurements did not give a 
clear discrimination between different blends, and the G’ curves for the three emulsions are 
almost overlapping, thus indicating that SAOS suggest that the three blends have similar 
morphologies.  
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Blend VR  [μm] 

A 5.6 

B 6.7 

C 8.0 

Table 2. Average drop radii for the three blends estimated with the Palierne method 

From SAOS measurements one can obtain an estimation of the average dimension of the 
dispersed phase, namely the volume-average drop radius, VR . According to Palierne (1990), 
one can estimate the volume average drop radius for the emulsions. Table 2 contains the 
values of the estimated average drop radii for the blends A, B, C. As expected, the volume 
averaged drop radius, VR , for the three samples is very similar. A more detailed description 
of blend morphology cannot be attained with the linear rheological measurements. 
LAOS measurements were performed with γ0 ≥ 200%, where nonlinearities in the response 
become clearly appreciable. A typical experimental result is shown in Fig. 6, where the 
tangential stress response is reported both in the time (Fig. 6.a) and in the frequency 
domain (Fig. 6.b) for γ0 = 800% and Ω1 = 0.1 Hz (or, equivalently, ω1=2π 0.1 rad/sec). 
Fourier spectra report the absolute value of the overtones, normalized with the first 
harmonic (Ik/I1 or equivalently Ik1) as commonly done in the FTR literature (e.g. Wilhelm 
et al., 1998). The nonlinear shear stress response cannot be easily detected in the time 
domain, but the corresponding power spectrum clearly shows the occurrence of a third 
and a fifth peak.  
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Fig. 6. Transducer signals in the time domain (a) and the corresponding Fourier spectra (b) 
for a polymer blend, at 30°C 

In figure 6.b a peak I(2ω1) at an even multiple of the fundamental harmonic is also 
observable. It should be reminded that this occurrence is unexpected since the stress signal 
is demonstrated to be an odd function of the time. Several explanations for the presence of 
even overtones in the spectra have been proposed in literature. Quite often, the occurrence 
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significant break-up phenomena under pure shear flow. Thus, the blend can be assumed to 
be stable, and its microstructure should not significantly vary in time during the 
experiments (negligible breakup and negligible coalescence). The blend morphology, i. e., 
the drop size distribution ψ(R), is then assumed to remain unchanged during LAOS 
experiments. 
The experiments were conducted on three different blend samples, which hereafter will be 
indicated with a capital letter A, B and C. The morphologies of the samples are supposed to 
have a similar (but not equal) morphology since their preparation followed the same 
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Oscillatory shear measurements (both SAOS and LAOS) were performed in a conventional 
strain controlled rheometer (ARES, TA Instruments). Linear viscoelastic measurements were 
analyzed using the software provided by the rheometer manufacturer. LAOS experiments 
required a modification and improvement of the traditional rheometer data acquisition 
system. The raw data coming from both motor and transducer were acquired and digitized 
with a 16-bit analog-to-digital converter (National Instrument, PCI_6251). The motor signal 
was correlated to the imposed strain deformation, γ, while the transducer signal was 
associated with the measured torque. In order to maximize S/N, the rheometer was 
equipped with a very sensitive torque transducer (2KFRTN1) that could detect a torque 
ranging from 0.002 to 200 mN·m.   
Before starting the acquisition, two main parameters were set: the scan rate, r [=] pts/s, and 
the number of data points, Np. They were the same for both the channels (motor signal and 
transducer signal). The ratio between Np and r gives the time required for the entire 
acquisition, tacq = Np/r. The oscillation cycles collected during tacq depend on the imposed 
deformation frequency (ω1). Typical values of r and Np are 1000 pts/s and 80000 pts, 
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complete cycles were acquired. It should be noted that the higher values of r and Np, the 
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larger amount of data (r = 5,000 pts/s and Np = 400,000 pts) did not show any significant 
increase in the quality of our data. 
Raw data coming from transducer were collected and subsequently transformed into the 
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LAOS data were analyzed according to the FTR protocols. The imposed sinusoidal 
deformation is γ(t)= γ0 sin(ω1 t), where ω1 = 2πΩ1=2π/T is the characteristic angular frequency 
with T the oscillation period.  
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microstructure of the samples. Oscillatory measurements were performed with frequency 
ranging from 0.1 to 10 Hz. Strain amplitudes up to 50% gave shear stress responses well 
within the linear region. It was found that traditional SAOS measurements did not give a 
clear discrimination between different blends, and the G’ curves for the three emulsions are 
almost overlapping, thus indicating that SAOS suggest that the three blends have similar 
morphologies.  
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Blend VR  [μm] 

A 5.6 

B 6.7 

C 8.0 

Table 2. Average drop radii for the three blends estimated with the Palierne method 
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harmonic (Ik/I1 or equivalently Ik1) as commonly done in the FTR literature (e.g. Wilhelm 
et al., 1998). The nonlinear shear stress response cannot be easily detected in the time 
domain, but the corresponding power spectrum clearly shows the occurrence of a third 
and a fifth peak.  
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Fig. 6. Transducer signals in the time domain (a) and the corresponding Fourier spectra (b) 
for a polymer blend, at 30°C 

In figure 6.b a peak I(2ω1) at an even multiple of the fundamental harmonic is also 
observable. It should be reminded that this occurrence is unexpected since the stress signal 
is demonstrated to be an odd function of the time. Several explanations for the presence of 
even overtones in the spectra have been proposed in literature. Quite often, the occurrence 
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of even harmonics is attributed to some artefact in the experiments as e.g. wall-slip 
phenomena (Hatzikiriakos & Dealy, 1991). In the case here reported, the second harmonic 
seems to be material-independent, and it can be attributed to an imperfect alignment of the 
upper and lower plates of the rheometer (Carotenuto et al., 2008): it reasonably comes from 
the instrument itself and results unrelated to the measured sample, for this reason it is 
simply neglected.  
Figure 7 shows the Q coefficient defined in equation 24 as a function of the strain amplitude 
for the blend C. The third harmonic is clearly detected for the polymer blend under 
investigation. The value of I31 is small but reproducible with an experimental error lower 
than 3%. For the sake of comparison, data of the neat PIB and PDMS are also reported in Fig. 
7. The pure component I31 is weighted by the corresponding amount in the blend (i.e., 0.1 for 
the PDMS and 0.9 for the PIB). It is apparent that the I31 values of the pure components are 
extremely low, according to their quasi-Newtonian behavior, and negligible when 
compared with the I31 values of the blend. This experimental evidence unequivocally 
suggests that the observed nonlinear response of the blend does not derive from simple 
superposition of the nonlinear contribution of the neat polymers, but it seems essentially 
due to the interface stress contribution. Such behaviour confirms the validity of the 
assumptions made in Equation 29.  
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Fig. 7. The Q coefficient as a function of the imposed strain deformation for the pure 
components (PIB: dashed line with square; PDMS: dashed-dotted line with triangles) and 
for the blend C (solid line with circles). The temperature is 30°C. The oscillation frequency is 
0.1 Hz 

Figure 8.a shows the coefficients Q = I31/γ02 and P = I51/γ04 for the three blends A, B and C as 
a function of the strain amplitude. It is shown that, as the strain deformation decreases, the 
curves seem to tend to an asymptotic plateau value Q0 and P0, accordingly with the 
theoretical predictions.  
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The curves do not superimpose, thus suggesting that LAOS experiences could discriminate 
between different morphologies. Indeed, as reported from Palierne results, the upper curve 
refers to the blend A ( VR = 5.6 μm), the medium to the blend B ( VR = 6.7 μm), and the lower 
to the blend C ( VR =8 μm). Hence, the Q0 coefficient of the blend seems to decrease with the 
mean size of the inclusions. In Figure 8.b, the ratio P =I51/γ04 for the blends A, B and C are 
also reported. Since the fifth overtones are significantly smaller than the third ones, they are 
more affected by experimental noise. Analogously to Q behaviour, the fifth peaks are larger 
for blend with smaller volume averaged drop radius.  
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Fig. 8. The Q and P coefficients as a function of strain amplitude for the blend A (solid line 
with circles), B (dashed line with triangles) and C (dashed-dotted line with squares). The 
oscillation frequency is 0.1 Hz 

4. Conclusion  
Fourier Transform Rheology is a valuable tool to characterize the microstructure of dilute 
immiscible polymer blend as it was shown both theoretically and experimentally. We 
analyze the case of a blend with Newtonian constituents, and in such a case the nonlinearity 
of the response under LAOS comes exclusively from the presence of a polymer-polymer 
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analyze the case of a blend with Newtonian constituents, and in such a case the nonlinearity 
of the response under LAOS comes exclusively from the presence of a polymer-polymer 
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interface. Indeed, distinct odd multiples of the fundamental harmonic are clearly evident in 
the power spectrum of the emulsion, while are only barely distinguishable in the spectra of 
the pure components (PIB and PDMS). FTR greatly enhances the sensitivity of the 
experiments to the blend morphology, thus allowing the evaluation of details that are 
otherwise difficult to be appreciated with time domain analysis.  
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1. Introduction  
In the most of electrochemical (EC) experiments, measurements mostly are performed in the 
time domain. However, in some cases, we require more information for the obtained data 
such as knowledge about the frequency content and behavior of the electroanalytical signals 
and of complete systems. Fortunately, there exists a defined method for transforming data 
from the time domain into the frequency domain, where information exist about the spectral 
content of EC data. The method for this propos is Fourier Transform (FT), which has the 
ability to convert a time domain data to the complex frequency domain, meaning the 
spectral data contains information about both the amplitude and phase of the sinusoidal 
components that make up the signal. In addition, the inverse FT, converts the generated 
complex frequency-domain signal data back into the time-domain without losing wanted 
information. Accordingly, it can say that both the time- and frequency-domain data 
complement and the two domains can provide a different view of the same EC data.  
Application of fast Fourier transformation (FFT) algorithm for numerical EC data provides 
the complex spectrum according to magnitude and phase, which can be used for real time 
analysis. In this direction, in modern electrochemistry, FFT has been used for digital signal 
processing and filtering. Also, the FFT process returns a vector of real and imaginary 
elements, which represent the various resolved harmonics in impedance spectroscopy, AC 
and square wave voltammetry (Popkirov, 1996).  
On the other hand, it must be noted that in all EC data collection, to hold on the sampling 
theorem for FFT, the bandwidth of the input signal is limited by an analog low pass filter 
(cutoff frequency fc = fin,max) ahead of the Analog to Digital (A/D) converter. In fact, after 
collecting data in the computer memory, they are used for calculating the signal in the 
frequency domain.   
This chapter serves as summary application of the FFT analysis techniques implemented in 
EC measurement platform. By reading through this document, you will receive a 
comprehension of the fundamental concepts in FFT-based measurements used throughout 
EC application, providing you insights to better understanding of the measurement 
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1. Introduction  
In the most of electrochemical (EC) experiments, measurements mostly are performed in the 
time domain. However, in some cases, we require more information for the obtained data 
such as knowledge about the frequency content and behavior of the electroanalytical signals 
and of complete systems. Fortunately, there exists a defined method for transforming data 
from the time domain into the frequency domain, where information exist about the spectral 
content of EC data. The method for this propos is Fourier Transform (FT), which has the 
ability to convert a time domain data to the complex frequency domain, meaning the 
spectral data contains information about both the amplitude and phase of the sinusoidal 
components that make up the signal. In addition, the inverse FT, converts the generated 
complex frequency-domain signal data back into the time-domain without losing wanted 
information. Accordingly, it can say that both the time- and frequency-domain data 
complement and the two domains can provide a different view of the same EC data.  
Application of fast Fourier transformation (FFT) algorithm for numerical EC data provides 
the complex spectrum according to magnitude and phase, which can be used for real time 
analysis. In this direction, in modern electrochemistry, FFT has been used for digital signal 
processing and filtering. Also, the FFT process returns a vector of real and imaginary 
elements, which represent the various resolved harmonics in impedance spectroscopy, AC 
and square wave voltammetry (Popkirov, 1996).  
On the other hand, it must be noted that in all EC data collection, to hold on the sampling 
theorem for FFT, the bandwidth of the input signal is limited by an analog low pass filter 
(cutoff frequency fc = fin,max) ahead of the Analog to Digital (A/D) converter. In fact, after 
collecting data in the computer memory, they are used for calculating the signal in the 
frequency domain.   
This chapter serves as summary application of the FFT analysis techniques implemented in 
EC measurement platform. By reading through this document, you will receive a 
comprehension of the fundamental concepts in FFT-based measurements used throughout 
EC application, providing you insights to better understanding of the measurement 
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parameters, procedures, and resulting EC data. In addition, this chapter describes the 
general operation of the FFT analysis accompanied with modern EC methods. 

2. Basic FFT theory 
The FT, a pervasive and adaptable tool, is used in many fields of science as a mathematical 
technique to alter a problem into one that can more easily be solved. Scientists consider FT 
theory as a physical phenomenon, not simply as a mathematical tool. Based on the Fourier 
theory, any signal in periodic manner in the time domain can be derived from the sum of 
sine and cosine signals of different frequencies and amplitudes, which is called as a Fourier 
series (Weaver, 1983). Thereby, it is notable to calculate the frequency spectrum of a periodic 
signal according to Equation 1, 

 ( ) 0
0 0

1 1
sin( ) cos( )

2 n n
n n
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= =
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where, x(t) is data in time domain, An and Bn are the amplitude, wo is the frequency of the 
waveform and n is the harmonic number. Each of these elements leads to a discrete 
component in the frequency domain, and periodic signals exhibit discrete line spectra. 
However, signals with a non-periodic characteristic in the time domain cannot be described 
by FT, and those signals exhibit a continuous frequency spectrum with a frequency-
dependency. Therefore, the frequency spectrum of such signals is not composed of discrete 
spectral components. The signal in the frequency domain is calculated by means of a FT 
(Equation 2). 
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Also, for measuring the harmonic section of the EC data, it is more useful to examine the 
signal in the frequency domain (Rauscher et al., 2001). It has been shown that the signal in 
the frequency domain of the fundamental (1st order harmonic) is superimposed by several 
higher-order harmonics with the aid of a spectrum analyzer. As a matter of fact, this 
information cannot be simply obtained by examining the signal in the time domain. 
Practically, the higher order harmonics are not possible, and limited number of the data 
samples can be used for FFT calculation.  

3. Fundamentals of electroanalytical signals 
It is well known that many fundamental microscopic processes take place on the electrode 
surface, which can lead to the overall electrical signals. They may include the transport of 
electrons through the electronic conductors, the transfer of electrons at the 
electrode/electrolyte interfaces to form species which are originated from the cell materials, 
and also, the stream of charged atoms. Indeed, the current depends on the ohmic resistance 
of the electrodes and the electrolyte and also on the process rates at the electrode/electrolyte 
interfaces.  
In practical point of view, there are three different types of electrical signals in EC 
measurements. Each basic electrical measurement of current (i), resistance (R), and potential 
(V) has been used alone or in combination for analytical measurements (Brett & Brett, 1993). 
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First, in transient measurements a waveform function of potential may be applied at 
electrode surface and then the resulting time varying current measured. The ratio voltage 
to current often called the time varying resistance, measures the impedance resulting from 
the voltage perturbation at the electrode/solution interfaces. If a FFT is used, a distortion arises 
because of the non-periodicity of excitation. Such transformation is only valid when the 
applied potential waveform is sufficiently small so that system response becomes linear .  
The second type contains signals containing random noise, and measure the resulting 
current and voltage, and application of FFT to the results to obtain the frequency domain 
data. This process can be used in electrochemical noise analysis (ENA) method for 
determination of corrosion. This approach offers the advantage of fast data collection 
because only one signal is applied to the interface for a short time . 
The last type, the most common and standard one, is to measure EC data by applying a 
single-frequency voltage or current to the electrode interface and measuring the phase shift 
and amplitude, which leads to measure the real and imaginary parts of the resulting current 
at a certain frequency. The most important advantage of such FFT analysis is in AC and 
Square Wave Voltammetry (SWV), in which combines the first and third techniques.  

4. Application of FFT in electroanalytical methods  
As mentioned above, most electrical signals in EC measurements may be examined in the 
time domain with the aid of a potentiostat and in the frequency domain with the aid of the 
computer digital spectrum analyzer. The two display modes are related to each other, where 
each signal variable in the time domain has a frequency spectrum characteristic (Gavaghan 
& Bond, 2000). This calculation would be obtained in a continuous data collection, so the 
frequency resolution would be unlimited. Noticeably such exact calculations are not 
possible in practice, where by given certain prerequisites, the spectrum can be determined 
with sufficient accuracy. In practice, the FT data is constructed with the aid of digital signal 
processing, as a result, the signal to be analyzed has to be sampled by an A/D converter and 
quantized in amplitude. 
Most of the generated electrical signals in electroanalytical methods are continuous, in 
which for every time value there is a defined data. However, in order these continuous 
signals to be analyzed, it is needed a computer-based measurement system employed, such 
as Labveiw interfacing program or other interfacing system. Those systems can convert the 
EC electrical signal into a stream of digital data, which each data represents a numeric value 
that is proportional to the measured data at a specific time. This process is known as data 
sampling: converting the analog signals into a discrete-time signal (a process handled by 
A/D converter) to allow electroanalytical data in a wide level range to be simultaneously 
processed by FFT program and to be displayed on the computer screen (Norouzi et al., 
2003).   
In the computing process, the FFT method operates by decomposing N data point in time 
domain signal into N frequency domain signals each composed of a single point of the 
electroanalytical measurement. The next step is to calculate the N frequency spectra 
corresponding to these N time domain signals. Finally, the N spectra are synthesized into a 
single frequency spectrum. If N is an integer power of 2, thus N= p2   (p =1, 2, 3, ….), use the 
fastest FT function that uses the decimation-in-time algorithm. Given N samples of a 
periodic function f(t) by a normalized sampling rate (T=1), { f(0), f(1), f(2),....f(N-1) }, the 
discrete Fourier transform (DFT) is defined by: 
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parameters, procedures, and resulting EC data. In addition, this chapter describes the 
general operation of the FFT analysis accompanied with modern EC methods. 

2. Basic FFT theory 
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waveform and n is the harmonic number. Each of these elements leads to a discrete 
component in the frequency domain, and periodic signals exhibit discrete line spectra. 
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(Equation 2). 
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Also, for measuring the harmonic section of the EC data, it is more useful to examine the 
signal in the frequency domain (Rauscher et al., 2001). It has been shown that the signal in 
the frequency domain of the fundamental (1st order harmonic) is superimposed by several 
higher-order harmonics with the aid of a spectrum analyzer. As a matter of fact, this 
information cannot be simply obtained by examining the signal in the time domain. 
Practically, the higher order harmonics are not possible, and limited number of the data 
samples can be used for FFT calculation.  

3. Fundamentals of electroanalytical signals 
It is well known that many fundamental microscopic processes take place on the electrode 
surface, which can lead to the overall electrical signals. They may include the transport of 
electrons through the electronic conductors, the transfer of electrons at the 
electrode/electrolyte interfaces to form species which are originated from the cell materials, 
and also, the stream of charged atoms. Indeed, the current depends on the ohmic resistance 
of the electrodes and the electrolyte and also on the process rates at the electrode/electrolyte 
interfaces.  
In practical point of view, there are three different types of electrical signals in EC 
measurements. Each basic electrical measurement of current (i), resistance (R), and potential 
(V) has been used alone or in combination for analytical measurements (Brett & Brett, 1993). 

Application of Fast Fourier Transforms in Some Advanced Electroanalytical Methods 

 

305 

First, in transient measurements a waveform function of potential may be applied at 
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applied potential waveform is sufficiently small so that system response becomes linear .  
The second type contains signals containing random noise, and measure the resulting 
current and voltage, and application of FFT to the results to obtain the frequency domain 
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because only one signal is applied to the interface for a short time . 
The last type, the most common and standard one, is to measure EC data by applying a 
single-frequency voltage or current to the electrode interface and measuring the phase shift 
and amplitude, which leads to measure the real and imaginary parts of the resulting current 
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each signal variable in the time domain has a frequency spectrum characteristic (Gavaghan 
& Bond, 2000). This calculation would be obtained in a continuous data collection, so the 
frequency resolution would be unlimited. Noticeably such exact calculations are not 
possible in practice, where by given certain prerequisites, the spectrum can be determined 
with sufficient accuracy. In practice, the FT data is constructed with the aid of digital signal 
processing, as a result, the signal to be analyzed has to be sampled by an A/D converter and 
quantized in amplitude. 
Most of the generated electrical signals in electroanalytical methods are continuous, in 
which for every time value there is a defined data. However, in order these continuous 
signals to be analyzed, it is needed a computer-based measurement system employed, such 
as Labveiw interfacing program or other interfacing system. Those systems can convert the 
EC electrical signal into a stream of digital data, which each data represents a numeric value 
that is proportional to the measured data at a specific time. This process is known as data 
sampling: converting the analog signals into a discrete-time signal (a process handled by 
A/D converter) to allow electroanalytical data in a wide level range to be simultaneously 
processed by FFT program and to be displayed on the computer screen (Norouzi et al., 
2003).   
In the computing process, the FFT method operates by decomposing N data point in time 
domain signal into N frequency domain signals each composed of a single point of the 
electroanalytical measurement. The next step is to calculate the N frequency spectra 
corresponding to these N time domain signals. Finally, the N spectra are synthesized into a 
single frequency spectrum. If N is an integer power of 2, thus N= p2   (p =1, 2, 3, ….), use the 
fastest FT function that uses the decimation-in-time algorithm. Given N samples of a 
periodic function f(t) by a normalized sampling rate (T=1), { f(0), f(1), f(2),....f(N-1) }, the 
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Normally, at first, an electrode response was recorded and then, DFT was applied on the 
collected data and the existing frequencies, phase angle, real and imaginary parts are 
calculated.  Based on this calculation, the modern methods are established, such as ENA, 
FFT Cyclic voltammetry, FFT SW voltammetry and FFT impedance spectroscopy.   

4.1  Application of FFT electrochemical measurements based on noise analysis 
The frequencies of unwanted signals in EC data, with noise or random characteristics, 
cannot be found easily (Aballe et al., 1999; Sang et al., 2009; Dai, 2000). The analyst requires 
a plot of the intensity at each individual frequency in order to make identification and the 
EC signal to be interpreted. A means of “decoding” for calculating the individual 
frequencies is needed. This procedure can be accomplished via a well-known mathematical 
technique such as DFT. This transformation is performed by the computer based programs, 
which then presents the user the desired spectral information. When the frequency region 
of the noise is found, it can be used for two aims in the EC analysis; data filtering for 
enhancing signal-to-noise (S/N), and corrosion monitoring (Darowicki & Zieliski, 2001; 
Safizadeh& Ghali, 2010). 

4.2 Application of FFT in cyclic potential sweep voltammetry based on filtering 
In modern EC methods, the FFT analysis voltammetry were developed in order to overcome 
some existing limitations encountered with electronic instrumentations. In fact, the 
selectivity and percision characteristics of the classic electroanalytical methods depend on 
the number of filter circuits. Normally, the most potentiostat typically has many filter 
circuits that are arranged before and after the amplifier. The main problem here is to apply a 
fast excitation signal for fast EC measurement. Actually, application a fast excitation signal 
can produce a large charging current due to existing capacitor in the analog filters.  
On the other hand, by using FFT filtering method, instead of the analog filters, the signal can 
be measured very quickly. Consequently, the time element per sample is reduced to a 
matter of less than second ( 910−  s) rather than several minutes which happened in the 
classical analog measurements. As cyclic voltammetry finds its greatest use in the study of 
fast electrochemical process, and transient intermediates, we are supposed to choose this 
method for its description and the FFT application. Through the use of analog filters, the 
maximum permissible sweep speed is limited by the transient time of the applied filter. The 
maximum span that can be analyzed at a specific resolution by means of FFT is limited by 
the sampling rate of the A/D converter and by the memory available for saving the sampled 
data. In fact, to allow shorter sweep times, FFT digital filters are advantageous for narrow 
resolution bandwidths. Basically, the EC digital analyzer is designed for bandwidths from 
100 Hz to 10 MHz.  This digital filtration provides condition that can be used for very high 
potential scan rates on working electrode for electrochemical measurement in flowing 
solution. 
Figure 1 shows an example for FFT filtration for fast cyclic voltammetric measurement 
(Norouzi et al. 2007).  In this method at the beginning, a CV of the electrode was recorded 
(see Fig. 1a) and then by applying FFT on the collected data, the existing high frequency 
noises were indicated (see Fig. 1b). Finally, by using this information, the cutoff frequency of 
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the analog filter was set at a certain value (where the noises were removed from the CV). The 
resulted CV in Fig. 1c shows successfulness of the filtering procedure. This kind of filtration 
and also current integration significantly reduces the noise level in the obtained data.  
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Fig. 1. Application of FFT filtration to smooth a noisy CV, a) original CV, b) FFT spectrum of 
the CV (the inset shows the cutoff frequency that is selected for filtration), c) the resulted CV 
after removing the noise frequencies 
The EC measurement based on the FFTdigital filters is widely used by Norouzi group for 
determination of several organic compounds and drugs such as; Diphenhydramine 
(Norouzi et al. 2010 b), Lidocaine (Norouzi at al. 2007), Methyldopa (Norouzi et al. 2009), 
and  Salbutamol(Ganjali et al. 2005). The EC method under reported condition was named 
FFT Continuous Cyclic Voltammetry (FFTCCV). In this method the potential waveform was 
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the analog filter was set at a certain value (where the noises were removed from the CV). The 
resulted CV in Fig. 1c shows successfulness of the filtering procedure. This kind of filtration 
and also current integration significantly reduces the noise level in the obtained data.  
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the CV (the inset shows the cutoff frequency that is selected for filtration), c) the resulted CV 
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continuously applied during an experiment run, where the collected data was digitally 
filtered by the technique, before using them in calculation for the analyte response (Norouzi 
et al., 2010).    
It must be noted that, this digital analyzing, also, offers the possibility of the frequency-
dependent gain. Recorded spectra can automatically be displayed with the correct levels. In 
these cases a reduction of the displayed noise by decreasing the resolution bandwidth is not 
permitted. Due to this fact that, the sensitivity is also important for the fast measurement 
speeds the program of the FFT digital analyzer featuring a low noise figure leads to the use 
of greater resolution bandwidths, and also with manual setting of the resolution and 
bandwidths, the sweep time can be adapted automatically.  
An example of application of that waveform is shown in Figure 2. This figure shows a 
sequence of CVs recorded during the flow injection of 50 µL of 1.0 × 10–6 M Cl- (in 0.05 M 
H3PO4) into the eluent solution containing 0.05 M H3PO4. The potential axis on this graph 
represents potential applied to the working electrode during each sweep. The time axis 
represents the time passing between the beginning of the flow injection experiment and the 
beginning of a particular sweep (i.e. it represents a quantity proportional to the sweep 
number). The characteristic element of CVs at gold electrode is a set of peaks associated with 
the formation and dissolution of a surface oxide layer at about 1600 and 400 mV (when 
potential sweep rate is 20 Vs-1), respectively. The process is also initiated by the 
electrosorption of the hydroxyl ion, which at more positive potentials undergoes 
deprotonation and structural rearrangement. The surface oxidation can be initiated by 
adsorption of water molecule and then at more positive potential AuOH forms leading to 
the formation of a two-dimensional phase of gold oxide; 

( ) +
2Au H O AuOH + e + H→  

At more positive potentials we have AuO according to the following reaction; 

+AuOH  AuO + e + H→  

Figure 2b shows the absolute current changes in the CVs curves after subtracting the 
average background of 10 CVs (in the absence of the analyte). As can be seen, this way of 
presentation of the electrode response gives more details about the effect of adsorbed ion on 
currents of the CV. The curves show that current changes mainly take place at the potential 
regions of the oxidation and reduction of gold. When the electrode-solution interface is 
exposed to Cl− , which can adsorb on the electrode surface, the oxide formation process is 
inhibited. 
All CV curves observed during the entire experiment (typically 100 to 1000 curves) were 
always stored in computer memory and could be saved onto a hard drive for future analysis 
(See Fig. 2a). The important point in FFTCCV method is that parts of the adsorbed analyte 
still remain on the electrode surface that can inhibit the oxidation process of the electrode 
surface. In this method, ΔQ is calculated based on the all-current changes at the CV (See Fig. 
2c). A total absolute difference function can be calculated by using the following equation: 
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Fig. 2. a) Cyclic voltammograms at Au ultra-microelectrode recorded during the flow 
injection. The eluent was 0.05 M H3PO4 with the flow rate of 0.5mL/min., b) Curves resulted 
from subtracting the CVs in fig. a, from the average of 10 CVs (in the absence of analyte),  
c) Response of Au  ultramicroelectrode to 5 consecutive injections of  analyte 

a

b

c



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

308 

continuously applied during an experiment run, where the collected data was digitally 
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number). The characteristic element of CVs at gold electrode is a set of peaks associated with 
the formation and dissolution of a surface oxide layer at about 1600 and 400 mV (when 
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adsorption of water molecule and then at more positive potential AuOH forms leading to 
the formation of a two-dimensional phase of gold oxide; 
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At more positive potentials we have AuO according to the following reaction; 
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Where, s is the sweep number, τ is the time period between subsequent sweeps, Δt is the 
time difference between two subsequent points on the CV curves, i (s, E) represents the 
current of the CV curve recorded during the s-th sweep and i (sr, E) is the reference 
current of the CV curve. Ei and Eυ are the initial and the vertex potential, respectively. The 
reference CV curve was obtained by averaging a few CV curves recorded at the beginning 
of the experiment (i.e. before injection of the analyte). These equations show that for the 
same flow injection experiment the analyte response can be obtained using different 
integration limits. 
It should be noted that in this method, all studied processes involve adsorption of analyte; 
hence both charging and faradic currents may potentially carry useful analytical 
information. To get such information, it was important to sample current at a frequency at 
least two times higher than the current transducer bandwidth. In order to fulfill this 
requirement the sampling frequency was always adjusted at 100 kHz. In addition FFT 
digital low pass filters with 0.5-30 kHz cutoff frequencies lead to remove noise from the 
data. If the main contribution to the baseline noise is from the “white” noise generated by 
the potentiostat, the integration procedure usually provides a 3 to 60 fold improvement in 
S/N compared to the simple monitoring of the current at a fixed potential. However, in the 
case of severe environmental noise (e.g. power line noise) the improvement may be much 
larger. Signals with weak level are thus shown more distinctly in the voltammogram and 
the measured level values are thereby stabilized and reproducible. In the case of a 
sinusoidal signal, the displayed level is not influenced by a reduction of the bandwidth. To 
obtain stable and reproducible results of noise measurements, a narrow bandwidth should 
be selected. The noise bandwidth is thus reduced and high noise peaks are better to be 
averaged. 

5. Application of FFT in electrochemical noise analysis 
As mentioned above the identification of noise frequencies in the electrochemical data by 
FFT method, can be used for study of some processes that occur on the electrode surface. 
This type of noises, which are created by EC process, called   electrochemical noise (EN). For 
many years, EN has been observed during corrosion and other electrochemical reactions, 
and the phenomenon is well established.  
The theoretical behavior of EN is not, completely, discussed, but there have been many 
useful applications, both in scientific surface and in corrosion monitoring studies. In an EC 
system, noise of potential and of current can be made independently or together during 
corrosion reaction that can be take placed on the electrode surface. The important point is 
that EN measurement technique does not involve any external perturbation of the corroding 
system. In fact, the instruments required to perform EN measurements are reasonably 
simple, particularly with FFT digital analyzer and modern computer-based data acquisition 
techniques. More commonly, the EN curve for potential and current has an appearance 
similar to that shown in Figure 3.  
Generally, localized corrosion processes tend to give particularly strong EN signals, which 
consist of low frequency (< 1 Hz) and small amplitude signals. Those signals are 
spontaneously generated by electrochemical reactions occurring at corroding or other 
surfaces (Zaveri et al., 2007). However, In this process, both the noise of potential and 
current are of the 1/f  type. The range of frequencies depends on the sampling interval Δt 
(typically 0.5 s) and on the number of readings M of a time record. The maximum and 
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minimum frequencies that can be analyzed are: fmax = 1 /2Δt and  fmin = 1/ Mt). The limiting 
value at a frequency approaching zero is defined as the spectral noise resistance. 
 In practice, spectral noise plots can be obtained only in a frequency range that is more 
limited than in EIS. On the high frequency side, the limit is imposed by the instrumental 
noise, whereas in the low frequency region, the time of acquisition becomes very long 
(Lafront et al., 2010).  
In a different approach, the time record of potential or current is converted into a power 
spectral density (PSD), which is the distribution of the power in the frequency domain. This 
transformation is usually made by means of the FFT method. Figure 4 shows the calculated 
power spectral density (PSD =1/fn, where n is a constant). The figure shows that PSD falls 
with increasing frequency, giving a straight line on a log-log plot, implying a relationship. In 
addition to the sloping 1/fn region of the spectrum, there are often indications of plateaus at 
the high and/or low frequency ends of the spectrum. Potential noise frequency relation 
changes have been noticed in the form of a component of character 1/f 2, this being 
attributed to pit initiation.   
 

 
Fig. 3. The sample graph for EN measurements of an Al palate in NaCl 0.01 M, top) Current 
noise, bottom) Potential noise 

The character of PSD changes as a function of frequency depend on the type of corrosion 
and has also been the subject of investigations. The area under the curve is the total power 
in the signal, and is identical to the standard deviation calculated from the time record. 
Thus, as the frequency spectrum moves to higher PSDs, so the rate of reaction may be 
expected to increase .The details of the calculation are beyond the scope of this book. 
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Fig. 4. The sample of PSD graph for EN measurements of an Al plate in NaCl 0.01 M  

6. Application of FFT in AC voltammetry  
The determination of the characteristics of the EC data system by AC techniques requires 
measuring the impedance at various frequencies, to result a frequency spectrum (Bond et al., 
1997). The most dominant application of FFT methods in AC voltammetry is in calculation 
of the impedance of the electrode response, which is known as electrochemical impedance 
spectroscopy (EIS). 
By definition, AC voltammetry (ACV) utilizes a small-amplitude sine wave which is added 
to a potential ramp to modulate the current output. In fact, ACV is an extension of classical 
linear sweep techniques such as cyclic voltammetry. A DC ramp with a comparatively slow 
sweep rate and an AC signal are superimposed and applied to a working electrode, and the 
response of the AC current and its phase angle are registered. In general, modulation 
potential amplitude up to 20 mV is used; higher amplitudes are not used to specifically 
avoid contributions from higher order harmonics. This may be considered as a limiting case 
for ACV. In fact, all of the information is intentionally contained in only the lowest order 
harmonics.  Its main strength lies in the quantitative characterization of electrode processes, 
and it can also be used for analytical purposes.  
A second general approach has employed AC voltammetry and the mathematics of the FFT. 
This technique was introduced and used extensively by (Smith, 1976). In it, the perturbation 
signal is composed of a sum of selected sinusoids. This approach, although powerful, is 
quite expensive and complex as well, and has not been widely employed. Both experimental 
implementation and data analysis employ a small-amplitude excitation waveform.  
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The applied excitation waveform consists of a fundamental harmonic frequency f0 and a 
number of odd harmonics (2n + 1) f0. This arrangement is superior to other excitation 
waveforms. All these frequencies are applied at the same time and the data to each frequency 
is found by the FFT. Depending on the method used for the data acquisition, different 
methods are used for data validation. In case of a sinusoidal signal were applied to a nonlinear 
system, the data function would contain multiples harmonics of the excitation waveforms.  
The techniques commonly employed for AC-impedance measurements in modern 
equipment can be subdivided into two main groups: single-sine and multiple-sine methods. 
The lock-in technique and frequency-response analysis will be described as representatives 
of the single sine techniques and FFTs will be introduced as an example for multiple-sine 
techniques. In single-sine methods, a small-amplitude sinusoidal signal with a fixed 
frequency is applied to the test cell. The response signal is then analyzed to extract the two 
components of the impedance (real and imaginary parts or magnitude and phase).  
Here, invalid impedance data cannot only be caused by nonlinearity but very frequently by 
a lack of stability of the system under investigation. Impedance test equipment usually 
comprises an AC measurement unit and a potentiostat or galvanostat. For many 
applications, such as biomedical investigations or the characterization of thin films in which 
it is not essential to maintain a DC-voltage level during the impedance measurement, a 
potentiostat is not required (Házì et al., 1997). 
EIS is frequently used to characterize systems that are changed during the time. Another 
way to reduce the effects of a system changing during the measurement is to reduce the 
total measurement time by using a multi-sine technique, which is FFT method. Figure 6 
shows typical curve obtained by this technique for electrodeposition of Cd on a gold 
electrode in 0.1 M Cd SO4. 
In the case of multi-sine techniques, a measurement is carried out at several frequencies 
simultaneously. The phases of the superimposed signals are randomized to minimize the 
amplitude of the composite signal (see Fig. 5b). In contrast to single-sine techniques, multi-
sine techniques do not require waiting for a full cycle to be completed for each of the 
frequencies used. The time-domain signals are digitized and transferred into the frequency 
domain by carrying out the FFT. The resulting data for each discrete frequency can be 
treated the same way as the impedance data obtained with a single sine technique. Repeated 
application of the waveform and averaging of the signal before FFT is applied can improve 
the S/N ratio of the multi-sine technique, although it increases the measurement time 
required. The impedance data obtained in this manner can be presented in several different 
formats.  
Impedance spectra Zreal versus Zimg measured at a number of fixed DC potentials are 
suitable for quantitative studies of redox reaction kinetics whereas potential-dependent 
admittance values (1/Z) obtained at fixed frequencies can provide AC voltammograms that 
are more readily interpreted in electroanalysis. The ratio of the two is the impedance of the 
test electrode. The measurement is then repeated at another frequency. The impedance 
spectra measured in this work were usually shaped as shown in the following Nyquist- and 
Bode-plot. Once real and imaginary parts of the input signals have been determined by 
correlation, the complex impedance of the test object can be calculated. It can be 
mathematically proven that all the spurious components are rejected by this technique of 
correlation provided that a sufficiently large number of cycles have been used for the 
integration (Garland et al., 2002).  
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Fig. 5. Typical FFT EIS graph for electrodeposition of Cd on gold electrode, a) Z imaginary, 
b) phase shift, changes in deterrent frequency and potential 
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The advantage of modern FFT technique is that the information is obtained quickly; 
therefore it may be used to study impedances evolving with time. The limitation of the FFT 
technique is that the response to individual frequencies is usually weaker than that when 
only one frequency is used. It should be added that other types of analysis of system 
responses were also used, for example, Laplace transform of the applied perturbation and 
the response to determine the impedance spectra (Carstensen et al., 2008). The time-domain 
signals are digitized and transferred into the frequency domain by carrying out a FFT. The 
resulting data for each discrete frequency can be treated the same way as the impedance 
data obtained with a single sine technique.  
In modern EIS analysis, lower frequency data are usually measured in the time domain. 
The current response is then measured using an A/D computer. In this case the FFT is used 
to convert the current signal into the frequency domain as carried out for other techniques. 
The FFT capabilities have subsequently been incorporated into several commercial 
instruments, primarily to speed up the acquisition of impedance data at low frequencies by 
exploiting the multiplex character of the technique. Such determinations are normally 
carried out at a single, fixed DC potential. In order to obtain potential-dependent 
impedance data, repeated experiments at different applied DC potentials are therefore 
required (Arundell et al., 2004).  
 The use of the FFT in combination with a controlled sequence of potential steps or pulses 
has been shown to offer an approach by which these time-consuming repetitions can be 
avoided and impedance measurements can be collected over a wide range of frequencies 
and DC potentials in a single experiment. However, here, the voltammetric waveforms 
composed of a sequence of potential steps are ideally suited in mathematical modeling 
based on the techniques of numerical integration. This approach is elegant in its generality, 
can be made arbitrarily precise, and is extremely efficient (Baranski et al., 1996). Baranski 
developed a technique in which a small amplitude square-wave potential perturbation is 
superimposed upon a potential staircase and in which the FFT is employed to convert 
current measurements taken as a function of time during several cycles of the square wave 
at each step potential to the frequency domain. Higher harmonics can be detected by FRAs 
or lock-in amplifiers, which can be tuned to detect a multiple of the excitation frequency. An 
alternative is to extract the harmonic signals from the response using FFT. 

7. Application of FFT in SWV 
The idea of obtaining electrode admittance from transient current time curves was 
investigated previously by Pilla (Pilla, 1972). The speed and sensitivity of SWV is  its  main 
advantage (Osteryoung & O’Dea, 1986). In the last years, data acquisition boards in the 
electroanalytical instrumentation have improved significantly for carrying out SW 
voltammetric analysis. The SWV has been used for study of the kinetics of electrode process 
(Winston et al., 1988). Nevertheless such applications of this method are relatively rare, 
which may be as a result of the rather complicated equations relating the current response of 
the electrode to the kinetic parameters of the electrode processes.  Also, the theory of SWV 
does not take into account the effect of uncompensated solution resistance and a distortion 
of the EC signal by a slow response of a current transducer. These problems are not easy to 
be solved in any time domain voltammetric techniques. Because the electrode response 
under AC voltammetric conditions is represented as an admittance (i.e. in the frequency 
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current measurements taken as a function of time during several cycles of the square wave 
at each step potential to the frequency domain. Higher harmonics can be detected by FRAs 
or lock-in amplifiers, which can be tuned to detect a multiple of the excitation frequency. An 
alternative is to extract the harmonic signals from the response using FFT. 

7. Application of FFT in SWV 
The idea of obtaining electrode admittance from transient current time curves was 
investigated previously by Pilla (Pilla, 1972). The speed and sensitivity of SWV is  its  main 
advantage (Osteryoung & O’Dea, 1986). In the last years, data acquisition boards in the 
electroanalytical instrumentation have improved significantly for carrying out SW 
voltammetric analysis. The SWV has been used for study of the kinetics of electrode process 
(Winston et al., 1988). Nevertheless such applications of this method are relatively rare, 
which may be as a result of the rather complicated equations relating the current response of 
the electrode to the kinetic parameters of the electrode processes.  Also, the theory of SWV 
does not take into account the effect of uncompensated solution resistance and a distortion 
of the EC signal by a slow response of a current transducer. These problems are not easy to 
be solved in any time domain voltammetric techniques. Because the electrode response 
under AC voltammetric conditions is represented as an admittance (i.e. in the frequency 
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domain), all data manipulations needed for obtaining kinetic information are relatively 
simple.  
The principles of this technique are simple. Normally, FFTSWV experiments are done 
under conditions identical to the traditional SWV, but the electrode response at each DC 
potential is converted into the frequency domain via FFT. Therefore, FFTSWV measures 
the admittance of the electrode as a function of potential (Baranski & Szulborska, 1994). 
The resultant data are almost similar to those obtained under AC voltammetric 
conditions.  
Indeed, in comparison with traditional AC voltammetry the equipment is much simpler 
and less expensive, measurements are carried out much faster and it is possible to obtain 
information about the admittance of the electrode at different frequencies from a single 
run.  
The potential waveform used in the FFTSW voltammetric measurement consists of many 
SW pulses were superimposed on a staircase potential function, which was changed by a 
small potential step of ΔE (Norouzi et al., 2008). The values of potential pulse of SW (ESW) 
and ΔE were in a range of few mV (10 to 50 mV). In the computer program, the number of 
SW cycles, Nc, in each staircase potential step was calculated based on the SW frequency as 
follows, Nc= f0 ⁄1400Hz, for f0 >1400Hz, and Nc=1 for f0 ≤1400Hz. The values of Nc, fo, Esw, 
Einitial and Evertex were the variable parameters of the technique, which were optimized for 
achieving to best detector performance. It should be noted that in this method all processes 
studied involve adsorption of analytes hence both charging and faradic currents may 
potentially carry useful analytical information.  
To get such information, it was important to sample data current at a frequency at least two 
times higher than the current transducer bandwidth. In order to fulfill this requirement the 
data sampling frequency was always adjusted between 50 and 100 kHz (depending on scan 
rate). In addition a second order low pass filter with a 20 kHz cutoff frequency was placed 
between the current output of the potentiostat and the data acquisition board. In the 
computer program, the discrete FFT analysis was used for data processing. If one SW cycle 
per potential step is applied, the time domain response resulted with this method is similar 
to that which obtained using Osteryoung SW voltammetry. Here either four data points per 
SW cycle were collected. If there is more than one cycle at one potential step, the current 
recorded in different cycles at the same DC potential is averaged (i.e. the first data points in 
every cycle are added together and divided by the number of cycles then the second and 
subsequent data points are treated in the same way) (Baranski & Szulborska, 1994).  
The first component in Eq. 5 gives the imaginary part (Zimg) of the impedance and the 
second part gives its real component (Zrel). A full discussion for the determination of Zrel 
and Zim based on the sampled currents (Is) will be given in the next section. Theoretically, 
the detector impedance,  

 2 2
img relZ Z Z= +     (5) 

where|Z| in a specific frequency is equal to E/I.  
Application of discrete FFT analysis on the sampled current requires a specific method in 
current sampling. The admittance of the electrode is calculated at each potential step by the 
DFT method. High frequency components are removed by placing an analog low pass filter 
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between the current transducer and the A/D converter (Van Valkenburg, 1982).  It required 
the number of sampled currents at each pulse cycle which must be represented by n2   
(where n is an integer and greater than 1). Therefore the currents, Is, were sampled at even 
time intervals, ts,  
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where s is an integer number and changes from 0 to 7. Therefore if currents are sampled at 
even time intervals, ts, ts+1/4f0, ts+2/4f0 and ts+3/4f0, then the values of the sampled currents 
will be, 
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The equations show that in the first harmonic (n=1) the current components i0 and i2   (as 
well as, i1 and i3) have a phase shift equal to π. However, their absolute values are the 
same with an opposite sign. As mentioned above, the currents were sampled four times 
per SW cycle, i0, i1, i2 and i3. In each step, ΔE, of staircase potential ramp, the total sampled 
currents were 4Nc (Nci0, Nci1, Nci2 and Nci3), which were reduced to four by averaging 
each Nci.  Because of dependence of Nc on frequency, at SW frequencies lower than 1400 
Hz lager number of currents were averaged, which could be helpful for reducing the 
noise level. At the end of each potential ramp, the data were stored in an array matrix as 
follows, 
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where n is the number of the potential step and E0 to E4 are the electrode potentials at which 
the current is sampled.  
To calculate the admittance of the detector response, first the real and imaginary 
components of the alternating current need to be calculated. The real component of I’ and E’ 
are given by, 
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between the current transducer and the A/D converter (Van Valkenburg, 1982).  It required 
the number of sampled currents at each pulse cycle which must be represented by n2   
(where n is an integer and greater than 1). Therefore the currents, Is, were sampled at even 
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The equations show that in the first harmonic (n=1) the current components i0 and i2   (as 
well as, i1 and i3) have a phase shift equal to π. However, their absolute values are the 
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per SW cycle, i0, i1, i2 and i3. In each step, ΔE, of staircase potential ramp, the total sampled 
currents were 4Nc (Nci0, Nci1, Nci2 and Nci3), which were reduced to four by averaging 
each Nci.  Because of dependence of Nc on frequency, at SW frequencies lower than 1400 
Hz lager number of currents were averaged, which could be helpful for reducing the 
noise level. At the end of each potential ramp, the data were stored in an array matrix as 
follows, 

Data array =

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

32103210

3210
1
3

1
2

1
1

1
0

........

........

........

EEEEiiii

EEEEiiii

nnnn
 

(11)

where n is the number of the potential step and E0 to E4 are the electrode potentials at which 
the current is sampled.  
To calculate the admittance of the detector response, first the real and imaginary 
components of the alternating current need to be calculated. The real component of I’ and E’ 
are given by, 
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  I’= i2 –i0  (12) 

 E’ =E2 –E0 =-2Es    (13) 

and the equation for the imaginary components are, 

  I”= i1 –i3  (14) 

 E” =E1 –E3 =2Es    (15) 

Now, the real, Y’, and imaginary, Y”, components of the detecting admittance can be 
calculated as follows,   
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Also, the average current, Is at each potential step is given by 
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The results from application of FFT analysis showed that measurement based on the first 
harmonic component offered better detection limits. Therefore, the components at higher 
frequencies than fundamental frequency were removed from the current response. The 
filtration was initially done by utilizing analog filters. A series of low pass filters were 
located before the A/D converter board. However, such filter may cause a small distortion 
in the magnitude and phase of the fundamental harmonic (which can be determined by 
calibrating). Also, a digital filtration was occurred during data acquisition. If the excitation 
potential and the electrode response can be represented by periodic functions, the electrode 
admittance can be calculated. Briefly in order to avoid problems with the interpretation of 
the electrode admittance, it is necessary to remove all components of the electrode 
response at frequencies higher than half the data acquisition frequency. This condition 
is known as the Nyquist sampling theorem (Weaver, 1983). 
The examples of the SW voltammetric responses on the Au UME in the FIA measurement 
are shown in Figure 6. The analyte signal appears as a current decline in certain potential at 
the SW voltammogram. It results the inhibition of the electrode surface processes by the 
analyte adsorption process (Norouzi et al., 2009). To visualize the dependence of the analyte 
signal to the electrode potential in Figure 6a, the differential form of the SW voltammograms 
are shown (Figure 6b). In the differential graphs, also, it can be noted that the analyte signal 
extends over a potential range of the SW voltammogram.  
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Fig. 6.  a) FFT SW voltammograms at Au ultra-microelectrode recorded during the flow 
injection. The eluent was 0.05 M H3PO4 with the flow rate of 0.5mL/min., b) Curves 
resulted from subtracting the SWs in fig. a, from the average of 10 SWs (in the absence of 
analyte)  
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Also, the average current, Is at each potential step is given by 
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are shown in Figure 6. The analyte signal appears as a current decline in certain potential at 
the SW voltammogram. It results the inhibition of the electrode surface processes by the 
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are shown (Figure 6b). In the differential graphs, also, it can be noted that the analyte signal 
extends over a potential range of the SW voltammogram.  
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Fig. 6.  a) FFT SW voltammograms at Au ultra-microelectrode recorded during the flow 
injection. The eluent was 0.05 M H3PO4 with the flow rate of 0.5mL/min., b) Curves 
resulted from subtracting the SWs in fig. a, from the average of 10 SWs (in the absence of 
analyte)  
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8. Conclusion 
Electroanalytical techniques can offer rapid and low cost analysis of electroactive 
compounds and heavy metal ions in aqueous systems with a parts-per-billion sensitivity 
range. Electrical signals may be examined in both the time and in the frequency domain. The 
two display modes are related to each other by FTT, so each signal variable in the time 
domain has a characteristic frequency spectrum and vice versa. In the FFT based EC method 
(such as ENA, FFT Cyclic voltammetry, FFT SW voltammetry and FFT impedance 
spectroscopy), initially, an electrode response was recorded. Then, FFT was applied on the 
collected data and the existing high frequency noises were indicated. Based on this 
information, the cutoff frequency of the analog filter was set at a certain value (where the 
noises were removed from the electrode response).  The smoothing function is, effectively, a 
moving average filter which is applied to the transfer function data before it is displayed in 
order to minimize the presence of jagged edges and discontinuities in the displayed data. 
Finally with the aid of this function a displayed trace can be smoothed by averaging over 
several electroanalytical measurements. Therefore the signal at the spectrum analyzer input 
may give rise to unwanted components which do not show any relationship to the input 
signal. 
Some of the major advantages of FFT-voltammetry over other electrochemical techniques 
include:  
• Speed: Because all of the frequencies are measured simultaneously, most measurements 

by FFT-voltammetry are made in a matter of nano seconds rather than several minutes.  
• Sensitivity: Sensitivity is dramatically enhanced with FFT-voltammetry for many 

reasons. The detectors employed are much more sensitive, the electrical throughput is 
much higher which results in much lower noise levels, and the fast scans enable the co-
addition of several scans in order to reduce the random measurement noise to any 
desired level (referred to as signal averaging).  

Finally, the sensitivity and accuracy of electroanalytical methods based on FFT, along with a 
wide variety of software algorithms, have dramatically increased the practical use of 
voltammograms for quantitative analysis. Quantitative methods can be easily developed 
and calibrated and can also be incorporated into simple procedures for routine analysis. 
Thus, the FFT-electroanalytical techniques have brought significant practical advantages to 
other electroanalytical methods.  It has made possible the development of many new 
sampling techniques which were designed to tackle challenging difficulties which were 
impossible by older technologies. It has made the application of electroanalytical analysis 
virtually limitless. 
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1. Introduction  
Selective catalytic reduction of NO by hydrocarbons (HC-SCR) is believed to be one of the 
most promising ways to remove nitric oxide from the exhaust gas of diesel and lean-burn 
engines. Since HC-SCR was reported individually by Iwamoto and Held groups (Iwamoto 
et al., 1999; Held et al., 1990), many studies were carried out in this field both on new 
catalyst research and on reaction mechanism. In these studies, Fourier Transforms Infrared 
Spectroscopy (FTIR) was extensively used for interpreting the relationship between surface 
structure and the catalytic performance of the catalysts, especially, for disclosing the 
reaction mechanism over the catalysts. In this chapter, we summarize the FTIR studies used 
in the investigation of selective catalytic reduction of NO by acetylene (C2H2-SCR). 

2. To characterize surface acidity of the catalyst 
For HC-SCR, many zeolites have been investigated as catalysts. However, it seems that only 
limited types of zeolites including ZSM-5 (Li et al., 2004; Li et al., 2008; Wang et al., 2007a; 
Wang et al., 2007b; Wang et al., 2005; Niu et al., 2006), ferrierite (Seijger et al., 2003; Lee et al., 
2003; Kubacka et al., 2005; Kubacka et al., 2006) and mordenite (Pieterse & Booneveld, 2007; 
Mosqueda-Jiménez et al., 2003a; Córdoba et al., 2005; Lónyi et al., 2007; Dorado et al., 2005), 
which are called as pentasil zeolites, displayed high selectivity to NOx reduction in HC-SCR. 
For instance, Pieterse et al. (Pieterse et al., 2003) investigated the selective catalytic reduction 
of NO by methane (CH4-SCR) over several zeolite-based catalysts and reported an activity 
order of Co-Pd-ZSM-5 > Co-Pd-MOR > Co-Pd-FER > Co-Pd-BEA. Abreu and his co-workers 
(Torre-Abreu et al., 1999) found that zeolites modified by Cu used for selective catalytic 
reduction of NO by propene (C3H8-SCR) are ordered in NO conversion at 400 oC with 
CuMFI (58%) > CuMOR (43%) > CuY (20%). Sultana et al. (Sultana et al., 2008) reported that 
zeolites are ordered with Pt-MOR (90%) > Pt-FER (77%) > Pt-ZSM-5 (74%) > Pt-BEA (70%) > 
Pt-HY (63%) in terms of NO conversion for selective catalytic reduction of NO at ~300 oC 
using diesel as reductant. Shibata et al. (Shibata et al., 2004) reported an order of Ag-MFI 
(56%) > Ag-BEA (38%) > Ag-MOR (11%) >> Ag-Y (2%) in NO conversion at ~300 oC for the 
C3H8-SCR assisted by H2. It was also reported that Co-ZSM-5 (Ivanova et al., 2001) and Ni-
ZSM-5 (Mihaylov et al., 2004) are more active than the corresponding Y zeolite promoted by 
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Co or Ni for the CH4-SCR. All these results indicated that Y is inferior to the pentasil zeolites 
for the HC-SCR.  

 
Fig. 1. Conversion of NOx as a function of temperature over HZSM-5 ( ), HFER (■), HMOR 
( ) and HY ( ). Reaction conditions: 1600 ppm NO + 800 ppm C2H2 + 9.95% O2 in He with 
a total flow rate of 50 ml/min over 0.2 g of catalyst 
 

 
Fig. 2. FTIR spectra of pyridine adsorbed on HZSM-5 (a), HFER (b), HMOR (c) and HY (d) at 
500 oC in evacuation 
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On the other hand, Shichi and co-workers (Shichi et al., 1998; Shichi et al., 2000; Shichi et al., 
2001a; Shichi et al., 2001b; Shichi et al., 2004) have emphasized intracrystalline diffusion of 
reductants limited by the zeolites’ channels, based on their investigation results. They found 
that NO conversion over MFI and MOR appeared to be significantly influenced by both 
hydrocarbon molecular size and zeolite particle size in some instances. In our investigation 
of HC-SCR using acetylene as reductant (C2H2-SCR), we found that the C2H2-SCR over 
HZSM-5 is greatly affected by the intracrystalline diffusion of NO2 as well (Wang et al., 
2007c). Thus, we suppose that the limited diffusion of the reactants in narrow channels of 
the pentasil zeolites is the main reason leading to the low NO conversion at high GHSV in 
HC-SCR. Due to wider channels compared to the pentasil zeolites (Elzey et al., 2008), Y 
zeolite may be favorable for intracrystalline diffusion of reactants. Besides of this, Y zeolite 
is stable in severe hydrothermal conditions and economical (Furusawa et al., 2002). 
Therefore, the zeolite could be expected to be a candidate for preparing a practical catalyst 
for HC-SCR working at high GHSV, if Y can be effectively modified, due to its larger pore 
size (0.74 nm × 0.74 nm) than HZSM-5 (0.53 nm × 0.56 nm), HFER(0.42 nm × 0.54 nm) and 
HMOR (0.65 nm × 0.70). It lead us to study the zeolite in C2H2-SCR investigation. However, 
a result in contrast with the expectation was obtained in the C2H2-SCR. HY displayed much 
low activity compared to HZSM-5, HFER, and HMOR, as shown in Fig 1. To answer the 
question why HY with the ideal larger pore size exhibited much inferior catalytic 
performance to the pentasil zeolites in the HC-SCR, we studied the surface acidity of HY in 
comparison with the pentasil zeolites (Ma et al., 2009). Fig.2 shows FTIR of pyridine 
adsorbed on different zeolites, obtained by pyridine adsorption over the zeolites and a 
degassing at 500 oC. Compared to HZSM-5, HFER and HMOR, HY gave considerable 
weaker IR band at 1540 cm-1 being associated with pyridine adsorption on protons, 
indicating that strong Brönsted acids over HY are much less than those of the pentasil 
zeolites in amount. In literature, zeolites with Na or H form were usually used in HC-SCR 
investigation as catalyst or support, and opposite results were obtained by the authors on 
the acidity or basicity of the zeolites favorable for HC-SCR activity, for different HC-SCR 
catalytic systems. For instance, it was reported that Ag-NaZSM-5 catalyst was more active 
than Ag-HZSM-5 for the selective catalytic reduction of NO by methane (CH4-SCR) at 450 
°C (Shi et al., 2002), and that Fe-ZSM-5 catalyst with precursor of NaZSM-5 was far more 
active than that with precursor of NH4-ZSM-5 for selective catalytic reduction of NO by urea 
(Sullivan & Keane, 2005). Similarly, high activity for the selective catalytic reduction of NO 
by propene (C3H6-SCR) on Ce-NaZSM-5 (Niu et al., 2006; Seijger et al., 2003) and for  
CH4-SCR on Pt-CoNaFER washcoated cordierite monolith (Lee et al., 2003) was obtained. 
Whereas, Brönsted acids have been suggested by the other authors to be essential for HC-
SCR over many catalytic systems (e.g. ZSM-5 modified by Pd, Ga, In, Ce and Ag) (Shibata et 
al., 2004; Loughran & Resasco, 1995; Kikuchi & Yogo, 1994; Nishizaka & Misono, 1994; Li & 
Armor, 1994; Narbeshuber et al., 1997; Berndt et al., 2003; Gutierrez et al., 2005).  
The authors found that Brönsted acids contributed to the aimed reaction in different steps. 
For instance, Stakheev and coworkers reported that exchange of partial protons by 
sodium with a level of 32% resulted in a nearly complete disappearance of the activity of 
the zeolite for oxidation of NO to NO2, and a significant decrease of the activity for C3H6-
SCR (Gutierrez et al., 2005). In the C2H2-SCR, we found that the proton form of ZSM-5 
based catalyst were much active, whereas the sodium form of ZSM-5 based catalyst 
almost inactive for the reaction (Wang et al., 2007a; Wang et al., 2005), as shown in table 1. 
We also found that, with SiO2/Al2O3 ratio of HZSM-5 increasing, C2H2-SCR activity of the 
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the zeolite for oxidation of NO to NO2, and a significant decrease of the activity for C3H6-
SCR (Gutierrez et al., 2005). In the C2H2-SCR, we found that the proton form of ZSM-5 
based catalyst were much active, whereas the sodium form of ZSM-5 based catalyst 
almost inactive for the reaction (Wang et al., 2007a; Wang et al., 2005), as shown in table 1. 
We also found that, with SiO2/Al2O3 ratio of HZSM-5 increasing, C2H2-SCR activity of the 
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HZSM-5 based catalysts (e.g. Ce-HZSM-5, 2%Mo/HZSM-5 and 2%Zr/HZSM-5(Wang et 
al. 2008) as shown in table 2) decreased in same reaction conditions. These results 
indicated that protons presenting in the zeolites is indispensable for C2H2-SCR and 
activity of the catalyst strongly depends on the population of protons in the zeolites. Thus, 
one could believe that it is the weaker surface acidity of HY compared to those of pentasil 
zeolites which leads to the inferior catalytic performance of HY in comparison with 
HZSM-5, HFER and HMOR. 
 

Catalysts Reaction 
temperature (oC) 

NO conv. to N2 

(100%) 
Total C2H2 

conv. (100%) 

HZSM-5 300 58.9 86.6 

NaZSM-5 325 ~0 8.0 

Ce-HZSM-5 300 83.0 98.9 

Ce-NaZSM-5 300 ~0 15.3 

Mo-HZSM-5 350 82.7 100 

Mo-NaZSM-5 350 ~0 14.7 

Table 1. Catalytic performance of Na-, and HZSM-5 based catalysts in C2H2-SCR* 
*Note: All of the catalyst were prepared from ZSM-5 with SiO2/Al2O3 of 25 

Reaction conditions: 1600 ppm NO + 800 ppm C2H2 + 9.95% O2 in He with a total flow rate 
of 50 ml/min over 0.2 g of catalyst. 
 

Catalyst with 
SiO2/Al2O3 ratio 

Reaction 
temperature (oC) 

NO conv. to 
N2 (100%) 

Total C2H2 
conv. (100%) 

Ce-25 300 83.0 98.9 

Ce-38 300 64.2 100 

Ce-50 300 ~0 79 

Mo-25 350 82.7 100 

Mo-38 350 57.7 100 

Mo-50 350 48.0 100 

Zr-25 350 89 100 

Zr-38 350 73 100 

Zr-50 350 66 100 

Table 2. Catalytic performance of Ce-HZSM-5, 2%Mo/HZSM-5 and 2%Zr/HZSM-5 
prepared from the zeolite with different SiO2/Al2O3 ratio* 
*Note: Ce-HZSM-5 was prepared by ion exchange, and 2%Mo/HZSM-5 and 2%Zr/HZSM-5 were 
prepared by impregnation 
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3. To confirm rate-determining step 
Over many kinds of catalysts, HC-SCR was believed to be initiated from NO oxidation to 
NO2, and the step was generally accepted to be crucial step (Kubacka et al., 2006; Pieterse & 
Booneveld, 2007). To elucidate why HY displayed inferior catalytic performance in C2H2-
SCR, activity of HY for NO oxidation to NO2 was compared to those of HZSM-5, HFER and 
HMOR. As shown in Fig. 3, all of the pentasil zeolites exhibited considerably higher activity 
compared to HY, in particular, in the case of HFER at 250 oC. The results implies that the 
reaction of 22 NOONO ⎯→⎯+ is catalyzed by acid sites of the zeolite. It was strongly 
supported by experimental results that when sodium form of ZSM-5 was used as catalyst 
for the reaction of NO oxidation, almost no catalytic activity could be observed. Combined 
the catalytic activity of the zeolites both for NO oxidation and for C2H2-SCR of NO, it can be 
found that the curves of NO oxidation to NO2  
vs. reaction temperature resemble much to those of NO conversion to N2 in C2H2-SCR in 
patterns, indicating that C2H2-SCR is significantly confined by the step of 

22 NOONO ⎯→⎯+ over HY.  

 
Fig. 3. Catalytic performance of HZSM-5 ( ), HFER (▲), HMOR ( ) and HY ( ) in 
oxidation of NO with O2 at different temperatures. Reaction conditions: 200 ppm NO + 10% 
O2 in N2 was fed to 0.200 g at a total flow rate of 100 ml/min 

For C2H2-SCR over HZSM-5 and HFER, it can be speculated that the step of NO oxidation to 
NO2 may not be the rate-determining step, as the two zeolites are rather active to NO 
oxidation, due to their lager amount of protons characterized by FTIR of pyridine 
adsorption (Fig. 2). The speculation was confirmed by the following experimental results. 
As shown in Fig. 4, although HZSM-5 itself is more active for NO oxidation with O2 at the 
reaction temperature ranged from 200~400 oC than all of xY/HZSM-5 (x = 0 ~ 9), it gave a 
rather lower NO conversion to N2 compared to 3%Y/HZSM-5, as shown in Fig. 5 (Wang et 
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HZSM-5 based catalysts (e.g. Ce-HZSM-5, 2%Mo/HZSM-5 and 2%Zr/HZSM-5(Wang et 
al. 2008) as shown in table 2) decreased in same reaction conditions. These results 
indicated that protons presenting in the zeolites is indispensable for C2H2-SCR and 
activity of the catalyst strongly depends on the population of protons in the zeolites. Thus, 
one could believe that it is the weaker surface acidity of HY compared to those of pentasil 
zeolites which leads to the inferior catalytic performance of HY in comparison with 
HZSM-5, HFER and HMOR. 
 

Catalysts Reaction 
temperature (oC) 

NO conv. to N2 

(100%) 
Total C2H2 

conv. (100%) 

HZSM-5 300 58.9 86.6 

NaZSM-5 325 ~0 8.0 

Ce-HZSM-5 300 83.0 98.9 

Ce-NaZSM-5 300 ~0 15.3 

Mo-HZSM-5 350 82.7 100 

Mo-NaZSM-5 350 ~0 14.7 

Table 1. Catalytic performance of Na-, and HZSM-5 based catalysts in C2H2-SCR* 
*Note: All of the catalyst were prepared from ZSM-5 with SiO2/Al2O3 of 25 

Reaction conditions: 1600 ppm NO + 800 ppm C2H2 + 9.95% O2 in He with a total flow rate 
of 50 ml/min over 0.2 g of catalyst. 
 

Catalyst with 
SiO2/Al2O3 ratio 

Reaction 
temperature (oC) 

NO conv. to 
N2 (100%) 

Total C2H2 
conv. (100%) 

Ce-25 300 83.0 98.9 

Ce-38 300 64.2 100 

Ce-50 300 ~0 79 

Mo-25 350 82.7 100 

Mo-38 350 57.7 100 

Mo-50 350 48.0 100 

Zr-25 350 89 100 

Zr-38 350 73 100 

Zr-50 350 66 100 

Table 2. Catalytic performance of Ce-HZSM-5, 2%Mo/HZSM-5 and 2%Zr/HZSM-5 
prepared from the zeolite with different SiO2/Al2O3 ratio* 
*Note: Ce-HZSM-5 was prepared by ion exchange, and 2%Mo/HZSM-5 and 2%Zr/HZSM-5 were 
prepared by impregnation 

Fourier Transforms Infrared Spectroscopy Applied in  
Selective Catalytic Reduction of NO by Acetylene 

 

327 

3. To confirm rate-determining step 
Over many kinds of catalysts, HC-SCR was believed to be initiated from NO oxidation to 
NO2, and the step was generally accepted to be crucial step (Kubacka et al., 2006; Pieterse & 
Booneveld, 2007). To elucidate why HY displayed inferior catalytic performance in C2H2-
SCR, activity of HY for NO oxidation to NO2 was compared to those of HZSM-5, HFER and 
HMOR. As shown in Fig. 3, all of the pentasil zeolites exhibited considerably higher activity 
compared to HY, in particular, in the case of HFER at 250 oC. The results implies that the 
reaction of 22 NOONO ⎯→⎯+ is catalyzed by acid sites of the zeolite. It was strongly 
supported by experimental results that when sodium form of ZSM-5 was used as catalyst 
for the reaction of NO oxidation, almost no catalytic activity could be observed. Combined 
the catalytic activity of the zeolites both for NO oxidation and for C2H2-SCR of NO, it can be 
found that the curves of NO oxidation to NO2  
vs. reaction temperature resemble much to those of NO conversion to N2 in C2H2-SCR in 
patterns, indicating that C2H2-SCR is significantly confined by the step of 
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NO2 may not be the rate-determining step, as the two zeolites are rather active to NO 
oxidation, due to their lager amount of protons characterized by FTIR of pyridine 
adsorption (Fig. 2). The speculation was confirmed by the following experimental results. 
As shown in Fig. 4, although HZSM-5 itself is more active for NO oxidation with O2 at the 
reaction temperature ranged from 200~400 oC than all of xY/HZSM-5 (x = 0 ~ 9), it gave a 
rather lower NO conversion to N2 compared to 3%Y/HZSM-5, as shown in Fig. 5 (Wang et 
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al., 2008). To investigate the rate-determining step of C2H2-SCR over these catalysts, and 
effectively research more active catalyst for the reaction of C2H2-SCR, several possible step 
for the reaction over the catalysts, such as NOx adsorption over the catalysts and the activity 
of the nitrous species toward reduction over the catalysts were investigated. At first, FTIR 
spectrum arising from nitrous species on HZSM-5 and 3%Y/HZSM-5 after saturated co-
adsorption of NO+O2 was measured at 250 °C, as shown in Fig. 6. Compared to HZSM-5, 
3%Y/HZSM-5 gave significantly stronger band at 1585 cm–1 due to bidentate nitrates 
(Ivanova et al., 2001; Yu et al., 2004; Shimizu et al., 2001; He et al., 2004; Poignant et al., 2001) 
and a new band at 1609 cm–1 caused by NO+O2 saturated co-adsorption at 250 °C. The 
results indicated that the nitrous species adsorption capacity of 3%Y/HZSM-5 is much 
stronger in comparison with that of HZSM-5. NO- and NO2-TPD on the catalyst samples 
gave also the same conclusion. As shown in Fig. 7, substantially larger amounts of NO and 
NO2 were measured in the temperature range of 250-550 °C on 3%Y/HZSM-5 in the NOx-
TPD compared to that on HZSM-5. It should be noted that the corresponding nitrous species 
which desorbed from the catalyst surface in the temperature range quite seems to be those 
reacting with C2H2 and contributing C2H2-SCR of NO, as large parts of them could be 
speculated to stay on the catalyst surface at the C2H2-SCR reaction conditions. By combining 
the C2H2-SCR activity with the nitrous species adsorption capacity of the catalysts, a 
consistent relationship was obtained for Mo-(Wang et al., 2007a), W-(Wang et al., 2007b), Zr-
promoted HZSM-5 as well as Zr-promoted HFER, i.e. by these metals incorporating into 
HZSM-5 and HFER, nitrous species adsorption capacity of the catalyst was significantly 
enhanced, and at the same time, C2H2-SCR activity of the catalyst was largely improved.  
 

 
Fig. 4. Catalytic activity of xY/HZSM-5 for NO oxidation with O2: x=0 (○), x=0.5 (■), x=3 (♦) 
and x=9 (▲). Reaction conditions: 200 ppm NO, 10 % O2 in N2 with a total flow rate of 100 
ml/min over 0.200 g catalysts 
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Fig. 5. NO conversion to N2 as a function of reaction temperature over HZSM-5 (●), and 
3%Y/HZSM-5 (▲). Reaction condition: 1600 ppm NO, 800 ppm C2H2, 9.95% O2 in He with a 
total flow rate of 50 ml·min-1 over 0.200 g of catalyst 
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Fig. 6. FTIR spectra arising from nitrous species on HZSM-5 (a) and 3% Y/HZSM-5 (b) after 
saturated co-adsorption of NO+O2 at 250 oC 
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al., 2008). To investigate the rate-determining step of C2H2-SCR over these catalysts, and 
effectively research more active catalyst for the reaction of C2H2-SCR, several possible step 
for the reaction over the catalysts, such as NOx adsorption over the catalysts and the activity 
of the nitrous species toward reduction over the catalysts were investigated. At first, FTIR 
spectrum arising from nitrous species on HZSM-5 and 3%Y/HZSM-5 after saturated co-
adsorption of NO+O2 was measured at 250 °C, as shown in Fig. 6. Compared to HZSM-5, 
3%Y/HZSM-5 gave significantly stronger band at 1585 cm–1 due to bidentate nitrates 
(Ivanova et al., 2001; Yu et al., 2004; Shimizu et al., 2001; He et al., 2004; Poignant et al., 2001) 
and a new band at 1609 cm–1 caused by NO+O2 saturated co-adsorption at 250 °C. The 
results indicated that the nitrous species adsorption capacity of 3%Y/HZSM-5 is much 
stronger in comparison with that of HZSM-5. NO- and NO2-TPD on the catalyst samples 
gave also the same conclusion. As shown in Fig. 7, substantially larger amounts of NO and 
NO2 were measured in the temperature range of 250-550 °C on 3%Y/HZSM-5 in the NOx-
TPD compared to that on HZSM-5. It should be noted that the corresponding nitrous species 
which desorbed from the catalyst surface in the temperature range quite seems to be those 
reacting with C2H2 and contributing C2H2-SCR of NO, as large parts of them could be 
speculated to stay on the catalyst surface at the C2H2-SCR reaction conditions. By combining 
the C2H2-SCR activity with the nitrous species adsorption capacity of the catalysts, a 
consistent relationship was obtained for Mo-(Wang et al., 2007a), W-(Wang et al., 2007b), Zr-
promoted HZSM-5 as well as Zr-promoted HFER, i.e. by these metals incorporating into 
HZSM-5 and HFER, nitrous species adsorption capacity of the catalyst was significantly 
enhanced, and at the same time, C2H2-SCR activity of the catalyst was largely improved.  
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Fig. 6. FTIR spectra arising from nitrous species on HZSM-5 (a) and 3% Y/HZSM-5 (b) after 
saturated co-adsorption of NO+O2 at 250 oC 



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

330 

 

0

20

40

60

80

100

120

0 100 200 300 400 500 600

a 

b 

Temperature (oC) 

N
O

 c
on

ce
nt

ra
tio

n 
(p

pm
) 

b 

0

50

100

150

200

250

0 100 200 300 400 500 600
 Temperature (oC) 

N
O

2 c
on

ce
nt

ra
tio

n 
(p

pm
) 

b 

a 

B 

b 

A 

 
Fig. 7. TPD profiles of NO (A) and NO2 (B) over HZSM-5 (a) and 3% Y/HZSM-5 (b) after 
saturated co-adsorption of NO+O2  
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Fig. 8. The NO conversion to N2 as a function of temperature over HZSM-5 (●), 
2%Zr/HZSM-5 (○), HFER (■) and 2%Zr/HFER (□). The reaction conditions are the same as 
that in Fig. 5 
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Fig. 9. Transient FTIR spectra at 250 oC upon HFER (solid curve) and HZSM5 (dashed curve) 
exposing to 1000 ppm NO + 10 % O2 in N2 (A) for 1 min (a), 2 min (b), 5 min (c), 10 min (d), 
15 min (e) and 30 min (f). For comparison, the transient FTIR spectrum recorded by 
exposing 2%Zr/HZSM-5 to 1000 ppm NO + 10 % O2 in N2 at 250 oC for 30 min (dotted 
curve) was given as m 
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These results imply that the rate-determining step for the C2H2-SCR over HZSM-5 and 
HFER is the nitrous species formation from NOx adsorption. Due to the restriction in length 
for the chapter, here, we will interpret only the rate-determining step of C2H2-SCR over 
HZSM-5 and HFER deduced from FTIR study on Zr and Y promoted zeolites. 
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Fig. 10. FTIR spectra arising from surface nitrate species on HZSM-5, 2%Zr/HZSM-5, HFER, 
and 2%Zr/HFER upon the catalyst samples exposing to gas mixture of 1000 ppm NO + 10 % 
O2 in N2 for 30 min at 250 oC 

The catalytic performance of HFER, HZSM-5, 2%Zr/HFER and 2%Zr/HZSM-5 in C2H2-SCR 
was shown in Fig. 8. The conversion of NO into N2 was strongly influenced by the type of 
zeolites. The parent zeolite of HFER displayed much higher activity than HZSM-5 for C2H2-
SCR in the temperature range of 250-375 oC. For instance, NO conversion to N2 over HFER 
at 250 oC was 69.6%, which is much higher than that over HZSM-5 under the same reaction 
conditions. On the other hand, significant doping effect of zirconium incorporation into the 
zeolites on C2H2-SCR was observed, especially in the case of HZSM-5. For instance, NO 
conversion to N2 was increased to 78.0% from 69.6% at 250 oC by 2% of zirconium 
incorporation into HFER, whereas it sharply increased to 56.0% from 25.4% in the case of 
HZSM-5. Why HFER was so much active at the lower reaction temperature compared to 
HZSM-5? Why the doping effect of zirconium on C2H2-SCR was so much larger for HZSM-5 
than HFER? To answer these questions, we tentatively combined their catalytic performance 
in C2H2-SCR with their NOx adsorption capacity. As shown in Fig. 9, Two bands at 1598 and 
1629 cm-1 due to bidenate and bridging nitrates (Li et al., 2007; Tsyntsarski et al., 2003; Li et 
al., 2005a) respectively appeared on HZSM-5 and HFER when the zeolites were exposed to 
NO+O2 at 250 oC. By comparing the band increasing in intensity at 1629 and 1598 cm-1 over 
the zeolites, it can be known that the nitrate species formation was faster over HFER than 
that over HZSM-5. Obviously, the relative nitrate species formation rate coincides well with 

Fourier Transforms Infrared Spectroscopy Applied in  
Selective Catalytic Reduction of NO by Acetylene 

 

333 

the relative C2H2-SCR activity for the two parent zeolites. Similar relationship of C2H2-SCR 
activity versus nitrate species formation rate can be also obtained on HZSM-5 and 
2%Zr/HZSM-5. The bands due to nitrate species on 2%Zr/HZSM-5 (spectrum m in Fig. 9) 
were obviously strong in intensity compared to that obtained at the same exposing time 
over HZSM-5. Figure 10 gave the stable FTIR spectrum at 250 oC obtained by exposing 
HZSM-5, HFER, 2%Zr/HZSM-5 and 2%Zr/HFER respectively to gas mixture of 1000 ppm 
NO + 10 % O2 in N2 until the corresponding spectra no further change. By combining the 
results given in this figure with those in Fig. 8, the relative activity of the zeolites and those 
promoted by zirconium can be well understood. The lager nitrate species formation capacity 
of HFER compared to HZSM-5 may be the reason leading to the higher C2H2-SCR activity of 
HFER in comparison with HZSM-5. Accordingly, as 2%Zr/HFER have the further large 
nitrate species formation capacity, due to 2% of zirconium incorporation, it displayed more 
active than the zeolite itself. Also, the drastically larger C2H2-SCR activity of 2%Zr/HZSM-5 
than that of the zeolite itself can be attributed to the substantially increased nitrate species 
formation capacity of the resulting material prepared from zirconium impregnation on the 
zeolite. To confirm the supposition that nitrate species formation on the catalyst surface is 
the rate-determining step for the C2H2-SCR over HZSM-5 and HFER, it must be validated 
that the nitrate species are important intermediate of the total reaction, i.e. they are active 
toward reduction, which will be discussed in the section 4. It should be also validated that, 
the step of nitrate species formation on the catalyst surface is most slow among all of the 
steps in the route of C2H2-SCR over the zeolites. 
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Fig. 11. FTIR spectra of surface species on HFER at 250 oC upon the fresh zeolite being 
exposed to 500 ppm C2H2 + 1000 ppm NO + 10 % O2 in N2 (A) and then to 1000 ppm NO + 
10 % O2 in N2 (B) 
Note: The cell was evacuated briefly before the zeolite was exposed to NO+O2 in N2 
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These results imply that the rate-determining step for the C2H2-SCR over HZSM-5 and 
HFER is the nitrous species formation from NOx adsorption. Due to the restriction in length 
for the chapter, here, we will interpret only the rate-determining step of C2H2-SCR over 
HZSM-5 and HFER deduced from FTIR study on Zr and Y promoted zeolites. 
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Fig. 10. FTIR spectra arising from surface nitrate species on HZSM-5, 2%Zr/HZSM-5, HFER, 
and 2%Zr/HFER upon the catalyst samples exposing to gas mixture of 1000 ppm NO + 10 % 
O2 in N2 for 30 min at 250 oC 

The catalytic performance of HFER, HZSM-5, 2%Zr/HFER and 2%Zr/HZSM-5 in C2H2-SCR 
was shown in Fig. 8. The conversion of NO into N2 was strongly influenced by the type of 
zeolites. The parent zeolite of HFER displayed much higher activity than HZSM-5 for C2H2-
SCR in the temperature range of 250-375 oC. For instance, NO conversion to N2 over HFER 
at 250 oC was 69.6%, which is much higher than that over HZSM-5 under the same reaction 
conditions. On the other hand, significant doping effect of zirconium incorporation into the 
zeolites on C2H2-SCR was observed, especially in the case of HZSM-5. For instance, NO 
conversion to N2 was increased to 78.0% from 69.6% at 250 oC by 2% of zirconium 
incorporation into HFER, whereas it sharply increased to 56.0% from 25.4% in the case of 
HZSM-5. Why HFER was so much active at the lower reaction temperature compared to 
HZSM-5? Why the doping effect of zirconium on C2H2-SCR was so much larger for HZSM-5 
than HFER? To answer these questions, we tentatively combined their catalytic performance 
in C2H2-SCR with their NOx adsorption capacity. As shown in Fig. 9, Two bands at 1598 and 
1629 cm-1 due to bidenate and bridging nitrates (Li et al., 2007; Tsyntsarski et al., 2003; Li et 
al., 2005a) respectively appeared on HZSM-5 and HFER when the zeolites were exposed to 
NO+O2 at 250 oC. By comparing the band increasing in intensity at 1629 and 1598 cm-1 over 
the zeolites, it can be known that the nitrate species formation was faster over HFER than 
that over HZSM-5. Obviously, the relative nitrate species formation rate coincides well with 
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the relative C2H2-SCR activity for the two parent zeolites. Similar relationship of C2H2-SCR 
activity versus nitrate species formation rate can be also obtained on HZSM-5 and 
2%Zr/HZSM-5. The bands due to nitrate species on 2%Zr/HZSM-5 (spectrum m in Fig. 9) 
were obviously strong in intensity compared to that obtained at the same exposing time 
over HZSM-5. Figure 10 gave the stable FTIR spectrum at 250 oC obtained by exposing 
HZSM-5, HFER, 2%Zr/HZSM-5 and 2%Zr/HFER respectively to gas mixture of 1000 ppm 
NO + 10 % O2 in N2 until the corresponding spectra no further change. By combining the 
results given in this figure with those in Fig. 8, the relative activity of the zeolites and those 
promoted by zirconium can be well understood. The lager nitrate species formation capacity 
of HFER compared to HZSM-5 may be the reason leading to the higher C2H2-SCR activity of 
HFER in comparison with HZSM-5. Accordingly, as 2%Zr/HFER have the further large 
nitrate species formation capacity, due to 2% of zirconium incorporation, it displayed more 
active than the zeolite itself. Also, the drastically larger C2H2-SCR activity of 2%Zr/HZSM-5 
than that of the zeolite itself can be attributed to the substantially increased nitrate species 
formation capacity of the resulting material prepared from zirconium impregnation on the 
zeolite. To confirm the supposition that nitrate species formation on the catalyst surface is 
the rate-determining step for the C2H2-SCR over HZSM-5 and HFER, it must be validated 
that the nitrate species are important intermediate of the total reaction, i.e. they are active 
toward reduction, which will be discussed in the section 4. It should be also validated that, 
the step of nitrate species formation on the catalyst surface is most slow among all of the 
steps in the route of C2H2-SCR over the zeolites. 
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Fig. 11. FTIR spectra of surface species on HFER at 250 oC upon the fresh zeolite being 
exposed to 500 ppm C2H2 + 1000 ppm NO + 10 % O2 in N2 (A) and then to 1000 ppm NO + 
10 % O2 in N2 (B) 
Note: The cell was evacuated briefly before the zeolite was exposed to NO+O2 in N2 
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Figure 11 gave the transient in situ FTIR spectrum of surface species on HFER at 250 oC 
recorded when the zeolite was exposed to 500 ppm C2H2 + 1000 ppm NO + 10 % O2 in N2 and 
then reductant gas of acetylene was cut off thereafter. Although bands at 1598 and 1629 cm-1 

due to nitrate species with strong intensity appeared in the spectra recorded when the zeolites 
were exposed to 1000 ppm NO + 10 % O2 in N2 (Fig.10), no one of them appeared in the 
transient in situ FTIR spectra as well as in the steady spectrum when 500 ppm C2H2 was 
introduced into the gas mixture, i.e. in the C2H2-SCR reaction condition. Furthermore, the 
nitrate species even could not be detected in the in situ FTIR in the followed period of 30 min 
(Fig 11B), even though C2H2 was completely removed out from the gas mixture. These 
experimental results indicate that no nitrate species (produced by NO+O2 co-adsorption over 
the zeolite) can cumulate on the zeolite surface under the C2H2-SCR reaction condition. 
Instead, the species produced by adsorption of acetylene or its derivates obviously cumulated 
on the zeolite surface, being characterized by the bands at 1691, 1651 and 1380 cm-1. It means 
that formation of the reductant species is faster by far than that required by nitrate species 
reduction. In other words, the rate of nitrate species reduction is limited by that of nitrate 
species formation. Thus, it can be concluded that the rate-determining step of C2H2-SCR over 
the HFER is the nitrate species formation step. Then, it can be further deduced that the C2H2-
SCR reaction over HZSM-5 must be controlled also by this step, as discussed above, nitrate 
species formation capacity of HZSM-5 is much lower than that of HFER, and C2H2-SCR 
activity enhanced by zirconium impregnation was more significant on HZSM-5 than on HFER. 
Finally, it should be noted that, the quantitive evidence obtained by FTIR must be based on a 
strict experiment, e.g., the surface species must be measured over the self-supporting wafer 
with the same weight. Otherwise, accurate FTIR result may be hardly obtained. To compare 
the amount of surface species formed on the catalysts in FTIR, catalyst wafers with 14 ± 0.7 mg 
were selected and certain parameters of the IR spectrophotometer were set in our experiments. 

4. To identify reaction intermediates 
The identification of reaction intermediates is much important not only for investigating the 
reaction route over a catalyst, but also for understanding the effect of doping material being 
introduced to the catalyst. As motioned above, in the C2H2-SCR investigation, we found that 
Mo, W, Zr, Y impregnated on HZSM-5 and HFER significantly enhanced the formation of 
nitrate species over the catalyst and correspondingly increased the C2H2-SCR activity. These 
results could be well understood by the rate-determining step discussed in the section 3. On 
the other hand, we found that, NaZSM-5 is almost inactive for C2H2-SCR, though it can be 
considered that NaZSM-5 has much stronger nitrate species formation capacity compared to 
HZSM-5. Certainly, one can considered that due to lack of protons and inert for catalyzing 
NO oxidation, it can not initiate the aimed reaction. We also found that when NO in the gas 
mixture was completely changed to NO2, the NO2 conversion to N2 over NaZSM-5 was still 
less much than that over HZSM-5. These results imply that NaZSM-5 hardly catalyzes C2H2-
SCR due to not only inactive for NO oxidation, but also the other inferior action displayed in 
the subsequent steps. Thus, the role of protons in the NO reduction by acetylene over 
HZSM-5 was studied. 

4.1 Characterization of nitrous species on HZSM-5 and NaZSM-5 
The nitrous species formation and variation with temperature, as well as their reactivity 
towards to reduction by acetylene were investigated by FTIR. The spectra obtained upon 

Fourier Transforms Infrared Spectroscopy Applied in  
Selective Catalytic Reduction of NO by Acetylene 

 

335 

exposing HZSM-5 and NaZSM-5 to NO and O2 at 40 oC were depicted in Fig. 12. On HZSM-5 
(Fig.12 A), the bands at 1622 cm-1 due to weakly adsorbed NO2 (Shimizu et al., 2001;   
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Fig. 12. FTIR spectra of surface nitrous species formed upon exposing HZSM-5 (A,C) and 
NaZSM-5 (B) to 1000 ppm NO and 10 % O2 in N2 at 40 oC for 1min (a), reaching saturated 
adsorption (b), and then a brief evacuation (c) 

Pirngruber & Pieterse, 2006) or bridging nitrates (Ivanova et al., 2001; Yu et al., 2004; Sedlmair 
et al., 2003b; Li et al., 2005b) and that at 1311 cm-1 due to unidentate nitrates(Mihaylov et al., 
2004; Shimizu et al., 2001; He et al., 2004) with three negative bands at 3700, 2884 and 2477 
cm-1 were observed upon exposing the zeolite to NO+O2 for 1 min. The band at 3700 cm-1 is 
due to asymmetric stretching vibration of molecular adsorbed water (Nakamoto, 1996; 
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Figure 11 gave the transient in situ FTIR spectrum of surface species on HFER at 250 oC 
recorded when the zeolite was exposed to 500 ppm C2H2 + 1000 ppm NO + 10 % O2 in N2 and 
then reductant gas of acetylene was cut off thereafter. Although bands at 1598 and 1629 cm-1 

due to nitrate species with strong intensity appeared in the spectra recorded when the zeolites 
were exposed to 1000 ppm NO + 10 % O2 in N2 (Fig.10), no one of them appeared in the 
transient in situ FTIR spectra as well as in the steady spectrum when 500 ppm C2H2 was 
introduced into the gas mixture, i.e. in the C2H2-SCR reaction condition. Furthermore, the 
nitrate species even could not be detected in the in situ FTIR in the followed period of 30 min 
(Fig 11B), even though C2H2 was completely removed out from the gas mixture. These 
experimental results indicate that no nitrate species (produced by NO+O2 co-adsorption over 
the zeolite) can cumulate on the zeolite surface under the C2H2-SCR reaction condition. 
Instead, the species produced by adsorption of acetylene or its derivates obviously cumulated 
on the zeolite surface, being characterized by the bands at 1691, 1651 and 1380 cm-1. It means 
that formation of the reductant species is faster by far than that required by nitrate species 
reduction. In other words, the rate of nitrate species reduction is limited by that of nitrate 
species formation. Thus, it can be concluded that the rate-determining step of C2H2-SCR over 
the HFER is the nitrate species formation step. Then, it can be further deduced that the C2H2-
SCR reaction over HZSM-5 must be controlled also by this step, as discussed above, nitrate 
species formation capacity of HZSM-5 is much lower than that of HFER, and C2H2-SCR 
activity enhanced by zirconium impregnation was more significant on HZSM-5 than on HFER. 
Finally, it should be noted that, the quantitive evidence obtained by FTIR must be based on a 
strict experiment, e.g., the surface species must be measured over the self-supporting wafer 
with the same weight. Otherwise, accurate FTIR result may be hardly obtained. To compare 
the amount of surface species formed on the catalysts in FTIR, catalyst wafers with 14 ± 0.7 mg 
were selected and certain parameters of the IR spectrophotometer were set in our experiments. 

4. To identify reaction intermediates 
The identification of reaction intermediates is much important not only for investigating the 
reaction route over a catalyst, but also for understanding the effect of doping material being 
introduced to the catalyst. As motioned above, in the C2H2-SCR investigation, we found that 
Mo, W, Zr, Y impregnated on HZSM-5 and HFER significantly enhanced the formation of 
nitrate species over the catalyst and correspondingly increased the C2H2-SCR activity. These 
results could be well understood by the rate-determining step discussed in the section 3. On 
the other hand, we found that, NaZSM-5 is almost inactive for C2H2-SCR, though it can be 
considered that NaZSM-5 has much stronger nitrate species formation capacity compared to 
HZSM-5. Certainly, one can considered that due to lack of protons and inert for catalyzing 
NO oxidation, it can not initiate the aimed reaction. We also found that when NO in the gas 
mixture was completely changed to NO2, the NO2 conversion to N2 over NaZSM-5 was still 
less much than that over HZSM-5. These results imply that NaZSM-5 hardly catalyzes C2H2-
SCR due to not only inactive for NO oxidation, but also the other inferior action displayed in 
the subsequent steps. Thus, the role of protons in the NO reduction by acetylene over 
HZSM-5 was studied. 

4.1 Characterization of nitrous species on HZSM-5 and NaZSM-5 
The nitrous species formation and variation with temperature, as well as their reactivity 
towards to reduction by acetylene were investigated by FTIR. The spectra obtained upon 
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exposing HZSM-5 and NaZSM-5 to NO and O2 at 40 oC were depicted in Fig. 12. On HZSM-5 
(Fig.12 A), the bands at 1622 cm-1 due to weakly adsorbed NO2 (Shimizu et al., 2001;   
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Fig. 12. FTIR spectra of surface nitrous species formed upon exposing HZSM-5 (A,C) and 
NaZSM-5 (B) to 1000 ppm NO and 10 % O2 in N2 at 40 oC for 1min (a), reaching saturated 
adsorption (b), and then a brief evacuation (c) 

Pirngruber & Pieterse, 2006) or bridging nitrates (Ivanova et al., 2001; Yu et al., 2004; Sedlmair 
et al., 2003b; Li et al., 2005b) and that at 1311 cm-1 due to unidentate nitrates(Mihaylov et al., 
2004; Shimizu et al., 2001; He et al., 2004) with three negative bands at 3700, 2884 and 2477 
cm-1 were observed upon exposing the zeolite to NO+O2 for 1 min. The band at 3700 cm-1 is 
due to asymmetric stretching vibration of molecular adsorbed water (Nakamoto, 1996; 
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Hadajiivanov et al., 1998), and the bands at 2884 and 2477 cm-1 are due to the well-known A-
B-C structure produced by hydrogen-bonded hydroxyls (Mihaylov et al., 2004; Hadajiivanov 
et al., 1998). The results indicate that the formation of nitrates occurred at the expense of 
molecular adsorbed water through the reaction 2 2 32NO H O HNO HONO+ → +  (Li et al., 
2005b; Szanyi et al., 2004). Prolonged exposure of the sample to NO+O2 led to an increase in 
intensity only at 1311 cm−1, which can be explained by the reaction 

2
2 3 2M O 2NO M NO NOn n+ − + − −− + → − +  on cation defect sites such as extra-framework 

alumina, similar to the reaction pathway suggested by Larsen et al. (Li et al., 2005b).  Part of 
the nitrous species (adsorbed NO2 and some unidentate nitrates) corresponding to the bands 
at 1622 and 1311 cm−1 were so weakly adsorbed on the zeolite that they disappeared in the 
subsequent brief evacuation. At the same time, two bands at 1663 and 1389 cm−1 due to 
nitrites and/or nitrates associated with a very low concentration of Na+ ions in HZSM-5 (Li. 
et al., 2005b; Satsuma et al., 1997; Szanyi & Paffett, 1996) were observed. Identical to HZSM-
5, the band at 1622 cm−1 appeared rapidly with NO+O2 co-adsorption on NaZSM-5 (Fig. 
12B). However, different from HZSM-5, prolonged exposure of NaZSM-5 to NO+O2 
primarily resulted in the appearance of bands with strong intensity at 1407 and 1389 cm-1 
due to nitrates banding to Na+ (Li et al., 2005b; Satsuma et al., 1997; Szanyi & Paffett, 1999). 
It is clear by comparing Fig. 12 A and B that much more stable nitrous species could form on 
NaZSM-5 than on HZSM-5, which are in good accordance with the results obtained by NOx-
TPD as shown in Fig. 13. Thermal stability of the nitrous species on the zeolites was 
investigated by FTIR, as shown in Fig. 14. On HZSM-5, the band at 1311 cm−1 due to 
unidentate nitrates disappeared at 150 ◦C, and a band appeared at 1585 cm−1 due to 
bidentate nitrates (Ivanova et al., 2001; Yu et al., 2004; Shimizu et al., 2001; He et al., 2004; 
Poignant et al., 2001). It indicates that the bidentate nitrates were produced from unidentate 
nitrates at the elevated temperature. Compared with the bridging nitrates (1622 cm−1), the 
bidentate nitrates (1585 cm−1) were more thermally stable; the intensity at 1585 cm−1 slightly 
decreased with the temperature increasing. Similar to those on HZSM-5, unidentate nitrates   
 

 
Fig. 13. TPD profiles of NO (A) and NO2 (B) in N2 flow after saturated co-adsorption of 
NO+O2 on HZSM-5 (a) and on NaZSM-5 (b) 
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Fig. 14. The nitrous species on HZSM-5 (A) and on NaZSM-5 (B) at 150 oC (a), 250 oC (b), 350 
oC (c) and 400 oC (d) 

(1311 cm−1) on NaZSM-5 disappeared at 150 ◦C, indicating that the unidentate nitrate species 
are less thermal stable than the other kinds of nitrates, irrespective of the adsorbents. It 
implies that the unidentate nitrates are not involved in the C2H2-SCR, as the reaction 
significantly occurred at the temperature above 250 ◦C. Quite different from the findings on 
HZSM-5, although the bridging nitrates (giving band at 1622 cm−1) on NaZSM-5 changed 
little at 150 ◦C, most of them desorbed when the temperature increased to 250 ◦C. Band at 
1715 cm−1, observed exclusively on NaZSM-5, could be assigned to nitrates associated with 
Na+ ions, because it appeared concomitantly with the band at 1407 cm−1 during the co-
adsorption of NO+O2 (Fig. 12 B) and disappeared at 350 ◦C together with the same band 
(Fig. 14). On NaZSM-5, the most stable nitrous species are the nitrate species associated with 
Na+ (1389 cm−1), which could remained on the zeolite at 400 ◦C. The FTIR results reveal that 
the adsorption of NOx on ZSM-5 was strongly affected by the cations in the zeolite, and that 
protons were essential for the bidentate nitrates formation on the zeolites. 
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Hadajiivanov et al., 1998), and the bands at 2884 and 2477 cm-1 are due to the well-known A-
B-C structure produced by hydrogen-bonded hydroxyls (Mihaylov et al., 2004; Hadajiivanov 
et al., 1998). The results indicate that the formation of nitrates occurred at the expense of 
molecular adsorbed water through the reaction 2 2 32NO H O HNO HONO+ → +  (Li et al., 
2005b; Szanyi et al., 2004). Prolonged exposure of the sample to NO+O2 led to an increase in 
intensity only at 1311 cm−1, which can be explained by the reaction 

2
2 3 2M O 2NO M NO NOn n+ − + − −− + → − +  on cation defect sites such as extra-framework 

alumina, similar to the reaction pathway suggested by Larsen et al. (Li et al., 2005b).  Part of 
the nitrous species (adsorbed NO2 and some unidentate nitrates) corresponding to the bands 
at 1622 and 1311 cm−1 were so weakly adsorbed on the zeolite that they disappeared in the 
subsequent brief evacuation. At the same time, two bands at 1663 and 1389 cm−1 due to 
nitrites and/or nitrates associated with a very low concentration of Na+ ions in HZSM-5 (Li. 
et al., 2005b; Satsuma et al., 1997; Szanyi & Paffett, 1996) were observed. Identical to HZSM-
5, the band at 1622 cm−1 appeared rapidly with NO+O2 co-adsorption on NaZSM-5 (Fig. 
12B). However, different from HZSM-5, prolonged exposure of NaZSM-5 to NO+O2 
primarily resulted in the appearance of bands with strong intensity at 1407 and 1389 cm-1 
due to nitrates banding to Na+ (Li et al., 2005b; Satsuma et al., 1997; Szanyi & Paffett, 1999). 
It is clear by comparing Fig. 12 A and B that much more stable nitrous species could form on 
NaZSM-5 than on HZSM-5, which are in good accordance with the results obtained by NOx-
TPD as shown in Fig. 13. Thermal stability of the nitrous species on the zeolites was 
investigated by FTIR, as shown in Fig. 14. On HZSM-5, the band at 1311 cm−1 due to 
unidentate nitrates disappeared at 150 ◦C, and a band appeared at 1585 cm−1 due to 
bidentate nitrates (Ivanova et al., 2001; Yu et al., 2004; Shimizu et al., 2001; He et al., 2004; 
Poignant et al., 2001). It indicates that the bidentate nitrates were produced from unidentate 
nitrates at the elevated temperature. Compared with the bridging nitrates (1622 cm−1), the 
bidentate nitrates (1585 cm−1) were more thermally stable; the intensity at 1585 cm−1 slightly 
decreased with the temperature increasing. Similar to those on HZSM-5, unidentate nitrates   
 

 
Fig. 13. TPD profiles of NO (A) and NO2 (B) in N2 flow after saturated co-adsorption of 
NO+O2 on HZSM-5 (a) and on NaZSM-5 (b) 
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Fig. 14. The nitrous species on HZSM-5 (A) and on NaZSM-5 (B) at 150 oC (a), 250 oC (b), 350 
oC (c) and 400 oC (d) 

(1311 cm−1) on NaZSM-5 disappeared at 150 ◦C, indicating that the unidentate nitrate species 
are less thermal stable than the other kinds of nitrates, irrespective of the adsorbents. It 
implies that the unidentate nitrates are not involved in the C2H2-SCR, as the reaction 
significantly occurred at the temperature above 250 ◦C. Quite different from the findings on 
HZSM-5, although the bridging nitrates (giving band at 1622 cm−1) on NaZSM-5 changed 
little at 150 ◦C, most of them desorbed when the temperature increased to 250 ◦C. Band at 
1715 cm−1, observed exclusively on NaZSM-5, could be assigned to nitrates associated with 
Na+ ions, because it appeared concomitantly with the band at 1407 cm−1 during the co-
adsorption of NO+O2 (Fig. 12 B) and disappeared at 350 ◦C together with the same band 
(Fig. 14). On NaZSM-5, the most stable nitrous species are the nitrate species associated with 
Na+ (1389 cm−1), which could remained on the zeolite at 400 ◦C. The FTIR results reveal that 
the adsorption of NOx on ZSM-5 was strongly affected by the cations in the zeolite, and that 
protons were essential for the bidentate nitrates formation on the zeolites. 
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4.2 Characterization on the activity of nitrous species towards to reduction on the 
zeolites  
The bands due to nitrate species at 1626 and 1585 cm−1 disappeared within 1 min upon 
exposure of HZSM-5 to C2H2+O2 at 250 ◦C (Fig. 15A). Concomitantly, the bands at 1693 cm−1 
due to carbonyl-containing compound and at 1605 cm−1 due to the C=O vibration of 
carboxylic groups (Li et al., 2005b) appeared. It indicates that the bridging and bidentate 
nitrates are very active with reductant. However, no significant change in the spectra was 
observed when the NaZSM-5 was exposed to the gas mixture of C2H2+O2 at 250 ◦C, as 
shown Fig. 15 B), indicating that the nitrate species bonding to Na+ on NaZSM-5 are inert to 
the reductant. The quite different nitrous species formed on HZSM-5 and on NaZSM-5 as 
well as their disparate reactivity with reductant could explain the distinct catalytic 
performance of the two zeolites in C2H2-SCR. Thus, it is rational to draw the conclusion that 
protons are responsible not only for catalyzing NO oxidation to NO2, but also for the 
formation of active nitrate intermediates in the C2H2-SCR. 
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Fig. 15.  FTIR spectra of surface species on HZSM-5 (A) and NaZSM-5 (B) at 250 oC when the 
zeolite was subjected to saturated coadsorption of NO+O2 and a subsequent brief 
evacuation (a), and then an exposure to C2H2+O2 for 1 min (b), 2 min (c), 4 min(d), 6 min (e), 
8 min (f), and 10 min (g) 

4.3 Characterization of carbonous species and the reactivity with nitrous species on 
the zeolites  
The evolution of carbonous species and their reactivity toward NOx were investigated by 
FTIR. The IR spectra of carbonous species due to saturated adsorption of acetylene on the 
HZSM-5 and NaZSM-5 at 80 ◦C are depicted in Fig. 16. The adsorption of acetylene on 
HZSM-5 resulted in the appearance of positive bands at 1673 and 1628 cm−1 and negative 
bands at 3700, 2884, and 2477 cm−1 (Fig. 16, spectrum c). As discussed in Section 4.1, the 
three negative bands are arisen from the consumption of adsorbed water on the Brønsted 
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acid site. No negative band at 3610 cm−1 due to consumption of acidic zeolite Al(OH)Si 
hydroxyls (Poignant et al., 2001; Brosius et al., 2005) was observed caused by acetylene 
adsorption. In an energy standpoint, acetylene would adsorb on the free Brønsted acid sites, 
which were characterized by band at 3610 cm−1 as shown in Fig. 17, rather than adsorb on 
the ones taken up by water. Therefore, it is reasonable to propose that acetylene reacted with 
the adsorbed water on the Brønsted acid site, but did not simply take up the Brønsted acid 
site by breaking the well-known A–B–C structure.  
Based on above conclusion that acetylene reaction with water on Brønsted acid sites when 
adsorbed on HZSM-5, it can be further reasonably speculated that vinyl alcohol (CH2=CH–
OH) species were formed by acetylene adsorption on the zeolite as depicted by model 1 as 
shown in scheme 1: In principle, acetylene can be adsorbed on ZSM-5 in two ways. One way 
does by reacting with water to form vinyl alcohol and the later can be strongly bonded to 
Brønsted acid sites with hydrogen bond (model I), being characterized by a blue shift of 
ν(C=C) with respect to the general C=C double band. Due to hydrogen bond of the –OH 
group with the Brønsted acid sites, the blue shift of ν(C=C) may be further aggravated, and 
it is the primary case of acetylene adsorption on HZSM-5, which is strongly supported by 
the band of 1628 and 1723 cm-1. Another way does by binding to the cations (e.g. H+ and 
Na+) in zeolite channels through weak static attraction to form a π-complex, which may 
decreases the electron density in the highest occupied molecular orbital, leading to a red 
shift of ν(C=C) with respect to the general C=C double band (model II). Obviously, it is the 
primary case of acetylene adsorption on NaZSM-5, which is strongly supported by the band 
at 1621 cm-1. 
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Fig. 16. FTIR spectra of carbonous species formed by saturated adsorption of C2H2 (500 
ppm) in N2 at 80 oC on NaZSM-5 (a), HZSM-5 (c), and those when the sample of NaZSM-5 
(b) and HZSM-5 (d) was subsequently subjected to a brief evacuation at this temperature 
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4.2 Characterization on the activity of nitrous species towards to reduction on the 
zeolites  
The bands due to nitrate species at 1626 and 1585 cm−1 disappeared within 1 min upon 
exposure of HZSM-5 to C2H2+O2 at 250 ◦C (Fig. 15A). Concomitantly, the bands at 1693 cm−1 
due to carbonyl-containing compound and at 1605 cm−1 due to the C=O vibration of 
carboxylic groups (Li et al., 2005b) appeared. It indicates that the bridging and bidentate 
nitrates are very active with reductant. However, no significant change in the spectra was 
observed when the NaZSM-5 was exposed to the gas mixture of C2H2+O2 at 250 ◦C, as 
shown Fig. 15 B), indicating that the nitrate species bonding to Na+ on NaZSM-5 are inert to 
the reductant. The quite different nitrous species formed on HZSM-5 and on NaZSM-5 as 
well as their disparate reactivity with reductant could explain the distinct catalytic 
performance of the two zeolites in C2H2-SCR. Thus, it is rational to draw the conclusion that 
protons are responsible not only for catalyzing NO oxidation to NO2, but also for the 
formation of active nitrate intermediates in the C2H2-SCR. 
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Fig. 15.  FTIR spectra of surface species on HZSM-5 (A) and NaZSM-5 (B) at 250 oC when the 
zeolite was subjected to saturated coadsorption of NO+O2 and a subsequent brief 
evacuation (a), and then an exposure to C2H2+O2 for 1 min (b), 2 min (c), 4 min(d), 6 min (e), 
8 min (f), and 10 min (g) 

4.3 Characterization of carbonous species and the reactivity with nitrous species on 
the zeolites  
The evolution of carbonous species and their reactivity toward NOx were investigated by 
FTIR. The IR spectra of carbonous species due to saturated adsorption of acetylene on the 
HZSM-5 and NaZSM-5 at 80 ◦C are depicted in Fig. 16. The adsorption of acetylene on 
HZSM-5 resulted in the appearance of positive bands at 1673 and 1628 cm−1 and negative 
bands at 3700, 2884, and 2477 cm−1 (Fig. 16, spectrum c). As discussed in Section 4.1, the 
three negative bands are arisen from the consumption of adsorbed water on the Brønsted 
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acid site. No negative band at 3610 cm−1 due to consumption of acidic zeolite Al(OH)Si 
hydroxyls (Poignant et al., 2001; Brosius et al., 2005) was observed caused by acetylene 
adsorption. In an energy standpoint, acetylene would adsorb on the free Brønsted acid sites, 
which were characterized by band at 3610 cm−1 as shown in Fig. 17, rather than adsorb on 
the ones taken up by water. Therefore, it is reasonable to propose that acetylene reacted with 
the adsorbed water on the Brønsted acid site, but did not simply take up the Brønsted acid 
site by breaking the well-known A–B–C structure.  
Based on above conclusion that acetylene reaction with water on Brønsted acid sites when 
adsorbed on HZSM-5, it can be further reasonably speculated that vinyl alcohol (CH2=CH–
OH) species were formed by acetylene adsorption on the zeolite as depicted by model 1 as 
shown in scheme 1: In principle, acetylene can be adsorbed on ZSM-5 in two ways. One way 
does by reacting with water to form vinyl alcohol and the later can be strongly bonded to 
Brønsted acid sites with hydrogen bond (model I), being characterized by a blue shift of 
ν(C=C) with respect to the general C=C double band. Due to hydrogen bond of the –OH 
group with the Brønsted acid sites, the blue shift of ν(C=C) may be further aggravated, and 
it is the primary case of acetylene adsorption on HZSM-5, which is strongly supported by 
the band of 1628 and 1723 cm-1. Another way does by binding to the cations (e.g. H+ and 
Na+) in zeolite channels through weak static attraction to form a π-complex, which may 
decreases the electron density in the highest occupied molecular orbital, leading to a red 
shift of ν(C=C) with respect to the general C=C double band (model II). Obviously, it is the 
primary case of acetylene adsorption on NaZSM-5, which is strongly supported by the band 
at 1621 cm-1. 
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Fig. 16. FTIR spectra of carbonous species formed by saturated adsorption of C2H2 (500 
ppm) in N2 at 80 oC on NaZSM-5 (a), HZSM-5 (c), and those when the sample of NaZSM-5 
(b) and HZSM-5 (d) was subsequently subjected to a brief evacuation at this temperature 
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Fig. 17. FTIR spectra of fresh HZSM-5 and NaZSM-5 

 

 
Scheme 1. C2H2 adsorption model on the HZSM-5 and NaZSM-5 

Evolution of the carbonous species on HZSM-5 with temperature is shown in Fig. 18. It is 
obvious that the intensity of the band at 3659 cm−1 due to ν(–OH) of alcohol hydroxyl 
groups increased with the temperature increase from 80 to 150 ◦C. At the same time, the 
bands at 2884 and 2477 cm−1 due to the A–B–C structure, and the band at 1352 cm−1 due to 
δ(OH) of the H-bonded zeolite hydroxyls were recovered on the HZSM-5 (Fig. 18), 
accompanied by the appearance of the negative band at 3610 cm−1. With the temperature 
further increase, the bands relating to adsorbed water on the Brønsted acid sites increased in 
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intensity. It indicates that water was formed and adsorbed on the Brønsted acid sites at 
elevated temperatures. Above 300 ◦C, the strong band centered at 1628 cm−1 disappeared, 
which correlates well with the end of desorption peak (around 215 ◦C) of acetylene in C2H2-
TPD (not shown). As a result, a new band at 1646 cm−1 was clearly observed. Based on these 
results, a scheme 2 for the evolution of carbonous species with temperature on HZSM-5 can 
be proposed. 
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Fig. 18. Spectra of carbonous species on HZSM-5 when evacuated at 80 oC (a), at 150 oC (b), 
at 178 oC (c), (d) at 200 oC (d), at 300 oC (e), at 360 oC (f), and at 410 oC (g) after saturated 
adsorption of acetylene 
The vinyl alcohol adsorbed on the Brønsted acid sites in the models both I and II was 
converted to a carbenium ion (HO–HC+–CH3), which gave bands at 3659 and 1352 cm−1 due 
to the OH stretching vibration and the CH3 deformation vibration, respectively. The 
carbenium ion decomposed to water and another carbonium ion (CH2=HC+) that gave the 
band at 1646 cm−1. The formed water adsorbed on Brønsted acid sites led to a recovery of 
intensity and an increase of the bands at 2884 and 2477 cm−1, as well as the negative band at 
3610 cm−1. In addition, some of the carbenium ion (HO–HC+–CH3) was oxidized by oxygen 
(ca. 5000 ppm) in the pure N2 (99.995%) to acetate species, giving the bands at 1585 and 1479 
cm-1 due to the νas(COO) and νs(COO) of acetate species (Yu et al., 2004; Shimizu et al., 2001; 
He et al., 2004; Poignant et al., 2001; Wu et al., 2005). 
Evolution of the carbonous species on HZSM-5 with temperature is shown in Fig. 19. 
Temperature increase from 80 to 200 ◦C resulted in recovery of the band at 1635 cm−1 as well 
as a shift of the band (from 1623 to 1628 cm−1). Scheme 3 explains that acetylene was 
released by the decomposition of vinyl alcohol, leaving water on the cation sites in zeolite, 
leading to the disappearance of the negative band. Above 300 ◦C, almost no carbonous 
surface species were detected on Na-ZSM-5, which is in line with the results obtained in 
C2H2-TPD (not shown). 
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Scheme 1. C2H2 adsorption model on the HZSM-5 and NaZSM-5 

Evolution of the carbonous species on HZSM-5 with temperature is shown in Fig. 18. It is 
obvious that the intensity of the band at 3659 cm−1 due to ν(–OH) of alcohol hydroxyl 
groups increased with the temperature increase from 80 to 150 ◦C. At the same time, the 
bands at 2884 and 2477 cm−1 due to the A–B–C structure, and the band at 1352 cm−1 due to 
δ(OH) of the H-bonded zeolite hydroxyls were recovered on the HZSM-5 (Fig. 18), 
accompanied by the appearance of the negative band at 3610 cm−1. With the temperature 
further increase, the bands relating to adsorbed water on the Brønsted acid sites increased in 
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intensity. It indicates that water was formed and adsorbed on the Brønsted acid sites at 
elevated temperatures. Above 300 ◦C, the strong band centered at 1628 cm−1 disappeared, 
which correlates well with the end of desorption peak (around 215 ◦C) of acetylene in C2H2-
TPD (not shown). As a result, a new band at 1646 cm−1 was clearly observed. Based on these 
results, a scheme 2 for the evolution of carbonous species with temperature on HZSM-5 can 
be proposed. 
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Fig. 18. Spectra of carbonous species on HZSM-5 when evacuated at 80 oC (a), at 150 oC (b), 
at 178 oC (c), (d) at 200 oC (d), at 300 oC (e), at 360 oC (f), and at 410 oC (g) after saturated 
adsorption of acetylene 
The vinyl alcohol adsorbed on the Brønsted acid sites in the models both I and II was 
converted to a carbenium ion (HO–HC+–CH3), which gave bands at 3659 and 1352 cm−1 due 
to the OH stretching vibration and the CH3 deformation vibration, respectively. The 
carbenium ion decomposed to water and another carbonium ion (CH2=HC+) that gave the 
band at 1646 cm−1. The formed water adsorbed on Brønsted acid sites led to a recovery of 
intensity and an increase of the bands at 2884 and 2477 cm−1, as well as the negative band at 
3610 cm−1. In addition, some of the carbenium ion (HO–HC+–CH3) was oxidized by oxygen 
(ca. 5000 ppm) in the pure N2 (99.995%) to acetate species, giving the bands at 1585 and 1479 
cm-1 due to the νas(COO) and νs(COO) of acetate species (Yu et al., 2004; Shimizu et al., 2001; 
He et al., 2004; Poignant et al., 2001; Wu et al., 2005). 
Evolution of the carbonous species on HZSM-5 with temperature is shown in Fig. 19. 
Temperature increase from 80 to 200 ◦C resulted in recovery of the band at 1635 cm−1 as well 
as a shift of the band (from 1623 to 1628 cm−1). Scheme 3 explains that acetylene was 
released by the decomposition of vinyl alcohol, leaving water on the cation sites in zeolite, 
leading to the disappearance of the negative band. Above 300 ◦C, almost no carbonous 
surface species were detected on Na-ZSM-5, which is in line with the results obtained in 
C2H2-TPD (not shown). 
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Scheme 2. The evolution of carbonous species on HZSM-5 
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Fig. 19. Spectra of carbonous species on NaZSM-5 when evacuated at 150 oC (a), at 178 oC 
(b), at 200 oC (c), (d) at 300 oC (d), at 360 oC (e), and at 420 oC (f), after saturated adsorption 
of acetylene 
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Fourier Transforms Infrared Spectroscopy Applied in  
Selective Catalytic Reduction of NO by Acetylene 

 

343 

The reactivity of carbonous species on HZSM-5 and on NaZSM-5 with NO and NO+O2 was 
studied at 200 ◦C. Acetate species (1585, 1479 cm−1) were detected at steady state on HZSM-5 
in NO/N2 and N2 (Fig. 20 A), indicating that the acetate species could exist in NO/N2. This 
means that acetate species did not react with NO at the temperature. However, in 
NO+O2/N2, no acetate species could be detected, and instead, a new band at 2131 cm−1 
appeared. This band can be assigned to ν(C≡N) of cyanide (Shimizu et al., 2001; Mosqueda-
Jiménez et al., 2003b) produced by the reaction of acetate species with NOx. The result 
indicates that the acetate species formed by carbenium ion (HO–HC+–CH3) oxidation on 
HZSM-5 are active with nitrous species arising from the co-adsorption of NO+O2. Thus it 
can be reasonably considered that acetate species is one of the important intermediates for 
the C2H2-SCR. In contrast to the case of HZSM-5, although vinyl alcohol (1628 cm−1) was 
also formed on NaZSM-5 (Fig. 20 B), no significant change of the band in intensity was 
observed when the gas mixture was switched form NO/N2 to NO+O2/N2, indicating that 
the vinyl alcohol bonding to Na+ in NaZSM-5 is inert under the reaction conditions.  
Based on above discussion, it is clear that, the carbonous species formed by acetylene 
adsorption on HZSM-5 and on NaZSM-5 as well as their reactivity with nitrous species are 
also quite different. 
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Fig. 20. FTIR spectra of surface species on HZSM-5 (A) and NaZSM-5 (B) at 200 oC taken in 
(a) N2, (b) NO, (c) NO + O2. Before the measurements, the catalysts were pretreated in 
C2H2/N2 at 80 oC 

5. To propose possible reaction mechanism 
To design a catalyst more active for the HC-SCR in real lean-burn conditions, extensive 
studies were also carried out on mechanism of the reaction. There have been different 
opinions concerning the mechanism of HC-SCR in literature, which can be roughly 
classified as “dissociative” (Goula et al., 2007; Burch & Watling, 1996) and “reduction” ones 
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Fig. 19. Spectra of carbonous species on NaZSM-5 when evacuated at 150 oC (a), at 178 oC 
(b), at 200 oC (c), (d) at 300 oC (d), at 360 oC (e), and at 420 oC (f), after saturated adsorption 
of acetylene 
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The reactivity of carbonous species on HZSM-5 and on NaZSM-5 with NO and NO+O2 was 
studied at 200 ◦C. Acetate species (1585, 1479 cm−1) were detected at steady state on HZSM-5 
in NO/N2 and N2 (Fig. 20 A), indicating that the acetate species could exist in NO/N2. This 
means that acetate species did not react with NO at the temperature. However, in 
NO+O2/N2, no acetate species could be detected, and instead, a new band at 2131 cm−1 
appeared. This band can be assigned to ν(C≡N) of cyanide (Shimizu et al., 2001; Mosqueda-
Jiménez et al., 2003b) produced by the reaction of acetate species with NOx. The result 
indicates that the acetate species formed by carbenium ion (HO–HC+–CH3) oxidation on 
HZSM-5 are active with nitrous species arising from the co-adsorption of NO+O2. Thus it 
can be reasonably considered that acetate species is one of the important intermediates for 
the C2H2-SCR. In contrast to the case of HZSM-5, although vinyl alcohol (1628 cm−1) was 
also formed on NaZSM-5 (Fig. 20 B), no significant change of the band in intensity was 
observed when the gas mixture was switched form NO/N2 to NO+O2/N2, indicating that 
the vinyl alcohol bonding to Na+ in NaZSM-5 is inert under the reaction conditions.  
Based on above discussion, it is clear that, the carbonous species formed by acetylene 
adsorption on HZSM-5 and on NaZSM-5 as well as their reactivity with nitrous species are 
also quite different. 
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Fig. 20. FTIR spectra of surface species on HZSM-5 (A) and NaZSM-5 (B) at 200 oC taken in 
(a) N2, (b) NO, (c) NO + O2. Before the measurements, the catalysts were pretreated in 
C2H2/N2 at 80 oC 

5. To propose possible reaction mechanism 
To design a catalyst more active for the HC-SCR in real lean-burn conditions, extensive 
studies were also carried out on mechanism of the reaction. There have been different 
opinions concerning the mechanism of HC-SCR in literature, which can be roughly 
classified as “dissociative” (Goula et al., 2007; Burch & Watling, 1996) and “reduction” ones 
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(Mihaylov et al., 2004; Mosqueda-Jiménez et al., 2003b; Hadjiivanov et al., 2003). The 
“dissociative” mechanism proposed by Burch and Watling (Burch & Watling, 1996) has been 
widely accepted by the authors being concerned with noble metal catalysts in the HC-SCR 
field, and it can be expressed as follows (Goula et al., 2007):  

 ads ads adsNO N O→ +   (1) 

 ads ads 2N N N (g)+ →    (2) 

 ads ads 2N NO N O(g)+ →   (3) 

For the “reduction” mechanism of HC-SCR, some authors have claimed that activation of 
hydrocarbon occurs first, and some partially oxidized hydrocarbons (CxHyOz) produced by 
the step then react with NO and/or NO2 to form the secondary intermediates (Sasaki et al., 
1992). For example, formate and acetate were proposed to be active species of HC-SCR over 
CoOx/Al2O3 (He & KÖhler, 2006), Ga2O3/Al2O3 (He et al., 2005), Ag/Al2O3 (Shibata et al., 
2003), SnO2/Al2O3 (Liu et al., 2006), Cu-Al2O3 (Shimizu et al., 2000; Satsuma & Shimizu, 
2003), In2O3/Al2O3 (Luo et al., 2007), Ag/Al2O3 (Zhan et al., 2007) and Pd/Al2O3 catalysts 
(Huuhtanen et al., 2002). Acetaldehyde deriving from propene was also proposed to be 
main active species of the HC-SCR over sulfated titania-supported rhodium catalyst (Flores-
Moreno et al., 2005). However, some authors have claimed that activation of NOx occurs 
first, forming nitrous surface species, such as nitro (Meunier et al., 2000), nitroso (Poignant 
et al., 2001, Gerlach et al., 1999), nitrosonium ions (Gerlach et al., 1999, Ingelsten et al., 2005), 
nitrate or nitrite (Luo et al.,2007, Anunziata et al., 2007) over the catalyst. For instance, 
bridging and bidentate nitrates were reported to be produced first by co-adsorption of 
NO+O2 on Co/SO42−-ZrO2 (Tsyntsarski et al., 2003), BaY (Sedlmair et al., 2003a) and 
Ag/Al2O3 (Bentrup et al., 2005). Tsyntsarski et al. (Tsyntsarski et al., 2003) have suggested 
that both bridging and bidentate nitrates are active species of the HC-SCR. Mihaylov et al. 
(Mihaylov et al., 2004) have reported that monodentate nitrates on Ni-HZSM-5 are highly 
reactive towards methane. Lónyi et al. (Lónyi et al., 2007) have studied selective catalytic 
reduction of NO by CH4 over Co-, Co,Pt-, and H-mordenite catalysts and suggested that 
nitrosonium ions are surface intermediates of the reaction. There are also some other 
suggestions about the reaction intermediate of HC-SCR in literature, including nitrile 
(Poignant et al., 2001; Delahay et al., 2007), isocyanate (Mihaylov et al., 2004; Mosqueda-
Jiménez et al., 2004b; He & KÖhler, 2006), R-NOx (Mosqueda-Jiménez et al.,2003; Cowan et 
al., 1998), amine (Poignant et al., 2001), acetonoxime (Shimizu et al.,2000; Resini et al., 2003) 
and ammonia (Lónyi et al., 2007). 
Although most of the “reduction” mechanisms were supported by Fourier transform 
infrared (FTIR) identification of reaction intermediates (Joubert et al., 2006), none of them 
has been widely accepted because of the complexity of the process (Mosqueda-Jiménez et 
al., 2003b) being concerned with different catalysts, reductants and reaction conditions. 
More investigation on the reaction mechanism is required for understanding the real 
reaction route of HC-SCR over different catalysts and using different reductants.  

5.1 Reaction mechanism of C2H2-SCR over Mo/HMOR 
In the this section, a possible reaction mechanism of C2H2-SCR over Mo/ HMOR （Li et al., 
2008） and Zr/HFER (Xing et al., 2008) investigated by in situ FTIR was summarized.  
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Fig 21 shows conversion of NO and C2H2 in C2H2-SCR over the mordenite-based catalysts 
(HMOR, 0.5%Mo/HMOR, NaMOR) as a function of temperature. The activity of 
0.5%Mo/HMOR for C2H2-SCR was considerably high compared to HMOR and NaMOR. 
70% of NO conversion to N2 at 350 oC over 0.5% Mo/HMOR catalyst was obtained. It 
indicates that molybdenum has a significant promotional effect on C2H2-SCR. The peak of 
the “volcano” curve in NO conversion to N2 versus reaction temperature seems to be in line 
with the temperature where C2H2 was nearly completely consumed. Hence, the drop of NO 
conversion above 350 oC can be considered to be caused by the lack of reductant. 
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(Mihaylov et al., 2004; Mosqueda-Jiménez et al., 2003b; Hadjiivanov et al., 2003). The 
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 ads ads adsNO N O→ +   (1) 

 ads ads 2N N N (g)+ →    (2) 

 ads ads 2N NO N O(g)+ →   (3) 
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al., 1998), amine (Poignant et al., 2001), acetonoxime (Shimizu et al.,2000; Resini et al., 2003) 
and ammonia (Lónyi et al., 2007). 
Although most of the “reduction” mechanisms were supported by Fourier transform 
infrared (FTIR) identification of reaction intermediates (Joubert et al., 2006), none of them 
has been widely accepted because of the complexity of the process (Mosqueda-Jiménez et 
al., 2003b) being concerned with different catalysts, reductants and reaction conditions. 
More investigation on the reaction mechanism is required for understanding the real 
reaction route of HC-SCR over different catalysts and using different reductants.  

5.1 Reaction mechanism of C2H2-SCR over Mo/HMOR 
In the this section, a possible reaction mechanism of C2H2-SCR over Mo/ HMOR （Li et al., 
2008） and Zr/HFER (Xing et al., 2008) investigated by in situ FTIR was summarized.  
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Fig 21 shows conversion of NO and C2H2 in C2H2-SCR over the mordenite-based catalysts 
(HMOR, 0.5%Mo/HMOR, NaMOR) as a function of temperature. The activity of 
0.5%Mo/HMOR for C2H2-SCR was considerably high compared to HMOR and NaMOR. 
70% of NO conversion to N2 at 350 oC over 0.5% Mo/HMOR catalyst was obtained. It 
indicates that molybdenum has a significant promotional effect on C2H2-SCR. The peak of 
the “volcano” curve in NO conversion to N2 versus reaction temperature seems to be in line 
with the temperature where C2H2 was nearly completely consumed. Hence, the drop of NO 
conversion above 350 oC can be considered to be caused by the lack of reductant. 
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Fig. 22. Steady state in situ FTIR spectra of surface species on HMOR (A), 0.5%Mo/HMOR 
(B) and NaMOR (C) in 1000 ppm NO + 10% O2 + N2 at different temperature 
Figure 22 shows steady state in situ FTIR spectra of nitric species formed by NO+O2 co-
adsorption on the mordenite-based catalysts at different temperatures. Three main bands at 
2229, 1629 and 1592 cm-1 associated with nitric species were observed on HMOR (Fig. 22 A). 
The band at 2229 cm-1 is due to N-O stretching mode in NO+ (Li et al., 2005a; Pirngruber & 
Pieterse, 2006; Gerlach et al., 1999), and the bands at 1629 and 1592 cm-1 can be assigned to 
bridging and bidentate nitrates (Poignant et al., 2001; Li et al., 2005a; Sedlmair et al., 2003; 
Yu et al., 2007), respectively. The NO+ (2229 cm-1) species was also detected by Gerlach et al. 
(Gerlach et al., 1999) at 120 oC when NOx was adsorbed on the zeolite. As shown in Fig. 22  
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Fig. 23. In situ FTIR spectra on HMOR (A), 0.5%Mo/HMOR (B) and NaMOR (C) at 250 oC: a 
brief evacuation after saturated adsorption of NO+O2 (a), and subsequently exposing to 
C2H2+O2 for: 1 min (b), 3 min (c), 5 min (d), 8 min (e), 30 min (f) 
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Fig. 22. Steady state in situ FTIR spectra of surface species on HMOR (A), 0.5%Mo/HMOR 
(B) and NaMOR (C) in 1000 ppm NO + 10% O2 + N2 at different temperature 
Figure 22 shows steady state in situ FTIR spectra of nitric species formed by NO+O2 co-
adsorption on the mordenite-based catalysts at different temperatures. Three main bands at 
2229, 1629 and 1592 cm-1 associated with nitric species were observed on HMOR (Fig. 22 A). 
The band at 2229 cm-1 is due to N-O stretching mode in NO+ (Li et al., 2005a; Pirngruber & 
Pieterse, 2006; Gerlach et al., 1999), and the bands at 1629 and 1592 cm-1 can be assigned to 
bridging and bidentate nitrates (Poignant et al., 2001; Li et al., 2005a; Sedlmair et al., 2003; 
Yu et al., 2007), respectively. The NO+ (2229 cm-1) species was also detected by Gerlach et al. 
(Gerlach et al., 1999) at 120 oC when NOx was adsorbed on the zeolite. As shown in Fig. 22  
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Fig. 23. In situ FTIR spectra on HMOR (A), 0.5%Mo/HMOR (B) and NaMOR (C) at 250 oC: a 
brief evacuation after saturated adsorption of NO+O2 (a), and subsequently exposing to 
C2H2+O2 for: 1 min (b), 3 min (c), 5 min (d), 8 min (e), 30 min (f) 
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A, a positive band at 3654 cm-1 due to adsorbed water (Mihaylov et al., 2004; Chafik et al., 
1998) and a negative band at 3600 cm-1 due to Brønsted acid sites (Mihaylov et al., 2004; 
Gutierrez et al.,2007) were observed after co-adsorption of NO and O2 on the zeolite at 250 
oC. It can be well interpreted by the NO+ formation pathway NO + NO2 + 2H+ → 2NO+ + 
H2O, proposed by Hadjiivanov et al. (Hadajiivanov et al., 1998) and Gerlach et al. (Gerlach 
et al., 1999). Band at 1629 cm-1 due to bridging nitrate and band at 2229 cm-1 due to NO+ on 
0.5%Mo/HMOR are obviously greater in intensity respectively compared with those on 
HMOR, particularly above 300 oC (Fig. 22 B). It indicates that molybdenum loading on the 
HMOR zeolite have a promotional effect on the nitric species formation at higher 
temperature. On NaMOR (Fig. 22 C), band (1629 cm-1) due to this type of bridging nitrate 
was rather weak, and bands due to bidentate nitrates (1592 cm-1) and NO+ species (2229 cm-

1) even could not be observed. Instead, a broad band at 1410-1388 cm-1 due to nitrate ions 
attached to Na+ sites (Mihaylov et al., 2004; Li et al., 2005a; Yu et al., 2007) appeared after 
NO+O2 co-adsorption on the sample under the same condition.  
 

2200 2000 1800 1600 1400

 

A
bs

or
ba

nc
e

Wavenumber/cm -1

1595

1479

A

250oC

300oC

350oC

400oC

0.025 1635

2200 2000 1800 1600 1400

 

A
bs

or
ba

nc
e

W avenumber/cm -1

250oC

300oC

350oC

400oC

B 1635
1595

1479

0.025

1663

 
Fig. 24. Steady state in situ FTIR spectra of adsorbed species in 500 ppm C2H2 + 10 % O2 + 
N2 on HMOR (A), 0.5 % Mo/HMOR (B) at different temperature 
Reactivity of the nitric species towards C2H2+O2 over the mordenite-based catalysts was 
examined by in situ FTIR at 250 oC (Fig. 23). When C2H2+O2 was introduced into the FTIR 
cell, bands due to bidentate nitrates (1592 cm-1) and NO+ species (2229 cm-1) on HMOR 
arisen from NO+O2 pre-adsorption (Fig. 23A) rapidly decreased. Concomitantly, a new 
band at 1698 cm-1 appeared and reached its maximum intensity within 3 min with 
disappearance of bands at 2229 and 1592 cm-1. Similar result was obtained when C2H2 was 
used instead of C2H2+O2 in the above experiment. The results indicate that NO+ and 
bidentate nitrate species are fairly reactive towards acetylene at this temperature. It was 
evidenced by the following changes of bands associated with water formation during the 
process: A positive band at 3654 cm-1 due to water appeared, and at the same time, a 
negative band at 3600 cm-1 arisen from water adsorption on Brønsted acid sites 
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correspondingly increased in intensity. Unfortunately, the corresponding reactivity of 
bridging nitrate species (1629 cm-1) could not be directly evaluated on the zeolite because 
of water formation. The band due to bending mode of water appears at the identical wave 
number with that of bridging nitrate species at 1629 cm-1. Similar experimental results as 
that on HMOR was obtained on 0.5%Mo/HMOR (Fig. 23 B). However, quite different 
results were obtained on NaMOR. The nitrate species attached to Na+ seem to be 
completely inert towards the reactant. No change in intensity of band at 1388 cm-1 due to 
the species could be observed on NaMOR (Fig. 23 C). Meanwhile, as expected, band at 1698 
cm-1 did not appear on NaMOR. Instead, strong bands at 3654 and 1629 cm-1 due to water 
adsorbed on the Na-form zeolite were observed, which may be simply resulted from 
combustion of acetylene. 
Figure 24 shows steady state in situ FTIR spectra of the surface species on HMOR and on 
0.5%Mo/HMOR in gas mixture of 500 ppm C2H2 + 10% O2/N2 at different temperatures. No 
band at 1698 cm-1 could be observed on the catalysts. Instead, bands at 1635, 1595 and 1479 
cm-1 due to ν(C=O), νas(COO) and νs (COO) of carboxylic groups (Hadajiivanov et al., 1998; 
Shimizu et al., 2007) appeared. Combined the result with that observed in Fig. 23, the band 
at 1698 cm-1 can be attributed to nitrogen containing organic species, because this band 
could appear only in the following conditions: both the nitric species (nitrogen oxides 
and/or nitric surface species) and the reductant were present together in the reaction 
system.  
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Fig. 25. Steady state in situ FTIR spectra of adsorbed species on 0.5%Mo/HMOR in gas 
mixture of  1000 ppm NO + 500 ppm C2H2 + 10 % O2 + N2 at 250 oC (a), 300 oC (c), 350 oC (e), 
400 oC (g) and that on HMOR at 250 oC (b), 300 oC (d), 350 oC (f), 400 oC (h) 
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A, a positive band at 3654 cm-1 due to adsorbed water (Mihaylov et al., 2004; Chafik et al., 
1998) and a negative band at 3600 cm-1 due to Brønsted acid sites (Mihaylov et al., 2004; 
Gutierrez et al.,2007) were observed after co-adsorption of NO and O2 on the zeolite at 250 
oC. It can be well interpreted by the NO+ formation pathway NO + NO2 + 2H+ → 2NO+ + 
H2O, proposed by Hadjiivanov et al. (Hadajiivanov et al., 1998) and Gerlach et al. (Gerlach 
et al., 1999). Band at 1629 cm-1 due to bridging nitrate and band at 2229 cm-1 due to NO+ on 
0.5%Mo/HMOR are obviously greater in intensity respectively compared with those on 
HMOR, particularly above 300 oC (Fig. 22 B). It indicates that molybdenum loading on the 
HMOR zeolite have a promotional effect on the nitric species formation at higher 
temperature. On NaMOR (Fig. 22 C), band (1629 cm-1) due to this type of bridging nitrate 
was rather weak, and bands due to bidentate nitrates (1592 cm-1) and NO+ species (2229 cm-

1) even could not be observed. Instead, a broad band at 1410-1388 cm-1 due to nitrate ions 
attached to Na+ sites (Mihaylov et al., 2004; Li et al., 2005a; Yu et al., 2007) appeared after 
NO+O2 co-adsorption on the sample under the same condition.  
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Fig. 24. Steady state in situ FTIR spectra of adsorbed species in 500 ppm C2H2 + 10 % O2 + 
N2 on HMOR (A), 0.5 % Mo/HMOR (B) at different temperature 
Reactivity of the nitric species towards C2H2+O2 over the mordenite-based catalysts was 
examined by in situ FTIR at 250 oC (Fig. 23). When C2H2+O2 was introduced into the FTIR 
cell, bands due to bidentate nitrates (1592 cm-1) and NO+ species (2229 cm-1) on HMOR 
arisen from NO+O2 pre-adsorption (Fig. 23A) rapidly decreased. Concomitantly, a new 
band at 1698 cm-1 appeared and reached its maximum intensity within 3 min with 
disappearance of bands at 2229 and 1592 cm-1. Similar result was obtained when C2H2 was 
used instead of C2H2+O2 in the above experiment. The results indicate that NO+ and 
bidentate nitrate species are fairly reactive towards acetylene at this temperature. It was 
evidenced by the following changes of bands associated with water formation during the 
process: A positive band at 3654 cm-1 due to water appeared, and at the same time, a 
negative band at 3600 cm-1 arisen from water adsorption on Brønsted acid sites 
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correspondingly increased in intensity. Unfortunately, the corresponding reactivity of 
bridging nitrate species (1629 cm-1) could not be directly evaluated on the zeolite because 
of water formation. The band due to bending mode of water appears at the identical wave 
number with that of bridging nitrate species at 1629 cm-1. Similar experimental results as 
that on HMOR was obtained on 0.5%Mo/HMOR (Fig. 23 B). However, quite different 
results were obtained on NaMOR. The nitrate species attached to Na+ seem to be 
completely inert towards the reactant. No change in intensity of band at 1388 cm-1 due to 
the species could be observed on NaMOR (Fig. 23 C). Meanwhile, as expected, band at 1698 
cm-1 did not appear on NaMOR. Instead, strong bands at 3654 and 1629 cm-1 due to water 
adsorbed on the Na-form zeolite were observed, which may be simply resulted from 
combustion of acetylene. 
Figure 24 shows steady state in situ FTIR spectra of the surface species on HMOR and on 
0.5%Mo/HMOR in gas mixture of 500 ppm C2H2 + 10% O2/N2 at different temperatures. No 
band at 1698 cm-1 could be observed on the catalysts. Instead, bands at 1635, 1595 and 1479 
cm-1 due to ν(C=O), νas(COO) and νs (COO) of carboxylic groups (Hadajiivanov et al., 1998; 
Shimizu et al., 2007) appeared. Combined the result with that observed in Fig. 23, the band 
at 1698 cm-1 can be attributed to nitrogen containing organic species, because this band 
could appear only in the following conditions: both the nitric species (nitrogen oxides 
and/or nitric surface species) and the reductant were present together in the reaction 
system.  
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Fig. 25. Steady state in situ FTIR spectra of adsorbed species on 0.5%Mo/HMOR in gas 
mixture of  1000 ppm NO + 500 ppm C2H2 + 10 % O2 + N2 at 250 oC (a), 300 oC (c), 350 oC (e), 
400 oC (g) and that on HMOR at 250 oC (b), 300 oC (d), 350 oC (f), 400 oC (h) 
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Figure 25 shows the steady state in situ FTIR reaction spectra of the surface species on 
HMOR and 0.5%Mo/HMOR in gas mixture of 1000 ppm NO + 500 ppm C2H2 + 10% O2/N2 
at different temperatures. Two overlapped bands respectively centered at 2242 and 2208 
cm-1 were appeared in the spectra, in addition to the bands at 1698, 1629 and 1592 cm-1. The 
band at 2242 cm-1 can be assigned to -NCO vibration of isocyanate (2242 cm-1) (Satsuma & 
Shimizu, 2003; Kameoka et al., 2000) and that at 2208 cm-1 can be assigned to N-O 
stretching of NO+ (Pirngruber & Pieterse, 2006; Gerlach et al., 1999). It was reported that 
the stretching frequency of NO+ on HMOR is influenced by an interaction between NO+ 
and some other surface species formed on the zeolite (Gerlach et al., 1999). Herein, it 
should be noticed that although the band at 1698 cm-1 for 0.5%Mo/HMOR (spectrum a) 
was slightly weaker in intensity in comparison with that of HMOR (spectrum b) at 250 oC, 
it became much stronger than that of HMOR above 300 oC. The relative intensity of the 
band observed on HMOR and 0.5%Mo/HMOR at different temperatures could be 
correlated well with the relative activity of the catalysts for C2H2-SCR (Fig. 21). Good 
accordance of NO reduction with the band at 1698 cm-1 could also be obtained on NaMOR 
(Fig 26). The band at 1698 cm-1 just appeared at the temperature (spectrum e), where NO 
conversion to N2 became significant over the zeolite in C2H2-SCR. Based on the above 
findings, we believe that the species with the band at 1698 cm-1 is a crucial intermediate for 
C2H2-SCR over the mordenite-based catalysts. 
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Fig. 26. Steady state in situ FTIR spectra of adsorbed species in gas mixture of 1000 ppm NO 
+ 500 ppm C2H2 + 10% O2 + N2 on NaMOR at different temperature: 150 oC (a), 200 oC (b), 
250 oC (c), 300 oC (d), 350 oC (e), 400 oC (f), 450 oC (g) 
To further study the reaction route of C2H2-SCR over the catalysts, reactivity of the 
intermediate (1698 cm-1) was investigated. After a pre-exposure of HMOR to 1000 ppm NO 
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+ 500 ppm C2H2 + 10% O2/N2 at 250 oC and a followed brief evacuation, the catalyst was 
exposed to gas mixture of 1000 ppm NO + 10% O2/N2. As a result, the intensity of the band 
at 1698 cm-1 rapidly decreased (Fig. 27, spectrum a). It indicates that the intermediate is 
rather reactive towards NO+O2 at the temperature. On the other hand, no decrease in 
intensity of the band at 2242 cm-1 due to -NCO species could be observed during the period 
(Fig. 27), indicating that -NCO species is inert towards NO+O2. When the sample was then 
exposed to gas mixture of 500 ppm C2H2 + 10% O2 in N2, as shown in Fig. 28 (c~f), the bands 
both at 2242 cm-1 due to -NCO and at 2229 cm-1 due to NO+ disappeared within 1 min. 
Concomitantly, a band at 1698 cm-1 and bands at 3654 and 1629 cm-1 due to adsorbed water 
appeared. It should be noticed that the intensity of the three bands as well as that of the 
negative band at 3600 cm-1 continued to increase within three minutes. The result agrees 
well with the proposition in literature that isocyanate species can be easily hydrolyzed to 
amines (Poignant et al., 2001; Bion et al., 2003). Thus, the band at 1698 cm-1 can be assigned 
to acid amide species on the zeolite. It is in accordance with that reported by Poignant et al. 
(Poignant et al., 2001), who found the species with band at 1694 cm-1 in reaction of NO + 
C3H8 + O2 over HZSM-5 at 350 oC. 
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Fig. 27. In situ FTIR spectra of surface species on HMOR at 250 oC: a brief evacuation after a 
pre-exposure of the catalyst to NO+C2H2+O2 for 30 min (a), and then when the catalyst was 
exposed to NO+O2 for: 1 min (b), 3 min (c), 5 min (d), 8 min (e), 30 min (f), and finally 
evacuated briefly (g) 
In Fig. 22, we showed that molybdenum loading on HMOR zeolite considerably promoted 
the formation of bridging nitrate species. However, neither higher NO conversion to N2 in 
C2H2-SCR nor stronger band due to the acid amide species (1698 cm-1) could be observed on 
0.5%Mo/HMOR compared to HMOR at 250 oC. It leads us to speculate that bridging nitrate 
species (1629 cm-1) may make no contribution to C2H2-SCR at the lower temperature (< 250 
oC) over the mordenite-based catalysts. The speculation was validated by the following 
experimental results: Although the bridging nitrate species (1629 cm-1) was detected by FTIR 
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Figure 25 shows the steady state in situ FTIR reaction spectra of the surface species on 
HMOR and 0.5%Mo/HMOR in gas mixture of 1000 ppm NO + 500 ppm C2H2 + 10% O2/N2 
at different temperatures. Two overlapped bands respectively centered at 2242 and 2208 
cm-1 were appeared in the spectra, in addition to the bands at 1698, 1629 and 1592 cm-1. The 
band at 2242 cm-1 can be assigned to -NCO vibration of isocyanate (2242 cm-1) (Satsuma & 
Shimizu, 2003; Kameoka et al., 2000) and that at 2208 cm-1 can be assigned to N-O 
stretching of NO+ (Pirngruber & Pieterse, 2006; Gerlach et al., 1999). It was reported that 
the stretching frequency of NO+ on HMOR is influenced by an interaction between NO+ 
and some other surface species formed on the zeolite (Gerlach et al., 1999). Herein, it 
should be noticed that although the band at 1698 cm-1 for 0.5%Mo/HMOR (spectrum a) 
was slightly weaker in intensity in comparison with that of HMOR (spectrum b) at 250 oC, 
it became much stronger than that of HMOR above 300 oC. The relative intensity of the 
band observed on HMOR and 0.5%Mo/HMOR at different temperatures could be 
correlated well with the relative activity of the catalysts for C2H2-SCR (Fig. 21). Good 
accordance of NO reduction with the band at 1698 cm-1 could also be obtained on NaMOR 
(Fig 26). The band at 1698 cm-1 just appeared at the temperature (spectrum e), where NO 
conversion to N2 became significant over the zeolite in C2H2-SCR. Based on the above 
findings, we believe that the species with the band at 1698 cm-1 is a crucial intermediate for 
C2H2-SCR over the mordenite-based catalysts. 
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Fig. 26. Steady state in situ FTIR spectra of adsorbed species in gas mixture of 1000 ppm NO 
+ 500 ppm C2H2 + 10% O2 + N2 on NaMOR at different temperature: 150 oC (a), 200 oC (b), 
250 oC (c), 300 oC (d), 350 oC (e), 400 oC (f), 450 oC (g) 
To further study the reaction route of C2H2-SCR over the catalysts, reactivity of the 
intermediate (1698 cm-1) was investigated. After a pre-exposure of HMOR to 1000 ppm NO 
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+ 500 ppm C2H2 + 10% O2/N2 at 250 oC and a followed brief evacuation, the catalyst was 
exposed to gas mixture of 1000 ppm NO + 10% O2/N2. As a result, the intensity of the band 
at 1698 cm-1 rapidly decreased (Fig. 27, spectrum a). It indicates that the intermediate is 
rather reactive towards NO+O2 at the temperature. On the other hand, no decrease in 
intensity of the band at 2242 cm-1 due to -NCO species could be observed during the period 
(Fig. 27), indicating that -NCO species is inert towards NO+O2. When the sample was then 
exposed to gas mixture of 500 ppm C2H2 + 10% O2 in N2, as shown in Fig. 28 (c~f), the bands 
both at 2242 cm-1 due to -NCO and at 2229 cm-1 due to NO+ disappeared within 1 min. 
Concomitantly, a band at 1698 cm-1 and bands at 3654 and 1629 cm-1 due to adsorbed water 
appeared. It should be noticed that the intensity of the three bands as well as that of the 
negative band at 3600 cm-1 continued to increase within three minutes. The result agrees 
well with the proposition in literature that isocyanate species can be easily hydrolyzed to 
amines (Poignant et al., 2001; Bion et al., 2003). Thus, the band at 1698 cm-1 can be assigned 
to acid amide species on the zeolite. It is in accordance with that reported by Poignant et al. 
(Poignant et al., 2001), who found the species with band at 1694 cm-1 in reaction of NO + 
C3H8 + O2 over HZSM-5 at 350 oC. 
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Fig. 27. In situ FTIR spectra of surface species on HMOR at 250 oC: a brief evacuation after a 
pre-exposure of the catalyst to NO+C2H2+O2 for 30 min (a), and then when the catalyst was 
exposed to NO+O2 for: 1 min (b), 3 min (c), 5 min (d), 8 min (e), 30 min (f), and finally 
evacuated briefly (g) 
In Fig. 22, we showed that molybdenum loading on HMOR zeolite considerably promoted 
the formation of bridging nitrate species. However, neither higher NO conversion to N2 in 
C2H2-SCR nor stronger band due to the acid amide species (1698 cm-1) could be observed on 
0.5%Mo/HMOR compared to HMOR at 250 oC. It leads us to speculate that bridging nitrate 
species (1629 cm-1) may make no contribution to C2H2-SCR at the lower temperature (< 250 
oC) over the mordenite-based catalysts. The speculation was validated by the following 
experimental results: Although the bridging nitrate species (1629 cm-1) was detected by FTIR 
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after co-adsorption of NO+O2 on NaMOR at 250 oC (Fig. 22C, spectrum a), no NO 
conversion to N2 could be obtained at the temperature (Fig. 21). 
Above 300 oC, both C2H2-SCR activity (Fig. 21) and the intensity of the band due to acid 
amide species detected by FTIR (1698 cm-1, in Fig. 25) were larger on 0.5%Mo/HMOR 
compared to those on HMOR, which corresponds well with the larger population of 
bridging nitrate species (1629 cm-1, in Fig. 22) given by 0.5%Mo/HMOR in comparison 
with those given by HMOR at the temperature. The results indicate that bridging nitrate 
species (1629 cm-1) are also involved in C2H2-SCR at higher temperature. Same conclusion 
can be drawn on NaMOR. The band at 1629 cm-1 due to bridging nitrate species arisen  from  
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Fig. 28. FTIR spectra of the surface species on HMOR at 250 oC: a brief evacuation after 
exposing the catalyst to NO+C2H2+O2 for 30 min (a), a brief evacuation after exposing the 
catalyst to NO+O2 for 30 min (b), then exposed the catalyst to C2H2+O2 for 1 min (c), 3 min 
(d), 5 min (e), 30 min (f) 
NO+O2 pre-adsorption on the zeolite at 350 oC (Fig. 29, spectrum a) rapidly disappeared 
when gas mixture of 500 ppm C2H2 + 10% O2/N2 was introduced to the FTIR cell at this 
temperature. Correspondingly, band at 1698 cm-1 due to acid amide species appeared (Fig. 
29, spectrum b). No change of the band at 1388 cm-1 in intensity could be observed during 
this procedure. The results again indicate that bridging nitrate species are involved in the 
desired reaction at the higher temperature, whereas nitrate species attached to Na+ have no 
contribution to C2H2-SCR under the reaction condition. 
It explains why the C2H2-SCR activity of NaMOR became significant when the reaction 
temperature increased to 350 oC. Thus, the considerably larger activity of 0.5%Mo/HMOR 
in comparison with that of HMOR for C2H2-SCR above 300 oC (Fig. 21) can be rationally 
attributed to the larger bridging nitrate formation capacity of the catalyst.  
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Fig. 29. In situ FTIR spectra of surface species on NaMOR at 350 oC: The catalyst was 
subjected a brief evacuation after saturation adsorption of 1000 ppm NO and 10 % O2 in N2 
(a), and then exposed to 500 ppm C2H2 + 10 % O2 / N2 for 1min (b), 10min (c) 
On the basis of above discussion, a possible reaction mechanism of C2H2-SCR over the 
mordenite-based catalysts can be outlined in Scheme 4. Nitrosonium ions (NO+), bidentate 
and bridging nitrate species formed by NO+O2 co-adsorption react first with C2H2, leading 
to isocyanate species (2242 cm-1) formation. The isocyanate species is then rapidly 
hydrolyzed to the acid amide species (1698 cm-1) that is a crucial intermediate for C2H2-SCR 
over the mordenite-based catalysts. 
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after co-adsorption of NO+O2 on NaMOR at 250 oC (Fig. 22C, spectrum a), no NO 
conversion to N2 could be obtained at the temperature (Fig. 21). 
Above 300 oC, both C2H2-SCR activity (Fig. 21) and the intensity of the band due to acid 
amide species detected by FTIR (1698 cm-1, in Fig. 25) were larger on 0.5%Mo/HMOR 
compared to those on HMOR, which corresponds well with the larger population of 
bridging nitrate species (1629 cm-1, in Fig. 22) given by 0.5%Mo/HMOR in comparison 
with those given by HMOR at the temperature. The results indicate that bridging nitrate 
species (1629 cm-1) are also involved in C2H2-SCR at higher temperature. Same conclusion 
can be drawn on NaMOR. The band at 1629 cm-1 due to bridging nitrate species arisen  from  
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Fig. 28. FTIR spectra of the surface species on HMOR at 250 oC: a brief evacuation after 
exposing the catalyst to NO+C2H2+O2 for 30 min (a), a brief evacuation after exposing the 
catalyst to NO+O2 for 30 min (b), then exposed the catalyst to C2H2+O2 for 1 min (c), 3 min 
(d), 5 min (e), 30 min (f) 
NO+O2 pre-adsorption on the zeolite at 350 oC (Fig. 29, spectrum a) rapidly disappeared 
when gas mixture of 500 ppm C2H2 + 10% O2/N2 was introduced to the FTIR cell at this 
temperature. Correspondingly, band at 1698 cm-1 due to acid amide species appeared (Fig. 
29, spectrum b). No change of the band at 1388 cm-1 in intensity could be observed during 
this procedure. The results again indicate that bridging nitrate species are involved in the 
desired reaction at the higher temperature, whereas nitrate species attached to Na+ have no 
contribution to C2H2-SCR under the reaction condition. 
It explains why the C2H2-SCR activity of NaMOR became significant when the reaction 
temperature increased to 350 oC. Thus, the considerably larger activity of 0.5%Mo/HMOR 
in comparison with that of HMOR for C2H2-SCR above 300 oC (Fig. 21) can be rationally 
attributed to the larger bridging nitrate formation capacity of the catalyst.  
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Fig. 29. In situ FTIR spectra of surface species on NaMOR at 350 oC: The catalyst was 
subjected a brief evacuation after saturation adsorption of 1000 ppm NO and 10 % O2 in N2 
(a), and then exposed to 500 ppm C2H2 + 10 % O2 / N2 for 1min (b), 10min (c) 
On the basis of above discussion, a possible reaction mechanism of C2H2-SCR over the 
mordenite-based catalysts can be outlined in Scheme 4. Nitrosonium ions (NO+), bidentate 
and bridging nitrate species formed by NO+O2 co-adsorption react first with C2H2, leading 
to isocyanate species (2242 cm-1) formation. The isocyanate species is then rapidly 
hydrolyzed to the acid amide species (1698 cm-1) that is a crucial intermediate for C2H2-SCR 
over the mordenite-based catalysts. 
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As a summarization for C2H2-SCR over the mordenite-based catalysts, following reaction 
mechanism can be drawn: The nitric species, including nitrosonium ions (NO+) and 
bidentate nitrate, are fairly active towards the desired reduction in the temperature range of 
250-450 oC. However, bridging nitrate species begin to make its significant contribution to 
the reaction above 300 oC. Molybdenum incorporated into HMOR zeolite considerably 
improved the bridging nitrate formation capacity of the catalyst. It explains the promotional 
effect of molybdenum on C2H2-SCR at the higher temperatures. Isocyanate (-NCO), as an 
active species produced from the reaction of the nitric species with C2H2, can be rapidly 
hydrolyzed to the acid amide species (1698 cm-1) that is a crucial intermediate for C2H2-SCR 
over the mordenite-based catalysts.  

5.2 Reaction mechanism of C2H2-SCR over Zr/HFER 
Surface species formed on 2%Zr/FER by exposing the catalyst to NO+O2/N2 at 250 oC for 30 
min and subsequently to C2H2/N2 characterized by FTIR spectra are shown in Fig. 30. NO+, 
bridging and bidentate nitrate species, which give the bands at 2188, 1629 and 1598 cm-1 
(Poignant et al., 2001; Li et al., 2007; Li et al., 2005a; Brosius et al., 2005; Yu et al., 2007) 
respectively, were presented by the co-adsorption of NO+O2 in N2 (spectrum a). The three  
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Fig. 30. FTIR spectra of surface species on 2%Zr/FER: the catalyst was exposed to 1000 ppm 
NO + 10 % O2 + N2 at 250 oC for 30 min (a), and subsequently to 500 ppm C2H2 + N2 for 1 
min (b), 2 min (c), 3 min (d), 5 min (e) and 10 min (f); a adsorption steady state got by 
exposing the fresh catalyst to formamide vapor in N2 at 150 oC (g)  
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bands rapidly decreased in intensity with an appearance of bands at 2240, 1691, 1651, 1580, 
1566 and 1386 cm-1 when the gas mixture was switched to C2H2+N2. Apparently, the bands 
at 1651 and 1566 cm-1 due to -ONO and -NO2 vibrations [Yeom et al., 2006] increased with 
time, along with the band at 1691 cm-1. The weak band at 2240 cm-1 due to -N=C=O 
vibration of isocyanate species (Liu et al., 2006) increased in intensity during the first 
several minutes, and decreased then after, and finally disappeared when the band at 1691 
cm-1 reached its maximum in intensity. The intensity change of bands at 2240 and 1691 cm-1 
quite seems that the species giving the band at 1691 cm-1 is produced by the isocyanate 
species. 
In literature, Poignant et al. have found the band at 1694 cm-1 during the reaction of 
NO+C3H8+O2 over HZSM-5 at 350 oC (Poignant et al., 2001) and assigned the band to 
acetamide species. Larrubia et al. also found a band at 1690 cm-1 in FTIR on Fe2O3-TiO2 
when they exposed the catalyst to acetamide vapor at 350 oC (Larrubia et al., 2001). 
However, no band at around 1690 cm-1, but at 1717 cm-1 was found when we exposed the 
2%Zr/HFER catalyst sample to acetamide vapor in N2 in the temperature range of 30-300 
oC. Instead, a spectrum that much close to spectrum f (in fig. 30) in shape, with the bands 
at 1691 and 1386 cm-1 along with 1651 cm-1 (-ONO vibration) was obtained when the 
catalyst was exposed to formamide vapor (spectrum g). In addition, the number of carbon 
in the amine species is also supported by a simultaneously formed formate species with 
the band at 1580 cm-1 (Haneda et al., 2002) (spectra c-f). Hence, we propose that 
formamide species, which gives the band at 1691 cm-1, was formed during the reaction of 
C2H2-SCR over 2%Zr/FER catalyst by nitric species reacting with acetylene. 
Correspondingly, a possible formation route of the formamide species can be proposed as 
follows:  
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In the reaction of C2H2-SCR over 2%Zr/FER, formate species may be produced by the 
formamide species further reaction with nitric species:   
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In literature, it is widely accepted that amine species are curtail intermediates of HC-SCR 
(Poignant et al., 2001; Joubert et al., 2006; Larrubia et al., 2001; Arve et al., 2007). Fig. 31 
shows FTIR spectrum of surface species on 2%Zr/FER at 300 oC recorded when a 
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As a summarization for C2H2-SCR over the mordenite-based catalysts, following reaction 
mechanism can be drawn: The nitric species, including nitrosonium ions (NO+) and 
bidentate nitrate, are fairly active towards the desired reduction in the temperature range of 
250-450 oC. However, bridging nitrate species begin to make its significant contribution to 
the reaction above 300 oC. Molybdenum incorporated into HMOR zeolite considerably 
improved the bridging nitrate formation capacity of the catalyst. It explains the promotional 
effect of molybdenum on C2H2-SCR at the higher temperatures. Isocyanate (-NCO), as an 
active species produced from the reaction of the nitric species with C2H2, can be rapidly 
hydrolyzed to the acid amide species (1698 cm-1) that is a crucial intermediate for C2H2-SCR 
over the mordenite-based catalysts.  

5.2 Reaction mechanism of C2H2-SCR over Zr/HFER 
Surface species formed on 2%Zr/FER by exposing the catalyst to NO+O2/N2 at 250 oC for 30 
min and subsequently to C2H2/N2 characterized by FTIR spectra are shown in Fig. 30. NO+, 
bridging and bidentate nitrate species, which give the bands at 2188, 1629 and 1598 cm-1 
(Poignant et al., 2001; Li et al., 2007; Li et al., 2005a; Brosius et al., 2005; Yu et al., 2007) 
respectively, were presented by the co-adsorption of NO+O2 in N2 (spectrum a). The three  
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Fig. 30. FTIR spectra of surface species on 2%Zr/FER: the catalyst was exposed to 1000 ppm 
NO + 10 % O2 + N2 at 250 oC for 30 min (a), and subsequently to 500 ppm C2H2 + N2 for 1 
min (b), 2 min (c), 3 min (d), 5 min (e) and 10 min (f); a adsorption steady state got by 
exposing the fresh catalyst to formamide vapor in N2 at 150 oC (g)  
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bands rapidly decreased in intensity with an appearance of bands at 2240, 1691, 1651, 1580, 
1566 and 1386 cm-1 when the gas mixture was switched to C2H2+N2. Apparently, the bands 
at 1651 and 1566 cm-1 due to -ONO and -NO2 vibrations [Yeom et al., 2006] increased with 
time, along with the band at 1691 cm-1. The weak band at 2240 cm-1 due to -N=C=O 
vibration of isocyanate species (Liu et al., 2006) increased in intensity during the first 
several minutes, and decreased then after, and finally disappeared when the band at 1691 
cm-1 reached its maximum in intensity. The intensity change of bands at 2240 and 1691 cm-1 
quite seems that the species giving the band at 1691 cm-1 is produced by the isocyanate 
species. 
In literature, Poignant et al. have found the band at 1694 cm-1 during the reaction of 
NO+C3H8+O2 over HZSM-5 at 350 oC (Poignant et al., 2001) and assigned the band to 
acetamide species. Larrubia et al. also found a band at 1690 cm-1 in FTIR on Fe2O3-TiO2 
when they exposed the catalyst to acetamide vapor at 350 oC (Larrubia et al., 2001). 
However, no band at around 1690 cm-1, but at 1717 cm-1 was found when we exposed the 
2%Zr/HFER catalyst sample to acetamide vapor in N2 in the temperature range of 30-300 
oC. Instead, a spectrum that much close to spectrum f (in fig. 30) in shape, with the bands 
at 1691 and 1386 cm-1 along with 1651 cm-1 (-ONO vibration) was obtained when the 
catalyst was exposed to formamide vapor (spectrum g). In addition, the number of carbon 
in the amine species is also supported by a simultaneously formed formate species with 
the band at 1580 cm-1 (Haneda et al., 2002) (spectra c-f). Hence, we propose that 
formamide species, which gives the band at 1691 cm-1, was formed during the reaction of 
C2H2-SCR over 2%Zr/FER catalyst by nitric species reacting with acetylene. 
Correspondingly, a possible formation route of the formamide species can be proposed as 
follows:  
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In the reaction of C2H2-SCR over 2%Zr/FER, formate species may be produced by the 
formamide species further reaction with nitric species:   
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In literature, it is widely accepted that amine species are curtail intermediates of HC-SCR 
(Poignant et al., 2001; Joubert et al., 2006; Larrubia et al., 2001; Arve et al., 2007). Fig. 31 
shows FTIR spectrum of surface species on 2%Zr/FER at 300 oC recorded when a 
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saturated state was reached on the catalyst in the gas mixture of C2H2+NO+O2 in N2, and 
the transient spectra recorded when C2H2 was cut off from the gas mixture. Obviously, 
the bands at 1691 cm-1 due to formamide species instantly decreased in intensity by 
switching the gas mixture of C2H2+NO+O2 to NO+O2, indicating that formamide species 
is much reactive for reacting with NO+O2 (and/or nitrate species) over the catalyst at the 
temperature. The result is in line with the assumption concerning the formate species 
formation. 
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Fig. 31. FTIR spectra of surface species on 2%Zr/FER at 300 oC when the catalyst was 
exposed to 500 ppm C2H2 + 1000 ppm NO + 10 % O2 + N2 for 25 min (a) and subsequently 
exposed to 1000 ppm NO + 10 % O2 + N2 for 1 min (b), 5 min (c), 10 min (d), 15 min (e) and 
30 min (f) 
Steady state FTIR spectra of surface species formed on 2%Zr/HFER and HFER in gas 
mixture of C2H2+NO+O2 in N2 at some desired temperatures were compared in Fig. 32. The 
band at 1691 cm-1 due to formamide species on 2%Zr/HFER was higher in intensity than 
that on HFER at each temperature, which may be the result of the higher concentrated 
nitrate species on 2%Zr/HFER compared to HFER, as discussed in the section 3. It is in good 
accordance with their order in activity for C2H2-SCR (Fig. 8). 
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Fig. 32. Steady state in situ FTIR spectra of surface species on 2%Zr/FER (solid curve) and 
on HFER (dash curve) in gas mixture of 500 ppm C2H2 + 1000 ppm NO + 10 % O2 + N2 at the 
temperature: 250 oC (a), 300 oC (b), 350 oC (c), 400 oC (d) and 450 oC 
 

 
Scheme 5. Possible reaction mechanism of C2H2-SCR over Zr/HFER 
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the bands at 1691 cm-1 due to formamide species instantly decreased in intensity by 
switching the gas mixture of C2H2+NO+O2 to NO+O2, indicating that formamide species 
is much reactive for reacting with NO+O2 (and/or nitrate species) over the catalyst at the 
temperature. The result is in line with the assumption concerning the formate species 
formation. 
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Fig. 31. FTIR spectra of surface species on 2%Zr/FER at 300 oC when the catalyst was 
exposed to 500 ppm C2H2 + 1000 ppm NO + 10 % O2 + N2 for 25 min (a) and subsequently 
exposed to 1000 ppm NO + 10 % O2 + N2 for 1 min (b), 5 min (c), 10 min (d), 15 min (e) and 
30 min (f) 
Steady state FTIR spectra of surface species formed on 2%Zr/HFER and HFER in gas 
mixture of C2H2+NO+O2 in N2 at some desired temperatures were compared in Fig. 32. The 
band at 1691 cm-1 due to formamide species on 2%Zr/HFER was higher in intensity than 
that on HFER at each temperature, which may be the result of the higher concentrated 
nitrate species on 2%Zr/HFER compared to HFER, as discussed in the section 3. It is in good 
accordance with their order in activity for C2H2-SCR (Fig. 8). 
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Fig. 32. Steady state in situ FTIR spectra of surface species on 2%Zr/FER (solid curve) and 
on HFER (dash curve) in gas mixture of 500 ppm C2H2 + 1000 ppm NO + 10 % O2 + N2 at the 
temperature: 250 oC (a), 300 oC (b), 350 oC (c), 400 oC (d) and 450 oC 
 

 
Scheme 5. Possible reaction mechanism of C2H2-SCR over Zr/HFER 
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Fig. 33. FTIR spectra of the species recorded on two 2%Zr/FER catalyst wafers at 300 oC: (A) 
In gas mixture of 500 ppm C2H2 + 10 % O2 + N2 (a), followed by a brief evacuation (b), then 
exposed to gas mixture of 1000 ppm NO + 10 % O2 + N2 for 1 min (c), 2 min (d), 5 min (e) 
and 30 min (f). (B) In gas mixture of 1000 ppm NO +10 % O2 + N2 (a), followed by a brief 
evacuation (b), then exposed to gas mixture of 500 ppm C2H2 +10 % O2 + N2 for 1 min (c), 2 
min (d), 5 min (e), 10 min (f) and 30 min (g) 
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To have an insight into the formation route of formamide species, the reaction of acetylene 
in gas phase with the species formed on catalyst surface and that between the species were 
studied in different reaction conditions. No bands due to formamide species could be 
observed in the following conditions: (1) Gas mixture of C2H2+NO+O2/N2 was flowed 
through empty FTIR cell (without catalyst) at 300 oC (not shown). (2) Gas mixture of 
NO+O2/N2 was flowed through 2%Zr/HFER at 300 (Fig. 33 A) or 250 oC (not shown), 
before which the catalyst was exposed to C2H2+O2/N2 for 30 min and evacuated briefly. 
These results indicate that formamide species can be produced by NO+O2 reacting neither 
with C2H2 in gas phase nor with the surface species arisen from C2H2+O2 co-adsorption. 
However, the bands at 1691, 1580 and 1386 cm-1 due to formamide and formate species 
clearly appeared when the catalyst was exposed to gas mixture of C2H2+O2/N2 at 300 oC 
after a pretreatment in NO+O2+N2 for 30 min and briefly evacuated (Fig.33 B). It reveals 
that formamide species can only be produced by C2H2 in gas phase reacting with nitrate 
species. 
Based on above discussion, the reaction mechanism of C2H2-SCR over Zr/HFER can be 
outlined in Scheme 5. 

6. The end words of the chapter 
For the convenience of reading, we would like to give a note describing the experimental 
results obtained by FTIR in the chapter to the readers. 
The in situ FTIR studies were carried out in a quartz IR cell equipped with CaF2 windows on 
a Nicolet 360 FTIR spectrophotometer. All of the spectra were obtained by accumulating 32 
scans at a resolution of 2 cm-1. The IR adsorption arising from gas phase on the pathway of 
infrared laser in the cell were recorded at desired temperature, which was coded as Sg(T). 
For each experiment, the self-supporting wafer of the catalyst sample was first activated in 
the cell at 500 oC in N2, and then its IR absorption was measured at each temperature, which 
was coded as Sb(T). Thus the transient and steady states in situ IR spectra of surface species 
on the catalyst samples in gas mixtures given in this chapter are those in which the 
corresponding Sg(T) and Sb(T) were strictly subtracted.  
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Fig. 33. FTIR spectra of the species recorded on two 2%Zr/FER catalyst wafers at 300 oC: (A) 
In gas mixture of 500 ppm C2H2 + 10 % O2 + N2 (a), followed by a brief evacuation (b), then 
exposed to gas mixture of 1000 ppm NO + 10 % O2 + N2 for 1 min (c), 2 min (d), 5 min (e) 
and 30 min (f). (B) In gas mixture of 1000 ppm NO +10 % O2 + N2 (a), followed by a brief 
evacuation (b), then exposed to gas mixture of 500 ppm C2H2 +10 % O2 + N2 for 1 min (c), 2 
min (d), 5 min (e), 10 min (f) and 30 min (g) 
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1. Introduction  
This chapter explains how to interpret the results obtained from optical scattering study to 
characterize topography surfaces and films. In particular, it focuses on measurement of 
bidirectional reflectance distribution function (BRDF) and on optical profilometry (PO). 
These techniques allow to determine two main functions describing surface topography, 
namely: power spectral density (PSD) and autocorrelation function (ACF). They characterize 
any real surface quantitatively and qualitatively. The PSD and ACF functions are commonly 
calculated from Fourier transform (FT) of the surface profiles determined in AFM, SEM or 
PO) measurements. 
The optical scattering is directly related to material and surface properties. We can 
distinguish three types of scatterings base on their features: 1) Topographic scattering 
resulting fom  roughness causing phase fluctuations impressed on the reflected wavefront 
by the surface height variation [Beckmann and  Spizinochino 1963] 2) material scattering 
created by fluctuations in the composition or density of the surface material [Elson 1984].  
Defect scattering is resulting from a presence of sparse distribution of some surface features 
responsible for scattering, is distributed broadly and continuously over surfaces such as pits 
or bumps in case of topography and patches of different reflectivity in the case of material 
scattering [Stover 1995a]. 
One should emphasize that the roughness is the main source of scattering on surfaces at 
visible wavelengths range.  
Topography of real surface may be described using some fundamental parameters 
described in national and international norms [ANSI/ASME B46.1, ISO 2517] 
For macroscopic characterization of surface the following terms is applied [Whitehause 
2003]): 1) Root mean square roughness σ (rms). It is calculated by the vertical deviations of a 
real surface from its ideal form. 2) The rms slope s and correlation length which is expressed 
by the ratio: T = 21/2 σ /s. 3) The power coefficient the type of qualifying statistical 
distribution of surface heights. The distance between respective surface features is defined 
as spatial wavelengths. In topographic analysis the term spatial frequency which is a reverse 
of spatial wavelength is used.  
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The given statistical terms are calculated from the surface-profile data in a specified spatial 
bandwidths. The range of measured spatial wavelengths is determined by lateral resolution 
of measuring tool and sampling length in short and long wavelength limit respectively. 

2. The power spectral density and autocorrelation function 
The real surface and films are described by two statistical functions, namely autocorrelation 
(ACF) and power spectral density (PSD) functions [Bennett and Mattsson 1999]. PSD 
function is defined in spatial frequency domain and it expresses the roughness power per 
unit frequency over the sampling length. From mathematical point of view, PSD is 
evaluated from Fourier transform (FT) of surface profile h(r). For one dimensional profile 
h(r) PSD is described as:  

 
2/2

2

/2

2( ) lim ( )
L

i f
r L

L

PSD f h r e dr
L

π

→∞
−

= ∫  (1) 

Where  f – is spatial frequency and L is sampling length. The units one dimensional PSD are 
length to third power. 
The roughness and average slopes are first and second statistical momentums of PSD 
function so they may well be directly calculated from PSD frequency spectra by the 
following integrals: 
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If values of  PSD are known, one can determine the statistical parameters, such as root-mean 
square (rms) roughness, slopes and correlation length  by using ABC model which describe 
PSD in simple analytical formula [Elson and Benett 1995]: 

 2/2 ])(1[)( CBfAfPSD −+=   (4) 

where A, B, C  are model parameters related with basic quantities characterizing a surface.  
The A parameter is a PSD(f) value for low frequency formula, B/2π  is correlation length and 
C determine type of power law in high spatial frequency. The ABC model applies for single 
surface.  
The other way of surface characterization is describing it by means of autocorrelation 
function ACF(r) defined in spatial wavelength domain. Generally the autocorrelation 
function of surface is used to compare data sets of heigths h(r) to a translated version of itself 
and the averaging.  
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Where translation τ is so called lag distance. The ACF function is usually calculated from 
surface profiles obtained in AFM and SEM studies. For many random surfaces the ACF(r) 
may be expressed in the following form [Bendat and Piersol 1971, Whitehead 2003]: 
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Where ACF(0) is the value of autocorrelation function in point  r = 0. The value of coefficient 
specifies a type of statistical distribution of surface irregularities. So for α = ½ and α = 1 the 
ACF(r) describes Lorentzian and Gaussian distribution respectively. For distance r= T the 
ACF(r) decreases e – fold. Thus the value of r = T defines autocorrelation length. Such 
defined ACF is equal statistically averaged surface spatial wavelength. 
In some surface investigations obtained by the use of optical methods, as in optical 
profilometry, the following useful relation between average slope s and ACF function could 
be applied [Stover et. al 1984]:  
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According to Parseval’s theorem PSD and ACF provide the same information about surface 
statistic expressed in space frequency and wavelength domain.  
Therefore the PSD and ACF may express by using Wiener – Kninchin relations [Bendat and 
Piersol 1986] as Fourier transform and inverse FT: 
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The calculating procedure of macroscopic surface parameters is shown on Fig. 1. 
 

 
Fig. 1. Scheme of calculating surface parameters procedure from optical measurements 
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3. The BRDF technique 
Optical measurements allow to find macroscopic parameters of surfaces and films from 
angular measurements of scattered light. The very good tool for single surface and 
multilayered films characterization is bidirectional reflection function method (BRDF) 
[Nicodemus 1965]. 
In BRDF the differential power of scattered beam dP per solid angle of receiver aperture dΩ  
in the θs direction and per incident power Pi coming from the θi direction is  measured. In 
Fig. 2a the geometry of incident and measured reflected radian beams have been presented. 
 

 
a) 

 
b) 

Fig. 2.  Geometry of BRDF measurement (a) and scheme of BRDF measurement setup (b) 

Practically dP/dΩ is equal to the measured scatter power Ps per acceptance angle Ω of a 
detector namely:  

 1/
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 (9) 

If studied surface is relatively flat, the excellent approach give vector The Raleigh-Rice vector 
perturbation theory [Elson and Benett 1979] is best applied. It shows simple dependence 
between scattered radiation expressed by BRDF and PSD of investigated surface.  
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where Q is  a factor dependent on  polarization state of the light source, the optical constants 
and λ where λ is the light wavelength.  PSD is represented in spatial frequency f that is 
related with angles θi and θs by following formula:  

 sin( ) sin( )s if θ θ
λ
−

=  (11) 

If the surface roughness is spatially isotropic, as is usually assumed for randomly polished 
surfaces, the PSD depends only on the magnitude of the surface spatial frequency and is 
independent of its direction on the surface plane. All information about the surface 
spectrum can be obtained from scattering measurements made in the plane of incidence. 
This allows to extract the topographic structure of the single surface from scattering 
phenomena, which means that BRDF and PSD (except for the factor Qcosθs) are directly 
proportional.  The so called “golden rule”  is a principle of surface investigations by the use 
angular scatterometry [Church et al. 1977, Stover 1995b].  
BRDF measurements presented in this chapter were performed with an automatic 
scatterometer (Fig. 2b). It consists of a 650 nm laser diode as the light source (with the beam 
diameter of 2 mm) mounted on a goniometric table with 0.01 deg resolution. The light 
scattered at the sample surface is measured with a Si photodiode detector. The rotations are 
obtained by a computer controlled stepper motors. For a fixed angle of incidence, the 
scattered intensity in the plane of incidence are measured by varying the detector 
orientation. All measurements are carried out with the s-polarized incident beam. In any 
case, the sample surface size was much larger than the beam diameter. Moreover, the 
minimal illuminated area (4 mm2) is large enough to yield meaningful statistical description 
of the surface [Stover 1984].  
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Fig. 3. BRDF vs. angle of incidence for 3 different samples: flat silicon–a, polished steel – b, 
SWM7 and Spectralon – c surfaces 
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Fig. 3. BRDF vs. angle of incidence for 3 different samples: flat silicon–a, polished steel – b, 
SWM7 and Spectralon – c surfaces 
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Fig. 3 shows the results of BRDF measurements as a function of scattering angle for 3 
samples. The image in Fig. 3 consists of polished silicon with roughness σ = 1nm (Fig. 
3a), mechanically polished steel σ = 69 nm  SWM7 with (Fig. 3b) and lambertian white 
diffuser Spectralon (Fig. 3c). Because scattered intensity strongly depends on scattering 
angle and intensity ratio for near specular to far specular scattering may reach several 
orders so generally the BRDF is shown in logarithmic scale.  The incidence angle was the 
same θi = 600 for all samples. As it is easy to notice the angular BRDF’s are different.  The 
BRDF of polished Si as other good mirrors has high narrow specular peak. Outside specular 
reflection mirror reflectors scatter diffusely light at very low level. Polished steel with 
moderately high roughness has BRDF with lower and wider specular peak and intensity of 
scattered light monotonically decrease in larger scattering angle. In Spectralon [Workmann 
1998] BRDF specular reflection disappears and light is scattered diffusively and 
homogeneously in all direction. 
In the case of polished surfaces the power spectrum of the surface errors is generally a 
smooth and broad function of spatial frequency, and the smoothed value of the BRDF is 
independent of the system pupil function.  
In a situation when optical constants are unknown, the polarization factor Qs  for “s” 
polarization could be found from angle dependence of specular reflection coefficient. It is 
given by the geometric mean of the sample specular reflectances R(θi) and R(θs) at  angles θi  
and θs. For scattered radiation measured in plane of incident Qs is equal [Church et al. 1989, 
Stover 1995b]:  

 
1
2{ ( ) ( )}s s i s sQ R Rθ θ=  (12) 

This equation allows to determine Qs  without knowing the optical constants of the sample.  
Because Qs is a smooth function, a good curve fit may be found by measuring sample 
reflectance for several angles of incidence. Of course, if optical indices are known, the Qs 
factor can be calculated directly from the definition. 
Fig. 4 Shows PSD(f) calculated from BRDF. The polarisation factor Qs was determined from 
specular reflectance measurements performed for 7 incidence angles θi from range 600 to 810. 
The ABC model was fitted to experimental data. 
 

0,2 0,4 0,6 0,8 1,0 1,2 1,4

0,0

0,3

0,6

P
S

D
 [ 

μm
-3
 ]

spatial frequency [ 1/μm] 

1

2

3

 
Fig. 4. PSD function extracted from BRDF measurements for TiN films on different 
substrates on polished: 1 —Si, 2 —SWM7 steel and 3 — on WC plate respectively 
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Roughness σ of TiN films from equation  (4) and autocorrelation length  T, and power factor 
C from ABC model (5) have been found. The values of determined parameters are shown in 
Table 1. The result strongly suggest the influence of substrate type on topography of TiN 
films obtained under the same technological conditions. 
Log-Log analysis of PSD(f) is very convenient and easy to interpretation of PSD(f)  
dependence. Many optical surfaces are described by the means ABC model. On Fig. 5 the 
log-log PSD(f)  for  Duralcan alloy before and after CO2 laser annealing [Kaczmar et al. 2000] 
has been presented. 
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straight lines one  then we will obtain break point on cut of them. It allows to determine 
from this point so called cut-off frequency. By knowing its value one may to calculated 
autocorrelation length according formula: T=1/2π*fc. According to (2) the surface roughness 
is equal field under the PSD curve. For low frequency bandwidth i.e from zero to cut-off 
frequency fc one may estimate the σ follows to approached formula: σ1/2 = π*fc*PSD(0), 
where PSD(0) denote power spectral density at low frequency. 
For some surfaces surfaces in their PSD or BRDF versus frequency the break point do not 
occur (that is Bf>>1). In that case the PSD and BRD may be approximated linear with slope 
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Fig. 3 shows the results of BRDF measurements as a function of scattering angle for 3 
samples. The image in Fig. 3 consists of polished silicon with roughness σ = 1nm (Fig. 
3a), mechanically polished steel σ = 69 nm  SWM7 with (Fig. 3b) and lambertian white 
diffuser Spectralon (Fig. 3c). Because scattered intensity strongly depends on scattering 
angle and intensity ratio for near specular to far specular scattering may reach several 
orders so generally the BRDF is shown in logarithmic scale.  The incidence angle was the 
same θi = 600 for all samples. As it is easy to notice the angular BRDF’s are different.  The 
BRDF of polished Si as other good mirrors has high narrow specular peak. Outside specular 
reflection mirror reflectors scatter diffusely light at very low level. Polished steel with 
moderately high roughness has BRDF with lower and wider specular peak and intensity of 
scattered light monotonically decrease in larger scattering angle. In Spectralon [Workmann 
1998] BRDF specular reflection disappears and light is scattered diffusively and 
homogeneously in all direction. 
In the case of polished surfaces the power spectrum of the surface errors is generally a 
smooth and broad function of spatial frequency, and the smoothed value of the BRDF is 
independent of the system pupil function.  
In a situation when optical constants are unknown, the polarization factor Qs  for “s” 
polarization could be found from angle dependence of specular reflection coefficient. It is 
given by the geometric mean of the sample specular reflectances R(θi) and R(θs) at  angles θi  
and θs. For scattered radiation measured in plane of incident Qs is equal [Church et al. 1989, 
Stover 1995b]:  

 
1
2{ ( ) ( )}s s i s sQ R Rθ θ=  (12) 

This equation allows to determine Qs  without knowing the optical constants of the sample.  
Because Qs is a smooth function, a good curve fit may be found by measuring sample 
reflectance for several angles of incidence. Of course, if optical indices are known, the Qs 
factor can be calculated directly from the definition. 
Fig. 4 Shows PSD(f) calculated from BRDF. The polarisation factor Qs was determined from 
specular reflectance measurements performed for 7 incidence angles θi from range 600 to 810. 
The ABC model was fitted to experimental data. 
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Fig. 4. PSD function extracted from BRDF measurements for TiN films on different 
substrates on polished: 1 —Si, 2 —SWM7 steel and 3 — on WC plate respectively 
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is equal to the length of investigated surface. On Fig. 6 the BRDF versus spatial frequency 
for 3 fractal surfaces: 1-glass BK7, 2-polished stainless steel, 3-BaSO4 white standard is 
shown. 
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Fig. 6. The power spectral density for fractal profile, 1-BK7 glass, 2-stainless steel, 3-BaSO4 

The curves 1 and 2 represents fractal glass and steel surfaces. The C coefficients of power 
spectrum slopes are nearly 4, so their highs of fractal surface have Gaussian distribution. 
Curve 3 presents power spectrum for barium sulphate which is applied as Lambertian 
diffuser [Workmann 1998]. As may easy conclude white standard diffuser are fractal 
surfaces with zero slope of PSD spectra. 
The many practical surfaces in optics or semiconductor application exhibit the fractal-like 
power spectral density over bandwidths of interest. 
As it is known the roughness value depends on spatial bandwidth which is specified by 
measurements setup and other conditions such as sample size etc. Because PSD spectra of 
measured surfaces may differ considerably results of roughness may be influenced by 
position and width of chosen bandwidth. Fig. 7 presents the calculated roughness versus 
spatial frequency  area for  SWM7 steel, stainless steel and silicon surfaces respectively. 
 

-0,02 0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14

0,00

0,01

0,02

σ
 [μ

m
]

f [1/μm]

2

3 

1 

 
Fig. 7. Surface roughness as a function of spatial frequency bandwidth obtained from BRDF 
for, SWM7 steel, stainless steel and silicon surface - curve 1, 2, 3 respectively 
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As it may be concluded from the above figure, for some surfaces roughness values reach 
constant value at low frequencies and topographic features observed at high frequencies 
essentially do not contribute to total roughness. 
If the surface roughness contains periodic components, such as tool marks in precision-
machine surfaces, the BRDF will contain sharp diffraction lines. The positions and intensities 
of those lines are related to the feed rates and amplitudes of the tool marks, while their 
widths are determined by the system pupil function. The case of periodic surface is shown 
on Fig. 8. The BRDF for ST3SY steel concurrent (curve 2) and reverse concurrent (curve 1) in 
milling process is shown. 
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Fig. 8. BRDF for periodic steel surface obtained in milling process 

Spatial wavelength of fundamental mill calculated from BRDF is equal Λ0=154μm. All 
remaining peaks from low frequency bandwidth occur on BRDF spectrum in the same 
interval frequency f0 = 1/Λ0. 
Some random optical surface may not be described by the use ABC model. It is for mono-
crystalline silicon wafer with (100) orientation etched in KOH solution. In this case 
reduction of surface reflectivity is a key factor for improving the crystalline silicon solar cell 
efficiency. In Fig. 9 the relative BRDF frequency spectra for that wafer have been shown. 
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Fig. 9. BRDF of texturized monocrystalline Si in KOH for two angles of incidence 
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shown. 
 

0,01 0,1
1E-7

1E-5

1E-3

0,1

10

1000

Lo
g(

P
S

D
)[a

.u
.]

Log(f) [a.u.]

1

2

3

 
Fig. 6. The power spectral density for fractal profile, 1-BK7 glass, 2-stainless steel, 3-BaSO4 

The curves 1 and 2 represents fractal glass and steel surfaces. The C coefficients of power 
spectrum slopes are nearly 4, so their highs of fractal surface have Gaussian distribution. 
Curve 3 presents power spectrum for barium sulphate which is applied as Lambertian 
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measured surfaces may differ considerably results of roughness may be influenced by 
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Fig. 7. Surface roughness as a function of spatial frequency bandwidth obtained from BRDF 
for, SWM7 steel, stainless steel and silicon surface - curve 1, 2, 3 respectively 
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As it may be concluded from the above figure, for some surfaces roughness values reach 
constant value at low frequencies and topographic features observed at high frequencies 
essentially do not contribute to total roughness. 
If the surface roughness contains periodic components, such as tool marks in precision-
machine surfaces, the BRDF will contain sharp diffraction lines. The positions and intensities 
of those lines are related to the feed rates and amplitudes of the tool marks, while their 
widths are determined by the system pupil function. The case of periodic surface is shown 
on Fig. 8. The BRDF for ST3SY steel concurrent (curve 2) and reverse concurrent (curve 1) in 
milling process is shown. 
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Fig. 8. BRDF for periodic steel surface obtained in milling process 

Spatial wavelength of fundamental mill calculated from BRDF is equal Λ0=154μm. All 
remaining peaks from low frequency bandwidth occur on BRDF spectrum in the same 
interval frequency f0 = 1/Λ0. 
Some random optical surface may not be described by the use ABC model. It is for mono-
crystalline silicon wafer with (100) orientation etched in KOH solution. In this case 
reduction of surface reflectivity is a key factor for improving the crystalline silicon solar cell 
efficiency. In Fig. 9 the relative BRDF frequency spectra for that wafer have been shown. 
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Fig. 9. BRDF of texturized monocrystalline Si in KOH for two angles of incidence 
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For high spatial frequency slopes have positive values unlike to most optical surfaces. This 
peculiar behaviour in BRDF(f) dependce is due to surface texture of etched silicon wafer. It 
consists of pyramid-like irregularietes differing in sizes and shapes [Lipiński and 
Cichoszewski 2008]. So created texture scatters light into hight angles (frequencies). It allows 
to substantially reduce reflection for near specular angles. 
Additionally one influences of non-topographic features on power spectral density function 
should be discussed. Such cases can be found in composite (alloys) structures. If 
components are different the large variations in optical constants may occur. Apart from 
large reflectance differences, the phase change of reflection for absorbing materials  appear. 
This phase change resulted from reflectance and may equal several tens of degrees for 
conductors and can be interpret as pseudo-height differences [Bennet and Mattsson 1999]. In 
other words a hypothetical, perfectly smooth surface made up of elements having different 
optical constants may show shadowing effect ordinarily interpreted as height differences in 
optical measurements. For flat surfaces dielectric function variation plays key role in light 
scattering. This situation can be found in optical study of Al-Si-SiC composites [Kaczmar el 
al. 2000]. Additionally in Al-Si-SiC structures such a metal-semiconductor-dielectric 
composites particular monocrystals may occurr on the surface and may be considerably 
larger than light wavelength. They have own surface direction and  reflect light according to 
geometrical law of reflection.  
The  phase changes of reflected light which are components of the investigated composites 
(alloys) result from appreciable differences in their optical constants. In  experimental data 
analysis, the differences in n and k indices  particular components could be treated as 
pseudo-height caused by phase differences. For example for the aboveAl-Si-SiC composites 
for light with wavelength λ =550 nm, the pseudo-heights are for Al -24 nm, 2.5 nm for Si and 
0 nm for SiC for which is dielectric material and was treated as reference. Therefore the 
pseudo-heights must be taken into consideration when predicting values of power spectral 
density and autocorreation functions are obtained by the use of optical methods. 

4. The Power spectral density of thin films from BRDF study 
The BRDF results for film depend on topographies of its upper and lower side and in the 
case of  diffusive layers depend also on light scattering in the bulk.  
1. If the topography of both upper and bottom interfaces are identical  the PSD is given by 

[Elson 1992]: 

 2
1 2BRDF F F PSD= +  (15) 

where F1 and F2  are optical function of interfaces film- air and film – substrate 
respectively, and PSD represents power spectral density  function of film system. 

2. In the case completely uncorrelated surfaces the BRDF function should be expressed by 
the formula: 

 2 2
1 1 2 2BRDF F PSD F PSD= +  (16) 

where PSD1 and PSD2 denote power spectral density for top and bottom film surface 
respectively. In this case, the scattered power from the different interfaces is added. 
Anyway one can extract part of scattering coming only from the upper surface using 
full internal reflection effect in the film. 
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Fig 10. shows reflection from  transparent film on rough substrate. Part of the light reflect  
from the top surface, part after refraction on the boundary of the media  traverse the film 
twice due to reflection from substrate and goes out from the sample (see Fig. 10). This 
situation occurs for specular reflection for any angle of incidence. If however bottom  
surface is rough, the part radiation  is scatter into angles  θs that are larger than Brewster 
angle θΒ. For this case the all radiation scattered at angles θs > θΒ   is internally reflected.  
 

 
Fig. 10. Propagation of scattered light in layer with rough bottom 

It means that the reflected   light at suitably great angles comes only  from scattering from  
upper interface of the film and allows to determine PSD from BRDF  measurements for  
upper surface of the film. 
If a bulk scattering does not occur the optical losses originate from surface and interface 
only. In that case determining power spectral density can be done from BRDF 
measurements. Fig. 11 shows determined PSD function for bare polished silicon 1 – curve 1, 
thermally obtained  SiO2 on the same Si substrate – curve 2, porous silica and titania-silica  
blend films on BK7 glass obtained by sol-gel technique [Karasiński 2005] –curve 2 and  3 
respectively.   
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Fig. 11. PSD function of thin films. Curve 1 – bare silicon, 2 –Thermal SiO2 on Si, 3 – porous 
silica and 4 porous SiO2-TiO2 on BK7 glass 
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Fig. 11. PSD function of thin films. Curve 1 – bare silicon, 2 –Thermal SiO2 on Si, 3 – porous 
silica and 4 porous SiO2-TiO2 on BK7 glass 
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As it may be noticed on Fig. 11 for films 2 and 3 the irregularities with low spatial frequency 
(longer spatial wavelength) contribute larger fraction to total roughness than the higher 
ones. Therefore autocorrelation lengths T for layers 1 and 2 are bigger than for thermally 
obtained silica. The PSD obtained for silicon and SiO2 on the same Si before  after annealing  
are very similar. It results from the fact that upper and lower interfaces of SiO2 film are 
identical. The values of σ determined from AFM and BRDF measurements are similar 
however roughness calculated from BRDF study are larger. As a matter of fact in BRDF we 
measure scattered radiation from much bigger surface area than in AFM.  The total 
roughness enlarge due to fraction of irregularities coming from longer spatial wavelengths 
measured by the use BRDF technique. 
The values of macroscopic parameters for surface and films presented in this work have 
been shown in Table 1. The results given in Table 1 concern optical surfaces. Such surfaces 
can meet I optics and optoelectronics applications. For those surfaces roughness is 
commonly less than 5 nm and their autocorrelation length are order hundred manometers to 
micrometers. So well average slopes are less than 10-2. In optics surfaces with slopes less 
than 10-2 are regarded as flat [Ohlidal 1988]. 
 

sample Thickness 
[nm] 

Roughness σ 
[nm] 

T 
[nm] 

C 

Polished Si  - 1.7 2730 3.91 

Thermal SiO2 on Si  352 2.9 2890 3.88 

Porous silica on Si  672 2.1 770 1.97 

titania-silica  on Si 211 1.2 455 2.11 

TiN on Si  330 11.7 6780 3.61 

TiN on steel 393 34 13890 3.81 

Polished aluminium  7.3 3100 3.64 

Table 1. The values of topographic parameters of random layers and surfaces 

5. Determination of the PSD and ACF function from optical profilometry 
Measurements of optical reflectance by means of classical reflectometry inform us about 
optical properties on a large area, i.e. of the order of 1-5 cm2. The results obtained on a much 
smaller will be similar if coatings and surfaces are homogenous over the investigated area 
and inside the layers. For inhomogeneous surfaces, when topographic or materials non-
uniformities differ from tens μm to several mm, the measurements taken from the 
integrating sphere measurement and standard reflectometry give rather an averaged 
reflectance over a larger scale reflected samples. 
The scattered radiation measured by optical profilometry (OP) is a function of heights of 
irregularities and slopes of microfacets, but sensitivity of this method derives mainly from 
detection of the slope change [Brown and Breitmeier 1988, Whitehead 2003]. The presence of 

Description of Topography of Surfaces and Thin Films with the use Fourier Transformation,  
Obtained from Non-Standard Optical Measurements 

 

375 

long lateral irregularities  is often caused by manual or mechanical treatments and may have 
a periodical nature. The short spatial waves result rather from random process of the surface 
formation and their contribution to the total profile is easy to determine from atomic force 
microscopy (AFM) technique.  
Optical profilometry measures intensity of reflected radiation from the surface point. 
Resolution of  OP depends on beam diameter where  diameters changes from 1 μm to 1 mm. 
In this chapter we presented result of profilometric studies. The long spatial wavelength 
irregularities detected in OP investigations may contribute substantially to the total 
roughness.  Optical profilometry measurements complete the topography description in 
long spatial wavelengths. 
The optical profilometer described in this chapter is multifunctional experimental set up for 
surface topography investigations. It work in two modes. The first mode – specular mode 
employs with laser He-Ne as the light source with collimating system allowing to achieve 
light beam with 12 μm diameter. OP measurements have been normalized with the 
calibration sphere method [Mainsah et al. 1996].  A lead screw stepper motor actuated 
device may scan 30 mm × 30 mm surface with step of 0.02 mm. It allows one to obtain the 
optical profiles of surface with 20 μm lateral resolution. The scheme of optical profilometer 
(OP) is shown in Fig. 12. 
The second mode of OP – BRDF mode which is more preferred for rougher films surfaces is 
based on reflection probe R-200-7.  This mode is used to get reflectance over smaller areas at 
different angles of incidence. The probe consists a bundle of 7 optical fibres, i.e. 6 fibres 
around one “illumination fibre” (which illuminates sample), each with a diameter of 200 
μm. Of course the size of illumination defines lateral resolution of measurements. The laser 
diode (λ = 635 nm) is used as the light source. The reflected light is collected by six fibres 
around the illumination fibre. The probe is coupled with a collecting fibres to a A/D 
converter connected with computer. The axis of the probe may be angled at 15º, 30º and 
normal to the sample plane. 
 

 
Fig. 12. Scheme of optical profilometer: 1 – laser diode (λ = 635 nm), 2,3 – detectors, 4 - beam 
splitter, 5 - colleting lens,  6 - objective, 7- sample, 8 -XY stage, 9 – controlling/collecting  
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sample Thickness 
[nm] 

Roughness σ 
[nm] 

T 
[nm] 

C 
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Table 1. The values of topographic parameters of random layers and surfaces 
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transformations of surface profiles are determinate by the use of fast Fourier transform (FFT) 
procedure. images allow to find distribution of surface heights in inverse space,  distinct 
their periodicity  and evaluate anisotropy of surface films in.  
In Fig. 13 a and b, the mechanically polished steel SWM7 block profile, and its two-
dimensional FFT  is presented. 
 

 
a) 

 
b) 

Fig. 13. Surface profile –a and its FT –b of mechanically polished steel SWM7 

Grooves and scratches visible in Fig. 13a are the result of the polishing process. These 
features cover the whole surface in a more or less uniform way and overlap. FFT allows 
toassess the repeatability of the processes forming the periodic inequalities.  As may be 
noticed, in its two-dimensional FFT (Fig 13b) periodic dependence of the PSD along the 
direction forming an angle 450  with the X  and Y axes may be distinguished. It is result of 
interference of spatial waves appearing in X and Y directions. The occurrence of spatial 
waves interferences indicate the same processes along mutually perpendicular 
directions. 
Fig. 14a shows FFT of  optical profile of polyvinylcarbazole (PVK) film deposited on 
Corning glass 7059, obtained by spin -coating method [Patel et al. 2007],  The scanning 
area was 10x10 mm which enables detecting of surface features in longer space 
wavelengths. 
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Fig. 14. FFTprofile of PVK film on Si substrate obtained by means OP BRDF mode –a and 
one dimensional PSD along X and Y axis –b, relative slopes distribution function for PVK 
film –c respectively 
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Because refractive index of PVK for 633 nm light wavelength is nearly the same as Corning 
7059 glass [10], almost the whole scattered light originates from upper surface of the film. 
FFT analysis of optical profiles shown in spatial frequencies, allows to distinguish periodic 
features and specify interference of spatial waves and to evaluate ratio of surface anisotropy. 
Because PVK was formed by centrifugal force in spin–coating process the PSD functions 
obtained for X and Y axes are similar, what is presented in Fig 14b. The determined PSD 
demonstrates as well periodic structure of surface. Also the relative slope density function 
(SDF) was determined for this sample (Fig. 14c). 
OP measures the local slope of microfacets (local surfaces), the autocorrelation  function is 
given as: 

 2( ) ( )ACF s p sσ=  (17) 

This relation may be applied to ACF determination  directly from OP measurements if p(s) is 
known. 
Fig. 15a shows FT from optical profile of satinated glass texture used in glass houses. In Fig. 
15b the calculated PSD function for x and y spatial frequency is presented.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15. FT of satinated glass surface and arbitrary one-dimensional PSD for x and y 
direction 

As results from Fig 15.b the PSD for x and y directions are nearly the same. Thus one may be 
conclude that satinated glass surface exhibits very good isotropy. It is important factor for 
glass use in green houses. 

4,0 3,5 3,0 2,5 2,0 1,5 1,0

2,0

2,5

3,0

3,5

4,0

4,5

PS
D

 [j
ed

n.
 u

m
ow

ne
]

Czêstotliwoœæ [1/mm]

B

Description of Topography of Surfaces and Thin Films with the use Fourier Transformation,  
Obtained from Non-Standard Optical Measurements 

 

379 

On the other hand the OP measurements allow to detect anisotropy of surface creation process. 
Optical profilometry could be applied to waviness detection occurring on surface or to 
inspection of periodic variation of film thickness. As an example in Fig. 16a the profilometric 
map of TiO2-SiO2  film on BK7 glass substrate obtained by dip coating sol-gel method is shown.  
 

a)  

b)  

c)  

Fig. 16. PO profile of TiO2-SiO2  film on –a and its FFT – b and ACF –c 
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It presents periodic changes of reflection coefficient for TiO2-SiO2 film. In Fig. 16b the 
Fourier Transform of OP profile from Fig. 16a is shown. This is due to two harmonic 
vibrations caused by mechanical elements of technological equipment Elimination of 
vibration allows to obtain very flat TiO2-SiO2 films [Karasiński 2005].  

6. Conclusion  
As it is shown in this chapter the optical methods may be used as effective tools for surfaces 
and interfaces thin films and layers. Surface topographic parameters may be obtained from 
biredirectional reflectance distribution function and optical profilometry measurements.  The 
BRDF and OP techniques allow to get information about surface topography.  From these 
optical investigations the surface power spectral density (PSD) and autocorrelation (ACF) 
functions for surfaces and films may be found.  Both functions are calculated  from  the Fourier 
transformation of  surface profiles. The root mean square (rms) surface roughness, slopes and 
correlation length for studied samples from PSD function have may be determined.  
The resolution of BRDF method allows to determine surface parameters in spatial 
wavelength range from 0.1 to hundreds of micrometers. The OP may be applied as 
complementary method for measurements of longer spatial wavelengths.  
The most effective analysis of the surface statistic is calculating power spectral density or 
autocorrelation functions from surface profiles in spatial frequency or wavelength domains 
respectively.  
The scattered radiation is a function of highs of irregularities and slopes of microfacets but 
the sensitivity of PO studies is resulted mainly from sensitivity of detection of slopes 
change.   In PO BRDF mode the technique is sensitive for upper surface of a film when 
substrate is optically flat. The presented techniques may be also take advantage in control 
manual painting or varnishing. The presence of long lateral irregularities is often caused by 
manual or mechanical treatments (i.e paintings, varnishing, manual polishing) and may 
have periodical nature. The short spatial waves result rather from random process of surface 
formation and their contribution in total profile is easy to determine from light scattering by 
the using BRDF method.  
If films are transparent and their interfaces are partly correlated, the description of film 
topography is difficult.   
The PO specular mode may be used for transparent film thickness determination if upper 
and lower interfaces are flat. This technique allows measures thickness of layer If interfaces 
correlated are in transparent films. If surface are partially correlated the BRDF -PO mode is 
more preferred for their topography measurements   
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1. Introduction    
Soil is a very complex medium that contains minerals, organic matter, micro-organisms, air 
and water. Soil is one of the most important factors for agriculture and some soils are 
deemed more fertile than others. Soil fertility is directly related to factors such as nutrients 
concentrations or availability, organic matter content, acidity, moisture, etc., as well as to 
agricultural practice such as till vs. no-till (Desbiez et al. 2004) (Sá et al. 2009). Ensuring soil 
fertility is a basic requirement for any form of sustainable agriculture, yet in practice this 
seemingly trivial goal is very difficult to achieve due not only to the complexity of the soil 
medium itself, but also due to the complexity of the soil-crop-air interactions and to the fact 
that some processes require years before having any visible impact. Various recent studies 
have shown that soil fertility is declining in many farmlands due mainly either to 
inadequate farming practices (Gobeille et al. 2006), insufficient fertilization, in which case 
the soil reserves are depleted, or over-fertilization that results in pollution to the 
groundwater or toxic accumulation of chemicals in the soil. Avoiding such under- or over-
fertilization is the chief goal of the so-called precision fertilization concept, which aims at 
delivering exactly the amount of nutrients required to sustain optimal growth of the crop. 
One of the main obstacles to the application of the precision fertilization concept, or the 
more general precision farming concept, is soil heterogeneity. Hence, although it is technically 
possible to perform a wide range of analyses and derive a soil fertility or health index such 
as the one proposed by Idowu et al. (2008), most of the required analyses are time-
consuming, which in practice makes it impossible to map the soil properties of a field with 
the required spatial and/or temporal resolution. The need for fast and cheap methods that 
would enable the analysis of a large number of samples has been stressed in numerous 
studies (Viscarra Rossel&McBratney 1998b) and infrared spectroscopy has long been 
recognized as one of the most promising techniques (e.g. McCarty&Reeves 2006; Mouazen 
et al. 2007; Cécillon et al. 2009). As in other applications, the initial works were conducted 
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Technological achievements in the mid-infrared (mid-IR) range during the last decade have 
made this spectral range much more attractive and an increasing number of soil studies are 
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the superiority of the mid-infrared techniques in most cases (McCarty&Reeves 2006; 
McCarty et al. 2002; Viscarra Rossel et al. 2006;  Canasveras et al. 2010) and therefore the 
present chapter will focus solely on mid-IR techniques.  

2. Mid-Infrared techniques commonly used for soil analysis 
Infrared (IR) spectroscopy is based on the interaction of molecules with electromagnetic 
energy in the infrared spectral region, which is in the wavelength range of 0.8-1000 μm. This 
IR range is commonly divided into four regions, labeled near-, mid-, thermal- and far-
infrared, respectively (Figure 1). The particularity of the mid-infrared range is that it 
includes the so-called fundamental vibrations of the molecules. When a molecule absorbs IR 
radiation at frequencies matching that of its own molecular vibrations, it results in an 
increase of the amplitude of the vibrations at these frequencies. Since each frequency 
corresponds to a given amount of energy and a specific molecular motion (e.g. stretching, 
bending or contracting of chemical bonds), the mid-IR spectrum can reveal the kind of 
molecular motions and bonds (functional groups) that are present in the molecule and hence 
can serve as a unique fingerprint of a specific compound. Furthermore, most functional 
groups have characteristic IR absorption bands that do not change much from one 
compound to another. By comparison, the near-infrared range is dominated by overtones 
and combinations of these fundamental vibrations, which makes the interpretation of the 
NIR spectra much more difficult. 
 

 
Fig. 1. The electromagnetic spectrum with emphasis on the ultra-violet – infrared range 
Reproduced from Viscarra Rossel et al. (2006). 
Nowadays, Fourier Transform Infrared (FTIR) is the preferred method for mid-IR 
spectroscopy as it provides quantitative information in a rapid and accurate fashion. A 
typical FTIR spectrometer obtains an infrared spectrum by collecting the interferogram of a 
sample signal, which contains all the infrared frequencies, applies the Fourier transform to 
the digitized signal, and outputs the spectrum. Such a FTIR spectrometer relies on an 
interferometer, which splits to radiation beam into two beams that are recombined after a 
path difference has been introduced (Griffiths&de Haseth 1986). The most common 
interferometer is the so-called Michelson interferometer, which consists of a beam splitter 
located between two perpendicular mirrors, one of which can move along an axis 
perpendicular to its plane (Figure 2). At the beam splitter, the radiation beam from the 
infrared source is partially reflected to the fixed mirror and partially transmitted to the 
moveable mirror. The moveable mirror is moved in a highly controlled fashion to create the 
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path difference between the two beams. After the beams return to the beam splitter, they 
interfere and are again partially transmitted and partially reflected to the detector. Due to 
the effect of the interference, the intensity of each beam passing to the detector and 
returning to the source depends on the path-length difference between the two beams. The 
two beams can undergo constructive interference, destructive interference or a combination 
of both, depending on the path-length difference. Constructive interference, which yields a 
maximum detector signal, occurs when the optical path difference is an integer multiple of 
the wavelength. The variation in the energy that reaches the detector as a function of the 
path difference yields the interferogram, which is the integral of all interference patterns 
produced by each wavelength. The detected interferogram can not be interpreted directly, 
but has to be “decoded” using the well-known Fourier Transformation (Griffiths&de Haseth 
1986). Fourier transform is typically thought of as decomposing a signal into its component 
frequencies and their amplitudes. The Fourier transform is an integral transform that re-
expresses a function in terms of sinusoidal basis functions, i.e. as a sum or integral of 
sinusoidal functions multiplied by some coefficients ("amplitudes"). The general idea is that 
a multiplication of the input waveform of unknown amplitude and frequency 
(interferogram signals) by a known reference frequency of unity amplitude (the analyzing 
wave) can give us the unknown amplitude and original frequency. Thus, by using a 
frequency-adjustable analyzing wave, each digitized point of the interferogram can be 
transformed from the time (or optical retardation) domain to the frequency domain, which 
results in the IR spectrum.  When a single interferogram is thus Fourier-transformed, a so-
called single-beam spectrum is generated, which is the raw detector response versus the 
wavelength. In order to produce the absorption spectrum of a sample, the sample single-
beam spectrum must be normalized against a background spectrum taken with no sample 
in the beam path. The absorption spectrum can be presented equivalently as a transmittance 
(T= I/I0) or absorbance (A= log10I0/I) spectrum, where I is the intensity measured with the 
sample in the beam and I0 is the intensity measured from the background spectrum. 
Direct transmittance is the oldest and most straightforward spectroscopic technique, which 
is based on the absorption of the IR radiation as it passes through the sample. Clearly, this 
technique is applicable only to samples that do not absorb all the incoming IR energy and 
are sufficiently transparent in this spectral range. For highly absorbent samples, such as 
soils, it is necessary to prepare a pellet that embeds the soil sample in a transparent matrix, 
most usually KBr. The pellet preparation involves grounding 2-3 mg of soil with ~1 g of KBr 
using a mortal and pestle and using a hydraulic press and die to create a thin, IR-
transparent disk. The main advantage of this technique is that it yields very clear and 
information-rich signals. Its main disadvantages are the lengthy preparation required to 
prepare the pellets and the fact that it is difficult to obtain quantitative results. Also, since 
only a few mg of soils are used for the preparation of each pellet, the resulting spectrum 
may not be representative the bulk soil. For these reasons, transmittance measurements are 
rather rarely used in soil analysis and the reflectance and photoacoustic methods described 
below are prefered.  

2.1 Diffuse reflectance 
Nguyen et al. (1991) pointed out to two main drawbacks of the transmittance technique in 
addition to the time-consuming sample preparation: (1) possible reaction of the sample with 
the halide matrix, and (2) scattering and/or total absorption for samples with high 
concentrations and large particles relative to the infrared wavelengths. To circumvent these 
limitations, Nguyen et al. (1991) introduced the use of diffuse reflectance (DRIFT) for soil  
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Nowadays, Fourier Transform Infrared (FTIR) is the preferred method for mid-IR 
spectroscopy as it provides quantitative information in a rapid and accurate fashion. A 
typical FTIR spectrometer obtains an infrared spectrum by collecting the interferogram of a 
sample signal, which contains all the infrared frequencies, applies the Fourier transform to 
the digitized signal, and outputs the spectrum. Such a FTIR spectrometer relies on an 
interferometer, which splits to radiation beam into two beams that are recombined after a 
path difference has been introduced (Griffiths&de Haseth 1986). The most common 
interferometer is the so-called Michelson interferometer, which consists of a beam splitter 
located between two perpendicular mirrors, one of which can move along an axis 
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path difference between the two beams. After the beams return to the beam splitter, they 
interfere and are again partially transmitted and partially reflected to the detector. Due to 
the effect of the interference, the intensity of each beam passing to the detector and 
returning to the source depends on the path-length difference between the two beams. The 
two beams can undergo constructive interference, destructive interference or a combination 
of both, depending on the path-length difference. Constructive interference, which yields a 
maximum detector signal, occurs when the optical path difference is an integer multiple of 
the wavelength. The variation in the energy that reaches the detector as a function of the 
path difference yields the interferogram, which is the integral of all interference patterns 
produced by each wavelength. The detected interferogram can not be interpreted directly, 
but has to be “decoded” using the well-known Fourier Transformation (Griffiths&de Haseth 
1986). Fourier transform is typically thought of as decomposing a signal into its component 
frequencies and their amplitudes. The Fourier transform is an integral transform that re-
expresses a function in terms of sinusoidal basis functions, i.e. as a sum or integral of 
sinusoidal functions multiplied by some coefficients ("amplitudes"). The general idea is that 
a multiplication of the input waveform of unknown amplitude and frequency 
(interferogram signals) by a known reference frequency of unity amplitude (the analyzing 
wave) can give us the unknown amplitude and original frequency. Thus, by using a 
frequency-adjustable analyzing wave, each digitized point of the interferogram can be 
transformed from the time (or optical retardation) domain to the frequency domain, which 
results in the IR spectrum.  When a single interferogram is thus Fourier-transformed, a so-
called single-beam spectrum is generated, which is the raw detector response versus the 
wavelength. In order to produce the absorption spectrum of a sample, the sample single-
beam spectrum must be normalized against a background spectrum taken with no sample 
in the beam path. The absorption spectrum can be presented equivalently as a transmittance 
(T= I/I0) or absorbance (A= log10I0/I) spectrum, where I is the intensity measured with the 
sample in the beam and I0 is the intensity measured from the background spectrum. 
Direct transmittance is the oldest and most straightforward spectroscopic technique, which 
is based on the absorption of the IR radiation as it passes through the sample. Clearly, this 
technique is applicable only to samples that do not absorb all the incoming IR energy and 
are sufficiently transparent in this spectral range. For highly absorbent samples, such as 
soils, it is necessary to prepare a pellet that embeds the soil sample in a transparent matrix, 
most usually KBr. The pellet preparation involves grounding 2-3 mg of soil with ~1 g of KBr 
using a mortal and pestle and using a hydraulic press and die to create a thin, IR-
transparent disk. The main advantage of this technique is that it yields very clear and 
information-rich signals. Its main disadvantages are the lengthy preparation required to 
prepare the pellets and the fact that it is difficult to obtain quantitative results. Also, since 
only a few mg of soils are used for the preparation of each pellet, the resulting spectrum 
may not be representative the bulk soil. For these reasons, transmittance measurements are 
rather rarely used in soil analysis and the reflectance and photoacoustic methods described 
below are prefered.  

2.1 Diffuse reflectance 
Nguyen et al. (1991) pointed out to two main drawbacks of the transmittance technique in 
addition to the time-consuming sample preparation: (1) possible reaction of the sample with 
the halide matrix, and (2) scattering and/or total absorption for samples with high 
concentrations and large particles relative to the infrared wavelengths. To circumvent these 
limitations, Nguyen et al. (1991) introduced the use of diffuse reflectance (DRIFT) for soil  
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Fig. 2. Schematic description of a Michelsen interferogram. 
analysis. While the study of Nguyen et al. (1991) was purely qualitative and restricted to 
band assignments, the subsequent articles of Janik et al. (1995) and Janik&Skjemstad (1995) 
showed that mid-IR DRIFT could be used to quantify various soil components. Since then, 
the use of mid-IR DRIFT has been investigated in numerous soil studies (see excellent 
review paper of Reeves III 2010), and it is arguably the mid-IR spectroscopic method most 
commonly used for soil analysis. DRIFT spectroscopy is mainly concerned with radiation 
emerging from a non-mirror or matt surface after it has undergone absorption, refraction, 
reflection and scattering in the bulk material. DRIFT spectra are subject to nonlinear scaling 
of the intensity which reduces the intensity of strongly absorbing bands in comparison to 
weaker bands. Thus, low intensity bands appear to be enhanced in DRIFT spectra. The 
specular component becomes increasingly significant at high sample concentrations and for 
large particles, and the occurrence of strong specular reflection explains for instance why the 
presence of inorganic carbon interferes with the development of calibrations for soil organic 
carbon (Reeves et al. 2005). In order to avoid such non-linearities and spectral distortions, 
the use of samples diluted with KBr has long been advocated and such KBr dilution is still 
used in many studies. However, using KBr-diluted samples increases the sample 
preparation time and may cause interferences due to ion exchange between the sample and 
the KBr matrix or adsorption of water onto the KBr (Bertrand et al. 2002). Janik&Skjemstad 
(1995), Janik et al. (1998) and Reeves et al. (2001) have shown that quantitative analysis can 
also be performed on mid-IR spectra of neat (undiluted) soil samples. These findings were 
further supported by the comparative study of Bertrand et al. (2002) who compared results 
obtained using neat and KBr-diluted samples and concluded that KBr dilution does not 
improve the accuracy of the measurements.  

2.2 Attenuated total reflectance 
In the Attenuated Total Reflectance (ATR) method, the IR radiation propagates through a 
crystal with a high refractive index that is in contact with the sample (Figure 3). Mirrors are 
used to direct the IR beam toward the crystal at an angle that exceeds the critical angle for 
internal reflection, so that the radiation undergoes multiple reflections within the crystal.  
This critical angle θC depends on the refractive indices of the sample and ATR crystal 
according to  
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where n1 and n2 are the refractive indices of the crystal and the sample, respectively. Due to 
the quantum mechanic properties of the light, the electromagnetic field extends beyond the 
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Fig. 3. Attenuated total reflectance (ATR) configuration. I denotes the incoming light (from 
the interferometer), D denotes the detector, L and M are lenses and mirrors. Reproduced 
from (Etzion et al. 2004)  

crystal surface for a short distance known as the evanescent field. If a sample is applied 
directly onto the surface of the ATR crystal, some of the IR radiation (i.e., the evanescent 
wave) is absorbed by this sample, so that the sample absorbance spectrum can be obtained. 
The evanescent wave decays exponentially with the distance from the surface of the crystal. 
The depth of penetration of the evanescent wave dp is defined as the distance from the 
crystal-sample interface at which the intensity of the evanescent wave decays to 37% (1/e) of 
its original value, and is given by 
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where λ is the radiation wavelength. The penetration depth and the total number of 
reflections along the crystal can be controlled to some extend either by varying the angle of 
incidence of the radiation (θ) or through the selection of the crystal material. The penetration 
depth is typically less than 10 μm, so that very good contact between the sample and the 
crystal is critical in order to obtain reliable and reproducible results.  
The first use of ATR for soil analysis was reported by Ehsani et al. (2001), who attempted to 
determine nitrate concentration using ATR spectra of dry soil samples. This study 
demonstrated the difficulty of obtaining adequate contact between the soil and the ATR 
crystal, but also showed how the results could be greatly improved by using a soil paste or 
slurry. Such an technique was further developed by Shaviv et al. (2003), Linker et al. (2004), 
Linker et al. (2005) and Borenstein et al. (2006) who used samples consisting of soil pastes 
close to water saturation. Since nitrate is highly soluble in water and is not fixed in the soil 
matrix, all the nitrate is present in the liquid phase of the soil paste, which has several 
advantages. First, since the paste moisture content is less than 1 g [H2O]/g [soil], the nitrate 
concentration in the liquid phase is higher than in the dry soil. Second, much better contact 
is obtained between the ATR crystal and the liquid phase than could be obtained between 
the ATR crystal and the dry soil. Finally, the original moisture of the soil sample has no 
influence on the measurement. However, water exhibits very strong absorbance bands in 
the mid-IR range, which may distort or hide bands of interest. This is illustrated in Figure 4 
which shows the spectra of de-ionized water, de-ionized water with 1000 mg[N]/kg[water] 
nitrate, and a paste of sandy soil with 870 mg[N]/kg[water] nitrate. Distortion and shift of 



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

388 

 
Fig. 2. Schematic description of a Michelsen interferogram. 
analysis. While the study of Nguyen et al. (1991) was purely qualitative and restricted to 
band assignments, the subsequent articles of Janik et al. (1995) and Janik&Skjemstad (1995) 
showed that mid-IR DRIFT could be used to quantify various soil components. Since then, 
the use of mid-IR DRIFT has been investigated in numerous soil studies (see excellent 
review paper of Reeves III 2010), and it is arguably the mid-IR spectroscopic method most 
commonly used for soil analysis. DRIFT spectroscopy is mainly concerned with radiation 
emerging from a non-mirror or matt surface after it has undergone absorption, refraction, 
reflection and scattering in the bulk material. DRIFT spectra are subject to nonlinear scaling 
of the intensity which reduces the intensity of strongly absorbing bands in comparison to 
weaker bands. Thus, low intensity bands appear to be enhanced in DRIFT spectra. The 
specular component becomes increasingly significant at high sample concentrations and for 
large particles, and the occurrence of strong specular reflection explains for instance why the 
presence of inorganic carbon interferes with the development of calibrations for soil organic 
carbon (Reeves et al. 2005). In order to avoid such non-linearities and spectral distortions, 
the use of samples diluted with KBr has long been advocated and such KBr dilution is still 
used in many studies. However, using KBr-diluted samples increases the sample 
preparation time and may cause interferences due to ion exchange between the sample and 
the KBr matrix or adsorption of water onto the KBr (Bertrand et al. 2002). Janik&Skjemstad 
(1995), Janik et al. (1998) and Reeves et al. (2001) have shown that quantitative analysis can 
also be performed on mid-IR spectra of neat (undiluted) soil samples. These findings were 
further supported by the comparative study of Bertrand et al. (2002) who compared results 
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improve the accuracy of the measurements.  

2.2 Attenuated total reflectance 
In the Attenuated Total Reflectance (ATR) method, the IR radiation propagates through a 
crystal with a high refractive index that is in contact with the sample (Figure 3). Mirrors are 
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internal reflection, so that the radiation undergoes multiple reflections within the crystal.  
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where λ is the radiation wavelength. The penetration depth and the total number of 
reflections along the crystal can be controlled to some extend either by varying the angle of 
incidence of the radiation (θ) or through the selection of the crystal material. The penetration 
depth is typically less than 10 μm, so that very good contact between the sample and the 
crystal is critical in order to obtain reliable and reproducible results.  
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determine nitrate concentration using ATR spectra of dry soil samples. This study 
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advantages. First, since the paste moisture content is less than 1 g [H2O]/g [soil], the nitrate 
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influence on the measurement. However, water exhibits very strong absorbance bands in 
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the spectra can be observed, especially in the regions indicated by circles. The magnitudes of 
these changes are comparable with the size of the nitrate signal and would cause significant 
inaccuracies if straightforward estimation of nitrate was performed. Therefore an accurate 
water subtraction procedure such as the one developed by Linker et al. (2004, 2005) should 
be applied to the spectra prior to the quantitative analysis.  
 

 
Fig. 4. Spectra of de-ionized water, de-ionized water with 1000 mg[N]/kg[water] nitrate, 
and a paste of sandy soil with 870 mg[N]/kg[water] nitrate. The circles indicates the regions 
in which shifts and distorsions of the spectra are most clearly visible. Reproduced from 
Linker et al. (2005). 

2.3 Photoacoustic spectroscopy 
Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) differs from the previous 
methods in the sense that it relies on complete absorption of the incoming radiation by the 
sample. The sample is placed in a sealed enclosure that is purged with He to avoid 
atmospheric interferences and to which is connected a highly sensitive microphone which 
records the pressure waves that result from the local heating induced by the absorbed 
radiation (McClelland et al. 2002) (Figure 5). The recorded spectrum depends on the 
absorption properties of the sample, its thermal diffusivity, and the thermal penetration 
depth. Therefore, photoacoustic spectra are more difficult to interpret than reflectance ones 
and there is no one-to-one correspondence between the spectra obtained with both 
techniques. Also, photoacoustic spectra are much more prone to measurement noise. 
Nonetheless, since this method can be used with highly absorbing samples without any 
pretreatment, it is well suited for soil samples analyses and its use has been reported in 
several recent studies (Du et al. 2008a, 2008b, 2009b).  

3. Data processing 
Due to the large amount of data generated by FTIR spectrometers and the complexity of the 
spectra, it is imperative to use chemometrics procedures to analyze the data. A detailed  
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Fig. 5. Schematic description of FTIR photoacoustic spectroscopy. Reproduced from Du et 
al. (2008a). 
description of such procedures can be found in various textbooks such as Brereton (2003) or 
Chau et al. (2004). Partial Least Squares (Wold et al. 2001) is the procedure most commonly 
used for quantitative determination of one or several soil components (see  for instance the 
excellent compilation table in Viscarra Rossel et al. (2006)). PLS is an easy-to-use 
straightforward procedure that is available in standard statistical and chemometrics 
softwares, which probably explains its popularity. The main limitation of PLS is that it 
assumes linearity of the data, but the good results reported in most soil studies show that 
this does not appear to be too restrictive an assumption when analyzing soil spectra. 
Exceptions to this generally linear behavior were reported for instance by Janik&Skjemstad 
(1995) and Janik et al. (2009), especially at very high concentrations. However, Janik et al. 
(2009) reported that in those cases where PLS was not capable of providing a good 
prediction model, adding a non-linear element in the form of a neural network did not 
improve the results significantly.  
The a priori assumption of linearity can be avoided altogether by using procedures such as 
wavelet decomposition and neural networks. An example of such a procedure is depicted in 
Figure 6. In this procedure, wavelet decomposition is used to compress the data and obtain 
a low-dimensional representation of the spectra. Although wavelet decomposition by itself 
does not produce a compressed representation of the original data, data reduction can be 
achieved by eliminating the wavelet coefficients that do not contain valuable information. 
Various approaches have been reported in the literature for selecting the most relevant 
coefficients, such as eliminating all “small” coefficients using for instance either 
thresholding (Kai-man Leung et al. 1998; Ehrentreich 2002), entropy (Kai-man Leung et al. 
1998), mutual information (Alsberg et al. 1998), maximum likelihood (Leger&Wentzell 
2004), or genetic algorithms (Depczynski et al. 1999), or retaining only the coefficients with 
the highest variance (Trygg&Wold 1998) as depicted in Figure 6. Once data compression has 
been achieved, the remaining coefficients can be used as input variables for a neural 
network that creates a non-linear mapping between these inputs and the property (or 
properties) of interest. The neural network can also be replaced by a simpler linear 
regression as in Viscarra Rossel&Lark (2009), in which case a hybrid model that contains 
both linear and non-linear stages is obtained.  
Since the wavelet transform decomposes the signal into components at different scales (or 
loosely speaking, components of different widths), it is a very powerful tool for resolving 
overlapping bands and separate the bands of interest from the background and 
interferences. For instance, Jahn et al. (2006) used such an approach to distinguish between 
the strongly-overlapping absorbance bands of nitrate and calcium carbonate in  the ATR 
spectra of calcareous soils (Figure 7).  
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the spectra can be observed, especially in the regions indicated by circles. The magnitudes of 
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Fig. 4. Spectra of de-ionized water, de-ionized water with 1000 mg[N]/kg[water] nitrate, 
and a paste of sandy soil with 870 mg[N]/kg[water] nitrate. The circles indicates the regions 
in which shifts and distorsions of the spectra are most clearly visible. Reproduced from 
Linker et al. (2005). 
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regression as in Viscarra Rossel&Lark (2009), in which case a hybrid model that contains 
both linear and non-linear stages is obtained.  
Since the wavelet transform decomposes the signal into components at different scales (or 
loosely speaking, components of different widths), it is a very powerful tool for resolving 
overlapping bands and separate the bands of interest from the background and 
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Fig. 6. Schematic representation of a prediction model combining wavelet decomposition of 
the spectra and a neural network 
 

 
 

 
Fig. 7. Overlapping bands of nitrate and carbonate in ATR spectra of calcareous soils (Top 
frame) and the wavelet decomposed values at scale 2 (dashed, attributed to carbonate) and 
at scale 3 (attributed to nitrate,14ppm and 120ppm N-NO3) (Bottom frame). Reproduced 
from Jahn et al. (2006).  
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4. Most common applications 
4.1 Estimation of soil nutrients and organic matter 
Soil nutrients, such as C, N, P, K, S, Ca and microelements, play a primordial role in the 
development of agricultural crops and hence determination of their concentrations is 
crucial to the application of the precision agriculture concept. Viscarra Rossel et al. (2006) 
compiled an excellent review of the studies dedicated to the estimation of these 
parameters using diffuse reflectance. Table 1 present a non-exhaustive list of studies that 
focused on the determination of carbon, total nitrogen, nitrate, potassium, phosphorus 
and organic matter using diffuse reflectance, ATR and photoacoustic spectroscopy. Table 
1 clearly shows that carbon, and in particular organic C, is the property most commonly 
determined, using DRIFT. Most studies reported very good results with correlation 
coefficients (R2) between the actual and estimated values higher than 0.90. A noticeably 
much poorer result was reported by Reeves&Smith (2009) (R2=0.60). This latter study was 
not restricted to agricultural soils as the previous studies (some of which included a 
number of samples similar to that of Reeves&Smith (2009)), but included soil samples 
from national forests, rangelands, woodlots, etc. and Reeves&Smith (2009) hypothesized 
that this wide range of soil uses was responsible for the poor performance of the 
regression models. Acceptable results were also reported for estimation of total nitrogen 
(R2>0.80), using either DRIFT or photoacoustic spectroscopy. For nitrate, Viscarra Rossel 
et al. (2006) did not find any correlation between DRIFT spectra and nitrate concentration. 
This finding contrasts sharply with the good results that can obtained using the ATR 
technique, for which the typical determination errors range from 5 to 25 mg[N]/kg[dry 
soil] for realistic agricultural field concentrations. The largest determination errors 
correspond to calcareous soils for which nitrate determination is hindered by the 
absorbance band of carbonate that overlaps the nitrate band (Linker et al. 2004, 2005, 2006; 
Borenstein et al. 2006; Jahn et al. 2006). For potassium, phosphorous and organic matter 
conflicting findings have been reported. Bertrand et al. (2002) reported that DRIFT could 
be used to estimate potassium concentration (R2=0.85). Acceptable results were also 
reported by Du et al. (2009b) who used photoacoustic spectroscopy (R2=0.79). 
McCarty&Reeves (2006) and Reeves&Smith (2009) obtained relatively poor but still 
potentially useful results using DRIFT (R2 of 0.60 and 0.76, respectively), but Viscarra 
Rossel et al. (2006) concluded that DRIFT spectroscopy was not suitable for estimating 
potassium concentration (R2=0.40). For phosphorous,  Janik et al. (2009) and Du et al. 
(2009b) reported R2 values of 0.87 and 0.81 using DRIFT and photoacostic spectroscopy, 
respectively. However, Bertrand et al. (2002), McCarty&Reeves (2006) and Viscarra Rossel 
et al. (2006) did not find a relationship between DRIFT spectra and phosphorous 
(R2<0.40). For organic matter, very good results were obtained using photoacoustic 
spectroscopy (Du et al. 2007, 2009b) and DRIFT (Masserschmidt et al. 1999), with R2 values 
above 0.90 in all three studies. However, very poor correlation between DRIFT spectra 
and organic matter content was reported by Canasveras et al. (2010).  
The somewhat conflicting results reported in some of the DRIFT studies emphasize the need 
for standardization of the analyses (both analytical reference analyses and DRIFT 
spectroscopy) and underscore the problem of transferability of the results (See Section 5.1). 
Photoacoustic spectroscopy appears to be a very promising technique which should 
certainly be investigated in further studies. 
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 Diffuse reflectance Attenuated total 
reflectance Photoacoustic 

Organic C 

Janik&Skjemstad (1995);  Janik 
et al. (1998); McCarty et al. 
(2002); Reeves et al. (2002); 
Reeves (2009, 2010); 
Reeves&Smith (2009) 
;McCarty&Reeves (2006) 
;Viscarra Rossel et al. (2006, 
2008); Viscarra Rossel&Lark 
(2009) ;Janik et al. (2009) 
;Zimmermann et al. (2007) 
;McBratney et al. (2006) 

  

Total C 

McCarty et al. (2002) ;Reeves 
et al. (2001, 2002); Reeves 
(2009, 2010); Viscarra Rossel et 
al. (2008);  Minasny et al. 
(2009); Reeves&Smith (2009) 

  

Total N 

Janik&Skjemstad (1995); 
Reeves et al. (2001); 
McCarty&Reeves ( 2006); 
Viscarra Rossel et al. (2008) 

 Du et al. (2009b) 

Nitrate Viscarra Rossel et al. (2006) 
;Verma&Deb (2007) 

Ehsani et al. (2001); 
Shaviv et al. (2003); 
Linker (2004); 
Linker et al. (2004, 
2005, 2006); 
Borenstein et al. 
(2006); Jahn et al. 
(2006);  

 

Potassium 

Bertrand et al. (2002); 
McCarty&Reeves (2006); 
Viscarra Rossel et al. (2006); 
Minasny et al. (2009); 
Reeves&Smith (2009) 

 Du et al. (2009b) 

Phosphorus 

McCarty&Reeves (2006);  
Viscarra Rossel et al. (2006) ; 
Janik et al. (2009); Minasny et 
al. (2009) 

 Du et al. (2009b) 

Organic 
matter 

Masserschmidt (1999); 
Canasveras et al. (2010)  Du et al. (2007, 

2009b) 

Table 1. List of studies that used reflectance and photoacoustic spectroscopy for the 
estimation of soil carbon, total nitrogen, nitrate, potassium phosphorus and organic matter 
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4.2 Determination of soil moisture  
Water in itself is essential for plant growth and its presence in the soil influences numerous 
properties such as the availability of oxygen and nutrients, microbial activity, swelling and 
shrinking of clays or soil stability. Since the methods traditionally used to estimate water-
related soil properties are time consuming, much research has been devoted to the 
development of alternative methods. In particular, very good results have been reported for 
some of these properties using near-infrared spectroscopy under laboratory conditions 
(Mouazen et al. 2005, 2006; Viscarra Rossel&McBratney 1998a) and encouraging results have 
been reported for in-situ field measurements (Mouazen et al. 2005). A summary of the main 
results obtained with mid-IR DRIFT spectroscopy is presented in Table 2.  With the exception 
of Dataset #1 in Tranter et al. (2008), mid-IR spectroscopy was capable of estimating to some 
extent water retention at -10kPa and -1500kPa, with R2 values ranging from 0.64 to 0.81 and 
from 0.66 to 0.89, respectively. However, the study of Bertrand et al. (2002) clearly shows that 
KBr dilution of the samples or high CaCO3 concentration deteriorate the results. Although this 
has not been specifically verified, the very poor results obtained by Tranter et al. (2008) on 
Dataset #1 were most probably due to the fact that the spectra were recorded from intact 
soil cores rather than from grounded samples as in all the other studies. Regarding moisture 
of air-dried and oven-dried soil, the few results available are very good, unless the soil has a 
high CaCO3 concentration.   

4.3 Soil characterization 
The soil physical structure affects various physical, chemical and biological processes such 
as for instance water infiltration and retention or root penetration and proliferation. With 
this respect, clay is the component most often studied by mid-IR spectroscopy, although 
some studies also attempted to estimate sand or silt content (McBratney et al. 2006; Viscarra 
Rossel et al. 2008).  For clay, R2 values of 0.85 or more were reported by Janik&Skjemstad 
(1995), Viscarra Rossel et al. (2008) and Viscarra Rossel&Lark (2009). Reasonably good 
results were reported by Janik et al. (2009), Canasveras et al. (2010) and Janik et al. (2009), 
with R2 value of 0.84 and 0.82, respectively, but lower R2 values (0.74-0.79) were reported by 
Bertrand et al. (2002), McCarty&Reeves (2006), Minasny et al. (2009) and McBratney et al. 
(2006). No explanation has been offered to explain such a variability of the prediction 
performances. In addition to the previous DRIFT studies, Du et al. (2007) reported very 
good results (R2>0.90) using photoacoustic spectroscopy and Du et al. (2008b) further 
showed that this method can be used to differentiate between different types of clays. 
Another important soil component that can be estimated by mid-infrared spectroscopy is 
carbonate. In this case the results are much more consistent, with R2 values of 0.95 or more 
reported in the studies of Janik&Skjemstad (1995), Bertrand et al (2002),  Canasveras et al. 
(2010) and Du et al. (2008b). Linker et al. (2006) and Du et al. (2008a) showed that the 
spectral information related to carbonate and other soil constituents can be used to 
discriminate between soils, and Linker et al. (2006) further showed that such a automatic 
discrimination can improve the estimation of nutrients such as nitrate. 

5. Current challenges and emerging applications 
5.1 Spectral libraries and model transferability  
The results presented in the previous Section clearly demonstrated that mid-IR spectroscopy 
can be used to determine accurately a series of soil characteristics and properties under   
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reflectance Photoacoustic 
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(2009); Reeves&Smith (2009) 

  

Total N 

Janik&Skjemstad (1995); 
Reeves et al. (2001); 
McCarty&Reeves ( 2006); 
Viscarra Rossel et al. (2008) 

 Du et al. (2009b) 

Nitrate Viscarra Rossel et al. (2006) 
;Verma&Deb (2007) 

Ehsani et al. (2001); 
Shaviv et al. (2003); 
Linker (2004); 
Linker et al. (2004, 
2005, 2006); 
Borenstein et al. 
(2006); Jahn et al. 
(2006);  

 

Potassium 

Bertrand et al. (2002); 
McCarty&Reeves (2006); 
Viscarra Rossel et al. (2006); 
Minasny et al. (2009); 
Reeves&Smith (2009) 

 Du et al. (2009b) 

Phosphorus 

McCarty&Reeves (2006);  
Viscarra Rossel et al. (2006) ; 
Janik et al. (2009); Minasny et 
al. (2009) 

 Du et al. (2009b) 

Organic 
matter 

Masserschmidt (1999); 
Canasveras et al. (2010)  Du et al. (2007, 
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Study 
Water retention 

at -10kPa or 
120cm 

Water retention 
at -1500kPa 

Moisture of air-
dried soil 

Moisture of 
oven-dried 

soil 
Bertrand et al. 
(2002) 0.92‡  0.92  

 0.84‡ (KBr 
diluted samples)  

0.86 (KBr 
diluted 

samples) 
 

 0.74‡ 
(CaCO3>2%)  0.68 

(CaCO3>2%)  

McBratney et 
al. (2006) 0.64† 0.66†   

Janik et al. 
(2007) 0.79 0.84   

Tranter et al. 
(2008) (Dataset 
#1 – intact 
cores) 

0.02 0.50   

 0.48† 0.71†   
Tranter et al. 
(2008) (Dataset 
#2 – crushed 
samples) 

0.85 0.89   

Janik et al. 
(2009) 0.81 0.89  0.89 

Table 2. R2 values between the actual soil moisture or water retention and the one estimated 
from mid-IR spectra. The results were obtained using neat ground samples unless otherwise 
indicated. † indicates that results obtained indirectly using properties estimated by mid-IR 
spectroscopy and pedotransfer functions. ‡ indicates that the result correspond to water 
retention at 120cm water tension 

laboratory conditions. However, two questions still remain mostly unanswered: (1) could a 
regression model developed by one group of researchers be readily applied by other 
researchers and (2) would it be possible to establish spectral libraries that combine spectra 
from different sources? Such issues are of course not restricted to mid-IR spectroscopy but 
are also relevant to NIR spectroscopy (Cécillon et al. 2009).  These two issues are related 
since in the absence of such libraries each research team tends to work with spectra recorded 
“in-house” using experimental procedures that are, at least to some extend, specific to that 
specific laboratory. Furthermore, due to the extensive work required to collect soil samples 
and to perform detailed chemical analyzes of these samples, most studies are still based on 
soil samples belonging to a specific geographic area. The issue of mid-IR model 
transferability was recently addressed by Minasny et al. (2009) who concluded that “Due to 
the differences in the origins of the soil and in the laboratory measurement procedures, 
calibration functions from one region do not perform well on another one”. They further 
emphasized that in their opinion the cause for this lack of transferability lies mainly in the 
difference in laboratory techniques, different analytical procedures, and inter-laboratory 
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bias. The creation of a library of mid-IR DRIFT spectral of soils was considered by Viscarra 
Rossel et al. (2008) who emphasized three main prerequisite for the development of such a 
library: (1) it should describe adequately the soil variability in the region in which it is to be 
used, (2) experimental procedures, and in particular sample handling, preparation, storing 
and scanning must be standardized and (3) the analytical data used as reference should be 
acquired using reliable and accredited analytical procedures. This issue was also addressed 
by Reeves III in his recent review on the use of NIR and mid-IR DRIFT for soil analysis 
(Reeves III 2010) in which he emphasized that “Spectral libraries for quantitative analysis 
will be useless, or worse deceptive, if users base results on combining spectra from differing 
sets of samples that have not been standardized.” However, as the study of Reeves&Smith 
(2009) clearly demonstrated, standardization in itself does not guarantee accurate results, 
even for properties that seem trivial to determine such as organic carbon. In this case, 
Reeves&Smith (2009) explained their poor results by the fact that their database included 
soils of various usages rather than to be restricted to agricultural soils. Finally, it must be 
noted that since specular reflection occurs for both organic and non-organic fractions of soil, 
libraries of spectra collected by other means than diffuse reflectance would be largely 
useless for comparing mineral spectra to soil spectra (Reeves et al. 2005). All these factors 
underline the complexity of the task at hand if one was to contemplate the creation of a truly 
universal soil spectral library.  

5.2 Indirect estimation of additional soil properties  
In addition to those properties that can be measured directly by mid-infrared spectroscopy, 
there is a large number of important soils properties that are not associated with distinct 
absorbance bands. In such cases McBratney et al. (2006) propose to use the estimates 
obtained by mid-IR spectroscopy in an inference system that uses pedotransfer functions. 
This approach is illustrated in Figure 8: Once regression models based on mid-IR spectra 
have been calibrated for properties such as clay, silt, sand and organic carbon, these models 
are used to estimate the same properties of a new sample, together with their respective 
uncertainties. These values are then used to predict the bulk density, the water content at 
field capacity and wilting point, and finally the available water capacity.  
An important feature of this approach is that the determination errors are propagated 
through the various estimation stages so that a confidence interval can be associated with 
each prediction (Figure 9). Tranter et al. (2008) showed how such an approach improved 
considerably the estimation of soil water retention, which was very poorly estimated 
directly from the mid-IR spectra (See Table 2). Minasny&McBratney (2008) also reported 
more parsimonious models and greater accuracy when using an inference system then when 
using straightforward PLS regression on the mid-IR spectra. Such an approach may help 
solving the “model transferability” problem discussed in the previous section and further 
work should be devoted to validating and improving this interesting approach.  

5.3 On-the-go sensing and combination with GIS 
In order to achieve “precision farming”, the information obtained from soil analyzes must 
be combined with a Geographic Information System (GIS) platform in order to create 
overlaying maps of soil characteristics, water content, nutrient availability, yield, etc. In 
addition to measurement accuracy, a key issue is the number of sampling points and the 
spatial resolution of the measurements. The development of “on-the-go” sensors is of  
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Study 
Water retention 
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Water retention 
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Moisture of air-
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Moisture of 
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Tranter et al. 
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Fig. 8. Top frame: Schematic description of the combination of mid-IR spectroscopy and 
inference models as suggested by McBratney et al. (2006). Bottom frame: Quantiles of the 
available water capacity estimated according to the inference scheme. Reproduced from 
McBratney et al. (2006). 
primordial importance (Viscarra Rossel&McBratney 1998b) and considerable research 
efforts have been devoted to the development of fast, fully automated and geo-referenced 
measurement systems (Sibley et al. 2009; Mouazen et al. 2007; Christy 2008; Adamchuk et al. 
2004, 2005; Sinfield et al. 2010). Among the spectroscopy-based methods, the use of NIR has 
been investigated more actively, mostly due to the lower price and higher robustness of the 
equipment. Indeed, in their review paper Sinfield et al. (2010) concluded that the “the FT-IR 
ATR technique, while very accurate and fast, makes use of expensive and delicate 
equipment (e.g., moving mirror in interferometer) which is not readily amenable to an on-
the-go setting” but that development of sensors based on a limited set of wavebands, as 
suggested by Linker (2004) and Jahn et al. (2006), could “enhance the potential to apply 
reflectance based approaches in the field by limiting the sophistication of requisite 
equipment“. At any rate, considerable improvements are still required before large-scale 
implementation could be considered. 

5.4 Monitoring of N isotopes 
Nitrogen, either naturally present in the soil or added as fertilizer, may undergo a series of 
complex transformations. These transformations are interdependent and depend on a large 
number of variables, so that isolating specific processes or pathways is very challenging. 
One of the methods used to study these processes consists of enriching the soil with stable 
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15N isotopes and monitoring the concentration of 15N in the by-products of the various 
reactions (Stevens et al. 1993; Stevens&Laughlin 1994; Baggs 2008). Such studies require the 
quantification of 14N and 15N, which is done by isotope ratio mass spectrometry (IRMS). 
However, expensive and laborious preparation of the samples is required to convert the N 
species into forms suitable for the IRMS measurements and the method can not realistically 
be used to analyze a large number of samples during an experiment. Du et al. (2009a) 
showed how mid-infrared spectroscopy could provide a much faster and cheaper 
alternative for N-isotope tracing, albeit with much lower accuracy than IRMS. The method is 
based on the observation that since the mid-infrared range corresponds to the fundamental 
vibrations of a molecule, which depend on the atoms’ mass, the absorbance bands of 14N-
based and 15N-based compounds are slightly shifted relative to each other, so that the 
concentration of each species can be estimated. This spectral shift between 14N-NO3 and 15N-
NO3 is shown in Figure 9.  
 

 
 

 
Fig. 9. Top frame: FTIR-ATR spectra of 14N-NO3 and 15N-NO3 in water. Bottom frame: 
Nitrate formation during an incubation experiment as estimated from FTIR-ATR 
measurements. Nine sub-samples were analyzed at each sampling point. ‘‘c’’ is the total 
amount of nitrate formed. ‘‘d’’ and ‘‘e’’ are the formed 15N-NO3 and 14N-NO3, respectively. 
Reproduced from Du et al. (2009a). 
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Using PLS regression models calibrated using saturated soil pastes spiked with 14N-NO3 
and 15N-NO3, Du et al. (2009a) were able to estimate the 14N-NO3 and 15N-NO3 
concentrations in a non-calcareous soil with determination errors of less than 6 mg[N]/ 
kg[dry soil], which enabled them to monitor separately the formation of 14N-NO3 and 15N-
NO3 during an incubation experiment (Figure 9). Although the measurement uncertainties 
reported in Figure 9 may seem rather large, the low cost and short time required for the 
FTIR-ATR measurements would make it possible to perform and average more 
measurements than as done in the study of Du et al. (2009a), and thus reduce the 
measurement uncertainties. After further validation of the approach with other soils, 
including with calcareous soils in which the carbonate absorbance band overlaps the nitrate 
absorbance band and interferes with nitrate determination (Linker et al. 2004, 2005, 2006), 
and extension of the method to monitoring soil NH4 and/or NO2 species, this method 
would provide a  very powerful and cheap tool for studying soil nitrogen transformations. 

6. Conclusion 
The abundant studies conducted in the mid-IR range have demonstrated the potential that 
this technique holds for rapid and inexpensive soil analysis. A major advantage of 
spectroscopy techniques in general and mid-IR in particular is that several properties can be 
determined from a single spectrum, which greatly reduces the costs of analysis compared to 
conventional laboratory techniques. In addition, the measurement is very rapid so that a 
large number of samples can be easily screened or measurements could be conducted “on-
the-go”, at least in principle. However, several problems still need to be solved before this 
technology could be upgraded from the research laboratory into routine analyses. The most 
pressing issue appears to be the standardization of the FTIR and conventional procedures 
used to analyze the samples, which would make it possible to consider the establishment of 
spectral libraries similar to those existing in other FTIR fields. Such libraries would provide 
the basis necessary for developing robust chemometrics models, based either solely on mid-
IR spectra or combining mid-IR spectra and pedotransfer functions, valid not only at the 
local but also at the regional scale.  
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1. Introduction 
This synopsis of FT-IR spectroscopic applications in waste management covers relevant 
issues regarding monitoring, process and quality control. Quality in this context means low 
reactivity, low gas forming potential and compliance with limit values of materials to be 
landfilled, appropriate compost ingredients and improvement of the stable carbon pool by 
humification of compost organic matter. The division into sections was carried out 
according to specific materials and processes and the related questions to be answered. 
Waste materials have not posed a problem in the past, as long as they were returned to the 
natural cycle. The higher degree of utilisation, the long lasting life cycle of goods and their 
re-use caused minor waste amounts and contributed to the balance of input and output 
streams. As natural materials were the basis for good production, waste was integrated in 
the natural cycle. Organic waste materials only escaped degradation if they were preserved 
under particular conditions. Inorganic residues from ore mining have led to local 
contamination by heavy metals. In contrast, fragments of ancient pottery or ruins have 
gained in importance as historical witnesses. The economical and social increase in 
prosperity and urban development has been paralleled by strongly rising amounts of 
organic and inorganic waste and the acceleration of turnover rates. These have led primarily 
to sanitation problems, especially in expanding urban areas. Disposal of these wastes by 
spreading them over the surrounding countryside or filling dumps were only temporary 
“solutions”. Natural waste such as foliage falling in autumn can be considered as an 
intermediate product in a closed circle. Except for natural disasters, turnover rates and the 
related contents of substances are subjected to regulations. Anthropogenic waste is in most 
cases the end of a one-way street that causes system imbalances. Therefore new approaches 
and waste management strategies aim at copying natural cycles. 
The amount, changes in the chemical composition of our goods, the use of hazardous 
substances and the careless landfilling of waste in dumps have caused serious 
environmental problems and demonstrated the need for action. The awareness of this issue 
emerged when soils and groundwater were contaminated by leachate emissions. Due to the 
missing separation of hazardous waste, landfill remediation has often implied a complete 
excavation of the landfilled material. Discussions on climate change, the role of waste 
management in the global carbon cycle and its contribution to the carbon budget have 
drawn attention to relevant gaseous emissions from landfills with a global warming 
potential, especially of methane. 
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to sanitation problems, especially in expanding urban areas. Disposal of these wastes by 
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cases the end of a one-way street that causes system imbalances. Therefore new approaches 
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The amount, changes in the chemical composition of our goods, the use of hazardous 
substances and the careless landfilling of waste in dumps have caused serious 
environmental problems and demonstrated the need for action. The awareness of this issue 
emerged when soils and groundwater were contaminated by leachate emissions. Due to the 
missing separation of hazardous waste, landfill remediation has often implied a complete 
excavation of the landfilled material. Discussions on climate change, the role of waste 
management in the global carbon cycle and its contribution to the carbon budget have 
drawn attention to relevant gaseous emissions from landfills with a global warming 
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Analytical approaches in the past differed in that the main analytical interest focused on the 
effect of gaseous emissions on the environment and on soil and water pollution. 
Environmental analytical methods were applied to find out the effects in these spheres 
caused by waste materials. Waste materials themselves were not investigated. The first 
attempts to encapsulate waste materials were aimed at prevention of contact with the 
environment. Analytical investigations in the past concentrated on pollution control and on 
the chemical and physical quality of landfill liners with regard to their density, tightness 
and stability. 
Later on the interest in the waste material itself came to the fore as it represents the source of 
future emissions. The environmental impact and the economic implication caused the 
government to react in terms of regulations regarding the handling of waste materials. 
During the last decades waste management has become an important industrial sector in 
countries with a high environmental awareness and adequate standards. The approach of 
waste encapsulation was abandoned due to the missing knowledge about the durability of 
landfill liners and technical facilities. Moreover, it was evident that the encapsulation would 
have promoted the preservation of the material and postponed the problem of reactivity. 
The concept of a “multi-barrier system” that includes pre-treatment of municipal solid 
waste in terms of stabilisation besides the technical equipment and an adequate geological 
basement was implemented. The reduction of waste reactivity within a manageable space of 
time should avoid the long lasting after care period of several decades that does not comply 
with the objective of the Austrian Waste Act (BMLFUW, 1990) not to burden the next 
generations with environmental problems from the past. 
Among the wide range of current research topics in waste management the development of 
appropriate analytical tools is an overall concern at the national and the European level. 
Waste materials represent an analytical challenge due to their widely varying composition 
and structure contrary to all principles of natural order. The implementation of limit values 
by national rules and the need for environmental compliance have stimulated the discussion 
on adequate methods, their reliability and usefulness. Their availability is a prerequisite to 
achieving the protection of the environment according to the principles of social welfare and 
sustainability as required by the aims of the Austrian Waste Act (BMLFUW, 1990). For 
waste management practice analytical methods should be fast, cheap, easy to handle, and 
marginally error-prone. Many requirements in view of the complex matrix! 
There are two main problem areas in waste management to be dealt with: toxic effects and 
reactivity of the material. Heavy metals, organic pollutants such as hydrocarbons, polycyclic 
hydrocarbons and chlorinated substances are quantified individually. The complex matrix 
of waste materials makes the determination and quantification of single substances difficult. 
Interferences of different compounds affect their extraction and separation for 
quantification. The complex mixture of different materials regarding chemical components, 
texture and behaviour implies the application of new analytical tools. With respect to 
pollutants the determination of single compounds remains indispensable in many cases. 
Analytical advances concentrate on improved extraction and disintegration methods and on 
modern instruments for determination. For an overall waste characterisation including 
chemical properties and behaviour more holistic approaches have gained in importance. 

1.1 Fourier transform infrared (FT-IR) spectroscopy and data evaluation 
FT-IR spectroscopy has proved to be a powerful tool to comply with the purpose of 
comprehensive characterisation. The unique characteristic of the material presented by the 
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spectrum sheds light on material properties, its behaviour as well as on specific components 
represented by their functional groups. The substantial progress regarding the infrared 
spectroscopic measurement is achieved by the recording of the interferogram, the fast 
detection systems and the Fourier transformation. This combination provides many 
advantages and has caused a high interest in this method for process and quality control in 
many areas (Mantsch & Chapman, 1996; Moron & Cozzolino, 2004; Pollanen et al., 2005; 
Zhang et al., 2005). Infrared spectroscopy is based on interactions of infrared radiation with 
matter. Infrared light causes functional groups to vibrate. The uptake of energy is indicated 
by absorption bands in the spectrum. Measured band intensities depend on the content of 
the substance to be determined and on the individual interaction of the functional group 
with infrared radiation at a distinct energy level (Hesse et al., 1995; Smith, 1999; Socrates, 
2001). The near-infrared (NIR) region from 14,000 cm-1 – 4000 cm-1 and the mid-infrared 
(MIR) region from 4000 cm-1 – 400 cm-1 are commonly applied for process and product 
control in many industrial fields. The spectral pattern of substances reveals inherent features 
and allows the proof of their identity. These characteristics support the solution of frequent 
problems in industry. Infrared spectroscopic investigations of waste materials presented in 
this chapter have focused on the KBr (potassium bromide) pellet and the attenuated total 
reflection (ATR) technique in the MIR area. Most experiences and insight regarding spectra 
interpretation, assignment and behaviour of bands during waste degradation or 
stabilisation have been gained from the KBr technique (Smidt et al., 2002; Smidt & 
Schwanninger, 2005; Smidt & Meissl, 2007). Subsequently, investigations were extended to 
the NIR area and the reflection mode using a fibre probe and the integrating sphere, as well 
as to the ATR technique in the MIR area (Meissl et al., 2008a). During the last decade the 
applicability for waste characterisation and assessment has been proved and gives impetus 
to new ways in waste management practice (Chen, 2003; Michel et al., 2006; van Praagh et 
al., 2009). In association with multivariate statistical methods these techniques provide an 
additional benefit for application in practice in terms of time saving and handling. 
Multivariate statistical methods extract a maximum of latent information from a huge data 
pool (Brereton, 2002; Esbensen, 2002) and transform the complex spectral pattern into a 
generally understandable result. The presented results for classification and prediction of 
the applied multivariate statistical methods focus on Principal Component Analysis (PCA), 
Soft Independent Modelling of Class Analogy (SIMCA), Partial Least Squares - Discriminant 
Analysis (PLS-DA), and Partial Least Squares Regression (PLS-R). PCA is used to analyse 
large data sets. This procedure extracts the information of the original data matrix which 
leads to a smaller number of dimensions, called principal components (PCs). The required 
number of PCs depends on the complexity or dissimilarity of the data-set. The variance 
explained by each PC decreases with increasing number of PCs. PCA reveals the inherent 
data structure and underlying features which supports the identification of similarities and 
differences between materials. The loadings spectra, corresponding to the PCs, provide 
information on the contribution of the spectral regions to the differentiation between 
samples visible in the scores plot. Based on the PCA, classification and prediction models 
can be developed. SIMCA is a well known pattern recognition method which describes each 
class separately in a principal components space. New objects are considered to belong to 
the class if their distance (e.g. Euclidean) to the constructed PC space is not significantly 
larger than the distance of the class objects to their PC space. In a further classification 
method PLS-DA, samples are distinguished by means of the partial least squares regression 
according to their membership that is defined by the dummy variable (+1) and (-1). 
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on adequate methods, their reliability and usefulness. Their availability is a prerequisite to 
achieving the protection of the environment according to the principles of social welfare and 
sustainability as required by the aims of the Austrian Waste Act (BMLFUW, 1990). For 
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There are two main problem areas in waste management to be dealt with: toxic effects and 
reactivity of the material. Heavy metals, organic pollutants such as hydrocarbons, polycyclic 
hydrocarbons and chlorinated substances are quantified individually. The complex matrix 
of waste materials makes the determination and quantification of single substances difficult. 
Interferences of different compounds affect their extraction and separation for 
quantification. The complex mixture of different materials regarding chemical components, 
texture and behaviour implies the application of new analytical tools. With respect to 
pollutants the determination of single compounds remains indispensable in many cases. 
Analytical advances concentrate on improved extraction and disintegration methods and on 
modern instruments for determination. For an overall waste characterisation including 
chemical properties and behaviour more holistic approaches have gained in importance. 

1.1 Fourier transform infrared (FT-IR) spectroscopy and data evaluation 
FT-IR spectroscopy has proved to be a powerful tool to comply with the purpose of 
comprehensive characterisation. The unique characteristic of the material presented by the 
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spectrum sheds light on material properties, its behaviour as well as on specific components 
represented by their functional groups. The substantial progress regarding the infrared 
spectroscopic measurement is achieved by the recording of the interferogram, the fast 
detection systems and the Fourier transformation. This combination provides many 
advantages and has caused a high interest in this method for process and quality control in 
many areas (Mantsch & Chapman, 1996; Moron & Cozzolino, 2004; Pollanen et al., 2005; 
Zhang et al., 2005). Infrared spectroscopy is based on interactions of infrared radiation with 
matter. Infrared light causes functional groups to vibrate. The uptake of energy is indicated 
by absorption bands in the spectrum. Measured band intensities depend on the content of 
the substance to be determined and on the individual interaction of the functional group 
with infrared radiation at a distinct energy level (Hesse et al., 1995; Smith, 1999; Socrates, 
2001). The near-infrared (NIR) region from 14,000 cm-1 – 4000 cm-1 and the mid-infrared 
(MIR) region from 4000 cm-1 – 400 cm-1 are commonly applied for process and product 
control in many industrial fields. The spectral pattern of substances reveals inherent features 
and allows the proof of their identity. These characteristics support the solution of frequent 
problems in industry. Infrared spectroscopic investigations of waste materials presented in 
this chapter have focused on the KBr (potassium bromide) pellet and the attenuated total 
reflection (ATR) technique in the MIR area. Most experiences and insight regarding spectra 
interpretation, assignment and behaviour of bands during waste degradation or 
stabilisation have been gained from the KBr technique (Smidt et al., 2002; Smidt & 
Schwanninger, 2005; Smidt & Meissl, 2007). Subsequently, investigations were extended to 
the NIR area and the reflection mode using a fibre probe and the integrating sphere, as well 
as to the ATR technique in the MIR area (Meissl et al., 2008a). During the last decade the 
applicability for waste characterisation and assessment has been proved and gives impetus 
to new ways in waste management practice (Chen, 2003; Michel et al., 2006; van Praagh et 
al., 2009). In association with multivariate statistical methods these techniques provide an 
additional benefit for application in practice in terms of time saving and handling. 
Multivariate statistical methods extract a maximum of latent information from a huge data 
pool (Brereton, 2002; Esbensen, 2002) and transform the complex spectral pattern into a 
generally understandable result. The presented results for classification and prediction of 
the applied multivariate statistical methods focus on Principal Component Analysis (PCA), 
Soft Independent Modelling of Class Analogy (SIMCA), Partial Least Squares - Discriminant 
Analysis (PLS-DA), and Partial Least Squares Regression (PLS-R). PCA is used to analyse 
large data sets. This procedure extracts the information of the original data matrix which 
leads to a smaller number of dimensions, called principal components (PCs). The required 
number of PCs depends on the complexity or dissimilarity of the data-set. The variance 
explained by each PC decreases with increasing number of PCs. PCA reveals the inherent 
data structure and underlying features which supports the identification of similarities and 
differences between materials. The loadings spectra, corresponding to the PCs, provide 
information on the contribution of the spectral regions to the differentiation between 
samples visible in the scores plot. Based on the PCA, classification and prediction models 
can be developed. SIMCA is a well known pattern recognition method which describes each 
class separately in a principal components space. New objects are considered to belong to 
the class if their distance (e.g. Euclidean) to the constructed PC space is not significantly 
larger than the distance of the class objects to their PC space. In a further classification 
method PLS-DA, samples are distinguished by means of the partial least squares regression 
according to their membership that is defined by the dummy variable (+1) and (-1). 
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PLS-R relates the variation in one variable (questioned parameter = Y-variable) to the 
variation of spectral data (X-variables). Based on this correlation models were calculated 
and further used for prediction. It is a prerequisite that the questioned parameter is reflected 
by the spectral pattern (Michel et al., 2006; Meissl et al., 2007). The quality of classification 
and prediction models is expressed by several characteristics (model parameters). R2 is the 
coefficient of determination. The root mean square error of cross validation (RMSECV) 
reflects the error of the model. Cross validation is a validation method where samples out of 
the sample set are alternately excluded from calibration and used for prediction. This 
procedure is repeated until all samples have been kept out once. The bias indicates the 
systematic difference between the measured and the predicted values. The ratio of standard 
deviation to standard error of performance (RPD) provides information on the precision of 
analyses for a specific purpose (Williams & Norris, 2004).  
This study shows in many cases the development or changes of spectral characteristics, 
therefore the spectra were shifted in parallel for a clear presentation. Most spectra were 
recorded from KBr pellets except the ATR spectra shown in section 2.3. For multivariate 
data analysis spectra were vector normalised. 

1.2 Interpretation of infrared spectral data originating from waste materials 
Waste is a complex material and heterogeneous regarding the chemical composition and 
texture. Due to the low amount of sample needed for MIR spectroscopic measurement 
adequate sample preparation is a prerequisite to obtain reliable and reproducible results. A 
convenient procedure of sample preparation was described by Meissl et al. (2008b). 
Pure substances are characterised by sharp distinct absorption bands that can be assigned to 
functional groups. By contrast, waste materials display broad overlapping bands due to the 
complex mixture and manifold interactions between degrading organic molecules. During 
the last decade MIR and NIR spectroscopy has been applied with increasing success to 
complex samples. New approaches have gained in importance due to the association with 
multivariate statistical methods. The proof of identity and the classification of unknown 
waste materials are based on similarities or differences of the spectral pattern. Identification 
of functional groups and assignment to substances are an essential target to follow and to 
understand the chemical changes during degradation and stabilisation processes. Due to the 
complexity of the material and overlapping bands the identification is limited to a few but 
significant indicator bands. 
Spectra interpretation of waste materials is primarily based on theoretical locations of 
functional groups cited in literature for pure substances as well as for waste materials or 
components of waste materials (Hesse et al., 1995; Smith, 1999; Socrates, 2001; Smidt et al., 
2002). Due to interactions of degrading organic molecules band shifts in waste spectra occur 
frequently. Several bands that are assigned to organic functional groups, such as aliphatic 
methylene bands (Table 1) have a stable band position in waste spectra. The location of many 
other bands may vary due to the stronger influence of the whole molecule and the waste 
matrix. Bands of inorganic compounds are mostly sharp and support identification by their 
characteristic shape and relatively stable position. For many functional groups wavenumber 
regions are indicated. Band assignment is supported by recording the spectral signature of 
waste ingredients or by addition of a specific component to waste materials of which the 
presence should be verified. The most relevant indicator bands that provide information on 
the stage of degradation are compiled in table 1. The list is limited to bands that are clearly 
visible in the spectrum of the complex waste matrix even though many substances are 

The Application of FT-IR Spectroscopy in Waste Management 

 

409 

represented by several bands. Intensities of bands that are assigned to organic functional 
groups decrease with progressing degradation until a nearly constant level is reached that 
indicates the slow-down of metabolic activities. Bands of some metabolites appear temporarily 
and disappear. Degradation of organic matter leads to a relative increase of mineral 
compounds that is reflected by the increase of the corresponding absorption bands (Hesse et 
al., 1995; Naumann et al., 1996; Haberhauer et al., 1998; Grube et al., 1999; Smith, 1999; 
Ouatmane et al., 2000; Socrates, 2001; Reig et al., 2002; Smidt et al., 2002; Zaccheo et al., 2002; 
Chen, 2003; Madejova, 2003; Tan, 2003; Smidt & Schwanninger, 2005; Smidt & Meissl, 2007). 
 
Location 
wavenumber (cm-1) Vibration Functional group or component 

Organic compounds 
2920 C-H stretching (as) aliphatic methylene group  
2850 C-H stretching (s) aliphatic methylene group 
2590-2520 S-H stretching thiols 
1740-1700 C=O stretching aldehyde, ketone, carboxylic acids, esters 

1685-1630 C=O, COO- stretching 
C=C stretching 

amide I, carboxylates 
aromatic ring modes, alkenes 

1600-1590 C=C aromatic skeleton 
1570-1540 N-H in plane bending amide II and secondary amines 
1515-1505 aromatic skeletal lignin from lignocellulosic materials 
1430-1420 COO- stretching carboxylic acids 
1350-1250 C-N stretching primary and secondary aromatic amines 

1265-1240 C-O-C stretching 
C-N stretching 

esters 
amide III 

1250-900 C-O-C, C-O 
C-O-P 

polysaccharides 
phosphodiesters 

Inorganic compounds 
3700-3200 SiO-H stretching silica 

3700-3400 O-H stretching bonded and non-bonded hydroxyl groups 
and water 

1635 O-H bending water 
1450-1410 C-O stretching carbonate 
1384 (1400-1340) N-O stretching nitrate (leachate) 
1140-1080 S-O stretching sulphate 
1080 Si-O stretching quartz 

1030 Si-O stretching 
Si-O-Si stretching 

clay minerals 
silica 

875 C-O out of plane bending carbonate 
713 C-O in plane bending carbonate 
680-610 S-O bending sulphate 

Table 1. Location of indicator bands, corresponding vibration and assignment to functional 
groups and components (as = antisymmetric, s = symmetric) 
The nitrate band at 1384 cm-1 in solid waste materials has been proved by addition of KNO3 
(potassium nitrate) (Fig. 1a). The appearance of the nitrate band in the compost spectrum at 
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PLS-R relates the variation in one variable (questioned parameter = Y-variable) to the 
variation of spectral data (X-variables). Based on this correlation models were calculated 
and further used for prediction. It is a prerequisite that the questioned parameter is reflected 
by the spectral pattern (Michel et al., 2006; Meissl et al., 2007). The quality of classification 
and prediction models is expressed by several characteristics (model parameters). R2 is the 
coefficient of determination. The root mean square error of cross validation (RMSECV) 
reflects the error of the model. Cross validation is a validation method where samples out of 
the sample set are alternately excluded from calibration and used for prediction. This 
procedure is repeated until all samples have been kept out once. The bias indicates the 
systematic difference between the measured and the predicted values. The ratio of standard 
deviation to standard error of performance (RPD) provides information on the precision of 
analyses for a specific purpose (Williams & Norris, 2004).  
This study shows in many cases the development or changes of spectral characteristics, 
therefore the spectra were shifted in parallel for a clear presentation. Most spectra were 
recorded from KBr pellets except the ATR spectra shown in section 2.3. For multivariate 
data analysis spectra were vector normalised. 

1.2 Interpretation of infrared spectral data originating from waste materials 
Waste is a complex material and heterogeneous regarding the chemical composition and 
texture. Due to the low amount of sample needed for MIR spectroscopic measurement 
adequate sample preparation is a prerequisite to obtain reliable and reproducible results. A 
convenient procedure of sample preparation was described by Meissl et al. (2008b). 
Pure substances are characterised by sharp distinct absorption bands that can be assigned to 
functional groups. By contrast, waste materials display broad overlapping bands due to the 
complex mixture and manifold interactions between degrading organic molecules. During 
the last decade MIR and NIR spectroscopy has been applied with increasing success to 
complex samples. New approaches have gained in importance due to the association with 
multivariate statistical methods. The proof of identity and the classification of unknown 
waste materials are based on similarities or differences of the spectral pattern. Identification 
of functional groups and assignment to substances are an essential target to follow and to 
understand the chemical changes during degradation and stabilisation processes. Due to the 
complexity of the material and overlapping bands the identification is limited to a few but 
significant indicator bands. 
Spectra interpretation of waste materials is primarily based on theoretical locations of 
functional groups cited in literature for pure substances as well as for waste materials or 
components of waste materials (Hesse et al., 1995; Smith, 1999; Socrates, 2001; Smidt et al., 
2002). Due to interactions of degrading organic molecules band shifts in waste spectra occur 
frequently. Several bands that are assigned to organic functional groups, such as aliphatic 
methylene bands (Table 1) have a stable band position in waste spectra. The location of many 
other bands may vary due to the stronger influence of the whole molecule and the waste 
matrix. Bands of inorganic compounds are mostly sharp and support identification by their 
characteristic shape and relatively stable position. For many functional groups wavenumber 
regions are indicated. Band assignment is supported by recording the spectral signature of 
waste ingredients or by addition of a specific component to waste materials of which the 
presence should be verified. The most relevant indicator bands that provide information on 
the stage of degradation are compiled in table 1. The list is limited to bands that are clearly 
visible in the spectrum of the complex waste matrix even though many substances are 
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represented by several bands. Intensities of bands that are assigned to organic functional 
groups decrease with progressing degradation until a nearly constant level is reached that 
indicates the slow-down of metabolic activities. Bands of some metabolites appear temporarily 
and disappear. Degradation of organic matter leads to a relative increase of mineral 
compounds that is reflected by the increase of the corresponding absorption bands (Hesse et 
al., 1995; Naumann et al., 1996; Haberhauer et al., 1998; Grube et al., 1999; Smith, 1999; 
Ouatmane et al., 2000; Socrates, 2001; Reig et al., 2002; Smidt et al., 2002; Zaccheo et al., 2002; 
Chen, 2003; Madejova, 2003; Tan, 2003; Smidt & Schwanninger, 2005; Smidt & Meissl, 2007). 
 
Location 
wavenumber (cm-1) Vibration Functional group or component 

Organic compounds 
2920 C-H stretching (as) aliphatic methylene group  
2850 C-H stretching (s) aliphatic methylene group 
2590-2520 S-H stretching thiols 
1740-1700 C=O stretching aldehyde, ketone, carboxylic acids, esters 

1685-1630 C=O, COO- stretching 
C=C stretching 

amide I, carboxylates 
aromatic ring modes, alkenes 

1600-1590 C=C aromatic skeleton 
1570-1540 N-H in plane bending amide II and secondary amines 
1515-1505 aromatic skeletal lignin from lignocellulosic materials 
1430-1420 COO- stretching carboxylic acids 
1350-1250 C-N stretching primary and secondary aromatic amines 

1265-1240 C-O-C stretching 
C-N stretching 

esters 
amide III 

1250-900 C-O-C, C-O 
C-O-P 

polysaccharides 
phosphodiesters 

Inorganic compounds 
3700-3200 SiO-H stretching silica 

3700-3400 O-H stretching bonded and non-bonded hydroxyl groups 
and water 

1635 O-H bending water 
1450-1410 C-O stretching carbonate 
1384 (1400-1340) N-O stretching nitrate (leachate) 
1140-1080 S-O stretching sulphate 
1080 Si-O stretching quartz 

1030 Si-O stretching 
Si-O-Si stretching 

clay minerals 
silica 

875 C-O out of plane bending carbonate 
713 C-O in plane bending carbonate 
680-610 S-O bending sulphate 

Table 1. Location of indicator bands, corresponding vibration and assignment to functional 
groups and components (as = antisymmetric, s = symmetric) 
The nitrate band at 1384 cm-1 in solid waste materials has been proved by addition of KNO3 
(potassium nitrate) (Fig. 1a). The appearance of the nitrate band in the compost spectrum at 
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an advanced stage of composting corresponds to the evolution of nitrate in the biological 
process (Fig. 1b). The sharp band shape is an additional indicator of an inorganic compound 
that does not interact with other molecules as degrading organic molecules do. Both facts 
support identification of nitrate characterised by a stable band position in solid waste samples 
(Smidt et al., 2002). It is evident that all background information available contributes to band 
assignment and spectra interpretation. It should be mentioned that the position of the nitrate 
band in liquid samples vary in a wider range (cp. freeze-dried leachate in Fig. 5). 
 

 
Fig. 1. (a) Increasing nitrate band at 1384 cm-1 due to addition of KNO3, corresponding to 
mass fractions of 0.1, 0.2, 0.5, and 1% nitrate; (b) emerging nitrate band during a composting 
process (3, 32, 48 weeks) 

 
Fig. 2. (a) Infrared spectra of mineral lumps from a construction waste landfill and 
CaSO4*2H2O; (b) spectral characteristics of the original industrial landfill sample (carbonate 
bands indicated by arrows), the HCl treated sample and cellulose as reference 
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Figure 2 shows approaches of band assignment by comparison of waste ingredients with a 
pure substance and by sample treatment. Figure 2a displays spectra of mineral lumps from a 
construction waste landfill and CaSO4*2H2O (calcium sulphate) to reveal the specific bands 
assigned to sulphate that plays a relevant role in leachate. Apart from the sulphate (S-O) 
stretching and bending vibrations at 1136 cm-1 and 620 cm-1, respectively, the mineral lumps 
also show strong O-H stretching vibrations. Figure 2b illustrates an example of waste 
material originating from an abandoned landfill with unknown composition. The sample 
was treated with HCl (c = 0.1 mol/L) to convert carbonates into carbon dioxide and water, 
and to reveal bands of other compounds that are overlapped and covered by strong bands 
of carbonate. Cellulose was identified by comparison with a spectrum of pure cellulose. The 
material was found to be industrial paper sludge mixed with carbonate for stabilisation 
before landfilling. 

2. Abandoned sites and old landfills 
The environmental damages resulting from abandoned landfills and dumps have revealed 
the problems of careless disposal. At the beginning of a well-regulated and organised waste 
management system pollutants and toxic substances were in the foreground due to their 
immediate impact on water and soil. They covered the more subtle contribution of 
unsuspicious goods of daily use to relevant emissions and their effect on the imbalance in 
the global carbon budget. The registration of abandoned landfills is part of exploration 
programmes in terms of risk assessment and adequate remediation measures. The majority 
of abandoned landfills under investigation contain municipal solid waste and construction 
waste originating from the sixties and seventies of the last century. The measurement of 
landfill gas emissions is still state of the art and part of monitoring programmes. Long-path 
spectroscopic instruments developed for air pollution control are also applied for landfill 
monitoring. Long-path FT-IR spectroscopic investigations provide several advantages such 
as fast scanning of large surfaces at long distances without contact and online measurement 
of emissions from areas that are difficult to access. Due to infrared absorption of many air 
pollutants they can be detected and quantified by FT-IR long-path instruments (Bacsik et al., 
2005). Quantification of gaseous compounds is carried out according to Lambert-Beer’s law 
(Weber et al., 1996; Galle et al., 2001; Hegde et al., 2003). Methane and nitrous oxide are the 
main components to be measured in the context of landfill monitoring. The measurement of 
gaseous emissions only provides information on the current microbial activity that depends 
on environmental conditions such as water supply. The gas forming potential according to 
the present chemical compounds that could be degraded under appropriate conditions 
cannot be determined in this way. Preferential gas flows make the quantification of 
emissions difficult. Due to the missing base seal, the leachate that provides additional 
information is not available in most cases. Therefore investigations of the solid waste are 
indispensable. 

2.1 Classification of waste materials 
The classification of landfilled materials should be a first step. The knowledge about the 
landfilled material supports the interpretation of data as the composition influences the 
behaviour, especially biological tests of reactivity. Municipal solid waste (MSW) comprises 
all components of consumer goods and features a typical spectral pattern. Different pre-
treatment and landfilling conditions of MSW lead to divergent spectral characteristics of the 
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an advanced stage of composting corresponds to the evolution of nitrate in the biological 
process (Fig. 1b). The sharp band shape is an additional indicator of an inorganic compound 
that does not interact with other molecules as degrading organic molecules do. Both facts 
support identification of nitrate characterised by a stable band position in solid waste samples 
(Smidt et al., 2002). It is evident that all background information available contributes to band 
assignment and spectra interpretation. It should be mentioned that the position of the nitrate 
band in liquid samples vary in a wider range (cp. freeze-dried leachate in Fig. 5). 
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Figure 2 shows approaches of band assignment by comparison of waste ingredients with a 
pure substance and by sample treatment. Figure 2a displays spectra of mineral lumps from a 
construction waste landfill and CaSO4*2H2O (calcium sulphate) to reveal the specific bands 
assigned to sulphate that plays a relevant role in leachate. Apart from the sulphate (S-O) 
stretching and bending vibrations at 1136 cm-1 and 620 cm-1, respectively, the mineral lumps 
also show strong O-H stretching vibrations. Figure 2b illustrates an example of waste 
material originating from an abandoned landfill with unknown composition. The sample 
was treated with HCl (c = 0.1 mol/L) to convert carbonates into carbon dioxide and water, 
and to reveal bands of other compounds that are overlapped and covered by strong bands 
of carbonate. Cellulose was identified by comparison with a spectrum of pure cellulose. The 
material was found to be industrial paper sludge mixed with carbonate for stabilisation 
before landfilling. 

2. Abandoned sites and old landfills 
The environmental damages resulting from abandoned landfills and dumps have revealed 
the problems of careless disposal. At the beginning of a well-regulated and organised waste 
management system pollutants and toxic substances were in the foreground due to their 
immediate impact on water and soil. They covered the more subtle contribution of 
unsuspicious goods of daily use to relevant emissions and their effect on the imbalance in 
the global carbon budget. The registration of abandoned landfills is part of exploration 
programmes in terms of risk assessment and adequate remediation measures. The majority 
of abandoned landfills under investigation contain municipal solid waste and construction 
waste originating from the sixties and seventies of the last century. The measurement of 
landfill gas emissions is still state of the art and part of monitoring programmes. Long-path 
spectroscopic instruments developed for air pollution control are also applied for landfill 
monitoring. Long-path FT-IR spectroscopic investigations provide several advantages such 
as fast scanning of large surfaces at long distances without contact and online measurement 
of emissions from areas that are difficult to access. Due to infrared absorption of many air 
pollutants they can be detected and quantified by FT-IR long-path instruments (Bacsik et al., 
2005). Quantification of gaseous compounds is carried out according to Lambert-Beer’s law 
(Weber et al., 1996; Galle et al., 2001; Hegde et al., 2003). Methane and nitrous oxide are the 
main components to be measured in the context of landfill monitoring. The measurement of 
gaseous emissions only provides information on the current microbial activity that depends 
on environmental conditions such as water supply. The gas forming potential according to 
the present chemical compounds that could be degraded under appropriate conditions 
cannot be determined in this way. Preferential gas flows make the quantification of 
emissions difficult. Due to the missing base seal, the leachate that provides additional 
information is not available in most cases. Therefore investigations of the solid waste are 
indispensable. 

2.1 Classification of waste materials 
The classification of landfilled materials should be a first step. The knowledge about the 
landfilled material supports the interpretation of data as the composition influences the 
behaviour, especially biological tests of reactivity. Municipal solid waste (MSW) comprises 
all components of consumer goods and features a typical spectral pattern. Different pre-
treatment and landfilling conditions of MSW lead to divergent spectral characteristics of the 
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waste material. Old landfills (old-LF) are characterised by the high portion of construction 
waste. The 5-year-old recent reactor landfill (reactor-LF) differs from the landfill with 
mechanically-biologically treated waste (MBT-LF) due to the missing pre-treatment. The 
waste bank represents a special kind of deposit where scarcely biologically treated MSW 
was piled up to form a constructional wall of about 6 m. Despite the differences in 
composition and degradation conditions similarities are distinctive. Industrial waste (ind-
LF), by contrast, features a more one-sided composition. The following PCAs are based on 
the mean-centred MIR spectra that cause zero-lines in the scores and loadings plots, 
indicating the averages of all samples. The PCA supports the discovery of differences and 
similarities that are visualised by long or short distances between the samples in the scores 
plot (Figs. 3a, c). They illustrate the differences between landfills containing MSW and an 
industrial landfill containing carbonate stabilised paper sludge. The loadings plots elucidate 
how much the spectral regions contribute to the first (PC1, explained variance 69%) and the 
second (PC2, 15%) principal component (Figs. 3b, d). The PCA calculated with the whole 
spectrum (Figs. 3a, b) reveals the strong influence of inorganic components, especially of 
carbonate and clay minerals that dominate the loadings spectrum of PC1. The position of the 
ind-LF samples found at the positive side of PC1 in the scores plot corresponds to the 
positive loadings (e.g. at 1420 cm-1). The position of most of the MSW landfill samples found 
at the negative side of PC1 in the scores plot corresponds to the negative loadings (e.g. at 
1030 cm-1). To sum it up: positive loadings plus positive scores = ind-LF with more 
carbonate (1420 cm-1), negative loadings plus negative scores = MSW landfills with more 
clay minerals (1030 cm-1). This means that ind-LF and MSW landfills differ basically in 
composition especially in carbonate and clay minerals. Different types of MSW landfills are 
distinguished along PC2 that reflects the development from reactor-LF to old-LFs. Apart 
from inorganic compounds (clay minerals) spectral regions that can be assigned to organic 
functional groups (2920 and 1640 cm-1) become more relevant in the loadings spectrum (Fig. 
3b). The characteristics are in accordance with higher organic matter contents and reactivity 
in the reactor-LF compared to old-LFs that display higher mineral contents due to 
mineralisation and a portion of construction waste. However, the transition from one 
landfill type to another one is not distinct as old-LFs can still feature more reactive sections. 
Vice versa, the reactor-LF also contains sections of low organic matter content and moderate 
reactivity. Most of the material from the 15-year-old waste bank is located in the scores plot 
between the reactor-LF and the old-LFs. The variance within the bank samples is caused by 
different environmental conditions and development during the 15-years of disposal. More 
details were reported by Smidt et al. (2007). 
Figs. 3c and 3d present the scores plots and the loadings spectra of a PCA that was based on 
the organic indicator bands represented by C-H and C=O vibrations. Separation of MSW 
landfill types due to organic compounds is performed along PC1. MSW landfill types and 
the ind-LF are differentiated along PC2. In terms of these characteristics several old-LF 
samples move closer to ind-LF samples in the scores plot. This indicates a weaker 
discrimination power of the selected spectral regions. 
The PCA is an appropriate tool to obtain a general idea on the similarities and differences of 
waste materials and the contributing spectral regions. For practical application the 
development of classification models is indispensable in order to immediately attribute 
waste materials to defined classes depending on the problem to be solved. A classification 
model according to SIMCA was reported by Smidt et al. (2008b) to distinguish different 
waste materials. 
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Fig. 3. Scores plots and loading spectra of samples from landfilled wastes based on the 
whole spectra (a, b) and on selected wavenumber regions from 3030 to 2800 cm-1 and from 
1795 to 1530 cm-1 (c, d) 
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waste organic matter is a fundamental criterion (Binner & Zach, 1999; Tesar et al., 2007; van 
Praagh et al., 2009). The proof of stability can be carried out by means of time-consuming 
biological tests that provide information on the current microbial activity under aerobic 
conditions and the gas forming potential under anaerobic conditions. These tests were 
primarily established for MBT waste to verify its stability prior to landfilling (Binner & 
Zach, 1999; Adani et al., 2004). The dissolved organic carbon (DOC) and the total organic 
carbon (TOC) are relevant parameters for the assessment of abandoned landfills according 
to the Austrian Landfill Ordinance (BMLFUW, 2008). The DOC provides information on 
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waste material. Old landfills (old-LF) are characterised by the high portion of construction 
waste. The 5-year-old recent reactor landfill (reactor-LF) differs from the landfill with 
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waste bank represents a special kind of deposit where scarcely biologically treated MSW 
was piled up to form a constructional wall of about 6 m. Despite the differences in 
composition and degradation conditions similarities are distinctive. Industrial waste (ind-
LF), by contrast, features a more one-sided composition. The following PCAs are based on 
the mean-centred MIR spectra that cause zero-lines in the scores and loadings plots, 
indicating the averages of all samples. The PCA supports the discovery of differences and 
similarities that are visualised by long or short distances between the samples in the scores 
plot (Figs. 3a, c). They illustrate the differences between landfills containing MSW and an 
industrial landfill containing carbonate stabilised paper sludge. The loadings plots elucidate 
how much the spectral regions contribute to the first (PC1, explained variance 69%) and the 
second (PC2, 15%) principal component (Figs. 3b, d). The PCA calculated with the whole 
spectrum (Figs. 3a, b) reveals the strong influence of inorganic components, especially of 
carbonate and clay minerals that dominate the loadings spectrum of PC1. The position of the 
ind-LF samples found at the positive side of PC1 in the scores plot corresponds to the 
positive loadings (e.g. at 1420 cm-1). The position of most of the MSW landfill samples found 
at the negative side of PC1 in the scores plot corresponds to the negative loadings (e.g. at 
1030 cm-1). To sum it up: positive loadings plus positive scores = ind-LF with more 
carbonate (1420 cm-1), negative loadings plus negative scores = MSW landfills with more 
clay minerals (1030 cm-1). This means that ind-LF and MSW landfills differ basically in 
composition especially in carbonate and clay minerals. Different types of MSW landfills are 
distinguished along PC2 that reflects the development from reactor-LF to old-LFs. Apart 
from inorganic compounds (clay minerals) spectral regions that can be assigned to organic 
functional groups (2920 and 1640 cm-1) become more relevant in the loadings spectrum (Fig. 
3b). The characteristics are in accordance with higher organic matter contents and reactivity 
in the reactor-LF compared to old-LFs that display higher mineral contents due to 
mineralisation and a portion of construction waste. However, the transition from one 
landfill type to another one is not distinct as old-LFs can still feature more reactive sections. 
Vice versa, the reactor-LF also contains sections of low organic matter content and moderate 
reactivity. Most of the material from the 15-year-old waste bank is located in the scores plot 
between the reactor-LF and the old-LFs. The variance within the bank samples is caused by 
different environmental conditions and development during the 15-years of disposal. More 
details were reported by Smidt et al. (2007). 
Figs. 3c and 3d present the scores plots and the loadings spectra of a PCA that was based on 
the organic indicator bands represented by C-H and C=O vibrations. Separation of MSW 
landfill types due to organic compounds is performed along PC1. MSW landfill types and 
the ind-LF are differentiated along PC2. In terms of these characteristics several old-LF 
samples move closer to ind-LF samples in the scores plot. This indicates a weaker 
discrimination power of the selected spectral regions. 
The PCA is an appropriate tool to obtain a general idea on the similarities and differences of 
waste materials and the contributing spectral regions. For practical application the 
development of classification models is indispensable in order to immediately attribute 
waste materials to defined classes depending on the problem to be solved. A classification 
model according to SIMCA was reported by Smidt et al. (2008b) to distinguish different 
waste materials. 
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soluble organic compounds. Their portion decreases with progressing stabilisation. The 
stipulated limit values of TOC restrict the organic matter content in all landfill types. Only 
for MBT waste the TOC limitation is not valid. Figure 4 shows the correlation between 
predicted and measured (references) parameters using selected regions of the MIR spectrum 
and PLS-R. The model parameters are summarised in table 2. 
 

 
Fig. 4. Correlation between (a) the predicted and the measured DOC and (b) the predicted 
and the measured TOC, both based on the spectral ranges from 3003 - 2816 and 1770 -
 400 cm-1 and PLS-R 

 
Model parameters DOC TOC 
Wavenumber ranges (cm-1) 3003 - 2816 and 1770 - 400 cm-1 
Calibrated range 15 – 1700 mg C L-1 2.6 – 23.5 % DM 
R2 89% 90% 
RMSECV 158 mg C L-1 1.9 % DM 
RPD 3.0 3.1 
No. of PLS components 6 7 
Bias -5.94 -0.0719 

Table 2. Parameters for the PLS-R models dissolved organic carbon (DOC) and total organic 
carbon (TOC) content 

2.3 Success control of remediation measures 
In situ aeration of old reactive landfills is one measure to avoid methane emissions and to 
accelerate mineralisation in that anaerobic conditions are exchanged for aerobic ones. The 
spectral pattern of the solid waste matrix reflects the chemical changes mainly by decreasing 
band heights of organic functional groups (Tesar et al., 2007). Aeration of the solid waste is 
paralleled by oxidation of soluble components in the leachate. The most conspicuous 
changes in the spectral pattern are caused by transformation of N-H and S-H groups 
containing compounds to the mineralisation products nitrate and sulphate that are 
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presented in the spectrum by strong bands of the N-O and the S-O vibrations (Smidt & 
Schwanninger, 2005; Smidt & Meissl, 2007). ATR spectra (4000 – 600 cm-1) of freeze-dried 
leachate from aerated landfill material and leachate from landfill material under anaerobic 
conditions were classified by means of PLS-DA (Fig. 5). The corresponding loadings 
spectrum of the 1st PLS component (Fig. 5b) shows the relevant regions, especially the S-O, 
N-O, C-H, S-H and N-H vibrations (Table 1) that contribute to the discrimination of leachate 
obtained from materials under different aeration conditions. Three PLS components explain 
97% of the total variance, whereas the 1st one already explains 94%, indicating a distinct 
differentiation and the efficiency of aeration. 
 

 
Fig. 5. PLS-DA results based on spectral data of freeze-dried leachate from landfill material 
under anaerobic and aerated conditions: (a) correlation between predicted and class 
(dummy variable) and (b) loadings spectrum of the 1st PLS component 

2.4 Long-term behaviour of deposits 
The long-term behaviour of landfills and dumps is a relevant issue with respect to 
remediation activities and the re-use of these areas. Although organic matter degradation 
leads to similar metabolic and mineralised products, the individual composition causes a 
specific spectral pattern as shown in figure 3. MSW that had been piled up to a waste bank 
(Fig. 3) showed different characteristics after 15 years corresponding to depths and air 
supply. Aerobic conditions in the upper layer of the profiles accelerated degradation and 
corresponding changes in the spectral pattern (Smidt et al., 2007). The classification of 
samples according to specific stages of degradation by means of spectral characteristics is a 
fast method for the risk assessment of abandoned landfills, besides the precise 
determination of relevant parameters as shown in section 2.2. The long-term behaviour is 
strongly influenced by both the chemical composition and environmental conditions. 
The scores plot and loadings spectra in figure 6 illustrate the distance of samples and the 
responsible spectral regions. The samples originated from an old landfill. They were taken as a 
composite sample along the depth profile. Two samples (black dots) that were collected 
between tight clayey layers, where degradation was inhibited, differ considerably from the 
other ones. The loadings spectra of PC1 and PC2 reveal the strong influence of mineral 
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compounds (1430 – 400 cm-1). The loadings spectrum of PC1 additionally shows the 
contribution of organic components (1630 cm-1). Besides the poor mineralisation the enclosed 
material was protected against degradation and subsequent mixing with construction waste. 
 

 
Fig. 6. PCA based on spectra of samples from an old landfill; (a) scores plot with 2 samples 
(black dots) between tight clayey layers, (b) loadings spectra of PC1 and PC2 

3. Separation of recyclables and mechanical-biological or thermal pre-
treatment of municipal solid waste prior to landfilling 
The maximum possible separation of recyclables is a crucial issue. In addition to the 
individual separation by the waste producer, the recovery of recyclables is improved by 
mechanical sorting systems in the plant. The pre-treatment of municipal solid waste prior to 
landfilling comprises two main strategies: the mechanical-biological and the thermal 
treatment. Both processes aim at reducing reactivity, either by mineralisation and 
stabilisation or by incineration of organic matter. 

3.1 Identification and separation of recyclables by NIR spectroscopy 
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technical approach in the improvement of the recycling proportion and the required quote 
respectively. Identification of different materials is a prerequisite in order to achieve an 
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comprehensive characterisation of wastes (Bonifazi et al., 2009) and differentiation of 
polymers. In this field of application the measurement in the near infrared area ranks first 
(Feldhoff et al., 1997; Van Den Broek et al., 1998; Kulcke et al., 2003; Leitner et al., 2003; Li et 
al., 2005; Dou et al., 2006; Luiken & Bos, 2010). 
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properties. Process kinetics, the release of organic components and their long-term 
behaviour are fields of intensive research in waste management (Barlaz et al., 1990; Barlaz, 
1998; Tintner et al., 2010). Despite the scientific interest, the performance of industrial 
processes strongly depends on this basic knowledge. Waste organic matter primarily 
consists of non-hazardous organic molecules responsible for the reactivity of the material 
and emerging gaseous and liquid emissions. Chemical and physical sum parameters are 
preferably applied for waste characterisation in practice. Waste organic matter is usually 
quantified by the determination of loss of ignition, TOC and nitrogen content. The 
significance of these parameters is limited as they do not differentiate the particular 
behaviour of the molecules subsumed therein. Mineralisation products of organic matter 
such as ammonium and nitrate provide information on progressing biological degradation. 
High ammonium contents are assigned to early stages of degradation, whereas nitrate 
indicates the late phase when ammonium has been oxidised. Nevertheless, a wide range of 
contents is observed during the biological treatment. The coexistence of ammonium and 
nitrate and the repeated increase and decrease of ammonium contents make unambiguous 
assessment difficult. Last but not least these parameters depend on the uniformity of 
metabolic processes in the rotting unit. The equal progress is strongly related to process 
operation in terms of mechanical mixing and evenly distributed aeration and moisture. 
Biological tests provide more comprehensive information on reactivity in that chemical 
properties of all compounds contribute to the behaviour of waste materials under aerobic 
and anaerobic conditions. Biodegradability of organic compounds is revealed by the oxygen 
uptake or CO2 release due to microbial activity, indicating mineralisation of organic 
molecules. The gas sum over a period of 21 days, generated under anaerobic conditions, is 
measured by means of the incubation test (Austrian Standards Institute, 2004). For MBT 
materials to be landfilled biological tests replace the determination of the total organic 
carbon content (TOC) because the limit value of 5% dry matter for this landfill type cannot 
be achieved by biological degradation only. However, biological parameters are time-
consuming and require considerable expertise. In addition to biological tests limitation of 
the calorific value by 6600 kJ kg-1 dry matter was stipulated for MBT waste. The calorific 
value indicates the efficiency of plastic separation and progressing degradation of organic 
matter by its decline (BMLFUW, 2008). Chemical changes during the biological treatment of 
MSW are reflected by spectral characteristics that allow a fast process control, evaluation 
and optimisation. The progress of organic matter degradation is influenced by the technical 
system and process operation. The development of spectral characteristics is illustrated in 
figure 7. Fresh input materials feature strong aliphatic methylene bands at 2920 and 
2850 cm-1. Absorption bands of organic components (cp. Table 1, cellulose) decrease or 
disappear as far as they indicate temporarily present metabolic products (1740, 1320 cm-1). 
This process showed extensive mineralisation after 9 weeks. It can be assumed that the 
chemical composition of MSW is related to the biological behaviour. PLS-R models based on 
MIR spectra were developed for the prediction of the biological parameters “respiration 
activity” and “gas generation sum” to get information on reactivity of MBT waste faster 
(Böhm et al., 2010a). Bands that feature considerable changes during the biological treatment 
such as the aliphatic methylene bands and the fingerprint region (1788 - 1532 cm-1, 1350 -
 1028 cm-1), were selected for the prediction models.  
The loadings spectrum of the first PLS component out of 8 (Fig. 8b) indicates that organic 
(methylene bands) and inorganic (carbonate bands at 1430 and 875 cm-1) compounds 
contribute to the thermal behaviour of the waste sample. Whereas waste organic matter 
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compounds (1430 – 400 cm-1). The loadings spectrum of PC1 additionally shows the 
contribution of organic components (1630 cm-1). Besides the poor mineralisation the enclosed 
material was protected against degradation and subsequent mixing with construction waste. 
 

 
Fig. 6. PCA based on spectra of samples from an old landfill; (a) scores plot with 2 samples 
(black dots) between tight clayey layers, (b) loadings spectra of PC1 and PC2 
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properties. Process kinetics, the release of organic components and their long-term 
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indicates the late phase when ammonium has been oxidised. Nevertheless, a wide range of 
contents is observed during the biological treatment. The coexistence of ammonium and 
nitrate and the repeated increase and decrease of ammonium contents make unambiguous 
assessment difficult. Last but not least these parameters depend on the uniformity of 
metabolic processes in the rotting unit. The equal progress is strongly related to process 
operation in terms of mechanical mixing and evenly distributed aeration and moisture. 
Biological tests provide more comprehensive information on reactivity in that chemical 
properties of all compounds contribute to the behaviour of waste materials under aerobic 
and anaerobic conditions. Biodegradability of organic compounds is revealed by the oxygen 
uptake or CO2 release due to microbial activity, indicating mineralisation of organic 
molecules. The gas sum over a period of 21 days, generated under anaerobic conditions, is 
measured by means of the incubation test (Austrian Standards Institute, 2004). For MBT 
materials to be landfilled biological tests replace the determination of the total organic 
carbon content (TOC) because the limit value of 5% dry matter for this landfill type cannot 
be achieved by biological degradation only. However, biological parameters are time-
consuming and require considerable expertise. In addition to biological tests limitation of 
the calorific value by 6600 kJ kg-1 dry matter was stipulated for MBT waste. The calorific 
value indicates the efficiency of plastic separation and progressing degradation of organic 
matter by its decline (BMLFUW, 2008). Chemical changes during the biological treatment of 
MSW are reflected by spectral characteristics that allow a fast process control, evaluation 
and optimisation. The progress of organic matter degradation is influenced by the technical 
system and process operation. The development of spectral characteristics is illustrated in 
figure 7. Fresh input materials feature strong aliphatic methylene bands at 2920 and 
2850 cm-1. Absorption bands of organic components (cp. Table 1, cellulose) decrease or 
disappear as far as they indicate temporarily present metabolic products (1740, 1320 cm-1). 
This process showed extensive mineralisation after 9 weeks. It can be assumed that the 
chemical composition of MSW is related to the biological behaviour. PLS-R models based on 
MIR spectra were developed for the prediction of the biological parameters “respiration 
activity” and “gas generation sum” to get information on reactivity of MBT waste faster 
(Böhm et al., 2010a). Bands that feature considerable changes during the biological treatment 
such as the aliphatic methylene bands and the fingerprint region (1788 - 1532 cm-1, 1350 -
 1028 cm-1), were selected for the prediction models.  
The loadings spectrum of the first PLS component out of 8 (Fig. 8b) indicates that organic 
(methylene bands) and inorganic (carbonate bands at 1430 and 875 cm-1) compounds 
contribute to the thermal behaviour of the waste sample. Whereas waste organic matter 
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causes the calorific value to increase, water and carbonates affect its decrease due to the 
endothermic reactions of water evaporation and carbonate decay. 
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Fig. 7. Changing spectral characteristics of MSW during the biological treatment 
Figure 8 illustrates the correlation between the predicted and the measured calorific value of 
the PLS-R model (Model parameters: R2 = 76%, RMSECV = 711 kJ kg-1 dry matter (DM), 
RPD = 2.1; bias = 2.1). 
 

 
Fig. 8. (a) Correlation between the predicted and the measured calorific values based on the 
whole MIR spectrum, (b) the corresponding loadings spectrum of the 1st PLS component 

3.3 Thermal treatment of MSW - natural and accelerated ageing (carbonation) of MSW 
incinerator bottom ash 
Inorganic residues from incineration have gained in significance during the last decades due 
to the increase of the thermal treatment of waste for energy recovery. The long-term 
behaviour of landfilled bottom ash, the process of carbonation and the fate and release of 

(b)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

400140024003400
Wavenumber (cm-1)

A
rb

itr
ar

y 
U

ni
t

2920
2850

1430
875

(a) 

0

3000

6000

9000

12000

0 3000 6000 9000 12000
Calorific value measured (kJ kg-1 DM)

C
al

or
ifi

c 
va

lu
e 

pr
ed

ic
te

d 
(k

J 
kg

 -
1 

D
M

)

The Application of FT-IR Spectroscopy in Waste Management 

 

419 

heavy metals all dependent on the ageing process, have become relevant topics. In figure 9a 
the main differences between spectra of MSW (I) and MSW incinerator bottom ash (II) are 
elucidated. Spectra of incineration residues differ from MSW by the loss of bands that are 
assigned to organic functional groups. Figure 9b illustrates two spectra of MSW incinerator 
bottom ash before (III) and after CO2 exposure (IV), two spectra of a bottom ash deposit 
from a depth of 50 cm (V), from the surface (VI), and a spectrum of the calcite reference. It is 
evident that the progress of carbonation in abandoned deposits depends on the available 
surface and the access of air. Carbonates that are part of MSW decay during incineration 
above 650 °C. The reaction of CaO with water leads to Ca(OH)2 which causes the pH-value 
of the inorganic residues to increase.  
 

 
Fig. 9. Spectra of (a) MSW (I) and MSW incinerator bottom ash (II) and (b) MSW incinerator 
bottom ash (III) before and (IV) after CO2 exposure, two samples from different depths (V = 50 
cm and VI = surface layer) of a bottom ash deposit and the spectrum of the reference (calcite) 
The uptake of CO2 from air effects carbonation. This process in the opposite direction leads 
to stabilisation, immobilisation of heavy metals and the decrease of the pH-value to a 
neutral level (Chimenos et al., 2000; Polettini & Pomi, 2004; Rendek et al., 2006). This process 
can be accelerated by forced CO2 supply (Mostbauer et al., 2008).  
The ageing and stabilisation of incinerator bottom ash are solely chemical processes 
compared to the stabilisation of waste organic matter that is promoted by microbial activity. 
Carbonation is reflected by the increase of typical “carbonate bands” (Table 1) in the 
spectrum. Quantification of carbonates in MSW incinerator bottom ash by means of FT-IR 
spectra leads to reliable results (Smidt et al., 2009). The standard method is based on the 
measurement of the CO2 release from carbonates by acid treatment which can be affected by 
the complex matrix. 

4. Recovery of biogenic waste materials, secondary products 
In the context of resource recovery biogenic waste materials have become important 
ingredients for valuable composts that are applied as soil conditioners. Composting has 
been practiced for many centuries all over the world at different technical levels (Ahmad et 
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heavy metals all dependent on the ageing process, have become relevant topics. In figure 9a 
the main differences between spectra of MSW (I) and MSW incinerator bottom ash (II) are 
elucidated. Spectra of incineration residues differ from MSW by the loss of bands that are 
assigned to organic functional groups. Figure 9b illustrates two spectra of MSW incinerator 
bottom ash before (III) and after CO2 exposure (IV), two spectra of a bottom ash deposit 
from a depth of 50 cm (V), from the surface (VI), and a spectrum of the calcite reference. It is 
evident that the progress of carbonation in abandoned deposits depends on the available 
surface and the access of air. Carbonates that are part of MSW decay during incineration 
above 650 °C. The reaction of CaO with water leads to Ca(OH)2 which causes the pH-value 
of the inorganic residues to increase.  
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Carbonation is reflected by the increase of typical “carbonate bands” (Table 1) in the 
spectrum. Quantification of carbonates in MSW incinerator bottom ash by means of FT-IR 
spectra leads to reliable results (Smidt et al., 2009). The standard method is based on the 
measurement of the CO2 release from carbonates by acid treatment which can be affected by 
the complex matrix. 
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al., 2007). The variety of biogenic waste materials available from the public separate 
collection and from industrial processes requires quality criteria and suitable input materials 
for specific applications. This purpose has been stipulated by the Austrian Compost 
Ordinance (BMLFUW, 1992). The limitation of heavy metals and pollutants is in the focus of 
legislation. Nutrients (Courtney & Mullen, 2008), humic substances (Meissl et al., 2007; 
Smidt et al., 2008d) and phytosanitary properties (Bruns et al., 1996; Erhart et al., 1999) are 
additional quality criteria that emphasise the positive effects on plants and soils and 
improve the reputation of composts. Biogenic waste and sewage sludge are usually 
processed in composting plants whereas manure compost is produced locally by farmers. 

4.1 Differentiation of various input materials and assignment of composts to specific 
biogenic waste materials 
Figure 10 displays five composting processes in different plants, grouped by a PCA.  

 
Fig. 10. (a) Scores plot and (b) loadings spectra (PC1 and PC2) of a PCA based on spectral 
characteristics of five different composting processes (Bio = biowaste, SSL = sewage sludge) 

Input materials are distinguished by their characteristic spectral pattern. Along PC1 the 
particular composition of biowaste and sewage sludge compost contributes to the 
separation. Biowaste composting processes (Bio A-D) are separated along PC2 according to 
specific features such as anaerobic pre-treatment (Bio D) or addition of mineral compounds 
(Bio A). Bio B and Bio C represent the typical mixture of yard and kitchen waste that is 
processed in open windrow systems. 
The loadings spectra of PC1 and PC2 indicate the relevant bands that contribute to the 
differentiation of composts: mineral components, O-H vibrations of kaolin at 3695 and 
910 cm-1 (additive to sewage sludge compost) and organic components at 1600 cm-1 
(aromatic compounds such as humic substances) and at 1240 cm-1 (C-O vibrations). 

4.2 Process control during the aerobic treatment (composting) of biowaste (yard 
waste, market waste) and sewage sludge 
The degradation of organic matter during composting goes through several phases. The 
most intensive rotting phase is paralleled by high microbial activity indicated by the high 
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oxygen demand and the release of metabolic products such as ammonium and volatile fatty 
acids responsible for odour emissions. During the maturation phase the respiration activity 
reaches a nearly constant low level. The increasing pH-value affects losses of ammonia. 
Oxidation of ammonium causes nitrate contents to increase. Compost maturity is 
characterised by a C/N ratio of 10 – 12 (Ouatmane et al., 2000), low microbial activity and 
plant compatibility that has to be verified by plant tests according to the Austrian Compost 
Ordinance (BMLFUW, 1992). Figure 11 and 12 show different stages of three composting 
processes by spectral characteristics. The indicator bands (cp. Table 1) that are identifiable 
by visual inspection are the same as indicated for MSW. Nevertheless, the complete pattern 
of composts differ sufficiently to separate MSW from biogenic waste as shown by the 
SIMCA classification model (Smidt et al., 2008b). Figure 11a illustrates a typical biowaste 
composting process over a period of 121 days. Apart from organic matter mineral 
compounds such as carbonates and clay minerals are usually occurring constituents in 
biowaste from the separate collection. Their relative increase due to mineralisation of 
organic substances is obvious. Figure 11b demonstrates the degradation of straw mixed with 
liquid manure in a fast composter device during a period of nine days. The spectra are 
dominated by straw characteristics. It is evident that straw is only partially degraded during 
the short period of composting. Besides the disappearing band at 1720 cm-1 and the 
decreasing band at 1260 – 1230 cm-1 that can be assigned to esters in e.g. hemicelluloses 
(Stewart et al., 1995) and the decreasing bands at 1165 and 1060 cm-1 (cellulose marked by 
arrows in the spectrum) intact cell structures are indicated by sharp and distinct bands in 
the wavenumber region 1520 - 1200 cm-1. Figure 12 demonstrates the development of 
primary sludge and anaerobically stabilised sludge from a wastewater treatment plant to 
sewage sludge compost. The latter originates from a composting plant. The FT-IR spectrum 
of the primary sludge is dominated by bands that can be assigned to cellulose, 
hemicelluloses (1740 and 1240 cm-1) and to the microbial biomass that is identified by 
aliphatic methylene and amide bands. The mature sewage sludge compost features low 
methylene bands and a considerable nitrate band at 1384 cm-1. Due to the specific mixture in 
the composting plant the portion of clay minerals is higher, the carbonate content lower. 
 

 
Fig. 11. Development of spectral characteristics during composting processes of (a) biowaste 
and (b) straw/liquid manure 
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al., 2007). The variety of biogenic waste materials available from the public separate 
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additional quality criteria that emphasise the positive effects on plants and soils and 
improve the reputation of composts. Biogenic waste and sewage sludge are usually 
processed in composting plants whereas manure compost is produced locally by farmers. 

4.1 Differentiation of various input materials and assignment of composts to specific 
biogenic waste materials 
Figure 10 displays five composting processes in different plants, grouped by a PCA.  
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separation. Biowaste composting processes (Bio A-D) are separated along PC2 according to 
specific features such as anaerobic pre-treatment (Bio D) or addition of mineral compounds 
(Bio A). Bio B and Bio C represent the typical mixture of yard and kitchen waste that is 
processed in open windrow systems. 
The loadings spectra of PC1 and PC2 indicate the relevant bands that contribute to the 
differentiation of composts: mineral components, O-H vibrations of kaolin at 3695 and 
910 cm-1 (additive to sewage sludge compost) and organic components at 1600 cm-1 
(aromatic compounds such as humic substances) and at 1240 cm-1 (C-O vibrations). 

4.2 Process control during the aerobic treatment (composting) of biowaste (yard 
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The degradation of organic matter during composting goes through several phases. The 
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oxygen demand and the release of metabolic products such as ammonium and volatile fatty 
acids responsible for odour emissions. During the maturation phase the respiration activity 
reaches a nearly constant low level. The increasing pH-value affects losses of ammonia. 
Oxidation of ammonium causes nitrate contents to increase. Compost maturity is 
characterised by a C/N ratio of 10 – 12 (Ouatmane et al., 2000), low microbial activity and 
plant compatibility that has to be verified by plant tests according to the Austrian Compost 
Ordinance (BMLFUW, 1992). Figure 11 and 12 show different stages of three composting 
processes by spectral characteristics. The indicator bands (cp. Table 1) that are identifiable 
by visual inspection are the same as indicated for MSW. Nevertheless, the complete pattern 
of composts differ sufficiently to separate MSW from biogenic waste as shown by the 
SIMCA classification model (Smidt et al., 2008b). Figure 11a illustrates a typical biowaste 
composting process over a period of 121 days. Apart from organic matter mineral 
compounds such as carbonates and clay minerals are usually occurring constituents in 
biowaste from the separate collection. Their relative increase due to mineralisation of 
organic substances is obvious. Figure 11b demonstrates the degradation of straw mixed with 
liquid manure in a fast composter device during a period of nine days. The spectra are 
dominated by straw characteristics. It is evident that straw is only partially degraded during 
the short period of composting. Besides the disappearing band at 1720 cm-1 and the 
decreasing band at 1260 – 1230 cm-1 that can be assigned to esters in e.g. hemicelluloses 
(Stewart et al., 1995) and the decreasing bands at 1165 and 1060 cm-1 (cellulose marked by 
arrows in the spectrum) intact cell structures are indicated by sharp and distinct bands in 
the wavenumber region 1520 - 1200 cm-1. Figure 12 demonstrates the development of 
primary sludge and anaerobically stabilised sludge from a wastewater treatment plant to 
sewage sludge compost. The latter originates from a composting plant. The FT-IR spectrum 
of the primary sludge is dominated by bands that can be assigned to cellulose, 
hemicelluloses (1740 and 1240 cm-1) and to the microbial biomass that is identified by 
aliphatic methylene and amide bands. The mature sewage sludge compost features low 
methylene bands and a considerable nitrate band at 1384 cm-1. Due to the specific mixture in 
the composting plant the portion of clay minerals is higher, the carbonate content lower. 
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Fig. 12. Spectra of different process stages of sewage sludge treatment and composting 
 

 
Fig. 13. (a) Decreasing aliphatic methylene bands at 2920 and 2850 cm-1, emerging and 
disappearing band at 1320 cm-1; (b) development of corresponding relative band heights and 
respiration activity (RA4) during a biowaste composting process (2-260 days) 

Data evaluation can be performed in different ways. Changing heights or areas of bands 
indicate the progressing mineralisation. Haberhauer et al. (1998) suggested the ratio of band 
heights (2920 cm-1/1640 cm-1) as an indicator of stability. Figure 13a shows the development 
of selected bands (2920, 2850, and 1320 cm-1), figure 13b the corresponding band heights 
during a biowaste composting process over a period of 260 days. The individual band 
height is expressed in per cent of ten measured band heights in the spectrum (Smidt et al., 
2002). Aliphatic methylene groups are part of many biomolecules with different 
degradability. Degradation of easily degradable substances is indicated by the decreasing 
band height at 2920 and 2850 cm-1 that reached a low constant level (Fig. 13). Recalcitrant 
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molecules such as long chain fatty acids and waxes are responsible for the remaining weak 
bands. They are still found in soil organic matter (Jandl et al., 2002). The emerging and 
disappearing band at 1320 cm-1 that can be assigned to amines shows the typical behaviour 
of metabolic products that are temporarily visible in the spectrum. The corresponding 
microbial activity of the composting process is indicated by the respiration activity over a 
period of 4 days (RA4). The interaction of microbial activity and changing chemical 
composition is revealed by the conformity of the curves, each of them reflecting process 
kinetics. 

4.3 Quality assessment of the final product - prediction of parameters using PLS-R 
For products such as compost, quality criteria have been defined and require analytical 
control. Various parameters are involved depending on the waste material to be 
investigated. Waste organic matter is affected by different mechanisms of degradation and 
transformation. Composts that comply with quality standards according to the Austrian 
Compost Ordinance (BMLFUW, 1992) leave the waste management regime and become 
products for soil amelioration. Mineralisation and humification contribute substantially to 
stabilisation. Whereas mineralisation causes enrichment of scarcely degradable substances, 
humification leads to synthesis of new biomacromolecules. Therefore humification 
counteracts carbon losses by CO2 release in that it is fixed in humic substances. Extractable 
humic acids are a suitable parameter for assessing the increase of stable humic substances in 
composts. Prediction of humic acid contents and respiration activity (RA4) by FT-IR 
spectroscopy and PLS-R is an adequate approach for avoiding the time consuming 
procedure of humic acid (HA) and RA4 determination. Prediction models being valid for 
biowaste composts were developed by Meissl et al. (2007; 2008a). Additional PLS-R models 
for TOC and total nitrogen (TN) were established by Böhm et al. (2010b). Table 3 compiles 
the parameters for the TOC, TN, RA4, and HA prediction models. The quality of the models 
depends on the precision of the reference analyses. Considering this fact all developed MIR 
based PLS-R models are suitable for practical application, especially for time-consuming 
parameters such as the determination of humic acid contents and respiration activity.  
 
Model 
parameters TOC TN RA4 HA 

Wavenumber 
ranges (cm-1) 3000-2800, 1790-1492, 1373-1030 1745-1685, 1610-1567 

Calibrated 
range 

9.4 - 27.3 % 
DM 0.9 - 2.6 % DM 1.0 - 60.6 mg O2 g-1 

DM 4.5 - 45.6 % ODM 

R2  89% 83% 88% 88% 
RMSECV 1.3 % DM 0.14 % DM 2.9 mg O2 g-1 DM 2.4 % ODM 
RPD 3 2.4 2.9 2.9 
No. of PLS 
components 6 9 7 7 

Bias 0.005 0.001 -0.01 0.004 

Table 3. Parameters of the models for total organic carbon (TOC), total nitrogen (TN), humic 
acids content (HA), and respiration activity (RA4); ODM = organic dry matter 
Prediction of commonly used parameters in waste management has been reported by several 
authors, especially for composts (Reeves & Van Kessel, 2000a; Reeves & Van Kessel, 2000b; 
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molecules such as long chain fatty acids and waxes are responsible for the remaining weak 
bands. They are still found in soil organic matter (Jandl et al., 2002). The emerging and 
disappearing band at 1320 cm-1 that can be assigned to amines shows the typical behaviour 
of metabolic products that are temporarily visible in the spectrum. The corresponding 
microbial activity of the composting process is indicated by the respiration activity over a 
period of 4 days (RA4). The interaction of microbial activity and changing chemical 
composition is revealed by the conformity of the curves, each of them reflecting process 
kinetics. 

4.3 Quality assessment of the final product - prediction of parameters using PLS-R 
For products such as compost, quality criteria have been defined and require analytical 
control. Various parameters are involved depending on the waste material to be 
investigated. Waste organic matter is affected by different mechanisms of degradation and 
transformation. Composts that comply with quality standards according to the Austrian 
Compost Ordinance (BMLFUW, 1992) leave the waste management regime and become 
products for soil amelioration. Mineralisation and humification contribute substantially to 
stabilisation. Whereas mineralisation causes enrichment of scarcely degradable substances, 
humification leads to synthesis of new biomacromolecules. Therefore humification 
counteracts carbon losses by CO2 release in that it is fixed in humic substances. Extractable 
humic acids are a suitable parameter for assessing the increase of stable humic substances in 
composts. Prediction of humic acid contents and respiration activity (RA4) by FT-IR 
spectroscopy and PLS-R is an adequate approach for avoiding the time consuming 
procedure of humic acid (HA) and RA4 determination. Prediction models being valid for 
biowaste composts were developed by Meissl et al. (2007; 2008a). Additional PLS-R models 
for TOC and total nitrogen (TN) were established by Böhm et al. (2010b). Table 3 compiles 
the parameters for the TOC, TN, RA4, and HA prediction models. The quality of the models 
depends on the precision of the reference analyses. Considering this fact all developed MIR 
based PLS-R models are suitable for practical application, especially for time-consuming 
parameters such as the determination of humic acid contents and respiration activity.  
 
Model 
parameters TOC TN RA4 HA 

Wavenumber 
ranges (cm-1) 3000-2800, 1790-1492, 1373-1030 1745-1685, 1610-1567 

Calibrated 
range 

9.4 - 27.3 % 
DM 0.9 - 2.6 % DM 1.0 - 60.6 mg O2 g-1 

DM 4.5 - 45.6 % ODM 

R2  89% 83% 88% 88% 
RMSECV 1.3 % DM 0.14 % DM 2.9 mg O2 g-1 DM 2.4 % ODM 
RPD 3 2.4 2.9 2.9 
No. of PLS 
components 6 9 7 7 

Bias 0.005 0.001 -0.01 0.004 

Table 3. Parameters of the models for total organic carbon (TOC), total nitrogen (TN), humic 
acids content (HA), and respiration activity (RA4); ODM = organic dry matter 
Prediction of commonly used parameters in waste management has been reported by several 
authors, especially for composts (Reeves & Van Kessel, 2000a; Reeves & Van Kessel, 2000b; 
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Michel et al., 2006; Huang et al., 2007). Apart from organic matter, TOC, TN and nutrient 
contents, both physical and biological parameters were predicted by FT-NIR spectroscopy. 

4.4 Compost application on soils; development of soil organic matter by compost 
application – characterisation of humic acids by FT-IR spectroscopy 
The loss of organic matter in soils by agricultural activities has become a serious problem in 
many countries (Montanarella, 2002). The application of composts is an appropriate 
measure for improving the stable organic matter content long-term (Franko et al., 1997; 
Jensen et al., 1997; Li et al., 1997) as confirmed by field experiments. Figure 14a visualises the 
increase of humic acid contents (% ODM) in three different plots of agricultural soil where 
well humified biowaste compost has been applied since 1994, 1999 and 2004 (C). These plots 
were compared to the reference soils (R) without any amendment. The spectral region of 
aromatic compounds where humic acids are expected (1610 - 1567 cm-1) were selected 
(Meissl et al., 2007; Meissl et al., 2008a). The increase is visualised by the highlighted area in 
figure 14b (1610 - 1567 cm-1) between the spectra of the reference soil (R) and of the soil with 
compost application (C). It corresponds to the duration of compost application (Smidt et al., 
2008c). Humic acids belong to the stable organic matter fraction in soils with low turnover 
rates. Regarding the age of soil humic acids and the diversity of these molecules the 
question arises, if compost humic acids are similar regarding the composition and stability. 
Figure 15a demonstrates the changing spectral pattern of compost humic acids after 4, 25 
and 260 days of composting. In the scarcely composted material humic acids feature strong 
aliphatic methylene bands and bands that can be assigned to polysaccharides (1150 –950  
cm-1). In the mature compost, spectral characteristics become similar to soil humic acids. The 
intensity of the band at 1030 cm-1 is caused by impurities of clay minerals that were not 
completely separated by the extraction procedure of  soil humic acids (Smidt et al., 2008d). 
 

 
Fig. 14. Increasing contents of stable organic matter in agricultural soil due to compost 
application since 1994, 1999 and 2004, verified by (a) increasing humic acid (HA) contents 
(shaded bar) and (b) corresponding spectral characteristics (C = compost amended soil, R = 
reference soil, presented wavenumber region 1795 (I) – 1505 (II) cm-1) 

Lignin is known to serve as a precursor in humic substance formation (Tan, 2003). A lab 
scale composting process with biogenic waste was carried out to reveal the effect of lignin 
on humic acid synthesis. Addition of 5% lignin from an industrial process could improve 
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the humic acid content in the mature compost compared to the reference without lignin 
application. Figure 15b shows the spectra of freeze-dried humic acids extracted from the 
fresh biogenic waste with lignin addition (1 d), from the 42-day-old compost with lignin 
(42 d) and from the reference without lignin (R-42 d). Whereas spectral characteristics of 
lignin are clearly visible at the beginning (1 d), they disappear during the progressing 
process (42 d). Humic acids become similar to the reference. Based on FT-IR spectra it can be 
assumed that lignin building blocks were integrated in the humic acid molecule (Smidt et 
al., 2008a). 
 

 
Fig. 15. (a) Spectral pattern of humic acids originating from a biowaste composting process 
(4, 25, 260 days) and from soil; (b) integration of lignin in compost humic acids 

5. Conclusion 
The application of FT-IR spectroscopy in waste management provides fast, cheap and 
reliable process and product control. Moreover, environmental monitoring can be based on 
spectral characterisation. Besides conventional methods of spectral data evaluation 
multivariate statistical methods enable the extraction of the inherent information. The 
development of classification and parameter prediction models is a prerequisite for using 
this analytical tool in waste management practice. There are many perspectives for the 
adoption of the method in this area. Depending on the questions to be answered tailor made 
models can be developed in order to replace time-consuming analyses. The strength of FT-
IR spectroscopic investigations is the comprehensive characterisation of complex materials 
by their unique signature. Due to the small sample amount used for infrared spectroscopic 
measurements careful sample preparation is a crucial issue in view of the heterogeneous 
mixture of waste materials. 
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1. Introduction  
Defense and security agencies are in constant demand of new ways of detecting chemical 
and biological threats posed by terrorist organizations. Fundamental and applied research 
in areas of interest to national defense and security focus in detection of highly energetic 
materials (HEM), including homemade explosives (HME) that could be used as weapons of 
mass destruction (Marshal and Oxley, 2009; Yinon and Zitrin, 1996; Schubert and Rimski-
Korsakov, 2006). The Department of Homeland Security of the United States of America has 
even gone a step further and established a university based Center of Excellence in explosives 
detection, mitigation and response to conduct transformational research, technology and 
educational development for effective characterization, detection, mitigation and response to 
the explosives-related threats facing the country and the world. The Awareness and 
Localization of Explosives Threats (AWARE) is co-lead by Northeastern University (ALERT at 
NU, Boston, MA) and University of Rhode Island (ALERT at URI, Kingston, RI).  
Current detection methods of explosives are based on a wide variety of technologies that 
focus on either bulk explosives or traces of explosives. Bulk explosives can be detected 
indirectly by imaging characteristic shapes of the explosive charge, detonators, and wires or 
directly by detecting the chemical composition or dielectric properties of the explosive 
material. Trace detection methods rely on detection of vapors emitted from the explosives or 
on explosive particles that are deposited on nearby surfaces (National Academy of Sciences 
Committee, 2004). Although there are hundreds of publications about  methods of detection 
of HEM in water, soil, air, clothing, surfaces, etc. and these offer the advantage of providing 
very low  limits of detection at ppb levels (Caron, et al., 2010; Hilmi and Luong, 2000; Yinon, 
1996; Szakal and Brewer, 2009; Miller and  Yoder, 2010). They require, in the majority of the 
cases, sampling at the scene followed by a sample preparation step, to be later analyzed by a 
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1. Introduction  
Defense and security agencies are in constant demand of new ways of detecting chemical 
and biological threats posed by terrorist organizations. Fundamental and applied research 
in areas of interest to national defense and security focus in detection of highly energetic 
materials (HEM), including homemade explosives (HME) that could be used as weapons of 
mass destruction (Marshal and Oxley, 2009; Yinon and Zitrin, 1996; Schubert and Rimski-
Korsakov, 2006). The Department of Homeland Security of the United States of America has 
even gone a step further and established a university based Center of Excellence in explosives 
detection, mitigation and response to conduct transformational research, technology and 
educational development for effective characterization, detection, mitigation and response to 
the explosives-related threats facing the country and the world. The Awareness and 
Localization of Explosives Threats (AWARE) is co-lead by Northeastern University (ALERT at 
NU, Boston, MA) and University of Rhode Island (ALERT at URI, Kingston, RI).  
Current detection methods of explosives are based on a wide variety of technologies that 
focus on either bulk explosives or traces of explosives. Bulk explosives can be detected 
indirectly by imaging characteristic shapes of the explosive charge, detonators, and wires or 
directly by detecting the chemical composition or dielectric properties of the explosive 
material. Trace detection methods rely on detection of vapors emitted from the explosives or 
on explosive particles that are deposited on nearby surfaces (National Academy of Sciences 
Committee, 2004). Although there are hundreds of publications about  methods of detection 
of HEM in water, soil, air, clothing, surfaces, etc. and these offer the advantage of providing 
very low  limits of detection at ppb levels (Caron, et al., 2010; Hilmi and Luong, 2000; Yinon, 
1996; Szakal and Brewer, 2009; Miller and  Yoder, 2010). They require, in the majority of the 
cases, sampling at the scene followed by a sample preparation step, to be later analyzed by a 
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particular technique. Sampling and sample preparation are among the main disadvantages 
in HEM detection, in many cases threatening the health and life of analysts and first 
responders. Vibrational spectroscopy, in its various modalities, has shown to be useful for 
detection of dangerous chemicals, among them HEM. Near-infrared or mid-infrared 
spectroscopies have shown to be powerful techniques for IR vibrational analysis, able to 
detect organic and inorganic substances in any state: solid, liquid or gas (Gunzler, 2002; 
Smith, 2000). IR vibrational spectra can to be used for identify and quantify samples in 
complex matrices because each substance has its own fingerprint spectrum in the mid IR 
(MIR). This means that IR spectroscopy can be used for discriminant analysis even when the 
target analyte is in very small quantities (Bangalore, 1997). 
Standoff detection is defined as where equipment and operator stay away from the sample 
while measuring some property of the target (Parmenter, 2004). An area of IR spectroscopy 
that has increased interest in defense and security applications is standoff IR (SOIR) 
spectroscopy. In SOIR detection, vibrational signatures can to be recorded from several 
meters to hundreds of meters in distances between the target and the instrument. Fourier 
transform infrared (FTIR) standoff detection provides a means of doing real time analysis, in 
which no sample preparation is needed, no human contact needs to be provided, 
measurements are typically fast, and chemical information for each explosive can be 
obtained in high detail which can allow identification and even quantification. This makes 
the standoff IR detection a powerful technique for sensing of energetic materials at a 
distance, thus preventing or minimizing the damage caused by terrorist action, in the case 
that this comes to be detonated. 
Open-Path Fourier Transform IR (OP/FTIR) spectroscopy has been used for atmospheric 
gas analysis and environmental monitoring for over 40 years (Griffiths, et al., 2009). It is one 
of the two methodologies devised for measuring concentration of gaseous trace components 
in the atmosphere using infrared spectroscopy: extractive sampling analysis and in situ 
open-path analysis. Although Russwurm and Childers credit Hanst for the initial 
description of FTIR monitoring of atmospheric pollutants in the atmosphere by OP IR 
(Russwurm and Childers, 2001; Hanst, 1971) Stephens and his group at the Environmental 
Protection Agency had already made measurements of ambient concentrations of peroxy 
acetyl nitrate (PAN) in the Los Angeles city basin before 1969 (Stephens, et al., 1969; Scott, et 
al., 1957). Aside from the apparently inconsequent controversy (since Hanst was part of the 
Stephen’s group) valid questions on why is OP/FTIR is rarely used nowadays and why its 
development has been undermined with technological problems remain unanswered. 
Among possible answers to these questions stands out a limited sensitivity of the technique 
for atmospheric monitoring: 1-100 ppb by volume (contrasted to the requirements of parts 
per trillion by volume on many pollutants) and the lack of development of algorithms that 
can be incorporated into the instruments acquisition and analysis routines (software) that 
can could make the use of the technique a more amenable and user friendly one. In a recent 
article by Griffiths and collaborators, the authors point out the difficulties encountering 
when using OP/FTIR that have led to a slow development of the remote sensing modality 
(Griffiths, et al., 2009). The clear advantages of wide area sensing and long range capabilities 
have been overshadowed by hardware and more so, by software limitations. Inadequacy in 
compensating for variable atmospheric contributions, mainly by water vapor and carbon 
dioxide has hampered the wide usage of OP/FTIR both in environmental studies as well as 
in Defense and Security applications. In this study, two types of FTIR standoff detection 
experiments were carried out: active mode OP/FTIR and passive mode OP/FTIR. The 
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detection of particle dispersion is also relevant to the forensic community.  When an airbag 
deploys in an accident the lubricant is dispersed on the passenger.  Many times the 
occupants in the vehicle are ejected or end up in a different location in the vehicle.  Such a 
device could definitively place the occupants.  Additionally, persons involved in the illicit 
manufacture of drugs will frequently retain chemical residues on their clothing.  In this case, 
remote detection could be used to link a suspect to the crime scene. 
There is a limited number of scientific contributions in the area of SOIR detection of HEM 
deposited on surfaces. Work by Theriault and colleagues (Theriault, et al., 2004), Van Neste 
and collaborators (Van Neste, et al., 2009), Blake and co-workers (Blake, et al., 2009) and 
Pacheco-Londoño and colleagues (Pacheco-Londoño, et al. 2009) have helped to contribute 
the development of this application of OP/FTIR. Theriault and collaborators made field 
measurements of liquid contaminants deposited on a number of surfaces at a standoff 
distance of 60 m using FTIR radiometry (Theriault, et al., 2004). Van Neste and collaborators 
described standoff detection measurements of trace quantities of surface adsorbed high 
explosives (Van Neste, et al., 2009). They used two quantum cascade lasers (QCL) operated 
simultaneously in the MIR, with tunable wavelength windows that match with absorption 
peaks of nitroexplosives tested. In this important contribution researchers demonstrated a 
sensitivity of 100 ng/cm2 and a standoff detection distance of 20 m for surface adsorbed 
analytes such as explosives and chemical agent simulant tributyl phosphate. The detection 
of Explosives on metallic substrates is the first step in demonstrating the facility of passive 
and active open path FTIR detection for general use.  Other substrates such as textiles, 
plastic, wood, and glass are less reflective and present a greater challenge.  The emergence 
of alternative bright sources, such as QCL’s, puts the active detection of explosive residues 
on real life materials over significant pathlengths within reach. Blake and colleagues 
recorded hyperspectral images of galvanized steel plates, containing 
cyclotrimethylenetrinitramine (RDX), using a commercial long-wave infrared imaging 
spectrometer at a standoff range between 14 and 50 m (Blake, et al., 2009).  Pacheco-
Londoño and collaborators built an active IR standoff detection system by coupling a bench 
FTIR interferometer to a gold mirror and external cryocooled detector assembly for 
detection of explosives present as traces on reflective surfaces (Pacheco-Londoño, et al. 
2009). Source-target distances in the range of 1 – 3.7 m were studied and limits of detection 
(LOD) values obtained were 18 and 20 μg/cm2 for TNT and RDX, respectively. The results 
of the prototype built were attributed to the use of a modulated MIR beam source that was 
able to cut down stray light from laboratory illumination.    

2. Description of methodology 
Open Path Infrared Spectroscopy is a well established technique for atmospheric sensing of 
gases and condensable vapors. In the current application, after validating the spectroscopic 
system in detection of gases and condensable vapors, are more challenging application was 
addressed: detection solid samples deposited as trace contaminants on metallic surfaces 
were detected by OP/FTIR. Sample preparation is a critical task in the development of any 
analytical technique. Three steps were performed for standoff detection of explosives and 
other highly energetic materials deposited on Al plates: 
• TNT samples were weighted and dissolved in dichloromethane.  
• Mixtures were deposited on the Al plates using a Teflon stub and were then allowed to 

air-dry.  
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• OP/FTIR standoff detection experiments were carried out, both in active mode using a 
mid infrared (MIR) source and passive mode using a thermal excitation (utilizing a 
tungsten lamp).  

These steps are illustrated in Fig. 1. 
Background spectra of Al plates with no TNT deposited on them were run for every 
standoff distance tested in active mode. In the case of passive mode standoff detection, 
background spectra were acquired at every range value and every plate temperature tested. 
Then, statistical routines were applied using chemometrics. In particular, partial least 
squares (PLS) regression analysis was used to perform quantification studies of HEM 
surface loadings at all standoff distances. Standoff detection of solid samples present as 
traces on metallic substrates required a sample preparation methodology that would be able 
to deposit solid samples on a solid substrate, with high coverage uniformity and 
reproducibility. Due to the size of the substrates, sample smearing technique was used to 
deposit the HEM TNT at trace amounts on metallic substrates (Primera-Pedrozo, 2008). As 
shown in Fig. 2a, aluminum plates of areas 30.5 cm × 30.5 cm were used as material support 
for HEM samples. Dichloromethane was used to clean the aluminum surfaces. Plates were 
allowed to air-dry before of depositing the desired HEM surface loading. A small amount of 
dichloromethane was used to dissolve TNT sample to be deposited. A 3 cm × 15 cm Teflon 
stub was used to smear the HEM sample on the aluminum substrates (Fig. 2b). The amount 
of HEM that remained on the Teflon stub after sample smearing was negligible. The 
nominal surface concentrations obtained by the smearing technique were 50, 100, 200, 300, 
and 400 µg/cm2 of HEM. Figs. 2b and 2c show how TNT was deposited on aluminum plates 
for 50 (Fig. 1b) and 100 μg/cm2 (Fig. 1c), respectively. 
 

 
Fig. 1. Steps for remote detection of nitroexplosives and other HEM deposited on surfaces 
using OP/FTIR 
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 a) b)   c) 

Fig. 2. Sample preparation: (a) Clean Al plate ready for sample smearing technique; (b) 50 
µg/cm2 of TNT loading concentration; (c) 100 µg/cm2 of TNT surface concentration 

A model EM27 (Bruker Optics, Billerica, MA) OP/FTIR spectrometer, was used to obtain the 
MIR spectral information of TNT samples. Table 1 contains the specifications and technical 
data of the EM27. Fig. 3 illustrates the difference in operation between a benchtop FTIR 
spectrometer used in absorption mode (Fig. 3a) and an IR interferometer configured for 
open-path measurements (Fig. 3b). The optical bench consisted of a compact, enclosed, and 
desiccated Michelson type interferometer equipped with ZnSe windows, internal black 
body calibration source, KBr beamsplitter, f/0.9 and a field of view (FOV) of 30 mrad (1.7°). 
Its main features are: permanently aligned, vibration insensitive, and friction-free 
mechanical bearing. The system was capable of acquiring 32 spectra per second at 1 cm-1 
resolution.  
 

PARAMETER SPECIFICATION 

Spectral Range: 700 – 1300 cm-1 (useful for passive measurements) 
700 – 4000 cm-1 (useful for active measurements) 

Resolution: 1.0 cm-1 (Option: 0.5 cm-1) 

NEDT: 
(Noise Equivalent Delta 
Temperature): 

 up to 0.08°C for one scan with a resolution of 1 cm-1 and 
a mirror speed of 40 kHz, depending on the detector 

Optical Bench: compact, enclosed, desiccated, purge interferometer 

Beamsplitter: KBr-substrate with multi-layer coating (Option: ZnSe) 

Interferometer: 
vibration insensitive, friction-free mechanical bearing; 
permanently aligned; symmetrical interferogram 
acquisition at 4 scanning velocities up to 40 kHz 

Standard Detector: MCT-detector (narrow band), liquid nitrogen cooled, 

Field of View: 30 mrad (10 mrad with receiver telescope) 

Table 1. Specifications of EM27 Open Path FTIR spectrometer 
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Fig. 3. FTIR interferometer configured as: (a) absorption spectrometer: detects source 
radiation only; (b) open-path spectrometer: detects source and sample radiation 
High sensitivity measurements were achieved by using a high sensitivity closed cycle cryo-
cooled photoconductive mercury cadmium telluride (MCT) MIR detector. Both, the MIR 
source and interferometer were focused on the target by MIR telescopes for active mode 
measurements (Fig. 3). Telescopic sights with mounts were used to align both source and 
collector. The transmitter source telescope was a 6 in. diam. F/4, gold coated mirrors with 
FOV ≥ 7.5 mrad; the receiver IR telescope was also a 6 in. diam. F/3 gold coated reflector 
with a FOV of 10 mrad. For passive mode measurements, the experimental setup was the 
same that in active mode, but the telescope coupled MIR source for excitation of the target 
was not used. Instead, a 500 W tungsten lamp was used to heat the aluminum plates with 
and without target analytes deposited on them. For both active mode and passive mode, 
multivariate calibrations were obtained and relevant statistical parameters were calculated 
and used as criteria to judge the quality of the method. 

3. Application of multivariate calibrations to OP/FTIR data analysis 
The mathematical modeling and detection of explosives and other threats in a complex 
environment can be complex. The large spectral bandwidth of a FTIR spectrometer 
facilitates the analysis. The purpose of calibration techniques is to correlate measured 
quantities such as the absorption of infrared radiation with properties of the system, for 
example, the concentration of one component in a multicomponent system. The accepted 
method of data analysis of gas phase contaminants present in a complex multicomponent 
mixtures as is the case of atmospheric pollutants present in air is classical least squares 
(CLS) regression analysis, also termed linear regression analysis or least squares (Russwurm 
and Childers, 1999). For quantification studies, CLS calibration curves can be generated 
using two methods: measurement of the absorbance peak heights and integration of areas in 
the spectral region of interest. Calibration plots using peak areas represents a better choice 
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for quantitative analysis when compared to peak height analysis (Lavine, 2002; Kramer, 
1998). Usually, two steps are required: the calibration of the method and the analysis to 
determine a value of an unknown sample. It is important to emphasize that measuring 
surface concentrations using the peak area method is conceptually simple and easy to use, 
but it has some limitations. The method is univariate (the concentration is determined 
with a single spectral peak) and depends on a linear correlation between the concentration 
and the spectral response. The results can, therefore, be undermined by perturbations 
such as fluctuations caused by detector noise, temperature variations, or molecular 
interactions. 
In a series of recent important papers by Griffiths and collaborators, the authors have 
demonstrated three important and novel aspects of data analysis for open path FTIR 
detection at a distance (Hart and Griffiths, 1998; Hart, et al., 200; Griffiths, et al. 2009; Shao, 
et al. 2010). Specific contributions can be summarized as follows: 
• Establishment that multivariate data analysis techniques are required to exploit all the 

benefits that having a wealth of spectral information immersed in a congested 
multicomponent spectrum as that contained in SOIR experiments, not only for gas 
phase measurements but also for solid phase OP/FTIR detection at a distance, as Castro 
and collaborators have recently demonstrated (Castro, et al., 2010). 

• Demonstration that a single background spectrum measured at a fixed source-target 
distance, temperature, pressure and ambient gases partial pressures can be used for all 
ranges and combinations of other relevant variables. 

• Demonstration that the representation of OP/FTIR spectra in absorbance or percent 
transmission is equivalent. The output of any FTIR spectrometer is a single-beam 
spectrum that must be ratioed or compared (subtracted) against a appropriate 
background spectrum resulting in the transmittance spectrum of the sample, T(ν). In 
quantitative measurements, the transmittance should be converted to absorbance, 
A(ν), i.e. −log10{(T(ν)} since the absorbance is a linear function of the concentration of 
the species absorbing, thus rendering it more amenable to use of chemometrics 
routines of analysis. For the current application: OP/FTIR detection of solid threat 
chemicals deposited on surfaces as traces, representation as the spectral difference 
between the sample spectrum and the background spectrum is even more critical due 
to the possibility of specular reflectance and scattering from the sample (Castro, et al., 
2010). 

Multivariate calibrations make use of not only a single spectral point but take into account 
spectral features over a wide range. Therefore, the analysis of overlapping spectral bands or 
broad peaks becomes feasible. The information contained in the spectra of the calibration 
samples will be compared to the information of the concentration values using a PLS 
regression. The method assumes that systematic variations observed in the spectra are a 
consequence of the concentration change of the components. However, the correlation 
between the components concentration and the change in the infrared signal does not have 
to be a linear one. 
Calibrations are typically constructed using chemometrics methods of data analysis such 
as the partial least squares (PLS) regression algorithm. The PLS algorithm is commonly 
incorporated in spectroscopic software such as OPUS™, Pirouette™ and Matlab 
Toolboxes™, among others. The advantages of using chemometrics for the quantification 
of organic compounds on glass, aluminum and stainless steel and other surfaces have 
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Fig. 3. FTIR interferometer configured as: (a) absorption spectrometer: detects source 
radiation only; (b) open-path spectrometer: detects source and sample radiation 
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been discussed in the literature (Mehta, et al.,  2003; Hamilton, et al., 2005; Perston, et al., 
2007; Primera-Pedrozo, et al.,  2004; Primera-Pedrozo, et al., 2005; Primera-Pedrozo, et.al. 
2007; Soto-Feliciano, et al.,  2006; Primera-Pedrozo, et al.,  2008; Primera-Pedrozo, O. M.; 
2009). 
PLS is a multivariate method that uses spectral features over a wide spectroscopic range. It 
is a spectral decomposition method that is intimately related to principal component 
analysis (PCA). In PCA, the spectral matrix is first decomposed into a set of eigenvectors 
and scores, and then a regression is performed against the concentrations as a separate step. 
However, PLS uses the concentration information during the decomposition process. In the 
case of OPUS™ (Bruker Optics), Quant2 software is used to find the best correlation 
function between the spectral information and the loading concentrations. Quant2 uses a 
partial least squares-1 (PLS-1) regression method. Calibrations are performed using PLS-1 in 
which only one component can be analyzed separately, instead of simultaneously analyzing 
multiple components, as in the PLS-2 routine of chemometrics. Then, cross validations are 
performed and the root mean square errors of the cross validations (RMSECV) and the root 
mean square errors of estimations (RMSEE) are used as criteria to evaluate the quality of the 
correlations obtained. In the standard ‘‘leave-out-one’’ cross validations, each spectrum is 
omitted from the training set and then tested against the model built with the remaining 
spectra. As illustrated in Tables 1 and 2, some explosives require spectroscopic 
preprocessing (except mean centering) and more PLS evaluations in order to obtain a good 
model. In the case of the first derivative, the Savitzky-Golay algorithm is actually used to 
obtain the derivative. The number of smoothing points used can be adjusted to suppress the 
effect of noise (Beebe, 1998). Other details of the advantages of using a chemometrics model 
such as PLS to correlate the loading concentration with IR spectra have been discussed in 
the literature (Hamilton, et al., 2005). 
Multivariate calibrations require a large number of calibration samples and yield a large 
amount of data. In order to conveniently handle the data, the spectral information and the 
concentration information are written in the form of matrices, where each row in the 
spectral data matrix represents a sample spectrum. The concentration data matrix contains 
the corresponding concentration values of the samples. The matrices are then broken down 
into their eigenvectors which are called factors or principal components. Only the relevant 
principal components are used instead of the original spectral data, thus leading to a 
considerable reduction of the amount of data. A PLS regression algorithm will be developed 
to find the best correlation function between spectral and concentration data matrix 
(OPUS™, Bruker Optik, 2006). The OPUS/QUANT software package (OPUS™, Bruker 
Optik, 2006) is designed for quantitative analysis of spectra consisting of bands showing 
considerable overlap. The software allows determining the concentration of more than one 
component in each sample simultaneously. For this purpose, QUANT uses a partial least 
squares (PLS) regression method. 
The residual (Res) is the difference between the true and the fitted value. Thus the sum of 
squared errors (SSE) is the quadratic summation of these values: 

  2  iSSE Res= ⎡ ⎤⎣ ⎦∑  (1) 

The coefficient of determination (R²) gives the percentage of variance present in the true 
component values, which is reproduced in the regression. R² approaches 100% as the fitted 
concentration values approach the true values: 
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In the case of a cross validation, the root mean square error of cross validation (RMSECV) 
can be taken as a criterion to judge the quality of the method: 
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where M is the number of standards in the data set. One method of cross-validation is leave-
one-out cross-validation (LOOCV). Leave-one-out cross-validation is performed by 
estimating n calibration models, where each of the n calibration samples is left out one at a 
time in turn. The resulting calibration models are then used to estimate the sample left out, 
which acts as an independent validation sample and provides an independent prediction of 
each yi value, y(i), where the notation i indicates that the ith sample was left out during 
model estimation. This process of leaving a sample out is repeated until all of the calibration 
samples have been left out. To obtain the root mean square error of prediction (RMSEP), the 
validation samples prepared and measured independently from the calibration samples are 
used. The number of validation samples, p, should be large, so that the estimated prediction 
error accurately reflects all sources of variability in the calibration method. The RMSEP is 
computed as: 

 ( )2
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1

1 p

i i
i
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where p  is the number of prediction samples. 
Partial least squares (PLS) regression algorithm from Quant2 software of OPUS™ version 
6.0 (Bruker Optics) was used to find the best correlation function between the spectral 
information and the surface concentration. PLS was used for generating a chemometrics 
model for all analyzed standoff distances. Cross validations were made and the root mean 
square errors of cross validations (RMSECV) and correlation coefficient (R2) were used as 
criteria to judge the quality of the correlations obtained at different standoff distances. 

4. OP/FTIR detection of gases and condensable vapors 
Griffiths et al. described two general ways in which OP/FTIR can be used for remote 
sensing measurements (Griffiths, et al., 2009). When the source and the detector are in line of 
sight with each other and they have separate power sources the operational mode is called 
bistatic. In this setup, the source is non-modulated by the interferometer and as a result stray 
light contributions cannot be minimized. On the other hand, when all the components reside 
within the spectrometer, including the MIR source, sharing a common power source, the 
operational mode is termed monostatic. This setup has clear advantages as pointed out by 
Pacheco-Londoño and collaborators in reducing stray light components, but is limited to 
source power and cooling restraints (Pacheco-Londoño, et al., 2009). In the active mode 
employed for remote detection, a bistatic setup in which the source is not modulated was 
used. 
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4. OP/FTIR detection of gases and condensable vapors 
Griffiths et al. described two general ways in which OP/FTIR can be used for remote 
sensing measurements (Griffiths, et al., 2009). When the source and the detector are in line of 
sight with each other and they have separate power sources the operational mode is called 
bistatic. In this setup, the source is non-modulated by the interferometer and as a result stray 
light contributions cannot be minimized. On the other hand, when all the components reside 
within the spectrometer, including the MIR source, sharing a common power source, the 
operational mode is termed monostatic. This setup has clear advantages as pointed out by 
Pacheco-Londoño and collaborators in reducing stray light components, but is limited to 
source power and cooling restraints (Pacheco-Londoño, et al., 2009). In the active mode 
employed for remote detection, a bistatic setup in which the source is not modulated was 
used. 
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The first task in evaluating the performance of the Bruker Optics EM27 open path 
interferometer was to use it in detection of gases and condensable vapors. The spectroscopic 
system was configured for bistatic operational mode in active configuration (Fig. 3b) with 
source and interferometer in line-of-sight of each other. Measurements were done for 
standoff distance of 1-10 m. The spectra of ambient air and ammonia (NH3) at 10 m range at 
room temperature are shown in Fig. 4a-d. In the case of NH3, spectra were collected at an 
instrumental resolution of 1 cm-1. The presence of ro-vibrational lines in the remote IR 
absorption spectrum of ammonia is clearly shown in Figs. 4b and 4c. The intense spectrum 
obtained for dichloromethane is illustrated in Fig. 4d. Gas phase standoff IR spectra of some 
high vapor pressure liquids are shown in Fig. 5a-d. Spectra are arranged in increasing order 
of their room temperature vapor pressure and absorbance of most prominent spectroscopic 
features (vibrational signals). The presence of spectral contributions from ambient water 
vapor and carbon dioxide ro-vibrational lines can be seen. These persistent lines were not 
removed by any of the widely used algorithms since spectral windows for sample 
identification were available in all cases. 
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Fig. 4. Active mode OP/FTIR spectra of: (a) air and NH3 complete spectrum; (b), (c) details 
of NH3 spectrum; (d) dichloromethane 
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Fig. 5. Active mode remote spectra of condensable vapors: (a) methyl ether; (b) acetone, (c) 
isopropanol; acetonitrile 
The spectral band shapes observed in stand-off detection mode, shown in Figures 4 and 5, 
are superimposed on a ramp-shaped background, and the bands themselves exhibit strong 
reflective (dispersive) band profiles. Since these measurements were done on a reflective 
metal substrate, the distortion of the band profiles is expected; similar effects have been 
reported in DRIFT (diffuse reflection infrared Fourier Transform) spectroscopy (Chalmers; 
Mackenzie, 1985). and in microscopically acquired infrared spectra of microspheres (Basan, 
el at. 2009a).  In both cases, the distortion of the absorptive line shapes is due to the fact that 
within an absorption peak, the reflective index undergoes anomalous dispersion, as shown 
in Figure 6. In spectroscopic experiments carried out in reflectance mode, a mixing of the 
absorptive and dispersive line shapes can occur, resulting in bands that have a negative dip 
at the high wavenumber side of the peak, cf. Figures 4 and 5. This will shift the peak 
maximum by up to 15 cm-1 toward lower values (Basan, el at. 2009b). 
For ‘real-life’ stand-off detection, strong reflectance band distortions, such as those shown in 
Figures 4 and 5 are not likely, since these are typical for reflectance spectra on metals, and 
should be much weaker if explosives are distributed on fabric. However, mixing of 
absorptive and reflective line shapes can also be mediated by scattering effects (Basan, et al. 
2009a) and could produce significant band distortions.  
Unsupervised correction of the spectral distortions will be necessary since the distortions 
cause apparent frequency shifts which will confound spectral search and identification 
algorithms. Although several methods have been developed to correct the dispersive line 
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The spectral band shapes observed in stand-off detection mode, shown in Figures 4 and 5, 
are superimposed on a ramp-shaped background, and the bands themselves exhibit strong 
reflective (dispersive) band profiles. Since these measurements were done on a reflective 
metal substrate, the distortion of the band profiles is expected; similar effects have been 
reported in DRIFT (diffuse reflection infrared Fourier Transform) spectroscopy (Chalmers; 
Mackenzie, 1985). and in microscopically acquired infrared spectra of microspheres (Basan, 
el at. 2009a).  In both cases, the distortion of the absorptive line shapes is due to the fact that 
within an absorption peak, the reflective index undergoes anomalous dispersion, as shown 
in Figure 6. In spectroscopic experiments carried out in reflectance mode, a mixing of the 
absorptive and dispersive line shapes can occur, resulting in bands that have a negative dip 
at the high wavenumber side of the peak, cf. Figures 4 and 5. This will shift the peak 
maximum by up to 15 cm-1 toward lower values (Basan, el at. 2009b). 
For ‘real-life’ stand-off detection, strong reflectance band distortions, such as those shown in 
Figures 4 and 5 are not likely, since these are typical for reflectance spectra on metals, and 
should be much weaker if explosives are distributed on fabric. However, mixing of 
absorptive and reflective line shapes can also be mediated by scattering effects (Basan, et al. 
2009a) and could produce significant band distortions.  
Unsupervised correction of the spectral distortions will be necessary since the distortions 
cause apparent frequency shifts which will confound spectral search and identification 
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shapes observed in biological systems (Basan, et al. 2009a; Bird, et al. 2010) they are not 
applicable here, since they are based on multivariate methods, and require large number of 
spectra, as well as undistorted reference spectra. For the spectra reported here, a method 
originally published in 2005 (Romeo and Diem, 2005), may be more suitable. This method is 
based on phase correction between real and imaginary spectral contributions which can be 
obtained by reverse Fourier transform of the contaminated spectra. The original 
implementation of this method contained a minor logical error, which since has been 
corrected (Bird, et al. 2010). 
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Samples were transferred to the metallic test substrates by dissolving in an appropriate solvent 
and then smearing them on the test plates. A Teflon stub was used to assist in sample 
smearing. Coated plates were allowed to dry in air at room temperature. 
Initial remote IR experiments were designed to optimize experimental considerations, 
including sample placement and measurement geometry. For the reflectance IR measurements 
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solid phase compounds deposited as traces on Al substrates are shown in Fig. 9. A fixed 
standoff distance of 8 m and loading concentration of 400 μg/cm2 was used for the SOIR 
measurements. The first spectrum of Fig. 9 is that of caffeine deposited on Al plate. Fig. 9b and 
9c show the spectra of p-benzoic acid and benzoic acid, respectively at 25°C. For the 
acquisition of the data shown in Fig. 9d the sample plate was heated to 28°C to demonstrate 
how the emission of vibrational quanta is significantly enhanced by small temperature 
differences. The remote IR spectrum of aliphatic nitrate ester PETN is shown in Fig. 9e and the 
corresponding spectra aliphatic nitramine RDX are shown as %T and absorbance in Fig. 9f. 
Pacheco and co-workers used a modulated home built setup for remote IR measurements of 
nitroexplosives from ~ 1 m to ~ 4 m range. At short distances (0.9 m and 1.8 m) the 
maximum and minimum signal to noise (SNR) values showed high dispersion. They found 
out that with their uncollimated MIR beam, the problem both was sample and transfer 
solvent dependent in the low to very low loading concentrations studied. They argued that 
part of the problem was the lack of uniformity in surface coverage due to nucleation and 
crystallization phenomena. When the IR beam used was 1-2 cm in diameter or less, sample 
discontinuities could be detected and this was reflected by the relatively high dispersion in 
the values of SNR. At longer target-collector distances (1.8, 2.7 and 3.7 m) the maximum and 
minimum SNR values were very close due to higher sample coverage by a beam spot of ~ 5 
- 11 cm in diameter. At a source-target distance of 0.9 m, limit of detection (LOD) value 
determined was 2 μg/cm2 for TNT. According to the authors, LOD values determined could 
have been influenced by several factors, such as: humidity, alignment of detector, source 
pointing accuracy, detector efficiency and reflectivity of samples and substrates.  
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Fig. 7. Experimental setup used for SOIR detection. In active mode operation, both MIR 
source and FT interferometer were coupled to gold coated mirrors MIR reflective telescopes. 
In passive mode only the IR spectrometer was used 
The reflectivity of sample: substrate and analyte, is mainly determined by how the analyte is 
deposited and by the solvent used for deposition. If the explosive exists on the surface as a 
thin layer, the backscattering signal is low but the reflection-absorption infrared (RAIRS) 
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spectra measured is of high signal-to-noise (SNR) value. When the explosive was present on 
the surface as discrete particles (crystals), the backscattered SIRS signal improved; 
correspondingly, the RAIRS signal measured for surface loading validation got worse. 
Sample smearing was done twice using the Teflon applicator: from left to right and then 
right to left. When the first pass was done the solvent was allowed to evaporate. Then, the 
second pass was carried out to induce more sample roughness and particle formation 
(crystallization) on the surface. TNT deposits on the substrate did not result in a thin layer 
covering the metallic surface. Instead droplets of a metastable phase were formed on the 
surface (Manrique-Bastidas, et al., 2004; Vrcelj, et al., 2001; Manrique-Bastidas, et al. (2) 
2004). This metastable phase could be easily turned to its crystalline phase by friction, 
abrasion or even by pressing hard with the Teflon applicator for the sample smearing stage. 
This effect enhanced the SOIR experiments of TNT because the metastable phase was 
formed in the first smearing step. When the methanol evaporated and the second smearing 
stage was performed, crystalline roughness was induced resulting in a lower LOD value for 
TNT than for RDX. Standoff IR spectra of 400 μg/cm2 TNT at 1 m and 14.5 m are shown in 
Fig. 10. A reference spectrum of neat, microcrystalline sample of TNT (1 mg/100 mg KBr) 
obtained in the macro sample chamber of a benchtop interferometer (Bruker Optics IFS-
66/v) is included for comparison purposes. 
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Fig. 8. Active mode OP/FTIR spectra of 400 μg/cm2 TNT deposited on Al plate at: (a) 0°; (b) 
12°; (c) 17°; (d) 27°. Data shown demonstrates the specular reflectance nature of the IR 
reflection-absorption (transflection) experiment 
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Fig. 9. Remote IR spectra of: (a) caffeine; (b) p-nitrobenzoic acid, (c) benzoic acid at room 
temperature (25 °C); (d) benzoic acid heated to 28 °C; (e) aliphatic nitrate ester PETN; (f) 
nitramine RDX in absorption and in %T 
Other remote IR detection experiments were done using only TNT as target. Loading 
concentrations ranging from 50 to 400 µg/cm2 of TNT were deposited on Al plates. The 
targets were carefully aligned to the source and collector and then the SOIR spectra were 
recorded. The analyzed target-collector distances were 4, 8, 12, 16, 20, 25, and 30 m. A total 
of 10 spectra were taken for each sample, at 20 scans and 4 cm-1 resolution. Experiments 
were carried out at room temperature (25°C). Spectra were collected in remote, bistatic 
active mode detection IR at various surface concentrations at a fixed standoff distance of 8 
m. Typical results are shown in Fig.11. These traces were not submitted to any pre-
processing routine: offset correction, baseline correction, smoothing, water vapor rotational 
lines removal, etc. Thus, there is no common baseline for these spectra and some traces 
exhibit positive intensity ramps to higher wavenumber. However, increase of signal 
intensity as function of loading surface concentrations is clearly shown without the use of 
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spectra measured is of high signal-to-noise (SNR) value. When the explosive was present on 
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second pass was carried out to induce more sample roughness and particle formation 
(crystallization) on the surface. TNT deposits on the substrate did not result in a thin layer 
covering the metallic surface. Instead droplets of a metastable phase were formed on the 
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2004). This metastable phase could be easily turned to its crystalline phase by friction, 
abrasion or even by pressing hard with the Teflon applicator for the sample smearing stage. 
This effect enhanced the SOIR experiments of TNT because the metastable phase was 
formed in the first smearing step. When the methanol evaporated and the second smearing 
stage was performed, crystalline roughness was induced resulting in a lower LOD value for 
TNT than for RDX. Standoff IR spectra of 400 μg/cm2 TNT at 1 m and 14.5 m are shown in 
Fig. 10. A reference spectrum of neat, microcrystalline sample of TNT (1 mg/100 mg KBr) 
obtained in the macro sample chamber of a benchtop interferometer (Bruker Optics IFS-
66/v) is included for comparison purposes. 
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Fig. 8. Active mode OP/FTIR spectra of 400 μg/cm2 TNT deposited on Al plate at: (a) 0°; (b) 
12°; (c) 17°; (d) 27°. Data shown demonstrates the specular reflectance nature of the IR 
reflection-absorption (transflection) experiment 

Open-Path FTIR Detection of Explosives on Metallic Surfaces 

 

445 

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

700 800 900 1000 1100 1200 1300

In
te

ns
ity

Wavenumber / cm-1

CAFFEINE

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

700 800 900 1000 1100 1200 1300 1400

In
te

ns
ity

Wavenumber / cm-1

p-NITROBENZOIC ACID

 

0.2
0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65

700 800 900 1000 1100 1200 1300 1400

In
te

n
si

ty

Wavenumber / cm-1

BENZOIC ACID

 

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

700 800 900 1000 1100 1200 1300 1400

In
en

si
ty

Wavenumber / cm-1

HEATED BENZOIC ACID

 

0

0.05

0.1

0.15

0.2

0.25

700 800 900 1000 1100 1200 1300 1400

In
te

ns
it

y

Wavenumber / cm-1

PETN

 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.37

0.47

0.57

0.67

0.77

0.87

0.97

1.07

700 800 900 1000 1100 1200 1300 1400
%

T

A
bs

or
ba

nc
e

Wavenumber / cm-1

RDX ABS

RDX %T

 
Fig. 9. Remote IR spectra of: (a) caffeine; (b) p-nitrobenzoic acid, (c) benzoic acid at room 
temperature (25 °C); (d) benzoic acid heated to 28 °C; (e) aliphatic nitrate ester PETN; (f) 
nitramine RDX in absorption and in %T 
Other remote IR detection experiments were done using only TNT as target. Loading 
concentrations ranging from 50 to 400 µg/cm2 of TNT were deposited on Al plates. The 
targets were carefully aligned to the source and collector and then the SOIR spectra were 
recorded. The analyzed target-collector distances were 4, 8, 12, 16, 20, 25, and 30 m. A total 
of 10 spectra were taken for each sample, at 20 scans and 4 cm-1 resolution. Experiments 
were carried out at room temperature (25°C). Spectra were collected in remote, bistatic 
active mode detection IR at various surface concentrations at a fixed standoff distance of 8 
m. Typical results are shown in Fig.11. These traces were not submitted to any pre-
processing routine: offset correction, baseline correction, smoothing, water vapor rotational 
lines removal, etc. Thus, there is no common baseline for these spectra and some traces 
exhibit positive intensity ramps to higher wavenumber. However, increase of signal 
intensity as function of loading surface concentrations is clearly shown without the use of 
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chemometrics routines. Intense vibrational band about 908 cm-1 was tentatively assigned to 
C-N stretching, vibrational band at 938 cm-1 was assigned to C–H out-of plane bend (ring) 
and symmetric stretch band of the nitro groups  appears at 1350 cm-1. Results agree with 
reported values (Pacheco-Londoño, et al., 2009; Clarkson, et al., 2003). 
 

 
Fig. 10. Comparison of IR spectra of TNT: (a) KBr pellet with 1 mg TNT obtained in a macro 
sample compartment of a FTIR; (b) active mode SOIR spectrum of 400 µg/cm2 deposited on 
Al plate measured at 1 m range distance; (c) same sample before measured at a source-target 
distance of 14.5 m. Prominent spectral features are present 
When a MIR source was used for carrying out active mode experiments, the intensity of the 
peaks decreased when the distances increase. This is illustrated in Fig. 11a for spectra of Al 
plate coated with surface loading of 400 µg/cm2 TNT and measured at standoff distances of 
4, 8, 12, 16, 20, 25 and 30 m. At standoff distances higher than 25 m it was not possible to 
visualize clearly some of TNT vibrational signatures.  At these distance the density of 
infrared radiation that gets to the Al plates from the MIR source is low, leading to a smaller 
number of excited molecules, so that the detector cannot register the low intensity signals 
emitted. Fig. 11b shows SOIR spectra of TNT as function of loading concentration. Spectra 
were collected in active mode detection standoff IR at a fixed standoff distance of 8 m. 
The statistical treatments with chemometrics using PLS were carried out using the spectral 
region 700 to 1400 cm-1, where the nitro symmetric stretch and aromatic C-H vibrations are 
present. Data pre-processing is an important stage in performing a calibration. Thus, the 
PLS models were built using mean centering as only pre-processing of variables. To ensure 
the reproducibility of the calibration samples, several spectra of each sample (fixed loading 
concentration and standoff distance) had to be acquired. If spectra of the same sample are 
not identical, a data pre-processing procedure must be chosen to bring them in line with 
each other. Data pre-processing can eliminate variations in offset or different linear 
baselines. Different treatments data were used, including: vector normalization, first 
derivative and second derivative, mean-centering, but no other pre-processing routine 
was applied, achieving best results for RMSECV and R2. Results indicate that the 
experimental setup has good management of external variables, such as humidity, 
temperature changes, homogeneity of samples on Al plates, and others at ranges as far as 30 
m and surface loadings of 50 μg/cm2. 
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Fig. 11. Active mode FTIR spectra of TNT: (a) at different standoff distances of Al plate 
coated with surface concentration of 400 µg/cm2; (b) at several loading concentrations at 
fixed range of 8 m 
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Fig. 12. Predicted loadings vs. true loadings for TNT on Al plates at various ranges using 
Opus 6.0™ Quant2: (a) 20 m; (b) 25 m; (c) 30 m 
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Fig. 12 illustrates the results obtained of the cross validation at the analyzed standoff 
distances: 20, 25 and 30 m and Table 2 summarizes the results of RMSECV and R2 obtained 
in the PLS models. In these correlation charts, each point represents ten spectra with a fixed 
surface concentration (0, 50, 100, 200, 300, or 400 µg/cm2). All PLS correlation charts of 
predicted surface loading value vs. true surface concentration value for 4, 8, 12 and 16 m 
were similar to the correlation chart presented for 20 m standoff distance (Fig. 11a). As the 
standoff distance increases (> 20 m) some of the spectral information is lost, causing the 
spectra for each sample to be slightly different from the others (within experimental error) 
thus making it difficult to predict its concentration (see Figs. 11b and 11c). Taking into 
account the low values of RMSECV and high values of R2 obtained at maximum distance of 
20 m, the correlation (PLS) models are useful tools to determine precisely the surface 
concentration of TNT unknown samples using OP/FTIR spectroscopy. More precise 
alignment of both transmitter and receiver MIR telescopes would be required to perform 
similar correlations for ranges > 20 m. 

6. Passive mode standoff IR detection 
The setup used for passive mode detection using thermal excitation of the sample is shown 
in Fig. 13. The MIR source and transmitter telescope were not used in these experiments. 
Temperature differences tested were 1 to 7°C in one degree interval. Aluminum plates (Fig. 
13a) were heated by a 500 W tungsten lamp that was placed on back of the Al plates (Fig. 
13b). The standoff distances studied were 8, 16 and 30 m. In passive mode experiments it is 
not so critical to carefully align the target and detector while recording the spectra. Ten 
spectra were taken for each sample, at 10 scans and 4 cm-1 resolution for passive mode 
experiment. 
The emission from a heated, uncoated with TNT Al plate, used as blank to measure 
background contributions is shown in Fig.14. The corresponding blackbody spectrum of 400 
μg/cm2 TNT is also shown overlapping the blank Al plate spectrum. Both traces were 
measured at a range of 8 m and the plates were maintained at an equilibrium temperature of 
32°C by heating with a 500 W tungsten lamp.  
Fig. 15 shows the TNT IR vibrational signatures recorded with an EM27 spectrometer using 
passive mode standoff IR detection of Al plates heated with tungsten lamp to different 
surface temperatures from 25 to 32°C. These spectra were measured at a standoff distance of 
16 m and a TNT surface concentration of 400 µg/cm2. Most of the characteristic vibrational 
signatures of TNT are well defined. The bands that allow identifying TNT were taken in the 
spectral region 700-1400 cm-1. Most of the persistent bands are observed and the standoff 
spectrum agrees very well with traditional infrared techniques: sample compartment, KBr 
pellet, micro-IR, attenuated total reflectance (ATR, both micro and macro) and grazing angle 
reflectance (GA, both micro and macro). Bands tentative assignments are: 910 cm-1 (2,6-NO2 
scissors and C–N stretch); 1087 cm-1 (C–H (ring) in-plane bend); 1171 cm-1 (C–C in-plane 
ring trigonal bend, 2,4,6-C–N and C–CH3 stretch) and 1350 cm-1 due to the symmetric 
stretching vibration of the NO2 (nitro) group bond. TNT vibrational markers change 
significantly with surface temperatures. At 25°C (black spectrum, room temperature) TNT 
vibrational signatures are present, but they can barely be noticed at 16 m standoff distance. 
For the spectrum at 26°C (green spectrum) there is a significant increment in intensity of 
TNT vibrational signals. 
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Fig. 12. Predicted loadings vs. true loadings for TNT on Al plates at various ranges using 
Opus 6.0™ Quant2: (a) 20 m; (b) 25 m; (c) 30 m 
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Fig. 13. Passive mode remote IR setup: (a) Al plate with TNT sample smeared-on; (b) 500 W 
tungsten lamp assembly 
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Fig. 14. Overlap of emissivity spectra of background air and air with TNT emissions from 
heated Al plate with 400 μg/cm2 TNT at 8 m range and plate heated to 32°C 
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Fig. 15. Passive mode remote IR spectra of 400µg/cm2 TNT at several temperatures 

The variation in peak areas with temperature for TNT for a surface loading of 200 µg/cm2 at 
two different standoff distances is shown in Fig. 15. The vibrational spectra were measured 
out to a room temperature (25ºC). For a standoff distance of 8 m (Fig. 11a) peak areas of the 
vibrational bands at 793 and 1087 cm-1 were measured. For a standoff distance of 16 m the 
bands used for peak areas calculations were 793, 1087 and 1171 cm-1 (Fig. 11b). In both cases 
when TNT was heated to higher temperatures more intense bands were observed. This 
study shows than the increase of the vibrational signatures has a second order polynomial 
behavior in all cases, with excellent correlation coefficients squared. These results are very 
useful for real field standoff detection, because when the target is warmer than room 
temperature, the vibrational signatures of the explosive are increased significantly. 
The results of the effect of standoff distance on the intensity of heated samples are shown in 
Fig. 16. The spectra were taken at different distances and a specific surface temperature for 
each one. The tested temperature was always higher that the ambient temperature. Spectra 
taken at room temperature did not show some of the characteristic TNT vibrational signals 
(spectra not shown). Fig. 16 shows that the standoff detection in passive mode using thermal 
excitation is a useful tool for recording IR spectra to maximum range distance of 30 m, 
under the current experimental conditions. 
PLS regression algorithm from Quant2 software for OPUS™, version 6.0 (Bruker Optics, 
Billerica, MA) was used to find the best correlation function between the IR spectral 
information and the TNT surface concentration. PLS was used for generating a 
chemometrics model of analyzed standoff distances at specific temperatures (25 to 32°C). 
Cross validations were made and RMSECV and R2 were used as criteria to evaluate the 
quality of the correlations obtained.  The statistical data treatments prepared using 
chemometrics routines (PLS) were carried out using spectral region 700 to 1400 cm-1, where  
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Fig. 15. Passive mode remote IR spectra of 400µg/cm2 TNT at several temperatures 
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Fig. 16. Effect of temperature on intensity of TNT vibrational signals for 200 µg/cm2 at range 
of: (a) 8 m; (b) 16 m 

the nitro symmetric stretch and aromatic C-H and C-C vibrations are present. As before, PLS 
models were made using mean centering as pre-processing of variables. Data pre-processing 
included: “vector normalization, first derivative and second derivative but NO pre-
processing” achieving best results for RMSECV and R2. Fig. 14 shows the results obtained 
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for the cross validations at analyzed standoff distances using different surface temperatures. 
Table 3 contains the summary of results for RMSECV and R2 obtained in the PLS models.  
 
 

 
Fig. 17. Effect of the standoff distance on intensity of TNT IR signals. Surface concentration 
of 400 µg/cm2 and 8-16 m range at sample temperatures: 28-32°C 
 

 
Fig. 18. Predicted vs. true surface concentration for TNT explosives at different standoff 
distances and temperature in passive mode: (a) 8 m range, 32 °C surface temperature; (b) 16 
m range, 32 °C surface temperature 
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Standoff Distance (m) Temperature  (°C) R2 RMSECV RMSEP Rank 

8 25 0.9461 32.6 28.1 6 

8 26 0.9737 22.8 29.2 9 

8 27 0.9864 16.4 22.8 3 

8 28 0.9692 24.7 24.3 2 

8 30 0.9658 26.0 28.1 4 

8 32 0.9760 21.8 17.7 6 

16 25 0.9555 29.7 24.0 3 

16 26 0.9624 27.3 29.0 3 

16 27 0.9202 39.7 41.4 3 

16 28 0.9567 29.3 27.6 4 

16 30 0.9506 31.3 30.5 3 

16 32 0.9684 25.0 26.6 3 

Table 3.  PLS calibration parameters for the different tested standoff distances and 
temperatures. Spectral range: 700 – 1400 cm-1; no preprocessing 

All graphs of predicted vs. true surface concentration for specific distance and temperature 
(Table 3) have similar behavior to that of Fig. 18a for standoff distance of 8 m and Fig. 18b at 
a range of 16 m. Each point represents ten spectra with a specific surface concentration (0-
400 µg/cm2). Taking into account the high values of R2  (~ 0.96) and relatively low values of 
RMSECV (around 26.0) obtained for all the tested distances and temperatures these models 
could be used as a tools to determine the surface concentration of unknown samples of  TNT 
at remote distances using SOIR. 

7. Conclusion 
A standoff technique using an Open-Path Fourier transform infrared (OP/FTIR) 
spectrometer has been demonstrated to obtain spectral information of TNT samples 
deposited on Al plates. The system consisted in an infrared telescope coupled MIR source 
and an IR coupled EM27 spectrometer manufactured by Bruker Optics. The remote 
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detection IR system was first tested for the standoff detection of gases and condensable 
vapors, which is the application that was developed for. High quality measurements were 
achieved by using a sensitive photoconductive cryo-cooled MCT detector. Standoff 
detection both in active and passive modes proved to be useful for recording TNT 
vibrational signatures in the range from 700 to 1400 cm-1 of the MIR. Very good results of 
RMSECV and R2 were obtained in cross validations for active and passive mode 
experiments. The active mode standoff detection in worked very well for distances lower 
than 30 m. Is necessary carefully aligning the target with the detector to be able to measure 
with high accuracy at ranges higher than 30 m. 
For passive mode experiments thermal excitation proved to be a useful tool for enhancing 
TNT vibrational signatures for standoff detection. Achieving temperature difference of just 
1°C between the sample and the spectrometer was enough to bring out spectral information 
to standoff distances of 8, 16 and 30 m. The increase in intensity of TNT signatures as a 
function of temperature can be modeled very well with second order polynomials in the 
temperature range tested above room temperature. In this experiment alignment of sample 
and detector was not critical as in the standoff active modality configuration. Partial least 
squares routines of commercial chemometrics statistical routines of spectroscopic analysis 
were used to enhance the data in multivariate mode. 
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1. Introduction 
The changing composition of the earth’s atmosphere is a matter of intense scientific research 
as we strive to understand details of the physical and chemical mechanisms that control our 
climate. Fourier transform spectroscopy has been applied very successfully to the study of 
trace gases in the atmosphere by examining terrestrial atmospheric absorption lines in the 
infrared spectrum from the Sun. In fact many gases were first discovered in the atmosphere 
during the 1940’s from their absorption features in the infrared solar spectrum. These early 
optical absorption measurements of the atmosphere using the Sun as a source were made 
with grating spectrometers and examples of atmospheric gases first detected this way 
include methane and carbon monoxide (Migeotte, 1948; 1949).  
Continuous or semi-continuous records of infrared solar atmospheric absorption spectra 
have been made from ground-based Fourier transform spectrometers (FTS) since the late 
1970s and early 1980s, when the first ground-based solar-tracking FTS systems were 
installed at Kitt Peak National observatory in the USA and at the Jungfraujoch Observatory 
in Switzerland (Goldman et al., 1979; Murcray et al., 1978; Zander et al., 1977). Initially interest 
was focused on the detection and quantification of stratospheric trace gases (Rinsland et al., 
1986; Zander et al., 1986). The discovery of the Antarctic ozone hole (Farman et al., 1985) 
intensified interest in stratospheric chemistry and helped support the establishment of the 
Network for Detection of Stratospheric Change (NDSC). This global network of instrument 
sites became operational in 1991 with ground-based FTS amongst the suite of primary 
techniques being used. Photographs of the instrument at the NDSC site at Wollongong, 
Australia are shown for illustrative purposes in figure 1 below. Other NDSC instruments are 
lidars for ozone, temperature, water and aerosols; microwave instruments for ozone, water 
and chlorine monoxide; UV/Visible spectrographs for ozone and nitrogen dioxide; 
Dobson/Brewer spectrophotometers for total column ozone and regular ozone sondes. The 
establishment of the NDSC resulted in a huge increase in the number of infrared solar 
absorption measurements being made around the globe during the next few years. 
More recently interest in atmospheric chemistry has been focused on tropospheric pollution 
and anthropogenic emissions of greenhouse gases (Barret et al., 2003; Jones et al., 2009; Mahieu 
et al., 1995; Nagahama and Suzuki, 2007; Paton-Walsh et al., 2008; Rinsland et al., 2000; Rinsland 
et al., 2001; Rinsland et al., 2002; Rinsland et al., 2008; Warneke et al., 2006; Zhao et al., 2000; Zhao  
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Fig. 1. The ground-based solar Fourier Transform infrared spectrometer at Wollongong, 
Australia. The sun’s radiation is captured by the solar tracker (shown above) and sent to the 
entrance optics of the high resolution Fourier transform spectrometer   in the laboratory 
below (shown right). (Photography by R Macatangay) 

et al., 2002). As a result, the NDSC has changed its emphasis and name to the Network for 
Detection of Atmospheric Composition and Change (NDACC) – see 
http://www.ndacc.org/. As well as an ever increasing number of sites in the global 
network the new millennium has seen an expansion into the near infrared spectra region in 

Remote Sensing of Atmospheric Trace Gases by  
Ground-Based Solar Fourier Transform Infrared Spectroscopy 

 

461 

an effort to provide extremely accurate and precise measurements of carbon dioxide and 
other greenhouse gases. The Total Column Carbon Observing Network (TCCON) was 
established to help characterise biogenic and oceanic sources and sinks of greenhouse gases 
to and from the atmosphere and to validate current and future satellite based measurements 
(http://www.tccon.caltech.edu/ ). 

2. Atmospheric solar infrared Fourier transform transmission spectra  
Fourier transform infrared spectroscopy is a powerful tool for monitoring the changing 
composition of the atmosphere because it can measure so many different gases 
simultaneously. The ability to measure atmospheric trace gases in the infrared is enhanced 
by the fact that the major components of the atmosphere (nitrogen, oxygen and argon) have 
no dipole moment and thus are infrared inactive. 
 

 
Fig. 2. An example spectrum recorded by a ground-based solar Fourier transform 
spectrometer 

In ground-based solar Fourier transform spectroscopy, the Sun acts as the radiation source 
and the sample is the atmosphere. The shape of the resulting spectrum depends upon the 
solar radiation reaching the top of the Earth’s atmosphere, absorption by the atmosphere 
and the optical properties of instrument recording the radiation. The solar radiation 
reaching the top of the Earth’s atmosphere is in essence a blackbody curve at 5800K with 
emission and absorption lines of gases in the solar atmosphere imposed. Terrestrial 
atmospheric absorption lines contain information about the species of trace gases present in 
the atmosphere (line positions), the amounts of each gas present (line depths/areas) and 
some information about the altitude distribution of each gas (line shapes).  In reality there is 
also a component of radiation as a result of atmospheric emission, but this is so small in 
comparison to the radiation from the sun that its effects are negligible.  
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3. Calculating synthetic solar atmospheric transmission spectra 
Clearly it is not possible to measure a background spectrum or a set of calibration spectra 
when the atmosphere is the sample. For this reason the analysis of these spectra requires the 
calculation of a synthetic spectrum using a database of absorption line parameters such as 
the HITRAN database (Rothman et al., 1998; Rothman et al., 2003; Rothman et al., 2005) and a 
model of the atmospheric conditions such as pressure, temperature and gas concentrations 
that all vary with altitude. The calculation must also take into account instrumental effects 
such as line shape and resolution. 
The HITRAN (HIgh resolution TRANsmission) database contains calculated quantum 
mechanical parameters that describe the vibrational-rotational transitions of the most 
common atmospheric molecules. Parameters include the line positions (frequencies of 
absorption lines), line strengths at a reference temperature and pressure, lower state energy 
and pressure broadening and shift parameters. 

3.1 Atmospheric absorption line positions 
The characteristic absorption features seen in Figure 2 are caused by molecules absorbing 
radiation at frequencies that correspond to the allowed transitions between different 
vibrational and rotational states.  The frequencies at which molecules absorb are determined 
by the allowed transitions between energy levels of the molecule and provide a unique 
identifier of trace gases in the atmosphere. Vibrational energy states are much more widely 
spaced than rotational energy states and so the line position is determined mainly by the 
change in vibrational state with small frequency differences depending on the 
accompanying change in rotational energy. 
The energy of allowed states of a simple diatomic molecule can be approximated by 
Equation 1: 

 1( ) ( 1)2
kE v BJ J= + + +
μ

  (1) 

(if it is assumed that molecule behaves like a simple harmonic oscillator and a rigid rotor) 
and where: 
•   is Planck’s constant divided by 2π,  
• k  and μ  are the force constant and the reduced mass of the molecule respectively,  
• B is the rotational constant (B= /2I, where I is the moment of inertia, the product of 

the reduced mass and the square of the radius of rotation) 
• and v and J are the vibrational quantum number and rotational quantum number of the 

state respectively. 
For diatomics the allowed transitions between states are Δv = ±1,±2,±3, . . and  ΔJ = ±1. 
A vibration-rotation transition with Δv= -1 results in an emission spectrum and a transition 
with Δv= +1 an absorption spectrum, and both types of spectra may be accompanied by 
either a gain in rotational energy ΔJ=+1 or a loss in rotational energy ΔJ= -1. This produces a 
spectrum with two branches, one either side of the pure vibrational frequency, v0.  The R 
branch corresponds to a vibrational transition accompanied by a gain in rotational energy 
ΔJ= +1 and consists of a set of lines spaced approximately 2B apart to the high frequency 
side of the pure vibrational frequency, v0, becoming more closely packed as the rotational 
energy increases further from the band centre, (assuming B1 < B0). The P branch corresponds 

Remote Sensing of Atmospheric Trace Gases by  
Ground-Based Solar Fourier Transform Infrared Spectroscopy 

 

463 

to a vibrational transition accompanied by a loss in rotational energy ΔJ= -1 and consists of a 
set of lines spaced approximately 2B apart to the low frequency side of the pure vibrational 
frequency, v0, becoming more widely spaced as the rotational energy increases away from 
the band centre. Linear polyatomic molecules can also vibrate in a manner such that the 
dipole moment is changed perpendicular to the principal axis of rotational symmetry and in 
this case the selection rules also allow ΔJ = 0, i.e. the vibrational energy change can occur 
without an accompanying change in rotational energy. In such spectra the Q-branch appears 
at the band centre between the P and R branches (at the pure vibrational frequency, v0). The 
Q-branch is a relatively intense feature because the vibrational transitions occur from all 
existing rotational states with approximately the same energy change and hence the same 
frequency. 

3.2 Line broadening and line shapes 
As a consequence of Heisenberg’s uncertainty principle, absorption lines are never infinitely 
narrow. The uncertainty in the energy of a state multiplied by the uncertainty in time (the 
lifetime of a state) must be greater or equal to ħ, (ΔEΔt > ħ). So the shorter the lifetime, the 
larger the uncertainty in a state’s energy and the broader the absorption or emission line (as 
the energy uncertainty manifests itself as an uncertainty in the frequency of the line). 
Uncertainty broadening due to the radiative or intra-molecular lifetime of the state in 
isolation is always present but for vibrational-rotational states is usually very small (< 10-6 
cm-1). Another form of uncertainty broadening, which dominates at atmospheric pressures, 
is collisional broadening (also called pressure broadening) and occurs when the collisions of 
atoms, ions or gas molecules shorten the lifetime of states. In gases it is proportional to 
pressure and this means that absorption lines from spectra taken through the whole 
atmosphere will have different shapes depending upon the distribution of the absorbing gas 
in the atmosphere. A gas that is mainly located in the troposphere (such as methanol) will 
display broad absorption lines because of the high pressure whilst predominantly 
stratospheric gases (like ozone) will produce much narrower lines since the pressure is low.  
Uncertainty broadening leads to a Lorentzian line shape contribution at a given 
wavenumber υ: 
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where: 
• v0 is the absorption line frequency in wavenumbers, and  
• αL is the Lorentzian half-width at half height, which is proportional to the total 

pressure. 
Absorption lines due to atmospheric gases are also subject to Doppler broadening. Doppler 
broadening occurs because molecules that travel with different velocities with respect to the 
light source, absorb at different wavelengths, just as light from stars accelerating away from 
the Earth is red-shifted. Doppler broadening produces a Gaussian line shape due to the 
Gaussian distribution of molecular velocities: 
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3. Calculating synthetic solar atmospheric transmission spectra 
Clearly it is not possible to measure a background spectrum or a set of calibration spectra 
when the atmosphere is the sample. For this reason the analysis of these spectra requires the 
calculation of a synthetic spectrum using a database of absorption line parameters such as 
the HITRAN database (Rothman et al., 1998; Rothman et al., 2003; Rothman et al., 2005) and a 
model of the atmospheric conditions such as pressure, temperature and gas concentrations 
that all vary with altitude. The calculation must also take into account instrumental effects 
such as line shape and resolution. 
The HITRAN (HIgh resolution TRANsmission) database contains calculated quantum 
mechanical parameters that describe the vibrational-rotational transitions of the most 
common atmospheric molecules. Parameters include the line positions (frequencies of 
absorption lines), line strengths at a reference temperature and pressure, lower state energy 
and pressure broadening and shift parameters. 

3.1 Atmospheric absorption line positions 
The characteristic absorption features seen in Figure 2 are caused by molecules absorbing 
radiation at frequencies that correspond to the allowed transitions between different 
vibrational and rotational states.  The frequencies at which molecules absorb are determined 
by the allowed transitions between energy levels of the molecule and provide a unique 
identifier of trace gases in the atmosphere. Vibrational energy states are much more widely 
spaced than rotational energy states and so the line position is determined mainly by the 
change in vibrational state with small frequency differences depending on the 
accompanying change in rotational energy. 
The energy of allowed states of a simple diatomic molecule can be approximated by 
Equation 1: 

 1( ) ( 1)2
kE v BJ J= + + +
μ

  (1) 

(if it is assumed that molecule behaves like a simple harmonic oscillator and a rigid rotor) 
and where: 
•   is Planck’s constant divided by 2π,  
• k  and μ  are the force constant and the reduced mass of the molecule respectively,  
• B is the rotational constant (B= /2I, where I is the moment of inertia, the product of 

the reduced mass and the square of the radius of rotation) 
• and v and J are the vibrational quantum number and rotational quantum number of the 

state respectively. 
For diatomics the allowed transitions between states are Δv = ±1,±2,±3, . . and  ΔJ = ±1. 
A vibration-rotation transition with Δv= -1 results in an emission spectrum and a transition 
with Δv= +1 an absorption spectrum, and both types of spectra may be accompanied by 
either a gain in rotational energy ΔJ=+1 or a loss in rotational energy ΔJ= -1. This produces a 
spectrum with two branches, one either side of the pure vibrational frequency, v0.  The R 
branch corresponds to a vibrational transition accompanied by a gain in rotational energy 
ΔJ= +1 and consists of a set of lines spaced approximately 2B apart to the high frequency 
side of the pure vibrational frequency, v0, becoming more closely packed as the rotational 
energy increases further from the band centre, (assuming B1 < B0). The P branch corresponds 
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to a vibrational transition accompanied by a loss in rotational energy ΔJ= -1 and consists of a 
set of lines spaced approximately 2B apart to the low frequency side of the pure vibrational 
frequency, v0, becoming more widely spaced as the rotational energy increases away from 
the band centre. Linear polyatomic molecules can also vibrate in a manner such that the 
dipole moment is changed perpendicular to the principal axis of rotational symmetry and in 
this case the selection rules also allow ΔJ = 0, i.e. the vibrational energy change can occur 
without an accompanying change in rotational energy. In such spectra the Q-branch appears 
at the band centre between the P and R branches (at the pure vibrational frequency, v0). The 
Q-branch is a relatively intense feature because the vibrational transitions occur from all 
existing rotational states with approximately the same energy change and hence the same 
frequency. 

3.2 Line broadening and line shapes 
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lifetime of a state) must be greater or equal to ħ, (ΔEΔt > ħ). So the shorter the lifetime, the 
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the energy uncertainty manifests itself as an uncertainty in the frequency of the line). 
Uncertainty broadening due to the radiative or intra-molecular lifetime of the state in 
isolation is always present but for vibrational-rotational states is usually very small (< 10-6 
cm-1). Another form of uncertainty broadening, which dominates at atmospheric pressures, 
is collisional broadening (also called pressure broadening) and occurs when the collisions of 
atoms, ions or gas molecules shorten the lifetime of states. In gases it is proportional to 
pressure and this means that absorption lines from spectra taken through the whole 
atmosphere will have different shapes depending upon the distribution of the absorbing gas 
in the atmosphere. A gas that is mainly located in the troposphere (such as methanol) will 
display broad absorption lines because of the high pressure whilst predominantly 
stratospheric gases (like ozone) will produce much narrower lines since the pressure is low.  
Uncertainty broadening leads to a Lorentzian line shape contribution at a given 
wavenumber υ: 
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where  
• αG is the Gaussian half-width at half height and is given by: 

 2l
G

v kT
c m

=α  (4) 

where  
• k is the Boltzman constant,  
• T is the Kelvin temperature and  
• m is the molecular mass. 
Pressure broadening (with Lorentzian lineshape) dominates in the troposphere1, but its 
effects drop off rapidly with altitude as the pressure drops. Doppler broadening (with 
Gausssian line shape) is temperature dependent but its variation through the atmosphere is 
much smaller than pressure broadening. Stratospheric gas lines are primarily Doppler 
broadened and the two types of broadening become equally significant at around 25 km. 
The convolution of Lorentzian and Gaussian line shapes produces a Voigt line shape. This 
variation of the shape and width of absorption lines with the pressure of the absorbing gas 
means that spectra of atmospheric gases contain information about the altitude of the 
absorbing gas as well as the total number of absorbing molecules in the path.  

3.3 Atmospheric absorption line intensities  
The integrated line strength of each absorption line of each molecule is determined by the 
transition probability, the population and degeneracy of the initial state and the number of 
absorbing molecules in the path. In local thermodynamic equilibrium the population of 
states is determined by the Boltzmann distribution, which is dependent upon the 
temperature of the absorbing molecules and for this reason line strengths are temperature 
dependent.  
At a given wavenumber (v), the intensity of radiation (the radiative power) that reaches the 
ground I(v), is related to the radiative power at the top of the atmosphere I0(v) by Equation 5: 

 ( )
0( ) ( ) m vI v I v e−= τ  (5) 

where  
• τ(v) is the optical depth of the atmosphere and  
• m is the airmass factor - a geometrical factor accounting for the slant path through the 

atmosphere. 
In order to calculate a synthetic spectrum all molecules that absorb in the spectral region 
being simulated must be considered together. At any given wavenumber (v), the 
contribution to the optical depth (τ) for every absorption line k of each molecule i, is given 
by  

 ( ) ( ).k k
i i ia=τ ν σ ν  (6) 

where  
• k

iσ (υ) is the absorption coefficient or cross section at  

                                                 
1 Typical values for a mid-size molecule are αL ~ 0.15 cm-1 atm-1 and αG ~ 0.004 cm-1. 

Remote Sensing of Atmospheric Trace Gases by  
Ground-Based Solar Fourier Transform Infrared Spectroscopy 

 

465 

• υ,  for each absorption line k of each molecule i, (typically in units cm2 molec-1)  
• ia  is the amount of molecule i, in units of molec cm-2.  
The absorption coefficient k

iσ (υ) is the convolution (⊗ ) of the integrated line strength,  k
iS  

and the pressure broadening and Doppler broadening line-shapes: 

 ( ) ( ) ( )k kk k
i i L Gi i

S f v f v= ⊗ ⊗⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦σ ν   (7) 

The HITRAN 2004 database contains line parameters for 39 atmospheric gases including the 
wavenumber of each absorption line, the integrated line strengths at 296K, the lower state 
energy E0, the air-broadened Lorentzian half-width at atmospheric pressure and its 
temperature dependence. 
The integrated line strength is temperature dependent because of the temperature 
dependence of the population of the lower-state energy and a small contribution from the 
spontaneous emission. The integrated line strength at any given temperature (ST) may be 
calculated using the integrated line strengths at 296K and other parameters given in 
HITRAN with Equation 8: 
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where  
• Q(296) and Q(T) are the partition functions at these temperatures and  
• c2 is the second radiation constant, (c2=hc/k = 1.439 cm K) (Griffith, 1996).  

3.4 Calculating synthetic solar atmospheric transmission spectra 
The dry atmosphere is composed of mainly nitrogen (78%) and oxygen (21%) with minor 
and trace gases making up the other 1%. The normal modes of vibration of nitrogen and 
oxygen are infrared inactive because the symmetry of the molecules is such that vibrations 
do not cause a change in the dipole moment, so there is nothing for incoming infra-red 
radiation to interact with. Thus the main constituents of the atmosphere transmit infra-red 
radiation and the infrared spectrum of the atmosphere as shown in Figure 2 is dominated by 
minor constituents and trace gases such as water, carbon dioxide and methane. This is the 
reason that these species are important greenhouse gases. 
The temperature, pressure and concentrations of trace gases in the atmosphere change 
continuously with altitude. In order to calculate a synthetic spectrum the atmosphere is 
modelled as a series of homogeneous layers each with a defined temperature, pressure and 
gas composition2. To model the radiative transfer through the atmosphere the path length of 
radiation from the sun through each layer of the modelled atmosphere must be calculated 
using a ray-tracing algorithm that takes into account the solar zenith angle at the time of the 

                                                 
2 The amounts of atmospheric trace gases are often measured in mole ratios, defined as the number of 
moles of the substance of interest per mole of air. For trace gases the usual units are micro moles per 
mole (μmol.mol-1) – sometimes expressed as parts per million (ppm), e.g. 5 ppm CO means 5 molecules 
of carbon monoxide per million molecules of air). For ultra-trace gases the units often used are nano 
moles per mole (nmol.mol-1) or picomoles per mole (pmol.mol-1). 
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where  
• αG is the Gaussian half-width at half height and is given by: 
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• υ,  for each absorption line k of each molecule i, (typically in units cm2 molec-1)  
• ia  is the amount of molecule i, in units of molec cm-2.  
The absorption coefficient k

iσ (υ) is the convolution (⊗ ) of the integrated line strength,  k
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and the pressure broadening and Doppler broadening line-shapes: 
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dependence of the population of the lower-state energy and a small contribution from the 
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and trace gases making up the other 1%. The normal modes of vibration of nitrogen and 
oxygen are infrared inactive because the symmetry of the molecules is such that vibrations 
do not cause a change in the dipole moment, so there is nothing for incoming infra-red 
radiation to interact with. Thus the main constituents of the atmosphere transmit infra-red 
radiation and the infrared spectrum of the atmosphere as shown in Figure 2 is dominated by 
minor constituents and trace gases such as water, carbon dioxide and methane. This is the 
reason that these species are important greenhouse gases. 
The temperature, pressure and concentrations of trace gases in the atmosphere change 
continuously with altitude. In order to calculate a synthetic spectrum the atmosphere is 
modelled as a series of homogeneous layers each with a defined temperature, pressure and 
gas composition2. To model the radiative transfer through the atmosphere the path length of 
radiation from the sun through each layer of the modelled atmosphere must be calculated 
using a ray-tracing algorithm that takes into account the solar zenith angle at the time of the 

                                                 
2 The amounts of atmospheric trace gases are often measured in mole ratios, defined as the number of 
moles of the substance of interest per mole of air. For trace gases the usual units are micro moles per 
mole (μmol.mol-1) – sometimes expressed as parts per million (ppm), e.g. 5 ppm CO means 5 molecules 
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measurement and the effects of atmospheric curvature and refraction. At least thirty 
different atmospheric layers are required in order to do the radiative transfer calculation 
without errors in this calculation becoming a dominant  uncertainty (Meier et al., 2003). 
 

 

 

 

Fig. 3. The infrared transmission spectrum of water (top panel), carbon dioxide (middle 
panel) and methane (bottom panel) in the atmosphere from 500 cm-1 to 4400 cm-1 as 
simulated using the HITRAN 2000 database for a solar zenith angle of 70° and concentration 
profiles taken from US standard atmosphere (Meier et al, 2004) 
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Following on from Equation 6, when all the absorption lines of all molecules are considered, 
the total optical depth at any given frequency, τ(v), is the sum of the contribution of all the 
absorption lines of all molecules, for all homogeneous layers: 

 ( ) ( )k
i

layers i k
v v= ∑ ∑∑τ τ  (9) 

The true atmospheric transmittance spectrum, T(v) is the ratio of the intensity at the ground, 
I(v), and the intensity at the top of the atmosphere, I0(v): 
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I vT v v
I v

= = −τ  (10) 

The calculation of the synthetic spectrum must also include the effects of instrumental 
parameters such as the resolution and instrumental line-shape including phase error and 
wavelength shift. The spectrum that will actually be measured is a convolution of the 
intensity at the ground, I(v) and the instrumental line-shape. The instrumental line-shape 
(ILS) may be derived using measurements of low-pressure gas cells (Hase et al., 1999), or a 
theoretical ideal ILS can be calculated from the instrument’s field of view, resolution and the 
apodisation function3.  
Example simulations calculated in this manner are shown in Figure 3 (Meier et al., 2004). In 
these cases the infrared transmission spectra that result from just one component 
atmospheric gas at a time are given, namely water, carbon dioxide and methane. The spectra 
are simulated from 500 cm-1 to 4400 cm-1 using the HITRAN 2000 database for a solar zenith 
angle of 70° and concentration profiles taken from US standard atmosphere. 
 

4. Theoretical basis for the retrieval of trace gas amounts from atmospheric 
solar infrared Fourier transform transmission spectra 
4.1 Development of analysis algorithms 
Over the years several different analysis algorithms have been developed to perform the 
retrieval of trace gas amounts from solar FTIR spectra. All the techniques calculate a 
synthetic spectrum using a “forward model” as described above, that includes a model of 
the instrumental effects and a layered model of the atmosphere with assumptions about 
environmental parameters such as the pressure, temperature and composition of each layer. 
The synthetic spectrum is compared to the measured spectrum and adjustments made to the 
forward model until a best fit with the measured spectrum is obtained. 
Different analysis algorithms allow different adjustments to the forward model in order to 
achieve the best fit to the measurement. 
• “SFIT1” (Rinsland et al., 1982; Rinsland et al., 1984) and “GFIT” (Washenfelder et al., 2006) 

allow only a scaling of the a priori concentration profile of the absorbing gases to 
achieve best fit. This means that the distribution of the absorbing gas is defined entirely 

                                                 
3 An apodisation function is a mathematical function that is applied to the interferogram that may give 
greater weight to the information around zero path difference compared to information at greater 
optical path differences. In the analyses presented in this thesis a boxcar apodisation function was used 
that gives equal weight to the information throughout the interferogram. 
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by the a priori assumptions – the fitting process for example cannot put more gas in the 
troposphere and less in the stratosphere but must multiply the concentration in each of 
the modelled layers by the same multiplicative factor. 

• Later development “SFIT2” (Pougatchev et al., 1995) using optimal estimation techniques 
(Rodgers, 1990) aimed to extract the limited spectral information on the vertical 
distribution of the target gas, which is contained in the shape of the absorption features 
as a result of pressure broadening by the surrounding atmospheric gases (Hase et al., 
2004; Rinsland et al., 1998).  

• More recently another analysis code (“PROFITT”) has been developed using optimal 
estimation techniques that allows the temperature profile and concentration profiles to 
be adjusted (Hase et al., 2004). 

4.2 Inverse modelling and optimal estimation  
In contrast to GFIT, SFIT2 allows the volume mixing ratio profile of the absorbing gas in the 
simulated spectrum to be adjusted so that the shape of the absorption line can best fit the 
measured spectrum. The principle difficulty in this technique is that the radiative transfer 
model requires at least thirty atmospheric layers to achieve a reasonable model of the 
transmission of solar radiation through the atmosphere, but the shape of an absorption 
feature typically contains between one and five independent pieces of information. Thus the 
problem is mathematically underdetermined and much of the information must still be 
provided by the a priori concentration profile in the forward model.  
SFIT2 uses an inverse modeling technique (Rodgers, 1990; Rodgers, 2000) to extract the 
volume mixing ratio profile of the gases of interest from the measured spectrum. The 
volume mixing ratios of the gas of interest at each of the modeled layers are the variables of 
interest (called state variables or together the state vector x, with n elements). The measured 
spectrum (a series of observed radiances at different frequencies) is represented by the 
observation vector y (with m elements), and the forward model, F, describes the relationship 
between the observation vector y (the spectrum) and the state vector x, (the volume mixing 
ratios of the gases of interest). 

 ( , )y F x b= + ε  (11) 

where b is a parameter vector including all model variables that are not to be optimized (also 
called the model parameters), and ε is the error vector including errors in the observations, in 
the forward model, and in the model parameters. 
Inverting Equation 11, x may be obtained given y, but due to the error term ε the best that 
can be achieved is a statistical estimate. As stated before the problem is mathematically 
underdetermined and in optimal estimation x is weighted by our prior (a priori) knowledge 
of the state vector xa (the a priori volume mixing ratio profile). The optimal solution of x 
including this a priori knowledge is called the “optimal estimate” or the ‘retrieval’ (also 
sometimes called the “a posteriori solution”).  
The a priori estimate has its own error:  xa=x + εa and the key to solving the optimal 
estimation problem is weighting the error statistics of ε and εa (Rodgers, 2000). 
The inverse problem lends itself to the use of matrix algebra, and the Jacobian matrix, K, is a 
linearization of the forward model that represents the sensitivity of the observation 
variables y to the state variables x, assembled in matrix form (Jacob, 2007):  
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 x
yK F
x
∂

= ∇ =
∂

 (12) 

K changes with x and so it is calculated initially for the a priori value xa and then re-
calculated iteratively until the solution converges. The algorithm iterates until the cost 
function J(x) is minimised by solving for ( ) 0x J x∇ =  as shown in Equation 13: 

 1 1( ) 2 ( ) 2 ( ) 0T
x a aJ x S x x K S Kx y− −∇ = − + − =ε  (13) 

where Sa and Sε are the a priori error and observational error covariance matrices 
respectively (the matrix equivalents of εa and ε ). Note that observational error includes 
errors in the forward model as well as spectral noise and that in many instances it is the 
forward model error that dominates the Sε matrix. 
The solution to Equation 13 yields the optimal estimate or retrieval x̂  and is given by Equation 14: 

 ˆ ( )a ax x G y Kx= + −  (14) 

where G is known as the gain matrix and describes the sensitivity of the retrieval to the 

observations, i.e. x̂G
y
∂

=
∂

, and is given by Equation 15: 

 1 1 1 1( )T T
aG K S K S K S− − − −= +ε ε  (15) 

4.3 Uncertainties in retrieved trace gas amounts and the “averaging kernel”  
The ability of the measured spectrum to constrain the volume mixing ratio profile of the gas 

of interest, (the state vector, x) is given by the averaging kernel matrix x̂A
x
∂

=
∂

, which 

represents the sensitivity of the retrieval x̂  to the true state vector x.  

The averaging kernel matrix, A=GK, i.e. it is the product of the gain matrix x̂G
y
∂

=
∂

and the 

Jacobian matrix yK
x
∂

=
∂

.  

The information content may be defined in terms of the degrees of freedom for signal which 
is the trace of the averaging kernel. Mathematically this is the sum of the diagonal elements 
of the averaging kernel matrix (Rodgers, 2000). 
Using the averaging kernel matrix leads to an alternative expression for the optimal estimate 
or retrieval x̂ : 

 ˆ ( )n ax Ax I A x G= + − + ε  (16) 

where In  is the identity matrix of dimension n. There are three terms on the right hand side 
of Equation 16. The first term, Ax represents the contribution of the true state x to the 
solution. The second term (In – A)xa represents the contribution of the a priori assumptions. 
The third term Gε is the contribution from random observational error. An ideal 
measurement would have an averaging kernel matrix that was an n dimensional identity 
matrix, A = In  in which case the 2nd term is zero (Jacob, 2007; Rodgers, 2000). 
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by the a priori assumptions – the fitting process for example cannot put more gas in the 
troposphere and less in the stratosphere but must multiply the concentration in each of 
the modelled layers by the same multiplicative factor. 

• Later development “SFIT2” (Pougatchev et al., 1995) using optimal estimation techniques 
(Rodgers, 1990) aimed to extract the limited spectral information on the vertical 
distribution of the target gas, which is contained in the shape of the absorption features 
as a result of pressure broadening by the surrounding atmospheric gases (Hase et al., 
2004; Rinsland et al., 1998).  

• More recently another analysis code (“PROFITT”) has been developed using optimal 
estimation techniques that allows the temperature profile and concentration profiles to 
be adjusted (Hase et al., 2004). 

4.2 Inverse modelling and optimal estimation  
In contrast to GFIT, SFIT2 allows the volume mixing ratio profile of the absorbing gas in the 
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measured spectrum. The principle difficulty in this technique is that the radiative transfer 
model requires at least thirty atmospheric layers to achieve a reasonable model of the 
transmission of solar radiation through the atmosphere, but the shape of an absorption 
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SFIT2 uses an inverse modeling technique (Rodgers, 1990; Rodgers, 2000) to extract the 
volume mixing ratio profile of the gases of interest from the measured spectrum. The 
volume mixing ratios of the gas of interest at each of the modeled layers are the variables of 
interest (called state variables or together the state vector x, with n elements). The measured 
spectrum (a series of observed radiances at different frequencies) is represented by the 
observation vector y (with m elements), and the forward model, F, describes the relationship 
between the observation vector y (the spectrum) and the state vector x, (the volume mixing 
ratios of the gases of interest). 

 ( , )y F x b= + ε  (11) 

where b is a parameter vector including all model variables that are not to be optimized (also 
called the model parameters), and ε is the error vector including errors in the observations, in 
the forward model, and in the model parameters. 
Inverting Equation 11, x may be obtained given y, but due to the error term ε the best that 
can be achieved is a statistical estimate. As stated before the problem is mathematically 
underdetermined and in optimal estimation x is weighted by our prior (a priori) knowledge 
of the state vector xa (the a priori volume mixing ratio profile). The optimal solution of x 
including this a priori knowledge is called the “optimal estimate” or the ‘retrieval’ (also 
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estimation problem is weighting the error statistics of ε and εa (Rodgers, 2000). 
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variables y to the state variables x, assembled in matrix form (Jacob, 2007):  
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The information content may be defined in terms of the degrees of freedom for signal which 
is the trace of the averaging kernel. Mathematically this is the sum of the diagonal elements 
of the averaging kernel matrix (Rodgers, 2000). 
Using the averaging kernel matrix leads to an alternative expression for the optimal estimate 
or retrieval x̂ : 

 ˆ ( )n ax Ax I A x G= + − + ε  (16) 

where In  is the identity matrix of dimension n. There are three terms on the right hand side 
of Equation 16. The first term, Ax represents the contribution of the true state x to the 
solution. The second term (In – A)xa represents the contribution of the a priori assumptions. 
The third term Gε is the contribution from random observational error. An ideal 
measurement would have an averaging kernel matrix that was an n dimensional identity 
matrix, A = In  in which case the 2nd term is zero (Jacob, 2007; Rodgers, 2000). 
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The second term in Equation 16, [(In – A)xa] is called the smoothing uncertainty (since it 
results in a smoothing of the retrieval towards the a priori values). The third term, Gε, is 
known as the retrieval uncertainty (or signal-to-noise uncertainty) but again it should be noted 
that this includes not only measurement noise but also errors in the forward model such as 
errors in the HITRAN database and that these factors often dominate the spectral noise. 
There may also be errors in the forward model that are correlated with one another and are 
therefore not random, potentially leading to uncharacterised biases in the retrievals. One 
other error that can be estimated is the temperature uncertainty, due to errors in the assumed 
temperature profile in the forward model. These lead to errors in the line strengths and 
resulting retrieved trace gas amounts that may be calculate using Equation 8.  

5. A summary of past successes for ground-based solar Fourier transform 
infrared spectroscopy of atmospheric composition 
In the late 1970’s there were two groups of researchers actively engaged in making solar 
infrared measurements of atmospheric composition from the ground. The scientific focus at 
the time was on understanding the chemistry of the stratosphere and many measurements 
were made using balloon-borne grating spectrometers (Murcray et al., 1975; Zander, 1976). 
Bradford et al (1976) outlined the feasibility of monitoring atmospheric trace gases using 
ground-based high resolution infrared spectroscopy. Within a couple of years the first 
scientific results from ground-based stations had been published, confirming the presence of 
hydrogen fluoride in the stratosphere from ground-based measurements from the 
Jungfraujoch in Switzerland, (47°N, 8.0°E) (Zander et al., 1977) and identifying atmospheric 
absorption features of ammonia in spectra from Kitt peak in the USA, (32°N, 112°W) 
(Murcray et al., 1978). In 1979 Goldman et al, published their “New Atlas of Infrared Solar 
Spectra” which included telluric absorption features of carbon dioxide, water, methane, 
carbon monoxide, nitrous oxide, ozone, carbonyl fluoride, chlorine nitrate, 
difluorochloromethane (CFC-22), dichlorodifluoromethane (CFC-12), sulphur hexafluoride 
and nitric acid as well as a number of absorption features from carbon monoxide and 
hydroxyl radicals in the solar atmosphere.  
As the capabilities increased more trace gases were added to the list of measureable species 
including hydrogen cyanide (Rinsland et al., 1982),  nitric oxide (Rinsland et al., 1984) and 
chlorine nitrate (Zander et al., 1986). After the  discovery of the Antarctic ozone hole (Farman 
et al., 1985) and the establishment of the Network for Detection of Stratospheric Change 
(NDSC), the number of ground-based Fourier transform spectrometers making solar 
atmospheric absorption measurements increased dramatically. During the first half of the 
1990’s Fourier transform solar remote sensing spectrometers were installed at a number of 
new sites including Lauder, New Zealand (45°S, 170°E) in 1990 (Jones et al., 1994); Mauna 
Loa, Hawaii (20°N, 156°W)(David et al., 1993) & Arrival Heights, Antarctica (78°S, 
167°E)(Kreher et al., 1996; Wood et al., 2004) in 1991, Ny Alesund, Spitzbergen (79°N, 12°E) in 
1992 (Notholt and Schrems, 1994) and Harestua, Norway (60°N, 11°E) in 1994 (Mellqvist et al., 
2002). In 1994 the first measurements using the moon as a light source were reported from 
Spitzbergen, enabling measurements of the Arctic atmosphere during polar night (Notholt, 
1994). 
In 1995 three additional sites were added to the network at Zugspitze, Germany (47°N, 
11°E) (Sussmann and Schafer, 1997), Rikubetsu, Japan (44°N, 144°E)(Zhao et al., 2000)  and 
Wollongong, Australia (34°S, 151°E) (Rinsland et al., 2001). The following year saw a further 
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three sites established at Kiruna, Sweden, (68°N, 20°E) (Blumenstock et al., 1997), Eureka, 
Nunavit (80°N, 86°W) (Batchelor et al., 2009; Donovan et al., 1997) and Moshiri, Japan (44°N, 
142°E) (Zhao et al., 2000). Measurements at Tsukuba, Japan (36°N, 140°E) started in 1998, 
followed by Thule, Greenland (77°N, 69°W), Poker Flat, Alaska (65°N, 147°W) and Izana, 
Tenerife Island (28°N, 16°W) all in 1999.  
In the meanwhile there were a number of mobile instruments operating.  The Jet Propulsion 
Laboratory’s “Mark IV” instrument was making regular balloon flights from Alaska 
interspersed with ground-based measurements from Esrange (68°N, 21°E), Fairbanks (65°N, 
148°W), Mount Barcroft (38°N, 118°W) or Table Mountain (34°N, 118°W) (Toon et al., 1999b). 
The Alfred Wegner Institute had a ship-borne spectrometer onboard the Polarstern (Notholt 
et al., 1995; Notholt et al., 2000), and the National Physical Laboratory had a mobile 
instrument that made a series of side-by-side instrument intercomparisons  with a number 
of other spectrometers in the network as well as a number of campaign measurements at 
Are, Sweden, Aberdeen, Scotland and Calar Alto, Spain (Bell et al., 1994; Bell et al., 1998; 
Paton-Walsh et al., 1997). In addition to instrument intercomparisons, there were a number of 
algorithm intercomparison exercises and a standard procedure for characterising the 
instrument line-shape was developed (Hase et al., 1999; Hase et al., 2004). Apriori profiles 
were most commonly based upon measurements from the balloon-based MarkIV 
instrument (Toon et al., 1999a) or from the ATMOS instrument that was flown on the Space 
Shuttle (Gunson et al., 1996). 
Early in the new millennium the NDSC changed its name to the Network for Detection of 
Atmospheric Composition Change (NDACC) to highlight the change in scientific focus from 
stratospheric chemistry to changing tropospheric composition and greenhouse gases. The 
NDACC database (see http://www.ndacc.org/) contains standard gases for most stations 
equipped with a remote sensing FTIR spectrometer including ozone, nitric acid, hydrogen 
chloride, chlorine nitrate, hydrogen fluoride, nitrous oxide, carbon dioxide, carbon 
monoxide, methane, ethane and hydrogen cyanide. Many stations also provide other gases 
such as CFCs, nitrogen dioxide, nitrogen oxide and acetylene. Further stations were added 
including Toronto, Canada (44°N, 80°W) in 2002 and Bremen, Germany (53°N, 9°E) in 2004, 
whilst campaign measurements have been made at sites including Reunion Island, (22° S, 
56°E)  (Senten et al., 2008), Paramaribo, Suriname (6°N, 55°W)(Petersen et al., 2010) and Addis 
Ababa (9°N, 39°E). Further gases have also been identified in spectra from solar remote 
sensing Fourier transform spectrometers included chlorine monoxide (Bell et al., 1996),  
formic acid, (Rinsland et al., 2004), ethylene(Rinsland et al., 2005) and methanol (Paton-Walsh 
et al., 2008). In addition there have been a number of studies that examine different isotopes 
(Frankenberg et al., 2009; Goldman et al., 2000; Goldman et al., 2002; Haverd et al., 2005; Irion et 
al., 1996; Meier and Notholt, 1996; Notholt et al., 2010). Trends in both stratospheric gases eg 
(Rinsland et al., 2003) and tropospheric gases eg (Jones et al., 2009) have been established from 
NDACC remote sensing FTIR spectrometers. Recently there has been significant interest in 
the ability of this technique to characterise free tropospheric water vapour and its isotopes 
(Palm et al., 2010; Schneider et al., 2010). The NDACC continues to provide ground-validation 
for a number of retrieved products from several different satellite-based sensors (Dils et al., 
2006; Dupuy et al., 2009; Mahieu et al., 2008; Payan et al., 2009; Strong et al., 2008; Vigouroux et 
al., 2007; Wolff et al., 2008; Yurganov et al., 2008). 
In 2004 the Total Carbon Column Observing Network (TCCON) was established with the 
aim of making very accurate measurements of greenhouse gases in the near-infrared 
spectral region (see https://tccon-wiki.caltech.edu/ ).  The primary function of TCCON was 
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The second term in Equation 16, [(In – A)xa] is called the smoothing uncertainty (since it 
results in a smoothing of the retrieval towards the a priori values). The third term, Gε, is 
known as the retrieval uncertainty (or signal-to-noise uncertainty) but again it should be noted 
that this includes not only measurement noise but also errors in the forward model such as 
errors in the HITRAN database and that these factors often dominate the spectral noise. 
There may also be errors in the forward model that are correlated with one another and are 
therefore not random, potentially leading to uncharacterised biases in the retrievals. One 
other error that can be estimated is the temperature uncertainty, due to errors in the assumed 
temperature profile in the forward model. These lead to errors in the line strengths and 
resulting retrieved trace gas amounts that may be calculate using Equation 8.  

5. A summary of past successes for ground-based solar Fourier transform 
infrared spectroscopy of atmospheric composition 
In the late 1970’s there were two groups of researchers actively engaged in making solar 
infrared measurements of atmospheric composition from the ground. The scientific focus at 
the time was on understanding the chemistry of the stratosphere and many measurements 
were made using balloon-borne grating spectrometers (Murcray et al., 1975; Zander, 1976). 
Bradford et al (1976) outlined the feasibility of monitoring atmospheric trace gases using 
ground-based high resolution infrared spectroscopy. Within a couple of years the first 
scientific results from ground-based stations had been published, confirming the presence of 
hydrogen fluoride in the stratosphere from ground-based measurements from the 
Jungfraujoch in Switzerland, (47°N, 8.0°E) (Zander et al., 1977) and identifying atmospheric 
absorption features of ammonia in spectra from Kitt peak in the USA, (32°N, 112°W) 
(Murcray et al., 1978). In 1979 Goldman et al, published their “New Atlas of Infrared Solar 
Spectra” which included telluric absorption features of carbon dioxide, water, methane, 
carbon monoxide, nitrous oxide, ozone, carbonyl fluoride, chlorine nitrate, 
difluorochloromethane (CFC-22), dichlorodifluoromethane (CFC-12), sulphur hexafluoride 
and nitric acid as well as a number of absorption features from carbon monoxide and 
hydroxyl radicals in the solar atmosphere.  
As the capabilities increased more trace gases were added to the list of measureable species 
including hydrogen cyanide (Rinsland et al., 1982),  nitric oxide (Rinsland et al., 1984) and 
chlorine nitrate (Zander et al., 1986). After the  discovery of the Antarctic ozone hole (Farman 
et al., 1985) and the establishment of the Network for Detection of Stratospheric Change 
(NDSC), the number of ground-based Fourier transform spectrometers making solar 
atmospheric absorption measurements increased dramatically. During the first half of the 
1990’s Fourier transform solar remote sensing spectrometers were installed at a number of 
new sites including Lauder, New Zealand (45°S, 170°E) in 1990 (Jones et al., 1994); Mauna 
Loa, Hawaii (20°N, 156°W)(David et al., 1993) & Arrival Heights, Antarctica (78°S, 
167°E)(Kreher et al., 1996; Wood et al., 2004) in 1991, Ny Alesund, Spitzbergen (79°N, 12°E) in 
1992 (Notholt and Schrems, 1994) and Harestua, Norway (60°N, 11°E) in 1994 (Mellqvist et al., 
2002). In 1994 the first measurements using the moon as a light source were reported from 
Spitzbergen, enabling measurements of the Arctic atmosphere during polar night (Notholt, 
1994). 
In 1995 three additional sites were added to the network at Zugspitze, Germany (47°N, 
11°E) (Sussmann and Schafer, 1997), Rikubetsu, Japan (44°N, 144°E)(Zhao et al., 2000)  and 
Wollongong, Australia (34°S, 151°E) (Rinsland et al., 2001). The following year saw a further 
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three sites established at Kiruna, Sweden, (68°N, 20°E) (Blumenstock et al., 1997), Eureka, 
Nunavit (80°N, 86°W) (Batchelor et al., 2009; Donovan et al., 1997) and Moshiri, Japan (44°N, 
142°E) (Zhao et al., 2000). Measurements at Tsukuba, Japan (36°N, 140°E) started in 1998, 
followed by Thule, Greenland (77°N, 69°W), Poker Flat, Alaska (65°N, 147°W) and Izana, 
Tenerife Island (28°N, 16°W) all in 1999.  
In the meanwhile there were a number of mobile instruments operating.  The Jet Propulsion 
Laboratory’s “Mark IV” instrument was making regular balloon flights from Alaska 
interspersed with ground-based measurements from Esrange (68°N, 21°E), Fairbanks (65°N, 
148°W), Mount Barcroft (38°N, 118°W) or Table Mountain (34°N, 118°W) (Toon et al., 1999b). 
The Alfred Wegner Institute had a ship-borne spectrometer onboard the Polarstern (Notholt 
et al., 1995; Notholt et al., 2000), and the National Physical Laboratory had a mobile 
instrument that made a series of side-by-side instrument intercomparisons  with a number 
of other spectrometers in the network as well as a number of campaign measurements at 
Are, Sweden, Aberdeen, Scotland and Calar Alto, Spain (Bell et al., 1994; Bell et al., 1998; 
Paton-Walsh et al., 1997). In addition to instrument intercomparisons, there were a number of 
algorithm intercomparison exercises and a standard procedure for characterising the 
instrument line-shape was developed (Hase et al., 1999; Hase et al., 2004). Apriori profiles 
were most commonly based upon measurements from the balloon-based MarkIV 
instrument (Toon et al., 1999a) or from the ATMOS instrument that was flown on the Space 
Shuttle (Gunson et al., 1996). 
Early in the new millennium the NDSC changed its name to the Network for Detection of 
Atmospheric Composition Change (NDACC) to highlight the change in scientific focus from 
stratospheric chemistry to changing tropospheric composition and greenhouse gases. The 
NDACC database (see http://www.ndacc.org/) contains standard gases for most stations 
equipped with a remote sensing FTIR spectrometer including ozone, nitric acid, hydrogen 
chloride, chlorine nitrate, hydrogen fluoride, nitrous oxide, carbon dioxide, carbon 
monoxide, methane, ethane and hydrogen cyanide. Many stations also provide other gases 
such as CFCs, nitrogen dioxide, nitrogen oxide and acetylene. Further stations were added 
including Toronto, Canada (44°N, 80°W) in 2002 and Bremen, Germany (53°N, 9°E) in 2004, 
whilst campaign measurements have been made at sites including Reunion Island, (22° S, 
56°E)  (Senten et al., 2008), Paramaribo, Suriname (6°N, 55°W)(Petersen et al., 2010) and Addis 
Ababa (9°N, 39°E). Further gases have also been identified in spectra from solar remote 
sensing Fourier transform spectrometers included chlorine monoxide (Bell et al., 1996),  
formic acid, (Rinsland et al., 2004), ethylene(Rinsland et al., 2005) and methanol (Paton-Walsh 
et al., 2008). In addition there have been a number of studies that examine different isotopes 
(Frankenberg et al., 2009; Goldman et al., 2000; Goldman et al., 2002; Haverd et al., 2005; Irion et 
al., 1996; Meier and Notholt, 1996; Notholt et al., 2010). Trends in both stratospheric gases eg 
(Rinsland et al., 2003) and tropospheric gases eg (Jones et al., 2009) have been established from 
NDACC remote sensing FTIR spectrometers. Recently there has been significant interest in 
the ability of this technique to characterise free tropospheric water vapour and its isotopes 
(Palm et al., 2010; Schneider et al., 2010). The NDACC continues to provide ground-validation 
for a number of retrieved products from several different satellite-based sensors (Dils et al., 
2006; Dupuy et al., 2009; Mahieu et al., 2008; Payan et al., 2009; Strong et al., 2008; Vigouroux et 
al., 2007; Wolff et al., 2008; Yurganov et al., 2008). 
In 2004 the Total Carbon Column Observing Network (TCCON) was established with the 
aim of making very accurate measurements of greenhouse gases in the near-infrared 
spectral region (see https://tccon-wiki.caltech.edu/ ).  The primary function of TCCON was 
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to act as a network of ground-thruthing stations for the Orbiting Carbon Observatory (Crisp 
et al., 2004), however TCCON also had a remit to provide independent constraints to models 
of the carbon cycle and provide validation data to other satellite-based sensors. New sites 
were established at Park Falls, Wisconsin, USA (46°N, 90°W)(Washenfelder et al., 2006) and 
Darwin, Australia (12°S, 131°E) (Deutscher et al., 2009) whilst in a number of existing 
NDACC sites have been upgraded to allow for the extended spectral coverage and 
improved precision demanded for TCCON.  The failure of the launch of the Orbiting 
Carbon Observatory has meant that TCCON has yet to fulfil its primary function however a 
re-launch is now planned and in the meanwhile TCCON has started to elucidate details of 
the carbon cycle itself (Yang et al., 2007). More TCCON stations are being set-up and the data 
is available for the validation of other satellite instruments such as SCIAMACHY, AIRS, 
IASI and GOSAT(Bosch et al., 2006).  

6. Concluding remarks 
Remote sensing of atmospheric trace gases by ground-based solar Fourier transform 
infrared spectroscopy has developed rapidly since its origins in the 1970s. It has had major 
successes in characterising the composition of the atmosphere and trends in both 
stratospheric and tropospheric gases. Whilst the technique has greater uncertainties than 
ground level in situ measurements of atmospheric composition, it characterises the total 
atmospheric column amount. Interpretation of ground level measurements is often 
complicated by the effects of vertical transport and changing boundary layer height, but 
total column measurements are less sensitive to this problem because the measurement is 
integrated over the whole atmosphere. A significant drawback to these remote sensing 
techniques is that they are numerically ill-posed and thus some apriori information is 
required to derive total column amounts from the spectra. In future atmospheric models are 
likely to be constrained by use of combined in situ and remotely sensed data such that the 
total uncertainties are minimised. 
Remote sensing Fourier transform spectrometers play a vital role in our efforts to understand 
the changing composition of the atmosphere. The networks of ground-based instruments are 
continuing to expand, with improving precision & accuracy. These measurements will 
continue to improve our understanding of atmospheric composition and chemistry and 
provide ground validation for a new generation of satellite-based instruments. 
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to act as a network of ground-thruthing stations for the Orbiting Carbon Observatory (Crisp 
et al., 2004), however TCCON also had a remit to provide independent constraints to models 
of the carbon cycle and provide validation data to other satellite-based sensors. New sites 
were established at Park Falls, Wisconsin, USA (46°N, 90°W)(Washenfelder et al., 2006) and 
Darwin, Australia (12°S, 131°E) (Deutscher et al., 2009) whilst in a number of existing 
NDACC sites have been upgraded to allow for the extended spectral coverage and 
improved precision demanded for TCCON.  The failure of the launch of the Orbiting 
Carbon Observatory has meant that TCCON has yet to fulfil its primary function however a 
re-launch is now planned and in the meanwhile TCCON has started to elucidate details of 
the carbon cycle itself (Yang et al., 2007). More TCCON stations are being set-up and the data 
is available for the validation of other satellite instruments such as SCIAMACHY, AIRS, 
IASI and GOSAT(Bosch et al., 2006).  

6. Concluding remarks 
Remote sensing of atmospheric trace gases by ground-based solar Fourier transform 
infrared spectroscopy has developed rapidly since its origins in the 1970s. It has had major 
successes in characterising the composition of the atmosphere and trends in both 
stratospheric and tropospheric gases. Whilst the technique has greater uncertainties than 
ground level in situ measurements of atmospheric composition, it characterises the total 
atmospheric column amount. Interpretation of ground level measurements is often 
complicated by the effects of vertical transport and changing boundary layer height, but 
total column measurements are less sensitive to this problem because the measurement is 
integrated over the whole atmosphere. A significant drawback to these remote sensing 
techniques is that they are numerically ill-posed and thus some apriori information is 
required to derive total column amounts from the spectra. In future atmospheric models are 
likely to be constrained by use of combined in situ and remotely sensed data such that the 
total uncertainties are minimised. 
Remote sensing Fourier transform spectrometers play a vital role in our efforts to understand 
the changing composition of the atmosphere. The networks of ground-based instruments are 
continuing to expand, with improving precision & accuracy. These measurements will 
continue to improve our understanding of atmospheric composition and chemistry and 
provide ground validation for a new generation of satellite-based instruments. 
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1. Introduction

Fourier methods are commonplace in the Earth Sciences and have greatly enhanced our
understanding and forecast capabilities for cyclical phenomena that recur on interannual (e.g.
El Niño, Pacific Decadal Oscillation) to millennial scales (e.g. Milankovitch cycles). Nowadays
most low level programming languages (C, Fortran) have math libraries that include the fast
Fourier transform algorithm (FFT) and nearly all abstract programs (Python, Octave/Matlab,
IDL, R) provide an array of Fourier functions for scripting sophisticated signal processing
routines. Whether your interest as a practicing Earth scientist is in Fourier transformation
for efficient data manipulation, or for problems where the Fourier transform or its power
spectrum is needed for direct analysis, you have probably found no shortage of relevant
literature. Nonetheless, you may also have found some difficulty in making sense of which
Fourier methods to implement for your particular analysis idea, and how to appropriately
apply them. This chapter will serve you as a basic guide for unraveling some of the
complicated implementations of discrete-time power spectrum analysis using direct language
and supplementary Matlab/Octave routines using both observed and modeled data.
This chapter assumes that you have a certain task to accomplish, and therefore it is designed
to teach you how to set up an approach appropriate for Fourier analysis, and also to advise
you of potential pitfalls and limitations in Fourier analysis. The reader need not have prior
exposure to signal processing methodologies, but should have a solid base in mathematics,
probability theory and more importantly the issues related to your analysis data so that the
significances of cycles within your data can be rationally interpreted. If you find yourself
lost by the terminology I recommend you familiarize yourself with basic treatments of
discrete-time systems, for example Press et al. (1992) or Cadzow (1973).
The body of this chapter is split into three sections, Preprocessing data, Single Series
Spectrum Analysis, and Multiseries Spectral Analysis. Step-by-step examples are given on the
analysis of a variety of freely accessible earth science datasets covering atmospheric science,
biosphere-atmosphere carbon cycling, climate modeling, and paleodiversity as well as some
example implementations of Markov chain Monte Carlo routines for computing statistical
significances. Each section contains direct explanations with ready to deploy example code
that you are free to use for your own investigations. Supplementary code can be accessed
online from ftp://ftp.climatemodeling.org/pub/esg/.
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2. Preprocessing data: Identifying the pertinent information

An often overlooked aspect in the early stages of data analysis and exploration is the
preliminary processing of time series. No matter what your particular topic is it is often
desirable to filter measurements that confound your analysis or do not contribute useful
information. A thorough exploration of the many methods for reducing noise and removing
trends prior to computing the Fourier power spectrum may seem like a lot of work, but it
will be effort well-rewarded because it will increase confidence in your results. Even data
that has already been heavily processed, for example satellite products like leaf area index
(LAI), may still require treatment beyond, or in stead of, monthly averaging, seasonalizing, or
annualizing. This section discusses filtering, subsetting, and detrending topics and provides
example code for deploying this in your own data.
Within any dataset there are data that contribute useful information as well as data that do not,
or even confound your analysis. One example comes from the study of atmospheric tracers of
photosynthesis such as carbon dioxide or carbonyl sulfide. Atmospheric CO2 and OCS have
diurnal and annual cycles that are strongly driven by biotic processes, primarily reflecting the
uptake of atmospheric CO2 by plant photosynthesis and CO2 release through heterotrophic
and autotrophic respiration. Measurements of these tracers should show stronger annual
or diurnal cycles during years when precipitation is substantially influenced by El Niño.
But strong cycles may be difficult to observe unless the observations are preprocessed or
filtered. This is because a series of tower measurements of atmospheric trace gasses will
include both locally representative observations made when turbulent mixing is low and
winds are calm, and regionally representative observations made when the boundary layer
is well-mixed. If your goal were to observe smaller influences caused by interannual ENSO
cycles among much larger biotic influences you may have to detrend from a fitted polynomial
(section 2.1) filter the noise (section 2.2), or subset the data to remove locally representative
measurements (section 2.3), which would result in non-uniform series that can be analyzed
using Lomb-Scargle (section 3.2).

2.1 Detrending
Within geological time series, from ice cores to cyclostratigraphy, it is not uncommon to find
long term and systematic trends. If your objective is to understand something other than these
trends it will be necessary to detrend the data. An example of the importance of detrending
was observed by Cornette (2007) who showed that the prominence of a 62-million-year cycle
in extinctions recorded in the geologic rock record was strongly affected by detrending the
original diversity time series. This is because the most significant variability was caused
by a large non-linear biodiversification trend (Figure 1A) representing three major phases of
biodiversification. Extinction cycles were only apparent in the Fourier power spectrum after
detrending the time series. Likewise if a very long lived and significant harmonic or trend
exists in your data detrending should be considered. Pseudo-code showing how this fossil
diversity time series was detrended appears in Procedure 1 (and also in supplementary code
dftps.m).

2.2 Noise and smoothing filters
Noise adds considerable clutter that can confound Fourier power spectrum (PS) analysis and
reduce the strength of important cycles. Noise is given a broad definition here to refer to
variability in any series that cannot be resolved or directly tied to a predictable physical cause.
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Fig. 1. Detrending effects. Subplots A and B show diversity without detrending– C and D are
detrended. A) Time series of Sepkoski’s marine fossil diversity covering the past 542 million
years, as reproduced from Rohde & Muller (2005). B) The Fourier power spectrum (PS) of
that series. C) Time series of diversity residuals obtained from A by detrending by a cubic
polynomial (cf. Cornette, 2007). D) The PS of residual diversity showing significant cycles
corresponding to the 62 and 140 million year cycles. These show that in non-detrended fossil
diversity nearly all the power of the 62 and 140 million year cycles is subsumed by the larger
trend in A.

Procedure 1 General procedure for detrending a series by a polynomial curve of order N. The
diversity data in Figure 1A was detrended by a polynomial of N = 3 to produce Figure 1C.
Series x is comprised of nterms measured at increments of t.

input: data series, {(tk, xk)}nterms
k=1

output: data series of residuals, {rk}nterms
k=1

p = poly_fit(t,x,N)
pv = poly_val(p,t)
r = x - pv

It is also important to keep in mind that noise may simply reflect events that are not well
represented by the particular measurement system or point of observation being used. Noise
generally has a limited systematic effect and should be filtered if at all possible.
A consideration when filtering noise is to choose a filter appropriate to the type of noise within
your data (i.e. white, red, blue, gray). White noise can give the Fourier power spectrum plots
(like those in Figure 1B and 1D) broad spectrum noise, which appears as peaks (all of similar
magnitude) dispersed across a range of frequencies in the power spectrum. Least squares
filters including Savitzky-Golay are often used to reduce this kind of broad spectrum noise.
In Matlab/Octave such filtering is achieved by calling the sgolayfilt function. In IDL
calling savgol in conjunction with convol achieves the same purpose.
Confounding variability can also come from red noise, which is not uncommon in
paleoclimate datasets and some long term atmospheric and ecosystem records. Power
spectrum plots of series containing red noise have characteristic slopes that diminish with
increasing frequency (toward the right of the spectral plot), resulting in power spectrum
plots that appear cluttered on left near longer cycles (i.e. where red wavelengths of the
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Fig. 1. Detrending effects. Subplots A and B show diversity without detrending– C and D are
detrended. A) Time series of Sepkoski’s marine fossil diversity covering the past 542 million
years, as reproduced from Rohde & Muller (2005). B) The Fourier power spectrum (PS) of
that series. C) Time series of diversity residuals obtained from A by detrending by a cubic
polynomial (cf. Cornette, 2007). D) The PS of residual diversity showing significant cycles
corresponding to the 62 and 140 million year cycles. These show that in non-detrended fossil
diversity nearly all the power of the 62 and 140 million year cycles is subsumed by the larger
trend in A.

Procedure 1 General procedure for detrending a series by a polynomial curve of order N. The
diversity data in Figure 1A was detrended by a polynomial of N = 3 to produce Figure 1C.
Series x is comprised of nterms measured at increments of t.

input: data series, {(tk, xk)}nterms
k=1

output: data series of residuals, {rk}nterms
k=1

p = poly_fit(t,x,N)
pv = poly_val(p,t)
r = x - pv

It is also important to keep in mind that noise may simply reflect events that are not well
represented by the particular measurement system or point of observation being used. Noise
generally has a limited systematic effect and should be filtered if at all possible.
A consideration when filtering noise is to choose a filter appropriate to the type of noise within
your data (i.e. white, red, blue, gray). White noise can give the Fourier power spectrum plots
(like those in Figure 1B and 1D) broad spectrum noise, which appears as peaks (all of similar
magnitude) dispersed across a range of frequencies in the power spectrum. Least squares
filters including Savitzky-Golay are often used to reduce this kind of broad spectrum noise.
In Matlab/Octave such filtering is achieved by calling the sgolayfilt function. In IDL
calling savgol in conjunction with convol achieves the same purpose.
Confounding variability can also come from red noise, which is not uncommon in
paleoclimate datasets and some long term atmospheric and ecosystem records. Power
spectrum plots of series containing red noise have characteristic slopes that diminish with
increasing frequency (toward the right of the spectral plot), resulting in power spectrum
plots that appear cluttered on left near longer cycles (i.e. where red wavelengths of the
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visible spectrum would appear). Red noise can be caused by quasi-stationary processes, for
example a precipitation record with repeated and prolonged multi-year droughts that cause
precipitation to fall below the mean. Red noise can be smoothed by filters that use lower order
polynomials, for example in IDL using savgol with a degree of 2.
Blue noise causes clutter around shorter cycles toward the right of the power spectrum, and
can be filtered using higher order polynomials. Grey noise is identified by its bimodal noise
peaks at both the ‘red’ and the ‘blue’ end of the power spectrum. Several test cases are
provided in the supplementary Matlab/Octave code noise_filt.m, and you should use them
to test the effectiveness of the Savitzky-Golay filter using various filter configurations.
If however you find that it is not possible to effectively filter noise without reducing the
information content of your time series, you may instead evaluate the power spectrum of
the unfiltered data against a stringent statistical test such as a Markov chain Monte Carlo test
(see the random walk test for red noise in section 3.3).

2.3 Subsetting and subsetting filters
Where noise filtering is not tenable or where it is desirable to search for the sources of cycles
you should consider partitioning your time series based on the relative contributions of
various groups (subsetting) or applying a subsetting filter to reject entire observations. Here
I use the term subsetting to indicate partitioning of each value, as opposed to subset filtering,
which I use to indicate rejecting entire observations that exceed some cutoff. Subset filtering
would be relevant for analyses such as in atmospheric observation where it is not appropriate
to smooth a biased measurement because ties to the actual observations are required.
A common issue with observational data is that not all measurements communicate useful
information about the processes you are interested in, therefore it may be necessary to
partition the complete set of observations in some way and to compare the significances of
cycles between subsets. One example subsetting strategy is to partition each value in the
series based on the relative contributions from different groups. Given that you also possessed
meta-data, i.e. the annotations describing each specimen, you could begin to address some
very interesting questions about the nature of cycle. As it happens, the diversity values used
to construct Figure 1A can be partitioned by groups such as deep water fossils vs. shallow
water fossils, or hard-shelled fossils vs. all others. Now we might ask, ‘Is any one group of
organisms responsible for the cycles in fossil diversity seen in Figure 1D?’
Figure 2 uses a similar but more comprehensive dataset of fossil diversity downloaded
from the Paleobiology Database (PD, 2008) to subset the total diversity into multiple curves
representing the contributions from each phylogenetic group, such as mammals, birds, and
reptiles. Figure 2A compares the diversity curve of several dominant shelled fossil animals
(gastropods, bivalves, and articulate brachiopods or GBA) against all other phyla. Figure 2B
shows the Fourier power spectra of those same subsets and suggests that the 62 million year
cycle in this dataset is largely driven by the GBA group.
On the other hand meta-data annotating each observation may not be available to you, and
you may have to create a subsetting filter. Here you would make a decision, for example using
a statistical basis to reject observations from a subset. For example, given a dataset of wind
speed measurements from a meteorological station we might use a subset filter to reject all
measurements of wind speeds less than 4 meters per second, leaving us with a new subset
of unevenly spaced measurements. Non-uniformly sampled data cannot be analyzed using
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Fig. 2. Using metadata to subset by groups. A) shows two time series of fossil abundances
derived from the Paleobiology Database (paleodb.org) and ranging from 542 million years
ago to present. The first subset in green is comprised of gastropod, bivalve, and articulate
brachiopod fossils (GBA). Their complement (non-members of that group) appear in black.
B) shows the Fourier power spectrum of those same curves when detrended. Notice that a
rather significant peak appears in the GBA group near the 62-million-year cycle frequency,
which is not present in the non-GBA group. This shows that by using the annotations of your
data it is possible to investigate the sources of cycles.

standard Fourier decomposition, but can be processed using the Lomb-Scargle method, which
will be addressed later in Section 3.2).
Subsetting filters utilize a priori knowledge to reject outliers, which means you decide based on
your analysis of the dataset what an acceptable cutoff should be. One way to avoid criticisms
on the subjectivity of your cutoff would be to process your data using a series of cutoffs that
range from very inclusive to very specific, and to do spectral analysis on each differently
filtered subset, and compare.

2.4 Normalizing
A final but critical note on preprocessing is about the importance of normalizing your time
series to a standard deviation of 1 prior to Fourier decomposition. Whether you apply filters
to your data or not it is always necessary to normalize the variance of your original time series
to make it comparable to other series. This is simple to do. Divide each observation by the
standard deviation of the time series. See lines 21–22 in supplementary code dftps.m.

3. Single series spectrum analysis

Once your series of uniformly sampled values has been normalized (perhaps even filtered
or subset) Discrete-time Fourier transform power spectrum analysis (DFTPS) can be used as
a powerful tool for determining the relative strength of cycles within your time (or spatial)
series. You should be aware that Fourier transformation works by decomposing a series
into its complex conjugate of real (�) and imaginary (�) signal parts. The spectral power is
computed as the square of the signal power from �, which produces a series of amplitudes
across a range of frequencies that describe the strength of cycles. � is used to determine the
phase of the cycles, which can tell you when in your time series the peaks of cycles of different
frequencies should occur. These methods can be applied to any series of uniformly sampled
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visible spectrum would appear). Red noise can be caused by quasi-stationary processes, for
example a precipitation record with repeated and prolonged multi-year droughts that cause
precipitation to fall below the mean. Red noise can be smoothed by filters that use lower order
polynomials, for example in IDL using savgol with a degree of 2.
Blue noise causes clutter around shorter cycles toward the right of the power spectrum, and
can be filtered using higher order polynomials. Grey noise is identified by its bimodal noise
peaks at both the ‘red’ and the ‘blue’ end of the power spectrum. Several test cases are
provided in the supplementary Matlab/Octave code noise_filt.m, and you should use them
to test the effectiveness of the Savitzky-Golay filter using various filter configurations.
If however you find that it is not possible to effectively filter noise without reducing the
information content of your time series, you may instead evaluate the power spectrum of
the unfiltered data against a stringent statistical test such as a Markov chain Monte Carlo test
(see the random walk test for red noise in section 3.3).

2.3 Subsetting and subsetting filters
Where noise filtering is not tenable or where it is desirable to search for the sources of cycles
you should consider partitioning your time series based on the relative contributions of
various groups (subsetting) or applying a subsetting filter to reject entire observations. Here
I use the term subsetting to indicate partitioning of each value, as opposed to subset filtering,
which I use to indicate rejecting entire observations that exceed some cutoff. Subset filtering
would be relevant for analyses such as in atmospheric observation where it is not appropriate
to smooth a biased measurement because ties to the actual observations are required.
A common issue with observational data is that not all measurements communicate useful
information about the processes you are interested in, therefore it may be necessary to
partition the complete set of observations in some way and to compare the significances of
cycles between subsets. One example subsetting strategy is to partition each value in the
series based on the relative contributions from different groups. Given that you also possessed
meta-data, i.e. the annotations describing each specimen, you could begin to address some
very interesting questions about the nature of cycle. As it happens, the diversity values used
to construct Figure 1A can be partitioned by groups such as deep water fossils vs. shallow
water fossils, or hard-shelled fossils vs. all others. Now we might ask, ‘Is any one group of
organisms responsible for the cycles in fossil diversity seen in Figure 1D?’
Figure 2 uses a similar but more comprehensive dataset of fossil diversity downloaded
from the Paleobiology Database (PD, 2008) to subset the total diversity into multiple curves
representing the contributions from each phylogenetic group, such as mammals, birds, and
reptiles. Figure 2A compares the diversity curve of several dominant shelled fossil animals
(gastropods, bivalves, and articulate brachiopods or GBA) against all other phyla. Figure 2B
shows the Fourier power spectra of those same subsets and suggests that the 62 million year
cycle in this dataset is largely driven by the GBA group.
On the other hand meta-data annotating each observation may not be available to you, and
you may have to create a subsetting filter. Here you would make a decision, for example using
a statistical basis to reject observations from a subset. For example, given a dataset of wind
speed measurements from a meteorological station we might use a subset filter to reject all
measurements of wind speeds less than 4 meters per second, leaving us with a new subset
of unevenly spaced measurements. Non-uniformly sampled data cannot be analyzed using
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Fig. 2. Using metadata to subset by groups. A) shows two time series of fossil abundances
derived from the Paleobiology Database (paleodb.org) and ranging from 542 million years
ago to present. The first subset in green is comprised of gastropod, bivalve, and articulate
brachiopod fossils (GBA). Their complement (non-members of that group) appear in black.
B) shows the Fourier power spectrum of those same curves when detrended. Notice that a
rather significant peak appears in the GBA group near the 62-million-year cycle frequency,
which is not present in the non-GBA group. This shows that by using the annotations of your
data it is possible to investigate the sources of cycles.

standard Fourier decomposition, but can be processed using the Lomb-Scargle method, which
will be addressed later in Section 3.2).
Subsetting filters utilize a priori knowledge to reject outliers, which means you decide based on
your analysis of the dataset what an acceptable cutoff should be. One way to avoid criticisms
on the subjectivity of your cutoff would be to process your data using a series of cutoffs that
range from very inclusive to very specific, and to do spectral analysis on each differently
filtered subset, and compare.

2.4 Normalizing
A final but critical note on preprocessing is about the importance of normalizing your time
series to a standard deviation of 1 prior to Fourier decomposition. Whether you apply filters
to your data or not it is always necessary to normalize the variance of your original time series
to make it comparable to other series. This is simple to do. Divide each observation by the
standard deviation of the time series. See lines 21–22 in supplementary code dftps.m.

3. Single series spectrum analysis

Once your series of uniformly sampled values has been normalized (perhaps even filtered
or subset) Discrete-time Fourier transform power spectrum analysis (DFTPS) can be used as
a powerful tool for determining the relative strength of cycles within your time (or spatial)
series. You should be aware that Fourier transformation works by decomposing a series
into its complex conjugate of real (�) and imaginary (�) signal parts. The spectral power is
computed as the square of the signal power from �, which produces a series of amplitudes
across a range of frequencies that describe the strength of cycles. � is used to determine the
phase of the cycles, which can tell you when in your time series the peaks of cycles of different
frequencies should occur. These methods can be applied to any series of uniformly sampled
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data. If your interest lies in the theory behind spectral analysis of discrete time systems a good
place to start is Cadzow (1973) or Bloomfield (1976). More sophisticated implementations
of signal processing designed for specific purposes (e.g. Brooks, 2009) are often useful when
computational power is limited. But if you have access to a high performance machine or
cluster then you will probably be able to solve big data problems easier using distributed
memory parallelism.

3.1 Computing the power spectrum
As opposed to continuous analog signals, discrete time series are segmented and require a
special step in treatment before transformation by the fast Fourier transform algorithm (FFT).
You must pad your series of normalized values with zeros so that the transformed signal
of your discretely sampled values is sufficiently long to allow for measurement of its peaks
across a range of frequencies (see lines 18-19 of dftps.m).
Zero padding is particularly important when examining cycles with longer periods. Consider
that you have 100 years of monthly means from a model and you want to know how
well the model is able to reproduce interannual variability, caused for example by El
Niño–Southern Oscillation (ENSO, 2-7 yr. period) or the Pacific Decadal Oscillation (PDO,
20-30 yr. period). Despite having cycle lengths that are roughly 20 years apart (ENSO:
∼5 years, PDO:∼25 years), these cycles will show up very near each other in frequency on the
power spectrum plot. Since frequency is the inverse of time fENSO = 1

12 (months) ×5 (years)
= 0.0167, which is near fPDO = 1

12 × 25 = 0.0033. In order to resolve such small frequency
differences between longer cycles it is necessary to pad the signal with zeros. To better
understand this you might try commenting-out line 18 of dftps.m and substituting it with:
lps=2(̂8); (you will also have to adjust the y-axis range). The subsequent plot will be very
coarsely sampled on the left toward longer frequencies because you reduced the padding.
Zero padding will not change the amplitude of your peaks but it will help you better resolve
the frequency and timing of cycles. Fortunately Matlab, Octave, and Python provide handy
methods for padding the series and computing the Fourier transform in one step using the
fft function (Procedure 2). The computation of uniform increments of f to plot your power
spectrum peaks against is also straight-forward (see line 35 of dftps.m).

Procedure 2 General FFT procedure for Matlab, Octave, Python. Given the series x of discrete
values xk the function fft is used to compute its complex conjugate meanwhile ‘stretching’
the signal to length ne, provided that ne > nterms.

input: time series, {xk}nterms
k=1

output: x_ft (complex conjugate with � & � parts), sp (spectral power), f (frequency), p
(period)

x_n = x/std_dev(x) # Normalize to variance of 1
x_ft = fft(x_n,ne) # Transform and pad to length ne
sp = x_ft .* conj(x_ft) # Compute spectral density curve. sp is

# complex and contains real and imag parts
f = flt_intgen(ne)/ne # Generate sampling frequencies for sp
p = 1/f # Cycle periods in original units
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Remember that the FFT algorithm will give you complex output: a real part (�), which you
will use to make your power spectrum plot, and an imaginary part (�), which you might use
to determine the phase-synchronization. The imaginary part is not to be overlooked. In order
to determine causality relationships for example, the phase data (�) of the independent and
dependent cycles should coincide in a logical way. Computation of the phase is discussed in
Section 3.4 and Procedure 3.

3.2 Non-uniformly sampled data
The FFT algorithm requires uniform time steps, and cannot be used to analyze non-uniform
series such as in Figure 3A. Fortunately there are alternative ways for dealing with
unevenly sampled data including the Lomb-Scargle (LS) method. The LS approach is a
common implementation, but you should be aware that estimating the period of cycles from
non-uniformly sampled data is not a trivial issue, and precision can vary depending on the
frequency estimators used. An in-depth treatment of spectral analysis for unevenly sampled
data appears in Press et al. (1992), which should be referred to for a detailed explanation.
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Fig. 3. Series that are not uniformly sampled can be transformed using Lomb-Scargle. A)
Non-uniformly sampled time series of CO2 exchange between the atmosphere and biosphere
(Net Ecosystem Exchange) measured at the Park Falls, Wisconsin tall for June, 2008-Oct.,
2009 (UW-Madison, 2010). B) The spectral power of that data when the LS method is used.

LS implementations (such as the example in supplementary code lsps.m) work by computing
the spectral power across an increasing set of frequencies (usually controlled by a variable
called ofac), up to a frequency limit (hifac). The resulting power spectrum represents an
oversampling of the data (suitable results can be obtained by oversampling rates where ofac
≥ 4). hifac, which is related to the Nyquist frequency, sets the limit of frequencies to be
explored. If, for example, you are not interested in frequencies larger than f = 0.05, then you
should conserve computational time by setting hifac = 0.1.
Some considerations should be kept in mind when specifying your ofac resampling rate. If
you are investigating two narrowly spaced cycles and your series has relatively few broad
gaps, then you would probably be justified in using higher values for ofac that will allow
you to resolve closely spaced cycles. On the other hand if your series is subject to substantial
gaps, large values for ofac are probably not a good idea.
Figure 3B is a power spectrum plot, the same as in Figures 1B, 1D and 2B, except that this
one was computed using the LS method. Figure 3B illustrates an important issue common to

487Earth Scientist’s Guide to Discrete-Time Power Spectrum Analysis



data. If your interest lies in the theory behind spectral analysis of discrete time systems a good
place to start is Cadzow (1973) or Bloomfield (1976). More sophisticated implementations
of signal processing designed for specific purposes (e.g. Brooks, 2009) are often useful when
computational power is limited. But if you have access to a high performance machine or
cluster then you will probably be able to solve big data problems easier using distributed
memory parallelism.

3.1 Computing the power spectrum
As opposed to continuous analog signals, discrete time series are segmented and require a
special step in treatment before transformation by the fast Fourier transform algorithm (FFT).
You must pad your series of normalized values with zeros so that the transformed signal
of your discretely sampled values is sufficiently long to allow for measurement of its peaks
across a range of frequencies (see lines 18-19 of dftps.m).
Zero padding is particularly important when examining cycles with longer periods. Consider
that you have 100 years of monthly means from a model and you want to know how
well the model is able to reproduce interannual variability, caused for example by El
Niño–Southern Oscillation (ENSO, 2-7 yr. period) or the Pacific Decadal Oscillation (PDO,
20-30 yr. period). Despite having cycle lengths that are roughly 20 years apart (ENSO:
∼5 years, PDO:∼25 years), these cycles will show up very near each other in frequency on the
power spectrum plot. Since frequency is the inverse of time fENSO = 1

12 (months) ×5 (years)
= 0.0167, which is near fPDO = 1

12 × 25 = 0.0033. In order to resolve such small frequency
differences between longer cycles it is necessary to pad the signal with zeros. To better
understand this you might try commenting-out line 18 of dftps.m and substituting it with:
lps=2(̂8); (you will also have to adjust the y-axis range). The subsequent plot will be very
coarsely sampled on the left toward longer frequencies because you reduced the padding.
Zero padding will not change the amplitude of your peaks but it will help you better resolve
the frequency and timing of cycles. Fortunately Matlab, Octave, and Python provide handy
methods for padding the series and computing the Fourier transform in one step using the
fft function (Procedure 2). The computation of uniform increments of f to plot your power
spectrum peaks against is also straight-forward (see line 35 of dftps.m).

Procedure 2 General FFT procedure for Matlab, Octave, Python. Given the series x of discrete
values xk the function fft is used to compute its complex conjugate meanwhile ‘stretching’
the signal to length ne, provided that ne > nterms.

input: time series, {xk}nterms
k=1

output: x_ft (complex conjugate with � & � parts), sp (spectral power), f (frequency), p
(period)

x_n = x/std_dev(x) # Normalize to variance of 1
x_ft = fft(x_n,ne) # Transform and pad to length ne
sp = x_ft .* conj(x_ft) # Compute spectral density curve. sp is

# complex and contains real and imag parts
f = flt_intgen(ne)/ne # Generate sampling frequencies for sp
p = 1/f # Cycle periods in original units
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Remember that the FFT algorithm will give you complex output: a real part (�), which you
will use to make your power spectrum plot, and an imaginary part (�), which you might use
to determine the phase-synchronization. The imaginary part is not to be overlooked. In order
to determine causality relationships for example, the phase data (�) of the independent and
dependent cycles should coincide in a logical way. Computation of the phase is discussed in
Section 3.4 and Procedure 3.

3.2 Non-uniformly sampled data
The FFT algorithm requires uniform time steps, and cannot be used to analyze non-uniform
series such as in Figure 3A. Fortunately there are alternative ways for dealing with
unevenly sampled data including the Lomb-Scargle (LS) method. The LS approach is a
common implementation, but you should be aware that estimating the period of cycles from
non-uniformly sampled data is not a trivial issue, and precision can vary depending on the
frequency estimators used. An in-depth treatment of spectral analysis for unevenly sampled
data appears in Press et al. (1992), which should be referred to for a detailed explanation.
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Fig. 3. Series that are not uniformly sampled can be transformed using Lomb-Scargle. A)
Non-uniformly sampled time series of CO2 exchange between the atmosphere and biosphere
(Net Ecosystem Exchange) measured at the Park Falls, Wisconsin tall for June, 2008-Oct.,
2009 (UW-Madison, 2010). B) The spectral power of that data when the LS method is used.

LS implementations (such as the example in supplementary code lsps.m) work by computing
the spectral power across an increasing set of frequencies (usually controlled by a variable
called ofac), up to a frequency limit (hifac). The resulting power spectrum represents an
oversampling of the data (suitable results can be obtained by oversampling rates where ofac
≥ 4). hifac, which is related to the Nyquist frequency, sets the limit of frequencies to be
explored. If, for example, you are not interested in frequencies larger than f = 0.05, then you
should conserve computational time by setting hifac = 0.1.
Some considerations should be kept in mind when specifying your ofac resampling rate. If
you are investigating two narrowly spaced cycles and your series has relatively few broad
gaps, then you would probably be justified in using higher values for ofac that will allow
you to resolve closely spaced cycles. On the other hand if your series is subject to substantial
gaps, large values for ofac are probably not a good idea.
Figure 3B is a power spectrum plot, the same as in Figures 1B, 1D and 2B, except that this
one was computed using the LS method. Figure 3B illustrates an important issue common to
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all power spectra: the dispersion of peaks reflecting a cycle with a period that slightly varies
throughout the time series. Minor variations in shorter frequencies, such as those to the right
( f > 0.03) in Figure 3B, can result in either a broader peak or multiple peaks near the frequency
of interest. The primary diurnal cycle should occur at f = 0.0416 in Figure 3B. Instead there
are actually three peaks of nearly equal amplitude, which indicates that the timing of the
diurnal NEE cycle pictured in Figure 3A varies throughout the time series, probably due to
changes in daylight length throughout the year as well as synoptic frontal passages and other
variability that can affect the exchange of carbon (NEE). For example, small shifts in timing of
peak NEE by 1 hour in either direction (e.g. 23-hour/25-hour spacing) would result in large
spreads in frequency ( f = 0.04 to 0.045).
In spectral plots longer cycles have fewer opportunities to occur in a limited dataset and
therefore the certainty about their significance is generally less than a shorter cycle of similar
amplitude. The next section will discuss a method for dealing with uncertainty in the
significance of longer-term cycles using Monte Carlo methods.

3.3 Estimating uncertainty using Markov chain Monte Carlo trials
By this point in the chapter you already know how to identify whether or not a cyclical
pattern exists within your series. If you have already used a script to produce a power
spectrum plot (e.g. dftps.m, lsps.m), you probably asked yourself: ‘How do I know if these
cycles are significant?’ There are a variety of ways to estimate the statistical significance
of cycles within your data and many of them involve Monte Carlo trials. Markov chain
Monte Carlo methods (MCMC) are a widely used class of algorithms that iteratively and
randomly resample (permute) time series, and can be used to test the significances of cycles by
comparing them to randomly derived cycles. MCMC tests allow you to compare the original
time series to many randomized versions of that same data, and to examine whether or not
cycles of equal or greater magnitude exist in the randomized versions. It is important to
understand, however, that Monte Carlo significances do not rule-out bias in your sampling
protocol. Significance tests of this kind can only inform you about how likely a cycle is to
occur given a particular collection of values.
As a starting point for understanding Markov chain Monte Carlo methods I present an
example called random walk trials, sometimes referred to as random step or drunkard’s walk.
Random walk trials can be used to determine statistical significances and are particularly
useful for evaluating low frequency cycles. Many random walk implementations exist,
and here we will keep things simple by using just one implementation, which appears in
supplementary code dftps_mcmc.m.
If you have experimented with the dftps_mcmc.m routine you may have wondered how it
computes significances. The significance calculation used in dftps_mcmc.m is described as
follows: For a given peak of height h at a frequency f , the significance of a peak can be
computed as the fraction, p, of N randomly generated sequences of the original series, from
which the spectrum at f exceeds h. Here you might report the significance of a cycle as the
fraction of trials in which the height of the peak in the original series exceeded the height from
the randomly generated series. Since random walk trials work by randomly permuting the
original series before Fourier decomposition, 10,000 MCMC trials would represent the null
hypothesis that cycles within your data are merely coincidental and can be reproduced given
sufficient randomization.
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Uncertainty can be represented not only as a percentage but also in your power spectrum
plot by a line, for example representing the mean spectral power of the MCMC iterations.
Supplementary code dftps_mcmc.m outputs both the significance estimates and a power
spectrum plot with the MCMC random walk significance curve. Note that all peaks that
occur at or below the random walk significance curve should be interpreted as insignificant,
whereas peaks with amplitudes greater than the curve are significant to the degree indicated
by the statistics of the random walk trials.

3.4 Phase synchronization and phase shifted cycles
Two cycles (from different time series) with exactly the same period might seem to be
related. However, their phases could indicate that their peaks in the original time series
are asynchronous, which could indicate a lag in the cause-and-effect relationship, or they
may not be related at all. Let’s say that you have two time series of daily means, one for air
temperature and another for the temperature of a nearby lake. Both records will have strong
annual cycles, near f = 1

365 = 0.0027, but because of the specific heat capacity of water, the
peaks in lake temperature will lag behind air temperature. If you examined the imaginary
part (�) of the Fourier transform at f = 0.0027 you would see the phase shift of the cycle in
the range −π : π radians. (For example find the index number of the element in f on line 29 of
dftps.m that is closest to the frequency 0.0027 and then find the corresponding element by its
index in the imaginary part of xn_fft on line 19 of dftps.m) A good way of visualizing this
is to plot the original series along with a sine wave corresponding to the cycle of interest with
the appropriate phase shift as determined from the imaginary part of the Fourier transform.
This is readily done in Matlab/Octave using angle, and Python using phase, and IDL using
atan, which compute the phase angle shift in radians ([−π : π]). Pseudocode describing the
construction of the phase shifted sine wave appears in Procedure 3. Note also that this can be
used to extrapolate the continuation of a cycle beyond the observational data, which might be
useful when predicting future cycle peaks.
An example that should give us no trouble comes from modeled temperature data from the
Parallel Climate Model (Washington et al., 2000). Because the complex transform corresponds
perfectly to the magnitude and phase, we need only to convert the real and imaginary parts
back into physical coordinates according to Procedure 3 in order to produce Figure 4.

Procedure 3 General procedure for determining the phase shift and computing the sine wave
corresponding to the period and phase of the cycle of interest. This procedure uses the
imaginary data at index k to compute the phase shift (ps) for constructing the sine wave.

input: {x_ f t}nterms
i=1 (complex conjugate); p (period); t (time increments in physical units); a

(sine wave amplitude in physical units)
output: ps_k, p_k

ps = atan(x_ft[k])
sw = a * sin(2 * (pi/p) * t + ps) # the phase shifted sine wave

4. Multiseries spectrum analysis

Cause and effect relationships are common, but sometimes difficult to verify. One way
to test whether cycles with the same period from two different time series are related is
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sufficient randomization.
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Supplementary code dftps_mcmc.m outputs both the significance estimates and a power
spectrum plot with the MCMC random walk significance curve. Note that all peaks that
occur at or below the random walk significance curve should be interpreted as insignificant,
whereas peaks with amplitudes greater than the curve are significant to the degree indicated
by the statistics of the random walk trials.
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Two cycles (from different time series) with exactly the same period might seem to be
related. However, their phases could indicate that their peaks in the original time series
are asynchronous, which could indicate a lag in the cause-and-effect relationship, or they
may not be related at all. Let’s say that you have two time series of daily means, one for air
temperature and another for the temperature of a nearby lake. Both records will have strong
annual cycles, near f = 1

365 = 0.0027, but because of the specific heat capacity of water, the
peaks in lake temperature will lag behind air temperature. If you examined the imaginary
part (�) of the Fourier transform at f = 0.0027 you would see the phase shift of the cycle in
the range −π : π radians. (For example find the index number of the element in f on line 29 of
dftps.m that is closest to the frequency 0.0027 and then find the corresponding element by its
index in the imaginary part of xn_fft on line 19 of dftps.m) A good way of visualizing this
is to plot the original series along with a sine wave corresponding to the cycle of interest with
the appropriate phase shift as determined from the imaginary part of the Fourier transform.
This is readily done in Matlab/Octave using angle, and Python using phase, and IDL using
atan, which compute the phase angle shift in radians ([−π : π]). Pseudocode describing the
construction of the phase shifted sine wave appears in Procedure 3. Note also that this can be
used to extrapolate the continuation of a cycle beyond the observational data, which might be
useful when predicting future cycle peaks.
An example that should give us no trouble comes from modeled temperature data from the
Parallel Climate Model (Washington et al., 2000). Because the complex transform corresponds
perfectly to the magnitude and phase, we need only to convert the real and imaginary parts
back into physical coordinates according to Procedure 3 in order to produce Figure 4.

Procedure 3 General procedure for determining the phase shift and computing the sine wave
corresponding to the period and phase of the cycle of interest. This procedure uses the
imaginary data at index k to compute the phase shift (ps) for constructing the sine wave.

input: {x_ f t}nterms
i=1 (complex conjugate); p (period); t (time increments in physical units); a

(sine wave amplitude in physical units)
output: ps_k, p_k

ps = atan(x_ft[k])
sw = a * sin(2 * (pi/p) * t + ps) # the phase shifted sine wave

4. Multiseries spectrum analysis

Cause and effect relationships are common, but sometimes difficult to verify. One way
to test whether cycles with the same period from two different time series are related is
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Fig. 4. Power spectrum plot (A) and time series with phase shifted wave (B). The phase shift
of the annual cycle in A is applied to the green sine wave in B, which shows where the peaks
and troughs of the annual cycle should occur according to their average occurrence over 100
years of model data.

through multiseries spectrum analysis. Cross-spectrum analysis is a common implementation
used to compare how well cycles from two different series covary in period and phase
synchronization. Think of cross-spectrum analysis as being the Fourier transform equivalent
of cross correlation. For example, you would expect that net radiation measured at a
meteorological station would correlate well with air temperature. Cross-spectrum analysis
should reveal diurnal and annual cycles that are strong and nearly synchronized.
As opposed to the results of single series spectrum analysis the cross-spectrum density
represents the covariance between two series. Cross-spectrum functions in abstract languages
like Matlab typically compute spectrum density using the Fourier method or Welch’s method,
and their power spectra can be interpreted in the same way, except that the phase data takes
on a heightened importance. Figure 5 was produced using supplementary code csps.m again
using model data for years 2000-2099 from the Parallel Climate Model (Washington et al.,
2000). Figure 5A shows the cross-spectrum density of soil moisture and precipitation for one
arctic land surface grid cell, which signals a very strong correlation in both series of the annual
cycle. Figure 5B represents the phase shift across all frequencies. The frequency of the annual
cycle is located by the vertical gray band, which indicates that the two annual cycles are nearly
π radians (180◦) out of phase, meaning that precipitation is high when soil moisture is low.
This seems surprising at first, but remember that in the arctic a majority of the precipitation
comes as snow, which has a delayed release into soils or the soils may be frozen (permafrost)
for most of the year.

5. Summary

There are many worthwhile uses for discrete-time Fourier power spectrum analysis methods,
as shown in this chapter including: 1) correlating the amplitude and phase of similar
cycles from different time series, 2) estimating the statistical significance of cycles, and 3)
investigating the sources of cycles using subsets of the complete set of data. However,
by now you have probably also realized a few of the limitations of power spectrum
analysis such as: 1) very long cycles are difficult to detect given time series of limited
length, 2) inappropriately preprocessing/filtering your data prior to Fourier decomposition
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Fig. 5. Cospectrum and phase synchronization. A) shows the total power of the cospectrum
representing a strong cycle in both soil moisture and precipitation. The gray band locates the
annual cycle. B) shows that the phases of the annual cycles are nearly 180◦ (π radians) out of
phase, which underscores the importance of considering the phase data in cross-spectrum
analysis.

can lead to erroneous conclusions, 3) choosing a noise filter is subjective and can lead to
different results, and 4) failing to specify the correct null hypothesis to test against possible
cause-and-effect relationships between cycles (i.e. type iii error) can lead to false conclusions.
Understanding the strengths and weaknesses of Fourier power spectrum analysis as you have
been introduced to here will help you to place the correct emphasis on signal processing
results in your study. If you do find room for such analysis in your work feel free to implement
the supplementary code presented here without reservation and in any way you like.
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through multiseries spectrum analysis. Cross-spectrum analysis is a common implementation
used to compare how well cycles from two different series covary in period and phase
synchronization. Think of cross-spectrum analysis as being the Fourier transform equivalent
of cross correlation. For example, you would expect that net radiation measured at a
meteorological station would correlate well with air temperature. Cross-spectrum analysis
should reveal diurnal and annual cycles that are strong and nearly synchronized.
As opposed to the results of single series spectrum analysis the cross-spectrum density
represents the covariance between two series. Cross-spectrum functions in abstract languages
like Matlab typically compute spectrum density using the Fourier method or Welch’s method,
and their power spectra can be interpreted in the same way, except that the phase data takes
on a heightened importance. Figure 5 was produced using supplementary code csps.m again
using model data for years 2000-2099 from the Parallel Climate Model (Washington et al.,
2000). Figure 5A shows the cross-spectrum density of soil moisture and precipitation for one
arctic land surface grid cell, which signals a very strong correlation in both series of the annual
cycle. Figure 5B represents the phase shift across all frequencies. The frequency of the annual
cycle is located by the vertical gray band, which indicates that the two annual cycles are nearly
π radians (180◦) out of phase, meaning that precipitation is high when soil moisture is low.
This seems surprising at first, but remember that in the arctic a majority of the precipitation
comes as snow, which has a delayed release into soils or the soils may be frozen (permafrost)
for most of the year.

5. Summary

There are many worthwhile uses for discrete-time Fourier power spectrum analysis methods,
as shown in this chapter including: 1) correlating the amplitude and phase of similar
cycles from different time series, 2) estimating the statistical significance of cycles, and 3)
investigating the sources of cycles using subsets of the complete set of data. However,
by now you have probably also realized a few of the limitations of power spectrum
analysis such as: 1) very long cycles are difficult to detect given time series of limited
length, 2) inappropriately preprocessing/filtering your data prior to Fourier decomposition
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can lead to erroneous conclusions, 3) choosing a noise filter is subjective and can lead to
different results, and 4) failing to specify the correct null hypothesis to test against possible
cause-and-effect relationships between cycles (i.e. type iii error) can lead to false conclusions.
Understanding the strengths and weaknesses of Fourier power spectrum analysis as you have
been introduced to here will help you to place the correct emphasis on signal processing
results in your study. If you do find room for such analysis in your work feel free to implement
the supplementary code presented here without reservation and in any way you like.
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1. Introduction 
Unlike most other scientists, astronomers do not have direct access to the objects they are 
studying. As a matter of fact, except for a few cases (solar wind and neutrinos, lunar 
samples, meteorites, cosmic rays), all information originating from the Universe is 
transmitted to us by light. Because it has the ability to interact with matter, it keeps a lasting 
impression of the environment where it was born or has had interaction with. One of the 
greatest challenges in astronomy is thus to extract, using methods ever more clever, the 
maximum information from photons that crossed through space over thousands, if not 
billions, of years. A giant step forward was taken nearly 400 years ago when Galileo Galilei 
pointed a modest telescope towards the sky. Technological developments have since 
considerably increased the dimension and visual acuity of telescopes (segmented mirrors, 
adaptive optics), the quantum efficiency of detectors (often close to 90%), the detectable 
wavelength range (from radio waves to gamma rays), as well as all the specific 
measurement techniques such as photometry, spectroscopy and polarimetry. 
There are basically two traditional approaches to obtaining spectral information on 
extended astrophysical objects: narrow-band imagery and integral field dispersive 
spectroscopy. Imagery with filters allows the observer to map a target in selected 
wavelength ranges and to extract the required physical information by comparing the 
relative flux of the sources in these bands. This technique is used to obtain color-magnitude 
diagrams of star clusters or resolved galaxies (SLOAN ugriz broad-band filters for example), 
or to map abundance gradients in nebulae or gas-rich galaxies (using narrow-band 
interference filters centered on specific emission lines such as Hα 656.3 nm, [NII] 658.4 nm 
or [OIII] 500.7 nm). Images of the targets in the different band passes must be obtained one 
after the other with a CCD detector, rejecting each time all photons excluded by the selected 
filters (up to 99.8%). Moreover, narrow-band imagery does not provide a high enough 
spectral resolution to determine the gas velocity. 
Dispersive spectroscopy with slits allows a much finer spectral resolution (R = λ/Δλ ~ 103 – 
105) at the expense of spatial information on the targets. Extensively used since the mid-19th 
century to obtain the spectrum of individual stars or small slices of extended objects, 
dispersive spectroscopy has been transformed by the advent of multi-object spectrographs 
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(MOS) in the 1990’s: multiple slitlets or optical fibers are positioned at the location of the 
targets in a wide field of view, the light of which is then sent to a disperser and recorded on 
a CCD. Major breakthroughs have also been obtained in astronomical instrumentation over 
the last decade by combining imagery and spectroscopy into a single experimental 
observation technique that produces cubes of data. These are typically referred to as Integral 
Field Unit (IFU) instruments. Given the limitations of modern array detectors, different 
instrument concepts convey different trades that each enhances the possibility of discovery 
for a given science program category. The ability to cover a greater area than the classical 
spectrometer slit has often been the driving motivation behind these 3-D instrument 
developments (Monnet 2009). The use of MOS [Sloan digital sky survey (Stoughton et al. 
2002) or 2dF (Colles et al. 2001)] and integral field spectrographs [GMOS-IFU on Gemini 
(Allington-Smith et al. 2002) , or VIMOS-IFU (Sanchez et al. 2004)] on large telescopes has 
revolutionized data collection by allowing respectively to obtain spectra of a large number 
(up to a few hundred) of objects dispersed in a large field or to spatially sample relatively 
small (of the order of 10 arcseconds) objects.  An integral field spectrograph allowing 
observations across a relatively large field field of view (41 x 33 arcseconds at a spectral 
resolution R ~ 1000), SAURON (Bacon et al. 2001), has revolutionized the study of late-type 
galaxies, and a similar, but much more complex, instrument, MUSE, is being built for the 
VLT (Bacon et al. 2010).  
The vast majority of imaging spectrometers used on telescope to date however build on 
dispersive approaches which must “sacrifice” detector pixels to retrieve the spectral content 
instead of scene elements. Typical ratio of distinct scene elements (pixels) to available 
detector pixels is on the order of 1/1000. A pure imager would have a ratio of 1 but its 
spectral capability is limited by the width of the filters used to select specific spectral 
wavebands.  
A variety of concepts now propose different balances between field and spectral elements in 
terms of both coverage and resolution in order to make the best use of their detector pixels. 
By using non-dispersive approaches such as interferometric ones, one can hope to use all 
detector pixels for imagery thus prioritizing spatial coverage, resolution or both. The 
compromise then usually shifts to the spectral or temporal side as spectra for scene elements 
must be acquired in the time domain using multiple exposures. The most familiar 
instrument of this kind is probably the Faby-Perot interferometer in which spectral slices of 
the final data cube are acquired one by one while mechanically changing the central 
wavelength transmitted by the etalon. Although unrivaled for field coverage in the IFU 
group, this instrument faces an important waveband width limitation imposed by the 
multiple orders transmitted by the etalon, which must be filtered out optically to permit 
unambiguous retrieval of the spectral information. Fabry-Perot are mostly used to obtain 
high resolution (R ~ 20 000) spectra of individual lines such as Hα, [OIII] 500.7 nm or the 
[SII] doublet at 671.7, 673.1 nm (Hernandez et al. 2008, Lagrois & Joncas 2010). 
We present in this paper a very brief historical review, as well as the most recent 
developments, of another approach , imaging Fourier transform spectroscopy (FTS), which 
has been given a strong boost during the past decade, mostly because of enormous 
improvements in digital imaging capabilities, computer power and servo control systems. A 
large number of research programs would benefit from an instrument capable of 
simultaneously obtaining spatially resolved, high quality spectra on extended areas (of the 
order of 10 arcminutes) and with a resolution up to R ~ 104. Imaging Fourier transform 
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spectroscopy is very promising in that regard. Based on the principle of the Michelson 
interferometer, Fourier Transform Spectrometers (FTS) are extremely efficient because all 
photons are collected and analyzed. Moreover, by using appropriate optical configurations, 
it is possible to transform the traditional one-pixel FTS into a truly integral field 
spectrometer. In this chapter, we will : 
a. Present a brief historical review of the use of FT spectrographs in astronomy; 
b. Introduce the concept of an imaging FTS aimed at observing astronomical sources;  
c. Use our experience with our instrument, SpIOMM, to illustrate the technical challenges 

that must be overcome to ensure the efficiency of such an instrument;  
d. Present some of the most interesting scientific results obtained with SpIOMM ; 
e. Discuss future developments of wide-field imaging FTS on large ground-based and 

space-based telescopes. 

2. A very brief history of the imaging FTS in astronomy 
Although FTS are most widely used for military and chemical applications, they have also 
been very successful in planetary exploration (on board the Mariner, Voyager and more 
recently Cassini spacecrafts; Flasar et al. 2004) and in the analysis of the Earth’s atmosphere 
(a recent example being the ACE-FTS instrument on board the SCISAT-1 remote sensing 
Canadian satellite; Bernath et al. 2005). The use of FTS in astronomy is not widespread, 
mostly because of the technical difficulties in building such instruments, but some examples 
need to be mentioned. The FTS at Kitt Peak’s Mayall telescope was used the 1970’s and 
1980’s to provide exquisite spectra of late-type stars (Scoville et al. 1979, Ridgway et al. 
1984). At the Canada-France-Hawaii Telescope (CFHT), the high-resolution FTS was widely 
used on a large variety of planetary and stellar programs (Chalabaev & Maillard 1985, 
Maillard et al. 1987). Made able to work on an imaging mode in the early 1990’s, the CFHT 
FTS was renamed BEAR (Maillard & Simons 1992); it provided integral field spectra of a 
variety of objects such as planetary nebulae, massive star clusters and star-forming regions 
in a 24 arcsecond field of view (Paumard et al. 2004). Other examples include the FTS built 
by D. Naylor (University of Lethbridge) on the James Clerk Maxwell submillimeter 
telescope (Naylor et al. 2004, Friesen et al. 2005), an FTS for SPIRE, one of three instruments 
to fly on ESA's Herschel Space Observatory (Naylor et al. 2010, White et al. 2010), a far-
infrared FTS on the Japanese satellite AKARI, a mid-IR FTS (CIRS) on the Cassini spacecraft 
and for the nar-IR, PFS on Mars Express with a copy on Venus Express. We would also like 
to mention another imaging FTS prototype, working in the visible part of the spectrum that 
was built at the Laurence Livermore Lab and tested at the 3.5-m Apache Point Observatory 
telescope (Wurtz et al. 2002a, 2002b), in which one of us (FG) was involved, but which 
development ceased a few years ago. The development of this instrument was a major step 
forward to demonstrate the ability of an imaging FTS to acquire hyperspectral images in the 
visible band. The advantages and disadvantages of the imaging FTS technique, as well as 
the relative merit of different approaches to 3-D imagery are discussed by Ridgway & Brault 
(1984) and, more recently, by Bennett (2000).  
The development of imaging FTS in astronomy was given a strong incentive during the 
early definition phases of the NGST (now known as the James Webb Space Telescope, a 6.5-
m segmented mirror infrared telescope to be launched at the Sun-Earth L2 point in 2014): 
astronomers supported by the three participating space agencies (NASA, ESA and the 
Canadian Space Agency) presented studies of imaging FTS at the NGST Instrumentation 
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(MOS) in the 1990’s: multiple slitlets or optical fibers are positioned at the location of the 
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must be acquired in the time domain using multiple exposures. The most familiar 
instrument of this kind is probably the Faby-Perot interferometer in which spectral slices of 
the final data cube are acquired one by one while mechanically changing the central 
wavelength transmitted by the etalon. Although unrivaled for field coverage in the IFU 
group, this instrument faces an important waveband width limitation imposed by the 
multiple orders transmitted by the etalon, which must be filtered out optically to permit 
unambiguous retrieval of the spectral information. Fabry-Perot are mostly used to obtain 
high resolution (R ~ 20 000) spectra of individual lines such as Hα, [OIII] 500.7 nm or the 
[SII] doublet at 671.7, 673.1 nm (Hernandez et al. 2008, Lagrois & Joncas 2010). 
We present in this paper a very brief historical review, as well as the most recent 
developments, of another approach , imaging Fourier transform spectroscopy (FTS), which 
has been given a strong boost during the past decade, mostly because of enormous 
improvements in digital imaging capabilities, computer power and servo control systems. A 
large number of research programs would benefit from an instrument capable of 
simultaneously obtaining spatially resolved, high quality spectra on extended areas (of the 
order of 10 arcminutes) and with a resolution up to R ~ 104. Imaging Fourier transform 
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spectroscopy is very promising in that regard. Based on the principle of the Michelson 
interferometer, Fourier Transform Spectrometers (FTS) are extremely efficient because all 
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it is possible to transform the traditional one-pixel FTS into a truly integral field 
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a. Present a brief historical review of the use of FT spectrographs in astronomy; 
b. Introduce the concept of an imaging FTS aimed at observing astronomical sources;  
c. Use our experience with our instrument, SpIOMM, to illustrate the technical challenges 
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to mention another imaging FTS prototype, working in the visible part of the spectrum that 
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telescope (Wurtz et al. 2002a, 2002b), in which one of us (FG) was involved, but which 
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The development of imaging FTS in astronomy was given a strong incentive during the 
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astronomers supported by the three participating space agencies (NASA, ESA and the 
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meeting in Hyannis in 1999 september (Graham 2000, Morris et al. 2000, Posselt et al. 2000) .  
None of these concepts however were included in the final instrument suite of the telescope. 
More recently, Boulanger et al (2008) proposed the design of a 1.2-m space telescope, H2EX, 
equipped with a wide-field imaging FTS specifically aimed at studying  molecular hydrogen 
in the universe. 
A recent review of the imaging FTS concept, with some historical perspective and technical 
details not discussed in the present paper, is presented by Maillard et al (2011). 

3. The IFTS concept 
An astronomical imaging Fourier transform spectrometer (IFTS) is basically a Michelson 
interferometer inserted into the collimated beam of an astronomical camera system, equiped 
with two detectors. Contrary to conventional integral field dispersive spectrographs, all 
detector pixels are used for imagery as with the Fabry-Perot, but instead of acquiring 
spectral slices one by one (thus rejecting every other wavelength) to cover the entire 
waveband of interest, an "all in one" approach is used. Moreover, while the Fabry-Perot is 
limited to a very narrow wavelength range (typically 1 or 2 nm), an IFTS has no waveband 
limitations other than the sensitivity of the detectors and the transmitance and reflectance 
properties of its optics. Schematically, the core of an IFTS is a Michelson interferometer 
consisting of a beamsplitter used to separate the incoming beam into two equal parts; two 
mirrors on which the two halves of the original beam are reflected back; a moving 
mechanism to adjust the position and orientation of one of the mirrors (the other mirror is 
fixed); and a metrology system to monitor the mirror alignement. All wavelengths from the 
field are simultaneously transmitted to either one or both of the interferometer outputs in 
which the array detector sits.  The interferometer is configured to modulate the scene 
intensity between the two outputs instead of spectrally filtering it. This configuration results 
in a tremendous light gathering power since no light is lost except through items common to 
any optical design (substrate transmission, coatings efficiency, quantum efficiency of 
detector). All photons from the scene can hence be recorded at each exposure provided that 
both complementary outputs of the interferometer are recorded (see below).  
Hence, instead of corresponding to a particular slice of the expected spectral data cube, each 
exposure populates what is called the "interferogram cube": a series of broadband images of 
different intensities. The key to an unambiguous spectral information recovery lies in the 
calculation of a Discrete Fourier Transform (DFT or FFT) on each pixel recordings through 
the interferogram cube. The vector composed of such a pixel recording is called an 
interferogram and is uniquely determined by the spectral content of the light shined on the 
pixel. The interferogram cube can at any time during acquisition be turned into a spectral 
cube since each acquired broadband image contains information covering the whole 
waveband. The inclusion of additional exposures to an interferogram cube simply refines 
the meshing of the output spectra (spectral resolution, see section 3.2) and has no effect on 
the waveband which is determined by scanning parameters and optics transmission 
(including a filter introduced in the optical path to reduce the width of the waveband, if 
necessary). 
In order to properly generate the interferogram cube, a moving component of the 
interferometer must be precisely positioned at predetermined sequential interference 
position before each exposure can be recorded. This operation is referred to as scanning 
through the interference patterns. For the IFTS, the scanning parameter is the Optical Path 
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Difference (OPD) existing between both arms of the interferometer and the moving 
component a mirror. The DFT calculation assumes that all data points of the interferogram 
vector are acquired at equidistant OPD intervals. Deviations from this assumption result in 
an increased noise level or artifacts in the resulting spectra. The performance of an IFTS 
instrument is thus tightly linked with the performance of its OPD scanning system, which 
can be very challenging in the visible band (350 - 850 nm). The technical challenges 
associated with building an efficient Michelson interferometer in this wavelength range are 
partly responsible for the absence of a widespread use of IFTS in astronomical observatories 
today. In practice however, a lot of the recent IFUs require increasingly complex data 
processing software such that this apparent distance to the final data tends to even out 
among 3D capable instruments. The main IFTS limitation that remains in the classic IFU 
selection trade-off is the balance between spectral resolution desired and acquisition time (or 
number of exposures required). Another potential hurdle is, we think, conceptual. While 
dispersive spectroscopy is very intuitive, to a point where most highschool students have 
experienced the use of a prism or a dispersive grating, and understood the process giving 
rise to a rainbow, Fourier transforms are non-trivial mathematical concepts standing 
between the data acquisition and the desired spectrogram. The fact that a given pixel 
recording cannot be directly related to a given spectral point typically leaves observers with 
a somewhat less tangible feeling for the data which must be addressed by the careful design 
of a comprehensive user interface.  

3.1 Spectroscopy with a Fourier transform spectrometer 
To explain how a Fourier transform spectrometer works, we first assume that the 
interferometer at the core is a classical Michelson, that the light coming to the telescope is 
monochromatic, such as a laser beam , and that the signal is recorded on a single-pixel 
detector (see Fig. 1). The incoming beam is first split into two equal parts by a beamsplitter.  
 

 
Fig. 1. Optical configuration of a classical Michelson interferometer at the core of a Fourier 
transform spectrometer 
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detector pixels are used for imagery as with the Fabry-Perot, but instead of acquiring 
spectral slices one by one (thus rejecting every other wavelength) to cover the entire 
waveband of interest, an "all in one" approach is used. Moreover, while the Fabry-Perot is 
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intensity between the two outputs instead of spectrally filtering it. This configuration results 
in a tremendous light gathering power since no light is lost except through items common to 
any optical design (substrate transmission, coatings efficiency, quantum efficiency of 
detector). All photons from the scene can hence be recorded at each exposure provided that 
both complementary outputs of the interferometer are recorded (see below).  
Hence, instead of corresponding to a particular slice of the expected spectral data cube, each 
exposure populates what is called the "interferogram cube": a series of broadband images of 
different intensities. The key to an unambiguous spectral information recovery lies in the 
calculation of a Discrete Fourier Transform (DFT or FFT) on each pixel recordings through 
the interferogram cube. The vector composed of such a pixel recording is called an 
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cube since each acquired broadband image contains information covering the whole 
waveband. The inclusion of additional exposures to an interferogram cube simply refines 
the meshing of the output spectra (spectral resolution, see section 3.2) and has no effect on 
the waveband which is determined by scanning parameters and optics transmission 
(including a filter introduced in the optical path to reduce the width of the waveband, if 
necessary). 
In order to properly generate the interferogram cube, a moving component of the 
interferometer must be precisely positioned at predetermined sequential interference 
position before each exposure can be recorded. This operation is referred to as scanning 
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Difference (OPD) existing between both arms of the interferometer and the moving 
component a mirror. The DFT calculation assumes that all data points of the interferogram 
vector are acquired at equidistant OPD intervals. Deviations from this assumption result in 
an increased noise level or artifacts in the resulting spectra. The performance of an IFTS 
instrument is thus tightly linked with the performance of its OPD scanning system, which 
can be very challenging in the visible band (350 - 850 nm). The technical challenges 
associated with building an efficient Michelson interferometer in this wavelength range are 
partly responsible for the absence of a widespread use of IFTS in astronomical observatories 
today. In practice however, a lot of the recent IFUs require increasingly complex data 
processing software such that this apparent distance to the final data tends to even out 
among 3D capable instruments. The main IFTS limitation that remains in the classic IFU 
selection trade-off is the balance between spectral resolution desired and acquisition time (or 
number of exposures required). Another potential hurdle is, we think, conceptual. While 
dispersive spectroscopy is very intuitive, to a point where most highschool students have 
experienced the use of a prism or a dispersive grating, and understood the process giving 
rise to a rainbow, Fourier transforms are non-trivial mathematical concepts standing 
between the data acquisition and the desired spectrogram. The fact that a given pixel 
recording cannot be directly related to a given spectral point typically leaves observers with 
a somewhat less tangible feeling for the data which must be addressed by the careful design 
of a comprehensive user interface.  

3.1 Spectroscopy with a Fourier transform spectrometer 
To explain how a Fourier transform spectrometer works, we first assume that the 
interferometer at the core is a classical Michelson, that the light coming to the telescope is 
monochromatic, such as a laser beam , and that the signal is recorded on a single-pixel 
detector (see Fig. 1). The incoming beam is first split into two equal parts by a beamsplitter.  
 

 
Fig. 1. Optical configuration of a classical Michelson interferometer at the core of a Fourier 
transform spectrometer 
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Half the light is transmitted through the beamsplitter, bounces back on a moving mirror and 
interferes, in the beamsplitter, with the other half-beam which has, in the meantime, been 
reflected by the beamsplitter to a fixed mirror and bounced back. Initially, the optical path 
travelled by the two beams are the same; we are at the Zero Path Difference (ZPD) position. 
The two beams are in perfect phase when they combine and the interference is completely 
constructive: the detector receives the sum of the two beams while none of the light goes 
back to the source. The moving mirror is then slightly displaced (typical displacements vary 
between 175 nm and a few micrometers, depending on the wavelength range and the 
desired spectral resolution), creating a small offset in optical paths between the beams. 
These not being in phase anymore, the interference is not entirely constructive and the 
detector receives a bit less light while the difference goes back to the source. 
 

 

 
Fig. 2. Simulations of interferograms from different light sources, where step 0 corresponds 
to the ZPD. Upper left: single He-Ne (632 nm) laser, sampled with mirror displacement 
steps of 175 nm; the sinusoidal pattern is clearly seen. Upper right: mercury doublet (577 nm 
and 579 nm); the beating between the two frequencies is obvious. Lower graph: a continuum 
5000 K blackbody source; most of the action occurs near the ZPD 

Eventually, after a sufficiently large mirror displacement, the interference will be totally 
destructive: no light will be recorded on the detector, all the beam will go back to the source. 
In practice, an interferogram is obtained by first moving the mirror to a predetermined 
position away on one side of the ZPD, moved by equidistant steps to the same position on 
the other side of the ZPD. Since the incoming light source is monochromatic, the temporal 
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signal pattern received by the detector after a large number of mirror displacements, 
called an interferogram, will be sinusoidal. The original frequency, or wavelength, of the 
laser light beam is thus recovered by calculating the Fourier transform of the time-
dependent signal recorded by the detector. An incoming beam which includes two or 
more emission lines will produce a more complex interferogram, while the interferogram 
pattern of a continuum source will be mostly concentrated near the ZPD. Astrophysical 
objects, such as planetary nebula, ionized gaseous nebulae or galaxies present complex 
spectroscopic features (many emission lines produced by ionized gas superimposed on a 
stellar continuum) which produce very diverse types of interferograms. Again, a Fourier 
transform of these interferograms will recover the original spectra, in terms of both 
frequency and intensity. Fig. 2 illustrates the shape of typical interferograms from 
different artificial sources. 

3.2 Instrument line shape 
What does a spectrum obtained in such a way look like? In principle, the Fourier transform 
of a continuous, infinite interferogram will provide exactly the same frequencies and 
amplitude as the incoming beam. If the light beam to be analyzed is monochromatic, the 
interferogram will be a sine wave. Assuming that this interferogram is continuous and 
infinite, its Fourier transform will be a delta function. However, in real life, the 
interferogram is sampled at discrete, and in principle equal, intervals of optical path 
difference: the intensity (or, in the case of  an imaging FTS, an image) of the source is 
obtained, then the mirror is moved, another image is obtained, and so on. Moreover, the 
signal is observed for a limited time and thus the interferogram is sampled with a finite 
number of data points. For example and as we shall see later, for a typical astronomical 
scene observed in the 650 – 680 nm range, the interferogram is sampled with a mirror step of 
about 5 micrometers and 300 steps for a total optical path difference of ~ 3 mm (the optical 
path corresponds to twice the mirror translation).  Therefore, the recovered line shape will 
be the “ideal” incoming line shape, degraded by a function corresponding to the 
“imperfect” instrument. In mathematical terms, the limited spectral resolution of the final 
spectrum is caused by the convolution of the original line shape with a function that 
depends on the properties of the instrument and the sampling technique. Using the 
definition of the Fourier transform and its properties (seen elsewhere in this book), we see 
that: 
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Let’s first have a look at the effect of a finite interferogram on the instrument line shape. In 
this case, the observed interferogram can be seen as the product of an infinite interferogram 
(a sine wave for a monochromatic light source) with a square box function, g(x) = sb(x), 
having an intensity of 1 between –d and +d (the maximum optical path difference on both 
sides of the ZPD) and 0 everywhere else. The instrument line shape (ILS) will thus be 
determined by the Fourier transform of the square box: 
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constructive: the detector receives the sum of the two beams while none of the light goes 
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between 175 nm and a few micrometers, depending on the wavelength range and the 
desired spectral resolution), creating a small offset in optical paths between the beams. 
These not being in phase anymore, the interference is not entirely constructive and the 
detector receives a bit less light while the difference goes back to the source. 
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and 579 nm); the beating between the two frequencies is obvious. Lower graph: a continuum 
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destructive: no light will be recorded on the detector, all the beam will go back to the source. 
In practice, an interferogram is obtained by first moving the mirror to a predetermined 
position away on one side of the ZPD, moved by equidistant steps to the same position on 
the other side of the ZPD. Since the incoming light source is monochromatic, the temporal 
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signal pattern received by the detector after a large number of mirror displacements, 
called an interferogram, will be sinusoidal. The original frequency, or wavelength, of the 
laser light beam is thus recovered by calculating the Fourier transform of the time-
dependent signal recorded by the detector. An incoming beam which includes two or 
more emission lines will produce a more complex interferogram, while the interferogram 
pattern of a continuum source will be mostly concentrated near the ZPD. Astrophysical 
objects, such as planetary nebula, ionized gaseous nebulae or galaxies present complex 
spectroscopic features (many emission lines produced by ionized gas superimposed on a 
stellar continuum) which produce very diverse types of interferograms. Again, a Fourier 
transform of these interferograms will recover the original spectra, in terms of both 
frequency and intensity. Fig. 2 illustrates the shape of typical interferograms from 
different artificial sources. 

3.2 Instrument line shape 
What does a spectrum obtained in such a way look like? In principle, the Fourier transform 
of a continuous, infinite interferogram will provide exactly the same frequencies and 
amplitude as the incoming beam. If the light beam to be analyzed is monochromatic, the 
interferogram will be a sine wave. Assuming that this interferogram is continuous and 
infinite, its Fourier transform will be a delta function. However, in real life, the 
interferogram is sampled at discrete, and in principle equal, intervals of optical path 
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Let’s first have a look at the effect of a finite interferogram on the instrument line shape. In 
this case, the observed interferogram can be seen as the product of an infinite interferogram 
(a sine wave for a monochromatic light source) with a square box function, g(x) = sb(x), 
having an intensity of 1 between –d and +d (the maximum optical path difference on both 
sides of the ZPD) and 0 everywhere else. The instrument line shape (ILS) will thus be 
determined by the Fourier transform of the square box: 
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Fig. 3.  FTS instrument line shape of a monochromatic source for which the interferogram 
was truncated by a limited observing time. The recovered spectrum is the convolution of a 
delta function with the sinc function, which is the Fourier transform of a square box 

The instrument line shape generated by the fact that the interferogram is bounded is thus a 
sinc function. If the observed light source is monochromatic, the recovered spectrum will be 
the convolution of a delta function F(ω) with the sinc function G(ω) (see Fig. 3): a sinc 
function centered at the wavelength of the incoming light source. Let’s now determine the 
width of this function, which dictates the spectral resolution attainable with an FTS, by 
calculating the half width at half maximum of the ILS: 
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The larger d is, the thinner the ILS becomes. Spectral resolution of an FTS is thus directly 
proportional to the total optical path difference sampled by the interferometer. The 
maximum spectral resolution attainable with an FTS is then set by the maximum 
displacement of the moving mirror within the interferometer. In an imaging FTS, other 
factors, such as image quality (defined by the instrument optics or, more likely, the seeing 
disk blurred by convection in the atmosphere) or image sampling can decrease the 
theoretical spectral resolution of the instrument. Figure 4 illustrates the typical line shape of 
a monochromatic source obtained with an imaging FTS. It is possible to modify the shape of 
the ILS a posteriori by multiplying the interferogram by a function that would attenuate the 
presence of the “side lobes” associated with the sinc function; one then talks about 
apodization. One of the most widely used apodization functions is the Gaussian, since it is 
the only function whose frequency content is the same as the function itself; the Fourier 
transform of a Gaussian is a Gaussian. The counterpart of apodizing the interferogram 
however is a loss of resolution. In our typical astronomical applications, the ILS sidelobes 
disappear in the noise after an apodization with a Gaussian that decreases the spectral 
resolution by about 25%. 
 

 
Fig. 4. Spectrum of a He-Ne laser (632 nm) obtained with the imaging FTS SpIOMM, 
showing the typical instrument line shape 

3.3 Modulation efficiency 
Even if a good transmission is achieved in the optical design, contributing positively to the 
image’s signal-to-noise ratio, it does not necessarily translate in a good performance for 
spectroscopy. In order to perform well on this aspect, a good modulation efficiency is also 
required. The performance of an FTS is thus characterized by its modulation efficiency (ME), 
i.e. the capability of the interferometer to modulate the incident light: 
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This parameter can be viewed as an analog to the grating efficiency in dispersive 
spectrographs. In the worst case scenario, where the modulation efficiency is zero, the light 
from the source is recorded on the detector but the interferogram is a straight line and no 
spectral information can be extracted from it. 
This efficiency depends on a multitude of factors, the most important being the following:  
1. The capability of the beamsplitter to separate the incident beam into two beams of equal 

intensity over the whole wavelength range (ME ∝ 4RT, where R and T refer to the 
reflectance and transmission of the beamsplitter). The modulation efficiency is however 
relatively permissive to deviation from the 50% perfect case. For example, a 60% - 40% 
R-T beamsplitter can still generate modulation efficiency near 96% while a 70% - 30% 
one would limit the performance to 84%.This is usually not a big problem over a small 
wavelength range, but it becomes a challenge if the FTS covers, for example, the entire 
visible range (from 350 to 900 nm). 

2. The surface quality of the optical components in the interferometer (mirrors and 
beamsplitter). Three conclusions are obvious from Fig. 5, where we present the 
influence of the surface quality on the ME for different wavelengths and optical 
configurations. At a given wavelength, ME is lowered by a decreased surface quality; it 
is more and more difficult to obtain a good ME as we move from the infrared to the 
ultraviolet (most FTS commercially available indeed work in the infrared); and the 
number of reflections within the interferometer plays a major role in the global ME. 
Mirrors with a surface quality of λ/20 (peak-to-valley) are commercially available for a 
reasonable price, but large λ/30 mirrors must be custom made and are therefore much 
more expensive. Moreover, even if the mirror substrate is of high enough quality, any 
error in the coating deposit or any tension caused by the mechanical parts used to 
maintain the mirror within the interferometer can ruin the initial surface figure and 
dramatically reduce the modulation efficiency, especially in the blue part of the spectral 
range. 

3. Homogeneity of the refraction index within the interferometer cavity. Any convection 
or temperature inhomogeneity in one or both arms can alter the OPD and therefore 
lower the ME, since the velocity of light depends on the refraction index of the material 
in which it travels. 

4. The mirror alignment. In order for the beams from the two arms to interfere properly, 
the two mirrors need to be very well aligned. The smallest deviation, in any direction, 
from a right angle between the two mirrors reduces the spatial coherence (interference) 
of the two beams as they recombine. Again, this effect is more obvious at small 
wavelengths. A deviation of only 1.5 microradian from perfect alignement can decrease 
the ME by up to 25% at 350 nm.  

5. Stability of the OPD during an exposure. The optical distance between the two mirrors 
must be kept constant during an exposure at a given step. An OPD jitter with a 
standard deviation of 10 nm typically reduces ME by 1 to 2%. 

The metrology and servo system play a crucial role with regard to the last two points, since 
the mirrors must be aligned with a precision of less than a microradian and their distance 
kept constant to within a few nanometers during an exposure. As we shall see later, 
monitoring the distance between the two mirrors as well as their alignment many thousand 
times per second, and a fast correction of any deviations, are required to ensure a constant, 
high modulation efficiency. 
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Fig. 5. Wavelength-dependence of an FTS’s modulation efficiency for different 
configurations and mirror quality. Peak-to-peak asperities of λ/20 and λ/30 are considered, 
as well as three mirror configurations: flat mirrors (FM; one reflection on each arm), roof-top 
mirrors (RT; two reflections), and cube corners (CC; three reflections) 

3.4 Four ports design 
In a traditional Michelson interferometer, half the light goes back to the source after it 
interferes with the other beam. But in astronomy, there is so little flux coming from distant 
nebulae and galaxies that every photon counts; moreover, returning back half of the photons 
coming from a galaxy after it had crossed millions of light-years seems absurd. A third 
factor also needs to be considered in astronomical observations: the sky transparency. Any 
change in the sky transparency during the observations, caused by thin clouds or a change 
of airmass, will affect the interferogram, introducing noise or even artefacts in the recovered 
spectrum. But since the sum of both outputs from the interferometer is, in principle, 
constant during he whole data acquisition, any fluctuation in the total signal can only be 
interpreted as a sky transparency variation and be corrected for.   
Therefore, the Michelson interferometer used in an astronomical IFTS must be designed in a 
way that allows the two half-beams to be recovered after having interfered with each other. 
Such configurations, with two output ports, are usually achieved using cube corner 
retroreflectors or cat's eye mirrors (Maillard & Simmons 1992, Boulanger et al. 2008). If one 
wants to produce an interferometer that strongly modulates the visible light down to the 
near UV, the optical surfaces located between the two beamsplitter passes must exhibit 
excellent surface figures (< λ/20) to allow a good interference of the two recombining 
wavefronts, as seen in the previous section. The two mirror options mentioned above 
complicate this task because of the additive errors of all three reflections encountered (see 
Fig. 5) in addition to optical shape consideration in the case of cat's eyes or orthogonality 
issues in the case of cube corners. The flat mirror interferometer, besides providing a better 
throughput than the others and improved wavefront accuracy, can also provide a two 
output-ports configuration when used off axis as shown on Fig. 6. There are however two 
disadvantages of using flat mirrors. First, the alignment of the two mirrors must be very 
carefully controled by a servo control system (cube corners are insensitive to slight 
misalignements); this puts serious constraints on the metrology (which measures the 
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distance between the two mirrors and their alignement) and piezo actuators which must 
respond very rapidly and accurately to any misalignement. Second, since the center of the 
interferometric pattern is not aligned with the detector’s center, the ultimate spectral 
resolution attainable by the FTS is lower than that obtained with cube corners. As we shall 
see, neither of those constraints is a show stopper for practical purposes. 
 

 
Fig. 6. Interferometer design of an of-axis imaging FTS 

3.5 An imaging FTS in the visible band 
By adding input and output optics (a group of collimating lenses before the interferometer, 
and one group of imaging lenses for each output port) to image a wide field of view and a 
multi-pixel detector such as a CCD at each output port, the standard Fourier transform 
spectrometer becomes an imaging FTS. Since most Integral Field Spectrographs used in 
astronomy today cover a small field of view (typically a few arcseconds on a side), an 
enormous advantage of the imaging FTS is its ability to cover a much wider (arcminutes) 
field. As we shall see in the next section, a large number of scientific programs benefit from 
an instrument capable of simultaneously obtaining spatially resolved, high quality spectra 
of extended (of the order of 10 arcminutes) sources. 
The basic design of the optical system surrounding the interferometer is very similar to that 
of conventional astronomical cameras and focal reducers, but with an additional constraint 
on the optics. Astronomical imagery is performed with filters which select specific 
bandpasses aimed at extracting information on the color of objects (broadband filters such as 
the SDSS u’g’r’i’z’ system, with a typical bandwidth Δ λ ~ 150 nm) or on specific emission 
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lines (narrowband filters centered, for example, on the Hα line, with a typical bandwidth Δ 
λ ~ 2 nm) to highlight the ionized gas in galaxies. These cameras usually observe one band 
at a time allowing for refocus between each of them, thereby relaxing the constraints on the 
optical design. The challenge for the optical design of an imaging FTS, which can in 
principle accept a very wide wavelength range at every single step is to satisfy the image 
quality requirement over the whole waveband throughout the field of view.  
Two more constraints on detector technology are imposed by the imaging FTS concept and 
need to be discussed because they were partly responsible for the absence of wide FOV 
imaging FTS up to recently and still drive the choice of the detector today. In order to build 
an interferogram, an exposure of the scene must be obtained at every mirror step and read 
out from the detector. In the visible range, the most efficient detector is without contest the 
charge-coupled device, or CCD. An electronic readout noise is added to the shot noise from 
the scene every time the CCD is read out. Moreover, it takes time to read an entire CCD and 
register its content on a hard disk, from a few seconds up to one minute, depending on the 
readout rate and the number of pixels. In order to minimize the « dead time » due to this 
transfer of information, the CCD readout rate ought to be very high. But the readout noise is 
proportional to the readout rate, so the two problems are linked. In the 1990’s, the largest 
CCDs had 1024 x 1024 pixels ; their readout time was around one minute and the readout 
noise was about 10 electrons. Nowadays, 2048 x 2048 pixel CCDs are common, and many of 
them are equipped with multiple amplifiers allowing the simultaneous reading of its four 
quadrants at speeds up to 1 MHz : the readout time of the entire detector is reduced to a 
couple of seconds and the readout noise is down 2 to 5 electrons. In the near future, zero-
noise EMCCDs (Daigle et al. 2009) will replace conventional CCDs for this type of 
application and will enable speed-scanning of the OPD instead of the step-scan approach; 
this will at the same time increase the signal-to-noise ratio at very low flux level and lower 
the dead time due to the CCD readout. 

4. SpIOMM, a wide-field imaging FTS for the Mont Mégantic Observatory 
In 1999, the NGST science and technology exhibition meeting was held in Hyannis, 
Massachusetts, to present and discuss, among other things, the best possible suite of 
instruments to be attached to the giant space telescope now known as the James Webb Space 
Telescope (JWST: www.jwst.nasa.gov). Three teams then proposed concepts of IFTS that 
would allow the James Webb to acquire hyperspectral images over large field of view 
(Graham 2000, Morris et al. 2000, Posselt et al. 2000). The scientific rationale and a 
preliminary technical performance study of a space-based IFTS had been published a year 
earlier (Graham et al. 1998). Although the enormous qualities of such an instrument were 
recognized by the panel of scientists and engineers who had to select the JWST instrument 
suite, the IFTS solution was not selected. One of the reasons invoqued was that an IFTS is 
competitive with a conventional spectrograph only if the number of sources in the field of 
view is large. To quote the report of the NGST ad hoc working group on the near-infrared 
spectrograph study (Huchra et al. 1999) about IFTS: 
 

In addition to preserving the diffraction limit of the telescope, this technique allows unbiased 
spectroscopy since there is no preselection of objects. FTS instruments trade their spatial 
multiplex gain against the spectral multiplex advantage of grating instruments. Thus the 
richness of the observation scene largely dictates the advantage of an FTS against dispersive 
designs. The FTS is most efficient for low spectral resolution of extremely crowded fields. 
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would allow the James Webb to acquire hyperspectral images over large field of view 
(Graham 2000, Morris et al. 2000, Posselt et al. 2000). The scientific rationale and a 
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In addition to preserving the diffraction limit of the telescope, this technique allows unbiased 
spectroscopy since there is no preselection of objects. FTS instruments trade their spatial 
multiplex gain against the spectral multiplex advantage of grating instruments. Thus the 
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We would add to the last sentence "or at moderate to high resolution, over selected spectral 
wavebands, of extended sources". Indeed, a dispersive spectrograph is more efficient than 
an FTS for the observation of single sources. Multi-object dispersive spectrographs are also 
more efficient than IFTS if only a limited number of sources (say, a hundred) are spread 
over a large area of the sky. This was indeed one of the arguments mentioned to reject IFTS 
for the JWST: since one of the most important goals of this telescope is to observe the faint, 
distant Universe for cosmological studies, the number density of sources (galaxies) bright 
enough for spectroscopic studies was not expected to be large enough to justify the use of 
IFTS. However, an IFTS becomes the instrument of choice if the target spans a fair fraction 
of the entire field of view, which is the case for Galactic nebulae and nearby galaxies. This 
led us to our desire to design and build SpIOMM. 

4.1 Science case and science-based requirements 
In order to demonstrate the capabilities of a wide-field imaging FTS working in the visible 
band, our group has designed and built SpIOMM (Spectromètre Imageur de l’Observatoire 
du Mont Mégantic) at Université Laval in close collaboration with ABB-Bomem, a Québec 
City-based company specialized in the development and manufacturing of commercial FTS. 
The 1.6-m telescope of the Mont Mégantic Observatory (OMM), jointly operated by 
Université Laval and Université de Montréal since 1978, is perfectly suited to train highly 
qualified personnel such as M. Sc. and Ph. D. students, postdoctoral researchers and 
engineers, but is also a perfect test bed to design, build and use innovative astronomical 
instruments such as polarimeters (Manset & Bastien 2002), infrared cameras and 
spectrographs (Artigau et al. 2009), low-noise detectors for F-P systems (Daigle et al. 2009) as 
well as imaging FTS such as SpIOMM.  
The primary objective of any astronomical instrument development being to address a 
science case, the development of the IFTS at OMM was fed by the desire to acquire complete 
data sets to feed existing science projects already ongoing at Université Laval on the 
interstellar medium, late stages of stellar evolution, star formation and galaxy evolution and 
which could not be obtained with the current instrument suite of the observatory. The 
general theme of “cosmic recycling” was our motivation since the beginning: how do 
chemical elements such as oxygen, carbon or nitrogen, which are produced by 
nucleosynthesis in stellar cores, get transferred via stellar winds and supernova explosions 
to the interstellar medium where they “pollute” giant molecular clouds which eventually 
contract under their own gravity and form new generations of stars, surrounded by planets 
where life can eventually appear and evolve? How does this process occur in our own 
galaxy, the Milky way, and in other galaxies? Can we trace the past evolution of galaxies by 
measuring the spatial distribution of their heavy elements? Obtaining spatially resolved 
spectra of extended objects such as ionized nebulae, supernova remnants, planetary nebulae 
and nearby galaxies is a prerequisite to answer these questions and an instrument such as a 
wide-field imaging Fourier transform spectrometer could provide some answers. 
The work started by first identifying the measurement aspect that could benefit the most 
from the IFTS concept. In this respect the instrument development deviated early on from 
the JWST instrument concepts and other past IFTS development (such as BEAR) due to the 
waveband of interest for our particular research: the visible range (from 350 nm to 850 nm) 
is very rich in diagnostic emission lines allowing us to determine the physical characteristics 
of ionized nebulae, such as their chemical composition, density or temperature. Theoretical 
models abound which relate emission line ratios in this wavelength range to the properties 
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of nebulae and their ionizing stars (Kewley & Dopita 2002). Moreover, spectra of small 
sections of extended objects are available for a direct comparison with those obtained with 
an IFTS. But choosing this wavelength range has its drawbacks from an instrumental point 
of view, as we have seen in section 3.3. It can easily be understood that controlling 
interference of light mechanically is better achieved at longer wavelengths at which a given 
fraction of a wave corresponds to a larger displacement hence easier to detect and correct. 
As such, FTS users have traditionally had more success when operating in the IR and far-IR 
although usage down to far-UV are documented in the literature in other fields of science. 
Considering the advances in nanometer level precision actuators, high stability metrology 
lasers and electronics speed, new tools are now available to tackle challenge of the past. 
Most importantly, the expertise with laboratory demonstration instruments at ABB Bomem 
and the NGST breadboard (Wurtz et al. 2002a) on which members of our team had closely 
worked gave us a sufficient level of confidence that we could succeed in the visible range.  
From our point of view, the niche of an astronomical IFTS clearly sits in the wide field 
coverage, moderate spectral resolution (R ~ 2000 -10 000) and the large waveband, although 
it is interesting to note that the FTS was classically known for its ability to obtain very high 
spectral resolution. Using a FTS in an imaging configuration typically does not affect its 
spectral potential, but the faintness of the target diffuse nebulae make the high resolution 
measurement difficult to reach in a reasonable time. However, one can still exploit the high 
spectral resolution capability of an IFTS by reducing its waveband in order to proportionally 
reduce the number of exposures required to obtain a given spectral resolution.  
A set of science-based requirements were established as a starting point to design the 
instrument: 
• Field of view - Wide field, of the order 10 arcminutes or more; this corresponds to the 

size of some of the largest Galactic planetary nebulae and to a fair number of nearby 
galaxies of interest, up to the Virgo cluster. 

• Wavelength range - Two important diagnostic emission lines in the spectra of ionized 
nebula define the useful spectral range: [OII] 372.7 nm in the near ultraviolet and [SII] 
673.1 nm in the red. Allowing for some redshift due to the expansion of the Universe, 
which affect galaxies or group of galaxies within reach of the OMM, a lower limit to the 
red was set to 750 nm. 

• Minimal spectral resolution – Should be high enough to separate Hα (656.3 nm) from 
the [NII] (654.8, 658.4 nm) doublet, as well as both members of the [SII] 671.7, 673.1 nm 
doublet: R =  λ/Δλ > 500. Kinematical study of expanding nebulae and galaxies require 
a higher value of R ~ 2000. 

A trade study was then performed to define the best design that would meet these 
requirements (Grandmont 2007), which led to the current design, described in the next 
section, and construction of SpIOMM in 2002 – 2004. Details about the design and tests of 
SpIOMM can be found in a series of SPIE papers (Grandmont et al. 2003, Bernier et al. 2006, 
Bernier et al. 2008). 

4.2 Description of the instrument 
SpIOMM is capable of obtaining spectra in selected bands of the visible spectrum (from 350 
to 850 nm) of every light source in a 12 arcminute (circular) field of view of the OMM 
telescope; a 12’ x 12’ FOV is actually recorded on the detector but optical abberations are 
important in the corners of the field. The spectral resolution is variable, depending on the 
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need of the observer, from R = 1 (broad-band image) to R = 25 000. The spatial resolution is 
limited by the seeing disk (atmosphere blur), which is typically 1 – 1.5 arcsecond. The dual 
output design of SpIOMM (see below and Fig. 6) ensures, in principle, that virtually every 
photon collected by the telescope reaches the detectors and is analyzed. We have however 
worked until now, for budgetary reasons, with only one detector, a Princeton Instrument 
CCD camera with an array of 1340 x 1300 20 μm-pixels (corresponding to 0.55 arcsecond on 
the sky). A data cube thus results in 1.7 million spectra. But we recently acquired a second 
CCD, an Apogee Alta 2048 x 2048, 15 μm-pixels that will collect the flux from the second 
output port.  SpIOMM is unique in the world, offering the largest field of view of any 
integral field spectrograph. After five years of research and development, we have 
demonstrated that the concept behind SpIOMM is sound and viable, and that such an 
instrument is capable of producing high quality hyperspectral data cubes over a very 
extended field of view.  
The design (shown on Fig. 6) is based on the Michelson interferometer with a 30 degree 
incidence angle on the beamsplitter-compensator assembly, which minimizes their circular 
size. The use of two plane mirrors reduces the number of optical surfaces encountered by 
the science beam from the telescope output to the camera and therefore grants better 
throughput. Also, the instrument configuration places the incoming beam 8 degrees off–axis 
perpendicular to the optical interferometer plane, which allows access to the two output 
ports. The interferometer uses a dynamic alignment control (metrology laser and 
piezoelectric actuators) and step-scan operation. The robustness of an interferometer 
operating in the visible range is of paramount importance. FTS are known to serve as good 
microphones, seismographs or even thermometer, since they are extremely sensitive to 
vibrations and temperature changes. The stabilization of a moving mirror at a small fraction 
of the shortest wavelength accepted translates in this case to nanometer level precision. Any 
change in temperature, gravity orientation or vibration is at this scale bound to have a 
noticeable effect on a macroscopic scan mechanism. Hence much care must be taken in 
either passively reject some of these perturbations through a stiff and athermal design or 
actively through a well tuned servo control system. SpIOMM’s moving mirror is mounted 
on a parallelogram porchswing-type mechanism which offers frictionless displacement. It is 
actuated by a piezo-based stepper motor mounted in series with a small range high-
frequency response piezo (the OPD piezo). The stepper actuator can travel a Maximum Path 
Difference of 1 cm, corresponding to an average spectral resolution of R ~ 25 000. In practice 
however, we have never pushed SpIOMM to this resolution limit. The ensemble allows a 
high stiffness (10 N/μm) in order to ensure good passive stability of the Optical Path 
Difference (OPD). A dynamic alignment system using piezoelectric (DA piezo) combined 
with the mirror displacement mechanism is required for precise positioning and to evenly 
sample the interferogram. Also, this maintains the mirror position and alignment subject to 
gravity, vibration and thermal perturbation during data acquisition. The interferogram is 
sampled at a step size determined by the Nyquist criterion. In order to measure the 
wavelength modulation at 350nm, the scan step is 175 nm. When it is set to a value larger 
than 175nm, it has to be used with an appropriate filter for the desired band.  
The moving mirror position and alignment are detected by a metrology system and 
acquired by a servo-computer at a rate of 8 MHz. This feedback is given by an infrared 1550 
nm laser beam expanded before passing through the interferometer. We take advantage of 
the fact that the telescope’s primary mirror has a hole in its center : the image of the science 
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beam in the interferometer therefore shows a hole where the metrology beam is sent. The 
metrology and science beams are therefore completely separated, both physically and in the 
frequency domain (since the CCD is completely insensitive to the laser’s wavelength). The 
metrology beam passes through the same optical path as the science beam and strikes the 
center of the fixed mirror, where a thin circular layer of glass has been deposited. This layer 
acts as a wave-retarder which causes a retardation of λ/8 at the metrology source 
wavelength (1550nm) so that after the reflection on the mirror, the metrology beam is 
retarded by λ/4 since it passes twice in the layer. The diameter of the wave-retarder layer is 
smaller than that of the metrology beam, so that a small misalignement of the two mirrors 
can be measured (Fig. 7). The metrology beam is then recorded orthogonally by two 2x16 
pixel detector arrays. Once the correction values are calculated, commands are sent back to 
the dynamic alignment piezos which correct the misalignement. 
 

 
Fig. 7. Design of SpIOMM's metrology system consisting in the detection of a flat fringe 
pattern (of the IR source) comprising a smaller circular region of λ/4 retardation created by 
a wave-retarder layer placed at the center of the fixed mirror (a). The flat fringe pattern is 
recorded by two detectors orthogonally placed at interferometer output (b). The signal of a 
pixel located in the inner region of retardation of the metrology beam will be delayed by π/2 
compared to the signal of a pixel outside (c). For a specific OPD, (d) shows the shape of the 
aligned intensity pattern read by one of the detectors. Any variation from the "perfect" 
shape shown in (d) causes the piezoelectric actuators to realign the mirror 

4.3 Tests and problems encountered 
SpIOMM was assembled in the laboratory in early 2004 and the first tests were extremely 
encouraging: high resolution spectra of laser sources were obtained on a regular basis, and the 
instrument line shape was exactly like it should (Fig. 8). The laboratory environment is ideal to 



 Fourier Transforms - New Analytical Approaches and FTIR Strategies 

 

508 

need of the observer, from R = 1 (broad-band image) to R = 25 000. The spatial resolution is 
limited by the seeing disk (atmosphere blur), which is typically 1 – 1.5 arcsecond. The dual 
output design of SpIOMM (see below and Fig. 6) ensures, in principle, that virtually every 
photon collected by the telescope reaches the detectors and is analyzed. We have however 
worked until now, for budgetary reasons, with only one detector, a Princeton Instrument 
CCD camera with an array of 1340 x 1300 20 μm-pixels (corresponding to 0.55 arcsecond on 
the sky). A data cube thus results in 1.7 million spectra. But we recently acquired a second 
CCD, an Apogee Alta 2048 x 2048, 15 μm-pixels that will collect the flux from the second 
output port.  SpIOMM is unique in the world, offering the largest field of view of any 
integral field spectrograph. After five years of research and development, we have 
demonstrated that the concept behind SpIOMM is sound and viable, and that such an 
instrument is capable of producing high quality hyperspectral data cubes over a very 
extended field of view.  
The design (shown on Fig. 6) is based on the Michelson interferometer with a 30 degree 
incidence angle on the beamsplitter-compensator assembly, which minimizes their circular 
size. The use of two plane mirrors reduces the number of optical surfaces encountered by 
the science beam from the telescope output to the camera and therefore grants better 
throughput. Also, the instrument configuration places the incoming beam 8 degrees off–axis 
perpendicular to the optical interferometer plane, which allows access to the two output 
ports. The interferometer uses a dynamic alignment control (metrology laser and 
piezoelectric actuators) and step-scan operation. The robustness of an interferometer 
operating in the visible range is of paramount importance. FTS are known to serve as good 
microphones, seismographs or even thermometer, since they are extremely sensitive to 
vibrations and temperature changes. The stabilization of a moving mirror at a small fraction 
of the shortest wavelength accepted translates in this case to nanometer level precision. Any 
change in temperature, gravity orientation or vibration is at this scale bound to have a 
noticeable effect on a macroscopic scan mechanism. Hence much care must be taken in 
either passively reject some of these perturbations through a stiff and athermal design or 
actively through a well tuned servo control system. SpIOMM’s moving mirror is mounted 
on a parallelogram porchswing-type mechanism which offers frictionless displacement. It is 
actuated by a piezo-based stepper motor mounted in series with a small range high-
frequency response piezo (the OPD piezo). The stepper actuator can travel a Maximum Path 
Difference of 1 cm, corresponding to an average spectral resolution of R ~ 25 000. In practice 
however, we have never pushed SpIOMM to this resolution limit. The ensemble allows a 
high stiffness (10 N/μm) in order to ensure good passive stability of the Optical Path 
Difference (OPD). A dynamic alignment system using piezoelectric (DA piezo) combined 
with the mirror displacement mechanism is required for precise positioning and to evenly 
sample the interferogram. Also, this maintains the mirror position and alignment subject to 
gravity, vibration and thermal perturbation during data acquisition. The interferogram is 
sampled at a step size determined by the Nyquist criterion. In order to measure the 
wavelength modulation at 350nm, the scan step is 175 nm. When it is set to a value larger 
than 175nm, it has to be used with an appropriate filter for the desired band.  
The moving mirror position and alignment are detected by a metrology system and 
acquired by a servo-computer at a rate of 8 MHz. This feedback is given by an infrared 1550 
nm laser beam expanded before passing through the interferometer. We take advantage of 
the fact that the telescope’s primary mirror has a hole in its center : the image of the science 

Imaging Fourier Transform Spectroscopy for Astronomy 

 

509 

beam in the interferometer therefore shows a hole where the metrology beam is sent. The 
metrology and science beams are therefore completely separated, both physically and in the 
frequency domain (since the CCD is completely insensitive to the laser’s wavelength). The 
metrology beam passes through the same optical path as the science beam and strikes the 
center of the fixed mirror, where a thin circular layer of glass has been deposited. This layer 
acts as a wave-retarder which causes a retardation of λ/8 at the metrology source 
wavelength (1550nm) so that after the reflection on the mirror, the metrology beam is 
retarded by λ/4 since it passes twice in the layer. The diameter of the wave-retarder layer is 
smaller than that of the metrology beam, so that a small misalignement of the two mirrors 
can be measured (Fig. 7). The metrology beam is then recorded orthogonally by two 2x16 
pixel detector arrays. Once the correction values are calculated, commands are sent back to 
the dynamic alignment piezos which correct the misalignement. 
 

 
Fig. 7. Design of SpIOMM's metrology system consisting in the detection of a flat fringe 
pattern (of the IR source) comprising a smaller circular region of λ/4 retardation created by 
a wave-retarder layer placed at the center of the fixed mirror (a). The flat fringe pattern is 
recorded by two detectors orthogonally placed at interferometer output (b). The signal of a 
pixel located in the inner region of retardation of the metrology beam will be delayed by π/2 
compared to the signal of a pixel outside (c). For a specific OPD, (d) shows the shape of the 
aligned intensity pattern read by one of the detectors. Any variation from the "perfect" 
shape shown in (d) causes the piezoelectric actuators to realign the mirror 

4.3 Tests and problems encountered 
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test an instrument such as SpIOMM: the temperature is constant to within a degree, there is no 
wind nor outside vibrations and the gravity vector is constant during data acquisition.  
 

 
Fig. 8. Example of data obtained in the laboratory. Two light sources (a HeNe laser at 632 nm 
and a LED at 375 nm) are sent to an integration sphere which is observed with SpIOMM using 
exactly the same technique as for any astronomical source. The upper left image shows the 
fringe pattern recorded at a given OPD by the CCD. Notice that the interference pattern is not 
centered on the CCD; this is caused by the off-axis approach we have chosen and which is 
shown in Fig. 6. The central part of the interferogram of one pixel, near the ZPD, is shown on 
the upper right image (the entire interferogram was sampled with 4750 points). A Fourier 
transform of this interferogram then recovers the spectrum of the two sources 

Happy with the lab results, we installed SpIOMM at the telescope in early 2004. But a 
telescope environment is very harsh for an interferometer. Yearly temperatures vary 
between +25oC and -35oC, but more importantly excursions of 5 degrees are common during 
a single data cube observation. Windy nights are frequent and gusts can move the telescope 
abruptly. The Earth rotates, so does the telescope in the opposite direction to follow the 
apparent movement of the targets; the orientation of the gravity vector therefore varies 
constantly with respect to all components of the instrument, including the interferometer’s 
mirrors. The telescope’s motors and the air pump that supports the telescope’s primary 
mirror also create vibrations that are transmitted to the instrument. All of these hostile 
environmental factors impose very severe and stringent constraints on the servo system to 
maintain the mirror stability. The original servo loop ran at 2.5 kHz, which was sufficient in 
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the lab to correct any misalignment. It became however obvious that it was not enough to 
maintain a proper stability at the telescope. The modulation efficiency was not optimal (70 - 
75% at 632 nm) and highly variable (excursions of 10% were frequent) during data 
acquisition. This  introduced noise and spurious artifacts in the spectra. The original 
metrology and servo system (described by Bernier et al. 2006, 2008) was then replaced by the 
one described above with great success. Science data cubes have been obtained on a regular 
basis since 2007, with a very stable modulation efficiency very close to the theoretical limit 
of 85% at 632 nm. Fig. 9 schematically describes the data acquisition of a typical science 
interferogram and its transformation to a useable data cube. Data processing is an important 
part of the entire process and is described in more details in the next section. 
 

 

 
Fig. 9. Data acquisition with SpIOMM (a) By scanning the Optical Path Difference (OPD) of 
the interferometer and taking images at every step, one gets a datacube composed of one 
interferogram for every pixel. (b) For a given pixel, the recorded intensity varies as a 
function of the OPD with a pattern that depends on the spectral content of the source; for 
example, a monochromatic laser beam would produce a sinusoidal pattern. A Fourier 
transform of the signal produces a spectrum for every pixel in the image. (c) After Fourier 
transforming every interferogram, one gets a spectral datacube from which monochromatic 
images corresponding to the emission lines of interest are extracted. The data shown are 
extracted from a data cube of the supernova remnant NGC 6992 
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wind nor outside vibrations and the gravity vector is constant during data acquisition.  
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the lab to correct any misalignment. It became however obvious that it was not enough to 
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images corresponding to the emission lines of interest are extracted. The data shown are 
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4.4 Data processing 
As with every imaging system using CCD detectors, data processing starts with a series of 
basic corrections such as bias removal (an electronic signal inherent to the CCD) and 
flatfield corrections (to correct for the non-flatness of the optical transmission or pixel-to-
pixel sensitivity variations). A datacube acquisistion usually takes between one and four 
hours depending of the spectral parameters and the object's surface brightness. Sky 
transmission sometimes fluctuates over that period and affects the signal of the 
interferogram; this is due to the passage of thin clouds or simply the change of airmass. It 
can add low and high frequency contributions to the spectra. To avoid such artifacts, we 
want to normalize the baseline signal of the interferogram. To do so, we measure the 
photometric variations of the at least a dozen stars in the FOV. The interferogram signal of a 
polychromatic source like a star (almost a perfect blackbody!) modulates only at the ZPD. 
On either side of the ZPD, the signal intensity is supposed to be flat unless the sky 
transmission fluctuates (clouds, airmass, etc). Therefore we determine the mean sky 
transmission signal from the interferograms of a list of stars. Using only one CCD as we 
have done so far is not an ideal situation because sky transparency fluctuations cannot be 
completele corrected for, especially around the ZPD. The implemetation of the second 
output port in 2011 should solve this problem and significantly improve the signal-to-noise 
ratio of the spectra. Because of flexure within the instrument or between the telescope's 
guiding system and the instrument during the entire acquisition (the source can be at the 
zenith at the beginning and 45 degrees from the horizon at the end), the images are not 
perfectly aligned with each other. Typical shifts of 1 to 3 pixels in both directions are 
common between the first and last image of an interferogram. The centroid of a dozen stars 
scattered across the field is then measured in all images, which are then realigned 
accordingly with a precision of a tenth of a pixel. Finaly, CCDs are very sensitive to cosmic 
ray hits, which usually affect a few pixels in each image; they are corrected for by comparing 
signals from adjacent images. 
Before transforming the interferogram cube into a hyperspectral cube (x, y, λ) we must 
apply some operations on the interferogram signal. First, the pre-processed 
interferogram should have a null mean in order to have its extremities values 
approaching zero. Therefore, we remove the mean value to each interferogram. We then 
multiply the interferogram with an apodization function in order to minimize the side 
lobes in the spectral lines created by the truncation of the signal (finite number of points; 
see section 3.2). We have tested some apodization windows with our data to find the best 
function to minimize the side lobes in the spectrum without degrading the spectral 
resolution too much. The gaussian function provides the best results. Finally, a zero-
filling operation is performed on the interferogram in order to increase the number of 
points up to the next higher power of 2. This is useful for further spectral interpolation 
and for a faster processing discrete Fourier transforms. We then apply the discrete 
Fourier transform to each processed interferogram of the datacube (up to 1.7 million) in 
order to obtain a datacube of spectra. In parallel, we compute the spectral axis scale from 
the datacube sampling parameters and we interpolate the total number of points on a 
graduation in nanometers. This rescaling and interpolating operation takes also in 
account a calibration dataset that corrects for off-axis contributions on the whole FOV: an 
interferogram of a He-Ne laser obtained at high resolution during the same observing 
run. 
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5. Science results with SpIOMM 
While the number of scientific applications of an imaging FTS is potentially very large, our 
group has focused on the interstellar medium of our own galaxy, the Milky way, and nearby 
spiral galaxies. A meaningful link between local heavy element enrichment and the global 
chemical evolution of galaxies can only be established by detailed studies of individual 
wind-blown bubbles in our own galaxy. Winds of evolved stars, and their surrounding 
bubbles (planetary nebulae, Luminous Blue Variables and Wolf-Rayet ejecta, supernova 
remnants) are known to be globally enriched with products of nucleosynthesis. While 
planetary nebulae are ejected by low-mass stars, with slow (20-30 km/s) winds, LBVs and 
WRs are the late evolutionary stages of the most massive stars with wind velocities of 
hundreds to thousands of km/s. A complete survey of abundance, density, temperature and 
kinematic measurements in nebulae surrounding individual evolved stars and ionizing 
clusters, looking for inhomogeneities in the distribution of processed material (primarily 
nitrogen and oxygen), which has never been undertaken because it requires wide-field 
spectroscopic mapping, will provide firm grounds for the interpretation of global galactic 
abundance studies. 
In particular, we have obtained data cubes of planetary nebulae (the envelope of low-mass 
stars ejected at the end of their life), Wolf-Rayet bubbles (cavities created by the interaction 
of very massive stars with their surrounding interstellar medium) and supernova remnants, 
which are the result of the explosion of the most massive stars. We have also targeted 
nearby spiral galaxies. While the observations could be done without any filter, thereby 
covering the entire visible range (from 350 nm to 850 nm), we take advantage of the fact that 
our prefered targets emit most of their flux in a series of emission lines clustered around 500 
nm and 660 nm (rest wavelength). The observations are therefore performed in two steps, 
with a blue (450 – 520 nm) and a red (650 – 680 nm) filter to cover the most intense and 
diagnostic-rich emission lines. The use of filters also significantly increases the contrast 
between the targets (nebulae) and the underlying continuum sources (stars) and 
dramatically reduces the background sky intensity, especially when the Moon is up in the 
sky. The most important criterium to define the spectral resolution is the capacity to 
unambiguously separate the lines from the [SII] doublet at 671.7 nm and 673.1 nm (whose 
ratio is a good indicator of the gas electron density). Such a resolution also ensures a clear 
separation of the [NII] doublet (654.8, 658.4 nm) from the strong Hα line at 656.3 nm. Such a 
resolution is obtained in the red filter with 325 steps. The lines full width at half maximum 
corresponds to a velocity of ~ 130 km/s, but the centroid of each line can be determined 
with a precision of about 10 – 20 km/s, depending on the line strength, therefore allowing 
kinematical analysis of nebulae and rotation curves of galaxies. Exposure times vary from 15 
seconds per step for the observations of bright nebulae in the red filter to 90 seconds per 
step for the observations of galaxies in the blue filter. Indeed, a few factors contribute to the 
difficulty of acquiring blue data : emission lines are generally more intense in the red ; 
absorption by interstellar dust and the Earth’s atmosphere is much more efficient in the 
blue ; the global throughput of the instrument but especially its modulation efficiency 
dramatically decreases from the red to the blue end. To the exposure time, one must add the 
« dead time » caused by the CCD readout and the mirror displacement and stabilization 
time (a total of 7 seconds per step). During observing runs in 2007 – 2010, we have obtained 
more than 60 datacubes of galactic HII regions, planetary nebulae, Wolf-Rayet ring nebulae, 
supernova remnants, nearby spiral galaxies and groups of interacting galaxies. 
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5.1 Nebulae around evolved stars 
Planetary nebulae are the remains of the outer envelope of low-mass stars like the Sun 
ejected during the late stages of their evolution. They are chemically enriched with the 
products of stellar nucleosynthesis and expand at relatively low velocities (~ 50 – 100 km/s). 
The planetary nebula NGC 6853 (M27) was one of the first astronomical targets of SpIOMM, 
because of its large size, high surface brightness brightness, and because it has been the 
object of numerous studies, thereby allowing a direct comparison with previous 
observations with classical techniques. Figure 10 highlights some of the data extracted from 
the blue and red cubes of M27. While images of this objects had been obtained before at 
different wavelengths, and long-slit spectra of a tiny fraction of the nebula been analyzed, 
SpIOMM's data are the first to show spatialy resolved spectra of the entire nebula. In 
particular, the very high contrast possible by a careful extraction of the images 
corresponding to particular wavelengths in the data cube allow us to detect very faint 
structures in the outskirts of the nebula, particularly in the [NII] emission line. This line is 
particularly difficult to isolate with interference filter imagery because it is very close to the 
bright Hα line. Moreover, since one spectrum was obtained for every pixel on the scene, we 
were able to obtain a very detailed diagnostic diagram based on two line ratios. A detailed 
physical analysis of these data is under way. 
 

   
Fig. 10.  (left) Diagnostic diagram of the planetary nebula M27; each point represents line 
ratios for a single 1.1 arcsecond pixel from the data cube. (right) Images of M27 in different 
emission lines, from the same data cube, showing very different morphologies. The [NII] 
658.4 / Hα 656.3 line ratio map (lower right panel) displays unusually large values, 
characteristic of shocks, at the outskirts of the inner bubble, as well as the periphery. The 
identification of the individual points on the diagnostic diagram with precise location on the 
image provides important constraints for the modelisation of the nebula 

5.2 Supernova remnants 
Extended galactic supernova remnants were also prime targets for SpIOMM. The most 
massive stars in the universe end their life as catastrophic events. When the nuclear fuel has 
been entirely consumed by thermonuclear reactions, the core of the star is composed almost 
exclusively of iron and nickel. The outer envelope of the star collapses, bounces back on the 
dense nucleus and is then expelled at velocities of ~ 15 000 km/s ; this is called a supernova. 
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The rapidly expanding bubble of chemicaly enriched material has a profound impact on its 
surrounding by injecting huge amounts of kinetic energy as well as heavy elements in the 
interstellar medium. A classic example of such an interaction is the Cygnus Loop, a 15 000 
year-old supernova remnant spanning many degrees in the sky. A tiny fraction of this object 
has been mapped with the camera WFPC2 on the Hubble Space Telescope to characterize the 
motion, structure and dynamical scale of the blast wave currently encountering the 
surrounding medium, in the northeastern part of the nebula (Blair et al. 2005). We have 
begun a complete mapping of the Cygnus Loop with SpIOMM is order to characterize this 
important object in its entirety. Fig. 11 depicts some characteristics of a single red datacube, 
showing the unusually strong [SII] lines. This cube illustrates that SpIOMM can be used at  
 

   

   
Fig. 11. Example of science results obtained with a single data cube of a section of NGC 
6992, an old supernova remnant in the Milky Way, obtained with SpIOMM. The frames are 
12 arcminutes on a side and display 435 000 pixels.  (Upper left) - Doppler map from the 
[NII] 654.8 nm and 658.4 nm, Hα 656.3 nm, [SII] 671.7 nm and 673.1 nm emission lines; 
velocities vary between -20 km/s and + 30 km/s, the blue filaments approaching us and the 
red ones receiding from us. (Upper right) [NII]/Hα line ratio; Hα is orange and [NII] blue. 
(Lower left) - Electron density of the gas for the same region, based on the ratio of the 
[SII] 671.6 and [SII] 673.1 nm lines, assuming an average temperature of 8 500K. (Lower 
right) Spectra of two filaments (5 x 5 pixel area each) with different Doppler shifts 
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the same time as an imager with a set of “perfect” narrow-band filters (note in the lower 
right panel of Fig. 11 how well separated all the emission lines are from their neighbors) as 
well as a medium-resolution, very-wide field spectrograph. 
The case of another, much younger supernova remnant, M1 (also known as the Crab 
nebula), is particularly interesting as it illustrates the full power of SpIOMM. M1 is a very 
young objects in Galactic terms, since it is the result of an explosion visible from Earth in 
1054 AD. The initial explosion propelled the star's outer envelope at more than 10 000 k/s, 
but this movement was slowed down by the material surrounding the star. Nevertheless, 
the gas is still globally expanding today at velocities of up to ~ 1400 km/s, causing Doppler 
shifts of up to 3 nm. Moreover, because of the presence of shocks, the forbidden lines of 
[NII] 654.8 and 658.4, as well as the [SII] 671.7, 3.1 doublet are almost as strong as the 
(usually strongest) H. Therefore, up to 10 emission lines can be seen in regions where an 
approaching and a receding filament are superimposed on the line of sight. Charlebois et al. 
(2010) presented a detailed analysis of the M1 data cubes, but we reproduce in Fig. 12 some 
of the results. M1 has been partially mapped before with a classical, long-slit spectrograph; 
only a small fraction of the nebula could be mapped this way, but we have used these data 
to demonstrate that the spectra obtained with SpIOMM showed exacty the same features as 
those obtained with classical spectroscopy, but with a 100% filling factor over the entire 
nebula. Our data allowed us to obtain a comple tridimensional view of this intriguing object, 
as well as to identify a notable asymetric evolution of the oposite lobes of the nebula. 
 

     
Fig. 12. A Doppler image of the Crab nebula obtained with SpIOMM as determined from the 
[OIII] 500.7 nm emission line, showing the rapid expansion of the filaments. On the right, 
the spectrum of a pixel where two filaments are superimposed. We see here two sets of 
lines, shifted by the Doppler effect 

5.3 Galaxies 
Powerful constraints on models of galactic chemical evolution, on the star formation 
histories of galaxies and on the dynamical processes that transform them can be derived 
from accurate and homogeneous determinations of chemical abundances in individual 
gaseous nebulae, the distribution of their stellar populations in terms of age and metallicity, 
and the gaseous and stellar kinematics. So far, systematic studies between chemical 
properties (central abundance or radial abundance gradient), and other parameters have 
been conducted for a small sample of spiral galaxies. The effects of the morphological type, 
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the presence of bars, and environment have all been studied to some extent. Moreover, most 
studies so far, performed with slit spectrographs, have concentrated on global properties of 
stellar ejecta or abundance gradients in galaxies, thereby neglecting possible small-scale 
variations caused by multi-phase stellar wind (individual stars) or localized enrichment by 
starburst clusters in peculiar evolutionary stages. SpIOMM is an ideal instrument to conduct 
a systematic study of abundances in nearby galaxies and thus easily detect evidence for 
small-scale enrichments and establish conditions under which they take place. The 
possibility to study the multiple emission line ratios and kinematics for hundreds of HII 
regions (nebulae ionized by massive stars) simultaneously in each individual galaxy is an 
excellent project for an IFTS. We have targetted a dozen galaxies so far, and show in Fig. 13  
 

  

 
Fig. 13.  (Upper left)  - Velocity diagram of the spiral galaxy M51, based on the centroid of 
the Hα 656.3 nm emission line from an SpIOMM data cube. (Upper right) - Image of the 
[NII] 658.4 / Hα 656.3 line ratio from the same cube. Notice the large ratio in the core of the 
galaxy, characteristic of shocks driven by the central Active Galactic Nucleus. (Lower left) A 
comparison between the distributions of the Hα flux (characteristic of ~ 10 Myr old stellar 
populations, obtained from the SpIOMM data cube, in orange), and the ultraviolet flux 
(characteristic of ~ 100 Myr old stars, obtained with the Galex space telescope, in blue). The 
lag between the two stellar populations is indicative of the rotation velocity of the spiral 
wave pattern in the galaxy. (Lower right) Spectrum of one HII region from the SpIOMM 
data cube 
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The case of another, much younger supernova remnant, M1 (also known as the Crab 
nebula), is particularly interesting as it illustrates the full power of SpIOMM. M1 is a very 
young objects in Galactic terms, since it is the result of an explosion visible from Earth in 
1054 AD. The initial explosion propelled the star's outer envelope at more than 10 000 k/s, 
but this movement was slowed down by the material surrounding the star. Nevertheless, 
the gas is still globally expanding today at velocities of up to ~ 1400 km/s, causing Doppler 
shifts of up to 3 nm. Moreover, because of the presence of shocks, the forbidden lines of 
[NII] 654.8 and 658.4, as well as the [SII] 671.7, 3.1 doublet are almost as strong as the 
(usually strongest) H. Therefore, up to 10 emission lines can be seen in regions where an 
approaching and a receding filament are superimposed on the line of sight. Charlebois et al. 
(2010) presented a detailed analysis of the M1 data cubes, but we reproduce in Fig. 12 some 
of the results. M1 has been partially mapped before with a classical, long-slit spectrograph; 
only a small fraction of the nebula could be mapped this way, but we have used these data 
to demonstrate that the spectra obtained with SpIOMM showed exacty the same features as 
those obtained with classical spectroscopy, but with a 100% filling factor over the entire 
nebula. Our data allowed us to obtain a comple tridimensional view of this intriguing object, 
as well as to identify a notable asymetric evolution of the oposite lobes of the nebula. 
 

     
Fig. 12. A Doppler image of the Crab nebula obtained with SpIOMM as determined from the 
[OIII] 500.7 nm emission line, showing the rapid expansion of the filaments. On the right, 
the spectrum of a pixel where two filaments are superimposed. We see here two sets of 
lines, shifted by the Doppler effect 

5.3 Galaxies 
Powerful constraints on models of galactic chemical evolution, on the star formation 
histories of galaxies and on the dynamical processes that transform them can be derived 
from accurate and homogeneous determinations of chemical abundances in individual 
gaseous nebulae, the distribution of their stellar populations in terms of age and metallicity, 
and the gaseous and stellar kinematics. So far, systematic studies between chemical 
properties (central abundance or radial abundance gradient), and other parameters have 
been conducted for a small sample of spiral galaxies. The effects of the morphological type, 
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the presence of bars, and environment have all been studied to some extent. Moreover, most 
studies so far, performed with slit spectrographs, have concentrated on global properties of 
stellar ejecta or abundance gradients in galaxies, thereby neglecting possible small-scale 
variations caused by multi-phase stellar wind (individual stars) or localized enrichment by 
starburst clusters in peculiar evolutionary stages. SpIOMM is an ideal instrument to conduct 
a systematic study of abundances in nearby galaxies and thus easily detect evidence for 
small-scale enrichments and establish conditions under which they take place. The 
possibility to study the multiple emission line ratios and kinematics for hundreds of HII 
regions (nebulae ionized by massive stars) simultaneously in each individual galaxy is an 
excellent project for an IFTS. We have targetted a dozen galaxies so far, and show in Fig. 13  
 

  

 
Fig. 13.  (Upper left)  - Velocity diagram of the spiral galaxy M51, based on the centroid of 
the Hα 656.3 nm emission line from an SpIOMM data cube. (Upper right) - Image of the 
[NII] 658.4 / Hα 656.3 line ratio from the same cube. Notice the large ratio in the core of the 
galaxy, characteristic of shocks driven by the central Active Galactic Nucleus. (Lower left) A 
comparison between the distributions of the Hα flux (characteristic of ~ 10 Myr old stellar 
populations, obtained from the SpIOMM data cube, in orange), and the ultraviolet flux 
(characteristic of ~ 100 Myr old stars, obtained with the Galex space telescope, in blue). The 
lag between the two stellar populations is indicative of the rotation velocity of the spiral 
wave pattern in the galaxy. (Lower right) Spectrum of one HII region from the SpIOMM 
data cube 
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some data on the nearby interacting spiral galaxy M51. As can be seen in the upper left 
panel of this figure, the galaxy is not only moving away from us (average recession velocity 
of 500 km/s) due to the expansion of the Universe, but it is also rotating. M51 is seen almost 
face-on, but a large inclination increases the velocity difference from one side to the other 
relative to us. Obtaining line intensities and especially line ratios with narrowband filters 
would almost require a set of filters per galaxy, and it would be impossible to obtain precise 
line ratios for edge-on galaxies. Most spectra of star-forming regions in galaxies have been 
obtained with single slit or multi-object spectrographs, which can only sample a small 
fraction of each galaxy. An IFTS is thus the instrument of choice for this kind of work. 

6. Conclusions and the future 
Despite lots of technical hurdles, we have clearly demonstrated that an astronomical 
imaging Fourier transform spectrograph working in the visible band is not only viable, but 
also shows an immense potential to spectrally map extended objects. We have so far 
discussed and presented examples of emission line spectra. Is an imaging FTS capable of 
obtaining spectra of continuum sources with absorption lines, such as stars? The answer is 
yes; indeed, the vast majority of  commercial applications of IFTS are to detect absorption 
lines superimposed on a continuum source, and exquisite infrared spectra of stars and 
planets have been obtained with FTS (Ridgway & Brault 1984, Mosser et al. 1993). We have 
however observed only emission-line objects with SpIOMM, mostly because we used it, 
until recently, with only one detector and used the photometry of stars to correct for sky 
transparency variations. The use of the second output port will allow us to work on 
absorption line objects. But there is also another reason for us to favor emission-line objects, 
and this reason is intrinsic to the FTS concept itself. Since at every step an image of the scene 
in the entire waveband is obtained, contrary to Fabry-Perot systems, one of the great 
advantages of an IFTS is that a by-product of an interferogram is a deep panchromatic 
image of the scene. However, this property has also its downside: the photon noise from 
each wavelength is distributed among every spectral resolution element. The spectrum of an 
ionized nebula is completely dominated by emission lines and shows very little continuum. 
Photon noise therefore comes from the emission lines themselves. Moreover, the intensities 
of the lines we are aiming for are all within a factor of ten from each other. The FTS 
distributed noise disadvantage is therefore completely negligeable in this case. However, 
some lines of interest, such as [OIII] 436.3 nm or [NII] 575.5 nm, are extremely weak and the 
inclusion of much stronger lines, such as [OIII] 500.7 or Hα, in the same bandbass would 
lower the signal-to-noise of the faint lines and make them very difficult to detect. Once the 
second detector becomes available for SpIOMM, we will aim for both absorption line targets 
(star clusters, elliptical galaxies) and very faint lines in extended nebulae. 
We have recently obtained funding to design and build an improved version of SpIOMM 
for the Canada-France-Hawaii telescope. SITELLE, another collaboration between 
Université Laval and ABB-Bomem, will have the same field of view, 12' x 12', with 0.35'' 
pixels, and will see its first light, if all goes according to plans, in early 2013. Because the 
CFHT has a larger primary mirror than the OMM telescope (3.6m vs. 1.6m) and SITELLE 
will from the start be equipped with two detectors, because of a better sky transparency 
(especially in the near UV; the CFHT is located at an altitude of 4200 m) and a better optics 
quality, we expect that SITELLE will offer a factor of 15 improvement over SpIOMM in 
terms of global efficiency. As such, it will be an ideal instrument to target very faint objects 
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or very faint diagnostic lines in extended objects. We expect that a fair fraction of its 
observing time will be devoted to the study of the star formation at cosmological distances. 
As we have seen, technology has evolved enough during the past ten years on different 
fronts to allow us to design and build very efficient, wide-field imaging FTS in the visible 
range: servo systems and piezoelectric actuators for an accurate and fast correction of the 
mirror alignment to enhance the modulation efficiency, high quantum efficiency (~ 90%) 
large detectors with fast readout rate and low noise to increase the field of view and the 
spectral resolution (which is proportional to the maximum OPD and thus the number of 
CCD readouts), and of course computer power and random access memory to allow the 
data reduction and analysis of huge data cubes.  
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panel of this figure, the galaxy is not only moving away from us (average recession velocity 
of 500 km/s) due to the expansion of the Universe, but it is also rotating. M51 is seen almost 
face-on, but a large inclination increases the velocity difference from one side to the other 
relative to us. Obtaining line intensities and especially line ratios with narrowband filters 
would almost require a set of filters per galaxy, and it would be impossible to obtain precise 
line ratios for edge-on galaxies. Most spectra of star-forming regions in galaxies have been 
obtained with single slit or multi-object spectrographs, which can only sample a small 
fraction of each galaxy. An IFTS is thus the instrument of choice for this kind of work. 

6. Conclusions and the future 
Despite lots of technical hurdles, we have clearly demonstrated that an astronomical 
imaging Fourier transform spectrograph working in the visible band is not only viable, but 
also shows an immense potential to spectrally map extended objects. We have so far 
discussed and presented examples of emission line spectra. Is an imaging FTS capable of 
obtaining spectra of continuum sources with absorption lines, such as stars? The answer is 
yes; indeed, the vast majority of  commercial applications of IFTS are to detect absorption 
lines superimposed on a continuum source, and exquisite infrared spectra of stars and 
planets have been obtained with FTS (Ridgway & Brault 1984, Mosser et al. 1993). We have 
however observed only emission-line objects with SpIOMM, mostly because we used it, 
until recently, with only one detector and used the photometry of stars to correct for sky 
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in the entire waveband is obtained, contrary to Fabry-Perot systems, one of the great 
advantages of an IFTS is that a by-product of an interferogram is a deep panchromatic 
image of the scene. However, this property has also its downside: the photon noise from 
each wavelength is distributed among every spectral resolution element. The spectrum of an 
ionized nebula is completely dominated by emission lines and shows very little continuum. 
Photon noise therefore comes from the emission lines themselves. Moreover, the intensities 
of the lines we are aiming for are all within a factor of ten from each other. The FTS 
distributed noise disadvantage is therefore completely negligeable in this case. However, 
some lines of interest, such as [OIII] 436.3 nm or [NII] 575.5 nm, are extremely weak and the 
inclusion of much stronger lines, such as [OIII] 500.7 or Hα, in the same bandbass would 
lower the signal-to-noise of the faint lines and make them very difficult to detect. Once the 
second detector becomes available for SpIOMM, we will aim for both absorption line targets 
(star clusters, elliptical galaxies) and very faint lines in extended nebulae. 
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for the Canada-France-Hawaii telescope. SITELLE, another collaboration between 
Université Laval and ABB-Bomem, will have the same field of view, 12' x 12', with 0.35'' 
pixels, and will see its first light, if all goes according to plans, in early 2013. Because the 
CFHT has a larger primary mirror than the OMM telescope (3.6m vs. 1.6m) and SITELLE 
will from the start be equipped with two detectors, because of a better sky transparency 
(especially in the near UV; the CFHT is located at an altitude of 4200 m) and a better optics 
quality, we expect that SITELLE will offer a factor of 15 improvement over SpIOMM in 
terms of global efficiency. As such, it will be an ideal instrument to target very faint objects 
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or very faint diagnostic lines in extended objects. We expect that a fair fraction of its 
observing time will be devoted to the study of the star formation at cosmological distances. 
As we have seen, technology has evolved enough during the past ten years on different 
fronts to allow us to design and build very efficient, wide-field imaging FTS in the visible 
range: servo systems and piezoelectric actuators for an accurate and fast correction of the 
mirror alignment to enhance the modulation efficiency, high quantum efficiency (~ 90%) 
large detectors with fast readout rate and low noise to increase the field of view and the 
spectral resolution (which is proportional to the maximum OPD and thus the number of 
CCD readouts), and of course computer power and random access memory to allow the 
data reduction and analysis of huge data cubes.  
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