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Passive Source Localization of Sensor Arrays 

 Junli Liang and Ding Liu 
Xi�’an University of Technology, Xi�’an,  

China 

1. Introduction  
Passive source localization is a key issue in sensor array signal processing such as sonar, 
radar, wireless communication, microphone array speech processing, seismology, electronic 
surveillance and medical imaging, and thus receives significant attention. Although a 
variety of advanced algorithms, for example MUltiple SIgnal Classification (MUSIC), 
Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT), and 
Propagator Method (PM), have been developed, there are still some problems: (i)For two-
dimensional (2D) directions-of-arrival (DOA) estimation, the failure in pairing causes severe 
performance degradation; (ii) In some practical applications, the signals received by a sensor 
array may come from multiple near-field sources or multiple far-field sources or their 
mixture. Due to different signal models for near-field and far-field sources, the existing 
algorithms cannot deal with them simultaneously well; and (iii) For joint azimuth and 
elevation direction finding, the existing estimators often encounter an estimation failure 
problem especially when elevation angles are between 70 and 90 degrees. In this chapter, 
several high-resolution methods are presented to overcome these difficulties. 

In Section 1.2, a novel 2D DOA estimation algorithm without match procedure in the L-
shaped array geometry is proposed. It is well known that two matched electric angles 
(functions of elevation and azimuth angles) must be obtained before elevation and azimuth 
angles are estimated. However, the failure in pairing would cause severe performance 
degradation. By introducing a novel electric angle, the L-shaped array configuration without 
any rotational invariance property between two orthogonal uniform linear sub-arrays 
evolves into some particular rotational invariance geometry. Thus, the steering vector is 
separated into two parts. One can be estimated by the rank-reduction ESPRIT algorithm and 
the other is obtained from the eigenvalue decomposition of one particular matrix. Finally, 
the elevation and azimuth angles can be easily obtained from the recovered steering vector 
to avoid pairing. Although it is developed for the L-shaped array configuration, the 
proposed algorithm can be easily extended to other array geometries such as two parallel 
linear sub-arrays, the rectangular array, and the symmetric circular array. In addition, the 
method can be used to form the rank-reduction propagator method. electric angle 

In Section 1.3, a common signal model for �“any-field�” sources (i.e., near-field sources or far-
field sources or their mixture) is given and a two-stage MUSIC algorithm is developed to 
localize �“any-field�” sources. In the first stage, one special cumulant matrix is derived and 
the related virtual �“steering vector�” is the function of the common electric angle in both 



1 

Passive Source Localization of Sensor Arrays 

 Junli Liang and Ding Liu 
Xi�’an University of Technology, Xi�’an,  

China 

1. Introduction  
Passive source localization is a key issue in sensor array signal processing such as sonar, 
radar, wireless communication, microphone array speech processing, seismology, electronic 
surveillance and medical imaging, and thus receives significant attention. Although a 
variety of advanced algorithms, for example MUltiple SIgnal Classification (MUSIC), 
Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT), and 
Propagator Method (PM), have been developed, there are still some problems: (i)For two-
dimensional (2D) directions-of-arrival (DOA) estimation, the failure in pairing causes severe 
performance degradation; (ii) In some practical applications, the signals received by a sensor 
array may come from multiple near-field sources or multiple far-field sources or their 
mixture. Due to different signal models for near-field and far-field sources, the existing 
algorithms cannot deal with them simultaneously well; and (iii) For joint azimuth and 
elevation direction finding, the existing estimators often encounter an estimation failure 
problem especially when elevation angles are between 70 and 90 degrees. In this chapter, 
several high-resolution methods are presented to overcome these difficulties. 

In Section 1.2, a novel 2D DOA estimation algorithm without match procedure in the L-
shaped array geometry is proposed. It is well known that two matched electric angles 
(functions of elevation and azimuth angles) must be obtained before elevation and azimuth 
angles are estimated. However, the failure in pairing would cause severe performance 
degradation. By introducing a novel electric angle, the L-shaped array configuration without 
any rotational invariance property between two orthogonal uniform linear sub-arrays 
evolves into some particular rotational invariance geometry. Thus, the steering vector is 
separated into two parts. One can be estimated by the rank-reduction ESPRIT algorithm and 
the other is obtained from the eigenvalue decomposition of one particular matrix. Finally, 
the elevation and azimuth angles can be easily obtained from the recovered steering vector 
to avoid pairing. Although it is developed for the L-shaped array configuration, the 
proposed algorithm can be easily extended to other array geometries such as two parallel 
linear sub-arrays, the rectangular array, and the symmetric circular array. In addition, the 
method can be used to form the rank-reduction propagator method. electric angle 

In Section 1.3, a common signal model for �“any-field�” sources (i.e., near-field sources or far-
field sources or their mixture) is given and a two-stage MUSIC algorithm is developed to 
localize �“any-field�” sources. In the first stage, one special cumulant matrix is derived and 
the related virtual �“steering vector�” is the function of the common electric angle in both 



 
Sensor Array 

 

2 

near-field and far-field signal models so that DOA of near-field or far-field can be obtained 
from this electric angle using the conventional high-resolution MUSIC algorithm. In the 
second stage, another particular cumulant matrix is derived, in which the virtual �“steering 
matrix�” has full column rank no matter whether the received signals are multiple near-field 
sources or multiple far-field ones or their mixture. More importantly, the virtual �“steering 
vector�” can be separated into two parts, in which the first one is the function of the common 
electric angle in both signal models, whereas the second part is the function of the electric 
angle that exists only in the near-field signal model. Furthermore, by substituting the 
common electric angle, which is estimated in the first stage into one special Hermitian 
matrix formed from another MUSIC spectral function, the range of near-field sources can be 
obtained from the eigenvector of the Hermitian matrix. Although it is developed for 
azimuth angle (and range) estimation only, it can be developed further for the joint azimuth 
and elevation angles (as well as range) estimation.  

In Section 1.4, a novel high-accuracy estimator for elevation angle is developed to avoid the 
estimation failure problem encountered in the conventional elevation estimators. Firstly, 
three cumulant matrices are constructed using fourth-order cumulants of some properly 
chosen array outputs of a specially designed volume array to increase the array aperture. 
Secondly, a parallel factor (PARAFAC) model of cumulant matrices in the cumulant domain 
is formed to avoid pairing parameters. Finally, a flexible and high-resolution elevation angle 
estimator is derived from multiple electric angles, which are solved from the above steps.  

2. 2D DOA estimation without match procedure 
Estimation of 2-D DOA is a key issue in sensor array signal processing such as radar, sonar, 
radio astronomy, and mobile communication systems [1-4]. Similar to other array 
geometries such as  the parallel uniform linear array, the rectangular array and the circular 
array, there is an un-avoidable parameter association problem in the L-shaped array 
configuration because the failure in pairing would cause severe performance degradation. 
This section will give a novel 2-D DOA estimation algorithm, which does not require match 
procedure. 

2.1 Description of the proposed algorithm 

Let�’s consider an L-shaped sensor array with 2 1M +  omni-directional sensors, as shown in 
Fig. 1. The element placed at the origin is set for the referencing point. The array in the x z−  
plane consists of two uniform linear sub-arrays with element spacing d , each being 
composed of M  elements. Assume that L  far-field, no-coherent, narrowband sources 
impinging on this antenna array. Let lα  and lβ  be the elevation and azimuth angles of the 
l -th source, and thus the wave vector l containing DOA information can be defined as 

[ ]sin cos ,sin sin ,cosl l l l l lα β α β α= , 1, ,l L= . After being sampled, the signals received 
by the sensor array can be expressed as 

 ( ) ( ) ( )k k k= +r As n , 0, , 1k K= − ,  (1) 

where ,0 1,0 1,0 0,0 0, 0, 1 0,1( ) ( )  ( )  ( ) ( ) ( ) ( )   ( ) T
M M M Mk r k r k r k r k r k r k r k− −=r  
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[ ]1 1( , ) ( , ) ( , )l l L Lγ φ γ φ γ φ=A a a a  

[ ]1( ) ( ), , ( ), , ( ) T
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2 cos /l ldφ π α λ= −  

,0 1,0 1,0 0,0 0, 0, 1 0,1( ) ( )  ( )  ( ) ( ) ( )  ( )   ( ) T
M M M Mk n k n k n k n k n k n k n k− −=n . 
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Fig. 1. L-shaped sensor array configuration 

The auto-correlation matrix of ( )kr  can be expressed as [ ( ) ( )]HE k k=R r r , 
2

2 1
H

s n Mσ += +AR A I , where   [ ( ) ( )]H
s E k k=R s s , and its eigen-value decomposition (EVD) 

yields  

 1 2 1 1 2 1 1 2 1[ , , ]diag[ , , ][ , , ]H H H H
s s s n n n M M Mv v+ + += = + =R UVU U VU U V U u u u u , (2) 

where V is the diagonal matrix with the eigen-values arranged as 
1 1 2 1L L Mv v v v+ +≥ ≥ > ≥ ≥ , the diagonal matrix (2 1 ) (2 1 )M L M L

n R + − × + −∈V  is composed of 
eigen-values 1 2 2 1, , ,L L Mv v v+ + + ; (2 1) (2 1 )M M L

n C + × + −∈U  consists of the eigenvectors related 
to 1 2 2 1, , ,L L Mv v v+ + + , spanning the noise subspace of R .  

Let�’s define ( )l l lj je eθ φ γ−= , and thus the steering vector be written in another form as: 

 ( 1) ( 1) ( 1)( , )     1       l l l l l l l l l
TjM j M j jM jM j M j M j j

l l e e e e e e e e eγ γ γ θ γ θ γ θ γγ φ − − −= × × ×a   (3) 

Furthermore, ( , )γ φa  can be separated into two parts, i.e. ( ) ( )1 2( , ) j je eθ γγ φ =a a a ,  
where ( 1)M + -dimensional vector ( ) ( 1)

2    1
Tj jM j M je e e eγ γ γ γ−=a  and (2 1) ( 1)M M+ × +  

- dimensional matrix 
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 { }
( 1) ( 1)

1
1

( )
diag , ,  

M Mj
jM j

M
e

e e
θ

θ θ

+ × +

×
=

I
a

0
 (4) 

Based on the theory that the noise subspace nU  is orthogonal to the range space of A , 
( , )H

n l lγ φ =U a 0 , 1, ,l L= , the electric angle pair { , }l lγ φ , 1, ,l L=  can be found from the L  
deepest minima of the following MUSIC spectral function: 

  
( ) ( ) ( ) ( )

( ) ( ) ( )
1 2 1 1 2

2 2

( , ) ( , ) ( , )

0

l l l l

l l l

j j j jH H H H H
l l n n l l n n

j j jH

f e e e e

e e e

γ θ θ γ

γ θ γ

γ φ γ φ γ φ= =

= =

a U U a a a U U a a

a C a
 (5) 

where   

 ( ) ( )1 1( )j j jH H
n ne e eθ θ θ=C a U U a   (6) 

is an ( 1) ( 1)M M+ × + -dimensional Hermitian matrix.  

Note that ( )1
lje θ ≠a 0  and ( ) ( )2 2( ) 0l l lj j jH e e eγ θ γ =a C a , 1,2, ,l L= . From Eq. (5)-(6), it can 

be seen that if and only if lj je e θθ = , the matrix ( )je θC drops rank, or equivalently, when the 
polynomial of jx e θ= , ( ) ( ){ }2 det 0f x x= =C . Obviously, �ˆx , lying inside the unit circle and 
being closest to the unit circle, is actually the signal root.  

Eq. (5) implies that by substituting the estimated 
�ˆ
lje θ  into ( )je θC  in Eq. (5), �ˆlγ  can be found 

from the minima of the following function:  

 ( ) ( )�ˆ
2 2�ˆ min  ( )lj j jH

l e e eγ θ γ
γ

γ =  a C a   (7) 

the minima of which indicates estimation.  

When 2p p q q hφ γ φ γ π− ≠ − + , { 1,0,1}h∈ − , , {1, , }p q L∈ , i.e., p qθ θ≠ , Eq. (7) implies that 

( )�ˆ
2

pje γa  is just the unique eigenvector corresponding to the smallest eigen-value of 
�ˆ

( )pje θC . 
However, when 2p p q q hφ γ φ γ π− = − + , ( )�ˆ

2
pje γa  is no longer the unique eigenvector 

corresponding to the smallest eigen-value  of  
�ˆ

( )pje θC . The eigen-value decomposition 
(EVD) of 

�ˆ
( )pje θC yields 

�ˆ 1
1 1 1 1 1 1( ) [ , , ]diag[ , , ][ , , ]pj

M M Me v vθ −
+ + +=C u u u u , where the 

eigen-values are arranged as  1 2 1M Mv v v v +≥ ≥ > = . It is obvious that under the case 
2p p q q hφ γ φ γ π− = − +  ( )�ˆ

2
pje γa  and ( )�ˆ

2
qje γa  are the linear combinations of two eigenvectors 

{ }1,M M+u u , which are orthogonal to { }s 1 2 1, , , M−=U u u u . Obviously, both �ˆpje γ and �ˆqje γ  
are the roots of ( ) ( )3 2 s 2( ) 0H H

sf x x x= =a U U a . 

From the estimates { }�ˆ�ˆ ,l lj je eγ θ , the elevation and azimuth angle estimates can be given as 

( ) ( )( )�ˆ �ˆ�ˆ arccos / 2l lj j
l e e dθ γα λ π= −∠ ×  and ( ) ( )( )�ˆ�ˆ �ˆarccos / 2 sinlj

l le dγβ λ π α= − ∠ , respectively. 
Since ( )�ˆ

2
lje γa  is related to 

�ˆ
( )lje θC  (i.e., corresponding to ( )�ˆ

1
lje θa ), the proposed algorithm 

can avoid pairing parameters. In addition, it avoids the spectral search because both �ˆlje γ  
and 

�ˆ
lje θ  are estimated by solving polynomial roots. 
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2.2 Simulation results 

To verify the effectiveness of the proposed algorithm, let�’s consider an L-shaped array with 
13 elements as shown in Fig.1. These sensor locations are in unit of / 2d λ= . Two 
uncorrelated equivalent-power sources ( 0.2j ke π  and 0.25j ke π ), respectively with DOAs of 

o o
1 1( 60 , 35 )α β= =  and o o

2 2( 40 , 55 )α β= = , impinge on this array. The root mean square 
error (RMSE) is used as the performance measure. All results provided are based on 500 
independent runs. The RMSE for DOA estimation is defined as 

 ( )25001
,500 1

�ˆRMSE(the th signal) i l lil α α== −   (8) 

in which ,�ˆi lα  (in unit of degree) stands for the estimation of the l -th elevation lα  in the i -
th trial. For comparison, the propagator method [6, 9] and the ESPRIT method [8, 11] with 
correct pairing are simultaneously executed.  

In the first experiment, the effect of signal-to-noise (SNR) on the performance of the 
proposed algorithm is investigated. The number of snapshots is set to 400 and the SNR 
varies from 0 to 30 dB. The averaged performances (RMSE of elevation and azimuth angle 
estimations versus SNR for two sources) over 500 Monte Carlo runs are shown in Figs. 2 and 
3. As expected, when the SNR increases, the RMSE of the estimated parameters decrease. In 
addition, it is observed that the proposed algorithm improves the performance slightly 
compared to the conventional ESPRIT algorithm, which must have a precise association 
procedure. 

In the second experiment, the influence of snapshot number on the performance of the 
proposed algorithm is explored. The same parameters as that of the second experiment are 
used, except that the SNR is fixed at 10 dB and the number of snapshots varies from 200 to 
2000. The averaged performances (RMSE of elevation and azimuth angle estimations versus 
snapshot number for two sources) over 500 Monte Carlo runs are shown in Figs. 4 and 5. 
From these figures, it can be seen that RMSE of the elevation and azimuth estimations 
decrease as snapshot number increases. In addition, the proposed algorithm has higher 
estimation accuracy than the ESPRIT method. 

 
Fig. 2. RMSE of elevation angle estimations versus SNR  
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Fig. 3. RMSE of azimuth angle estimations versus SNR  

 
Fig. 4. RMSE of elevation angle estimations versus snapshot number  

 
Fig. 5. RMSE of azimuth angle estimations versus snapshot number  
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From the above experiments, it can be seen that (i) since ( )�ˆ
2

lje γa  is related to 
�ˆ

( )lje θC  (i.e. 
corresponding to ( )�ˆ

1
lje θa ), the proposed algorithm can avoid pairing parameters; and (ii) 

the proposed algorithm avoids the spectral search due to that both �ˆlje γ and 
�ˆ
lje θ are 

estimated by solving polynomial roots. 

3. Passive localization of mixed near-field and far-field sources 
In some practical applications, the signals received by an array are often the mixture of near-
field and far-field sources, such as speaker localization using microphone arrays and 
guidance (homing) systems [12-19]. For example, in the application of speaker localization 
using microphone arrays, each speaker may be in the near-field or far-field of the array [16]. 
In this case, either existing near-field source localization methods or far-field source those 
may fail in localizing mixed near-field and far-field sources. This section will give a new 
passive source localization algorithm, which can localize near-field sources or far-field 
sources or their mixture. 

3.1 Description of the proposed algorithm 

Consider that L (near-field1 or far-field) narrowband, independent radiating sources, 
impinge on the uniform linear array (ULA) with 2 1N +  elements as shown in Fig.6. Let the 
0 th sensor be the phase reference point. After sampled with a proper rate that satisfies the 
Nyquist rate, the signal received by the i th sensor can be expressed as [5-11]  

 
1

( ) ( ) ( )il
L

j
i l i

l
x k s k e n kτ

=
= +  , N i N− ≤ ≤ , 0, , 1k K= − ,  (9) 

• •• • • • • •
lθ

lr

N− 2− 1− 0 1 2 i N

l
•

 
Fig. 6. Uniform linear array configuration 
                                                 
1 Note that Fresnel zone (i.e. near-field) lies in the radiating zone 21 1

2[ , 2 ]Dπ λλ , where λ  and D  are 

signal wavelength and array dimension, respectively (see [4] for details). Whereas far-field means the 
radiating zone beyond 21[0, 2 ]Dλ . 
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Fig. 3. RMSE of azimuth angle estimations versus SNR  

 
Fig. 4. RMSE of elevation angle estimations versus snapshot number  
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Where K  is the snapshot number, ( )ls k is the l th narrowband source, ( )in k  is the additive 
Gaussian noise. In addition, ilτ  is the delay associated with the l th source propagation time 
between the 0 th and i th sensors. If the l th source is near-field one (the azimuth DOA lθ  
and the range lr ), 2

il l li iτ γ φ= + , where lγ  and lφ  are called electric and given by  

2 sin( )l l
dγ π θ
λ

= − , and 
2

2cos ( )l l
l

d
r

φ π θ
λ

= .  

Otherwise, if the l th source is far-field one, il liτ γ=  [2, 3], where lφ  is approximated by zero 
due to father range of far-field source. Therefore, a far-field source can be considered as the 
special near-field one, where 0lφ = .  

In a matrix form, Eq. (1) can be written as 

 ( ) ( ) ( )k k k= +x As n   (10) 

where [ ]1 1( , ) ( , ) ( , )l l L Lγ φ γ φ γ φ=A a a a  

[ ]0 1( ) ( ), , ( ), ( ), , ( ) T
N Nk n k n k n k n k−=n , 

[ ]1( ) ( ), , ( ), , ( ) T
l Lk s k s k s k=s  

[ ]0 1( ) ( ), , ( ), ( ), , ( ) T
N Nk x k x k x k x k−=x .  

Note that the form of steering vector ( , )l lγ φa  depends on whether the l th source is far-field 
one or near-field one. If this source is near-field one,  

2 2 2[( ) ( ) ] [( 1) ( 1) ] [ ]( , )    l l l l l l
T

j N N j N N j N N
l l e e eγ φ γ φ γ φγ φ − + − − + + − + +=a .  

Otherwise, if this source lies in the far field,  

[( ) ] [( 1) ] [ ]( , )    l l l
Tj N j N j N

l l e e eγ γ γγ φ − − +=a .  

Let�’s begin with the fourth-order cumulant of the sensor outputs, which can be expressed as 

{ }

2 2 2 2

2 2 2 2

* *

* *
( ) ( ) ( ) ( )

1 1 1 1

[( ) ( )] [( ) ( )] *

   cum{ ( ), ( ), ( ), ( )}

 cum{ ( ) , ( ) , ( ) , ( ) }

cum ( ), ( ),

l l l l l l l l

l l

m n p q

L L L L
j m m j n n j p p j q q

l l l l
l l l l

j m n p q m n p q
l l

x k x k x k x k

s k e s k e s k e s k e

e s t s t s

γ φ γ φ γ φ γ φ

γ φ

+ + + +

= = = =

− − − + − − −

=

= { }
{ }2 2 2 2

*

1

[( ) ( )] [( ) ( )]
4,

1

( ), ( )

            l l

L

l l
l
L j m n p q m n p q

sl
l

t s t

c e
γ φ

=

− − − + − − −

=
=

(11) 

                                                                                                    , , , [ , ]m n p q N N∈ −  
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where * *
4 cum{ ( ), ( ), ( ), ( )},sl l l l lc s t s t s t s t=  is the kurtosis of the l th signal, and the superscript * 

denotes the complex conjugate.  

To construct a matrix with full rank for arbitrary-field sources , let n m= −  and 0q = . Thus, 
Eq. (11) becomes 

 ( )2 *
2 ( )* *

4,
1

cum{ ( ), ( ), ( ), ( )} ,      , [ , ]l l l
L

j m j p p
m m p q sl

l
x k x k x k x k c e e m p N Nγ γ φ+

−
=

= ∈ −   (12) 

Let 1m m N= + +  and 1p p N= + + , and thus , [1,2 1]m p N∈ + . Based on the idea from (11)-
(12), a special (2 1) (2 1)N N+ × + -dimensional cumulant matrix C  can be defined, the 
( , )m p th element of which can be given by  

 ( )2

* *
1 1 1 0

*
2( 1) ( 1) ( 1)

4,
1

( , )=cum{ ( ), ( ), ( ), ( )}

                  , [1,2 1]l l l

m N m N p N

L
j m N j p N j p N

sl
l

m p x k x k x k x k

c e e m p Nγ γ φ

− − − + + − −

− − − − + − −

=
= ∈ +

C

 (13) 

Note that the (2 1) (2 1)N N+ × +  matrix C  can be represented in a compact matrix form  
as 4

H
s=C BC A , where the superscript H stands for the Hermitian transpose, 

4 4 1 4 4diag[ , , , , ]s ,s ,sl ,sLc c c=C ,  virtual �“steering matrix�”  1[ ( ), , ( ), , ( )]l Lγ γ γ=B b b b , and 
virtual �“steering vector�” 2 (2 2) 2( ) [ , , 1, , ]l l lj N j N j N T

l e e eγ γ γγ − − −=b 1, ,l L= . 

The singular value decomposition (SVD) of C  yields 

 [ ]4 1 2 1 1 2 1 1 2 1, , diag( , , )[ , , ]H H H
s N N Nσ σ+ + += = =C BC A W Z w w z z   (14) 

where  is the diagonal matrix with the singular values arranged as 
1 1 2 1L L Nσ σ σ σ+ +≥ ≥ > ≥ ≥ . Let (2 1)N L

s C + ×∈W , which spans the signal subspace of 
B , consists of the left singular vectors 1 2, , , Lw w w . Similarly, (2 1) (2 1 )N N L

n C + × + −∈Z , 
which is orthogonal to A , consists of the right singular vectors 1 2 2 1, , ,L L N+ + +z z z .  

Based on the first 2N  lines 1sW  and last 2N  lines 2sW , lγ , 1, ,l L=  can be easily 
estimated from the eigen-values of the following matrix [3] :  

 ( )( , ) / 2l l lγ = ∠   (15) 

where 12 2 2diag[ , , , , ]l Lj j je e eγ γ γ= is the eigen-value matrix #
1 2s sW W , i.e. 

# 1
1 2s s

−=W W T T .  

By substituting the estimate �ˆlγ  into ( , )γ φa , the minima of the following function can be found. 

2 1 1 2
�ˆ �ˆ �ˆ �ˆ �ˆmin  ( , ) ( , ) min  ( ) ( ) ( ) ( ), 1, ,H H H H H
l l n n l l n n l l L

φ φ
φ γ φ γ φ φ γ γ φ= = =a Z Z a a a Z Z a a  

where   
{ }
{ }

- -

1 anti
N 1

diag , , ,1
( )

diag , ,  

jN j

j jN

e e

e e

γ γ

γ γ
γ

×

=a
0

,   ( )
2 2( 1)

2    1
T

jN j N je e eφ φ φφ −=a .  
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Where K  is the snapshot number, ( )ls k is the l th narrowband source, ( )in k  is the additive 
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m N m N p N

L
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=
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 (13) 

Note that the (2 1) (2 1)N N+ × +  matrix C  can be represented in a compact matrix form  
as 4

H
s=C BC A , where the superscript H stands for the Hermitian transpose, 

4 4 1 4 4diag[ , , , , ]s ,s ,sl ,sLc c c=C ,  virtual �“steering matrix�”  1[ ( ), , ( ), , ( )]l Lγ γ γ=B b b b , and 
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The singular value decomposition (SVD) of C  yields 
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 ( )( , ) / 2l l lγ = ∠   (15) 
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# 1
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By substituting the estimate �ˆlγ  into ( , )γ φa , the minima of the following function can be found. 
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×
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Eq. (16) implies that ( )2
�ˆ
lφa  is just the eigenvector corresponding to the smallest eigen-value 

of 1 1�ˆ �ˆ( ) ( )H H
l n n lγ γa Z Z a , and �ˆ

lφ  is easily solved from ( )2
�ˆ
lφa . 

The DOA and range estimates of the l th source can be in turn expressed as: 

 
�ˆ�ˆ arcsin( )

2
l

l d
γ λθ
π

= −   (17) 

and  

 
2

2 �ˆ�ˆ cos ( )�ˆl l
l

dr π θ
λφ

= , 1, ,l L= .  (18) 

In fact, if the l th source is far-field one, the estimate �ˆ
lφ  would approach to zero. Thus, 

whether the l th source is near-field or far-field one can be determined. Since both B  and A  
are of full column rank no matter whether the received signals be pure far-field sources or 
pure near-field sources or mixed far-field and near-field sources, the proposed algorithm 
can deal with arbitrary-field sources well. 

3.2 Description of the proposed algorithm 

Some simulations are conducted in this section to assess the ability of the proposed 
algorithm to localize near-field, far-field, as well as mixed near-field and far-field sources. 

 Two near-field sources are located at 1 1{ 10 ,   0.5 }o rθ λ= =  (i.e. 1 1{ 0.2728, 0.3809}γ φ= − = ) 
and 2 2{ 20 ,   1.0 }o rθ λ= =  (i.e. 2 2{ 0.5372, 0.1734}γ φ= − = ), respectively. The snapshot number 
and SNR are fixed at 400 and 10 dB. The scatter plot of estimated �ˆ�ˆ( , )l lγ φ  pairs from 500 
independent trials using the proposed algorithm, the near-field source localization 
algorithm (i.e. ESPRIT), and the far-field source localization algorithm (i.e. MUSIC) are 
shown in Figs. 7-9, respectively. From these figures, it can be seen that the far-field source 
localization algorithm fails in localizing near-field sources.  

The near-field source is located at 1 1{ 10 ,   0.5 }o rθ λ= =  (i.e. 1 1{ 0.2728, 0.3809}γ φ= − = ); 
whereas the far-field source is localized at 2 2{ 20 , }o rθ = = + ∞ (i.e. 2 2{ 0.5372, 0}γ φ= − = ). The 
snapshot number and SNR are fixed at 400 and 10 dB, respectively. The scatter plot of estimated 

�ˆ�ˆ( , )l lγ φ  pairs from 500 independent trials using the proposed algorithm, the near-field source 
localization algorithm (ESPRIT), and the far-field source localization algorithm (MUSIC) are 
shown in Figs. 10-12, respectively. These figures show that the far-field source localization 
algorithm (MUSIC) fails in estimating azimuth DOA of the near-field source. However, the 
proposed algorithm performs well in localizing both near-field and far-field sources. 

Two far-field sources are localized at 1 1{ 10 , }o rθ = = + ∞ (i.e. 1 1{ 0.2728, 0}γ φ= − = ) and 
2 2{ 20 , }o rθ = = + ∞ (i.e. 2 2{ 0.5372, 0}γ φ= − = ), respectively. When the snapshot number and 

SNR are fixed respectively at 400 and 10 dB, the scatter plot of estimated �ˆ�ˆ( , )l lγ φ  pairs from 
500 independent trials using the proposed algorithm, the near-field source localization 
algorithm (ESPRIT), and the far-field source localization algorithm (MUSIC) are shown in 
Figs. 13-15, respectively. From these figures, it can be seen that the near-field source 
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localization algorithm fails in localizing far-field sources, but the proposed algorithm 
performs well in estimating azimuth DOA of the two far-field source. 

 
Fig. 7. Scatter plot of estimated ( , )γ φ pairs for two near-field sources using the proposed 
algorithm  

 
Fig. 8. Scatter plot of estimated ( , )γ φ  pairs for two near-field sources using the near-field 
source localization algorithm (ESPRIT)  

 
Fig. 9. Scatter plot of estimated ( , )γ φ  pairs for two near-field sources using the far-field 
source localization algorithm (MUSIC) 
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localization algorithm fails in localizing far-field sources, but the proposed algorithm 
performs well in estimating azimuth DOA of the two far-field source. 

 
Fig. 7. Scatter plot of estimated ( , )γ φ pairs for two near-field sources using the proposed 
algorithm  

 
Fig. 8. Scatter plot of estimated ( , )γ φ  pairs for two near-field sources using the near-field 
source localization algorithm (ESPRIT)  

 
Fig. 9. Scatter plot of estimated ( , )γ φ  pairs for two near-field sources using the far-field 
source localization algorithm (MUSIC) 
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Fig. 10. Scatter plot of estimated ( , )γ φ pairs for mixed near-field and far-field sources using 
the proposed algorithm 

 
Fig. 11. Scatter plot of estimated ( , )γ φ pairs for mixed near-field and far-field sources using 
the near-field source localization algorithm (ESPRIT)  

 
Fig. 12. Scatter plot of estimated ( , )γ φ  pairs for mixed near-field and far-field sources using 
the far-field source localization algorithm (MUSIC) 
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Fig. 13. Scatter plot of estimated ( , )γ φ pairs for two far-field sources using the proposed 
algorithm  

 
Fig. 14. Scatter plot of estimated ( , )γ φ  pairs for two far-field sources using the near-field 
source localization algorithm (ESPRIT)  

 
Fig. 15. Scatter plot of estimated ( , )γ φ  pairs for two far-field sources using the far-field 
source localization algorithm (MUSIC) 
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Fig. 10. Scatter plot of estimated ( , )γ φ pairs for mixed near-field and far-field sources using 
the proposed algorithm 

 
Fig. 11. Scatter plot of estimated ( , )γ φ pairs for mixed near-field and far-field sources using 
the near-field source localization algorithm (ESPRIT)  

 
Fig. 12. Scatter plot of estimated ( , )γ φ  pairs for mixed near-field and far-field sources using 
the far-field source localization algorithm (MUSIC) 
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Fig. 13. Scatter plot of estimated ( , )γ φ pairs for two far-field sources using the proposed 
algorithm  

 
Fig. 14. Scatter plot of estimated ( , )γ φ  pairs for two far-field sources using the near-field 
source localization algorithm (ESPRIT)  

 
Fig. 15. Scatter plot of estimated ( , )γ φ  pairs for two far-field sources using the far-field 
source localization algorithm (MUSIC) 
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From these simulations, it can be seen that no matter whether the received signals are near-
field sources, far-field sources or their mixture, the proposed algorithm can perform better 
in localizing these sources.  

4. New estimator for elevation angle  
4.1 Proposed estimator 

When elevation angles are between 70 and 90 degrees, the estimator  

2 2�ˆ�ˆasin
2 l ld

λ γ φ
π

+   

may fail because imperfect estimations of ( )�ˆ�ˆ ,l lγ φ  result in 

 2 2�ˆ�ˆ
2 l ld

λ γ φ
π

+  

being greater than 1, causing the calculation of  

2 2�ˆ�ˆasin
2 l ld

λ γ φ
π

+   

to fail, where 2 sin cos /l l ldγ π α β λ= −  and 2 sin sin /l l ldφ π α β λ= − . On the other hand, 
some algorithms adopt another estimator  

�ˆ-acos
2

l

d
λϑ
π

,  

which is of low estimation accuracy when elevation angles are between 0 and 20 degrees 
( 2 cos /l ldϑ π α λ= − ). Note that o ocos(20 ) sin(70 ) 0.9= >  and thus it is impossible that both 
cos( )α and sin( )α  are greater than 0.9 simultaneously. Therefore, e 

 2 2�ˆ�ˆasin
2 l ld

λ γ φ
π

+  and 
�ˆ-acos

2
l

d
λϑ
π

  

can be combined to form a new elevation angle estimator, which can efficiently avoid 
estimation failure and is of high estimation accuracy. 

2 2 2 2

2 2

2 2

�ˆ �ˆ-1 �ˆ �ˆ�ˆ �ˆacos +asin if  0.9   and 0.9
2 2 2 2 2

�ˆ �ˆ- �ˆ�ˆacos if  0.9   and 0.9
2 2 2

�ˆ�ˆasin
2

l l
l l l l

l l
l l l

l l

d d d d

d d d

d

λϑ λϑλ λγ φ γ φ
π π π π

λϑ λϑ λα γ φ
π π π

λ γ φ
π

+ < + <

= < + ≥

+ 2 2
�ˆ �ˆ�ˆif  0.9   and 0.9

2 2
l

l ld d
λϑ λ γ φ
π π

≥ + <

(19) 
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4.2 Simulation results 

To access the effectiveness of the proposed elevation estimator, we consider a two L-shape 
arrays with 16 elements as shown in Fig. 16. These sensor locations are in unit of / 2d λ= . 
We consider a single source case ( 0.2j ke π ): elevation angle α and azimuth angle β  vary from 

0 0(0 ,0 ) to 0 0(90 ,90 )  with 05  increment. The snapshot number and the SNR are set to 200 
and 10dB, respectively. The received signals are polluted by zero-mean additive white 
Gaussian noises. We use the root mean square error (RMSE) as the performance measure. 
All results provided are based on 500 independent runs. For each ( , )α β , we conduct 500 
trials, and count the estimation failure times as well as the averaged performance only from 
successful trials (RMSE of elevation angle estimations versus different azimuth-elevation 
pair for this single source). Fig. 17 and 18 give the averaged performance counted from 
successful trials and the corresponding Failure Rates (FR, the failure times divided by 500) 
of the estimator  

2 2�ˆ�ˆasin
2 d l l

λ γ φ
π

+ ,  

respectively.  

Since the estimator 

 
�ˆ-acos

2
l

d
λϑ
π

  

shows no failure for all pair angles, we only show its averaged performance (RMSE of 
elevation angle estimations versus different azimuth-elevation pair for this single source) in 
Fig. 19.  
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Fig. 16. Two L-shape array configuration 
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2 2�ˆ�ˆasin
2 d l l

λ γ φ
π

+   

may break downs especially when elevation angles are between 070  and 090 . In addition, it 
is obvious that the estimator  

2 2�ˆ�ˆasin
2 d l l

λ γ φ
π

+   

has lower estimation accuracy in region 0 0[70 ,90 ]  than other regions. As the elevation angle 
approximates to 090 , the failure rate increases, and the related RMSE (from the successful 
trails) increases [15]. Although the estimator  

�ˆ-acos
2

l

d
λϑ
π

  

shows no failure for all pair angles, we observe from Fig.19 that when the elevation angle 
lies in 0 0[0 ,20 ] , the related RMSE increases. In addition, the averaged performance of the 
proposed estimator (RMSE of azimuth angle estimations versus different azimuth-elevation 
pair for this single source) is given in Fig. 20, which shows that the proposed estimator 
improves the performance significantly compared to  

2 2�ˆ�ˆasin
2 d l l

λ γ φ
π

+  and 
�ˆ-acos

2
l

d
λϑ
π

  

especially in the regions 0 0[0 ,20 ]  and 0 0[70 ,90 ] . 

 
Fig. 17. Averaged performance (counted from successful trials) of elevation angle 

estimations versus different azimuth-elevation pair using the estimator 2 2�ˆ�ˆasin
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Fig. 18. Failure rates of elevation angle estimations versus different azimuth-elevation pair 
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Fig. 20. Averaged performance of elevation angle estimations versus different azimuth-
elevation pair using the proposed estim 

From these simulations, it can be seen that the proposed estimator combines  

2 2�ˆ�ˆasin
2 d l l

λ γ φ
π

+ and 
�ˆ-acos

2
l

d
λϑ
π

,  

and thus avoids both estimation failure and low resolution.  

5. Conclusion 
In this chapter, several novel high-resolution methods are introduced to overcome the 
difficulties encountered in the passive source localization of sensor array, i.e. pairing failure, 
mixed near-field and far-field source localization, and estimation failure problems. 
Although they have been developed for the uniform linear array and L-shaped array, these 
algorithms can be easily extended to other sensor array configurations. 
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Fig. 20. Averaged performance of elevation angle estimations versus different azimuth-
elevation pair using the proposed estim 
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and thus avoids both estimation failure and low resolution.  

5. Conclusion 
In this chapter, several novel high-resolution methods are introduced to overcome the 
difficulties encountered in the passive source localization of sensor array, i.e. pairing failure, 
mixed near-field and far-field source localization, and estimation failure problems. 
Although they have been developed for the uniform linear array and L-shaped array, these 
algorithms can be easily extended to other sensor array configurations. 
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1. Introduction 
A sensor array system with N channels is assumed to have the same characteristics for each 
channel, which are composed of a sensor and an amplification system. In beamforming 
applications, the gain and phase of each channel are key elements in the synthesis of the 
beampattern (van Veen & Buckley, 1988). On the other hand, the position of the sensors in 
the array and the orientation of the axis/plane where the array is placed are also important 
for an accurate calculation of the weight vector.  

In real implementation, specific parameters of each channel show a large deviation from 
their relative values. These errors exist due to small tolerances in sensor specifications or in 
the components in the amplification system, or even due to deviations in the position of the 
array sensors. These deviations, in the relative gain and phase of each channel, can produce 
errors in the pointing direction, as well as an increment in the sidelobe levels. These errors 
deteriorate the system performance (Barton, 2005), (Godara, 2004), (Naidu, 2001). 

Usually, each channel�’s behaviour is unknown with enough accuracy and it can vary in 
time. Therefore, it is necessary to implement auto-calibration, which allows to cancel or to 
compensate the differences between each channel of the system (Skolnik, 2001). There are 
many analytic models, which are based on arrays with a large number of sensors (Barton, 
2005), (Godara, 2004), (Swindlehurst, 1996), (Quazi, 1982), that allow to establish a relation, 
in a statistical sense, between the phase and gain errors of each sensor and the deviations in 
the radiation/reception pattern of the beamformer (particularly on the pointing angle, the 
main beam width or the sidelobe level). However, the errors with arrays with a small 
number of sensors do not fulfil those previous analytic models. Therefore, it is necessary to 
carry out detailed analysis of the degradations that are caused by these errors. 

2. System description 
A detection and position measurement system has been designed. The hardware of the 
proposed system is formed by: 
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applications, the gain and phase of each channel are key elements in the synthesis of the 
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the components in the amplification system, or even due to deviations in the position of the 
array sensors. These deviations, in the relative gain and phase of each channel, can produce 
errors in the pointing direction, as well as an increment in the sidelobe levels. These errors 
deteriorate the system performance (Barton, 2005), (Godara, 2004), (Naidu, 2001). 

Usually, each channel�’s behaviour is unknown with enough accuracy and it can vary in 
time. Therefore, it is necessary to implement auto-calibration, which allows to cancel or to 
compensate the differences between each channel of the system (Skolnik, 2001). There are 
many analytic models, which are based on arrays with a large number of sensors (Barton, 
2005), (Godara, 2004), (Swindlehurst, 1996), (Quazi, 1982), that allow to establish a relation, 
in a statistical sense, between the phase and gain errors of each sensor and the deviations in 
the radiation/reception pattern of the beamformer (particularly on the pointing angle, the 
main beam width or the sidelobe level). However, the errors with arrays with a small 
number of sensors do not fulfil those previous analytic models. Therefore, it is necessary to 
carry out detailed analysis of the degradations that are caused by these errors. 

2. System description 
A detection and position measurement system has been designed. The hardware of the 
proposed system is formed by: 
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• A PC with a Pentium processor, with one Innovative Integration M6713 card, which 
includes a C6713 DSP. M6713 hosts an Omnibus SD16 module, which provides 16 
channels of 18 bit, 48 kHz sigma-delta A/D and D/A converters. 

• A transmission (Tx) uniform linear array (ULA) formed by 8 amplifiers, each one with 2 
channels, and 15 tweeters. 

• A reception (Rx) ULA formed by 2 multi-channel preamplifiers, each with 8 channels, 
and 15 studio microphones.  

Fig. 2-1 shows the acoustic transmission and reception arrays. 

 
Fig. 2.1. Transmission (below) and reception (above) arrays 

As the system uses low cost components, the calibration data of these components are not 
available. Therefore, it is important to know the dispersion of the characteristics of these 
components. An anechoic chamber has been built to do tests. Inside this chamber, the Tx and 
Rx arrays are located at one of the sides of the chamber. A Tx sensor and a Rx sensor, which 
have been taken as reference, are located at the opposite side, at a distance of 4.2 m. The 
hardware implements a narrow band system that detects the existence and also the position of 
targets in different environments, on the basis of multi-function radars (Barton, 2005), (Sabatini 
& Tarantino, 1994), (Billeter, 1989). Electronic beams are implemented, using beamforming 
techniques (Naidu, 2001), (Van Veen & Buckley, 1988), from the in-phase and quadrature 
signals of each channel. Fig. 2-2 shows the employed signal processing algorithm. 

The main blocks are described as follows: 

• Transmitter: The Tx beamforming block generates a signal for a steering angle for each 
sensor. The signal frequency is 7 kHz. The Tx phase and gain compensation block 
compensates the gain and phase of each sensor and channel of the transmitter. 

• Receiver: A band pass filter with a frequency range from 6 kHz to 8 kHz. The I+Q 
demodulator block obtains the in-phase and quadrature components of the signals. The 
Rx phase and gain compensation block compensates the gain and phase of each sensor 
and channel in the receiver. The Rx beamforming block processes the signals received 
for each sensor to form a beam at a specific steering angle. The matched filter block 
applies an optimal filter to maximize the signal-to-noise ratio (SNR). 

This calibration method employs a reference sensor located opposite to the array on a 
perpendicular axis to the plane of the array (broadside). Two types of calibration are defined: 
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• Calibration of the Tx array, using a reference microphone 
• Calibration of the Rx array, using a reference loudspeaker (tweeter). 

 
Fig. 2.2. Signal processing algorithm 

The calibration system is based on the hypothesis of working with spherical waves, because 
the acoustic system is used under near field conditions. Since spherical waves are assumed, 
signals that are transmitted/received between the sensors of the array and the reference 
sensors arrive with different gains and phases. These gains and phases are taken into 
account in calibration. As the position of the reference sensor is known, the theoretical 
amplitudes and phases of the signal of each channel can be calculated, and then compared 
with real data, extracting the information to carry out the phase and gain compensation. 

3. Transmitter array calibration 
A sinusoidal pulse of 7 kHz and 5 ms width is used with a reference microphone located at 
4.2 m range and 0º from the array perpendicular angle. Pulse signals are transmitted 
sequentially by each loudspeaker of the transmission array. Then, they are received in the 
reference microphone and, finally, are processed together. Experimental signals received at 
loudspeakers number 0, 3 and 13 are presented in Fig. 3-1. 

 
Fig. 3.1. Received signals from the Tx array 
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Fig. 3.1. Received signals from the Tx array 
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Module and phase values of the signals can be obtained using the described processing 
algorithm. Module values are showed in Fig. 3-2. 

 
Fig. 3.2. Tx module values 

The average of the module is calculated for the pulse length. Relative gains are obtained by 
normalising the module averages of each channel with respect to channel 0. They are 
showed in Table 3-1.  

0 1 2 3 4 5 6 7 
1.00 0.95 0.74 0.69 1.16 0.92 1.15 1.06 
    

8 9 10 11 12 13 14  
0.77 0.89 0.61 1.01 0.84 1.07 1.02  

Table 3.1. Tx relative gains 

In the same way, phase values of each sensor are obtained, using channel 0 as reference. 
They are showed in Fig. 3-3. 

 
Fig. 3.3. Tx phase values 
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The average of the phase for each channel is calculated for the pulse length, and relative 
phases are obtained. They are shown in Table 3-2. 

0 1 2 3 4 5 6 7 
-49.0 -45.8 -52.3 -53.9 -41.5 -56.1 -74.2 -92.6 
    

8 9 10 11 12 13 14  
-70.5 -76.8 -63.3 -101.6 -78.0 -103.8 -108.4  

Table 3.2. Tx relative phases (º) 

The beampattern is calculated by steering the array from -90º to 90º, using classical 
beamforming techniques, and obtaining the maximum value from the matched filter output. 
Fig. 3-4 shows the obtained beampattern when the relative gains and phases of the sensors 
are not compensated. Fig. 3-5 shows the beampattern with relative gain and phase 
compensations before the beamforming is applied. 

 
Fig. 3.4. Tx beampattern without compensation 

 
Fig. 3.5. Tx beampattern with compensation for 0º 



 
Sensor Array 

 

24

Module and phase values of the signals can be obtained using the described processing 
algorithm. Module values are showed in Fig. 3-2. 

 
Fig. 3.2. Tx module values 

The average of the module is calculated for the pulse length. Relative gains are obtained by 
normalising the module averages of each channel with respect to channel 0. They are 
showed in Table 3-1.  

0 1 2 3 4 5 6 7 
1.00 0.95 0.74 0.69 1.16 0.92 1.15 1.06 
    

8 9 10 11 12 13 14  
0.77 0.89 0.61 1.01 0.84 1.07 1.02  

Table 3.1. Tx relative gains 

In the same way, phase values of each sensor are obtained, using channel 0 as reference. 
They are showed in Fig. 3-3. 

 
Fig. 3.3. Tx phase values 

 
Experimental Calibration for Electronic Beamforming with Sensor Arrays 

 

25 

The average of the phase for each channel is calculated for the pulse length, and relative 
phases are obtained. They are shown in Table 3-2. 

0 1 2 3 4 5 6 7 
-49.0 -45.8 -52.3 -53.9 -41.5 -56.1 -74.2 -92.6 
    

8 9 10 11 12 13 14  
-70.5 -76.8 -63.3 -101.6 -78.0 -103.8 -108.4  

Table 3.2. Tx relative phases (º) 

The beampattern is calculated by steering the array from -90º to 90º, using classical 
beamforming techniques, and obtaining the maximum value from the matched filter output. 
Fig. 3-4 shows the obtained beampattern when the relative gains and phases of the sensors 
are not compensated. Fig. 3-5 shows the beampattern with relative gain and phase 
compensations before the beamforming is applied. 

 
Fig. 3.4. Tx beampattern without compensation 

 
Fig. 3.5. Tx beampattern with compensation for 0º 
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Parameters obtained with and without gain and phase compensations are shown in Table 3-3. 

 Without 
compensation

With 
compensation

Aiming error 2º 0º 
Sidelobe level 13.6dB 13.1dB 

Table 3.3. Tx beampattern parameters 

To analyse if the calibrations of relative module and phase were independent of the steering 
angle, the system has been calibrated with the data obtained with the reference microphone 
placed at 0º, but with the reference microphone positioned now at -15º (with the same 
range). The obtained beampattern is presented in Fig. 3-6, where it is shown that the relative 
phase of the sensors of the Tx array under test does not depend on the steering angle. 
Therefore, the calibration in one angle is enough.  

 
Fig. 3.6. Tx beampattern pointing to -15º with compensation for 0º 

4. Receiver array calibration 
A sinusoidal pulse of 7 kHz and 5 ms width is used with a reference loudspeaker located at 
4.2 m range and 0º from the axis normal to the array. Also, in this case, spherical waves are 
assumed. A pulse signal is transmitted by the reference loudspeaker, and immediately, the 
signals received in the microphone array are recorded. The module and phase of the 
received signals can be obtained by means of the processing algorithm. The obtained 
module values are shown in Fig. 4-1. 

Relative gains are obtained by means of the amplitude normalisation of each channel 
regarding channel 0. These relative gains are shown in Table 4-1. In the same way, phase 
values are obtained, using channel 0 as reference. These phases are shown in Fig. 4-2. The 
average of the phase of each channel is calculated for the pulse length. Relative phase values 
are obtained and shown in Table 4-2. 
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The beam-pattern is calculated by steering the array from -90º to 90º, using the classic beam-
forming techniques, and obtaining the maximum value from the matched filter output. Fig. 
4-3 shows the beam-pattern when the relative gain and phase of the sensors are not 
compensated. Fig. 4-4 shows the corresponding beampattern when relative gain and phase 
compensation is employed. The parameter values obtained with and without gain and 
phase compensation are shown in Table 4-3. 

 
Fig. 4.1. Rx module values 
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Parameters obtained with and without gain and phase compensations are shown in Table 3-3. 

 Without 
compensation

With 
compensation

Aiming error 2º 0º 
Sidelobe level 13.6dB 13.1dB 

Table 3.3. Tx beampattern parameters 

To analyse if the calibrations of relative module and phase were independent of the steering 
angle, the system has been calibrated with the data obtained with the reference microphone 
placed at 0º, but with the reference microphone positioned now at -15º (with the same 
range). The obtained beampattern is presented in Fig. 3-6, where it is shown that the relative 
phase of the sensors of the Tx array under test does not depend on the steering angle. 
Therefore, the calibration in one angle is enough.  

 
Fig. 3.6. Tx beampattern pointing to -15º with compensation for 0º 
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are obtained and shown in Table 4-2. 
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0 1 2 3 4 5 6 7 
-29.6 -47.5 -45.6 -42.3 -54.8 -46.7 -52.1 -45.1 
    

8 9 10 11 12 13 14  
-53.7 -49.0 -60.9 -55.6 -65.2 -66.7 -65.6  

Table 4.2. Rx relative phases (º) 

Without 
compensation

With 
compensation

Aiming error 2º 0º
Sidelobe level 12.6dB 13.2dB

Table 4.3. Rx beampattern parameters 

 
Fig. 4.3. Rx beampattern without compensation  

 
Fig. 4.4. Rx beampattern with compensation for 0º 
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Using the calibration data obtained with the loudspeaker pointing to with the reference 
loudspeaker placed now at -15º (in the same range), the independence of module and phase 
calibrations from the steering angle is analysed. The beampattern obtained is shown in Fig. 
4-5. It shows that relative phases of the Rx sensors do not depend on the steering angle. 
Therefore, calibrating in one angle is enough. 

 
Fig. 4.5. Rx beampattern receiving at -15º with 0º compensation 

5. Verification of calibration independence from steering angle 
To check the independence of the phase and gain calibrations from the steering angle, these 
calibration methods have been proved in the same radar system, but with different 
transmitter and receiver arrays. In this case, the acoustic transmitter array is composed of 8 
tweeters, while the acoustic reception array is composed of 8 electret condenser 
microphones. Fig. 5-1 shows the acoustic Tx and Rx arrays employed for verification of the 
calibration independence from the steering angle.  

 
Fig. 5.1. Transmission (above) and reception (below) 
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5.1 Transmitter array calibration 

Actually, the applied calibration method is exactly the same as shown in Section 3. It applies 
the same reference microphone, located opposite to the Rx array on a perpendicular axis to 
its plane (broadside). The only difference is that in this case, a sinusoidal pulse of 6 kHz and 
0.5 ms width is used, and the band-pass filter employed has a frequency range from 5 kHz 
to 7 kHz. Normalising the amplitude of each channel, regarding to channel 0, the relative 
gains are obtained and presented on Table 5-1.  

0 1 2 3 4 5 6 7 
1.00 0.58 0.68 0.77 0.82 0.79 0.45 1.02 

Table 5.1. Tx relative gains 

The average of the phase for each channel is calculated over the pulse length, and the 
following relative phase table is obtained. 

0 1 2 3 4 5 6 7 

0.00 33.3 12.2 15. 50.6 44.2 34.8 55.9 

Table 5.2. Tx relative phase 

The beampattern is calculated by steering the array from -90º to 90º. Fig. 5-2 shows the 
beampattern when the relative gain and phase of the sensors are not compensated. Fig. 5-3 
shows the corresponding beampattern when relative gain and phase compensation is 
employed. The parameter values obtained with and without gain and phase compensations 
are shown in Table 5-3. 

 
Fig. 5.2. Tx 0º beampattern without compensation  
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Fig. 5.3. Tx 0 º beampattern with compensation  

 Without 
compensation

With 
compensation

Aiming error 2º 0º 
Sidelobe level 10.8dB 12.75dB 

Table 5.3. Tx beampattern parameters 

Using the calibration with a 0º reference microphone and the reference microphone placed 
now at -15º (in the same range), the beampattern obtained is presented in Fig. 5-4. 

 
Fig. 5.4. Tx (-15) º beampattern with 0º compensation 

As shown in Section 4, the relative phases of the sensors of the Tx array do not depend on 
the steering angle. Therefore, calibrating the Tx array for a single angle is enough. 
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Fig. 5.4. Tx (-15) º beampattern with 0º compensation 

As shown in Section 4, the relative phases of the sensors of the Tx array do not depend on 
the steering angle. Therefore, calibrating the Tx array for a single angle is enough. 



 
Sensor Array 

 

32

5.2 Receiver array calibration 

In this case, a sinusoidal pulse of 6 kHz and 0.5 ms width is used with a reference 
loudspeaker. Normalising the amplitude of each channel, regarding to channel 0, relative 
gains are obtained, which are presented on Table 5-4.  

0 1 2 3 4 5 6 7 

1.00 0.86 0.59 0.98 0.92 0.65 1.12 1.09 

Table 5.4. Rx relative gains 

The average of the phase for each channel is calculated over pulse length, and the following 
relative phase table is obtained. 

0 1 2 3 4 5 6 7 
0.00º 33.3º 12.2º 15.0º 50.6º 44.2º 34.8º 55.9º 

Table 5.5. Rx relative phases 

Also in this case, the beampattern is calculated by steering the array from -90º to 90º, using 
classical beamforming techniques, and obtaining the maximum value from the matched 
filter output. Fig. 5-5 shows the beampattern when the relative gain and phase of the sensors 
are not compensated. Fig. 5-6 shows the corresponding beampattern when relative gain and 
phase compensation is employed. The parameter values that have been obtained with and 
without gain and phase compensations are shown in Table 5-6. 

 Without 
compensation

With 
compensation

Aiming error -2º 0º 

Sidelobe level 7.8dB 12.75dB 

Table 5.6. Rx beampattern parameters 

As the aim of this section is to analyse the calibration independence from the steering angle, 
the system has been calibrated with the data obtained with the reference tweeter placed at 
0º, but with the reference tweeter placed at -15º (with the same range). The obtained beam-
pattern is showed in Fig. 5-7. It shows that the relative phases of the microphones that 
compose the Rx array under test depend on the steering angle. For this Rx array, the 
behaviour of the relative phases of its microphones is different. In this case, it is very 
important to calibrate the Rx array for each steering angle. 

To solve this problem, a new module and phase calibration has been made for pre-
compensation of the theoretical phase for a -15º angle, and obtaining relative phase averages 
and gains, which are showed on Table 5-7. With these new values, the beampattern is 
recalculated and showed in Fig. 5-8. Therefore, in this case, for the Rx array, it is necessary 
to calibrate each steering angle used. 
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Fig. 5.5. Rx beampattern without compensation 

 
Fig. 5.6. Rx 0 º beampattern with compensation for 0º 
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Fig. 5.5. Rx beampattern without compensation 

 
Fig. 5.6. Rx 0 º beampattern with compensation for 0º 
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Fig. 5.7. Rx (-15º) beampattern with compensation for 0º 

 
Fig. 5.8. Rx (-15) º beampattern with compensation for (-15) º 
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 0 1 2 3 4 5 6 7 

Amplitudes 1.00 0.86 0.59 0.98 0.92 0.65 1.12 1.09 

Phases 0.00º 42º 87º -8º -277º -267º -42º -312º 

Table 5.7. Relative phases and gains 

6. Conclusions 
In this chapter, a method to calibrate sensor arrays to be employed as part of narrow band 
acoustic radars is shown. The proposed method allows obtaining compensation values, for 
both gain and phase, and for each sensor. Therefore, the obtained beampatterns improve 
considerably regarding to those without calibration. Beampatterns obtained with calibration 
approach the theoretical ones.  

This work has shown that the independence of the relative phases of the sensors of the 
transmission and reception arrays from the steering angle depends on the particular arrays 
that are employed in the radar system. In other cases, the relative phases do not vary with 
the steering angle. In this case, a calibration in a unique angle is enough to obtain a good 
array performance; in some other cases, the calibration values depend on the steering angle, 
and a calibration for each steering angle used must be done. 
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Fig. 5.7. Rx (-15º) beampattern with compensation for 0º 

 
Fig. 5.8. Rx (-15) º beampattern with compensation for (-15) º 
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1. Introduction  

In the case of moving sources, various target angle tracking algorithms have been proposed 
and reported in the literature for multiple narrow-band targets. Yang and Kaveh proposed 
an iterative adaptive eigen-subspace method in conjunction with the multiple signal 
classification (MUSIC) algorithm to track the DOA angles of multiple targets (Yang & 
Kaveh, 1988). Due to the data association problem caused by multi-target tracking, the 
adaptive MUSIC method fails to track targets when they are moving close to each other. 
Although the method proposed by Sword, et al. (1990) can avoid the data association 
problem, errors are accumulated in each iteration, making it unable to track targets that are 
mutually close. Due to the nature of prediction-correction filtering process, Kalman filter 
(KF) can reduce estimation errors and avoid the data association problem when applied to 
angle tracking, as stated in several references (Javier & Sylvie, 1999; Yang, 1995; Park, et al. 
1994). Rao, et al. (1994) proposed to estimate DOA angles of targets using the maximum 
likelihood method and feeding the results to a KF. However, it is assumed that the signal 
powers of the targets are all different, making the algorithm impractical. Javier and Sylvie 
(1999) suggested to estimate target angles using the projection approximation subspace 
tracking algorithm with deflation (PASTd) (Yang, 1995) and a Newton-type method (for 
MUSIC spectrum) for the use in the KF. It has lower computational load and better tracking 
performance than Rao�’s algorithm, but still exhibits poor tracking success rate at low signal-
to-noise ratios (SNRs). Park, et al. (1994) proposed an approach, which utilizes predicted 
angles obtained from Sword�’s method. The approach also uses the constrained least-squares 
criterion to confine the dynamic range of angles. The choice of relevant parameters is 
empirical and is not suitable for various scenarios of different moving speeds and SNRs. 
Besides, the tracking performance degrades seriously with an increasing number of crossing 
targets. Later on, to improve Park�’s method, Ryu, et al. (1999, 2002) suggested to obtain the 
angle innovations of the targets from a signal subspace, instead of the sensor output 
covariance matrix, via projection approximation subspace tracking (PAST) algorithm (Yang, 
1995). Chang, et al. (2005) modified Park�’s algorithm by incorporating a spatial smoothing 
(Shan et al., 1985) technique to overcome multipath interference, and also coherent signal-
subspace (CSS) (Wang & Kaveh, 1985) processing for tracking wideband targets. All of the 
above algorithms are based on the sample covariance matrix or signal subspace made with 
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multiple snapshots of data from a sensor array. However, they all fail to track multiple 
targets when only a single snapshot measurement is available between two consecutive time 
steps during the tracking process, because DOA estimation using subspace-based approach 
requires sample covariance matrix or signal subspace with a rank of more than one.  

In the case of a single snapshot measurement within each time increment, tracking multiple 
targets becomes feasible if the sensor array output is directly used as the measurement data 
in the extended Kalman filter (EKF) (Kong & Chun, 2000). However, the EKF is an 
approximate nonlinear state estimation technique with first-order linearization accuracy, 
and is suitable for the tracking problem since the measurement model is nonlinear in terms 
of the angles (states) to be estimated. The algorithm proposed by Kong and Chun (2000) 
exhibits low tracking success rate when targets approach near the points of intersection. The 
reason for this weakness is the EKF can be difficult to tune and often gives unreliable 
estimates if the system nonlinearities are severe. 

2. Tracking algorithm 
For tracking non-stationary targets efficiently and effectively, the predictive angle tracking 
algorithm based on extended Kalman filter (PAT-EKF) is presented. In the proposed 
algorithm, the sensor array output is used as measurement data in EKF, since the 
measurement model is nonlinear in terms of angle estimates. Using the predicted angles, the 
PAT-EKF algorithm modifies Park's method to obtain angular innovation, from which the 
angle estimates are updated (smoothed) via Kalman gain.  

2.1 Data model 

In the data model, M targets moving (for tracking) in a plane are considered, which contain 
an array of L sensors (or hydrophones). The sensor positions are assumed to be known, and 
it takes them to be placed uniformly on a line with spacing of d between two adjacent 
sensors (abbreviated as ULA), measured in the unit of wavelength . The motion of the 
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Suppose that there are K measurements (snapshots) that are taken for each increment T, and 
the time increment is sufficiently small allowing us to approximate the target as stationary. 
Figure 1 shows the sensor array and source configurations in 2-D space. 
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Assume that the motion of each target is mutually independent. By defining the composite 
state vector as 1( ) ( ),..., ( )

TT T
Mk k k=x x x , the system dynamics is governed by the process 

model 

 ( 1) ( ) ( )k k k+ = +x Fx w  (5) 

( , , )
M

diag=F F F  

The process noise vector w(k)= 1 ( ),..., ( )
TT T

Mk kw w  reflects the random modeling error, 
which is Gaussian distributed with zero mean vector and covariance 

1( , , )Mdiag=Q Q Q  

The matrices F  and Q  are all block diagonal. Although the process equation is a linear 
model, the measurement model of (2) is a vector nonlinear function of the target DOAs (and 
thus, of the target state vectors as well), which can be restated as 

 ( ) ( ( ), ( ), ( )) ( ( )) ( ) ( )k k k k k k k= +r h x s n A x s n  (6) 

where n(k) is complex Gaussian noise process with the known covariance 2
nσ I , and is 

assumed to be uncorrelated with the process noise w(k). Assuming that a uniform linear 
array of L sensors with a half wavelength of inter-element spacing d is deployed, the partial 
derivative (Jacobian) matrix of the measurement model (6) is given by 

1( ) [ ( ),..., ( )]Mk k k∂= =
∂
hH H H
x

 

By augmenting the real and imaginary parts of each complex matrix Hm(k), it has the 
composite real matrix of dimension 2L×2M 
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 , sin( sin( ( )))cos( ( )) ( )m b m m mg b k k s kπ θ θ= −  (7) 

 , cos( sin( ( )))cos( ( )) ( )m b m m mc b k k s kπ θ θ= −  (8) 

m=1, �…, M, b=1, �…, L 1. 

Initially (at k=0), the target DOA angles, { �ˆ ( 1)mθ − } and { �ˆ (0)mθ } at two successive time 
instants, k= 1 and k=0, are assumed to be available, which can be estimated by any 
subspace-based DOA angle estimation algorithm for instance the MUSIC algorithm 
(Schmidt, 1986). Thus, the initial state vector estimate can be set as 

1
�ˆ�ˆ(0|0) [ (0)θ=x 1

�ˆ( (0)θ − 1
�ˆ ( 1)) / , ,Tθ −  �ˆ (0)Mθ  �ˆ( (0)Mθ − �ˆ ( 1)) / ]TM Tθ −  with its covariance 

matrix P(0|0), given by 

2

2

1

1 2

2

1

1 2

1
0

(0|0)

1
0

T

T T

v

T

T T

σ=P  

For k=1,2,�…, the proposed tracking algorithm can be summarized in the following four 
steps. 

Step 1. Prediction of angles 

The prediction of the state vector and its covariance matrix can be obtained from the existing 
estimates by the equations 

 �ˆ( | 1)k k −x �ˆ( 1| 1)k k= − −Fx  (9) 

 ( | 1) ( 1| 1) Tk k k k− = − − +P FP F Q  (10) 

The first element of each state vector �ˆ ( | 1)m k k −x  is the predicted estimate �ˆ ( | 1)m k kθ −  of 
m(k). The predicted direction matrix A(k|k-1) can be obtained by (3) using �ˆ ( | 1)m k kθ −  for 
m(k). From (2), the predicted output of the sensor array becomes 

 ( | 1) ( | 1) ( )k k k k k− = −r A s  (11) 

and can be obtained once s(k)=[s1(k),�…, sM(k)]T is estimated by invoking the maximum 
likelihood method as 
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−

= − − −s A A A r  (12) 

Step 2. Computations of the angle innovation 

After time T, a new array output is observed and the direction matrix can be written as 
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 ( ) ( | 1) ( )k k k kδ= − +A A A  (13) 

where A(k) is the error matrix, which can be derived, according to (Sword et al., 1990), as 
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γ δγ γ δγ− −
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− −

A  (14) 

wherein 

 ( ) cos ( ) ( ) ( )m m m mk j k k kδγ π θ γ δθ= −  (15) 

Thus, the residual array output r(k) can be obtained and written as 

 ( ) ( ) ( | 1) ( ) ( ) ( )k k k k k k kδ∆ = − − = +r r r A s n  (16) 

Note that the first row vector of A(k) in (14) is a null vector. To reduce the computation, the 
null vector allows us to define a (L 1)×1 vector ∆r , which is obtained by removing the first 
element of r in (16). By substituting (15) into (14), ∆r  can be represented by (dropping k 
temporarily) 

 δ∆ = +r B n  (17) 

In (17), the (L 1)×M matrix B is 

1 1 1
2 2

1 1 1

1 1
1 1 1

cos( ) cos( )

2 cos( ) 2 cos( )

( 1)cos( ) ( 1)cos( )
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L L
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s s

s s
j

L s L s

θ γ θ γ
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π

θ γ θ γ− −

= −

− −

B  

where m is substituted with the predicted angle �ˆ ( | 1)m k kθ − , and  = [ 1(k), 2(k), , 
M(k)] is the unknown angle innovation vector to be estimated. In general, a least-squares 

solution of (17) is given by 1( )H Hδ −= ∆B B B r . However, the modified solution 

 1( )H Hδ −= + ∆B B L B r  (18) 

as suggested in Park's algorithm, will be used to constrain the absolute values of 
innovations for the cases of nearby targets, where L is a weighting matrix with diagonal 
form. 

Step 3. Estimation of the angles 

The estimated angle can be obtained as 

 �ˆ ( )m kθ �ˆ ( | 1) ( )m mk k kθ δθ= − +  (19) 
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Furthermore, �ˆ ( )m kθ  and �ˆ ( )ms k  are substituted into (7) and (8) to update the matrix ( )kH . 

Step 4. Smoothing the estimated angles 

Since the state vector is real-valued, it formulates the state estimation equation as 

 �ˆ( | )k k =x �ˆ( | 1) ( ) ( )k k k k− + ∆x K r  (20) 

where ( )k∆r =[ rR rI]T is a real vector; rR and rI are the real and imaginary parts of r(k) 
from (16). K(k) is the Kalman Gain matrix, given by 

 
12( ) ( | 1) ( ) ( ) ( | 1) ( )T T

nk k k k k k k k σ
−

= − − +K P H H P H I  (21) 

The covariance matrix of �ˆ( | )k kx  is given by 

 ( | ) ( ) ( ) ( | 1)k k k k k k= − −P I K H P  (22) 

The proposed PAT-EKF algorithm requires the number of 7LM2+16L2M+LMK real 
multiplications, whereas the Park's and Kong's algorithms require, respectively, the 
numbers of 3LM2+K(3L2+LM) and 5M3+10LM2+8L2M+LMK real multiplications (K is the 
number of snapshots). Table 1 shows the comparison of computational complexity among 
these algorithms for M=3, L=8 and different number of snapshots. It is evident that the PAT-
EKF algorithm has lower computational complexity than the Park's algorithm for K ≥ 30, 
where K ≥ 30 is often needed for acceptable tracking performance. Although the 
computational complexity is higher than the Kong's algorithm, the proposed method has 
much better performance as demonstrated by the simulations. 

Algorithm PAT-EKF Park's Kong's 

Number of real multiplications 

K=1
K=10 
K=30 
K=50

3600
3816 
4296 
4776

432
2376 
6696 

11016

2415 
2631 
3111 
3591 

Table 1. Computational complexity comparison for M=3, L=8 and different K values. 

2.3 PAT-EKF algorithm for tracking targets in 3-D space 

The PAT-EKF algorithm is now extended to track narrow-band targets in 3-D space, where 
the system of sensor array and source configurations is shown in Figure 2, where sm(k) is the 
signal transmitted by the mth target, of which m and m are the azimuth and elevation 
respectively. m is the range from the mth target to the first (reference) sensor in the uniform 
linear array. As explained later, the number of sensors L must satisfy the condition L ≥  
3M+1, where M is the number of targets. All the targets can be located in the near field or far 
field. In the following formulations, far-field targets are treated. The output of the lth sensor 
for the kth sampling interval can be expressed as 
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Fig. 2. Sensor array and source configurations in 3-D space. 

From the array and source configurations shown in Figure 2, lm(k) can be expressed as 

2 2 21( ) ( ) ( ) ( )lm m l m l m l mk p x q y i z
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where (xl, yl, zl) is the lth sensor position relative to the reference sensor. Here xl=(l 1)d, yl=0, 
and zl=0. The location coordinate of the mth signal source is given by 
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Assume that all the signal sources are narrowband with a common angular frequency . 
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Fig. 2. Sensor array and source configurations in 3-D space. 
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For the 3-D PAT-EKF algorithm, the recursive equations of (9)-(13), (16) and (20)-(22) remain 
unchanged and the recursive equations of (14)-(15) and (17)-(19) need to be changed as 
stated in the following context. 

Let (k), (k), and (k) be the unknown innovations of (k), (k), (k) respectively, from 
time k-1 to time k. The (l,m) element of A(k) can be derived as 

( , )[ ( )] ( ) lm lm lm

m m ml m lm m m mk j k τ τ τ
ρ ϕ θδ ωγ δρ δϕ δθ∂ ∂ ∂

∂ ∂ ∂= − + +A  

and the residual array output with the first row removed can be expressed as 

 
( )

( ) ( )
( )

k
k k

k

δ
δϕ
δ

∆ = ⋅ +r B n  (24) 

where the matrix B is a (L 1) × 3M matrix, given by 

2 2 221 21 21

1 1 1

1 1 1

1 1 1

21 1 2 21 1 2 21 1 2

1 1 1 1 1 1

M M M

M M M

LM LM LML L L

M M M

N M M M M M

L LM M L LM M L LM M

s s s s s s

j

s s s s s s

τ τ ττ τ τ
ρ ρ ϕ ϕ θ θ

τ τ ττ τ τ
ρ ρ ϕ ϕ θ θ

γ γ γ γ γ γ

ω

γ γ γ γ γ γ

∂ ∂ ∂∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

−  

Thus, a modified least-squares solution of (24) yields the innovations (k)=[ 1(k), , 
M(k)]T, (k)=[ 1(k), , M(k)]T, and (k)=[ 1(k), , M(k)]T , given by 
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These innovations are then used to update the state estimation according to 

�ˆ ( )m kθ = �ˆ ( | 1) ( )m mk k kθ δθ− +  

�ˆ ( )m kϕ = �ˆ ( | 1) ( )m mk k kϕ δϕ− +  

�ˆ ( )m kρ = �ˆ ( | 1) ( )m mk k kρ δρ− +  

There is one limiting condition, i.e., L 1 ≥ 3M, under which the L 1 linear equations are 
used for solving 3M unknown variables. 
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3. Simulation results and discussion 

In this section, the tracking performance of the three tracking algorithms are compared for 
narrow-band sources in 2-D space. A uniform linear array of eight sensors L=8 with half 
wavelength as the inter-element spacing is used. Three moving targets on the plane are 
tracked over an interval of 180s with T=1 s. During each T interval, K(=1, 10, 30, 50) 
snapshots of sensors data are generated. For comparison, the algorithms developed by Park 
et al. (1994), Kong and Chun (2000) were simulated. The Monte Carlo simulations of 100 
runs were carried out for each algorithm with various SNRs. The parameters used in the 
system model for all algorithms to be compared are 2

vσ =3, 2
wσ =1, and 2

nσ =3. The weighting 
factors to constrain the absolute values of innovations in (18) are set to be lm= 1

20 × (mth 
diagonal element of BHB), which is the same as in Park's algorithm (Park et al., 1994). The 
SNR is defined as 10log s 2/ )nσ(  in dB, where s is the signal power. 

Table 2 gives the tracking results for various SNRs at K=30 snapshots. The PAT-EKF 
algorithm shows the highest tracking success rate (true angle ±5°) for each SNRs. Table 3 
presents the tracking results for various number of snapshots at SNR=10dB. Again, the 
proposed algorithm shows the highest tracking success rate for each number of 
snapshots. 

 

SNR 
(dB) 

Tracking success rate (%) 

PAT-EKF Park�’s Kong�’s 

0 28 14 11 

5 62 44 34 

10 86 62 60 

Table 2. Tracking performance for various SNRs at K=30 

 

Number of 
Snapshots 

Tracking success rate (%) 

PAT-EKF Park�’s Kong�’s 

1 70 45 43 

10 83 69 55 

50 88 81 66 

Table 3. Tracking performance for various number of snapshots at SNR=10dB 
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Figure 3 shows typical sample run for crossing tracks, all based on a single snapshot of data 
vector (K=1) at SNR=10dB of each target. The PAT-EKF and Park's algorithms exhibit much 
better tracking capability than Kong's algorithm (Kong & Chun, 2000) especially at the cross 
points in the trajectory. 

Two moving targets are tracked over an interval of 20s with T=1 in 3-D space. During each T 
interval, K(=160) snapshots of sensors data are generated. Figure 4 shows the tracking 
performances of the 3-D PAT-EKF algorithm for the combinations of range, elevation, and 
azimuth at 3dB of SNR. In Figure 4, dot represents the true angle and line represents the 
tracked angle. The 3-D PAT-EKF algorithm is very effective in tracking the targets in 3-D 
space, even at low SNR. 

Note that the PAT-EKF algorithm is excluded for performance comparison, simply because 
it fails to track the angle of the first signal source for the simulation example illustrated in 
Figure 5. In this example, the trajectory of the first signal source reveals its significantly 
changing behavior of angles. This also indicates that tracking capability of the PAT-EKF 
algorithm is rather limited when there exists a signal source with significant rates of angle 
variation. 
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Fig. 3. Typical sample run for crossing tracks with three targets at SNR=10dB. (a) Kong's 
algorithm, (b) Park's algorithm, (c) PAT-EKF algorithm 
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Fig. 4. Typical sample run for crossing tracks with three targets at SNR=10dB. (a) Kong's 
algorithm, (b) Park's algorithm, (c) PAT-EKF algorithm 

 
Fig. 5. The averaged tracking trajectories, using the PAT-EKF algorithm, for three equi-
powered moving sources based on 25 snapshots at SNR=10dB. 
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4. Concluding remarks 
This chapter ha  presented the PAT-EKF algorithm for tracking multiple targets. The 
proposed algorithm modified Park's algorithm by using the sensor array output vector 
rather than the sample covariance matrix and incorporating EKF instead of KF. These 
modifications allow the proposed algorithm to lower computational load, and also improve 
the tracking success rate particularly at lower snapshots. The PAT-EKF algorithm is then 
extended to track the azimuth, elevation, and range of multiple targets in 3-D space. 
Through computer simulations, the effectiveness of each proposed algorithm has been 
demonstrated. The drawback of the PAT-EKF algorithm is that it fails to track any target 
with a significant rate of angle variations.  
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1. Introduction  

Shape recognition of a transparent object is usually difficult to perform by image processing 
techniques, because the major portion of the light projected onto an object passes through 
the object. As a result, the object cannot gain the light intensity required for image 
processing. Ultrasonic sensors are often utilised in situations where such optical sensors 
cannot be used. Moreover, systems using ultrasonic sensors are simpler and cheaper than 
systems using other types of sensors. Although the ultrasonic method has such advantages, 
results from the conventional ultrasonic method do not always have high measuring 
resolution, due to the wide directional pattern of the sensing. Up to now, the application of 
the ultrasonic method has been limited compared to the optical method.  

In an ultrasonic recognition system, ultrasonic sensors are combined with neural networks 
(Yoneyama et al., 1988), (Farhat, 1989), (Watanabe & Yoneyama, 1990), (Masumoto et al., 
1993), (Serrano et al., 1997). In these systems, the capability of the neural networks 
compensates for the low resolution of the ultrasonic method. However, in the conventional 
ultrasonic methods using neural networks (Holland, 1992), data used for the neural 
networks are given by acoustic holography, tomography or time-of-flight measurement. As 
a result, it is difficult for the conventional ultrasonic methods to improve the low resolution, 
because shape recognition using these methods has been limited to objects with simple 
shape. In addition, it has been difficult to measure the position of an object.  

The time-of-flight method involves measuring the time arriving at an object by ultrasonic 
wave pulses or amplitude modulations, in which the distance information obtained is input 
into a neural network for measurement and recognition, as shown in Fig. 1 (b). Although 
this method yields high resolution in the depth direction, the width direction resolution is 
limited by the arrangement interval of the ultrasonic sensor array. As a result, there are 
measurement and recognition constraints in principle, such as the facts that it is difficult to 
measure the position in the width direction with high resolution and objects differing 
slightly in size cannot be differentiated. In contrast, the acoustic holographic method 
reproduces an image of an object by interfering with the scattering or penetrating waves 
produced by irradiating ultrasound on a measured object with reference waves, as shown in 
Fig. 1 (c). This method yields good resolution in the width direction and is superior in two-
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dimensional measurements and recognition. However, since the distance information in the 
depth direction in the holographic image that is obtained, it has the drawbacks that a 
holographic image is needed for each distance if the depth-direction distance to an object 
varies, and it is difficult to directly detect changes in the pose of a target object. Thus, there 
are a number of problems that must be resolved to achieve further progress in measurement 
and recognition systems based on these methods and neural networks. 

 
 

(a) Positional relationship  
(b) Time-of-flight method 

 
(c) Acoustic holographic method 

Fig. 1. Acoustic image obtained by conventional ultrasonic methods 

 The authors have studied an ultrasonic object position and shape recognition system that 
can improve the distance resolution in both depth and width directions simultaneously by 
directly using sound pressure signals of an ultrasonic sensor array based on viewpoints 
different from those of the past methods (Ohtani, 2002), (Ohtani & Baba, 2007). From the 
directional pattern of the ultrasonic sensor and the attenuation characteristics of ultrasonic 
signals, the sound pressure signals of the sensor are generated that contain information 
required for identifying the position in the form of sound pressure intensity and information 
required for object shape recognition based on the sound pressure distribution. In this 
chapter, the construction of a new ultrasonic recognition system for transparent objects with 
complex shapes is introduced, for which a commercial polyethylene terephthalate bottle 
(PET bottle) is employed as a model. The sensor system consists of an ultrasonic transmitter, 
an ultrasonic receiver consisting of an ultrasonic sensor array, and a recognition unit with 
neural networks. The system locates the object between the ultrasonic transmitter and the 
ultrasonic receiver. It can identifies the object and measures the position of the object 
simultaneously. In the following section, the basic principle, system configuration, and 
experimental results of the ultrasonic identification system is described. 
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2. Basic principle 
2.1 Outline 

Fig. 2 shows the construction of the proposed system. The system primarily consists of an 
ultrasonic sensor array unit, a signal processing unit, and an identification unit. In this 
study, the x coordinate position on the x �– z plane is defined as the width direction position 
of the measured object, and the z coordinate position on the x  z plane is defined as the 
depth direction position of the measured object in the coordinate system as shown in Fig. 2 
The slope of the base of the object with respect to the x  y plane is defined as the pose of the 
object. The ultrasonic sensory array unit has two-dimensional ultrasonic receivers and one 
transmitter. The transmitter positions the centre of the receiver�’s array and irradiates an 
ultrasonic signal to the measured object. The signal processing unit extracts the features of 
the measured object from the sensor array outputs using the signal processing circuit. The 
extracted data is inputted into the identification unit. The identification unit consists of two 
types of neural networks that perform shape identification and material identification, 
respectively. 

 
Fig. 2. System configuration of the ultrasonic sensor system 

2.2 Ultrasonic wave propagation characteristics 

The reflected ultrasonic pressure from a measured object is required in relation to three 
elements: the reflection ratio of the measured object, the distance between the object and the 
sensor array unit, and the directivity of the ultrasonic signal (Kocis and Figura, 1996). First, 
the reflection ratio relates to the acoustic impedance. The acoustic impedance, z, is defined 
as the product of the density and the acoustic velocity, c, of the object, as expressed by 
equation (1). When an ultrasonic signal propagated in Medium 1 reaches Medium 2, as 
shown in Fig. 3, the reflected ratio, r, and the permeation ratio, , at the changing point of 
the mediums is expressed as equations (2) and (3). In this way, the reflection ratio depends 
on the acoustic impedance of the object. The acoustic impedance of a measured object is 
correlated with the material. Therefore, the magnitude of the reflected ultrasonic pressure 
gives the information required for material identification. 
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Fig. 3. Reflection and penetration 

Second, the ultrasonic pressure, p, is reduced by the propagation distance, d, as expressed 
by equation (4). Here, a stands for the radius of a vibration board that produces an 
ultrasonic wave, and v0 stands for the velocity of the vibration, as shown in Fig. 4. In this 
way, the reflected ultrasonic pressure from the measured object has a relation to the flight 
distance. 
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Fig. 4. Reduction by distance 

Third, because of the directivity of an ultrasonic wave, the ultrasonic pressure detected by a 
sensor array has a relation to the shape and the orientation of the measured object. As a 
result, even if the positions of two objects are the same, but the pose of the objects are 
different from each other, the reflected ultrasonic pressure from these objects are different. 
Therefore, in this stage, the proposed method has a little limitation to the pose of measured 
objects to simplify the identification process. In these circumstances, the reflected ultrasonic 
pressure is regarded as the key to identifying the shape and position of measured objects.  
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2.3 Feature values for shape recognition and position measurement 

Fig. 5 shows how the reflected waves from an object vary according to the shape of the side 
of the object. Fig. 5 (a) presents the output distribution of the reflected waves when the side 
of a rectangular prism and the ultrasonic transmitter are placed in parallel. Fig. 5 (b) and (c) 
present the case of a cob of corn and a triangular prism as the measured object, respectively. 
The edge of the triangular prism faces the transmitter. Fig. 5 (d) presents the positional 
relationship between the object and the sensor array. In these figures, because the size of the 
receiver array is 8 x 5, the output distributions are plotted by five kinds of marks. As seen in 
the figures, in the case of a rectangular prism, the peak value of the output distribution is 
larger than that of others. There are two peaks in the output distribution of a triangular 
prism because of the edge of the object. The area of the output distribution of a cob of corn is 
comparatively wide. Therefore, the peak values and the area of the amplitude output 
distribution of the reflected signals received by the ultrasonic sensor array are different, 
corresponding to the edge forms of the sides of the objects.  

 
Fig. 5. Shape recognition principle 

Fig. 6 shows the output distributions that differ in accordance with the position of the object. 
Fig. 6 (d) presents the arrangement of the object with respect to the sensor array. As shown 
in Fig. 6 (b), when the measured object is leaning to the right, one peak occurs in the sensor 
output distribution, and the peak position moves to the right. In the same way, when the 
measured object is leaning to the left, the peak position of the output distribution moves to 
the left. Moreover, as shown in Fig. 6 (c), when the measured object is leaning to the depth-
direction, the peak value of the output distributions gets smaller because of the attenuation 

(a) (b)

(c) (d)
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of the ultrasonic waves. Thus, the positional information of the object is contained in the 
peak position and the peak value.  

 
Fig. 6. Position measurement principle 

In the case of PET bottles, Fig. 7 shows the received ultrasonic wave distribution of the 
receiver for PET bottle 1, PET bottle 2, and PET bottle 3 among 7 PET bottles, as shown in 
Fig. 12. These PET bottles have almost the cross section of a square on the bottom side and 
the cross section of a circle in the top side. In these figures, because the size of the receiver 
array is 8 x 2, the output distributions are plotted by two kinds of lines. Every peak value of 
the ultrasonic distribution of the bottom side in these three PET bottles is lower than that of 
the top side, because the indentation of the surface of the bottom side causes a scattering of 
ultrasonic waves. In this way, the proposed method identifies the shape of a PET bottle 
using information of the distorted ultrasonic waves. As the figure shows, the shape of the 
PET bottle under study can be identified by analyzing the ultrasonic wave distributions. 
PET bottle 5 is a hexagon, and PET bottle 6 is a cylinder. 

(a) (b)

(c) (d)
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Fig. 7. Ultrasonic pressure distribution of different shapes of PET bottle 

Figure 8 shows the mechanism for measuring the object�’s position. The positions in the x-
direction and in the z-direction of a PET bottle have been measured by moving in parallel 
with and vertical with respect to the sensor array, respectively, as shown in Fig. 8 (a). Fig. 8 
(b) shows the ultrasonic pressure distribution when the PET bottle is shifted in the x-
direction. Fig. 8 (c) shows the distribution when the PET bottle is moved in the z-direction. 
From these figures, it is shown that the positions and values of the peaks of the ultrasonic 
pressure distribution change as the PET bottle moves. In this way, the proposed method 
uses the values and locations of the wave peaks of the ultrasonic pressure distribution to 
perform position measurement of the PET bottles. 

 
Fig. 8. Mechanism of position measurement for PET bottles 
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2.4 Recognition and position measurement by a neural network 

Neural networks perform recognition and position measurement of a target object. Fig. 9 
shows the neural network used for the experiment, which is a five-layered feed-forward 
neural network consisting of one input layer, three hidden layers, and one output layer. The 
input layer is composed of 28 input units. The data inputted to the input units include all 
outputs of the sensor array of the upper side and bottom side, each of which has 14 
ultrasonic sensors. The hidden layer has 3 x 15 hidden units. The output units are given 
corresponding to the number of objects of shape recognition. In the following experiment, 
the output layer has 8 units, which includes 7 output units for recognition of the target 
object and 1 output unit for position measurement.  

The teaching pattern data for output units is given as follows. In the teaching mode of the 
neural network, let the unit for the target object be 1 and the others be 0 for shape 
recognition units. For the position measurement unit, let the unit be from 0 to 1 according to 
the normalised range to be measured. Therefore, in the recognition mode and the 
measurement mode, a recognition result is evaluated using the ratio of the output for the 
measured object to the amount of all the outputs. Successful recognition is regarded as a 
ratio of over 50%.  

 
Fig. 9. Construction of the neural network 

3. Experiments 
3.1 Setup  

Fig. 10 shows the experimental setup, which consists of a transmitter, a receiver, and a 
measured object. The transmitter, which operates at 40 kHz and approximately 120 dB 
output, is located between the sensor array of the upper side and the sensor array of the 
lower side. Ultrasonic waves have a wider directivity as the frequency decreases, and 
signals reflected by objects other than the measured object of the experimental equipment 
and the like are frequently input as noise to the ultrasonic sensor array, in addition to the 
signals directed onto the target object. Since an ultrasonic sensor is used to transmit a 40 
kHz signal with a comparatively broad directive angle, considering the sizes of the sensor 
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elements and the measurement range of the ultrasonic sensor array, the effects of such noise 
are pronounced. To alleviate such effects, a cylindrical cover is attached as shown in Fig. 10. 

The upper and lower side each have a receiver and two sensor arrays. Each sensor array is 
composed of 14 ultrasonic sensors that are arranged linearly at about 15 mm intervals. The 
ultrasonic sensor used for the sensor array is a received sensitivity of -64 dB. The ultrasonic 
wave received by the receiver is amplified by an operational amplifier (op-amp), and the 
sinusoidal wave of the ultrasonic transmission is held by a peak hold circuit. The gain of the 
op-amp is controlled to reduce the variation of the specific characteristics of receivers. Fig. 
11 shows the effectiveness of the gain control. Fig. 11 (a) shows the output distributions 
without the gain control, and Fig. 11 (b) shows the output distributions with the gain 
control. The output distribution with the gain control is almost symmetrically unimodal, 
and the variations are reduced. An analogue-to-digital converter (ADC) is connected to the 
output terminal of each receiver. 

 
Fig. 10. Photo of the experimental setup 

  
(a) Before compensation  (b) After compensation 

Fig. 11. Compensation of the sensor specific characteristics 

3.2 Measured objects  

Fig. 12 shows the objects used for the experiment. These are 7 kinds of transparent plastic 
commercial PET bottles, which are filled with coloured liquid so that their shape can be 
easily discerned. The PET bottles used in the experiment have the right rectangular prism 



 
Sensor Array 

 

60

2.4 Recognition and position measurement by a neural network 

Neural networks perform recognition and position measurement of a target object. Fig. 9 
shows the neural network used for the experiment, which is a five-layered feed-forward 
neural network consisting of one input layer, three hidden layers, and one output layer. The 
input layer is composed of 28 input units. The data inputted to the input units include all 
outputs of the sensor array of the upper side and bottom side, each of which has 14 
ultrasonic sensors. The hidden layer has 3 x 15 hidden units. The output units are given 
corresponding to the number of objects of shape recognition. In the following experiment, 
the output layer has 8 units, which includes 7 output units for recognition of the target 
object and 1 output unit for position measurement.  

The teaching pattern data for output units is given as follows. In the teaching mode of the 
neural network, let the unit for the target object be 1 and the others be 0 for shape 
recognition units. For the position measurement unit, let the unit be from 0 to 1 according to 
the normalised range to be measured. Therefore, in the recognition mode and the 
measurement mode, a recognition result is evaluated using the ratio of the output for the 
measured object to the amount of all the outputs. Successful recognition is regarded as a 
ratio of over 50%.  

 
Fig. 9. Construction of the neural network 

3. Experiments 
3.1 Setup  

Fig. 10 shows the experimental setup, which consists of a transmitter, a receiver, and a 
measured object. The transmitter, which operates at 40 kHz and approximately 120 dB 
output, is located between the sensor array of the upper side and the sensor array of the 
lower side. Ultrasonic waves have a wider directivity as the frequency decreases, and 
signals reflected by objects other than the measured object of the experimental equipment 
and the like are frequently input as noise to the ultrasonic sensor array, in addition to the 
signals directed onto the target object. Since an ultrasonic sensor is used to transmit a 40 
kHz signal with a comparatively broad directive angle, considering the sizes of the sensor 

Shape Recognition and Position  
Measurement of an Object Using an Ultrasonic Sensor Array 

 

61 

elements and the measurement range of the ultrasonic sensor array, the effects of such noise 
are pronounced. To alleviate such effects, a cylindrical cover is attached as shown in Fig. 10. 

The upper and lower side each have a receiver and two sensor arrays. Each sensor array is 
composed of 14 ultrasonic sensors that are arranged linearly at about 15 mm intervals. The 
ultrasonic sensor used for the sensor array is a received sensitivity of -64 dB. The ultrasonic 
wave received by the receiver is amplified by an operational amplifier (op-amp), and the 
sinusoidal wave of the ultrasonic transmission is held by a peak hold circuit. The gain of the 
op-amp is controlled to reduce the variation of the specific characteristics of receivers. Fig. 
11 shows the effectiveness of the gain control. Fig. 11 (a) shows the output distributions 
without the gain control, and Fig. 11 (b) shows the output distributions with the gain 
control. The output distribution with the gain control is almost symmetrically unimodal, 
and the variations are reduced. An analogue-to-digital converter (ADC) is connected to the 
output terminal of each receiver. 

 
Fig. 10. Photo of the experimental setup 

  
(a) Before compensation  (b) After compensation 

Fig. 11. Compensation of the sensor specific characteristics 

3.2 Measured objects  

Fig. 12 shows the objects used for the experiment. These are 7 kinds of transparent plastic 
commercial PET bottles, which are filled with coloured liquid so that their shape can be 
easily discerned. The PET bottles used in the experiment have the right rectangular prism 



 
Sensor Array 

 

62

form (PET bottle 1 - PET bottle 4), hexagonal column form (PET bottle 5 and PET bottle 6), 
and cylinder form (PET bottle 7). PET bottle 4 is shorter than the other bottles. Although the 
cross sections of these PET bottles have almost the same shape, the indentation of the 
surface is somewhat different. PET bottle 5 and PET bottle 6 have the same cross section at 
the bottom side of the bottle. However, they are different in the cross section at the top side 
of the bottle, that is, PET bottle 5 is a hexagon and PET bottle 6 is a cylinder. 

 
Fig. 12. Measured objects 

3.3 Experimental procedure  

The experimental procedure was as follows:  

1. One PET bottle was placed in front of the transmitter and the receiver. The distance 
between the transmitter (the receiver) and the PET bottle was about 130 mm, as shown 
in Fig. 13. 

2. The object moved in the x-direction in 2 mm increments to acquire the data to be used 
in the neural networks in the teaching mode. In this way, teaching data were acquired 
for 21 patterns. 

3. In this experiment, there are 7 output units of the neural networks for the object 
identification, because the recognition system needs to identify 7 kinds of PET bottle. If 
the measured PET bottle is PET bottle 1, the system is taught in such a manner that the 
output unit 1 is nearly 1, while the outputs of the other units are nearly 0. Similarly, if 
the measured PET bottle is PET bottle 2, the output unit 2 is nearly 1, and those of the 
other units are nearly 0. 

 
Fig. 13. Experimental conditions 
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4. The number of the output unit of the neural network for the position measurement is 
one, and the neural network outputs the analogue values of the positions of the 
measured PET bottle in the x-direction or the z-direction.  

5. These steps were repeated to teach the neural network until the squared error became 
smaller than 0.00001 for every pattern in the teaching mode. 

6. (6) Data were acquired for the 20 patterns used in the experimental mode for the PET 
bottle in question. 

7. (7) These steps were repeated for all 7 PET bottles. 

3.4 Results 

Table 1 shows the recognition results in the case of free position of an object. The recognition 
was perfect for all PET bottles, indicating that the method has the ability to recognize a PET 
bottle.  

 
Table 1. Shape recognition results  

Fig. 14 shows the linearity of three typical PET bottles in the x-direction and the z-direction, 
respectively. The actual positions are plotted along the vertical axis, and the values 
outputted by the neural network are plotted along the vertical axis. The maximum position 
error in the x-direction was about 3.21 mm and in the z-direction was about 5.46 mm. Table 
2 lists the maximum position error of all measured PET bottles in the x-direction and the z-
direction. From Table 2, it can be seen that the measurement accuracy of the position in the 
z-direction became worse compared to the measurement accuracy of the position in the x-
direction. The reason is that although the positions in the z-direction were measured based 
on peak values of the ultrasonic pressure distribution, the change of the peak value was 
small in the present experiment.  

 
Table 2. Position measurement results  
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Fig. 14. Position measurement results in x-direction (a)~(c) and in z-direction (e)~(g) 

The experimental results indicate that the sensor system is effective for industrial 
applications that identify and measure the position of a transparent object such as a PET 
bottle or a glass bottle. 
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3.5 Other experimental results 

Another experiment was performed with the prototype sensor system, in which a sphere, 
rectangular prism, cylinder, triangular prism, regular pyramid, triangular pyramid, and 
spherical pyramid, as shown in Fig. 15 were measured. The measurement procedure was as 
follows. First, the teaching pattern data for the neural networks were obtained in 3 mm 
intervals in the z direction. The distance between the sensor array and the object was 200-290 
mm. Next, learning was performed by the neural network over the appropriate distance. In 
this experiment, the neural network required the teaching patterns obtained in the range of 
6 mm in the z direction in consideration of the error of the distance measurement. Finally, 
an object was measured as a test pattern. 31 measurement patterns were used for shape 
identification.  

 
Fig. 15. Measured objects 

Table 3 shows the results of shape identification. In this experiment, the pose of the object 
was fixed, and the number of test patterns was 31. As the table indicates, all the 
identifications were successful.  

 
Table 3. Shape recognition results  

3.6 Discussion 

The results of the experiments verify that high-resolution position measurements and shape 
recognition are possible by the method proposed in this study with respect to PET bottles. 
That is, the proposed scheme is a method that can obtain high-resolution distance 
information in both the depth and width directions, which is the original goal of the scheme, 
and that this scheme is a promising method for ultrasonic position and shape recognition. 
The method in this study is limited to the illustrated object orientation in its current stage. 
To relax the limitations on the measurements and recognition, it is necessary to discuss the 
arrangement of the sensor array and the irradiation direction of the ultrasonic waves with 
respect to the measured objects.  
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4. Conclusions 
In this chapter, the construction of a new ultrasonic recognition system for a transparent 
object using both ultrasonic sensors and a neural network is described. The proposed 
system consists of an ultrasonic transmitter, an ultrasonic receiver, and a recognition unit. It 
simultaneously can identify a PET bottle and measure the position of the PET bottle with a 
neural network. A prototype sensor system has been used to recognise and measure 7 kinds 
of PET bottle. Experimental results demonstrate that the sensor system achieved perfect 
recognition, and position measurement with accuracy to within 3.21 mm in the x-direction 
and within 5.46 mm in the z-direction. In conclusion, the proposed system is effective for 
applications that identify and measure the position of transparent objects such as a PET 
bottle or a glass bottle. 

Although problems remain with the proposed scheme, such as the fact that it is limited to 
the current orientation of the measured objects, it is possible to use it for identifying and 
differentiating products on plant production lines, which indicates the practical significance 
of the method. To relax the constraints on the measurements and recognition and to 
recognise more complicated objects, the extraction of new characteristic quantities and the 
arrangement of the sensor array are planned for future study.  
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1. Introduction  
Alkylating agents, such as methyl iodide, dichloromethane and epichlorohydrin, are 
commonly used in organic synthesis as reagents and solvents. The alkylating agents, such as 
methyl bromide, are still used as soil steriliers, while nitrogen mustards are being used as 
anticancer drugs. Alkylating agents are also dangerous byproducts of the water purification 
process. Unfortunately, due to their ease of production and storage, those materials are also 
used as chemical warfare agents. Owing to their ability to react with nucleophiles in our 
body, most of these materials are toxic, carcinogenic and mutagenic. The combination of 
simple synthesis with aggressive reaction with biological tissues makes many alkylating 
agents perfect potential chemical warfare agents for the underdogs and thus a perfect terror 
inflicting weapon. Therefore, there is a clear need for simple, sensitive and informative tools 
for the detection and identification of such agents, especially in the gas phase.  

Tailoring selective receptors for small and reactive molecules is a non-trivial and 
challenging goal. In addition, it is much easier to synthesise a new toxic alkylating agent 
than to tailor a selective receptor for its detection, rendering this approach inefficient. 
Previous attempts to address this challenge resulted in two basic approaches. The first 
approach gave up selectivity, detecting all alkylating agents in a non-specific way, relying 
on a colour change of a nucleophile upon reacting with an alkylating agent (Hertzog-Ronen 
et al., 2009). The second approach focused on a limited family of alkylators by detecting a 
specific mass or the presence of a specific atom it contains (for example the sulphur atom in 
sulphur-based mustard gas). Both approaches provide only a limited detection ability with 
the first having the potential of too many false positive alerts and the later having a very 
limited scope.  

One possible solution to the detection of alkylating agents is the further development of the 
fist approach that uses a nucleophile as a trap for alkylating agents. An efficient nucleophile, 
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such as an amine group, is expected to react with all the reactive alkylating agents as they 
are essentially electrophiles as shown in Fig. 1. This reaction guarantees very high 
sensitivity, as the binding is not reversible.  

L-

Alkylating AgentNucleophile  
Fig. 1. General equation for reaction of a nucleophile (Nu:) with an alkylating agent 

The reaction of the nucleophile with the alkylating agent needs to be transformed into a 
measurable signal. For example, we have recently reported on using luminescence turn-on 
as well as luminescence shifts for the detection and identification of different alkylating 
agents (Borzin et al., 2010; Tal et al., 2006). The signal needs to be analysed in a way that 
offers identification ability as well as some ability to assess the risk from the detected 
alkylator.  

This chapter is about the coupling of the reaction between a nucleophile and alkylating 
agents to optical (luminescence change), electrical (organic field effect transistors, OFETs), 
and mechanical (micro-cantilevers) signal transducers for the detection, risk assessment and 
identification of alkylating agents. The three complimentary methods demonstrate the 
potential embedded in using such reactions for the detection of reactive substances. 

2. Results and discussion 
2.1 Luminescence based detection of alkylating agents 

The photo-induced electron transfer (PET) based detection of alkylating agents was 
reported. The detection is based on the quaternisation of a Lewis base nucleophile, usually a 
tertiary amine group that serves also as a quencher to the luminophore (De Silva et al., 1997). 
Owing to the very simple structure of these alkylators, despite the high sensitivity attained 
by this approach still missing is the ability to identify the presence of specific alkylating 
agents, as with PET systems, most alkylators yield a very similar spectral response. This 
originates from the fact that the amine group that undergoes quaternisation is not π-
conjugated to the luminophore and since in most cases the reaction of this amine with the 
alkylating agent yields very similar new C-N bonds. Therefore, in all cases the effect of the 
binding of the alkylator to the amine is expected to be very similar.  

One approach to overcome this limitation is to electronically couple the nucleophile that 
reacts with the alkylating agent to the π-skeleton of the luminophore/chromophore so that 
its electronic properties are best affected by the nature of the alkylating group as well as its 
counter ion, if formed as a result of the alkylation process. Furthermore, as most alkylators 
are very similar in nature, the identification method should rely on reacting array of sensing 
spots with the same alkylator, seeking for specific reaction patterns that are unique to 
specific alkylators.  
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In the film, or when adsorbed onto high surface paper, materials 1-7 react at room 
temperature with vapors of various alkylating agents such as 1-chloro-2-ethylsulfanyl-
ethane (a close analog of the sulfur mustard gas), 8, chloromethoxy-ethane, 9, iodomethane, 
10, and even dichloromethane, 11, according to Fig. 2. 

 (1)                        (2)                                          (3)                                                                             (4)

 (5)                                                                                                                     (6)

 (7)

 (8)                          (9)                    (10)                 (11)                      (12)

 (13)                     (14)                          (15) 
 

Fig. 2. Oligomers 1-7 and alkylating agents 8-15 

Fig. 3 shows the absorption and emission spectra of thin films of oligomer 5 and polymer 6 
before and after alkylation with vapors of 8. In both cases, the films of the nucleophiles 
readily react with vapors of the alkylator. Both the absorption and emission spectra of the 
nucleophiles are affected by the reaction with the alkylating agents. As in the product the 
alkylator is covalently bound to the film, the change in the optical characteristics does not 
revert when the concentration of the alkylator is lowered. 

 
Fig. 3. Absorption (right) and emission (left) spectra of thin films of 5 (thick line) and 6 (thin 
line) on quartz before (continuous line) and after (dashed line) exposure to 8 
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Inspired by the olfactory system (Dryer & Berghard, 1999) several groups developed 
artificial olfactory-like sensing arrays for detecting ions, volatile substances, amines, amino 
acids, proteins and carbohydrates where the identity of the target is defined by a response 
pattern of an array of low selectivity sensors. Similar approach was harnessed (Hertzog-
Ronen et al., 2009) for detection and identification of alkylating agents using a highly 
reactive and non-specific, multi-spot sensor system that relies on optical detection of 
luminescence spectral shifts for the identification step. 

For that purpose, compounds 1-7 were adsorbed onto high surface filter paper squares 
(Whatman grade 50, low ash) and assembled into a seven-spot sensor array. Fig. 4 shows 
luminescence ( ex=312 nm) pictures of the sensor array before (first row) and after 
(preceding rows) exposure to vapors of alkylating agents 8-15. As can be seen from Fig. 4, 
one can clearly deduce the identity of the alkylating agent the sensor array was exposed to 
from the color pattern that is developed. For example, dichloromethane, 11, and diethyl 
carbonate, 15, produce a very similar response of luminescence shift upon reacting with 1, 2, 
4, 5, 6 and 7. With 3 the luminescence color shifts from RGB = [164, 84, 38] to [169, 135, 35] 
and [140, 152, 53], respectively. This colour difference is easily noticeable using a colorimeter 
and is even clear to the naked eye. Structurally similar 8 and 9 generate a very different 
luminescence shifts in all the spots. 
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Fig. 4. A seven-spot sensor array of 1-7, adsorbed on high surface filter paper, before (first 
row) and after (preceding rows) exposure to alkylating agents 8-15. The figures on the right 
side of each square denote the RGB values of the spot when exposed to UV exciting light 
( ex=312 nm) 
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Principal component analysis (PCA) is a mathematical algorithm, useful for compression, 
classification and visualization of data. The purpose of this algorithm is to reduce redundant 
dimensionality of data by finding new trajectories, called principal components. These 
trajectories are orthogonal linear combinations of the original trajectories and along which 
the maximal variation in the data is retained.  

The trajectories are chosen according to their descending sort order such that the first 
principal component (or trajectory) shows the largest variation and so on. The description 
along the new trajectories is more compact and can be referred as a shadow of the data 
when viewed from most informative viewpoint (Ringer, 2008). Datasets could be 
dramatically simplified using principal component analysis, Fig. 5. 

A large scatter of the data is seen in the 3D plot of the delta RGB of the different alkylating 
agents with the different sensing spots of Fig. 4, Fig. 5 (left). This is expected to severely 
reduce the identification fidelity in real life applications, where data fluctuations originating 
from different sources are expected to contribute to the data scatter. To improve the 
identification ability of the system, PCA was applied to the data, Fig. 5 (right).  

Not limited by association constant, this luminescence based sensing techniques for 
alkylating agents depend mainly on reaction rates. Such reactions can be easily accelerated 
by increasing mass transport, forcing the atmosphere to pass through or above the sensing 
unit, as well as by increasing the temperature of the sensing element. The sensitivity of the 
system depends solely on the number of reaction sites on the sensing element. This number 
is estimated to be 1014/cm2, an equivalent of about 0.1 micrograms of mustard gas.  
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Fig. 5. (left) RGB plot for alkylating agent (8-20) and sensing spots (1-7) interaction;  
(right) Principal component analysis of 5 (left) data 

2.2 Detection of alkylating agents using organic field effect transistors  

Section 2.1 clearly exemplifies that monitoring the change in the optical signal of the 
molecule can be useful sensing tool for the detection of different alkylating agents. Still there 
is a need not only to sense the presence of a known material, but also to assess the toxicity of 
new molecules that produce unknown reaction pattern. Furthermore, machine reading of 
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Fig. 4. A seven-spot sensor array of 1-7, adsorbed on high surface filter paper, before (first 
row) and after (preceding rows) exposure to alkylating agents 8-15. The figures on the right 
side of each square denote the RGB values of the spot when exposed to UV exciting light 
( ex=312 nm) 
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dimensionality of data by finding new trajectories, called principal components. These 
trajectories are orthogonal linear combinations of the original trajectories and along which 
the maximal variation in the data is retained.  
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along the new trajectories is more compact and can be referred as a shadow of the data 
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from different sources are expected to contribute to the data scatter. To improve the 
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luminescence based detection signals require elaborate optical equipment, consisting of at 
least a light source and a multi-spot detector such as a CCD and a CPU. These two 
limitations motivated us to explore the possibility of direct electrical detection of alkylating 
agents.  

The approach for direct electrical detection of alkylating agents relies on organic field effect 
transistors (OFETs) that carry an organic semiconductor that bears nucleophilic reaction 
sites and is thus capable of reacting with alkylating agents, see Fig. 6. The OFET in Fig. 6 
consists of a heavily doped silicon base (a) that serves as the gate. This silicon layer is 
covered by a thin silicon dioxide layer that insulates the gate from the electrodes and 
semiconductor (b). The organic semiconductor is spread in between the drain and source 
electrodes, atop the silicon dioxide (c). The electrical detection process is based on the ability 
of the organic semiconductor to react with the alkylating agent (d) and change measurable 
quantities, such as Vgate, Vdrain-source.  

Direct electrical detection of chemical substances may be achieved in a variety of methods, 
of which field effect modulation of the conductivity of an organic layer seems most 
promising due to the potential of signal amplification and gain of information on the 
captured substance from different types of gate manipulations. The ability of building 
arrays of field effect transistors, each bearing a different active material offers promising 
routes to the detection and identification of diverse substances in solution as well as in the 
gas phase (Chang et al., 2006). 

 
Fig. 6. Organic field effect transistor for detecting alkylating agents 

Coupling of a nucleophile to an organic semiconductor was achieved by co polymerizing 4-
[2,5-bis (2-thienyl)-3-thienyl] pyridine, 21, with 3-hexylthiophene, 22, to obtain co-polymer 
23, as shown in Fig. 7. 

Co-polymer 23 was obtained as a bright red solid, Mn = 37000, Mw = 97000 (GPC), in 17% 
yield by co-polymerization of a 1:10 solution of 21 and 22 in chloroform in the presence of 
FeCl3. NMR characterization reveals that co-polymer 23 is composed of 21n22m where  
n = 0.95±0.005 and m = 0.05±0.005 (Gannot et al., 2010). Co-polymer 23 reacts with alkylating 
agents according to Fig.8, both in solution and as a film when treated with their vapors.  

 
Detection of Alkylating Agents Using Optical, Electrical and Mechanical Means 

 

73 

Co-polymer 23 is an excellent film forming polythiophene organic semiconductor. Bottom 
contact organic field effect transistors (OFETs) were fabricated by spin-coating a 50 nm film 
of the co-polymer atop the FET structure using a previously described procedure (Shaked et 
al., 2003). Fig. 9 shows the electrical characteristics of the OFET having co-polymer 23 as the 
channel. Fig. 9 (left) shows the drain-source currents of the OFET as a function of drain-
source voltage for several gate-source voltages (VGS = 0, 10 and 20 V) before (black lines and 
inset) and after (gray lines) exposure to the alkylator methyl iodide (CH3I, 10). Fig. 9 (right) 
shows the drain-source current as a function of gate-source voltage for drain-source voltage 
of VDS = 10 V measured the same OFET having co-polymer 23 as the channel and under the 
same conditions.  

As can be clearly seen in the figure, prior to exposure to the alkylating agent the device 
exhibits standard FET output characteristics with a slight indication of doping, probably due 
to the exposure to atmospheric oxygen. The post exposure curves show considerably higher 
currents and a resistor like response while the effect of the gate bias is lost. This is a clear 
indication for high level p-type doping associated with the exposure to methyl iodide. 
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Fig. 8. Reaction between co-polymer 23 and an alkylating agent 
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Fig. 9. Output (left) and transfer (right) characteristics measured on a FET having co-polymer 
23 as the channel. The black lines and the inset show the device response prior to exposure 
while the gray (overlapping in a.) lines show the response after exposure to methyl iodide, 10. 

Consistent with the results presented in Fig. 9 (left), the transfer characteristics of the OFET 
prior to exposure show current modulation due to the gate-source voltage. The post 
exposure gray horizontal line shows almost no dependence on the gate voltage. At zero gate 
bias, VGS = 0, the exposure of the OFET to methyl iodide enhances the current by almost two 
orders of magnitude while at VGS = -20 V the factor is only 2-3.  

The detection of alkylating agents using co-polymer 23 OFET, involves the formation of a 
new covalent bond between the alkylating agent and the co-polymer in the channel. As this 
process is not reversible, all available reaction sites are bound to react. The number of 
reaction sites (pyridine rings, see Fig. 8) represents also the upper detection limit of the 
device. The total weight of the polymer embraced by the source and drain electrodes, M, is 
10-9 g. (assuming a film density of 1g/cm3), Equation 1, where W is the width of the device, 
L is the length and h is the thickness of the polymer film. 

 M=W x L x h x p = 1 x 2⋅10-4 x 5⋅10-6 ⋅1= 10-9 g (1) 

Co-polymer 23 consists of 5% (5x10-11g) monomer 21, which are equivalent to ~1.5x10-13 
moles. Consequently, reacting the OFET with ~9x1010 analyte molecules will bring the 
system to saturation of all the active sites of the polymer. 

The OFET of co-polymer 23 produced similar results when exposed to a variety of alkylating 
agents, such as chloromethoxy ethane, 9, 1-chloro-2-ethylsulfanyl ethane (a close analog of 
sulfur mustard gas), 8, and benzyl bromide, 13. In contrast, exposure of the OFET to vapors 
of non reactive materials, (see Fig. 10), that are incapable of forming covalent bonds with co-
polymer 23, such as methanol, 24, acetone, 25, water, 26, and isopropanol, 27, resulted with 
the deterioration of the output and transfer characteristics, as can be seen in Fig. 11.  

The effect of alkylation on OFETs having co-polymer 3 as the channel can be rationalised by 
following the effect of alkylation on the charge distribution in the polymer. Co-polymer 23 is 
composed of electron rich polythiophene skeleton with pendant pyridine groups. Upon 
reacting with an alkylating agent, the pyridine group is transformed into an electron 
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deficient pyridinium group. These electron poor groups attract charge density from the 
polythiophene skeleton, thus partially doping it. 

As indicated above, the OFET readily reacts with any alkylating agent, producing the same 
type of reaction and thus cannot provide any straightforward information regarding the 
identity of the reacting alkylator. The OFET can provide valuable information regarding the 
reactivity of the alkylator. Fig. 12 shows the drain-source current as a function of the 
exposure time to vapors of methyl iodide, 10, at a constant gate-source voltage of -10 V. 
When methyl iodide vapors are introduced into the atmosphere surrounding the OFET 
(marked with an arrow) the drain-source current drops, indicating the process of absorption 
of the vapors by the polymer and associated changes in its morphology and packing. Unlike 
�“innocent�” materials, that are incapable of reacting with the organic semiconductor, 
alkylating agents react in a way that increases the source-drain current at a given Vgate. This 
offers a simple and effective way of assessing the reactivity of the alkylating agent as the 
initial drop in source-drain current is a simple measure of the concentration of the guest in 
the semiconductor host while the rate of current increase at a fixed gate bias is a measure of 
the rate of alkylation.  
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Fig. 10. Structures of non reactive materials, 24-28 
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Fig. 11. Output (a) and transfer (b) characteristics of OFET having co-polymer 23 as the 
channel. The black lines show the device response at ambient conditions, while the gray 
lines show the response after exposure to methanol, 24. 
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deficient pyridinium group. These electron poor groups attract charge density from the 
polythiophene skeleton, thus partially doping it. 
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the semiconductor host while the rate of current increase at a fixed gate bias is a measure of 
the rate of alkylation.  
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Fig. 11. Output (a) and transfer (b) characteristics of OFET having co-polymer 23 as the 
channel. The black lines show the device response at ambient conditions, while the gray 
lines show the response after exposure to methanol, 24. 
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Fig. 12. Time response of an OFET having co-polymer 23 as the channel. Methyl iodide, 10, 
is introduced at T=10min (arrow). 

2.3 Detection of alkylating agents using chemo-mechanical asymmetric micro-
cantilever devices  

Alkylation of nucleophilic species is capable of inducing irreversible effects other than 
changes in electrical and optical signals. For example, the alkylation of a polyamine polymer 
may induce a volume change. This, in turn, may be translated into a macroscopic 
mechanical motion. The possibility of harnessing a chemo-mechanical signal transduction 
technique on micron-size micro-cantilevers for the detection of alkylating agents was 
explored.  

Micro-cantilevers have gained much attention in recent years as a promising platform for 
biomechanical as well as chemo-mechanical sensors (Lavrik et al., 2004). Different groups 
have reported the ability to detect different chemical substances, including explosives and 
warfare agents (Stolyarova et al., 2010). Micro-cantilever based systems also allow label-free 
(Raorane et al., 2008) real time monitoring of chemical and biological processes such as 
sequence specific DNA hybridization (Wu et al., 2001) and drug-target binding interactions 
(Ndieyira et al., 2008). Recently, due to their high sensitivity, micro-cantilevers have been 
used to measure the physical properties of polymers near their glass transition temperature 
(Jung et al., 2008). Typically, micro-cantilevers can be operated both in static and dynamic 
modes. In the static mode, the bending (deflection) of the tip serves as a measure for the 
interaction between the micro-cantilever and the guest while in the dynamic mode the shifts 
in the resonance peak indicate the change in the mass and stiffness of the micro-cantilever. 
In a static bending mode it is essential to asymmetrically functionalize the micro-cantilever 
so a stress gradient across it can be developed and induce bending. Novel asymmetric 
porous-silicon-over-silicon (PSOS) micro-cantilevers made according to Fig. 13, using 
vapour phase stain etching (Stolyarova et al., 2008), offer inherently asymmetric, highly 
sensitive and easy to coat systems. The resulting micro-cantilevers are characterised by a 
rough surface on their lower side and an intact flat surface on their upper side, Fig. 13 (b) 
and (c), respectively.  
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Fig. 13. (a) A SEM micrograph of a microcantilever array used in this study as the 
transducer. Representative SEM images of the upper (masked, b) and lower (unmasked, c) 
surfaces of the polymer coated microcantilever depicted in a. Bar size: 1 mm in a) and 5µm 
in (b) and (c). 

Unlike other methods of polymer application including drip coating and evaporation, the 
PSOS microcantilevers offer a simple way of coating. Due to their inherent asymmetric 
surfaces, a coating polymer layer may be applied to the beams by simple dipping in a 
polymer solution, rinsing and drying. For the detection of alkylating agents, micro-
cantilevers were coated with poly-4-vinylpyridine, 28, serving as the sensing layer. Fig. 14 
shows a side view of the polymer-coated micro-cantilever chip under gas flow. As can be 
seen, the dominant polymer layer resides on the lower surface of the micro-cantilever. This 
surface is characterised by rough porous silicon layer. The micro-cantilever chip was 
mounted in a flow cell where both the temperature and the flow were controlled. The 
bending of the micro-cantilever tip was monitored optically using optical profiling system 
capable of running time-resolved measurements. To monitor the effect of different analytes 
on the bending pattern, nitrogen served as an inert carrier gas and a special evaporation 
chamber allowed mixing the analytes with nitrogen. During baseline and desorption stages 
the polymer microcantilever chip was exposed to pure nitrogen, while during absorption to 
a mixture of nitrogen and one of the analytes (Shemesh et al., 2011).  

Fig. 15 shows the bending patterns of the micro-cantilever tip at absorption and desorption 
stages for two different analytes.The first one is vapors of methanol, 11, and then vapors of 
methyl iodide, 10, both in nitrogen carrier gas. As can be clearly seen, the absorption of 
coated microcantilever is fully reversible as ethanol is bound to the polymer only through 
weak and labile bonds. Concequently, ethanol readily desorbs from the micro-cantilever 
under an ethanol-poor atmosphere. The result of the desorption is that the bending of the 
micro-cantilever returns to its initial level, as it was before adsorption of the ethanol. In 
contrast, upon exposure of the same micro-cantilever to methyl iodide, 10, reaction occurs 
between the polymer and the analyte. This reaction attaches the analyte to the polymer 
through a new and stable covalent bond. Since this reaction is not reverted at room 
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Fig. 12. Time response of an OFET having co-polymer 23 as the channel. Methyl iodide, 10, 
is introduced at T=10min (arrow). 
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temperature, the bending is irreversible. This is reflected during the desorption stage as 
nitrogen flushes the system. The bending of the micro-cantilever reaches new bending level 
closer to the adsorption steady state level, indicating that some unreacted methyl iodide 
desorbs from the surface of the micro-cantilever but some of the methyl iodide had reacted 
with the polymer and cannot desorb.  

 
Fig. 14. Side view of the polymer coated microcantilever chip. 
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Fig. 15. Micro-cantilever bending curves for methanol, 11, and methyl iodide, 10,  

3. Conclusions 

Luminescent, electrical and chemo-mechanical detection schemes for the sensing (detection, 
identification and risk assessment) of alkylating agents were explored. A multiple-spot 
"chemical nose" array is shown to offer both detection and identification of different 
alkylating agents in the gas phase. The rate of colour development offers some risk 
assessment ability (not discussed here). Since the sensing element is based on a chemical 
reaction the sensitivity of the sensor is very high and depends mainly on mass transport of 
the alkylating agents and temperature. 

In a similar way and based on very similar nucleophile-electrophile chemistry organic field 
effect transistors and micro-cantilevers were harnessed to the detection of alkylating agents. 
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Reaction of gas phase alkylators with a nucleophilic organic semiconductor in an OFET 
structure yields dramatic and irreversible changes in the transistor properties while other 
innocent molecules inflict reversible changes to the OFET parameters. Risk assessment was 
demonstrated by following the absorption of the analyte and its reaction with the organic 
semiconductor.  

In a similar manner, gas phase alkylators that react with a nucleophilic polymer at the 
surface of a micro-cantilever induces its irreversible bending while for innocent materials, 
such as alcohols, the bending is reversible and depends on the momentary concentration of 
the guest in the atmosphere. 
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1. Introduction 
In recent years, effort has been made to develop instruments for rapid, inexpensive analysis 
of volatile chemical species that do not require trained personnel. This demand has been 
mainly driven by a variety of real life applications. Indeed, the problem of classifying and 
further quantifying chemical substances on a real-time basis is very critical for a broad range 
of activities in various fields, like: industrial (Garrigues et al.,2004), agricultural (Berna, 
2010), medical (Byun et al., 2010), domestic (Zampolli et al., 2004) and environmental 
(Bourgeois et al., 2003). 

Rapid detection and quantification of chemical species are important in control and 
optimisation of industrial processes and bioreactors. Optimisation of combustion processes 
can lead to significant energy savings, as well as to minimization of emissions across power, 
chemical, steel, paper, food and other manufacturing industries. The ability to monitor and 
precisely measure leakages of combustible and explosive gases is crucial in preventing the 
occurrence of accidental explosions. Nowadays, a lot of attention is paid to safety 
monitoring, surveillance and homeland security. Quality control of different products, e.g. 
food, drinks and agricultural products, are also on the rise. 

New demand has recently emerged in the area of medical diagnosis and continuous 
monitoring of chemical parameters during intensive care. Medical appliances are related 
mainly to the breath analysis and detection of infections, diseases and bacteria. 
Environmental applications include e.g. monitoring of air quality (indoor and outdoor), 
potentially polluting industrial installations, plants and soil contaminations, landfill sites, 
wastewater treatment plants. 

Rapid advancements in sensing technology result in a variety of devices which are able to 
detect indoor pollutants. They have found widespread commercial application in gas 
monitoring and alarm applications. New trends in building engineering cause that a 
distributed control of ventilation is required. Three factors are considered in this kind of 
monitoring: comfort, productivity, security (agents, pollutants, explosives).  

In the past decade there has been a growing interest in the development of olfactory 
machines and electronic nose systems. Odour monitoring in ambient air is a serious 
challenge for the measurement technology. There is no technique available for continuous 
measurement of odour nuisances and the current standard methods of odour measurements 
cannot be applied to on-line monitoring. 
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In the applications mentioned above, devices based on gas sensors are especially applicable. 
They have several advantages over conventional analysers, because of possible 
miniaturization, low price and maintenance costs, short response time, easy manufacturing 
and small size. Currently, gas sensors play important, commercial role in detecting, 
monitoring and controlling the presence of hazardous and poisonous gases in the 
atmosphere.  

Gas sensors are one kind of chemical sensors. According to the current IUPAC's definition, a 
chemical sensor is a device that transforms chemical information, ranging from the concentration of 
a specific sample component to total composition analysis, into an analytically useful signal. The 
chemical information may originate from a chemical reaction of the analyte or from a 
physical property of the system investigated. All chemical sensors consist of a chemically 
sensitive material (a receptor) that is interfaced to a transducer. In the first unit the chemical 
information is transformed into a form of energy, which may be measured by the 
transducer. The receptor is responsible for selectivity of measurements. The transducer part 
is a device capable of transforming the energy which carries the chemical information about 
the sample into a useful analytical signal. The transducer as such does not show chemical 
selectivity. The interaction between an analyte molecule and the receptor can be either 
reversible (measurand dissociates from the layer when the external concentration is 
removed) or irreversible (measurand undergoes a chemical reaction and the sensitive 
material layer is consumed).  

The receptor and transducer parts of chemical sensors may be based on various principles. 
Therefore, these devices have different application ranges. They can be used for:  

• detection of some of chemical conditions, e.g. the presence or existence of strictly 
defined chemical, harmful hazards; 

• specific determination of one substance; 
• classification of complex gases (determination of classes); 
• qualitative and quantitative chemical analysis of multi-component gaseous mixtures. 

The application range of gas sensors is defined by their measurement characteristics. The 
traditional strategy in the sensor techniques is based on a single sensor to convert chemical 
information to an electric signal. A principle of �“lock-and-key�” is applied in the design of this 
device. Selectivity is achieved through recognition of the analyte molecules at the receptor 
site. In this approach, specific receptor has to be synthesized to bind the analyte of interest 
strongly and highly selectively. Therefore, the traditional strategy requires highly selective 
sensor for each analyte under test. This approach is not particularly useful for at least two 
reasons. Firstly, the synthesis of the separate, specific receptor is not easy to realize. It is a 
challenge both from chemical and technological point of view. Often, this requirement 
cannot be achieved due to the working mechanism of the sensor, especially its receptor and 
transducer functions. Secondly, this approach is impractical for analysing complex vapour 
mixtures qualitatively and quantitatively. In practice, receptors do not ensure very good 
selectivity. However, in certain circumstances, under carefully controlled operating 
conditions, the output signal may provide selective information about individual 
component, without any major preliminary treatment of the sample. Therefore, 
conventional sensors are normally designed to operate under well defined conditions, for 
specified analytes, in certain sample types. They offer rapid and inexpensive detection of 
many individual volatile substances with simple interpretation of measurement results. 
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The ideal gas sensor should exhibit reliability, robustness, sensitivity, selectivity and 
reversibility. These requirements are difficult to attain in practice. For example, often 
sensing elements cannot achieve the required selectivity. It is a serious problem, because the 
key function of the analytical equipment is to realize a kind of selectivity for the quantity to 
be measured. One of the main objectives of current research in the gas sensor technology is 
the qualitative and quantitative multi-component analysis of chemical environment 
characterized by the simultaneous occurrence of different volatile species in air. Sensitivity 
limitation originates from fundamental principles of the sensing mechanism, which is 
different from �“lock-and-key�” principle. This disadvantage cannot be eliminated completely 
because of sensing mechanism of gas sensors. However, there are methods to reduce the 
influence of interfering chemicals. Recently, there has appeared a strategy that is 
complementary to traditional chemical sensing. It involves using systems based on: 

• sensor array; 
• signal processing; 
• data analysis. 

The advantage of this strategy consists in application of unspecific but satisfactorily 
reproducible sensors for multi-component analysis of gases. 

2. Sensor array 
Generally speaking, a sensor array is a set of sensors used for gathering information about 
the object under test. In chemical applications, it consists of several different sensors with 
broad and partially overlapping sensitivity to various gases. The gas sensor array is used to 
convert chemical information regarding multi-component gaseous mixtures into a set of 
measurable signals. Sensors are exploited independently and simultaneously in this device. 
Therefore, they can be treated as the independent sensing elements in the operation 
procedure. The multivariate response of a sensor array is created by all sensing elements. 
This collection of sensors should be characterised by as much chemical diversity as possible. 
In this case, the array responds to the largest possible range of analytes.  

The first report of the sensor array was presented by Persaud and Dodd in the early 1980s 
(Persaud & Dodd, 1982).The utilization of these devices is inspired by the performance of 
biological olfactory systems. The sensor array is established on an assumption that a cross-
sensitivity of gas sensors is unavoidable. The cross sensitivity means that some chemicals 
may interact to give a different signal from the component in a mixture compared to the 
single component. For that reason, instead of trying to eliminate this feature, gas sensors are 
linked as independent sensing elements in an array configuration. Of course, the principle 
of �”lock-and-key�” is abandoned in this approach. Sensing elements are not highly selective 
toward any given analyte. However, they should be satisfactory reproducible and they 
should have significantly different gas sensing properties. The selectivity of each sensing  
element is admittedly low. However, the combination of the responses of different sensors 
presents a characteristic pattern that can be treated as a unique �‘signature�’ (�“electronic 
fingerprint�”) of individual chemical species. Subsequent signal processing and data analysis 
are required to extract information about gas under examination.  

A sensor array can provide both qualitative and quantitative information. It shows the 
ability to classify different complex samples and to quantify components concentrations 
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when the mixture consists of several constituents. In other words, the array of sensors 
performs integration to yield a unique signal for complex but distinctive gaseous samples. It 
is realised without requiring that the mixture is broken down into its individual components 
prior to, or during, the analysis. This is a disadvantage when the precise qualitative and 
quantitative information about a complex mixture is necessary, but it is advantageous when 
only classification of the sample is required. Another potential shortcoming to an array 
system is the possibility that other unknowns may give the same "unique" signal as a 
specific analyte of interest. Qualitative and quantitative analysis can be performed only in 
case the sample consists of several components. 

3. Design of gas sensor array 
A gas sensor array never functions as an independent analytical instrument. It is one of the 
few essential components of a detector, an analyser, a monitor (the analyser working 
according to a sampling plan as a function of time) or an automated system for continuous 
measurements, in real time. For that reason, the sensor array must cooperate with other 
elements of the analytical equipment. Usually, the following functions are performed by 
external settings :  

1. sampling,  
2. transport and handling of the sample,  
3. signal acquisition and processing,  
4. data analysis,  
5. reporting and visualization of measurement results,  
6. automatic control of the whole system,  
7. calibration.  

The sensor array construction is particularly dependent on the first four functions. 
Therefore, the following issues are significant for sensor array design: 

• method of sampling, pre-treatment and target gas delivery equipment;  
• measurement characteristics of a sensor array; 
• working parameters; 
• operation mode; 
• signal processing; 
• data analysis. 

Additionally, usability, service and cost of sensor array should be taken into account at the 
design stage. Improvement in any of these areas will lead to a significantly better 
performance of the analytical equipment.  

3.1 Method of sampling, pre-treatment and gas delivery equipment 

A sensor array may be adjusted for dynamic (active) or passive (diffusion) sampling. In the 
first case, the sample is mechanically drawn into the sensor array, where it is analysed, and 
then exhausted to the atmosphere or the vent line. This type of sampling is performed by a 
suitable pneumatic system. This assembly consists of a sample probe and a delivery system, 
which is designed to transfer the gas from the source to the sensor array. Usually, the 
delivery system includes a gas line, an electro-valves, an electronic flow meter (a mass flow 
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controller), a gas mover (e.g. a pump or a fan). The intrinsically safe or explosion-proof 
pump has to be employed in some applications. The sampling system must be designed to 
draw continually a fresh sample of the target gas. To ensure the unaltered state of the 
sample: 

• the sampling probe and the gas line must be made of inert materials such as: 
polytetrafluoroethylene (PTFE), tetrafluoroethylene hexafluoropropylene copolymer 
(FEP), polyethylene terephalate (PET), glass, stainless steel; 

• the transport line should be short; 
• particulate matter and moisture cannot accumulate inside the sampling line. 

A sample probe and gas line has to be cleaned between successive exposures until all 
contaminations are removed. Usually, a stream of pure air is used for this operation. Thus, a 
sensor array has to be connected with a source of this gas. In the dynamic sampling, a 
sample can be taken directly from a surrounding atmosphere, an industrial installation as 
well as from a headspace sampler, a bubbler or a pre-concentrator. 

A passive (diffusion) sampling operates by allowing gas or vapour molecules to diffuse 
until they reach sensor surface. Fick�’s First Law describes the movement of gas. As the 
diffusion coefficient varies in a known manner with temperature and pressure, these 
parameters must be taken into account while designing the sensor array. In this kind of 
sampling, sensor array is often enclosed in explosion-proof housings (if it is required by the 
conditions in the place of installation), and signals are delivered back to the control panel. 
The enclosure is described as a "sensor head". The shape and construction of this package 
affect the measurement characteristics of the sensor array.  

In diffusion sampling, the delivery system is not exploited. This is an important advantage 
in certain applications. For example, as a pump is not used to move the sample, the 
analytical equipment is completely quiet. Sampling based on diffusion relies on air 
movement rather than on actively pulling a sample. Therefore, the response time of an array 
is usually slower in this case. When diffusion sampling is applied calibration of the sensors 
is often complicated. There are required special accessories to convert a diffusion operation 
mode to flow-through for calibration purposes. Moreover, the implied equivalence between 
calibrating via flow-through and monitoring under diffusion is not always well-documented. 
Furthermore, all gas sensors measure partial pressure, and a sample actively brought to the 
sensor is at a slightly elevated pressure, while a diffusion sensor operates at ambient pressure. 
As such, the output sensitivity of sample draw sensors is usually higher than diffusion sensors. 
This can be important for many toxic gases with low regulatory levels. 

In many applications, it may be necessary to pre-treat sample before it reaches a chemical 
sensitive layer of a sensor. For example, filtration, moisture removal or chemical 
modification may be required. Different modifications of a delivery system are discussed in 
the literature (Stetter et al., 2000). For example, the system may be equipped with molecular 
filters (like charcoal) or a heated filament. If air is used as a carrier gas, the filament 
performs catalytic oxidation. In case the volatile compounds are in an inert gas (without 
oxygen), the term pyrolyzer is more appropriate for the filament. A temperature- variable 
filament is particularly interesting because it provides additional selectivity at the expense 
of time. As it was mentioned, sensors demonstrate poor selectivity in real analytical 
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applications. Chromatographic columns can be used to separate constituents of the complex 
mixtures on the basis of their molecular size or other physical properties prior to analysis. A 
sensor array can also be connected to a membrane unit. Its material is usually used for 
separation, purification, and chemical enrichment of the sample. These functions are very 
well performed by Nafion. This material is a flouropolymer with ion exchange capacity. It 
belongs to the class of solid polymer electrolytes. Nafion has a hydrophobic �–CF2 �–CF2 �– and 
hydrophilic �–SO3H regions in its polymeric structure. Due to these properties Nafion has 
high permeability for water. Thus this material can be used as a membrane drier. Nafion 
also removes other compounds from the sample stream e.g. volatile alcohols (methanol, 
ethanol), acetone and some other polar solvents. This material is really a separator and it 
fractionates the sample in a predictable and repeatable manner prior to analysis by the 
chemical sensor array. Therefore, Nafion is capable of enriching or depleting the gas stream 
with any number of analytes, to which it is permeable. 

3.2 Measurement characteristics of gas sensor array 

Usually, the responses of individual sensors (especially commercial ones) to various 
substances are only slightly different. Therefore, various methods have to be used to achieve 
satisfied measurement characteristics of the sensor array. They are based on: 

• dimension and composition of a sensor array; 
• construction of this device; 
• properties of the individual sensors. 

3.2.1 Dimension and composition of gas sensor array 

Dimension of a sensor array is defined by the number of sensors. This factor strongly affects 
measurement characteristics of the sensor array (Gardner et al., 2005; Gualdr´on et al., 2006). 
Large number of sensors may in some situations improve discrimination abilities of the 
sensor array. However, a calibration effort and time demand for data processing increase 
considerably in this case. Additionally, multi-dimensional arrays may include sensors, 
which are not sensitive to target gases and do not contribute to the recognition task. Sensors 
with no responses to the subgroup of analytes increase noise and degrade the ability to 
make analytical comparisons. Besides irrelevant devices, an array can consist of sensing 
elements which have very similar sensitivities to tested volatile compounds. The redundant 
sensors, which are exactly the same, lead to improvements in sensitivity. Perfectly 
redundant sensors increase the signal-to-noise ratio (SNR) and produce a better low 
detection limit (LDL). However, these devices provide redundant information which is not 
useful for the discrimination process. The removal of redundant sensors offers many 
advantages, e.g. level of drift/noise introduced by these devices can be greatly reduced. 
Moreover, the description of sensor array response is easier. Thus, simpler classifiers 
(working on small number of dimensions) can be applied and more qualitative information 
is obtained. Therefore, arrays with smaller number of sensing elements, but with different 
response parameters are preferred in practice. By eliminating unimportant sensors, the cost 
and time of collecting and analysing data may be reduced. This is crucial for many 
applications. Of course, the range of applications of the sensor arrays with the small number 
of sensing elements is decreased. 
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It is important to select sensors not only from the perspective of sensor array dimension. 
This device may include sensors of different classes, which have different properties. 
Therefore, sensor arrays are divided to two groups: homogeneous and heterogeneous 
(Tomchenko et al., 2003). For example, the earliest reported electronic nose was based on a 
heterogeneous array of combustible and electro-chemical sensors. It was reported in (Stetter 
et al., 2000) that sensors with chemically independent responses are valuable and make the 
array more versatile and able to distinguish more analyte differences. Sensors of various 
classes generally provide more chemically different or chemically independent responses 
than sensors of the same class with small variations in their formula or structure. Sensors, 
whose chemical principles are different, give data that are more effective when comparing 
samples than the same number of sensors of a single class. Moreover, in large arrays of 
different sensors of one class, sensors that may not contribute with information will always 
contribute with noise. There is an optimum array composition for any given set of analytes 
in qualitative detection applications.  

There are two possible approaches to design sensor arrays. The first one is commonly 
applied in commercial instruments e.g., in electronic noses. This strategy is based on an 
assumption that sensor array should be dedicated to a limited number of chemical species 
emitted by e.g. food or other goods, human organisms, industrial or agricultural 
installations. To realize this goal, the set of suitable gas sensors is chosen. The selection 
process is related to the particular applications and it is performed at the stage of instrument 
design. The inadequate choice of sensors can potentially result in insufficient information or 
redundancy. Therefore, the optimisation procedure has to be applied. The considerable 
efforts have been made in this sector of sensor technique recently. However, the scope of 
application of sensor arrays constructed in this way is rather limited. 

The alternative approach concerns sensor arrays of more universal applicability. These 
devices require using a broad spectrum of sensing elements, so that a large number of gases 
could be measured by one analyser or analytical system. Due to progress in the sensor 
technology the construction of relatively cheap arrays consisting of many sensing elements 
is already possible. Of course, the problem of sensor selection exists in this strategy too. 
However, it is solved in another way. We propose to use in the analytical equipment an 
array with a large number of sensors. They are not selected with a particular application in 
mind. However, they shall cover as broad range of substances as possible in a partially 
selective manner. For particular applications from this pool of the sensing elements there are 
chosen various sensor combinations with conscious intent towards the analytical goal. These 
sensor subsets have lower dimension than the original sensor array. Additionally, they have 
optimal measurement characteristics. 

3.2.2 Construction of sensor array 

Many contributions can be found in literature devoted to the characterization of individual 
gas sensors. However, little attention has been paid to the construction of a sensor array. 
This approach is inadequate because construction of this device decides about: 

• chemical environment of the sensors; 
• space distribution of the examined gaseous species inside measurement chamber and 

its evolution in time; 
• thermal, electromagnetic or electrical conditions of measurements. 
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It is important to select sensors not only from the perspective of sensor array dimension. 
This device may include sensors of different classes, which have different properties. 
Therefore, sensor arrays are divided to two groups: homogeneous and heterogeneous 
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in qualitative detection applications.  

There are two possible approaches to design sensor arrays. The first one is commonly 
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Many contributions can be found in literature devoted to the characterization of individual 
gas sensors. However, little attention has been paid to the construction of a sensor array. 
This approach is inadequate because construction of this device decides about: 

• chemical environment of the sensors; 
• space distribution of the examined gaseous species inside measurement chamber and 

its evolution in time; 
• thermal, electromagnetic or electrical conditions of measurements. 
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Gas sensors in an array can be contained in one compartment or in many measurement 
chambers. It depends on working mechanism of these devices. A sensor array with a set 
of separated chambers is preferred when individual sensors produce intermediate 
products during the sensing process which can affect responses of neighbouring sensors. 
In this case, the chambers have to be connected in parallel using a Teflon-tubing so that all 
sensors are simultaneously exposed to the gas mixture of the same composition. The 
compartment has to be airtight and made of chemically resistive material. The 
measurement chamber is provided with gas inlet and outlet. Geometrical parameters of 
this compartment such as volume, shape, and the inlet-outlet position influence the 
development of the fluid flow and the gas concentration distribution inside the chamber. 
Therefore, they must be considered. To avoid effects due to non-uniform gas 
concentration in the measurement chamber, it appears reasonable to place the sensor in 
the gas stream, very close to the point of injection. Similarly, the concentration transient 
may be reduced to a value substantially smaller than the response time upon reducing the 
chamber volume and increasing the volume flow rate through the chamber. That is based 
on hypothesis that the concentration transient is not much longer than the ratio between 
chamber volume and volume flow rate.  

A sensor array may consist of many, closely placed sensors. In that configuration, 
neighbouring sensing elements can interact and interfere with each other. This phenomenon 
is often described as �“cross-talk�”, and the response of the individual sensor depends not 
only on the gas under test, but also on its neighbours. From signal processing perspective, 
cross-talk can be considered either as random noise or as noise which has a certain pattern. 
The sources of the cross-talk can be different e.g. thermal, electrical, electromagnetic and 
architectural. This effect is considered as a local one and hence it may be removed by a 
suitable sensor array design. 

The chemical and physical conditions directly around the sensor are also very influential. 
The sensor response may depend on the temperature of gas under test and the 
surrounding�’s. Thus, thermal conditions around the sensing elements should be controlled. 
This requirement can be realised e.g. by the installation of the sensors into a thermostatic 
chamber that keeps the temperature of gas at a constant level. Additionally, some of the 
sensors suffer from the relatively large power dissipation. Therefore, thermal isolation of 
sensor array is a key issue. In this way, the power consumption by the measurement device 
may be lowered. 

The sensor array construction is strongly determined by the applied technology. Different 
sensor technologies are used in today�’s commercially available sensor systems. Recently, 
considerable interest has arisen in micro-electro-mechanical systems (MEMS). They are 
fabricated by the thin film and micromachining techniques (Faglia et al., 1999; Vergara et al., 
2006). This technology meets the main requirements for gas sensor devices such as: small 
size, high sensitivity in detecting low concentrations, good selectivity, short response time, 
long term stability. The additional advantages such as low power consumption, possibility 
of on-line operation, temperature controllability, small size, low cost, easy realization of 
sensor array and possibility of on-chip integration with micro-electronics and low-cost 
fabrication make them attractive for consumer applications. Sensitive layers deposited on 
micro-machined substrates are the most promising structures. 
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3.2.3 Properties of individual sensors 

The measurement abilities of the sensor array are strongly dependent on the measurement 
characteristics of the individual sensors, which are determined by their operating principles. 
The sensing elements in the array are not dedicated to any given analyte. They are chosen to 
respond to a number of different substances or classes of chemicals. With regard to the 
requirements imposed on the individual sensors that make up the arrays, the ideal sensing 
element integrated in the array should fulfil several criteria: good accuracy, resolution, 
precision and repeatability, high sensitivity towards target gas, medium selectivity (they 
must respond to different constituents of a tested sample), low sensitivity towards humidity 
and temperature, short response and recovery time, low detection limit, wide span and 
dynamic range, linearity, low drift and noise, robustness, durability, stability and sensitivity 
in hostile environment. Additionally, weight, dimension, power consumption, thermal 
capacity and thermal isolation, design and housing of the sensors are used to evaluate 
performance of these devices. It is difficult to achieve all of these requirements in practice. 

Sensor arrays can include sensing elements based on different operating principles. Usually, 
they belong to one of the following classes of gas sensors: 

• optical (absorbance, reflectance, fluorescence or opto-thermal effect are used for the 
measurement); 

• electro-chemical (These devices are divided to potentiometric and voltammetric 
sensors. The last group includes amperometric devices); 

• electrical (chemically sensitized resistors, diodes and field effect transistors); 
• mass sensitive (piezoelectric sensors); 
• magnetic for oxygen measurement; 
• thermometric and calorimetric (thermal conductivity sensors, catalytic sensors). 

Among different kinds of sensors that may be used in sensor arrays electro-chemical 
devices, mass sensitive sensors, metal-oxide-semiconductor field-effect transistors and 
chemi-resistors (semiconductor sensors) are especially interesting.  

Electro-chemical sensors are the largest group of sensing devices. The important advantage 
of the first group of sensors is a linear range of the response. Usually, it is greater than 104. 
These devices are almost insensitive to changes in relative humidity (RH). They also 
respond to quite different chemical species than chemi-resistors or mass-sensitive sensors. 
The electro-chemical sensors respond only to gas that has electro-active properties. 
Therefore, they are not sensitive to some common classes of compounds, such as saturated 
hydrocarbons. These sensors will only increase the noise of the array during analysis of a 
sample containing these compounds. The sensing mechanism of these devices is controlled 
by the nature of the electrode and electrolyte as well as the thermodynamic potential of the 
sensing electrode, the rate of diffusion, solubility in the electrolyte, and the number of 
electrons produced per molecule. In general, the active Pt catalyst will record a signal for 
any electro-oxidizable gas or vapour (CO, SO2, H2S, NOx, and EtOH). The NO2 sensor is 
operated with an Au electro-catalyst at more cathodic potentials such that only electro-
reduceable gases interact such as NO2, Cl2, and few others. Usually, electro-chemical sensors 
are optimized for a single analyte like: CO, H2S, NO, NO2, SO2, Cl2, O3 or hydrazine. In this 
form, they are used in a sensor array. The measurement characteristics of electro-chemical 
sensors may provide complementary capabilities to sensor array. 
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Mass sensitive sensors (piezoelectric devices) transform the mass change at a specially 
modified surface into an alteration of a property (the resonant frequency) of the support 
material. The mass change is caused by an accumulation of the analyte on the adsorbent 
layer which is composed of stationary phases used in gas chromatography or by an 
accumulation in supramolecular host molecules. This group of sensors is split up into: 

• quartz crystal microbalance (QCM) based on measuring the frequency change of the 
quartz oscillator plate caused by adsorption of a mass of the analyte at the oscillator; 

• surface acoustic wave (SAW) devices depend on the modification of the propagation 
velocity of a generated acoustical wave affected by the deposition of a definite mass of 
the analyte. 

Mass sensitive sensors present very good low detection limit. However, their selectivity is 
low. The sensitivity of the QCM and SAW devices to a particular compound depends on the 
type of sensitive membrane. These sensors can detect a broad spectrum of chemical species 
due to the wide range of gas sensitive coatings available. However, these devices suffer 
from poor SNR. It is caused by the high frequencies, at which SAW sensors are operated or 
surface interferences in the case of QCM sensors. The circuitry required to operate mass 
sensitive devices is complex and expensive. 

The metal-oxide-semiconductor field-effect transistor (MOSFET) is a transducer device, 
which transform a physical/chemical change into an electrical signal. The sensing mechanism 
of MOSFET sensors is based on the principle that the threshold voltage of this device changes 
upon interaction of the gate material, usually catalytic metal, with certain gases due to the 
corresponding changes in the work functions of the metal and the oxide layers. These changes 
are caused by the polarization of the surface and interface of the catalytically active surface. 
Gas sensing MOSFETs are produced by standard micro-fabrication technique or in the micro-
machining technology. In the last case, a hybrid suspended gate FET (HSGFET) sensors are 
fabricated. Gas sensing MOSFETs have a number of advantages, which result from the CMOS 
technology. The reproducibility of these devices is quite good. They are small and cheap. Gas 
sensing MOSFETs also have disadvantages. For example, they suffer from baseline drift and 
instabilities depending on the sensing material used. Additionally, the properties of these 
devices are dependent on the gas flow and operating temperature. Therefore, control of the 
surrounding environment is required. 

Chemi-resistors are very often described as the semiconductor sensors, due to the working 
principle of these devices, which is based on the variation of the sensing material 
conductivity in presence of oxidizing and reducing gases. Different organic materials e.g. 
conducting polymers or metal oxides e.g. ZnO, TiO2, WO3 and SnO2 are used in this sensor 
technology. Conducting polymers offer many advantages over other sensing materials. An 
array equipped with polymeric sensors can obtain high discrimination ability because 
different polymers generate various levels of response to a given gaseous sample. A wide 
range of polymeric materials is available on the market. They are relatively inexpensive and 
easy to prepare. Sensors fabricated from polymeric materials can be used in conditions of 
high relative humidity. They show highly linear responses to many gases. These devices are 
operated at room temperature. Therefore, power consumption is very low. It means that 
polymeric sensors can be applied in portable, battery powered equipment. Signal conditioning 
circuitry required for these sensors is relatively simple as only a change in resistance is 
measured. The main disadvantage of this type of sensors is aging, which causes drift.  
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Semiconductor metal oxide gas sensors are considered as one of the basic technologies for 
the array applications. It results from the advantages of these devices e.g. high sensitivity, 
short response and recovery time, durability, small weight and dimensions, a real simplicity 
in function, large number of detectable gases (possible application fields are wide), low cost, 
flexibility in production. Although semiconductor gas sensors are widely used as invaluable 
safety devices for the detection of methane, propane or carbon monoxide gas, it is known 
that these devices suffer from a number of shortcomings such as: lack of selectivity, 
nonlinearities of sensor�’s response, long-term drift, variations in the initial resistance, 
sensing material poisoning and aging, relatively high operating temperature (> 300°C), 
hysteresis, sensitivity towards humidity and temperature. Therefore, the important goal in 
the development of chemiresistors is to improve the measurement characteristics.  

This requirement can be achieved in different ways since semiconductor sensor response to 
target gas depends on many factors. For example, the improvement of sensitivity, selectivity 
and response time of theses devices can be reached by: 

• the selection of a semiconductor with the suitable intrinsic properties (metal oxides e.g. 
SnO2, ZnO, TiO2 or organic materials e.g. phthalocyanines, conducting polymers); 

• the addition of catalysts and promoters or more specific surface additives; 
• bulk/surface dopings; 
• the choice of a suitable physical parameters of sensing layer (thickness of the gas-

sensing entity, internal porosity, layer microstructure, crystallinity and crystalline 
structure, grain size, grain-grain contacts, surface morphology); 

• the application of different technologies of the sensing material deposition and 
formation on the substrate; 

• the aging and the preconditioning procedures; 
• the modification of sensing layer, especially its surface; application surface coatings e.g. 

membranes and a diffusion filter layer such as SiO2 on top of the semiconductor; 
• the selection of a suitable material and geometry of the substrate; 
• the appropriate choice of material and setup of the electrodes; 
• the choice of the sensor structure and enclosure. 

3.3 Working parameters 

The measurement characteristics of sensor array can be controlled to some extent by 
working parameters. Mechanism of gas sensing causes that operating conditions of chemi-
resistors are primarily determined by the temperature, flow rate of sample, gases partial 
pressures or potential (bias). These parameters may be constant or time-varying in course of 
the measurement. The alteration may be predetermined (programmed), controlled by the 
sample and the sensor or accidental. 

3.4 Operation mode 

In principle, the term operation mode means a manner or a way employed to operate a 
device. In practice, it is a description of conditions under which analytical equipment works. 
Usually, the operation mode is characterized by an applied procedure, sensor environment, 
method of sensor response (output signal) measurement and working parameters.  
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Operation mode may affect the performance characteristics of semiconductor sensors since 
it determines the state of these devices during measurements. Generally speaking, a gas 
sensor can be in a steady or unsteady state. The first case is obtained in stable conditions 
that do not change over time. The sensing material is in equilibrium with a surrounding gas. 
In commercial instruments, the sensor responses in this state are preferred up to now, 
because the output signals are easily measurable and time-independent. The steady-state of 
sensor�’s signal as input for discriminators are easier and less complicated for processing and 
data analysis. Additionally, problems with unstable flow, pressure and temperature of gas 
sample, which are encountered at the beginning of exposure are minimised. However, when 
a sensor is in the steady state a lot of information about tested gases is lost. First of all, there 
is inaccessible information originating from the kinetics of processes that cause sensor 
response. In many applications of chemical sensors, information can be gained not only 
from a steady-state value of the sensor signal, but also from the kinetics of the response. 
Hence, an alternative approach has received much attention in recent years. It is based on 
sensor responses, which are recorded when the device is in an unsteady state. In this case, 
the sensor is not in the equilibrium with a chemical environment. The sensor response in the 
unsteady state is a time-dependent (temporal or transient). It conveys information, which is 
particularly useful to an enhancement in the discriminating ability of chemiresistors. For 
that reason, the semiconductor sensors in this state have received much attention in recent 
years.  

The operating mode is often classified as a static or dynamic. Static mode means that any 
quantity acting on the sensor is constant with time. In other words, the device is exposed to 
the gas under test in stationary conditions. The dynamic mode is based on alteration of 
working parameters or operating conditions with time. A special variant of this operation 
technique is based on signal modulation. In this mode, the alteration of the quantity acting 
on the sensor or sample is characterized by frequency and amplitude. The dynamic mode 
operation techniques can be grouped into four categories: 

• modulation of measurement parameters such as potential (bias) or frequency 
(impedance spectroscopy) �– AC operation mode (Amrani et al., 1992; Gutierrez et al., 
1991, 1992); 

• modulation of the working temperature of the sensors (Gouws & Gouws, 2003; 
Gutierrez-Osuna et al., 2003; Llobet et al., 1997; Vergara et al., 2007); 

• modulation of the gas flow (Barbri et al., 2008); 
• modulation of the gas concentration (Gouws & Gouws, 2003; Llobet et al., 1997).  

In the AC operation mode, a periodic waveform (e.g. a sinusoidal) is applied to the sensor 
input as a reference voltage instead of a fixed DC power supply. The voltage in the sensor 
heater is kept constant. Gas discrimination is enhanced in AC operation mode, by taking 
measurements of different electrical parameters (such as sensor capacitance, conductance or 
dissipation factor) at different frequency values of the reference voltage generator. This 
offers several advantages. For example, SNR is usually better, because narrow band 
amplification (either by filters or lock-in techniques) can be implemented and the 1/f noise 
component is less significant. Thus lower detection limits can be achieved. 

In the past few years, modulating the working temperature of metal oxide sensors has been 
one of the most used methods to enhance sensor selectivity (Gutierrez-Osuna et al., 2003). 
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This mode consists in altering the kinetics of the sensor response through changes in the 
operational temperature of the device. It is well known that when the working temperature 
of a gas sensor is modulated, the kinetics of the gas-sensor interaction is altered and this 
leads to characteristic response patterns. Temperature modulation can be grouped into two 
broad categories:  

• thermal transients; 
• temperature cycling (oscillation).  

In the thermal transient approach, the heater voltage of the sensors heater is driven by a 
discontinuous step function (e.g. a heater supply is switched from a high voltage to a low 
voltage) or a pulse signal that is used to drive the heater voltage. The discrimination is 
performed in the transient response induced by the fast change in temperature. In the 
temperature cycling, the sensor heater is driven by a continuous function. Different 
modulating waveforms (e.g. ramp, sinusoidal, triangular, saw-tooth and asymmetrical 
square waves) can be used for temperature oscillation. The semiconductor ceramic sensors 
deposited on a substrate with high thermal inertia (e.g. TGS sensors) do not seem the best 
candidate sensors for an effective temperature cycling. Under these conditions extremely 
low modulating frequencies are used, which results in long, impractical, measurement 
times. With the development of the micro-system technology, the availability of micro-
machined substrates for metal oxide gas sensors implied that sensors could have their 
operating temperature modulated in a more efficient way. 

The effect of flow modulation can be analysed from two points of view. Firstly, the 
concentration of analytes at the surface of sensors is modulated. Secondly, fast periodical 
flow changes result in periodical cooling and heating of sensors�’ surface. Therefore, specific 
response patterns, which are characteristic of the analytes present, develop. The method can 
be easily adapted to both static and dynamic headspace sampling strategies. A wide range 
of concentrations and contaminants have been tested which confirms that flow modulation 
allows for a reliable identification of different vapour species. 

Concentration modulation produces an output signal that contains information on the 
dynamic adsorption and desorption processes. The transient signals in this mode are 
generated while the controlled modulation of a sensor input parameter is performed. The 
concentration modulation may be achieved by means of fast-switching valves. The frequency 
spectrum of these transient signals should be a source of information containing details on the 
dynamics of the interaction process and have the potential for analyte identification. 

Usually, transient characteristics are obtained by operating sensors at different 
temperatures. In particular, modulation of this working parameter is used to reduce long 
time drift effects and diminish cross-sensitivities. Unfortunately, this method requires a 
temperature control and additional equipment. The operation based on altering the target 
gas partial pressure to get unsteady state of the sensor is relatively rarely tested and applied 
in practice.  

3.4.1 Stop-flow operation mode  

In the last years, considerable efforts have been made to use sensor dynamics as a source of 
multivariate information aimed at an enhancement in the discriminating ability of poorly-
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Operation mode may affect the performance characteristics of semiconductor sensors since 
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selective metal oxide gas sensor arrays. The detection of reducing gaseous substances, e.g. 
volatile organic compounds by chemiresistors like Taguchi gas sensors (TGS) is caused by a 
change in conductivity of semiconductor. This effect is induced by the interactions between 
gaseous molecules and sensing material. The mechanism of chemiresistor operation is 
complex. It is controlled by several surface phenomena such as: diffusion of target gases into 
the sensing layer through pores, adsorption/desorption, catalytic reactions and followed by 
a charge transfer between the adsorbate and surface of sensing material leading to a 
measurable change in electrical resistance of semiconductor. These phenomena are directly 
or indirectly affected by factors, which function as working parameters of sensors.  

Usually, this group of parameters includes temperature, potential (bias), sample flow rate 
and partial pressure or concentration of target gas. The output signal of gas sensor depends 
not only on an absolute value of working parameters, but also on measurement conditions. 
It results from a nature of the mentioned phenomena. Measurements in stationary 
conditions reflect mainly the thermodynamics of interactions between target gas and 
sensing material, whilst results obtained in dynamic conditions contain information about 
kinetics of adsorption/desorption, chemical reactions and charge transfer. Each of these 
processes has its own characteristic time constant, which is dependent on properties of 
sensing material and gas molecules, especially their molecular weight and shape, electron 
affinity, ionization potential, diffusion coefficient. Hence, the informative contents of sensor 
response measured in dynamic and static conditions, in steady or unsteady state are quite 
different. In our research work, it is assumed that the diversification of working parameters 
and operating conditions may cause increase in sensor ability to distinguish particular 
substances. Hence, an operation mode is proposed, which offers a significant alteration of 
the listed factors during measurements. The mode is called stop-flow. This approach 
consists of a few predetermined and controlled steps. The main factor, which defines each of 
these stages, is the alteration of exposure conditions, e.g. the sample flow rate. Other 
working parameters may also be changed during particular steps. During measurements 
sensors are either in steady or in unsteady state, and both dynamic or static conditions of 
operation are encountered. The stop-flow operation mode was characterized with regard to 
its application for measuring system based on the sensor array (Maciejewska et. al, 2009, 
2010; Szczurek et al., 2010). 

The responses of sensors in the stop-flow operation mode are obtained using the procedure 
consisting of three successive stages. The first step is the dynamic exposition. The gas 
sample is allowed to continuously flow through sensor chambers. The gas flow rate through 
the experimental setup is set to a defined value and it is kept constant. The dynamic 
exposition takes place. After this step, the gas flow is stopped and static exposition to the 
test gas is performed. The third stage could be described as a recovery process. The gas line 
and chambers are cleaned with a stream of pure air. The air flow rate through the system is 
again constant. The duration of each step is defined. They usually last for several minutes 
each and these times add up to the length of entire measurement. The regeneration of 
sensors is continued afterwards, until readouts from these devices reached the level as 
before the dynamic exposition. In our studies, a reversible change in the resistance of 
sensors was observed in all cases. 

The typical output signals of TGS sensors obtained in stop-flow operation mode are 
presented in Fig. 1. 
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(a) Three substances measured with one 

sensor

 
(b) One substance measured with three 

sensors

 
(c) One substance at various concentrations measured with one sensor 

Fig. 1. Typical output signals of TGS sensors obtained in stop-flow operation mode.  

Each of the output signals shown in Fig. 1 can be split into three main parts. They 
correspond to different conditions of operation during particular stages of the stop-flow 
operation mode. One can characterize the signal in respect of this partition.  

As a consequence of the applied measurement procedure, after sample injection into the 
apparatus, some time is needed to exchange the atmosphere in the chambers. During this 
time interval the gas concentration is continuously changed, until it reaches the maximum 
value. As a result, the sensor signal changes, first rapidly than at lower rate until quasi-
constant value is reached. It is observed that single minutes were sufficient to attain the gas 
equilibrium in the atmosphere surrounding sensors. The transient output signal upon 
exposure of sensor to a stream of gas sample was caused by the change in analyte 
concentration and the diffusion-limited processes which take place in the porous structure 
of the sensing material. It is known that the conductivity changes in semiconductor sensors 
depend on: the transport of the reactive species into the sensor, the diffusion of the gas 
molecules inside pores of the sensing material, adsorption and desorption, the catalysed 
redox reactions on the surface of the sensing layer (mainly their kinetics) and the 
electrical/electronic effects in the semiconductor. The sensor response resulting from those 
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processes is strongly related to the concentration and chemical properties of VOCs. For that 
reason, the transient output contains information about the tested gases. 

The second part of sensor response starts when the gas flow is stopped. At this moment, the 
static exposure begins. The sensor response depends mainly on desorption and diffusion 
processes. Also the change in sensor temperature has its influence on it. The oxidation of 
organic compounds at the semiconductor surface and the lack of gas sample flow inside 
chambers cause the concentration of analyte to diminish. It results in the decreasing output 
signal. It is shown in Fig. 1 that the second phase, just like the first one is featured by 
versatile sensor response patterns.  

In the third phase, upon the recovery process due to the removal of organic compounds 
from sensor chambers, the drop of measured output signal is observed. The rate of decrease 
is sensor-dependent. It is also influenced by the analyte and its concentration. The initial 
surge of signal in this phase may be observed with its magnitude and duration depending 
on the dead volume of the gas line.  

The examination of sensor signal shown in Fig. 1 reveals that coupling flow and no-flow 
conditions in one operation mode of sensor system shaped the response pattern of sensor 
array. Each, dynamic and static exposure yielded transient responses with characteristic 
shapes and time constants which are affected by the composition of the atmosphere 
surrounding sensors. Therefore, the chemical information contained in measurement could 
be useful for distinguishing different gases. 

3.5 Signal processing 

The response of the sensor array is measured and converted into an electrical signal (e.g., a 
voltage). This function is realised by means of interface circuits. In sensor techniques, the term 
�“signal�” can be understood as a sequence of measurements that are related by some ordinal 
variable such as time. In the beginning, the raw measurements are converted from analogue 
readings to a digital signal that can be interpreted by a computer. The digitised signal is 
processed online or stored for future analysis. The signal pre-processing stage operates on the 
gas sensor outputs in a way that improves the overall pattern analysis performance. It can be 
achieved by extracting parameters that are descriptive of the sensor array responses. Thus, the 
raw data are transformed into a characteristic feature vector. Although signal pre-processing 
will depend on the application, a series of steps are commonly carried out. Signal pre-
processing serves various purposes and consists of the following operations: 

• baseline manipulation;  
• compression; 
• normalization. 

The final effect all of these operations is a set of features arranged in a form of an initial 
feature vector. 

Baseline manipulation procedures transform the sensor response relative to its baseline to 
minimise the effects of temperature, humidity and short term drift. Three baseline methods 
are commonly used: difference, relative and fractional. The selection of a proper baseline 
manipulation technique is highly dependent on the sensor technology and the particular 
application. 
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Sensor array signals are represented by a set of data. While taking a measurement with the 
multi-element sensor array operating in dynamic conditions a lot of data is acquired. The 
number of collected data depends on the size of sensor array, the duration of time response 
and sampling rate. Usually, not all data are necessary to form a distinct pattern of measured 
gas. In practice, some of them contain no valuable information or are strongly correlated 
with other variables. Additionally, an analysis of a large set of data may cause serious 
calculation problems. The elimination of data, which contain no valuable information in the 
specific application or which show large correlation to another data within data set, may be 
advantageous. Thus, it is necessary to reduce the number of variables, which are analysed, 
resulting in reduced acquisition time, improved selectivity and recognition accuracy. This is 
aimed at using only relevant data in feature vectors for pattern recognition purpose.  

Various compression algorithms are employed in the sensor technique. The standard 
procedure is to select the steady-state response of a sensor. To extract additional information 
from the transient response, a few methods have been proposed e.g.: 

• model fitting; 
• ad-hoc parameter extraction; 
• sub-sampling.  

A signal can be defined as an information-conveying function of one or more independent 
variables. Sometimes, this function can be described in an analytical form. For example, the 
transient response may be modelled as the sum of exponential functions, also using 
polynomials, autoregressive and state space models and their estimated parameters form 
the initial feature vector. Exponential curve-fitting methods can result in nearly lossless 
compression of the sensor transients but are computationally intensive. For these reasons 
ad-hoc parameter extraction and sub-sampling methods are more commonly employed. 

The ad-hoc parameter extraction approach relies on a compression of sensor array response 
down to a few single parameters without fitting sensor signal with any kind of function. 
They are usually easy to calculate. Each of them should contain information about gases 
which are in the multi-component mixture. Different descriptors may be extracted from the 
transient response curves e.g. response value of initial saturation or in steady-state, final or 
maximum response (deep saturation), average of several points or of the whole signal, the 
response rate of sensor to tested gas (transient slope), pulse heights, derivatives, integrals 
and time constants (e.g. time-to-threshold) They are used as coordinates of feature vectors or 
elements of fingerprints for pattern recognition purpose. Unfortunately, in the model fitting 
and ad-hoc parameter extraction approach much information about chemicals may be lost 
or inaccessible. This refers in particular to the information, which is locally present in the 
signal and therefore any representation, which refers to longer parts of signal shadows it. 
Conceptually, it fits considering sensor signals as a set of discrete and separate information 
sources. Solutions employing model fitting or parameter extraction technique may require 
complicated analysis of the whole dataset. Thus sub-sampling has received much attention 
recently. In this method parameters describing signal are exchanged by a set of signal sub-
samples. This term means samples drawn from a large sample. The set of sub-samples is a 
compact representation of the all sampled data. The complicated form of the sensor signal 
causes that sub-sampling is an attractive method of data compression in the stop-flow 
operation mode. 
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3.6 Data analysis 

In principle, a sensor array with broad applicability has to face numerous tasks of gas 
assessment. In general, they are of qualitative or quantitative kind. At the level of sensor 
array data analysis these tasks are addressed as pattern recognition problems. Classification 
and regression tasks are considered respectively. Data analysis involves defining pattern 
recognition problems, which correspond to gas assessment problems, and finding best ways 
to solve them. The main elements in this process are: patterns, feature space and pattern 
recognition.  

3.6.1 Patterns 

The feature vector is the basis for building a pattern which represents a measured gas. 
Pattern is obtained by assigning values to features, which are elements of feature vector. As 
features are parameters of sensors signals, their values are taken from sensor array 
measurement data. For developing a targeted sensor array, calibration patterns are used. 
Calibration patterns come from measurement data, which are collected while exposing 
sensor array to known gases. Therefore, it is straightforward to assign a calibration pattern 
with a discrete label, which indicates its membership in a particular class, respectively to the 
category of the measured gas. The calibration pattern may also be assigned with a value of 
continuous variable, which refers to a quantitative parameter of calibration gas, e.g. its 
concentration. The set of calibration patterns which refer to various gases and the associated 
label vector/concentration vector is the multivariate calibration data. Using this data, 
supervised classifiers are trained to define decision boundaries between patterns, which 
belong to different classes. Also regression methods are employed for setting the 
transformation between the matrix of patterns and the corresponding concentration vector. 
This process is called a supervised learning. The obtained pattern recognition models are 
further used for prediction purposes, regarding patterns associated with unknown gases. In 
our research on sensor arrays, it is favoured to work with many patterns representing the 
same test gas and many pattern recognition models respectively.  

3.6.2 Feature space 

Pattern recognition proceeds in feature space, which is defined by the selection of sensor 
signal parameters to become features. Many feature spaces are usually available for solving 
pattern recognition tasks based on sensor array data. The accessible spectrum of features 
depends on the pool of sensor signal parameters to select from. Particularly extensive 
sources of features are signals obtained when using techniques to increase their information 
content e.g. the stop-flow operation mode. The effectiveness of solving pattern recognition 
task is related to the feature space, where it is performed. Actually, it is determined by the 
mutual distance of sensor array response patterns, which represent various gases in that 
space. Pattern coordinates are set by features. Therefore, the selection of features decides 
about the pattern layout, and makes it different in different feature spaces. It is imaginable 
that there exist a feature space(s), which offers the best solution of gas assessment task in 
terms of the corresponding pattern recognition task, as compared to other spaces, due to the 
most favourable layout of patterns in this space.  
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In our work the idea of solving each gas assessment task is to use the feature space(s) where 
the associated pattern recognition problem is solved best (Szczurek et al., 2011). For 
realisation of this approach it is good to propose a way for defining many significantly 
different feature spaces. There are a number of factors, associated with construction and 
operation of sensor arrays, which cause the differences among features. Looking at the 
measurement data from a sensor array, they are most readily represented by the sensor 
dimension and the time dimension accordingly (see Fig. 2). The variability associated with 
the sensor dimension is commonly exploited for pattern recognition in sensor arrays. It 
actually is a part of the sensor array concept. The realisation is performed using the 
parameters of signals of many sensors as features. Recently, attention is paid to the 
utilisation of time dimension. In general, there are two ways to include factors revealed in 
time domain for shaping feature space. The direct way consists in using parameters, which 
synthetically represent entire sensor signal or its substantial part, as features. The best 
candidates are parameters of mathematical models used for fitting sensor signals. The other 
approach uses results of single measurements, which the sensor signal is composed of, as 
features. Here the time domain enters the feature space indirectly, as a set of variables 
associated with different time moments of the sensor signal. As mentioned before, the 
second strategy is called sub-sampling. In principle, the concept of sub-sampling refers to a 
single sensor signal. We proposed its extension to the collection of signals from the sensor 
array. In this way a uniform framework is proposed, which allows to build versatile feature 
spaces. They may account for all different sorts of factors, which are associated with sensor 
array construction as well as operation and which cause differences among features. 
Considering the kind of feature used, it actually is a data driven approach. 

In our strategy, the output signal of sensor array operating in the dynamic conditions, was a 
result of a sequence of discrete measurements. The data obtained in course of exposure may 
be arranged in the following matrix form: 

R = 

r1,1 �… r1,j �… r1,n 
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Fig. 2. Sensor array data arrangement. Sensor and time dimension are associated with main 
groups of factors, which cause variability in feature space. 

The matrix dimension is mxn where, m is the number of measurements during single 
exposure to gas mixture, and n is the number of sensors in the array. In this notation k, 
k=1,�…, m corresponds to different time points of the exposure time interval, while j, j=1,�…,n 
indicates sensors in the array. A single matrix element is rkj= rkjgas-r0,j where rkjgas is the 
output signal of jth sensor to gas mixture, measured in kth time point of exposure, and r0,j is 
the baseline signal. This data arrangement may be fixed. In that form, it corresponds to a 
strictly defined sensor array setup and measurement procedure and may be considered as a 
template of the response of sensor array to a gas mixture.  
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terms of the corresponding pattern recognition task, as compared to other spaces, due to the 
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exposure to gas mixture, and n is the number of sensors in the array. In this notation k, 
k=1,�…, m corresponds to different time points of the exposure time interval, while j, j=1,�…,n 
indicates sensors in the array. A single matrix element is rkj= rkjgas-r0,j where rkjgas is the 
output signal of jth sensor to gas mixture, measured in kth time point of exposure, and r0,j is 
the baseline signal. This data arrangement may be fixed. In that form, it corresponds to a 
strictly defined sensor array setup and measurement procedure and may be considered as a 
template of the response of sensor array to a gas mixture.  
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Fig. 3. Location of feature vector elements in sensor array data matrix. The following sources 
of features variability are represented in the feature vector: (a) sensor kind, (b) factors acting 
in time domain, (c) both, sensor kind and factors acting in time domain. 

In our work the element rkj of data matrix R is considered a feature. Within the framework 
of extended sub-sampling, in the feature vector there may be represented:  

1. variability associated with the senor kind,  
2. variability exhibited in time domain,  
3. both kinds of variability jointly. These three cases are illustrated in Fig. 3. 

The approach allows for generating different feature spaces. Additionally, the number of 
feature spaces is substantial. Considering an array composed of n sensors and sensor signal 
composed of m discrete measurement results, the number of feature spaces is: 

   (1) 

where i is the number of variables in the feature vector. 

In our recent works, the feasibility of the approach regarding feature vectors is shown where 
the differences among features are caused by the sensor kind. It is indicated that the 
contribution of this factor for pattern recognition is variable upon varied conditions of 
sensor array operation and the resulting sensor states (Maciejewska et al., 2009; Szczurek et 
al. 2010, 2011). The steady state, which is commonly favoured in commercial devices based 
on a sensor array is shown to provide equally or less valuable feature spaces, as compared 
to other sensor states. This gives a reason for further investigation of factors, which act upon 
a sensor array in time domain. Moreover the interaction of these factors and sensor 
variability builds another perspective. These can all be exploited for extending the 
applicability of a sensor array. 

3.6.3 Selection of best feature space 

With the emphasis on solving gas assessment task using the feature space(s) where the 
corresponding pattern recognition problem is solved best, attention is paid to the search for 
an appropriate feature space. In principle, it can proceed in two ways, via feature extraction 
or feature selection. Feature extraction is achieved by transforming entire initial feature 
space into a new one. The main advantage of this transformation consists in compressing 
valuable information into new features, which are fewer than the original ones. Often, new 
features also have other advantageous properties. For example, when using principal 
component analysis (PCA) as a method of extraction, new features are orthogonal. 
Furthermore, features resulting from independent component analysis (ICA) are statistically 
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independent. The independence or at least orthogonality is beneficial when applying 
regression analysis. However, the extracted features lack the direct physical interpretation, 
which is available for the original ones. Also, the number of transformations of the original 
feature space is limited. 

In our work the search for an appropriate feature space is done by means of feature 
selection. The goal is to find a set of original features, which maximises the information 
content or the predictive accuracy criterion. This is synonymous with finding best space(s) 
of original features. The selection involves two aspects:  

1. search through feature sets,  
2. assessment of feature sets. In classical perspective the sets are actually subsets of one, 

original feature set.  

Although substantial workload and time may be required at this stage, in this way we avoid 
one additional transformation of feature space before proceeding to pattern recognition stage. 
Additionally, much bigger flexibility when dealing with feature vector composition is 
retained.  

Considering search strategies, the one which guarantees arriving at globally optimal 
solution is the exhaustive search. However, the number of possible subsets grows 
exponentially with the number of features. The approach is impractical for spaces composed 
of more than 20 features. To obtain a solution in a reasonable time, the search strategies are 
used which examine the feature space in a more efficient way. They may be grouped into: 
heuristic, deterministic and stochastic. The heuristic approach is attractive as a means of 
initial reduction of feature space, and ultimately shortening the search time. It utilises the 
expertise of the researcher, especially regarding information value of single features. 
Deterministic search strategies are mostly algorithms of local optimization, except for the 
branch and bound technique. Therefore, they are claimed suboptimal. However, many of 
them are attractive due to fast convergence. This group is dominated by variants of 
sequential search. Search strategies, which are considered nearly optimal, belong to the last 
category. Among the stochastic methods, genetic algorithms and simulated annealing are 
the most acknowledged ones. In these algorithms the random element is involved in the 
selection of feature sets. For that reason they are less prone to stucking in a local minimum. 
However, the algorithms are also computationally more demanding and time consuming 
than deterministic approaches. 

The assessment of feature space is usually carried out using one of three following 
approaches: filter, wrapper or embedded. The first approach is free from the context of 
pattern recognition method. It utilises the assessment criteria like e.g.: the distance between 
object categories, interclass vs. intraclass pattern variability, information content measures. 
Due to using so general criteria it has high cognitive value, in particular as a means of 
assessing individual features. Filtering is willingly employed for sensor array optimisation 
on a feature by feature, univariate basis. Regarding multivariate feature assessment and 
pattern recognition context, filters have smaller practical value than other approaches. The 
wrapper approach allows for the assessment of joint performance of pattern recognition 
method and feature space in the context of particular pattern recognition task. The result is 
less general. However, the method is well suited for finding best feature spaces for solving 
gas assessment task represented as a pattern recognition one. The approach favours simple 
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to other sensor states. This gives a reason for further investigation of factors, which act upon 
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variability builds another perspective. These can all be exploited for extending the 
applicability of a sensor array. 

3.6.3 Selection of best feature space 
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corresponding pattern recognition problem is solved best, attention is paid to the search for 
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or feature selection. Feature extraction is achieved by transforming entire initial feature 
space into a new one. The main advantage of this transformation consists in compressing 
valuable information into new features, which are fewer than the original ones. Often, new 
features also have other advantageous properties. For example, when using principal 
component analysis (PCA) as a method of extraction, new features are orthogonal. 
Furthermore, features resulting from independent component analysis (ICA) are statistically 
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independent. The independence or at least orthogonality is beneficial when applying 
regression analysis. However, the extracted features lack the direct physical interpretation, 
which is available for the original ones. Also, the number of transformations of the original 
feature space is limited. 

In our work the search for an appropriate feature space is done by means of feature 
selection. The goal is to find a set of original features, which maximises the information 
content or the predictive accuracy criterion. This is synonymous with finding best space(s) 
of original features. The selection involves two aspects:  

1. search through feature sets,  
2. assessment of feature sets. In classical perspective the sets are actually subsets of one, 

original feature set.  

Although substantial workload and time may be required at this stage, in this way we avoid 
one additional transformation of feature space before proceeding to pattern recognition stage. 
Additionally, much bigger flexibility when dealing with feature vector composition is 
retained.  

Considering search strategies, the one which guarantees arriving at globally optimal 
solution is the exhaustive search. However, the number of possible subsets grows 
exponentially with the number of features. The approach is impractical for spaces composed 
of more than 20 features. To obtain a solution in a reasonable time, the search strategies are 
used which examine the feature space in a more efficient way. They may be grouped into: 
heuristic, deterministic and stochastic. The heuristic approach is attractive as a means of 
initial reduction of feature space, and ultimately shortening the search time. It utilises the 
expertise of the researcher, especially regarding information value of single features. 
Deterministic search strategies are mostly algorithms of local optimization, except for the 
branch and bound technique. Therefore, they are claimed suboptimal. However, many of 
them are attractive due to fast convergence. This group is dominated by variants of 
sequential search. Search strategies, which are considered nearly optimal, belong to the last 
category. Among the stochastic methods, genetic algorithms and simulated annealing are 
the most acknowledged ones. In these algorithms the random element is involved in the 
selection of feature sets. For that reason they are less prone to stucking in a local minimum. 
However, the algorithms are also computationally more demanding and time consuming 
than deterministic approaches. 

The assessment of feature space is usually carried out using one of three following 
approaches: filter, wrapper or embedded. The first approach is free from the context of 
pattern recognition method. It utilises the assessment criteria like e.g.: the distance between 
object categories, interclass vs. intraclass pattern variability, information content measures. 
Due to using so general criteria it has high cognitive value, in particular as a means of 
assessing individual features. Filtering is willingly employed for sensor array optimisation 
on a feature by feature, univariate basis. Regarding multivariate feature assessment and 
pattern recognition context, filters have smaller practical value than other approaches. The 
wrapper approach allows for the assessment of joint performance of pattern recognition 
method and feature space in the context of particular pattern recognition task. The result is 
less general. However, the method is well suited for finding best feature spaces for solving 
gas assessment task represented as a pattern recognition one. The approach favours simple 
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classifiers like linear discriminant analysis (LDA), k-nearest neighbours method (k-NN), 
because the time required for model learning is the limiting factor just like the number of 
feature spaces to search through. In case of using more time consuming methods e.g. ANN, 
SVM, feature spaces pre-selection is usually done in a simpler manner. In recent years the 
embedded approach is slowly gaining interest in the sensor array community. The name 
comes from embedding the strategy of feature selection in the process of classifier 
development. The most serious candidates in this group of methods are random forests. 

Considering the concept of finding best feature space for each kind of gas assessment task, 
which is realised with a sensor array, the wrapper and embedded approaches are favoured 
for feature space evaluation. So far in our works the first one was examined in combination 
with the heuristic pre-selection. Using heuristics, the feature spaces were preselected in 
which the differences among features came from the differences among the sensors at the 
particular moment of their exposure to the test gas. The rule was applied to the data 
provided by the sensor array composed of 15 sensors, which was operated in the stop-flow 
operation mode. As a result, over a thousand of 15-dimensional feature spaces were 
obtained. It was demonstrated that the complete search of those feature space could be 
performed in an acceptable time. To a large extent it was achieved due to employing fast 
learning pattern recognition methods. Regarding feature set assessment criteria, the 
classification success rate was used in the case of qualitative problems and the error of 
concentration prediction (RMSE and/or MRE) was applied for quantitative problems. The 
feature space was considered best for solving a particular qualitative problem of gas 
assessment if the corresponding pattern classification task was solved with null 
classification error rate. The feature space was considered best for solving a particular 
quantitative problem of gas assessment if the projection of feature set into corresponding 
quantitative variable resulted in a concentration estimation error, which was lower than the 
threshold of several percent. In our research a number of gas mixtures were considered to 
investigate the assessment problems (Maciejewska et al., 2010; Szczurek et al., 2011). The 
results show that many best feature spaces are available for each of them. Usually, there are 
more than several hundred ones in single case. It is meaningful that numerous low 
dimensional spaces (3 and even 2 dimensional) were found to fulfil the criteria of best 
feature space. 

3.6.4 Pattern recognition 

In the research work on sensor arrays we retract from looking for the pattern recognition 
method, which performs best in an imposed feature space in favour of searching for the 
feature space(s) where the particular pattern recognition method performs best. The first 
approach is the conventional one. In general, it allows for highly multi-dimensional feature 
spaces and it favours nonlinear pattern recognition methods. The most popular ones are 
artificial neural networks (ANN) and support vector machines (SVM). ANN are available in 
many kinds: multi-layer perceptrons (MLP), radial basis function neural networks (RBFNN), 
probabilistic neural networks (PNN), Kohonen maps, just to mention the most frequently 
used ones. They are suitable for solving linear as well as nonlinear problems. Additionally, 
classification as well as regression tasks may be approached with ANN. One of their 
drawbacks results from the fact that models have many parameters to be adjusted and this 
requires substantial calibration data sets. SVMs in turn offer very good classification results 
in the cases when data sets are small and the classification problems are highly nonlinear. 
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They are competitive as compared to ANN regarding the classification success rate, the 
number of user defined parameters and the time required for learning. However, they are 
not used for mapping features into continuous variables. 

It is most frequently assumed that sensor array pattern recognition problems are nonlinear 
and therefore the above listed methods are preferred. However, there are many examples of 
successful pattern recognition using simpler, in particular linear methods, even if the feature 
space is not selected with using them in mind (Arnold et al., 2002; Pardo et al., 2006). In our 
approach simple classifiers and simple regression models are used. It is assumed that the 
probability of finding a feature space where patterns are linearly or at least nearly linearly 
separable is nonzero. Similarly, an assumption is made concerning the existence of feature 
set, which can be linearly transformable into the gas concentration. So far, linear and fast to 
train pattern recognition methods have been used in our research on senor arrays with 
broad applicability. These are: DFA for classification tasks and multiple liner regressions 
(MLR) for quantitative problems. They performed very well as feature space assessment 
methods in the framework of wrapper approach (Maciejewska et al., 2010; Szczurek et al., 
2011). The exhaustive search of 15 dimensional feature spaces is relatively fast and it allows 
for arriving at solutions in an acceptable time. It was shown by the results of our research 
that there were available numerous feature spaces where qualitative gas assessment could 
be solved as linear pattern recognition task. The same was found regarding quantitative gas 
assessment. In both cases simple pattern recognition methods were sufficient. 

3.6.5 Data analysis arrangement for test gas assessment 

While designing sensor array with broad applicability it is particularly important to propose 
reliable and functional solutions regarding measurement data analysis. Our proposal is 
grounded on the ability to achieve best results of pattern recognition in low dimensional 
spaces, by means of simple classifiers and regression models. The key elements of this 
concept are: 

• A sensor array is prepared for solving defined problems of qualitative and quantitative 
gas assessment. However, the list of tasks is not a closed one. It can be extended any 
time by the producer of sensor array. The aim of this possibility is to increase the 
universality of measurements.  

• The problem of qualitative gas assessment is considered as the corresponding 
classification problem (prediction) and the problem of quantitative gas assessment is 
approached as the corresponding regression problem (prediction). They are solved in 
an earlier defined feature spaces. These are best feature spaces in a sense, which was 
discussed earlier. 

• There is assigned one, parameterised classifier for solving a particular classification 
problem in one, feature space and there is assigned one parameterised regression model 
for solving a particular regression problem in one feature space.  

• A structure called data record is used for keeping the information about one feature 
space and the associated classifier/regression model, both assigned for a particular 
qualitative/quantitative problems. A data record is composed of two parts. The first 
part defines the feature space by means of feature vector. In our approach features are 
elements of matrix R (see Fig. 2). The coordinates of feature vector are indicated using 
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more than several hundred ones in single case. It is meaningful that numerous low 
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requires substantial calibration data sets. SVMs in turn offer very good classification results 
in the cases when data sets are small and the classification problems are highly nonlinear. 
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They are competitive as compared to ANN regarding the classification success rate, the 
number of user defined parameters and the time required for learning. However, they are 
not used for mapping features into continuous variables. 

It is most frequently assumed that sensor array pattern recognition problems are nonlinear 
and therefore the above listed methods are preferred. However, there are many examples of 
successful pattern recognition using simpler, in particular linear methods, even if the feature 
space is not selected with using them in mind (Arnold et al., 2002; Pardo et al., 2006). In our 
approach simple classifiers and simple regression models are used. It is assumed that the 
probability of finding a feature space where patterns are linearly or at least nearly linearly 
separable is nonzero. Similarly, an assumption is made concerning the existence of feature 
set, which can be linearly transformable into the gas concentration. So far, linear and fast to 
train pattern recognition methods have been used in our research on senor arrays with 
broad applicability. These are: DFA for classification tasks and multiple liner regressions 
(MLR) for quantitative problems. They performed very well as feature space assessment 
methods in the framework of wrapper approach (Maciejewska et al., 2010; Szczurek et al., 
2011). The exhaustive search of 15 dimensional feature spaces is relatively fast and it allows 
for arriving at solutions in an acceptable time. It was shown by the results of our research 
that there were available numerous feature spaces where qualitative gas assessment could 
be solved as linear pattern recognition task. The same was found regarding quantitative gas 
assessment. In both cases simple pattern recognition methods were sufficient. 

3.6.5 Data analysis arrangement for test gas assessment 

While designing sensor array with broad applicability it is particularly important to propose 
reliable and functional solutions regarding measurement data analysis. Our proposal is 
grounded on the ability to achieve best results of pattern recognition in low dimensional 
spaces, by means of simple classifiers and regression models. The key elements of this 
concept are: 

• A sensor array is prepared for solving defined problems of qualitative and quantitative 
gas assessment. However, the list of tasks is not a closed one. It can be extended any 
time by the producer of sensor array. The aim of this possibility is to increase the 
universality of measurements.  

• The problem of qualitative gas assessment is considered as the corresponding 
classification problem (prediction) and the problem of quantitative gas assessment is 
approached as the corresponding regression problem (prediction). They are solved in 
an earlier defined feature spaces. These are best feature spaces in a sense, which was 
discussed earlier. 

• There is assigned one, parameterised classifier for solving a particular classification 
problem in one, feature space and there is assigned one parameterised regression model 
for solving a particular regression problem in one feature space.  

• A structure called data record is used for keeping the information about one feature 
space and the associated classifier/regression model, both assigned for a particular 
qualitative/quantitative problems. A data record is composed of two parts. The first 
part defines the feature space by means of feature vector. In our approach features are 
elements of matrix R (see Fig. 2). The coordinates of feature vector are indicated using 
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the position (k, j) of elements in data matrix R. The second part of data record contains 
parameters of the associated classifier/regression model in a predefined order. The 
parameters of pattern recognition models are obtained in course of supervised learning, 
using calibration patterns. 

• A number of data records are available for each qualitative gas assessment problem and 
it is so for each quantitative gas assessment problem. We propose that the set of data 
records addressed to a particular gas assessment problem contains between several and 
several dozen data records.  

• Data records are defined by the producer of a sensor array and they are held in the 
library of the device. In our strategy, this operation is realised at a level of sensor array 
design, on the basis of calibration measurements. Responses of different sensors to 
standard gaseous mixtures (in accordance with a procedure applicable in the stop-flow 
mode) are considered. Data records may be updated in course of periodic calibrations.  

• The qualitative gas assessment is provided as the result of majority vote of the 
committee of classifiers. Member classifiers operate on different patterns, which 
represent the same gas in different feature spaces, following the reference provided by 
the respective data records. 

• The quantitative gas assessment is given as the median of predictions provided by the 
set of regression models. Models operate on different patterns, which refer to the same 
gas in different feature spaces, following the reference provided by the respective data 
records. Quantitative gas assessment, is preceded by the qualitative assessment unless 
the identity of gas is known. 

Due to low dimensionality of best feature spaces and the simplicity (small number of 
parameters) of pattern recognition models, the memory requirements are very modest in the 
proposed arrangement. Also, the computational requirements are low, which offers that gas 
assessment is performed quickly, once the measurement is complete. The user interaction 
with the data analysis is very limited and restricted to the selection of gas assessment 
problem, which needs to be solved, from the library of the device.  

4. Conclusions 
Gas sensors already have a considerable share in detecting and monitoring the presence of 
hazardous gases in various atmospheres. However, for achieving their broad application, 
the ability to perform qualitative and quantitative assessment of chemical substances is 
required. Despite numerous positives like fast response time, small size and low price, gas 
sensors have some limitations, in particular regarding sensitivity and selectivity. The 
recognised way to overcome them and to achieve the requested functionalities is to use a 
sensor array. It is based on the idea that selectivity may be achieved by using a set of 
partially, but differently selective sensors. It was actually shown that the responses of such a 
set provides data patterns, which represent the measured gas in a nearly unique manner. 
The gas assessment is achieved by analysing the pattern with pattern recognition methods. 

Sensor array design involves a number of aspects. The major ones are:  

1. method of sampling and sample pre-treatment,  
2. measurement characteristics of sensor array,  
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3. working parameters,  
4. operation mode,  
5. signal processing,  
6. data analysis.  

The improvement on any of these elements contributes to the overall performance of sensor 
device. Their careful consideration is especially important regarding design of sensor array 
with broad applicability. 

Sampling is necessary for presenting samples to sensors. Two main kinds are active and 
passive sampling. While diffusion sampling is practically effortless, dynamic sampling 
requires more complex measuring setup. At that cost, the gas delivery is under control, 
lower gas concentrations can be measured and instrument calibration is easier. Therefore, 
the dynamic sampling is our choice for sensor array addressed to wide range of 
applications.  

Performance of a sensor array is directly influenced by the selection of sensors and the 
construction of sensor array. Selection of sensors refers to the kind of sensors and the 
number of sensors in the array. Many kinds of sensors are applied in sensor arrays. The 
most popular ones are: electro-chemical sensors, mass sensitive devices, MOSFETs and 
chemi-resistors. Due to utilizing different sensing mechanisms, heterogeneous sensor arrays 
are more versatile. More popular, homogeneous arrays are easier to construct and operate. 
The measurement characteristics of sensor array are not proportional to the number of 
sensing elements because the sensors�’ usability is different regarding various applications. 
Currently, sensor array designers often perform application-oriented sensor selection. It is in 
principle against the idea of broad applicability. We propose another approach. It consists in 
that sensor selection does not refer to the physical presence of a sensor in an array but to the 
use of sensor output signal in gas assessment tasks, associated with particular application. 
The sensor array is composed of very many sensors. They all perform measurements. 
However, only selected combinations are involved in providing data for various pattern 
recognition tasks. In this way, a great flexibility regarding adjustment to numerous 
applications is reached. 

While using commercial sensors as measuring elements in sensor array, the way to 
enhance the information content of sensor array response is to vary sensor operating 
conditions in course of exposure to a measured gas. In this respect, our original proposal 
is a stop-flow operation mode. It involves measurements in static and dynamic 
conditions, including both steady states of sensors and transients. The mode is simple in 
execution and it was shown to provide for a considerable increase in the number of best 
domains for pattern recognition.  

A sensor array with broad applicability has to face numerous gas assessment problems of 
qualitative and quantitative kind. Any gas assessment performed by the sensor array is 
addressed at the data analysis level as pattern recognition problem. In currently offered 
arrays, different pattern recognition tasks are usually solved in one feature space and 
nonlinear pattern recognition methods are favoured. In our work we promote the idea of 
solving each gas assessment task using the feature space(s) where the associated pattern 
recognition problems are solved best. The best feature spaces are found in course of feature 
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the position (k, j) of elements in data matrix R. The second part of data record contains 
parameters of the associated classifier/regression model in a predefined order. The 
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sensors have some limitations, in particular regarding sensitivity and selectivity. The 
recognised way to overcome them and to achieve the requested functionalities is to use a 
sensor array. It is based on the idea that selectivity may be achieved by using a set of 
partially, but differently selective sensors. It was actually shown that the responses of such a 
set provides data patterns, which represent the measured gas in a nearly unique manner. 
The gas assessment is achieved by analysing the pattern with pattern recognition methods. 

Sensor array design involves a number of aspects. The major ones are:  
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2. measurement characteristics of sensor array,  
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3. working parameters,  
4. operation mode,  
5. signal processing,  
6. data analysis.  

The improvement on any of these elements contributes to the overall performance of sensor 
device. Their careful consideration is especially important regarding design of sensor array 
with broad applicability. 

Sampling is necessary for presenting samples to sensors. Two main kinds are active and 
passive sampling. While diffusion sampling is practically effortless, dynamic sampling 
requires more complex measuring setup. At that cost, the gas delivery is under control, 
lower gas concentrations can be measured and instrument calibration is easier. Therefore, 
the dynamic sampling is our choice for sensor array addressed to wide range of 
applications.  

Performance of a sensor array is directly influenced by the selection of sensors and the 
construction of sensor array. Selection of sensors refers to the kind of sensors and the 
number of sensors in the array. Many kinds of sensors are applied in sensor arrays. The 
most popular ones are: electro-chemical sensors, mass sensitive devices, MOSFETs and 
chemi-resistors. Due to utilizing different sensing mechanisms, heterogeneous sensor arrays 
are more versatile. More popular, homogeneous arrays are easier to construct and operate. 
The measurement characteristics of sensor array are not proportional to the number of 
sensing elements because the sensors�’ usability is different regarding various applications. 
Currently, sensor array designers often perform application-oriented sensor selection. It is in 
principle against the idea of broad applicability. We propose another approach. It consists in 
that sensor selection does not refer to the physical presence of a sensor in an array but to the 
use of sensor output signal in gas assessment tasks, associated with particular application. 
The sensor array is composed of very many sensors. They all perform measurements. 
However, only selected combinations are involved in providing data for various pattern 
recognition tasks. In this way, a great flexibility regarding adjustment to numerous 
applications is reached. 

While using commercial sensors as measuring elements in sensor array, the way to 
enhance the information content of sensor array response is to vary sensor operating 
conditions in course of exposure to a measured gas. In this respect, our original proposal 
is a stop-flow operation mode. It involves measurements in static and dynamic 
conditions, including both steady states of sensors and transients. The mode is simple in 
execution and it was shown to provide for a considerable increase in the number of best 
domains for pattern recognition.  

A sensor array with broad applicability has to face numerous gas assessment problems of 
qualitative and quantitative kind. Any gas assessment performed by the sensor array is 
addressed at the data analysis level as pattern recognition problem. In currently offered 
arrays, different pattern recognition tasks are usually solved in one feature space and 
nonlinear pattern recognition methods are favoured. In our work we promote the idea of 
solving each gas assessment task using the feature space(s) where the associated pattern 
recognition problems are solved best. The best feature spaces are found in course of feature 
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selection process using wrapper approach. The concept of extended sub-sampling is 
introduced as a means of generating numerous feature spaces where various factors 
associated with sensor array construction and operation are exploited to cause differences 
among features. Considering pattern recognition methods we retract from using complex 
ones in favour of fast learning classifiers and simple regression methods, preferably linear 
ones. Feature selection is to provide feature space(s) where these particular pattern 
recognition methods perform best. To improve the reliability of our results, many patterns 
which represent the same test gas are considered while performing test gas assessment. For 
that reason low dimensional feature spaces are favoured. Calibration of pattern recognition 
models, which operate in such spaces, may be satisfied using calibration data sets of modest 
size. 

It is believed that the presented approach is original ant it will gain interest in the 
community of sensor array designers. 
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1. Introduction 
Smell is still a mystery to scientists in somehow, which cannot be studied with ease in 
vertebrates. Another problem is that the sense of smell is poorly developed in human 
beings in comparison with the same in many vertebrates (Menini et al., 2004). This makes 
realization of an artificial olfactory system a challenging task. An artificial olfactory 
system (commonly known as E-nose) provides a low cost alternative to identification, 
quantification and characterization of odours. The traditional methods of characterization 
and quantification of odours generally involve the use of a trained panel of human 
experts. The use of human panel is sensitive to individual variability, adaptation 
(tendency to become less sensitive after prolonged exposure), mental state, fatigue, 
subjectivity, infections and exposure to hazardous compounds (Nagle et al., 1998). 
Therefore, it is necessary to have a low cost and compact device to perform real-time 
analysis. It is thus natural for researchers to envisage a system, which is biologically 
inspired and modelled on the lines of an olfactory system. The increased understanding of 
the biological phenomenon of olfaction has motivated scientists to achieve artificial 
olfaction. Rapid strides made in the field of material science and fabrication technology 
has paved the way for manufacture of a large variety of micro-sensors, of which a large 
percentage is chemical sensors. 

An E-nose uses multiple sensors in the form of an array. In an array of sensors each sensor 
responds broadly to a range or class of gases rather than a specific one. This characteristic of 
a sensor array is similar to a human nose, which is also partially sensitive to several 
odorants. The partial sensitivity of the sensor array can be exploited for characterization and 
quantization of gases/odours by making use of effective signal processing and pattern 
recognition. In an electronic nose, the odorants produce changes in physical/chemical 
properties. A sensor array converts the chemical inputs into electrical signals which are 
further processed by utilizing an electronic circuit, providing an analogue signal to be 
amplified, pre-processed and/or digitised prior to being fed into a pattern recognition 
system (Shurmer et al., 1990; Nakamoto et al., 1990). Basic stages of an artificial olfactory 
system are shown in Fig. 1. 
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1. Introduction 
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electronic noses use sensor arrays that react to gases/odours on contact: the adsorption of 
gases/odours on the sensor surface causes a change in physical properties of the sensor 
(Sarro, 1992). A specific response is recorded by the electronic interface transforming the 
signal into a digital value. Recorded data are then analyzed using computational 
techniques (Osuna et al., 2002). An artificial olfaction system can be fabricated using 
standard micro-electronic techniques for on-chip integration. An E-nose employs an array 
of chemical sensors to achieve an appreciable level of selectivity to different 
gases/odours. Metal oxide based sensors fabricated with the thick film technology are the 
most popular choice for gas/odour sensing. Most of the commercial E-noses employ 
metal oxide based sensing devices because metal oxides are most suited as gas sensors 
due to their high sensitivity and their ability to maintain structural integrity in harsh 
conditions, namely, high temperature (Moseley, 1992). The basic sensing mechanism in 
metal oxide based sensors involves a change in resistance due to chemisorptions when 
exposed to odorants/gases. 

 
Fig. 1. Artificial olfactory system 

1.1 Operating principle of tin oxide gas sensors 

It has been found that when a bead of tin oxide is heated in the presence of a combustible 
contaminant, and the conductance of the bead is measured continuously, it is possible to 
obtain a measure of the concentration of the contaminant gas (Watson, 1984). This 
observation can be explained as follows. 

By heating a bead of tin oxide in clean air, oxygen can be adsorbed onto the surface layers 
until equilibrium is achieved for that particular temperature. The measurement of the 
characteristic conductance of the bead would reveal that it is a function of both the 
temperature and partial pressure of the oxygen. Significant change in surface conductivity 
of semiconductors can be brought about by adsorption and subsequent reaction of gases 
with the adsorbed oxygen. The active material of the sensor is generally SnO2, which is an n-
type semiconductor. When oxygen is adsorbed on to it, it accepts electrons to become 2O−

O− or 2O −  (Ikohura, 1981). The adsorption of a reducing gas releases bound electrons and 
thus increases the conductance of the surface dramatically. For an oxidizing gas converse 
mechanism operates. Various dopants are used to improve the sensitivity and selectivity of 
thick film tin oxide gas sensors (Morrison, 1987). 

Sensor operating temperature plays a vital role in the development of gas selective sensors. 
Since, different classes of reducing gases have different reaction rates, sensors operating at 
different temperatures show a degree of selectivity (Sears et al., 1990). Despite having 
appreciable sensitivity to a large number of gases/odours, thick film tin oxide sensors have 
some well known limitations such as, cross sensitivity to a number of compounds and 
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saturation of sensor response at higher concentration of the odorants. These limitations can 
be overcome by employing an array of sensors whose responses are analyzed subsequently 
using appropriate pattern analysis techniques. Typical materials used for fabrication of the 
sensors are SnO2, ZnO, Fe2O3, and WO3. These metal oxide films are used with or without 
dopants like CuO, Pd, Pt and In to enhance their selectivity. Porous and sintered SnO2 is the 
most widely used for gas sensors, as it is appreciably sensitive to a large number of 
gases/odours. SnO2 sensors are available both for domestic and commercial use. For 
domestic applications, devices are available for detecting combustible gases such as CO, H2, 
alcohols, LPG, and volatile matters from food stuff. For industrial applications detectors are 
available for gases such as NH3, H2, H2S, CH4, C7H8, C8H10 and hydrocarbons. The following 
subsection presents a typical experimental set up where a sensor array is exposed to several 
odorants and the response of each sensor is noted. This particular set up is chosen for 
illustration because its response pattern is the most challenging from pre-processing and 
computational point of view. The same data would be used throughout the chapter for 
demonstrating the efficacy of the computational techniques employed. Published data from 
other sensor arrays may also be reproduced to explain some of the computational 
challenges. 

1.2 Typical experimental set up for odour sensing 

Integrated gas sensor array comprises several sensors as shown in Fig. 2. Sensors are 
fabricated on one side of an alumina substrate whereas a resistive pattern is fabricated on 
the other side to achieve uniform heating. A metal oxide paste is prepared, which is 
applied to the substrate and fired at high temperature by passing it to a furnace so that 
the paste sticks properly to the substrate. Different dopants (e.g. ZnO, Sb2O3 and NiO) are 
used respectively with the metal oxide paste, resulting in different types of gas sensors 
with different sensitivity to different odours. The diagram of a tin oxide sensor array 
pattern is shown in Fig. 2. The fabricated integrated sensor array pattern is then tested 
under closely controlled environmental conditions using some experimental chamber 
with a facility (either manual or automated) of injecting test gases as shown in Fig. 3. The 
experiment is designed for testing 4 types of whiskies, two types of rums, and ethanol 
(Nayak et al. 1992). 

Initially, the sensor array is kept in a closed ambient air under energized condition at 10W 
heater supply for more than 30 minutes to make the sensor resistances stable. At this stage, 
initial resistance of the sensors is recorded. Then a drop of test alcohol is injected into the 
chamber and it gets vaporized to gaseous phase before being adsorbed on to the sensor 
surface. Sensor readings are reported after three minutes as it is found to be optimum time 
to equilibrate with the sample alcohol. Similarly, another drop of test alcohol is injected and 
the experiment is repeated for more drops so that the observations are made for up to 12 
drops of test alcohols. After experimenting with one of the alcohols/alcoholic beverages, the 
sensors are recovered in open ambient air at room temperature and on complete recovery; 
experiments are repeated for other alcohols/alcoholic beverages. Using suitable 
mathematical manipulations, the concentration of test odorants can be converted to parts 
per million (ppm). 
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Fig. 2. Fabricated integrated sensor array pattern (Nayak et al., 1992) 

 
Fig. 3. Experimental chamber for exposing sensor array to gases/odours 

The next step is to obtain the sensor response by calculating the percentage change in 
resistance of all the sensors for all the odorants injected into the test chamber. This is done to 
nullify the effect of initial resistances. The percentage change in resistance is calculated 
using 
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where, Rijo is the initial resistance of the ith sensor for zero-th drop of jth odorant and the 
subscript d denotes a particular drop. The steady-state exposure profiles of the sensor array 
exposed to different types of alcohols and alcoholic beverages at different concentrations 
thus obtained is shown in Fig. 4. 
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Fig. 4. Steady-state response of sensor array upon exposure to different alcoholic beverages 
(Nayak et al., 1992) 
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1.3 Limitations of sensor arrays 

In general, sensor arrays suffer from one or more of the following limitations: 

1. Overlapping sensitivity to different gases/odours leading to poor selectivity. 
2. Saturating tendency of the sensor response at higher concentration of the test gas 

leading to difficulties in quantification 
3. �“Drift�” in the sensor response, which is defined as the variation in the output of a 

sensor when exposed to a particular test gas under identical conditions after a finite 
interval of time. 

1.3.1 Overlapping sensitivity 

Overlapping sensitivity is by far the most challenging limitation of a sensor array. It renders 
a nicely fabricated sensor array less capable of discriminating between two gases/odours in 
spite of having an appreciable sensitivity. 

 
(a) LPG 

 
(b) CCl4 

 
(c) CO 

 
(d) C3H7OH 

Fig. 5. Sensitivity characteristics of oxygen plasma-treated array at different concentrations 
(Chaturvedi et al., 1999) 

Fig. 5 shows the plot of sensitivity with concentration of the test gas for a 6-sensor array. It is 
clear from Figs. 5 (a) and (b) that the sensor array exhibits almost identical sensitivity for 
LPG and CCl4 and hence representing a very poor selectivity for these gases. It should be 
noted that all the sensors of the array are appreciably sensitive to all the 4 test gases. In spite 
of this fact we would not be able to discriminate between two of the 4 gases (i.e. LPG and 
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CCl4 ). Therefore, in addition to having good sensitivity, the sensors in the array should 
respond differently to different test gases/odours. 

1.3.2 Saturation and drift 

Fig. 4 shows the response vs concentration of an array of 4 sensors exposed to the vapour of 
a particular alcoholic beverage. It can be seen that responses of almost all the sensors 
saturate after a particular concentration of test gas has been injected into the experimental 
chamber. This phenomenon makes the quantification of the test gas impossible at higher 
concentrations. 

Drift introduces an unwanted temporal variation in the sensitivity of a sensor array. This 
means the response of the array to same gases under identical conditions may be entirely 
different from what was obtained previously. When previously learned sensor patterns 
become obsolete, the ability of the sensor to discriminate is lost. In fact, sensor drift is the 
highest obstacle in the wide marketability of low cost gas sensors. 

All the above mentioned problems are hindrance to proper identification and quantification 
of gases/odours. Thick film sensors are well known for their design ruggedness, ease of 
fabrication, sensitivity to a plethora of gases/odours, and most importantly for being 
economical. The above mentioned limitations of thick film sensors negate their other 
desirable features discussed above and hence, a promising technology sometimes seems to 
fall short of achieving its objectives. The limitations imposed by poor selectivity and 
response saturation can be overcome by employing computational techniques to extract 
both qualitative and quantitative information. The role of computational techniques in 
gas/odour discrimination can never be underestimated. Wherever possible, putting more 
emphasis on computational methods can save a significant amount of resources since 
breaking innovation in the fabrication technology requires time and effort. The next section 
presents an overview of computational challenges put forth by popular sensors with an aim 
of proper identification and quantification of individual odorants. 

2. Computational challenges 
Choice of an appropriate technique is highly dependent on the problem in hand. In the 
context of E-nose systems, the term pattern analysis applies to both qualitative and 
quantitative analysis of odours. The response data generated from a sensor array are 
multivariate in nature. There are several issues, which require careful consideration for a 
successful design of a pattern analysis system. Signal pre-processing, feature extraction, 
feature selection, classification, regression, clustering and multi-fold cross-validation are the 
most prominent goals of a pattern analysis system, for which critical design issues are to be 
taken care of. The first computational stage in a pattern analyzer is often the signal pre-
processing stage. The main purpose of a pre-processing stage is to select a number of 
parameters that are descriptive of the sensor array response. The choice of parameters can 
significantly affect the performance of the subsequent modules in the pattern analysis 
system. Fig. 6 (a) shows the scatter plot for S-1 as SnO2 and S-2 as SnO2 doped with Sb2O3. for 
the 4 sensor array mentioned in the previous section. 

The plots confirm that the clusters are not only overlapping but also a high degree of 
scattering of data points. The overlapping of clusters is due to the cross sensitivity and is 
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attributed to the material properties of the sensors. The goal of a pre-processing stage is to 
minimize the spread in an individual clusters and maximize the distance between two 
clusters. Therefore, a pre-processing technique should be applied, which utilizes the 
statistical properties of the data set to maximize their inter class separation and minimize 
the intra class separation. The result of such a pre-processing is shown in Fig. 6 (b) to 
establish the importance of a pre-processing stage. The technique used is Transformed 
Cluster Analysis (TCA). Details of TCA can be read from a published work of the author 
(Kumar et al. 2010). 

(a) 2-D scatter plot for responses of sensors 
S-1 and S-2 

 
 

 
(b) 2-D scatter plot for transformed 

responses of sensors S-1 and S-2 
(T1 and T2 are transformed responses of 

sensors S-1 and S-2) 

Fig. 6. 2-D scatter plot for responses and transformed responses of sensors S-1 and S-2 

The actual identification/quantification part of pattern analysis begins after pre-processing. 
Pattern analysis techniques are generally of two types viz. parametric and non-parametric 
techniques. Parametric techniques do not require any prior information on the type and 
number of different classes contained in data. In non-parametric techniques a set of response 
patterns is compared against each other on the basis of degree of similarity or dissimilarity 
(Gardner, 1987). Thus, non-parametric techniques are more general in nature. 

 Statistical pattern analysis techniques like Principal Component Analysis (PCA) and Cluster 
Analysis (CA) are one of the most popular non-parametric techniques. PCA overcomes the 
�“curse of dimensionality�” introduced by the response vector of a multi-sensor array by 
choosing �“principal components�” along the directions of maximum variance. Principal 
components are a linear combination of original variables with the redundant information 
eliminated. The reduced dimensionality of data makes the subsequent feature extraction 
task simpler. 

Feature extraction attempts to find a low dimensional mapping that preserves most of the 
information in the original feature vector. The mappings thus formed enhance the 
information content of the feature vector. Feature extraction techniques also help signal 
representation, which can be useful for extrapolatory data analysis. They are helpful in 
visualizing high dimensional data. Most of the feature extraction techniques for E-nose 
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applications are based on PCA, which is a signal representation technique that generates 
projections along the directions of maximum variance. Learning in pattern analyzers is 
viewed as the optimization of a process to obtain a minimum value for a solution of a pre-
specified objective function (criterion). Analysis of patterns by an analyzer is carried out 
either by supervised or unsupervised learning schemes. 

The pattern analysis techniques applied to the output of a sensor array should be biologically 
inspired if an E-nose is to sniff like humans. This requires application of biologically inspired 
algorithms to the senor output. Artificial neural networks (ANNs) are such a class of 
computational paradigms, the inspiration for which comes originally from the studies of 
mechanism of information processing in biological nervous system, particularly brain (Bishop, 
1994). The advantages of ANNs include massive parallelism, distributed processing and 
computation, learning ability, generalization ability and adaptability. Apart from ANNs, fuzzy 
logic and genetic algorithm are some other techniques which constitute a class of paradigms 
known as �“soft computing�”. Soft computing is fast replacing statistical learning techniques in 
pattern analysis applications. Also, a lot of work has been done in the area of gas/odour 
discrimination using soft computational techniques. Most of the techniques described above 
have been adopted from the field of chemometrics and they can be labelled as �‘statistical�’ 
pattern recognition techniques as opposed to soft computational techniques, which are recent 
in origin and are in general biologically inspired. �“Soft Computation�” is a name given to a 
class of computational paradigms, which seek to find approximate solutions to ill-posed 
problems. It is tolerant of imprecision, uncertainty, partial truth, and approximation just like 
the human mind. The principal constituents of soft computing are ANNs, Fuzzy Logic, 
Support Vector Machines, and Evolutionary Computing. 

Soft computational techniques have revolutionized the arena of artificial olfaction by 
immensely reducing dependency on flawless and meticulously designed sensor hardware. 
Proper application of soft computational techniques can improve the discrimination 
obtained using the response of poorly selective sensors to a great extent thus, saving 
additional costs on possible replacement and fabrications of novel sensor hardware. ANNs 
are one of the foundation pillars of soft computing. Their enormous learning capability, 
massively parallel architecture, and availability of a large number of learning algorithms for 
their training makes them a popular choice for a wide variety of computational tasks. A 
close scrutiny of the available literature reveals that the choice of pattern analysis techniques 
for artificial olfaction has been highly problem-dependent (Osuna, 2002). Different types of 
sensor arrays generate response data with different statistical properties making selection of 
an appropriate technique a difficult task. In the context of ANNs, the choice is often between 
a lesser architectural complexity and a lower system error. In view of all these, in the next 
section identification task of 7 different alcohols and alcoholic beverages is taken up using 
ANN and the response of the 4 sensor array described in section one. 

3. ANNs for odour identification 
The basic computational unit in an ANN is neuron, which is a mathematical function used 
to approximate input�–output mappings. The output of a neuron (also known as firing of a 
neuron) is dependent upon the synaptic weight connection between all the neurons in the 
network. This synaptic weight ensemble changes if the actual output is not equal to the 
desired output. The process of change in synaptic weight is known as �‘learning�’ or �‘training�’ 
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attributed to the material properties of the sensors. The goal of a pre-processing stage is to 
minimize the spread in an individual clusters and maximize the distance between two 
clusters. Therefore, a pre-processing technique should be applied, which utilizes the 
statistical properties of the data set to maximize their inter class separation and minimize 
the intra class separation. The result of such a pre-processing is shown in Fig. 6 (b) to 
establish the importance of a pre-processing stage. The technique used is Transformed 
Cluster Analysis (TCA). Details of TCA can be read from a published work of the author 
(Kumar et al. 2010). 

(a) 2-D scatter plot for responses of sensors 
S-1 and S-2 

 
 

 
(b) 2-D scatter plot for transformed 

responses of sensors S-1 and S-2 
(T1 and T2 are transformed responses of 

sensors S-1 and S-2) 

Fig. 6. 2-D scatter plot for responses and transformed responses of sensors S-1 and S-2 

The actual identification/quantification part of pattern analysis begins after pre-processing. 
Pattern analysis techniques are generally of two types viz. parametric and non-parametric 
techniques. Parametric techniques do not require any prior information on the type and 
number of different classes contained in data. In non-parametric techniques a set of response 
patterns is compared against each other on the basis of degree of similarity or dissimilarity 
(Gardner, 1987). Thus, non-parametric techniques are more general in nature. 

 Statistical pattern analysis techniques like Principal Component Analysis (PCA) and Cluster 
Analysis (CA) are one of the most popular non-parametric techniques. PCA overcomes the 
�“curse of dimensionality�” introduced by the response vector of a multi-sensor array by 
choosing �“principal components�” along the directions of maximum variance. Principal 
components are a linear combination of original variables with the redundant information 
eliminated. The reduced dimensionality of data makes the subsequent feature extraction 
task simpler. 

Feature extraction attempts to find a low dimensional mapping that preserves most of the 
information in the original feature vector. The mappings thus formed enhance the 
information content of the feature vector. Feature extraction techniques also help signal 
representation, which can be useful for extrapolatory data analysis. They are helpful in 
visualizing high dimensional data. Most of the feature extraction techniques for E-nose 
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applications are based on PCA, which is a signal representation technique that generates 
projections along the directions of maximum variance. Learning in pattern analyzers is 
viewed as the optimization of a process to obtain a minimum value for a solution of a pre-
specified objective function (criterion). Analysis of patterns by an analyzer is carried out 
either by supervised or unsupervised learning schemes. 

The pattern analysis techniques applied to the output of a sensor array should be biologically 
inspired if an E-nose is to sniff like humans. This requires application of biologically inspired 
algorithms to the senor output. Artificial neural networks (ANNs) are such a class of 
computational paradigms, the inspiration for which comes originally from the studies of 
mechanism of information processing in biological nervous system, particularly brain (Bishop, 
1994). The advantages of ANNs include massive parallelism, distributed processing and 
computation, learning ability, generalization ability and adaptability. Apart from ANNs, fuzzy 
logic and genetic algorithm are some other techniques which constitute a class of paradigms 
known as �“soft computing�”. Soft computing is fast replacing statistical learning techniques in 
pattern analysis applications. Also, a lot of work has been done in the area of gas/odour 
discrimination using soft computational techniques. Most of the techniques described above 
have been adopted from the field of chemometrics and they can be labelled as �‘statistical�’ 
pattern recognition techniques as opposed to soft computational techniques, which are recent 
in origin and are in general biologically inspired. �“Soft Computation�” is a name given to a 
class of computational paradigms, which seek to find approximate solutions to ill-posed 
problems. It is tolerant of imprecision, uncertainty, partial truth, and approximation just like 
the human mind. The principal constituents of soft computing are ANNs, Fuzzy Logic, 
Support Vector Machines, and Evolutionary Computing. 

Soft computational techniques have revolutionized the arena of artificial olfaction by 
immensely reducing dependency on flawless and meticulously designed sensor hardware. 
Proper application of soft computational techniques can improve the discrimination 
obtained using the response of poorly selective sensors to a great extent thus, saving 
additional costs on possible replacement and fabrications of novel sensor hardware. ANNs 
are one of the foundation pillars of soft computing. Their enormous learning capability, 
massively parallel architecture, and availability of a large number of learning algorithms for 
their training makes them a popular choice for a wide variety of computational tasks. A 
close scrutiny of the available literature reveals that the choice of pattern analysis techniques 
for artificial olfaction has been highly problem-dependent (Osuna, 2002). Different types of 
sensor arrays generate response data with different statistical properties making selection of 
an appropriate technique a difficult task. In the context of ANNs, the choice is often between 
a lesser architectural complexity and a lower system error. In view of all these, in the next 
section identification task of 7 different alcohols and alcoholic beverages is taken up using 
ANN and the response of the 4 sensor array described in section one. 

3. ANNs for odour identification 
The basic computational unit in an ANN is neuron, which is a mathematical function used 
to approximate input�–output mappings. The output of a neuron (also known as firing of a 
neuron) is dependent upon the synaptic weight connection between all the neurons in the 
network. This synaptic weight ensemble changes if the actual output is not equal to the 
desired output. The process of change in synaptic weight is known as �‘learning�’ or �‘training�’ 
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of ANN. A well trained ANN can perform any task related to classification, function 
approximation or prediction with some small amount of error with a brand new data set. In 
ANNs neurons are arranged in different layers with �‘hidden layer�’ being responsible for 
performing most of the computational tasks. ANNs can be trained to approximate any non-
linear input-output mapping. It can be shown mathematically that any ANN trained with 
orthogonal least squares algorithm is able to approximate any input-output mapping with 
arbitrary accuracy provided the number of neurons in the hidden layer is large enough 
(Hykin, 2009). However, a back-propagation (BP) algorithm is by far the most popular 
method of training an ANN. It is less complex and requires lesser number of neurons to 
perform the computations. 

3.1 Back-propagation algorithm 

BP is an algorithm where input vectors and the corresponding target vectors are used to 
train a network until it can approximate a function, associate input vectors with specific 
output vectors, or classify input vectors in an appropriate way as defined by the user. 
Networks with biases, a hidden layer, and a linear output layer are capable of 
approximating any function with arbitrary accuracy. A standard BP is a gradient descent 
algorithm, in which the network weights are moved along the negative of the gradient of the 
performance function. The term BP refers to the manner, in which the gradient is computed 
for nonlinear multilayer networks. Basically, error BP consists of two passes through the 
different layers of the network: (1) forward pass, and (2) backward pass. 

In the forward pass the input vectors are applied to the sensory nodes of the network, and 
its effect propagates through the network layer-by-layer. The actual response of the network 
is delivered by the output nodes in the form of an output vector. The outputs are compared 
with a target vector and the difference is generated as error. Let the error signal at the 
output of neuron j at iteration n be defined by: 

 ( ) ( ) ( )j j je n d n y n= −  (2) 

where, dj (n) represents the desired output at the output node j at iteration n, and yj(n) be 
the actual output at the output node j at iteration n. 

Let the instantaneous value of the error energy for neuron j be defined as: 

21 ( )
2 je n  

Then, for all neurons in the output layer instantaneous value ξ (n) of the total energy is 
given by: 

 21( ) ( )
2 j

j C
n e n

∈
ξ =  (3) 

where, C is the set of all neurons in the output layer of the network. Let N denote the total 
number of patterns contained in the training set. The average squared energy over the entire 
training sample is now given by: 
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For a given training set, ξ avg is called the cost function, which is a measure of learning 
performance. Minimization of the cost function is done iteratively. The weights associated 
with the network are updated on a pattern-by-pattern basis until one complete presentation 
of the entire training set (epochs) has been done. The adjustments to the weights are made in 
accordance with the respective errors computed for each pattern presented to the network. 
The arithmetic average of these individual weight changes over the entire training sets 
presents an estimate of the true change that would result from modifying the weights based 
on minimizing the cost function ξ avg  over the entire training set. Fig. 7 shows a neuron j 
being fed by a set of input signals produced by a layer of its neurons to its left. 

 
Fig. 7. Neuron �‘j�’ being fed by a set of signals from a previous layer of neurons 

The induced local field vj(n) produced at the input of the activation function associated with 
neuron j is given by, 
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= ω  (5) 

where m is the total number of inputs applied to neuron j, and ji is the synaptic weight 
from neuron i to neuron j. The signal yj(n) appearing at the output of neuron j at iteration n 
is a function of the induced local field 

 ( ) { ( )}j jy n v nϕ=  (6) 

The BP algorithm applies a correction ∆ ji(n), to the synaptic weight ji(n), which is 
proportional to the partial derivative  

( )
( )ji

n
w n
ξ∂
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Applying the chain rule of calculus, this gradient can be expressed as: 
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of ANN. A well trained ANN can perform any task related to classification, function 
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ANNs neurons are arranged in different layers with �‘hidden layer�’ being responsible for 
performing most of the computational tasks. ANNs can be trained to approximate any non-
linear input-output mapping. It can be shown mathematically that any ANN trained with 
orthogonal least squares algorithm is able to approximate any input-output mapping with 
arbitrary accuracy provided the number of neurons in the hidden layer is large enough 
(Hykin, 2009). However, a back-propagation (BP) algorithm is by far the most popular 
method of training an ANN. It is less complex and requires lesser number of neurons to 
perform the computations. 

3.1 Back-propagation algorithm 

BP is an algorithm where input vectors and the corresponding target vectors are used to 
train a network until it can approximate a function, associate input vectors with specific 
output vectors, or classify input vectors in an appropriate way as defined by the user. 
Networks with biases, a hidden layer, and a linear output layer are capable of 
approximating any function with arbitrary accuracy. A standard BP is a gradient descent 
algorithm, in which the network weights are moved along the negative of the gradient of the 
performance function. The term BP refers to the manner, in which the gradient is computed 
for nonlinear multilayer networks. Basically, error BP consists of two passes through the 
different layers of the network: (1) forward pass, and (2) backward pass. 

In the forward pass the input vectors are applied to the sensory nodes of the network, and 
its effect propagates through the network layer-by-layer. The actual response of the network 
is delivered by the output nodes in the form of an output vector. The outputs are compared 
with a target vector and the difference is generated as error. Let the error signal at the 
output of neuron j at iteration n be defined by: 
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where, dj (n) represents the desired output at the output node j at iteration n, and yj(n) be 
the actual output at the output node j at iteration n. 

Let the instantaneous value of the error energy for neuron j be defined as: 
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The partial derivative 
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represents a sensitivity factor. It determines the direction of search in weight space for the 
synaptic weight ji. 

Differentiating both sides with respect to ej(n) we get 
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Differentiating both sides of (2) with respect to yj(n), we get, 
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Differentiating both sides of (6) with respect to vj(n), we get, 
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Also, differentiating (5) with respect to j(n), we get, 
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The use of (8) to (11) in (10) yields: 
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The correction ∆ ji(n) applied to ji(n) is defined by the delta rule: 
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where,   is the learning-rate parameter of the BP algorithm. The gradient descent in weight 
space takes place in a direction for weight change that reduces the value of ξ (n)The use of 
(12) in (13) yields 

 ( ) ( ) ( )ji j iw n n y nηδ∆ =  (14) 
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where, the local gradient  j(n) is defined by 
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The local gradient points to required change in synaptic weights. Hence, the above relation 
between the learning rate, local gradient and weight correction can be summarized as 
follows: 

(Weight Correction) = (Learning Rate)*(Local Gradient)*(Input Signal of Neuron �‘j�’) 

Learning Rate Parameter and Momentum Constant: 

The learning rate parameter η  is a measure of the changes to the synaptic weights in the 
network over subsequent iterations. Thus, a smaller learning rate parameter makes smaller 
changes in synaptic weights and the trajectory in the weight space is smoother. A smaller 
learning rate results in a slow learning. If the learning rate parameter η  is made too large to 
speed up the learning process, the resulting large changes in the synaptic weights assume 
such a form that the network may become unstable. To avoid the danger of instability while 
keeping the learning rate fast enough, another term is added to the delta rule, which is 
known as the momentum constant and is denoted by α. Hence, Eq. 14 becomes: 

 ( ) ( 1) ( ) ( )ji ji j iw n w n n y nα ηδ∆ = ∆ − +  (16) 

The inclusion of momentum term in the BP algorithm has a stabilizing effect in directions 
that oscillate in sign. The momentum term also prevents the learning process from 
terminating in a shallow local minimum on the error surface. The training through a BP 
algorithm proceeds iteratively. A prescribed set of training examples are fed repeatedly to 
the ANN. The learning process continues on an epoch-by-epoch basis till the stabilization of 
the synaptic weights and bias levels of the network, and most importantly, the convergence 
of the average squared error over the entire training set to some minimum value. A back-
propagation algorithm cannot converge. However, it is considered to have converged when 
the absolute rate of change in average squared error per epoch is �“sufficiently small�”. The 
rate of change in average squared error is typically considered to be small enough if it lies in 
the range of 0.1 to 1% per epoch. 

The sensor response curves of Fig. 4 were sampled at equal intervals of concentration and a 
data set was prepared. This data set will now be used to train an ANN using a BP algorithm. 

3.1.1 Identification with sampled data 

A three layer feed-forward neural network with sigmoidal activation function was 
simulated for the classification task. Neural network simulation was implemented in 
MATLAB using TRAINGDM function. The number of neurons in the input and output 
layers were fixed as 4 and 7 respectively as there are 4 sensors and 7 classes of gas/odour. 
Simulated network was trained by input vectors available with training data set while 
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where, the local gradient  j(n) is defined by 
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The local gradient points to required change in synaptic weights. Hence, the above relation 
between the learning rate, local gradient and weight correction can be summarized as 
follows: 

(Weight Correction) = (Learning Rate)*(Local Gradient)*(Input Signal of Neuron �‘j�’) 

Learning Rate Parameter and Momentum Constant: 

The learning rate parameter η  is a measure of the changes to the synaptic weights in the 
network over subsequent iterations. Thus, a smaller learning rate parameter makes smaller 
changes in synaptic weights and the trajectory in the weight space is smoother. A smaller 
learning rate results in a slow learning. If the learning rate parameter η  is made too large to 
speed up the learning process, the resulting large changes in the synaptic weights assume 
such a form that the network may become unstable. To avoid the danger of instability while 
keeping the learning rate fast enough, another term is added to the delta rule, which is 
known as the momentum constant and is denoted by α. Hence, Eq. 14 becomes: 

 ( ) ( 1) ( ) ( )ji ji j iw n w n n y nα ηδ∆ = ∆ − +  (16) 

The inclusion of momentum term in the BP algorithm has a stabilizing effect in directions 
that oscillate in sign. The momentum term also prevents the learning process from 
terminating in a shallow local minimum on the error surface. The training through a BP 
algorithm proceeds iteratively. A prescribed set of training examples are fed repeatedly to 
the ANN. The learning process continues on an epoch-by-epoch basis till the stabilization of 
the synaptic weights and bias levels of the network, and most importantly, the convergence 
of the average squared error over the entire training set to some minimum value. A back-
propagation algorithm cannot converge. However, it is considered to have converged when 
the absolute rate of change in average squared error per epoch is �“sufficiently small�”. The 
rate of change in average squared error is typically considered to be small enough if it lies in 
the range of 0.1 to 1% per epoch. 

The sensor response curves of Fig. 4 were sampled at equal intervals of concentration and a 
data set was prepared. This data set will now be used to train an ANN using a BP algorithm. 

3.1.1 Identification with sampled data 

A three layer feed-forward neural network with sigmoidal activation function was 
simulated for the classification task. Neural network simulation was implemented in 
MATLAB using TRAINGDM function. The number of neurons in the input and output 
layers were fixed as 4 and 7 respectively as there are 4 sensors and 7 classes of gas/odour. 
Simulated network was trained by input vectors available with training data set while 
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learning parameters such as learning rate ( ) and momentum constant ( ) and the number 
of neurons in the hidden layer were optimized during experimentations. After several 
repeated experiments the optimum number of neurons in the hidden layer was found to be 
six as it gave the minimum system error, which is measured in terms of mean square error 
(MSE) .The optimized BP network with a configuration of 4:6:7 and an optimized set of 
weights and biases was trained repeatedly with 4 sets of training data and by changing the 
values of learning rate ( ) and momentum constant ( ) from 0.1 to 0.9. The network was 
trained for a fixed 30,000 epochs with an error goal of zero. The trained network for 
minimum system error was then tested with 4 different test data sets. The training and test 
performance for all values of learning rate and momentum constants was noted. System 
error was studied at a particular learning rate for different values of the momentum 
constants in the range of 0.1 to 0.9 for 4 different testing subsets. 

 
Fig. 8. Box whisker diagram for testing phase system error with learning rate for 4 testing 
subsets for different values of the momentum constant (m.c.) (BPNN) 

Fig. 8 shows the testing phase system error at a particular value of learning rate and a 
momentum constant corresponding to which minimum average system error is observed. 
The BP neural network (BPNN) trained with raw data exhibited poor classification 
performance for all training subsets and also very high system error in both training and 
testing phases for almost all combinations of learning rates and momentum constants. A 
high degree of spread in system error is visible from Fig. 8 implying the inconsistent 
performance of BPNN trained with raw data. The diagrams show the variation in error 
performance with an optimum combination of learning rate and momentum constant 
calculated over 4 trials with different testing subsets. 

3.2 Identification performance of radial basis function neural network 

Apart from being subjected to a BP-trained neural classifier, the sampled data were fed as 
inputs to a Radial Basis Function Neural Network (RBFNN) classifier. RBFNN was chosen 
as a classifier because it takes shorter time to train apart form having a lower system error. 
In the following subsection, a brief introduction to RBFNNs is given and the subsequent 
subsections describe the identification performance of the RBFNN with respect to the 
present problem. 
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3.2.1 Radial basis function neural network 

The radial basis function network is primarily composed of three layers. The first is an input 
layer. The second layer is the hidden layer which is primarily responsible for computation 
and the third layer consists of neurons with linear activation functions and it provides the 
output of the network corresponding to the input patterns (Hykin, 2009). The training of 
RBFNNs involves providing the best fit to the training data by finding a surface in a 
multidimensional space. An interpolation between the data points is performed in the 
testing phase. The RBFNN solves a classification problem by applying a nonlinear 
transformation from input space of lower dimension to the hidden space of higher 
dimension, since it increases the likelihood of correct classification for the given problem 
(Cover, 1965). The most popular learning strategy of RBFNNs involves the use of Gaussian 
functions with the selection of centres being done in a random manner. The standard 
deviation of the Gaussian function is fixed according to the �“spread�” of the centres. Given 
below is a radial basis function, with centre at �‘t�’ 
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where, is the number of centres and maxd  is the maximum distance between the 
randomly chosen centres. Also, the standard deviation (spread) of the RBF is given by 
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Thus, the learning process undertaken by RBFNN involves the optimization of the hidden 
layer�’s activation functions and the optimization of the output layer�’s weights. Fig. 9 shows a 
typical radial basis neuron. The net input to the radial basis transfer function is the vector 
distance between its weight vector and input vector multiplied by the bias, which allows the 
sensitivity of the neuron to be adjusted. The equations used in the neural model are given by: 

 .o w p b= −  (19) 

 b= 0.833
s

 (20) 

 
Fig. 9. Radial basis function neuron 

where, o and b denote the output of a typical radial basis neuron and its bias, respectively. 
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learning parameters such as learning rate ( ) and momentum constant ( ) and the number 
of neurons in the hidden layer were optimized during experimentations. After several 
repeated experiments the optimum number of neurons in the hidden layer was found to be 
six as it gave the minimum system error, which is measured in terms of mean square error 
(MSE) .The optimized BP network with a configuration of 4:6:7 and an optimized set of 
weights and biases was trained repeatedly with 4 sets of training data and by changing the 
values of learning rate ( ) and momentum constant ( ) from 0.1 to 0.9. The network was 
trained for a fixed 30,000 epochs with an error goal of zero. The trained network for 
minimum system error was then tested with 4 different test data sets. The training and test 
performance for all values of learning rate and momentum constants was noted. System 
error was studied at a particular learning rate for different values of the momentum 
constants in the range of 0.1 to 0.9 for 4 different testing subsets. 

 
Fig. 8. Box whisker diagram for testing phase system error with learning rate for 4 testing 
subsets for different values of the momentum constant (m.c.) (BPNN) 

Fig. 8 shows the testing phase system error at a particular value of learning rate and a 
momentum constant corresponding to which minimum average system error is observed. 
The BP neural network (BPNN) trained with raw data exhibited poor classification 
performance for all training subsets and also very high system error in both training and 
testing phases for almost all combinations of learning rates and momentum constants. A 
high degree of spread in system error is visible from Fig. 8 implying the inconsistent 
performance of BPNN trained with raw data. The diagrams show the variation in error 
performance with an optimum combination of learning rate and momentum constant 
calculated over 4 trials with different testing subsets. 

3.2 Identification performance of radial basis function neural network 

Apart from being subjected to a BP-trained neural classifier, the sampled data were fed as 
inputs to a Radial Basis Function Neural Network (RBFNN) classifier. RBFNN was chosen 
as a classifier because it takes shorter time to train apart form having a lower system error. 
In the following subsection, a brief introduction to RBFNNs is given and the subsequent 
subsections describe the identification performance of the RBFNN with respect to the 
present problem. 
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3.2.1 Radial basis function neural network 

The radial basis function network is primarily composed of three layers. The first is an input 
layer. The second layer is the hidden layer which is primarily responsible for computation 
and the third layer consists of neurons with linear activation functions and it provides the 
output of the network corresponding to the input patterns (Hykin, 2009). The training of 
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The quantity is known as spread constant and is the most important learning parameter of a 
radial basis network. The radial basis function has a maximum of 1 when its input is 0. As 
the distance between w and p decreases, the output increases. Thus, a radial basis neuron 
acts as a detector that produces 1 whenever the input p is identical to its weight vector w. As 
is evident from the plot of radial basis function the function returns a value of 0.5 when the 
net input to radial basis transfer function is 0.833. The bias is given by Eq. (20). This 
determines the width of an area in the input space, to which each neuron responds. The 
spread constant should be large enough so that neurons respond strongly to overlapping 
areas of the input space. 

 
Fig. 10. Box whisker diagram for testing phase system error with spread constant 

3.2.2 Identification results of RBFNN classifier 

RBFNN employed in this study utilizes the newrbe function implemented in MATLAB. The 
function creates a radial basis network with the number of neurons in the hidden layer 
equal to the number of training patterns. The network was simulated first with the training 
data sets and was tested with test data sets. The spread constant of the network was varied 
from the 0.2 to 3.0 at regular intervals. The results thus obtained have been depicted in the 
form of a box whisker diagram of Fig. 10. K-fold cross validation scheme was used with 
K=6, to avoid overfitting. It is evident from Fig. 10 that as the spread constant increases, the 
variation in the results decreases. The minimum testing phase system error was obtained at 
a spread constant of 2.6 and 100% identification was achieved. 

4. Fuzzy sets for odour discrimination 
The foundations of fuzzy logic are based on the concept of fuzzy sets. A fuzzy set is a set 
without a clearly defined boundary (Zadeh, 1965). Human smell processing is inherently 
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fuzzy in nature. When the qualitative remarks are used about something, we actually do a 
fuzzy classification task, in which our sensory responses are assigned to more than one 
predefined classes with varying degrees of belongingness to them. This degree of 
belongingness is known as degree of membership in fuzzy set theory. The qualitative 
remarks come in the form of linguistic labels such as rose-like, apple-like. Apart from this, 
human olfactory system is capable of doing multi-way classification. Given 3 types of 
fragrances to smell, a human being is able to tell, which one was apple-like or rum-like or 
rose-like and also that which fragrance among the three was strongest, which one was 
weakest and which one was of in-between intensity. In the above case, along with the 
qualitative information some quantitative information has also been retrieved, which 
enables us to label the fragrances according to their �‘intensity�’. This has served as the 
primary motivation for the design of a network, which can retrieve both the qualitative 
and quantitative information when the sensor array response vectors are given as input 
vectors to the network. 

Fuzzy set theory is a generalization of the conventional crisp set theory. It measures the 
degree to which an event occurs (Zadeh, 1965). As discussed above, each element of a fuzzy 
set has a degree of membership assigned to it in accordance with a membership function. 
The most commonly used membership functions in the literature being triangular and 
trapezoidal membership functions. 

Let X = {x1, x2, x3, �….., xn} be a non-fuzzy set. The subsets of X are called bit vectors or 
bivalent messages. If X = {x1, x2, x3, x4}, then X = {1,1,1,1},  = (0,0,0,0) and the subset A = {x1, 
x4} is represented as A = (1, 0, 0, 1). The 1s and 0s indicate the presence or absence of the ith 
element xi in the subset. Each non fuzzy subset A can be defined as one of the two-valued 
membership functions µA : X {0,1}. The power set 2X of X is the set of all of X�’s subsets. 
There are 2n possible messages defined on X (in 2X). In this example, there are 24 possible 
messages. In contrast, fuzzy subsets of X are referred to as fit vectors or fit messages. Each 
subset A of X can be defined as one of the continuum-many continuous-valued membership 
functions µA: X  {0,1}. Fuzzy sets can also be represented geometrically and this 
representation gives more insight into the intricacies of fuzzy sets and operations related to 
them (Kosko, 2007). According to this representation, the fuzzy power set F(2X) , which is 
the set of all fuzzy subsets of X, is visualized as a unit hypercube In = [0,1]n and a fuzzy set is 
any point in the cube In. Vertices of the cube In define non-fuzzy or crisp sets, which are a 
subset of X. Thus, crisp sets are special cases of the fuzzy sets. 

Fig. 11 shows the geometrical representation of fuzzy sets. The sets on vertices are non-
fuzzy sets and long diagonals connect non-fuzzy set complements. A fuzzy set A with fit 
values 

1 4
3 5  

is represented inside the unit square consisting of all possible fuzzy subsets of two elements. 
The mid-point of the unit square shown in Fig. 12 is the point of maximum fuzziness. Thus, 
the proposition for fuzziness can be summarized as follows. 
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fuzzy in nature. When the qualitative remarks are used about something, we actually do a 
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is represented inside the unit square consisting of all possible fuzzy subsets of two elements. 
The mid-point of the unit square shown in Fig. 12 is the point of maximum fuzziness. Thus, 
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Fig. 11. Geometrical representation of fuzzy set A 

 
Fig. 12. Fuzzy set A with its complements, under-lap and overlap 

A is properly fuzzy if 

    (21) 

    (22) 

where  and  are termed as overlap and under-lap respectively. The positions of 
a fuzzy set along with its complement, overlap set and under-lap set are shown in Fig. 12. 

With the increase in fuzziness of A, all the 4 points shrink towards the midpoint of the fuzzy 
square, which is the point of maximum fuzziness. The size or cardinality of a fuzzy set A is 
given by 
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Where, µA (xi ) is the membership value of the ith element of n-valued fuzzy set A. 

Fuzzy logic has emerged as a promising tool for biological information processing owing to 
its proximity to human perceptions of logic, and real world situations, which are full of 
ambiguity. The combination of fuzzy logic and neural networks is reported with promising 
results in the classification of wines and beverages (Das et al., 1999). The next section 
presents a novel method of fuzzy pre-processing, which gives simultaneous identification 
and quantification when the response samples are used to train an ANN classifier. The aim 
is to tell both the class and the concentration of a sample simultaneously when the sample is 
presented to an ANN. 

5. Fuzzy subsethood for simultaneous identification and quantification of 
odours 
It can be seen from Fig. 4 that the response of the sensor array to almost all the alcohols and 
alcoholic beverages in the study has saturating tendency at higher concentrations. The 
quantification task becomes more difficult for mere lack of information at higher 
concentrations. Both qualitative and quantitative classification tasks coupled together need 
an integrated approach to be accomplished successfully. As a first step to reduce the 
complexity of the problem, PCA is used on the raw data. 

Fig. 13 shows the PCA plot discriminating different alcohols and alcoholic beverages used in 
this study. Although PCA can significantly reduce the dimensionality of the data set by 
having 95% of the variance in first two principal components (PC-1 and PC-2) itself, it has 
little effect on class separability. This necessitated investigation of a technique, which is 
based on proper representation of target classes in the output feature space provided the 
representation is inclusive enough to incorporate in itself both qualitative and quantitative 
information. 

 
Fig. 13. 2D PCA for sensor array response to 7 alcohols/alcoholic beverages 

Fuzzy subsethood representation is such an appropriate technique and applied on the data 
as follows. The response curves in Fig.4 were sampled at regular intervals of concentration. 
Each curve was sampled at 48 values of concentration and a total of 336 samples were 
obtained for 7 gases. As shown in Fig. 14, each sample has two memberships, one to the gas 
class and the other to the concentration band. For each gas, twelve concentration bands were 
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marked according to increasing no. of drops as band no. 1(b-1) for drops 0-1, band no. 2 (b-
2) for drops 1-2 and so on. Each such concentration band consisted of 4 samples. 

 
Fig. 14. Concentration bands in sensor response to whisky-2 

Fuzzy memberships were assigned to each sensor response sample for all gases as follows. 
Centroid jS  was calculated for each set j where j denotes a gas and jS  has 4 elements as given in 
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where m1j, m2j, m3j and m4j and represent the centroids for the responses of sensors 1(Sb2O3 
doped), 2(SnO2), 3(NiO doped) and 4(ZnO doped) respectively. In this case the centroids are 
calculated by taking the mean of individual sensor response samples for different alcohols 
and alcoholic beverages. 

The Euclidean distance djk of the sensor response vector at sample k for gas j can be obtained 
in the sensor response ratio vector space as given by 
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where, x1jk is the sensor response for sensor 1, gas j, and sample k and so on. Each sample k is 
assigned a membership µjk in the output feature space, in the fuzzy set Aj for jth gas at 
sample k by using triangular membership function as: 
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where, djk is the Euclidean distance of the sensor response vector at sample k for gas j. |djk 
|max and | djk |min are the modulo of the maximum and minimum values respectively of djk 
for a particular gas j. Similarly, the sensor response samples obtained from different gases 
were assigned memberships in different concentration bands of those gases. 
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Centroid Sjn is calculated for each concentration band n of j where j denotes the gas (alcohol 
and alcoholic beverage type) and Sjn has 4 elements as given by 
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where, m1j, m2j, m3j and m4j represent the centroids for the responses of sensors 1, 2, 3 and 4 
respectively in a concentration band n. The centroids are calculated by taking the simple 
mean of 4 samples belonging to a particular concentration band. The Euclidean distance  djnk 
of the sensor response vector at sample k of a gas j and concentration band n of that 
particular gas can be obtained in the sensor response ratio vector space as given by 
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where x1jk is the sensor response for sensor 1, gas j, band n, and sample k, and so on. Each 
sample k of band n is assigned a membership µjnk in the output feature space, in the fuzzy set 
Ajn again by using triangular membership function as: 
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where, djnk is the Euclidean distance of the sensor response vector at sample k for band n of 
gas j. |djnk|max and |djnk|min are the modulo of the maximum and minimum values 
respectively of djnk for a particular band n of gas j. It is clear that the fuzzy set Ajn is a subset 
of fuzzy set Aj . 

The degree of belongingness of Ajn to Aj changes, as n changes for a particular j. Thus, all the 
elements of Ajn can be mapped to a single value, which is the fuzzy subsethood value as 
defined below, Fuzzy subsethood measures the degree of belongingness of a fuzzy set A to 
its superset B and is denoted by 

 S(A,B) = Degree(A ⊂ B)  (30) 

A fuzzy set A can be a subset of another fuzzy set B if  µA (x) ≤ µB (x) for all x. 

The fuzzy-subsethood theorem is given by 

 S(A,B)= ( )
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 Sjn(Ajn,Aj) = Degree(Ajn ⊂  Aj) (32) 

Using equations (31) in (32) 
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Centroid Sjn is calculated for each concentration band n of j where j denotes the gas (alcohol 
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A fuzzy set A can be a subset of another fuzzy set B if  µA (x) ≤ µB (x) for all x. 

The fuzzy-subsethood theorem is given by 

 S(A,B)= ( )
( )

M A B
M A

∩  (31) 

 Sjn(Ajn,Aj) = Degree(Ajn ⊂  Aj) (32) 

Using equations (31) in (32) 
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∩
 (33) 

In Fig. 15 the response of the array saturates completely after the concentration band b-4, 
resulting in a shear lack of information. However, there is a slight change in the response 
pattern of sensor 1 in band b-9. This change should reflect in the output feature space so that 
proper quantification can be obtained. For a particular concentration band n consisting of k 
samples of gas j for the response of sensor i the mean is given as mijn. 

For n = 9, j = 2, and i = 1, the variance Vijn is given by 

 129 2 2 2 2
1291 129 1292 129 1293 129 1294 129

1
4{( ) ( ) ( ) ( ) }

V
X m X m X m X m

=
− + − + − + −

  (34) 

From (28) the Euclidean distance djnk of sample k = 1 of j = 2, n = 9, is given by 

 
1

2 2 2 2 2
291 1291 129 2291 229 3291 329 4291 429{( ) ( ) ( ) ( ) }d X m X m X m X m= − + − + − + −  (35) 

It can be observed that the first term of the variance V129 finds itself as a component of the 
Euclidean distance djnk. Since the variance Vijn is calculated for the response samples of a 
single sensor i and the Euclidean distance djnk of a particular sample takes into account the 
responses of all the 4 sensors of the array, any significant change in the response of any of 
the 4 sensors in a concentration band is certainly going to reflect in the Euclidean distance of 
any sample for the same concentration band. Since membership values and subsethood are 
primarily based upon Euclidean distance, the change in variance for a particular sensor in a 
concentration band will play a part in the subsethood calculation for the response vector 
obtained from all the 4 sensors in the same concentration band. In this way, if any one of the 
4 sensors shows less saturation at higher concentrations the possibility of correct 
quantification increases. 

 
Fig. 15. Second sample of ninth band of whisky-2 
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5.1 Simulation results and discussions 

The subsethood values were obtained for each concentration band of a particular gas and 
were used as the target for the neural network classifier. For a total of 7 alcoholic beverages 
7 neurons were kept in the output layer. A neuron corresponding to a particular gas class 
was supposed to fire at a value corresponding to the fuzzy subsethood of the particular 
concentration band, to which the test sample belonged while all other neurons were 
supposed to be deactivated. A tolerance of 2% for the target fuzzy subsethood was 
considered appropriate. A single hidden layer feed-forward ANN was trained with a BP 
algorithm. The input layer consisted of 4 neurons and the number of neurons in the hidden 
layer was optimized by experimentation. The input data were divided into training and 
testing data matrices. The simulations were carried out on MATLAB platform and several 
different versions of a BP algorithm available in the MATLAB neural network toolbox 
(Mathswork Inc., 2007) were tested. Three training methods based upon a BP algorithm 
namely Trainoss, Trainscg and Trainlm have been found to give satisfactory results. To 
eliminate the possibility of over fitting m-fold cross validation scheme (Hykin, 2009) was 
used. For all the three versions logsigmoidal activation function was used. All the three 
training methodologies use default values of learning rate  and momentum constant  
adaptively during the simulation run. The number of neurons in the hidden layer of the 
network was varied from two to nine and system error (mean square error) was noted. 
The networks were trained to a fixed 10,000 epochs with an error goal of 0.0001. Trainoss, 
Trainscg and Trainlm are found to train the network best when the number of neurons in 
the hidden layer of the network was 7, 5, and 6 respectively. In the testing phase, 12 
samples were taken for a particular beverage with one sample each from a particular 
concentration band. The proposed network was found to give the best testing phase 
performance when the network was trained with Trainlm methodology. Table 1 shows the 
summary of best classifications achieved qualitatively and Table 2 shows the quantitative 
classification results for a network with an optimized topology of 4:6:7 trained with 
Trainlm. For qualitative classification 83 out of 84 samples were identified correctly giving 
a result of 98.97%.  

 
Gas class No. of samples correctly detected out of 12 for 

each gas class 
Whisky-1 12 
Whisky-2 12 
Whisky-3 12 
Whisky-4 11 

Rum-1 12 
Rum-2 12 
Ethanol 12 

Total % classification achieved 98.97 

Table 1. Results of qualitative classification 
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Gas class No. of samples correctly detected in 
Concentration Bands b-1 to b-12 

Whisky-1 8 
Whisky-2 8 
Whisky-3 6 
Whisky-4 9 

Rum-1 6 
Rum-2 9 
Ethanol 10 

Total % quantification achieved 66.67 

Table 2. Results of quantitative classification 

Whereas, 56 out of 84 samples were detected correctly in concentration bands b-1 to b-12, 
giving a success rate of 66.67%. The results seem to be very encouraging since the sensor 
response at higher concentrations of the test gas remains saturated for almost all types of 
alcohols and alcoholic beverages, resulting in a shear lack of information at higher 
concentrations as evident from Fig. 4. 

6. Conclusions 
In this chapter a neural fuzzy identifier/quantifier was presented for discrimination of 
several alcoholic beverages using responses of a poorly selective sensor array. The 
simulation results obtained using fuzzy subsethood based feature extraction, validate the 
presumption that the limitations imposed by poor selectivity of chemical sensors can be 
overcome using appropriate soft computational technique. This chapter also highlights the 
importance of a pre-processing stage before the response sampled are fed to a neural 
classifier. The proposed technique of fuzzy subsethood encoding is also similar to a pre-
processing stage, which makes the subsequent neural classification faster and error free. It is 
important to have a classifier with a small number of neurons in the hidden layer so that it 
can be implemented easily into custom VLSI chips. The technique presented in this chapter 
accomplishes the identification/quantification task with a few neurons in the hidden layer 
(i.e. 6) and hence its efficacy is established. 

There is a scope for future work by trying to make the identification/quantification 
techniques less problem-dependent and more general in nature, which would eventually 
enable the realization of a highly marketable hand-held E-nose system. 
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