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The first volume of the book concerns the introduction of photonic crystals and 
applications including  design and modeling aspects. Photonic crystals are attractive 

optical materials for controlling and manipulating the flow of light. In particular, 
photonic crystals are of great interest for both fundamental and applied research, and 

the two dimensional ones are beginning to find commercial applications such as optical 
logic devices, micro electro-mechanical systems (MEMS), sensors. The first commercial 
products involving two-dimensionally periodic photonic crystals are already available 

in the form of photonic-crystal fibers, which use a microscale structure to confine 
light with radically different characteristics compared to conventional optical fiber for 

applications in nonlinear devices and guiding wavelengths. The goal of the first volume is 
to provide an overview about the listed issues.
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Preface 

Generally the term photonic crystal refers to two dimensional (2-D) and three 
dimensional (3-D) structures. Using 2-D and 3-D photonic crystals it is possible to 
control the propagation of light at arbitrary angles of incidence and not only the light 
normally incident as is the case for conventional optical films.  Further, using photonic 
crystals, it is possible to achieve optical functionality not possible using conventional 
optical materials. This book provides a complete overview about photonic crystals 
including properties, applications, approaches and methods for the study.   

This book is structured into four main sections: 

1. Introduction of Photonic Crystals. Many organisms have photonic crystals as part of
their ‘bodies’. Recent research into the diversity of photonic crystals in nature has led 
us to question how such precise nanostructures form, with the hope that answers may 
lead to breakthroughs in their engineering. In a study of structural colors in nature, a 
remarkable convergence emerged in the nanoscale architecture of 2-D and 3-D 
periodic photonic crystals between species, families, phyla, and even kingdoms of 
organisms. Of the many types developed engineers, living organisms possess only 
four. These, however, occur in many unrelated species. It is possible that a 
combination of intra-cellular engineering and molecular self-assembly— as opposed to 
proportional genetic mutation—is the major factor in the evolution of photonic crystals 
in nature. In this section are reported examples of photonic crystals observed in nature 
and some examples of layouts such as gratings and guided waves. 

2. Photonic crystals and applications. Applications such as optical logic devices, MEMS
and bio-sensors are presented. Photonic crystals are promising technology in future 
optical signal processing and optical computing. In this direction optical logic gates 
are the fundamental components in optical digital information processing. In recent 
years, researchers have proposed other applications as photonic crystal MEMS based, 
and biosensors for bio-molecular detection systems (deoxyribonucleic acid (DNA) 
chips  detectors). The listed topics are discussed in this section. 

3. Photonic crystal fiber: Photonic-crystal fiber (PCF) confine slight in hollow cores or
with confinement characteristics not possible in conventional optical fiber. PCF are 
used for applications in fiber-optic communications, fiber lasers, nonlinear devices, 



X Preface 
 

high-power transmission, highly sensitive gas sensors, and other areas. More specific 
categories of PCF include photonic-bandgap fiber (PCFs that confine light by band gap 
effects), holey fiber (PCFs using air holes in their cross-sections), hole-assisted fiber 
(PCFs guiding light by a conventional higher-index core modified by the presence of 
air holes), and Bragg fiber (photonic-bandgap fiber formed by concentric rings of 
multilayer film).  This section shows some important applications of the PCF.  

4. Design and Modeling: Photonic crystals are described exactly by Maxwell's Equation 
systems. Much of our research, however, is directed at achieving a higher level of 
understanding of these systems, so that it is possible to predict and explain their 
behaviour. This section discusses an overview about computational methods for 
photonic crystals including coupled mode and plane wave expansion theory. 

 
Alessandro Massaro 
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How Nature Produces Blue Color  
Priscilla Simonis and Serge Berthier  

Institut des Nanosciences de Paris (INSP), University Pierre et Marie Curie, Paris, 
France 

1. Introduction 
Today, blue is a very fashionable color in European countries. This has not always been the 
case (Pastoureau, 2000), as cultural perceptions have slowly evolved since prehistoric times. 
In cave paintings, white, red and black have been the only available tones and these colors 
remained basic for Greek and Latin cultures, where blue was neglected or even strongly 
devalued. The word caeruleus, which is often used for brightly blue species, in naming 
plants and insects, is etymologically related to the word cera, which designates wax (not to 
the world  caelum – sky – as often believed): it meant first white, brown or yellow (André, 
1949), before being applied to green and black, and much lately, to a range of blues. Latin 
and Greek philosophers were so diverted from blue that they even did not notice its 
presence in the rainbow: for Anaximenes (585-528 BC) and later for Lucretius (98-55 BC), the 
rainbow only displayed red, yellow and violet; Aristotle (384-322 BC) and Epicurus (341-270 
BC) described it as red, yellow, green and violet. Seneca (ca. 4 BC - 65 AD) only mentioned 
red, orange, green, violet but, strangely, also added purple, a metameric color not found in 
the decomposition of white light. Later in the Middle-Ages, Robert Grosseteste (ca. 1175-1253) 
revisited the rainbow phenomenon in its book “De Iride” and still did not find there any blue 
color (Boyer, 1954). Blue emerged slowly in minds and art, only after the advent of 
technological breakthroughs in stained glass fabrication (as introduced in the 12th century 
rebuild of St Denis Basilica) and after the progressive use of blue dyes, which followed the 
extension of woad cultivation, all after the 13th century. 

Another slow emergence of blue has been observed in the development of an efficient blue 
light-emitting diode. Red, yellow and green solid-state diodes appeared early after the 
development of the first device by Nick Holonyak Jr and S. Bevacqua in 1962, but the blue 
diode did not become practical until the work of Shuji Nakamura, in 1993. Since then, the 
blue and ultraviolet diodes have gained maturity and give rise to the emergence of powerful 
white sources that appear to be the future of all lightening devices. 

If the blue color has been slow to emerge in human culture and technology, it was not so in 
nature. Blue flowers, birds, fishes, reptiles, insects, spiders, shrimps… have been observed 
very frequently. Blue colored structures have even been found on fossil beetles. The objective 
of this chapter is to discover how blue colorations are achieved in living organisms. 

A classification of natural photonic structures is not straightforward: these structures are 
complex, with multiscale effects and disorder. A useful classification requires some 
mathematical idealization of the structures. Our scheme is based on the number of dimensions 
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in which we can assume a total translational invariance. One-dimensional structures are only 
inhomogeneous in one dimension, with, perpendicularly, complete invariance for two 
independent translations. These one-dimensional structures are then described as “layered”. 
Thin films, thin film stacks and Bragg mirrors (with the repetition of identical layers) are 
examples of one-dimensional structures. Two-dimensional structures are totally invariant 
under a single direction. A straight optic fiber is a two-dimensional structure. A periodic array 
of parallel fibers, such as the bunch of cilia in ctenophores or the aligned melanin rods in 
peacock or other bird’s feathers, is also a two-dimensional, as well as gratings engraved on flat 
surfaces. In three-dimensional structures, no direction shows total invariance under 
translations. This is the most general geometry for a photonic structure. 

When inhomogeneous, the refractive index can be periodic, in which case the propagation 
acquires special features that will be examined later. A one-dimensional periodic structure is 
the basis for a Bragg mirror that produces well-defined reflection bands around specific 
frequencies. Obtaining blue colors with such a system is relatively tricky and, as will be 
discussed in this chapter, requires particularly thin layers in order to avoid producing a 
metameric purple color. Blue two-dimensional photonic crystal also requires special 
scatterer’s spacing and specific conditions: the blue coloration of the wing feathers in the 
magpies is a very instructive example. Somewhat more complex, when neglecting cross-ribs, 
microribs and lamellae slant, the Morpho rhetenor ribs structure is another example of a two-
dimensional photonic structure that produces a vivid blue under most directions. Gratings, 
as found in butterflies can also produce blue iridescence for specific grating periods. Finally, 
blue three-dimensional photonic crystals are observed in weevils and longhorns. 

2. Tyndall diffusion 
Tyndall scattering by relatively distant particles in the range 40 nm – 900 nm generally 
produces a bluish diffuse coloration. 

2.1 Theoretical background 

The elastic scattering of light by isolated particles is an important chapter of 
electrodynamics. The physical mechanism of light diffusion is simple: the electric field 
which accompanies an incident light beam penetrates and disturbs the polarizable material 
in the scatterer, which responds by charge oscillations. The sustained acceleration of these 
oscillating charges produces a reemission of light, at the same frequency, but its directional 
distribution is much wider than in the incident light. The distribution of the scattered light 
essentially depends on the polarizability of the material at the incident frequency, but also 
on the shape of the particle – in just the same way as the relative location of antennas 
influences the emission direction of radio waves. 

An important parameter, for classifying the scattering mechanisms is the ratio between the 
scatterer’s size r  to the wavelength  , 2x r  . For 1x , we encounter a mechanism of 
diffusion called “Rayleigh scattering”. This type of light redirection leads to the following 
distribution of intensities: 

 
24 62 21 cos 2 1

0 2 2 22 2

n dI I
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where I  is the intensity scattered at an angle   from the incident direction, R  is the 
distance from the particle’s center, n is the refractive index of the particle and d  its 
diameter. Typically, for visible light, the diameter of the scatterer should be smaller than 
about 50 nm to warrant a good quantitative accuracy of the scattering. This expression was 
probably first derived by John William Strutt (third Baron Rayleigh), based on dimensional 
(“similitude”) arguments (Hoeppe, 1969). Assuming that the scattering is proportional to the 
number of atoms in the particle – which is the atom concentration times the volume V , and 
inversely proportional to the distance R  between the particle center and the detector used 
for measurement, the ratio between the scattered amplitude A  and the incident amplitude 

0A  can be expressed as  

 
0

yxA V c
A R

 , (2) 

which should be a dimensionless quantity. The light speed c  and the wavelength   should 
also enter the formula because this is an optical phenomenon, but we do not yet know the 
exponents x and y . The right-hand side of the equation, in terms of time [ ]T  and length [ ]L , 
has dimensions 2[ ] [ ]x y yL T   . For this to become dimensionless, we must have  0y   
and 2x  . This means (as the volume V  is proportional to the cube of the particle 
diameter d ) 

 
2 6

2 40 0

I A d
I A R 

 
  
 
 

. (3) 

Much of the physics of the Rayleigh scattering is already present in this result, based on this 
simple reasoning. In particular, the essential point is the so-called “inverse fourth power 
law”, stating that the scattered intensity is inversely proportional to the fourth power of the 
wavelength. This means that the short wavelengths in the visible white light (violet-blue) 
are scattered much more efficiently than the long wavelengths (orange-red). The sunlight 
scattered by small particles appears essentially blue because the solar spectrum contains less 
violet than blue and because we are less sensitive to violet than to blue. 

The Irish physicist John Tyndall contributed to this question as early as in 1860. He 
noticed the appearance of blue scattering by a vapor of hydrochloric acid, as the particles 
condensed into larger size droplets and its desaturation, reaching white color, when the 
particles became too large. Indeed the blue Rayleigh scattering is reinforced as the volume 
of the scattering center is increased, and continues to do so until the particle becomes 
larger than the illuminating wavelength. Then, standing waves and resonances start 
affecting the wavelength dependence of the scattering, giving rise to a much more 
complex scatter color. Typically, the range of particle sizes that produce a strong blue 
scattering is between 50 nm to 900 nm and, for this range, where the characteristics of 
Rayleigh scattering are still qualitatively useful, the scattering is usually called “Tyndall 
scattering”. For spherical particles of small, medium or large sizes, a general treatment 
exists: Mie scattering (Mie, 1908).  

This is not quite the end, as Rayleigh, Tyndall and Mie scattering only describe the 
scattered intensity by a single isolated particle. When considering aggregated particles, 
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scattered intensity by a single isolated particle. When considering aggregated particles, 
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things also become more complicated. When the distance between the particles is much 
larger than the coherence length of the illuminating light, the collective scattering is 
incoherent, which means that the diffused intensity is merely the sum of the intensities 
diffused by each scattering center. The incoherent scattering by “Rayleigh particles (in the 
range of diameters smaller than 50 nm)” and by “Tyndall particles” (in the range 50-900 
nm) can still be considered as mechanisms of “Rayleigh” or “Tyndall” scattering, 
respectively. If the particles are closer, we encounter a case of coherent scattering and we 
must add vector amplitudes with respective phases rather than intensities. The multiple 
scattering on nearby particles provides further opportunities for standing waves and 
resonances and we again lose the inverse fourth power law. The intensity and scatter 
directions then depend on the spatial distribution of the particles and in particular, the 
average distance between them. 

2.2 Tyndall diffusion in nature 

Tyndall scattering has long been recognized to be responsible for blue coloration of the sky 
(Tyndall, 1869) and the color of blue eyes (Mason, 1924). It appears when small particles or 
voids with dimensions of the order of the wavelength of blue light (about 500 nm) are 
present in the propagation medium. In that case, the small wavelengths of the incident 
white light will be scattered and the longer wavelengths will pass undisturbed through the 
medium. Thus, the red and yellow wavelengths are transmitted and the blue and violet 
colors are scattered by the composite medium, giving out a non-iridescent light blue 
diffusion spectrum. 

In this phenomenon, the particle’s sizes and refractive indexes control the coloration. As 
shown here above, the intensity of the reflected light by such a system is inversely 
proportional to the 4th power of the wavelength. The amplitude of the reflected light and its 
angular distribution will depend on the particle’s sizes.  

For incoherent Tyndall or Rayleigh scattering to occur, it is necessary that the diffusers are 
separated by more than the coherence length of sunlight (about 600 nm). Under this 
distance, coherent interaction occurs, even if the diffusive particles are randomly arranged 
and one can no more talk about Tyndall or incoherent scattering. This misleading fact is at 
the origin of several wrong interpretations of blue coloration in animals. 

In living organisms, Tyndall blue is almost always present in association with underneath 
pigments. The underlying pigment granules absorb the incident light that penetrate through 
all the structural tissue and prevent desaturation by wavelengths scattered by inner tissues.  
They allow structural colors to be generated with a limited number of scatterers. In most 
cases, the pigment granules are made of melanin (Fox, 1976) but carotenoids, antocyanins 
and pterins (Lee, 1991; Stavenga et al., 200; Walls, 1995) can also be present, giving rise to 
various coloring effects. 

Since the early 20th century, much work has been devoted to discovering the origin of dull 
blue colorations seen in animals. At first, it was common to distinguish two cases: the 
iridescent blue, synonym of coherent scattering and the non-iridescent blue, assumed to be 
incoherent Rayleigh or Tyndall scattering (Fox, 1976; Mason, 1926; Mason, 1927). At that 
time, the difference was based on the visual observation and not from the microscopic 
distances between scatterers. 
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It is interesting to mention that, in the twenties, Mason attributed all the non-iridescent blue 
colorations seen in bird feathers to Tyndall scattering but was aware that, in some insects, 
such coloration could arise from other phenomena (Mason 1923, Mason 1927). As new 
experimental and imaging techniques developed, new insights showed that blue in bird 
feathers could also be produced by constructive interference of light waves.  Interfaces 
between keratin and air in the spongy medullar layer of the barbs act as coherent scatterers 
in that case (Prum et al., 1998; Prum et al., 1999).  Blue Tyndall skins also appear in birds. 
For example, the extinct dodo head skin was found to be showing a diffuse blue color. This 
skin reveals randomly arranged, fine particles, about the size of the blue light wavelength 
(Parker, 2005). 

 
Fig. 1. The male dragonfly Orthetrum caledonicum (Libellulidae). The blue coloration of the 
body comes from Tyndall scattering in a waxy layer over the black cuticle (Parker, 2000).  
(reproduced from GNU free documentation) 

Scattered blues have early been assigned to insects. The scattering occurs in the epidermal 
cells beneath a transparent cuticle. In the odonate order such as aeschnids, agrionids and 
libelluloids (Libellula Pulchella, Mesothemis Simplicicollis, Enallagma Cyathigerum, Aeshnea 
cyanea, Anax walsinghami) the bright blue diffuse coloration on their body or wings (Mason, 
1926; Parker, 2000; Parker, 2005; Veron, 1973) originates from scattering centers under the 
cuticle. Dragonflies (Mason, 1926) and some other adult insects can also develop a waxy 
bloom on the surface of their cuticle. The Tyndall effect is then produced by this waxy 
material and coloration can be destroyed by washing it with a wax solvent (Parker 2000): see 
Fig. 1.  

Some butterflies have also been thought to be colored by this mechanism, such as Papillio 
zalmoxis or lycaenids (Huxley, 1976; Berthier, 2006). However, recent research shows that 
coherent interferences could also explain the various observed colors in these butterflies 
(Wilts et al., 2008; Prum et al., 2006). Tyndall blue has also been recorded in the cuticle of the 
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larvae of some tent caterpillars (Byers, 1975), due to the presence of inhomogeneous 
transparent cuticular filaments. 

 

    
 

Fig. 2. The male grasshopper Kosciuscola tristis at 30°C (left) and 5°C (right). The blue 
coloration accuring at high temperature comes from Tyndall scattering (from K. D. L. 
Umbers,  with permission, Umbers, 2011) 

The male grasshopper Kosciuscola tristis, also called “chameleon grasshopper” has the ability 
to change from black to bright sky blue. It has been shown that the mechanism of this color 
change is completely reversible and regulated by temperature changes (Filshie et al., 1975; 
Umbers, 2011). It is currently admitted that the blue color arises from Tyndall scattering of 
light on a suspension of small granules, intensified by the underlying dark background. 
Intracellular granule migration can explain the color change. However, recent discussion 
may lead to the conclusion that coherent scattering may play a role much more important 
than expected (Umbers, 2011). 

Tyndall scattering has also been observed in molluscs (Fox, 1976; Herring, 1994) and in 
nudibranch mollusks (Kawaguti & Kamishima, 1964). These are obtained by small diffusive 
granules displayed over a pigmentary melanophore layer. Octopus and squids are 
sometimes able to control the blue hue of their body patterns. This adaptive blue is achieved 
by varying the melanophore’s grains distances in order to change the underneath absorbing 
screen density (Fox, 1976). 

Several blue mammals skins, especially in the primates family were thought to be Rayleigh 
or Tyndall scattered (Fox, 1976; Price et al., 1976). However, recent research on several 
structurally colored mammal skins pointed out that these colorations should come from 
coherent scattering from quasi-ordered arrays of collagen fibers (Prum & Torres, 2004). 

As far as we know, it is hard to find in nature true incoherent Tyndall scattering. Diffusive 
layers are often made of randomly arranged particles too close from each other to assume 
incoherent scattering. This condition for incoherent diffusion is often misunderstood in 
papers that attribute to Tyndall scattering an array of disordered particles of the size of the 
wavelength, whatever the distance between them. 
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Fig. 3. Blue skins in mammals: Male mandrill facial blue skin (left) and male vervet monkey 
with blue scrotum (right) (reproduced from GNU free documentation) 

3. Pigmentary coloration 
3.1 Theoretical background 

Pigmentary coloration is based on a spectrally selective absorption of the incident white-
light. For a pigment to be useful, the light which has not been absorbed must be diffused in 
all directions, providing the same color in all directions. This means that a sheet of material 
colored by absorption and diffusion will appear with roughly the same color in reflection 
and transmission. This contrasts structural colors obtained by interference, without 
absorption, where back- and forward scattering colors tend to be complementary. 

The physical description of a selectively absorbing material illuminated by a single 
frequency needs to extend the concept of the refractive index to include refraction and 
absorption. A simple way to do this is, at a fixed frequency, to accept to replace its real value 
by a complex number n n ik  . A frequency-dependent complex refractive index (or, 
equivalently) a frequency-dependent complex dielectric constant can explain the optical 
response of dyes in a homogeneous material. But pigments require to produce diffuse 
scattering and this will only take place in a random inhomogeneous material or when the 
absorbing material appears in the form of concentrated granules.  This helps providing a 
distinction between dyes and pigments. 

3.2 Pigmentary coloration in plants 

In plants, blue coloration is quite rare. However, it can be seen in some leaves, flowers or 
fruits. The blue is produced by modified anthocyanin pigments. A wide variety of 
mechanisms for modifying anthocyanin pigments has been observed in order to get blue or 
violet colorations. In flowers, they form complexes with flavonoids pigments and are in 
solution in cellular vacuoles. In leaves, they take place in chloroplasts. The structuration of 
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the leave surface cells can help absorption by increasing high angle incident light to be 
transmitted through the leave or by focusing light in the pigmentary region. For example, in 
the velvet-leaved anthurium (Anthurium warocqueanum), the surface cells are convexly 
curved to focus light at some internal distance, just onto chloroplasts area (Lee, 2007). 

3.3 Pigmentary coloration in animals 

Pigments are very common in insects where they are responsible of almost all yellow, 
orange, red, brown and blacks. A blue pigmented hue is however very rare and can mainly 
be obtained by bile pigments such as pterobilin, phorcabilin and sarpedobilin. The two last 
names are coming from the species from which they were first extracted: Papilio phorcas 
and Graphium sarpedon (Barbier, 1990; Vuillaume & Barbier, 1969; Choussy et al., 1975).  

Light induce cyclisation in bile pigments and transforms pterobilin into phorcabilin which 
in turn converts to sarpedobilin. In butterflies, pterobilin is widely distributed while the 
phorcabilin and sarpedobilin remain rare (Barbier, 1981). 

Pigmented blue are mainly seen in two genera: Papilio (Papilio weiskei, Papilio phorcas) and 
Graphium where almost all the species contain blue pigments. In the Graphium species (G. 
agamemnon, G. doson, G. antiphates, G. sarpedon), pterobilin is responsible of the blue 
coloration.  In the Graphium sarpedon, pterobilin is located in the wing membrane. Moreover, 
the transparent scales of the ventral side of the wing improve this blue coloration by further 
diffusing and polarizing light (Stavenga et al., 2010). This situation is rare among butterflies. 
Generally, the coloration of the wing originates from the scales covering the wing. Pigments 
can be embedded in the scales, absorbing part of the visible light spectrum. Alternatively or 
in addition, interferences can provoke structural coloration or modify pigmentary colors, as 
explained in the next section. 

 
Fig. 4. Swordtail Graphium sarpedon. The blue coloration comes from the bile pigment 
sarpedobilin. 

Pigmented blue is also seen in the dull blue stripes of the Nessaea genus (Nimphalidae). This 
coloration has been attributed to pterobilin (Vane-Wright, 1979).  
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To our knowledge, pigmented blue has not been found in mammals and in other insects. 
However, the presence of blue pigment remains very difficult to prove, partly because of 
their weak solubility. Extracting and characterizing very weakly soluble pigments is a 
complex task that restraints the possibilities of analysis. Moreover, determining the 
concentrations and localization of pigments within the tissues is still a real challenge. 

Pigments in bird feathers are assumed to be present since the ages of dinosaurs. Studies on a 
Sinosauropterix (125 million years old), showed that their feathers would be filled with 
melanosomes and thus should appear dark (Vinther et al. 2008, Zhang et al., 2010). This 
work was, however, taken with cautious and discussions (Lingham-Soliar, 2011).  

4. One-dimensional photonic structures 
One-dimensional, planar or curved, photonic structures are frequent in nature. Insects, in 
particular, have frequently evolved this kind of structure for the purpose of coloration, as 
part of signaling or camouflage strategies. The reason may be that the process of fabrication 
of the outer part of a cuticle by epidermal cells, layer by layer, is compatible with the 
formation of such structures, even if we cannot claim at the moment that these mechanisms 
have been understood in all details.  

Many different cases of one-dimensional photonic crystal have been seen in animalia, 
maybe because this is the most direct way to produce a metallic and/or iridescent color and, 
in this way, improve specific intra or interspecific functions. We will essentially examine 
two cases of physical designs: the single layer film and the Bragg mirrors. 

The multilayer is the most common type of iridescent structure found in beetles and is also 
very common in butterflies (Kinoshita et al., 2008; Noyes  et al., 2007; Parker  et al., 1998). In 
many cases, these multilayers are composed of alternating layers of chitin and air partially 
filled with a chitinous compound. This produces a high/low index bilayer. Constructive 
interferences between light reflected by different layers produce one or several colors. The 
dominant reflected wavelength can be determined by the thicknesses of the layers and the 
average refractive index (see formula 11). The wavelengths that are not reflected are 
transmitted and the transmission spectrum is the exact complement of reflection if the 
system is considered non-absorbing. The color arising from a multilayer also varies with the 
angle of observation. As the reflection angle increases (starting from normal), the color shifts 
to lower wavelengths (blue shift). 

The reflectors can be epicuticular (as in cicindelinae or in some chrysomelidae) (Kurachi et 
al., 2002), while others are endocuticular (Hinton, 1973). 

Iridescence in bird feathers comes sometimes from 1D structure. They are located in the 
barbules like in satin bowerbirds Ptilonorhynchus violaceus minor that shows a violet to black 
iridescence coming from a single layer of keratin on the top of a layer of melanin (Doucet et 
al., 2006). In European starlings Sturnus vulgaris, multiple layers of keratin and melanin give 
a green-blue iridescence (Cuthill et al., 1999, Doucet et al., 2006). 

4.1 Thin films 

The single self-supported thin film and the optical overlayer covering a substrate have been 
known since a long time, in the planar and some other geometry. Constructive and 
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destructive interference of light waves in thin films (soap bubbles or oil films on water) 
show colorful patterns. The interference occurs between light waves reflecting off the top 
surface of a film with the waves multiply reflected from the bottom surface. In order to 
obtain a nice colored pattern, the thickness of the film has to be on the order of the 
wavelength of the incident light. 

 
Fig. 5. Interference in a planar homogeneous slab. The phase shift between one reflected 
wave and its successor determine the intensity, for a given incidence angle and wavelength. 

A single thin film illuminated from air reflects light at a wavelength   as a Fabry-Pérot 
etalon. For a given thickness d  of the film and incidence angle  , the phase delay between 
the two first successively emerging rays from the multiply reflected beams is (we assume, 
for instance, a dense slab 2 1 2 3and  n n n n    and we name the angle of refraction inside the 
film: 2 1sin sinn t n   ) 

    2 1
2 2 tan2 2

cos
sinn d tdn

t


 
   

  
  

  


 


 (4) 

The first term is the phase change of the transmitted electric field wave travelling one round 
trip in the film before its next exit, while the last term is the progress of the reflected beam  
in air before joining back the other path wave. The “optional” half-wavelength phase  
delay (which can be written [ ]  or [ ] , without consequences) occurs only when an 
electric wave reflects on a medium with higher refractive index. All other phase delays 
between successive emerging rays are the same. Maximal reflections occur when all the 
exiting beams are in phase, which means  2m    , where m  is an integer. This 
condition allows determining, under a specific incidence angle, the reinforced wavelengths, 
which turn out to be 
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Note that, if the refractive index 3n   is larger than 2n   (itself larger than 1n ), the addition of 
1 2  at the denominator must be skipped. The dependence of this dominant reflected 
wavelength on the incidence angle , which means a change of color with the angle under 
which the surface is viewed, is the phenomenon of iridescence, which often signals a 
structural color. 

A typical blue color is perceived for a dominant reflected wavelength of 475 nm. Take, 
specifically, a thin film of thickness 200 nm and refractive index 1.5. The branch 0m    
reflects infrared radiation, from 1470 nm under normal incidence to 1150 nm under grazing 
angles. The 1m   order extends in the visible, from 490 to 385 nm: providing short-
wavelength blue coloration. The 2m  and higher orders are deeper in the ultraviolet. 

A natural example comes from the study of the iridescent wing of a giant tropical wasp, 
Megascolia procer javanensis (Sarrazin et al., 2008). In this particular case, the wing is shown to 
be made of rigid structure of melanized chitin, except for an overlayer, on each side of the 
wing. The overlayer can be shown to act as a transparent interference thin film with a 
thickness of 286 nm. The refractive index of the material in this layer is not precisely known, 
so that its analysis requires examining the reflectance spectrum in detail, for various angles 
of incidence. The substrate supporting this layer is better known, as a solid mix of chitin and 
melanin. This mix was studied by de Albuquerque (de Albuquerque et al., 2006), including 
the dispersion related to melanin absorption. This absorption is strong here, as can be seen 
from the opacity of the wing. An adjustment of the refractive index of the overlayer allows 
the reflectance spectra to be fitted quite nicely at all incidence angles, and provides a 
value 1.76n  , which is very reasonable. The iridescence is weak: from bluish green near-
normal incidence to greenish blue under a grazing incidence. 

4.2 Bragg mirrors 

The stacking of multiple planar layers (or ”multilayers structure“) is another type of 
structure that produces selective reflection.  Among these, one important class is the 
periodic stack, where a group of two layers is repeated a finite number of times. This 
structure is also known as a Bragg mirror. When the number of periods is large (but, in 
practice, it does not need to be in excess of, say,  3 or 4 in the kind of structures examined 
here), the optical response can be approached by  assuming an infinite number of periods, 
which can be called a one-dimensional photonic crystal. In this case, it is not very difficult to 
predict the dominant color that will be reflected. 

In this limit, the incident frequency is conserved in all scattered waves, but not the wave 
vector in the stacking direction. A wave with wave number zk will change this wave number 
so that its output value is a choice of any of the quantities  2zk m a , where m  is an 
integer and a  is the period thickness: 

 2
z zk k m

a
    (7) 

This means that, in a periodic multilayer stack, waves propagate normally, unless their 
wave vector zk  obeys the above relation. For waves at the conserved incident frequency , 
this implies that  
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This corresponds to wave number values that match the so-called Brillouin-zone 
boundaries. For low contrasts of refractive indexes, defining an average refractive index n  
for the whole structure is a good starting point, taking the perturbation point of view. In this 
average material the following dispersion relation holds, 

 2 2
y z

ck k
n

    (9) 

where c is the light velocity in vacuum and yk the wave vector component parallel to the 
layers. This quantity is conserved across the interfaces, so that anywhere in the structure, 

 siny ik
c
  , (10) 

where i  refers to the incidence angle in the incidence medium (with refractive index 
assumed to be 1). At the zone boundaries, the zk  and zk  modes are degenerate, but with 
the appearance of the refractive index contrasts, the degenerescence is lifted because of the 
formation of standing waves that adopt different configurations relative to high and low 
refractive-index regions. Then, a gap (forbidden frequencies) appears when the unperturbed 
dispersion curve crosses the zone boundaries, and this occurs for incident wavelengths in 
narrow bands centered on ( m integers) (Vigneron et al., 2006) 
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An incident light wave with a frequency in these ranges, impinging on the surface of this 
semi-infinite photonic crystal, will be totally reflected. We note that, on a photonic crystal 
surface, total reflection can occur under normal incidence, and also when air is the incidence 
medium, contrasting our usual knowledge of total reflection conditions.  

In order to produce blue (say 480 nm) under normal incidence and violet under grazing 
incidence (say 350 nm - many living organisms have UV vision), this equation fixes the 
refractive index average (1.46) and the period a  (162 nm). This, however, still leaves ample 
flexibility in choosing the actual bilayer that defines a period. These values, calculated for 
the first gap ( 1m  ), are easily produced with biopolymers such as chitin or keratin, with 
refractive indexes close to 1.56.  

It is also possible to produce long-wavelength blue (say 480 nm) under normal incidence 
with the second gap 2m   because the fundamental reflection ( 1m  ) would not appear in 
the visible, but in the infrared, near 960 nm. However, under larger incidences, iridescence 
may bring in red contribution to the spectrum, turning violet into some extraspectral 
metameric color in the purple range. 

A good example of this structure is provided by the “blue beetle” Hoplia coerulea. This 
structure could have been classified as a two-dimensional photonic crystal, to be described 
later, but the optical response is in fact close to that expected for a Bragg mirror, for reasons 
that will become clear in a moment. 
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Hoplia coerulea, has evolved a cuticle bearing scales Fig. 6 (left). The inner region of these 
scales is structured to filter out a spectacular blue-violet iridescence on reflection (Vigneron 
et al., 2005). The cuticle, as seen in scanning electron microscopy is shown in Fig. 6 (right). 
The scales are attached by a single peripheral point to the underlying cuticle. These scales 
are easily removed by breaking this binding. 

     
Fig. 6. Hoplia coerulea (right). The beetle’s cuticle is covered by scales. The scales take the 
shape of a disk, with a diameter of about 50 µm and a thickness of 3.5 µm. These scales 
render a blue or violet color. The scanning electron microscope images (right) shows the 
coloring structure inside the scales (with permission). 

The structure in each scale can be interpreted as a stack of some 20 sheets, roughly parallel 
to the cuticle. Each sheet is actually composed of a very thin plate of bulk chitin, bearing, on 
one side, a network of parallel rods with a rectangular section. The lateral corrugation 
associated with the rods has a period of 170 nm, just too small to produce the diffraction of 
light in the visible range. This acts as a zero-order grating: for visible wavelengths, the rods 
array appears to be a homogeneous layer, and the concept of an average refractive index is 
adequate. The average refractive index of the whole structure was evaluated to 1.4n   for 
unpolarized light near normal incidence. As the vertical period turns out to be 120 nm + 40 
nm =160 nm, it fulfills perfectly the conditions described above for the production of weakly 
iridescent blue. The Hoplia coerulea structure gives some iridescence, ranging from blue to 
violet, and effectively behaves as a flat multilayer structure, in spite of the lateral structuring 
of the rods layers. This structure was recently shown to have an optical response modifiable 
in presence of humidity, because water can infiltrate the voids. Strangely, the structure’s 
materials turn out to be hydrophilic (Rassart et al., 2009). 

Under a crude approximation, the structure carried by the ridges of Morpho butterflies (for 
instance M. menelaus) can be viewed as a stack of alternating chitin and air layers, with a 
period of the order of 180 nm and an average refractive index well under 1.4 (Berthier et al., 
2003, Berthier et al., 2006). This can explain the normal-incidence bright blue coloration and 
the shift of the reflected wavelength to the violet as the angle of incidence increases. This 
simple model has limits: it is unable to explain the off-specular variation of the scattering 
and the polarization effects observed in the directional reflectance pattern (Berthier, 2010). 

Plants can also produce coloring multilayers for displaying a blue coloration. Examples can 
be found in the genus Selaginella, for example S. willdenowii and S. uncinata (Lee, 1997). These 
plants live in the understory of Central- and South-American rainforests and, strangely, 
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display blue on freshly grown shadowed leaves. The blue coloration arises from a one-
dimensional multilayer in the moistened cellulose of outer cell walls. The refractive index of 
moistened cellulose is, in the average, 1.45 and the multilayer found has a period of 160 nm 
(two layers of different refractive indexes and equal thicknesses, 80 nm). We again find the 
exact conditions to provide a blue coloration with a one-dimensional photonic crystal. 

5. Two-dimensional photonic structures 
In two-dimensional photonic structures, one only observes a total translational invariance in 
one dimension, the other two dimensions being structured by refractive index 
inhomogeneities. We will include gratings in this category, besides fibrous photonic crystals, 
both of them being encountered in nature and able to select blue reflectance. 

Actually, fibrous photonic crystals can be viewed as a combination of a grating and a 
multilayer. From the symmetry point of view, we can view a 2D photonic crystal as totally 
invariant in the “fibers” directions and periodic in two directions perpendicular to the 
fibers. Defining the surface parallel to the fibers, these two directions are adequately defined 
as the surface plane and the direction of the normal. The periodicity parallel to the surface 
produces diffraction similar to that produced by a grating, while the periodicity along the 
normal, deep under the surface, produces a color selection with a Bragg mirror. Being a 
combination of both, a 2D photonic crystal tends to be more flexible than either a grating or 
a Bragg mirror to produce a color such as blue. As explained below, a short-period grating 
will cease diffracting as its associated lateral inhomogeneity is smaller than the shortest 
visible wavelength. For this wavelength and larger, the grating will act as a homogeneous 
average material that can only generates a specular reflection. However, with a 2D photonic 
crystal, the “normal” periodicity can still be there to produce color selection. If, on the other 
extreme, the normal periodicity is constrained by weak refractive index contrasts or a tight 
film thickness, the Bragg mirror will not be effective, but the lateral grating can take over 
and still manages to produce blue. Additionally, intermediate – less easily described –
mechanisms involving simultaneously cooperating diffraction and interference color 
selection add new channels for producing blue. 

5.1 Gratings 

A grating is usually a superficial structure, periodic in a single direction (say x ), with a 
period b . The characteristic rule which describes light scattering by a grating arises from the 
observation that an incident wave with wave vector xk which travels through a medium 
with periodicity b comes out with a series of possible wave vectors  2x xk k m b   , where  
m  is a negative, null or positive integer.  

 
Fig. 7. Geometry of a grating, for an incident beam falling at right angle with the parallel lines. 
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This implies the following relationship between the incidence and emergence angles  

  sin sin 2m b
c c
      (12) 

And, more explicitly,  

 sin sin m
b
    (13) 

The integer m is the diffraction order. The order zero is a reflection, with emergence and 
incidence angles identical, with no dependence on the incidence wavelength  . By contrast, 
for 0m  , the emergence angle changes with the wavelength, which means that an 
incidence white beam is decomposed in a colored spectrum after being scattered by the 
grating. Several orders may be simultaneously present, but the actual number depends on 
the grating period. In order to produce an acceptable emergence angle, the condition 

 1 sin 1 sinm b        must be fulfilled. A given wavelength   starts appearing in the 
order 1m    (it will then emerge for a grazing illumination 90   ) when  

 
2

b 
   (14) 

For a larger period, the same wavelength will be observed for a range of incidence angles 
which contain 90   . This means that we actually can build gratings that produce only 
“blue” colors, i.e. wavelengths smaller than 490 nm (then including blue, purplish blue and 
violet), if the period is the rather precisely defined: 245 nmb  . They must be illuminated 
under incidence angles larger than 33°. 

An example of such a grating is provided by the array of flutes found on the ridges of the 
scales on the butterfly Lamprolenis nitida (Ingram, 2008). This butterfly is special because it is 
equipped with two types of gratings on the same scale. One, with a large period, produces a 
full decomposition of the visible white light, when illuminated from the front. All colors 
from red to green are shown, but in this configuration, blue light is scattered with a very low 
intensity. The grating responsible for this coloration is shown in Fig. 8, at the tip of the 
arrow C. The lamellae, repeated at 700 nm spacing, are slanted in such a way as to maximize 
the emission in the 1m    order, from red to green and to reduce the scattering in the 0m   
order. This can be understood as a blazed grating and the lack of blue in this coloration is 
the result of the precise slant angle. However, slanted in the reverse direction, the so-called 
“flutes” are separated by about 235 nm, not far from the period 245b nm  mentioned 
above. The result is, as observed, a grating that produces only a purplish blue color, under 
large illumination angles. 

5.2 Two-dimensional photonic crystals 

Two-dimensional photonic crystals are fibers with two-dimensional periodic variations of the 
refractive index in the cross-section. In much the same way as with one-dimensional 
multilayers, the colored reflections originate from the formation of directional band gaps  
in the photonic band structure of these crystals. Producing blue alone from an ideal structure 
which fulfills these rules is difficult, because each stack of reticular plane in the two- 



 
Photonic Crystals – Introduction, Applications and Theory 

 

16

display blue on freshly grown shadowed leaves. The blue coloration arises from a one-
dimensional multilayer in the moistened cellulose of outer cell walls. The refractive index of 
moistened cellulose is, in the average, 1.45 and the multilayer found has a period of 160 nm 
(two layers of different refractive indexes and equal thicknesses, 80 nm). We again find the 
exact conditions to provide a blue coloration with a one-dimensional photonic crystal. 

5. Two-dimensional photonic structures 
In two-dimensional photonic structures, one only observes a total translational invariance in 
one dimension, the other two dimensions being structured by refractive index 
inhomogeneities. We will include gratings in this category, besides fibrous photonic crystals, 
both of them being encountered in nature and able to select blue reflectance. 

Actually, fibrous photonic crystals can be viewed as a combination of a grating and a 
multilayer. From the symmetry point of view, we can view a 2D photonic crystal as totally 
invariant in the “fibers” directions and periodic in two directions perpendicular to the 
fibers. Defining the surface parallel to the fibers, these two directions are adequately defined 
as the surface plane and the direction of the normal. The periodicity parallel to the surface 
produces diffraction similar to that produced by a grating, while the periodicity along the 
normal, deep under the surface, produces a color selection with a Bragg mirror. Being a 
combination of both, a 2D photonic crystal tends to be more flexible than either a grating or 
a Bragg mirror to produce a color such as blue. As explained below, a short-period grating 
will cease diffracting as its associated lateral inhomogeneity is smaller than the shortest 
visible wavelength. For this wavelength and larger, the grating will act as a homogeneous 
average material that can only generates a specular reflection. However, with a 2D photonic 
crystal, the “normal” periodicity can still be there to produce color selection. If, on the other 
extreme, the normal periodicity is constrained by weak refractive index contrasts or a tight 
film thickness, the Bragg mirror will not be effective, but the lateral grating can take over 
and still manages to produce blue. Additionally, intermediate – less easily described –
mechanisms involving simultaneously cooperating diffraction and interference color 
selection add new channels for producing blue. 

5.1 Gratings 

A grating is usually a superficial structure, periodic in a single direction (say x ), with a 
period b . The characteristic rule which describes light scattering by a grating arises from the 
observation that an incident wave with wave vector xk which travels through a medium 
with periodicity b comes out with a series of possible wave vectors  2x xk k m b   , where  
m  is a negative, null or positive integer.  

 
Fig. 7. Geometry of a grating, for an incident beam falling at right angle with the parallel lines. 

 
How Nature Produces Blue Color  

 

17 

This implies the following relationship between the incidence and emergence angles  

  sin sin 2m b
c c
      (12) 

And, more explicitly,  

 sin sin m
b
    (13) 

The integer m is the diffraction order. The order zero is a reflection, with emergence and 
incidence angles identical, with no dependence on the incidence wavelength  . By contrast, 
for 0m  , the emergence angle changes with the wavelength, which means that an 
incidence white beam is decomposed in a colored spectrum after being scattered by the 
grating. Several orders may be simultaneously present, but the actual number depends on 
the grating period. In order to produce an acceptable emergence angle, the condition 

 1 sin 1 sinm b        must be fulfilled. A given wavelength   starts appearing in the 
order 1m    (it will then emerge for a grazing illumination 90   ) when  

 
2

b 
   (14) 

For a larger period, the same wavelength will be observed for a range of incidence angles 
which contain 90   . This means that we actually can build gratings that produce only 
“blue” colors, i.e. wavelengths smaller than 490 nm (then including blue, purplish blue and 
violet), if the period is the rather precisely defined: 245 nmb  . They must be illuminated 
under incidence angles larger than 33°. 

An example of such a grating is provided by the array of flutes found on the ridges of the 
scales on the butterfly Lamprolenis nitida (Ingram, 2008). This butterfly is special because it is 
equipped with two types of gratings on the same scale. One, with a large period, produces a 
full decomposition of the visible white light, when illuminated from the front. All colors 
from red to green are shown, but in this configuration, blue light is scattered with a very low 
intensity. The grating responsible for this coloration is shown in Fig. 8, at the tip of the 
arrow C. The lamellae, repeated at 700 nm spacing, are slanted in such a way as to maximize 
the emission in the 1m    order, from red to green and to reduce the scattering in the 0m   
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Fig. 8. The dorsal wings of male Lamprolenis nitida appear matt brown under incident light, 
normal to the wing surface, but shows various colorations under large incidences. These 
visual effects are due to the presence of two interspersed gratings on the scales of the rear 
wings. When illuminated in a postero-anterior direction and observed in backscatter, blue to 
violet is observed with increasing angle from the wing surface. 

dimensional lattice can be considered as a Bragg mirror and the variety of values of stacking 
periods easily leads to the production of a wide range of colors. The coloration of fibrous 
organs in some marine animals, such as the Aphrodite sea mouse (Parker et al., 2001) or the 
Ctenophore Beroë cucumis (Welch et al., 2005; Welch et al., 2006), is accompanied with a 
broad iridescence, covering a spectral range from red to far in the ultraviolet. The high 
refractive index of water, compared to air, partly explains the iridescence richness, but in 
both cases, the structure can be viewed as a bunch of parallel fibers and a simple two-
dimensional photonic crystal. Nature, however has found unexpected ways to produce blue 
coloration from these fibrous structures and we will give here an account of the way a bird 
such as the magpie (Pica pica) (Vigneron et al., 2006a; Lee, 2010) produces the blue reflection 
on some of their wing feathers. 

 
Fig. 9. The coloring structure in the tail (a) and wing (b) feather of the common magpie (Pica 
pica). The structure is formed by cylindrical melanine bars distributed to form a hexagonal 
two-dimensional lattice in the cortex of the barbules. The scattering centers are thin 
cylindrical cavities in the melanine granules and the color is related to the distance between 
these centers. The green color on the tail depends on the distance between the granules 
centers, 180 nm. Strangely, the blue photonic crystal has a larger lattice parameter (270 nm) : 
the coloration is controlled by a "second gap", at high frequency. 
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Many (but not all) birds show structural coloration at the level of the feather’s barbules. A 
feather is rigidified by a rachis, an array of barbs attached to the rachis, and an array of 
barbules attached to the barb. The barbules have the topology of a sack, with an envelope (a 
hard cortex) containing a medullar medium. As in the Peacock’s feathers (Zi et al., 2003), the 
coloring structure on the blue feathers of the magpie lies on the barbule’s cortex. It is 
constituted of elongated melanine cylinders, disposed parallel to each other with the 
symmetry of a two-dimensional triangular lattice. These cylinders are the scatterers that 
produce the coherent reflection in the blue. Strangely, the distance between these scatterers 
is 270 nm, much too large to explain the blue coloration. In fact, simulation shows that such 
a fibrous crystal should produce a fundamental gap in the near infrared, and a blue 
scattering as a “harmonic” of this gap. Indeed, a second band of forbidden propagation 
exists at higher frequency. At this frequency, the diffraction is less dispersive and the blue 
coloration produced is relatively saturated. The coloration hue could also be spoiled by the 
addition of red, arising from the line width of the fundamental reflection in the infrared, 
producing an extraspectral purple. This is not the case: the structured cortex is thin enough 
to avoid producing long-wavelengths resonances and the result is a dark blue color, easily 
visible under a bright sunshine. 

6. Three-dimensional photonic crystals 
Three-dimensional photonic crystals are also encountered in nature, especially in butterflies, 
weevils and longhorns. In view the very high diversity of living organisms and the frequency 
of structural colors, it can be speculated that other families of insects will soon reveal a similar 
evolution. Three-dimensional photonic crystals are periodic in all three dimensions of space. 
Illuminated by white light in a well-defined direction, an ideal structure produces several 
colored beams, each of them corresponding to a stack of reticular planes with its appropriate 
spacing. A good example of the visual effect produced by an ideal photonic crystal is provided 
by the so-called Brazilian “diamond” weevil, which displays a green color when viewed from 
a distance, but under an optical microscope, shows individual scales with a variety of very 
saturated (pure) colors. Most other weevils and longhorns show less iridescence, and this is 
usually explained in term of orientation disorder: natural three-dimensional photonic crystals 
most often appear under the form of photonic polycrystals, with well-defined domains 
bringing short-range order and long-range orientation disorder.  

 
Fig. 10. The internal structure of a scale on a blue area from the cuticle of the weevil Eupholus 
schoenherri. The structure, with a face-centered cubic symmetry, can be described as an 
“opal” structure. 
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Blue weevils are frequent, in particular in the Eupholus genus, as E. loriai (completely blue) 
or E. bennetti, E. magnificus or E. schoenherri (partially blue). At the moment, the structures 
that produce this blue colors can be described as a photonic polycrystal with grains locally 
organized in a face-centered cubic symmetry. A typical “blue“ structure from a weevil is 
shown in Fig. 10, which shows a scale from a blue area on an elytron of Eupholus schoenherri. 
The same kind of structure has been encountered in a previous work (Parker et al., 2003) for 
a different weevil displaying green spots. This structure is generally referred to as an “opal” 
structure, making a parallel with the assembly of monodispersed spheres constituting the 
iridescent stone.  The present photonic structure is also an arrangement of non-absorbing 
spheres but the constituting material is a chitinous compound, with a refractive index of the 
order of 1.6. In order to produce short-wavelength photonic gaps, the size of the spheres is 
kept small and the compactness is maximized. In such a structure, the light scatterers are 
effectively the tiny air-filled interstices left between the spheres, not easily seen in electron 
microscopy images. In weevils however, the “inverse opal” structure like the one shown in 
Fig. 11 is the most common case. This structure corresponds to an arrangement of spherical 
hollows in a chitinous matrix. 

       
Fig. 11. Optical microscope view of the blue scales of the weevil Cyphus hancoki. The 
different colors correspond to different crystal grains (left). On the right, electron 
microscope image of one grain. The 3D array of spherical hollows is described as an 
“inverse opal” structure (Berthier, 2006).   

A blue longhorn, with a three-dimensional photonic-crystal structure has also been 
described (Simonis et al., 2011). Pseudomyagrus waterhousei shows a slightly desaturated 
purplish blue color. These colorations arise from a dense layer of droplet-shaped scales 
covering the dorsal parts of the cuticle. These colors are caused by structural interferences 
and produced by an aggregate of internally ordered photonic-crystal grains. As in the 
weevils’ case, the structure is built with spherical diffusion centers arranged according to a 
face-centered cubic symmetry. Domains are also present, with long-range orientation 
disorder, a complex structure which partly explains the lack of iridescence in the visual 
effect, in spite of a structural coloration. Theoretical considerations suggests that the 
contents of the observed reflectance dominantly arise from photonic crystallites with (111) 
reticular plane parallel to the cuticle surface. Another source of disorder lies in the 
observation that, in this structure, internally ordered photonic crystal grains can be 
separated by regions of amorphous arrangement, with spheres diameters varying over a 
rather wide range, from 170 to 300 nm in diameter. Here also, the short-wavelength blue 

 
How Nature Produces Blue Color  

 

21 

coloration is reached by increase of the structure compactness, with the production of 
spheres with an average diameter of 212 nm, arranged in a compact cubic structure. 

 
Fig. 12. The array of spherical centers found in scales of the Malaysian longhorn 
Pseudomyagrus waterhousei. The compactness of the structure leads to the production of 
short-wavelength scattering, providing a slightly desaturated blue-violet color. 

7. Conclusion 
This brief survey of the production of blue color on living organisms shows that all broad 
categories of structural mechanisms can be put to use to produce short-wavelengths scattering. 
We have seen that all structures known to be at the root of a structural coloration in nature 
(Vigneron & Simonis, 2010) can actually provide a blue coloration. Each device has its own 
rules for providing scattering solely on the short-wavelength end of the visible spectrum. 

This particular objective is not always easy and often requires a multiscale solution. For 
living organisms that has undergone evolution over many million years, this is not a 
problem: the “modification-selection” algorithm, which is the engine of the past and present 
biodiversity, has no reluctance for complexity. Even if the range of refractive indexes in 
biologically prepared materials is rather narrow (typically 1.3 to 1.8), complexity in 
geometrical structure can provide a very wide range of functions that turn out to be an 
advantage for species population increase. 

We do not always know what can be the biological advantage of producing blue. We 
understand that a male metallic blue Morpho can be seen from far away, which is an 
advantage for accelerating productive mates encounters. But the answer is less obvious for 
the formation of iridescent blue plants, as blue is one of the spectral components of the light 
captured by chlorophyll molecules to achieve photosynthesis. While an answer to the 
physical “how” question - referring to a description of the production mechanisms - is 
relatively easy, an answer to the biological “why” question is far less obvious.  
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1. Introduction   
More than twenty years have passed since that time when the analogy between solid-state 
physics and optics led to the concept of photonic crystals (PCs) (Yablonovitch, 1987). Fast 
progress in theory and applications of PCs has been stimulated to a large extent by their 
unique properties that allow increasing the potential of light controlling. Slabs of PC have 
mainly been studied in case of linear virtual interfaces and a noncurvilinear lattice. A rich 
variety of the fascinating physical phenomena has been demonstrated for these structures, 
which include superprism, subwavelength imaging, focusing, collimation, and negative 
refraction with and without left-handed behaviour (Inoue&Ohtaka, 2004; Luo, 2002). They 
all appear while using only conventional linear isotropic metals and dielectrics due to the 
specific dispersion of Floquet-Bloch waves in PCs, which is not obtainable for solid pieces of 
the same materials. Breaking of periodicity in PCs results in the appearance of defect modes, 
which manifest themselves in the transmission and waveguide regimes (Joannopoulos, 
1995). On the other hand, PCs with curvilinear virtual interfaces but still linear lattice have 
been investigated in the context of such applications as planoconcave lenses (Gralak, 2000; 
Vodo, 2005), mirrors (Saado, 2005), and splitters (Wu, 2005). PCs having both curvilinear 
interfaces and lattice, e.g., coaxial PCs (Schleuer&Yariv, 2004) and atoll resonators (Nojima, 
2007) are also known.   

New operation regimes can be obtained due to merging effects of dispersion and diffraction, 
e.g., in two-dimensional PCs. In the mid 2000’s, PCs with the corrugated interfaces have 
been proposed to redirect the reflected waves to the side directions (Collardey, 2005), obtain 
unusual order of the cutoff wavelengths for higher diffraction orders (Serebryannikov, 
2006), and realize a new mechanism of negative refraction due to the umklapp refracted 
beams (Lu, 2007). Later, PCs with the corrugated interfaces have been called photonic crystal 
gratings (PCGs) (Serebryannikov, 2009). Strong asymmetry in transmission has been 
demonstrated in dielectric two-dimensional PCGs theoretically (Serebryannikov, 2009) and 
in the microwave experiment (Cakmak, 2010). Recently, a similar effect has been studied in 
the two-dimensional sonic crystals (Li, 2011). The structures with a corrugated interface and 
a defect-mode waveguide, which is perpendicular to the interface, have been used for 
obtaining of the beaming, that is connected with the excitation of surface waves due to 
corrugations (Caglayan, 2008; Smigaj, 2007). A structure that is excited by a defect-mode 
waveguide located along the virtual interfaces of the corresponding noncorrugated PC has 
been suggested (Le Thomas, 2007), where the corrugations provide coupling of an otherwise 
uncoupled defect mode to an outgoing wave in air.  
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been proposed to redirect the reflected waves to the side directions (Collardey, 2005), obtain 
unusual order of the cutoff wavelengths for higher diffraction orders (Serebryannikov, 
2006), and realize a new mechanism of negative refraction due to the umklapp refracted 
beams (Lu, 2007). Later, PCs with the corrugated interfaces have been called photonic crystal 
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demonstrated in dielectric two-dimensional PCGs theoretically (Serebryannikov, 2009) and 
in the microwave experiment (Cakmak, 2010). Recently, a similar effect has been studied in 
the two-dimensional sonic crystals (Li, 2011). The structures with a corrugated interface and 
a defect-mode waveguide, which is perpendicular to the interface, have been used for 
obtaining of the beaming, that is connected with the excitation of surface waves due to 
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waveguide located along the virtual interfaces of the corresponding noncorrugated PC has 
been suggested (Le Thomas, 2007), where the corrugations provide coupling of an otherwise 
uncoupled defect mode to an outgoing wave in air.  
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In this chapter, we focus on the transmission and reflection regimes with strong directional 
selectivity that appear in PCGs owing to the additional periodic corrugations arranged at 
the virtual interface(s) of a defect-free slab of PC with linear virtual interfaces and 
noncurvilinear lattice. First of all, additional corrugations enable downshifting of the 
frequency range where higher diffraction orders may propagate in air, so that it corresponds 
to the range of existence of lower-order Floquet-Bloch waves, which are well studied in the 
context of the above-mentioned phenomena. Theoretical background and numerical results 
will be presented with the focus on new operation regimes, which can be used in optical 
devices that require strong directional selectivity. Consideration is restricted here to the two-
dimensional square-lattice PCs composed of dielectric rods, while the virtual interfaces of 
the corresponding noncorrugated PC are assumed to be along -X direction in k space, and 
the incident plane wave is s-polarized. Figure 1 illustrates a possible evolution from the slab 
of PC with the noncorrugated interfaces (a) to the PCG with the one-side (b) and, then, to 
the PCG with the two-side asymmetric (c) corrugations.  

The first class of the considered regimes (Sec. 2) includes those related to the unidirectional, 
i.e., extremely asymmetric transmission. High transmittance from one half-space to the other 
can be obtained if a PCG is illuminated from the corrugated side, but it is vanishing if 
illumination is in the opposite direction, within a wide range of the frequency variation 
(Serebryannikov, 2009). This is probably the most interesting regime obtainable in the 
dielectric PCGs. Breaking of the spatial inversion symmetry, i.e., introducing nonsymmetry 
with respect to the midplane of the corresponding noncorrugated PC is required for 
obtaining of such a forward-backward unidirectional transmission. The necessary condition 
is that zero diffraction order is not coupled to any Floquet-Bloch wave, but at least one 
higher diffraction order may propagate in air due to the one-side corrugations. 
Transmission from the noncorrugated side towards the corrugated side is forbidden, while 
that from the corrugated side is possible owing to higher diffraction order(s). Single-beam 
unidirectional deflection and two-beam unidirectional splitting belong to the most typical 
unidirectional diode-like transmission regimes. The main attention will be paid to the PCs 
with the noncircular (non-isotropic type) isofrequency dispersion contours (IFCs), which are 
located in k space near either M or X point, and the circular (isotropic type) IFCs, which are 
located near  point and correspond to the effective index of refraction 0<|Neff|<1.  

The second class of the operation regimes (Sec. 3) is connected with the Fabry-Perot type 
resonances that can appear in the nonsymmetric PCGs so that zero and higher diffraction 
orders simultaneously contribute to the transmission. Classical resonances, i.e., those with a 
single (zero) order in transmission, are well known for the noncorrugated slabs of PC (Sakoda, 
2001; Serebryannikov, 2010). In the PCGs, strong asymmetry of the Fabry-Perot resonance 
transmission occurs at normal illumination. It can be obtained even if zero order is only 
coupled to a Floquet-Bloch wave, despite that the higher orders may also propagate in air due 
to the one-side corrugations. In this case, the higher orders, which appear at the corrugated 
exit side and propagate in the exit half-space, can mainly contribute to the transmission, if the 
PCG is illuminated from the noncorrugated side, but they remain evanescent in the exit half-
space, if the PCG is illuminated from the corrugated side. At the same time, a nondominant 
zero-order transmission is symmetric, i.e., it does not depend on the illumination side.  

The third class of the operation regimes (Sec. 4) is associated with total reflections that 
involve at least one higher order. They can be obtained inside a band gap of the PC, if the 
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corrugated side is illuminated. In turn, only zero order contributes to the reflection, if the 
noncorrugated side is illuminated, that leads to strong asymmetry. It will be demonstrated 
that the corrugations enable transformation of a desired part of the incident wave energy 
into that of higher reflected orders. The presented numerical results are obtained by using 
the fast coupled integral equation technique (Magath&Serebryannikov, 2005).  

2. Unidirectional transmission  
Diode is one of the main elements required in various optical and microwave circuits. 
Obtaining of unidirectional diode-like transmission is usually associated with nonreciprocity 
and, hence, with the use of anisotropic, e.g., gyromagnetic (Figotin&Vitebskiy, 2001; Yu, 2007; 
Wang, 2008), or nonlinear (Scalora, 2004; Shadrinov, 2011) materials, that allows breaking 
time reversal symmetry. Furthermore, spatial inversion symmetry should be broken, i.e., the 
resulting structure must be nonsymmetric with respect to the midplane similarly to Figs. 
1(b) and 1(c). Nonreciprocal transmission can be obtained when the symmetry of the parity-
time operator is broken (Rüter, 2010) that can be obtained, for example, in a two-channel 
structure owing to a proper choice of the real and imaginary parts of the index of refraction.  

Various manifestations of directional selectivity in the structures that are reciprocal, because 
of being made of isotropic linear materials only, but allow asymmetric transmission due to 
transformation of all or significant part of the incident wave energy into either another 
polarization or higher diffraction orders, have been a subject of the extensive study for a few 
years. For example, chiral structures are considered to be perspective for achieving isolation 
for certain polarization states (Plum, 2009; Singh, 2009). It has recently been demonstrated 
that the complete optical isolation can be achieved dynamically in a linear photonic system 
with temporal modulation of the refractive index (Yu&Fan, 2009). Nonmagnetic optical 
isolators can be obtained in the structures that contain two modulators, in which a desired 
phase shift appears for the co- and counter-propagating waves due to the temporal 
modulation of bias voltages (Ibrahim, 2004). In this context, PCGs present another big but 
yet weakly studied class of the reciprocal structures for asymmetric transmission. Contrary 
to the chiral structures, neither polarization transformation nor rotation of polarization 
plane occurs in PCGs at asymmetric transmission, provided that they are made of linear 
isotropic materials.  

(a)  (b)  (c)  

Fig. 1. Noncorrugated slab of square-lattice PC (a) and the corresponding PCGs which have 
one-side (b) and two-side (c) corrugations. 
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illumination is in the opposite direction, within a wide range of the frequency variation 
(Serebryannikov, 2009). This is probably the most interesting regime obtainable in the 
dielectric PCGs. Breaking of the spatial inversion symmetry, i.e., introducing nonsymmetry 
with respect to the midplane of the corresponding noncorrugated PC is required for 
obtaining of such a forward-backward unidirectional transmission. The necessary condition 
is that zero diffraction order is not coupled to any Floquet-Bloch wave, but at least one 
higher diffraction order may propagate in air due to the one-side corrugations. 
Transmission from the noncorrugated side towards the corrugated side is forbidden, while 
that from the corrugated side is possible owing to higher diffraction order(s). Single-beam 
unidirectional deflection and two-beam unidirectional splitting belong to the most typical 
unidirectional diode-like transmission regimes. The main attention will be paid to the PCs 
with the noncircular (non-isotropic type) isofrequency dispersion contours (IFCs), which are 
located in k space near either M or X point, and the circular (isotropic type) IFCs, which are 
located near  point and correspond to the effective index of refraction 0<|Neff|<1.  

The second class of the operation regimes (Sec. 3) is connected with the Fabry-Perot type 
resonances that can appear in the nonsymmetric PCGs so that zero and higher diffraction 
orders simultaneously contribute to the transmission. Classical resonances, i.e., those with a 
single (zero) order in transmission, are well known for the noncorrugated slabs of PC (Sakoda, 
2001; Serebryannikov, 2010). In the PCGs, strong asymmetry of the Fabry-Perot resonance 
transmission occurs at normal illumination. It can be obtained even if zero order is only 
coupled to a Floquet-Bloch wave, despite that the higher orders may also propagate in air due 
to the one-side corrugations. In this case, the higher orders, which appear at the corrugated 
exit side and propagate in the exit half-space, can mainly contribute to the transmission, if the 
PCG is illuminated from the noncorrugated side, but they remain evanescent in the exit half-
space, if the PCG is illuminated from the corrugated side. At the same time, a nondominant 
zero-order transmission is symmetric, i.e., it does not depend on the illumination side.  

The third class of the operation regimes (Sec. 4) is associated with total reflections that 
involve at least one higher order. They can be obtained inside a band gap of the PC, if the 
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corrugated side is illuminated. In turn, only zero order contributes to the reflection, if the 
noncorrugated side is illuminated, that leads to strong asymmetry. It will be demonstrated 
that the corrugations enable transformation of a desired part of the incident wave energy 
into that of higher reflected orders. The presented numerical results are obtained by using 
the fast coupled integral equation technique (Magath&Serebryannikov, 2005).  

2. Unidirectional transmission  
Diode is one of the main elements required in various optical and microwave circuits. 
Obtaining of unidirectional diode-like transmission is usually associated with nonreciprocity 
and, hence, with the use of anisotropic, e.g., gyromagnetic (Figotin&Vitebskiy, 2001; Yu, 2007; 
Wang, 2008), or nonlinear (Scalora, 2004; Shadrinov, 2011) materials, that allows breaking 
time reversal symmetry. Furthermore, spatial inversion symmetry should be broken, i.e., the 
resulting structure must be nonsymmetric with respect to the midplane similarly to Figs. 
1(b) and 1(c). Nonreciprocal transmission can be obtained when the symmetry of the parity-
time operator is broken (Rüter, 2010) that can be obtained, for example, in a two-channel 
structure owing to a proper choice of the real and imaginary parts of the index of refraction.  

Various manifestations of directional selectivity in the structures that are reciprocal, because 
of being made of isotropic linear materials only, but allow asymmetric transmission due to 
transformation of all or significant part of the incident wave energy into either another 
polarization or higher diffraction orders, have been a subject of the extensive study for a few 
years. For example, chiral structures are considered to be perspective for achieving isolation 
for certain polarization states (Plum, 2009; Singh, 2009). It has recently been demonstrated 
that the complete optical isolation can be achieved dynamically in a linear photonic system 
with temporal modulation of the refractive index (Yu&Fan, 2009). Nonmagnetic optical 
isolators can be obtained in the structures that contain two modulators, in which a desired 
phase shift appears for the co- and counter-propagating waves due to the temporal 
modulation of bias voltages (Ibrahim, 2004). In this context, PCGs present another big but 
yet weakly studied class of the reciprocal structures for asymmetric transmission. Contrary 
to the chiral structures, neither polarization transformation nor rotation of polarization 
plane occurs in PCGs at asymmetric transmission, provided that they are made of linear 
isotropic materials.  

(a)  (b)  (c)  

Fig. 1. Noncorrugated slab of square-lattice PC (a) and the corresponding PCGs which have 
one-side (b) and two-side (c) corrugations. 
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2.1 Physical background  

First, let us briefly consider the effect of breaking spatial inversion symmetry in the 
conventional dielectric gratings. In line with the classical theory of diffraction gratings (Petit, 
1980), transmission and reflection are characterized in terms of the nth order transmission 
and reflection efficiencies, which are given by 2| |n nt   and 2| |n nr   and take into account 
a part of the incident wave energy in the corresponding propagating orders. Here, n  and 

n  are the nth order transmission and reflection coefficients. In turn, transmittance T and 
reflectance R are given by a sum over all the orders propagating in air. According to the 
grating formula (Petit, 1980), the nth order diffraction angle, n , is determined from  

 sin sin 2 /n n kL    ,  (1) 

where  is angle of incidence and L is grating period, so that n  takes a real value for an 
order that propagates in air. All the diffraction angles for the transmitted beams are 
measured in the counter-clockwise direction with respect to the normal to the exit side. The 
angle of incidence is measured in the counter-clockwise direction with respect to the normal 
to the input side.  

Figure 2 presents the transmission spectra for the two nonsymmetric dielectric gratings. One 
can see that 0 0 0t t t    but n nt t   at |n|=1, while 0     , where   and   
stand for the forward (here – from the top) and backward (from the bottom) illumination, 
respectively. A partially asymmetric transmission with higher orders being responsible for 
the asymmetry, while the zero-order transmission is symmetric, can be observed in Fig. 2. 
This is one of the fundamental properties of the nonsymmetric gratings. The ratios 

0( 0) /mm t t 
   and 0( 0) /mm t t 

   may strongly depend on frequency and 
geometrical and material parameters of the grating. Replacing a dielectric with a PC enables 
a wide range where 0 0t   and 0mt   and, hence,     and    . In the other 
words, the “strength” of asymmetry can be enhanced, so that asymmetric transmission becomes 
unidirectional, i.e., 0T   and 0T  . Owing to the band gaps, unidirectional 
transmission can appear inside wide frequency and incidence angle ranges. This is 
distinguished from a solid dielectric grating, where these conditions might hypothetically be 
realized only for a pair of frequency and angle values, but not inside wide ranges. In fact, 
unidirectional transmission like that in PCGs should not appear in nonsymmetric dielectric 
gratings, where zero order is always coupled to a wave propagating in the dielectric. 
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Fig. 2. Transmittance for two nonsymmetric gratings made of dielectric with permittivity (a) 

2.1d   and  (b) 5.8d  ; solid line - 0 0 0t t t   , dotted line - 1t , and dashed line - 1t ; 
right panel - geometry of a grating period.  
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The use of gyromagnetic and nonlinear materials enables unidirectional devices with a 
single transmission channel like in conventional electronic diodes. Transmission mechanism 
in the PCGs needs at least two transmission channels, every being associated with a certain 
in-air propagating order. In the contrast with the nonreciprocal structures that contain 
anisotropic or nonlinear materials and reciprocal chiral structures, all the diffracted beams 
in PCGs show the same linear polarization. In line with the previous studies of PCGs 
(Serebryannikov, 2009), zero order being uncoupled to any Floquet-Bloch wave is required 
for obtaining of the unidirectional transmission, that in turn dictates the allowed values of  
and IFC shapes. Accordingly, at the corrugated-side illumination, the umklapp refractions 
are only possible.  

Two typical coupling scenarios are demonstrated in Fig. 3. Conservation of the wave vector 
component that is parallel to the interface, xk , requires that the IFC crosses a construction 
line, in order to couple the corresponding order to a Floquet-Bloch wave of the PC 
(Foteinopoulou&Soukoulis, 2005; Lu, 2007). Locations of the construction lines are 
determined by the following condition:  

 ( ) ( / )sin 2 /n
xk c n L    .    (2) 

Figures 3(a)-3(c) illustrate the coupling mechanism in case of the simplest, i.e., narrow 
circular IFCs around  point, for which the diffraction relevant unidirectional transmission 
may appear. They correspond to an isotropic material with the index of refraction 0<N<1, 
i.e., are narrower than the IFC in air at the same frequency. Hence, similar asymmetry in 
transmission can be observed, for example, in the nonsymmetric gratings made of a material 
with 0<N<1, e.g., a Drude metal above the plasma frequency, or a wire medium above the 
effective plasma frequency (Serebryannikov&Ozbay, 2009). Figures 3(d)-3(f) illustrate the 
coupling mechanism in case of near-square IFCs located around  point, which can be 
obtained in dielectric PCs. Construction lines are plotted for a value of , at which at least 
one higher diffraction order is coupled to a Floquet-Bloch wave due to the corrugations.  

In Figs. 3(a) and 3(d), only zero order may propagate in air regardless of whether the 
incidence is forward or backward. This case is assumed to correspond to a noncorrugated 
slab of PC, as in Fig. 1(a), or to a PCG in the frequency range where all higher orders are 
evanescent. In Figs. 3(b) and 3(e), the first order(s) may propagate in air and is allowed to 
couple to the Floquet-Bloch wave, for the corrugated-side illumination, but should remain 
evanescent in the input half-space and uncoupled to the Floquet-Bloch wave at the 
noncorrugated-side illumination. Thus, transmission is not vanishing in the former case 
only. Assuming that we initially have a noncorrugated slab of PC like that in Fig. 1(a), and 
then removing some rods from one of the interface layers, we obtain a PCG like that in Fig. 
1(b), which is nonsymmetric with respect to the midplane. The simplest corrugations can be 
obtained by removing every second rod from an interface layer, so that the lateral period of 
the PCG is L=2a, where a is PC lattice constant. In Figs. 3(b) and 3(e), it is assumed that P=2  
is the minimal integer value of P in L=Pa, which provides such a location of the construction 
lines with respect to the IFC at a given frequency that unidirectional transmission can be 
obtained. In fact, P depends on the concrete performance of PCG and, thus, may be a rather 
arbitrary integer. A PCG can still be nonsymmetric and, thus, might support asymmetric 
transmission, while having corrugations at the both sides, e.g., see Fig. 1(c). However, a 
larger difference between the periods of the two interfaces should provide a stronger 
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2.1 Physical background  

First, let us briefly consider the effect of breaking spatial inversion symmetry in the 
conventional dielectric gratings. In line with the classical theory of diffraction gratings (Petit, 
1980), transmission and reflection are characterized in terms of the nth order transmission 
and reflection efficiencies, which are given by 2| |n nt   and 2| |n nr   and take into account 
a part of the incident wave energy in the corresponding propagating orders. Here, n  and 

n  are the nth order transmission and reflection coefficients. In turn, transmittance T and 
reflectance R are given by a sum over all the orders propagating in air. According to the 
grating formula (Petit, 1980), the nth order diffraction angle, n , is determined from  

 sin sin 2 /n n kL    ,  (1) 

where  is angle of incidence and L is grating period, so that n  takes a real value for an 
order that propagates in air. All the diffraction angles for the transmitted beams are 
measured in the counter-clockwise direction with respect to the normal to the exit side. The 
angle of incidence is measured in the counter-clockwise direction with respect to the normal 
to the input side.  

Figure 2 presents the transmission spectra for the two nonsymmetric dielectric gratings. One 
can see that 0 0 0t t t    but n nt t   at |n|=1, while 0     , where   and   
stand for the forward (here – from the top) and backward (from the bottom) illumination, 
respectively. A partially asymmetric transmission with higher orders being responsible for 
the asymmetry, while the zero-order transmission is symmetric, can be observed in Fig. 2. 
This is one of the fundamental properties of the nonsymmetric gratings. The ratios 
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   may strongly depend on frequency and 
geometrical and material parameters of the grating. Replacing a dielectric with a PC enables 
a wide range where 0 0t   and 0mt   and, hence,     and    . In the other 
words, the “strength” of asymmetry can be enhanced, so that asymmetric transmission becomes 
unidirectional, i.e., 0T   and 0T  . Owing to the band gaps, unidirectional 
transmission can appear inside wide frequency and incidence angle ranges. This is 
distinguished from a solid dielectric grating, where these conditions might hypothetically be 
realized only for a pair of frequency and angle values, but not inside wide ranges. In fact, 
unidirectional transmission like that in PCGs should not appear in nonsymmetric dielectric 
gratings, where zero order is always coupled to a wave propagating in the dielectric. 
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Fig. 2. Transmittance for two nonsymmetric gratings made of dielectric with permittivity (a) 

2.1d   and  (b) 5.8d  ; solid line - 0 0 0t t t   , dotted line - 1t , and dashed line - 1t ; 
right panel - geometry of a grating period.  

 
Basics of the Photonic Crystal Gratings 

 

29 

The use of gyromagnetic and nonlinear materials enables unidirectional devices with a 
single transmission channel like in conventional electronic diodes. Transmission mechanism 
in the PCGs needs at least two transmission channels, every being associated with a certain 
in-air propagating order. In the contrast with the nonreciprocal structures that contain 
anisotropic or nonlinear materials and reciprocal chiral structures, all the diffracted beams 
in PCGs show the same linear polarization. In line with the previous studies of PCGs 
(Serebryannikov, 2009), zero order being uncoupled to any Floquet-Bloch wave is required 
for obtaining of the unidirectional transmission, that in turn dictates the allowed values of  
and IFC shapes. Accordingly, at the corrugated-side illumination, the umklapp refractions 
are only possible.  

Two typical coupling scenarios are demonstrated in Fig. 3. Conservation of the wave vector 
component that is parallel to the interface, xk , requires that the IFC crosses a construction 
line, in order to couple the corresponding order to a Floquet-Bloch wave of the PC 
(Foteinopoulou&Soukoulis, 2005; Lu, 2007). Locations of the construction lines are 
determined by the following condition:  

 ( ) ( / )sin 2 /n
xk c n L    .    (2) 

Figures 3(a)-3(c) illustrate the coupling mechanism in case of the simplest, i.e., narrow 
circular IFCs around  point, for which the diffraction relevant unidirectional transmission 
may appear. They correspond to an isotropic material with the index of refraction 0<N<1, 
i.e., are narrower than the IFC in air at the same frequency. Hence, similar asymmetry in 
transmission can be observed, for example, in the nonsymmetric gratings made of a material 
with 0<N<1, e.g., a Drude metal above the plasma frequency, or a wire medium above the 
effective plasma frequency (Serebryannikov&Ozbay, 2009). Figures 3(d)-3(f) illustrate the 
coupling mechanism in case of near-square IFCs located around  point, which can be 
obtained in dielectric PCs. Construction lines are plotted for a value of , at which at least 
one higher diffraction order is coupled to a Floquet-Bloch wave due to the corrugations.  

In Figs. 3(a) and 3(d), only zero order may propagate in air regardless of whether the 
incidence is forward or backward. This case is assumed to correspond to a noncorrugated 
slab of PC, as in Fig. 1(a), or to a PCG in the frequency range where all higher orders are 
evanescent. In Figs. 3(b) and 3(e), the first order(s) may propagate in air and is allowed to 
couple to the Floquet-Bloch wave, for the corrugated-side illumination, but should remain 
evanescent in the input half-space and uncoupled to the Floquet-Bloch wave at the 
noncorrugated-side illumination. Thus, transmission is not vanishing in the former case 
only. Assuming that we initially have a noncorrugated slab of PC like that in Fig. 1(a), and 
then removing some rods from one of the interface layers, we obtain a PCG like that in Fig. 
1(b), which is nonsymmetric with respect to the midplane. The simplest corrugations can be 
obtained by removing every second rod from an interface layer, so that the lateral period of 
the PCG is L=2a, where a is PC lattice constant. In Figs. 3(b) and 3(e), it is assumed that P=2  
is the minimal integer value of P in L=Pa, which provides such a location of the construction 
lines with respect to the IFC at a given frequency that unidirectional transmission can be 
obtained. In fact, P depends on the concrete performance of PCG and, thus, may be a rather 
arbitrary integer. A PCG can still be nonsymmetric and, thus, might support asymmetric 
transmission, while having corrugations at the both sides, e.g., see Fig. 1(c). However, a 
larger difference between the periods of the two interfaces should provide a stronger 
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asymmetry in terms of the number of the orders contributing to the transmission. In order to 
obtain unidirectional transmission with rather strong forward and zero backward 
transmission, the value of a must be chosen so that higher diffraction orders may not 
propagate due to the effect of the noncorrugated interface. In Figs. 3(c) and 3(f), the same 
IFCs are presented as in Figs. 3(b) and 3(e), respectively, but now 4L a . Hence, the 
distance between the neighbouring construction lines is reduced by factor of 2. As a result, 
now more diffraction orders may propagate in air due to the corrugated interface, and more 
orders among them may be unidirectionally coupled to a Floquet-Bloch wave.  
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Fig. 3. Coupling scenarios leading to unidirectional transmission: green solid line - IFC of PC; 
blue dash-dotted circle - IFC in air; dashed lines - construction lines; ”0” , ”-1”, ”+1”, ”-2” and 
”+2” denote the order index (n); ”+” and ”-” at plot top indicate that the corresponding order 
is either coupled or not coupled to a Floquet-Bloch wave, if the corrugated side is illuminated; 
”-” and ”xx” at plot bottom indicate that the corresponding order is either uncoupled at the 
noncorrugated interface or does not propagate in the input half-space, at the noncorrugated-
side illumination; IFCs of PC are assumed to be located around (a-c)  point and (d-f) M point; 
plots (a,d): noncorrugated slab of PC, L=a; plots (b,e): PCG with the simplest one-side 
corrugations, L=2a; plots (c,f): PCG with the one-side corrugations, L=4a.  

From this consideration, it is clearly seen why at least the first negative order for positive 
nonzero  and the first positive and first negative orders for zero  must propagate in air 
and be coupled to a Floquet-Bloch wave. The scenario shown in Fig. 3(b) corresponds to the 
regime of single-beam unidirectional deflection. The angle between the directions of the 
incident and single transmitted beams is given by 1   . At a larger number of the 
orders propagating in air, as in Fig. 3(c), there may be multiple open transmission channels, 
every being connected with a certain order, so that splitting occurs in the unidirectional 
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deflection regime. In the general case, we have n mt t  and n m  , n m ,  for all the 
propagating orders. In the situation shown in Fig. 3(e) for =0, two beams are allowed to 
propagate in air, 1 1 0t t    and 1 1    . The number of the transmitted beams at 
normal incidence is always even, since they propagate symmetrically with respect to the 
normal, n nt t   and n n    . Thus, two-beam unidirectional splitting appears in this case, 
while deflection of the beams with n=m and n=-m is symmetric regarding the normal. It is 
noteworthy that the IFC shapes, which can be obtained in two-dimensional PCs but are 
distinguished from those in Fig. 3, can also be consistent with the requirements to the 
diffraction relevant mechanism of unidirectional transmission (Serebryannikov, 2009). 
Furthermore, this remains true for IFCs that are typical for one-dimensional PCs (Kang, 
2010) and anticutoff (indefinite) media (Schurig&Smith, 2003). Hence, this mechanism is 
quite flexible regarding the choice of materials/structures that might be utilized to create a 
nonsymmetric grating.  

Since the structures we consider are assumed to be composed of isotropic linear materials 
only, transmission remains reciprocal in sense of the Lorentz Lemma (Kong, 2005). This 
results in the equal transmittances while replacing source and observation point with each 
other, i.e., (i) when the PCG is illuminated from the corrugated side at    and (ii) when 
the PCG is illuminated from the noncorrugated side but at n     , where n

  is the 
diffraction angle for the nth order transmitted beam at the corrugated-side illumination. For 
example, if the beam of the order n=-1 is the only higher-order propagating beam, as can 
appear at nonzero , and 1 TtT 

    at   , then 1 TtT 
    at 1  

 . This does 
not contradict with the fact that the transmission is unidirectional for the two opposite 
directions of incidence. 

2.2 Asymmetry in threshold location 

In the conventional dielectric gratings, each higher order (|n|>0) has a cutoff wavelength 
and, hence, a threshold frequency, i.e., it propagates if  

 0| 2 / |k n L  , (3) 

where 0 sink   , k=/c (Petit, 1980). In the gratings made of Drude metals or composites, 
the actual thresholds have different locations as compared to the classical case that is 
associated with dielectric gratings (Serebryannikov & Ozbay, 2009). In the PCGs with either 
dielectric or metallic rods, the actual thresholds can also be affected by location of the stop 
bands of the PC (Serebryannikov, 2006; Serebryannikov, 2009). 

Let denote the k thresholds which correspond to the boundary between the propagation and 
evanescent regimes for the nth diffraction order in a dielectric grating by  

 ±n 2 /[L(1 sin )]  k n , (4) 

where 0n   and 0  . In the vicinity of nk k , rapid variations in nt  and nr  often appear, 
which are assigned to the Rayleigh-Wood anomalies (Hessel&Oliner,1965). In turn, the 
actual thresholds for a PCG with one-side corrugations at the exit interface are denoted by 

( )S
nk . The actual thresholds for a PCG with one-side corrugations at the input interface are 
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asymmetry in terms of the number of the orders contributing to the transmission. In order to 
obtain unidirectional transmission with rather strong forward and zero backward 
transmission, the value of a must be chosen so that higher diffraction orders may not 
propagate due to the effect of the noncorrugated interface. In Figs. 3(c) and 3(f), the same 
IFCs are presented as in Figs. 3(b) and 3(e), respectively, but now 4L a . Hence, the 
distance between the neighbouring construction lines is reduced by factor of 2. As a result, 
now more diffraction orders may propagate in air due to the corrugated interface, and more 
orders among them may be unidirectionally coupled to a Floquet-Bloch wave.  
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Fig. 3. Coupling scenarios leading to unidirectional transmission: green solid line - IFC of PC; 
blue dash-dotted circle - IFC in air; dashed lines - construction lines; ”0” , ”-1”, ”+1”, ”-2” and 
”+2” denote the order index (n); ”+” and ”-” at plot top indicate that the corresponding order 
is either coupled or not coupled to a Floquet-Bloch wave, if the corrugated side is illuminated; 
”-” and ”xx” at plot bottom indicate that the corresponding order is either uncoupled at the 
noncorrugated interface or does not propagate in the input half-space, at the noncorrugated-
side illumination; IFCs of PC are assumed to be located around (a-c)  point and (d-f) M point; 
plots (a,d): noncorrugated slab of PC, L=a; plots (b,e): PCG with the simplest one-side 
corrugations, L=2a; plots (c,f): PCG with the one-side corrugations, L=4a.  

From this consideration, it is clearly seen why at least the first negative order for positive 
nonzero  and the first positive and first negative orders for zero  must propagate in air 
and be coupled to a Floquet-Bloch wave. The scenario shown in Fig. 3(b) corresponds to the 
regime of single-beam unidirectional deflection. The angle between the directions of the 
incident and single transmitted beams is given by 1   . At a larger number of the 
orders propagating in air, as in Fig. 3(c), there may be multiple open transmission channels, 
every being connected with a certain order, so that splitting occurs in the unidirectional 
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deflection regime. In the general case, we have n mt t  and n m  , n m ,  for all the 
propagating orders. In the situation shown in Fig. 3(e) for =0, two beams are allowed to 
propagate in air, 1 1 0t t    and 1 1    . The number of the transmitted beams at 
normal incidence is always even, since they propagate symmetrically with respect to the 
normal, n nt t   and n n    . Thus, two-beam unidirectional splitting appears in this case, 
while deflection of the beams with n=m and n=-m is symmetric regarding the normal. It is 
noteworthy that the IFC shapes, which can be obtained in two-dimensional PCs but are 
distinguished from those in Fig. 3, can also be consistent with the requirements to the 
diffraction relevant mechanism of unidirectional transmission (Serebryannikov, 2009). 
Furthermore, this remains true for IFCs that are typical for one-dimensional PCs (Kang, 
2010) and anticutoff (indefinite) media (Schurig&Smith, 2003). Hence, this mechanism is 
quite flexible regarding the choice of materials/structures that might be utilized to create a 
nonsymmetric grating.  

Since the structures we consider are assumed to be composed of isotropic linear materials 
only, transmission remains reciprocal in sense of the Lorentz Lemma (Kong, 2005). This 
results in the equal transmittances while replacing source and observation point with each 
other, i.e., (i) when the PCG is illuminated from the corrugated side at    and (ii) when 
the PCG is illuminated from the noncorrugated side but at n     , where n

  is the 
diffraction angle for the nth order transmitted beam at the corrugated-side illumination. For 
example, if the beam of the order n=-1 is the only higher-order propagating beam, as can 
appear at nonzero , and 1 TtT 

    at   , then 1 TtT 
    at 1  

 . This does 
not contradict with the fact that the transmission is unidirectional for the two opposite 
directions of incidence. 

2.2 Asymmetry in threshold location 

In the conventional dielectric gratings, each higher order (|n|>0) has a cutoff wavelength 
and, hence, a threshold frequency, i.e., it propagates if  

 0| 2 / |k n L  , (3) 

where 0 sink   , k=/c (Petit, 1980). In the gratings made of Drude metals or composites, 
the actual thresholds have different locations as compared to the classical case that is 
associated with dielectric gratings (Serebryannikov & Ozbay, 2009). In the PCGs with either 
dielectric or metallic rods, the actual thresholds can also be affected by location of the stop 
bands of the PC (Serebryannikov, 2006; Serebryannikov, 2009). 

Let denote the k thresholds which correspond to the boundary between the propagation and 
evanescent regimes for the nth diffraction order in a dielectric grating by  

 ±n 2 /[L(1 sin )]  k n , (4) 

where 0n   and 0  . In the vicinity of nk k , rapid variations in nt  and nr  often appear, 
which are assigned to the Rayleigh-Wood anomalies (Hessel&Oliner,1965). In turn, the 
actual thresholds for a PCG with one-side corrugations at the exit interface are denoted by 

( )S
nk . The actual thresholds for a PCG with one-side corrugations at the input interface are 
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denoted by ( )ˆ S
nk . Here, S=T for transmission and S=R for reflection. Finally, ( )uk  and ( )lk  

denote k values that correspond to the upper and lower boundaries of the first stop band. 
Figure 4 schematically shows the stop and pass bands, the idealized transmission spectrum 
of PC, the threshold values of k, and the ranges of propagation of the lowest higher order(s) 
in transmission, for the both PCG and dielectric grating with one-side corrugations. 
According to Fig. 4(a),  

 ( )( ) ( ) Tl u
m mk k k k    , (5) 

where m=-1 if 0   and 1m    if 0  . In this case, location of the actual cutoff is 
determined by the upper boundary of the stop band. The mth order(s) propagate in the exit 
half-space due to the corrugated interface, starting from this boundary. In Fig. 4(b), 

 ( )( ) ( ) ˆ Tl u
m mk k k k   . (6) 

Hence,  

 ( )( ) ˆ TT
m mk k ,         (7) 

that is distinguished from the classical grating theory, which gives 

 ( )( ) ˆ TT
m mk k .         (8) 

The situation in Fig. 4 is realized if zero order is only coupled to the second lowest Floquet-
Bloch wave of the PC, i.e., at ( )( ) ˆ Tu

mkk k  , leading to that 0 0t t   and 0tT    while 
0tT   . In fact, ( )ˆ T

mk  is determined in Fig. 4(b) by the lower boundary of the third lowest 
passband, for which the mth order(s) are assumed to be coupled to the Floquet-Bloch wave.  

(a)
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band 2

pass-
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stop
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T
k

 (b)
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pass-
band 3

stop
band 1

T
k

 

Fig. 4. Example of composition of pass and stop bands of PC that affects k-domain threshold of  
higher order(s) in case when ( )u

mk k ; circles – the actual thresholds in transmission for the 
dielectric grating (top) and PCG (bottom); the adjacent rectangles show the k ranges where the 
mth order(s) may propagate; gray line – the idealized transmission spectrum; plot (a) – 
noncorrugated-side illumination, plot (b) – corrugated-side illumination.  

Figure 5 schematically shows the stop and pass bands of the PC and reflection spectrum 
together with the thresholds and ranges of contribution of the lowest higher order(s) in 
reflection for the both PCG and dielectric grating with one-side corrugations. In Fig. 5(a), we 
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have ( ) ( )u R
m mk k k    where m is the same as in Fig. 4. Thus, location of the actual threshold is 

determined here by the lower edge of the third lowest passband, i.e., ( )( ) ˆ TR
m mk k . In turn, 

( ) ( )T R
m mk k  . In Fig. 5(b), ( )ˆ R

mm kk  , as in the dielectric grating case. Then, ( ) ( )ˆ R R
mm kk   , 

( ) ( )ˆ ˆT R
m mk k , and ( )( ) ˆ RT

m mk k . Hence, in the contrast with nonsymmetric dielectric gratings, 
asymmetry in threshold location may appear owing to peculiar types of PC dispersion. In 
fact, the difference in location of the ranges of 0mt   and 0mt  , on the one hand, and 

0mr   and 0mr  , on the other hand, is a key feature that is connected with the expected 
asymmetry in transmission and reflection at least for lower-order stop and pass bands. For 
higher-order bands, it can be explained in terms of the generalized cutoffs/thresholds.  
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stop
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k
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 (b)
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Fig. 5. Same as Fig. 4 but for reflection.  
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stop
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Fig. 6. Same as Fig. 4 but in case when ( )u
mk k . 

Figures 6 and 7 are analogous to Figs. 4 and 5, respectively, but now ( )u
mk k . In the 

contrast with Figs. 4 and 5, we have simultaneously ( ) ( )ˆ T R
mmm kkk    and ( )( ) ˆ RT

mm m kk k  . In 
turn, ( )( ) ˆ TT

m mk k  and ( )( ) ˆ RR
m mk k . Hence, the different combinations of locations of ( )S

mk  and 
( )ˆ S
mk  with respect to each other and to mk  can be obtained by adjusting the corrugation and 

PC lattice parameters.  

2.3 Forward vs backward transmission 

Let us consider the effect of variation in L on the appearance of higher orders in the 
transmission, in both cases of the corrugated-side and the noncorrugated-side illumination, 
at normal incidence. An example is shown in Fig. 8 for typical values of the rod-diameter-to-
lattice-constant ratio, d/a, relative permittivity of the rod material, r , and an intermediate 
number of the rod layers, Q. Figures 8(a) and 8(b) partially correspond to the case of the k 
thresholds location, as in Figs. 5(a) and 5(b).  
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denoted by ( )ˆ S
nk . Here, S=T for transmission and S=R for reflection. Finally, ( )uk  and ( )lk  

denote k values that correspond to the upper and lower boundaries of the first stop band. 
Figure 4 schematically shows the stop and pass bands, the idealized transmission spectrum 
of PC, the threshold values of k, and the ranges of propagation of the lowest higher order(s) 
in transmission, for the both PCG and dielectric grating with one-side corrugations. 
According to Fig. 4(a),  

 ( )( ) ( ) Tl u
m mk k k k    , (5) 

where m=-1 if 0   and 1m    if 0  . In this case, location of the actual cutoff is 
determined by the upper boundary of the stop band. The mth order(s) propagate in the exit 
half-space due to the corrugated interface, starting from this boundary. In Fig. 4(b), 

 ( )( ) ( ) ˆ Tl u
m mk k k k   . (6) 

Hence,  

 ( )( ) ˆ TT
m mk k ,         (7) 

that is distinguished from the classical grating theory, which gives 

 ( )( ) ˆ TT
m mk k .         (8) 

The situation in Fig. 4 is realized if zero order is only coupled to the second lowest Floquet-
Bloch wave of the PC, i.e., at ( )( ) ˆ Tu

mkk k  , leading to that 0 0t t   and 0tT    while 
0tT   . In fact, ( )ˆ T

mk  is determined in Fig. 4(b) by the lower boundary of the third lowest 
passband, for which the mth order(s) are assumed to be coupled to the Floquet-Bloch wave.  
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Fig. 4. Example of composition of pass and stop bands of PC that affects k-domain threshold of  
higher order(s) in case when ( )u

mk k ; circles – the actual thresholds in transmission for the 
dielectric grating (top) and PCG (bottom); the adjacent rectangles show the k ranges where the 
mth order(s) may propagate; gray line – the idealized transmission spectrum; plot (a) – 
noncorrugated-side illumination, plot (b) – corrugated-side illumination.  

Figure 5 schematically shows the stop and pass bands of the PC and reflection spectrum 
together with the thresholds and ranges of contribution of the lowest higher order(s) in 
reflection for the both PCG and dielectric grating with one-side corrugations. In Fig. 5(a), we 
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have ( ) ( )u R
m mk k k    where m is the same as in Fig. 4. Thus, location of the actual threshold is 

determined here by the lower edge of the third lowest passband, i.e., ( )( ) ˆ TR
m mk k . In turn, 

( ) ( )T R
m mk k  . In Fig. 5(b), ( )ˆ R

mm kk  , as in the dielectric grating case. Then, ( ) ( )ˆ R R
mm kk   , 

( ) ( )ˆ ˆT R
m mk k , and ( )( ) ˆ RT

m mk k . Hence, in the contrast with nonsymmetric dielectric gratings, 
asymmetry in threshold location may appear owing to peculiar types of PC dispersion. In 
fact, the difference in location of the ranges of 0mt   and 0mt  , on the one hand, and 

0mr   and 0mr  , on the other hand, is a key feature that is connected with the expected 
asymmetry in transmission and reflection at least for lower-order stop and pass bands. For 
higher-order bands, it can be explained in terms of the generalized cutoffs/thresholds.  
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Fig. 5. Same as Fig. 4 but for reflection.  
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Fig. 6. Same as Fig. 4 but in case when ( )u
mk k . 

Figures 6 and 7 are analogous to Figs. 4 and 5, respectively, but now ( )u
mk k . In the 

contrast with Figs. 4 and 5, we have simultaneously ( ) ( )ˆ T R
mmm kkk    and ( )( ) ˆ RT

mm m kk k  . In 
turn, ( )( ) ˆ TT

m mk k  and ( )( ) ˆ RR
m mk k . Hence, the different combinations of locations of ( )S

mk  and 
( )ˆ S
mk  with respect to each other and to mk  can be obtained by adjusting the corrugation and 

PC lattice parameters.  

2.3 Forward vs backward transmission 

Let us consider the effect of variation in L on the appearance of higher orders in the 
transmission, in both cases of the corrugated-side and the noncorrugated-side illumination, 
at normal incidence. An example is shown in Fig. 8 for typical values of the rod-diameter-to-
lattice-constant ratio, d/a, relative permittivity of the rod material, r , and an intermediate 
number of the rod layers, Q. Figures 8(a) and 8(b) partially correspond to the case of the k 
thresholds location, as in Figs. 5(a) and 5(b).  
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Fig. 7. Same as Fig. 5 but in case when ( )u
mk k . 

Indeed, 0tT   but 0 1 1t t tT  
     at 6<kL<8.4. At the same time, 1 1t tT  

    and 
0T   at 8.4<kL<10.5, where 1  is varied from 48  to 37  degrees. In fact, the difference 

between these two cases originates from the different locations and shapes of IFCs. For the 
first of them, which corresponds to the second lowest Floquet-Bloch mode, the IFCs are 
located around  point, but narrower than in air. Thus, the orders with 1n    may 
propagate in air due to the corrugated interface, but are not coupled. For the second of them, 
which corresponds to the third lowest Floquet-Bloch mode, the IFCs are located around M 
point, so that the orders with 1n    may propagate in air due to the corrugations and are 
coupled at the corrugated-side illumination. In turn, zero order is not coupled.  

In the first range, we observe one-way transmission with the both symmetric ( 0t ) and 
asymmetric ( nt , |n|>0) components being nonzero. This case is similar to that 
demonstrated for the nonsymmetric microwave metallic gratings, where different periods at 
the two sides are created by a proper branching of the thin slit waveguides (Lockyear, 2006), 
and in the nonsymmetric gratings that contain the Drude material layers, while the periods 
are different owing to the one-side corrugations (Serebryannikov&Ozbay, 2009). In all the 
figures, the most representative ranges with 0tT   and 0tT   are denoted by “One-
Way”. In the second range, unidirectional transmission takes place in the form of 
unidirectional splitting, i.e., 1 1t t 

  , 1 1t tT  
   , while 0T  . In Figs. 8(a) and 8(b), one 

more range of unidirectional splitting is seen at 11.2<kL<12.4, where 1  is varied from 34  
to 30  degrees. It is connected with the fifth lowest Floquet-Bloch mode. Here, we again 
have 0T   and 0T  , while even a higher transmittance is achieved than at 
8.4<kL<10.5. Furthermore, 1T   at the lower edge of the passband, so that exactly the 
diode regime is realized. In the figures, the most representative ranges of unidirectional 
transmission ( 0T   and 0T  ) are denoted by “UD”. 

Increasing the number of the rod columns per grating period might lead to that the actual 
thresholds are shifted towards smaller ka and, hence, lower passbands. An example is 
shown in Figs. 8(c) and 8(d) at P=3. Contrary to the case of P=2, n nt t   at | | 0n  . 
Unidirectional transmission with 1 1t tT  

    and 0T   appears already for the lowest 
Floquet-Bloch mode, i.e., at the edge of the lowest passband for 7<kL<7.9, where 1  is 
varied from 63.8 to 52.7  degrees. The IFCs are located now around M point, so that zero 
order is uncoupled. In turn, at smaller kL, the IFCs are located around  point that enables 
coupling of zero order. For the third lowest Floquet-Bloch mode, we obtain unidirectional 
transmission with 1 1 2 2t t t tT    

        and 0T   at 13.2<kL<15.8.  
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Fig. 8. Transmittance for PCGs with (a,b) L=2a, (c,d) L=3a, (e,f) L=4a, for the corrugated-side 
(a,c,e) and noncorrugated-side (b,d,f) illumination; d/a=0.31, 5.8r  , Q=12, =0; blue solid 
line - 0t ; red dashed line - 1t  (a, e), 1t  (b, f), 1t  (c), and 1t  (d); green dotted line - 2t  (e), 

2t  (f), 2t  (c), and 2t  (d); cyan dotted line - T  (a,c,e) and T  (b,d,f); right panels – 
geometry of PCG within a period.  

At P=4, unidirectional splitting takes place for the first (now at 9.6<kL<10.4) and third 
lowest Floquet-Bloch waves. - See Figs. 8(e) and 8(f). The main difference as compared to the 
case of P=3 is probably that the regime with 2 2t tT  

    can be realized at the band edge 
for the third lowest Floquet-Bloch wave (at kL>16.9). It is noteworthy that one-way 
transmission with 0tT   and 0tT   can appear also at P>2, e.g., at 9.2<kL<10.5 in Figs. 
8(c) and 8(d) and at 15.6<kL<16.9 in Figs. 8(e) and 8(f). A proper choice of the PC lattice 
parameters is important from the point of view of obtaining of the switching between 
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Fig. 7. Same as Fig. 5 but in case when ( )u
mk k . 

Indeed, 0tT   but 0 1 1t t tT  
     at 6<kL<8.4. At the same time, 1 1t tT  

    and 
0T   at 8.4<kL<10.5, where 1  is varied from 48  to 37  degrees. In fact, the difference 

between these two cases originates from the different locations and shapes of IFCs. For the 
first of them, which corresponds to the second lowest Floquet-Bloch mode, the IFCs are 
located around  point, but narrower than in air. Thus, the orders with 1n    may 
propagate in air due to the corrugated interface, but are not coupled. For the second of them, 
which corresponds to the third lowest Floquet-Bloch mode, the IFCs are located around M 
point, so that the orders with 1n    may propagate in air due to the corrugations and are 
coupled at the corrugated-side illumination. In turn, zero order is not coupled.  

In the first range, we observe one-way transmission with the both symmetric ( 0t ) and 
asymmetric ( nt , |n|>0) components being nonzero. This case is similar to that 
demonstrated for the nonsymmetric microwave metallic gratings, where different periods at 
the two sides are created by a proper branching of the thin slit waveguides (Lockyear, 2006), 
and in the nonsymmetric gratings that contain the Drude material layers, while the periods 
are different owing to the one-side corrugations (Serebryannikov&Ozbay, 2009). In all the 
figures, the most representative ranges with 0tT   and 0tT   are denoted by “One-
Way”. In the second range, unidirectional transmission takes place in the form of 
unidirectional splitting, i.e., 1 1t t 

  , 1 1t tT  
   , while 0T  . In Figs. 8(a) and 8(b), one 

more range of unidirectional splitting is seen at 11.2<kL<12.4, where 1  is varied from 34  
to 30  degrees. It is connected with the fifth lowest Floquet-Bloch mode. Here, we again 
have 0T   and 0T  , while even a higher transmittance is achieved than at 
8.4<kL<10.5. Furthermore, 1T   at the lower edge of the passband, so that exactly the 
diode regime is realized. In the figures, the most representative ranges of unidirectional 
transmission ( 0T   and 0T  ) are denoted by “UD”. 

Increasing the number of the rod columns per grating period might lead to that the actual 
thresholds are shifted towards smaller ka and, hence, lower passbands. An example is 
shown in Figs. 8(c) and 8(d) at P=3. Contrary to the case of P=2, n nt t   at | | 0n  . 
Unidirectional transmission with 1 1t tT  

    and 0T   appears already for the lowest 
Floquet-Bloch mode, i.e., at the edge of the lowest passband for 7<kL<7.9, where 1  is 
varied from 63.8 to 52.7  degrees. The IFCs are located now around M point, so that zero 
order is uncoupled. In turn, at smaller kL, the IFCs are located around  point that enables 
coupling of zero order. For the third lowest Floquet-Bloch mode, we obtain unidirectional 
transmission with 1 1 2 2t t t tT    

        and 0T   at 13.2<kL<15.8.  
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Fig. 8. Transmittance for PCGs with (a,b) L=2a, (c,d) L=3a, (e,f) L=4a, for the corrugated-side 
(a,c,e) and noncorrugated-side (b,d,f) illumination; d/a=0.31, 5.8r  , Q=12, =0; blue solid 
line - 0t ; red dashed line - 1t  (a, e), 1t  (b, f), 1t  (c), and 1t  (d); green dotted line - 2t  (e), 

2t  (f), 2t  (c), and 2t  (d); cyan dotted line - T  (a,c,e) and T  (b,d,f); right panels – 
geometry of PCG within a period.  

At P=4, unidirectional splitting takes place for the first (now at 9.6<kL<10.4) and third 
lowest Floquet-Bloch waves. - See Figs. 8(e) and 8(f). The main difference as compared to the 
case of P=3 is probably that the regime with 2 2t tT  

    can be realized at the band edge 
for the third lowest Floquet-Bloch wave (at kL>16.9). It is noteworthy that one-way 
transmission with 0tT   and 0tT   can appear also at P>2, e.g., at 9.2<kL<10.5 in Figs. 
8(c) and 8(d) and at 15.6<kL<16.9 in Figs. 8(e) and 8(f). A proper choice of the PC lattice 
parameters is important from the point of view of obtaining of the switching between 



 
Photonic Crystals – Introduction, Applications and Theory 

 

36

different regimes. For example, in Fig. 8(a), the ranges of  0tT   and 1 1t tT  
    are 

adjacent but do not superimpose near kL=8.4. 
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Fig. 9. Transmittance for PCGs with (a) d/a=0.4, 5.8r  , Q=12, and (b) d/a=0.31, 9.61r  , 
Q=12, at L=2a and =0, for corrugated-side illumination; blue solid line - 0t , red dashed line 
- 1t , and blue dotted line - T . 
 

4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

kL

Tr
an

sm
itt

an
ce

UD

UD

One-
way

One-
way

(a)

4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

kL

Tr
an

sm
itt

an
ce

UD

UD
One-
way

One-
way

(b)

 
Fig. 10. Same as Fig. 9 but at L=3a, green dotted line – 2t  , cyan dotted line - T . 

Two more cases are shown in Figs. 9(a) and 9(b). In Fig. 9(a), the one-way and unidirectional 
transmission ranges superimpose at 7.7<kL<8.1. In Fig. 9(b), there is a gap between them at 
7.3<kL<7.9. Hence, the PCG in Fig. 8(a) is optimal for the switching realizable by varying 
frequency. In Fig. 8, it has been shown that unidirectional transmission can be observed at 
rather small kL. Figure 10 demonstrates, in addition, that the ranges of 0tT   and 

1 1t tT  
    can do not superimpose at the edge of the lowest passband. Here, the 

corrugations are obtained by removing one rod from every two of three columns in the 
interface layer in Fig. 9(a) and from every third column in the interface layer in Fig. 9(b). 
Now, n nt t   due to the used corrugation shape. Comparison of Figs. 8-10 shows that the 
maximal transmittance achievable in the unidirectional transmission regime for a certain 
higher-order Floquet-Bloch mode is strongly dependent on the PC lattice and corrugation 
parameters, as well as the contribution of individual higher orders.  

For a PCG with fixed parameters, variation in  gives an efficient tool for tuning. Strong 
modification of the transmission spectrum can be achieved even at a rather weak variation. 
An example is presented in Fig. 11 for the PCG illuminated from the corrugated side, for 
which transmittance at =0 is shown in Fig. 8(a). At =10 degrees (Fig. 11(a)), transmittance 
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is two-way, i.e., 1 0t  , 1 0t  , 0tT  , and 0tT  , for the most part of the one-way 
transmission range of Fig. 8(a) that belongs to the second lowest passband (here at 
6.2<kL<8.2). At the same time, transmission remains unidirectional for the third lowest 
passband, but now 1 1t t 

   and a stop band appears between the second and third 
passbands. Appearance of a narrow unidirectional transmission band in the vicinity of 
kL=5.4, where 1tT 

  and 0T  , is probably the most interesting feature seen in Fig. 
11(a). The lower boundary of this band is determined by 1k k  (kL=5.35), according to (4), 
so that the rapid increase of 1tT 

  is connected with the Rayleigh-Wood anomaly. The 
upper boundary is due to the narrowing and further disappearance (near kL=5.47) of the 
IFCs at increasing kL. The transmitted beams in this case are strongly deflected. For 
example, 1 82   degrees at kL=5.4.  
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Fig. 11. Same as Fig. 8(a), but at =10 degrees (a),  =20 degrees (b), and  =30 degrees (c); 
blue solid line - 0t , red dashed line - 1t , and green dotted line - 2t . 

Increase of  up to 20 degrees leads to that this band becomes wider, and the switching 
between the regimes of 0tT T    (two-way, symmetric) and 1tT 

  (unidirectional) 
occurs at 4.7kL   – See Fig. 11(b). To compare, (4) gives 1 4.68Lk  , i.e., the rapid increase 
of 1t  is again due to the Rayleigh-Wood anomaly. At the same time, the unidirectional 
transmission range observed in Fig. 11(a) in the vicinity of kL=9 disappears. The obtained 
results show that a rather wide range of 1tT 

  can appear at the edge of the lowest 
passband in the both unidirectional splitting (=0) and unidirectional deflection ( 0  ) 
regimes. Further increase of  can result in the appearance of the high-T unidirectional 
deflection range, as occurs for the second lowest Floquet-Bloch mode at kL=7.6 and =30 
degrees, where 1 0.6max maxT t 

  . – See Fig.  11(c). However, in this case, switching of 
such a kind as in Fig. 11(b) at the edge of the lowest passband cannot be obtained. Instead, 
there are three consequent ranges at 4<kL<5, which are similar to those in Fig. 8(c):  0tT   
(two-way, symmetric), 0 1t tT 

   (one-way, asymmetric), and 1tT 
  (unidirectional). 

Besides, two new ranges of one-way transmission appear at 8.7<kL<10.1 and 11.3<kL<12.4, 
where 0 2t tT 

   and 0 1 2t t tT  
    .  

Figure 12 presents the transmission spectra at the three values of , for the same PCG as in 
Fig. 9(a). The defect-mode-like unidirectional peak in Fig. 12(b) and switching between the 
regimes of 0tT   and 1tT 

  in Fig. 12(c), both being connected with the first lowest 
Floquet-Bloch mode, are obtained now at larger  than in Fig. 11. Here, the rapid increase of 

1t  has the same nature as in Fig. 11. Other features observed are similar, too. Hence, 
various operation regimes can co-exist in the adjacent frequency ranges, at a proper choice 
of the PC lattice and corrugation parameters and a value of  
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different regimes. For example, in Fig. 8(a), the ranges of  0tT   and 1 1t tT  
    are 

adjacent but do not superimpose near kL=8.4. 
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Fig. 9. Transmittance for PCGs with (a) d/a=0.4, 5.8r  , Q=12, and (b) d/a=0.31, 9.61r  , 
Q=12, at L=2a and =0, for corrugated-side illumination; blue solid line - 0t , red dashed line 
- 1t , and blue dotted line - T . 
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Fig. 10. Same as Fig. 9 but at L=3a, green dotted line – 2t  , cyan dotted line - T . 

Two more cases are shown in Figs. 9(a) and 9(b). In Fig. 9(a), the one-way and unidirectional 
transmission ranges superimpose at 7.7<kL<8.1. In Fig. 9(b), there is a gap between them at 
7.3<kL<7.9. Hence, the PCG in Fig. 8(a) is optimal for the switching realizable by varying 
frequency. In Fig. 8, it has been shown that unidirectional transmission can be observed at 
rather small kL. Figure 10 demonstrates, in addition, that the ranges of 0tT   and 

1 1t tT  
    can do not superimpose at the edge of the lowest passband. Here, the 

corrugations are obtained by removing one rod from every two of three columns in the 
interface layer in Fig. 9(a) and from every third column in the interface layer in Fig. 9(b). 
Now, n nt t   due to the used corrugation shape. Comparison of Figs. 8-10 shows that the 
maximal transmittance achievable in the unidirectional transmission regime for a certain 
higher-order Floquet-Bloch mode is strongly dependent on the PC lattice and corrugation 
parameters, as well as the contribution of individual higher orders.  

For a PCG with fixed parameters, variation in  gives an efficient tool for tuning. Strong 
modification of the transmission spectrum can be achieved even at a rather weak variation. 
An example is presented in Fig. 11 for the PCG illuminated from the corrugated side, for 
which transmittance at =0 is shown in Fig. 8(a). At =10 degrees (Fig. 11(a)), transmittance 
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is two-way, i.e., 1 0t  , 1 0t  , 0tT  , and 0tT  , for the most part of the one-way 
transmission range of Fig. 8(a) that belongs to the second lowest passband (here at 
6.2<kL<8.2). At the same time, transmission remains unidirectional for the third lowest 
passband, but now 1 1t t 

   and a stop band appears between the second and third 
passbands. Appearance of a narrow unidirectional transmission band in the vicinity of 
kL=5.4, where 1tT 

  and 0T  , is probably the most interesting feature seen in Fig. 
11(a). The lower boundary of this band is determined by 1k k  (kL=5.35), according to (4), 
so that the rapid increase of 1tT 

  is connected with the Rayleigh-Wood anomaly. The 
upper boundary is due to the narrowing and further disappearance (near kL=5.47) of the 
IFCs at increasing kL. The transmitted beams in this case are strongly deflected. For 
example, 1 82   degrees at kL=5.4.  
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Fig. 11. Same as Fig. 8(a), but at =10 degrees (a),  =20 degrees (b), and  =30 degrees (c); 
blue solid line - 0t , red dashed line - 1t , and green dotted line - 2t . 

Increase of  up to 20 degrees leads to that this band becomes wider, and the switching 
between the regimes of 0tT T    (two-way, symmetric) and 1tT 

  (unidirectional) 
occurs at 4.7kL   – See Fig. 11(b). To compare, (4) gives 1 4.68Lk  , i.e., the rapid increase 
of 1t  is again due to the Rayleigh-Wood anomaly. At the same time, the unidirectional 
transmission range observed in Fig. 11(a) in the vicinity of kL=9 disappears. The obtained 
results show that a rather wide range of 1tT 

  can appear at the edge of the lowest 
passband in the both unidirectional splitting (=0) and unidirectional deflection ( 0  ) 
regimes. Further increase of  can result in the appearance of the high-T unidirectional 
deflection range, as occurs for the second lowest Floquet-Bloch mode at kL=7.6 and =30 
degrees, where 1 0.6max maxT t 

  . – See Fig.  11(c). However, in this case, switching of 
such a kind as in Fig. 11(b) at the edge of the lowest passband cannot be obtained. Instead, 
there are three consequent ranges at 4<kL<5, which are similar to those in Fig. 8(c):  0tT   
(two-way, symmetric), 0 1t tT 

   (one-way, asymmetric), and 1tT 
  (unidirectional). 

Besides, two new ranges of one-way transmission appear at 8.7<kL<10.1 and 11.3<kL<12.4, 
where 0 2t tT 

   and 0 1 2t t tT  
    .  

Figure 12 presents the transmission spectra at the three values of , for the same PCG as in 
Fig. 9(a). The defect-mode-like unidirectional peak in Fig. 12(b) and switching between the 
regimes of 0tT   and 1tT 

  in Fig. 12(c), both being connected with the first lowest 
Floquet-Bloch mode, are obtained now at larger  than in Fig. 11. Here, the rapid increase of 

1t  has the same nature as in Fig. 11. Other features observed are similar, too. Hence, 
various operation regimes can co-exist in the adjacent frequency ranges, at a proper choice 
of the PC lattice and corrugation parameters and a value of  
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Fig. 12. Same as Fig. 9(a), but at =10 degrees (a),  =20 degrees (b), and  =30 degrees (c); blue 
solid line - 0t , red dashed line - 1t , orange dash-dotted line - 1t , and green dotted line - 2t . 

There are several problems to be solved in order to design such PCGs that are consistent 
with the requirements and limitations regarding the realistic nanofabrication process and 
illumination characteristics. For example, the requirement to the frequency range of 
unidirectional transmission to be wide, which is connected with possible fabrication 
inaccuracies, should be fulfilled simultaneously with the requirement to this range to show 
high transmittance within a wide range of  variation, which is important for the incident 
beams with a wide plane-wave angular spectrum. Figure 13 presents the transmission 
spectra for a PCG with the selected parameters, which is expected to better fulfil the above-
mentioned requirements. The wide unidirectional transmission range with 1 0.8tT 

   
and 0T   is located near kL=5.6. Obtaining of -independent unidirectional ranges with 

1T   should be the next step towards practical diode-type devices.  
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Fig. 13. Transmittance at the corrugated-side illumination for PCGs with L=2a, d/a=0.5, 

9.61r  , Q=12, =40 degrees (a),  =50 degrees (b), and  =60 degrees (c); blue solid line - 
0t , red dashed line - 1t , cyan dotted line - T . 

3. Fabry-Perot type transmission 
The alternating total-transmission maxima and zero-transmission minima, which can be 
interpreted in terms of the Fabry-Perot resonances, belong to the main features of the 
transmission spectra of the lossless dielectric slabs. Transmittance is given in this case by the 
well-known formula (Born&Wolf, 1970)  
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where ’ is angle of refraction, D is thickness of the slab, N’ is index of refraction of the slab 
material, and R  is reflectance of a dielectric-air interface. The peaks of T=1 appear at 

' cos 'N kD m  , 1,2,3,...m  . Fabry-Perot resonances can also appear in the noncorrugated 
slabs of PCs (Sakoda, 2001; Serebryannikov, 2010). In the contrast with the dielectric slabs, in 
PCs we have g phv v , where gv  and phv  are group and phase velocity, respectively. Location 
of the minima and maxima of T depends, in fact, on gv . On the other hand, the equivalent group 
index can be estimated at =0 from the locations of the peaks of T (Sakoda, 2001): 

 ' /( )g c DN    ,          (10) 

where  is spectral distance between the neighbouring peaks. Clearly, characterization of 
the finite-thickness slabs of PCs in terms of '

gN  is ambiguous, at least because of the 
unavoidable uncertainty in location of the virtual interfaces. Besides, it is assumed that 

' 0gN  , that is not always the case. Nevertheless, this approach usually gives the estimates 
of '

gN  that are qualitatively correct within sign, for thick slabs. Obtaining of accurate 
(intrinsic) values of the group index needs post-processing of the dispersion results. The 
corresponding formulas can be found in the literature (Foteinopoulou & Soukoulis, 2005).  

In the PCGs, Fabry-Perot resonances can appear while higher orders contribute to the 
transmission. Since this contribution is asymmetric, i.e., dependent on the illumination side, 
there may be asymmetry in the appearance of the resonances, which manifests itself in a 
high contrast between the backward and forward transmittances. From the point of view of 
demonstration of such asymmetry, the regimes with nonzero transmittance in the both 
directions are most interesting.  In particular, this is related to the one-way transmission 
regime with 0tT   and 0tT  .  

Figure 14 presents an example of strong asymmetry, which is observed in the one-way 
transmission regime for the fourth lowest Floquet-Bloch mode in the PCG from Fig. 9(b). 
Asymmetry appears here owing to that the contribution of 1t  to T is more significant 
than that of 0t , while 1 0t  . A high contrast can be achieved, e.g., / 11T T    at 

9.78kL  . Furthermore, the peaks of 1T   are observed, like in the case of a 
noncorrugated PC, or a dielectric slab. The values of '

gN  obtained from (10) are given in 
Table 1. lLk  and sLk mean the larger and smaller values of kL for each pair of the 
neighbouring peaks. The smaller the distance between the peaks, the larger the value of '

gN  is.  
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Fig. 14. Fragment of the transmission spectrum for the PCG with L=2a, d/a=0.31, 9.61r  , 
Q=12, at =0, for corrugated-side (a) and nocorrugated-side (b) illumination; blue solid line - 

0t , red dashed line - 1t  (a) and 1t  (b), cyan dotted line - T  (a) and T  (b). 
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Fig. 12. Same as Fig. 9(a), but at =10 degrees (a),  =20 degrees (b), and  =30 degrees (c); blue 
solid line - 0t , red dashed line - 1t , orange dash-dotted line - 1t , and green dotted line - 2t . 

There are several problems to be solved in order to design such PCGs that are consistent 
with the requirements and limitations regarding the realistic nanofabrication process and 
illumination characteristics. For example, the requirement to the frequency range of 
unidirectional transmission to be wide, which is connected with possible fabrication 
inaccuracies, should be fulfilled simultaneously with the requirement to this range to show 
high transmittance within a wide range of  variation, which is important for the incident 
beams with a wide plane-wave angular spectrum. Figure 13 presents the transmission 
spectra for a PCG with the selected parameters, which is expected to better fulfil the above-
mentioned requirements. The wide unidirectional transmission range with 1 0.8tT 

   
and 0T   is located near kL=5.6. Obtaining of -independent unidirectional ranges with 

1T   should be the next step towards practical diode-type devices.  
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Fig. 13. Transmittance at the corrugated-side illumination for PCGs with L=2a, d/a=0.5, 

9.61r  , Q=12, =40 degrees (a),  =50 degrees (b), and  =60 degrees (c); blue solid line - 
0t , red dashed line - 1t , cyan dotted line - T . 

3. Fabry-Perot type transmission 
The alternating total-transmission maxima and zero-transmission minima, which can be 
interpreted in terms of the Fabry-Perot resonances, belong to the main features of the 
transmission spectra of the lossless dielectric slabs. Transmittance is given in this case by the 
well-known formula (Born&Wolf, 1970)  
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where ’ is angle of refraction, D is thickness of the slab, N’ is index of refraction of the slab 
material, and R  is reflectance of a dielectric-air interface. The peaks of T=1 appear at 

' cos 'N kD m  , 1,2,3,...m  . Fabry-Perot resonances can also appear in the noncorrugated 
slabs of PCs (Sakoda, 2001; Serebryannikov, 2010). In the contrast with the dielectric slabs, in 
PCs we have g phv v , where gv  and phv  are group and phase velocity, respectively. Location 
of the minima and maxima of T depends, in fact, on gv . On the other hand, the equivalent group 
index can be estimated at =0 from the locations of the peaks of T (Sakoda, 2001): 

 ' /( )g c DN    ,          (10) 

where  is spectral distance between the neighbouring peaks. Clearly, characterization of 
the finite-thickness slabs of PCs in terms of '

gN  is ambiguous, at least because of the 
unavoidable uncertainty in location of the virtual interfaces. Besides, it is assumed that 

' 0gN  , that is not always the case. Nevertheless, this approach usually gives the estimates 
of '

gN  that are qualitatively correct within sign, for thick slabs. Obtaining of accurate 
(intrinsic) values of the group index needs post-processing of the dispersion results. The 
corresponding formulas can be found in the literature (Foteinopoulou & Soukoulis, 2005).  

In the PCGs, Fabry-Perot resonances can appear while higher orders contribute to the 
transmission. Since this contribution is asymmetric, i.e., dependent on the illumination side, 
there may be asymmetry in the appearance of the resonances, which manifests itself in a 
high contrast between the backward and forward transmittances. From the point of view of 
demonstration of such asymmetry, the regimes with nonzero transmittance in the both 
directions are most interesting.  In particular, this is related to the one-way transmission 
regime with 0tT   and 0tT  .  

Figure 14 presents an example of strong asymmetry, which is observed in the one-way 
transmission regime for the fourth lowest Floquet-Bloch mode in the PCG from Fig. 9(b). 
Asymmetry appears here owing to that the contribution of 1t  to T is more significant 
than that of 0t , while 1 0t  . A high contrast can be achieved, e.g., / 11T T    at 

9.78kL  . Furthermore, the peaks of 1T   are observed, like in the case of a 
noncorrugated PC, or a dielectric slab. The values of '

gN  obtained from (10) are given in 
Table 1. lLk  and sLk mean the larger and smaller values of kL for each pair of the 
neighbouring peaks. The smaller the distance between the peaks, the larger the value of '

gN  is.  
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Fig. 14. Fragment of the transmission spectrum for the PCG with L=2a, d/a=0.31, 9.61r  , 
Q=12, at =0, for corrugated-side (a) and nocorrugated-side (b) illumination; blue solid line - 

0t , red dashed line - 1t  (a) and 1t  (b), cyan dotted line - T  (a) and T  (b). 
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 1 2 3 4 5 
sLk  9.44 9.504 9.587 9.684 9.79 

lLk  9.504 9.587 9.684 9.79 9.88 
'
gN  8.18 6.30 5.40 4.94 5.82 

Table 1. Equivalent group index for the transmission peaks in Fig. 14(b). 

Figure 15 illustrates the case when the same diffraction orders contribute to T  and T , 
but the contributions of individual orders strongly depend on the illumination direction. 
Here, two-way transmission occurs at 14<kL<15.8, while unidirectionality with 

1 1t tT  
     takes place in the adjacent range, i.e., at 12<kL<14. For example, the order 

with 1n    is the main contributor at 14.1<kL<14.4 at the noncorrugated-side illumination, 
but its effect tends to vanish in the vicinity of kL=14.4 at the corrugated-side illumination.  
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Fig. 15. Fragment of the transmission spectrum for the PCG with L=3a, d/a=0.4, 5.8r  , 
Q=12, at =0, for corrugated-side (a) and nocorrugated-side (b) illumination; blue solid line - 

0t , red dashed line - 1t  (a) and 1t  (b), green dash-dotted line - 2t  (a) and 2t  (b), cyan 
dotted line - T  (a) and T  (b); corrugations are the same as in Figs. 8(c) and 8(d); note 
that n nt t 

   and n nt t 
  , |n|>0 . 

4. Reflection regime  
Band gaps and relevant total reflections belong to the main effects known in PCs. 
Corrugations may lead to that the higher diffraction orders contribute to reflection starting 
from the frequency and kL values, which correspond to the lowest stop band of the PC. 
Furthermore, if corrugations are placed at one side only, reflections can be asymmetric, so 
that the different diffraction orders play the different roles, depending on the illumination 
direction, although 1R R   . Figure 16 presents the reflection spectra for the same PCG 
as in Figs. 8(a) and 8(b), at =0. Now, 1 0r   at kL>2  and 1 0r   at kL>4. It is 
noteworthy that, in the contrast with transmission, the reciprocity principle requires that 

0 0r r   only at 2kL  . Hence, zero-order reflection is itself asymmetric, provided that 
higher order(s) are allowed to propagate in air. In fact, the possibility of contribution of 
higher orders to R  and R  mainly depends on the period of the illuminated interface, 
i.e., 1 2aL   and 2 aL  , for the corrugated and noncorrugated interfaces, respectively. 
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Fig. 16. Reflectance for the PCG with L=2a, d/a=0.31, 5.8r  , Q=12, at =0, for (a) 
corrugated-side and (b) nocorrugated-side illumination; blue solid line - 0r , violet dashed 
line - 1 1r r 

   (a) and 1 1r r 
   (b), cyan dotted line - R  (a) and R (b). 

At P>2, some new features can be observed in the reflection spectrum as compared to Fig. 
16. Figure 17 presents an example for a PCG with P=4, while the PC lattice parameters are 
the same as in Figs. 9(b), 10(b), and 14. Corrugations are obtained here by removing two 
rods from every second column, and four rods from every fourth column, so that they are 
similar to but not so deep as those in Figs. 8(e) and 8(f). If the corrugated side is illuminated, 
the orders with 1n    contribute to R  also in the total-reflection regime at 8.5<kL<11.7. In 
particular, splitting with 0 1 1r r r  

    and 1R   takes place at kL=9.29, 9.68, 10.54, 11.33, 
and 11.55. If the noncorrugated side is illuminated, zero order is the main contributor to 
R  within the entire kL-range considered. Comparing to Fig. 16(b), the orders with 1n    
now do not vanish but slightly contribute to R  in the vicinity of kL=7 and kL=14. In these 
ranges, 1 0t   due to the effect of the exit (here – corrugated) interface, since higher orders 
may appear in R  due to the input (here – noncorrugated) interface starting from kL=8 only. 
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Fig. 17. Same as Fig. 16 but for L=4a and 9.61r  ; blue solid line - 0r , red dashed line - 

1 1r r 
   (a) and 1 1r r 

   (b), green line - 2 2r r 
   (a) and 2 2r r 

    (b), and cyan dotted 
line - R  (a) and R (b). 

Tilting leads to that the higher orders can strongly contribute to the ranges of 1R   at 
smaller P than at =0. For example, splitting with 0 1r r 

  and the relatively small values of 
/ ( )|| n d kLdr  can be obtained in the first stop band at P=2. Besides, the order with 1n    can 

dominate in R  at a stop band edge, where 1    , i.e., reflection is nearly backward.   
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 1 2 3 4 5 
sLk  9.44 9.504 9.587 9.684 9.79 

lLk  9.504 9.587 9.684 9.79 9.88 
'
gN  8.18 6.30 5.40 4.94 5.82 

Table 1. Equivalent group index for the transmission peaks in Fig. 14(b). 

Figure 15 illustrates the case when the same diffraction orders contribute to T  and T , 
but the contributions of individual orders strongly depend on the illumination direction. 
Here, two-way transmission occurs at 14<kL<15.8, while unidirectionality with 

1 1t tT  
     takes place in the adjacent range, i.e., at 12<kL<14. For example, the order 

with 1n    is the main contributor at 14.1<kL<14.4 at the noncorrugated-side illumination, 
but its effect tends to vanish in the vicinity of kL=14.4 at the corrugated-side illumination.  
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Fig. 15. Fragment of the transmission spectrum for the PCG with L=3a, d/a=0.4, 5.8r  , 
Q=12, at =0, for corrugated-side (a) and nocorrugated-side (b) illumination; blue solid line - 

0t , red dashed line - 1t  (a) and 1t  (b), green dash-dotted line - 2t  (a) and 2t  (b), cyan 
dotted line - T  (a) and T  (b); corrugations are the same as in Figs. 8(c) and 8(d); note 
that n nt t 

   and n nt t 
  , |n|>0 . 

4. Reflection regime  
Band gaps and relevant total reflections belong to the main effects known in PCs. 
Corrugations may lead to that the higher diffraction orders contribute to reflection starting 
from the frequency and kL values, which correspond to the lowest stop band of the PC. 
Furthermore, if corrugations are placed at one side only, reflections can be asymmetric, so 
that the different diffraction orders play the different roles, depending on the illumination 
direction, although 1R R   . Figure 16 presents the reflection spectra for the same PCG 
as in Figs. 8(a) and 8(b), at =0. Now, 1 0r   at kL>2  and 1 0r   at kL>4. It is 
noteworthy that, in the contrast with transmission, the reciprocity principle requires that 

0 0r r   only at 2kL  . Hence, zero-order reflection is itself asymmetric, provided that 
higher order(s) are allowed to propagate in air. In fact, the possibility of contribution of 
higher orders to R  and R  mainly depends on the period of the illuminated interface, 
i.e., 1 2aL   and 2 aL  , for the corrugated and noncorrugated interfaces, respectively. 

 
Basics of the Photonic Crystal Gratings 

 

41 

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

kL

R
ef

le
ct

an
ce

(a)
Stop
band

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

kL

R
ef

le
ct

an
ce

(b)
Stop
band

 
Fig. 16. Reflectance for the PCG with L=2a, d/a=0.31, 5.8r  , Q=12, at =0, for (a) 
corrugated-side and (b) nocorrugated-side illumination; blue solid line - 0r , violet dashed 
line - 1 1r r 

   (a) and 1 1r r 
   (b), cyan dotted line - R  (a) and R (b). 

At P>2, some new features can be observed in the reflection spectrum as compared to Fig. 
16. Figure 17 presents an example for a PCG with P=4, while the PC lattice parameters are 
the same as in Figs. 9(b), 10(b), and 14. Corrugations are obtained here by removing two 
rods from every second column, and four rods from every fourth column, so that they are 
similar to but not so deep as those in Figs. 8(e) and 8(f). If the corrugated side is illuminated, 
the orders with 1n    contribute to R  also in the total-reflection regime at 8.5<kL<11.7. In 
particular, splitting with 0 1 1r r r  

    and 1R   takes place at kL=9.29, 9.68, 10.54, 11.33, 
and 11.55. If the noncorrugated side is illuminated, zero order is the main contributor to 
R  within the entire kL-range considered. Comparing to Fig. 16(b), the orders with 1n    
now do not vanish but slightly contribute to R  in the vicinity of kL=7 and kL=14. In these 
ranges, 1 0t   due to the effect of the exit (here – corrugated) interface, since higher orders 
may appear in R  due to the input (here – noncorrugated) interface starting from kL=8 only. 
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Fig. 17. Same as Fig. 16 but for L=4a and 9.61r  ; blue solid line - 0r , red dashed line - 

1 1r r 
   (a) and 1 1r r 

   (b), green line - 2 2r r 
   (a) and 2 2r r 

    (b), and cyan dotted 
line - R  (a) and R (b). 

Tilting leads to that the higher orders can strongly contribute to the ranges of 1R   at 
smaller P than at =0. For example, splitting with 0 1r r 

  and the relatively small values of 
/ ( )|| n d kLdr  can be obtained in the first stop band at P=2. Besides, the order with 1n    can 

dominate in R  at a stop band edge, where 1    , i.e., reflection is nearly backward.   
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Two examples are shown in Fig. 18. Here, 0 1r r 
  at kL=5.57 in Fig. 18(a), and at kL=5.66 

and kL=8.29 in Fig. 18(b). Tilting can be an efficient tool of tuning in the reflection regime. 
Varying , one can change 1k  and, hence, obtain 1 0r   for the entire, or a desired part of 
the lowest stop band. 
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Fig. 18. Reflectance (a) for the same PCG as in Fig. 9(a) at =45 degrees, and (b) for the same 
PCG as in Fig. 9(b) at =20 degrees; corrugated-side illumination; blue solid line - 0r , violet 
dashed line - 1r , dark green line - 2r , and cyan dotted line - R . 

5. Conclusion  
Multiple examples can be given to demonstrate that a combination of different physical 
phenomena can create a possibility of substantial extension of the variety of the obtainable 
regimes and new ideas for low-cost and/or compact designs. Thus, hybridization is a 
rather general approach in modern optics and physics. In this chapter, it has been shown 
how the effects, which are well known for the gratings, on the one hand, and those for the 
PCs, on the other hand, can be combined in the nonsymmetric PCGs composed of 
dielectric rods in such a way that new operation regimes can be obtained, which are not 
realizable in dielectric gratings or noncorrugated PCs. The most interesting transmission 
and reflection regimes of PCGs originate from the nonsymmetry, i.e., from the broken 
spatial inversion symmetry. The studied mechanism is characterized by absence of 
polarization conversion, while the extreme redistribution of the incident wave energy into 
that of of higher orders plays a key role. In particular, PCGs promise new solutions for 
unidirectional diode-like devices, splitters, deflectors, mirrors, and nano- and microwave 
antennas. From the point of view of the theory of PCs, introduction of corrugations while 
dispersion is known enables new coupling scenarios owing to diffractions. From the point 
of view of the grating theory, using a PC with the alternating pass and stop bands and 
substantially different properties of various Floquet-Bloch modes, instead of a 
homogeneous linear material, enables new diffraction scenarios as compared to those 
typical for dielectric gratings. Finally, from the point of view of the asymmetric and 
unidirectional transmission, PCGs demonstrate a high potential in obtaining of strong 
directional selectivity without breaking time reversal symmetry and, hence, without using 
anisotropic or nonlinear materials. A new direction in the studies of PCGs concerns 
asymmetric transmission for defect modes that might appear in chains of the cavity defects 
or/and line defects, which are parallel to the interfaces.  
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Fig. 18. Reflectance (a) for the same PCG as in Fig. 9(a) at =45 degrees, and (b) for the same 
PCG as in Fig. 9(b) at =20 degrees; corrugated-side illumination; blue solid line - 0r , violet 
dashed line - 1r , dark green line - 2r , and cyan dotted line - R . 
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homogeneous linear material, enables new diffraction scenarios as compared to those 
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unidirectional transmission, PCGs demonstrate a high potential in obtaining of strong 
directional selectivity without breaking time reversal symmetry and, hence, without using 
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1. Introduction 
In the last two decades, the development of new photonic material design paradigms has 
opened up new avenues for designing photonic properties based on different underlying 
physics. For example, photonic crystals, as described elaborately throughout this book, are 
based on dispersive Bloch wave modes that arise in periodic index structures. Different in 
operation than photonic crystals, metamaterials (Smith 2004, Shalaev 2007) are based on 
subwavelength resonant elements (or “meta-atoms”) that interact with incident radiation to 
give rise to complex refractive indices. In this chapter, we introduce a new approach to 
optical dispersion control based on resonant guided wave networks (RGWNs) in which 
power-splitting elements are arranged in two- and three-dimensional waveguide networks.   

A possible framework for comparing and classifying photonic design paradigms is 
according to their basic resonating elements with which light interacts to give the desired 
artificial dispersion. Under this classification scheme, we can think of materials that operate 
based on the local interaction of waves with sub-wavelength resonating elements (i.e. 
metamaterials), structures based on the nonlocal interference of Bragg periodic waves (i.e. 
photonic crystals), and arrays of coupled resonator optical waveguides (CROWs) where 
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1. Introduction 
In the last two decades, the development of new photonic material design paradigms has 
opened up new avenues for designing photonic properties based on different underlying 
physics. For example, photonic crystals, as described elaborately throughout this book, are 
based on dispersive Bloch wave modes that arise in periodic index structures. Different in 
operation than photonic crystals, metamaterials (Smith 2004, Shalaev 2007) are based on 
subwavelength resonant elements (or “meta-atoms”) that interact with incident radiation to 
give rise to complex refractive indices. In this chapter, we introduce a new approach to 
optical dispersion control based on resonant guided wave networks (RGWNs) in which 
power-splitting elements are arranged in two- and three-dimensional waveguide networks.   

A possible framework for comparing and classifying photonic design paradigms is 
according to their basic resonating elements with which light interacts to give the desired 
artificial dispersion. Under this classification scheme, we can think of materials that operate 
based on the local interaction of waves with sub-wavelength resonating elements (i.e. 
metamaterials), structures based on the nonlocal interference of Bragg periodic waves (i.e. 
photonic crystals), and arrays of coupled resonator optical waveguides (CROWs) where 
adjacent resonators are evanescently coupled (Yariv 1999). Different from these existing 
concepts, the dispersion that arises in RGWNs is a result of the multiple closed-path loops 
that localized guided waves form as they propagate through a network of waveguides 
connected by wave splitting elements. The resulting multiple resonances within the network 
give rise to wave dispersion that is tunable according to the network layout. These 
distinctive properties, that will be described here, allow us to formulate a new method for 
designing photonic components and artificial photonic materials. 

A RGWN is comprised of power splitting elements connected by isolated waveguides. The 
function of the splitting element is to distribute a wave entering any of its terminals between 
all of its terminals, as illustrated in Fig. 1a. The waves are then propagated in isolated 
waveguides between the splitting elements, where the local waves from different 
waveguides are coupled together. For example, four splitting elements arranged in a 
rectangular network layout form a 2x2 RGWN (see Fig. 1b). When one of the terminals is 
excited, the multiple splitting occurrences of the incident wave within the network form 
closed path resonances that reshape the dispersion of the emerging waves according to the 
network layout and is different from the dispersion of the individual waveguides. Properly 
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designing this network layout reshapes the interference pattern and the optical function of 
the RGWN, as will be exemplified later in this chapter. The 2x2 RGWN consists of one 
closed loop resonance, however larger two- or three-dimensional networks can support 
multiple resonances, which give rise to more design possibilities.  

 

Fig. 1. Schematic illustration of (a) a 4-terminal equal power-splitting element and (b) a local 
resonance in a 2x2 RGWN. 

Although the concept of RGWNs is quite general, we will first illustrate the underlying 
physics of this paradigm using plasmonics since it allows for a simple topological 
implementation. After introducing this implementation, in the following sections we will 
demonstrate how the local wave interference can be designed to engineer small (2x2) energy 
storage RGWN resonators, and also how we can program the optical transmission function 
of inhomogeneous RGWNs using transfer matrix formalism. We will also address how the 
same design principles can be utilized to control the optical dispersion properties of 
infinitely large RGWNs that behave like artificial optical materials. After addressing other 
possible implementation and practical issues we will conclude with possible future 
directions and a more detailed comparison to other optical design paradigms. 

2. Plasmonic RGWN components 
The operation of RGWNs is based on two basic components: power splitting elements and 
isolated waveguides. While the waveguides could easily be implemented using dielectric 
waveguides, the power splitting elements at the intersection of two such waveguides could 
not be achieved using dielectrics alone. Nevertheless, this splitting operation, which is the 
key enabler of this technology, is native to the intersection of two plasmonic waveguides. 
Consequently, a possible implementation of a RGWN is by using plasmonics via a mesh of 
intersecting sub-wavelength air gaps in a metal matrix.  

Surface plasmon polaritons (referred here to as plasmons for brevity) are slow surface 
waves that propagate at metal-dielectric interfaces. Adding another metal-dielectric 
interface to this system, results in a metal-insulator-metal (MIM) waveguide, which 
supports a highly confined plasmon wave (the lowest order transverse magnetic mode - 
TM0) that does not get structural cut-off as the dielectric gap between the metal layers 
becomes vanishingly small. The existence of this lowest-order plasmonic mode in MIM 
waveguides allows for such plasmonic components as power splitters (Feigenbaum 2007-1) 
and high transmission sharp waveguide bends (for a review of MIM waveguides and their 
possible applications see Feigenbaum 2007-2). However, the existence of metal in the MIM 
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waveguide configuration does add a source of a modal attenuation to the system as a result 
the usual loss mechanisms present in any real metal-containing system. This results in a 
trade off between the compression of the modal cross-section and the modal attenuation as 
the air gap size is decreased. Since the loss in metals is strongly frequency and material 
dependent, the focus here will be on RGWNs composed of Au-air-Au MIM waveguides 
operating at telecommunication frequencies where the modal propagation lengths are on 
the order of tens of microns, which are substantially larger than the propagation lengths at 
visible frequencies. The optical properties of the materials throughout this chapter are based 
on tabulated data (Palik 1998).  

In this implementation, the intersection of two sub-wavelength MIM waveguides forms an 
X-junction that functions as the power splitting elements in the network (Feigenbaum 2007-
1) and the MIM segments between the intersections serve as the isolated waveguides 
connecting the X-junctions. Through this implementation, X-junctions can be tuned to split 
power equally at infrared wavelengths both for continuous waves and for short pulse waves 
consisting of only a few optical cycles while conserving the shape of the input signal. The 
observed equal-power split is a result of the subwavelength modal cross-section of the input 
plasmonic waveguide that excites the junction with a broad spectrum of plane waves. As 
such, equal four-way optical power splitting is enabled for transmission lines (e.g., MIM and 
coaxial configurations) but cannot be easily achieved using purely dielectric waveguides 
due to their half-wavelength modal cross-section limit. Thus, through a plasmonic 
implementation, the strong coupling to all four neighboring X-junctions gives the plasmonic 
RGWN structure an optical response different from a cross-coupled network of purely 
dielectric waveguides, where most of the power would be transmitted in the forward 
direction, with only weak coupling to perpendicular waveguides.  

 

Fig. 2. Power splitting properties of the emerging pulses in an X-junction: (a) intensity 
relative to the exciting pulse, and (b) phase difference at λ0=1.5µm (Feigenbaum 2010). 

As the MIM waveguide air gap thickness is varied, the power-split between the X-junction 
terminals can be tuned both in terms of amplitude and phase (Feigenbaum 2010). This, in 
addition to determining the phase accumulation in the waveguide segments, sets 
independent controls in designing the interference pattern that governs the operation of a 
RGWN. The power splitting in the Au-air X-junction was investigated using the 2D finite-
difference time-domain (FDTD) method with short pulse excitation and two equal thickness 
intersecting MIM waveguides. Through this study, it was found that for small (0.25µm) 
MIM gaps, these plasmonic X-junctions exhibit equal power splitting with the reflected 
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designing this network layout reshapes the interference pattern and the optical function of 
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closed loop resonance, however larger two- or three-dimensional networks can support 
multiple resonances, which give rise to more design possibilities.  
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demonstrate how the local wave interference can be designed to engineer small (2x2) energy 
storage RGWN resonators, and also how we can program the optical transmission function 
of inhomogeneous RGWNs using transfer matrix formalism. We will also address how the 
same design principles can be utilized to control the optical dispersion properties of 
infinitely large RGWNs that behave like artificial optical materials. After addressing other 
possible implementation and practical issues we will conclude with possible future 
directions and a more detailed comparison to other optical design paradigms. 

2. Plasmonic RGWN components 
The operation of RGWNs is based on two basic components: power splitting elements and 
isolated waveguides. While the waveguides could easily be implemented using dielectric 
waveguides, the power splitting elements at the intersection of two such waveguides could 
not be achieved using dielectrics alone. Nevertheless, this splitting operation, which is the 
key enabler of this technology, is native to the intersection of two plasmonic waveguides. 
Consequently, a possible implementation of a RGWN is by using plasmonics via a mesh of 
intersecting sub-wavelength air gaps in a metal matrix.  

Surface plasmon polaritons (referred here to as plasmons for brevity) are slow surface 
waves that propagate at metal-dielectric interfaces. Adding another metal-dielectric 
interface to this system, results in a metal-insulator-metal (MIM) waveguide, which 
supports a highly confined plasmon wave (the lowest order transverse magnetic mode - 
TM0) that does not get structural cut-off as the dielectric gap between the metal layers 
becomes vanishingly small. The existence of this lowest-order plasmonic mode in MIM 
waveguides allows for such plasmonic components as power splitters (Feigenbaum 2007-1) 
and high transmission sharp waveguide bends (for a review of MIM waveguides and their 
possible applications see Feigenbaum 2007-2). However, the existence of metal in the MIM 
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waveguide configuration does add a source of a modal attenuation to the system as a result 
the usual loss mechanisms present in any real metal-containing system. This results in a 
trade off between the compression of the modal cross-section and the modal attenuation as 
the air gap size is decreased. Since the loss in metals is strongly frequency and material 
dependent, the focus here will be on RGWNs composed of Au-air-Au MIM waveguides 
operating at telecommunication frequencies where the modal propagation lengths are on 
the order of tens of microns, which are substantially larger than the propagation lengths at 
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As the MIM waveguide air gap thickness is varied, the power-split between the X-junction 
terminals can be tuned both in terms of amplitude and phase (Feigenbaum 2010). This, in 
addition to determining the phase accumulation in the waveguide segments, sets 
independent controls in designing the interference pattern that governs the operation of a 
RGWN. The power splitting in the Au-air X-junction was investigated using the 2D finite-
difference time-domain (FDTD) method with short pulse excitation and two equal thickness 
intersecting MIM waveguides. Through this study, it was found that for small (0.25µm) 
MIM gaps, these plasmonic X-junctions exhibit equal power splitting with the reflected 
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pulse being out-of-phase (i.e., approximately π-phase shifted) with respect to the sideways 
and forward transmitted pulses. As illustrated in Fig. 2a, as the MIM gap size is increased, 
the optical power flow deviates from equal power splitting between the terminals towards 
dominant power transmission directly across the X-junction, which resembles the 
wavelength-scale photonic mode limit. Furthermore, in these calculations, the phase shift 
between the sideways (S) and the forward (F) transmitted pulses is consistent with the 
geometrical difference in their pulse propagation trajectories (see Fig. 2b).  

3. Resonators 
After characterizing the properties of the RGWN building blocks, we illustrate the working 
principles of RGWNs by investigating the dynamics of a compact 2x2 RGWN resonator. In 
order to form a resonance, the network is designed such that when an X-junction is excited 
from the internal ports, the exciting waves are out-of-phase, resulting in constructive 
interference inside the network, as illustrated in Fig. 3. For such out-of-phase excitation the 
fields in the external terminals interfere destructively, and the power is coupled back into 
the resonator, enhancing the energy storage quality factor (Q-factor).  

 

Fig. 3. Resonance build-up in a 2×2 RGWN. (a) Two in/out-of phase input pulses result in 
destructive/constructive interference inside the network. (b) Steady-state of waves 
resonating in a 2×2 network where each pair of pulses excites the X-junctions out of phase 
(Feigenbaum 2010). 

When the 2×2 RGWN is excited from the lower-left arm (see Fig. 4), after a transient that 
includes the first five splitting events, the resonant state is reached as pairs of pulses 
resonate between junctions 1 and 3 (exemplified by snapshot t6) and junctions 2 and 4 
(exemplified by snapshot t7). However, before this steady state is reached, it is instructive to 
follow the dynamics that lead up to this resonance. Starting with the third power split, this 
event occurs as junctions 1 and 3 are both simultaneously excited by two waveguides. The 
incoming pulses arrive at both junctions in-phase, which would result in destructive 
interference inside the network if the R and S split components of each pulse were exactly  
π-phase shifted. However, the interference is not completely destructive due to the finite 
size of the waveguides, which causes the phase difference to deviate from a perfect π-phase 
shift (in accordance with Fig. 2). This power splitting event determines how much power 
couples into the network. For all future power splitting events after the third one, the two 
pulses arriving simultaneously at each junction are out-of-phase and therefore interfere 
constructively inside the resonator. The trade-off between coupling power into the resonator 
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and maintaining it inside suggests that MIM gap sizes that are subwavelength, but not 
arbitrarily small, will maximize the network resonance. To interpret the FDTD observations 
and arrive to the conclusion described above, a simplified analytical description of pulse 
propagation in the network is derived in which only a few parameters are tracked: phase, 
amplitude, position and direction. The pulses are assumed to travel in the waveguides and 
split into four new pulses upon arrival at an X-junction. This model also illustrates the 
compactness of the possible mathematical representation of RGWNs, and the importance of 
this advantage becomes more substantial when considering the dynamics of larger 2D and 
3D network topologies. 

 

Fig. 4. Time snapshots of Hz (normalized to the instantaneous maximum value) in a 2x2 
plasmonic RGWN recorded at the third to the seventh power splitting events for a 2D-FDTD 
simulation. The MIM waveguides are 0.25µm thick and 6µm long (Feigenbaum 2010). 

Calculating the Q-factor of such 2x2 RGWN resonators (Fig. 5) illustrates the role of 
interference in generating a strong network resonance, which causes the network Q-factor to 
be an order of magnitude larger than what would be expected if optical power splitting in 
the X-junctions operated incoherently, i.e. we lost half the power in each splitting event. 
Increasing the MIM gap size causes the phase of the interfering waves to deviate from being 
π-phase shifted, resulting in a degradation of the constructive interference inside the 
resonator and a decrease in the overall network Q-factor. On the other hand, as the gap size 
is decreased, the plasmonic mode attenuation increases due to metallic losses in the 
waveguides. Between these two competing effects, the maximal Q-factor value is obtained 
for a gap size of 250nm. These RGWN Q-factor values are considerable for plasmonic 
resonators and even comparable to typical values of wavelength-size dielectric resonators 
that are dominated by radiation loss (e.g., a cylindrical dielectric cavity of radius 1.3 with a 
purely real refractive index of n=2.5 surrounded with air has a Q~100). If we were to 
artificially decrease the Au loss at 1.5µm (or alternatively go to longer wavelengths), the Q-
factor of the resonator would increase appreciably (e.g., Q ~ 750 for a 200 nm gap width), 
indicating that the resonator Q-factor is primarily limited by the material loss.  
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and maintaining it inside suggests that MIM gap sizes that are subwavelength, but not 
arbitrarily small, will maximize the network resonance. To interpret the FDTD observations 
and arrive to the conclusion described above, a simplified analytical description of pulse 
propagation in the network is derived in which only a few parameters are tracked: phase, 
amplitude, position and direction. The pulses are assumed to travel in the waveguides and 
split into four new pulses upon arrival at an X-junction. This model also illustrates the 
compactness of the possible mathematical representation of RGWNs, and the importance of 
this advantage becomes more substantial when considering the dynamics of larger 2D and 
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Calculating the Q-factor of such 2x2 RGWN resonators (Fig. 5) illustrates the role of 
interference in generating a strong network resonance, which causes the network Q-factor to 
be an order of magnitude larger than what would be expected if optical power splitting in 
the X-junctions operated incoherently, i.e. we lost half the power in each splitting event. 
Increasing the MIM gap size causes the phase of the interfering waves to deviate from being 
π-phase shifted, resulting in a degradation of the constructive interference inside the 
resonator and a decrease in the overall network Q-factor. On the other hand, as the gap size 
is decreased, the plasmonic mode attenuation increases due to metallic losses in the 
waveguides. Between these two competing effects, the maximal Q-factor value is obtained 
for a gap size of 250nm. These RGWN Q-factor values are considerable for plasmonic 
resonators and even comparable to typical values of wavelength-size dielectric resonators 
that are dominated by radiation loss (e.g., a cylindrical dielectric cavity of radius 1.3 with a 
purely real refractive index of n=2.5 surrounded with air has a Q~100). If we were to 
artificially decrease the Au loss at 1.5µm (or alternatively go to longer wavelengths), the Q-
factor of the resonator would increase appreciably (e.g., Q ~ 750 for a 200 nm gap width), 
indicating that the resonator Q-factor is primarily limited by the material loss.  
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Fig. 5. Q-factor of 2×2 RGWN resonator from simulation results compared with those 
resulting from incoherent power splitting (Feigenbaum 2010). 

4. Tailoring the optical properties of artificial materials 
After studying the resonance effects in a small RGWN, we now investigate the dispersion 
characteristics of infinitely large 2D periodic RGWNs by modelling the structure unit cell in 
FDTD with Bloch boundary conditions. Through this analysis, we find that RGWNs exhibit 
wave dispersion and photonic bandgaps due to interference effects, and that their band 
structure can be controlled by modifying the network structural parameters. Two different 
length-scales control the network dispersion: the subwavelength width of the MIM gaps 
determines the phase shift at each X-junction, and the wavelength-order distance between 
the nodes along with network topology determine the interference scheme.  

 
Fig. 6. Photonic band structure of infinitely large periodic RGWNs  (Feigenbaum 2010). 

The same interference dynamics that govern the energy storage in finite-size 2x2 RGWN 
resonators are the same that control the optical properties of artificially designed RGWN 
materials of infinite-size. If the network parameters are chosen such that a planewave 
excitation at a given incidence angle results in a resonance effect similar to the one 
demonstrated for the 2x2 network, then this would correspond to a forbidden state of 
propagation in the photonic band diagram. Examining the optical density of states (DOS) 
for different wave vectors over frequencies in the near infrared range, where the material 
(Au in this case) dispersion is small, we observe a photonic band structure which is only due 
to dispersion resulting from the network topology, as shown in Fig. 6a. The functionality of 
the infinitely large RGWN is not hindered by loss since its dispersion depends on the 
waveguide decay length being much larger than the size of the largest resonant feedback 
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loop that has dominant contribution to the RGWN dispersion. Further possibilities for 
achieving band dispersion control are illustrated in Fig. 6b, showing a flat bands over a wide 
range of wavevectors at 130 and 170 THz, as well as the formation of a photonic bandgap 
between 140-160 THz, for appropriately chosen network parameters.  

The infinitely large RGWN is illustrated in Fig. 6c along with a few schematic resonance 
orders that represent the resonances that could arise within the network. The operating 
mechanism of the RGWN is very different from that of photonic crystals composed of metal-
dielectric alternating materials. Although the schematic layout might look similar, the 
difference between the two classes of artificially designed optical materials becomes clear 
when considering the difference in the length scales of their composite elements. Whereas 
photonic crystals operate based on non-local interaction of Bloch waves with the entire 
array, RGWNs rely on the interference of local waves. Therefore RGWNs are not sensitive to 
the actual topology of waveguides between junctions but only to its trajectory length, 
whereas the properties of photonic crystals would greatly depend on the shape of the 
periodic metallic islands. Additionally, RGWNs do not necessarily have to be periodic to 
operate as resonant guided wave networks, and for the same reason, planting a defect in a 
RGWN would not have the same effect as it would in a photonic crystal. 

5. Programming the optical properties of a network 
Because the underlying physics of RGWNs is based on the interference of local waves, it 
allows for layouts that are inhomogeneous and non-periodic across the network. Unlike 
photonic crystals, which are restricted to Bragg wave effects in periodic structures, the 
flexibility of RGWNs open up design possibilities where the wave properties are varied 
across the structure. With respect to metamaterials, which could inherently be non-
homogeneous due to the local nature of the interaction between light and the meta-atoms, 
RGWNs have the advantage of having interference effects within the network, which allows 
for frequency spectrum reshaping designs through these effects.  

An additional unique feature of RGWNs relates to the constraints on wave propagation 
within the structure. Unlike other photonic designs, RGWNs have a limited number of 
modes that are allowed to propagate within the structure (e.g. only the TM0 mode for the 
case of the plasmonic implementation described previously). Furthermore, the waves can 
propagate only inside the waveguides connecting the splitting elements. The different 
waveguides are coupled only by X-junctions, which each have only a limited number of 
terminals. This level of control is beneficial for several reasons. First, the interference 
pattern in the network can be controlled more directly. Second, it allows for a 
comprehensive mathematical representation of the RGWN by scattering matrix (S-matrix) 
formalism that greatly reduces the computational complexity of programming the 
network. Third, since the waveguides are isolated from each other, their only contribution 
to the network is to serve as phase retardation elements between the splitting elements. 
As a result, the waveguide length is the only effective parameter in its contour, as long as 
the bending is not too severe. This waveguide feature allows for the network to maintain 
its engineered function even when distorted. Additionally, the ability to utilize curved or 
bent waveguides to accommodate long contours is useful when designing the interference 
pattern of RGWNs. 
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Fig. 5. Q-factor of 2×2 RGWN resonator from simulation results compared with those 
resulting from incoherent power splitting (Feigenbaum 2010). 
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loop that has dominant contribution to the RGWN dispersion. Further possibilities for 
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photonic crystals, which are restricted to Bragg wave effects in periodic structures, the 
flexibility of RGWNs open up design possibilities where the wave properties are varied 
across the structure. With respect to metamaterials, which could inherently be non-
homogeneous due to the local nature of the interaction between light and the meta-atoms, 
RGWNs have the advantage of having interference effects within the network, which allows 
for frequency spectrum reshaping designs through these effects.  

An additional unique feature of RGWNs relates to the constraints on wave propagation 
within the structure. Unlike other photonic designs, RGWNs have a limited number of 
modes that are allowed to propagate within the structure (e.g. only the TM0 mode for the 
case of the plasmonic implementation described previously). Furthermore, the waves can 
propagate only inside the waveguides connecting the splitting elements. The different 
waveguides are coupled only by X-junctions, which each have only a limited number of 
terminals. This level of control is beneficial for several reasons. First, the interference 
pattern in the network can be controlled more directly. Second, it allows for a 
comprehensive mathematical representation of the RGWN by scattering matrix (S-matrix) 
formalism that greatly reduces the computational complexity of programming the 
network. Third, since the waveguides are isolated from each other, their only contribution 
to the network is to serve as phase retardation elements between the splitting elements. 
As a result, the waveguide length is the only effective parameter in its contour, as long as 
the bending is not too severe. This waveguide feature allows for the network to maintain 
its engineered function even when distorted. Additionally, the ability to utilize curved or 
bent waveguides to accommodate long contours is useful when designing the interference 
pattern of RGWNs. 
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These distinctive RGWN characteristics open up new opportunities for designing photonic 
devices by programming the entire network rather than by assembling interconnected 
discrete components with traceable functions. The usual way of designing photonic devices 
is to target the desired subsystem functions, map them logically into sub-functions, and then 
assembling components that carry out these sub-functions in the desired system. For 
example, a wavelength router could be designed using add/drop ports where the input and 
output waveguides are coupled by wavelength sensitive ring resonators (Little 1997) or by 
defects in a photonic crystal (Fan 1998). Similarly, in free space optics, this function could be 
achieved through the use of collinear beam splitters, each designed to deflect a desired 
wavelength band. In these schemes, the couplers and waveguides are discrete components 
that are associated with a specific function, and are combined in a logical way to carry out 
the overall system function. An alternative approach is to use a network of components that 
carries out the desired function but, unlike traditional designs, there is no specific logical 
sub-function associated with any individual component. While the inner connectivity of the 
device will be less intuitive, it has the potential to result in more efficient designs of complex 
and compact devices.  

One possible way of representing a system function in a RGWN is through the use of a 
scattering operator that maps the set of local waves entering the device terminals to the set 
of the waves exiting from the same terminals (Feigenbaum 2010-2). Since a RGWN is 
composed of a discrete set of components (waveguides and X-junctions) and terminals, the 
system function is represented by a scattering matrix (S-matrix) connecting the vectors of 
the waves entering and emerging from the RGWN via the external ports (see Fig. 7). 
Designing the system function of the RGWN is then mathematically equivalent to designing 
the S-matrix to yield a desired output, given a set of inputs.  

 

Fig. 7. Mathematical representation scheme of (a) a 2x2 RGWN system and its components, 
(b) a waveguide component, and (c) an X-junction component  (Feigenbaum 2010-2). 

Programming an optical function onto a network, according to the design principle 
described above, will first be demonstrated for a plasmonic 2x2 RGWN, in which the 
constituent MIM waveguides are allowed to differ in width, length, and contour. The device 
has eight terminals, numbered from ‘1’ to ‘8’, as illustrated in Fig. 7a. The input vector lists 
the complex amplitudes of the magnetic fields (H-fields) entering the network in the eight 
terminals, and similarly the output vector describes the complex H-field amplitudes of the 
waves exiting the network through these same terminals. 
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The network S-matrix is assembled from the mathematical representation of its 
components according to the network layout. As a first step, a ‘function library’ of 
mathematical representations is generated for all the possible network components (i.e., 
waveguides and X-junctions) using finite difference time domain (FDTD) full wave 
electromagnetic simulations. Once this library is established, the RGWN S-matrix can be 
assembled according to the network layout. It is worth pointing out that the S-matrix 
calculation scheme is almost always found to be much faster than resolving the RGWN 
behavior from full wave electromagnetic simulations, yet reproduces the same 
information about the network. This becomes significant for optimization tasks and 
especially as the network size increases. 

To carry out this formalism, the two basic RGWN components (waveguides and X-
junctions) need to first be represented mathematically. The waveguides are 
mathematically represented by their complex phase retardation, determined by the 
complex propagation constant of the wave and the waveguide length. The propagation 
constants are extracted from FDTD simulations for waveguides with various widths at 
different frequencies. The X-junctions, which are comprised of two intersecting 
waveguides with four terminals, are mathematically represented by a (4x4) S-matrix. For a 
given set of waveguide widths, the complex transmission coefficients of the X-junction 
ports are extracted from FDTD simulations by measuring the amplitude and phase of the 
wave transmitted to the different ports when excited from one of the terminals at a given 
wavelength. 

The S-matrix of the 2x2 RGWN is then assembled from the mathematical representation of 
its constituent components according to the network layout. The phasor representation of 
the local wave H-fields in the network is represented by three column vectors (transposed 
for brevity): 
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where Aout and Ain hold the values of the local input and output waves of the RGWN at its 
ports, and Anet represents the input wave on the X-junctions from the internal terminals of 
the RGWN. The i/o superscripts denote input/output waves with respect to the X-junction, 
the number subscripts corresponds to the junction number as defined in Fig. 7a, and the 
bracketed number subscripts label the ports as defined in Fig. 7c. The coupling of the H-field 
vectors by the network connectivity can then be represented by the system: 

  0

out net inFS RS
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where MFS and MRS are diagonal 8-by-8 matrices that originate from the splitting relations in 
the X-junctions and K is a sparse 8-by-8 matrix that stands for the wave propagation in the 
waveguides. These matrices are defined as: 
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where the V/H superscript index denotes if the transmission coefficient is for excitation of 
the vertical or the horizontal waveguide of that X-junction. 

Algebra of equation set 3 gives the matrix representation of the 2x2 RGWN S-matrix: 

   12 2x RGWN
RS FS RS FS

S M M M K M


    (4) 

When validating the field amplitude predictions of the S-matrix representation with FDTD 
simulations, less than 5% difference is found for various test cases. The two major 
contributions to this small deviation result from the interpolation between the parameter 
space points, where the library components were calculated, and from the error added when 
the waveguides are bent. For cases where no interpolation or waveguide bending occurs, 
the FDTD results differ by only 1% from the S-matrix predictions. The ability to accurately 
predict the RGWN interference using S-matrix representation reduces the complicated task 
of programing a desired optical function into a RGWN into an efficient optimization of its S-
matrix. 

For example, the RGWN can be programmed by minimizing the difference between the 
actual network output and the desired one (for a given input), as the network parameter 
space is swept across the various waveguide widths and lengths. The optimization process 
then results in a set of network parameters that can be translated to a network layout and 
then validated with FDTD simulations.  

6. Multi-chroic filters using RGWNs   
The S-matrix programming method can be exemplified by designing a 2x2 RGWN to function 
as a dichroic router (Fig. 8a). Although simple in concept, the exercise of setting a passive 
device to have different functions at different wavelengths is quite instructive. Explicitly,  
the required function is to route two different wavelengths (λ1 and λ2) to a different set of ports 
(‘1’ and ‘6’ for λ1 and ‘2’ and ‘5’ for λ2) when the two bottom ports (‘7’ and ‘8’) are 
simultaneously excited with equal power. Mathematically, we can represent the device as an 
8x8 S-matrix S(λ1,λ2) connecting the input and the output vectors. For both wavelengths, the 
input vector is nonzero for the bottom ports (i.e. In=(0,0,0,0,0,0,1,1)) and the desired output 
vectors would be Out(λ1)=(1,0,0,0,0,1,0,0) for λ1 and Out(λ2)=(0,1,0,0,1,0,0,0) for λ2. Because we 
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do not have enough degrees of freedom in this small 2x2 network to exactly attain the desired 
outputs, we instead optimize the ratio of power going to the two sets of ports at the different 
wavelengths.  

 

Fig. 8. 2x2 RGWN programmed to function as a dichroic router: (a) schematic drawing, and 
(b, c) time snapshots of the H-field at the two operation frequencies (Feigenbaum 2010-2). 

The optimization procedure is implemented in Matlab using the pre-calculated mathematical 
representation data set of the RGWN components obtained from full-field electromagnetic 
FDTD simulations excited with continuous wave sources (see illustration in Fig. 9).  

 
Fig. 9. Flow chart of the RGWN S-matrix optimization procedure (Feigenbaum 2010-2). 

The dichroic router network is defined by eight parameters: the length and width of the 
upper, lower, and side waveguides and the two wavelengths. The waveguide widths 
determine the effective index in the waveguides as well as the transmission coefficients of 
the X-junctions. The optimization procedure is conducted in Matlab with the optimization 
function for the dichroic router defined as follows: 
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where O1 and O2 represent the two terminal output ratios that need to be maximized at the 
two different wavelengths, λ1 and λ2. The function f is used to merge the two ratios together 
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where the V/H superscript index denotes if the transmission coefficient is for excitation of 
the vertical or the horizontal waveguide of that X-junction. 

Algebra of equation set 3 gives the matrix representation of the 2x2 RGWN S-matrix: 
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(‘1’ and ‘6’ for λ1 and ‘2’ and ‘5’ for λ2) when the two bottom ports (‘7’ and ‘8’) are 
simultaneously excited with equal power. Mathematically, we can represent the device as an 
8x8 S-matrix S(λ1,λ2) connecting the input and the output vectors. For both wavelengths, the 
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do not have enough degrees of freedom in this small 2x2 network to exactly attain the desired 
outputs, we instead optimize the ratio of power going to the two sets of ports at the different 
wavelengths.  
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where O1 and O2 represent the two terminal output ratios that need to be maximized at the 
two different wavelengths, λ1 and λ2. The function f is used to merge the two ratios together 
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into one weighted optimization parameter, where the first term in squared brackets 
maximizes the total power routed into the selected terminals, the second term maximizes 
the two ratios, and the third term is a weighting factor that ensures that the two ratios are 
maximized equally. The target function is defined as the inverse of these three terms in 
multiplication for the minimization Matlab function. At each point in the parameter space, 
the network output vector is calculated as the multiplication of the 2x2 RGWN S-matrix 
evaluated at the parameter values times the input vector representing excitation only from 
the two bottom terminals (‘7’ and ‘8’).  

After defining the optimization function, we constrain the parameter space based on 
practical considerations. The parameter space includes the width and length of the upper, 
lower, and side waveguides as well as the two wavelengths of operation (λ1 and λ2). We 
decrease the number of parameters to optimize by restricting the device to have left-right 
symmetry based on the desired operation. We restrain the design to operate in the infrared 
frequency range (λ0 = 1.2-2μm) where the material dispersion and loss are less pronounced 
than in the visible. Furthermore, the waveguide thickness is constrained to be small enough 
to only support the lowest order plasmonic mode (air gap widths 100-500nm).   

The optimization procedure yields the network parameters given in Table 1, which reveal 
that the required RGWN for color routing is distributed inhomogeneously. 
 

Waveguides Width (µm) Length (µm) 
Lower 0.47 5.4 
Side 0.31 1.34 
Upper 0.38 6.6 

Table 1. Set of optimized parameters for 2x2 RGWN dichroic router operating at λ1=2µm 
and λ2=1.26µm. 

When translating the optimized network parameters into the network layout, we learn that 
the upper waveguide is longer than the lower one, and therefore needs to be bent. 
Importing the resulting layout into FDTD, we obtain the steady state H-field distribution 
shown in Fig. 8b and 8c which show time snap shots at the two operation wavelengths. The 
FDTD simulation results validate the S-matrix design, with λ1 and λ2 clearly routed to a 
different set of sideways ports as illustrated in Fig. 8b and 8c, respectively. From these 
FDTD results, it is also possible to observe the build-up of local resonance inside the 
network, which results in the filtering out of the desired output ports. We note that the 
transmission (‘3’ and ‘4’) and reflection (‘7’ and ‘8’) ports from the device are not identically 
zero since the device does not have enough degrees of freedom and were therefore not 
included in the optimization function.  

The matrix representation can also be used to understand the interference conditions 
through which the RGWN accomplishes its desired function. From the known input vector 
and the network S-matrix, the wave complex amplitudes can be identified at any point in 
the network. For each wavelength, we resolve the excitation conditions of the X-junctions 
that have the ports that are to be filtered out. For example, for λ1 to be filtered out from 
terminals ‘2’ and ‘5’, we examine the excitation conditions in X-junction ‘3,’ which has four 
terminals. Two of the terminals are external device ports (‘4’ and ‘5’) and the other two are 
internal network terminals. There is no input signal incident on the two external ports, so it 
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is the excitation conditions of the remaining two junction terminals that null the output in 
terminal ‘5.’ Indeed, the excitation amplitudes of junction ‘3’ obtained from the S-matrix 
representation are 0.23exp(-j0.21π) and 0.34exp(j0.64π), which are close in amplitude and ~ π 
phase-shifted. This is consistent with the results from section 3, which show that when an 
‘X-junction’ is simultaneously excited π phase-shifted from two adjacent terminals, the two 
other terminals will be filtered out (Fig. 3a). The fact that the excitations are not exactly the 
same in amplitude and π phase-shifted is attributed to the additional constraints the design 
has on the other wavelength as well as the limitations imposed on the parameter space.  

Similarly, the excitation conditions necessary for filtering out terminals ‘1’ and ‘6’ at λ2 (Fig. 
8b) are examined by focusing on the S-matrix amplitudes of X-junction ‘4.’ In this case there 
are three terminals being excited: the lower terminal of the X-junction (port ‘7’) is given by 
the network excitation, so the excitation of the other two internal ports will determine the 
filtering out of port ‘6.’ Intuitively, the condition to filter out terminal ‘6’ will be simply a Π 
phase-shifted excitation of the upper and lower terminals of junction ‘4’, with zero excitation 
from the side port. From the case of λ1 we also know that additional constraints might 
cause a residual wave emerging from terminal ‘6’, which could be compensated by a small 
amplitude excitation at the other side terminal of the junction ‘4.’ Indeed, the excitation 
amplitudes of junction ‘4’ in the S-matrix representation are 1 in lower terminal, 
0.9exp(j0.82π) in upper terminal, and 0.3exp(-j0.32π) in the side terminal. 

To further exemplify the programmability of RGWNs via S-matrix formalism, we consider a 
3x3 RGWN programmed to function as a trichroic router. In order to implement the more 
complex task of routing three wavelengths we allow for more degrees of freedom in the 
network by increasing the number of components, effectively increasing the amount of data 
contained. The function is defined as an extension of the dichroic router, but here when the 
three bottom terminals are simultaneously excited at three different frequencies, the 
frequencies are filtered out to three different sets of side terminals as illustrated in Fig. 10. 
The analysis results in the optimal RGWN parameters shown in Table 2.  

 
Fig. 10. 3x3 RGWN programmed to function as a trichroic router. Time snapshots of the 
steady state H-field at the three operation frequencies (Feigenbaum 2010-2): a) λ1, b) λ2, c) λ3. 

It is interesting to note that the wavelengths are not mapped monotonically to the output 
terminals (i.e. from bottom/top ports as the wavelength increases/decreases), which would 
be the usual case for devices relying on material dispersion, such as a glass prism.  
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into one weighted optimization parameter, where the first term in squared brackets 
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symmetry based on the desired operation. We restrain the design to operate in the infrared 
frequency range (λ0 = 1.2-2μm) where the material dispersion and loss are less pronounced 
than in the visible. Furthermore, the waveguide thickness is constrained to be small enough 
to only support the lowest order plasmonic mode (air gap widths 100-500nm).   

The optimization procedure yields the network parameters given in Table 1, which reveal 
that the required RGWN for color routing is distributed inhomogeneously. 
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zero since the device does not have enough degrees of freedom and were therefore not 
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The matrix representation can also be used to understand the interference conditions 
through which the RGWN accomplishes its desired function. From the known input vector 
and the network S-matrix, the wave complex amplitudes can be identified at any point in 
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Waveguides  Width 
(µm) 

Length 
(µm) 

Vertical center-bottom (C-B) 0.45 13.25 
 side-bottom (S-B) 0.1 8.15 
 center-top (C-T) 0.45 3.55 
 side-top (S-T) 0.1 4 
Horizontal Top 0.29 12.8 
 Middle 0.26 7.3 
 Down 0.3 11.95 

Table 2. Set of optimized parameters for a 3x3 RGWN trichroic router operating at 
λ1=1.59µm, λ2=1.97µm, and λ3=1.23µm.  

7. Possible Implementations 
The underlying physics and the working principles of the RGWNs were demonstrated in 
the previous sections with an idealized 2D implementation using MIM waveguides. 
However, for the same 2D network topology as shown in Fig. 4, but implemented with 3D 
high aspect ratio Au-air channel plasmon waveguides (Bozhevolnyi 2006), the observed 
wave dynamics are found to closely resemble that of the 2D MIM waveguide network, as 
studied with 3D full-field simulations. If the aspect ratio of the channel plasmon waveguide 
is high enough, the propagating mode within the channels strongly resembles the MIM gap 
plasmonic mode. This can for instance be seen in the measured quality factors of RGWNs 
comprised of channel plasmon waveguides (3D simulations) and MIM slot waveguides (2D 
simulations) which have Q-factor values of 82 and 83, respectively, at a wavelength of 
1.5µm. Furthermore, the two power splitting events that define the RGWN resonant state 
are similar for both the channel and MIM waveguides (Fig. 4).  

 
Fig. 11. 3D RGWN: (a) rendering of a 3D RGWN building block (6-arm junction). (b, c) 
Optical DOS of an infinite 3D network spaced periodically with cubic periodic unit cell with 
different spacing (Feigenbaum 2010-1). 

The dispersion design in a volume can be addressed by 3D-RGWN topologies, for example, 
constructing an array of orthogonally intersecting 3D networks of coaxial Au-air 
waveguides aligned in a Cartesian grid (Fig. 11a). In this case, the four-arm X-junction 
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element of the 2D network is replaced by a six-arm 3D junction element. Using 3D FDTD, 
we have verified that six-way equal power splitting occurs for pulsed excitation in a coaxial 
Au-air waveguide junction. Like for the 2D-RGWN, the dispersion of the infinitely large 
periodic 3D-RGWN is predominantly determined by the network parameters rather than 
the waveguide dispersion. This is demonstrated by the noticeable difference in the band 
diagrams (Fig. 5b and 5c) obtained for two networks comprised of the same waveguides but 
with different inter-node spacing. 

8. Conclusions and future directions 
RGWNs offer a different approach for designing dispersive photonic materials.  Whereas 
photonic crystals rely on the formation of Bloch wave states by interference of waves 
diffracted from an array of periodic elements, a truly non-local phenomenon; RGWNs rely 
on the coherent superposition of power flowing along isolated waveguides and splitting at 
X-junctions. Furthermore, in photonic crystals, the interference pattern of the diffracted 
waves depends on the nonlocal periodic spatial arrangement of the diffracting elements; 
and in RGWNs it is the local network topology that determines the dispersion and 
resonance features. For example, in a RGWN, the coherent wave propagation through the 
network is determined only by the total path length along the waveguide and the phase 
shift added at a power splitting event, having no restriction on whether the waveguides are 
straight or curved. Metamaterials also feature a design approach based on the attributes of 
localized resonances, but their dispersive properties do not depend on any length scale 
between resonant elements – thus differing substantially from RGWNs. Arrays of coupled 
resonator optical waveguides (CROWs) feature discrete identifiable resonators that act as 
the energy storage elements, and dispersion occurs as modes of adjacent resonators are 
evanescently coupled. By contrast, in RGWNs, energy is not stored resonantly in discrete 
resonators, but rather in the network of waveguides that are designed to exhibit a collective 
resonant behaviour.  

The operation of RGWNs was demonstrated in this chapter using plasmonics, which 
allowed for a simple layout and broadband range of operation; however, this 
implementation also brought about substantial attenuation due to the fundamental loss of 
plasmonic modes. As indicated above, the plasmonic MIM modes used here have typical 
propagation lengths of about 50 microns due to metal loss. Since the RGWN scope is 
broader than the field of plasmonics, it calls for an all-dielectric implementation to mitigate 
the losses brought on by plasmonics. Implementing RGWNs using photonic circuitry would 
also address the coupling loss associated with the difference in the modal overlaps between 
the plasmonic modes in the RGWN and the interfacing dielectric optics.   

This new design paradigm is based on different underlying physics and thus opens up new 
directions for the design of artificial optical materials and devices. Since the RGWN design 
relies on the interference of local waves, we can use these accessible design parameters to 
program optical functions directly onto the network. Furthermore, the constraints on the 
propagation and coupling of the local waves in RGWNs allow for the device operation to 
reduce to a simple mathematical representation using S-matrix formalism. This allows for 
the network programming to take the form of an optimization procedure over a relatively 
small parameter space. The RGWN S-matrix representation was demonstrated here where 
the inputs were given and the S-matrix of device was designed to give a desired output (e.g., 
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element of the 2D network is replaced by a six-arm 3D junction element. Using 3D FDTD, 
we have verified that six-way equal power splitting occurs for pulsed excitation in a coaxial 
Au-air waveguide junction. Like for the 2D-RGWN, the dispersion of the infinitely large 
periodic 3D-RGWN is predominantly determined by the network parameters rather than 
the waveguide dispersion. This is demonstrated by the noticeable difference in the band 
diagrams (Fig. 5b and 5c) obtained for two networks comprised of the same waveguides but 
with different inter-node spacing. 
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RGWNs offer a different approach for designing dispersive photonic materials.  Whereas 
photonic crystals rely on the formation of Bloch wave states by interference of waves 
diffracted from an array of periodic elements, a truly non-local phenomenon; RGWNs rely 
on the coherent superposition of power flowing along isolated waveguides and splitting at 
X-junctions. Furthermore, in photonic crystals, the interference pattern of the diffracted 
waves depends on the nonlocal periodic spatial arrangement of the diffracting elements; 
and in RGWNs it is the local network topology that determines the dispersion and 
resonance features. For example, in a RGWN, the coherent wave propagation through the 
network is determined only by the total path length along the waveguide and the phase 
shift added at a power splitting event, having no restriction on whether the waveguides are 
straight or curved. Metamaterials also feature a design approach based on the attributes of 
localized resonances, but their dispersive properties do not depend on any length scale 
between resonant elements – thus differing substantially from RGWNs. Arrays of coupled 
resonator optical waveguides (CROWs) feature discrete identifiable resonators that act as 
the energy storage elements, and dispersion occurs as modes of adjacent resonators are 
evanescently coupled. By contrast, in RGWNs, energy is not stored resonantly in discrete 
resonators, but rather in the network of waveguides that are designed to exhibit a collective 
resonant behaviour.  

The operation of RGWNs was demonstrated in this chapter using plasmonics, which 
allowed for a simple layout and broadband range of operation; however, this 
implementation also brought about substantial attenuation due to the fundamental loss of 
plasmonic modes. As indicated above, the plasmonic MIM modes used here have typical 
propagation lengths of about 50 microns due to metal loss. Since the RGWN scope is 
broader than the field of plasmonics, it calls for an all-dielectric implementation to mitigate 
the losses brought on by plasmonics. Implementing RGWNs using photonic circuitry would 
also address the coupling loss associated with the difference in the modal overlaps between 
the plasmonic modes in the RGWN and the interfacing dielectric optics.   

This new design paradigm is based on different underlying physics and thus opens up new 
directions for the design of artificial optical materials and devices. Since the RGWN design 
relies on the interference of local waves, we can use these accessible design parameters to 
program optical functions directly onto the network. Furthermore, the constraints on the 
propagation and coupling of the local waves in RGWNs allow for the device operation to 
reduce to a simple mathematical representation using S-matrix formalism. This allows for 
the network programming to take the form of an optimization procedure over a relatively 
small parameter space. The RGWN S-matrix representation was demonstrated here where 
the inputs were given and the S-matrix of device was designed to give a desired output (e.g., 
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routing, mode converting). However, this formalism could be extended to different type of 
functions, such as sensing, in which the inputs are given and the output changes are 
monitored. In this chapter, dichroic and trichroic RGWN color routing was demonstrated as 
a proof of concept; however, incorporating more components into the RGWN and therefore 
increasing the possible degrees of freedom, could allow for more complex devices or 
alternatively for devices with enhanced performance. Furthermore, we exemplified the 
RGWN design paradigm using plasmonics, nesting a split element simply by intersecting 
waveguides, still the concept is broad and implementing the concept using photonic 
component could open new opportunities in the design of photonic circuitry devices. 
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1. Introduction 
Optical components that permit the miniaturization of photonic integrated circuits to a scale 
comparable to the wavelength of light are good candidates for future optical network and 
optical computing. All-optical communication is one of the solution for the electronic 
bottleneck viz speed and size, thanks to their ability to process the information at the speed 
of light. Optical logic gates are the fundamental components in optical digital information 
processing.  In recent years, researchers have demonstrated all-optical logic gates using 
different schemes based on  nonlinear effects in optical fibers (Ahn et al., 1997; Bogoni et al., 
2005; Menezes et al., 2007), in semiconductor devices (Kyoung Sun Choi et al., 2010; Kim et 
al., 2002; Zhihong Li & Guifang Li 2006; Dorren et al., 2004; Stubkjaer, 2000) and in 
waveguides (Tetsuro Yabu et al., 2002; Yaw-Dong Wu, 2005; Yaw-Dong Wu et al., 2008). But 
most of the reported works suffer from certain fundamental limitations including big size, 
low speed and difficult to perform chip-scale integration. 

Nowadays, photonic crystals (PhC) draw significant attention as a platform on which to 
build devices with dimensions in the order of wavelengths of light for future photonic 
integrated circuits. They are having some unique properties such as compactness, high 
speed, low power consumption, better confinement which make them promising candidate 
in photonic integrated circuits (Yablonovitch, 2003; Cuesta-Soto et al., 2004).  Logic functions 
based on photonic crystal can be realized by nonlinear effect (Notomi et al., 2007), ring 
resonator (Andalib & Granpayeh, 2009), and multimode interference (Hong-Seung Kim et al 
2010). They require significant amount of power, nonlinear material, long interaction length 
and two different wavelengths for probing and input signals. One of the effects of complex 
spatial dispersion property in PhC namely self collimation provides a mechanism to employ 
optical switching and logic functions (Zhang et al., 2007; Susan et al., 2010).  

2. Theory of photonic crystal 
Photonic crystals (PhC) are new class of optical material represented by natural or artificial 
structure with periodic modulation of the permittivity.  Multiple interference of light on a 
periodic lattice leads to a photonic band gap and anomalous dispersion because light with a 
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peculiar property leads to an opportunity for a number of applications. Depending on the 
geometry of the structure, PhC can be classified into one-dimensional (1D), two dimensional 
(2D) and three-dimensional (3D) structures. Two-dimensional photonic crystals impose 
periodicity of the permittivity in two directions, while in the third direction the medium is 
uniform. Because of the ease of fabrication and analyzing, 2D photonic crystals have 
attractive attention of large number of researchers and engineers.  

The properties of photonic crystal can be engineered through the process of doping which is 
achieved by either adding or removing dielectric material in a certain area. The dielectric 
materials then act as a defect region that can be used to localize an electromagnetic wave. 
Upon incident radiation, the periodic scatterers, that is the periodic dielectric materials in the 
photonic crystal could reflect an incident radiation at the same frequency in all directions. 
Wherever in space the reflected radiation interferes constructively, sharp peaks would be 
observed. This portion of the radiation spectrum is then forbidden to propagate through the 
periodic structure, and this band of frequencies is called photonic bandgap. On the other hand, 
wherever in space an incident radiation destructively interferes with the periodic scatterers in 
a certain directions, this part of the radiation spectrum will propagate through the periodic 
structure with minimal attenuation and this band of frequencies is called pass band. 
Introducing point defect or line defect, strict periodicity in the PhC is broken and can form 
optical cavity with high Q factor and low mode volume or lossless optical waveguide. 

2.1 Two dimensional square lattice and Brillouin zone 

In two dimensional photonic crystals the permittivity is modulated in two directions, say in 
the x and z plane: ε(r) = ε(x,z). Periodicity in two dimensions can be realized in various 
geometries, the most common being the square and the triangular lattices. In our work, we 
consider square lattice of silicon rods embedded in air background. This square lattice 
having a starting period a’=√2 a along the  x axis where ‘a’  is lattice constant and oriented at 
45° with respect to the x axis as shown in Figure 1a.  Successive rods are shifted by δx along 
the x axis and by δz along the z axis, δx and δz values are given as    

 '/ 2 / 2x y a a     (1) 

In this case, the direct lattice is formed by the primitive vectors a1 and a2 in the real space 
and   given by the following equations  
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Where x̂ and ẑ are unit vectors along the x axis and z axis respectively. 

Reciprocal lattice vectors b1 and b2 in the reciprocal space are written as 
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The first Brillouin zone is defined as the region of the reciprocal space formed by the points 
which are closer to the origin than to any other vertex of the periodical lattice. Our structure 
has a diamond shaped Brillouin zone, which is illustrated in Figure 1d. The Irreducible 
Brillouin Zone (IBZ) is the triangular wedge in the bottom right corner and the rest of the 
Brillouin zone can be related to this wedge by rotational symmetry. The three special points 
, M and X correspond to (0, 0), (√2л/a, 0) and (√2л/a, √2л/a) respectively. Due to 
periodicity structure, the behavior of the entire crystal can be obtained by studying the unit 
lattice in the IBZ.     

            
(a)                                             (b) 

 

                                               
                                              (c)                                                    (d) 

Fig. 1. a) Two-dimensional photonic crystal with square lattice b) primitive vectors a1 and a2   
in real space c) & d) First Brillouin Zone of square lattice 

2.2 Bloch-floquet theorem 

The dielectric function in wave vector is a function of spatial co-ordinates r and can be 
represented by  

 ( ) ( ) jkrr g k e dk     (6)  

where g(k) is the dielectric function in wave vector representation and k is the wave vector.  

In periodicity condition, the dielectric values of the function are repeated with lattice vector 
R in each direction and R= ma1+na2 where m and n are integers. The dielectric constant in a 
periodic structure is given as     
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 ( ) ( )r r R    (7) 

 ( ) ( ) jkr jkRr R g k e e dk      (8) 

The propagation of a wave in a periodic medium is governed by the Bloch-Floquet theorem 
which is the product of a plane wave with a periodic function and states that 

 ( ) ( )jkrE r e u rk k   (9) 

where uk(r) is a periodic envelope function on the lattice and  uk(r) = uk(r + R).  

2.3 Photonic band gap - Plane Wave Expansion Method 

Photonic crystals have photonic band gap, which is the gap between the air-line and the 
dielectric line in the dispersion relation of PhC.  Photonic crystals forbid the propagation of  
the range of frequency in the band gap, and allow the propagation of other frequencies with 
low loss. Photonic band diagram gives the information about the dispersion characteristics 
w (k) for the Eigen mode of the PhC.  

The Plane Wave Expansion method (PWE), can be used to calculate the band structure using 
an eigen formulation of the Maxwell's equations, and thus solving for the eigen frequencies 
for each of the propagation directions of the wave vectors (Igor A. Sukhoivanov & Igor V. 
Guryev, 2009). The Helmholtz equations for TE and TM polarization can be derived from 
the fundamental Maxwell’s equations,  
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The dielectric function can be expanded to the Fourier series due to the periodicity   

 
1 ( ).exp( . )
( )

G jG r
r G




   (12) 

where G is a linear combination of reciprocal vector G= lb1+nb2 and χ(G) is Fourier 
expansion coefficient which depends on the reciprocal lattice vectors.   

Substitution of Eq. 12 in Eq. 10 & 11 gives 
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The eigen value equations for the Fourier expansion coefficients of electric field and 
magnetic field are                 
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These are ’Master Equations’ for 2D photonic crystals. Here G and G’ are in-plane reciprocal 
lattice vectors, k is in-plane wave vector and ω is the eigen frequency of the TE polarization. 
The E(G) and H(G) can be projected onto the unit and orthogonal vectors.  

Rod type PhC consists of silicon dielectric rods with relative permittivity εa periodically 
embedded in air with a dielectric permittivity εb.  For simplification, assume only one rod is 
present in the unit cell and the space dependence of the inverse of the permittivity χ in this 
elementary cell can be expressed as     

 1 1 1 1( ) ( )r R
Rr b a b


   

     (17) 

where θ(r) is the Heaviside function and its value is 1 inside the rod and 0 outside the rod 
and  χa =1/ εa , χb=1/εb.  The expression for Fourier expansion coefficients of the dielectric 
function is represented by   

 1 1( ) exp( )r jGr dr
V rVo o
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where Vo is the volume of the unit cell. In our structure, Vo= a1 x̂ x a2 ẑ + a1 ẑ x a2 x̂ . 
Substituting Eq. 17 in Eq. 18, the following equation can be obtained  

 1 1 1 1( ) ( )exp( ),0r r jGr drGb V a b Vo o
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where δG,0 =1 if G=0 and  δG,0 =0 if G≠0. Using Bessel function Eq. 19 can be written as  
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where πra 2 is the cross-section area of the rod and J1(Gr) is the first order Bessel function. The 
set of the reciprocal lattice vectors should now be selected to provide correct Fourier 
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expansion of the dielectric function and the Bloch functions.  Square lattice of silicon rod in 
air is considered in our structure with εa = 11.56 and εb = 1.  

Thus from Eqs. 15 & 16, for any given value for k leads to an infinite eigen value problem, 
these truncated by restricting G to a set of M vectors. The k-path within the first Brillouin 
zone are setting through , M and X correspond to (0,0), (√2л/a,0) and (√2л/a,√2л/a) 
respectively. The wave vector k describes the edge of the IBZ along the direction X, M 
and MX for reaching the extrema of ω(k) and this establishes the dispersion relation.  

 
Fig. 2. Photonic band diagram of square lattice of silicon dielectric rod in the air      

The Figure 2 shows the photonic band diagram of square lattice of silicon dielectric rod in 
the air. The radius of the silicon rod (ra) is 0.3a. In this rod type, only TM polarization exists. 
The first band gap lies in the normalized frequency region (ωa/2лc) 0.21 to 0.25.  

2.4 Dispersion properties of photonic crystals 

Dispersion of the Bloch modes is one of the most important properties of the photonic 
crystals and it determines the propagation of modes in the crystal. It depends on many 
parameters of the PhC such as lattice type, the refractive index contrast between the 
dielectric material and the host material and distribution of atoms in the primitive cell.   

Light pulse in a photonic crystal can be represented as a superposition of the Bloch modes 
with different Bloch vectors and frequencies 

 ( , ) ( , ) ( , )   ,u r t f k m r t dkk mm
    (21) 

where ψ k,m is m-th Bloch mode with the Bloch vector k and f(k,m) is the amplitude of the 
mode. The motion of the light pulse in photonic crystal is governed by the group 
velocity  = . (k) vg k  .  Since the light pulse is constructed from a superposition of several 
pulses with different combinations of k and n, let us consider them independently. Each 
pulse component has the group velocity = . (k) k=k  ,v ig i k  . If the group velocities Vg,i  are 
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close to each other the distortion of the original pulse will be minimal. If the group velocities 
are different the original pulse will widen. The group velocity and the group velocity 
dispersion are obtained from the dispersion diagram. The light propagation inside the PhC 
is governed by the Equifrequency Surface (EFS) which is the cross section of the band 
diagram at constant frequency. If the directions of the pulses components group velocities 
are perpendicular to the EFS, the widening of the original pulse is determined by the shape 
of the EFS.  Each group velocity is locally perpendicular to local EFS. If the curvature of the 
EFS is large the original pulse will diverge or converge, depending on the sign of the 
curvature. So, depending on the EFS local curvature as well as on its evolution with the 
wavelength and the incident wave-vector, there are different types of effect are observed in 
PhC such as self-collimation, superlensing, negative refraction and superprism. These effects 
are used to control light propagation inside the PhC.   

2.5 Self-collimation effect  

Self collimation effect is a linear non-diffraction phenomenon, totally independent of light 
intensity (Kosaka et al., 1999).  PhC are designed to have dispersion properties that allow the 
beam to propagate without spatial spreading. In the equifrequency contour, flat square 
contour with zero curvature can be used to latterly confine the light since all the pulse 
components propagate with the same group velocity. This effect is called self-collimation 
effect. It provides a mechanism to control the light as in a waveguide. 

 
Fig. 3. First band TM Equifrequency contour of photonic crystal dispersion surface in the 
first Brillouin zone  

The Figure 3 shows the frequency contour for the square lattice PhC consisting of silicon 
rods embedded in air with rod radius 0.3a. In this contour map, the curves of the frequencies 
around 0.194(a/λ) can be identified as squares with round corners centered at the M point, 
where λ is the wavelength of incident radiation whose value is 1550 nm. So self-collimation 
phenomenon occurs around the normalized frequency 0.194. RSOFT BandSOLVE tool is 
used to calculate band diagram and equifrequency contour. When light is incident from a 
high refractive index (nh) medium onto a low refractive index (nl) medium, the incident 
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wave is totally reflected back into the high refractive index  medium at the interface, 
provided the incident angle is larger than the critical angle given by θc = sin-1(nl/nh) (Chul-
Sik Kee et al., 2007) . Self-collimated beams can be totally reflected at the interface of a PhC 
and air because PhC and air correspond to high refractive and low refractive mediums 
respectively.  When it undergoes total internal reflection, the field amplitude decays very 
rapidly into air and becomes negligible at a distance within one lattice constant. An air layer 
created by introducing a line defect by removing a few rods in a row is expected to give rise 
to total internal reflection.  Reflection provides a mechanism for bending and splitting of 
self-collimated beams.   

3. All optical logic gates 
All-optical logic gates will be the key elements used in next generation optical computer and 
optical network. All-optical signal processing can handle large bandwidth signals, large 
information flows and no need of electrical to optical conversion. All-optical logic gates are 
capable of performing many logic functions.  These are expected to find many applications 
in optical communication, photonic microprocessors, optical signal processors, optical 
instrumentation, etc.  AND logic gate is used to perform address recognition, packet-header 
modification, and data-integrity verification. All-optical AND-gates have served as 
sampling gates in optical sampling oscilloscopes (Westlund, et al., 2005) owing to their 
ultrafast operation compared to traditional electrical methods. XOR gates can perform a 
diverse set of processing functions, including comparison of data patterns for address 
recognition and subsequent packet switching, optical generation of pseudorandom patterns, 
data encryption/decryption, and parity checking.  Threshold detector functionality can be 
realized by XNOR logic gate. All-optical NOT-gates can be used as inverter and switches. 
Combination of logic gates may be employed to perform basic or complex computing and 
arithmetic functions such as binary addition, subtraction, comparison, decoding, encoding 
and flipflops.  

3.1 Structure and optimum values of the proposed logic gates  

The proposed logic gate is a square lattice two dimensional PhC that consists of silicon 
dielectric rods in air background. The   structure has a width of 223 a  in x-direction and a 
length of 225 a  in z-direction. The dielectric constant and the refractive index of the 
dielectric rods are 12.0 and 3.46 respectively. In this structure the square lattice is oriented at 
45° with the interface parallel to the Γ-M direction with period = 2' aa  where ‘a’ is a lattice 
constant. Successive cells are shifted by δx along the x axis and δz along the z axis. The 
amount of shifting is x = z = / 2 = 2 / 2' aa  .  The Figure 4a, 4b and 4c illustrate the 2D 
PhC lattice used for designing logic gates. The circles represent the silicon rods whose radii 
are r=0.35a =105 nm, where a=302 nm is the lattice constant. 

The schematic circuital layout of the proposed logic gates is shown in Figure 4d. Electrical 
input signals 1 and 2 activate synchronized laser light sources 1 and 2 respectively to 
generate optical input signals I1 and I2. The reference signal Iref is obtained from reference 
laser phase locked with lasers 1 and 2. All the input signals including reference have same 
frequency, polarization, phase, and optical path, with only the reference signal having 
different amplitude for different gate types. Two input optical signals are coupled using Y 
coupler and applied to one of the input port of the crystal device and the reference signal      
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Iref is launched at the second input port. The photonic crystal structure with mirror and 
splitter performs a specific logic gate function by combining the reflected signal and the 
partially transmitted reference signal. The optical output is detected and converted into 
electrical signal by photo detector. This structure can be used for stand alone logic gates. In 
an integrated circuit the output value will be standardized using a PhC amplifier and given 
to the input port of the next in sequence logic gate and so on. 

 

 
Fig. 4. a Proposed structure of AND, NAND, NOR & XNOR logic gates 

 
Fig. 4. b Proposed structure of XOR logic gate 

 
Fig. 4. c Proposed structure of OR logic gate 
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Iref is launched at the second input port. The photonic crystal structure with mirror and 
splitter performs a specific logic gate function by combining the reflected signal and the 
partially transmitted reference signal. The optical output is detected and converted into 
electrical signal by photo detector. This structure can be used for stand alone logic gates. In 
an integrated circuit the output value will be standardized using a PhC amplifier and given 
to the input port of the next in sequence logic gate and so on. 
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Fig. 4. d Schematic circuital layout of the proposed logic gates 

The proposed photonic crystal based logic gate utilizes both bending and splitting 
mechanisms of self collimating beam.  In this structure two line defects are created by 
reducing the radius of 15 rods in the Γ-X direction. First line defect, in which 15 rods are 
completely removed act as mirror (M) and second one, in which the radius of the defect rods 
are reduced act as a splitter (S).  When the self collimated beam is incident at rod-air 
interface, it is partially reflected and partially transmitted and there is a phase change ‘ø’ 
occurs in the reflected wave. The power splitting ratio at the line defect and phase difference 
between the transmitted and reflected signals are dependent on the radius of the rod. From 
the Figure 5 it is evident that at the defect rod radius rd=83nm=0.274a the transmitted and 
the reflected powers are divided equally and at rd=0 the mirror completely reflects the 
incident beam. Thus mirror completely reflects the incident beam and the splitter splits the 
beam with the power ratio 50:50.  

 
Fig. 5. Normalized transmitted and reflected power with respect to defect rod radius 

The phase difference between the transmitted and reflected beam depends on the defect rod 
radius. If the defect rods radii rd  varied and  greater than host rods radii the phase 
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difference between the transmitted and the reflected signal  is –π/2 and if  it is less than host 
rods radii  the phase difference is π/2 (Deyin Zhao et al., 2007). 

PhC logic gate structure consists of four ports. Inputs and reference inputs are applied to 
port 1 and port 2 and the outputs are taken from the output ports 1 and 2. All incident 
signals including reference signal having the same wavelength of 1.55 μm, phase, and 
polarization. At the interfering point the path lengths of input signals are equal that is the 
path length from the AMS is equal to the path length BS which is set as 16 2a . The reflected 
input signal from the mirror interferes with another signal at the splitter. This interference is 
either constructive or destructive depending on their phase difference. The output taken 
from the output port 1 is destructive and port 2 is constructive.  

Based on the relation between the transmitting and the reflecting signal t2+ r2=1, the 

transmission amplitude of the beam is e / 2  i and the reflection amplitude is 
( )2e / 2  

i 
.The propagation of a wave in a periodic medium is governed by the Floquet-

Bloch theorem which is given by ( ) ( )E iE r u r e  , where E is a plane wave and u(r) has the 
periodicity of the PhC. The transmitted and reflected signals are expressed as 
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where R12 is reflected input signal 1 at splitter and  T22 is the transmitted input signal 2 and 
1 and 2 are the phase shifts of reflected and transmitted signals respectively. The resultant 
signal at the output port is a linear combination of reflected and transmitted beam, 
expressed as 
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and its corresponding intensity 
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Intensity of the reference signal is set at different levels according to the desired logic gates. 
In our simulations the mesh sizes in the x- and z- directions are set to be a /16. The time step 
for this mesh size is calculated from the Eq. 26 
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difference between the transmitted and the reflected signal  is –π/2 and if  it is less than host 
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and it is found to 0.04 femtosecond. The calculated area is surrounded by a Perfectly 
Matched Layer (PML) boundary.  

3.2 Realization and simulation results of logic gates  

3.2.1 XOR and OR logic gates 

The input signals I1 and I2  are applied to the port 1 and 2 and the XOR gate outputs is taken 
from the output port 1. I1  and  I2 are equal to P0. The reflected input signal I1 from the mirror 
interfered with either reflected signal or transmitted signal of I2 at the splitter. Either 
destructive or constructive interference are obtained at port 1 or 2 respectively depending 
on their phase difference. When both the input signals are same the output of XOR gate is 
zero and both are different the output is one.  

In the case of OR gate, the input signals are combined and applied to the input port 2 and 
the output is taken from the output port 1.  When both the signals are zero the output is zero 
and if any one of the input is high, the output is also high. To validate this theoretical 
prediction, steady state electromagnetic field distribution is simulated using FDTD method. 
Rsoft FullWAVE software is used to simulate logic gate functions. The field distributions of 
XOR and OR logic gates are shown in Figure 6 and their corresponding truth table is shown 
in Table 1.   

      
                    (a)                   (b)             (c) 

Fig. 6. Electromagnetic field distributions of XOR logic gates. (a) & (b) any one of the input 
signal is applied (c) both input signals are excited simultaneously 

    
(a)                                                      (b) 

Fig. 7. Field distributions of OR logic gates. a) any one of the input signal is applied b) both 
input signals are excited simultaneously 
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I1 

 
I2 

XOR OR 
O/P power Logic level O/P power Logic level 

0 0 0 0 0 0 
0 1 0.5P0 1 0.5P0 1 
1 0 0.5P0 1 0.5P0 1 
1 1 0.001P0 0 1.00 P0 1 

Table 1. Truth table for XOR and OR gate 

3.2.2 AND logic and NOR logic gates 

To realize AND logic, inputs I1 , I2 and reference beam Iref are taken as P0 and 0.5P0 and  
combined inputs I1 and I2  are applied at input port 1 and Iref is applied at port 2. The 
destructive interfered signal at the output port 1 is considered as a AND output. In AND 
logic, when both the input signals are high the output is high otherwise it is zero. In 
simulation it is found that the output intensity is 0.24P0 for separate excitation of I1 and I2 
and 0.751P0 for simultaneous excitation of both I1 and I2. If both the signals are not applied 
the output is 0.25P0.In the case of NOR gate, inputs I1 , I2 and reference beam Iref are 
considered as P0 and 1.5P0 respectively. The logic function of this gate is, if both the inputs 
are low the output is high or else it is zero.  The simulation results show that when both the 
input signals are zero the output is 0.759P0 and if any one signal is applied the output is 
0.25P0.  Truth table for AND logic and NOR logic gates is tabulated in Table 2. 
 

I1 I2 
AND (Iref= 0.5P0) NOR ( Iref =1.5P0) 

O/P power Logic level O/P power Logic level 
0 0 0.25P0 0 0.759P0 1 
0 1 0.24P0 0 0.25P0 0 
1 0 0.24P0 0 0.25P0 0 
1 1 0.751P0 1 0.25P0 0 

Table 2. Truth table for AND logic and NOR gate 

Steady state electromagnetic field distributions of NOR gate and AND gate for various 
input combinations are shown in Figure 8 and Figure 9 respectively.   

   
                           (a)         (b)               (c) 

Fig. 8. Electromagnetic field distributions of NOR logic gates. (a) no input signal is applied 
(b) any one of the input signal is applied c) both input signals are applied simultaneously 
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Fig. 6. Electromagnetic field distributions of XOR logic gates. (a) & (b) any one of the input 
signal is applied (c) both input signals are excited simultaneously 

    
(a)                                                      (b) 

Fig. 7. Field distributions of OR logic gates. a) any one of the input signal is applied b) both 
input signals are excited simultaneously 
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Fig. 8. Electromagnetic field distributions of NOR logic gates. (a) no input signal is applied 
(b) any one of the input signal is applied c) both input signals are applied simultaneously 
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                             (a)                                              (b)                                             (c) 

Fig. 9. Electromagnetic field distributions of AND logic gates. a) both the input signals are 
low b) any one of the input signal is high  c) both input signals are high. 

3.2.3 NAND and XNOR logic gates 

For NAND logic realization, inputs I1 and I2  are set as P0 and reference beam Iref  is set as 
2.5P0. These are applied at input port 1 and 2 respectively. In NAND logic, when both the 
input signals are high the output is zero and any one of the input signal is low the output 
is   high. It is evident from the simulation that when none of the signal is applied the 
output is 1.25P0 and if any one of the signal is applied the output is 0.756P0.   If both the 
signals are excited the output is 0.25P0. The inputs I1 & I2  and Iref are considered as P0 for  
XNOR gate realization. Logic operation for XNOR gate is known that when both the 
inputs are same the output is high and if both the inputs are different the output is low. In 
simulation, it is found that the output is 0.505 P0 for simultaneous excitation of inputs and 
also for none of the input signal.  When any one of the signal is applied the output is 
0.001P0. The simulated field distributions of XNOR logic gate are illustrated in Figure 10 
and NAND logic gate field distribution is shown in Figure 11. Table 3 explicates the truth 
table for NAND and XNOR logic gates.   

 

    
                           (a)                  (b)                    (c) 

Fig. 10. Electromagnetic field distributions of XNOR logic gates. (a) both the input signals 
are low b) any one of the input signal is applied (c) both the input signals are applied 
simultaneously. 
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                             (a)                                             (b)                                              (c) 

Fig. 11. Field distribution of NAND logic gates a) no input is applied b) any one of the input 
signal is excited c) both the signals are applied simultaneously 
 

I1 I2 
NAND(Iref=2.5P0) XNOR ( Iref =P0) 

O/P power Logic level O/P power Logic level 
0 0 1.25P0 1 0.505P0 1 
0 1 0.756P0 1 0.001P0 0 
1 0 0.756P0 1 0.001P0 0 
1 1 0.25P0 0 0.505P0 1 

Table 3. Truth table for NAND logic  and XNOR  logic gate 

4. Photonic crystal optical logic devices for a packaged system   
In a complete packaged system, photonic crystal based laser light sources, logic gates and 
detector are integrated within a single chip. Figure 12 illustrates the integrated photonic 
crystal based devices. Light source laser is based on a 2D photonic crystal slab patterned 
with a square lattice. Holes are drilled in GaAs dielectric material. The periodicity of the 
holes is fixed at 315 nm, and the hole radius is tuned from 105 to 130 nm to change the 
resonance frequency of the cavities (Hatice Altug et al., 2006). Lasers are driven by the given 
electrical signals and the corresponding optical output is applied to the all-optical logic gate. 
Laser 1 & 2 output signals are coupled using coupler and launched to the input port 1 of 
logic gate and the phase locked reference signal is applied to input port 2. All-optical logic 
gate performs the logical functions in optical domain.  

In the integrated photonic crystal based logic gates, output value of the logic gate will be 
standardized using a PhC amplifier. The gain of the amplifier is adjusted such that the 
output level is either “1” or “0”. In Figure 12 AND logic gate output is standardized and 
given to one of the input of XOR gate and other input is getting from the output of another 
preceding logic gate. Thus the standardized output of one logic gate is given to the input 
port of the next in sequence logic gate and so on.  Finally the output of the last logic gate is 
applied to the photodetector. The photodetector detects the optical signal. Photo detector is 
designed using triangular air-hole photonic crystal with lattice constant is 420nm and slab 
thickness is 204 nm (M Notomi and T Tanabe 2010).  The detector converts the optical signal 
into electrical output.  
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Fig. 9. Electromagnetic field distributions of AND logic gates. a) both the input signals are 
low b) any one of the input signal is high  c) both input signals are high. 
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Fig. 10. Electromagnetic field distributions of XNOR logic gates. (a) both the input signals 
are low b) any one of the input signal is applied (c) both the input signals are applied 
simultaneously. 
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                             (a)                                             (b)                                              (c) 

Fig. 11. Field distribution of NAND logic gates a) no input is applied b) any one of the input 
signal is excited c) both the signals are applied simultaneously 
 

I1 I2 
NAND(Iref=2.5P0) XNOR ( Iref =P0) 

O/P power Logic level O/P power Logic level 
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Table 3. Truth table for NAND logic  and XNOR  logic gate 

4. Photonic crystal optical logic devices for a packaged system   
In a complete packaged system, photonic crystal based laser light sources, logic gates and 
detector are integrated within a single chip. Figure 12 illustrates the integrated photonic 
crystal based devices. Light source laser is based on a 2D photonic crystal slab patterned 
with a square lattice. Holes are drilled in GaAs dielectric material. The periodicity of the 
holes is fixed at 315 nm, and the hole radius is tuned from 105 to 130 nm to change the 
resonance frequency of the cavities (Hatice Altug et al., 2006). Lasers are driven by the given 
electrical signals and the corresponding optical output is applied to the all-optical logic gate. 
Laser 1 & 2 output signals are coupled using coupler and launched to the input port 1 of 
logic gate and the phase locked reference signal is applied to input port 2. All-optical logic 
gate performs the logical functions in optical domain.  

In the integrated photonic crystal based logic gates, output value of the logic gate will be 
standardized using a PhC amplifier. The gain of the amplifier is adjusted such that the 
output level is either “1” or “0”. In Figure 12 AND logic gate output is standardized and 
given to one of the input of XOR gate and other input is getting from the output of another 
preceding logic gate. Thus the standardized output of one logic gate is given to the input 
port of the next in sequence logic gate and so on.  Finally the output of the last logic gate is 
applied to the photodetector. The photodetector detects the optical signal. Photo detector is 
designed using triangular air-hole photonic crystal with lattice constant is 420nm and slab 
thickness is 204 nm (M Notomi and T Tanabe 2010).  The detector converts the optical signal 
into electrical output.  
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5. Challenges in fabrication   
The designing of the beam splitter and the mirror requires high precision of fabrication. Any 
small deviation from the design of the beam splitters leads to a decay of the optical 
performance. For instance, a beam splitter would present a wrong phase shift, optical loss, 
unequal splitting or even mirror like operation if its narrow veins are unintentionally 
narrower or removed. The Silicon rods must be uniform, smooth and vertical at the side 
wall in order to maintain the collimation effect throughout the device. The optical path 
length of the interfering signals should be maintained equal otherwise it will lead to 
additional phase shift.  

6. Conclusion   
Thus all the logic gates functions are implemented in non-channel photonic crystal. Self-
collimation, bending and splitting effects are used to realize logic gates. The Finite 
Difference Time Domain method (FDTD) gives fairly accurate results in line with the 
theoretically predicted concepts. The proposed design exhibits an on-off contrast ratio 
around 3 dB and a device size of 10x10 μm2 operating at the optical communication 
wavelength 1550 nm.  The main advantages of all-optical logic gates are small dimensions, 
simple structure and high speed. These devices may turn out to be good candidate for 
optical computing and photonic integrated circuits. 
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1. Introduction 

Since the Bragg layers, also referred as to 1D photonic crystal, lie at the core of many optical 
devices, this chapter is devoted to the study of the theory underlying the design of 
multilayered structures [Macleod 2001]. The corresponding analytical model is explained in 
details in section 2 followed in the next sections, by various design examples for the shake of 
illustration.  

Of special interest are the Silicon-Air Bragg mirrors obtained by DRIE micromachining. 
They are considered as an important building block leading to a wide variety of 
applications. First, we elaborate on the use of this building block in resonant cavities and in 
interferometers (section 3). Then, we apply the multilayered stack theory to a case of study 
for a special structure: The mode selector, covered in section 3.7). Finally, we conclude this 
work by highlighting about an advanced architecture of 1D photonic crystals based on 
curved Bragg mirrors. 

2. Theory and modeling of Bragg reflectors 
Under specific conditions, a stack of multilayered structure gives rise to nearly perfect 
optical reflectance, approaching 100 %, as compared to the reflectance from a single 
interface. This is the main characteristic that makes the interest in such structures, called 
Bragg reflectors or Bragg mirrors. This phenomenon of enhanced reflectivity might be 
explained by the fact that the presence of two (or more) interfaces means that a number of 
light beams will be produced by successive reflections, that may interfere constructively (or 
destructively, when considering anti-reflective surfaces), and the properties of the 
multilayered film will be determined by the summation of these beams.  This might be the 
case in thin film assemblies. In thick assemblies however, the later phenomenon does not 
take place. Before going into the analytical details, we differentiate between thin and thick 
films. We say that the film is thin when interference effects can be detected in the reflected 
or transmitted light, that is, when the path difference between the beams is less than the 
coherence length of the light, and thick when the path difference is greater than the 
coherence length. Note that no interference can be observed when effects of light absorption 
dominate within the film, even in the case of thin films. The same film can appear thin or 
thick depending entirely on the illumination conditions. The thick case can be shown to be 
identical with the thin case integrated over a sufficiently wide wavelength range or a 
sufficiently large range of angles of incidence. Normally, we will find that the films on the 
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substrates can be treated as thin while the substrates supporting the films can be considered 
thick. 

In the upcoming treatment, we show analytically a generalized model applicable for an 
absorbing thin film assembly. The obtained result applies equally well for non-absorbing 
films. 

Let’s consider the arrangement shown in Fig. 1 where we denote positive-going waves by 
the symbol + and negative-going waves by the symbol -. Applying the boundary conditions 
on the electromagnetic field components at interface B (chosen as the origin of z-axis), we 
have: 

Continuity of the tangential components of the electric filed gives (Eb being the tangential 
component of the resultant electric field): 

 1 1b b bE E E    (1) 

Continuity of the tangential components of the magnetic filed gives (Hb being the tangential 
component of the resultant magnetic field): 

 1 1 1 1 1 1b b b b bH H H E E         (2) 
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N0

d

Incidence medium 

Substrate 

Thin Film 

Boundary B 

z

θ0

 
Fig. 1. Plane wave incident on a thin film 

where η represents the medium admittance such that: η =H/E.  

The negative sign in (2) comes from the convention used for the field propagation direction 
such that the right hand rule relating E, H and K (wave vector, along the propagation 
direction) is always satisfied. In writing equations (1) and (2), we assume that: Common 
phase factors have been omitted, and the substrate is thick enough such that no field is 
reflected back from it.  
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The fields at the other interface A at the same instant and at a point with identical x and y 
coordinates can be determined by altering the phase factors of the waves to allow for a shift 
in the z coordinate from 0 to -d. The phase factor of the positive-going wave will be 
multiplied by exp(iδ) while the negative-going phase factor will be multiplied by exp(-iδ), 
where, 

 1
1

2 cosN d 


  (7) 

N1 is the refractive index in medium 1, θ1 is the angle between the z-axis and the 
propagation direction in medium 1 and λ is the free space wavelength. The values of E and 
H at interface A become: 
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In the matrix notation, we finally obtain the following formulation: 
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This matrix relates the tangential components of E and H at the incident interface to 
tangential components of E and H transmitted through the final interface and it is known as 
the characteristic matrix of the thin film [M]. 

Now, let us consider an assembly of thin films as shown in Fig. 2 
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N2

N0

d1

Incidence medium

Substrate

Thin Film

Boundary A 
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Fig. 2. Plane wave incident on an assembly of thin film 

By adding another film to the single film shown in Fig. 1, we can write: 
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Combining with equation (14) to get the field at interface A, then we can write: 
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This result can be immediately extended to the general case of an assembly of q layers, when 
the characteristic matrix is simply the product of the individual matrices taken in the correct 
order, 
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where Em and Hm are the electric and magnetic fields components in the substrate plane. 

Dividing both sides of equation (17) by Hm, we get: 
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where 
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In this part, we look over the case of absorbing layers. Knowing that K is propagation 
vector:  
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From Snell’s law, 0x xr xmK K K   this leads to: 
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Accordingly, we get: 

The admittance of layer r in s-polarization: 
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The admittance of layer r in p-polarization:  
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In this last part of the analytical model, we present closed form relations for the 
transmittance T and the absorbance A using the definition of irradiance. If we consider the 
net irradiance at the exit of the assembly Ik: 
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The net irradiance at the entrance of the assembly Ia: 
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Let the incident irradiance be denoted by Ii, then the irradiance actually entering the 
assembly becomes: 
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The transmittance is then given by: 
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From equation (25), we get: 
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Knowing that A + R + T = 1 from the energy conservation rule, then A becomes: 
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From equation (25), we get: 
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3. Microfabricated silicon-Air Bragg as basic building blocks in cavities and 
interferometers 
3.1 Literature survey 

Many groups worked on the realisation of silicon-Air Bragg reflectors as basic building blocks 
in Fabry-Perot (FP) cavities as well as in Michelson interferometers. When considering Fabry-
Perot cavities, the use of high reflectance Bragg mirrors is intended to achieve high quality 
factor Q at the corresponding resonant wavelengths. The use of silicon restricts the wavelength 
range to the infra-red region. In the same time, light coupling using optical fibers is facilitated 
by the microfabrication of U-grooves for supporting the fibers with pre-alignment capability. 
Among the groups working on this topic, we can cite [Lipson & Yeatman 2007] from the 
imperial college who realized FP cavities obtained by KOH etching on SOI substrate. The best 
reported value of Q was 2395 in static designs while it was limited to 515 in the MEMS designs 
due to the rotation associating the translation of the MEMS mirror. Thus, the mirrors became 
unparallel and the Q-factor degraded. Another group is the group of Ecole Polytechnique de 
Montreal who realized FP cavity for inertial sensing [Zandi et al 2010] on SOI. Their Q was 
limited to 662. A third group is that of [Yun and Lee 2003] from Gwangju Institute of Science 
and Technology, Korea who realized thermally tuned FP cavities, they obtained a Q of 1373. A 
fourth group is that of [Pruessner et al. 2008] from Naval Research Laboratory, Washington 
D.C. who realised FP cavities with integrated SOI rib waveguides by cryogenic etching. They 
recorded a Q factor of 27,000. Lastly, our group at ESIEE Paris was among the pioneers in this 
domain. In our first achievements, we realized FP cavities with different architectures 
[Saadany et al. 2006]; the best recorded Q was 1291 for FP structure working as a notch filter. 
More recently, the performance was improved using cylindrical Bragg mirrors of cylindrical 
shapes combined with a fiber rod lens, leading to Q = 8818 on quite large cavities exceeding  
L = 250 µm [Malak et al. APL 2011], an unreached value for the figure of merit Q.L, which is of 
primary importance for cavity enhancement applications. Table 1 summarizes the 
specifications of the different designs discussed above. 

3.2 Fabrication technology for Si-Air Bragg reflectors (for MEMS and for fixed 
structures) 

In this section, the basic steps of the fabrication process for MEMS structures involving 
Bragg layers are highlighted. Many techniques can be used to produce vertical structures on 
silicon substrate as mentioned in [Lipson & Yeatman 2005], [Yun et al. 2006] and [Song et al 
2007]. They are based on either dry or wet etching of silicon using KOH. The process 
described here and shown in Fig. 3 pertains to the (optional) integration of MEMS structures 
together with the Bragg mirrors using dry etching. 

Starting from a raw SOI wafer, we proceed by making thermal oxidation for the whole 
wafer. In the next step, photoresist (PR) is used to cover the entire wafer where it acts as a  
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described here and shown in Fig. 3 pertains to the (optional) integration of MEMS structures 
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Static design : 70 nm
MEMS design: 10 nm 30 nm 9 nm 6.7 nm ---- ---- 

Number of 
silicon 

layers per 
mirror 
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Q-factor 
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MEMS design: 
Q = 515 

QMEMS < Qstatic 
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displacement creates 
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Qaverage = 1373 
(estimated from 
the response of a 
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Q = 27000 QTrans = 
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Table 1. Summary of the specifications for state-of-the-art FP cavities 

mask for photolithography. The PR is then patterned using UV exposure over the DRIE 
layout mask. Since the PR is a positive type, the areas exposed to UV remain soft while the 
non-exposed areas become hard and they can not be removed in the development step. 
Now, the hardened PR acts as a protection mask for the originally oxidized silicon which is 
patterned using either Reactive Ion etching (RIE) or Buffer HydroFluoric acid (BHF). The 
role of PR ends here and it is completely removed from the wafer.  

The fabrication process continues by the metal deposition over the whole wafer. The metal 
is patterned by photolithography using the frontside metal layout mask and then etched. In 
the next step, metal is deposited on the backside of the wafer where it is patterned by the 
backside layout mask and then etched. We turn again to the front side to make Deep 
Reactive Ion etching (DRIE) for the silicon structure layer [Marty et al. 2005]. At that level, 
both the oxide and the aluminum serve as mask materials for silicon etching by DRIE. 
Processing the backside again, DRIE is done for the backside, in this case, only aluminum 
serve as mask material for silicon etching by DRIE. The process ends by releasing the MEMS 
structure in which the insulating oxide is removed by vapor HF. 

For the fixed structures involving Bragg mirrors presented in this research work, the process 
differs from the one detailed above. So, in the next paragraph, we highlight the fabrication 
process as shown in Fig. 4, used for the realization of the fixed structures. 

Starting with an ordinary silicon wafer, a thermal oxidation process is carried for both sides 
of the wafer to achieve an oxide thickness = 1.7 μm. Next, PR used as a mask for 
photolithography, is sputtered over the entire wafer. This step is followed by the 
photolithography for DRIE mask for the front side and the PR is patterned accordingly. The 
following step is the plasma etching for the oxide. This photolithography ends by PR 
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removal. Then, we start processing for the back side by depositing aluminium. Next, we 
pattern the aluminium mask by photolithography using the back side layout mask. Then, 
we proceed by DRIE etching over 300 μm for the back side and the process ends up with 
DRIE etching for the front side over 100 μm. Note that all steps performed on the backside 
are optional, depending on the nature of the target device. 
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role of PR ends here and it is completely removed from the wafer.  

The fabrication process continues by the metal deposition over the whole wafer. The metal 
is patterned by photolithography using the frontside metal layout mask and then etched. In 
the next step, metal is deposited on the backside of the wafer where it is patterned by the 
backside layout mask and then etched. We turn again to the front side to make Deep 
Reactive Ion etching (DRIE) for the silicon structure layer [Marty et al. 2005]. At that level, 
both the oxide and the aluminum serve as mask materials for silicon etching by DRIE. 
Processing the backside again, DRIE is done for the backside, in this case, only aluminum 
serve as mask material for silicon etching by DRIE. The process ends by releasing the MEMS 
structure in which the insulating oxide is removed by vapor HF. 

For the fixed structures involving Bragg mirrors presented in this research work, the process 
differs from the one detailed above. So, in the next paragraph, we highlight the fabrication 
process as shown in Fig. 4, used for the realization of the fixed structures. 

Starting with an ordinary silicon wafer, a thermal oxidation process is carried for both sides 
of the wafer to achieve an oxide thickness = 1.7 μm. Next, PR used as a mask for 
photolithography, is sputtered over the entire wafer. This step is followed by the 
photolithography for DRIE mask for the front side and the PR is patterned accordingly. The 
following step is the plasma etching for the oxide. This photolithography ends by PR 
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removal. Then, we start processing for the back side by depositing aluminium. Next, we 
pattern the aluminium mask by photolithography using the back side layout mask. Then, 
we proceed by DRIE etching over 300 μm for the back side and the process ends up with 
DRIE etching for the front side over 100 μm. Note that all steps performed on the backside 
are optional, depending on the nature of the target device. 
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(k) DRIE Etching for the backside (Note that in this case, only 
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Fig. 3. (a-l) Basic steps of the fabrication process for MEMS structures co-integrated with Si-
Air Bragg mirrors. 
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(h) 

(i) 

(j)

(h) DRIE Photolithography (Oxide + Aluminum) 

(i) DRIE Etching – backside 300 um 

(j) DRIE Etching – frontside 100 um 

 
Fig. 4. (a-j) Basic steps of the fabrication process for fixed structures involving Bragg mirrors. 

3.3 Modeling and simulation of planar Bragg mirror reflectors 

Based on the analytical model presented in section 2, then if we have a single layer whose 
thickness is an odd number of quarter the wavelength, the characteristic matrix of the layer 
[M] becomes: 

  
0 /

0
i

M
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 (41) 

So, if we stack a combination of several layers alternatively of High refractive index, denote 
H, and Low refractive index, denoted L, whose thickness is an odd number of λ/4 (where λ 
is the wavelength in the corresponding medium), we can construct a high reflectance mirror 
named Bragg mirror. In the particular case where we stack a combination of five quarter-
wave layers which are different, mathematical manipulation of the equivalent characteristic 
matrix yields an equivalent admittance for the assembly: 
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where the definitions presented previously are kept unchanged. 

For ηm=η0, and considering similar indices for the high and low layers as well so that, 
η1=η3=η5=ηH  and η2=η4 =ηL , the reflectance of the assembly becomes: 

 
MEMS Based Deep 1D Photonic Crystal 

 

93 

 

26

*
0 0

6
0 0

1

1

H

L

H

L

Y YR
Y Y


 

  


                           
  

 (43) 

In general, for a pair (p) of HL layers with similar ηm and η0, we can write: 
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Based on these derivations, we built a MATLAB code to design the Bragg mirrors. In this 
comprehensive study, we focus mainly on the impact of the number of Bragg layers, the 
layer thickness and the technological errors on the reflectance and the transmittance of the 
Bragg mirror. In all the upcoming results, we consider absorption free layers with a silicon 
refractive index nSi = 3.478 and air refractive index nair = 1. 
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Fig. 5. Reflectance of Bragg mirrors for different numbers of HL pairs 

For the simulation results shown in Fig. 5, we choose a silicon thickness = 3.67 μm (33λSi/4) 
and air thickness = 3.49 μm (9λair/4) because they are relatively easy to obtain using the 
affordable fabrication technology (as compared to single quarter wavelength λSi/4 = 0.111 
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Fig. 4. (a-j) Basic steps of the fabrication process for fixed structures involving Bragg mirrors. 

3.3 Modeling and simulation of planar Bragg mirror reflectors 

Based on the analytical model presented in section 2, then if we have a single layer whose 
thickness is an odd number of quarter the wavelength, the characteristic matrix of the layer 
[M] becomes: 
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So, if we stack a combination of several layers alternatively of High refractive index, denote 
H, and Low refractive index, denoted L, whose thickness is an odd number of λ/4 (where λ 
is the wavelength in the corresponding medium), we can construct a high reflectance mirror 
named Bragg mirror. In the particular case where we stack a combination of five quarter-
wave layers which are different, mathematical manipulation of the equivalent characteristic 
matrix yields an equivalent admittance for the assembly: 
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where the definitions presented previously are kept unchanged. 

For ηm=η0, and considering similar indices for the high and low layers as well so that, 
η1=η3=η5=ηH  and η2=η4 =ηL , the reflectance of the assembly becomes: 
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In general, for a pair (p) of HL layers with similar ηm and η0, we can write: 
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Based on these derivations, we built a MATLAB code to design the Bragg mirrors. In this 
comprehensive study, we focus mainly on the impact of the number of Bragg layers, the 
layer thickness and the technological errors on the reflectance and the transmittance of the 
Bragg mirror. In all the upcoming results, we consider absorption free layers with a silicon 
refractive index nSi = 3.478 and air refractive index nair = 1. 
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reflectance in the mid-band increases as the number of layers increases which goes in 
accordance with relation (44). In fact, the reflectance increases from 71.8 % (single Si layer) 
up to 99.98 % (4 Si layers) when the number of HL pairs increases from single to four. Also, 
the mirror response becomes sharper and its bandwidth (BW) decreases as the number of 
layers increases. In the case of single layer, the BW is about 65 nm and it goes down to 58 
nm as the HL pairs increases to 4.   

In the next simulation, we study the impact of the silicon layers thickness on the mirror 
bandwidth. For this shake, we consider 4 HL pairs with fixed air layers thickness 3.49 μm 
(9λair/4), while the thickness of the silicon layers is increased from λSi/4 up to 25λSi/4 in 
steps of 2λSi. Simulation results, depicted in Fig 6, show that the mirror BW decreases as the 
thickness of the silicon layers increases. For silicon thickness λSi/4, the 3dB-BW = 238 nm 
and it decreases to 73 nm at a thickness of 25λSi/4. 
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Fig. 6. Reflectance of 4 HL pairs for various H thicknesses, L thickness is fixed to 9λair/4 

If on the other hand, we fix the thickness of the silicon layers to 33λSi/4, for the same 4 HL 
pairs, and increase the thickness of the air layers from λair/4 up to 13λair/4 in steps of λair. A 
similar effect is noticed but on a smaller BW scale since the BW decreases from 65 nm at L 
thickness = λair/4, to 55 nm at L thickness = 13λair/4. The corresponding results are shown in 
Fig. 7. Comparing between both results, we can say that the decrease in the H thickness is 
more pronounced than the decrease in the L thickness in terms of the bandwidth. Good 
control of the H thickness can give rise  to Bragg mirrors with large BW. 

Another point of interest for the Bragg mirror is the technological error. The critical 
dimension, defined as the minimum feature size on the technology mask, can not be 
maintained as drawn in the original design and thus, it translates into reduced layer 
thicknesses on the fabricated device. In fact, the thickness of the silicon layer may vary  
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Fig. 7. Reflectance of 4 HL pairs for various L thicknesses, H thickness is fixed to 33λSi/4 
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Fig. 8. Reflectance of 4 HL pairs for L thicknesses = 9λair/4 , H thickness = 33λSi/4 and 
several introduced errors. 
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Fig. 7. Reflectance of 4 HL pairs for various L thicknesses, H thickness is fixed to 33λSi/4 
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(increase or decrease) and the air layer follows the opposite trend (decreases or increases). 
Then, the device performance degrades. This issue is obvious in Fig. 8 where various error 
values are introduced into the mirror original design. We notice that the overall response 
shifts toward the left side as the error decreases from 100 nm to -100 nm in steps of 50 nm. 
Comparing the obtained responses to the error free design, we see that the mirror 
reflectance might turn from 99.98 % ideally to 0.6 % for an introduced error = ± 100 nm 
which means that the multilayered designs are not tolerant to fabrication errors exceeding 
50 nm.  

3.4 Modeling and simulation FP cavity based on Bragg mirrors 

If instead of the stack of high reflectance mirror, we introduce a gap layer whose thickness is 
an integer number of half the wavelength then the characteristic matrix [M] of this layer 
becomes: 

  
1 0
0 1

M
 

   
 

 (45) 

Thus, we can easily get a Fabry-Perot (FP) resonator if we combine two stacks of quarter 
wavelengths thick acting as high reflectance mirrors separated by a gap layer of half 
wavelength thick.  

In the next part, we illustrate, by the help of MATLAB simulations, the properties of such FP 
resonators where we study the impact of several parameters on the resonator spectral 
response. Parameters of particular interest for this comprehensive study: the mirror 
reflectance controlled by the number of Bragg layers per mirror, the impact of technological 
errors and the cavity gap length. In what follows, unless otherwise stated, we consider that 
the silicon Bragg layers of thickness = 3.67 μm (33λSi/4), the air Bragg layer has a thickness 
of 3.49 μm (9λair/4) and the gap layer has a width = 10.075 μm (13λSi/2). The silicon 
refractive index nSi is taken = 3.478 and all the layers are considered absorption free.  

We start our study by increasing gradually the number of Bragg layers. As shown in Fig. 9 , 
we found that the FWHM of the resonator decreases from 7.6 nm for single Si layer/mirror, 
to 0.56 nm for double Si layer/mirror, to 0.046 nm for 3 Si layers/mirror and finally the 
FWHM becomes 0.004 nm for 4 Si layers/mirror.  This is due to the increase in the mirror 
reflectance which goes from 71.8 % for single layer to 99.98 % for 4 Si layers. Also, the 
contrast improves and the minimum level goes from -10 dB up to -70 dB and the resonator 
sharpness improves as well.  

Now, if we consider the case of 4 Si layers/mirror with introduced errors (ε) therein, we 
obtain the curves shown in Fig. 10 .We notice that the central wavelength λ0 shifts from 1550 
nm by ±8.5 nm as ε = ± 50 nm. For ε = ± 100 nm, λ0 shifts by 18.15 nm. In addition, the 
FWHM of the peak increases from 0.004 nm for the error free case to 0.007 nm for ε = ± 50 
nm and it reaches 0.029 nm for ε = ±100 nm. This might be explained by reference to 
previous simulations carried on Bragg mirrors with introduced errors. As mentioned earlier, 
the overall response of the mirror shifts right (left) as error increases (decreases) and this is 
the reason underlying the shift in the resonance wavelength. In addition, the maximum 
reflectance of the mirror decreases from 99.98 % (in the error free case) to 99.97 % (for ±50 
nm error) to 99.93 % (for ±100 nm), that’s why the FWHM increases. 
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Fig. 9. Transmission of FP resonator for different number of silicon layers per mirror. 
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Fig. 10. Transmission of FP resonator for different errors. 

By scanning over the wavelength for the cases of ε = -50 nm and ε = -100 nm, we notice that 
other resonance peaks, with larger FWHM and reduced contrast, appear in the spectral 
response of the cavity. This result seems strange and it does not go in accordance with the 
designed FSR for the error free cavity. In fact, the designed cavity gap length = 10.075 μm 
corresponding to a quasi FSR = 119.2 nm and a resonance wavelength = 1550 nm.  
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Fig. 9. Transmission of FP resonator for different number of silicon layers per mirror. 
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By scanning over the wavelength for the cases of ε = -50 nm and ε = -100 nm, we notice that 
other resonance peaks, with larger FWHM and reduced contrast, appear in the spectral 
response of the cavity. This result seems strange and it does not go in accordance with the 
designed FSR for the error free cavity. In fact, the designed cavity gap length = 10.075 μm 
corresponding to a quasi FSR = 119.2 nm and a resonance wavelength = 1550 nm.  
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This issue might be explained by looking over the reflection response of the Bragg mirrors 
with introduced errors as shown in Fig. 11, we find that they are shifted as compared to the 
error free design. Moreover, they exhibit a non-negligible reflectance between 1575 nm and 
1600 nm and so the design performs as a good resonator. 

Analyzing the simulation results, we come out with a new definition for the cavity length 
named: The effective length Leff. This new parameter suggests that the effective reflecting 
interfaces of the resonator lie inside the Bragg reflectors and not between the inner interfaces 
as conventionally thought and so it gives rise to unexpected resonances within the quasi 
FSR. Making inverse calculations for the simulation results shown in Fig. 12, we find that for 
ε = -50 nm, the FSR = 52.15 nm corresponding to Leff = 23 μm and for ε = -100 nm, the  
FSR = 47.7 nm corresponding to Leff = 25.18 μm. 
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Fig. 11. Reflection response of Bragg mirrors for errors = -50 nm and -100 nm. 

3.5 Multilayered Si-Air structures for anti-reflection purposes 

Antireflection surfaces (usually obtained through additional material coatings) can be 
obtained also from silicon micromachinned Bragg structures. They can range from a simple 
single layer having virtually zero reflectance at just one wavelength, to a multilayer system 
of more than a dozen of layers, having ideally zero reflectance over a range of several 
decades. The type used in any particular application will depend on a variety of factors, 
including the substrate material, the wavelength region, the required performance and of 
course, the cost. There is no systematic approach for the design of antireflection coatings. 
Trial and error assisted by approximate techniques and by accurate computer calculation, is 
frequently employed. Very promising designs can be further improved by computer 
refinement. Several different approaches can be used in designing AR coating. In this 
section, we will limit our discussion to the single layer design only. Complicated analytical  
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Fig. 12. Zoom out on the transmission response of FP resonator for errors = -50 nm and -100 
nm. 

formulas can be derived for the case of multilayer coating and they lie outside the scope of 
this work so they will not be presented.  

The vast majority of antireflection coatings are required for matching an optical element into 
air. The simplest form of antireflection coating is a single layer. Consider Fig. 13. Since two 
interfaces are involved, we have two reflected rays, each representing the amplitude reflection 
coefficient at an interface. If the incident medium is air, then, provided the index of the film is 
lower than the index of the substrate, the reflection coefficient at each interface will be 
negative, denoting a phase change of 180°. The resultant minimum is at the wavelength for 
which the phase thickness of the layer is 90°, that is, a quarter-wave optical thickness, when 
the two rays are completely opposed. Complete cancellation at this wavelength, that is, zero 
reflectance, will occur if the rays are of equal length. This condition, in the notation of Fig. 13, is 
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Fig. 13. Schematic illustration of substrate coated with a single film 
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Fig. 11. Reflection response of Bragg mirrors for errors = -50 nm and -100 nm. 
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Fig. 13. Schematic illustration of substrate coated with a single film 
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Or, 

 1 0 mn n n  (48) 

The condition for a perfect single-layer antireflection coating is, therefore, a quarter-wave 
optical thickness of material with optical admittance equal to the square root of the product 
of the admittances of substrate and medium. It is seldom possible to find a material of 
exactly the optical admittance which is required. If there is a small error, ε, in y1 such that: 

  1 01 my y y   (49) 
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provided that ε is small. A 10 % error in y1, therefore, leads to a residual reflectance of 1 %. 

Zinc sulphide has an index of around 2.2 at 2 μm. It has sufficient transparency for use as a 
quarter-wave antireflection coating over the range 0.4–25 μm. Germanium, silicon, gallium 
arsenide, indium arsenide and indium antimonide can all be treated satisfactorily by a 
single layer of zinc sulphide. There is thus no room for manoeuvre in the design of a single-
layer coating. 

In practice, the refractive index is not a parameter that can be varied at will. Materials 
suitable for use as thin films are limited in number and the designer has to use what is 
available. A Better approach, therefore, is to use more layers, specifying obtainable 
refractive indices for all layers at the start, and to achieve zero reflectance by varying the 
thickness. Then, too, there is the limitation that the single-layer coating can give zero 
reflectance at one wavelength only and low reflectance over a narrow region. A wider 
region of high performance demands additional layers. 

3.6 Tilted FP cavity as a notch filter 

In this part, we focus on another interesting application for devices based on Bragg 
structures. In particular, we study FP cavity based on multilayered mirrors but under 
oblique incidence. The device design differs from the case of normal incidence since the rays 
will propagate obliquely in the layers and the optical thicknesses for both the silicon and the 
air layers shall be calculated differently.  In this case, we must ensure that δ = mπ/2 to obtain 
the same matrix as in equation (41), and then we will solve the problem inversely to get the 
corresponding thicknesses H(L) = dSi(Air) which yields: 
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Using equation (52), we will consider H=dSi= 3.76 μm using odd multiple m = 33 and  
L=dAir = 3.84 μm using the odd multiple m = 7. In the upcoming simulations, we will take the 
thickness of the HL layers as mentioned previously. For the gap thickness G under oblique 
incidence, we have to satisfy the condition δ = mπ. By following the same analytical 
treatment as before, we will get: 
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So, we will consider G = 14.25 μm using odd multiple m = 13.  

The studied architecture consists of two stacks of tilted Bragg mirrors separated by an air 
gap layer. While the FP configuration with normal incidence works only in transmission, the 
tilted architecture, shown in Fig. 14, allows working either in transmission or in reflection. 
In the case of tilted FP, it behaves as a notch filter, suitable for dropping a particular 
wavelength. This is due to the 45° tilt angle of the cavity with respect to incident light. 
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Fig. 14. 45° tilted FP filter made of two Si layers separated by an air gap 

Simulating a structure based on the parameters stated above, we obtain the results shown in 
Fig. 15 and Fig. 16. As obvious, the FWHM of the filter reduces as the number of Silicon 
layers/mirror increases as it translates into higher reflectance. This device might have good 
potential in WDM systems where it can be used as an Add-Drop multiplexer. Also, it might 
be of interest for application involving tunable lasers as will be detailed in the next section 
of this chapter.  
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The condition for a perfect single-layer antireflection coating is, therefore, a quarter-wave 
optical thickness of material with optical admittance equal to the square root of the product 
of the admittances of substrate and medium. It is seldom possible to find a material of 
exactly the optical admittance which is required. If there is a small error, ε, in y1 such that: 
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provided that ε is small. A 10 % error in y1, therefore, leads to a residual reflectance of 1 %. 

Zinc sulphide has an index of around 2.2 at 2 μm. It has sufficient transparency for use as a 
quarter-wave antireflection coating over the range 0.4–25 μm. Germanium, silicon, gallium 
arsenide, indium arsenide and indium antimonide can all be treated satisfactorily by a 
single layer of zinc sulphide. There is thus no room for manoeuvre in the design of a single-
layer coating. 

In practice, the refractive index is not a parameter that can be varied at will. Materials 
suitable for use as thin films are limited in number and the designer has to use what is 
available. A Better approach, therefore, is to use more layers, specifying obtainable 
refractive indices for all layers at the start, and to achieve zero reflectance by varying the 
thickness. Then, too, there is the limitation that the single-layer coating can give zero 
reflectance at one wavelength only and low reflectance over a narrow region. A wider 
region of high performance demands additional layers. 

3.6 Tilted FP cavity as a notch filter 

In this part, we focus on another interesting application for devices based on Bragg 
structures. In particular, we study FP cavity based on multilayered mirrors but under 
oblique incidence. The device design differs from the case of normal incidence since the rays 
will propagate obliquely in the layers and the optical thicknesses for both the silicon and the 
air layers shall be calculated differently.  In this case, we must ensure that δ = mπ/2 to obtain 
the same matrix as in equation (41), and then we will solve the problem inversely to get the 
corresponding thicknesses H(L) = dSi(Air) which yields: 

 
MEMS Based Deep 1D Photonic Crystal 

 

101 

  
   

  
0

2
cos

2
Si air Si air

Si air Si air

n d m  


    (51) 

  
    

0

4 cos
Si air

Si air Si air

md
n




  (52) 

Using equation (52), we will consider H=dSi= 3.76 μm using odd multiple m = 33 and  
L=dAir = 3.84 μm using the odd multiple m = 7. In the upcoming simulations, we will take the 
thickness of the HL layers as mentioned previously. For the gap thickness G under oblique 
incidence, we have to satisfy the condition δ = mπ. By following the same analytical 
treatment as before, we will get: 
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So, we will consider G = 14.25 μm using odd multiple m = 13.  

The studied architecture consists of two stacks of tilted Bragg mirrors separated by an air 
gap layer. While the FP configuration with normal incidence works only in transmission, the 
tilted architecture, shown in Fig. 14, allows working either in transmission or in reflection. 
In the case of tilted FP, it behaves as a notch filter, suitable for dropping a particular 
wavelength. This is due to the 45° tilt angle of the cavity with respect to incident light. 
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Simulating a structure based on the parameters stated above, we obtain the results shown in 
Fig. 15 and Fig. 16. As obvious, the FWHM of the filter reduces as the number of Silicon 
layers/mirror increases as it translates into higher reflectance. This device might have good 
potential in WDM systems where it can be used as an Add-Drop multiplexer. Also, it might 
be of interest for application involving tunable lasers as will be detailed in the next section 
of this chapter.  
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Fig. 15. Reflection response of tilted FP cavity for different number of silicon layers/mirror 
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Fig. 16. Transmission response of tilted FP cavity for different number of silicon 
layers/mirror 

 
MEMS Based Deep 1D Photonic Crystal 

 

103 

Simulation results show that the FWHM decreases from 4.5 nm for the single silicon layer to 
0.18 nm for the double layer design and it exhibits further decreases to 0.008 nm for the 
triple layer design. Now, if we consider a tilted FP cavity with mirrors of HLH configuration 
but with different angles of incidence, we obtain a spectral response with a shift in the 
resonance wavelength as illustrated in Fig. 17. Varying the angle of incidence by 0.5° around 
45° results in 9 nm shift of the resonance wavelength. Then, proper design for rotational 
actuator to integrate with the tilted cavity, suggests the use of the whole package as a MEMS 
tunable filter. The next section highlights the potential of the tilted FP cavity in tunable laser 
source module.  

A last point to mention about the tilted FP cavity is the sensitivity of the design to 
fabrication errors. Considering a HLH combination for both mirrors, and introducing errors 
from 100 nm down to -100 nm in steps of 50 nm, we notice from Fig. 18 that the resonance 
wavelength shifts by about ±7 nm for an increase of ±50 nm. Also, the FWHM increases 
from 0.18 nm for the error free design to 0.25 nm for an introduced error of 50 nm. It reaches 
0.55 nm for an introduced error of 100 nm. Thus, the structure is not very tolerant to 
fabrication errors and the filter shall be designed, fabricated and tested carefully before 
integration into optical systems. 
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Fig. 17. Transmission response of tilted FP cavity in HLH configuration under different 
angles of incidence 
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Fig. 15. Reflection response of tilted FP cavity for different number of silicon layers/mirror 
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Fig. 16. Transmission response of tilted FP cavity for different number of silicon 
layers/mirror 
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45° results in 9 nm shift of the resonance wavelength. Then, proper design for rotational 
actuator to integrate with the tilted cavity, suggests the use of the whole package as a MEMS 
tunable filter. The next section highlights the potential of the tilted FP cavity in tunable laser 
source module.  

A last point to mention about the tilted FP cavity is the sensitivity of the design to 
fabrication errors. Considering a HLH combination for both mirrors, and introducing errors 
from 100 nm down to -100 nm in steps of 50 nm, we notice from Fig. 18 that the resonance 
wavelength shifts by about ±7 nm for an increase of ±50 nm. Also, the FWHM increases 
from 0.18 nm for the error free design to 0.25 nm for an introduced error of 50 nm. It reaches 
0.55 nm for an introduced error of 100 nm. Thus, the structure is not very tolerant to 
fabrication errors and the filter shall be designed, fabricated and tested carefully before 
integration into optical systems. 
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Fig. 17. Transmission response of tilted FP cavity in HLH configuration under different 
angles of incidence 
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Fig. 18. Transmission response of tilted FP cavity for FP cavity with HLH mirror for 
different errors. 

3.7 Tilted FP cavity as a mode selector 

By completing the architecture surrounding the tunable tilted FP cavity with an active laser 
cavity and an external mirror, then we obtain a compact tunable laser by tuning the angle 
incident upon the tilted FP cavity. As mentioned above, the tuning might be achieved by 
rotating the tilted FP. Tilted FP cavities are of special interest, since they reject undesirable 
wavelengths off the optical axis. Therefore, they appear as interesting candidates for mode 
selection in external cavity tunable lasers. Indeed, as these types of lasers exhibit a 
competition between several longitudinal modes, there is a need for a mode selection 
mechanism in order to obtain single mode operation and avoid mode hopping during 
tuning. The main interest in using tilted FP etalon rather than a FP cavity with normal 
incidence is to avoid parasitic reflections due to additional FP cavities that appear when 
adding the mode selector. Fig. 19a illustrates the principle of the mode selector based on a 
45° tilted FP cavity. The corresponding simulated transmission is shown as well, which 
confirms the operation principle. It is worth mentioning that the performed simulation is 
very basic, since it does not take into account losses. In particular, plane waves are 
considered here rather than Gaussian beams. Figs. 19b and Fig. 19c illustrate simulations of 
parts of the architecture. 
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Fig. 18. Transmission response of tilted FP cavity for FP cavity with HLH mirror for 
different errors. 
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wavelengths off the optical axis. Therefore, they appear as interesting candidates for mode 
selection in external cavity tunable lasers. Indeed, as these types of lasers exhibit a 
competition between several longitudinal modes, there is a need for a mode selection 
mechanism in order to obtain single mode operation and avoid mode hopping during 
tuning. The main interest in using tilted FP etalon rather than a FP cavity with normal 
incidence is to avoid parasitic reflections due to additional FP cavities that appear when 
adding the mode selector. Fig. 19a illustrates the principle of the mode selector based on a 
45° tilted FP cavity. The corresponding simulated transmission is shown as well, which 
confirms the operation principle. It is worth mentioning that the performed simulation is 
very basic, since it does not take into account losses. In particular, plane waves are 
considered here rather than Gaussian beams. Figs. 19b and Fig. 19c illustrate simulations of 
parts of the architecture. 

 
MEMS Based Deep 1D Photonic Crystal 

 

105 

 

1500 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

 in m

Tr
an

sm
itt

an
ce

 a
nd

 R
ef

le
ct

an
ce

 in
 d

B

Transmission Response for Laser Diode interface + Air Cavity + Mode Selector tilted at 45

 

 

Transmittance
Reflectance

 
(a) 

1500 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

 in m

Tr
an

sm
itt

an
ce

 in
 d

B

Transmission Response for Laser Diode interface + Air Gap + 1st mirror of the Mode Selector

 

 

Transmittance
Reflectance

 
(b) 

Mode selector
Tilted FP cavity

InP layer 

n = 3.1649

d=100 µm L=80 µm 

Gap g = 2.2 µm

Transmission

Reflection

Mode selector
Tilted FP cavity

InP layer 

n = 3.1649

d=100 µm L=80 µm 

Gap g = 2.2 µm

Transmission

Reflection

Tilted, Single 
Bragg mirrorInP layer 

n = 3.1649

d=100 µm L=80 µm 

Transmission

Reflection

Tilted, Single 
Bragg mirrorInP layer 

n = 3.1649

d=100 µm L=80 µm 

Transmission

Reflection



 
Photonic Crystals – Introduction, Applications and Theory 

 

106 

1540 1545 1550 1555 1560 1565 1570 1575 1580
-80

-70

-60

-50

-40

-30

-20

-10

0

 in m

Tr
an

sm
itt

an
ce

 a
nd

 R
ef

le
ct

an
ce

 in
 d

B

Transmission and Reflectance for the Mode Selector "tilted Fabry-Perot cavity" based on a 7 layer Bragg mirror

 

 

Transmittance
Reflectance

 
(c) 

Fig. 19. Tilted FP etalon as a laser mode selector. Whole systems (a) and parts of the system 
(b) and (c) 
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Fig. 20. (a) and (b) Simulated wavelength tuning by control of the gap g of the tilted FP 
cavity (c) no wavelength shift is noticed when varying the distance L between the mode 
selector and the InP layer. 
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Fig. 20. (a) and (b) Simulated wavelength tuning by control of the gap g of the tilted FP 
cavity (c) no wavelength shift is noticed when varying the distance L between the mode 
selector and the InP layer. 
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Tuning is achieved either by rotating the cavity further or by controlling its gap g, as 
shown in Figs. 20a and 20b. Tuning range of 30 nm is shown as the result of gap tuning of 
150 nm. The increase in the separation distance L doesn’t affect the peak position as 
shown in Fig. 20c. 

4. Advanced FP architecture 
In this last section, we present two advanced architecture of FP cavity based on cylindrical 
1D photonic crystal vertically etched in silicon. The first architecture is based on 
cylindrical Bragg mirrors to focus light beam along one transverse beam. SEM Photo of a 
device based on single silicon layer is presented in Fig. 21. The measured characteristic is 
shown in Fig. 22 pertain to three different spacing between the injection fiber and the 
input mirror. Numerical modeling confirms the measurements and reveals that the device 
exhibits selective excitation of transverse modes TEM20. For more details, the interested 
reader may refer to [Malak et al. Transducers 2011] [Malak et al. JMEMS 2011]. The second 
architecture however, aims to focus the light beam in both transverse planes to reduce 
losses introduced by Gaussian beam expansion as well. For this purpose, the cylindrical 
Bragg is combined with a fiber rod lens to focus the light beam in the other transverse 
plane. Since the second architecture is not common, a stability model has been devised to 
enable the design of stable resonator [Malak el al. JMST 2011]. Photo of the realized device 
and corresponding response is shown in Fig. 23. This architecture provides a high quality 
factor (~9000) for a Bragg mirror based on four silicon layers. It has a strong potential for 
spectroscopic applications.  

 
Fig. 21. SEM photo of the FP cavity with single cylindrical silicon layer measured with 
cleaved fibers. 
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Fig. 22. Highlights on “Wavelength selective switching” and “Mode selective filtering” of 
the curved FP cavity (a) Recorded spectral response of the cavity, measured with lensed 
fiber while varying the fiber-to-cavity distance D. The quasi-periodic pattern of the curve 
reveals selective excitation of the resonant transverse modes TEM20 around 1532 nm in 
addition to the fundamental Gaussian mode TEM00. Varying the distance D leads to 
different levels for mode TEM20 with an extinction ratio of 7:1, the maximum amplitude was 
at D=150 µm. (b) Ideal intensity distribution of TEM00 and TEM20 modes. (c) Measured 
intensity profiles (of modes TEM00 and TEM20) obtained by lateral in-plane scanning of the 
detection fiber. 
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Tuning is achieved either by rotating the cavity further or by controlling its gap g, as 
shown in Figs. 20a and 20b. Tuning range of 30 nm is shown as the result of gap tuning of 
150 nm. The increase in the separation distance L doesn’t affect the peak position as 
shown in Fig. 20c. 

4. Advanced FP architecture 
In this last section, we present two advanced architecture of FP cavity based on cylindrical 
1D photonic crystal vertically etched in silicon. The first architecture is based on 
cylindrical Bragg mirrors to focus light beam along one transverse beam. SEM Photo of a 
device based on single silicon layer is presented in Fig. 21. The measured characteristic is 
shown in Fig. 22 pertain to three different spacing between the injection fiber and the 
input mirror. Numerical modeling confirms the measurements and reveals that the device 
exhibits selective excitation of transverse modes TEM20. For more details, the interested 
reader may refer to [Malak et al. Transducers 2011] [Malak et al. JMEMS 2011]. The second 
architecture however, aims to focus the light beam in both transverse planes to reduce 
losses introduced by Gaussian beam expansion as well. For this purpose, the cylindrical 
Bragg is combined with a fiber rod lens to focus the light beam in the other transverse 
plane. Since the second architecture is not common, a stability model has been devised to 
enable the design of stable resonator [Malak el al. JMST 2011]. Photo of the realized device 
and corresponding response is shown in Fig. 23. This architecture provides a high quality 
factor (~9000) for a Bragg mirror based on four silicon layers. It has a strong potential for 
spectroscopic applications.  

 
Fig. 21. SEM photo of the FP cavity with single cylindrical silicon layer measured with 
cleaved fibers. 
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Fig. 22. Highlights on “Wavelength selective switching” and “Mode selective filtering” of 
the curved FP cavity (a) Recorded spectral response of the cavity, measured with lensed 
fiber while varying the fiber-to-cavity distance D. The quasi-periodic pattern of the curve 
reveals selective excitation of the resonant transverse modes TEM20 around 1532 nm in 
addition to the fundamental Gaussian mode TEM00. Varying the distance D leads to 
different levels for mode TEM20 with an extinction ratio of 7:1, the maximum amplitude was 
at D=150 µm. (b) Ideal intensity distribution of TEM00 and TEM20 modes. (c) Measured 
intensity profiles (of modes TEM00 and TEM20) obtained by lateral in-plane scanning of the 
detection fiber. 
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Fig. 23. (a) Top view of the curved FP cavity with the fiber rod lens (b) Typical response 
obtained from such device  

5. Concluding remarks 
1D photonic crystal structure acquired a high interest long ago due to the application 
domain they touch. As outlined in this chapter, they constitute a basic building block in 
many devices like FP resonators, multilayered coating. The attractiveness in them comes 
from their easy design and modeling based on multilayered stack theory and the affordable 
fabrication process, thanks to the advance in the fabrication processes, in particular, the 
advance in the DRIE process which helped producing vertical Bragg on silicon. In this 
context, this chapter focused on specific issues concerning 1D photonic crystal: design and 

 
MEMS Based Deep 1D Photonic Crystal 

 

111 

modeling, fabrication technology, common applications and a brief introduction to an 
advanced application: The curved FP cavity.  
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Fig. 23. (a) Top view of the curved FP cavity with the fiber rod lens (b) Typical response 
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1. Introduction 
Photonic crystals (PCs) are actually implemented as biosensors [Ganesh et al., 2007], optical 
resonators [Karnutsch et al., 2007] and wavelength filters [D’Orazio et al., 2008; Pierantoni et 
al., 2006]. Other kinds of photonic crystals can be implemented by considering a periodic 
structure with defect line and/or central cavities. Several architectures of micro-cavities (see 
examples in Fig. 1 (a), (b)and (c)) have been studied in the past by using triangular and square 
lattices layouts [Joannopoulos, 1995] oriented on optoelectronic technology. Optoelectronic 
technologies are often affected by cost and space problems that prevent them from being used 
even more widely. The development and implementation of photonic integrated circuits 
(PICs) could provide a solution to these two major obstacles. Couplers such as tapered 
waveguides and photonic crystal (PhC) devices can be integrated in the same chip in order to 
reduce the space, especially concerning complex optical switch systems, and, to provide high 
transmitted power and high efficiency of the PICs. For example, the use of tapered 
waveguides is necessary in order couple the light into a W1 PhC waveguide (illustrated in Fig. 
1 (a)). This kind of W1 PhC waveguide is object of much interest because of its potential for 
controlling and manipulating the propagation of light. In particular, sharp bends, junctions, 
couplers, cavities, add-drop filters, and multiplexers have been experimentally demonstrated 
or theoretically predicted, thus making these devices very attractive for highly integrated 
photonic circuits [Mekis et al., 2008; Pottier et al., 2003; Johnson et al., 2002; Sanchis et al., 2002; 
Chau et al., 2004; Chietera et al., 2004; Xing et al., 2005; Camargo et al., 2004; Talneau et al., 
2004; Marki et al., 2005; Camargo et al., 2004; Sanchis et al.,2004; Khoo et al.,2006]. The in-plane 
coupling of W1 PhC is also an important issue for bio-sensors implemented by micro- and 
nanofabrication technologies. In fact, the development of micro- and nanofabrication 
technologies, biomolecular patterning and micro-electromechanical systems (MEMS), has 
greatly contributed to the realization of miniaturized laboratories applied to genomic and 
proteomic analysis. The application fields of these biochips are extremely broad, and they have 
been referred as several different terms (gene-chip, gene-array, DNA microarray, protein chip, 
and lab-on-chip). Essentially, these chips, developed both in simple stand-alone configurations 
and integrated devices/architectures, consist of planar structures, realized on several 
substrates such as glass or plastic materials, where (bio)molecules (such as DNA, proteins or 
cells, which selectively conjugate with target molecules) can be immobilized on them through 
chemical surface modification or in situ synthesis [Fan et al., 2006] as happens DNA sensors. 
These chips require the use of suitable micro-reactors and/or capillary systems, and the 
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detection of complemental reaction between biomolecular is performed in a solution. Biochip 
technology has revolutionalized the field of molecular biology, finding broad application 
regarding the study of gene and protein expressions in several fields such as experimental and 
clinical diagnostics, biomarker detection, and pharmacogenomics. Actually, several chip 
setups have been used, such as enzyme assays [Hadd et al., 1997], immunochemistry assays 
[Wang, et al. 2001], polymorphism detection in genetic variations [Dunn et al., 2000], nucleic 
acids sequencing [Scherer et al., 1999], chips for the realization of ligase reaction [Cheng et al., 
1996], and DNA amplification on micro-volumetric scale [Kopp et al., 1998; Daniel et al., 1998]. 
In particular, due to the high specificity of the hybridization reaction among the 
oligonucleotides sequences (complementary base-pairing between adenine and thymine, and 
guanine and cytosine), chips based on biomolecular interactions among DNA filaments have 
been developed more rapidly than chips based on proteins. In the latter case, despite of keen 
interest among the scientific community, it slowed down due to the complex bio-recognition 
mechanism of proteinaceous molecular species [Bodovitz, 2005].  

 
Fig. 1. (a) W1 PhC waveguide. (b) Triangular lattice layout. (c) Circular photonic crystals.    

Concerning the discussed topics, we propose to provide examples and design criteria useful 
to address the reader on the implementation of PhC oriented on bio-applications. The main 
goal of the chapter is to present an overview about the basic principles of light coupling, 
light emission and detection approaches of photonic crystals behaving as bio-sensors. In 
particular, we list below the sections proposed in this chapter.   

 The first section analyzes the in plane coupling of tapered waveguides with a PhC 
waveguide around the working wavelength of 1.31 m. We first analyze and 
characterize the coupling between two tapered waveguides, and, then, we model the 
coupling between tapered waveguides and PhC with micro-cavity. The analysis and the 
experimental results show the peak frequency shift obtained by varying the taper 
length. A maximum efficiency of the coupling is reached by a compromise between 
electromagnetic field confinement and low reflectivity at the input of the coupled 
photonic crystal. A good agreement with experimental results validates the 2D and 3D 
numerical results. The proposed in-plane coupling system can be used for W1 bio PhC. 

 The second section provides technical advantages of a photonic crystal optical read-out 
in bio-molecular detection systems (deoxyribonucleic acid (DNA) chips, protein chips, 
micro-array, and lab-on-chip systems) for genomics/proteomics applications. The 
proposed method is based on arrays of PhC resonators which contribute to improve a 
detection efficiency of bio-samples marked with luminescent substances. The detection 
efficiency is characterized in terms of sensitivity of the analysis, the signal/noise ratio, 
and speed of the optical read-out process. 

 The third section introduces an accurate modeling regarding PhC diffraction efficiency 
in bio-detection systems. The approach optimizes the detection enhancement of a 
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luminescent emitting substance located on the photonic crystal which is characterized 
by a specific emission band. By starting with the analysis of the periodic passive 
structures it is possible to define design maps in which are reported the diffraction 
efficiency versus the incidence angles. The PhC is designed to provide a high diffraction 
efficiency in the emission band of the luminescent substance. In this way the emission 
of the luminescent substance is enhanced through the high intensity of the zeroth-order 
backward diffracted wave. These maps could be used to define an admissible error 
margin due to the uncertainty of fabrication process. The proposed technique can be 
utilized in different spectral ranges starting from ultra violet to infrared wavelengths, 
and can be applied to different PhC layouts.  

 In the last section we introduce the design criteria for a bio-compatible based polymer 
PhC suitable as a bio-sensor.     

2. In-plane coupling of photonic crystal waveguides 
W1 PhC can be obtained by introducing a line defect within the periodic lattice, usually 
realized through a triangular lattice layout of air holes etched into the substrate. This 
configuration is compatible with standard planar-semiconductor processing technology. A 
way to couple efficiently in-plane the light is the use of tapered waveguides. The best 
geometrical configurations of the tapered profiles are found by performing a good 
electromagnetic field confinement and low losses. In order to define the frequency response 
and the electromagnetic coupling of the tapered waveguides, we consider two numerical 
approach: the finite difference time domain (FDTD) method, and finite element method 
(FEM). The first one defines accurately the scattered light and the field coupled inside the 
device, and the second one analyzes the peak frequency resonance and provides the 
frequency shift versus different taper lengths. This section is organized as follows: 

i. we design and model, according with the technological aspects, the optimum tapered 
waveguide layout (see Fig. 2 (a) and (b)) which couples the electromagnetic field 
around a working wavelength of  0=1.31 m;  

ii. by considering the optimum geometrical configuration of the tapered couplers, we 
simulate the W1 PhC illustrated in Fig. 2 (c) and (d).   

We design integrated tapered waveguides coupled in-plane with an external source (0=1.31 
m) and able to focus the energy in a small waveguide region (ridge of the waveguide).  

According with the technological limits (technology resolution) we fix the optical and the 
geometrical parameters indicated in Fig. 2 (a) and (b) as: D=2m, d=1.2m, s=0.3m, 
n(GaAs)=3.408, n(AlGaAs)=3.042, w=0.5m, Ls=16.77 m. We analyze the bandpass 
behaviour around the working 0=1.31 m, and evaluate the energy density at the output of 
the two coupled tapered waveguides. This procedure allows to calculate the best optimum 
length L of the tapered profile. The inset of Fig. 3 reports a schematic representation of the 
employed transmission experimental set-up. In this set-up a light probe beam (tungsten 
broad band lamp) is launched from a tapered fibre and directly injected into the ridge 
waveguide. The light exiting the waveguide is collected and collimated by a microscope 
objective with high numerical aperture. The real image of the output facet of the waveguide 
is then formed on the common focal plane of a telescopic system, where a horizontal slit is 
placed. This allows us to separate the light coming from the ridge waveguide from the 
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luminescent emitting substance located on the photonic crystal which is characterized 
by a specific emission band. By starting with the analysis of the periodic passive 
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margin due to the uncertainty of fabrication process. The proposed technique can be 
utilized in different spectral ranges starting from ultra violet to infrared wavelengths, 
and can be applied to different PhC layouts.  
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the two coupled tapered waveguides. This procedure allows to calculate the best optimum 
length L of the tapered profile. The inset of Fig. 3 reports a schematic representation of the 
employed transmission experimental set-up. In this set-up a light probe beam (tungsten 
broad band lamp) is launched from a tapered fibre and directly injected into the ridge 
waveguide. The light exiting the waveguide is collected and collimated by a microscope 
objective with high numerical aperture. The real image of the output facet of the waveguide 
is then formed on the common focal plane of a telescopic system, where a horizontal slit is 
placed. This allows us to separate the light coming from the ridge waveguide from the 
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radiation freely propagating in the air and through the substrate. The transmitted light is 
collected by a multimode fibre with its free end lying on the focal plane of a lens (end-fire 
coupling) and brought to an N-cooled InGaAs OMA (optical multichannel analyzer). 

As reported in Fig. 4 (2D FDTD simulation) and in Fig. 5 (3D FEM simulation) we have 
predicted the measured shift of the central wavelength. In our analysis, we have considered 
four lengths L of the tapered profile (in particular L=25 m, L=50 m, L=100 m, L=200 m): 
the central wavelength decreases for the cases L=25 m to L=50 m and increases from L=50 
m to L=200 m. As reported in the 3D FEM results of Fig. 4 and in the 2D FDTD results of 
Fig. 5, the case of L=50 m is characterized by a central wavelength far from the working 
wavelength. Moreover, we observe in the same figures other peaks due to backscattering 
interference phenomena of the slanted profile. In Fig. 6 we show the comparison between 
measured, 2D FDTD and 3D FEM spectra by considering L=100 m: a low error about the 
central wavelength is observed (the different band amplitudes are due to different kind of 
light sources). By evaluating the coupled energy at the output of both tapered waveguides, 
we observe that the cases of L=100 m and L=200 m represent the best coupling condition 
(see Fig. 7 where the energy is defined by the subtended area of the electric field density). in 
these cases, the losses due to the radiation in the external space are low and, consecutively, 
the light coupling inside the guiding region is strong (compromise between high 
transmittivity and low losses at the working frequency). The integral used to evaluate the 
electric field density of Fig. 7 is: 

 2( ) ( ) ( )
V

S t t dV  r E  (1) 

Where E is the electric field,  is the spatial dependent permittivity index, and V is the 
volume of calculus. 

We use for the calculus of (1) as source a carrier modulated by an exponential signal 
expressed by 

 2
0 0exp( ( / ) ) cos( )source t dt T t dt        (2) 

where 0  is the angular frequency at λ0=1.31 m,T0 is a constant, and dt is the time step. 

We note from numerical results that the 3D FEM results provide better the accuracy of the 
frequency shift according with the experimental spectra.  

We conclude that good choices of tapered waveguides working at 0 =1.31 m are the 
profiles with L=100 m and L=200 m. The field losses can be estimated by introducing a 
PhC waveguide between the two tapered waveguides as the W1 PhC illustrated in Fig. 8 (a), 
where the input is coupled through the tapered waveguide with the defect region, and, the 
signal is coupled with a cavity (as shown by the simulations of Fig. 8 (b) and Fig. 9 (a) 
illustrating different perspectives of the Ey field component). We analyze as filter a 
triangular lattice structure characterized by a lattice constant of 0.95 m and air hole radius 
of 0.399 m. In order to confine better the electromagnetic field inside the cavity, the radius 
of the holes near the cavity are reduced to 0.304 m (optimization process). In Fig. 9 (b) are 
illustrated the radiation losses of the whole device using L=100 m. Moreover the 
comparison between Fig. 9 (c) and Fig. 9 (d) shows the losses distribution for tapered 
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waveguides with L=200 m and helps to discriminate the part of energy irradiated by the 
photonic crystal from the part irradiated by the tapered profile. 

 
Fig. 2. a) 3D Coupled tapered waveguides; b) top view of coupled tapered waveguide; c) W1 
PhC and tapered waveguides. (d) SEM image of the W1 PhC coupled to the input and 
output by tapered waveguides. 

 
Fig. 3. Central wavelength: comparison between experimental, 2D FDTD and 3D FEM 
method. Inset: Experimental setup which measures the optical transmittivity of the coupled 
tapered waveguides of Fig. 1 (a). 
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waveguides with L=200 m and helps to discriminate the part of energy irradiated by the 
photonic crystal from the part irradiated by the tapered profile. 

 
Fig. 2. a) 3D Coupled tapered waveguides; b) top view of coupled tapered waveguide; c) W1 
PhC and tapered waveguides. (d) SEM image of the W1 PhC coupled to the input and 
output by tapered waveguides. 

 
Fig. 3. Central wavelength: comparison between experimental, 2D FDTD and 3D FEM 
method. Inset: Experimental setup which measures the optical transmittivity of the coupled 
tapered waveguides of Fig. 1 (a). 
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Fig. 4. Wavelength shift: 3D-FEM transmittivity for different lengths L.   

 
Fig. 5. 2D FDTD spectra comparison. 

 
Fig. 6. Comparison between measured, 2D FDTD and 3D FEM spectra of tapered 
waveguides with L=100 m. 
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Fig. 7. Density of energy for different taper lengths L at 0=1.31m.  

 
Fig. 8. (a) SEM image of the simulated add drop filter. (b) 2D FDTD simulation of the 
photonic crystal by using a continuous wave at 0=1.31 m as source.  

 
Fig. 9. (a) FDTD simulation: Ey component along the W1 region and into the cavity defect. 
(b) Top view of Ey distribution for tapered waveguides with L=100 m. (c) Top view of Ey 
distribution for tapered waveguides with L=200 m. (d) Top view of Ey distribution for 
L=200 m and Ls= 16.77 m.   
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Fig. 5. 2D FDTD spectra comparison. 

 
Fig. 6. Comparison between measured, 2D FDTD and 3D FEM spectra of tapered 
waveguides with L=100 m. 
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Fig. 7. Density of energy for different taper lengths L at 0=1.31m.  

 
Fig. 8. (a) SEM image of the simulated add drop filter. (b) 2D FDTD simulation of the 
photonic crystal by using a continuous wave at 0=1.31 m as source.  

 
Fig. 9. (a) FDTD simulation: Ey component along the W1 region and into the cavity defect. 
(b) Top view of Ey distribution for tapered waveguides with L=100 m. (c) Top view of Ey 
distribution for tapered waveguides with L=200 m. (d) Top view of Ey distribution for 
L=200 m and Ls= 16.77 m.   
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3. Photonic crystal resonators array chip for improved optical sensing of 
(bio) molecules in genomics and proteomics 
One of the main goals of this chapter is to analyze the detection efficiency of an optical 
signal coming from a bio-sensor chip based on luminescence emission. Our approach is 
based on the employ of arrays of photonic crystals which resonate with emitted lights from 
a luminous marker associated to a bio-molecule target at a predetermined wavelength. A 
proper design of these photonic crystal arrays and a spectral analysis of resonant peak 
emissions allow us to unambiguously associate each analyte to a peak emission, and pick 
out a useful signal from source reflection/diffraction noise. The use of properly fabricated 
PhC patterns in an optical read-out region provides us a freedom to modify local spectral 
distribution of allowed optical modes [Scully et al., 1997]. This concept has been used to 
increase both excitation and emission efficiencies of optical markers attached on a PhC 
pattern in bio-molecule detection devices [Mathias et al., 2007]. In particular, in this section 
we propose to use PhC resonators for a selective enhancement of a luminescent marker-
emission only at a specific resonant wavelength. By fabricating several photonic crystal 
resonators in one bio-chip, each one characterized by a different resonant wavelength and a 
specific bio-recognition sample attached on each resonator, it is possible to spectrally detect 
bio-molecule targets in certain positions on a chip. Through the analysis of the total emission 
spectra collected from the whole read-out area it is thus possible to detect the presence of a 
certain analyte in a bio-specimen. In comparison with traditional detection systems, based on 
the spatial scanning of an optical read-out area, this approach permits us to: 

a. decrease analysis time. Since the detection of analytes is based on detection of resonant 
peak emissions, simultaneous measurement on the whole read-out area is possible. This 
feature allows us to detect analytes through a spectral scanning alone. As the 
bandwidth of a resonant peak becomes narrower, more peaks can be arranged in a 
spectrum of a luminous marker. Then, it becomes possible to analyze a larger number 
of analytes in one time; 

b. drastically decrease the reading error caused by diffused, reflected and/or diffracted  
light source signal;  

c. significantly increase the detection sensitivity through the enhancement of the 
luminescent marker-signal. This enhancement is generated by the coupling of the 
luminescent light with a resonant mode of PhC patterns.  In the proposed system, the 
unambiguous assignment of a resonant emission to each analyte does not require 
spatial scanning and/or the use of different fluorescence markers emitting light at 
different wavelengths. The unambiguous detection is guaranteed by combining each 
target (bio) molecule with a properly designed PhC resonator. In this way each PhC 
resonator can manipulate the light emission of a common luminescent marker. This 
approach can be further extended by utilizing, in the same chip, more than one 
fluorescent substances simultaneously, with different resonant emission frequencies. 
Moreover, the proposed technique can be utilized in different spectral ranges, starting 
from ultra violet to infrared (by utilizing, for example, organic fluorescent substances 
and/or colloidal nanocrystals) according to the scalability of target wavelengths and 
scale order of corresponding photonic crystal design [Yablonovitch, 1987; Joannopoulos 
et al., 1995]. The optical properties of the structure can be modified with a good 
accuracy in each desired frequency range, by simply changing the geometrical layout of 
the PhC. 
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Our optical signal detecting device featuring high sensitivity and multiplexing detection is 
composed of an array of PhC resonators with specific probes (e.g. single-stranded DNA 
(ssDNA) sequences, antibodies, receptors, aptamers, etc…) for analytes (e.g. DNA, proteins, 
ligands, etc.) attached on them. Analytes are trapped with high spatial precision through 
chemical, physical, electrostatic techniques, and so on (Fig. 10). The target analytes can be 
directly (e.g. through syntesis) or indirectly marked by conjugation with one or more 
fluorophores. The basic schemes for a detection of biomolecules (proteins, ligands, etc.) and 
nucleic acids are shown in Figs. 11 (a) and (b), respectively. To eliminate background noise 
caused by scattering of excitation light, excitation light can be selectively provided to read-
out regions via PhC waveguides. The proposed system is based on a unique optical 
detection scheme. The detection is performed through the collection of the emission 
spectrum coming from the whole bio-recognition area of the chip. As previously discussed, 
by applying a suitable matrix composed by PhC resonators possessing different resonant 
wavelengths, each bio-recognition element of the device is unambiguously associated to a 
different resonance peak. By detecting resonant peak emissions at certain wavelengths, it is 
therefore possible to detect the presence of specific target (bio) molecules contained in the 
analyzed sample. Thus, it is possible to collect signals from several resonators in a single 
analysis, increasing the signal collection speed. Moreover, the PhC strongly inhibits the 
excitation radiation that is diffused or reflected towards the detection direction. Elimination 
of radiation of excitation light together with the increase in the intensity of the emission 
signal increases significantly the overall signal-to-noise ratio. This feature helps to reduce 
reading errors, allowing operators skip the step of complex post-processing to correct read-
out errors. Photonic crystals can control the light propagation by introducing a 1D, 2D or 3D 
periodicity in materials having high optical transparency in the frequency range of interest. 
Light can be trapped, for instance, by introducing a defect in the periodicity. Summarizing, 
photonic crystals technology could, therefore, be applied to biochip technology in order to 
provide the following advantages: 

a. controllability of the resonant wavelength of each resonator in the matrix through the 
accurate material and geometry design. Specifically, it becomes possible to enhance the 
emission spectrum of the fluorophore conjugated to an analyte. This allows us to 
perform an optical detection not only on the basis of a spatial discrimination of the 
different contributions but also on the basis of a spectral discrimination, since each pixel 
contains a specific optical resonator working at a different frequency. 

b. increase of the fluorophore emission efficiency in specific spectral bands through the 
Purcell effect (e.g. micro resonators with high quality factor (Q-factor) and small modal 
volume), thus increasing the signal-to-noise ratio. 

c. possibility to selectively excite light-emitting marker via waveguides or a resonance of a 
certain optical mode of photonic crystal to suppress diffused, reflected or diffracted 
excitation light from the substrate. This can be achieved by controlling the angle of 
emission or excitation by properly engineering a photonic crystal. This property can be 
exploited to spatially separate the excitation radiation and the emission band. 

d. Regarding point (a), an external excitation light sent towards the matrix at a proper 
angle will excite the marker bound to the captured analyte, which will emit its typical 
broad signal. Then, the broad emission is peculiarly amplified in specific spectral bands 
by the underlying pixel with a photonic crystal resonator (Fig. 12 (a)). The variation 
from pixel to pixel (that is, from analyte to analyte), of the frequencies contemporarily 
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emitted from the matrix allows a high degree of parallelism on a high number of 
different analytes, thus also fastening the recognition of the examined samples. 

Regarding points (b) and (c), the proper choice of both the materials and the photonic crystal 
geometry can lead to the realization of a photon energy bandgap. As already mentioned, it 
is possible to localize specific optical modes to confine them in a small defect region in the 
photonic crystal. Only the modes which resonate in this small region will be amplified. 
Photonic crystal cavities are, therefore, designed to separate the useful signal coming from 
the biological assay from the noise coming from excessive source light. Then, we can obtain 
very sharp optical signals which are easily recognized thanks to their amplified intensity 
together with the spectral scanning of the detection system. Figs. 12 (b) and (c) show 
examples of an intact emission spectrum from a read-out region and signals collected from 
several read-out regions assisted by the array of photonic crystal resonators, respectively. 
The presence of each peak in the ensemble spectrum of Fig. 12 (c) reveals the presence of the 
corresponding target analyte in the analyzed assay. A further spatial separation between the 
scattered excitation light and a signal can be achieved by providing the excitation light to a 
read-out region or extracting the excited light from a read- out area through suitable 
waveguides. In this sense, the PhC can be designed to selectively guide light between 
resonators and detectors [Aoki et al., 2009]. 

 
Fig. 10. Schematic of the optical transducer for biomolecular analysis in 
genomics/proteomics. The proposed device is essentially characterized by a substrate on 
which are realized arrays of resonant photonic crystals. On the surface of each resonator 
specific bio-molecules are fixed (for example, through chemical functionalization), which 
behave as target probes for the analytes to be detected. In the sketch there have been shown, 
as an example, arrays of photonic crystal and bio-molecules of the same typology. It is 
obviously possible to consider, in the same chip array, different photonic crystal structures 
with different wavelength resonances. Analogously, each bio-recognition element bound on 
the single resonator can be different from each other, and peculiar for each analyte.  

 
Photonic Crystal Waveguides and Bio-Sensors 

 

123 

 
Fig. 11. Schematics of the optical transducer for the analysis of biomolecules in 
genomics/proteomics. (a) General sketch including a selective bio-recognition element for a 
specific target analyte (oligonucleotides, proteins, ligands, etc.). (b) Example of a devices 
suitable for DNA analysis: in this case, the probe bound to the resonator surface is a specific 
ssDNA sequence. Similarly to the above description, the resonators can differ from each 
other, as far as the (bio) recognition elements (for instance, the DNA probe) bound to each 
resonator, in order to perform spectral multiplexing analysis.    
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Photonic crystal cavities are, therefore, designed to separate the useful signal coming from 
the biological assay from the noise coming from excessive source light. Then, we can obtain 
very sharp optical signals which are easily recognized thanks to their amplified intensity 
together with the spectral scanning of the detection system. Figs. 12 (b) and (c) show 
examples of an intact emission spectrum from a read-out region and signals collected from 
several read-out regions assisted by the array of photonic crystal resonators, respectively. 
The presence of each peak in the ensemble spectrum of Fig. 12 (c) reveals the presence of the 
corresponding target analyte in the analyzed assay. A further spatial separation between the 
scattered excitation light and a signal can be achieved by providing the excitation light to a 
read-out region or extracting the excited light from a read- out area through suitable 
waveguides. In this sense, the PhC can be designed to selectively guide light between 
resonators and detectors [Aoki et al., 2009]. 

 
Fig. 10. Schematic of the optical transducer for biomolecular analysis in 
genomics/proteomics. The proposed device is essentially characterized by a substrate on 
which are realized arrays of resonant photonic crystals. On the surface of each resonator 
specific bio-molecules are fixed (for example, through chemical functionalization), which 
behave as target probes for the analytes to be detected. In the sketch there have been shown, 
as an example, arrays of photonic crystal and bio-molecules of the same typology. It is 
obviously possible to consider, in the same chip array, different photonic crystal structures 
with different wavelength resonances. Analogously, each bio-recognition element bound on 
the single resonator can be different from each other, and peculiar for each analyte.  
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Fig. 11. Schematics of the optical transducer for the analysis of biomolecules in 
genomics/proteomics. (a) General sketch including a selective bio-recognition element for a 
specific target analyte (oligonucleotides, proteins, ligands, etc.). (b) Example of a devices 
suitable for DNA analysis: in this case, the probe bound to the resonator surface is a specific 
ssDNA sequence. Similarly to the above description, the resonators can differ from each 
other, as far as the (bio) recognition elements (for instance, the DNA probe) bound to each 
resonator, in order to perform spectral multiplexing analysis.    
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Fig. 12. (a) Schematics of a photonic crystal resonators matrix used in the optical DNA micro 
array chip. Each resonator of the matrix (bounded to a specific bio-recognition element) is 
designed in order to show a different resonant wavelength. (b) A typical example of the 
emission collected from a read-out area not assisted by photonic crystal resonators. The line-
shape is typical of the original marker, with the presence of a significant noise due to 
scattered excitation light. (c) Example of the emission signal detected on the whole read-out 
area, where 1, 2 and i are the spectral peculiar modifications due to the coupling of the 
fluorophores with the 1st, 2nd and ith resonator in the matrix. The presence of each peak in 
the ensemble spectrum reveals the presence of the corresponding target analyte in the 
analyzed assay. 

4. Diffraction efficiency modeling of 2D photonic crystals for biosensing 
applications 
Optical bio-sensing approach usually consists of light intensity detection systems. Typically, 
the luminescent signal is emitted by a luminescent marker conjugated to the bio-target. A 

 
Photonic Crystal Waveguides and Bio-Sensors 

 

125 

good enhancement of this emitted signal can be obtained by combining a PhC structure with 
the luminescent substance. The signal enhancement can be optimized by analyzing the 
diffraction efficiency of the light emitted from the luminescent substance, characterized by 
the K wave-vector (see Fig. 13 (a) and (b)). In general, by exciting a properly designed PhC 
structure with an optimum incidence angle, it is possible to detect a high-intensity diffracted 
signal. The presented diffraction modeling takes into account this optimum incidence 
condition by defining sets of possible incidence angles (working regions) in the emission 
luminescent band. In this section the diffraction efficiency of a square lattice PhC Si3N4 
membrane covered with a luminescent substance is modelled. The structure is excited by a 
plane wave and the light coming out from the luminescent substance is also modeled as a 
plane wave with the K vector shown in Fig. 13 (a), characterized by θ and  angles. In Fig. 14 
(a) and (b) we report the diffraction efficiency map versus the wavelength and the  angle 
for different launch θ-angles. By fixing the θ and  angles in the working region (see Fig. 14 
where =θ=30°), it is possible to analyze the sensitivity of the reflectivity response.  
This allows to estimate the error margins due to the limits of the fabrication technology  
and of the experimental setups. As example, in Fig. 15 (a) is reported the sensitivity of  
the reflectivity response by varying hole radius in steps of 5 nm. Transverse electric (TE)  
and transverse magnetic (TM) PhC radiation modes define the diffraction concerning 
different PhC Brillouin directions. Figure 15 (b) shows the TM PhC radiation modes 
(diffraction modes) in the luminescent emission band 0.56m0.58m. The PhC Si3N4 
membrane structure is excited by a plane wave and the light coming out from the 
luminescent substance, is collected in a detection system.   

 

 

 

 
 

Fig. 13. (a) Photonic crystal for bio-sensing applications. (b) Source launch coordinate system 
of the model.  
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good enhancement of this emitted signal can be obtained by combining a PhC structure with 
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the K wave-vector (see Fig. 13 (a) and (b)). In general, by exciting a properly designed PhC 
structure with an optimum incidence angle, it is possible to detect a high-intensity diffracted 
signal. The presented diffraction modeling takes into account this optimum incidence 
condition by defining sets of possible incidence angles (working regions) in the emission 
luminescent band. In this section the diffraction efficiency of a square lattice PhC Si3N4 
membrane covered with a luminescent substance is modelled. The structure is excited by a 
plane wave and the light coming out from the luminescent substance is also modeled as a 
plane wave with the K vector shown in Fig. 13 (a), characterized by θ and  angles. In Fig. 14 
(a) and (b) we report the diffraction efficiency map versus the wavelength and the  angle 
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where =θ=30°), it is possible to analyze the sensitivity of the reflectivity response.  
This allows to estimate the error margins due to the limits of the fabrication technology  
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luminescent substance, is collected in a detection system.   
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Fig. 14. Diffraction efficiency map versus λ and  angle: d=180nm, a=300nm, t=300nm, θ=30 
deg. Diffraction efficiency map versus λ and  angle: d=180nm, a=300nm, t=300nm, θ=45 
deg. 

 
Photonic Crystal Waveguides and Bio-Sensors 

 

127 

 
Fig. 15. Reflectivity of a 2D periodic structure versus the air hole radius R (a=300nm, 
t=300nm). Example of TM radiation modes for a square lattice PhC with a=300nm. 

5. Design criteria of a biocompatible polymeric photonic crystal sensor and 
discussions 
Concerning bio compatible PhC, we consider in the example of this section, gold pillars 
growth on Polydimethylsiloxane (PDMS) polymer. In order to improve resonant emitting 
peaks, we fix as example a square lattice layout with a central micro-cavity defect (see Fig. 
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16 (a)) [Massaro, 2011]. The input is a laser beam working at a wavelength . The source 
excites in the PhC waveguides TE and TM modes characterized by the electromagnetic field 
components reported in Fig. 16 (b). The PDMS material (nbackground=1.4) represents the 
background where will be growth the gold pillars. The design criteria in order to improve 
efficient emitting cavities are listed by the following points:   

1. we define the band gaps of the PhC without micro-cavity defect; 
2. we calculate the band gaps of the same PhC with central defect obtained by omitting 

the central pillar; 
3. we define the mode distribution of the cavity modes. 

By focusing on TE modes we calculate the band gaps illustrated in Fig. 17 (a). Then we 
introduce the central defect as indicated in Fig. 16 (a) and calculate the new band gaps by 
observing that one of previous band will be divided into two band gaps. In the analyzed 
case, the band gap found around a/ = 0.3 is divided into two ones as shown in Fig. 17 (b). 
The cavity modes are defined between the two new band gaps. The cavity modes are 
confined inside the cavity as proved by Fig. 18 which illustrates the modal profiles of the 
electric field component Ey . It is possible to select the best cavity modes (characterized by 
the best quality factor) by tuning the source wavelength around the selected mode. In order 
to improve strong power energy inside the cavity, we excite the PhC slab by a TE polarized 
source. The light emitting property along the direction orthogonal to the layout plane, could 
be improved by considering a 3D membrane type configuration or a central defect pillar 
characterized by a different size or material. The 2D approach allows to mainly fix the 
geometrical layout and to define the working wavelength. An accurate study of the 3D 
model will supply information about the best geometrical parameters such as the height of 
the pillars, the PDMS slab core thickness, and the dimensions of the membrane [Massaro et 
al., 2008]. Possible measurements of the designed PhC can be performed by Micro-
photoluminescence setup [Massaro et al., 2008], by Fourier transform infrared (FTIR) and by 
UV visible analysis.   

 
Fig. 16. (a) Example of square lattice 2D layout of a PhC with central micro-cavity and gold 
pillars. (b) TE and TM mode classification.  
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Fig. 17. (a) TE Band diagram of square lattice PhC without (a) and with (b) micro-cavity 
central defect, respectively. 
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Fig. 17. (a) TE Band diagram of square lattice PhC without (a) and with (b) micro-cavity 
central defect, respectively. 
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Fig. 18. Cavity mode profiles of modes indicated in Fig. 17: (a) mode 0.9; (b) mode 2.9; (c) 
mode 11.9; (d) mode 14. 9.   

6. Conclusion 
Examples of photonic crystal waveguides and bio-sensors are presented. The main goal of 
the proposed chapter is to provide information about methods and approaches of bio-
sensing systems. In the first part of the chapter we focus on the in-plane coupling of a light 
source by analyzing different tapered waveguide profiles able to couple W1 photonic 
crystals. Then we analyze different bio-sensors such as DNA sensor chip and PhC Si3N4 
membrane, by discussing the irradiation and diffraction properties. In the last part we 
provide design criteria of a bio-compatible polymeric PhC.    
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1. Introduction 
Over the past two decades, the effects of atomic phase coherence have exhibited a number 
of physically interesting phenomena such as electromagnetically induced transparency 
(EIT) (Harris, 1997) and the effects that are relevant to EIT, including light amplification 
without inversion (Cohen & Berman, 1997), spontaneous emission cancellation (Zhu  
& Scully, 1996), multi-photon population trapping (Champenois et al., 2006), coherent 
phase control (Zheltikov, 2006; Gandman et al., 2007) as well as photonic resonant left-
handed media (Krowne & Shen, 2009). EIT is such a quantum optical phenomenon that if 
one resonant laser beam propagates in a medium (e.g., an atomic vapor or a 
semiconductor-quantum-dot material), the beam will get absorbed; but if two resonant 
laser beams instead propagate inside the same medium, neither would be absorbed. Thus 
the opaque medium becomes a transparent one. Such an interesting optical behavior 
would lead to many applications, e.g., designs of new photonic and quantum optical 
devices. Since it can exhibit many intriguing optical properties and effects, EIT has 
attracted extensive attentions of a large number of researchers in a variety of areas of 
optics, atomic physics and condensed state physics (Harris, 1997), and this enables 
physicists to achieve new novel theoretical and experimental results. For example,  some 
unusual physical effects associated with EIT include the ultraslow light pulse 
propagation, the superluminal light propagation, and the light storage in atomic vapors 
(Schmidt & Imamoğlu, 1996; Wang et al., 2000; Arve, 2004; Shen et al., 2004), some of 
which are expected to be beneficial (and powerful) for developing new technologies in 
quantum optics and photonics.  

In this chapter, we shall consider a new application of EIT, i.e., EIT-based artificial periodic 
dielectric: specifically, the EIT medium (an atomic vapor or a semiconductor-quantum-dot 
material) is embedded in a periodic host dielectric (e.g., GaAs). As is well known, the 
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due to its capacity of controlling light propagations (Yablonovitch, 1987; Joannopoulos et al., 
1995; Joannopoulos et al., 1997). Here, we shall propose some new effects relevant to light 
propagation manipulation via EIT responses in an artificial periodic dielectric. Such effects 
result from the combination of EIT and photonic crystals. In this new application of EIT for 
manipulating light wave propagations, the periodic dielectric can exhibit a tunable 
reflectance and transmittance (induced by an external control field) and can show 
extraordinary sensitivity to the frequency of the applied probe field. For example, a change 
of one part in 810  in the probe frequency p would lead to a dramatic change in the 
reflectance and transmittance of the EIT-based periodic layered medium, and therefore, it 
can be used for designing sensitive optical switches, photonic logic gates as well as tunable 
photonic transistors. In the literature, although there have been some investigations that are 
relevant to the tunable photonic crystals based on EIT media (Forsberg & She, 2006; He et 
al., 2006; Zhuang et al., 2007; Petrosyan, 2007), yet less attention has been paid to the 
frequency-sensitive optical behavior that would be the most remarkable property of such a 
kind of periodic layered media.  

We should point out that photonic logic gates designed based on new coherent materials, 
such as near-field optically coupled nanometric materials (Sangu et al., 2004; Kawazoe  
et al., 2003) and double-control multilevel atomic media (Shen, 2007; Shen & Zhang,  
2007; Gharibi et al., 2009), have been suggested during the past few years. It should  
be emphasized that the mechanism presented in this chapter can be considered  
an alternative way to realize such a kind of photonic and quantum optical devices.  
Very recently, Abdumalikov et al. reported an experimental observation of EIT on a single 
artificial atom, and found that the propagating electromagnetic waves are allowed to  
be fully transmitted or backscattered (Abdumalikov et al., 2010). We will demonstrate in 
the present chapter that such a full controllability of optical property of artificial media 
could also be achieved in the EIT-based layered structure, of which the reflectance can be 
either zero or large depending sensitively on the intensity of the external control field 
applied in the EIT system. We believe that this would open a good perspective for its 
application in some new fields such as photonic microcircuits (or integrated optical 
circuits). 

This chapter is organized as follows. In Sec. 2 we shall discuss the characteristic optical 
property of an EIT medium (e.g., an atomic vapor), and in Sec. 3 we review a formulation 
for treating the electromagnetic wave propagation in a periodic layered medium. The 
frequency-sensitive tunable band structure as well as the behavior of frequency-sensitive 
reflectance and transmittance of such an EIT-based periodic layered medium are presented 
in Sec. 4 and Sec. 5, respectively, where the spectrum of the reflectance as well as the 
transmittance of the EIT-based periodic structure (when the TE wave of the probe beam is 
normally incident on the layered medium) versus the normalized Rabi frequency 3/ c  of 
the control field and the normalized probe frequency detuning 3/ p  

will be addressed. 
The frequency-sensitive tunable band structure of TM wave in the EIT-based periodic 
structure containing a left-handed medium is discussed in Sec. 6, where the reflection 
coefficient exceeding unity would occur in some frequency ranges. This will lead to a 
negative transmittance (so-called photonic analog of Klein tunneling in an LHM-EIT-based 
periodic layered medium). In Sec. 7 and Sec. 8, a potential application, i.e., photonic 
transistors and logic gates (tunable photonic logic gates) are suggested by taking full 
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advantage of the effect of such an optical switching control. In Sec. 9 we close the chapter 
with some concluding remarks.  

2. Optical properties of an EIT medium 
Here we shall address the intriguing optical behavior of an EIT atomic vapor. Consider a 
Lambda-configuration three-level atomic system with two lower levels 1 , 2  and one 
upper level 3  (see Fig.1 for its schematic diagram). This atomic system interacts with  
the electric fields of the two applied light waves (probe and control fields), which drive 
the 1 - 3  and 2 - 3  transitions, respectively. Note that the parity of level 3  needs to 
be opposite to levels 1  and 2 , since the level pairs 1 - 3  and 2 - 3  can be coupled 
to the electric fields of the probe and control waves, respectively. Such a three-level 
system can be found in metallic alkali atoms (e.g., Na, K, and Rb). The off-diagonal 
density matrix elements 21  and 31  can form a closed set of equations under the 
condition of weak probe field (Scully & Zubairy, 1997), and the atomic system can be 
characterized by an SU(2) time-dependent model when the control field intensity varies 
adiabatically. The present atomic system interacting with two light fields ( c and p ) is 
governed by 
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It can be verified that the atomic microscopic electric polarizability of the 1 - 3  transition 
is of the form 
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Here, 3  and 2  stand for the spontaneous emission decay rate and the collisional 
dephasing rate, respectively. The Rabi frequency c  of the control field is defined by 

c c32 /E    with cE  the slowly-varying amplitude (envelope) of the control field. The 
two frequency detunings are defined as 31   p p , 32   c c  with p  and c  the 
mode frequencies of the probe field and the control field, respectively. By using the 
Clausius-Mossotti relation (governing the local field effect due to the dipole-dipole 
interaction between neighboring atoms), the relative electric permittivity of the EIT vapor at 
probe frequency ( p 31   p ) is given by 
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where aN  denotes the atomic concentration (atomic number per unit volume) of the EIT 
atomic vapor. 
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Here, 3  and 2  stand for the spontaneous emission decay rate and the collisional 
dephasing rate, respectively. The Rabi frequency c  of the control field is defined by 

c c32 /E    with cE  the slowly-varying amplitude (envelope) of the control field. The 
two frequency detunings are defined as 31   p p , 32   c c  with p  and c  the 
mode frequencies of the probe field and the control field, respectively. By using the 
Clausius-Mossotti relation (governing the local field effect due to the dipole-dipole 
interaction between neighboring atoms), the relative electric permittivity of the EIT vapor at 
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where aN  denotes the atomic concentration (atomic number per unit volume) of the EIT 
atomic vapor. 
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Fig. 1. The schematic diagram of a three-level EIT atomic system. The parity of upper level 
3  is opposite to that of lower levels 1  and 2 . The control and probe laser beams drive 

the 2 - 3  and 1 - 3  transitions, respectively. Once the control laser beam c  is 
switched off, the vapor will be a resonantly absorptive medium for the probe light. 
However, the vapor would be transparent to the probe light because of the destructive 
quantum interference between the 1 - 3  and 2 - 3  transitions when the control laser 
beam is present. 

The tunable dispersive behavior of the bulk EIT atomic vapor is shown in Figs. 2 and 3. The 
typical atomic and optical parameters chosen for Figs. 2 and 3 are as follows: the atomic 
number density 205.0 10N  a

-3m , the electrical dipole moment 291.0 10  31 C m , the 
frequency detuning of the control field 71.0 10  c s 1 , the spontaneous emission decay 
rate 72.0 10 3Γ s 1  and the dephasing rate 51.0 10 2γ s 1 . Fig. 3 shows the three-
dimensional behavior of the real part (a) and the imaginary part (b) of the relative electric 
permittivity of the EIT atomic vapor (bulk). As the dispersive curve of the refractive index of 
the EIT bulk is a function of p and c , in the section that follows, we shall consider a band 
structure (versus both p and c ) of the EIT-based periodic medium (see Fig. 4 for its 
schematic diagram). 

 

 
(a) (b) 

Fig. 2. The relative electric permittivity of the three-level EIT atomic vapor as a function of 
the probe frequency detuning p  and the Rabi frequency c  of the control field. In (a) the 
Rabi frequency of the control field is 72.0 10  c s 1 . In (b) the probe frequency detuning 
is 63.4 10  p s 1 . 
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(a) (b) 

Fig. 3. The dispersion of the relative electric permittivity of the EIT atomic medium versus 
the frequency detuning p of the probe field and the Rabi frequencyc of the control field.  

The 1D periodic (D|E) cells shown in Fig. 4 are composed of two kinds of media: a dielectric 
(e.g., GaAs dielectric with the relative refractive index 1 3.54n  ) and a typical Lambda-
configuration three-level EIT medium whose electric permittivity is determined by Eqs. (2) 
and (3). Here, the characters “D” and “E” in “(D|E)” denote the dielectric (GaAs) and the 
EIT, respectively. Assume the two materials are both homogeneous along y-direction 
(i.e. / 0y   ) and the probe signal wave travels in the (...D|E|D|E…) structure always 
along x-direction. The reflection coefficient (Yeh, 2005) on the left side interface ( 0x  ) of 
such an EIT-based periodic medium, which is in fact a 1D N -layer (D|E) layered structure 
bounded by the GaAs dielectric material, will be addressed.  

 
  

Fig. 4. The 1D N -layer structure of (D|E) cells embedded in GaAs homogeneous dielectric. 
The dielectrics 1D  and 2D  stand for the GaAs and EIT atomic media, respectively. A (D|E) 
cell consists of GaAs dielectric (D) and EIT medium (E). The lattice constants of the (D|E) 
cells are chosen as 0.1a b   m . 

3. The electromagnetism of periodic layered medium 
In order to make the chapter self-contained, we shall in this section review the formalism for 
treating the light wave propagation in a periodic layered medium (Readers are referred to 
e.g. Yeh’s reference (Yeh, 2005) for a more complete and detailed formalism). According to 
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the theory of electromagnetism in photonic crystals, the electric field in the mth  unit cell can 
be expressed by (Yeh, 2005) 
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Here, the wave vectors 1 1 /xk n c , 2 2 /xk n c . By using the matrix formalism for 
treating the wave propagation in layered media, one can arrive at the equation  
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of electric field amplitudes as well as the eigenvalue equation    
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for the column vector characterizing the electromagnetic field strengths in the periodic 
layered structure. The matrix elements are given by (Yeh, 2005)  
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Note that the eigenvalue equation yields  
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This can be rewritten as a well-known form 
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From this relation, one can obtain the Bloch wave number K . Now we are in a position to 
derive the coefficient of reflection, which is defined as 0 0/Nr b a . It follows that the relation 
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of the column vectors between the left side interface (at 0x  ) and in the Nth unit cell is 
given by (Yeh, 2005) 
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the coefficient of reflection of an N -layer periodic medium is given by (Yeh, 2005) 
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where 0Nb   has been substituted (since the present periodic layered medium is composed 
of N  unit cells and is bounded by the medium of the refractive index 1n , the reflected 
amplitude of the electric field in the last unit cell vanishes). It should be emphasized that the 
factor of phasor time dependence, tie , has been adopted for the time harmonic wave in 
deriving the atomic microscopic electric polarizability (2) of EIT. Such a convention is often 
used by physicists. In the convention of engineers, however, the time dependence 
is t+je (Yeh, 2005; Caloz & Itoh, 2006). As we shall employ the formalism in the reference of 
Yeh (Yeh, 2005) for treating the wave propagation in the periodic layered medium, we need 
to convert the convention of physicists to that of engineers. This can be easily accomplished 
by the imaginary variable substitution, i.e., i j . 

In the sections that follow, we shall concentrate our attention on the influence of the external 
control field on the probe wave propagation inside the EIT-based periodic layered medium. 
It should be noted that we only consider a passive multilayered structure in this chapter. 
Although there are control and probe laser beams exciting the two electric-dipole allowed 
transitions, it is a passive atomic system because of the large spontaneous emission decay 
from the excited states to the ground state. If, however, there is an extra strong pumping 
laser beams driving the atomic system (Wu, 2004), we should address its optical response 
relevant to gain factor. But here such a strong pumping interaction is not taken into account.  

4. The frequency-sensitive tunable band structure 
In order to show how sensitive (to the probe frequency) the band structure of the EIT 
photonic crystal is, let us first see the dispersive relation of the 1D infinite periodic (D|E) 
cells, in which the probe frequency p  is far from the resonant frequency of the atomic  
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the theory of electromagnetism in photonic crystals, the electric field in the mth  unit cell can 
be expressed by (Yeh, 2005) 
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Here, the wave vectors 1 1 /xk n c , 2 2 /xk n c . By using the matrix formalism for 
treating the wave propagation in layered media, one can arrive at the equation  
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of electric field amplitudes as well as the eigenvalue equation    
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for the column vector characterizing the electromagnetic field strengths in the periodic 
layered structure. The matrix elements are given by (Yeh, 2005)  
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where 0Nb   has been substituted (since the present periodic layered medium is composed 
of N  unit cells and is bounded by the medium of the refractive index 1n , the reflected 
amplitude of the electric field in the last unit cell vanishes). It should be emphasized that the 
factor of phasor time dependence, tie , has been adopted for the time harmonic wave in 
deriving the atomic microscopic electric polarizability (2) of EIT. Such a convention is often 
used by physicists. In the convention of engineers, however, the time dependence 
is t+je (Yeh, 2005; Caloz & Itoh, 2006). As we shall employ the formalism in the reference of 
Yeh (Yeh, 2005) for treating the wave propagation in the periodic layered medium, we need 
to convert the convention of physicists to that of engineers. This can be easily accomplished 
by the imaginary variable substitution, i.e., i j . 

In the sections that follow, we shall concentrate our attention on the influence of the external 
control field on the probe wave propagation inside the EIT-based periodic layered medium. 
It should be noted that we only consider a passive multilayered structure in this chapter. 
Although there are control and probe laser beams exciting the two electric-dipole allowed 
transitions, it is a passive atomic system because of the large spontaneous emission decay 
from the excited states to the ground state. If, however, there is an extra strong pumping 
laser beams driving the atomic system (Wu, 2004), we should address its optical response 
relevant to gain factor. But here such a strong pumping interaction is not taken into account.  

4. The frequency-sensitive tunable band structure 
In order to show how sensitive (to the probe frequency) the band structure of the EIT 
photonic crystal is, let us first see the dispersive relation of the 1D infinite periodic (D|E) 
cells, in which the probe frequency p  is far from the resonant frequency of the atomic  
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1 - 3  transition. We shall plot the band structure by using Eq. (9), which is an equation of 
dispersion of a 1D infinite periodic structure. Since the permittivity of EIT also depends 
upon the Rabi frequency of the control field, c  is a tunable parameter involved in the 
equation of dispersion. Then we will also present the three-dimensional behavior of the 
Bloch wave number versus both c  and p  with the help of Eqs. (2), (3) and (9).  Here, we 
choose the typical atomic transition frequency 15

31 5.0 10   s 1 , and the thickness of the 
two layers 0.1a  m  (GaAs dielectric) and 0.1b  m  (EIT medium).  

As the probe frequency detuning of TE waves in Fig. 5 is quite large ( p /c   with 
a b   ),  the strong dispersion of EIT cannot be exhibited, and the present (D|E) layered 

structure behaves like a conventional 1D photonic crystal. However, when the probe 
frequency detuning p approaches zero (or negligibly small compared with /c  having 
the order of magnitude 1510 s 1 , e.g., p is tuned  onto  resonance, i.e.,   p c that equals 

71.0 10 s 1 ), it would exhibit a band with a fine structure (and hence remarkable 
frequency-sensitive reflectance and transmittance). The band structure in the probe 
frequency detuning range 8 8/ [ 2.5 10 , 2.5 10 ]      p 3  is plotted in Fig. 5 (a). The typical 
atomic and optical parameters such as the atomic number density Na , the electrical dipole 
moment 31 , the control frequency detuning c , the spontaneous emission decay rate 3Γ  
and the dephasing rate 2γ are chosen exactly the same as in Figs. 2 and 3 (these typical 
parameters are also used throughout the chapter). The Rabi frequency of the control field 
is 72.0 10  c s 1 . Since, seen from Fig. 5 (a), there are some fine structures of the band in 
the frequency range ( 8 8/ [ 2.5 10 , 2.5 10 ]      p 3 ) that need to be addressed, we present 
the intricate structures in Fig. 5(b)-(d) and demonstrate them in more details.  In Fig. 5(b), 
for example, as the probe frequency detuning tends to the resonant frequency   p c (i.e., 

/ p 3  approaches almost zero compared with /c  ), both the real and imaginary parts 
of the Bloch wave number K  would arise, because the strong dispersion of the EIT medium, 
of which the relative refractive index is a complex number, plays a key role for creating such 
a band structure.  

In Fig. 5(b) we have shown the fine structure of the band induced by the EIT resonance. 
However, the detailed fine texture cannot be signified by the coarse curves in Fig. 5(b), since 
the band structure is plotted within a large range of probe frequency detuning.  We shall in 
what follows treat further the fine structure of the band of EIT-based photonic crystal when 
the 1 - 3  transition of the EIT atomic levels is on resonance. It follows from Fig. 6(a) that 
after aligning dielectric GaAs side by side with EIT medium there are three extreme values 
of imaginary part K in the Bloch wave number (or r,(D|E)0K k n  ). Coincidently, there are 
also three extreme values of real part K  in the Bloch wave number (or r,(D|E)0K k n  ). 
However, neither of them reaches the band edge 0K   or 0.5K    (in the units of 2 /  ). 
Note that K and K simultaneously exist, since the refractive index of the EIT medium has 
an imaginary part. It should be emphasized that the band structure (i.e., K and K vary as 
the probe frequency detuning p changes slightly) is very sensitive to the probe frequency 
detuning. From Fig. 6 (a) one can see that the real part of the Bloch wave number changes 
drastically from 0 to 0.5 (in the units of 2 /  ) and the imaginary part changes from  0.5  
to 0 (in the units of 2 /  ) within a very narrow probe frequency band (namely, a very 
small change, e.g., at the level of one part in 810  in the probe frequency, gives rise to a large 
variation in the Bloch wave number). In particular, the slope ( /K pd d ) is almost divergent 
at the position / 0.5  p 3 . The reason for this is because 0.5  p 3  is exactly the two-
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photon resonant frequency (   p c ). As there is almost divergent dispersion close 
to 0.5  p 3 , the effects of slow light and the negative group velocity in such an EIT-based 
periodic layered material deserve consideration. This would lead to promising applications 
in designing devices for slowing down light speed. Besides, the EIT-based band structure is 
tunable in response to the intensity (characterized by the Rabi frequency c ) of the external 
control field, since the refractive index of the EIT medium can be controlled by the control 
field.  In Fig. 6 (b) the real part of the Bloch wave number K  decreases as c increases from 
0 to 34 , and then increases when 3/ 4  c ; the absolute value of the imaginary part of 
the Bloch wave number increases first in the range 3/ [0,1]  c  and then decreases 
when 3/ 1  c . This, therefore, means that one can use one optical field to controllably 
manipulate the wave propagation of the other optical field via such an effect of sensitive 
switching control exhibited in the EIT-based periodic layered structure.  
         

 
(a) (b) 

 
(c) (d) 

 

Fig. 5. The bandgap structure of the 1D infinite periodic (D|E) cells when the probe 
frequency of TE waves is far from the resonance.  In (a) is the band structure in the probe 
frequency detuning range 8/ [ 2.5 10 ,    p 3

82.5 10 ]  . In (b), (c) and (d) are the fine 
details exhibited in the EIT-based band structure in the probe frequency detuning ranges (in 
units of 3 ), i.e., / p 3

7[ 1.7 10 ,   72.0 10 ]  , 7 7[ 11.0 10 , 1.0 10 ]    and  
8 8[ 2.5 10 ,0.0 10 ]   , respectively.  

As we have shown the characteristics of both sensitivity and tunability of the EIT-based 
band structure in Fig. 5(b) and Fig. 6, we shall present its three-dimensional behavior as 
both the probe frequency detuning and the Rabi frequency of control field vary. The 
sensitivity and the tunability versus the probe frequency detuning p  and the Rabi 
frequencyc  of control field, respectively, are shown in Fig. 7.  
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(a) (b) 

Fig. 6. The Bloch wave number K  of the 1D infinite periodic (D|E) cells when the EIT 
atomic transition is on resonance. The curves in (a) indicate the real and imaginary parts of 
the normalized Bloch wave number K  sensitive to the probe frequency detuning p , where 
the Rabi frequency of the control field is chosen as 72.0 10  c s 1 . The curves in (b) show 
the tunable Bloch wave number K  at the frequency detuning 72.0 10  p s 1  when the 
Rabi frequency c  of the control field changes.  

 

 
(a) (b) 

Fig. 7. The real part (a) and the imaginary part (b) of the normalized Bloch wave number K  
(in the units of 2 /  ) of the1D infinite periodic (D|E) cells versus p and c . Both the 
real and imaginary parts of the Bloch wave number K  are sensitive to the small change in 
the probe frequency (the slope /K pd d  of the dispersive curve is much more larger than 
that in a conventional photonic crystal), and both the real and imaginary parts of the Bloch 
wave number at any fixed probe frequencies can be controllable by the control Rabi 
frequencyc . 

5. Probe-frequency-sensitive and field-intensity-sensitive coherent control 
effects in an EIT-based periodic layered medium 
We shall now show that the reflection coefficient would be sensitive to the probe frequency 
when it is tuned onto two-photon resonance (   p c ). The typical atomic and optical 
parameters for the numerical results are chosen exactly the same as those used in the 
preceding sections.  In Fig. 8, the real and imaginary parts of the reflection coefficient r  
corresponding to N -layer (D|E) cells are presented as an illustrative example, where the 
layer number 1, 5, 20,N    100 . It can be seen that the reflection coefficient changes 

 
EIT-Based Photonic Crystals and Photonic Logic Gate Design 

 

143 

drastically in the frequency detuning range of concern. We plot in Fig. 8 the dispersive 
behavior of r  in the range of 3/ p  [0.3, 0.7]  , i.e., the probe frequency detuning changes 
at the level of one part in 810  in the probe frequency p  (the typical value of the probe 
frequency 1510 p s 1 ). It follows from Fig. 8 that the real and imaginary parts of r  change 
from about 0.25 to 0.95 and from about 0.25

 
to 0.40, respectively. As is expected, such a 

dramatic change in the coefficient of reflection results from the two-photon resonance 
(because of the destructive quantum interference between the 1 - 3  and 2 - 3  
transitions). In general, the more layers there are in the dielectric-EIT cell structure, the more 
drastic change there would be in the reflection coefficient on the left-side interface of this 
EIT-based periodic layered medium. Thus, the total number of valleys and peaks in the 
curve of the reflection coefficient r  in a narrow band close to 0.5  p 3  becomes more and 
more as the total layer number N increases. However, such valleys and peaks in the 
reflection coefficient are no longer conspicuous for the cases of large N , since the 
amplitudes of fluctuation become smaller when the layer number N  is adequately large.  
If, for example, the layer number 100N  , the small fluctuations tend to efface themselves 
(see Fig. 8).  
     

 

  

Fig. 8. The real and imaginary parts of the reflection coefficient r  versus the normalized 
probe frequency detuning 3/ p  in the frequency range of two-photon resonance caused 
by the destructive quantum interference between the 1 - 3  and 2 - 3  transitions (close 
to 0.5  p 3 ). The layer number of the EIT-based periodic medium 1, 5, 20,N    100 . The 
Rabi frequency of the control field is chosen as 72.0 10  c s 1 . 

We have demonstrated the probe frequency-sensitive behavior of the EIT-based periodic 
layered material. It can exhibit another effect (field-controlled tunable optical response), 
where the control field can be used to manipulate the photonic band structure, and therefore 
the reflection coefficient would vary as we tune the control Rabi frequency c . It follows 
from Fig. 9 that the tunable reflection coefficient of the EIT-based periodic layered medium 



 
Photonic Crystals – Introduction, Applications and Theory 

 

142 

 
(a) (b) 

Fig. 6. The Bloch wave number K  of the 1D infinite periodic (D|E) cells when the EIT 
atomic transition is on resonance. The curves in (a) indicate the real and imaginary parts of 
the normalized Bloch wave number K  sensitive to the probe frequency detuning p , where 
the Rabi frequency of the control field is chosen as 72.0 10  c s 1 . The curves in (b) show 
the tunable Bloch wave number K  at the frequency detuning 72.0 10  p s 1  when the 
Rabi frequency c  of the control field changes.  

 

 
(a) (b) 

Fig. 7. The real part (a) and the imaginary part (b) of the normalized Bloch wave number K  
(in the units of 2 /  ) of the1D infinite periodic (D|E) cells versus p and c . Both the 
real and imaginary parts of the Bloch wave number K  are sensitive to the small change in 
the probe frequency (the slope /K pd d  of the dispersive curve is much more larger than 
that in a conventional photonic crystal), and both the real and imaginary parts of the Bloch 
wave number at any fixed probe frequencies can be controllable by the control Rabi 
frequencyc . 

5. Probe-frequency-sensitive and field-intensity-sensitive coherent control 
effects in an EIT-based periodic layered medium 
We shall now show that the reflection coefficient would be sensitive to the probe frequency 
when it is tuned onto two-photon resonance (   p c ). The typical atomic and optical 
parameters for the numerical results are chosen exactly the same as those used in the 
preceding sections.  In Fig. 8, the real and imaginary parts of the reflection coefficient r  
corresponding to N -layer (D|E) cells are presented as an illustrative example, where the 
layer number 1, 5, 20,N    100 . It can be seen that the reflection coefficient changes 

 
EIT-Based Photonic Crystals and Photonic Logic Gate Design 

 

143 

drastically in the frequency detuning range of concern. We plot in Fig. 8 the dispersive 
behavior of r  in the range of 3/ p  [0.3, 0.7]  , i.e., the probe frequency detuning changes 
at the level of one part in 810  in the probe frequency p  (the typical value of the probe 
frequency 1510 p s 1 ). It follows from Fig. 8 that the real and imaginary parts of r  change 
from about 0.25 to 0.95 and from about 0.25

 
to 0.40, respectively. As is expected, such a 

dramatic change in the coefficient of reflection results from the two-photon resonance 
(because of the destructive quantum interference between the 1 - 3  and 2 - 3  
transitions). In general, the more layers there are in the dielectric-EIT cell structure, the more 
drastic change there would be in the reflection coefficient on the left-side interface of this 
EIT-based periodic layered medium. Thus, the total number of valleys and peaks in the 
curve of the reflection coefficient r  in a narrow band close to 0.5  p 3  becomes more and 
more as the total layer number N increases. However, such valleys and peaks in the 
reflection coefficient are no longer conspicuous for the cases of large N , since the 
amplitudes of fluctuation become smaller when the layer number N  is adequately large.  
If, for example, the layer number 100N  , the small fluctuations tend to efface themselves 
(see Fig. 8).  
     

 

  

Fig. 8. The real and imaginary parts of the reflection coefficient r  versus the normalized 
probe frequency detuning 3/ p  in the frequency range of two-photon resonance caused 
by the destructive quantum interference between the 1 - 3  and 2 - 3  transitions (close 
to 0.5  p 3 ). The layer number of the EIT-based periodic medium 1, 5, 20,N    100 . The 
Rabi frequency of the control field is chosen as 72.0 10  c s 1 . 

We have demonstrated the probe frequency-sensitive behavior of the EIT-based periodic 
layered material. It can exhibit another effect (field-controlled tunable optical response), 
where the control field can be used to manipulate the photonic band structure, and therefore 
the reflection coefficient would vary as we tune the control Rabi frequency c . It follows 
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is also sensitive to the Rabi frequency of the control field when the total layer number N  
increases. This means that the incident probe signal is either reflected or transmitted 
depending quite sensitively on the intensity of the external control field (characterized by 

* c c ), and therefore it could be used for designing some sensitive photonic devices (e.g., 
optical switches, photonic logic gates as well as tunable photonic transistors). In addition, a 
full controllability of reflection and transmission of the present EIT-based layered structure 
can also be demonstrated in Fig. 9. It can be readily seen that both the real and imaginary 
parts of the reflection coefficient r  are less than 0.1, and hence the reflectance ( *R r r ) 
approaches zero (or almost zero) when the normalized control Rabi frequency 3/ c  is 
taken to be certain values, such as 3/ 6.0  c  (for 5N  ), 3/ 8.5  c  (for 20N  ) and 

3/ 10, 20  c   (for 100N  ). Thus, a field-intensity-sensitive switchable mirror can be 
fabricated with the EIT-based layered structure having a large total layer number 
N (e.g., 100N  ). The three-dimensional behavior of the reflectance of the EIT-based 
periodic layered medium as both the Rabi frequency c  and the probe frequency 
detuning p change is indicated in Fig. 10. Besides, we also consider the reflectance and 
transmittance of 1-, 5-, 20-, 100-layer periodic structures at other probe frequency detuning, 
e.g., s8 110   p  in Fig. 11 as an illustrative example of tunable field-intensity-sensitive 
coherent control effect.   

 

 

 
 

Fig. 9. The real and imaginary parts of the reflection coefficient r  versus the normalized 
Rabi frequency 3/ c of the control field. The probe frequency detuning 
is 72.0 10  p s 1 . All the atomic and optical parameters such as31 , 3Γ , 2γ , c , Na  are 
chosen exactly the same as those in Fig. 8. In the case of 100N  , the reflection coefficient 
depends quite sensitively on the Rabi frequency of the control field.  
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Fig. 10. The three-dimensional behavior of the reflectance of the EIT-based layered medium 
versus the normalized control Rabi frequency 3/ c  and the normalized probe frequency 
detuning 3/ p . All the atomic and optical parameters such as31 , 3Γ , 2γ , c , and Na  
are chosen exactly the same as those in Figs. 8 and 9. 
 

 

  
Fig. 11. The reflectance and transmittance versus the normalized Rabi frequency 3/ c of the 
control field. The probe frequency detuning is chosen as s8 110   p . All the atomic and 
optical parameters such as31 , 3Γ , 2γ , c , Na  are chosen exactly the same as those in Fig. 8.  
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It should be noted that the probe frequency detuning p does not equal the frequency 
detuning c of the control field in Figs. 9-11, which are some typical cases for exhibiting 
general optical behavior of EIT-based photonic crystals. The quantum interference between 
atomic transitions (particularly when the condition of two-photon resonance,   c p , is 
fulfilled) can give rise to a strong dispersion that is tunable by the external control field 
(characterized by the Rabi frequency c ). The structure of the EIT-based photonic crystal 
can thus be designed by taking advantage of such an effect of quantum coherence. We 
expect that the present probe-frequency-sensitive and field-intensity-sensitive coherent 
control effect with an EIT-based periodic layered structure can be used as a fundamental 
mechanism for designs and fabrications of new quantum optical and photonic devices. 

6. The frequency-sensitive tunable band structure of TM wave 
In the preceding two sections we have studied the periodic structure composed of an EIT 
medium and a normal dielectric (i.e., right-handed material). As a left-handed material (LHM) 
can exhibit unusual electromagnetic properties (Veselago, 1968), we shall now demonstrate 
how the layer structure of 1D photonic crystal consisting of the EIT vapor layers and the LHM 
host dielectric layers can show extraordinary sensitivity to the frequency of the probe field. As 
the band structure for TM wave seems to be more sensitive to the frequency than that for TE 
wave (Yeh, 2005), in this section we shall focus our attention on the optical response (e.g., 
frequency-sensitive band structure induced by two-photon resonance and higher-than-unity 
reflection coefficients due to the Klein tunneling) of TM wave.  

As is well known, the Maxwell curl equations show that the phase velocity of light wave 
propagating inside a left-handed medium is pointed opposite to the direction of energy 
flow, that is, the Poynting vector and the wave vector of electromagnetic wave would be 
anti-parallel (i.e., its wave vector k, electric field E and magnetic field H form a left-handed 
system). There have been some schemes to achieve the left-handed materials in the literature 
(Veselago, 1968; Shelby et al., 2001; Pendry et al., 1998; Pendry et al., 1996). Note that a right-
handed system can be changed into a left-handed one via the operation of mirror reflection. 
It is thus clearly seen that the permittivity and the permeability of the free vacuum in a 
mirror world would be negative numbers. We have therefore pointed out that the 
electromagnetic wave (or a photon field) propagating inside a left-handed medium behaves 
like a wave of “antiparticle” of photon (Shen, 2003; Shen, 2008). However, as we know, there 
exist no such “antiphotons” in nature. The theoretical reason for this is that the four-
dimensional electromagnetic vector potentials A  with 0,1,2,3   are always taking the 
real numbers. But in a dispersive and absorptive medium, one can utilize an effective 
medium theory, where the vector potentials A  could probably take complex numbers. 
Such complex vector field theory has been considered previously (Lurié, 1968). The 
Lagrangian density of a complex electromagnetic field is given by * / 2F F

  . The 
complex four-dimensional vector potentials characterize the propagating behavior of both 
photons and “antiphotons”, and hence both the electromagnetic wave characteristics in left- 
and right-handed media can be treated in a unified framework. 

If the light quanta in a medium of negative refractive index can be considered to be the 
“antiparticles” of photons, it is of interest to propose an optical (or photonic) analog of the 
well-known Klein paradox, which appears in regimes of relativistic quantum mechanics and 
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quantum field theory (Calogeracos & Dombey, 1999). In the Klein paradox, the relativistic 
wave equation can lead to so-called “negative probabilities” induced by certain energy 
potentials (e.g., the strong repulsive potential barrier with height exceeding the rest energy 
of particle) (Calogeracos & Dombey, 1999). Such a paradox can be interpreted based on the 
mechanism of particle-antiparticle pair production, which gives rise to higher-than-unity 
reflectance and negative transmittance. The Klein tunneling has been expected to be 
observed in QED regime, where an incoming electron wave function propagates and 
penetrates through a sufficiently high potential barrier. Though such a counterintuitive 
effect of relativistic quantum tunneling can be explained by using the notion of creation of 
electron-positron pairs, which is a physical process at the potential discontinuity, even today 
it is still referred to as “Klein paradox” in order to indicate its anomalous tunneling 
characteristics. Since the electron is massive, it is in fact quite difficult to realize the exotic 
Klein tunneling experimentally. Here, we shall suggest an alternative way to realize this 
intriguing effect, i.e., the photonic analog of Klein tunneling in an LHM-EIT-based periodic 
layered medium, where the reflection coefficient exceeding unity will also occurs in some 
frequency ranges, and this will lead to a negative transmittance.  

The 1D periodic LHM-EIT cells are embedded in a left-handed homogeneous dielectric (an 
LHM-EIT cell consists of a left-handed dielectric and an EIT atomic medium). Fig. 12 
indicates the band structure of the 1D infinite periodic LHM-EIT cells (sketched in Fig. 4) 
when the TM wave of the probe beam whose magnetic field vector is perpendicular to the x-
z plane (Yeh, 2005) is incident normally or obliquely on such a periodic layered medium. 
Here we also choose the typical atomic ( 1 - 3 ) transition frequency 15

31 5.0 10   s 1 , 
and the thickness of the two layers 0.1a  m  (left-handed dielectric) and 0.1b  m  (EIT 
medium). The thickness of one LHM-EIT cell is a b   . We plot in Fig. 12 the dispersive 
behavior of six typical cases (i.e., the angles of incidence i  are 0 , 15 , 30 ,o o o  45 , 60 ,o o  and 
75o , respectively). The tunable Rabi frequency c  of the control field chosen for the present 
scheme is 72.0 10 s 1 .  

 
Fig. 12. The band structure of the 1D infinite periodic LHM-EIT cells when the angles of 
incidence of the TM wave of the probe beam are 0 , 15 , 30 ,o o o

i    45 , 60 , 75o o o , respectively.  
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As the refractive index of the EIT medium has an imaginary part in the frequency range of 
concern (see Fig. 12), the real part Re( )K  and the imaginary part Im( )K  of the Bloch wave 
number simultaneously exist. We emphasize that the band structure (i.e., K  vary 
dramatically as the probe frequency detuning p changes slightly) is very sensitive to the 
probe frequency detuning. It follows that in a very narrow frequency band, where p  is 
close to the resonance position, namely, the EIT two-photon resonance occurs (   p c , 
i.e., 3/ 0.5  p ), both the real and imaginary parts of the Bloch wave number change 
drastically in a wide range, e.g., [0, 0.5] (in the units of 2 /  ) for Re( )K  and [ 0.5 , +0.5] 
for Im( )K . Since the EIT two-photon resonance arises at   p c  with the control frequency 
detuning 71.0 10  c s 1  , and the probe transition frequency 15

31 5.0 10   s 1 , a very 
small change (e.g., at the level of one part in 810 ) in the probe frequency would result in a 
large variation in the Bloch wave number.  For this reason, the slope ( /K pd d ) of the Bloch 
dispersive curves is almost divergent at the position / 0.5  p 3 . Since there is strong 
dispersion in the curves of Bloch wave number K  in the vicinity of 0.5  p 3 , the effects of 
slow light as well as the negative group velocity would arise in the present periodic layered 
material. 

 
Fig. 13. The real and imaginary parts of the reflection coefficient r corresponding to the N -
layer LHM-EIT cells ( 1 6N   ), where the relative refractive index of the left-handed medium 
is 1 1n   . The photonic Klein tunneling occurs, i.e., in some frequency ranges the absolute 
values of both the real and imaginary parts of the reflection coefficient r are larger than unity. 

We are now in a position to address the problem of reflection and transmission of the 
present photonic crystal. Obviously, the reflectance and transmittance would also be 
sensitive to the probe frequency when it is tuned onto resonance (   p c ). In Fig. 13 the 
real and imaginary parts of the reflection coefficient r corresponding to the N -layer LHM-
EIT cells are presented as an illustrative example, where the layer number 1 6N   and the 
Rabi frequency of the control field is chosen as 72.0 10  c s 1 . The TM wave is incident 
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normally on the periodic layered structure. It can be seen that both the real and imaginary 
parts of the reflection coefficient r  in all the cases (i.e., the layer number 1 6N   ) change 
drastically as the probe frequency is close to the resonant frequency (at 0.5  p 3 , where 
the probe frequency is tuned onto the two-photon resonance of the EIT atomic system).  

As the layered medium contains the left-handed layers, and the periodic EIT layers act as a 
potential barrier for the incident electromagnetic wave, the absolute values of the real or 
imaginary part of the reflection coefficient r in some frequency ranges is larger than unity 
because of the Klein tunneling. In order to show the exotic and counterintuitive features 
exhibited in Fig. 13, we will present the behavior of reflection of TM wave by a RHM-EIT-
based periodic layered structure, in which the left-handed layers have been replaced with 
the right-handed medium (or vacuum),  for comparison. In the reflection coefficient of 
the N -layer RHM-EIT cells, in which the relative refractive index of the right-handed 
medium is 1 1n   , is shown in Fig. 14. In this case, both the host dielectric layers and the 
EIT layers are right-handed media, so that there is no Klein tunneling, i.e., the absolute 
values of both the real and imaginary parts of the reflection coefficient r are less than unity.  
This, therefore, means that the left-handed dielectric is requisite in order to achieve the 
unusual photonic tunneling in the periodic layer structure containing EIT medium.  

 
Fig. 14. The real and imaginary parts of the reflection coefficient r corresponding to the N -
layer LHM-EIT cells ( 1 6N   ), where the relative refractive index of the right-handed 
medium is 1 1n   . There is no photonic Klein tunneling, i.e., the absolute values of both the 
real and imaginary parts of the reflection coefficient r are less than unity. 

7. A potential application: Photonic transistors and logic gates 
We have shown that the LHM-EIT-based periodic medium can give rise to extraordinary 
reflection and transmission. Now we shall consider the physical meanings of such a 
photonic analog of Klein tunneling as well as its photonic application to device design.  
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The reflectance R and transmittance T  on the left interface of the LHM-EIT structures are 
given in Figs. 15 and 16 as an illustrative example. It follows that the reflectance (and 
transmittance) is quite sensitive to the probe frequency detuning in some frequency ranges. 
It seems that the reflected wave intensity is larger than the incident intensity. This is because 
the additional particles are supplied by the potential barrier (Klein tunneling). 
Correspondingly, the transmitted wave is opposite in the intensity to the incident wave. In 
this process, the conservation of both the energy and the photon number is guaranteed. For 
example, the current density of the complex electromagnetic field can be defined 
as * *( )J A F A F 

     i  whose four-dimensional divergence is given by 

 * * * *( ) ( ) ( )J A F A F A F A F       
               i i i . (14) 

The above equation can be rewritten as  * * *( ) ( )F A F F A F     
         i i  

* *( ) ( )A F A F   
      i i , where the electromagnetic field equations * 0F 

   , 0F 
    

have been employed. With the help of the electromagnetic field equations, one can arrive 
at * *( )J A F A F    

      i . Thus, the four-dimensional divergence of current density is 

 * *( )vJ A F A F    
     i . (15) 

It follows from Eqs. (14) and (15) that 0J
   (this means that the current density of the 

complex electromagnetic field obeys the law of conservation). If the Hermitian field operator 
A  can be written as 
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where ( )e 
  denotes the polarization vector, the “Noether charge” corresponding to the 

current density J  of the complex electromagnetic field is given by 
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Here, ( )( , )a t k , ( )( , )a t
 k , ( )( , )b t k , ( )( , )b t

 k  stand for the annihilation and creation 
operators of photons and its “antiparticles”, respectively. The term ( ) ( )( , ) ( , )a t a t 

 k k  in Eq. 
(17) is the total number of photons, while  ( ) ( )( , ) ( , )b t b t 

 k k  is the total number of the 
“antiparticle” of photon. It can be seen that the total number of the “antiparticle” is negative.  

The photonic analog of the Klein tunneling presented here can be used to design the  
so-called frequency-sensitive photonic transistors (see Fig. 17(a) for a schematic diagram) 
that can switch the photonic signals: specifically, the incident probe beam, the reflected 
probe beam, and the transmitted probe beam can mimic the operation of the three terminals 
(i.e., base, collector and emitter, respectively) of a bipolar transistor (a semiconductor device 
for amplifying and switching electronic signals). A small intensity of probe beam at the base 
terminal can manipulate (or switch) a much larger intensity between the terminals  
of collector (reflected probe beam) and the emitter (transmitted probe beam), since the 
incident probe beam can control the reflected wave in proportion to the input signal 
(incident probe beam).  
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Fig. 15. The reflectance and transmittance of 1-layer and 2-layer LHM-EIT structures (the 
relative refractive index of the left-handed medium 1 1n   ) in the probe frequency 
range  p 3/ 3,3    .  

 

 
Fig. 16. The reflectance and transmittance of 1-layer and 2-layer LHM-EIT structures (the 
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As we have pointed out in the preceding sections, the sensitive optical switching control can 
also be utilized to design photonic logic gates by means of such an EIT-based periodic 
layered structure. For example, the incident probe beam and the applied control field can act 
as the two input signals. We suppose that the output signal 1Y   if the probe field can 
propagate through the periodic layered medium, and the output signal 0Y   if the probe 
beams cannot be transmitted through the structure (i.e., the reflection and absorption 
dominates in the probe wave propagation). Then the logic operations of two-input AND 
gate can be implemented with such a layered structure. Alternatively, we can also apply at 
least two probe waves at different wavelengths, which correspond to different 
transmittances. In this new scenario, the two incident probe beams of different frequencies 
can stand for the two input signals (see Figs. 17 and 18). Therefore, the functional and logic 
gates, such as NAND, NOR, EXOR and EXNOR gates, can be designed by taking advantage 
of the effect of sensitive control for optical switching (due to two-photon resonance of EIT) 
exhibited in such an EIT-based periodic layered medium.  
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where ( )e 
  denotes the polarization vector, the “Noether charge” corresponding to the 

current density J  of the complex electromagnetic field is given by 
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Here, ( )( , )a t k , ( )( , )a t
 k , ( )( , )b t k , ( )( , )b t

 k  stand for the annihilation and creation 
operators of photons and its “antiparticles”, respectively. The term ( ) ( )( , ) ( , )a t a t 

 k k  in Eq. 
(17) is the total number of photons, while  ( ) ( )( , ) ( , )b t b t 

 k k  is the total number of the 
“antiparticle” of photon. It can be seen that the total number of the “antiparticle” is negative.  

The photonic analog of the Klein tunneling presented here can be used to design the  
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of collector (reflected probe beam) and the emitter (transmitted probe beam), since the 
incident probe beam can control the reflected wave in proportion to the input signal 
(incident probe beam).  
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Fig. 17. (a) The schematic diagram of a photonic transistor designed based on the LHM-EIT 
layered structure. The probe field is incident on the structure, and the giant reflected wave 
with higher-than-unity reflectance and the transmitted wave with negative transmittance 
will be produced via the intriguing Klein tunneling effect. The incident probe wave, the 
reflected wave, and the transmitted wave correspond to the terminals of base, collector and 
emitter, respectively.  
(b) The schematic diagram of a two-input photonic logic gate designed based on the EIT-
based layered structure. The two incident probe beams at different frequencies represent the 
two input signals. 

8. Design of two-input photonic logic gates 
The dramatic reduction and enhancement in the reflectance and transmittance close to 

0.5  p 3  is of special interest since the two-photon resonance (   p c ) can give rise to 
the effect of sensitive optical switching control, which would lead to promising applications 
to new photonic device design. We shall suggest the working mechanism of two photonic 
logic gates (e.g., OR and NAND gates), which can be fabricated based on such an EIT-based 
periodic structure. The fine structure of the reflectance and transmittance for showing 
extraordinary sensitivity to the frequency of the probe field is demonstrated in Fig. 19(a). 
Here we plot only the reflectance and transmittance of two cases ( 4N   and 6N  ) as an 
illustrative example. It can be seen that some oscillations in the curves are exhibited in the 
narrow resonant frequency range [0.2 ,0.7 ]  p 3 3Δ . 

One can see from Fig. 18 (a) that there is a minimum (i.e., 0.19) and a maximum (i.e., 0.99) in 
the transmittance T  at 0.53  p 3 and 0.463 , respectively, for the 6-layer periodic structure. 
For the 4-layer periodic structure, however, the transmittance T  has a maximum (i.e., 0.99) 
and a minimum (i.e., 0.34) close to 0.53  p 3 and 0.463 , respectively. Two structures of 
layer number 4N   and 6  are sketched in Fig. 18(b). Two probe beams with 0.46  p 3  
and 0.533 , which can act as the two input signals, are applied. We suppose that the output 
signal 0Y   if neither of the two incident probe beams propagates through the periodic 
layered medium (i.e., the reflection dominates in the wave propagation of the probe field), and 
the output signal 1Y   if at least one of the probe beams can be transmitted through the 
structure (i.e., the reflection and absorption can be ignored). Let the probe beams of 

0.46  p 3  and 0.533  represent the input signals 0 and 1, respectively. Then the logic 
operations of two-input OR gate and NAND gate can be implemented with the 4 -layer and 6-
layer structures, respectively. The truth table of the OR and NAND gates are given as follows:  
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AIN  BIN  Y A B   
(4-layer OR gate) 

Y A B   
(6-layer NAND gate) 

0   ( 0.463 ) 0  ( 0.463 )    0    1 
0   ( 0.463 ) 1  ( 0.533 )    1    1 
1   ( 0.533 ) 0  ( 0.463 )    1    1 
1   ( 0.533 ) 1  ( 0.533 )    1    0 

Table 1. The truth table of two-input OR gate (fabricated based on the 4-layer periodic 
structure) and two-input NAND gate (fabricated based on the 6-layer periodic structure). 

 

   
              (a)              (b) 

Fig. 18. The fine structure of the reflectance and transmittance of the 4-layer and 6-layer 
periodic (D|E) cells in a narrow probe frequency band (a), and the schematic diagram of 
photonic logic gates (b). The Rabi frequency of the control field is 74.0 10  c s 1 . 

9. Conclusions 
The quantum optical properties of an EIT medium has been discussed (in Section 2), and the 
formalism for treating wave propagation in a periodic structure has been reviewed (in 
Section 3). The band structure and the reflectance of a 1D photonic crystal consisting of both 
EIT medium layers and host dielectric layers can show extraordinary sensitivity to the 
frequency of a probe field because of a two-photon resonance relevant to destructive 
quantum interference between two transition pathways driven by the control and probe 
fields (in Sections 4 and 5). Such an EIT-based periodic layered material can also exhibit an 
effect of field-intensity-sensitive switching control (depending quite sensitively on the Rabi 
frequency of the control field) in the cases of large layer number N . Since the optical 
responses can be controlled by the tunable quantum interference induced by the external 
control field via two-photon resonance, the EIT-based layered medium under consideration 
shows more flexible optical responses than conventional photonic crystals because of the 
EIT two-photon resonance that gives rise to strong dispersion in the band of transparency 
window.  
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As the microscopic electric polarizability as well as the electric permittivity of the EIT 
medium are caused by the atomic energy level transition processes from the ground state to 
the excited states, in which the quantum interference relevant to atomic phase coherence is 
involved, the reflectance and transmittance of an EIT-based periodic layered medium are 
shown to be quite sensitive to the probe frequency. 

The LHM-EIT-based periodic layered medium has also been considered (in Sections 6 and 
7). Since there are left-handed layers embedded in the layered medium, and the periodic EIT 
layers would act as a potential barrier for the incident electromagnetic wave, the absolute 
values of the real or imaginary part of the reflection coefficient in some frequency ranges 
would be more than unity due to the Klein tunneling. The present photonic analog of the 
Klein tunneling might be used for designing frequency-sensitive photonic transistors.  We 
expect that some new photonic devices (e.g., logic and functional gates) and sensitively 
switchable devices (fundamental building blocks in, e.g., photonic microcircuits on silicon, 
in which light replaces electrons), which would find new applications in photonic quantum 
information processing, would be achieved by taking advantage of such an effect of coherent 
switching control (in Section 8).  

The present scheme can be generalized to the cases of four-level EIT systems, where two 
control fields and one probe field drive the atomic level transitions (Shen, 2007; Shen & Zhang, 
2007; Gharibi et al., 2009; Shen, 2010). Obviously, the optical response in such a four-level EIT-
based photonic crystal would be more sensitive to the probe frequency than in a three-level 
EIT photonic crystal presented in this paper. Apart from this intriguing property, there are also 
interesting applications based on the four-level EIT photonic crystal, e.g., some examples of 
photonic devices (e.g., multi-input logic gates), in which the control fields and the transmitted 
probe field act as the input and output signals, respectively, can be designed. We expect that 
all these new optical properties relevant to quantum coherence, including their applications to 
photonic devices, could be realized experimentally in the near future. 
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1. Introduction  

Photonic crystal fibres (PCFs), which are also called microstructured optical fibres or holey 
fibres, have been extensively investigated and have considerably altered the traditional fibre 
optics  since they appeared in the mid 1990s [Knight et al., 1996; Knight, 2003; Russell, 2003]. 
PCFs have a periodic array of microholes that run along the entire fibre length. They 
typically have two kinds of cross sections: an air–silica cladding surrounding a solid silica 
core or an air–silica cladding surrounding a hollow core. The light-guiding mechanism of 
the former is provided by means of a modified total internal reflection (index guiding), 
while the light-guiding mechanism of the latter is based on the photonic band gap effect 
(PBG guiding). The number, size, shape, and the separation between the air-holes as well as 
the air-hole arrangement are what confer PCFs unique guiding mechanism and modal 
properties [Russell, 2006]. This gives PCF many unique properties such as single mode 
operation over a wide wavelength range [Birks et al., 1997], very large mode area [Knight et 
al., 1998], and unusual dispersion [Renversez et al., 2003]. Because of their freedom in design 
and novel wave-guiding properties, PCFs have been used for a number of novel fibre-optic 
devices and fibre-sensing applications that are difficult to be realized by the use of 
conventional fibres. 

While optical interferometers offer high resolution in metrology applications, the fibre optic 
technology additionally offers many degrees of freedom and some advantages such as 
stability, compactness, and absence of moving parts for the construction of interferometers.  
The two commonly followed approaches to build fibre optic interferometer are: two arm 
interferometer and modal interferometer. Two- arm interferometer involves splitting and 
recombining two monochromatic optical beams that propagate in different fibres which 
requires several meters of optical fibre and one or two couplers. Modal interferometer 
exploits the relative phase displacement between two modes of the fibre. In modal 
interferometers compared to their two-arm counterparts the susceptibility to environmental 
fluctuations is reduced because the modes propagate in the same path or fibre. Recently the 
unique properties of the photonic crystal fibre have attracted the sensor community. Design 
of PCF based interferometers in particular is interesting owing to their proven high 
sensitivity and wide range of applications. Photonic crystal fibre based modal 
interferometers include PCFs in a fibre loop mirror [Zhao et al., 2004], interferometer built 
with long period gratings [Lim et al., 2004], interferometers built with tapered PCFs 
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[Monzón-Hernández et al., 2008], and interferometers fabricated via micro-hole collapse 
[Choi et al., 2007; Villatoro et al., 2007a]. The latter technique is really simple since it only 
involves cleaving and splicing. The different configurations reported so far are a PCF with 
two collapsed regions separated by a few centimetres [Choi et al., 2007], a short section of a 
PCF longitudinally sandwiched between standard single mode fibres by fusion splicing 
(transmission type) [Villatoro et al., 2007] and a stub of PCF with cleaved end fusion spliced 
at the distal end of a single mode fibre (reflection type) [Jha et al., 2008]. The advantage of 
the last two configurations is that the modal properties of the PCF are exploited but the 
interrogation is carried out with conventional optical fibres, thus leading to more cost-
effective interferometers. The interferometer with the latter configuration is demonstrated in 
this chapter as a relative humidity or dew sensor. The sensor presented has the unique 
advantages such as it does not require any special coatings to measure humidity. Also since 
the sensor head is made of single material (silica) it can be used in harsh and high-
temperature environments to monitor humidity. 

In section 2 of the chapter the operating principle of a reflection type photonic crystal fibre 
interferometer (PCFI), its fabrication and the dependence of the interferometer’s fringe 
spacing on the length of the PCF are presented.  Section 3 explains the water vapor 
adsorption/desorption phenomena on a silica surface, the working principle of a relative 
humidity sensor based on PCF interferometer and the humidity response of the PCF 
interferometer. Section 4 demonstrates the use of the PCFI as a dew sensor. The section 
presents the basic sensing principle of the dew sensor, the temperature dependence and the 
dew response of the PCF interferometer. A dew point hygrometer using PCF interferometer 
is also proposed in this section.  

2. Photonic crystal fibre interferometer 
Photonic crystal fibre interferometers based on micro-hole collapse have attained great 
importance in recent times due to the simple fabrication process involved and excellent 
sensing performance [Villatoro et al., 2007, 2009a, 2009b]. A reflection-type PCFI consists of 
a stub of PCF fusion spliced at the distal end of a single mode fibre [Mathew et al., 2010]. 
The key element of the device is the hole collapsed region close to the splice point. Some 
advantages of the PCF interferometers fabricated using microhole collapse are  that since 
interferometers are fabricated by fusion splicing the splice is highly stable even at high 
temperatures and also its characteristics will not degrade over time. 

2.1 PCFI working principle 

In a PCFI the excitation and recombination of modes can be carried out by the hole 
collapsed region of the PCF [Choi et al., 2007; Villatoro et al., 2007]. A microscopic image of 
the PCFI and a schematic of the excitation and recombination of modes in the PCFI are 
shown in Fig. 1. The fundamental SMF mode begins to diffract when it enters the collapsed 
section of the PCF. Because of diffraction, the mode broadens; depending on the modal 
characteristics of the PCF and the hole collapsed region, the power in the input beam can be 
coupled to the fundamental core mode and to higher order core modes [Villatoro et al., 2007, 
2009b; Barrera et al., 2010] or to cladding modes [Cárdenas-Sevilla et al., 2011; Choi et al., 
2007; Jha et al., 2008] of the PCF. The modes propagate through the PCF until they reach the 
cleaved end from where they are reflected. Since the modes propagate at different phase 
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velocities, thus in a certain length of PCF the modes accumulate a differential phase shift. 
Therefore constructive or destructive interference occurs along the length of PCF. The phase 
velocities and phase difference are also wavelength dependent; therefore the optical power 
reflected by the device will be a maximum at certain wavelengths and minimum at others 
[Villatoro et al., 2009b]. When the reflected modes re-enter the collapsed region they will 
further diffract and because the mode field of the SMF is smaller, the core acts as a spatial 
filter and picks up only a part of the resultant intensity distribution of the interference 
pattern in the PCF.  

 
Fig. 1. Microscope image of the PCFI (upper) & a schematic of the excitation/recombination 
of modes in the hole collapsed region (lower). 

A regular interference pattern in the reflection spectrum of the PCFI suggests that only two 
modes are interfering in the device. In our reported work [Mathew et al., 2010] on a PCFI 
using LMA 10 fibre, based on the fact that higher order modes can exist in the core of a PCF 
with a short length [Káčik et al., 2004; Uranus et al., 2010], the interfering modes in the PCF 
are considered as two core modes. However in a later experiment, which involved varying 
the refractive index surrounding the cladding of a PCFI, good ambient refractive index 
sensitivity is observed for a PCFI fabricated using the same LMA 10 fibre. This suggests that 
the interfering modes are a core mode and a cladding mode of the PCF, a conclusion that is 
supported by [Choi et al., 2007; Cárdenas-Sevilla et al., 2011] for an LMA10 fibre. Thus 
considering a core mode and a cladding mode as the interfering modes of the PCFI and 
designating the effective refractive indexes of the core mode as nc and cladding mode as ncl, 
the accumulated phase difference is 2π∆n(2L)/λ, where ∆n=nc-ncl, λ the wavelength of the 
optical source, and L the physical length of the PCFI [Villatoro et al., 2009a]. The power 
reflection spectrum of this interferometer will be proportional to cos(4π∆nL/λ). The 
wavelengths at which the reflection spectrum shows maxima are those that satisfy the 
condition 4π∆nL/λ=2mπ, with m being an integer. This means that a periodic constructive 



 
Photonic Crystals – Introduction, Applications and Theory 

 

160 

[Monzón-Hernández et al., 2008], and interferometers fabricated via micro-hole collapse 
[Choi et al., 2007; Villatoro et al., 2007a]. The latter technique is really simple since it only 
involves cleaving and splicing. The different configurations reported so far are a PCF with 
two collapsed regions separated by a few centimetres [Choi et al., 2007], a short section of a 
PCF longitudinally sandwiched between standard single mode fibres by fusion splicing 
(transmission type) [Villatoro et al., 2007] and a stub of PCF with cleaved end fusion spliced 
at the distal end of a single mode fibre (reflection type) [Jha et al., 2008]. The advantage of 
the last two configurations is that the modal properties of the PCF are exploited but the 
interrogation is carried out with conventional optical fibres, thus leading to more cost-
effective interferometers. The interferometer with the latter configuration is demonstrated in 
this chapter as a relative humidity or dew sensor. The sensor presented has the unique 
advantages such as it does not require any special coatings to measure humidity. Also since 
the sensor head is made of single material (silica) it can be used in harsh and high-
temperature environments to monitor humidity. 

In section 2 of the chapter the operating principle of a reflection type photonic crystal fibre 
interferometer (PCFI), its fabrication and the dependence of the interferometer’s fringe 
spacing on the length of the PCF are presented.  Section 3 explains the water vapor 
adsorption/desorption phenomena on a silica surface, the working principle of a relative 
humidity sensor based on PCF interferometer and the humidity response of the PCF 
interferometer. Section 4 demonstrates the use of the PCFI as a dew sensor. The section 
presents the basic sensing principle of the dew sensor, the temperature dependence and the 
dew response of the PCF interferometer. A dew point hygrometer using PCF interferometer 
is also proposed in this section.  

2. Photonic crystal fibre interferometer 
Photonic crystal fibre interferometers based on micro-hole collapse have attained great 
importance in recent times due to the simple fabrication process involved and excellent 
sensing performance [Villatoro et al., 2007, 2009a, 2009b]. A reflection-type PCFI consists of 
a stub of PCF fusion spliced at the distal end of a single mode fibre [Mathew et al., 2010]. 
The key element of the device is the hole collapsed region close to the splice point. Some 
advantages of the PCF interferometers fabricated using microhole collapse are  that since 
interferometers are fabricated by fusion splicing the splice is highly stable even at high 
temperatures and also its characteristics will not degrade over time. 

2.1 PCFI working principle 

In a PCFI the excitation and recombination of modes can be carried out by the hole 
collapsed region of the PCF [Choi et al., 2007; Villatoro et al., 2007]. A microscopic image of 
the PCFI and a schematic of the excitation and recombination of modes in the PCFI are 
shown in Fig. 1. The fundamental SMF mode begins to diffract when it enters the collapsed 
section of the PCF. Because of diffraction, the mode broadens; depending on the modal 
characteristics of the PCF and the hole collapsed region, the power in the input beam can be 
coupled to the fundamental core mode and to higher order core modes [Villatoro et al., 2007, 
2009b; Barrera et al., 2010] or to cladding modes [Cárdenas-Sevilla et al., 2011; Choi et al., 
2007; Jha et al., 2008] of the PCF. The modes propagate through the PCF until they reach the 
cleaved end from where they are reflected. Since the modes propagate at different phase 

 
Photonic Crystal Fibre Interferometer for Humidity Sensing 

 

161 

velocities, thus in a certain length of PCF the modes accumulate a differential phase shift. 
Therefore constructive or destructive interference occurs along the length of PCF. The phase 
velocities and phase difference are also wavelength dependent; therefore the optical power 
reflected by the device will be a maximum at certain wavelengths and minimum at others 
[Villatoro et al., 2009b]. When the reflected modes re-enter the collapsed region they will 
further diffract and because the mode field of the SMF is smaller, the core acts as a spatial 
filter and picks up only a part of the resultant intensity distribution of the interference 
pattern in the PCF.  

 
Fig. 1. Microscope image of the PCFI (upper) & a schematic of the excitation/recombination 
of modes in the hole collapsed region (lower). 

A regular interference pattern in the reflection spectrum of the PCFI suggests that only two 
modes are interfering in the device. In our reported work [Mathew et al., 2010] on a PCFI 
using LMA 10 fibre, based on the fact that higher order modes can exist in the core of a PCF 
with a short length [Káčik et al., 2004; Uranus et al., 2010], the interfering modes in the PCF 
are considered as two core modes. However in a later experiment, which involved varying 
the refractive index surrounding the cladding of a PCFI, good ambient refractive index 
sensitivity is observed for a PCFI fabricated using the same LMA 10 fibre. This suggests that 
the interfering modes are a core mode and a cladding mode of the PCF, a conclusion that is 
supported by [Choi et al., 2007; Cárdenas-Sevilla et al., 2011] for an LMA10 fibre. Thus 
considering a core mode and a cladding mode as the interfering modes of the PCFI and 
designating the effective refractive indexes of the core mode as nc and cladding mode as ncl, 
the accumulated phase difference is 2π∆n(2L)/λ, where ∆n=nc-ncl, λ the wavelength of the 
optical source, and L the physical length of the PCFI [Villatoro et al., 2009a]. The power 
reflection spectrum of this interferometer will be proportional to cos(4π∆nL/λ). The 
wavelengths at which the reflection spectrum shows maxima are those that satisfy the 
condition 4π∆nL/λ=2mπ, with m being an integer. This means that a periodic constructive 



 
Photonic Crystals – Introduction, Applications and Theory 

 

162 

interference occurs when λm = (2∆nL/m). If some external stimulus changes ∆n (while L is 
fixed) the position of each interference peak will change, a principle which allows the device 
to be used for sensing. 

2.2 PCFI fabrication 

Fusion splicing of the PCF to the SMF is undertaken using the electric arc discharge of a 
conventional arc fusion splicer. During the splicing process the voids of the PCF collapse 
through surface tension within a microscopic region close to the splice point. In fabricating 
such an interferometer, one critical condition for good sensor performance is achieving a 
regular interference pattern and good interference fringe visibility. The visibility of the 
interferometer depends on the power in the excited modes, which in turn depends on the 
length of the collapsed region [Barrera et al., 2010]. However a long collapsed region length 
causes activation of many cladding modes and therefore degrades the sinusoidal nature of 
the interference patterns and furthermore increases the splice loss. Therefore for an 
improved sensor performance, only one cladding mode is preferred due to its simple 
interference with the core mode. The collapsed region length can be controlled by the arc 
power and duration [Barrera et al., 2010]. In our experiments, PCF (LMA10, NKT Photonics) 
designed for an endless single-mode operation was used. It has four layers of air holes 
arranged in a hexagonal pattern around a solid silica core. The light guidance mechanism in 
such a fibre is by means of modified total internal reflection. The dimensions of the LMA-10 
PCF simplify alignment and splicing with the SMF with a standard splicing machine and 
minimize the loss due to mode field diameter mismatch compared to other PCFs. For the 
interferometer fabricated in our study the total length of the collapsed region was 200 μm. 
After fusion splicing, the PCF was cleaved using a standard fibre cleaving machine so that 
the end surface of the PCF acts as a reflecting surface. 

2.3 PCFI fringe spacing vs length of PCF 

Initially to investigate the influence of the length of the PCFI on the fringe spacing thirteen 
PCFIs were fabricated with lengths ranging from 3.5 mm to circa 100 mm. As an example 
Fig. 2 shows the measured reflection spectra of three PCFIs in the 1500-1600 nm wavelength 
range with lengths of 92, 10.5 and 3.5 mm. The reflection spectra of the interferometers 
exhibit regular interference patterns with a period or fringe spacing inversely proportional 
to the length of the PCF section. A modulation of the expected sinusoidal pattern is 
observed for the spectra shown in Fig. 2, which might be due to the excitation of more than 
one cladding mode or possibly due to the polarization dependence of the intermodal 
interference [Bock et al., 2009].  Fig. 3 shows the measured fringe spacing or periods of the 
fabricated PCFIs as a function of length of the PCF section. The measured periods agree well 
with the expected ones for a two-mode interferometer given by the expression P ≈ 
λ2/(2∆nL). The value of ∆n obtained based on the experimental data is ~4.2x10-3. 

3. Relative humidity sensor based on PCFI 
Humidity refers to the water vapour content in air or other gases and its measurements can 
be stated in a variety of terms and units. The three commonly used terms are absolute 
humidity, relative humidity (RH) and dew point. Absolute humidity is the ratio of the mass 
of water vapour to the volume of air or gas. It is commonly expressed in grams per cubic  
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Fig. 2. The reflection spectra of interferometers with L = 92 mm, 10.5 mm and 3.5 mm in the 
wavelength range of 1500-1600 nm. 

 
Fig. 3. The fringe spacing as a function of length of PCF observed for a reflection type 
interferometer. 

meter. Dew point, expressed in °C or °F, is the temperature and pressure at which a gas 
begins to condense into a liquid. The ratio of the percentage of water vapour present in air at 
a particular temperature and pressure to the maximum amount of water vapour the air can 
hold at that temperature and pressure is the relative humidity.  

The measurement of humidity is required in a range of areas, including meteorological 
services, the chemical and food processing industries, civil engineering, air-conditioning, 
horticulture and electronic processing. Compared with their conventional electronic 
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interference occurs when λm = (2∆nL/m). If some external stimulus changes ∆n (while L is 
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λ2/(2∆nL). The value of ∆n obtained based on the experimental data is ~4.2x10-3. 
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counterparts, optical fibre humidity sensors offer specific advantages, such as small size and 
weight, immunity to electromagnetic interference, corrosion resistance and remote 
operation. A wide range of optical fibre humidity sensors have been reported in the 
literature. Most of these fibre optic humidity sensors work on the basis of a hygroscopic 
material coated over the optical fibre to modulate the light propagating through the fibre 
[Yeo et al., 2008; Mathew et al. 2007, 2011]. A polymer optical fibre has been adapted for 
humidity sensing [Zhang et al., 2010] without the use of a hygroscopic coating but the fibre 
is highly temperature dependent and is not suitable for high-temperature applications. An 
all-glass fibre-optic relative humidity sensor which does not require any special coatings to 
measure humidity using a reflection-type two-mode photonic crystal fibre interferometer is 
presented in this section. The spectrum of it exhibits good sensitivity to humidity variations.  

3.1 Operating principle of the sensor 

An untreated silica PCF is used for the fabrication of the PCFI, its surface is hydrophilic and 
there fore the adsorption of water vapour on the surface occurs when it is exposed to humid 
air. Two types of water-vapour adsorption mechanisms occur in sequence at the SiO2-air 
interface. The chemisorption of water vapour first modifies the SiO2 surface, resulting in a 
surface with silanol groups (Si-OH). The second type of adsorption, physisorption, occurs 
on these silanol groups. A schematic illustration of the water-vapour adsorption is given in 
Fig. 4. At room temperature the physisorption is a reversible function of the relative 
humidity of the surrounding air, while the chemisorption appears to be irreversible 
[Voorthuyzen et al., 1987]. So in the succeeding discussion only the physisorption is 
considered. Awakuni and Calderwood [Awakuni & Calderwood, 1972] investigated the 
adsorption of water vapour on the SiO2 surface. They measured the amount of adsorbed 
water as a function of the partial vapour pressure at a constant temperature. It appeared that 
this so-called adsorption isotherm can be described very well by the BET (Brunauer- 
Emmett- Teller) adsorption theory [Brunauer et al., 1938].  

The evolution of adsorbed water layer structure on silicon oxide at room temperature is 
demonstrated by David and Seong in [David & Seong, 2005]. They determined the 
molecular configuration of water adsorbed on a hydrophilic silicon oxide surface at room 
temperature as a function of relative humidity using attenuated total reflection (ATR)-
infrared spectroscopy. A completely hydrogen-bonded ice like network of water grows up 
as the relative humidity increases from 0 to 30%. In the relative humidity range of 30-60%, 
the liquid water structure starts appearing while the ice like structure continues growing to 
saturation. Above 60% relative humidity, the liquid water configuration grows on top of the 
ice like layer. This structural evolution indicates that the outermost layer of the adsorbed 
water molecules undergoes transitions in equilibrium behaviour as humidity varies. Also it 
was shown from the adsorption isotherm that the thickness of the adsorbed layer at room 
temperature starts increasing exponentially above 60% RH. 

Tiefenthaler and Lukosz [Tiefenthaler & Lukosz, 1985] have shown that adsorption and 
desorption of water vapour by the surface of a waveguide changes the effective refractive 
index (RI) of the guided modes, in their case for a humidity sensor based on an integrated 
optical grating coupler. In the case of a PCFI a similar adsorption of water vapour changes 
the effective refractive index (ncl) of the interfering cladding mode propagating in the PCF. 
Since this adsorption/physisorption is a reversible process, a modulation of the ncl occurs 
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with respect to the ambient humidity values which in turn change the position of the 
interference pattern accordingly. An increase in humidity causes the shift of the interference 
pattern of a PCFI toward longer wavelengths and the value of this interference peak shift is 
exponential with respect to relative humidity [Mathew, 2010]. This shift of the interference 
peak is mainly due to the adsorption and desorption of H2O molecules along the surface of 
holes within the PCF, at the interface between air and silica glass. Since the whole device is 
exposed to humidity the adsorption and desorption of water vapour on the PCF outer 
surface and on the end face also contribute to the shift of the interference pattern. But 
considering the field distribution of the interfering cladding mode shown in [Cárdenas-
Sevilla et al., 2011; Uranus, 2010] and below the dew point temperature the main 
contribution to the interference shift is considered to be due to the adsorption of water 
molecules within the voids of the PCF. The adsorption on the end face mainly causes a shift 
in the overall power level of the interference pattern.  

 
Fig. 4. Schematic representation of water vapor adsorption mechanisms on an SiO2 surface. 

3.2 Experimental characterization of the sensor 

The sensor system is composed of a broadband light source (SLED), a fibre 
coupler/circulator (FOC), the PCF interferometer or sensor head, and an optical spectrum 
analyser (OSA) as shown in Fig. 5. The sensor head, as the main part of the sensor system, is 
composed of a small stub of PCF fusion spliced to the end of a standard SMF. The PCF in 
the sensor head has a microhole collapsed region near the splicing point and the free end of 
the PCF is exposed to ambient air. The humidity response of the device was studied at a 
temperature (25 OC) and at normal atmospheric pressure by placing it in a controlled 
environmental chamber as shown in Fig. 5.  Fig. 6 shows the changes in the reflection 
spectrum with respect to ambient humidity for a device with L=40.5 mm. The change in the 
adsorption with respect to ambient humidity changes the effective refractive index of the 
cladding mode (ncl). The resulting phase change in turn results in a shift of the interference 
pattern. The curves in Fig. 6 show the position of a zoomed section of the device spectrum at 
relative humidity values of 30, 60, 80 and 90 %RH. When humidity increases the interference 
pattern shifts to longer wavelengths and this shift is more significant at higher humidity 
values. To study the effect of reducing the length of the PCFI a second PCFI was fabricated 
with a shorter length of 17 mm. Fig. 7 shows the peak shift of the interferometer with respect 
to humidity obtained for two devices with L=17 mm and 40.5 mm. 

It is observed from the Fig. 7 that the sensitivity of the device to humidity decreases as the 
length of the device decreases. This is due to the fact that for a small device the fibre length 
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counterparts, optical fibre humidity sensors offer specific advantages, such as small size and 
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operation. A wide range of optical fibre humidity sensors have been reported in the 
literature. Most of these fibre optic humidity sensors work on the basis of a hygroscopic 
material coated over the optical fibre to modulate the light propagating through the fibre 
[Yeo et al., 2008; Mathew et al. 2007, 2011]. A polymer optical fibre has been adapted for 
humidity sensing [Zhang et al., 2010] without the use of a hygroscopic coating but the fibre 
is highly temperature dependent and is not suitable for high-temperature applications. An 
all-glass fibre-optic relative humidity sensor which does not require any special coatings to 
measure humidity using a reflection-type two-mode photonic crystal fibre interferometer is 
presented in this section. The spectrum of it exhibits good sensitivity to humidity variations.  
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there fore the adsorption of water vapour on the surface occurs when it is exposed to humid 
air. Two types of water-vapour adsorption mechanisms occur in sequence at the SiO2-air 
interface. The chemisorption of water vapour first modifies the SiO2 surface, resulting in a 
surface with silanol groups (Si-OH). The second type of adsorption, physisorption, occurs 
on these silanol groups. A schematic illustration of the water-vapour adsorption is given in 
Fig. 4. At room temperature the physisorption is a reversible function of the relative 
humidity of the surrounding air, while the chemisorption appears to be irreversible 
[Voorthuyzen et al., 1987]. So in the succeeding discussion only the physisorption is 
considered. Awakuni and Calderwood [Awakuni & Calderwood, 1972] investigated the 
adsorption of water vapour on the SiO2 surface. They measured the amount of adsorbed 
water as a function of the partial vapour pressure at a constant temperature. It appeared that 
this so-called adsorption isotherm can be described very well by the BET (Brunauer- 
Emmett- Teller) adsorption theory [Brunauer et al., 1938].  

The evolution of adsorbed water layer structure on silicon oxide at room temperature is 
demonstrated by David and Seong in [David & Seong, 2005]. They determined the 
molecular configuration of water adsorbed on a hydrophilic silicon oxide surface at room 
temperature as a function of relative humidity using attenuated total reflection (ATR)-
infrared spectroscopy. A completely hydrogen-bonded ice like network of water grows up 
as the relative humidity increases from 0 to 30%. In the relative humidity range of 30-60%, 
the liquid water structure starts appearing while the ice like structure continues growing to 
saturation. Above 60% relative humidity, the liquid water configuration grows on top of the 
ice like layer. This structural evolution indicates that the outermost layer of the adsorbed 
water molecules undergoes transitions in equilibrium behaviour as humidity varies. Also it 
was shown from the adsorption isotherm that the thickness of the adsorbed layer at room 
temperature starts increasing exponentially above 60% RH. 

Tiefenthaler and Lukosz [Tiefenthaler & Lukosz, 1985] have shown that adsorption and 
desorption of water vapour by the surface of a waveguide changes the effective refractive 
index (RI) of the guided modes, in their case for a humidity sensor based on an integrated 
optical grating coupler. In the case of a PCFI a similar adsorption of water vapour changes 
the effective refractive index (ncl) of the interfering cladding mode propagating in the PCF. 
Since this adsorption/physisorption is a reversible process, a modulation of the ncl occurs 
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with respect to the ambient humidity values which in turn change the position of the 
interference pattern accordingly. An increase in humidity causes the shift of the interference 
pattern of a PCFI toward longer wavelengths and the value of this interference peak shift is 
exponential with respect to relative humidity [Mathew, 2010]. This shift of the interference 
peak is mainly due to the adsorption and desorption of H2O molecules along the surface of 
holes within the PCF, at the interface between air and silica glass. Since the whole device is 
exposed to humidity the adsorption and desorption of water vapour on the PCF outer 
surface and on the end face also contribute to the shift of the interference pattern. But 
considering the field distribution of the interfering cladding mode shown in [Cárdenas-
Sevilla et al., 2011; Uranus, 2010] and below the dew point temperature the main 
contribution to the interference shift is considered to be due to the adsorption of water 
molecules within the voids of the PCF. The adsorption on the end face mainly causes a shift 
in the overall power level of the interference pattern.  

 
Fig. 4. Schematic representation of water vapor adsorption mechanisms on an SiO2 surface. 

3.2 Experimental characterization of the sensor 

The sensor system is composed of a broadband light source (SLED), a fibre 
coupler/circulator (FOC), the PCF interferometer or sensor head, and an optical spectrum 
analyser (OSA) as shown in Fig. 5. The sensor head, as the main part of the sensor system, is 
composed of a small stub of PCF fusion spliced to the end of a standard SMF. The PCF in 
the sensor head has a microhole collapsed region near the splicing point and the free end of 
the PCF is exposed to ambient air. The humidity response of the device was studied at a 
temperature (25 OC) and at normal atmospheric pressure by placing it in a controlled 
environmental chamber as shown in Fig. 5.  Fig. 6 shows the changes in the reflection 
spectrum with respect to ambient humidity for a device with L=40.5 mm. The change in the 
adsorption with respect to ambient humidity changes the effective refractive index of the 
cladding mode (ncl). The resulting phase change in turn results in a shift of the interference 
pattern. The curves in Fig. 6 show the position of a zoomed section of the device spectrum at 
relative humidity values of 30, 60, 80 and 90 %RH. When humidity increases the interference 
pattern shifts to longer wavelengths and this shift is more significant at higher humidity 
values. To study the effect of reducing the length of the PCFI a second PCFI was fabricated 
with a shorter length of 17 mm. Fig. 7 shows the peak shift of the interferometer with respect 
to humidity obtained for two devices with L=17 mm and 40.5 mm. 

It is observed from the Fig. 7 that the sensitivity of the device to humidity decreases as the 
length of the device decreases. This is due to the fact that for a small device the fibre length 
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available for interaction between the cladding mode with the adsorbed water vapour is less 
so the acquired phase difference between the interfering modes will be smaller. Hence the 
sensitivity to humidity change is less for a device with a smaller length of PCF. It is 
important to note that the shift of the interference pattern is similar to the thickness 
variation of the adsorbed layer of water vapour on silica i.e. increases exponentially above 
60 %RH [David & Seong, 2005]. 

 
Fig. 5. Experimental arrangement for the characterisation of the PCFI with respect to relative 
humidity. 

 
Fig. 6. Reflection spectrum of a 40.5 mm long PCFI at different humidity values. 

The device sensitivity is estimated by dividing the PCFI response to humidity into three 
regions 27- 60 %RH, 60-80 %RH, and 80-96 %RH. The average sensitivity values observed 
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for the PCFI with a length of 40.5 mm in these regions are 3.7, 8.5 and 64 nm/%RH 
respectively and for a 17 mm long PCFI they are 1.7, 3 and 23 nm/%RH respectively. Even 
though the PCFI with a longer length appears more sensitive, it is likely that increasing the 
length of the PCFI to a much longer length is not practical because in a longer device the 
infiltration of water molecules may take too much time. Furthermore, since the propagation 
loss of the interfering cladding mode is high the fringe visibility will diminish on increasing 
the length of PCF. Also for a longer device the fringe spacing will be shorter which limits the 
measurement range of the device. Decreasing the length of the PCFI to a much shorter 
length is also not suitable because as seen from Fig. 2 & 3 if the length is less than 3.5 mm 
the fringe spacing will be greater than 100 nm, the bandwidth of a typical  SLED spectrum, 
and therefore not suitable  for observing the shift in the interference spectrum. Selecting a 
shorter length will also result in a reduced sensitivity but that can be improved by 
infiltrating the microholes with suitable hygroscopic materials. Based on our experimental 
observations and considering the above explained factors we suggest the best lengths for an 
efficient humidity sensing to be in the range from 3.5 mm to 100 mm. 

The response of the PCFI to humidity variations is found to be reversible and repeatable 
with low hysteresis. Under laboratory conditions it is reusable, but humidity is a truly 
analytical measurement in which the sensor must be in direct contact with the process 
environment. This of course has implications of contamination and degradation of the 
sensor to varying degrees depending on the nature of the environment. Possible 
contamination agents are dust particles and chemical vapours.  So a further study of the 
sensor head contamination in different process environments and the observation of the 
shift in its response in those conditions are required in order to get a better understanding of 
the long term stability of our sensor in field applications. In the case of a PCFI based sensor 
this limitation can be overcome by different ways; a recalibration of the sensor head after a 
certain period of time and a subsequent  reuse of the sensor head  during another time 
interval, or, since the fabrication of the PCFI based sensor head is simple and cost effective,  
replacing the sensor head or attaching some filters to the sensor head by which it can be 
protected   from contamination or an ultrasonic cleaning and subsequent heating  (which 
will remove the contaminants like dust particles without damaging the sensor head) is 
another method to make the sensor reusable after contamination. 

A study of cross sensitivity to temperature reveals that the PCFI based humidity sensor is 
almost temperature independent. Conventional glass fibre relative humidity sensors require 
coatings and thus are always temperature dependent and, furthermore, since the majority of 
such sensors use polymer materials as coatings, they are not suitable for use in high-
temperature applications. One significant advantage of the sensor explained here is that the 
sensor head is made of single material silica. This suggests that apart from low and room 
temperature applications the PCF interferometer based humidity sensor can also be used in 
harsh and high-temperature environments to monitor humidity. 

4. Dew sensor based on PCFI 
Dew (condensed moisture) is a problem in the fields of precision electrical devices, 
automobiles, air conditioning systems, warehouses and domestic equipment, etc. High 
humidity and condensation can create an environment where the development of mould on 
the wooden parts can take place and it can also cause corrosion of iron parts. This is a major 
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available for interaction between the cladding mode with the adsorbed water vapour is less 
so the acquired phase difference between the interfering modes will be smaller. Hence the 
sensitivity to humidity change is less for a device with a smaller length of PCF. It is 
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for the PCFI with a length of 40.5 mm in these regions are 3.7, 8.5 and 64 nm/%RH 
respectively and for a 17 mm long PCFI they are 1.7, 3 and 23 nm/%RH respectively. Even 
though the PCFI with a longer length appears more sensitive, it is likely that increasing the 
length of the PCFI to a much longer length is not practical because in a longer device the 
infiltration of water molecules may take too much time. Furthermore, since the propagation 
loss of the interfering cladding mode is high the fringe visibility will diminish on increasing 
the length of PCF. Also for a longer device the fringe spacing will be shorter which limits the 
measurement range of the device. Decreasing the length of the PCFI to a much shorter 
length is also not suitable because as seen from Fig. 2 & 3 if the length is less than 3.5 mm 
the fringe spacing will be greater than 100 nm, the bandwidth of a typical  SLED spectrum, 
and therefore not suitable  for observing the shift in the interference spectrum. Selecting a 
shorter length will also result in a reduced sensitivity but that can be improved by 
infiltrating the microholes with suitable hygroscopic materials. Based on our experimental 
observations and considering the above explained factors we suggest the best lengths for an 
efficient humidity sensing to be in the range from 3.5 mm to 100 mm. 

The response of the PCFI to humidity variations is found to be reversible and repeatable 
with low hysteresis. Under laboratory conditions it is reusable, but humidity is a truly 
analytical measurement in which the sensor must be in direct contact with the process 
environment. This of course has implications of contamination and degradation of the 
sensor to varying degrees depending on the nature of the environment. Possible 
contamination agents are dust particles and chemical vapours.  So a further study of the 
sensor head contamination in different process environments and the observation of the 
shift in its response in those conditions are required in order to get a better understanding of 
the long term stability of our sensor in field applications. In the case of a PCFI based sensor 
this limitation can be overcome by different ways; a recalibration of the sensor head after a 
certain period of time and a subsequent  reuse of the sensor head  during another time 
interval, or, since the fabrication of the PCFI based sensor head is simple and cost effective,  
replacing the sensor head or attaching some filters to the sensor head by which it can be 
protected   from contamination or an ultrasonic cleaning and subsequent heating  (which 
will remove the contaminants like dust particles without damaging the sensor head) is 
another method to make the sensor reusable after contamination. 

A study of cross sensitivity to temperature reveals that the PCFI based humidity sensor is 
almost temperature independent. Conventional glass fibre relative humidity sensors require 
coatings and thus are always temperature dependent and, furthermore, since the majority of 
such sensors use polymer materials as coatings, they are not suitable for use in high-
temperature applications. One significant advantage of the sensor explained here is that the 
sensor head is made of single material silica. This suggests that apart from low and room 
temperature applications the PCF interferometer based humidity sensor can also be used in 
harsh and high-temperature environments to monitor humidity. 

4. Dew sensor based on PCFI 
Dew (condensed moisture) is a problem in the fields of precision electrical devices, 
automobiles, air conditioning systems, warehouses and domestic equipment, etc. High 
humidity and condensation can create an environment where the development of mould on 
the wooden parts can take place and it can also cause corrosion of iron parts. This is a major 
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problem in the case of the works of art in the museums and churches [Camuffo & Valcher, 
1986]. So there is a strong demand for a sensor able to accurately detect a high humidity or 
dew condensation state.  

 
Fig. 7. Interference peak shift of the photonics crystal fibre interferometers with L= 40.5 mm 
and 17 mm with respect to relative humidity. 

Approaches to dew detection using optical fibre have been previously reported in [Baldini 
et al., 2008; Kostritskii et al., 2009]. The working principle of these sensors is based on the 
change in the reflectivity which is observed on the surface of the fibre tip, when a water 
layer is formed on its distal end. The dependence on reflected power measurement scheme 
used in [Baldini et al., 2008; Kostritskii et al., 2009] increases the chance of measurement 
error due to source power fluctuations. Recently we have demonstrated a simple sensor 
head for dew detection based on a photonic crystal fibre interferometer (PCFI) operated in 
reflection mode [Mathew et al., 2011], with the advantage of good dew point measurement 
accuracy. The fabrication of such a sensor is very simple since it only involves cleaving and 
fusion splicing. Furthermore, the spectral measurement technique utilized in this work is 
free from errors due to source power variations. In the following section of the chapter a 
dew sensor based on PCFI is explained, including a study of temperature dependence of the 
device with different lengths of PCF. Since the sensor head is fabricated from a single 
material, silica, its temperature dependence is very low. From the results of the dew sensor 
performance with different lengths of PCF it was shown that a device with a compact length 
of PCF is suitable for dew sensing albeit with a reduction in the speed of response. The 
response of the sensor at different ambient humidity values is also included in this section. 

4.1 Operating principle of the sensor 

To study the response of the PCFI to dew formation it is required to set the temperature of 
the PCFI to dew point temperature, which is obtained from the values of ambient relative 
humidity and temperature. To do this let us consider a quantity of air with a constant water 
vapour concentration at a certain temperature, T, and relative humidity, RH < 100%. The 

 
Photonic Crystal Fibre Interferometer for Humidity Sensing 

 

169 

dew point temperature, Td, is defined as the temperature to which this quantity of air must 
be cooled down such that, at a constant pressure, condensation occurs (RH = 100%). In 
terms of relative humidity RH and temperature T, the dew point temperature is given as: 
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where, α=243.12 OC and β=17.62 are the so-called Magnus parameters for the temperature 
range -45 to 60 OC. There fore decreasing the temperature of the PCFI increases the relative 
humidity close to it. At a certain stage of decreasing the temperature the relative humidity 
becomes 100% or reaches the dew point temperature and hence the water vapour starts to 
condense. The condensed water vapour on the PCFI causes a large change in the effective 
refractive index of the interfering cladding mode (ncl) which in turn causes a large phase 
change between the interfering modes and therefore a large wavelength shift of the 
interference peaks is expected. 

4.2 Experimental characterization of the sensor 

The dew response of the PCF interferometer was studied by placing it on a thermoelectric 
cooler (TEC) as shown in Fig. 8. In order to study the influence of dew on the PCFI, it was 
decided to limit the PCFI length used to 42 mm or less, to suit the size of the available TEC 
used for temperature control. The temperature of the TEC element was controlled by a 
temperature controller. A thermistor was used to provide temperature feedback to the 
controller from the TEC element. An additional handheld thermometer was used to confirm 
the temperature on the TEC surface. The entire setup was placed inside a controlled 
environmental chamber. The inside relative humidity and the temperature of the chamber 
can be controlled with an accuracy of ±2 %RH and ±1 OC respectively. For the purpose of 
this experiment the ambient temperature inside the chamber was fixed at 25 OC. 

 
Fig. 8. Experimental arrangement for the calibration of PCFI based dew sensor. 
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problem in the case of the works of art in the museums and churches [Camuffo & Valcher, 
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dew point temperature, Td, is defined as the temperature to which this quantity of air must 
be cooled down such that, at a constant pressure, condensation occurs (RH = 100%). In 
terms of relative humidity RH and temperature T, the dew point temperature is given as: 
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where, α=243.12 OC and β=17.62 are the so-called Magnus parameters for the temperature 
range -45 to 60 OC. There fore decreasing the temperature of the PCFI increases the relative 
humidity close to it. At a certain stage of decreasing the temperature the relative humidity 
becomes 100% or reaches the dew point temperature and hence the water vapour starts to 
condense. The condensed water vapour on the PCFI causes a large change in the effective 
refractive index of the interfering cladding mode (ncl) which in turn causes a large phase 
change between the interfering modes and therefore a large wavelength shift of the 
interference peaks is expected. 

4.2 Experimental characterization of the sensor 

The dew response of the PCF interferometer was studied by placing it on a thermoelectric 
cooler (TEC) as shown in Fig. 8. In order to study the influence of dew on the PCFI, it was 
decided to limit the PCFI length used to 42 mm or less, to suit the size of the available TEC 
used for temperature control. The temperature of the TEC element was controlled by a 
temperature controller. A thermistor was used to provide temperature feedback to the 
controller from the TEC element. An additional handheld thermometer was used to confirm 
the temperature on the TEC surface. The entire setup was placed inside a controlled 
environmental chamber. The inside relative humidity and the temperature of the chamber 
can be controlled with an accuracy of ±2 %RH and ±1 OC respectively. For the purpose of 
this experiment the ambient temperature inside the chamber was fixed at 25 OC. 

 
Fig. 8. Experimental arrangement for the calibration of PCFI based dew sensor. 
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Since the PCF is composed of only fused silica, it is expected to have minimal thermal 
sensitivity. The temperature dependence of the device was determined by observing the 
peak shift of the interference spectrum of the device for a temperature variation from 25 OC 
to 60 OC. The ambient humidity during the study was set to 40 % RH. When the temperature 
is increased from 25 OC to 60 OC the interference peak is shifted slightly to higher 
wavelengths. Fig. 9 shows this temperature dependence for two devices with L=17 mm and 
40.5 mm. As expected the thermal sensitivity of the PCFI is very low and is further reduced 
for a device with the shorter length of PCF. The thermal sensitivity obtained in the 
experiment for a device with L= 40.5 mm is 9.5 pm/OC and that for L= 17 mm is 6.2 pm/OC. 

The dew sensing experiments were carried out at an ambient temperature of 25 OC and at 
normal atmospheric pressure. To study the dew response of the device the temperature of 
the PCFI was decreased from ambient temperature (25 OC) to the dew point temperature at 
a fixed ambient relative humidity. It was found that the position of the interference peaks 
shifted to longer wavelengths with a decrease in temperature. This shift is similar to the 
humidity response of the PCFI as shown in Fig. 6 and 7. This occurs because the relative 
humidity inside the microholes and close to the PCFI increases with a decrease in 
temperature and causes a shift. At or below the dew point temperature (100% RH) water 
vapour condensation occurs, the condensed water vapour on the outer surface of the PCF 
also contributes to the change in the effective RI of the cladding mode, which results in a 
large spectral shift. 

 
Fig. 9. Interference peak shift with respect to temperature for interferometers with PCF 
lengths L= 40.5 mm and 17 mm. 

The spectra of two interferometers at room temperature and at the dew point temperature 
for  devices fabricated with lengths 40.5 mm and 3.5 mm are shown in Fig. 10(a) & (b). 
The lengths selected are practically the largest and the smallest PCF lengths that can be 
studied using our experimental setup. The ambient humidity during this study was set at 
60 % RH. From the Fig. 10 it is clear that relative to the period of the interferometer the 
shift will be larger for a longer PCFI due to a longer interaction length available for the 
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interference between the cladding mode and the adsorbed water vapour. Hence the 
sensitivity to water vapour content and thus dew point temperature is high for a device 
with a longer length of PCF. 

It is important to note that due to the large fringe spacing it is difficult to measure the peak 
shift accurately for a short PCFI, therefore the comparison of sensitivities for PCFIs with 
different lengths is not straightforward. It should also be noted that even a PCFI with a 
small length (3.5 mm, fringe spacing ~90 nm) when exposed to dew point temperature for a 
relatively long time i.e. several minutes will result in a measurable fringe shift as shown in 
Fig. 10(b). This is because an increasingly thicker adsorbed water layer is formed on the 
silica surfaces of the PCF as time progresses. Thus compared to 3.5 mm device  the 
~40.5 mm device  is preferable for achieving a fast response time (in the order of seconds), 
but when a compact length is the main requirement a shorter PCFI also can be used as a 
dew sensor with a reduced measurement speed. The best range of lengths suitable for dew 
sensing is the same as the one given above for humidity sensing. 

 
Fig. 10. (a). Interference spectra for a device with length 40.5 mm at room temperature and 
at dew point temperature. 
(b). Interference spectra for a device with length 3.5 mm at room temperature and at dew 
point temperature. 

The dew sensing performance of a PCFI at different environmental conditions was determined 
by studying the dew response of a PCFI with L= 40.5 mm at three ambient humidity values of 
40, 60 and 80 %RH. At each humidity value the temperature of the PCFI is reduced from 26 OC 
to the corresponding dew point temperature. The peak wavelength shift of the device is 
plotted against temperature in Fig. 11. The three curves represent the peak shift corresponding 
to the ambient relative humidity values of 40, 60 and 80 %RH. The onset of the dew formation 
is characterized by a large shift of the interference peak which is clear in Fig. 11. The dew point 
temperature calculated by using equation (1) based on the corresponding ambient conditions 
is marked on each curve in Fig. 11. For all these three ambient humidity values the continuous 
spectral shift starts exactly at the dew point temperature which confirms the high dew point 
measurement accuracy (estimated as ±0.1 OC) of the sensor. 

It is observed that at or below the dew point temperature the interference peak shifts 
continuously with time. This is because an increasingly thicker adsorbed water layer is 
formed on the silica surface of the PCF microholes as time progresses. By bringing the 
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temperature of the PCFI back to room temperature the interference peaks also shift back to 
their initial position. This shows the reversibility of the sensor. Because of the small size of 
the sensor head and the high sensitivity to adsorbed water vapour the demonstrated sensor 
response time is in seconds which is relatively fast compared to existing dew point 
hygrometers that take several minutes for a single measurement. The simple fabrication 
method, small size and the all-silica nature of the demonstrated sensor head suggest that 
with some simple additions such as attaching a TEC element with temperature feedback on 
to the PCFI, the combination can be used as a dew point hygrometer. 

 
Fig. 11. Interference peak shift of PCFI with respect to temperature at three ambient 
humidity values of 40, 60 and 80 %RH. 

5. Conclusion 
A brief review of the photonic crystal fibre and the modal interferometers based on PCF are 
presented in this chapter. Along with the review the operating principle and the fabrication of 
a reflection type PCF based modal interferometer are also explained in the chapter. The 
dependence of the interferometer fringe spacing on the length of PCF is also explained and 
demonstrated experimentally. The experimental investigation and demonstration of a 
humidity sensor based on a PCF interferometer is presented in the chapter with a  brief 
explanation of the operating principle of the sensor. The water vapour adsorption/desorption 
phenomena on silica surface are briefly addressed to explain the operating principle of the 
sensor. The chapter includes the experimental investigation of the relative humidity response 
of the sensor and the dependence of its sensitivity on the length of PCF.  It is shown that a 
device with a longer length of the PCF section is more sensitive to relative humidity changes. 
A dew sensor based on PCF interferometer is presented along with the explanation of its 
sensing principle. The chapter presents the temperature dependence of the PCF interferometer 
and the dependence of its sensitivity on the length of the PCF.  The dew sensing performances 
of PCFIs with different lengths and at different ambient relative humidity values are also 
presented. Based on the explained dew sensor a novel dew point hygrometer using PCF 
interferometer is also proposed in the chapter. 
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having varying, not standardized designs, dimensions and materials is considerably more 
difficult. Some, like PMF and many PCFs lack axial symmetry, requiring rotational 
alignment before fusion. However, this functionality is not available in common splicing 
machines. A length of specialty fiber enclosed inside a device like optical amplifier, sensor 
or dispersion compensator is usually spliced at both ends to telecom single mode fibres 
(SMF) for connections to other components and external interfaces.  

Splicing procedure must be tailored to particular fibre, often in a time-consuming trial-and-
error way. Special solutions, like fiber pre-forming or insertion of intermediate fiber are 
sometimes needed. Dedicated splicing machines for such fibres employing both arc fusion 
(OFS, 2008) and hot filament methods (Vytran, 2009) exist, but are expensive. 

Fusion splicing of photonic crystal or other “holey” fibres with numerous tiny, ca. 0.5-4 μm 
gas-filled holes is particularly hard because holes collapse quickly once glass is heated to 
melt; this disturbs radiation guiding, introduces loss and causes fiber shrinkage.  

There is a need to splice “holey” or “microstructured” fibres for characterization and 
experiments using typical tools and equipment. PCF-SMF splices are most common, as PCFs 
need to be connected to test instruments, optical devices and circuits incorporating or 
designed for SMFs. Splicing PCF to a SMF requires special fiber handling and machine 
settings different from splicing SMF to SMF, like reduced arc power and fusion time 
shortened to 0.2-0.5 s. More difficult splicing of two lengths of PCF is much less common. 

Fusion splicing has the advantage of gas-tight sealing a length of PCF, which is of 
importance in making gas-filled absorption cells or protecting the fibre against penetration 
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This chapter focuses on procedures and experiences with fusion splicing using equipment 
and tools intended for standard single mode and multimode telecom fibres, which gave 
acceptable results for most, but not all PCFs the authors encountered. Before this matter is 
presented in section 4, overview of “holey” fibres and their properties is made in section 2, 
and arc fusion physics and technology are summarized in section 3. 

2. Microstructured optical fibres 
Their common feature is substantial modification of optical characteristics by presence of 
multitude of longitudinal holes or concentric layer(s) of solid micro- or nano-particles 
around the light guiding core. There are several variants, including: 

a. PCFs without doped core, e.g. suspended-core and highly birefringent fibres. 
b. PCFs with doped core surrounded by layers of holes, like HAF and nonlinear fibres. 

The core is capable of guiding light on its own. 
c. Fibres with solid nanostructured barrier around doped core. 
d. Fibres with single central hole surrounded by dielectric mirror (hollow fibers and 

Photonic Bandgap Fibres). 

Bending-tolerant Hole-Assisted Fibres (HAF) and fibres with solid nanostructured barrier 
found use in optical access networks (FTTH) and are covered by ITU-T G.657 
recommendation, specifying their properties - but not designs. Corning ClearCurve fibre 
with layer of embedded solid particles around core is fusion spliced as SMF, while HAF is 
converted to SMF by collapse of holes on fusion splicer (Nakajima et al., 2003); both are 
not covered here. Properties differ: while fibres (b) and (c) are “splicing friendly”, work 
with suspended-core PCFs and other fibres from group (a) is more difficult. Large-core 
“dielectric mirror” fibres for delivery of high-power laser radiation (d) are used in short 
lengths and not spliced. Experience of authors applies to first two groups, but 
recommendations are applicable to most other microstructured fibres. Key properties for 
fusion splicing include: 

- Photonic structure - size and number of holes, 
- Radiation-guiding mechanism and its expected disruption by fusion, 
- Cladding diameter and protective coating. 

3. Physics and technology of arc fusion splicing 
This section will introduce reader to arc fusion splicing of conventional, solid fibres and 
techniques adopted for splicing fibres in communication networks.  

3.1 Process basics and physics 

Fusion splicing involves localized melting of two fibre butts pressed together, with  
fibre coating removed. Surface tension forces cause glass to flow when viscosity is low 
enough, forming a joint with continuous structure and smooth, round external surface 
(Figure 1).  

While smoothing of edges improves splice strength, self-centring of fibres shown in Figure 2 
is undesirable when lateral shift is needed to align non-concentric fibre cores. 
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Fig. 1. Two identical 125 μm silica fibres before (top) and after (bottom) arc fusion. Electrode 
tip is visible as a black spot at the bottom of upper image. 

 

 
Fig. 2. Two 125 μm single-mode fibres spliced with 10 μm perpendicular offset. Top to 
bottom: fibres before fusion and after 0.5 s, 1 s and 2 s long fusion with 17 mA current. 

Glass evaporating from the hot zone is partly deposited on fibres in the vicinity - degrading 
surface quality and strength, and on parts of splicing machine - contaminating them. 
Evaporation is compensated for by fibre overlap: a reduced volume of glass is 
accommodated in shorter length of fibre without change in diameter. As no air, gel, glue etc. 
separates fibres after fusion, strength close to one of pristine fibre, no reflection and low 
insertion loss are possible. The heat for fusion is provided by either: 

- external electric discharge (arc fusion splicing), 
- resistance heater located close to fibres (filament splicing), 
- hydrogen /oxygen burner (flame splicing), or 
- CO2 laser radiation absorbed by the fibres (laser splicing). 
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Fig. 2. Two 125 μm single-mode fibres spliced with 10 μm perpendicular offset. Top to 
bottom: fibres before fusion and after 0.5 s, 1 s and 2 s long fusion with 17 mA current. 
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- hydrogen /oxygen burner (flame splicing), or 
- CO2 laser radiation absorbed by the fibres (laser splicing). 
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The first method is preferred due to compact equipment, fast operation and flexible control. 
Filament splicing is used for specialty fibres and when high splice strength is required. 
Other techniques are rarely used. Descriptions below cover arc fusion splicing only.  

3.2 Fused silica properties and fusion splicing 

Fused silica is a glassy form of silicon dioxide (SiO2). In comparison to most multi-
component glasses, fused silica exhibits relatively slow decrease of viscosity with 
temperature (Figure 3). For fusion splicing, this property is desirable, as larger variations in 
temperature can be tolerated.  

 
Fig. 3. Viscosity of pure fused silica as function of temperature. Approximate data compiled 
from sources not in full agreement (Shand, 1968, Yablon, 2005, Schott, 2007). 

To ensure fusion in 0.5-2 s, glass viscosity must be reduced to about 104 Pa-s. Temperatures 
during different stages of fusion splicing range approximately from 1500°C (softening of 
fibres) to 2100°C (fusion), and electric power required to fuse two 125 μm solid silica fibres 
is about 8-10 W. As voltage drop between electrodes is almost constant, 500-600 V for 1 mm 
gap, discharge power is essentially proportional to arc current. The range for work with 
125 μm fibres is  approximately 7-20 mA. 

Glass melting during fusion of 125 μm fibres takes place in zone 0.5-1 mm long, including 
effects of distribution of energy inside arc column, which is approx. 0.2 mm wide for 1 mm 
electrode gap. Because fused silica has exceptionally low linear thermal expansion 
coefficient and heat conductivity, as shown in Table 1, fibre strain during post-fusion 
cooling from the annealing temperature of approx. 1100C to room temperature is 
negligible: only 0.0099% for a 1 mm hot zone and 6 mm fibre length between clamps. 
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Material CTE (10-6/K-1) Heat conductivity (W/m•K) 
Fused silica 0.55 1.38 
Tungsten 4.3 173 
Steel 13-18 12-45 
Copper 16.6 401 
Aluminium 22.2 237 
PVC (hard) 50-80 0.13-0.29 
PET 60-70 0.17-0.24 
PMMA 50-90 0.17-0.25 

Table 1. Comparison of thermal properties of fused silica and selected other materials. 

Heat transfer during fusion is mostly through bulk radiation at wavelengths of 0.6-2 μm, to 
which the glass is transparent, and conduction along the fibre (Yablon, 2005), and: 

- temperature inside fibre is essentially independent of radial position, 
- such equilibrium is reached after approx. 10 ms, 
- power needed to reach given temperature is proportional to fibre diameter, 
- thermal time constant of 125 μm fibres is in order of few tenths of a second. 

Doping with germania (GeO2) or titania (TiO2) considerably reduces silica viscosity, and 
fusing multimode fibres with 50-62.5 μm core taking 20-25% of cross-section requires lower 
temperature than single-mode fibres, where core is small (4-10 μm) and contains less GeO2. 

In a hot fibre, diffusion of dopant(s) is observed, changing refractive profile and core size. 
The problem is acute during splicing of “depressed cladding” or “pure silica core” single-
mode fibres, where core is surrounded by a layer doped with fluorine (F), a light element 
easily diffusing at high temperatures; careful control of arc power and short fusion time are 
required. 

Out-gassing of boron, phosphorus, germanium or fluorine compounds from melted glass 
may cause problems as well, in particular during splicing of highly-doped specialty fibres. 

Silica does not burn, decompose or oxidise when heated in the air. However, exposure to 
humidity, alkalis or sharp objects produces surface flaws; damaged fibre breaks easily. All 
lengths of fibre stripped of coating must be promptly protected against humidity, abrasion, 
etc. Only splices intended for short-term use in laboratory conditions may be exempted. 

Fusion of fibres with different dopants or doping levels can produce significant internal 
stress due to uneven thermal contraction after fusion, potentially affecting splice strength. 

3.3 Fusion procedure 

Arc fusion splicing of two single, polymer-coated, multimode or single-mode silica fibres of 
125 μm cladding diameter usually includes steps listed below: 

1. removal of coating from fibres, usually by mechanical stripping, 
2. fibre cleaning with solvent: isopropyl alcohol, acetone, etc. or dry wiping, 
3. fibre cleaving by scoring with a blade and applying controlled strain till it breaks 

(“scribe and load“); cleave angle shall be less than 1, 
4. clamping of fibres in supports with V-grooves, 
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5. cleaning of fibres by short (0.2-0.5 s), low power electric arc, 
6. visual inspection of fibre tips for proper cleave and cleanliness, 
7. placing fibre tips between electrodes with 10-20 μm gap (butt coupling), 
8. alignment of fibres for lowest transmission loss; this may involve application of 

perpendicular offset with monitoring of loss or observation of cladding or cores, 
9. softening of fibres by low power discharge: 6-9 mA current, 0.5-3 s duration, than 

pressing together with 6-15 μm overlap, 
10. fusion of fibres by high power electric arc: 12-20 mA current, 0.5-2 s duration, 
11. annealing / polishing of fibres with low power electric arc (optional), 
12. visual inspection of splice: no distortions, slits or bubbles allowed, 
13. insertion loss measurement (optional), 
14. tensile strength test (optional), 
15. splice protection by heat-shrinkable sleeve, re-coating, etc.  

Figure 4 shows typical sequence of arc current and fibre movement.  

 

 
Fig. 4. Example of fibre-fibre gap and arc current variations during fusion splicing of SMF. 
Negative value of gap means an overlap of fibres pressed into each other. 

Arc current and duration of heating in steps 9-11 and fibre overlap in step 9 depend  
on fibres spliced. 10% deviation from optimum arc current is usually enough to 
significantly rise splice loss or reduce splice strength, if current and temperature are  
too low. To reduce self-centring, fusion time is shorter for single mode than multimode 
fibres: 0.5-1 s vs. 1-2 s. 

Some coatings require thermal stripping, softening with chemicals or burning for removal. 
When high splice strength is required, acrylate, epoxy-acrylate or polyimide coatings can be 
dissolved during 20-30 s immersion in hot (180-200C) sulphuric acid (H2SO4) - either pure 
(95%) or with addition of approx. 5% nitric acid (HNO3). Residual acid is removed by 
rinsing the fibre with water and later acetone (Matthewson et al., 1997).  
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3.4 Fibre alignment and splice loss 

Fibre core guiding radiation is small, with effective diameter usually in the 2-15 μm range in 
single-mode fibres, with extreme values often encountered in PCFs, and accurate alignment 
of fibre cores during splicing is essential. Main factors introducing splice loss include: 

- mismatch between core sizes, characterized by mode field diameter (MFD) in single-
mode fibres and physical core diameter in multimode fibres, 

- lateral offset between fibre cores, 
- angular misalignment of fibres, 
- mismatch in numerical aperture (NA) of multimode fibres, 
- distortions of splice, e.g. due to poor cleaving or incorrect fibre feed, 
- presence of gas bubbles, inclusions or un-fused gaps in the splice. 

For splice between single mode fibres, insertion loss Γ resulting from core offset, MFD 
difference and angular misalignment is given by the following formula (Yablon, 2005), 
assuming a Gaussian approximation of mode fields: 
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where wg1 and wg2 are Gaussian radii of spliced fibres, δ is lateral offset between fibre cores, 
θ is the angular misalignment, n is refractive index of fibre material and  the operating 
wavelength. Characteristics of loss due to each factor are shown in Figures 5, 6 and 7. Loss 
values calculated this way are only approximate because: 

- mode fields in real fibres like PCF often deviate from Gaussian distribution, 
- surface tension of glass produces rounded and distorted interface between fibres 

aligned with lateral offset (Figure 2), 
- excitation of higher order modes at splice is not included. 

The mode field diameter (MFD) of fibre included in technical specifications, usually 
measured in accordance with Petermann II definition is roughly twice its Gaussian mode 
radius, but definitions of both parameters are not directly comparable.  

For fibres with smaller MFD, splice loss rises faster with lateral offset, but slower with 
angular misalignment; the resultant loss is approximately proportional to square of given 
misalignment. While lateral offset between fibre claddings is easy to detect visually through 
splicer microscope, even large angular misalignment, most often due to debris in V-grooves 
holding fibres may be overlooked when field of view is small or the optical system produces 
image distortion. This is critical in splicing large-MFD fibres for high power applications. 

Accuracy of fibre alignment depends on core size and accepted loss. For splicing single-
mode fibres (wg = 2.5-5 μm) with loss below 0.2 dB, lateral core offset must be reduced to 
0.5-1 μm (Figure 6). If the alignment requires cladding offset, increase of it is needed to 
compensate for self-centring of fibres during fusion. Splice loss can be estimated from MFD 
mismatch, core misalignments and deformations measured by automated analysis of splice 
image. True value is obtained from bi-directional measurements with optical time domain 
reflectometer (OTDR), as differences between backscattering intensity in fibres can produce 
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5. cleaning of fibres by short (0.2-0.5 s), low power electric arc, 
6. visual inspection of fibre tips for proper cleave and cleanliness, 
7. placing fibre tips between electrodes with 10-20 μm gap (butt coupling), 
8. alignment of fibres for lowest transmission loss; this may involve application of 

perpendicular offset with monitoring of loss or observation of cladding or cores, 
9. softening of fibres by low power discharge: 6-9 mA current, 0.5-3 s duration, than 

pressing together with 6-15 μm overlap, 
10. fusion of fibres by high power electric arc: 12-20 mA current, 0.5-2 s duration, 
11. annealing / polishing of fibres with low power electric arc (optional), 
12. visual inspection of splice: no distortions, slits or bubbles allowed, 
13. insertion loss measurement (optional), 
14. tensile strength test (optional), 
15. splice protection by heat-shrinkable sleeve, re-coating, etc.  

Figure 4 shows typical sequence of arc current and fibre movement.  

 

 
Fig. 4. Example of fibre-fibre gap and arc current variations during fusion splicing of SMF. 
Negative value of gap means an overlap of fibres pressed into each other. 

Arc current and duration of heating in steps 9-11 and fibre overlap in step 9 depend  
on fibres spliced. 10% deviation from optimum arc current is usually enough to 
significantly rise splice loss or reduce splice strength, if current and temperature are  
too low. To reduce self-centring, fusion time is shorter for single mode than multimode 
fibres: 0.5-1 s vs. 1-2 s. 

Some coatings require thermal stripping, softening with chemicals or burning for removal. 
When high splice strength is required, acrylate, epoxy-acrylate or polyimide coatings can be 
dissolved during 20-30 s immersion in hot (180-200C) sulphuric acid (H2SO4) - either pure 
(95%) or with addition of approx. 5% nitric acid (HNO3). Residual acid is removed by 
rinsing the fibre with water and later acetone (Matthewson et al., 1997).  
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3.4 Fibre alignment and splice loss 

Fibre core guiding radiation is small, with effective diameter usually in the 2-15 μm range in 
single-mode fibres, with extreme values often encountered in PCFs, and accurate alignment 
of fibre cores during splicing is essential. Main factors introducing splice loss include: 

- mismatch between core sizes, characterized by mode field diameter (MFD) in single-
mode fibres and physical core diameter in multimode fibres, 

- lateral offset between fibre cores, 
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For splice between single mode fibres, insertion loss Γ resulting from core offset, MFD 
difference and angular misalignment is given by the following formula (Yablon, 2005), 
assuming a Gaussian approximation of mode fields: 
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where wg1 and wg2 are Gaussian radii of spliced fibres, δ is lateral offset between fibre cores, 
θ is the angular misalignment, n is refractive index of fibre material and  the operating 
wavelength. Characteristics of loss due to each factor are shown in Figures 5, 6 and 7. Loss 
values calculated this way are only approximate because: 

- mode fields in real fibres like PCF often deviate from Gaussian distribution, 
- surface tension of glass produces rounded and distorted interface between fibres 

aligned with lateral offset (Figure 2), 
- excitation of higher order modes at splice is not included. 

The mode field diameter (MFD) of fibre included in technical specifications, usually 
measured in accordance with Petermann II definition is roughly twice its Gaussian mode 
radius, but definitions of both parameters are not directly comparable.  

For fibres with smaller MFD, splice loss rises faster with lateral offset, but slower with 
angular misalignment; the resultant loss is approximately proportional to square of given 
misalignment. While lateral offset between fibre claddings is easy to detect visually through 
splicer microscope, even large angular misalignment, most often due to debris in V-grooves 
holding fibres may be overlooked when field of view is small or the optical system produces 
image distortion. This is critical in splicing large-MFD fibres for high power applications. 

Accuracy of fibre alignment depends on core size and accepted loss. For splicing single-
mode fibres (wg = 2.5-5 μm) with loss below 0.2 dB, lateral core offset must be reduced to 
0.5-1 μm (Figure 6). If the alignment requires cladding offset, increase of it is needed to 
compensate for self-centring of fibres during fusion. Splice loss can be estimated from MFD 
mismatch, core misalignments and deformations measured by automated analysis of splice 
image. True value is obtained from bi-directional measurements with optical time domain 
reflectometer (OTDR), as differences between backscattering intensity in fibres can produce 
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relative shift of fibre traces and error in OTDR measurement of splice loss in one direction, 
often exceeding 1 dB.  

 

 
Fig. 5. Calculated loss caused by mismatch in mode field diameters of single mode fibres. 

 

 
Fig. 6. Calculated loss caused by lateral offset between cores of identical single mode fibres. 
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As all single-mode and multimode telecom fibres exhibit radial symmetry of core and 
cladding, rotational alignment of fibres is not required. 

Properly made splice of identical fibres has insertion loss of around 0.05 dB and return loss 
in excess of 70 dB. Butt-coupling with 10-15 μm gap, e.g. before fusion (Fig. 1) introduces 
insertion loss of approx. 0.40 dB and 15 dB return loss due to Fresnel reflection from a pair 
of glass/air interfaces. If a transmission loss is monitored during splicing, this difference 
helps to estimate splice quality. Because loss measured with laser source varies periodically 
with gap width due to interferometric effects (Yablon, 2005), incoherent source like LED is 
best. Hot fibre is a strong source of broadband thermal radiation, with emission peak close 
to 780 nm at 2000C, preventing loss measurements during discharge. 

 
Fig. 7. Calculated loss caused by angular misalignment of identical single mode fibres. 
 = 1.55 μm, n = 1.5. Blue: wg = 7.5 μm, green: wg = 5 μm, red: wg = 2.5 μm. 

Loss of splice between single-mode fibres usually shows weak wavelength dependence, 
because MFD increases with wavelength, typically by 10-20% between 1310 and 1550 nm 
(Corning, 2008). If the main source of loss is core offset, it falls with wavelength, while 
angular misalignment produce loss rising with wavelength, in both cases in proportion to 
square of MFD. For multimode fibres, splice loss is essentially wavelength-independent. 

Strong increase of splice loss with wavelength shown in Figure 8 indicates excessive fibre 
bending due to improper handling, tight coiling or squeeze in the vicinity of splice. 

For example, while single splice between fibres having 1:2 MFD ratio has best-case loss of 
1.94 dB, two splices with 1 : 1.41 : 2 MFD ratio have combined loss 2 x 0.51 = 1.02 dB. This 
approach was adopted for splicing a small-core DCF with MFD of 2-4 μm to typical SMF 
having 8-11 μm MFD (Edvold & Gruner-Nielsen, 1996), and later to splice dissimilar PCFs 
(Xiao et al., 2007). Extra intermediate fibres can reduce loss further, e.g. to 0.56 dB for 
4 splices and 1:2 MFD ratio, but difficulty with finding necessary fibres, losses due to other 
factors and additional labour usually make such efforts impractical. 
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approach was adopted for splicing a small-core DCF with MFD of 2-4 μm to typical SMF 
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Fig. 8. Sharp bend of SMF observed with OTDR at 1310 nm (left) and 1550 nm (right). 

If fibres having substantially different MFD must be spliced, loss can be reduced by 
introduction of short fibre with intermediate MFD, as shown in Figure 9. 

 
Fig. 9. Principle of splicing through intermediate fibre. 

3.5 Splicing of plastic optical fibres 

Fusion splicing of plastic optical fibres (POF) made of poly-methyl-methacrylate (PMMA) or 
TOPAS polymer is very hard. For example, the tip of microstructured fibre made of PMMA 
forms a cone when heated, instead of rounding typical for fused silica fibre (Figure 10). 

Filament splicing and split-mould fusion of POF were reported, but failed to find 
acceptance. Butt-coupling is adopted for large diameter (up to 1 mm) solid POFs used in car, 
aircraft and industrial networks, and gluing is used as well. Microstructured plastic optical 
fibre (mPOF) can be glued, also to glass fibre (Bang, 2010). Polymer fibres are cleaved by 
cutting with razor blade at controlled speed. Blade and fibre must be heated; the 
temperature range for PMMA fibres is 60-90C (Law et al., 2006). 
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Fig. 10. Deformation of fibre tips by heat of electric arc: DTU MIK125/0.5 made of PMMA 
(left) and Corning SMF-28 made of fused silica (right). Top: cleaved fibres, middle: after 1st 
heating, bottom: after 2nd heating.  

Handling and splicing of thin mPOF with standard equipment is difficult due to softness of 
polymers in comparison to fused silica. In experiments at NIT, mPOF of 125 μm diameter 
exhibited unacceptable sag and curl when clamped 4 mm away from tip, while standard 
V-groove clamps usually damaged the fibre. 

4. Fusion splicing of PCFs 
This section presents some issues specific to fusion splicing of silica “holey” fibres, primarily 
of single mode PCF to SMF. Due to large variety of designs, actual procedure, power, time 
and geometry settings must be individually tailored. 

Finished splice must be protected to have adequate mechanical strength, as holes and flaws 
on their surfaces make PCFs inherently weaker than solid fibres. In all experiments at NIT, 
fusion splices were protected with commercial 60 mm heat shrinkable sleeves reinforced 
with stainless steel rod. Protected splices performed well during temperature cycling 
between -40°C and +80C, with loss stability better than 0.05 dB, and as grips for 
application of twist and tensile forces in mechanical tests (Figure 11). 

Fusion splices are hermetic, keeping external contaminants out, but trapping whatever 
entered earlier. Exceptions include helium and hydrogen, diffusing through 60 μm thick 
fused silica cladding in few hours. Short suspended core PCF infiltrated with acetylene 
(C2H2) or hydrogen cyanide (HCN) and fusion spliced to SMF pigtails is used as optical 
frequency reference, e.g. for calibration of optical spectrum analyzers (Thapa et al., 2006). 

Out-gassing of cleaved PCF is fast, but removal of liquid or dust is essentially impossible due 
to high pneumatic resistance of thin holes and adsorption to the surface of their walls. 

Infiltration of holes with gas or liquid allows to make fibre sensors for chemical analysis, 
detection of pollutants or poison gas, medical diagnostics, etc. through spectral absorption 
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polymers in comparison to fused silica. In experiments at NIT, mPOF of 125 μm diameter 
exhibited unacceptable sag and curl when clamped 4 mm away from tip, while standard 
V-groove clamps usually damaged the fibre. 
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Finished splice must be protected to have adequate mechanical strength, as holes and flaws 
on their surfaces make PCFs inherently weaker than solid fibres. In all experiments at NIT, 
fusion splices were protected with commercial 60 mm heat shrinkable sleeves reinforced 
with stainless steel rod. Protected splices performed well during temperature cycling 
between -40°C and +80C, with loss stability better than 0.05 dB, and as grips for 
application of twist and tensile forces in mechanical tests (Figure 11). 

Fusion splices are hermetic, keeping external contaminants out, but trapping whatever 
entered earlier. Exceptions include helium and hydrogen, diffusing through 60 μm thick 
fused silica cladding in few hours. Short suspended core PCF infiltrated with acetylene 
(C2H2) or hydrogen cyanide (HCN) and fusion spliced to SMF pigtails is used as optical 
frequency reference, e.g. for calibration of optical spectrum analyzers (Thapa et al., 2006). 

Out-gassing of cleaved PCF is fast, but removal of liquid or dust is essentially impossible due 
to high pneumatic resistance of thin holes and adsorption to the surface of their walls. 

Infiltration of holes with gas or liquid allows to make fibre sensors for chemical analysis, 
detection of pollutants or poison gas, medical diagnostics, etc. through spectral absorption 
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measurements. Filling with liquids, including liquid crystals or suspensions of solid 
particles in oils allows to build tuneable, nonlinear or electrically controlled optical devices.  

 
Fig. 11. 80 μm PCF (IPHT 252b5) in acrylate coating broken by 180 rev/m twist applied 
using heat shrinkable sleeve as grip. 4 mm section of fibre inside sleeve was long enough to 
transfer a destructive force. Splice was illuminated with 650 nm laser through SMF (right). 

PCFs are sometimes fused for purposes other than splicing, like: 

- sealing of fibre before storage or shipment, 
- consolidation of fibre tip prior to polishing. 

Fusion power and duration must ensure robust collapse of all holes.  

4.1 Issues and solutions specific to fusion splicing of PCFs 

Besides issues presented in section 3, work with PCF brings several new challenges: 

1. Solvents used for fibre cleaning infiltrate PCF holes. 
2. Holes distort propagation of crack and hamper fibre cleaving. 
3. Surface tension of molten silica causes collapse of holes. 
4. PCF has lower fusion temperature and thermal conductivity than solid fibre. 
5. Mismatch in fiber cladding diameters results in sharp edges, splice strength suffers. 
6. Mode fields of PCFs do not exhibit full radial symmetry. 
7. Photonic structure supports undesirable propagation of light outside of fibre core. 
8. High attenuation and strong backscattering in PCF affect splice loss measurements. 

It is often needed to splice PCFs having unusual cladding diameter, core design and MFD, 
as there are no standards for this category of fibres. Most commercially available splicing 
and test equipment, tools and accessories like fibre adaptors or protective sleeves are 
designed strictly for telecom fibres with 125 μm cladding and 250-900 μm coating.  

A compromise between achieving different goals is often required, particularly between 
splice loss and its mechanical strength. Also, unless optimization of manufacturing process, 
device performance, etc. justifies labour and equipment costs involved, time and funds 
available for trials are limited and less-than-perfect solutions need to be accepted.  

Damaged PCF PCF break PCF-SMF fusion splice Sleeve (3 mm diameter) 
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4.1.1 Fibre infiltration 

Unless PCF end is sealed by fusion, low-viscosity liquid applied to it penetrates holes. 
Filling with colourless acetone, isopropyl alcohol, ethyl alcohol or water is invisible through 
coating. Removal is practically impossible, with the following consequences: 

- Fall of index contrast in the infiltrated zone when solvent (isopropyl alcohol: n = 1.38, 
acetone, ethyl alcohol: n = 1.36, water: n = 1.33, 589 nm wavelength) replaces air 
(n = 1.00) in contact with fused silica (n = 1.46). Light guiding is disturbed, and loss 
changes with movement of solvent, interfering with alignment of fibres. 

- During fusion, solvent in hot zone partly decomposes leaving thin layer of dark carbon 
residue on hole walls and partly evaporates, with pressure pushing the remaining 
liquid deeper into PCF. Resulting loss observed at NIT was up to 50 dB. 

For the same reason, PCFs cannot be connectorized in conventional way because water and 
small (0.5-3 μm) particles of polishing materials enter holes. To avoid infiltration, fibre ends 
shall be protected against liquids, dust or vapours during handling and storage. In 
particular, water vapour degrades fibre strength by producing flaws on walls of holes. PCF 
is best stripped mechanically and dry wiped to remove remains of coating. When use of 
solvent, acid, etc. is required, fibre end must be first sealed by fusion. PCF contamination in 
storage or shipping can be prevented by fusing both ends. To fit a connector, PCF can be 
stripped, cleaved and fused to collapse holes over a 100-200 μm length and fixed in the 
connector ferrule for polishing. This procedure works best for fibres with doped core, whose 
light guiding properties are retained without photonic structure.  

4.1.2 Fibre cleaving 

Cleaving of glass fibres uses perpendicular propagation of indentation-initiated break at the 
speed of sound, approx. 5950 m/s for fused silica. Structures made of differing materials, 
like arrays of holes in PCF or inserts of B2O3-SiO2 glass in PANDA fibre distort this 
propagation; these fibres are reportedly more difficult to cleave than conventional ones. 

PCFs tested at NIT, with 80-200 μm cladding diameter were cleaved using a typical, 
simple cleaver for telecom fibres with tungsten carbide blade. Proportion of bad  
cleaves was around 20%, a little higher than experienced with most SMFs. It rose to some 
50% for the 80 µm IPHT 252b5, presumably because tensile load was excessive for this 
fibre with equivalent diameter of solid glass of just 72 μm. This is consistent with 
literature data that best tensile load is proportional to cladding diameter raised to power 
of 2/3 (Yablon, 2005).  

Cleaved PCFs shall be carefully inspected for perpendicular cut before further work. For 
non-standard fibre sizes, use of cleaver with adjustable tensile force is recommended. 

4.1.3 Collapse of holes and thermal issues 

In absence of differential pressure, surface tension in molten glass causes the holes to reduce 
their radius at constant linear speed set by the following formula (Yablon, 2005): 

 collapsev 


  (2) 
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where  is surface tension, almost constant, and  is glass viscosity falling with temperature 
(Figure 3). If this continues long enough, holes collapse and solid fibre of reduced diameter 
is created. Collapse of holes can be prevented by internal gas pressure (“inflation”); 
equilibrium pressure Pcritical for capillary is a function of its inner (ri) and outer (ro) radius: 

 1 1
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In PCF with holes of differing sizes, the largest holes disappear last and over the shortest 
length. Due to longitudinal temperature gradient, only some length of PCF is subjected to 
collapse of holes, with gradual “thinning” in the intermediate zone - see Figures 12 and 13.  

For internal fibre temperature independent of depth, all holes of given size shall collapse 
simultaneously, but in experiments (Xiao et al., 2007, Bourliaguet et al., 2003) holes 
located deeper are less affected. Example from our work is shown in Figure 13. Transfer of 
heat from fibre surface to its interior, predominantly of radiative type, is apparently 
delayed.  

 
Fig. 12. Structure of PCF (UMCS 070119p2) with 3.5 μm and 1.3 μm holes and views of 
fusion splice to SMF. Fusion time: 0.3 s, fusion current from 13 mA (top) to 15 mA (bottom). 

 
Fig. 13. Depth-dependent and diameter-dependent collapse of holes (UMCS 070119p2). 

In the solidified length of fibre, light beam expands freely and proportion of power coupled 
to core of other fibre drops with increase of collapsed zone. Collapse of holes shall be 
avoided as much as possible, and if it cannot be avoided, fibre length affected must be 
reduced to absolute minimum. PCFs with doped core are partial exception. 
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Collapse is minimized by shortening fusion time to 0.2-0.5 s from 1-2 s for solid 125 μm 
fibres and reducing power, fusion time being more important. However, too short fusion 
time and too low temperature prevent full fusion of fibre-fibre boundary and proper 
rounding of edges if fiber diameters don’t match, as the glass is too viscous and/or doesn’t 
have enough time to flow. There is a trade-off between achieving low splice loss with little 
heat or good strength with more, and splice with excellent optical transmission may not be 
strong enough even for removal from splicing machine, as shown in Figure 14. 

 
Fig. 14. Splices between 204 μm PCF (IPHT 212b1) and SMF, fused with 150 μm axial offset. 
Splice with intact photonic structure and lowest loss, which broke during handling (top), 
and splice that survived (bottom). Fusion current: 18-19 mA, fusion time: 0.5 s. 

In splicing dissimilar fibres, axial offset of fibre contact point from the axis of electrodes is 
useful. The more heat-sensitive fibre - PCF in splice to SMF, or smaller of two PCFs, is kept 
away from centre of discharge column and its temperature is lower. In experiments at NIT, 
maximum axial offset was 1.2-1.5x fibre cladding diameter, otherwise unacceptable fibre 
deformation occurred in the hottest zone. Reduced fibre overlap can help. 

4.1.4 Mismatch in cladding diameter 

The power required to achieve given fibre temperature is approximately proportional to 
cladding diameter, and when fibres of different diameters are fused, the thinner fibre must 
receive a smaller share of arc power to obtain symmetrical temperature distribution. This is 
ensured by axial offset of arc centre in direction of thicker fibre. When splicing PCF to solid 
fibre, PCF shall be colder to prevent collapse of holes, adding second component of axial 
offset. In effect, even when PCF is moderately thicker than solid fibre, there is usually no 
offset towards PCF. 

During fusion of fibres of different diameters, poor smoothing of corners at fibre-fibre 
transition and fragility of splice are common, as seen in Figure 14. Therefore, fusion power 
and duration are often selected to obtain the minimum splice strength allowing handling 
without break, even if collapse of holes and increased splice loss are to be accepted. 

4.1.5 Non-circular mode 

Typical photonic structure, e.g. of “honeycomb” type, lacks full radial symmetry and mode 
field distribution reflects shape of it. In PCF with circular doped core, mode field can be still  
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where  is surface tension, almost constant, and  is glass viscosity falling with temperature 
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receive a smaller share of arc power to obtain symmetrical temperature distribution. This is 
ensured by axial offset of arc centre in direction of thicker fibre. When splicing PCF to solid 
fibre, PCF shall be colder to prevent collapse of holes, adding second component of axial 
offset. In effect, even when PCF is moderately thicker than solid fibre, there is usually no 
offset towards PCF. 

During fusion of fibres of different diameters, poor smoothing of corners at fibre-fibre 
transition and fragility of splice are common, as seen in Figure 14. Therefore, fusion power 
and duration are often selected to obtain the minimum splice strength allowing handling 
without break, even if collapse of holes and increased splice loss are to be accepted. 

4.1.5 Non-circular mode 

Typical photonic structure, e.g. of “honeycomb” type, lacks full radial symmetry and mode 
field distribution reflects shape of it. In PCF with circular doped core, mode field can be still  
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more or less distorted, depending on interactions with surrounding holes. Many PCFs for 
signal processing, sensing, optical switching etc. have cores and/or photonic structure made 
deliberately non-symmetrical; mode field distribution is non-circular, but usually with 
lateral symmetry, and propagation is polarization-dependent. 

Additionally, current PCF manufacturing technology cannot ensure perfect fibre geometry. 
Holes are often distorted during fibre drawing (Figure 15), affecting mode field shape. 

 
Fig. 15. Central part of doped-core PCF (IPHT 282b4) with deformed holes. 

If the PCF is spliced to radially symmetrical fibre, like single-mode or multimode  
telecom fibre, relative rotation has no effect on splice parameters, and simpler fusion 
splicing machine without fibre rotation is sufficient. Rotational alignment is necessary for 
splicing PCF to another PCF or specialty fibre of non-circular design like Bow-Tie or 
PANDA. Alignment is based either on observation of fibre structure through microscope 
of splicing machine or monitoring of transmission through butt-coupled fibres. In the 
latter case, a source of linearly polarized light properly coupled to one fibre is often 
required. 

4.1.6 MFD mismatch 

This problem is not limited to PCFs - see section 3.4. Besides use of intermediate fibre(s), one 
can locally change MFD of one fibre to make it more compatible with another or modify 
propagation in the zone between fibres. Several methods were reported, including: 

- Heat-assisted diffusion of dopants to expand small core doped with GeO2, by heating 
on the splicing machine. Fluorine-doped fibre can be modified as well (Yablon, 2005, 
Edvold & Gruner-Nielsen, 1996). Transition zone shall be at least 300 μm long. 
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- Slow pulling of hot (1200-1500C) fiber to reduce its diameter and MFD before cleaving 
in the middle of thinned section (fiber tapering). Fusion splicing machine is used, with 
arc power somewhat lower than required for pre-fusion. 

- Melting of fibre tip to make a ball lens. Arc power is similar to used for fusion (Wang et 
al., 2008, Borzycki et al., 2010a). Fibres with lenses are than fused – see 4.2.2. 

- Collapsing a controlled length of small-core PCF. This results in Gaussian expansion of 
light beam towards interface to fibre with larger core. 

- Insertion of GRIN fibre lens between two spliced fibres (Yablon & Bise, 2004). GRIN 
type and length must be carefully chosen to ensure proper focusing of light. 

While effective, these techniques are sensitive to deviations in process parameters. Specific 
advice for different cases can be found in literature, but several techniques require splicing 
machine with precise control of fibre movements, in particular for fibre tapering. 

4.1.7 Propagation of light in photonic structure and splice loss measurements 

In single-mode propagation regime, insertion loss of splice is independent of transmission 
direction. Non-reciprocity indicates multimode propagation in one or both fibres. 

Excitation of higher order modes, e.g. at splice with lateral offset is known in telecom 
systems, but mostly limited to short fibres, as higher order modes are strongly attenuated. In 
PCFs, photonic structure can support persistent propagation of own modes, especially as 
short lengths of such fibres,  1 m are common. This produces interference in 
measurements, sensing or operation of optical devices, as detectors in active instruments 
respond to total optical power of all modes. Examples of related measurement problems are: 

- non-reciprocity of splice loss between SMF and PCF, 
- noise-like interference in measurements of differential group delay (DGD) and 

polarization dependent loss (PDL) of PCF samples, see Fig. 17 (Borzycki et al., 2011a). 

Non-reciprocity of splice loss measured with optical source and optical power meter is 
due to different propagation of higher-order modes. In SMF, this part of radiation escapes 
fibre core and is lost, leaving only the fundamental mode. In PCF, part of it reaches the 
end of fibre and detector of power meter (Figure 16); loss indicated by instrument 
connected to PCF is lower than “true” value for fundamental mode. OTDR test is less 
affected, as optical pulse travels through splice in both directions and the instrument 
shows average loss value.  

 

 
Fig. 16. Mechanism creating non-reciprocal loss in PCF-SMF splices. 
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lateral symmetry, and propagation is polarization-dependent. 
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Holes are often distorted during fibre drawing (Figure 15), affecting mode field shape. 
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propagation in the zone between fibres. Several methods were reported, including: 
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on the splicing machine. Fluorine-doped fibre can be modified as well (Yablon, 2005, 
Edvold & Gruner-Nielsen, 1996). Transition zone shall be at least 300 μm long. 
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- Slow pulling of hot (1200-1500C) fiber to reduce its diameter and MFD before cleaving 
in the middle of thinned section (fiber tapering). Fusion splicing machine is used, with 
arc power somewhat lower than required for pre-fusion. 

- Melting of fibre tip to make a ball lens. Arc power is similar to used for fusion (Wang et 
al., 2008, Borzycki et al., 2010a). Fibres with lenses are than fused – see 4.2.2. 

- Collapsing a controlled length of small-core PCF. This results in Gaussian expansion of 
light beam towards interface to fibre with larger core. 

- Insertion of GRIN fibre lens between two spliced fibres (Yablon & Bise, 2004). GRIN 
type and length must be carefully chosen to ensure proper focusing of light. 

While effective, these techniques are sensitive to deviations in process parameters. Specific 
advice for different cases can be found in literature, but several techniques require splicing 
machine with precise control of fibre movements, in particular for fibre tapering. 

4.1.7 Propagation of light in photonic structure and splice loss measurements 

In single-mode propagation regime, insertion loss of splice is independent of transmission 
direction. Non-reciprocity indicates multimode propagation in one or both fibres. 

Excitation of higher order modes, e.g. at splice with lateral offset is known in telecom 
systems, but mostly limited to short fibres, as higher order modes are strongly attenuated. In 
PCFs, photonic structure can support persistent propagation of own modes, especially as 
short lengths of such fibres,  1 m are common. This produces interference in 
measurements, sensing or operation of optical devices, as detectors in active instruments 
respond to total optical power of all modes. Examples of related measurement problems are: 

- non-reciprocity of splice loss between SMF and PCF, 
- noise-like interference in measurements of differential group delay (DGD) and 

polarization dependent loss (PDL) of PCF samples, see Fig. 17 (Borzycki et al., 2011a). 

Non-reciprocity of splice loss measured with optical source and optical power meter is 
due to different propagation of higher-order modes. In SMF, this part of radiation escapes 
fibre core and is lost, leaving only the fundamental mode. In PCF, part of it reaches the 
end of fibre and detector of power meter (Figure 16); loss indicated by instrument 
connected to PCF is lower than “true” value for fundamental mode. OTDR test is less 
affected, as optical pulse travels through splice in both directions and the instrument 
shows average loss value.  

 

 
Fig. 16. Mechanism creating non-reciprocal loss in PCF-SMF splices. 
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Fig. 17. DGD and PDL of 20.2 m and 18.7 m long samples of PCF prone to multimode 
propagation (IPHT 252b3) with poor (top) and optimized (bottom) fusion splices to SMFs. 

Loss measurements are needed to align fibres, monitor fusion, and evaluate finished splice. 
It is often necessary to measure total loss of circuit or device incorporating PCF rather than 
splice(s) alone. There are two basic test methods: 

- Transmitted power monitoring with optical source and optical power meter, 
- OTDR, with lengths of fibres adjacent to splice required. 

The first technique allows fast measurements (0.1-1 s) with high resolution (0.001 dB).  
As typical laser source emits linearly polarized light, apparent PCF-SMF splice loss 
during alignment varies with fiber rotation due to PCF non-circular structure.  
In experiments presented in section 4, loss was monitored during fibre alignment and 
after each fusion step. Test setup shown in Figure 18 was used, including HP8153A 
optical multimeter with HP81553SM laser source (1558 nm) and HP81532A power meter 
modules. For splice No. 1 it was necessary to subtract PCF loss, measured separately  
with OTDR and connector loss; loss of splice No. 2 was measured directly. Loss 
calculations must take into account high attenuation of PCF, usually 20-200 dB/km. Data 
in section 4.2 refer to splice No. 2. 
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Fig. 18. Setups for loss measurements. Measurement of splice No. 1 after separate PCF 
attenuation measurement (top), direct measurement of splice No. 2 (bottom). 

When bare fiber adapters are used, debris on PCF endface can produce errors. PCF tip could 
be cleaned by gentle contact with suitable sticky tape, like Scotch Magic (Figure 19).  

 
Fig. 19. Cleaved IPHT 282b4 in bare fibre adapter after cleaning of dust with sticky tape. 

OTDR measurement of SMF-PCF splice(s) and PCF itself requires certain length of fibre 
before and after the splice, at least 50 m for instrument with 10 ns pulse width (Figure 20).  

 
Fig. 20. Arrangement for characterization of PCF and PCF-SMF splices with OTDR. 
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Large differences of backscattering intensity in PCF and SMF are common, and true loss Γ of 
SMF-PCF splice can be established only with bi-directional measurement and averaging: 

 
2

A B  
   (4) 

where ΓA and ΓB are apparent splice losses measured in A and B directions.  

Many PCFs produce strong backscattering due to entrapment of scattered light by photonic 
structure and intense scattering in doped core, if present (Borzycki et al., 2010b, 2011a). This 
brings noise-free OTDR trace, but one-way OTDR measurement are misleading (Figures 21 
and 22). In Figure 22, trace of highly GeO2-doped PCF (IPHT 282b4) was shifted by 9.5 dB 
vs. traces of SMFs, producing “gain” in splice before PCF and exaggerated loss of splice 
after PCF (Borzycki et al, 2011b). Testing such samples requires high-performance OTDR. 

 
Fig. 21. OTDR trace of SMF, PCF-SMF splice and PCF (IPHT 282b3) acquired with setup 
shown in Figure 20. Wavelength: 1550 nm, pulse width: 10 ns, PCF length: 91 m. Instead of 
8.1 dB “gain”, the splice had actual loss of 2.2 dB. 

In PCF characterization, improvements to quality of splices pay off with improved accuracy 
and fewer measurement artifacts, especially in measurements of polarization properties. 

4.2 Examples 

Descriptions below apply to splicing of SMF to PCFs designed and made at IPHT Jena, 
Germany as highly nonlinear single-mode fibres for signal processing, like wavelength 
conversion. For this, fibre cores were strongly doped with GeO2, up to 36% mol. The reader 
is referred to separate papers on manufacturing of these fibres (Schuster et al, 2007) and 
their characterization (Borzycki et al., 2010b). Data of all PCFs referred to in this chapter are 
presented in Table 2. UMCS 070119p2 mentioned in section 4.1.3 was a “PANDA-like” 
birefringent fibre developed at UMCS Lublin, Poland for use in polarimetric sensors. 
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Fig. 22. OTDR trace of PCF (IPHT 282b4) spliced to SMFs as in Figure 20. Wavelength:  
1550 nm, pulse width: 100 ns, PCF length: 104 m.  
 

Parameter Unit IPHT 
252b5 

IPHT 
252b3 

IPHT 
282b3 

IPHT 
282b4 

UMCS 
070119p2 

Cladding diameter m 82.7 127.5 125.9 124.4 126 
Hole diameter (d) m 3.6 5.8 0.7 0.7 3.5/1.3 
Hole spacing (Λ) m 4.2 6.5 4.4 4.2 3.5 
Diameter of holey package m 42.8 61.5 44.6 43.0 55 
Diameter of doped core m 0.5/2.0/4.1* 1.4/3.3/6.6* 0.8/2.8/7.1* 1.2/3.9/7.3* N/A ** 

*) Central high GeO2 doped core / GeO2 doped socket / total core diameter. 
**) No doped core. 

Table 2. Data of photonic crystal fibres 

 
Fig. 23. Cross-sections of fibres: IPHT 282b4 (left) and IPHT 252b5 (right). 
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Fig. 23. Cross-sections of fibres: IPHT 282b4 (left) and IPHT 252b5 (right). 
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4.2.1 Splicing IPHT 282b4 to SMF 

Being similar to SMF, this fibre was spliced in the same way, using the following fusion 
program (pre-fusion, fusion, annealing - Figure 4): 9 mA – 3 s / 17 mA – 0.5 s / 9 mA – 3 s. 

PCF length, attenuation and loss at 1558 nm were 12.4 m, 61.5 dB/km and 0.76 dB 
respectively. The SMF fibre was Corning SMF-28 (Corning, 2008). Splice loss (Table 3) was 
acceptable despite destruction of photonic structure over 300 µm (Figures 24 and 25), due to 
guiding of light by doped core. This case was easy, as no special techniques were required 
besides reduction of fusion power and duration in comparison to SMF splicing. Lower loss 
was achievable with shorter fusion time, but at expense of reduced splice strength.  

 
Fig. 24. SMF (left) and PCF (right) cleaved and positioned before fusion. 

 
Fig. 25. Fibres fused. 
 

Conditions Sample loss (dB) Splice loss (dB) 
Loss with finished splice No. 1 3.19 (reference) 

Fibres cleaved and aligned 4.79 2.37 
Fibres spliced 3.77 1.25 

Table 3. Loss of IPHT 282b4 sample measured during making of splice No. 2 (1558 nm).  

4.2.2 Splicing IPHT 252b5 to SMF (Corning SMF-28) 

This PCF was difficult to splice due to small diameter. Fusion procedure included melting of 
fiber tips into ball lenses before fusion (Wang et a., 2008). Results depended on accurate 
fiber movement (“feed”) before fusion: too small increased necking (Figures 29-30) and loss. 
Fiber was 16.08 m long, with attenuation and loss at 1558 nm of 58.3 dB/km and 0.94 dB, 
respectively. The SMF was Corning SMF-28. Gap during alignment was 10 µm, fibre overlap 
10 µm and axial offset 200 µm towards SMF. Splicing machine settings were as follows: 

- Splicing (pre-fusion, fusion, annealing): 9 mA – 3 s / 18 mA – 0.5 s / 8.4 mA – 3 s. 
- Melting of fibre tips: 18 mA – 0.5 s. 
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After measuring loss with butt coupling (Figure 26), fibres were melted to form ball lenses 
(Figures 26-28). Melting of SMF tip was repeated to obtain the required shape. After fusion 
(Figure 29), the splice was repeatedly heated at the same settings to reduce loss, but without 
further movement (Figures 29-30). Light transmission was monitored and work terminated 
after splice loss stopped to significantly decrease any further – see data in Table 4. 

 
Fig. 26. Left: PCF (left) and SMF (right) aligned. Electrode tip is visible as dark triangle at the 
bottom of picture. Right: SMF tip melted – Phase 1. 

 
Fig. 27. Left: SMF tip melted – Phase 2. Right: PCF positioned for melting. 

 
Fig. 28. Left: PCF tip melted. Right: fibres aligned for fusion with axial offset. 

 
Fig. 29. Left: fibres fused. Right: splice after additional heating No. 1. 
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4.2.1 Splicing IPHT 282b4 to SMF 

Being similar to SMF, this fibre was spliced in the same way, using the following fusion 
program (pre-fusion, fusion, annealing - Figure 4): 9 mA – 3 s / 17 mA – 0.5 s / 9 mA – 3 s. 

PCF length, attenuation and loss at 1558 nm were 12.4 m, 61.5 dB/km and 0.76 dB 
respectively. The SMF fibre was Corning SMF-28 (Corning, 2008). Splice loss (Table 3) was 
acceptable despite destruction of photonic structure over 300 µm (Figures 24 and 25), due to 
guiding of light by doped core. This case was easy, as no special techniques were required 
besides reduction of fusion power and duration in comparison to SMF splicing. Lower loss 
was achievable with shorter fusion time, but at expense of reduced splice strength.  

 
Fig. 24. SMF (left) and PCF (right) cleaved and positioned before fusion. 

 
Fig. 25. Fibres fused. 
 

Conditions Sample loss (dB) Splice loss (dB) 
Loss with finished splice No. 1 3.19 (reference) 

Fibres cleaved and aligned 4.79 2.37 
Fibres spliced 3.77 1.25 

Table 3. Loss of IPHT 282b4 sample measured during making of splice No. 2 (1558 nm).  
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This PCF was difficult to splice due to small diameter. Fusion procedure included melting of 
fiber tips into ball lenses before fusion (Wang et a., 2008). Results depended on accurate 
fiber movement (“feed”) before fusion: too small increased necking (Figures 29-30) and loss. 
Fiber was 16.08 m long, with attenuation and loss at 1558 nm of 58.3 dB/km and 0.94 dB, 
respectively. The SMF was Corning SMF-28. Gap during alignment was 10 µm, fibre overlap 
10 µm and axial offset 200 µm towards SMF. Splicing machine settings were as follows: 

- Splicing (pre-fusion, fusion, annealing): 9 mA – 3 s / 18 mA – 0.5 s / 8.4 mA – 3 s. 
- Melting of fibre tips: 18 mA – 0.5 s. 
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After measuring loss with butt coupling (Figure 26), fibres were melted to form ball lenses 
(Figures 26-28). Melting of SMF tip was repeated to obtain the required shape. After fusion 
(Figure 29), the splice was repeatedly heated at the same settings to reduce loss, but without 
further movement (Figures 29-30). Light transmission was monitored and work terminated 
after splice loss stopped to significantly decrease any further – see data in Table 4. 

 
Fig. 26. Left: PCF (left) and SMF (right) aligned. Electrode tip is visible as dark triangle at the 
bottom of picture. Right: SMF tip melted – Phase 1. 
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Fig. 30. Splice after additional heating No. 2 (left) and No. 3 (right). 

 

Conditions Sample loss (dB) Splice loss (dB) 
Loss with finished splice 1 3.19 (reference) 
Fibers cleaved and aligned 8.98 5.79 
Lens-tipped fibres aligned 5.37 2.18 

Fibres spliced 4.61 1.42 
After heating No. 1 4.38 1.19 
After heating No. 2 4.28 1.09 
After heating No. 3 4.17 0.98 

Table 4. Loss of IPHT 252b5 sample measured during making of splice No. 2 (1558 nm).  

In contrast to work presented in the preceding section, fusion splicing of small-core, thin 
PCF to SMF was complicated and time-consuming. However, attempts to fuse the same 
fibres without pre-forming resulted in very high splice loss (15.5 dB for 2 PCF-SMF splices) 
and frequent entrapment of small gas bubble in the centre of splice. 

5. Conclusions 
Arc fusion splicing of most microstructured silica-based fibres to SMFs with conventional 
equipment and tools is possible, with loss acceptable for purposes like PCF characterization.  

Unfortunately, splicing procedure must be tailored to each PCF and is labour intensive.  
In many cases, a trade-off between achieving low loss and high strength of the splice  
exists.  

PCF to PCF splicing is more demanding in term of equipment and work procedures, 
because of need for rotational alignment of fibres, not available in most fusion  
splicing machines, and increased length of collapsed holes. The latter problem can be 
reduced by adopting fusion time shorter than 0.3 s, but at the expense of compromised 
splice strength. 
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Fig. 30. Splice after additional heating No. 2 (left) and No. 3 (right). 

 

Conditions Sample loss (dB) Splice loss (dB) 
Loss with finished splice 1 3.19 (reference) 
Fibers cleaved and aligned 8.98 5.79 
Lens-tipped fibres aligned 5.37 2.18 

Fibres spliced 4.61 1.42 
After heating No. 1 4.38 1.19 
After heating No. 2 4.28 1.09 
After heating No. 3 4.17 0.98 

Table 4. Loss of IPHT 252b5 sample measured during making of splice No. 2 (1558 nm).  

In contrast to work presented in the preceding section, fusion splicing of small-core, thin 
PCF to SMF was complicated and time-consuming. However, attempts to fuse the same 
fibres without pre-forming resulted in very high splice loss (15.5 dB for 2 PCF-SMF splices) 
and frequent entrapment of small gas bubble in the centre of splice. 
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In many cases, a trade-off between achieving low loss and high strength of the splice  
exists.  
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1. Introduction

A photonic crystal fiber (PCF) is a fiber that contains the regular (usually hexagonal) arrays
of air holes in the propagation direction of an optical fiber. At the center position, the core
is created by not making an air hole and the light wave propagates at the core position
since the effective refractive index of the core is higher than that of the photonic crystal
clad surrounding the core. Photonic crystal fibers of this type have been used to generate
ultrabroadband optical pulses by propagating femtosecond optical pulses in these fibers
(Ranka et al., 2000). The core diameter of a PCF for the generation of ultrabroadband
optical pulses using a Ti:sapphire laser (center wavelength ∼800 nm) is about 1-2 μm if it
is assumed that the silica core is surrounded by regular air holes. Due to the waveguide
dispersion, the group velocity dispersion (GVD) becomes negative at 800 nm. Because of
the small core diameter and the negative GVD, nonlinear effects are enhanced and optical
solitons are generated in a PCF. Theoretical calculations for elucidating the mechanism of
the ultrabroadband pulse generation in a PCF have been performed (Husakou & Herrmann,
2001) and the generation of fundamental soliton pulses by the fission of an input higher-order
soliton pulse due to the third and higher order dispersion as well as the higher-order
nonlinear effects including the Raman effects are found to be important for the spectral
broadening. Supercontinuum generation in a PCF is reviewed in (Dudley et al., 2006). The
center wavelength of the generated fundamental soliton pulse becomes longer as it propagates
in a PCF due to soliton self-frequency shift and its center wavelength can be changed by the
peak power or the chirp of an input pulse. Recently, it was used as a variable-wavelength
light source in various applications including coherent anti-Stokes Raman scattering (CARS)
spectroscopy and optical coherence tomography (OCT). The present article describes the
properties of the fundamental solitons from a PCF and its applications studied in our
laboratory.

2. Fundamental soliton pulse

It is well known that the soliton pulse, which does not change its shape as it propagates in a
fiber, can be created when the pulse propagates in the anomalous dispersion region (Agrawal,
2007; Hasegawa, 1992). If we consider the electric field (considered to be scalar) that depends
on only time t and propagation position z such that E(z, t) = Re[A(z, t)ei(β0z−ω0t)], where Re
shows the real part, ω0 is the central angular frequency, and β0 is the propagation constant at
ω0 (β0 = β(ω0)) of a pulse, the slowly varying envelope approximation (SVEA) equation for
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A photonic crystal fiber (PCF) is a fiber that contains the regular (usually hexagonal) arrays
of air holes in the propagation direction of an optical fiber. At the center position, the core
is created by not making an air hole and the light wave propagates at the core position
since the effective refractive index of the core is higher than that of the photonic crystal
clad surrounding the core. Photonic crystal fibers of this type have been used to generate
ultrabroadband optical pulses by propagating femtosecond optical pulses in these fibers
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is assumed that the silica core is surrounded by regular air holes. Due to the waveguide
dispersion, the group velocity dispersion (GVD) becomes negative at 800 nm. Because of
the small core diameter and the negative GVD, nonlinear effects are enhanced and optical
solitons are generated in a PCF. Theoretical calculations for elucidating the mechanism of
the ultrabroadband pulse generation in a PCF have been performed (Husakou & Herrmann,
2001) and the generation of fundamental soliton pulses by the fission of an input higher-order
soliton pulse due to the third and higher order dispersion as well as the higher-order
nonlinear effects including the Raman effects are found to be important for the spectral
broadening. Supercontinuum generation in a PCF is reviewed in (Dudley et al., 2006). The
center wavelength of the generated fundamental soliton pulse becomes longer as it propagates
in a PCF due to soliton self-frequency shift and its center wavelength can be changed by the
peak power or the chirp of an input pulse. Recently, it was used as a variable-wavelength
light source in various applications including coherent anti-Stokes Raman scattering (CARS)
spectroscopy and optical coherence tomography (OCT). The present article describes the
properties of the fundamental solitons from a PCF and its applications studied in our
laboratory.

2. Fundamental soliton pulse

It is well known that the soliton pulse, which does not change its shape as it propagates in a
fiber, can be created when the pulse propagates in the anomalous dispersion region (Agrawal,
2007; Hasegawa, 1992). If we consider the electric field (considered to be scalar) that depends
on only time t and propagation position z such that E(z, t) = Re[A(z, t)ei(β0z−ω0t)], where Re
shows the real part, ω0 is the central angular frequency, and β0 is the propagation constant at
ω0 (β0 = β(ω0)) of a pulse, the slowly varying envelope approximation (SVEA) equation for
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2 Will-be-set-by-IN-TECH

the envelope A(z, t) (normalized to have the unit [W1/2]) may be obtained from the Maxwell
equation after various approximations (Karasawa et al., 2001) as follows,

∂ζ A(ζ, T) = − i
2

β
(2)
0 ∂2

T A(ζ, T) + iγ(ω0)|A(ζ, T)|2 A(ζ, T). (1)

In this equation, the coordinates are transformed ζ = z, T = t − β
(1)
0 z such that the pulse

center is always at the time origin (β(1)0 = ∂ω β|ω0 is the inverse of the group velocity
of the pulse). In the right hand side of Eq. 1, the first term arises from the dispersion,

where the GVD is given by β
(2)
0 = ∂2

ω β|ω0 . The second term arises from the nonlinear
self-phase modulation (SPM) with the frequency-dependent nonlinear coefficient γ(ω0) =
n(ω0)nI

2(ω0)ω
2
0(1 − fR)/(c2β0 Aeff(ω0)), where n(ω0) and nI

2(ω0) are the linear and the
nonlinear indices of refraction of a medium, c is the speed of light, Aeff(ω0) is the effective
mode area in a fiber, and fR is the contribution of the Raman term ( fR � 0.3 for fused
silica). When the GVD is negative and the input power is chosen appropriately, the effects
of these terms on the variations of the envelope cancel, and a stable soliton pulse can be
propagated. By changing the variables to dimensionless ones such that ξ = ζ/LD, τ = T/T0,
u(ξ, τ) =

√
γ(ω0)LD A(ξ, τ) (Agrawal, 2007), where T0 is the pulse width parameter, and

LD = T2
0 /|β(2)0 | is the dispersion length, we have

∂ξ u(ξ, τ) =
i
2

∂2
τu(ξ, τ) + i|u(ξ, τ)|2u(ξ, τ), (2)

when β
(2)
0 < 0. This equation was solved by the inverse scattering method and has a

fundamental soliton solution of a form (Agrawal, 2007)

u(ξ, τ) = η sech η(τ + δξ − τs)e−iδτ+i(η2−δ2)ξ/2+iφs, (3)

where η and δ are determined by the eigenvalue of the inverse scattering problem, and τs
and φs are constants. Here, φs can be included in an initial carrier wave phase, and δ and τs
can be eliminated by shifting the carrier center frequency and the initial temporal position of
the pulse. Therefore it can be written as u(ξ, τ) = η sech (ητ)eiη2ξ/2, which shows that the
envelope intensity does not change as it propagates in a fiber. The parameter η determines
both the amplitude and the width of the soliton pulse. If the pulse width is T0, η = 1 and
the solution is given simply by u(ζ, τ) = sech (τ)eiξ/2. If the input pulse shape of a laser
is approximated as u(0, τ) = B sech τ, the number of eigenvalues N is given by B − 1/2 <
N ≤ B + 1/2 (Satsuma & Yajima, 1974). For an input pulse envelope with a peak power
P0, A(0, T) =

√
P0 sech (T/T0) and this "soliton number" B becomes B =

√
P0γ(ω0)LD =√

P0γ(ω0)T2
0 /|β(2)0 |. If B is exactly equal to N, the solution can be obtained in terms of N

amplitudes ηj = 1, 3, 5, ..., (2N − 1). For N ≥ 2, higher-order N-soliton solutions were found
(Satsuma & Yajima, 1974; Schrader, 1995). These N-soliton solutions may be considered to be
consisted of N single solitons (Schrader, 1995).

In the real fiber of our interest, neglected terms deriving Eq. 1, such as higher-order
dispersion terms, self-steepening terms, and the Raman term become important. If we use
a slowly-evolving wave approximation (SEWA) instead of SVEA, the following propagation
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equation can be derived (Karasawa et al., 2001),

∂ζ A(ζ, T) = i(D̂� + D̂corr)A(ζ, T) + iγ�(ω0)(1 + is∂T)
[
(1 − fR)|A(ζ, T)|2

+
2
3

fR

∫ ∞

0
hR(T

�)|A(ζ, T�)|2dT�]A(ζ, T), (4)

where

D̂� =
∞

∑
n=0

in

n!

(
∂n

ω(β(ω) +
iα(ω)

2
)|ω0

)
∂n

T − β0 − iβ(1)0 ∂T , (5)

is the dispersion terms that contain all higher-order terms with α(ω) to be the loss constant,

D̂corr = (1+ iβ(1)0 ∂T/β0)
−1D̂�2/(2β0) is the dispersion correction term, s = 2/ω0 − β

(1)
0 /β0 +

∂ω(log(n(ω)nI
2(ω)/Aeff(ω)))|ω0 is the self-steepening term, γ�(ω0) = γ(ω0)/(1 − fR), and

hR(T) = (τ2
1 + τ2

2 )e
−T/τ2 sin(T/τ1)/(τ1τ2

2 ) is the response function of the delayed Raman
response with τ1 = 12.2 fs and τ2 = 32 fs for fused silica (Blow & Wood, 1989).

Because of the presence of extra terms not included in Eq. 1, the inputted pulse with
u(0, τ) = B sech τ separates to multiple soliton pulses if the amplitude B > 1.5. The
main reason of the splitting is the self-frequency shift due to the Raman effect (Gordon, 1986;
Mitschke & Mollenauer, 1986), which depends on the pulse amplitude and width. If the center
frequency is changed, the temporal delay of the pulse changes due to the dispersive effect (D̂�
term). Independently, it is modified by the self-steepening effect (s term). The effects of these
higher-order terms were investigated by moments equations for pulse parameters (Agrawal,
2007), where the variations of pulse parameters (pulse width, chirp, delay, and center angular
frequency) were calculated as functions of propagation distance z. The variation of the center
frequency of the fundamental soliton (N = 1) without a chirp can be approximated as

ω0(z) = − 8TRγ(ω0)P0

15T2
0

z = − 8TR|β(2)0 |
15T4

0
z, (6)

where TR is the first moment of the Raman response function, TR � fR
∫ ∞

0 thR(t)dt = 2.4 fs
for fused silica. This wavelength-variable fundamental soliton pulse emits a phase-matched
dispersive wave, which is the important mechanism for generating supercontinuum,
especially for shorter wavelength components (Husakou & Herrmann, 2001).

In Fig. 1, the model structure of a PCF used in our experiment and the dispersion properties of
the PCFs with different structural parameters calculated by a multipole method (Zolla et al.,
2005) using two rings of air holes surrounding a core are shown. In Fig. 2, the variations
of temporal and spectral pulse intensities are shown as a function of propagation distance z,
where, Eq. 4 is solved numerically for a PCF with the dispersion property shown in Fig. 1
(b) with the pitch 1.07 μm and diameter 0.7 μm (NKT Photonics NL-1.5-590). In calculations,
a Gaussian input pulse, with the full width at half-maximum (FWHM) width Tp = 50 fs, the
peak power P0 = 4 kW, and the center wavelength 800 nm, where the GVD is anomalous,
was used. The fiber material was assumed to be fused silica with nI

2 = 2.48 × 10−20 m2/W,
and Aeff = 1.7671 μm2, which gave the soliton number N=5.03. The propagation loss and the
derivative term in s were neglected in calculations. Also in Fig. 2, the spectrogram created
by the calculation at propagation distances z = 50 mm and z = 100 mm are shown. From
Fig. 2, we can see that three soliton pulses (S1, S2, and S3) are created in this case after about
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the envelope A(z, t) (normalized to have the unit [W1/2]) may be obtained from the Maxwell
equation after various approximations (Karasawa et al., 2001) as follows,

∂ζ A(ζ, T) = − i
2

β
(2)
0 ∂2

T A(ζ, T) + iγ(ω0)|A(ζ, T)|2 A(ζ, T). (1)

In this equation, the coordinates are transformed ζ = z, T = t − β
(1)
0 z such that the pulse

center is always at the time origin (β(1)0 = ∂ω β|ω0 is the inverse of the group velocity
of the pulse). In the right hand side of Eq. 1, the first term arises from the dispersion,

where the GVD is given by β
(2)
0 = ∂2

ω β|ω0 . The second term arises from the nonlinear
self-phase modulation (SPM) with the frequency-dependent nonlinear coefficient γ(ω0) =
n(ω0)nI

2(ω0)ω
2
0(1 − fR)/(c2β0 Aeff(ω0)), where n(ω0) and nI

2(ω0) are the linear and the
nonlinear indices of refraction of a medium, c is the speed of light, Aeff(ω0) is the effective
mode area in a fiber, and fR is the contribution of the Raman term ( fR � 0.3 for fused
silica). When the GVD is negative and the input power is chosen appropriately, the effects
of these terms on the variations of the envelope cancel, and a stable soliton pulse can be
propagated. By changing the variables to dimensionless ones such that ξ = ζ/LD, τ = T/T0,
u(ξ, τ) =

√
γ(ω0)LD A(ξ, τ) (Agrawal, 2007), where T0 is the pulse width parameter, and

LD = T2
0 /|β(2)0 | is the dispersion length, we have

∂ξ u(ξ, τ) =
i
2

∂2
τu(ξ, τ) + i|u(ξ, τ)|2u(ξ, τ), (2)

when β
(2)
0 < 0. This equation was solved by the inverse scattering method and has a

fundamental soliton solution of a form (Agrawal, 2007)

u(ξ, τ) = η sech η(τ + δξ − τs)e−iδτ+i(η2−δ2)ξ/2+iφs, (3)

where η and δ are determined by the eigenvalue of the inverse scattering problem, and τs
and φs are constants. Here, φs can be included in an initial carrier wave phase, and δ and τs
can be eliminated by shifting the carrier center frequency and the initial temporal position of
the pulse. Therefore it can be written as u(ξ, τ) = η sech (ητ)eiη2ξ/2, which shows that the
envelope intensity does not change as it propagates in a fiber. The parameter η determines
both the amplitude and the width of the soliton pulse. If the pulse width is T0, η = 1 and
the solution is given simply by u(ζ, τ) = sech (τ)eiξ/2. If the input pulse shape of a laser
is approximated as u(0, τ) = B sech τ, the number of eigenvalues N is given by B − 1/2 <
N ≤ B + 1/2 (Satsuma & Yajima, 1974). For an input pulse envelope with a peak power
P0, A(0, T) =

√
P0 sech (T/T0) and this "soliton number" B becomes B =

√
P0γ(ω0)LD =√

P0γ(ω0)T2
0 /|β(2)0 |. If B is exactly equal to N, the solution can be obtained in terms of N

amplitudes ηj = 1, 3, 5, ..., (2N − 1). For N ≥ 2, higher-order N-soliton solutions were found
(Satsuma & Yajima, 1974; Schrader, 1995). These N-soliton solutions may be considered to be
consisted of N single solitons (Schrader, 1995).

In the real fiber of our interest, neglected terms deriving Eq. 1, such as higher-order
dispersion terms, self-steepening terms, and the Raman term become important. If we use
a slowly-evolving wave approximation (SEWA) instead of SVEA, the following propagation
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equation can be derived (Karasawa et al., 2001),
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is the dispersion terms that contain all higher-order terms with α(ω) to be the loss constant,

D̂corr = (1+ iβ(1)0 ∂T/β0)
−1D̂�2/(2β0) is the dispersion correction term, s = 2/ω0 − β
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∂ω(log(n(ω)nI
2(ω)/Aeff(ω)))|ω0 is the self-steepening term, γ�(ω0) = γ(ω0)/(1 − fR), and

hR(T) = (τ2
1 + τ2

2 )e
−T/τ2 sin(T/τ1)/(τ1τ2

2 ) is the response function of the delayed Raman
response with τ1 = 12.2 fs and τ2 = 32 fs for fused silica (Blow & Wood, 1989).

Because of the presence of extra terms not included in Eq. 1, the inputted pulse with
u(0, τ) = B sech τ separates to multiple soliton pulses if the amplitude B > 1.5. The
main reason of the splitting is the self-frequency shift due to the Raman effect (Gordon, 1986;
Mitschke & Mollenauer, 1986), which depends on the pulse amplitude and width. If the center
frequency is changed, the temporal delay of the pulse changes due to the dispersive effect (D̂�
term). Independently, it is modified by the self-steepening effect (s term). The effects of these
higher-order terms were investigated by moments equations for pulse parameters (Agrawal,
2007), where the variations of pulse parameters (pulse width, chirp, delay, and center angular
frequency) were calculated as functions of propagation distance z. The variation of the center
frequency of the fundamental soliton (N = 1) without a chirp can be approximated as

ω0(z) = − 8TRγ(ω0)P0

15T2
0

z = − 8TR|β(2)0 |
15T4

0
z, (6)

where TR is the first moment of the Raman response function, TR � fR
∫ ∞

0 thR(t)dt = 2.4 fs
for fused silica. This wavelength-variable fundamental soliton pulse emits a phase-matched
dispersive wave, which is the important mechanism for generating supercontinuum,
especially for shorter wavelength components (Husakou & Herrmann, 2001).

In Fig. 1, the model structure of a PCF used in our experiment and the dispersion properties of
the PCFs with different structural parameters calculated by a multipole method (Zolla et al.,
2005) using two rings of air holes surrounding a core are shown. In Fig. 2, the variations
of temporal and spectral pulse intensities are shown as a function of propagation distance z,
where, Eq. 4 is solved numerically for a PCF with the dispersion property shown in Fig. 1
(b) with the pitch 1.07 μm and diameter 0.7 μm (NKT Photonics NL-1.5-590). In calculations,
a Gaussian input pulse, with the full width at half-maximum (FWHM) width Tp = 50 fs, the
peak power P0 = 4 kW, and the center wavelength 800 nm, where the GVD is anomalous,
was used. The fiber material was assumed to be fused silica with nI

2 = 2.48 × 10−20 m2/W,
and Aeff = 1.7671 μm2, which gave the soliton number N=5.03. The propagation loss and the
derivative term in s were neglected in calculations. Also in Fig. 2, the spectrogram created
by the calculation at propagation distances z = 50 mm and z = 100 mm are shown. From
Fig. 2, we can see that three soliton pulses (S1, S2, and S3) are created in this case after about
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z = 25 mm. The center frequency of the most intense fundamental soliton (S1) decreases until
z = 150 mm, where GVD becomes zero. Because of this frequency shift, the group velocity
decreases and the delay time becomes about 1000 fs at z = 100 mm. The pulse width, the
spectral bandwidth, and the peak power of the most intense soliton are 14 to 18 fs, 60 to 65
nm, and 5 to 7 kW, respectively. Thus, this wavelength-variable fundamental soliton pulse has
a shorter pulse width and a higher peak power compared with the inputted pulse. This soliton
pulse emits a dispersive wave (D1) at the short wavelength near 550 nm, where the GVD is
positive and its delay time increases quite rapidly. It is observed that there is a dispersive
wave (D2) near 1400 nm after z = 150 mm. The intensities of other two soliton pulses (S2 and
S3) are much weaker than the first soliton pulse (S1). The shift of the center frequency of the
third soliton (S3) is small since its peak power is small. Also, it has a negative delay time since
its center wavelength is shorter than 800 nm. From the spectrograms (c) and (d), we can see
that three waves marked by S1, S2, and S3 are indeed localized pulses.
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Fig. 1. (a) The structure of a five-ring PCF with a pitch Λ and a diameter d. Gray areas show
air holes. (b) The GVD and the group velocity (vg = 1/β(1)) of the PCF shown in (a)
calculated by a multipole method with various parameters. Blue curves show NKT
Photonics NL-1.5-590 (Λ = 1.07μm, d = 0.7μm), red curves show NKT Photonics NL-1.5-670
(Λ = 1.3μm, d = 1.105μm), and green curves show PSTI-PCF (Λ = 1.57μm, d = 1.31μm).

3. Experiment on soliton properties

3.1 Soliton wavelength versus delay time

In the previous section, it is shown from calculations that an intense fundamental soliton
pulse can be obtained by inputting a femtosecond pulse into a PCF and its center wavelength
changes during propagation. However, in usual experiment, the length of a PCF is fixed and
the center wavelength is controlled by modifying the input pulse parameters. In this section,
the control of the center wavelength by the input pulse power and the delay property of a
soliton are described.

As shown in Eq. 6, the variation of the center angular frequency due to self-frequency shift
of a soliton pulse can be approximated to be proportional to the propagation distance z. This
proportionality constant contains the peak power P0 of the soliton pulse. Thus it is expected
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Fig. 2. The calculated temporal (a) and spectral (b) intensities of an optical pulse inputted in a
PCF (NKT Photonics NL-1.5-590) versus distance. In (c) and (d), spectrograms at z = 50 mm
(c) and z = 100 mm (d) are shown. S1, S2, and S3 show fundamental soliton pulses. D1 and
D2 show the dispersive waves emitted from a soliton S1. The intensities are shown in a
logarithmic scale.

that the amount of the shift is proportional to the power of the input pulse approximately. If
the variation of the center angular frequency is proportional to the distance, the delay time
of the soliton at the output end of a PCF can be estimated as follows. The propagation time
T(ω0o) of a soliton with the angular frequency ω0o at the output end of a PCF with a length L
is given by

T(ω0o) =
∫ L

0
β(1)dz =

1
K

∫ ω0o

ω0i

β(1)dω =
1
K
(β(ω0o)− β(ω0i)), (7)

where ω0i is the center angular frequency at the input end and K is the proportional constant,
which is given by K = (ω0o − ω0i)/L. Thus, we have

T(ω0o) =
β(ω0o)− β(ω0i)

ω0o − ω0i
L. (8)

This equation shows that the delay time of the soliton for various center wavelengths can be
estimated by the propagation constant β(ω) only. We have performed experiment to examine
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z = 25 mm. The center frequency of the most intense fundamental soliton (S1) decreases until
z = 150 mm, where GVD becomes zero. Because of this frequency shift, the group velocity
decreases and the delay time becomes about 1000 fs at z = 100 mm. The pulse width, the
spectral bandwidth, and the peak power of the most intense soliton are 14 to 18 fs, 60 to 65
nm, and 5 to 7 kW, respectively. Thus, this wavelength-variable fundamental soliton pulse has
a shorter pulse width and a higher peak power compared with the inputted pulse. This soliton
pulse emits a dispersive wave (D1) at the short wavelength near 550 nm, where the GVD is
positive and its delay time increases quite rapidly. It is observed that there is a dispersive
wave (D2) near 1400 nm after z = 150 mm. The intensities of other two soliton pulses (S2 and
S3) are much weaker than the first soliton pulse (S1). The shift of the center frequency of the
third soliton (S3) is small since its peak power is small. Also, it has a negative delay time since
its center wavelength is shorter than 800 nm. From the spectrograms (c) and (d), we can see
that three waves marked by S1, S2, and S3 are indeed localized pulses.
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Fig. 1. (a) The structure of a five-ring PCF with a pitch Λ and a diameter d. Gray areas show
air holes. (b) The GVD and the group velocity (vg = 1/β(1)) of the PCF shown in (a)
calculated by a multipole method with various parameters. Blue curves show NKT
Photonics NL-1.5-590 (Λ = 1.07μm, d = 0.7μm), red curves show NKT Photonics NL-1.5-670
(Λ = 1.3μm, d = 1.105μm), and green curves show PSTI-PCF (Λ = 1.57μm, d = 1.31μm).

3. Experiment on soliton properties

3.1 Soliton wavelength versus delay time

In the previous section, it is shown from calculations that an intense fundamental soliton
pulse can be obtained by inputting a femtosecond pulse into a PCF and its center wavelength
changes during propagation. However, in usual experiment, the length of a PCF is fixed and
the center wavelength is controlled by modifying the input pulse parameters. In this section,
the control of the center wavelength by the input pulse power and the delay property of a
soliton are described.

As shown in Eq. 6, the variation of the center angular frequency due to self-frequency shift
of a soliton pulse can be approximated to be proportional to the propagation distance z. This
proportionality constant contains the peak power P0 of the soliton pulse. Thus it is expected

204 Photonic Crystals – Introduction, Applications and Theory Optical Solitons from a Photonic Crystal Fiber and Their Applications 5

S1

S1

S2
S2S3 S3

D1

D1

D2

0                      500                  1000             0.2              0.3             0.4              0.5             0.6  
time (fs)                                                                           frequency (PHz)

1500            1000           750            600             500
wavelength (nm)

0.3

0.2

0.1

0

0.3

0.2

0.1

0

le
ng

th
 (m

)

10

10

10

10

-3

-2

-1

0

le
ng

th
 (m

)

(a) (b)

0                     1000 0                     1000

0.2 0.2

0.4 0.4

0.60.6

time (fs) time (fs)

fr
eq

ue
nc

y 
(P

H
z)

fr
eq

ue
nc

y 
(P

H
z)

S1 S1

D1 D1

S2 S2

S3 S3

(c) (d)

500 500

750750

1500 1500

w
av

el
en

gt
h 

(n
m

)

w
av

el
en

gt
h 

(n
m

)

Fig. 2. The calculated temporal (a) and spectral (b) intensities of an optical pulse inputted in a
PCF (NKT Photonics NL-1.5-590) versus distance. In (c) and (d), spectrograms at z = 50 mm
(c) and z = 100 mm (d) are shown. S1, S2, and S3 show fundamental soliton pulses. D1 and
D2 show the dispersive waves emitted from a soliton S1. The intensities are shown in a
logarithmic scale.

that the amount of the shift is proportional to the power of the input pulse approximately. If
the variation of the center angular frequency is proportional to the distance, the delay time
of the soliton at the output end of a PCF can be estimated as follows. The propagation time
T(ω0o) of a soliton with the angular frequency ω0o at the output end of a PCF with a length L
is given by

T(ω0o) =
∫ L

0
β(1)dz =

1
K

∫ ω0o

ω0i

β(1)dω =
1
K
(β(ω0o)− β(ω0i)), (7)

where ω0i is the center angular frequency at the input end and K is the proportional constant,
which is given by K = (ω0o − ω0i)/L. Thus, we have

T(ω0o) =
β(ω0o)− β(ω0i)

ω0o − ω0i
L. (8)

This equation shows that the delay time of the soliton for various center wavelengths can be
estimated by the propagation constant β(ω) only. We have performed experiment to examine
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Fig. 3. (a) Frequency shift versus input power of soliton pulses for three different PCFs. (b)
Wavelength versus delay time of soliton pulses for three different PCFs. Solid curves show
delay times calculated by Eq. 8.

the dependence of the center wavelength and the delay time on the input power for three
different PCFs, where the dispersion properties are shown in Fig. 1 (b). In experiment, a pulse
from a Ti:sapphire laser oscillator (center wavelength 800 nm, pulse width 50 fs, repetition
rate 78 MHz, and average power 620 mW) was propagated in PCFs, where the average power
was controlled by a variable neutral density filter. In Fig. 3 (a), the frequency shifts of the most
intense soliton pulses versus input pulse power are shown, where the shifts at 875 nm were set
to be 0. As expected, the frequency shifts are almost proportional to the input pulse power for
three different PCFs. In Fig. 3 (b), the delay times of the soliton pulses versus wavelength are
shown and compared with delay times given in Eq. 8, where the delay times at 875 nm were
set to be 0 and ω0i was set to be 2πc/(800 nm). It is seen that the approximate delay times
for the PCFs were estimated correctly. The discrepancies are presumably due to the neglect of
delay times required for the soliton fission near the input ends of the PCFs in Eq. 8.

PCF

LPF
IR Spectrometer

Ti:sapphire laser
800 nm, 78 MHz
50 fs, 620 mW

VND 60× 40×

d

0

33.5

Fig. 4. Experimental setup for the control of a soliton by the chirp of an input pulse. Here,
VND: variable neutral density filter, and LPF: long-wavelength pass filter.
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3.2 Soliton wavelength control by chirp

We have studied the control of the soliton center wavelengths by the chirp of an input pulse
(Karasawa et al., 2007; Tada & Karasawa, 2008). In experiment, the chirp of an input pulse was
changed by varying the position of one of the prisms in a prism pair and the spectrum and
the delay time of an output pulse from the PCF were measured. Experimental setup is shown
in Fig. 4. A pulse from a Ti:sapphire laser oscillator (the center wavelength, the pulse width,
and the repetition rate of the laser were 800 nm, 50 fs, and 78 MHz, respectively) was inputted
into the PCF. A pair of Brewster-cut BK7 prisms was used to compensate for the dispersion
of the objective and to apply the chirp for the PCF. When the insertion length was set to be d
as shown in Fig. 4, the value of the group delay dispersion (GDD) was 4β2d tan 33.5◦ , where
β2 = 44.7 fs2/mm is the GVD of BK7 at 800 nm. The chirp factor C due to this GDD was
given by C = β2d/T2

0 . Due to this chirp, the pulse width was increased by a factor of
√

1 + C2

(Agrawal, 2007) and the peak power P0 of the pulse was reduced by the same factor since
the pulse energy was kept constant. Thus, the electric field envelope of the pulse may be
written as a Gaussian form to be A(T) =

√
P0e−(1+iC)T2/(2T2

0 ), where T0 = 50/1.665 fs and
this functional form was used in the calculations using Eq. 4 later in this subsection.

In the first experiment, PCFs (NKT Photonics NL-1.5-670) with three different lengths (62,
114, and 166 mm) were used. The center wavelength of a fundamental soliton pulse versus
an input pulse power is shown in Fig. 5 (a) and compared with the center wavelength versus
an input pulse chirp shown in Fig. 5 (b). Also, the delay time versus the center wavelength
of a fundamental soliton pulse is shown in Fig. 5 (c). As shown in this figure, the center
wavelength of a fundamental soliton pulse changes quadratically when a fiber length was 62
mm. Similar results are obtained for 114 mm and 166 mm, although some discrepancies are
noted. From Fig. 5 (c), it is seen that for the same PCF length, the delay time is independent
on the control method and its dependence on wavelength is linear. Also it is shown that
the delay time decreases as the fiber length becomes shorter. In the second experiment, a
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Fig. 5. Wavelength versus input power (a), wavelength versus chirp factor (b), and
wavelength verses delay time (c) of soliton pulses for PCFs with different lengths.

166-mm-long PCF (NKT Photonics NL-1.5-670) whose calculated dispersion is shown in Fig.
1 (b) was used, and the results from experiment and calculations were compared. In Fig. 6
(a), experimental spectrum at 40 mW input average power is shown. There are two peaks
at wavelengths near 860 nm and near 1030 nm and these correspond to fundamental soliton
pulses created by the fission of an input pulse. The peak near 450 nm is a dispersive wave
emitted by fundamental soliton pulses. In Fig. 6 (b), calculated spectrum at 5.74 kW input
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the dependence of the center wavelength and the delay time on the input power for three
different PCFs, where the dispersion properties are shown in Fig. 1 (b). In experiment, a pulse
from a Ti:sapphire laser oscillator (center wavelength 800 nm, pulse width 50 fs, repetition
rate 78 MHz, and average power 620 mW) was propagated in PCFs, where the average power
was controlled by a variable neutral density filter. In Fig. 3 (a), the frequency shifts of the most
intense soliton pulses versus input pulse power are shown, where the shifts at 875 nm were set
to be 0. As expected, the frequency shifts are almost proportional to the input pulse power for
three different PCFs. In Fig. 3 (b), the delay times of the soliton pulses versus wavelength are
shown and compared with delay times given in Eq. 8, where the delay times at 875 nm were
set to be 0 and ω0i was set to be 2πc/(800 nm). It is seen that the approximate delay times
for the PCFs were estimated correctly. The discrepancies are presumably due to the neglect of
delay times required for the soliton fission near the input ends of the PCFs in Eq. 8.
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Fig. 4. Experimental setup for the control of a soliton by the chirp of an input pulse. Here,
VND: variable neutral density filter, and LPF: long-wavelength pass filter.
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3.2 Soliton wavelength control by chirp
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the delay time of an output pulse from the PCF were measured. Experimental setup is shown
in Fig. 4. A pulse from a Ti:sapphire laser oscillator (the center wavelength, the pulse width,
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as shown in Fig. 4, the value of the group delay dispersion (GDD) was 4β2d tan 33.5◦ , where
β2 = 44.7 fs2/mm is the GVD of BK7 at 800 nm. The chirp factor C due to this GDD was
given by C = β2d/T2

0 . Due to this chirp, the pulse width was increased by a factor of
√

1 + C2

(Agrawal, 2007) and the peak power P0 of the pulse was reduced by the same factor since
the pulse energy was kept constant. Thus, the electric field envelope of the pulse may be
written as a Gaussian form to be A(T) =

√
P0e−(1+iC)T2/(2T2

0 ), where T0 = 50/1.665 fs and
this functional form was used in the calculations using Eq. 4 later in this subsection.

In the first experiment, PCFs (NKT Photonics NL-1.5-670) with three different lengths (62,
114, and 166 mm) were used. The center wavelength of a fundamental soliton pulse versus
an input pulse power is shown in Fig. 5 (a) and compared with the center wavelength versus
an input pulse chirp shown in Fig. 5 (b). Also, the delay time versus the center wavelength
of a fundamental soliton pulse is shown in Fig. 5 (c). As shown in this figure, the center
wavelength of a fundamental soliton pulse changes quadratically when a fiber length was 62
mm. Similar results are obtained for 114 mm and 166 mm, although some discrepancies are
noted. From Fig. 5 (c), it is seen that for the same PCF length, the delay time is independent
on the control method and its dependence on wavelength is linear. Also it is shown that
the delay time decreases as the fiber length becomes shorter. In the second experiment, a
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166-mm-long PCF (NKT Photonics NL-1.5-670) whose calculated dispersion is shown in Fig.
1 (b) was used, and the results from experiment and calculations were compared. In Fig. 6
(a), experimental spectrum at 40 mW input average power is shown. There are two peaks
at wavelengths near 860 nm and near 1030 nm and these correspond to fundamental soliton
pulses created by the fission of an input pulse. The peak near 450 nm is a dispersive wave
emitted by fundamental soliton pulses. In Fig. 6 (b), calculated spectrum at 5.74 kW input
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peak power, 50 fs pulse width, and C = 0 is shown. The experimental and calculated spectra
agreed very well as shown in this figure. The temporal waveform (Fig. 6 (c)) shows two
fundamental soliton pulses at ∼0.9 ps and at ∼3.6 ps. In Fig. 7, the experimental variation
of the spectral peak positions of fundamental soliton pulses is shown for different prism
position d. As shown in this figure, the peak position of the fundamental soliton pulse at
longest wavelength changed about 70 nm according to d. In Fig. 6, the calculated spectral
and temporal intensities are shown for different chirp C calculated from d in Fig. 4. The pulse
energy in these calculations was set to be 0.287 nJ, which corresponded to 5.74 kW peak power
at C = 0. The calculated spectra showed the almost identical variation of peak positions
compared with experiment. As the absolute value of C was increased, the temporal position
of the most intense fundamental soliton pulse became smaller and the corresponding spectral
peak wavelength became shorter. It means that as the absolute value of C was increased,
the timing of the fission of an input pulse was delayed more and as a result of this, the
fundamental soliton pulses experienced less soliton self-frequency shifts and less delay times
at the output end of the PCF.
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Fig. 6. (a) Experimental spectrum at 40 mW input power. Calculated spectral intensity (b)
and temporal intensity (c) when a pulse with 5.74 kW peak power is inputted into a PCF.

4. Solitons for coherent anti-Stokes Raman scattering spectroscopy

Coherent anti-Stokes Raman scattering (CARS) microscopic spectroscopy is one of the
nonlinear optical spectroscopy that has attracted attention recently (Cheng & Xie, 2004;
Müller & Zumbusch, 2007). In CARS spectroscopy, a pump pulse (angular frequency ωp)
and a Stokes pulse (angular frequency ωs) are used to illuminate a sample to generate an
anti-Stokes signal (angular frequency 2ωp − ωs). This signal is enhanced when the frequency
difference between the pump and the Stokes pulses (ωp − ωs) coincides one of the Raman
active vibration frequencies of the sample. The CARS signal is coherent and its intensity
is much higher than that of a spontaneous Raman signal. Also, CARS signals from a
fluorescent sample can be detected because the frequencies of CARS signals are higher than
the frequencies of fluorescent signals. When CARS signals are detected in a microscope,
the spatial resolution is expected to be high because the CARS signals are generated due to
third-order nonlinear optical processes. The spectral resolution of a CARS signal is usually
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Fig. 7. (a) Experimental spectra for different prism position d. (b) Calculated spectral
intensities at 0.287 nJ input pulse energy. The chirp C calculated from the position d is
indicated.

determined by the spectral bandwidth of a pump pulse and its observable range is determined
by the spectral bandwidth of a Stokes pulse. In multiplex CARS spectroscopy, a broadband
Stokes pulse is used to detect multiple Raman vibration frequencies of a sample. To generate
a broadband optical pulse, a PCF can be used and only a single laser oscillator is required
to observe a broadband CARS signal by the use of a PCF. The use of a PCF to generate
broadband Stokes pulses was reported in 2003 (Paulsen et al., 2003) and since then, the extent
of vibration frequencies has been extended (Kano & Hamaguchi, 2005; Kee & Cicerone, 2004).
However, it is difficult to generate broadband pulses with uniform spectral intensities. Also
the group delays of various spectral components in a broadband pulse differ due to the
dispersion property of a PCF, and thus it is difficult to generate intense broadband CARS
signals. On the other hand, as shown in previous sections, the center wavelength of a soliton
pulse from a PCF can be controlled easily by the power or the chirp of an input pulse, and
the delay times are well known, thus it is very suitable for use in broadband or multiplex
CARS spectroscopy as Stokes pluses. In this section, we show various approaches using
soliton pulses for broadband CARS spectroscopy. Since the typical spectral bandwidth of a
single fundamental soliton from a PCF is about 20 nm, it is necessary to change the center
wavelength for broadband CARS spectroscopy. When the center wavelength is changed, the
delay time changes also, so it is necessary to control the delay time at the same time. We
have controlled these parameters using a pulse shaper (subsection 4.1). The other approach
is to change the center wavelength of a soliton continuously by an acousto-optical modulator
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peak power, 50 fs pulse width, and C = 0 is shown. The experimental and calculated spectra
agreed very well as shown in this figure. The temporal waveform (Fig. 6 (c)) shows two
fundamental soliton pulses at ∼0.9 ps and at ∼3.6 ps. In Fig. 7, the experimental variation
of the spectral peak positions of fundamental soliton pulses is shown for different prism
position d. As shown in this figure, the peak position of the fundamental soliton pulse at
longest wavelength changed about 70 nm according to d. In Fig. 6, the calculated spectral
and temporal intensities are shown for different chirp C calculated from d in Fig. 4. The pulse
energy in these calculations was set to be 0.287 nJ, which corresponded to 5.74 kW peak power
at C = 0. The calculated spectra showed the almost identical variation of peak positions
compared with experiment. As the absolute value of C was increased, the temporal position
of the most intense fundamental soliton pulse became smaller and the corresponding spectral
peak wavelength became shorter. It means that as the absolute value of C was increased,
the timing of the fission of an input pulse was delayed more and as a result of this, the
fundamental soliton pulses experienced less soliton self-frequency shifts and less delay times
at the output end of the PCF.
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4. Solitons for coherent anti-Stokes Raman scattering spectroscopy

Coherent anti-Stokes Raman scattering (CARS) microscopic spectroscopy is one of the
nonlinear optical spectroscopy that has attracted attention recently (Cheng & Xie, 2004;
Müller & Zumbusch, 2007). In CARS spectroscopy, a pump pulse (angular frequency ωp)
and a Stokes pulse (angular frequency ωs) are used to illuminate a sample to generate an
anti-Stokes signal (angular frequency 2ωp − ωs). This signal is enhanced when the frequency
difference between the pump and the Stokes pulses (ωp − ωs) coincides one of the Raman
active vibration frequencies of the sample. The CARS signal is coherent and its intensity
is much higher than that of a spontaneous Raman signal. Also, CARS signals from a
fluorescent sample can be detected because the frequencies of CARS signals are higher than
the frequencies of fluorescent signals. When CARS signals are detected in a microscope,
the spatial resolution is expected to be high because the CARS signals are generated due to
third-order nonlinear optical processes. The spectral resolution of a CARS signal is usually

208 Photonic Crystals – Introduction, Applications and Theory Optical Solitons from a Photonic Crystal Fiber and Their Applications 9

0

0

0

0

0

0

900 1000 1100
0

0

5

0

5

0

5

0

5

0

5

0

5

900 1000 1100
0

5

wavelength (nm)

in
te

ns
ity

 (a
rb

. u
ni

t)

d=4 mm

d=2 mm

d=0 mm

d=-2 mm

d=-4 mm

d=-6 mm

d=-8 mm

wavelength (nm)

C=-0.526

C=-0.263

C=0

C=0.263

C=0.526

C=0.789

C=1.052

(a) (b)

Fig. 7. (a) Experimental spectra for different prism position d. (b) Calculated spectral
intensities at 0.287 nJ input pulse energy. The chirp C calculated from the position d is
indicated.

determined by the spectral bandwidth of a pump pulse and its observable range is determined
by the spectral bandwidth of a Stokes pulse. In multiplex CARS spectroscopy, a broadband
Stokes pulse is used to detect multiple Raman vibration frequencies of a sample. To generate
a broadband optical pulse, a PCF can be used and only a single laser oscillator is required
to observe a broadband CARS signal by the use of a PCF. The use of a PCF to generate
broadband Stokes pulses was reported in 2003 (Paulsen et al., 2003) and since then, the extent
of vibration frequencies has been extended (Kano & Hamaguchi, 2005; Kee & Cicerone, 2004).
However, it is difficult to generate broadband pulses with uniform spectral intensities. Also
the group delays of various spectral components in a broadband pulse differ due to the
dispersion property of a PCF, and thus it is difficult to generate intense broadband CARS
signals. On the other hand, as shown in previous sections, the center wavelength of a soliton
pulse from a PCF can be controlled easily by the power or the chirp of an input pulse, and
the delay times are well known, thus it is very suitable for use in broadband or multiplex
CARS spectroscopy as Stokes pluses. In this section, we show various approaches using
soliton pulses for broadband CARS spectroscopy. Since the typical spectral bandwidth of a
single fundamental soliton from a PCF is about 20 nm, it is necessary to change the center
wavelength for broadband CARS spectroscopy. When the center wavelength is changed, the
delay time changes also, so it is necessary to control the delay time at the same time. We
have controlled these parameters using a pulse shaper (subsection 4.1). The other approach
is to change the center wavelength of a soliton continuously by an acousto-optical modulator
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(AOM) to generate quasi-supercontinuum (quasi-SC) (subsection 4.2). Also, we show results
using soliton pulses for single-beam CARS spectroscopy (subsection 4.3).
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810 nm, 78 MHz
50 fs, 600 mW

z

xy
case (B) only
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Fig. 8. Experimental setup for broadband CARS spectroscopy using a pulse shaper (A) and
an AOM (B). Here, BS: beam splitter, RR: retroreflector, CM: concave mirror, G: grating,
HWP: half-wave plate, NBF: narrow bandpass filter, SPF: short-wavelength pass filter, and
LPF: long-wavelength pass filter.

4.1 Broadband CARS spectroscopy using a pulse shaper

Experimental setup of CARS spectroscopy using a pulse shaper is shown in Fig. 8 (A)
(Tada & Karasawa, 2008; 2009). A pulse from a Ti:sapphire laser oscillator (center wavelength
810 nm, pulse width 50 fs, and repetition rate 78 MHz) was split into two pulses by a beam
splitter and one of the pulse was used as a pump pulse after its spectrum was narrowed
by a band pass filter (center wavelength 808 nm with a 3-nm full width at half maximum
bandwidth). The other pulse was used as a Stokes pulse after it was shaped by a pulse
shaper and was propagated in a 123-mm-long PCF (NKT Photonics NL-1.5-590) to generate
a fundamental soliton pulse. A long-pass filter was used to eliminate the shorter-wavelength
components than soliton’s wavelength. Both pulses were overlapped collinearly and focused
on a sample using an objective (100×, 0.5 numerical aperture). The average input powers
on a sample were about 9 mW for a pump beam and about 4 mW for a Stokes beam. The
signal from the sample was collected by an objective and was detected by a spectrometer
(Solar TII MS-3504) with a CCD detector (Andor DV420-OE) after the spectral components
of both pump and Stokes pulses were removed by the use of short-pass filters. Initially, the
center wavelength of a soliton pulse from a PCF was set to be 1050 nm (which corresponds
to vibration frequency ∼3000 cm−1) by adjusting the power of an input pulse. The center
wavelength of a soliton pulse was shifted to shorter wavelength by applying a phase pattern
by a spatial light modulator (SLM; JenOptik SLM-S320) in a pulse shaper. The pulse shaper
consists of an SLM, two pairs of gratings, concave mirrors, and folding mirrors. In the first
experiment (Tada & Karasawa, 2008), six different phase patterns were used such that the
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Fig. 9. Spectra of soliton pulses obtained by a pulse shaper using quadratic (a), cosine (b),
and pulse train (c) phase patterns. In (c), A–F correspond to soliton pulses generated by
pulses A–F in pulse trains shown in Fig. 10.

spectra of soliton pulses covered the wavelength between 850 and 1050 nm uniformly. Two
different functional forms of phase patterns for varying the center wavelength of a soliton

pulse were tried. One was the quadratic phase pattern of a form (β
(2)
0 /2)(ω − ω0)

2, where

ω0 was the center angular frequency of an input pulse (ω0 = (2πc)/(800 nm)) and β
(2)
0

determined the chirp of an input pulse. The other was the cosine phase pattern of a form
A cos ωT. When the cosine phase pattern was used, the pulse train of an original pulse was
created with a period T and the peak amplitude of the central pulse was determined by the
Bessel function of zero order J0(A) (Morita & Toda, 2005). The period T was set to be 500 fs
in experiment such that the timing of only the central pulse in a pulse train matched with a

pump pulse. In both cases, the phase pattern of a form β
(1)
0 (ω − ω0) was added to control

the delay time of an input pulse with respect to a pump pulse, where β
(1)
0 is a group delay.

Moreover, the phase pattern of a form (β
(2)
00 /2)(ω − ω0)

2 with β
(2)
00 = −200 fs2 was added for

all phase patterns to compensate for the dispersion of an objective lens in front of a PCF. To

adjust the delay time of a soliton pulse with a pump pulse, the group delay (β
(1)
0 ) of an input

pulse was set to be different for a soliton pulse with a different center wavelength. In Fig.
9, the spectra of soliton pulses with six different center wavelengths are shown for both the
quadratic (a) and the cosine (b) phase patterns. As shown in this figure, by using six soliton
pulses with different center wavelengths, the spectral regions between 850 and 1050 nm were
covered almost uniformly. The exposure time to obtain CARS signals was set to be one second
for each soliton pulse with a different wavelength, thus the total exposure time to obtain CARS
signals between 500 and 3100 cm−1 was six seconds. In addition to this, the switching time of
the phase pattern in a SLM was required (about 0.3 second for every switching). In the later
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(AOM) to generate quasi-supercontinuum (quasi-SC) (subsection 4.2). Also, we show results
using soliton pulses for single-beam CARS spectroscopy (subsection 4.3).
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Fig. 8. Experimental setup for broadband CARS spectroscopy using a pulse shaper (A) and
an AOM (B). Here, BS: beam splitter, RR: retroreflector, CM: concave mirror, G: grating,
HWP: half-wave plate, NBF: narrow bandpass filter, SPF: short-wavelength pass filter, and
LPF: long-wavelength pass filter.

4.1 Broadband CARS spectroscopy using a pulse shaper

Experimental setup of CARS spectroscopy using a pulse shaper is shown in Fig. 8 (A)
(Tada & Karasawa, 2008; 2009). A pulse from a Ti:sapphire laser oscillator (center wavelength
810 nm, pulse width 50 fs, and repetition rate 78 MHz) was split into two pulses by a beam
splitter and one of the pulse was used as a pump pulse after its spectrum was narrowed
by a band pass filter (center wavelength 808 nm with a 3-nm full width at half maximum
bandwidth). The other pulse was used as a Stokes pulse after it was shaped by a pulse
shaper and was propagated in a 123-mm-long PCF (NKT Photonics NL-1.5-590) to generate
a fundamental soliton pulse. A long-pass filter was used to eliminate the shorter-wavelength
components than soliton’s wavelength. Both pulses were overlapped collinearly and focused
on a sample using an objective (100×, 0.5 numerical aperture). The average input powers
on a sample were about 9 mW for a pump beam and about 4 mW for a Stokes beam. The
signal from the sample was collected by an objective and was detected by a spectrometer
(Solar TII MS-3504) with a CCD detector (Andor DV420-OE) after the spectral components
of both pump and Stokes pulses were removed by the use of short-pass filters. Initially, the
center wavelength of a soliton pulse from a PCF was set to be 1050 nm (which corresponds
to vibration frequency ∼3000 cm−1) by adjusting the power of an input pulse. The center
wavelength of a soliton pulse was shifted to shorter wavelength by applying a phase pattern
by a spatial light modulator (SLM; JenOptik SLM-S320) in a pulse shaper. The pulse shaper
consists of an SLM, two pairs of gratings, concave mirrors, and folding mirrors. In the first
experiment (Tada & Karasawa, 2008), six different phase patterns were used such that the
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spectra of soliton pulses covered the wavelength between 850 and 1050 nm uniformly. Two
different functional forms of phase patterns for varying the center wavelength of a soliton

pulse were tried. One was the quadratic phase pattern of a form (β
(2)
0 /2)(ω − ω0)

2, where

ω0 was the center angular frequency of an input pulse (ω0 = (2πc)/(800 nm)) and β
(2)
0

determined the chirp of an input pulse. The other was the cosine phase pattern of a form
A cos ωT. When the cosine phase pattern was used, the pulse train of an original pulse was
created with a period T and the peak amplitude of the central pulse was determined by the
Bessel function of zero order J0(A) (Morita & Toda, 2005). The period T was set to be 500 fs
in experiment such that the timing of only the central pulse in a pulse train matched with a

pump pulse. In both cases, the phase pattern of a form β
(1)
0 (ω − ω0) was added to control

the delay time of an input pulse with respect to a pump pulse, where β
(1)
0 is a group delay.

Moreover, the phase pattern of a form (β
(2)
00 /2)(ω − ω0)

2 with β
(2)
00 = −200 fs2 was added for

all phase patterns to compensate for the dispersion of an objective lens in front of a PCF. To

adjust the delay time of a soliton pulse with a pump pulse, the group delay (β
(1)
0 ) of an input

pulse was set to be different for a soliton pulse with a different center wavelength. In Fig.
9, the spectra of soliton pulses with six different center wavelengths are shown for both the
quadratic (a) and the cosine (b) phase patterns. As shown in this figure, by using six soliton
pulses with different center wavelengths, the spectral regions between 850 and 1050 nm were
covered almost uniformly. The exposure time to obtain CARS signals was set to be one second
for each soliton pulse with a different wavelength, thus the total exposure time to obtain CARS
signals between 500 and 3100 cm−1 was six seconds. In addition to this, the switching time of
the phase pattern in a SLM was required (about 0.3 second for every switching). In the later
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Fig. 10. Target pulse waveforms ((a) and (b)) for generating pulse train phase patterns and
the optimized waveforms ((c) and (d)).

experiment (Tada & Karasawa, 2009), pulse trains were created to generate multiple solitons
with different center wavelengths by a single phase pattern. Here, we prepared two different
phase patterns for the SLM to generate the five fundamental soliton pulses. We adjusted the
power ratios of pulses in a pulse train for varying the wavelengths of soliton pulses. Also, we
adjusted the temporal delays of pulses in a pulse train such that all fundamental pulses arrived
the sample at the same time. In Fig. 10, the two target pulse waveforms used in experiment
for generating fundamental soliton pulses are shown. In a target pulse train 1 (Fig. 10 (a)),
there were three pulses A (power ratio 1, delay time 0 fs), B (power ratio 0.7, delay time 500 fs),
and C (power ratio 0.3, delay time 750 fs) for generating soliton pulses. In a target pulse train
2 (Fig. 10 (b)), there were two pulses D (power ratio 1.0, delay time 300 fs) and E (power ratio
0.6, delay time 600 fs). The pulse F (power ratio 0.55, delay -200 fs) was added in the pulse train
for adjusting the total power of the pulse train 2 with respect to the pulse train 1. Since this
pulse was not used in CARS spectroscopy, its delay time was shifted intentionally such that it
did not arrive the sample at the same time with other pulses. All pulses in pulse trains were
assumed to be Gaussian pulses with the full width at half maximum pulse widths to be 50
fs. The phase patterns for the SLM to generate these target pulses were created using genetic
algorithms (Goldberg, 1989), where each phase pattern was optimized such that the difference
between the shaped pulse obtained numerically and the target pulse became minimum. Here,
the shaped pulse was calculated numerically by the inverse Fourier transform of the input
pulse spectrum after its phase was modified according to the phase pattern, where the input
pulse was assumed to be a 50-fs Gaussian pulse. The pulse waveforms obtained numerically
after their phase patterns were optimized by the genetic algorithms are shown in Fig. 10 (c)
and (d). As shown in Fig. 10, these numerically-obtained pulses using the optimized phase
patterns agreed well with target pulses. The spectra of soliton pulses after these pulse trains
were propagated in a PCF are shown in Fig. 9 (c). In this figure, two measured spectra with
different phase patterns are shown and spectral peaks A–F corresponded to soliton pulses
generated by pulses A–F in Fig. 10. As shown in this figure, the wavelength range between
860 and 1070 nm was covered by five fundamental soliton pulses. As mentioned above, the
spectral peak F did not affect CARS measurements since its temporal timing was shifted. By
switching these two phase patterns in the SLM, it was possible to measure broadband CARS
signals automatically. The exposure time for each phase pattern was set to be 1 s and the
additional time 0.4 s was required for switching the phase pattern in the SLM. Thus, the total
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measurement time was 2.4 s. The results of CARS spectroscopy of a polystyrene (PS) sample
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Fig. 11. Spontaneous Raman spectrum (a) and CARS spectra using a pulse shaper with a
quadratic (b), cosine (c), and pulse train (d) phase patterns of a 6-μm diameter polystyrene
bead sample. In (b)–(d), peak positions of spontaneous Raman spectrum are shown by
dashed lines.

are shown and compared with the result of spontaneous Raman spectroscopy in Fig. 11. In
this figure, the CARS signal from a sample was normalized by the signal from a glass substrate
to show the resonant contribution of CARS signal clearly (Kee & Cicerone, 2004). All results
using a pulse shaper (quadratic, cosine, and pulse train phase patterns) agreed well and the
Raman peaks observed by spontaneous Raman spectroscopy were observed clearly in CARS
signals between 500 and 3100 cm−1. The spectral widths of Raman peaks were determined
by the spectral width of a pump pulse and in our setup, the spectral resolution was about 50
cm−1. The exposure time for the method using phase patterns for pulse trains was 2.4 s and
is less than half compared with the methods using phase patterns for single soliton pulses.
It was because the effective bandwidth of the Stokes pulse was multiplied by a number of
pulses in a pulse train. Here, we have limited the number of pulses in a pulse train to be three
due to the constraint of the available power from a laser, but it is straightforward to increase
the number if enough power is available. It is demonstrated that the broadband fundamental
soliton pulses can be generated by a pulse shaper and are very useful for CARS spectroscopy.
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experiment (Tada & Karasawa, 2009), pulse trains were created to generate multiple solitons
with different center wavelengths by a single phase pattern. Here, we prepared two different
phase patterns for the SLM to generate the five fundamental soliton pulses. We adjusted the
power ratios of pulses in a pulse train for varying the wavelengths of soliton pulses. Also, we
adjusted the temporal delays of pulses in a pulse train such that all fundamental pulses arrived
the sample at the same time. In Fig. 10, the two target pulse waveforms used in experiment
for generating fundamental soliton pulses are shown. In a target pulse train 1 (Fig. 10 (a)),
there were three pulses A (power ratio 1, delay time 0 fs), B (power ratio 0.7, delay time 500 fs),
and C (power ratio 0.3, delay time 750 fs) for generating soliton pulses. In a target pulse train
2 (Fig. 10 (b)), there were two pulses D (power ratio 1.0, delay time 300 fs) and E (power ratio
0.6, delay time 600 fs). The pulse F (power ratio 0.55, delay -200 fs) was added in the pulse train
for adjusting the total power of the pulse train 2 with respect to the pulse train 1. Since this
pulse was not used in CARS spectroscopy, its delay time was shifted intentionally such that it
did not arrive the sample at the same time with other pulses. All pulses in pulse trains were
assumed to be Gaussian pulses with the full width at half maximum pulse widths to be 50
fs. The phase patterns for the SLM to generate these target pulses were created using genetic
algorithms (Goldberg, 1989), where each phase pattern was optimized such that the difference
between the shaped pulse obtained numerically and the target pulse became minimum. Here,
the shaped pulse was calculated numerically by the inverse Fourier transform of the input
pulse spectrum after its phase was modified according to the phase pattern, where the input
pulse was assumed to be a 50-fs Gaussian pulse. The pulse waveforms obtained numerically
after their phase patterns were optimized by the genetic algorithms are shown in Fig. 10 (c)
and (d). As shown in Fig. 10, these numerically-obtained pulses using the optimized phase
patterns agreed well with target pulses. The spectra of soliton pulses after these pulse trains
were propagated in a PCF are shown in Fig. 9 (c). In this figure, two measured spectra with
different phase patterns are shown and spectral peaks A–F corresponded to soliton pulses
generated by pulses A–F in Fig. 10. As shown in this figure, the wavelength range between
860 and 1070 nm was covered by five fundamental soliton pulses. As mentioned above, the
spectral peak F did not affect CARS measurements since its temporal timing was shifted. By
switching these two phase patterns in the SLM, it was possible to measure broadband CARS
signals automatically. The exposure time for each phase pattern was set to be 1 s and the
additional time 0.4 s was required for switching the phase pattern in the SLM. Thus, the total
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Fig. 11. Spontaneous Raman spectrum (a) and CARS spectra using a pulse shaper with a
quadratic (b), cosine (c), and pulse train (d) phase patterns of a 6-μm diameter polystyrene
bead sample. In (b)–(d), peak positions of spontaneous Raman spectrum are shown by
dashed lines.

are shown and compared with the result of spontaneous Raman spectroscopy in Fig. 11. In
this figure, the CARS signal from a sample was normalized by the signal from a glass substrate
to show the resonant contribution of CARS signal clearly (Kee & Cicerone, 2004). All results
using a pulse shaper (quadratic, cosine, and pulse train phase patterns) agreed well and the
Raman peaks observed by spontaneous Raman spectroscopy were observed clearly in CARS
signals between 500 and 3100 cm−1. The spectral widths of Raman peaks were determined
by the spectral width of a pump pulse and in our setup, the spectral resolution was about 50
cm−1. The exposure time for the method using phase patterns for pulse trains was 2.4 s and
is less than half compared with the methods using phase patterns for single soliton pulses.
It was because the effective bandwidth of the Stokes pulse was multiplied by a number of
pulses in a pulse train. Here, we have limited the number of pulses in a pulse train to be three
due to the constraint of the available power from a laser, but it is straightforward to increase
the number if enough power is available. It is demonstrated that the broadband fundamental
soliton pulses can be generated by a pulse shaper and are very useful for CARS spectroscopy.
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4.2 Quasi-supercontinuum broadband CARS spectroscopy using an acousto-optical
modulator

Since the center wavelength of a soliton pulse can be changed by varying the input pulse
power of a PCF, it is possible to generate pulse trains whose center wavelengths change
continuously by modulating the input power rapidly. In this way, quasi-supercontinuum
(quasi-SC) in the wavelength range from 1.56 to 1.9 μm was generated using soliton
pulses from a highly nonlinear fiber by scanning the input power by an acousto-optical
modulator (AOM) and its application to optical coherence tomography (OCT) was mentioned
(Sumimura et al., 2008). In OCT, the adjustment of the group delays between different
spectral components is not necessary since the shape of the interference signal depends on
the spectrum of the light source only. On the other hand, the adjustment is very important
in CARS spectroscopy to obtain strong broadband CARS signals. In this study, we have
generated quasi-SC in the wavelength range from 0.85 to 1.1 μm using a PCF and applied
to CARS spectroscopy, where the power modulation was performed by an AOM and the
group delay adjustment was performed by simply placing a pair of prisms after the PCF,
since the group delay of the soliton pulses depended on wavelength approximately linearly
as mentioned in Chapter 3.

Experimental setup for quasi-SC CARS spectroscopy s shown in Fig. 8 (B) (Tada & Karasawa,
2010). A pulse from a Ti:sapphire laser oscillator (center wavelength 810 nm, pulse width 50
fs, and repetition rate 78 MHz) was split into two pulses by a beam splitter and one of the
pulse was used as a pump pulse after its spectrum was narrowed by a band pass filter (center
wavelength 808 nm with a 3-nm full width at half maximum bandwidth). The other pulse was
used as a Stokes pulse after its power was modulated by an AOM (ISOMET M1137-SF-40L-1.5)
and was propagated in a 120-mm-long PCF (NKT Photonics NL-1.5-590) to generate quasi-SC,
where a pair of SFL11 equilateral prisms was used to compensate for the dispersion of the
AOM. For the modulation of the AOM, a 100-kHz sinusoidal wave was used. A long-pass
filter (cut-off wavelength 840 nm) was used to eliminate the shorter-wavelength components
than the wavelengths of solitons. A pair of SFL11 right angle prisms was used to adjust the
group delays of soliton pulses with different center wavelengths.

Both pump and Stokes pulses were overlapped collinearly and focused on a single
6-μm-diameter polystyrene bead sample using an objective (100×, 0.9 numerical aperture).
The CARS signal from the sample was collected by an objective and was detected by a
spectrometer (Solar TII MS-3504) with a CCD detector (Andor DV420-OE) after the spectral
components of both pump and Stokes pulses were removed by the use of short-pass filters
(cutoff wavelengths 785 and 850 nm). The exposure time for taking a CARS spectrum was
two second. In Fig. 12 (a), the spectrum of generated quasi-SC when an AOM was modulated
by a 100-kHz sinusoidal wave is shown. As shown in this figure, broadband quasi-SC, which
had a sufficient spectral intensity for the CARS spectroscopy in the wavelength range from
850 to 1100 nm, was generated, which corresponded to CARS wave number between 500
and 3100 cm−1. In Fig. 12 (b), the normalized CARS spectrum of a single 6-μm-diameter
polystyrene bead sample using quasi-SC are shown and it is compared with the known
spontaneous Raman peaks. As shown in this figure, most spectral peaks of the polystyrene
sample were observed clearly between 900 and 3100 cm−1. The exposure time of 2 s was
shorter than the exposure time in the previous subsection (2.4 s) using the same spectrometer
for the measurement with the similar signal to noise ratio. It is demonstrated that the quasi-SC
is very useful for broadband CARS spectroscopy.
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Fig. 12. (a) The spectrum of quasi-SC. (b) The normalized CARS spectrum using quasi-SC of
a 6-μm diameter polystyrene bead sample. Peak positions of spontaneous Raman spectrum
are shown by dashed lines.

4.3 Single-beam CARS spectroscopy

As shown in previous subsections, two separate beams, a pump beam and a Stokes beam,
have to be collinearly overlapped and focused on a sample using an objective lens in CARS
spectroscopy in general. However, the adjustments of these two beams, necessary to generate
strong CARS signals, are sometimes difficult. Therefore, it is desirable to perform CARS
spectroscopy using a single beam. It is necessary to generate a single beam that contains
both pump and Stokes spectral components to perform single-beam CARS spectroscopy. In

PCF LPF Sample SPF SpectrometerNF

Pulse shaper

G G

SLMCM CM

Ti:sapphire
oscillator

Lens

Fig. 13. Experimental setup for single-beam CARS spectroscopy. Here, NF: notch filter, LPF:
long-wavelength pass filter, SPF: short-wavelength pass filter, G: grating, and CM: concave
mirror.

our setup (Tada & Karasawa, 2011), two pulses, one for generating a wavelength-tunable
fundamental soliton pulse and the other for generating a narrowband pump pulse, are shaped
by a pulse shaper and inputted into a PCF. The fundamental soliton Stokes pulse is generated
by redshifting the input pulse spectrum through the soliton self-frequency shift in a PCF
and the amount of this shift is controlled by the power of an input pulse. The pulse for a
pump pulse is negatively chirped by a pulse shaper for the spectral compression in a PCF
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4.2 Quasi-supercontinuum broadband CARS spectroscopy using an acousto-optical
modulator

Since the center wavelength of a soliton pulse can be changed by varying the input pulse
power of a PCF, it is possible to generate pulse trains whose center wavelengths change
continuously by modulating the input power rapidly. In this way, quasi-supercontinuum
(quasi-SC) in the wavelength range from 1.56 to 1.9 μm was generated using soliton
pulses from a highly nonlinear fiber by scanning the input power by an acousto-optical
modulator (AOM) and its application to optical coherence tomography (OCT) was mentioned
(Sumimura et al., 2008). In OCT, the adjustment of the group delays between different
spectral components is not necessary since the shape of the interference signal depends on
the spectrum of the light source only. On the other hand, the adjustment is very important
in CARS spectroscopy to obtain strong broadband CARS signals. In this study, we have
generated quasi-SC in the wavelength range from 0.85 to 1.1 μm using a PCF and applied
to CARS spectroscopy, where the power modulation was performed by an AOM and the
group delay adjustment was performed by simply placing a pair of prisms after the PCF,
since the group delay of the soliton pulses depended on wavelength approximately linearly
as mentioned in Chapter 3.

Experimental setup for quasi-SC CARS spectroscopy s shown in Fig. 8 (B) (Tada & Karasawa,
2010). A pulse from a Ti:sapphire laser oscillator (center wavelength 810 nm, pulse width 50
fs, and repetition rate 78 MHz) was split into two pulses by a beam splitter and one of the
pulse was used as a pump pulse after its spectrum was narrowed by a band pass filter (center
wavelength 808 nm with a 3-nm full width at half maximum bandwidth). The other pulse was
used as a Stokes pulse after its power was modulated by an AOM (ISOMET M1137-SF-40L-1.5)
and was propagated in a 120-mm-long PCF (NKT Photonics NL-1.5-590) to generate quasi-SC,
where a pair of SFL11 equilateral prisms was used to compensate for the dispersion of the
AOM. For the modulation of the AOM, a 100-kHz sinusoidal wave was used. A long-pass
filter (cut-off wavelength 840 nm) was used to eliminate the shorter-wavelength components
than the wavelengths of solitons. A pair of SFL11 right angle prisms was used to adjust the
group delays of soliton pulses with different center wavelengths.

Both pump and Stokes pulses were overlapped collinearly and focused on a single
6-μm-diameter polystyrene bead sample using an objective (100×, 0.9 numerical aperture).
The CARS signal from the sample was collected by an objective and was detected by a
spectrometer (Solar TII MS-3504) with a CCD detector (Andor DV420-OE) after the spectral
components of both pump and Stokes pulses were removed by the use of short-pass filters
(cutoff wavelengths 785 and 850 nm). The exposure time for taking a CARS spectrum was
two second. In Fig. 12 (a), the spectrum of generated quasi-SC when an AOM was modulated
by a 100-kHz sinusoidal wave is shown. As shown in this figure, broadband quasi-SC, which
had a sufficient spectral intensity for the CARS spectroscopy in the wavelength range from
850 to 1100 nm, was generated, which corresponded to CARS wave number between 500
and 3100 cm−1. In Fig. 12 (b), the normalized CARS spectrum of a single 6-μm-diameter
polystyrene bead sample using quasi-SC are shown and it is compared with the known
spontaneous Raman peaks. As shown in this figure, most spectral peaks of the polystyrene
sample were observed clearly between 900 and 3100 cm−1. The exposure time of 2 s was
shorter than the exposure time in the previous subsection (2.4 s) using the same spectrometer
for the measurement with the similar signal to noise ratio. It is demonstrated that the quasi-SC
is very useful for broadband CARS spectroscopy.
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Fig. 12. (a) The spectrum of quasi-SC. (b) The normalized CARS spectrum using quasi-SC of
a 6-μm diameter polystyrene bead sample. Peak positions of spontaneous Raman spectrum
are shown by dashed lines.

4.3 Single-beam CARS spectroscopy

As shown in previous subsections, two separate beams, a pump beam and a Stokes beam,
have to be collinearly overlapped and focused on a sample using an objective lens in CARS
spectroscopy in general. However, the adjustments of these two beams, necessary to generate
strong CARS signals, are sometimes difficult. Therefore, it is desirable to perform CARS
spectroscopy using a single beam. It is necessary to generate a single beam that contains
both pump and Stokes spectral components to perform single-beam CARS spectroscopy. In
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Fig. 13. Experimental setup for single-beam CARS spectroscopy. Here, NF: notch filter, LPF:
long-wavelength pass filter, SPF: short-wavelength pass filter, G: grating, and CM: concave
mirror.

our setup (Tada & Karasawa, 2011), two pulses, one for generating a wavelength-tunable
fundamental soliton pulse and the other for generating a narrowband pump pulse, are shaped
by a pulse shaper and inputted into a PCF. The fundamental soliton Stokes pulse is generated
by redshifting the input pulse spectrum through the soliton self-frequency shift in a PCF
and the amount of this shift is controlled by the power of an input pulse. The pulse for a
pump pulse is negatively chirped by a pulse shaper for the spectral compression in a PCF
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(Andresen et al., 2005), which is important for obtaining a narrowband pump pulse to achieve
a high spectral resolution while retaining most of the pulse energy.

The experimental setup of single-beam CARS spectroscopy is shown in Fig. 13. Two pulses
with different intensities were shaped from a single pulse from a Ti:sapphire laser oscillator
(the center wavelength 797 nm, the pulse width 50 fs, the average power 570 mW, and the
repetition rate 78 MHz) and propagated in a 119-mm-long and 1.5-μm-core-diameter PCF
(NKT Photonics NL-1.5-590). An input pulse with a negative chirp was compressed spectrally
due to the self-phase modulation until it became almost transform-limited. The amount
of chirp, the input power, and the fiber length were adjusted to obtain an optimal spectral
compression. In Fig. 14, the target pulse waveforms used in the experiment for generating
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Fig. 14. (a) The intensity and the phase of a target pulse for single-beam CARS spectroscopy,
where pulse A is for generating a soliton pulse and pulse B is for generating a narrowband
pump pulse. (b) The intensity and the phase of an optimized pulse.

two pulses are shown by black curves. In a target pulse, there were two pulses, namely, pulse
A (power ratio 1 and delay time 0 fs) for generating a Stokes soliton pulse and pulse B (power
ratio 0.3 and delay time 500 fs). Pulse B was negatively chirped for spectral compression to
generate a narrowband pump pulse (chirp factor -3). The phase pattern for generating these
pulses were optimized by the genetic algorithms (Goldberg, 1989). By adjusting the relative
delay time between these two input pulses for a PCF, it was possible to generate a single beam
that contained timing-matched pump and Stokes pulses at the sample position. To determine
the delay time between two pulses, a β-BaB2O4 (BBO) crystal was set at the sample position
and the sum-frequency signals of the pump and Stokes pulses were measured. Long-pass
filters (cutoff wavelengths 793 and 590 nm) and a notch filter (center wavelength 825 nm and
bandwidth 40 nm) were used to limit the bandwidth of the spectrally compressed pump pulse
and remove the wavelengths shorter than the pump pulse. CARS signals were generated
by the output beam from a PCF, where the beam was tightly focused on a sample by an
objective lens (100× and 0.9 numerical aperture). The generated CARS signals from the
sample were collected by a microscope objective lens (100× and 0.7 numerical aperture),
where the spectral components at the pump and longer wavelengths were removed by the
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Fig. 15. In (a), the spectra from laser and a narrowband pump pulse are shown. In (b), the
spectrum of a soliton pulse is shown. In (c), the CARS signal of a 6-μm-diameter polystyrene
bead sample is shown, where known Raman peak positions are shown by dashed lines.

combination of short-pass filters (cutoff wavelengths 785 and 850 nm). The CARS signals
from the sample were detected by a spectrometer (Solar TII MS-3504) with a CCD detector
without an intensifier (Andor DV420-OE). The exposure time for taking a CARS spectrum
was 5 s.

Figure 15 (a) and (b) show the spectra of the output beam from a PCF after notch and long-pass
filters when a pulse with about 88 mW average power was inputted into the PCF. In Fig. 15
(a), a black curve shows the spectrum of a laser pulse with a full width at half maximum
(FWHM) of about 32 nm. A red curve shows the spectrum of a pump pulse after the PCF
and the combinations of filters with a width of about 3.5 nm, which was about 11% of the
original bandwidth. The spectral resolution using this pump pulse was about 55 cm−1. A
Stokes pulse shown in Fig. 15 (b) was generated from a PCF as a fundamental soliton pulse
at the center wavelength 1052 nm, which was tuned to match the Raman shift of about 3000
cm−1. When the input average power for the PCF was 88 mW, the output average power
was 26 mW and the average powers of the beam after a long-pass filter for pump and Stokes
components were 2 and 3 mW, respectively. Figure 15 (c) shows the CARS signals generated
from a single 6-μm-diameter polystyrene bead. As shown in this figure, the CARS signals of
the polystyrene were observed from 2800 to 3100 cm−1 that corresponded to well-known C-H
stretching vibration modes (the Raman shifts for symmetric aliphatic 2852 cm−1, asymmetric
aliphatic 2905 cm−1, and aromatic 3054 cm−1 are shown in Fig. 15 (c) by vertical lines).

It is demonstrated that CARS spectroscopy can be performed using a single-beam setup with
a pulse shaper and a fundamental soliton pulse from a PCF. Unlike previous single-beam
CARS setups using a pulse shaper, this setup can be used to observe CARS signals from 2800
to 3100 cm−1. The spectral resolution of the setup was determined by the bandwidth of the
combinations of notch and bandpass filters. Since the wavelength of the soliton Stokes pulse
can be varied by adjusting the input power, it is straightforward to perform broadband CARS
measurements using this setup.
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(Andresen et al., 2005), which is important for obtaining a narrowband pump pulse to achieve
a high spectral resolution while retaining most of the pulse energy.

The experimental setup of single-beam CARS spectroscopy is shown in Fig. 13. Two pulses
with different intensities were shaped from a single pulse from a Ti:sapphire laser oscillator
(the center wavelength 797 nm, the pulse width 50 fs, the average power 570 mW, and the
repetition rate 78 MHz) and propagated in a 119-mm-long and 1.5-μm-core-diameter PCF
(NKT Photonics NL-1.5-590). An input pulse with a negative chirp was compressed spectrally
due to the self-phase modulation until it became almost transform-limited. The amount
of chirp, the input power, and the fiber length were adjusted to obtain an optimal spectral
compression. In Fig. 14, the target pulse waveforms used in the experiment for generating
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Fig. 14. (a) The intensity and the phase of a target pulse for single-beam CARS spectroscopy,
where pulse A is for generating a soliton pulse and pulse B is for generating a narrowband
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two pulses are shown by black curves. In a target pulse, there were two pulses, namely, pulse
A (power ratio 1 and delay time 0 fs) for generating a Stokes soliton pulse and pulse B (power
ratio 0.3 and delay time 500 fs). Pulse B was negatively chirped for spectral compression to
generate a narrowband pump pulse (chirp factor -3). The phase pattern for generating these
pulses were optimized by the genetic algorithms (Goldberg, 1989). By adjusting the relative
delay time between these two input pulses for a PCF, it was possible to generate a single beam
that contained timing-matched pump and Stokes pulses at the sample position. To determine
the delay time between two pulses, a β-BaB2O4 (BBO) crystal was set at the sample position
and the sum-frequency signals of the pump and Stokes pulses were measured. Long-pass
filters (cutoff wavelengths 793 and 590 nm) and a notch filter (center wavelength 825 nm and
bandwidth 40 nm) were used to limit the bandwidth of the spectrally compressed pump pulse
and remove the wavelengths shorter than the pump pulse. CARS signals were generated
by the output beam from a PCF, where the beam was tightly focused on a sample by an
objective lens (100× and 0.9 numerical aperture). The generated CARS signals from the
sample were collected by a microscope objective lens (100× and 0.7 numerical aperture),
where the spectral components at the pump and longer wavelengths were removed by the
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Fig. 15. In (a), the spectra from laser and a narrowband pump pulse are shown. In (b), the
spectrum of a soliton pulse is shown. In (c), the CARS signal of a 6-μm-diameter polystyrene
bead sample is shown, where known Raman peak positions are shown by dashed lines.

combination of short-pass filters (cutoff wavelengths 785 and 850 nm). The CARS signals
from the sample were detected by a spectrometer (Solar TII MS-3504) with a CCD detector
without an intensifier (Andor DV420-OE). The exposure time for taking a CARS spectrum
was 5 s.

Figure 15 (a) and (b) show the spectra of the output beam from a PCF after notch and long-pass
filters when a pulse with about 88 mW average power was inputted into the PCF. In Fig. 15
(a), a black curve shows the spectrum of a laser pulse with a full width at half maximum
(FWHM) of about 32 nm. A red curve shows the spectrum of a pump pulse after the PCF
and the combinations of filters with a width of about 3.5 nm, which was about 11% of the
original bandwidth. The spectral resolution using this pump pulse was about 55 cm−1. A
Stokes pulse shown in Fig. 15 (b) was generated from a PCF as a fundamental soliton pulse
at the center wavelength 1052 nm, which was tuned to match the Raman shift of about 3000
cm−1. When the input average power for the PCF was 88 mW, the output average power
was 26 mW and the average powers of the beam after a long-pass filter for pump and Stokes
components were 2 and 3 mW, respectively. Figure 15 (c) shows the CARS signals generated
from a single 6-μm-diameter polystyrene bead. As shown in this figure, the CARS signals of
the polystyrene were observed from 2800 to 3100 cm−1 that corresponded to well-known C-H
stretching vibration modes (the Raman shifts for symmetric aliphatic 2852 cm−1, asymmetric
aliphatic 2905 cm−1, and aromatic 3054 cm−1 are shown in Fig. 15 (c) by vertical lines).

It is demonstrated that CARS spectroscopy can be performed using a single-beam setup with
a pulse shaper and a fundamental soliton pulse from a PCF. Unlike previous single-beam
CARS setups using a pulse shaper, this setup can be used to observe CARS signals from 2800
to 3100 cm−1. The spectral resolution of the setup was determined by the bandwidth of the
combinations of notch and bandpass filters. Since the wavelength of the soliton Stokes pulse
can be varied by adjusting the input power, it is straightforward to perform broadband CARS
measurements using this setup.
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5. Solitons for optical coherence tomography

Optical coherence tomography (OCT) is a technique that images the internal structure of
biological or medical samples noninvasively and nondestructively by using a low-coherent
light source and a Michelson interferometer. OCT was developed in the early 1990s
(Huang et al., 1991). The depth resolution of the OCT is determined by the spectral width
of the light source. Thus it is important to broaden the spectral width of the light source for
improving the resolution of OCT. Also it is important to make the spectral shape of the light
source simple, e.g. the Gaussian shape, since in that case, the side pulses of an interference
signal, which become noises in an OCT image, become small. The depth resolution of the
OCT is determined by the coherence length lc, which is the FWHM width of the interference
signal and it is given by lc = aλ2

0/Δλ for the intensity spectrum with the center wavelength
λ0 and the FWHM bandwidth Δλ. a is a constant and a = 0.44 for a Gaussian spectrum
and a = 0.39 for a sech2 spectrum. Supercontinuum from a PCF was used to improve the
resolution of OCT (Hartl et al., 2001). However, since there are many peaks in the spectrum
of the supercontinuum light from a PCF, there are many side pulses in the interference signal
and these become noises in an OCT image. As shown in previous sections, the fundamental
soliton pulses from a PCF ranges in a wavelength region between 0.85 μm and 1.05 μm when
a Ti:sapphire laser is propagated and the spectral shapes of them are simple. Also, since the
penetration depth of 1.0-1.3 μm light is maximum and the attenuation due to absorption and
scattering is minimum in biological samples (Lim et al., 2005), it is beneficial to use a light
source in this wavelength region. The center wavelength of the fundamental soliton pulse
shifts to longer wavelength as it propagates in a PCF and it can be controlled by changing
the power of an input pulse. When the power of an input pulse is changed continuously, the
wavelength of a soliton pulse changes continuously and the soliton pulse can be used as a
quasi-supercontinuum (quasi-SC) light source and its use in OCT as a light source has been
studied (Sumimura et al., 2008) in wavelength ∼1.5 μm. Here, we show results using a pulse
train generated by a pulse shaper and quasi-SC in the wavelength range between 900 and 1000
nm generated by an AOM.

5.1 Pulse train OCT using a pulse shaper

The experimental setup is shown in Fig. 16 (A) (Takabatake et al., 2010). The pulse emitted
from a Ti:sapphire laser (pulse width 50 fs, center wavelength 810 nm, repetition rate 78 MHz,
average power 600 mW) was transformed into a pulse train with three pulses by a pulse
shaper, where the interval times and the peak power ratios between pulses were controlled
as in CARS experiment (subsection 4.1). These parameters were optimized to obtain the best
interference signal in OCT. The pulse train was propagated in a 45 cm PCF (NKT Photonics
NL-1.5-670) and the pulse train which had overlapped spectra of each fundamental soliton
pulse was generated. The input power of a PCF was adjusted to be 123 mW and the power
of a single soliton pulse generated was 3 mW. The polarization direction of the input pulse
train was optimized by a half wavelength plate to maximize the output power from the PCF.
Also, a polarization plate was used to select the polarization direction of an output beam
from the PCF. A long-pass filter with 840-nm cut-off wavelength was used to transmit only
soliton pulses. The spectrum of a soliton pulse train was measured by a spectrometer and
an interference signal was measured by a Michelson interferometer with a balanced photo
detector. In the experiment, a mirror was placed at a sample position to obtain an interference
signal and to evaluate its width. The position of a reference mirror was varied by a piezo stage
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Fig. 17. Pulse waveforms for generating a pulse train of three soliton pulses obtained after
optimized by a genetic algorithm.

and the modulation frequency of the delay was set to be 0.5 Hz. In experiment using a pulse
shaper, a pulse train of three pulses was created, where the interval times and the power ratios
of three pulses were set to be 500 fs and 400 fs, and 1.0:1.25:1.33 respectively after optimization.
Since the soliton created by a pulse with a larger peak power delayed more in a fiber, it was
necessary to input a pulse with a larger peak power later into a fiber to avoid overlapping
with other soliton pulses. The phase pattern for generating the pulse train was optimized by
a genetic algorithm (Goldberg, 1989). In Fig. 17, the temporal waveform of the pulse train,
where the optimized phase pattern was used, is shown. In Fig. 18, the interference signal
and the spectrum obtained by the pulse train (three soliton pulses) are compared with results
without using a pulse train (a single soliton pulse). The spectral width (Δλ) of the single
soliton was 21.4 nm and it became 64.0 nm when the pulse train was used. The coherence
length (lc) of the single soliton was 17.6 μm and it became 8.3 μm for the pulse train. From
this result, it is demonstrated that the resolution of OCT can be improved by superimposing
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shifts to longer wavelength as it propagates in a PCF and it can be controlled by changing
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wavelength of a soliton pulse changes continuously and the soliton pulse can be used as a
quasi-supercontinuum (quasi-SC) light source and its use in OCT as a light source has been
studied (Sumimura et al., 2008) in wavelength ∼1.5 μm. Here, we show results using a pulse
train generated by a pulse shaper and quasi-SC in the wavelength range between 900 and 1000
nm generated by an AOM.
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The experimental setup is shown in Fig. 16 (A) (Takabatake et al., 2010). The pulse emitted
from a Ti:sapphire laser (pulse width 50 fs, center wavelength 810 nm, repetition rate 78 MHz,
average power 600 mW) was transformed into a pulse train with three pulses by a pulse
shaper, where the interval times and the peak power ratios between pulses were controlled
as in CARS experiment (subsection 4.1). These parameters were optimized to obtain the best
interference signal in OCT. The pulse train was propagated in a 45 cm PCF (NKT Photonics
NL-1.5-670) and the pulse train which had overlapped spectra of each fundamental soliton
pulse was generated. The input power of a PCF was adjusted to be 123 mW and the power
of a single soliton pulse generated was 3 mW. The polarization direction of the input pulse
train was optimized by a half wavelength plate to maximize the output power from the PCF.
Also, a polarization plate was used to select the polarization direction of an output beam
from the PCF. A long-pass filter with 840-nm cut-off wavelength was used to transmit only
soliton pulses. The spectrum of a soliton pulse train was measured by a spectrometer and
an interference signal was measured by a Michelson interferometer with a balanced photo
detector. In the experiment, a mirror was placed at a sample position to obtain an interference
signal and to evaluate its width. The position of a reference mirror was varied by a piezo stage
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and the modulation frequency of the delay was set to be 0.5 Hz. In experiment using a pulse
shaper, a pulse train of three pulses was created, where the interval times and the power ratios
of three pulses were set to be 500 fs and 400 fs, and 1.0:1.25:1.33 respectively after optimization.
Since the soliton created by a pulse with a larger peak power delayed more in a fiber, it was
necessary to input a pulse with a larger peak power later into a fiber to avoid overlapping
with other soliton pulses. The phase pattern for generating the pulse train was optimized by
a genetic algorithm (Goldberg, 1989). In Fig. 17, the temporal waveform of the pulse train,
where the optimized phase pattern was used, is shown. In Fig. 18, the interference signal
and the spectrum obtained by the pulse train (three soliton pulses) are compared with results
without using a pulse train (a single soliton pulse). The spectral width (Δλ) of the single
soliton was 21.4 nm and it became 64.0 nm when the pulse train was used. The coherence
length (lc) of the single soliton was 17.6 μm and it became 8.3 μm for the pulse train. From
this result, it is demonstrated that the resolution of OCT can be improved by superimposing
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Fig. 18. The spectrum (a) and the interference signal (b) of a single soliton pulse compared
with the spectrum (c) and the interference signal (d) of a pulse train composed of three
soliton pulses.

soliton pulses using a pulse train. In this case, only three soliton pulses were used due to the
constraint of the available power for the input power of a PCF. A pulse train that contains
more pulses with the broader spectrum may be obtained if more input power is available.

5.2 Quasi-SC OCT using an acousto-optical modulator

In this experiment, a pulse shaper was replaced by an AOM and a prism pair for dispersion
compensation for the AOM, as shown in Fig. 16 (B). The AOM was driven either by a
sinusoidal wave or a triangle wave for modulating the input power of a PCF. The modulation
frequency was set to be 5 KHz. By inputting modulated pulses (average power 64 mW)
into a PCF, quasi-SC were generated, since the center wavelength of a soliton pulse changed
according to the input power of a PCF due to the soliton self-frequency shift. The spectra of
these quasi-SC were considered to be broadened if the measurement time was much longer
than the modulation period of the AOM (0.2 ms in this case). In Fig. 19, the interference
signals and the quasi-SC spectra are shown. The spectral widths (Δλ) of the quasi-SC for a
sinusoidal wave modulation and a triangle wave modulation were 113.3 and 102.4 nm, where
the exposure time of a spectrometer was 50 ms. The coherence length (lc) of these quasi-SC
were 6.1 and 6.5 μm, which are about one-third of the coherence length of a single soliton
pulse shown in Fig. 18 (b). The quasi-SC spectrum obtained using a triangle wave (Fig. 19 (c))
was more uniform than the spectrum obtained using a sinusoidal wave (Fig. 19 (a)) since the
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variation of the power inputted into a PCF using a triangle wave was more uniform than that
using a sinusoidal wave. From these results, it is demonstrated that the resolution of OCT can
be improved by using a quasi-SC.

5.3 Comparison between methods using a pulse train and quasi-SC

By comparing the spectrum using a pulse train with three pulses shown in Fig. 18 (c) with
the spectra using an AOM shown in Fig. 19 (a) and (c), we see that the spectral widths of
the quasi-SC were broader than that of a pulse train and as a result, the coherent lengths of
quasi-SC were smaller than that of a pulse train. Therefore it is advantageous to use quasi-SC
to obtain the better resolution in OCT. This is because the throughput of an AOM was higher
than that of a pulse shaper in our experimental setups. Also, it is possible to modify the
spectral shape by changing the modulation waveform when using an AOM. However, the
spectrum obtained using an AOM shown in Fig. 19 (a) and (c) were not stationary but the
center wavelength of a soliton in the quasi-SC varied with the modulation frequency of an
AOM (5 kHz). On the other hand, the spectrum obtained using a pulse train shown in Fig. 18
(c) was obtained by superimposing three soliton pulses and was stationary with the repetition
rate of a laser (78 MHz). The method using quasi-SC may have a problem when the scanning
speed of the OCT setup becomes comparable to the modulation speed of the AOM.
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5.3 Comparison between methods using a pulse train and quasi-SC

By comparing the spectrum using a pulse train with three pulses shown in Fig. 18 (c) with
the spectra using an AOM shown in Fig. 19 (a) and (c), we see that the spectral widths of
the quasi-SC were broader than that of a pulse train and as a result, the coherent lengths of
quasi-SC were smaller than that of a pulse train. Therefore it is advantageous to use quasi-SC
to obtain the better resolution in OCT. This is because the throughput of an AOM was higher
than that of a pulse shaper in our experimental setups. Also, it is possible to modify the
spectral shape by changing the modulation waveform when using an AOM. However, the
spectrum obtained using an AOM shown in Fig. 19 (a) and (c) were not stationary but the
center wavelength of a soliton in the quasi-SC varied with the modulation frequency of an
AOM (5 kHz). On the other hand, the spectrum obtained using a pulse train shown in Fig. 18
(c) was obtained by superimposing three soliton pulses and was stationary with the repetition
rate of a laser (78 MHz). The method using quasi-SC may have a problem when the scanning
speed of the OCT setup becomes comparable to the modulation speed of the AOM.
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6. Conclusion

In this chapter, fundamental soliton pulses generated from a PCF were introduced and their
applications in CARS spectroscopy and OCT were explained. The wavelength of the soliton
pulse changes due to the self-frequency shift and it can be controlled by the power and/or the
chirp of a pulse inputted into the PCF. At the same time, the delay time of the soliton pulse
changes, which can be estimated relatively easily. The use of a pulse shaper is very useful
to control the wavelength and the delay time simultaneously and this was used effectively
in CARS spectroscopy experiment. In CARS experiment, broadband Stokes soliton pulses
were generated and the broadband CARS spectroscopy setups were demonstrated. Also,
a single-beam CARS spectroscopy setup was demonstrated using the fundamental soliton
pulse. In OCT experiment, broadband pulses in wavelength between 900 and 1000 nm were
generated using soliton pulses and the improvement of the resolution of the interference
signals were demonstrated using these pulses.
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6. Conclusion

In this chapter, fundamental soliton pulses generated from a PCF were introduced and their
applications in CARS spectroscopy and OCT were explained. The wavelength of the soliton
pulse changes due to the self-frequency shift and it can be controlled by the power and/or the
chirp of a pulse inputted into the PCF. At the same time, the delay time of the soliton pulse
changes, which can be estimated relatively easily. The use of a pulse shaper is very useful
to control the wavelength and the delay time simultaneously and this was used effectively
in CARS spectroscopy experiment. In CARS experiment, broadband Stokes soliton pulses
were generated and the broadband CARS spectroscopy setups were demonstrated. Also,
a single-beam CARS spectroscopy setup was demonstrated using the fundamental soliton
pulse. In OCT experiment, broadband pulses in wavelength between 900 and 1000 nm were
generated using soliton pulses and the improvement of the resolution of the interference
signals were demonstrated using these pulses.
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1. Introduction  
The photonic crystal fiber (PCF) is a special class of components incorporating photonic 
crystals with a two-dimensional (2D) periodic variation in the plane perpendicular to the 
fiber axis and an invariant structure along it [1-3]. Typically these bers incorporate a 
number of air holes that form a so-called photonic crystal cladding and run along the length 
of the bers, and the shape, size, and distribution of the holes can be designed to achieve 
various novel wave-guiding properties that may not be achieved readily in conventional 
bers [2-19], so that they have attracted significant attention in recent ten years.   

A long-period fiber grating (LPG) is a one dimension (1D) periodic structure, and is 
formed by introducing periodic modulation of the refractive index along an optical ber. 
Since its period is about 100 to several hundreds μm and longer than that of fiber Bragg 
grating (FBG), LPG resonantly couples light from the fundamental core mode to some co-
propagating cladding modes and leads to dips in the transmission spectrum. LPGs have 
been widely used in optical ber communications and sensors. Examples of LPG-based 
devices include all-ber band-rejection lters [20, 21], gain atteners in erbium-doped 
ber ampliers [22], and sensors for strain, temperature, and external refractive index 
measurement [23-25]. When a LPG is formed on a PCF, a 2-D periodic structure is 
combined with a 1-D periodic structure. LPGs based on PCFs (PCF-LPGs) have been 
fabricated recently [26-36] and shown many unique properties compared with a 
conventional LPG (1-D periodic structure) [27, 31-34, 37, 38], which provide wide and 
novel applications [38-47]. 

In this chapter, we will first introduce the basic operation principle of LPGs, secondly, will 
demonstrate in detail the strain and temperature characteristics of a LPG based on an 
endlessly-single-mode (ESM) solid silica core PCF theoretically. To account for the effect of 
dispersive characteristics of the PCF, we identify a dispersion factor  , which offers a deeper 
understanding into the behavior of LPGs in PCF. Following, we will move on to the 
fabrication of a PCF-LPG by using a CO2 laser and demonstrate the experimental 
observations on the strain and temperature characteristics, which agree with the theoretical 
predictions very well. Finally, we will demonstrate their applications in optical sensors, 
including a temperature-insensitive strain sensor, and demodulation technologies for fiber 
Bragg grating and fiber loop mirror sensors. 
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2. Basic operation principle of LPGs [23, 38, 48] 
A LPG is formed usually by a periodic modulation of the refractive index in a fiber core, 
which allows coupling from the fundamental core mode to some resonant cladding modes 
and leads to some dips in the transmission spectrum at wavelengths that satisfy the 
resonant condition. The phase matching condition of a LPG can be expressed as [23]:  

 ( )co cln n     (1)  

where λ is the resonant wavelength, Λ is the index modulation period of the LPG, and nco 
and ncl are the effective indices of the fundamental core mode, and the forward-propagating 
cladding mode, respectively.  

When an axial strain is applied on the LPG, the resonant wavelength of the LPG will shift 
because the Λ of the LPG will increase with stretching axially and at the same time the 
effective refractive index of both core and cladding modes will decrease due to the photo-
elastic effect of the fiber [31]. Meanwhile, if the ambient temperature changes, the 
wavelength of the LPG may also be changed by linear expansion or contraction and the 
thermo-optic effect. From equation (1), the sensitivity of the LPG to strain or temperature is 
a function of the differential effective index between the core and cladding modes (or the 
differential propagation constant). Thus, from equation (1), the strain and temperature 
sensitivity can be written as [48]: 
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where ε is the axial strain, T is the ambient temperature, co  and cl  are strain-optic 
coefficients of the core and cladding, ξ co and ξ  cl are the thermo-optic coefficient of the  
core and cladding, respectively, and α is the linear expansion coefficient.  and ξ are 
defined as [23]:  

 1 dn
n d

 


 (4) 

 1 dn
n dT

   (5) 

Different materials have different  and ξ.  and ξ may also have some difference due to 
the different effective index of waveguides made by the same material [49]. 

Since the effective index (or propagation constant) both of the fundamental mode in the 
fiber core and cladding modes in the fiber cladding will be affected by the waveguide 
change which is caused by the applied axial strain on the LPG, the dispersion factor  is 
used to describe the effect of waveguide dispersion and is expressed as [48]: 
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where e co cln n n    and gg
g co cln n n    are respectively the differential effective index and 

differential group index between the core mode and the cladding mode.  As will be 
discussed in Section 3,  plays a signicant role on the strain and temperature sensitivity of 
an LPG based on the PCF. 

3. Theoretical properties of an LPG based on PCF [38] 
In this section, we investigate in detail the strain and temperature characteristics of an LPG 
based on an endlessly single-mode (ESM) solid silica core PCF theoretically. To account for 
the effect of dispersive characteristics of the PCF, we identify a dispersion factor, which 
offers a deeper understanding into the behavior of PCF-LPGs. Theoretical results show that 
is always negative, and this causes blue-shifting of the resonant wavelength when an axial 
strain is applied.  

3.1 Properties of the ESM-PCF  

The PCF used in the work is an endlessly single-mode PCF fabricated by Crystal Fiber A/S. 
The fiber has a standard triangular air/silica cladding structure, as shown in Fig. 1 (a). The 
mode field diameter is ~6.4 μm, the center-to-center distance between the air holes (L) is 
~7.78 μm, and the diameter of the air holes is ~3.55 μm. The diameter of the entire holey 
region is ~ 60 μm, and the outer cladding diameter of the PCF is 125 μm. A full-vector finite-
element method (FEM) was used to calculate the effective index of modes of PCF. Because of 
the symmetric nature of the PCF, only a quarter of the cross-section as shown in Fig.1 (b) is 
used during calculation. A perfect electric or perfect magnetic conductor (PEC or PMC) was 
applied at boundaries [7]. The refractive index of pure silica was taken as 1.444. 

 
Fig. 1. (a) Micrograph of the PCF used in the experiment; (b) Schematic cross-section of a 
PCF, showing the quarter used in calculation  
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Fig. 1. (a) Micrograph of the PCF used in the experiment; (b) Schematic cross-section of a 
PCF, showing the quarter used in calculation  
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Fig. 2. Calculated intensity distribution of the PCF with L=7.78 μm and d=3.55 μm. (a) The 
fundamental core mode; (b) The cladding mode  

Fig. 2 (a) and (b) shows the intensity distribution of the core and the cladding mode, which 
are considered as the two coupling modes in our PCF-LPGs. Fig. 3 shows the effective 
indices of the fundamental and cladding modes as functions of wavelength in the ESM-PCF. 

The group indices of these two modes, which were calculated by using e
g e

dnn n
d

  


, are 

also shown in Fig. 3. The curves of ng are not so smooth because of the limited data available 

for the calculation of edn
d

 but the trend is clear. The curve ng-cl shows the highly dispersive 

characteristics of the cladding mode. For any wavelength in the range of 1.2 ~ 1.8 μm, the 
group index of the cladding mode is higher than that of the core mode, which is in contrast 
to a conventional SMF. 

 
Fig. 3. Calculated dispersion curves for core and cladding modes as shown in Fig. 2. 
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3.2 Properties of an LPG based on the PCF in theory 

Fig. 4 shows the calculated resonance wavelength as a function of the period of PCF-LPG. It 
is clear that the resonance wavelength of PCF-LPG decreases with increasing LPG period, 
which is consistent with other experimental observations [27, 33, 34]. This is in contrast to 
LPGs written in conventional SMFs and is because of the highly dispersive property of the 
cladding mode due to the existence of the air-holes. In other words, ( )co cln n  as shown in 
equation (1), varies significantly with wavelength.  
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Fig. 4. Calculated resonance wavelength as a function of grating period 

  is a special factor to describe the effect of waveguide dispersion, and  may be positive 
or negative. Because en is always positive, the sign of  is determined by gn . When 

en equals to gn , the factor  is 1. This means dispersive properties of the core and the 
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Fig. 2. Calculated intensity distribution of the PCF with L=7.78 μm and d=3.55 μm. (a) The 
fundamental core mode; (b) The cladding mode  
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Fig. 3. Calculated dispersion curves for core and cladding modes as shown in Fig. 2. 

 
Long-Period Gratings Based on Photonics Crystal Fibers and Their Applications 

 

229 

3.2 Properties of an LPG based on the PCF in theory 

Fig. 4 shows the calculated resonance wavelength as a function of the period of PCF-LPG. It 
is clear that the resonance wavelength of PCF-LPG decreases with increasing LPG period, 
which is consistent with other experimental observations [27, 33, 34]. This is in contrast to 
LPGs written in conventional SMFs and is because of the highly dispersive property of the 
cladding mode due to the existence of the air-holes. In other words, ( )co cln n  as shown in 
equation (1), varies significantly with wavelength.  
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The strain sensitivity dλ/dε of a LPG based on the ESM-PCF is determined by four 
parameters: the elasto-optic coefficients of the core and cladding materials, waveguide 
properties (  ), the period of the LPG, and the mode order. Now, we choose the same 
coupling modes, and focus on the effect of the first three parameters on the strain sensitivity 
of a PCF-LPG. Fig. 6 shows the calculated strain sensitivity as a function of LPG period with 
different cl when we assume  =1. In the calculation, co is assumed to be constant at a 
value of -0.22 for the pure silica core. For LPGs with period ranging from 400 to 600μm, the 
strain sensitivity is positive and relatively independent of the grating period when cl is 
larger than 0.22. The strain sensitivity becomes negative and decreases with grating period 
when cl is smaller than 0.218. On the other hand, when the value of  is taken the value 
as shown in Fig. 5, the strain sensitivity as a function of LPG period is as shown in Fig. 7.  
The strain sensitivity is negative when cl is larger than 0.22. This is the opposite of what is 
shown in Fig. 6.  In ref. [49], A. Bertholds et. al. showed that the strain-optic coefficients of a 
bulk silica and a silica fiber are different. It’s believed that, owing to the different geometry 
of solid core and micro-structured air-silica cladding of the ESM-PCF, co will be slightly 
different from cl . 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 6. Theoretical strain sensitivity at resonance wavelength vs. LPG period for various 
values of cl and  = 1. 

Similarly, the temperature sensitivity dλ/dT of a LPG is determined by the thermo-optic 
coefficients of the core and cladding materials, waveguide properties (  ), period of LPG, 
and the mode order. We calculated the temperature sensitivity as a function of LPG period 
by assuming that the thermo-optic coefficient of the pure silica core is ξco =7.8×10-6 / oC and 
thermal expansion coefficient is α = 4.1×10-7/ oC. Figs. 8 and 9 show respectively the results 
for the cases of  =1 and  taking from Fig.5. The temperature characteristics are quite 
different for the two cases. With ξcl less than ξco =7.8×10-6,  the LPG has positive temperature 
sensitivity for  =1 but negative temperature sensitivity for the case of  taking from Fig.5. 
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Furthermore, the dependence of temperature sensitivity on the grating period is 
approximately linear for  =1 while it is non-monotonic for the other case. Similar to the 
discussion for the strain coefficient, for the ESM-PCF, since the effective index nco is larger 
than ncl, from eq. (5), we expect that co is slightly smaller than cl , which has also been 
verified by the experiment in Section 4. 

 

 

 

 

 

 

 
 
 
 
 
 

Fig. 7. Theoretical strain sensitivity at resonance wavelength vs. LPG period for various 
values of cl and with  taken from Fig. 5. 

 
 

 

 

 

 

 

 
 
 

 

Fig. 8. Theoretical temperature sensitivity at resonance wavelength vs. LPG period for 
various values of  ξcl and  = 1. 
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The strain sensitivity dλ/dε of a LPG based on the ESM-PCF is determined by four 
parameters: the elasto-optic coefficients of the core and cladding materials, waveguide 
properties (  ), the period of the LPG, and the mode order. Now, we choose the same 
coupling modes, and focus on the effect of the first three parameters on the strain sensitivity 
of a PCF-LPG. Fig. 6 shows the calculated strain sensitivity as a function of LPG period with 
different cl when we assume  =1. In the calculation, co is assumed to be constant at a 
value of -0.22 for the pure silica core. For LPGs with period ranging from 400 to 600μm, the 
strain sensitivity is positive and relatively independent of the grating period when cl is 
larger than 0.22. The strain sensitivity becomes negative and decreases with grating period 
when cl is smaller than 0.218. On the other hand, when the value of  is taken the value 
as shown in Fig. 5, the strain sensitivity as a function of LPG period is as shown in Fig. 7.  
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Furthermore, the dependence of temperature sensitivity on the grating period is 
approximately linear for  =1 while it is non-monotonic for the other case. Similar to the 
discussion for the strain coefficient, for the ESM-PCF, since the effective index nco is larger 
than ncl, from eq. (5), we expect that co is slightly smaller than cl , which has also been 
verified by the experiment in Section 4. 

 

 

 

 

 

 

 
 
 
 
 
 

Fig. 7. Theoretical strain sensitivity at resonance wavelength vs. LPG period for various 
values of cl and with  taken from Fig. 5. 

 
 

 

 

 

 

 

 
 
 

 

Fig. 8. Theoretical temperature sensitivity at resonance wavelength vs. LPG period for 
various values of  ξcl and  = 1. 
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Fig. 9. Theoretical temperature sensitivity at resonance wavelength vs. LPG period for 
various values of ξcl and with  taken from Fig. 5.  

4. Fabrication and experimental observations on properties of a LPG based 
on PCF [38] 
4.1 Fabrication of a PCF-LPG 

Unlike conventional fibers, which contain at least two different glasses each with a different 
thermal expansion coefficient, thereby giving rise to a relatively high thermal expansion 
coefficient, PCFs are virtually insensitive to temperature because it is made of only one 
material (and air holes). This property can be utilized to obtain temperature-insensitive PCF-
based devices, as demonstrated in [14]. However, the single material property of PCFs leads 
to non-photosensitivity to UV light, therefore FBGs and LPGs cannot normally be formed in 
PCFs by use of the conventional UV-written technique, unless a PCF with a Ge-doped 
photosensitive core is used [26]. Recently, several alternative methods for making LPGs in 
PCFs with non-photosensitive cores were introduced, including glass structure change [27], 
periodic structural and/ or residual stress relaxation induced by arc discharge or a CO2 laser 
[28-32], refractive index modulation by periodically applied mechanical pressure [33] or by 
the use of an acoustic wave [34, 35], and periodic drilling micro-holes with a femto-second 
laser [36].  

LPGs fabricated by use of a CO2 laser are compact and stable because the perturbations are 
everlasting whereas in LPGs fabricated by UV light in conventional fibers, the refractive 
index modulation caused by UV light are prone to aging, therefore making LPGs in 
conventional fibers unstable over time. Here, we demonstrate the fabrication method by 
using a CO2 laser, which has been used widely [30, 32, 37, 38, 40]. 
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Fig. 10 shows the experimental setup of the PCF-LPG fabrication. The CO2 laser operates at a 
frequency of 10 kHz and has a maximum power of 10 W. The laser power is controlled by the 
width of the laser pulses. In the experiment, the pulse-width of the CO2 laser was chosen to be 
3.8 μs. The laser beam was focused to a spot with a diameter of ~60 μm and scanned across the 
ESM-PCF transversely and longitudinally along the fiber by use of a two-dimensional optical 
scanner attached to the laser head. The scanning step of the focused beam was 1 μm and the 
delay time of each step was 350 μs. The LPG inscribed has a period of about 467 μm and a 
period number of 40. The process of the CO2 laser scanning is repeated 9 times, which results 
in a LPG with a deep transmission dip and no observable deformity in the fiber structure. The 
spectrum measurements were performed using a broadband light source (a light-emitting 
diode, LED, with the wavelength range of 1200 ~1700 nm) in combination with an optical 
spectrum analyzer (OSA, ADVANTEST Q8384) with a resolution of 0.5 nm.  

 
Fig. 10. Schematic of the PCF-LPG fabrication setup     

Fig. 11 shows the growing process of a PCF-LPG as a function of the number of scanning 
procedures. The resonant wavelengths of the PCF-LPG are about 1552.45 nm and 1363.3 nm 
which are due to coupling of the fundamental core mode to two different cladding modes. 
The dip at the wavelength 1552.45 nm is nearly 20 dB. The insertion loss of the LPG is about 
1.5 dB. The resonance at 1552.45 nm is due to coupling of the core mode to the cladding 
mode shown in Fig. 2 (b) and is in good agreement with the theoretical result (1552.45 nm 
resonance wavelength corresponds 467.2 μm LPG period) in Fig. 4.   

4.2 Properties of a LPG based on PCF in experiment  

Fig. 12 shows the experimental setup for measuring the characteristics of the PCF-LPG. The 
spectrum measurements were performed by using a broadband LED and an OSA with a  
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material (and air holes). This property can be utilized to obtain temperature-insensitive PCF-
based devices, as demonstrated in [14]. However, the single material property of PCFs leads 
to non-photosensitivity to UV light, therefore FBGs and LPGs cannot normally be formed in 
PCFs by use of the conventional UV-written technique, unless a PCF with a Ge-doped 
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Fig. 10 shows the experimental setup of the PCF-LPG fabrication. The CO2 laser operates at a 
frequency of 10 kHz and has a maximum power of 10 W. The laser power is controlled by the 
width of the laser pulses. In the experiment, the pulse-width of the CO2 laser was chosen to be 
3.8 μs. The laser beam was focused to a spot with a diameter of ~60 μm and scanned across the 
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scanner attached to the laser head. The scanning step of the focused beam was 1 μm and the 
delay time of each step was 350 μs. The LPG inscribed has a period of about 467 μm and a 
period number of 40. The process of the CO2 laser scanning is repeated 9 times, which results 
in a LPG with a deep transmission dip and no observable deformity in the fiber structure. The 
spectrum measurements were performed using a broadband light source (a light-emitting 
diode, LED, with the wavelength range of 1200 ~1700 nm) in combination with an optical 
spectrum analyzer (OSA, ADVANTEST Q8384) with a resolution of 0.5 nm.  
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Fig. 11 shows the growing process of a PCF-LPG as a function of the number of scanning 
procedures. The resonant wavelengths of the PCF-LPG are about 1552.45 nm and 1363.3 nm 
which are due to coupling of the fundamental core mode to two different cladding modes. 
The dip at the wavelength 1552.45 nm is nearly 20 dB. The insertion loss of the LPG is about 
1.5 dB. The resonance at 1552.45 nm is due to coupling of the core mode to the cladding 
mode shown in Fig. 2 (b) and is in good agreement with the theoretical result (1552.45 nm 
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Fig. 11. Transmission spectra of the PCF-LPG with various numbers of repeated scans  

resolution of 0.5 nm as mentioned in Section 4.1. The strain characteristics of the PCF-LPG 
was tested by stretching the PCF-LPG by moving the translation stage shown in Fig. 10 from 
0 to 0.5 mm in four steps (corresponding to a strain variation of from 0 to 1604 με), the center 
wavelength of the transmission dip shifts toward shorter wavelength as shown in Fig. 13. 
This is opposite to a LPG in a conventional SMF where the transmission dip shifts toward 
longer wavelengths [23]. The strain dependence of the resonance wavelength 1552.45 nm on 
axial strain is shown in Fig. 14. The strain sensitivity, which is the slope of the curve, is 
estimated to be -2.68 nm/ 1000 μm and shown in Fig.7 as a small circle. By varying the 
strain coefficient of the cladding material cl to fit the experimental data, we found the 
value of cl  that best fits the experimental sensitivity is cl =-0.22115. The transmitted 
intensity at resonance wavelength was found increases with the applied axial strain, and 
this is also shown in Fig. 14. 

  
 

Fig. 12. Experimental setup for measuring the temperature and strain characteristics of the 
PCF-LPG, where a broadband source and an OSA are used.  

To test the temperature characteristics of the PCF-LPG, the ambient temperature of the LPG 
was varied by using a temperature chamber whose temperature can be controlled within the 
range of 25 oC to 100 oC. As shown in Fig.15, the transmission spectrum hardly changes 
when temperature was raised from 25 oC to 100 oC. The estimated sensitivity of the resonant 
wavelength to temperature is about 0.007 nm/ oC. Again, the temperature sensitivity of the 
PCF-LPG is marked as a circle in Fig.9. The cladding temperature coefficient cl that fits this 
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temperature insensitivity is cl =7.827 ×10-6, this value is slightly larger than that of the core 
and agrees with the prediction at the end of Section 4.2. It should be noted that the 
difference between co and cl for the PCF is 6 times smaller than that of conventional Ge-
doped fiber and 18 times smaller than that of B-Ge co-doped fiber [48].  

 
 
 

 

 

 

 
 
 
 

Fig. 13. Transmission spectra of the PCF-LPG for applied strain of (from right to 1eft) 0, 535, 
936, and 1604 μm  

 

 

 

 
 
 
 
 

Fig. 14. Resonant wavelength and the intensity at the transmission dip as functions of 
applied strain 

5. Applications of an LPG in PCF in optical fiber sensors  
5.1 Temperature-insensitive strain sensor based on a PCF-LPG [38]  

By exploiting the PCF-LPG’s large sensitivity to strain and insensitivity to temperature, 
temperature-insensitive strain sensors are realized. These sensors can be based on either 
wavelength or intensity measurement. In this part, we demonstrate a simple, low cost strain 
sensor based on the measurement of the transmitted light intensity at a wavelength close to 
the LPG resonance. 
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resolution of 0.5 nm as mentioned in Section 4.1. The strain characteristics of the PCF-LPG 
was tested by stretching the PCF-LPG by moving the translation stage shown in Fig. 10 from 
0 to 0.5 mm in four steps (corresponding to a strain variation of from 0 to 1604 με), the center 
wavelength of the transmission dip shifts toward shorter wavelength as shown in Fig. 13. 
This is opposite to a LPG in a conventional SMF where the transmission dip shifts toward 
longer wavelengths [23]. The strain dependence of the resonance wavelength 1552.45 nm on 
axial strain is shown in Fig. 14. The strain sensitivity, which is the slope of the curve, is 
estimated to be -2.68 nm/ 1000 μm and shown in Fig.7 as a small circle. By varying the 
strain coefficient of the cladding material cl to fit the experimental data, we found the 
value of cl  that best fits the experimental sensitivity is cl =-0.22115. The transmitted 
intensity at resonance wavelength was found increases with the applied axial strain, and 
this is also shown in Fig. 14. 
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temperature insensitivity is cl =7.827 ×10-6, this value is slightly larger than that of the core 
and agrees with the prediction at the end of Section 4.2. It should be noted that the 
difference between co and cl for the PCF is 6 times smaller than that of conventional Ge-
doped fiber and 18 times smaller than that of B-Ge co-doped fiber [48].  
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Fig. 14. Resonant wavelength and the intensity at the transmission dip as functions of 
applied strain 

5. Applications of an LPG in PCF in optical fiber sensors  
5.1 Temperature-insensitive strain sensor based on a PCF-LPG [38]  

By exploiting the PCF-LPG’s large sensitivity to strain and insensitivity to temperature, 
temperature-insensitive strain sensors are realized. These sensors can be based on either 
wavelength or intensity measurement. In this part, we demonstrate a simple, low cost strain 
sensor based on the measurement of the transmitted light intensity at a wavelength close to 
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Fig. 15. Transmission spectra of the LPG in the ESM PCF at various ambient temperatures 

Fig. 16 shows the proposed strain sensor that uses the PCF-LPG as the sensing element. A 
single wavelength light such as a DFB laser is used as a light source.  The wavelength of the 
DFB laser is near the resonant wavelength of the LPG and hence the output light intensity 
from the LPG will be directly related to the LPG’s transmission at the wavelength of the 
DFB laser. Since the LPG’s transmission is insensitive to temperature, the output power will 
only be affected by the transmission spectrum change caused by the strain applied to the 
LPG. At the output, an optical power meter will be adequate to deduce the strain 
information and an expensive OSA would not be needed.  

 
Fig. 16. The proposed temperature insensitive strain sensor with a DFB laser and an optical 
power meter 

Fig. 17 shows the measured relationship between the output intensity of the PCF-LPG sensor 
and the applied axial strain for various laser wavelengths. In the experiment, a tunable laser 
was used for easiness of wavelength adjustment. In practice, a DFB laser with appropriate 
wavelength would be a better for the purpose of reducing cost. As shown in Fig.17, for laser 
wavelengths of 1538 nm, 1542 nm, 1545 nm, and 1547.7 nm, which are shorter than the 
resonant wavelength (1552.45 nm) the LPG, the output intensity decreases with applied strain 
and the strain sensitivity is negative and respectively -1.41, -2.17, -2.80 and -2.41 dB/1000 με for 
1538 nm, 1542 nm, 1545 nm, and 1547.7 nm. The relationship is approximately linear for strains 
from 0 to 1600 με. Similarly, for laser wavelength longer than the resonant wavelength 
(1552.45nm), the output intensity increases with applied strain and the intensity sensitivities 
are positive and respectively 3.25, 3.11, 2.01 and 1.53 dB/ 1000 με at 1553 nm, 1555.6 nm, 1560 
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nm, and 1563 nm. Therefore, the setup shown in Fig. 16 converts directly the strain variation to 
intensity variation. Assume that we choose a DFB laser at 1553nm as source, and use an optical 
power meter with a resolution of 0.001 dB, we may achieve a strain resolution of ~0.3με. 

 
Fig. 17. Strain dependence of the transmission intensity of the PCF-LPG at different 
wavelengths 

5.2 Temperature-insensitive demodulator based on a PCF-LPG for a fiber Bragg 
grating temperature sensor [45] 

Fiber Bragg grating (FBG) is another kind of optical fiber grating, and is formed by a 
periodic modulation of the refractive index along an optical ber with ~0.5 μm pitch Λ, 
which causes the coupling between the forward-propagating core mode to the backward-
propagating core mode at the reflective wavelength satisfied with the phase matching 
condition 2B effn   , where λB is the reflective wavelength, neff is the effective refractive 
index of the core mode, respectively. By fabricating FBG with different pitch, we can get 
different reflective wavelength of FBG. The bandwidth of FBG is narrow compared with 
that of LPG, because the coupling strength decreases rapidly when the wavelength departs 
from λB. FBGs have been applied widely in sensors. Because of the wavelength-encoded 
nature of the FBG sensors, it is necessary to convert the wavelength-encoded signal into 
electronic signals for easy reading and real time monitoring.  

In this part, we present the use of PCF-LPG for the purpose of making a temperature 
insensitive sensor interrogation based on the PCF-LPG’s much lower temperature sensitivity 
and realize a whole fiber Bragg grating (FBG) temperature sensor, including a sensor head 
and a PCF-LPG readout component, in one package. Utilizing the wavelength-dependent 
transmission loss of the LPG, the wavelength change of the FBG due to the temperature of 
the environment is translated to the intensity of the output. At the output, only a power 
meter is required to deduce the temperature of the environment and an expensive OSA 
would not be needed. The experimental results show that the interrogation based on the 
PCF-LPG works well under different environmental temperatures.  

-60

-55

-50

-45

0 500 1000 1500 2000

Tr
an

sm
is

si
on

 In
te

ns
ity

 (d
B

)

Strain (με) 

1538 

1542 

1545 

1547.7 

1563 

1560 

1555.6 



 
Photonic Crystals – Introduction, Applications and Theory 

 

236 

 

 

 

 

 

 
 
 
 

Fig. 15. Transmission spectra of the LPG in the ESM PCF at various ambient temperatures 
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nm, and 1563 nm. Therefore, the setup shown in Fig. 16 converts directly the strain variation to 
intensity variation. Assume that we choose a DFB laser at 1553nm as source, and use an optical 
power meter with a resolution of 0.001 dB, we may achieve a strain resolution of ~0.3με. 

 
Fig. 17. Strain dependence of the transmission intensity of the PCF-LPG at different 
wavelengths 
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In this part, we present the use of PCF-LPG for the purpose of making a temperature 
insensitive sensor interrogation based on the PCF-LPG’s much lower temperature sensitivity 
and realize a whole fiber Bragg grating (FBG) temperature sensor, including a sensor head 
and a PCF-LPG readout component, in one package. Utilizing the wavelength-dependent 
transmission loss of the LPG, the wavelength change of the FBG due to the temperature of 
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would not be needed. The experimental results show that the interrogation based on the 
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Fig. 18 shows the schematic diagram and the experimental setup of the proposed fiber Bragg 
grating temperature sensor interrogation system using an LPG in a PCF. The sensor head 
was made of a FBG and was illuminated using a broadband LED via a 3-ports circulator. 
The sensor head was placed inside a temperature-controlled container in order to detect its 
sensitivity to temperature. The reflected light from the sensor head is returned to the 
circulator and enters the PCF-LPG. In the experiment, the central reflection wavelength of 
the FBG sensor head was chosen as shown in Fig. 19. The FBG was fabricated in a hydrogen-
loaded single-mode fiber using a phase mask illuminated by UV light. The phase mask had 
a constant period of 1068 nm (the corresponding grating period is 534 nm). The original 
centre wavelength of the FBG sensor is at 1546.3 nm, which is located at the middle of the 
wavelength range of the transmission spectrum of the LPG with the negative slope. The 
reflected light from the sensor head is transmitted partially by the PCF-LPG and the amount 
of transmission is a function of wavelength. The wavelength shift of the FBG sensor head 
with temperature is almost linearly related to the transmission function of PCF-LPG filter 
for the range of operation. The power at the output of the PCF-LPG is directly related to the 
temperature applied on the FBG because as the temperature increases, the wavelength of the 
light reflected by the FBG shifts more to a longer wavelength, which in tune causes the light 
to leading to PCF-LPG to decrease in intensity. At the output, only a power meter is enough 
to deduce the temperature of environment. Thus it is very feasible to monitor the variation 
in temperature by measuring the output power of the PCF-LPG in a relatively cheap 
manner.  

 
Fig. 18. Schematic diagram of the proposed temperature sensor interrogation system based 
on a PCF-LPG, IMG: index matched glue, OC: optical circulator.  

When the FBG sensor was put into a temperature chamber and the temperature was 
increased from 25 to 100 oC, the Bragg reflection of the FBG would shift to longer 
wavelengths due to the thermo-optic effect and the thermo-expansion effect of the optical 
fiber. Fig. 20 shows the output spectra. The intensity of the output changes in accordance 
with the transmission curve of the PCF-LPG, which is as the reflection wavelength of the 
FBG gets longer, the output of the PCF-LPG gets smaller. Fig. 21 shows the relationship of 
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the output intensity of the PCF-LPG with the temperature on the FBG and that this 
relationship is virtually linear for temperature from 25 to 100 oC. In this temperature range 
(75 oC), the change in the reflected wavelength from the FBG is 0.75 nm, and the intensity 
change of the output power via the LPG is 1.2 dB. Thus the sensitivity of the proposed FBG 
temperature sensor is about -0.0165 dB/ oC. Because the slope of the transmission spectrum 
in the wavelength range from 1545 to 1548 nm is virtually constant as implied by Fig. 21, the 
linear dynamic range of this temperature sensor is at least 300 oC. Therefore, this setup 
converts the temperature variation to wavelength variation (FBG) and then it converts the 
wavelength variation to intensity variation (PCF-LPG). 

 
Fig. 19. The reflective spectrum of the FBG (curve 1) at room temperature and the 
transmission spectrum of the LPG (curve 2) 

 
Fig. 20. The output spectra from PCF-LPG when a different temperature (25 oC, 30, 40, 50, 60, 
70, 80, 90, 100 oC) is applied to the FBG.  
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Fig. 18 shows the schematic diagram and the experimental setup of the proposed fiber Bragg 
grating temperature sensor interrogation system using an LPG in a PCF. The sensor head 
was made of a FBG and was illuminated using a broadband LED via a 3-ports circulator. 
The sensor head was placed inside a temperature-controlled container in order to detect its 
sensitivity to temperature. The reflected light from the sensor head is returned to the 
circulator and enters the PCF-LPG. In the experiment, the central reflection wavelength of 
the FBG sensor head was chosen as shown in Fig. 19. The FBG was fabricated in a hydrogen-
loaded single-mode fiber using a phase mask illuminated by UV light. The phase mask had 
a constant period of 1068 nm (the corresponding grating period is 534 nm). The original 
centre wavelength of the FBG sensor is at 1546.3 nm, which is located at the middle of the 
wavelength range of the transmission spectrum of the LPG with the negative slope. The 
reflected light from the sensor head is transmitted partially by the PCF-LPG and the amount 
of transmission is a function of wavelength. The wavelength shift of the FBG sensor head 
with temperature is almost linearly related to the transmission function of PCF-LPG filter 
for the range of operation. The power at the output of the PCF-LPG is directly related to the 
temperature applied on the FBG because as the temperature increases, the wavelength of the 
light reflected by the FBG shifts more to a longer wavelength, which in tune causes the light 
to leading to PCF-LPG to decrease in intensity. At the output, only a power meter is enough 
to deduce the temperature of environment. Thus it is very feasible to monitor the variation 
in temperature by measuring the output power of the PCF-LPG in a relatively cheap 
manner.  

 
Fig. 18. Schematic diagram of the proposed temperature sensor interrogation system based 
on a PCF-LPG, IMG: index matched glue, OC: optical circulator.  
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wavelengths due to the thermo-optic effect and the thermo-expansion effect of the optical 
fiber. Fig. 20 shows the output spectra. The intensity of the output changes in accordance 
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the output intensity of the PCF-LPG with the temperature on the FBG and that this 
relationship is virtually linear for temperature from 25 to 100 oC. In this temperature range 
(75 oC), the change in the reflected wavelength from the FBG is 0.75 nm, and the intensity 
change of the output power via the LPG is 1.2 dB. Thus the sensitivity of the proposed FBG 
temperature sensor is about -0.0165 dB/ oC. Because the slope of the transmission spectrum 
in the wavelength range from 1545 to 1548 nm is virtually constant as implied by Fig. 21, the 
linear dynamic range of this temperature sensor is at least 300 oC. Therefore, this setup 
converts the temperature variation to wavelength variation (FBG) and then it converts the 
wavelength variation to intensity variation (PCF-LPG). 

 
Fig. 19. The reflective spectrum of the FBG (curve 1) at room temperature and the 
transmission spectrum of the LPG (curve 2) 

 
Fig. 20. The output spectra from PCF-LPG when a different temperature (25 oC, 30, 40, 50, 60, 
70, 80, 90, 100 oC) is applied to the FBG.  

-80

-70

-60

-50

-40

-30

1520 1540 1560

wavelength (nm)

In
te

ns
ity

 (d
B

)

 curve 1 

curve 2



 
Photonic Crystals – Introduction, Applications and Theory 

 

240 

-65.8

-65.6

-65.4

-65.2

-65

-64.8

-64.6

-64.4

-64.2

0 20 40 60 80 100 120

Temperature  (oC) 

In
te

ns
ity

 (d
B

)

 
Fig. 21. The measured output power for the temperature of the grating sensor 

5.3 A fiber loop mirror temperature sensor demodulation technique based on a PCF-
LPG and a band-pass filter [46] 

Fiber loop mirrors (FLMs) have been demonstrated for a number of applications, for 
example wavelength filters and sensors [14, 15, 50]. In a FLM, two interfering waves 
counter-propagate through the same fiber, and are exposed to the same environment. This 
makes it less sensitive to environmental disturbance. Various kinds of sensors based on 
FLMs have been realized, such as temperature sensors, strain sensors, pressure sensors, 
liquid level sensors, biochemical sensors, UV detection, multi-parameter measurement and 
refractive index sensors. However, most HiBi-FLM sensors are based on monitoring the 
resonant wavelength variation of FLMs [15, 51], an expensive OSA is needed.  

In this part, we present a HiBi-FLM temperature sensor using a PCF-LPG and a band-pass 
filter as a demodulator. For the sensing principle, only the HiBi-FLM acts as a sensor head, 
while the PCF-LPG serves as a filter to provide wavelength dependent optical power 
transmission and the band-pass filter is to provide a narrow band light source. By utilizing 
the stable filtering function of the PCF-LPG, the resonant wavelength variation of the FLM 
with temperature is transferred effectively to the intensity variation of the output light. 
When the optical intensity of the output is monitored, temperature applied on the FLM will 
be deduced. The experimental results show the demodulator based on the PCF-LPG and the 
band-pass filter works well. By choosing a filter with an appropriate bandwidth, the 
temperature sensitivity of the sensor with 1.742 dB/ oC is obtained.  

Fig.22 shows the experimental setup. The configuration of the proposed sensor system 
includes a broadband light source, a band-pass filter, a HiBi-FLM, and a PCF-LPG. A 
broadband superluminescent LED (SLED) source with a flatten emission intensity in the 
wavelength range of 1530~1570 nm was used as an input light source, whose power is ~40 
mW. The SLED with a band-pass filter launches the HiBi-FLM via a 3 dB coupler. The 
transmitted light from the HiBi-FLM then enters the temperature-insensitive PCF-LPG. The 
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proposed sensor demodulation was used to read in optical power and an optical power 
meter (NF1112) with a resolution of 0.01 dB is used to monitor the output light intensity of 
the sensor. For monitoring transmission spectra of the FLM and the PCF-LPG, and 
explaining the principle of the sensor system, an OSA is used in experiments with a spectral 
resolution of 0.02 nm. 

 

 

 

 
 

Fig. 22. Experimental setup of the proposed sensor, inset: micrograph of PCF. 

The HiBi-FLM includes a 3 dB coupler, a 30.5 cm Panda PMF, and a polarization controller 
(PC). The Panda PMF has an attenuation of 1.0 dB/km, a measured birefringence of  
n = 6.24×10-4 at 1550 nm, and a core diameter~10 μm. Both ends of the Panda fiber were 
spliced to Corning SMF-28, and the combined loss of the two splicing points is 2.3 dB. The 
wavelength spacing between transmission peaks of the FLM is given by 2 / n L     , 
where λ, Δn, and L are wavelength, birefringence and length of the HiBi fiber, respectively. 
The wavelength spacing between the transmission peaks of the FLM is about 13 nm at 1545 
nm, as shown in Fig. 23. In the experiment, this value was chosen by considering the 
bandwidth of the PCF-LPG. When the PCF-LPG is given, a suitable wavelength spacing of 
the FLM can be obtained by choosing the length of the PMF. Thus by adjusting the state of 
the PC, one spectral peak of the FLM is located in a negative of the linear regions with the 
PCF-LPG at the initial state of the sensor. The temperature-insensitive of the PCF-LPG used 
in the experiment is the same one as mentioned above.  

The band-pass filter is made of Metal-Dielectric-Metal (MDM), which is used to provide a 
narrow band light source. As shown the gray region in the Fig. 23, only the intensity in the 
band-pass of the filter is monitored by the optical power meter. In the experiment, several 
filters with the same center wavelength at 1545nm and different bandwidth are used to 
study the effect of the bandwidth of the filter on the sensing performance. The full width at 
half maximum (FWHM) of the band-pass filters is 12.66nm, 8.3 nm, 6.66 nm and 3 nm, 
respectively, whose transmission spectra are shown in Fig.24. 

Fig.25 shows transmission spectra of the PCF-LPG, the HiBi-FLM, and the output signal at 
different temperature when the band-pass filter is not inserted. When temperature is 
increased, the transmission spectrum of the FLM blue-shifts due to thermally induced 
refractive index change and thermal expansion of the panda fiber, and the temperature 
sensitivity to wavelength is -0.772 nm/ oC. Due to the filtering function of the PCF-LPG, the 
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Fig. 21. The measured output power for the temperature of the grating sensor 

5.3 A fiber loop mirror temperature sensor demodulation technique based on a PCF-
LPG and a band-pass filter [46] 

Fiber loop mirrors (FLMs) have been demonstrated for a number of applications, for 
example wavelength filters and sensors [14, 15, 50]. In a FLM, two interfering waves 
counter-propagate through the same fiber, and are exposed to the same environment. This 
makes it less sensitive to environmental disturbance. Various kinds of sensors based on 
FLMs have been realized, such as temperature sensors, strain sensors, pressure sensors, 
liquid level sensors, biochemical sensors, UV detection, multi-parameter measurement and 
refractive index sensors. However, most HiBi-FLM sensors are based on monitoring the 
resonant wavelength variation of FLMs [15, 51], an expensive OSA is needed.  

In this part, we present a HiBi-FLM temperature sensor using a PCF-LPG and a band-pass 
filter as a demodulator. For the sensing principle, only the HiBi-FLM acts as a sensor head, 
while the PCF-LPG serves as a filter to provide wavelength dependent optical power 
transmission and the band-pass filter is to provide a narrow band light source. By utilizing 
the stable filtering function of the PCF-LPG, the resonant wavelength variation of the FLM 
with temperature is transferred effectively to the intensity variation of the output light. 
When the optical intensity of the output is monitored, temperature applied on the FLM will 
be deduced. The experimental results show the demodulator based on the PCF-LPG and the 
band-pass filter works well. By choosing a filter with an appropriate bandwidth, the 
temperature sensitivity of the sensor with 1.742 dB/ oC is obtained.  

Fig.22 shows the experimental setup. The configuration of the proposed sensor system 
includes a broadband light source, a band-pass filter, a HiBi-FLM, and a PCF-LPG. A 
broadband superluminescent LED (SLED) source with a flatten emission intensity in the 
wavelength range of 1530~1570 nm was used as an input light source, whose power is ~40 
mW. The SLED with a band-pass filter launches the HiBi-FLM via a 3 dB coupler. The 
transmitted light from the HiBi-FLM then enters the temperature-insensitive PCF-LPG. The 
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proposed sensor demodulation was used to read in optical power and an optical power 
meter (NF1112) with a resolution of 0.01 dB is used to monitor the output light intensity of 
the sensor. For monitoring transmission spectra of the FLM and the PCF-LPG, and 
explaining the principle of the sensor system, an OSA is used in experiments with a spectral 
resolution of 0.02 nm. 

 

 

 

 
 

Fig. 22. Experimental setup of the proposed sensor, inset: micrograph of PCF. 
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n = 6.24×10-4 at 1550 nm, and a core diameter~10 μm. Both ends of the Panda fiber were 
spliced to Corning SMF-28, and the combined loss of the two splicing points is 2.3 dB. The 
wavelength spacing between transmission peaks of the FLM is given by 2 / n L     , 
where λ, Δn, and L are wavelength, birefringence and length of the HiBi fiber, respectively. 
The wavelength spacing between the transmission peaks of the FLM is about 13 nm at 1545 
nm, as shown in Fig. 23. In the experiment, this value was chosen by considering the 
bandwidth of the PCF-LPG. When the PCF-LPG is given, a suitable wavelength spacing of 
the FLM can be obtained by choosing the length of the PMF. Thus by adjusting the state of 
the PC, one spectral peak of the FLM is located in a negative of the linear regions with the 
PCF-LPG at the initial state of the sensor. The temperature-insensitive of the PCF-LPG used 
in the experiment is the same one as mentioned above.  

The band-pass filter is made of Metal-Dielectric-Metal (MDM), which is used to provide a 
narrow band light source. As shown the gray region in the Fig. 23, only the intensity in the 
band-pass of the filter is monitored by the optical power meter. In the experiment, several 
filters with the same center wavelength at 1545nm and different bandwidth are used to 
study the effect of the bandwidth of the filter on the sensing performance. The full width at 
half maximum (FWHM) of the band-pass filters is 12.66nm, 8.3 nm, 6.66 nm and 3 nm, 
respectively, whose transmission spectra are shown in Fig.24. 

Fig.25 shows transmission spectra of the PCF-LPG, the HiBi-FLM, and the output signal at 
different temperature when the band-pass filter is not inserted. When temperature is 
increased, the transmission spectrum of the FLM blue-shifts due to thermally induced 
refractive index change and thermal expansion of the panda fiber, and the temperature 
sensitivity to wavelength is -0.772 nm/ oC. Due to the filtering function of the PCF-LPG, the 
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intensity of the resonant peak1 increases while the resonant peaks shift to shorter 
wavelength with temperature increasing. Therefore, when a band-pass filter is used, as 
shown in Fig.23, the part of the output light outside the band of the filter is attenuated 
owing to the function of the band-pass filter. And the intensity of the remainder will change 
with the transmission peak of the HiBi-FLM shifting. Therefore, converting the wavelength 
variation of the HiBi-FLM into intensity variation at the output directly is realized. 

 
Fig. 23. Transmission spectra of the FLM, the PCF-LPG and the output signal. Gray region is 
transmission spectra of the sensor with band-pass filter. 

 
Fig. 24. Transmission spectra of the band-pass filters used in the experiment. 

Fig.26 shows the relationship of the output intensity of the sensing system with temperature 
applied on the FLM, when the filter was chosen with a FWHM 12.66 nm and a center 
wavelength at 1545 nm. The output intensity is approximately a periodic function of 
temperature. The period is 16 oC and temperature increases from 45.5 oC to 61.5 oC in a 
period. This behavior can be explained by the periodic property of the FLM. Since the 
transmission spectrum of the FLM is approximately a periodic function of the wavelength, 
the peaks of the FLM enter, then shift outside the pass-band of the filter one by one when 
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the peaks of the FLM shift to shorter wavelengths with temperature increasing. Therefore, 
the intensity of the output light changes periodically with temperature increasing. The 
change in the transmission wavelength of the FLM is 13nm corresponding to 16 oC 
temperature period, which is consistent with the wavelength spacing of 13 nm between the 
transmission peaks of the FLM. In order to certify the explaining, we take out the band-pass 
filter and measure the transmission spectra of the output signal at three different 
temperatures, which are marked in Fig.26.  

 

 
Fig. 25. Transmission spectra of the FLM, the PCF-LPG and output signal when temperature 
is applied to the sensing head.  
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Fig. 26. The relationship of the output power and temperature when the band-pass filter is 
with a central a wavelength 1545 nm and FWHM 12.66nm. 
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intensity of the resonant peak1 increases while the resonant peaks shift to shorter 
wavelength with temperature increasing. Therefore, when a band-pass filter is used, as 
shown in Fig.23, the part of the output light outside the band of the filter is attenuated 
owing to the function of the band-pass filter. And the intensity of the remainder will change 
with the transmission peak of the HiBi-FLM shifting. Therefore, converting the wavelength 
variation of the HiBi-FLM into intensity variation at the output directly is realized. 

 
Fig. 23. Transmission spectra of the FLM, the PCF-LPG and the output signal. Gray region is 
transmission spectra of the sensor with band-pass filter. 

 
Fig. 24. Transmission spectra of the band-pass filters used in the experiment. 

Fig.26 shows the relationship of the output intensity of the sensing system with temperature 
applied on the FLM, when the filter was chosen with a FWHM 12.66 nm and a center 
wavelength at 1545 nm. The output intensity is approximately a periodic function of 
temperature. The period is 16 oC and temperature increases from 45.5 oC to 61.5 oC in a 
period. This behavior can be explained by the periodic property of the FLM. Since the 
transmission spectrum of the FLM is approximately a periodic function of the wavelength, 
the peaks of the FLM enter, then shift outside the pass-band of the filter one by one when 
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Fig. 26. The relationship of the output power and temperature when the band-pass filter is 
with a central a wavelength 1545 nm and FWHM 12.66nm. 
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Fig.27 shows the transmission spectra of the HiBi-FLM, the PCF-LPG, and the output 
signal without the band-pass filter when temperature is applied at 40 oC, 45.5 oC and  
53.5 oC, respectively. The region between the dotted lines is the bandwidth of the  
band-pass filter. It is clear that the peaks of the FLM shift inside and outside the filter  
with temperature increasing. Due to the filtering function of the PCF-LPG, the intensity  
of the output is decided by the location of the FLM’s peak in the band of the filter.  
When the peak is located within a shorter wavelength of the LPG’s transmission 
spectrum, in which a higher transmission is provided, the intensity of the output is larger, 
as shown in Fig.27 (a) and (c). Obviously, Fig.27 (b) shows the opposite situation. In  
this case, the peak of the FLM in the filter is near to the transmission dip of the PCF-LPG, 
thus the intensity of the output is lowest. As shown in Fig.26, the relationship is virtually 
proportional for temperature from 45.5 oC to 53.5 oC. In this temperature range (8 oC),  
the intensity change of the output power is 4.137 dB and the change in the transmission 
wavelength of the FLM is ~6.52 nm which is about half period of the FLM. The  
fitting function can be written as 3 20.0227 3.3477 163.52 2636.6y x x x     with the fitting 
degree of 2 0.9978R  . The average sensitivity of the proposed FLM temperature sensor  
is about 0.783 dB/ oC. When using a power meter with the resolution of 0.01dBm,  
the temperature resolution is obtained 0.013 oC. The measured temperature range  
is decided by the wavelength spacing between transmission peaks of the FLM  
which is given by λ2/ΔnL, where λ, Δn, and L are the wavelength, the birefringence and 
the length of the HiBi fiber, respectively. So we can widen the measured temperature 
range by shortening the length of the FLM. At the same time, a shorter sensor head is 
convenient in some applications, even though the sensitivity of the sensor will be 
decreased.  

In order to study the effect of the band-pass filter on the sensing performance, several 
band-pass filters with a center wavelength 1545 nm are used, whose FWHM are 8.3 nm, 
6.66 nm and 3 nm, respectively. A serial of experiments are carried out in the same way. 
Fig.28 shows the relationships of the output intensity and temperature when different 
filters are used. It is clear that all of them are periodic function and temperature period is 
16 oC. The working range of the positive variation region is 8 oC, which is consistent with 
that of the filter with FWHM 12.66nm. This is because that the wavelength spacing 
between the transmission peaks of the FLM is not changed all the times. However, they 
have shown two marked differences: monotone interval and the output intensity range. 
Table I shows the properties of the proposed FLM temperature sensor when different 
filters are used.  

From Table I, it can be concluded that the average sensitivity of the sensor is higher and the 
starting temperature of the monotone interval is lower when a filter with a narrower 
bandwidth is chosen. The reason is that, the transmission peak of the FLM shifts outside the 
filter band earlier and faster, the monotonicity of the relationship curve will change earlier 
and the output intensity range will vary larger, and the average sensitivity is also lager 
because of the same temperature range. When the filter is chosen a FWHM 3 nm with a 
center wavelength at 1545nm, the average sensitivity of the proposed FLM temperature 
sensor is about 1.742dB/oC. When a power meter with the resolution of 0.01dBm is used, the 
temperature resolution is obtained 0.006 oC. 
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Fig. 27. Transmission spectra of the HiBi-FLM, the PCF-LPG and the output signal when 
temperature applied on the sensor element is (a) 40°C, (b) 45.5°C, and (c) 53.5°C.  
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Fig. 28. The relationships of the output power and temperature when different lters are 
used. 
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Fig.27 shows the transmission spectra of the HiBi-FLM, the PCF-LPG, and the output 
signal without the band-pass filter when temperature is applied at 40 oC, 45.5 oC and  
53.5 oC, respectively. The region between the dotted lines is the bandwidth of the  
band-pass filter. It is clear that the peaks of the FLM shift inside and outside the filter  
with temperature increasing. Due to the filtering function of the PCF-LPG, the intensity  
of the output is decided by the location of the FLM’s peak in the band of the filter.  
When the peak is located within a shorter wavelength of the LPG’s transmission 
spectrum, in which a higher transmission is provided, the intensity of the output is larger, 
as shown in Fig.27 (a) and (c). Obviously, Fig.27 (b) shows the opposite situation. In  
this case, the peak of the FLM in the filter is near to the transmission dip of the PCF-LPG, 
thus the intensity of the output is lowest. As shown in Fig.26, the relationship is virtually 
proportional for temperature from 45.5 oC to 53.5 oC. In this temperature range (8 oC),  
the intensity change of the output power is 4.137 dB and the change in the transmission 
wavelength of the FLM is ~6.52 nm which is about half period of the FLM. The  
fitting function can be written as 3 20.0227 3.3477 163.52 2636.6y x x x     with the fitting 
degree of 2 0.9978R  . The average sensitivity of the proposed FLM temperature sensor  
is about 0.783 dB/ oC. When using a power meter with the resolution of 0.01dBm,  
the temperature resolution is obtained 0.013 oC. The measured temperature range  
is decided by the wavelength spacing between transmission peaks of the FLM  
which is given by λ2/ΔnL, where λ, Δn, and L are the wavelength, the birefringence and 
the length of the HiBi fiber, respectively. So we can widen the measured temperature 
range by shortening the length of the FLM. At the same time, a shorter sensor head is 
convenient in some applications, even though the sensitivity of the sensor will be 
decreased.  

In order to study the effect of the band-pass filter on the sensing performance, several 
band-pass filters with a center wavelength 1545 nm are used, whose FWHM are 8.3 nm, 
6.66 nm and 3 nm, respectively. A serial of experiments are carried out in the same way. 
Fig.28 shows the relationships of the output intensity and temperature when different 
filters are used. It is clear that all of them are periodic function and temperature period is 
16 oC. The working range of the positive variation region is 8 oC, which is consistent with 
that of the filter with FWHM 12.66nm. This is because that the wavelength spacing 
between the transmission peaks of the FLM is not changed all the times. However, they 
have shown two marked differences: monotone interval and the output intensity range. 
Table I shows the properties of the proposed FLM temperature sensor when different 
filters are used.  

From Table I, it can be concluded that the average sensitivity of the sensor is higher and the 
starting temperature of the monotone interval is lower when a filter with a narrower 
bandwidth is chosen. The reason is that, the transmission peak of the FLM shifts outside the 
filter band earlier and faster, the monotonicity of the relationship curve will change earlier 
and the output intensity range will vary larger, and the average sensitivity is also lager 
because of the same temperature range. When the filter is chosen a FWHM 3 nm with a 
center wavelength at 1545nm, the average sensitivity of the proposed FLM temperature 
sensor is about 1.742dB/oC. When a power meter with the resolution of 0.01dBm is used, the 
temperature resolution is obtained 0.006 oC. 
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Fig. 27. Transmission spectra of the HiBi-FLM, the PCF-LPG and the output signal when 
temperature applied on the sensor element is (a) 40°C, (b) 45.5°C, and (c) 53.5°C.  

 

-30

-25

-20

-15

-10

-5

0

40 45 50 55 60 65 70
Temperature(℃)

In
te

ns
ity

(d
B

)

FWHM=12.66nm
FWHM=8.3nm
FWHM=6.66nm
FWHM=3nm

 
Fig. 28. The relationships of the output power and temperature when different lters are 
used. 
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Table 1. Properties of the proposed FLM temperature sensor when different filters are used 

5.4 Demodulation based on a PCF-LPG with differential processing for a fiber loop 
mirror temperature sensor [47] 

Demodulation systems based on intensity measurement are widely used in optical sensors 
with simple structures and low costs. However, the sensing accuracy may be decreased 
since fiber sensor systems often include some noises due to light source fluctuations and all 
of power fluctuations in the system. In this part, the demodulation based on a PCF-LPG 
with differential processing for FLM temperature sensor was demonstrated to eliminate the 
noise of the sensor and raise the sensor accuracy. Utilizing the two linear regions of the 
transmission spectrum of the PCF-LPG, the variations of the FLM’s two resonant 
wavelengths, which are located respectively within the positive and negative linear region 
of the LPG’s transmission spectrum, are transferred effectively to the intensity variations at 
the same time. By differential processing of the two signals separated by two band-pass 
filters, the noise of the sensor is eliminated effectively since the two signals (also including 
the noise of fiber sensors) transmit through the same path. Experimental results show that 
the FLM temperature sensor with demodulation based on differential processing of the PCF-
LPG is stable. 

Fig.29 shows the experimental setup of a HiBi-FLM temperature sensor with the proposed 
demodulation system based on the PCF-LPG with differential processing. A broadband 
SLED launches into the HiBi-FLM sensor head. The transmitted light from the HiBi-FLM 
enters the PCF-LPG, and the output light is split into two beams by a 3 dB coupler, then the 
two beams enters the signal processing units via two band-pass filters, respectively. The 
demodulation system is constructed using a PCF-LPG, a 3 dB coupler and two band-pass 
filters with the full width at half maximum (FWHM) 6.66nm whose center wavelength are 
1542nm and 1561.77nm. By utilizing the stable filtering function of the PCF-LPG, the 
variations of the FLM’s resonant wavelengths with temperature, which are located within 
the positive and negative linear regions of the LPG’s transmission spectrum, respectively are 
transferred effectively to the intensity variations simultaneously. The intensity signals 
provided by the PCF-LPG are separated effectively by the two band-pass filters whose 
transmission spectra are shown as the gray regions in Fig. 30. Both signals W1 and W2 are 
related with the measurand, while they also may include the all of fluctuation of the sensor 
system. When monitoring W1 or W2, we can obtain the information of temperature applied 
on the FLM sensor, but the accuracy will be low due to the effect of noises. W1 and W2 are 
gotten at the same condition since the light from the broadband source passes through the 
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same path and input to the monitor. By use of the differential processing ΔW= (W1-W2) / 
(W1+ W2), the measurement is free from the effect of power fluctuations of the light source 
and any other noises.  

 
Fig. 29. Experimental setup of the proposed sensor  
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Fig. 30. Transmission spectra of the FLM, the PCF-LPG and the two band-pass filters  

Fig.31 shows the relationship of the intensity signal W1 located within a negative linear 
region of the LPG’s transmission spectrum with temperature applied on the FLM. When 
temperature changes from 47°C to 55°C, the intensity signal W1 will increase with 
temperature increasing, the sensitivity of the intensity signal W1 to temperature is about 
0.01034 mw/°C, and the fitting function can be written as Y=0.0003X3-0.0468X2+2.3668X- 
39.652 with the fitting degree of R2 = 0.9984. While the intensity signal W2 will decrease 
when temperature increasing, the sensitivity of which is about -0.00882 mw/°C, and the 
fitting function can be written as Y= - 0.0004X3 + 0.0572X - 2.8888 + 48.448 with the fitting 
degree of R2 = 0.9982, as shown in Fig. 32. Fig. 31 and Fig. 32 also show the relationship of 
the intensity signal W1 and W2 with temperature when the power of the light source 
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same path and input to the monitor. By use of the differential processing ΔW= (W1-W2) / 
(W1+ W2), the measurement is free from the effect of power fluctuations of the light source 
and any other noises.  

 
Fig. 29. Experimental setup of the proposed sensor  
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Fig. 30. Transmission spectra of the FLM, the PCF-LPG and the two band-pass filters  

Fig.31 shows the relationship of the intensity signal W1 located within a negative linear 
region of the LPG’s transmission spectrum with temperature applied on the FLM. When 
temperature changes from 47°C to 55°C, the intensity signal W1 will increase with 
temperature increasing, the sensitivity of the intensity signal W1 to temperature is about 
0.01034 mw/°C, and the fitting function can be written as Y=0.0003X3-0.0468X2+2.3668X- 
39.652 with the fitting degree of R2 = 0.9984. While the intensity signal W2 will decrease 
when temperature increasing, the sensitivity of which is about -0.00882 mw/°C, and the 
fitting function can be written as Y= - 0.0004X3 + 0.0572X - 2.8888 + 48.448 with the fitting 
degree of R2 = 0.9982, as shown in Fig. 32. Fig. 31 and Fig. 32 also show the relationship of 
the intensity signal W1 and W2 with temperature when the power of the light source 
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increases 10% and decreases 10%. It is clear that the measurement will deviate from true 
value and the accuracy of temperature sensor is low.   
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Fig. 31. Relationship of W1 and temperature when the power of light source changes 
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Fig. 32. Relationship of W2 and temperature when the power of light source changes.  

Fig.33 shows the relationship of the differential ΔW with temperature. The fitting function 
can be written as Y= -0.0075X3 + 1.138X2 - 57.382X + 959.39 with the fitting degree of  
R2 = 0.9976 when temperature rises from 47°C to 55°C. When the power of the light source 
increases 10%, keeps constant and decreases 10%, the relationship of the differential  
ΔW with temperature remains stable and the differential algorithm based on a PCF-LPG 
eliminates the noises effectively. When the power of the light source changes ±10%,  
the measured temperature is 49.83 °C and the relative error is 0.34%. Compared with  
the result without the differential ΔW, the accuracy of the HiBi-FLM sensor rises from 
~90.5% to ~99.7%. 
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Fig. 33. Relationship of ΔW and temperature when the power of light source changes. 

6. Summary 

In this chapter, we have presented the basic operation principle of LPGs, and demonstrated 
the special properties of PCF-LPGs. By use of a dispersion factor  , a deeper understanding 
of the behavior of LPG in the ESM-PCF has been achieved. Both the theoretical and 
experimental results clearly reveal the significant effect of the waveguide dispersive 
characteristics of the cladding modes on the strain and temperature characteristics of the 
LPG in the ESM-PCF. By selecting proper grating period, it is possible to design a LPG with 
specific strain and temperature properties.  

We have shortly reviewed PCF-LPG fabrication methods and mainly described the 
fabrication method by using a CO2 laser. The PCF-LPG fabricated under the theoretical 
design shows a good agreement with the theoretical predictions. Finally, applications of the 
PCF-LPG in optical fiber sensors have been demonstrated and discussed fully.  
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increases 10% and decreases 10%. It is clear that the measurement will deviate from true 
value and the accuracy of temperature sensor is low.   
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Fig. 31. Relationship of W1 and temperature when the power of light source changes 
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Fig. 32. Relationship of W2 and temperature when the power of light source changes.  

Fig.33 shows the relationship of the differential ΔW with temperature. The fitting function 
can be written as Y= -0.0075X3 + 1.138X2 - 57.382X + 959.39 with the fitting degree of  
R2 = 0.9976 when temperature rises from 47°C to 55°C. When the power of the light source 
increases 10%, keeps constant and decreases 10%, the relationship of the differential  
ΔW with temperature remains stable and the differential algorithm based on a PCF-LPG 
eliminates the noises effectively. When the power of the light source changes ±10%,  
the measured temperature is 49.83 °C and the relative error is 0.34%. Compared with  
the result without the differential ΔW, the accuracy of the HiBi-FLM sensor rises from 
~90.5% to ~99.7%. 
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Fig. 33. Relationship of ΔW and temperature when the power of light source changes. 
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1. Introduction  
The fiber lasers have some advantages compared to bulk-optics systems like compact size, 
high efficiency and high beam quality. The lasers in time-domain can be categorized into 
two groups “continuous wave fiber lasers” or “pulsed fiber lasers”, and in wavelength 
domain as single wavelength or multi-wavelength. Such lasers were made as early as 1976 
and have remained an active topic of study since then [2, 3]. Fiber lasers can be used to 
generate CW radiation as well as ultra-short optical pulses. The wavelength division 
multiplexing (WDM) techniques have shown to unlock the available fiber capacity and to 
increase the performances of broadband optical access networks. One of the essential 
components is the creation of new low-cost laser sources. Candidates for such applications 
are multi-wavelength fiber ring lasers as they have simple structure, are low cost, and have 
a multi-wavelength operation. 

Recently, multi-wavelength lasers have caused considerable interests due to their potential 
applications such as WDM systems, fiber sensors and fiber-optics instrumentations. 
Requirements for multi-wavelength sources include; stable multi-wavelength operation, 
high signal to noise ratio and channel power flattening. Compared to a system that uses a 
number of discrete semiconductor diode laser [4], it is physically simpler to produce a 
multiple wavelength source using a single gain medium including a wavelength selective 
element. In order to define lasing wavelengths, wavelength selective comb filters have been 
included in the laser cavity. A multi-wavelength laser is highly desirable for the cost and 
size reduction, improvement of system integration and compatible with optical 
communication networks. For the past one decade or so, EDFs have been extensively 
studied and developed as a gain medium for the multi-wavelength laser.  

In Erbium doped fiber laser (EDFL), the Erbium ions possess split Stark sublevels with 
multiple allowed transitions possibility of having oscillations at more than one wavelength. 
Therefore, the multi-transitions can be achieved in this fiber laser due to the depletion of 
Stark sub-levels which is selective and depends on the polarization of the wave. However, 
the outputs of the EDFLs are not stable at room temperature due to homogeneous 
broadening of lasing modes [5]. To increase the in-homogeneity one can cool Er+3 doped 
fiber at liquid nitrogen temperature [6, 7]. Generally, in order to produce the multi-
wavelength, we have to employ intra-cavity filter in the EDFL cavity. In some works, a 
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1. Introduction  
The fiber lasers have some advantages compared to bulk-optics systems like compact size, 
high efficiency and high beam quality. The lasers in time-domain can be categorized into 
two groups “continuous wave fiber lasers” or “pulsed fiber lasers”, and in wavelength 
domain as single wavelength or multi-wavelength. Such lasers were made as early as 1976 
and have remained an active topic of study since then [2, 3]. Fiber lasers can be used to 
generate CW radiation as well as ultra-short optical pulses. The wavelength division 
multiplexing (WDM) techniques have shown to unlock the available fiber capacity and to 
increase the performances of broadband optical access networks. One of the essential 
components is the creation of new low-cost laser sources. Candidates for such applications 
are multi-wavelength fiber ring lasers as they have simple structure, are low cost, and have 
a multi-wavelength operation. 

Recently, multi-wavelength lasers have caused considerable interests due to their potential 
applications such as WDM systems, fiber sensors and fiber-optics instrumentations. 
Requirements for multi-wavelength sources include; stable multi-wavelength operation, 
high signal to noise ratio and channel power flattening. Compared to a system that uses a 
number of discrete semiconductor diode laser [4], it is physically simpler to produce a 
multiple wavelength source using a single gain medium including a wavelength selective 
element. In order to define lasing wavelengths, wavelength selective comb filters have been 
included in the laser cavity. A multi-wavelength laser is highly desirable for the cost and 
size reduction, improvement of system integration and compatible with optical 
communication networks. For the past one decade or so, EDFs have been extensively 
studied and developed as a gain medium for the multi-wavelength laser.  

In Erbium doped fiber laser (EDFL), the Erbium ions possess split Stark sublevels with 
multiple allowed transitions possibility of having oscillations at more than one wavelength. 
Therefore, the multi-transitions can be achieved in this fiber laser due to the depletion of 
Stark sub-levels which is selective and depends on the polarization of the wave. However, 
the outputs of the EDFLs are not stable at room temperature due to homogeneous 
broadening of lasing modes [5]. To increase the in-homogeneity one can cool Er+3 doped 
fiber at liquid nitrogen temperature [6, 7]. Generally, in order to produce the multi-
wavelength, we have to employ intra-cavity filter in the EDFL cavity. In some works, a 
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polarization controller (PC) is used in the cavity to change both the number of lasing lines 
and spacing of the multi-wavelength laser [8, 9]. 

There are also other methods to get simultaneous multi-wavelength outputs such as multi-
wavelength Raman lasers [10, 11], multi-wavelength generation using semiconductor optical 
amplifiers (SOA) [12] and multi-wavelength Brillouin fiber lasers (BFLs) [13,14]. Special 
fibers such as dispersion compensating fibers (DCFs) have been used to increase the Raman 
gain in multi-wavelength Raman fiber lasers where the output power are limited only by 
the available pump sources [15]. Furthermore, the BFL is easier to be generated due to the 
lower threshold pump power [16]. 

Of the various approaches, the interest on the multi-wavelength fiber laser is increasing due 
to the improvements in number of lasing lines and power flatness. Furthermore, the 
Brillouin Erbium fiber laser (BEFL) is easier to be generated due to the lower threshold 
pump power for achieving the stimulated fiber laser [17]. Recently, the hybrid of EDFAs and 
new compact optical fibers like PCFs as a gain medium have many applications for 
producing amplifiers and fiber lasers. 

2. Photonic crystal fiber ring laser  
Photonic crystal fibers (PCFs) have generated great interest over the past few years, growing 
from a research-oriented field to a commercially available technology. The PCFs were first 
developed by Philip Russell in 1998, and can be designed to possess enhanced properties 
over (normal) optical fibers. They can be divided into two fundamental classes, solid-core 
and hollow-core as shown in Figure 1. 

                   
 
 
 
 
 
 
 
 
     
Fig. 1. Photonic Crystal Fibers Types, (a) Solid core PCF, (b) Hollow core PCF. 

The solid core PCF is used in this report that is two dimensions (it has a periodic geometry 
in two directions and is homogeneous in the third) and we already introduced physical 
properties of that in table 1.  

Figure 2 shows an electron micrograph of the cross section of this solid core PCF. Despite 
the hexagonal structure of the cladding, the mode field is very similar to that of the 
fundamental mode of a conventional fiber. The optical properties of PCFs rely on the 
specification of the size, shape and arrangement of the holes that surround a solid core to 
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form a cladding. These parameters can easily be tailored to increase fiber nonlinearity, 
which is difficult to achieve using conventional fibers. 
 

Fiber Type PCF Bi-EDF 
Length(m) 20 2.15 
Numerical Aperture (NA) 0.2 0.2 
Core( μm ) 4.8 5.4 
Cladding( μm ) 125 125.7 
Mode field diameter( μm ) 4.2 6.12 
Zero dispersion wavelength(nm) 1040 1513 
Cut off wavelength (nm) 1000 1180 
Effective area(μm)2 27.5 29.4 
V-number 1.94 2.18 
Material Pure silica Bi2o3-Er doped 

Insertion loss (dB) ~2@1.06µm           
~1.5@1.55µm 

0.82@1.55 µm 
1.18@1.48 µm 

Brillouin gain, gB(m/W) 5×10-7 3.8×10-7 
Chromatic dispersion @1550nm 
(ps/nm.Km) ~70 -120 

Refractive index of core/cladding at 
1.55 μm 1.46/1.45 2.03/2.02 

Nonlinear coefficient,  
(w.km)-1@1550nm ~33.8 ~60 

Table 1. The physical parameters of PCF and Bi-EDF 

 
Fig. 2. The Scanning Electron Micrograph (SEM) of the PCF cross section and an enlarged 
view of the central “holey” cladding. 

The highly nonlinear PCFs have many applications such as wavelength conversion [18] and 
Brillouin fiber lasers (BFLs) [13]. So far, few reports have been published on the Brillouin 
effects in PCFs [18, 19, 20]. The stimulated Brillouin scattering (SBS) is a nonlinear effect that 
results from the interaction between intense pump light and acoustic waves in a fiber, thus 
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giving rise to backward propagating frequency shifted light [13]. In BFL applications, the 
required gain medium length can be substantially reduced using a holey fiber to replace the 
conventional SMF-28 Fiber of Corning Inc.[21]. However, most of the earlier works on PCF 
based BFLs are mainly on a single wavelength operation [21]. 

In this research, the fibre ring structure based on PCF can be used to make a very stable 
wavelength and narrow line-width laser. A conceptual structure of such a laser is very 
similar to a fibre ring resonator. In the ring configurations, a very short length of PCF (20 m) 
is added in the ring cavity BEFL in the proposed configurations to achieve a stable single 
and multi-wavelength laser generation. 

3. Results and discussion 
Figure 3 shows the experimental setup of the proposed PCF-based BEFL. The ring resonator 
consists of a circulator, a 20 m long PCF, a polarization controller (PC), two isolators and a 
bi-directionally pumped 215 cm long Bi-EDF. The PCF used is a polarization maintaining 
type with a cut-off wavelength of 1000 nm, zero dispersion wavelength of 1040 nm, 
nonlinear coefficient of 33.8 (W.km)-1 at 1550 nm and a mode field diameter of 4.2 μm near 
zero dispersion wavelength. The Bi-EDF is pumped bi-directionally using two 1480 nm 
lasers. Optical isolators are used to block the Brillouin pump (BP) from oscillating in the 
cavity and also to ensure a unidirectional operation of the BFL. The PC is used to control the 
birefringence (breakage of a light ray into two different directions therefore creating two 
separate light rays) of the ring cavity, so that the power of the laser generated can be 
controlled. The experiment executed using 3 different types of couplers the 80/20, 90/10 
and 95/5 and the output for BFL is tapped from the leg with the smaller coupler ratio before 
it is characterized using an optical spectrum analyzer (OSA). 

 

 

 

 

 

 
 

 

Fig. 3. Configuration of multi-wavelength BFL based PCF. 
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The BP is injected into the ring cavity and then PCF via the circulator to generate the 
backward propagating Stokes light at opposite direction. However, since the PCF length is 
not sufficient enough, the back-scattered light due to Rayleigh scattering is relatively higher 
than the Stokes light. Both back-scattered pump and the Stokes lights are amplified by the 
bi-directionally pumped Bi-EDF and it oscillates in the ring cavity to generate first Stokes in 
an anti-clockwise direction. This oscillation continues and when the intensity of the first 
Brillouin Stokes is higher than the threshold value for Brillouin gain, the second order SBS is 
generated in clockwise direction and this signal is blocked by the isolator in the cavity.  
However, the back-scattered light from second SBS will be amplified by the Bi-EDF. Hence, 
the nonlinear gain by both PCF and Bi-EDF only amplifies the Stokes light and thus the 
Stokes light is more dominant and laser is generated at the Stokes wavelength. The spacing 
between the BP and the BFL is obtained at approximately 10 GHz, which is equivalent to the 
Stokes shift in the single mode fiber (SMF).  

The operating wavelength of the BFL is determined by the bi-directionally pumped Bi-EDF 
gain spectrum which covers the L-band region from 1560 nm to 1620 nm as well as the 
cavity loss. For comparison and the effect of different cavity resonators, three kinds of 
output couplers selected. Figure 4 shows the free running spectrum of the BEFL, which is 
obtained by turning off the BP for three different output coupler ratios; 80/20, 90/10 and 
95/5. The output laser is taken from the leg with a lower portion. The peak wave generated 
at approximately 1574 nm with bandwidth of approximately 3 nm due to the difference 
between Bi-EDF’s gain and cavity loss is the largest in this region. The chosen BFL operating 
wavelength must be within or close to the bandwidth of free running BFL. Therefore, the BP 
is set within 1574 nm region which is within the lasing bandwidth of the free running BFL. 
At the coupling ratio of 80/20, the free-running BFL exhibits the highest peak power of 
approximately -6 dBm with 20 dB bandwidth of approximately 1 nm. The cavity loss is the 
lowest with 80/20 coupler and therefore the peak power is the highest.       

 
Fig. 4. Free-running spectrum of the BEFL using 80/20, 90/10 and 95/5 couplers. 
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Figures 5 (a), (b) and (c) show the output spectra of the BEFL at different output coupler 
ratios of 80/20, 90/10 and 95/5, respectively. The experiment was carried out for three 
different pump powers. Both the 1480 nm pumps are set at the same power and power of 
each pump is varied from 60 mW to 135 mW. The threshold of the BEFL is observed to be 
around 60 mW for all setups. At pump power below of 60 mW (threshold) the Erbium gain 
is very low and cannot sufficiently compensate for the loss inside the laser cavity and thus 
no Stokes are observed. When increasing the 1480 nm pump power the number of 
wavelength generated is increased and the anti-Stokes wave also surfaced, which attributed 
to the increment of the Erbium gain with the pump power. This situation provides sufficient 
signal for SBS as well as the four wave mixing (FWM) to generate Stokes and anti Stokes.  

Besides that SBS, the Kerr effect or the quadratic electro-optic effect (QEO effect) was found 
in 1875 by John Kerr, a Scottish physicist. The Kerr effect describes a change in the refractive 
index of a material in response to an intense electric field. The index change is directly 
proportional to the square of the electric field instead of the magnitude of the field. In Kerr 
effect, the nonlinear phase shift induced by an intense and high power pump beam is used 
to change the transmission of a weak probe through a nonlinear medium [7] as such as PCF 
and Bi-EDF. Thus the change in the refractive index is proportional to the optical intensity 
and lead to nonlinear scattering and frequency shift. 

However, the FWM is another nonlinear effect, which is due to the third-order electric 
susceptibility is called the optical Kerr effect. The FWM is a type of optical Kerr effect, and 
occurs when light of two or more different wavelengths is launched into a fiber. FWM is 
also a kind of optical parametric oscillation [22]. 

The FWMs in PCFs can occur at relatively low peak powers and over short propagation 
distances, and such processes can be possible in a much wider wavelength range (e.g. more 
than 120 nm). The FWM can be very efficient at the zero-dispersion wavelength. Besides the 
obvious advantage of shorter fiber requirement; the use of PCF would allow the operation 
of these nonlinear devices in the wavelength regime outside that of possible using 
conventional fibers. This is because, PCFs can have zero dispersion wavelength ranging 
from 550- 1550 nm. 

In this experiment, more than 13 lines are obtained at the maximum 1480 nm pump power 
of 135 mW with wavelength spacing of approximately 0.08 nm for the BEFL configured with 
95/5 output coupler as shown in Figure 5(c). Below of this input power, the number of lines 
decreased by 95/5 output couplers as such as Figures 5(a and b) which shows more 
restoratively in this kind coupler. However, the number of lines significantly reduced as the 
cavity loss increases. For instance, only two Stokes are observed with 80/20 coupler as 
shown in Figure 5(a). The side mode suppression ratio, which is defined as the power 
difference between the BFL’s peak and the second highest peak (SMSR) are obtained at 
approximately 27.0 dB, 26.9 dB, 18.8 dB for 80/20, 90/10 and 95/5 couplers, respectively as 
shown in Figure 5. The multi-wavelength output of the BFL is observed to be stable at room 
temperature with only minor fluctuations observed coinciding with large temperature 
variances. The side modes are mainly due to anti Stokes and additional Stokes of the BFL, 
which arises due to FWM effect in the PCF. 

The extremely FWM effect in PCF leads to the generation of a wave whose spectrum is  
the “mirror image” of the weak wave, in which the mirroring occurs about the pump  

 
Multi-Wavelength Photonic Crystal Fiber Laser 

 

259 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The BFL output spectrum for (a) 80/20 coupler, (b) 90/10 coupler and (c) 95/5 
coupler. Both pumps are at the same power for each output coupling ratio. 

frequency. The representation of this image can be observed in Figures 5 where the multi-
wavelength spectrum is more symmetry with the use of 95/5 output coupler. 
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Figure 6 shows the peak power of the first Stokes for different couplers against the input 
1480 nm pump power of each pump (total pump power is double). The BP power and 
wavelength is fixed at 5 dBm and 1574 nm, respectively. The BEFL starts to lase at 1480 
nm pump power of 60 mW which is the threshold power. Below this power, the Erbium 
gain is very low and cannot sufficiently compensate for the loss inside the laser cavity and 
thus no Stokes is observed. The output power saturates at 135 mW. As shown in the 
figure, the peak power is highest with 80/20 coupler and lowest with 95/5 coupler. 
Hence, we observed higher SMSR in Figure 5(a). Inset of Figure 6 shows the peak power 
of the first Stokes against the BP power at various output couplers. This figure shows that 
the threshold power of around 4~5dBm is required to generate the Stokes with the use of 
95/5 output coupler. The threshold power reduces as smaller portion of light is allowed 
to oscillate in the ring cavity. For instance the threshold power is about 2 dBm with 80/20 
output coupler. 
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Fig. 6. Output peak power as a function of 1480 nm total pump powers. Inset shows the 
peak power against BP power. 

In this area research, we also compared the results by another ring resonator based PCF. The 
second experimental setup for the proposed BFL is shown in Figure 7. The ring resonator is 
similar to figure 3 but consists of a forward pumped Bi-EDF and only 10 dB output coupler. 
The Bi-EDF is 49 cm in length and has a nonlinear coefficient of 60 W−1km−1 at 1550 nm, an 
erbium concentration of 3250 ppm and a cut-off wavelength of 1440 nm as well as a pump 
absorption rate of 83 dB/m at 1480 nm as the same of 215 cm long of Bi-EDF.  
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Figure 6 shows the peak power of the first Stokes for different couplers against the input 
1480 nm pump power of each pump (total pump power is double). The BP power and 
wavelength is fixed at 5 dBm and 1574 nm, respectively. The BEFL starts to lase at 1480 
nm pump power of 60 mW which is the threshold power. Below this power, the Erbium 
gain is very low and cannot sufficiently compensate for the loss inside the laser cavity and 
thus no Stokes is observed. The output power saturates at 135 mW. As shown in the 
figure, the peak power is highest with 80/20 coupler and lowest with 95/5 coupler. 
Hence, we observed higher SMSR in Figure 5(a). Inset of Figure 6 shows the peak power 
of the first Stokes against the BP power at various output couplers. This figure shows that 
the threshold power of around 4~5dBm is required to generate the Stokes with the use of 
95/5 output coupler. The threshold power reduces as smaller portion of light is allowed 
to oscillate in the ring cavity. For instance the threshold power is about 2 dBm with 80/20 
output coupler. 
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Fig. 6. Output peak power as a function of 1480 nm total pump powers. Inset shows the 
peak power against BP power. 
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Fig. 8. Free-running spectrum of 49 cm of Bi-EDF and PCF. 
 

 
Fig. 9. Output spectrum of the proposed Bi-EDF and PCF based Brillouin fiber laser. 
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loss which is lower at the longer wavelength. Figure 9 compares the BP and output 
spectrum of the proposed BFL. The 1480 nm pump power is fixed at 150 mW. The BFL is 
achieved at 1559.09 nm with the peak power of approximately –12.3 dBm when the injected 
BP is set at 0 dBm. The 3 dB bandwidth of the BFL is measured to be approximately 0.02 nm 
limited by the OSA resolution. The SMSR is obtained at approximately 12 dB as shown in 
Figure 9. The anti-Stokes is also observed which arises due to FWM effect in the ring cavity. 

However, the stimulated single wavelength BFL is obtained due to the SBS effect, which is 
more dominant especially in the PCF. The BFL output is observed to be stable at room 
temperature too. 

4. Conclusion 
In summary, new configurations of BFL are proposed and demonstrated using a PCF in 
conjunction with uni- and bi-directionally pumped Bi-EDF. By employing PCF ring 
configuration, more than 13 lines are obtained at the maximum 1480 nm pump power of 135 
mW as shown in Figure 5(c). The wavelength spacing of setups is nearly between to 0.08- 
0.09 nm for the BEFL. The acceptable side mode suppression ratio (SMSR) are obtained in 
both configurations by 90/10 output coupler are approximately 26.9 dB and 12 dB, 
respectively. The side modes are mainly due to anti Stokes and additional Stokes of the BFL 
in the PCF. Despite of this, the 80/20 output coupler demonstrated the lowest cavity loss 
and the highest SBS in the peak power.  

The BFL uses a ring cavity structure to generate Stokes and anti-Stokes via stimulated 
Brillouin scattering (SBS) and FWM processes. Hence, two nonlinear effects of SBS and 
FWM are extremely affective on ring fiber laser based PCF. The single- and multi-
wavelength BFL are stable at room temperature with only minor fluctuations observed 
coinciding with large temperature variances and also is compact due to the use of only 20 m 
long of PCF and short long of Bi-EDF. 
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loss which is lower at the longer wavelength. Figure 9 compares the BP and output 
spectrum of the proposed BFL. The 1480 nm pump power is fixed at 150 mW. The BFL is 
achieved at 1559.09 nm with the peak power of approximately –12.3 dBm when the injected 
BP is set at 0 dBm. The 3 dB bandwidth of the BFL is measured to be approximately 0.02 nm 
limited by the OSA resolution. The SMSR is obtained at approximately 12 dB as shown in 
Figure 9. The anti-Stokes is also observed which arises due to FWM effect in the ring cavity. 

However, the stimulated single wavelength BFL is obtained due to the SBS effect, which is 
more dominant especially in the PCF. The BFL output is observed to be stable at room 
temperature too. 

4. Conclusion 
In summary, new configurations of BFL are proposed and demonstrated using a PCF in 
conjunction with uni- and bi-directionally pumped Bi-EDF. By employing PCF ring 
configuration, more than 13 lines are obtained at the maximum 1480 nm pump power of 135 
mW as shown in Figure 5(c). The wavelength spacing of setups is nearly between to 0.08- 
0.09 nm for the BEFL. The acceptable side mode suppression ratio (SMSR) are obtained in 
both configurations by 90/10 output coupler are approximately 26.9 dB and 12 dB, 
respectively. The side modes are mainly due to anti Stokes and additional Stokes of the BFL 
in the PCF. Despite of this, the 80/20 output coupler demonstrated the lowest cavity loss 
and the highest SBS in the peak power.  

The BFL uses a ring cavity structure to generate Stokes and anti-Stokes via stimulated 
Brillouin scattering (SBS) and FWM processes. Hence, two nonlinear effects of SBS and 
FWM are extremely affective on ring fiber laser based PCF. The single- and multi-
wavelength BFL are stable at room temperature with only minor fluctuations observed 
coinciding with large temperature variances and also is compact due to the use of only 20 m 
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1. Introduction 
A photonic crystal (PC) is a periodic structure whose refraction index of the material is 
periodically modulated on the wavelength scale to affect the electromagnetic wave 
propagation by creating photonic band gaps. In 1887, Lord Rayleigh is the first to show a 
band gap in one-dimensional periodic structures i.e. a Bragg mirror. In 1987, Eli 
Yablonovitch and Sajeev John have extended the band gap concept to the two and three-
dimensional structures and for the first time, they use the term "photonic crystal" 
(Yablonovitch, 1987; John, 1987).  

Progress in computational methods for the photonic crystals is understood through an 
historical review (Oyhenart, 2005). At the beginning of research in the photonic crystals, the 
purpose was to find a structure with complete band gap by improving the computational 
methods. In 1988, John shows theoretically by the scalar method of Korringa-Kohn-Rostoker 
(KKR) that the face centered cubic lattice (FCC) has a complete band gap between the 
second and the third band. One year later, Yablonovitch builds this structure and finds a 
band gap experimentally but the W-point raises a problem. In 1990, Satpathy et al. and 
Leung et al. confirm the complete band gap by the scalar plane wave method (PWM). A few 
months later, these two teams improve their methods to obtain vectorial PWM on D and E 
fields. They find that FCC structure does not have complete band gap because W-point and 
U-point are degenerate. With these results, the editor of the journal "Nature" writes 
“Photonic Crystals bite the dust” (Maddox, 1990). Only two weeks later, Ho et al. created the 
vectorial PWM on H and they do not find the complete band gap in FCC structure but they 
show a complete band gap in the diamond lattice. In 1992, Sözuer et al. improve 
convergence of the PWM and they obtain a complete band gap for FCC lattice between 8th 
and 9th band. This structure that has caused many discussions has a complete band gap but 
not where it was expected.  

To study and understand the propagation of the electromagnetic fields in the photonic 
crystals, computational methods were improved by using their symmetries and 
periodicities. We will study the classical methods for microwave devices such as the finite 
element method and the finite difference time domain. After some modifications of these 
methods, we obtain the band structure of PC which can be calculated by the methods 
from the solid state physics. For example the plane wave method, the tight binding 
method and the multiple-scattering theory will be studied. All these computational 
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methods will be presented in this article and a PC example will be studied to compare 
these methods. 

2. Equations, symmetries and periodicities in photonic crystals 
2.1 Equations in photonic crystals 

The Maxwell equations without sources control the electromagnetic wave propagation  
in PC.  
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In these laws, the same physical behavior is observed if we change simultaneously the 
wavelength and the structure dimensions in the same proportions. Therefore, it is 
convenient to introduce a normalized wavelength λ0/a and a normalized frequency  
af/c= a/λ0, with a the lattice constant of the photonic crystal (Joannopoulos et al., 2008).  

Some methods do not solve the Maxwell equations directly but they use the Helmholtz 
equations, for example the E-wave equation or the H-wave equation: 
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Equations number to be solved depends on dimension of the photonic crystal.  In the two-
dimensional case, the problem is simplified. It is assumed that the materials are uniform 
along z-axis. It follows that the fields are uniform and the partial derivatives with respect to 
the variable z vanish. The previous equation is simplified and split-up into TE-polarization 
and TM-polarization; we have a scalar equation for each polarization: 
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The computation time decreases exponentially compared to the three-dimensional case. In 
the one-dimensional case, the problem is even more simplified. If the materials are uniform 
along x-axis and y-axis, we solve analytically one second-order equation: 
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2.2 Symmetries of photonic crystals 

Like all sets of differential equations, Maxwell's equations cannot be uniquely solved 
without a suitable set of boundary conditions. Photonic crystals have symmetries which 
define boundary conditions. Symmetries of the structure are not a sufficient condition to 
reduce the computational domain; the electromagnetic field must be also symmetrical. On 
figure 1, we study symmetries on a lattice of cylinders for different polarization of the 
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incident wave. In the first case, we apply a TM incident wave on the lattice with a horizontal 
symmetry and the tangential magnetic field vanishes on the axis of symmetry. We put 
perfect magnetic conductor (PMC) as boundary condition on the symmetry axis and we 
study only half top or bottom of the problem. In the second case, we apply a TE incident 
wave. Similarly, we reduce the problem with a perfect electric conductor condition (PEC). 

 
Fig. 1. Both kinds of lateral symmetries 

On figure 1, the geometry has also a vertical symmetry. However, the electromagnetic field 
is not symmetrical because the incident wave comes only from the left side. A solution is to 
divide the incident wave into an even mode and an odd mode (figure 2). For the even mode, 
we have a vertical symmetry plane of the electric field. Only the left or right part is solved 
with a perfect magnetic conductor condition on the axis of symmetry. The antisymmetric 
problem is reduced in the same way with a perfect electric conductor condition. The sum of 
the symmetric and antisymmetric problem provides the solution of the total problem. The 
reflection of total problem is the sum reven + rodd and the transmission is the subtraction reven - 
rodd. Two half-problems are solved more quickly than the whole problem because the 
computation time increases exponentially with the size of the problem. 

 
Fig. 2. Transverse symmetries of the problem 

2.3 Periodicities of photonic crystals 

Photonic crystals, like the familiar crystals of atoms have discrete translational symmetry T. 
The dielectric function is periodic therefore the electric and magnetic fields can be written as 
the product of a plane wave envelope and a periodic function: 
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methods will be presented in this article and a PC example will be studied to compare 
these methods. 

2. Equations, symmetries and periodicities in photonic crystals 
2.1 Equations in photonic crystals 

The Maxwell equations without sources control the electromagnetic wave propagation  
in PC.  
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In these laws, the same physical behavior is observed if we change simultaneously the 
wavelength and the structure dimensions in the same proportions. Therefore, it is 
convenient to introduce a normalized wavelength λ0/a and a normalized frequency  
af/c= a/λ0, with a the lattice constant of the photonic crystal (Joannopoulos et al., 2008).  

Some methods do not solve the Maxwell equations directly but they use the Helmholtz 
equations, for example the E-wave equation or the H-wave equation: 
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dimensional case, the problem is simplified. It is assumed that the materials are uniform 
along z-axis. It follows that the fields are uniform and the partial derivatives with respect to 
the variable z vanish. The previous equation is simplified and split-up into TE-polarization 
and TM-polarization; we have a scalar equation for each polarization: 
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The computation time decreases exponentially compared to the three-dimensional case. In 
the one-dimensional case, the problem is even more simplified. If the materials are uniform 
along x-axis and y-axis, we solve analytically one second-order equation: 
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The result above is commonly known as Bloch's theorem in solid state physics (Kittel, 2005). 

If we apply these conditions to an infinite lattice of cylinders (figure 3a), the calculation of 
band structure is reduced to the study of a single cylinder. 

 
Fig. 3. Periodic boundary on photonic crystals 

Figure 3b is a lattice of cylinders, finite along y-axis and infinite along x-axis for studying the 
transmission of the structure. If we know the transfer matrix of one layer, it is easy to find 
the transmission of the total structure thanks to the transfer matrices method (TMM). It 
reduces the computational domain to one layer. It will be detailed in the next sections.  

By mixing TMM along y-axis and Bloch's conditions along x-axis, the structure of figure 3 
can be reduced to a single cylinder. Figure 4 summarizes these techniques in the 3D case. 

 
Fig. 4. Reduction of the calculation domain in PC 

3. Finite element method (FEM) 
The finite element method is very popular in mechanics and civil engineering. It was 
originally developed in the 40s to solve problems of mechanical structures. A few years 
later, it has been applied to electromagnetism. Since then, the finite element method 
extends to all branches of physics and engineering where there exists a partial differential 
equation (PDE) with boundary conditions. It can be formulated from the variational 
method or the weighted residual method. We will present in outline the second method 
which is simpler. 
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Let us consider a partial differential equation with   the differential operator of order n 
applied to a function φ and a source function f:  

 f   (6) 

The first step is to expand the function φ on a set of functions: 
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j are the chosen expansion functions and jc are constant coefficients to be determined. The 
best solution of the equation 6 is obtained when the residue r f    is weakest on all points 
of the domain . The weighted residual method requires this condition:  
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If we use the Galerkin method, the weight functions wi are the functions of previous 
interpolations and we write the problem in matrix form: 
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So now, we have to solve a linear system with cj unknowns where most of the entries of the 
matrix L are zero. Such matrices are known as sparse matrices, there are efficient solvers for 
such problems. 

The basic idea of the finite element method is to divide the computation domain into small 
subdomains, which are called finite elements, and then use simple functions, such as linear 
and quadratic functions, to approximate the unknown solution over each element. For plane 
geometries, the domain is divided into finite triangular sub-domains. For three-dimensional 
problems, the sub-domains are tetrahedra. These two- and three-dimensional finite elements 
are widely used because it is a variable mesh and adapts to curved structures.  

3.1 Transmission calculation of a photonic crystal 

The finite element method usually solves the E-wave equation for PC (equation 5): 
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For most of the finite elements computer programs, the frequency is fixed and the electric 
field is the unknown (Massaro et al., 2008). We use a commercial software, Ansys HFSS 
(High Frequency Structure Simulator). This three-dimensional computer program builds an 
adaptive tetrahedral mesh to model microwave devices, for example microstrips and 
antennas. These devices have a characteristic length lower than the wavelength of study. It 
is more difficult to study PC because it has a periodicity close to the wavelength and the 
matrix of calculation is large. To simplify calculations, we will study a periodic PC 
according to two directions of space. The directions where PC is infinitely periodic require 
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to study only one period according to this direction. Several methods exist to model these 
conditions.  

In the first method, the source is a plane wave and we use periodic boundary conditions 
(PBC) on lateral faces and absorbing boundary conditions (ABC) on bases. We study only 
one lateral period (figure 5). If the source has an oblique incidence, the phase shift is easily 
taken into account by PBC because the E-field is a complex vector in FEM. 

 
Fig. 5. Calculation of E-field in the PC with PBC, ABC and incident wave 

The second method requires a very different source, a wave port. This source is a semi-
infinite waveguide whose cross section is drawn on bases of structure. Propagative modes 
of this fictitious guide will be the source of the structure. For a plane wave source, we apply 
to lateral faces and on the fictitious guide the conditions PEC and PMC (figure 6). The 
source is transverse and has a normal incidence. It is not possible to change the angle of 
incidence without change the boundary conditions of the lateral faces. The PC studied on 
figure 5 can be reduced to quarter-spheres thanks to the symmetry of the fields at normal 
incidence. 

 
Fig. 6. Calculation of E-field in the PC with PEC, PMC and wave ports 

3.2 Band structure calculation 

The band structure shows the states which propagate in a PC. These states are differentiated 
by their frequency and their Bloch wave vector. FEM sets the wave vector and solves the 
wave equation to find the frequencies. There is no source, only boundary conditions to set 
because it is an eigenvalue problem. In the case of a cavity resonator, the boundary 
conditions of the domain are PEC. Whereas, for PC, we choose the Bloch conditions on all 
faces of the unit cell to set the wave vector. The phase shift of the Bloch conditions is set 
easily because the fields are complex vectors. The FEM calculates the band structure of 
dielectric with or without losses, metallic, and metallodielectric PC. Any material can be 
used by this method, it is the main advantage. 

In this chapter, we choose a photonic crystal to study, a cubic lattice with several layers of 
dielectric spheres which have a permittivity equal to 5.1 and radius equal to 0.4*a (a: lattice 

Wave port2  
Source 

Wave port1  

 

Lateral boundary conditions: 
 PEC on up and down faces  
 PMC on left and right faces  

AB
ABC k0 

E 

PBC on lateral faces

Source: incident wave  

 
Overview of Computational Methods for Photonic Crystals 

 

273 

constant). For the band structure, the number of layer is infinite, and for transmission 
calculation, we study four and eight layers. The structure is deliberately simple to be 
studied by all the methods. The band structure, the transmission coefficient in normal 
incidence and some modes of dielectric PC are plotted on figure 7. For normal incidence, the 
first two band gaps are found in the band structure and transmission curves. 

The first method with incident waves takes about 7 hours and 960 Mo of working memory 
on a personal computer to calculate the transmission of 8 layers i.e. 8 spheres. Whereas if we 
use the second method with the wave ports, the memory is reduced to 360 Mo and the CPU 
time is reduced to 8 min. To obtain this optimization, we reduced the geometry to four 
quarter-spheres thanks to symmetries and we use the Padé interpolation on frequencies. It is 
necessary to make optimizations if you want to use FEM. 

 
Fig. 7. Band structure and transmission coefficient of dielectric PC  

4. Finite-difference time-domain method (FDTD) 
Finite difference method is a numerical method for approximating differential equations 
using finite difference equations to approximate derivatives. This is very simple 
to implement but it has some limitations in the mesh geometries. In 1966, Yee proposed a 
finite difference scheme applied to electromagnetism. The FDTD was born (Taflove & 
Hagness, 2005). The success of this method is due to the scheme based on the Taylor series 
of second-order. For example, this method is used to model the effects of cellphones on the 
human body, antennas and printed circuits. The FDTD uses the two structural equations of 
Maxwell in a conducting, isotropic and homogeneous medium:  
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The FDTD uses an approximation of derivatives by centered finite differences. 
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Let us apply this approximation to one-dimensional case in order to understand the FDTD 
principle. The E and H-field are stepped in time and space. By replacing curls and 
derivatives, we obtain one-dimensional Yee scheme: 
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The E and H-field are staggered and updated step by step in time. E-field updates are 
conducted midway during each time-step between successive H-field updates, and 
conversely. This explicit time-stepping scheme avoids the need to solve simultaneous 
equations, and furthermore it is order N i.e. proportional to the size of the system to model. 
This scheme can be generalized for two-dimensional and three-dimensional problems. The 
Yee scheme is stable if the wave propagates from one cell to another with a speed less than 
the light (the Current-Friedrichs-Lewy condition). 

4.1 Calculation of transmission coefficient  

FDTD is used to study PC. Calculation domain of finite PC is surrounded by absorbing 
boundary conditions (ABC). The periodic infinite PC uses periodic boundary conditions 
(PBC) on the lateral faces (Figure 8). The source is Gaussian with a spectrum which extends 
on the frequency range to study. The fields are calculated on the time domain and we use 
the Fourier transform to convert them on frequency domain. 

 
Fig. 8. Source, probe and boundary conditions for infinite PC 

For the non-normal incidence, a simple periodic boundary condition cannot be applied but 
many methods exist to solve this problem. One method is to calculate the computing 
problem twice, with the sources cos(t) and sin(t). The addition of two calculations is the 
solution of the source exp(-it). Thanks to this source, we can apply the Bloch conditions on 
complex vector fields. This method is simplified for the study of band structure.  

Figure 9 plot the transmission coefficient for the previous dielectric PC. The transmission 
calculation of 8 layers is calculated in 32 minutes with 58 Mo of working memory. FDTD is 
faster than FEM but less accurate. 
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Fig. 9. Transmission coefficient of the dielectric PC 

4.2 Calculation of band structure 

The band structure is calculated from the eigenmodes but FDTD is not an eigenvalue 
problem. We use the unit cell of PC with boundary conditions of Bloch and several 
Gaussian functions for the source. We only need one calculation to apply the Bloch 
conditions. After 100000 time-steps of calculation, propagative waves are amplified and 
evanescent waves vanished. If the number of time steps is too small, the transmission 
peaks are widened, therefore imprecise. To reduce the number of time-steps without 
affecting the accuracy, we can use the Padé approximation or ADI-FDTD formulation 
(Taflove & Hagness, 2005). On Figure 10, we plot the electric field amplitude of the unit 
cell of PC. 

 
Fig. 10. Electric field amplitude of dielectric PC at the R-point of the Brillouin zone 

This curve is similar to the diffraction pattern in solid state physics. It is plotted for all 
points of the first Brillouin zone to view the band structure. If we compare the curve of 
figure 10 with the band structure calculated by the FEM, the mode 0.57 is much 
attenuated and the following mode does not exist on figure 10. In fact, the source was not 
correctly selected to excite these modes, and so we must ensure that the source excites all 
available modes. 
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attenuated and the following mode does not exist on figure 10. In fact, the source was not 
correctly selected to excite these modes, and so we must ensure that the source excites all 
available modes. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 

5 

10 

15 

20 

A
m

pl
itu

de
 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

0 0.2 0.4 0.6 0.8 1 

Tr
an

sm
is

si
on

 

af/c

4 layers 
8 layers 

af/c 



 
Photonic Crystals – Introduction, Applications and Theory 

 

276 

5. Finite-difference frequency-domain method (FDFD) 
We will study a finite difference method combined with transfer matrix method and the 
Fourier transform. The finite difference method substitutes the derivatives in PDE to obtain 
finite difference schemes. In electromagnetism, FDFD uses the structural equations of 
Maxwell on space (k, ) and applies approximations on the wave vector: 
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a,b,c are lattice constants along x, y and z-axis. We obtain discrete equations which are 
applied to one layer of the structure on a cubic lattice. In 1992, Pendry and MacKinnon 
(Pendry & MacKinnon, 1992) used this method with transfer matrix method (TMM) which 
extended the solution of one layer to the total structure. To apply TMM, the discrete 
equations must be written on real space. We obtain a set of equations where z-component of 
the E and H-fields can be removed. The six equations are reduced to four equations which 
are written in a matrix form: 

                 Tˆ ,   with 
r

x y x yc E E H H


      F r T r r F r F r r r r r   (15) 

5.1 Calculation of band structure 

The band structure is calculated from unit cell of structure by setting frequency and 
calculating wave vectors propagating in the unit cell. Bloch's theorem applies to vector F: 
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and' ,  '   'a a b b c c     are the mesh size along x, y and z-axis. The transfer matrix of 
the unit cell is written from the unit mesh: 
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1
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N

j j
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      F r T F r T T r r   (17) 

If the above equations are joined together, we have an eigenvalue problem: 
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  T F r F r   (18) 

We set the wave number k and the wavelength k0 to solve the eigenvalue problem. The 
eigenvalues kz having an imaginary part are eliminated because they are not propagating 
waves. The remaining eigenvalues gives us the band structure kz(k0).  
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5.2 Calculation of transmission coefficient 

The reflection and transmission calculation is performed using the transfer matrices. It is 
more interesting to calculate the elements of transmission matrix than the transmitted field 
in some points. The incident, reflected and transmitted waves are expanded on a plane-
wave basis sets thanks to the transfer matrices.  

ˆ
0T is the transfer matrix of a vacuum layer. The eigenvectors of ˆ

0T  define a plane-wave 
basis set: 
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The right and left eigenvectors are different because ˆ
0T  operator is not self-adjoint. They are 

expanded on the reciprocal space kx and ky and translate on the direct space with the Fourier 
transform because the transfer matrix is known in direct space. kz is found easily because we 
are in a vacuum layer. The transfer matrix T̂  is not compatible with the new plane-wave 
basis set, we convert this matrix:  

 ˆ
j i j i i j jil r l T r T l r T   

 

  T      (20) 

To calculate the transmission coefficient, this matrix is arranged to group the eigenvectors 
with the same propagation direction. This matrix is divided into four blocks: 

 11 12

21 22


 
 
 

T T
T

T T

 


    (21) 

TMM calculates the transmission coefficient of several layers from one layer (see  
1D-MST). A great number of layers can be calculated without increasing the computing 
power. 

Figure 11 plot the band structure and the transmission coefficient calculated by FDFD, for 
the previous dielectric PC. If we compares with figure 7, the first bands are correct but 
inaccuracies on the higher band after 0.6-frequency are due to the weak mesh (7x7x7 cells). 
If we increase the number of cells, accuracy increases. Calculation is more difficult for high 
frequencies because the E- and H-field are functions that oscillate more. The transmission 
calculation of 8 layers is calculated in 22 seconds with 3.3 Mo of working memory for 7x7x7 
cells. The computing time is low because only one sphere is actually calculated thanks 
TMM. 

6. Finite Integration Technique (FIT) 
In 1977, Weiland proposes a spatial discretization scheme to solve the integral equations of 
Maxwell (Weiland, 1977). This scheme called Finite Integration Technique (FIT) can be 
applied to many electromagnetism problems, in time and frequency domain, from static up 
to high frequency. The basic idea of this approach is to apply the Maxwell equations in 
integral form to a set of staggered grids like FDTD (figure 12).  
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Fig. 11. Band structure and transmission coefficient of dielectric PC 

 
Fig. 12. Tension and flux component on the mesh 

The spatial discretization process is applied to the integral form of the Faraday's law: 
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This last equation is an exact form without approximation. This process is applied to the 
other Maxwell equations in integral form. CST Microwave Studio is the software based on 
the FIT. Unlike FDTD, we use the local integral form and we can apply the technique of 
Perfect Boundary Approximation (PBA) which decreases the meshes on the boundaries.  

7. The tight binding method (TB) 
The tight binding method (Lidorikis et al., 1998) is less used than the PWM although this 
method is fast for the calculation of defect states in a PC. By analogy with the TB model in 
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solid-state physics, H-field is expanded on localized wave functions. They are calculated 
from the Wannier functions an(R,r) for a PC without defect: 
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The Wannier functions are a complete set of orthogonal functions which is defined for  
each band and each unit cell. The Wannier functions only depend on the quantity (r-R),  
r is the space position and R is any lattice vector. The reverse relation is written as  
follows: 
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Hn(k,r) functions are the eigenvectors of H-wave equation. PWM solve this equation to get 
the Hn(k,r) functions for the PC without defect. To study a defect in PC, the H-field is 
expanded on the previous Wannier functions: 
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Green's functions method solve the H-wave equation for the photonic crystal with defect. 

8. Plane Wave Method (PWM) 
Plane wave method is used to study the band structure of PC. It comes from the solid 
state physics where the electronic wave functions are scalar whereas the electromagnetic 
fields are vectors. A scalar approximation of fields is not enough to describe band 
structure. This method is modified to take the vectorial nature of the fields into account. 
Three computational methods of vectorial PWM were created quasi-simultaneously:  
the E-field method (Leung & Liu, 1990), the D-field method (Zhang & Satpathy, 1990) and 
the H-field method (Ho et al., 1990). The D and H-field are continuous in PC unlike the  
E-field. Moreover, only the differential operators of the wave equation on E-field and  
H-field are self-adjoint. We present the H-field method because of these properties.  
PWM expands the field and permittivity on plane-wave basis set. The permittivity is a 
periodic function with translational symmetry T, so Bloch's theorem can be applied to the 
H-field:  
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All periodic functions can be expanded on reciprocal space with Fourier series: 
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The H-field is written: 
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The H-field is written: 
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As the H-field is transverse, each plane wave is perpendicular to the propagation vector 
K+G. The transverse plane of the propagation vector is described by the unit vectors 1ˆ

 K Ge  
and 2ˆ

 K Ge . The set of vectors  1 2ˆ ˆ, ,    K G K Ge e K G  represents an orthonormal basis. We only 
need to storage two vectors instead of three, consequently data storage is reduced. The 
Fourier series expansion is replaced in the H-wave equation: 
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Some algebraic calculations simplify this equation and we get for every vector G, the central 
equation of the photonic crystals: 
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This equation is an eigenvalue problem which is solved with classical methods. The Bloch 
vector K is set and we try to find the eigenvalues k0. The calculation convergence depends 
on the N number of reciprocal lattice vectors G. A minimum number of vectors G is 
necessary to describe correctly the permittivity of the PC. The convergence of the problem is 
rather slow. As the H-field is transverse, the number of equations is decreased from 3N to 
2N. The PWM is difficult to apply to the materials whose permittivity depends on the 
frequency like metals. On figure 13, we plot the band structure of the dielectric PC. It is 
calculated in 12 seconds with 10 Mo of working memory for 343 plane-waves. Calculation is 
fast because the structure is simple. If we compares with figure 7, we obtain the same result. 

 
Fig. 13. Band structure of the previous dielectric PC 
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8.1 One and two-dimensional photonic crystals 

If we study one or two-dimensional PC, the central equation is written in another form and 
will be simplified: 
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In the two-dimensional case, we choose the constant permittivity along z-axis. The vectors K 
and G are in the xy plane. The vectors of the central equation are indicated on figure 14. 

 
Fig. 14. Vectors definition of the central equation 

In the central equation, the matrix of the scalar products is simplified: 
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The 2N equations split into two parts, the TE-polarization and the TM-polarization. On the 
TM-polarization, the H-field vanishes on the xy-plane and the central equation is written: 
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On the TE-polarization, the H-field is parallel to x-axis and the equation is written: 
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In the one-dimensional case, the equations for TE and TM-polarization become similar. We 
solve N equations. 

9. One-dimensional multiple-scattering theory (1D-MST) 
The multiple-scattering studies the interaction between objects using the analytical solution 
for each object taken individually. In the next section, we will apply the MST to the 
cylinders and the spheres. Before, we will establish the analytical solution of one-
dimensional PC i.e. multilayer structures. 
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In the one-dimensional case, the equations for TE and TM-polarization become similar. We 
solve N equations. 

9. One-dimensional multiple-scattering theory (1D-MST) 
The multiple-scattering studies the interaction between objects using the analytical solution 
for each object taken individually. In the next section, we will apply the MST to the 
cylinders and the spheres. Before, we will establish the analytical solution of one-
dimensional PC i.e. multilayer structures. 
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9.1 Transfer-matrix method (TMM) 

Transfer-matrix method is known since many years (Born & Wolf, 1999). It is essential for 
the study of PC. TMM reduces the computational domain. In this section, transfer matrix 
will be applied to one-dimensional PC. For oblique incidences, we solve the E-wave 
equation for TE-polarization and the H-wave equation for TM-polarization. Two 
polarizations are separated and we use the same steps of calculation for two polarizations. 
We will study only the E-wave equation: 

      2 2
0 0rk   E r r E r   (35) 

Let us suppose that the layers of 1D-PC are stacked up along ez. The PC is uniform 
according to e┴ and e║ (figure 15). Because of these symmetries, the E-field and E-wave 
equation are simplified: 
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We use the boundary conditions of each layer to solve the previous equation. The electric 
field En for a layer n is written with a forward wave and a backward wave (figure 15): 

   , ,z n z nik z ik z
n n nE z a e b e      (37) 

 

 
Fig. 15. Field expansion on backward wave and forward wave 
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Boundary conditions at the interface of layer 1 and layer 2 provide the following expression:  
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The product of previous matrices provides the transfer matrix from layer 1 to layer 2: 

 2 1 11 12 2
1 1

2 1 21 22

with    .
a a T T
b b T T

  
     
     
     

T T Λ Φ   (40) 

The transmission of the layer is calculated from inversion of transfer matrix. The inverse  
will be calculated directly from phase shift matrices and interface matrix to avoid 
inaccuracies: 
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The following equation converts the transfer matrix to scattering matrix: 
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Reflection and transmission coefficients are equal respectively to: 
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Several layers are calculated similarly.  

9.2 Kronig-Penney model 

The Kronig-Penney model evaluates the electronic levels of a crystal structure in a one-
dimensional periodic potential (Kittel, 2005). This model has been modified to be used in PC 
and takes into account the oblique incidences (Mishra & Satpathy, 2003). We use TMM and 
the field expansion on backward and forward wave. The structure is periodic according to z-
axis (figure 16).  

 

 
Fig. 16. Refraction index of one dimensional PC 
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The field E(z) of the previous section is a Bloch function on z. The continuity of tangential 
fields and the Bloch theorem give the two following relations: 
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K is the wave vector of Bloch. In the unit cell, the permittivity is not uniform according to z-
axis. It is splitted into sub-cells with a constant permittivity. We calculate the transfer matrix 
of the unit cell from the expressions of the previous section:  
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We expand equation 44 on forward and backward waves: 

 
 
 

2 2 1 1

2 2 1 1

iKa

iKa

a b e a b

a b e a b

  

  





 (46) 

Equation 46 is replaced in equation 45: 

 11 12 1 1
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= iKaT T a a
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 (47) 

The Bloch factor eiKa and the complex conjugate value e-iKa are the two eigenvalues of the 
transfer matrix because the determinant of this matrix is equal to one. The trace of the 
transfer matrix is equal to the sum of the eigenvalues: 

 11 22
iKa iKaT T e e    (48) 

If the materials of the photonic crystal do not absorb, we have *
11 22T T . Similarly to the 

Kronig-Penney model, the above relation is written from the transmission coefficient: 
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After simplification, the transcendent equation is written: 
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We get an equation similar to electronic case. The transmission coefficient is different in the 
TE and TM-polarization. To plot band structure f( k║,K, k0) = 0, we set the wave numbers k0 
and k║ and calculate the Bloch number K. 
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10. Two-dimensional multiple-scattering theory (2D-MST) 
The multiple-scattering is an analytical theory which calculates the scattering of N objects 
from the scattering of each object independently (Felbacq et al., 1994). In the two-
dimensional case, objects are cylinders and the theory uses the scalar wave equation: 

        2 2 2 1 rE k E k E      r r r r  (51) 

Outside the cylinders, the wave equation can be split into two equations, one for the 
incident field E0 and the other one for the scattered field Es: 
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Using Green's theorem, the scattered field outside the cylinder can be written as follows: 
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The function H is a Hankel function. The surface integral can be restricted to the Cj 
cylinders. The scattered field is written as a sum: 
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The cylinders interact to give the scattered field by the structure. To better understand the 
process of multiple-scattering between the cylinders, we will study a simple example of 
cylinders with circular section aligned along x-axis and excited by an incident field 
propagating along x-axis (figure 17). 

 
Fig. 17. Incident field on n cylinders aligned 

The incident field is expanded into Bessel functions: 
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We define the total incident field around the cylinder i which takes into account other 
cylinders: 
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The cylinders interact to give the scattered field by the structure. To better understand the 
process of multiple-scattering between the cylinders, we will study a simple example of 
cylinders with circular section aligned along x-axis and excited by an incident field 
propagating along x-axis (figure 17). 

 
Fig. 17. Incident field on n cylinders aligned 

The incident field is expanded into Bessel functions: 
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    i
i il l

l
E a J krr  (56) 

In the case of the cylinders with circular section, the integral 54 is calculated analytically: 

    (1)j
s jl l

l
E b H krr  with jl jl jlb S a  (57) 

Sjl is the scattering coefficients (Bohren & Huffman, 1998). The field  j
sE r  scattered by a 

cylinder j is shifting on another cylinder i to become an incident field Gjil.bjl on this cylinder 
with Gjil the translation coefficients (Felbacq et al., 1994). If we shift all the scattered fields 
on the cylinder i, and if we add the initial incident field to it, we get the total incident field 
on the cylinder i: 

 0il jil jl l
j i

a G b a


   (58) 

By using the equation 57, we get the multiple-scattering equation: 

 0il jil jl jl l
j i

a G S a a


   (59) 

Gjil and Sjl are the translation and scattering matrix coefficients. To get the total incident field 
and the field scattered by the structure, it is necessary to calculate Gjil and Sjl coefficients and 
to solve the multiple-scattering equation. This method is suitable for the study of defects in 
PC because it does not impose any condition on the position and the material of cylinders. 
On figure 18, we study a 2D-PC with 80 cylinders doped by a microcavity. 

 
Fig. 18. Transmission coefficient of triangular 2D-PC with a defect 
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11. Three-dimensional multiple-scattering theory (3D-MST) 
The three-dimensional multiple-scattering theory use same principles as the two-
dimensional case but three-dimensional case is more complex because the Helmholtz 
equation is vectorial. The 3D-MST is separated into two parts, the calculation for one sphere 
and the generalization to N spheres (Oyhenart & Vignéras, 2007). The first part calculates 
the scattered wave by one sphere with Mie theory. The base of spherical harmonics is 
written as follows:  
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Zl are the Hankel and Bessel spherical functions and  ,lmY   are scalar spherical wave 
functions. The incident field and the scattered field are expanded on spherical wave 
functions: 
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The elements of S-matrix are Mie's coefficients (Bohren & Huffman, 1998). Figure 19 
presents an example of the incident and scattered fields by a sphere. 

 
Fig. 19. Pictures of incident and scattered fields by a metallic sphere 

The second part of the method is an iterative algorithm to calculate scattered field for N 
spheres from one sphere (figure 20). For the first order, we calculate the scattering of the 
incident field for each sphere. For the second order, the scattered field of first order for one 
sphere becomes the incident field for the N-1 other spheres. With this new incident field, the 
scattered field is calculated as at first order and so on, for higher orders. This iterative 
process stops when it is converged. The total scattered field is the contribution of all spheres 
and all orders. The material and the size of these N spheres can be different. Moreover, 
spheres may be put in a random way, without symmetry conditions on spheres positions. 
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These two last remarks show all the interest of this method in calculation of PC with defects 
and random structures. 

 
Fig. 20. Block diagram of multiple-scattering method, the total scattered field is the sum of 
the scattered fields for all orders. 

For periodic structures, calculation is simplified. Figure 21 plot the transmission coefficient 
for the previous infinite dielectric PC. The transmission calculation of 8 layers is calculated 
in 11 minutes with 63 Mo of working memory. By using the principle of KKR-method of 
solid state physics, MST can also calculate the band structure (Wang and Al, 1993). MST 
is the fastest method for the finite structures and random structures. 

 
Fig. 21. Transmission coefficient of the infinite periodic dielectric PC  
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12. Conclusion: Comparison of computational method 
The computational methods are studied and compared on table 1. The first four methods are 
three-dimensional numerical methods coming from electromagnetism. The FEM gives very 
precise results but it requires many resources systems. Another method, the FDTD is very 
used and converges without an excessive mesh thanks to its formulation. If you want more 
precise results, the mesh becomes heavy and you need to use FEM. The FDFD studies 
photonic crystals with a high number of layers by modeling only one layer. The FIT is a 
method which studies numerically PC with a high number of objects, without holding 
excessive resources system but the result is approximate. These methods calculate dielectric 
and metallic PC to obtain reflection and transmission coefficients and the band structure.  

Then, we have others methods resulting from the solid state physics which require a very 
small computing time. They were adapted from the scalar methods of the solid state 
physics. The PWM calculate only the band structure. The tight binding method is less used 
than the PWM although this method is fast for the calculation of defect states in a PC. The 
multiple-scattering theory which is also used in optics studies analytically large finite PC 
and it easily takes the defects into account in the PC. For three-dimensional PC, there is 
no simple method, fast and accurate. We must remove a feature. For example, the 3D-
MST is fast and accurate but the computer program is complex to write. 
 

 FEM FDTD FDFD FIT TB PWM 1D-MST 2D-MST 3D-MST 
Origin E.M. E.M. E.M. E.M. Q.M. Q.M. Q.M. E.M. both 
Maxwell's equations Freq. Time Freq. Time Freq. Freq. Freq. Freq. Freq. 
Calculation Num. Num. Num. Num. Num. Num. Analyt. Analyt. Analyt. 
Geometries 3D 3D 3D 3D 2D/3D 3D 1D Cyl. Sphere 
Discrete equations X X X X      
Expansion, series X    X X X X X 
Free space, finite PC X X  X   X X X 
Infinite periodic PC X X X X  X X X X 
Band structure X X X X  X X X X 
Transmission/reflection X X X X   X X X 
Metallic PC X X  X    X X 
Single defect in finite-PC X X  X   X X X 
Periodic defect X X X X X X X X X 
computing speed slow med. fast fast fast med. fast fast fast 
data storage large low low low low low low low low 
commercial software X X    X    
Free software X X X   X  X X 
Popular method in PC  X  X  X    

 

Abbreviations: 
Q.M. : quantum mechanics and solid state physics 
E.M. : electromagnetism 
Freq. : frequency domain 
Time : time domain 

 
Analyt. : analytical method 
Num. : numerical method 
Med. : medium 
Cyl. : cylinder 

Table 1. Specifications of the computational methods 
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1. Introduction

Photonic crystals (PC) are structures with periodic variation of the refractive index in one, two
or three spatial dimensions. The dynamic development of experimental and theoretical work
on photonic crystals has been launched by Yablonovitch (1987; 1993) and Sajeev John (1987)
publications, although the idea of periodic structures had been known since Strutt (1887).

The main property of photonic crystal is the existence of a frequency range, for which the
propagation of electromagnetic waves in the medium is not permitted. These frequency
ranges are commonly known as photonic band gaps, giving the ability to modify the structure
parameters, e.g. group velocity, coherence length, gain, and spontaneous emission. This type
of periodic structures is used in both passive and active devices.

1.1 Two-dimensional photonic crystal lasers

Much of the research on active structures is devoted to efficient photonic sources of coherent
radiation. Photonic crystals are one of these structures, and they are used in lasers as mirrors
(Dunbar et al. (2005); Scherer et al. (2005)), active waveguides (Watanabe & Baba (2006)),
coupled cavities (Steinberg & Boag (2006)), defect microcavities (Asano et al. (2006); Lee et al.
(2004)), and the laser active region (Cojocaru et al. (2005)).

Lasers with defect two-dimensional photonic crystals are known for their high finesse (Monat
et al. (2001)) and very low threshold (Nomura et al. (2008)).

Photonic crystal band-edge lasers allow to obtain edge (Cojocaru et al. (2005)) and surface
emission (Turnbull et al. (2003); Vurgaftman & Meyer (2003)) of coherent light from large
cavity area. They also allow to control the output beam pattern by manipulation of the
primitive cell geometry (Iwahashi et al. (2010); Miyai et al. (2006)), provide low threshold
(Susa (2001)), and beams which can be focused to a size less than the wavelength (Matsubara
et al. (2008)).

The photonic crystal structures lasing wavelengths span from terahertz (Chassagneux et al.
(2009); Sirigu et al. (2008)), through infrared (Kim et al. (2006)) to visible (Lu et al. (2008);
Zhang et al. (2006)).
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The main property of photonic crystal is the existence of a frequency range, for which the
propagation of electromagnetic waves in the medium is not permitted. These frequency
ranges are commonly known as photonic band gaps, giving the ability to modify the structure
parameters, e.g. group velocity, coherence length, gain, and spontaneous emission. This type
of periodic structures is used in both passive and active devices.

1.1 Two-dimensional photonic crystal lasers

Much of the research on active structures is devoted to efficient photonic sources of coherent
radiation. Photonic crystals are one of these structures, and they are used in lasers as mirrors
(Dunbar et al. (2005); Scherer et al. (2005)), active waveguides (Watanabe & Baba (2006)),
coupled cavities (Steinberg & Boag (2006)), defect microcavities (Asano et al. (2006); Lee et al.
(2004)), and the laser active region (Cojocaru et al. (2005)).

Lasers with defect two-dimensional photonic crystals are known for their high finesse (Monat
et al. (2001)) and very low threshold (Nomura et al. (2008)).

Photonic crystal band-edge lasers allow to obtain edge (Cojocaru et al. (2005)) and surface
emission (Turnbull et al. (2003); Vurgaftman & Meyer (2003)) of coherent light from large
cavity area. They also allow to control the output beam pattern by manipulation of the
primitive cell geometry (Iwahashi et al. (2010); Miyai et al. (2006)), provide low threshold
(Susa (2001)), and beams which can be focused to a size less than the wavelength (Matsubara
et al. (2008)).
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(2009); Sirigu et al. (2008)), through infrared (Kim et al. (2006)) to visible (Lu et al. (2008);
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1.2 Radiation generation modeling in photonic crystal lasers

Laser action in photonic crystal structures has been theoretically studied and centered on
the estimation of the output parameters (Czuma & Szczepanski (2005); Lesniewska-Matys
et al. (2005)) and models describing light generation processes e.g. (Florescu et al. (2002);
Koba, Szczepanski & Kossek (2011); Sakai et al. (2010)). The most sophisticated and general
(it describes one-, two-, and three-dimensional structures) semiclassical model of light
generation in photonic structures is presented in (Florescu et al. (2002)). Theoretical analysis
of photonic crystal lasers based on two-dimensional plane wave expansion method (PWEM)
(Imada et al. (2002); Sakai et al. (2005)) and finite difference time domain method (FDTD)
(Imada et al. (2002); Noda & Yokoyama (2005)) confirm experimental results. Nevertheless
these methods suffer from important disadvantages, i.e. plane wave method gives a good
approximation for infinite structures, whereas finite difference time domain method is suited
for structures with only a few periods and consumes huge computer resources for the analysis
of real photonic structures. Therefore these methods are not very convenient for design and
optimization of actual photonic crystal lasers. Hence, different, less complicated methods
of analysis of two-dimensional photonic crystal lasers are developed. These methods are
meant to effectively support the design process of such lasers. They are based on a coupled
mode theory (Sakai et al. (2006); Vurgaftman & Meyer (2003)) and focused on square and
triangular lattice photonic crystals (Koba & Szczepanski (2010); Koba, Szczepanski & Kossek
(2011); Koba, Szczepanski & Osuch (2011); Sakai et al. (2007; 2010; 2008)).

The Sakai et al. (2007; 2010) works contain a mathematical description and numerical results
of the threshold analysis of two-dimensional (2-D) square lattice photonic crystal laser with
TM and TE polarization. They introduce general coupled mode relations for a threshold
gain, a Bragg frequency deviation and field distributions, and give calculation results for
some specific values of coupling coefficients. Additionally, in (Sakai et al. (2007)) the effect of
boundary reflections has been investigated, and it has been shown that the mode properties
can be adjusted by changing refractive index or boundary conditions.

In Sakai et al. (2008) paper, the analytical description of triangular lattice photonic crystal
cavity for TE polarization has been given. In this work the analysis was focused on the
coupled wave equations and the dependence of the resonant frequencies on the coupling
coefficients.

In Sakai et al. (2007; 2010; 2008) works threshold analysis has been conducted for specific
values of coupling coefficient and TM polarization for triangular has not been considered.

The equations for triangular lattice photonic crystal laser with TM polarization has been
shown in Koba, Szczepanski & Kossek (2011), and the evaluation of these is shown in this
chapter.

The mentioned semiclassical model, presented by Florescu et al. (2002) describing an above
threshold analysis is complicated and difficult to implement. To overcome this drawback,
this chapter also includes an overview of our works (Koba & Szczepanski (2010); Koba,
Szczepanski & Kossek (2011); Koba, Szczepanski & Osuch (2011)), where we introduced easy
to implement models for an above threshold analysis of a two-dimensional photonic crystal
laser.
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Therefore, in the subsequent parts of this chapter we addressed the issues of the laser
threshold characteristics in the wide range of the coupling coefficient and described all four
cases of square and triangular lattice photonic crystal structures with TE and TM polarization.
We also describe an above threshold analysis for these structures.

Thus, in this chapter we will summon the analytical models of the threshold and above
threshold light generation in photonic crystal band-edge lasers considering square and
triangular lattice structures with TE and TM polarization. Theoretical evaluation in this
chapter is based on coupled wave model and energy theorem.

2. Structure definition

This paper describes the two-dimensional photonic crystals which properties can be described
by the complex relative electrical permittivity ε. The cross sections of these structures are
shown schematically in Fig. 1

(a) (b)

Fig. 1. a) Square and b) triangular lattice photonic structure cross section. (εa and εb are
relative permittivities of rods and background material, respectively, a - lattice constant, L -
cavity length)

In crystallography the ideal crystal is described by the elementary cell. The shape of the
cell is defined by the basic vectors which linear combination allows to specify the location
of all nodes of the structure. Each node is connected to the base which may be constituted
by an atom, a group of atoms, molecules, etc. The photonic structures perfectly resemble
the microscopic nature of the crystal lattice in the mesoscopic scale. This allows using the
terminology adopted in the solid state physics to describe the photonic crystal.

In this chapter, only 2-D photonic crystals will be discussed. In the two-dimensional space,
there are five basic types of crystal lattice. This comprises a square, hexagonal, rectangular,
oblique, and rhombic lattice (Kittel (1995)). The square and hexagonal (also known as
triangular) lattices are the most common types of symmetry used in the practical realizations
of photonic cavities. The role of the base in such systems is often played by cylinders called

293Coupled Mode Theory of Photonic Crystal Lasers
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rods or holes depending on the relative difference between the refractive index of the cylinders
and the surrounding material.

The structures in Fig. 1 a) and b) are constrained in the xy plane by the square region of
length L, and are assumed to be uniform and much larger than the wavelength in the the z
direction. The permittivity of the holes and background material is εa and εb, respectively.
The number of periods in the xy plane is finite, but large enough to be expanded in Fourier
series with small error. Schemes in Fig. 1 a) and 1 b) illustrate two spatial distributions of rods
for two-dimensional photonic crystal, respectively, with square and triangular lattice.

(a) (b)

Fig. 2. The scheme of a) a square lattice photonic crystal with primitive vectors; and b) its
representation in reciprocal space with reciprocal primitive vectors.

(a) (b)

Fig. 3. The scheme of a) a triangular lattice photonic crystal with primitive vectors; and b) its
representation in reciprocal space with reciprocal primitive vectors.

Fig. 2 a) and 3 a) show photonic crystal cross sections in xy plane with cylinders arranged in
square or triangular lattice with period a, and with depicted primitive vectors a1 and a2.

Fig. 2 b) and 3 b) show the reciprocal lattices corresponding, respectively, to the real square
and triangular lattice. In the described case, the nodes of a two-dimensional structure can be
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expressed by
x�(l) = l1a1 + l2a2 (1)

where a1 and a2 are primitive vectors (Kittel (1995)), l1 and l2 are arbitrary integers, x�
specifies the placement on the plane, x� = x̂x + ŷy, where x̂ and ŷ are unit vectors along
x and y axis, respectively. The area of primitive cell is ac = |a1 × a2| = a2 in case of square
lattice, and ac = |a1 × a2| =

√
3a2/2 in case of triangular lattice. Primitive vectors for square

lattice are described by the expressions: a1 = (a, 0), a2 = (0, a), and for the triangular lattice:

a1 =
(√

3a/2, a/2
)

, a2 = (0, a).

In general, the reciprocal vecotrs can be written in the following form:

G (h) = h1b1 + h2b2 (2)

where h1 and h2 are arbitrary integers, b1 and b2 are the primitive vectors of the
two-dimensional reciprocal lattice:

b1 =
2π

ac

(
a(2)y ,−a(2)x

)
, b2 =

2π

ac

(
−a(1)y , a(1)x

)
, (3)

where a(i)j is the j-th cartesian component (x or y) of the ai vector (i = 1 lub 2) (Sakai et al.
(2010)).

Using Equation 3 and the expressions for square and triangular lattice primitive vectors the
reciprocal primitive vectors are described by the following formulas:

b1 = (2π/a, 0) , b2 = (0, 2π/a) – square lattice (4)

and
b1 =

(
4π/

√
3a, 0

)
, b2 =

(
−2π/

√
3a, 2π/a

)
– triangular lattice. (5)

The infinite square or triangular photonic crystal can be described in terms of relative
permittivity by the functions:

ε−1
(

x�
)
= ε−1

b +
(

ε−1
a − ε−1

b

)
∑

l
S
(

x� − x� (l)
)

(6)

in case of TE polarization, where it is more convenient to use the inverse of relative
permittivity, and

ε
(

x�
)
= εb + (εa − εb)∑

l
S
(

x� − x� (l)
)

(7)

for TM polarization. In previous Equations, function S

S
(

x�
)
=

{
1 dla x� ∈ O
0 dla x� �∈ O

(8)

specifies the location of rods in the structure, O is the area of the xy plane defined by the cross
section of the rod, which symmetry axis intersects the plane at the point x� = 0.
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direction. The permittivity of the holes and background material is εa and εb, respectively.
The number of periods in the xy plane is finite, but large enough to be expanded in Fourier
series with small error. Schemes in Fig. 1 a) and 1 b) illustrate two spatial distributions of rods
for two-dimensional photonic crystal, respectively, with square and triangular lattice.

(a) (b)

Fig. 2. The scheme of a) a square lattice photonic crystal with primitive vectors; and b) its
representation in reciprocal space with reciprocal primitive vectors.

(a) (b)

Fig. 3. The scheme of a) a triangular lattice photonic crystal with primitive vectors; and b) its
representation in reciprocal space with reciprocal primitive vectors.

Fig. 2 a) and 3 a) show photonic crystal cross sections in xy plane with cylinders arranged in
square or triangular lattice with period a, and with depicted primitive vectors a1 and a2.

Fig. 2 b) and 3 b) show the reciprocal lattices corresponding, respectively, to the real square
and triangular lattice. In the described case, the nodes of a two-dimensional structure can be
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expressed by
x�(l) = l1a1 + l2a2 (1)

where a1 and a2 are primitive vectors (Kittel (1995)), l1 and l2 are arbitrary integers, x�
specifies the placement on the plane, x� = x̂x + ŷy, where x̂ and ŷ are unit vectors along
x and y axis, respectively. The area of primitive cell is ac = |a1 × a2| = a2 in case of square
lattice, and ac = |a1 × a2| =

√
3a2/2 in case of triangular lattice. Primitive vectors for square

lattice are described by the expressions: a1 = (a, 0), a2 = (0, a), and for the triangular lattice:

a1 =
(√

3a/2, a/2
)

, a2 = (0, a).

In general, the reciprocal vecotrs can be written in the following form:

G (h) = h1b1 + h2b2 (2)

where h1 and h2 are arbitrary integers, b1 and b2 are the primitive vectors of the
two-dimensional reciprocal lattice:

b1 =
2π

ac

(
a(2)y ,−a(2)x

)
, b2 =

2π

ac

(
−a(1)y , a(1)x

)
, (3)

where a(i)j is the j-th cartesian component (x or y) of the ai vector (i = 1 lub 2) (Sakai et al.
(2010)).

Using Equation 3 and the expressions for square and triangular lattice primitive vectors the
reciprocal primitive vectors are described by the following formulas:

b1 = (2π/a, 0) , b2 = (0, 2π/a) – square lattice (4)

and
b1 =

(
4π/

√
3a, 0

)
, b2 =

(
−2π/

√
3a, 2π/a

)
– triangular lattice. (5)

The infinite square or triangular photonic crystal can be described in terms of relative
permittivity by the functions:

ε−1
(

x�
)
= ε−1

b +
(

ε−1
a − ε−1

b

)
∑

l
S
(

x� − x� (l)
)

(6)

in case of TE polarization, where it is more convenient to use the inverse of relative
permittivity, and

ε
(

x�
)
= εb + (εa − εb)∑

l
S
(

x� − x� (l)
)

(7)

for TM polarization. In previous Equations, function S

S
(

x�
)
=

{
1 dla x� ∈ O
0 dla x� �∈ O

(8)

specifies the location of rods in the structure, O is the area of the xy plane defined by the cross
section of the rod, which symmetry axis intersects the plane at the point x� = 0.
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The functions describing the structure need to be transformed to the frequency domain in
order to solve the wave equations. To do so, the crystal geometry is expressed in terms
of reciprocal lattice vector by the Fourier transformation of functions 6 and 7 (M. Plihal &
Maradudin (1991); M. Plihal et al. (1991)).

For TE polarization function �−1(G) is written in the following form:

�−1(G) =

⎧
⎪⎪⎨
⎪⎪⎩

ε−1
a f + ε−1

b (1 − f ) , G� = 0

�
ε−1

a − ε−1
b

�
f

2J1(G�R)
(G�R)

, G� �= 0
(9)

and for the TM polarization function �(G):

�(G) =

⎧
⎪⎪⎨
⎪⎪⎩

εa f + εb (1 − f ) , G� = 0

(εa − εb) f
2J1(G�R)
(G�R)

, G� �= 0
(10)

where f = πr2/a2 – square lattice filling factor, f =
�

2π/
√

3
�

r2/a2 – triangular lattice filling
factor, r – rod radius, J1 – Bessel function of the first kind.

In further parts of this chapter four different cases have been analyzed. Two of them are
dedicated to square lattice cavities with TE and TM polarization, and two remaining to
triangular lattice structures also with TE and TM polarization.

In the next parts of this chapter the threshold and above threshold analysis of the photonic
crystal laser operation has been shown for the defined structures.

3. A threshold analysis

3.1 Coupled-wave equations

In general, the scalar wave equations for the electric and magnetic fields Ez and Hz,
respectively, are written in the following form (M. Plihal & Maradudin (1991); M. Plihal et al.
(1991)):

∂2Ez

∂x2 +
∂2Ez

∂y2 + k2Ez = 0 (11)

and
∂

∂x

�
1
k2

∂

∂x
Hz

�
+

∂

∂y

�
1
k2

∂

∂y
Hz

�
+ Hz = 0 (12)

where the constant k is given by (Sakai et al. (2007))

k2 = β2 + 2i (α − αL) β + 2β ∑
G �=0

κ (G) exp (i (G · r)) (13)
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in case of TM modes, and (Sakai et al. (2010))

1
k2 =

1
β4

(
β2 − i2 (α − αL) β + 2β ∑

G �=0
κ(G) exp (i (G · r))

)
(14)

in case of TE modes. In Equations 13 and 14 β = 2πε1/2
0 /λ where ε0 = ε (G = 0) is the

averaged dielectric permittivity (ε1/2
0 corresponds to averaged refractive index n), α is an

averaged gain in the medium, κ(G) is the coupling constant, λ is the Bragg wavelength,
and G = (mb1, nb2) is the reciprocal lattice vector, m and n are arbitrary integers, b1 and
b2 vary depending on the structure symmetry. Therefore, these vectors are expressed in the
following forms b1 =

(
βs

0, 0
)

and b2 =
(
0, βs

0
)

for square lattice, and b1 =
(

βt
0, 0

)
and b2 =(

−βt
0/2,

√
3βt

0/2
)

for triangular lattice structure, where βs
0 = 2π/a and βt

0 = 4π/
√

3a. In the

derivation of Equations 13 and 14 following e.g. (Sakai et al. (2007)), we set α � β ≡ 2πε1/2
0

λ ,
εG �=0 � ε0, and αG � β. In these equations the periodic variation in the refractive index is
included as a small perturbation and appears in the third term through the coupling constant
κ (G) of the form:

κ (G) = − π

λε1/2
0

ε(G)± i
α (G)

2
. (15)

In Equation 15, plus sign refers to TM polarization (Equation 13), while minus sign refers to TE
polarization (Equation 14). Furthermore, we set α(G)|G �=0 = 0 neglecting spatial periodicity
of gain. In the vicinity of the Bragg wavelength only some of the diffraction orders contribute
in a significant way, where in general, a periodic perturbation produces an infinite set of
diffraction orders. Therefore the Bragg frequency orders have to be cautiously chosen. The
Bragg frequency corresponding to the Γ point in the photonic band structure, e.g. (Sakai
et al. (2007)) is chosen for the purpose of this paper, and the most significantly contributing
coupling constants are expressed as follows:

κ1 = κ(G)||G|=βs,t
0

κ2 = κ(G)||G|=√
3βs,t

0
κ3 = κ(G)||G|=2βs,t

0
(16)

In Equations 11 and 12 electric and magnetic fields for the infinite periodic structure are given
by the Bloch modes, (M. Plihal & Maradudin (1991); Vurgaftman & Meyer (2003)):

Ez (r) = ∑
G

e(G) exp (i (k + G) · r) (17)

and
Hz (r) = ∑

G
h(G) exp (i (k + G) · r) (18)

where the functions e(G) and h(G) correspond to plane wave amplitudes, and the wave
vector is denoted by k. In the first Brillouin zone at the Γ point the wave vector vanishes
k = 0, see e.g. (Sakai et al. (2006)). For a finite structure, the amplitude of each plane wave
is not constant, so e(G) and h(G) become functions of space. At the Γ point we consider
only the amplitudes (e(G), h(G)) which are meant to be significant, i.e. in most cases with
|G| = βs,t

0 , except for square lattice with TE polarization where additional h(G) amplitudes
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dedicated to square lattice cavities with TE and TM polarization, and two remaining to
triangular lattice structures also with TE and TM polarization.

In the next parts of this chapter the threshold and above threshold analysis of the photonic
crystal laser operation has been shown for the defined structures.
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polarization (Equation 14). Furthermore, we set α(G)|G �=0 = 0 neglecting spatial periodicity
of gain. In the vicinity of the Bragg wavelength only some of the diffraction orders contribute
in a significant way, where in general, a periodic perturbation produces an infinite set of
diffraction orders. Therefore the Bragg frequency orders have to be cautiously chosen. The
Bragg frequency corresponding to the Γ point in the photonic band structure, e.g. (Sakai
et al. (2007)) is chosen for the purpose of this paper, and the most significantly contributing
coupling constants are expressed as follows:

κ1 = κ(G)||G|=βs,t
0

κ2 = κ(G)||G|=√
3βs,t

0
κ3 = κ(G)||G|=2βs,t

0
(16)

In Equations 11 and 12 electric and magnetic fields for the infinite periodic structure are given
by the Bloch modes, (M. Plihal & Maradudin (1991); Vurgaftman & Meyer (2003)):
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and
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where the functions e(G) and h(G) correspond to plane wave amplitudes, and the wave
vector is denoted by k. In the first Brillouin zone at the Γ point the wave vector vanishes
k = 0, see e.g. (Sakai et al. (2006)). For a finite structure, the amplitude of each plane wave
is not constant, so e(G) and h(G) become functions of space. At the Γ point we consider
only the amplitudes (e(G), h(G)) which are meant to be significant, i.e. in most cases with
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0 , except for square lattice with TE polarization where additional h(G) amplitudes
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with |G| = √
2βs

0 have to be included (Sakai et al. (2006)). The contributions of other waves
of higher order in the Bloch mode are considered to be negligible.

3.1.1 Square lattice - TM polarization

Considering square lattice photonic crystal with TM polarization, it is assumed that at the
Γ point the most significant contribution to coupling is given by the electric waves which
fulfill the condition

(|G| = βs
0
)
. Thus, all higher order electric wave expansion coefficients(

|G| ≥ √
2β0

)
are negligible. Four basic waves most significantly contributing to coupling

are depicted in Fig. 4.

Fig. 4. Schematic cross section of square lattice photonic crystal laser active region, where the
four basic waves involved in coupling for TM polarization are shown.

Equation 17 describes infinite structures. It is possible to take into account the fact that the
structure is finite by using the space dependent amplitudes, e.g. (Sakai et al. (2007)). Thus,
the electric field given by Equation 17 in the finite periodic structure can be expressed in the
following way:

Ez = Es
1(x, y)e−iβs

0x + Es
2(x, y)eiβs

0x + Es
3(x, y)e−iβs

0y + Es
4(x, y)eiβs

0y (19)

In Equation 19 Es
i , i = 1..4 are the four basic electric field amplitudes propagating in four

directions +x, −x, +y, y. These amplitudes correspond to e(G) in Equation 17. In the further
analysis, we will drop the space dependence notation.

Knowing the reciprocal lattice vectors for the square lattice PC, the coupling coefficients κ(G)
16 can be written as:

κ1 =
π (εa − εb)

a (εa f + εb (1 − f ))
2 f J1

(
2
√

π f
)

(
2
√

π f
) (20)

κ2 =
π (εa − εb)

a (εa f + εb (1 − f ))
2 f J1

(
2
√

2π f
)

(
2
√

2π f
) (21)

κ3 =
π (εa − εb)

a (εa f + εb (1 − f ))
2 f J1

(
4
√

π f
)

(
4
√

π f
) (22)
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Putting Equations 13 and 19 into Equation 11, and assuming the slow varying electromagnetic
field, one can get the set of coupled mode equations (Sakai et al. (2007)):

− ∂

∂x
Es

1 + (α − αL − κ0 − iδ) Es
1 = (iκ3 − κ0) Es

3 + iκ2 (Es
2 + Es

4) (23)

∂

∂x
Es

3 + (α − αL − κ0 − iδ) Es
3 = (iκ3 − κ0) Es

1 + iκ2 (Es
2 + Es

4) (24)

− ∂

∂y
Es

2 + (α − αL − κ0 − iδ) Es
2 = (iκ3 − κ0) Es

4 + iκ2 (Es
1 + Es

3) (25)

∂

∂y
Es

4 + (α − αL − κ0 − iδ) Es
4 = (iκ3 − κ0) Es

2 + iκ2 (Es
1 + Es

3) (26)

where
δ = (β2 − βs2

0 )/2β ≈ β − βs
0 (27)

is the Bragg frequency deviation, κ2 and κ3 are coupling coefficients expressed by Equations
21 and 22 (Sakai et al. (2007)). The κ2 coefficient is responsible for orthogonal coupling (e.g. the
coupling of Es

1 to Es
2 and Es

4), and κ2 corresponds to backward coupling (e.g. the coupling of
Es

1 to Es
3). The additional coefficient κ0 denotes surface emission losses, and it is proportional

to κ1 (Sakai et al. (2007; 2010)). Solution of Equations 23-26 for the boundary conditions:

Es
1(−

L
2

, y) = Es
3(

L
2

, y) = 0, Es
2(x,− L

2
) = Es

4(x,
L
2
) = 0 (28)

defines eigenmodes of the photonic structure. The analysis of this solution will be shown in
section 3.2.

3.1.2 Square lattice - TE polarization

In the square lattice photonic crystal cavity with TE polarization, as mentioned before, the
coupling process involves magnetic waves satisfying following conditions: (|G| = β0) and(
|G| = √

2β0

)
, (Sakai et al. (2010)), neglecting higher order Bloch modes. Eight basic waves

most significantly contributing to coupling are depicted in Fig. 5.

Similarly as in the case of TM polarization, the equation for magnetic field (Equation 18)
describes modes for infinite structure. Thus, the finite dimensions of the structure are
described by spatial dependence of magnetic field amplitudes (Sakai et al. (2010)), and the
magnetic field 18 is written in the following form:

Hz(r) =Hs
1(x, y)e−iβs

0x + Hs
5(x, y)eiβs

0x + Hs
3(x, y)e−iβs

0y + Hs
7(x, y)eiβs

0y + Hs
2(x, y)e−iβs

0x−iβs
0y

+ Hs
4(x, y)eiβs

0x−iβs
0y + Hs

6(x, y)eiβs
0x+iβs

0y + Hs
8(x, y)e−iβs

0x+iβs
0y (29)

In Equation 29 Hs
i , i = 1..8 are the eight basic magnetic field amplitudes of waves propagating

in directions schematically shown in Fig. 5. These amplitudes correspond to h(G) in Equation
18. Joining Equations 14, 29, and 12, and assuming slowly varying amplitudes, the coupled
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Equation 17 describes infinite structures. It is possible to take into account the fact that the
structure is finite by using the space dependent amplitudes, e.g. (Sakai et al. (2007)). Thus,
the electric field given by Equation 17 in the finite periodic structure can be expressed in the
following way:
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2(x, y)eiβs

0x + Es
3(x, y)e−iβs

0y + Es
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In Equation 19 Es
i , i = 1..4 are the four basic electric field amplitudes propagating in four

directions +x, −x, +y, y. These amplitudes correspond to e(G) in Equation 17. In the further
analysis, we will drop the space dependence notation.

Knowing the reciprocal lattice vectors for the square lattice PC, the coupling coefficients κ(G)
16 can be written as:

κ1 =
π (εa − εb)

a (εa f + εb (1 − f ))
2 f J1
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√

π f
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√

π f
) (20)

κ2 =
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2 f J1
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√
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2
√
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√
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Putting Equations 13 and 19 into Equation 11, and assuming the slow varying electromagnetic
field, one can get the set of coupled mode equations (Sakai et al. (2007)):
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defines eigenmodes of the photonic structure. The analysis of this solution will be shown in
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coupling process involves magnetic waves satisfying following conditions: (|G| = β0) and(
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, (Sakai et al. (2010)), neglecting higher order Bloch modes. Eight basic waves

most significantly contributing to coupling are depicted in Fig. 5.
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describes modes for infinite structure. Thus, the finite dimensions of the structure are
described by spatial dependence of magnetic field amplitudes (Sakai et al. (2010)), and the
magnetic field 18 is written in the following form:
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in directions schematically shown in Fig. 5. These amplitudes correspond to h(G) in Equation
18. Joining Equations 14, 29, and 12, and assuming slowly varying amplitudes, the coupled
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Fig. 5. Schematic cross section of square lattice photonic crystal laser active region, where the
eight basic waves involved in coupling for TE polarization are shown.

wave equations for TE modes in square lattice PC are obtained (Sakai et al. (2010)):

− ∂

∂x
Hs

1 + (α − αL − κ0 − iδ) Hs
1 = (iκ3 − κ0) Hs

5 + i
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In Equations 30-33, the spatial dependence of Hs
i , i = 2, 4, 6, 8 amplitudes was neglected, and

it was assumed that α � δ. In Equations 30-33, δ is the Bragg frequency deviation, given by
27. The coupling coefficients κ1, κ2, and κ3, defined by Equations 16 are expressed by (Sakai
et al. (2010; 2008)):
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In contrast to TM polarization, in Equations 30-33, the coupling coefficient responsible for
coupling in perpendicular direction κ2 vanishes. The coupling coefficient κ3 has the same
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meaning as described in the previous (TM) case, whereas the coupling coefficient κ1 describes
the coupling of e.g. waves Hs

1, Hs
2 , and Hs

8. Solution of Equations 30-33 for the following
boundary conditions:
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2
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5(

L
2

, y) = 0, Hs
3(x,− L

2
) = Hs

7(x,
L
2
) = 0 (37)

defines structure eigenmodes at lasing threshold i.e. in the linear case.

3.1.3 Triangular lattice - TM polarization

In the triangular lattice photonic crystal cavity with TM polarization, the coupling process
involves waves satisfying following conditions (|G| = β0), neglecting higher order Bloch
modes (Koba, Szczepanski & Kossek (2011); Sakai et al. (2008)). Six basic waves most
significantly contributing to coupling are depicted in Fig. 6.

Fig. 6. A schematic cross section of a triangular lattice photonic crystal laser active region,
where the six basic waves involved in the coupling for TM polarization are shown.

The space dependent amplitudes for electric field e(G) (Equation 17) in triangular lattice
photonic crystal cavity are written in the following form (Koba, Szczepanski & Kossek (2011)):
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√
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√
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In Equation 38, Et
i , i = 1..6, are the six electric field amplitudes propagating in the symmetry

directions, Fig. 6. Combining Equations 13, 38 and 11, and assuming slowly varying
amplitudes, the coupled wave equations for TM modes in triangular lattice PC are obtained:
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4 (39)
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Fig. 5. Schematic cross section of square lattice photonic crystal laser active region, where the
eight basic waves involved in coupling for TE polarization are shown.

wave equations for TE modes in square lattice PC are obtained (Sakai et al. (2010)):
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In Equations 30-33, the spatial dependence of Hs
i , i = 2, 4, 6, 8 amplitudes was neglected, and

it was assumed that α � δ. In Equations 30-33, δ is the Bragg frequency deviation, given by
27. The coupling coefficients κ1, κ2, and κ3, defined by Equations 16 are expressed by (Sakai
et al. (2010; 2008)):
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In contrast to TM polarization, in Equations 30-33, the coupling coefficient responsible for
coupling in perpendicular direction κ2 vanishes. The coupling coefficient κ3 has the same
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meaning as described in the previous (TM) case, whereas the coupling coefficient κ1 describes
the coupling of e.g. waves Hs
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2 , and Hs

8. Solution of Equations 30-33 for the following
boundary conditions:
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defines structure eigenmodes at lasing threshold i.e. in the linear case.

3.1.3 Triangular lattice - TM polarization

In the triangular lattice photonic crystal cavity with TM polarization, the coupling process
involves waves satisfying following conditions (|G| = β0), neglecting higher order Bloch
modes (Koba, Szczepanski & Kossek (2011); Sakai et al. (2008)). Six basic waves most
significantly contributing to coupling are depicted in Fig. 6.

Fig. 6. A schematic cross section of a triangular lattice photonic crystal laser active region,
where the six basic waves involved in the coupling for TM polarization are shown.

The space dependent amplitudes for electric field e(G) (Equation 17) in triangular lattice
photonic crystal cavity are written in the following form (Koba, Szczepanski & Kossek (2011)):

Ez = Et
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In Equation 38, Et
i , i = 1..6, are the six electric field amplitudes propagating in the symmetry

directions, Fig. 6. Combining Equations 13, 38 and 11, and assuming slowly varying
amplitudes, the coupled wave equations for TM modes in triangular lattice PC are obtained:

− ∂

∂x
Et

1 + (α − αL − κ0 − iδ)Et
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In Equations 39-44, like in the case of square lattice, δ is the Bragg frequency deviation, given
by Equation 27, while κ1, κ2, and κ3 are the coupling coefficients, which are defined by 16 and
as follows (Koba, Szczepanski & Kossek (2011)):

κ1 =
π (εa − εb)

a ( f εa + (1 − f ) εb)

2 f J1(
√

8π f /
√

3)√
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√
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√
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These coefficients describe strength and direction of the coupling of the waves, e.g. the
coupling of Et

1 and Et
4 is described by κ3, the coupling of Et

1, Et
2, and Et

6 by κ1, and the coupling
of Et

1, Et
3, and Et

5 by κ2. In Equations 39-44, there is an additional coefficient κ0 which, like in
the square lattice case, is responsible for surface emission losses (Kazarinov & Henry (1985);
Vurgaftman & Meyer (2003)). Solution of Equations 39-44 for the boundary conditions:

Et
1(−

L
2

, y) = 0, Et
2(−

L
2

, y) = Et
2(x,− L

2
) = 0, Et

3(
L
2

, y) = Et
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2
) = 0,

Et
4(

L
2

, y) = 0, Et
5(

L
2

, y) = Et
5(x,

L
2
) = 0, Et

6(−
L
2

, y) = Et
6(x,

L
2
) = 0 (48)

defines structure eigenmodes at lasing threshold.

302 Photonic Crystals – Introduction, Applications and Theory Coupled Mode Theory of Photonic Crystal Lasers 13

3.1.4 Triangular lattice - TE polarization

In the triangular lattice photonic crystal cavity with TE polarization, the coupling process
involves waves satisfying the same condition as it was stated in TM polarization case, i.e.
(|G| = β0), (Sakai et al. (2008)), neglecting higher order Bloch modes. Six basic waves most
significantly contributing to coupling are depicted in Fig. 7.

Fig. 7. A schematic cross section of a triangular lattice photonic crystal laser active region,
where the six basic waves involved in the coupling for TE polarization are shown.

The magnetic field amplitudes h(G) (Equation 18) in the triangular lattice photonic crystal
cavity are written as follows (Sakai et al. (2008)):
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√
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√
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2 y (49)

In Equation 49, Ht
i , i = 1..6, are the six magnetic field amplitudes propagating in the symmetry

directions, Fig. 7. Combining Equations 14, 49 and 12, and assuming slowly varying magnetic
field amplitudes, the coupled wave equations for TE modes in triangular lattice PC are
obtained:

− ∂

∂x
Ht

1 + (α − αL − κ0 − iδ)Ht
1 = −i

κ1
2

(
Ht

2 + Ht
6
)
+ i

κ2
2

(
Ht

3 + Ht
5
)
+ (iκ3 − κ0) Ht

4 (50)

−1
2

∂

∂x
Ht

2 −
√

3
2

∂

∂y
Ht

2 + (α − αL − κ0 − iδ) Ht
2 =

= −i
κ1
2

(
Ht

1 + Ht
3
)
+ i

κ2
2

(
Ht

4 + Ht
6
)
+ (iκ3 − κ0) Ht

5 (51)

1
2

∂

∂x
Ht

3 −
√

3
2

∂

∂y
Ht

3 + (α − αL − κ0 − iδ) Ht
3 =

= −i
κ1
2

(
Ht

2 + Ht
4
)
+ i

κ2
2

(
Ht

1 + Ht
5
)
+ (iκ3 − κ0) Ht

6 (52)

∂

∂x
Ht

4 + (α − αL − κ0 − iδ)Ht
4 = −i

κ1
2

(
Ht

3 + Ht
5
)
+ i

κ2
2

(
Ht

2 + Ht
6
)
+ (iκ3 − κ0) Ht

1 (53)

303Coupled Mode Theory of Photonic Crystal Lasers



12 Photonic Crystals Book 1

− 1
2

∂

∂x
Et

2 −
√

3
2

∂

∂y
Et

2 + (α − αL − κ0 − iδ) Et
2 =

= iκ1
(
Et

1 + Et
3
)
+ iκ2

(
Et

4 + Et
6
)
+ (iκ3 − κ0) Et

5 (40)

1
2

∂

∂x
Et

3 −
√

3
2

∂

∂y
Et

3 + (α − αL − κ0 − iδ) Et
3 =

= iκ1
(
Et

2 + Et
4
)
+ iκ2

(
Et

1 + Et
5
)
+ (iκ3 − κ0) Et

6 (41)

∂

∂x
Et

4 + (α − αL − κ0 − iδ)Et
4 = iκ1

(
Et

3 + Et
5
)
+ iκ2

(
Et

2 + Et
6
)
+ (iκ3 − κ0) Et

1 (42)

1
2

∂

∂x
Et

5 +

√
3

2
∂

∂y
Et

5 + (α − αL − κ0 − iδ) Et
5 =

= iκ1
(
Et

4 + Et
6
)
+ iκ2

(
Et

1 + Et
3
)
+ (iκ3 − κ0) Et

2 (43)

−1
2

∂

∂x
Et

6 +

√
3

2
∂

∂y
Et

6 + (α − αL − κ0 − iδ) Et
6 =

= iκ1
(
Et

1 + Et
5
)
+ iκ2

(
Et

2 + Et
4
)
+ (iκ3 − κ0) Et

3 (44)

In Equations 39-44, like in the case of square lattice, δ is the Bragg frequency deviation, given
by Equation 27, while κ1, κ2, and κ3 are the coupling coefficients, which are defined by 16 and
as follows (Koba, Szczepanski & Kossek (2011)):
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These coefficients describe strength and direction of the coupling of the waves, e.g. the
coupling of Et

1 and Et
4 is described by κ3, the coupling of Et

1, Et
2, and Et

6 by κ1, and the coupling
of Et
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3, and Et

5 by κ2. In Equations 39-44, there is an additional coefficient κ0 which, like in
the square lattice case, is responsible for surface emission losses (Kazarinov & Henry (1985);
Vurgaftman & Meyer (2003)). Solution of Equations 39-44 for the boundary conditions:

Et
1(−

L
2

, y) = 0, Et
2(−

L
2

, y) = Et
2(x,− L

2
) = 0, Et

3(
L
2

, y) = Et
3(x,− L

2
) = 0,

Et
4(

L
2

, y) = 0, Et
5(

L
2

, y) = Et
5(x,

L
2
) = 0, Et

6(−
L
2

, y) = Et
6(x,

L
2
) = 0 (48)

defines structure eigenmodes at lasing threshold.
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3.1.4 Triangular lattice - TE polarization

In the triangular lattice photonic crystal cavity with TE polarization, the coupling process
involves waves satisfying the same condition as it was stated in TM polarization case, i.e.
(|G| = β0), (Sakai et al. (2008)), neglecting higher order Bloch modes. Six basic waves most
significantly contributing to coupling are depicted in Fig. 7.

Fig. 7. A schematic cross section of a triangular lattice photonic crystal laser active region,
where the six basic waves involved in the coupling for TE polarization are shown.

The magnetic field amplitudes h(G) (Equation 18) in the triangular lattice photonic crystal
cavity are written as follows (Sakai et al. (2008)):
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In Equation 49, Ht
i , i = 1..6, are the six magnetic field amplitudes propagating in the symmetry

directions, Fig. 7. Combining Equations 14, 49 and 12, and assuming slowly varying magnetic
field amplitudes, the coupled wave equations for TE modes in triangular lattice PC are
obtained:
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where the coupling coefficients κ1, κ2, and κ3 are described by
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and have the same physical meaning like it was described in the TM polarization case. The
boundary conditions for the square region of PC with triangular symmetry are written as:
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3.2 Numerical analysis of the PC laser threshold operation

3.2.1 Square lattice - TM and TE polarization

In Fig. 8 enlarged areas of a square lattice photonic crystal dispersion characteristics for the
first four modes (A,B,C,D) in the vicinity of Γ point are shown. At the photonic band edge, i.e.
at the Γ point, the cavity finesse increases, hence the active medium is used more efficiently.
The dispersion curves are plotted for a) TM polarization and b) TE polarization. The plane
wave method (Johnson & Joannopoulos (2001)) was used to plot the dispersion characteristic
for the infinite two-dimensional PC structure with circular holes εb = 9.8 arranged in square
lattice with background material εa = 12.0. The rods radius to lattice constant ratio was set
to 0.24. In each plot, i.e. Fig. 8a) and Fig. 8b), one can observe two degenerate modes: B,C
for TM polarization and C,D for TE polarization. They have the same frequency at Γ point.
Modes A have the lowest frequency.

In Fig. 8 each of the marked points (A,B,C,D) represents a mode, which is characterized
by: Bragg frequency deviation δ, threshold gain α, and threshold field distribution. These
characteristic values were calculated by the numerical solution of Equations 23-26 for TM
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Fig. 8. An enlarged area of a square lattice photonic crystal dispersion curves for the first four
modes in the vicinity of Γ point. Square lattice, a) TM polarization, and b) TE polarization.

polarization and Equations 30-33 for TE polarization. In order to assign appropriate points
A,B,C,D to the obtained numerical values, it was necessary to use the analytic expressions for
the Bragg frequency deviation (Sakai et al. (2006)):

δA = −2κ2 − κ3, δB,C = κ3, δD = 2κ2 − κ3 (60)

in case of TM polarization, and

δA = −8κ2
1/β0 − κ3, δB = −κ3, δC,D = −4κ2

1/β0 + κ3 (61)

in case of TE polarization. These expressions were obtained from Equations 23-26 and 30-33
where no gain (α = 0), no loss (κ0 = 0, αL = 0), and no spatial dependence of electric
or magnetic field amplitude were assumed. Sets of Equations 23-26 and 30-33 were solved
numerically for the wide range of coupling coefficients (κ1, κ2, κ3). We grouped obtained

solutions:
(
(δ, α, Es

m)
j
)

κ3i
or

(
(δ, α, Hs

m)
j
)

κ3i
, where κ3i corresponds to subsequent values of

coupling coefficient for different modes j = A, B, C, D; m = 1..4, s-denotes square lattice.
Assigning numerical values of δj to analytical solutions 60 and 61 (δA, δB,C, δD), we obtained
the mode structure of 2-D square lattice PC laser with TM and TE polarization.

Fig. 9 and 10 show the field distributions |∑m |Es
m|2| and |∑m |Hs

m|2|, respectively,
corresponding to the modes: A - Fig. 9a), D - Fig. 9b), B,C - Fig. 9c), d) for TM modes,
and A - Fig. 10a), B - Fig. 10b), C, D - Fig. 10c), d) for TE modes. The plots were made
for the normalized coupling coefficients |κ1L| = 10.96, |κ2L| = 8, |κ3L| = 4 and filling
factor f = 0.16. In each case (TM and TE polarization), the doubly degenerate modes are
orthogonal and show saddle-shaped patterns. All non-degenerate modes are similar and
exhibit Gaussian-like pattern, and this suggests that these modes should more efficiently use
the photonic cavity. These modes also have lower threshold , Fig. 11.

In Fig. 11a) and 11b), the normalized threshold gain αL was plotted as a function of Bragg
frequency deviation δL, for various values of the normalized coupling coefficient |κ3L| (it
takes values from 0.01 to 50).

Fig. 11a) and 11b) show that by increasing the value of coupling coefficient the Bragg
frequency deviation increases and the threshold gain decreases. Simultaneously, for larger
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and have the same physical meaning like it was described in the TM polarization case. The
boundary conditions for the square region of PC with triangular symmetry are written as:
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3.2 Numerical analysis of the PC laser threshold operation

3.2.1 Square lattice - TM and TE polarization

In Fig. 8 enlarged areas of a square lattice photonic crystal dispersion characteristics for the
first four modes (A,B,C,D) in the vicinity of Γ point are shown. At the photonic band edge, i.e.
at the Γ point, the cavity finesse increases, hence the active medium is used more efficiently.
The dispersion curves are plotted for a) TM polarization and b) TE polarization. The plane
wave method (Johnson & Joannopoulos (2001)) was used to plot the dispersion characteristic
for the infinite two-dimensional PC structure with circular holes εb = 9.8 arranged in square
lattice with background material εa = 12.0. The rods radius to lattice constant ratio was set
to 0.24. In each plot, i.e. Fig. 8a) and Fig. 8b), one can observe two degenerate modes: B,C
for TM polarization and C,D for TE polarization. They have the same frequency at Γ point.
Modes A have the lowest frequency.

In Fig. 8 each of the marked points (A,B,C,D) represents a mode, which is characterized
by: Bragg frequency deviation δ, threshold gain α, and threshold field distribution. These
characteristic values were calculated by the numerical solution of Equations 23-26 for TM
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, where κ3i corresponds to subsequent values of

coupling coefficient for different modes j = A, B, C, D; m = 1..4, s-denotes square lattice.
Assigning numerical values of δj to analytical solutions 60 and 61 (δA, δB,C, δD), we obtained
the mode structure of 2-D square lattice PC laser with TM and TE polarization.

Fig. 9 and 10 show the field distributions |∑m |Es
m|2| and |∑m |Hs

m|2|, respectively,
corresponding to the modes: A - Fig. 9a), D - Fig. 9b), B,C - Fig. 9c), d) for TM modes,
and A - Fig. 10a), B - Fig. 10b), C, D - Fig. 10c), d) for TE modes. The plots were made
for the normalized coupling coefficients |κ1L| = 10.96, |κ2L| = 8, |κ3L| = 4 and filling
factor f = 0.16. In each case (TM and TE polarization), the doubly degenerate modes are
orthogonal and show saddle-shaped patterns. All non-degenerate modes are similar and
exhibit Gaussian-like pattern, and this suggests that these modes should more efficiently use
the photonic cavity. These modes also have lower threshold , Fig. 11.

In Fig. 11a) and 11b), the normalized threshold gain αL was plotted as a function of Bragg
frequency deviation δL, for various values of the normalized coupling coefficient |κ3L| (it
takes values from 0.01 to 50).

Fig. 11a) and 11b) show that by increasing the value of coupling coefficient the Bragg
frequency deviation increases and the threshold gain decreases. Simultaneously, for larger
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(a) (b)

(c) (d)

Fig. 9. Electromagnetic field distributions corresponding to a)A, b)D, c)B, and d) C points
from Fig. 8a), respectively. Square lattice, TM polarization.

(a) (b)

(c) (d)

Fig. 10. Electromagnetic field distributions corresponding to a) A, b) B, c) C, and d) D points
from Fig. 8b), respectively. Square lattice, TE polarization.

values of coupling coefficient the threshold gain tends to similar values. This tendency is due
to growing field confinement in the cavity (all modes become Gaussian-like). In this case the
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Fig. 11. The dependence of threshold gain versus Bragg frequency deviation. Square lattice,
a) TM polarization and b) TE polarization.

mode designation is only possible by the frequency deviation δ. It is also worth noting that the
threshold gain values for mode A are the lowest in wide range of coupling coefficient. These
modes (A for TM and TE polarization) by having the lowest threshold and by using the active
medium in the most efficient way, are favored for lasing.

3.2.2 Triangular lattice - TM and TE polarization

Repeating all the calculations shown for square lattice structures, we obtained threshold
characteristics for triangular lattice structures. In Fig. 12 enlarged areas of triangular lattice
photonic crystals dispersion curves for the first six modes (A,B,C,D,E,F) in the vicinity of
Γ point are shown. Fig. 12a) coresponds to TM polarization, and Fig. 12b) refers to TE
polarization. The circular holes εb = 9.8 arranged in triangular lattice with background
material εa = 12.0 were assumed. The rods radius to lattice constant ratio was set to 0.24.
In each plot, i.e. Fig. 12a) and Fig. 12b), there can be two pairs of doubly degenerate modes
observed: B,C and D,E for TM polarization, and B,C and E,F for TE polarization (they have
the same frequency at the Γ point). Modes A have the lowest frequency.

Bragg frequency deviation (for points marked as A,B,C,D,E,F in Fig. 12) depending on
coupling coefficient is analytically expressed in the following form for the TM polarization:

(a) (b)

Fig. 12. An enlarged area of dispersion curves of photonic crystal for the first four modes in
the vicinity of Γ point. Triangular lattice, a) TM polarization, and b) TE polarization.
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Fig. 9. Electromagnetic field distributions corresponding to a)A, b)D, c)B, and d) C points
from Fig. 8a), respectively. Square lattice, TM polarization.
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(c) (d)

Fig. 10. Electromagnetic field distributions corresponding to a) A, b) B, c) C, and d) D points
from Fig. 8b), respectively. Square lattice, TE polarization.

values of coupling coefficient the threshold gain tends to similar values. This tendency is due
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δA = −2κ1 − 2κ2 − κ3, δB,C = −κ1 + κ2 + κ3,

δD,E = κ1 + κ2 − κ3, δF = 2κ1 − 2κ2 + κ3 (62)

and for TE polarization:

δA = −2κ1 − 2κ2 − κ3, δB,C = −κ1 + κ2 + κ3,

δD,E = κ1 + κ2 − κ3, δF = 2κ1 − 2κ2 + κ3. (63)

(a) (b)

(c) (d)

(e) (f)

Fig. 13. Electromagnetic field distributions corresponding to a)A, b)F, c)B, d)C, e)D, and f)E
points from Fig. 12a), respectively. Triangular lattice, TM polarization.

Fig. 13 shows the field distributions |∑m |Et
m|2|, m = 1..6 corresponding to the modes: A

- Fig. 13a), F - Fig. 13b), B,C - Fig. 13c), d), D,E - Fig. 13e), f). Fig. 14 shows the field
distributions |∑m |Ht

m|2|, m = 1..6 corresponding to the modes: A - Fig. 14a), D - Fig. 14b),
B,C - Fig. 14c), d), E,F - Fig. 14e), f). We set the values of the normalized coupling coefficients
for TM and TE polarization as follows |κ1L| = 13.96, |κ2L| = 6.6, |κ3L| = 4, and the value
of the filling factor f = 0.16. In case of TM and TE polarization, all degenerate modes are
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(c) (d)

(e) (f)

Fig. 14. Electromagnetic field distributions corresponding to a)A, b)D, c)B, d)C, e)E, and f)F
points from Fig. 12b), respectively. Triangular lattice, TE polarization.

(a) (b)

Fig. 15. The dependence of threshold gain versus Bragg frequency deviation. Triangular
lattice, a) TM polarization, and b) TE polarization.
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orthogonal and show similar patterns. For TM polarization, Fig. 13, modes B,C are very
similar to the non-degenerate mode A. This means that the coupling coefficients have values
for which the modes tend to converge. Similarly for TM polarization, Fig. 14, where two pairs
of doubly-degenerate modes are similar to non-degenerate mode A. Likewise, it is due to high
values of coupling coefficients and mode convergence.

In Fig. 15a), and 15b) the normalized threshold gain αL was plotted as a function of Bragg
frequency deviation δ, for various values of the normalized coupling coefficient |κ3L| ∈
(0.01; 50).

Fig. 15 shows similar tendency as in square lattice examples, i.e. by increasing the values of
coupling coefficient the Bragg frequency deviation increases and the threshold gain decreases.
Simultaneously, for larger values of coupling coefficient the threshold gain tends to similar
values. This fact is due to the growing field confinement in the cavity (all modes become
Gaussian-like, e.g. Fig. 13 and 14). The mode designation is only possible by obtaining the
frequency deviation δ values. The difference in the threshold gain values of degenerate modes
stems from numerical inaccuracy, and the threshold gain values should be averaged.

4. An above threshold analysis

The above threshold analysis of light generation in square and triangular lattice
two-dimensional photonic crystal laser is based on the energy theorem, presented in e.g.
(Koba & Szczepanski (2010)). The introduction of the energy theorem into previously
presented coupled wave equations is straightforward but requires laborious calculations. This
section presents the results of these calculations, while accurate derivations can be found in
(Koba & Szczepanski (2010); Koba, Szczepanski & Kossek (2011); Koba, Szczepanski & Osuch
(2011)).

At the basis of the described analysis lies a statement that the energy generated in the structure
is equal to the energy leaving the structure and the energy lost in it. In general, the gain
coefficient is a function of a small signal gain coefficient α0, saturation intensity IS, electric
field intensity in the laser structure I, and the shape of gain bandwidth. In the case of a
homogenous broadening and the laser action near resonance the gain coefficient is expressed
in the following form:

α =
α0

1 + (Iin + η Icoh) /IS
. (64)

In this equation Iin = ∑i |Ei|2 denotes noncoherent component of the electric field, whereas
Icoh = ∑i �=j EiE∗

j is the coherent component, and is responsible for the spatial hole burning
effect. The strength of this effect is described by the phenomenological coefficient η ∈ (0, 1).

Equations presented in this section describe the relations between normalized small signal
gain coefficient and the laser output power, structure losses, and structure coupling coefficient.

4.1 Square lattice - TM and TE polarization

In order to obtain the expressions describing the small signal gain coefficient in square lattice
photonic crystal laser for TM and TE polarization we used the sets of coupled wave Equations
23 - 26 and 30 - 33, (Koba & Szczepanski (2010); Koba, Szczepanski & Osuch (2011)). We added
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these sets of equations respectively with their complex conjugates and into each obtained
equation we introduced the expression for the nonlinear gain Equation 64. These steps led us
to the equations for small signal gain with above threshold field distributions. We replaced
the above threshold distributions with the threshold field distributions which we found by
numerical solutions of the sets of Equations 23-26 and 30-33. The accuracy of this threshold
approximation has been discussed in (Szczepanski (1985)). The final expressions for the small
signal gain coefficient of square lattice photonic crystal laser are:
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in case of TE polarization. In these equations Et
i , i = 1..4 and Ht

i , i = 1, 3, 5, 7 are the electric
and magnetic field amplitudes at the lasing threshold (Koba & Szczepanski (2010); Koba,
Szczepanski & Osuch (2011)).
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j is the coherent component, and is responsible for the spatial hole burning
effect. The strength of this effect is described by the phenomenological coefficient η ∈ (0, 1).

Equations presented in this section describe the relations between normalized small signal
gain coefficient and the laser output power, structure losses, and structure coupling coefficient.
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In order to obtain the expressions describing the small signal gain coefficient in square lattice
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in case of TE polarization. In these equations Et
i , i = 1..4 and Ht

i , i = 1, 3, 5, 7 are the electric
and magnetic field amplitudes at the lasing threshold (Koba & Szczepanski (2010); Koba,
Szczepanski & Osuch (2011)).
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4.2 Triangular lattice - TM and TE polarization

Expressions describing the small signal gain coefficients for triangular lattice photonic crystal
laser are obtained in the analogical way as we have done for square lattice structure. All
necessary calculations can be found in (Koba, Szczepanski & Kossek (2011); Koba, Szczepanski
& Osuch (2011)). The starting points for these calculations are Equations 39-44 and 50-55 for
TM and TE polarization, respectively. The small signal gain coefficient in triangular lattice
photonic crystal laser with TM polarization is described as follows:
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and for the TE polarization:
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for TE polarization. In Equations 67 and 68 Et
i , i = 1..6 and Ht

i , i = 1, 3, 5, 7 are the electric and
magnetic field components at the lasing threshold, respectively.

In Equations 65-68, the distinguished factors Mth, Wth, and Tth are associated with total power
in the structure, outgoing power, and the spatial hole burning effect. Moreover, in case of TE
polarization, an additional factors TTE

th and MTE
th are included to take into account the electric

dipole interaction in terms of magnetic field.

Equations 65-68 allow us to plot the characteristics showing the behavior of small signal gain
for different structure parameters.

4.3 Numerical analysis

This section is devoted to the analysis of numerical solutions of Equations 65-68. As
mentioned earlier, the field distributions in Equations 65, 66, 67, and 68 are those which exist
at lasing threshold. We obtained these threshold field distributions by numerically solving
the sets of the coupled equations 23-26, 30-33, 39-44, and 50-55. The presented results describe
above threshold operation of square and triangular lattice photonic crystal laser with TM and
TE polarization. These results include nonlinear gain, structure imperfections losses, surface
emission losses and spatial hole burning effect. In this section we discus modes which are
marked as A in Fig. 8 and 12, section 3.

(a) (b)

Fig. 16. Normalized small signal gain α0L vs. the normalized coupling constant κ3L with the
normalized output power level Pout/PS as a parameter, for two values of the normalized
losses in the structure, αLL = 0 (solid line) and αLL = 0.05 (dashed line). Surface emission
loss κ0 = 0. Square lattice photonic crystal structures with a)TM, and b)TE polarization.
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4.2 Triangular lattice - TM and TE polarization

Expressions describing the small signal gain coefficients for triangular lattice photonic crystal
laser are obtained in the analogical way as we have done for square lattice structure. All
necessary calculations can be found in (Koba, Szczepanski & Kossek (2011); Koba, Szczepanski
& Osuch (2011)). The starting points for these calculations are Equations 39-44 and 50-55 for
TM and TE polarization, respectively. The small signal gain coefficient in triangular lattice
photonic crystal laser with TM polarization is described as follows:

α0 =

���
(αL + κ0)Mth − 2κ0�

�
Et

1Et∗
4 + Et

2Et∗
5 + Et

3Et∗
6
�

dxdy +
Wth

2

�

·
⎧
⎨
⎩

�� Mth

1 + Pout
PS

Mth+ηTth
Wth

dxdy

⎫
⎬
⎭

−1

(67)

where

Mth =
6

∑
m=1

��Et
m
��2, Tth =

6

∑
m,n=1
m �=n

Et
mEt∗

n ,

and

Wth =
� L/2

−L/2

����Et
1

�
L
2 , y

����2 + 1
2

���Et
2

�
L
2 , y

����2 + 1
2

���Et
3

�
− L

2 , y
����2 +

���Et
4

�
− L

2 , y
����2

+ 1
2

���Et
5

�
− L

2 , y
����2 + 1

2

���Et
6

�
L
2 , y

����2
�

dy +
√

3
2

� L/2

−L/2

����Et
2

�
x, L

2

����2

+
���Et

3

�
x, L

2

����2 +
���Et

5

�
x,− L

2

����2 +
���Et

6

�
x,− L

2

����2
�

dx,

and for the TE polarization:
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for TE polarization. In Equations 67 and 68 Et
i , i = 1..6 and Ht

i , i = 1, 3, 5, 7 are the electric and
magnetic field components at the lasing threshold, respectively.

In Equations 65-68, the distinguished factors Mth, Wth, and Tth are associated with total power
in the structure, outgoing power, and the spatial hole burning effect. Moreover, in case of TE
polarization, an additional factors TTE

th and MTE
th are included to take into account the electric

dipole interaction in terms of magnetic field.

Equations 65-68 allow us to plot the characteristics showing the behavior of small signal gain
for different structure parameters.

4.3 Numerical analysis

This section is devoted to the analysis of numerical solutions of Equations 65-68. As
mentioned earlier, the field distributions in Equations 65, 66, 67, and 68 are those which exist
at lasing threshold. We obtained these threshold field distributions by numerically solving
the sets of the coupled equations 23-26, 30-33, 39-44, and 50-55. The presented results describe
above threshold operation of square and triangular lattice photonic crystal laser with TM and
TE polarization. These results include nonlinear gain, structure imperfections losses, surface
emission losses and spatial hole burning effect. In this section we discus modes which are
marked as A in Fig. 8 and 12, section 3.

(a) (b)

Fig. 16. Normalized small signal gain α0L vs. the normalized coupling constant κ3L with the
normalized output power level Pout/PS as a parameter, for two values of the normalized
losses in the structure, αLL = 0 (solid line) and αLL = 0.05 (dashed line). Surface emission
loss κ0 = 0. Square lattice photonic crystal structures with a)TM, and b)TE polarization.
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(a) (b)

Fig. 17. Normalized small signal gain α0L vs. the normalized coupling constant κ3L with the
normalized output power level Pout/PS as a parameter, for two values of the normalized
losses in the structure, αLL = 0 (solid line) and αLL = 0.05 (dashed line). Surface emission
loss κ0 = 0. Triangular lattice photonic crystal structures with a)TM, and b)TE polarization.

Fig. 16 and 17 represent normalized small signal gain coefficient α0L as a function of the
normalized coupling constant κ3L with the normalized output power level Pout/PS as a
parameter, for two values of the normalized losses in the structure, αLL = 0 (solid line) and
αLL = 0.05 (dashed line), respectively.

In case of square lattice, we set the coupling coefficients ratios constant, and they are κ2/κ3 = 2
and κ1/κ3 = 2.74 (this corresponds to the filling factor f = 0.16). Whereas, for triangular
lattice we set κ1/κ3 = 3.49 and κ2/κ3 = 1.65, which is related to the same filling factor as in
square lattice case, i.e. f = 0.16. Constant ratio of the coupling coefficients corresponds to the
situation in which the relative refractive indexes difference vary, but the filling factor remains
the same, e.g. Equations 20-22 or 45-47. In the lossless structure with an increasing coupling
strength (i.e., increasing Q-factor of the cavity), the small signal gain required to maintain
given output power monotonically decreases. This tendency changes, when we introduce
losses. In this situation (depicted by dashed lines in Fig. 16 and 17) plotted curves have
minima within the considered values of the coupling coefficient κ3L. The minima are caused
by nonlinear gain, i.e. the gain saturation effect. Their depth and curve shape depends on the
output power Pout/PS, refractive index difference, and filling factor. The minima represent
the lowest value of small signal gain for considered system parameters. Thus, for each power
level and given other structure parameters, there exists an optimal coupling strength that
results in the minimal small signal gain required to maintain that output level. The small
signal gain is related to the active medium pumping rate, thus we expect that the pumping
level of the laser structure is also minimal. Therefore, we can say that for the optimal coupling
strength the laser structure operates at the maximal power efficiency. Moreover, with an
increasing output power level, the optimal coupling strength is shifted towards lower values
(Koba & Szczepanski (2010); Koba, Szczepanski & Kossek (2011); Koba, Szczepanski & Osuch
(2011)).

5. Perspectives

Here, we point out a interesting path for further investigation of photonic crystal lasers. In this
chapter we discussed 2-D PC lasers, but since a lot of publications on three-dimensional (3-D)
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coupled mode theory are issued e.g.(Hamam et al. (2007)) and 3-D photonic crystal lasers are
developed e.g. (Tandaechanurat et al. (2011)) it would be interesting to introduce this 3-D
theory to PC lasers. This formulation would have to face some important issues, e.g. the
estimation of the number of coupling waves, and increasing number of coupled equations,
but it would give a crucial insight into 3-D photonic cavities.

6. Conclusions

In our work we have presented the systematic studies on the threshold and above threshold
two-dimensional photonic crystal laser operation. We have shown the comprehensive
coupled mode description of photonic crystal laser threshold operation, completing the
works of Sakai et al. by presenting the threshold model for triangular lattice structure with
TM polarization. Moreover, we conducted our calculations in the wide range of coupling
coefficient for all four cases (square and triangular lattice with TM and TE polarization),
which also has not yet been done. In addition, we have presented an approximate method
of the above threshold analysis of a 2-D photonic crystal laser operation. We showed the
approximate formulas for the small signal gain coefficients as a function of system parameters.
Furthermore, we made necessary calculations to obtain above threshold characteristics, which
depicted that it is possible to attain the optimal coupling strength providing maximal power
efficiency of a given 2-D photonic laser structure. We believe that our analysis and methods
could be useful in supporting the design process of a laser structure and help understand the
principles of photonic crystal band-edge laser operation.
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(a) (b)

Fig. 17. Normalized small signal gain α0L vs. the normalized coupling constant κ3L with the
normalized output power level Pout/PS as a parameter, for two values of the normalized
losses in the structure, αLL = 0 (solid line) and αLL = 0.05 (dashed line). Surface emission
loss κ0 = 0. Triangular lattice photonic crystal structures with a)TM, and b)TE polarization.

Fig. 16 and 17 represent normalized small signal gain coefficient α0L as a function of the
normalized coupling constant κ3L with the normalized output power level Pout/PS as a
parameter, for two values of the normalized losses in the structure, αLL = 0 (solid line) and
αLL = 0.05 (dashed line), respectively.

In case of square lattice, we set the coupling coefficients ratios constant, and they are κ2/κ3 = 2
and κ1/κ3 = 2.74 (this corresponds to the filling factor f = 0.16). Whereas, for triangular
lattice we set κ1/κ3 = 3.49 and κ2/κ3 = 1.65, which is related to the same filling factor as in
square lattice case, i.e. f = 0.16. Constant ratio of the coupling coefficients corresponds to the
situation in which the relative refractive indexes difference vary, but the filling factor remains
the same, e.g. Equations 20-22 or 45-47. In the lossless structure with an increasing coupling
strength (i.e., increasing Q-factor of the cavity), the small signal gain required to maintain
given output power monotonically decreases. This tendency changes, when we introduce
losses. In this situation (depicted by dashed lines in Fig. 16 and 17) plotted curves have
minima within the considered values of the coupling coefficient κ3L. The minima are caused
by nonlinear gain, i.e. the gain saturation effect. Their depth and curve shape depends on the
output power Pout/PS, refractive index difference, and filling factor. The minima represent
the lowest value of small signal gain for considered system parameters. Thus, for each power
level and given other structure parameters, there exists an optimal coupling strength that
results in the minimal small signal gain required to maintain that output level. The small
signal gain is related to the active medium pumping rate, thus we expect that the pumping
level of the laser structure is also minimal. Therefore, we can say that for the optimal coupling
strength the laser structure operates at the maximal power efficiency. Moreover, with an
increasing output power level, the optimal coupling strength is shifted towards lower values
(Koba & Szczepanski (2010); Koba, Szczepanski & Kossek (2011); Koba, Szczepanski & Osuch
(2011)).

5. Perspectives

Here, we point out a interesting path for further investigation of photonic crystal lasers. In this
chapter we discussed 2-D PC lasers, but since a lot of publications on three-dimensional (3-D)
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coupled mode theory are issued e.g.(Hamam et al. (2007)) and 3-D photonic crystal lasers are
developed e.g. (Tandaechanurat et al. (2011)) it would be interesting to introduce this 3-D
theory to PC lasers. This formulation would have to face some important issues, e.g. the
estimation of the number of coupling waves, and increasing number of coupled equations,
but it would give a crucial insight into 3-D photonic cavities.

6. Conclusions

In our work we have presented the systematic studies on the threshold and above threshold
two-dimensional photonic crystal laser operation. We have shown the comprehensive
coupled mode description of photonic crystal laser threshold operation, completing the
works of Sakai et al. by presenting the threshold model for triangular lattice structure with
TM polarization. Moreover, we conducted our calculations in the wide range of coupling
coefficient for all four cases (square and triangular lattice with TM and TE polarization),
which also has not yet been done. In addition, we have presented an approximate method
of the above threshold analysis of a 2-D photonic crystal laser operation. We showed the
approximate formulas for the small signal gain coefficients as a function of system parameters.
Furthermore, we made necessary calculations to obtain above threshold characteristics, which
depicted that it is possible to attain the optimal coupling strength providing maximal power
efficiency of a given 2-D photonic laser structure. We believe that our analysis and methods
could be useful in supporting the design process of a laser structure and help understand the
principles of photonic crystal band-edge laser operation.
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1. Introduction

Photonic crystals are modern artificially designed periodical systems capable to affect
the motion of photons in a similar way that the periodicity of the atomic potential
in a semiconductor crystal affects the motion of electrons. The physical properties of
light in a photonic crystal resemble those of electrons in atomic crystals, leading to
forbidden propagation of electromagnetic modes at certain frequencies, as demonstrated by
Yablonovitch (1987), Ho et al. (1990), Joannopoulos et al. (1995; 1997), etc. The existence of the
optical band gap (which is the part of the spectrum for which the wave propagation is not
possible) makes photonic crystals broadly interesting from many viewpoints of fundamental
research and applications. Recent studies are motivated by promising applications such as
purely optical integrated circuits [e.g., by Lin et al. (1998), Noda (2006), or Hugonin et al.
(2007)], artificial metamaterials with high tunability [Datta et al. (1993); Genereux et al. (2001);
Krokhin et al. (2002); Reyes et al. (2005)], high-sensitivity photonic biosensors [Block et al.
(2008); Skivesen et al. (2007)], or devices based on phenomena not accessible in conventional
media [Benisty (2009); Kosaka et al. (1998); Krokhin & Reyes (2004)]. It is also necessary for
accounting for structural colors of wings of butterflies or beetles, feathers of birds, or iridescent
plants [Kinoshita & Yoshioka (2005); Vukusic & Sambles (2003)].

Since the optical properties of photonic crystals strongly depend on their geometrical
structure, used materials, etc., their proper design is crucial for the correct device functionality.
Thorough theoretical analysis therefore takes place in the development, using various
numerical methods for calculation including methods of finite difference in the time or
frequency domain or finite element methods [Joannopoulos et al. (1995)]. One of the most
common calculation techniques applied to photonic crystals is the plane wave expansion
method, which is a frequency-domain approach based on the expansion of the fields and
material parameters into the Fourier (or reciprocal) space. The components of this expansion
represent the definite-frequency states. After some necessary truncation of the complete
basis (plane waves with a finite cutoff), the partial differential equations are then solved as
a linear-algebraic problem. However, the convergence rate of this method strongly depends
on the implementation of Maxwell’s equations in the truncated plane-wave basis [Meade
et al. (1993); Sozuer et al. (1992)]. In the case of periodic discontinuities (typical for photonic
crystals) the convergence is rather poor so that the computer calculations might become
extremely time- and memory-consuming.
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2 Will-be-set-by-IN-TECH

Because the underlying physical phenomenon in the optical behavior of photonic crystals is
based on diffraction (therefore the lattice constant of a periodic structure has to be in the same
length-scale as half the wavelength of the electromagnetic wave), several conclusions can be
advantageously adopted from the classical coupled-wave theory, one of the most effective
methods for modeling diffraction of electromagnetic waves by periodic gratings, which was
developed during several past decades. This can provide a high enhancement to the plane
wave expansion method, resulting in the reduction of the computation resources.

In the mid 1990s Li (1996) showed that Laurent’s “direct” rule, which had always
been adopted in conventional formulations to factorize the truncated Fourier series that
corresponds to products of two periodic functions, presents bad convergence when the two
functions of the product are simultaneously discontinuous. He suggested three Fourier
factorization rules (briefly summarized in Section 2.3) and applied them to one-dimensional
(1D) diffraction gratings. This major breakthrough in the grating theory (called “fast Fourier
factorization”) was soon applied by many authors to various grating structures with arbitrary
periodic reliefs, anisotropic [Li (1998)] and slanted [Chernov et al. (2001)] periodic systems,
their various combinations [Li (2003); Watanabe (2002); Watanabe et al. (2002)], and other
systems [Bonod et al. (2005a;b); Boyer et al. (2004)].

Later Li (1997) applied the factorization rules to two-dimensional (2D) periodic structures
treated by “zigzag” Fourier expansion, which yielded an improvement for rectangular dots
or holes. However, Popov & Neviere (2000) have pointed out that the staircase approximation
(of the coupled wave theory using the slicing of relief profiles) in combination with the
traditional formulation of differential equation within one slice violates Li’s factorization
rules. This was a major complication for the analysis of the periodic systems made of rounded
elements. Therefore, they applied a coordinate transform to treat individually the normal and
tangential components of the electric field on 1D sinusoidal-relief gratings, which enabled the
application of the correct rule for each field component and thus improved the convergence.

Later David et al. (2006) utilized the normal–tangential field separation to 2D photonic crystals
composed of circular or elliptical holes. Similarly, Schuster et al. (2007) applied this method to
2D gratings, and also suggested more general distributions of polarization bases [Gotz et al.
(2008)]. These approaches, always dealing with linear polarizations, enabled a significant
improvement of the convergence properties, but ignored the fact that the transformation
matrix between the Cartesian and the normal–tangential component bases of polarization
became discontinuous at the center and along the boundaries of the periodic cell, which
slowed down the resulting convergence. To overcome these discontinuities, a distribution
of more complex (i.e., generally elliptic) polarization bases was recently suggested to improve
optical simulations of 2D gratings and photonic crystals [Antos (2009); Antos & Veis (2010)].

Our chapter will describe in detail the application of the Fourier factorization rules to the plane
wave expansion method for numerical analysis of general photonic crystals. Section 2 will
introduce the principle of the plane wave expansion together with the notation of matrices
and factorization theorems. Section 3 will refer to 1D photonic structures made as periodic
stratified media. The consistency of the correct factorization rules with classical theory of Yeh
et al. (1977) and Yariv & Yeh (1977) will be shown, pointing to the correct boundary conditions
of the tangential components of the electric and magnetic field on multilayer interfaces.
Section 4 will repeat our previously described methodology for 2D photonic crystals made
of circular elements, and Section 5 will generalize it to elements of other shapes. Sections 6
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and 7 will propose how to factorize anisotropic and three-dimensional (3D) photonic crystals,
respectively.

2. Plane wave expansion

2.1 General remarks

The modes of photonic crystals are in principle the eigensolutions of the wave equation with
an inhomogeneous, periodic relative permittivity ε(r). One possible version of the wave
equation is the equation for the unknown electric field with an unknown frequency,

1
ε
∇× (∇×E) =

ω2

c2 E, (1)

where ω2/c2 is its eigenvalue (ω is the frequency and c the light velocity in vacuum) and

E(r) = e−ik·r ∑
m,n,l

emnle
−ik0(mpx+nqy+lsz) = ∑

m,n,l
emnle

−ik0(pm x+qny+sl z) (2)

is its eigenfunction, which has the form of a pseudoperiodic Floquet–Bloch function. Here
p = 2π/Λx, q = 2π/Λy, and s = 2π/Λz are the normalized reciprocal lattice vectors. For
simplicity we assume the periods Λj along the Cartesian axes throughout this chapter. For
brevity we have also defined k = k0[p0, q0, s0], pm = p0 + mp, qn = q0 + nq, and sl = s0 + ls.
(Analogously we could write the wave equation for an unknown magnetic field H or any
other field from Maxwell’s equations.)

Owing to the periodicity of the problem, the plane wave expansion method is the reference
method for the mode calculation. It is based on the Fourier expansion of the field such as in
Equation 2 and on the Fourier expansion of a material function, either the permittivity or the
impermittivity η(r) = 1/ε(r),

ε(r) = ∑
m,n,l

εmnle
−ik0(mpx+nqy+lsz) (3)

η(r) = ∑
m,n,l

ηmnle
−ik0(mpx+nqy+lsz) (4)

The rules for choosing the most appropriate material parameter and the most appropriate
field for the Fourier expansion are governed by various methods of Fourier factorization. In
the past, the E method (η and the electric displacement D were expanded), H method (η and
H were expanded), and Ho method (ε and E were expanded) were the typical choices.

2.2 Matrix notation

Now we carry out the transformation of the partial differential equations into matrix equations
in order to solve the eigenproblem by linear-algebraic methods. For simplicity we limit
ourselves to 1D and 2D photonic crystals, and always choose the direction of propagation
in the xy plane, so that ∂z = 0. With these restrictions we write

ε(x, y) =
+∞

∑
m,n=−∞

εmn e−i(mpx+nqy), (5)

f (x, y) =
+∞

∑
m,n=−∞

fmn e−i(pm x+qny). (6)
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became discontinuous at the center and along the boundaries of the periodic cell, which
slowed down the resulting convergence. To overcome these discontinuities, a distribution
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Our chapter will describe in detail the application of the Fourier factorization rules to the plane
wave expansion method for numerical analysis of general photonic crystals. Section 2 will
introduce the principle of the plane wave expansion together with the notation of matrices
and factorization theorems. Section 3 will refer to 1D photonic structures made as periodic
stratified media. The consistency of the correct factorization rules with classical theory of Yeh
et al. (1977) and Yariv & Yeh (1977) will be shown, pointing to the correct boundary conditions
of the tangential components of the electric and magnetic field on multilayer interfaces.
Section 4 will repeat our previously described methodology for 2D photonic crystals made
of circular elements, and Section 5 will generalize it to elements of other shapes. Sections 6
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and 7 will propose how to factorize anisotropic and three-dimensional (3D) photonic crystals,
respectively.

2. Plane wave expansion

2.1 General remarks

The modes of photonic crystals are in principle the eigensolutions of the wave equation with
an inhomogeneous, periodic relative permittivity ε(r). One possible version of the wave
equation is the equation for the unknown electric field with an unknown frequency,

1
ε
∇× (∇×E) =

ω2

c2 E, (1)

where ω2/c2 is its eigenvalue (ω is the frequency and c the light velocity in vacuum) and

E(r) = e−ik·r ∑
m,n,l

emnle
−ik0(mpx+nqy+lsz) = ∑

m,n,l
emnle

−ik0(pm x+qny+sl z) (2)

is its eigenfunction, which has the form of a pseudoperiodic Floquet–Bloch function. Here
p = 2π/Λx, q = 2π/Λy, and s = 2π/Λz are the normalized reciprocal lattice vectors. For
simplicity we assume the periods Λj along the Cartesian axes throughout this chapter. For
brevity we have also defined k = k0[p0, q0, s0], pm = p0 + mp, qn = q0 + nq, and sl = s0 + ls.
(Analogously we could write the wave equation for an unknown magnetic field H or any
other field from Maxwell’s equations.)

Owing to the periodicity of the problem, the plane wave expansion method is the reference
method for the mode calculation. It is based on the Fourier expansion of the field such as in
Equation 2 and on the Fourier expansion of a material function, either the permittivity or the
impermittivity η(r) = 1/ε(r),

ε(r) = ∑
m,n,l

εmnle
−ik0(mpx+nqy+lsz) (3)

η(r) = ∑
m,n,l

ηmnle
−ik0(mpx+nqy+lsz) (4)

The rules for choosing the most appropriate material parameter and the most appropriate
field for the Fourier expansion are governed by various methods of Fourier factorization. In
the past, the E method (η and the electric displacement D were expanded), H method (η and
H were expanded), and Ho method (ε and E were expanded) were the typical choices.

2.2 Matrix notation

Now we carry out the transformation of the partial differential equations into matrix equations
in order to solve the eigenproblem by linear-algebraic methods. For simplicity we limit
ourselves to 1D and 2D photonic crystals, and always choose the direction of propagation
in the xy plane, so that ∂z = 0. With these restrictions we write

ε(x, y) =
+∞

∑
m,n=−∞

εmn e−i(mpx+nqy), (5)

f (x, y) =
+∞

∑
m,n=−∞

fmn e−i(pm x+qny). (6)
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where f is a component of the electric field. We will now derive the matrix expressions of the
fundamental relations

h(x, y) = ε(x, y) f (x, y), (7)

gx(x, y) = ∂x f (x, y), (8)

gy(x, y) = ∂y f (x, y), (9)

i.e., the relations of multiplication by a function and applying partial derivatives. Assuming
the expansions of the new functions h = ∑m,n hmn e−i(pm x+qny), gx = ∑m,n gx,mn e−i(pm x+qny),
and gy = ∑m,n gy,mn e−i(pm x+qny), we rewrite Equations 7–9 using the convolution rule, and
applying the partial derivatives as follows:

hmn =
+∞

∑
k,l=−∞

εm−k,n−l fkl , (10)

gx,mn = −ipm fmn, (11)

gy,mn = −iqn fmn. (12)

Assuming furthermore a finite number of the retained Fourier coefficients, i.e., using the
summation ∑+M

m=−M ∑+N
n=−N , we can renumber all the indices to replace the couple of two

sets m ∈ {−M, −M + 1, . . . , M} and n ∈ {−N, −N + 1, . . . , N} by a single set of indices
α ∈ {1, 2, . . . , αmax}, with αmax = (2M + 1)(2N + 1), related

α(m, n) = m + M + 1 + (n + N)(2M + 1), (13)

n(α) = (α − 1)div(2M + 1)− N, (14)

m(α) = (α − 1)mod(2M + 1)− M, (15)

where “div” denotes the operation of integer division and “mod” the remainder (the modulo
operation). Then we can rewrite Equations 10–12 into the matrix relations

[h] = [[ε]][ f ], (16)

[gx] = −ip [ f ], (17)[
gy
]
= −iq [ f ], (18)

where [ f ], [h], [gx], and [gy] are column vectors whose αth elements are the Fourier [m, n]
elements of the functions f , h, gx, and gy, indexed by α(m, n) defined in Equation 13, and
where [[ε]], p, and q are matrices whose elements are defined

[[ε]]αβ = εm(α)−m(β),n(α)−n(β), (19)

pαβ = pm(α)δαβ, (20)

qαβ = qn(α)δαβ, (21)

where the indices on the right hand parts are defined by Equations 14 and 15 and where δαβ

denotes the Kronecker delta. As a summary we can say that the multiplication by a function
is in the reciprocal space represented by the matrix [[ε]] (in the sense of the limit αmax → ∞)
and that the partial derivatives are represented by the diagonal matrices −ip and −iq.
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For 1D periodicity we choose the inhomogeneity along the y axis. In this case the α index is
not necessary because the n index is sufficient,

ε(y) =
+∞

∑
n=−∞

εn e−inqy, (22)

f (y) =
+∞

∑
n=−∞

fn e−iqny, (23)

[[ε]]nk = εn−k, (24)

qnk = qnδnk. (25)

Here [[ε]] is a Toeplitz matrix (a matrix with constant diagonals).

2.3 Simplified theorems of Fourier factorization

Although the theorems were derived by Li (1996) for 1D periodic functions, we here
summarize them in the matrix formalism independent of the number of dimensions. Let f , h,
and ε be piecewise-continuous functions with the same periodicity related

h = ε f , (26)

and let [ f ], [h], and [[ε]] denote their matrices as defined in Section 2.2.

Theorem 1. If ε and f have no concurrent discontinuities, then the Laurent rule applied to
Equation 26 converges uniformly on the whole period and hence

[h] = [[ε]][ f ] (27)

can be applied with fast convergence.

Theorem 2. If ε and f have one or more concurrent discontinuities but h is continuous, then
Equation 26 can be transformed into the case of Theorem 1,

f =
1
ε

h, (28)

and hence

[ f ] =
[[

1
ε

]]
[h]. (29)

Accordingly, we can state

[h] =
[[

1
ε

]]−1
[ f ] (30)

referred to as the inverse rule. We say that the functions ε and f have complementary
discontinuities.

Theorem 3. If none of the requirements of the first two theorems are satisfied, then none of the
rules can be applied correctly because Equations 27 and 30 are no longer valid at the points
of discontinuities, which considerably slows down the convergence. Therefore, we should
carefully analyze the continuity of the functions and transform all the partial differential
formulae to the first two cases.
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3. One-dimensional photonic crystals

3.1 Geometry of the problem

Fig. 1 shows the geometrical configuration of a 1D photonic crystal made as periodic
alternation of two different layers with relative permittivities ε I and ε II , thicknesses d1 and
d2, with periodicity Λ along the y axis. The relative thickness of the first layer (with respect
to the period) is denoted w; the relative thickness of the second layer is then 1 − w. The
coordinate system is chosen to get the uniform problem along the z axis. This means that the
plane of incidence (plane defined by the vector of periodicity and the wave vector of incidence
k = k0[p0, q0, 0], here only hypothetical since the photonic crystal is infinite) coincides with
the xy plane.

plane of incidence 

I II 

d1 = w d2 = (1–w)  

y 

x 

z 

)(
1

00 yqxpik Iea +

)(
1

00 yqxpik Ieb

)(
2

00 yqxpik IIea +

)(
2

00 yqxpik IIeb

I 

(1) (2) (3) 

0 

d1 d2 

II 

(4) 

Fig. 1. Geometry of a 1D photonic crystal made as periodic alternation of two layers

Then we distinguish between two polarizations of electromagnetic fields which can be treated
independently. The transverse electric (TE) polarization has E perpendicular to the plane of
incidence (Ez, Hx, and Hy are nonzero). The transverse magnetic (TM) polarization has H
perpendicualar to the plane of incidence (Hz, Ex, and Ey are nonzero).

3.2 Application of Fourier factorization

Propagation in a 1D periodic medium, whose inhomogeneity along the y-axis is described
by the relative permittivity function ε(y), is governed by Maxwell’s equations (choosing the
coordinate system uniform along the z-axis, i.e., ∂z = 0)

∂yEz = −iωμ0Hx, ∂xEz = iωμ0Hy, ∂x Hy − ∂y Hx = iωε0ε(L)Ez, (31)

∂y Hz = iωε0ε(L)Ex, ∂x Hz = −iωε0ε(I)Ey, ∂xEy − ∂yEx = −iωμ0Hz, (32)
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where the first and the second row corresponds to the TE and the TM polarization,
respectively. The formal labels of the relative permittivity, (L) and (I), means that the
multiplication with the corresponding component of the electric field will be (according to
the factorization rules) treated by either the Laurent rule (L) or the inverse rule (I). This is
due to the fact that Ez and Ex are continuous functions (because they are tangential to the
discontinuities of ε), whereas Ey is the component normal to the discontinuities and hence
discontinuous (while the product εEz is continuous). By separating one field in each case, we
obtain the wave equations

−
(

∂2
x + ∂2

y

)
Ez = ω2

c2 ε(L)Ez, (TE) (33)

−
(

1
ε(I)

∂2
x + ∂y

1
ε(L)

∂y

)
Hz = ω2

c2 Hz (TM) (34)

or, after expanding the permittivity or impermittivity and the fields into the Fourier series, the
matrix formulae

[[ε]]−1 (p2
0 + q2) [Ez] =

ω2

c2 [Ez], (TE) (35)
([[

1
ε

]]
p2

0 + q[[ε]]−1q
)
[Hz] =

ω2

c2 [Hz]. (TM) (36)

3.3 Consistency with Yeh’s theory for the small-period limit

For the small-period limit the validity of these rules can be analytically verified by treating
the periodic structure as alternation of two homogeneous layers, where we use the boundary
conditions for the continuity of the tangential electric and magnetic fields on all interfaces.
Now the function ε is assumed constant (ε I or ε II) within each layer of the thickness d1 or d2.
According to the geometry in Fig. 1, the field in the jth layer has the dependence

E(j)
z (x, y) = e−ik0 p0x[aje−ik0qj(y−yj) + bjeik0qj(y−yj)], (37)

where qj = (ε j − p2
0)

1/2, with ε j = ε I for odd j and ε j = ε II for even j. It is coupled with the
field in the next layer by the matrix equation

[
aj+1
bj+1

]
= Cj

[
Pj 0
0 1

Pj

] [
aj
bj

]
, Cj =

[
αj β j
β j αj

]
, (38)

where αj = 1
2 (1 + qj/qj+1), β j = 1

2 (1 − qj/qj+1) for the TE polarization, or αj = 1
2 (1 +

ε jqj+1/ε j+1qj), β j =
1
2 (1 − ε jqj+1/ε j+1qj) for the TM polarization, and Pj = e−ik0qjdj for both

polarizations. Obviously, qj = (ε j − p2
0)

1/2, assuming the e−ik0 p0x factor of all fields.

Applying the small-period approximation (Pj)
±1 ≈ 1 ∓ ik0qjdj to the problem of propagation

through the whole period,
[

a3
b3

]
= Ω

[
a1
b1

]
, Ω = C2

[
P2 0
0 1

P2

]
C1

[
P1 0
0 1

P1

]
, (39)

yields the eigenvalues of the Ω operator

Ω± = 1 ± ik0Λ
√

ε0 − p2
0, (TE) (40)

Ω± = 1 ± ik0Λ
√
(1 − p2

0η0)ε0. (TM) (41)
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with

ε0 = wε I + (1 − w)ε II , (42)

η0 = wηI + (1 − w)ηII , (43)

Assuming a Floquet mode with the eigenvalues of Ω being Ω± = e±ik0q0Λ ≈ 1 ± ik0q0Λ, we
see that in the small-period limit the periodic structure behaves as a homogeneous anisotropic
medium with the y-component of the normalized wave vector q0 = (ε0 − p2

0)
1/2 for the TE

polarization and q0 = [(1 − p2
0η0)ε0]

1/2 for the TM polarization. These formulae are identical
with Equations 35 and 36 if we retain only the 0th element of all matrices. This is a very
interesting disclosure that the results obtained by Yeh and coauthors already in 1970s are
consistent with the extensive, more general research carried out in 1990.

3.4 Numerical example

Example of the comparison of applying the correct Fourier factorization rules with applying
the opposite ones is shown in Fig. 2 for both polarizations. The normalized eigenfrequency
ωΛ/2πc of the first band is displayed according to N; the structure is made as two alternating
layers of the equal thicknesses 500 nm (Λ = 1000 nm) and permittivities ε I = 3 and ε II = 1.
The wave vector is chosen k = (0.5π/Λ)[1, 1, 0].
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Fig. 2. Convergence properties of the correct factorization compared with the opposite one

4. Two-dimensional photonic crystals with circular elements

4.1 Geometry of the problem

Fig. 3 displays the geometrical arrangement of a 2D photonic crystal made as bi-periodic
alternation of rods or holes with a cylindrical cross-section. Instead of a single vector of
periodicity we now have the plane of periodicity (determined by two vectors of periodicities
defining a unit cell), which here coincides with the xy plane. For simplicity we choose the
incidence direction in the plane of periodicity, so that we can again distinguish between two
independent polarizations. The plane of incidence is now determined along the propagation
wave vector k = k0[p0, q0, 0] and perpendicular to the plane of periodicity. The TE
polarization has now H along the z axis, which is now the more difficult case (with nonzero
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Fig. 4. Two examples of 2D periodic arrangements; below are the first Brillouin zones in the
reciprocal space

As an example, in Fig. 3 we have chosen the xz plane as the plane of incidence, but we
could choose any plane parallel with the z axis provided that we want to treat the TE and
TM polarizations independently. In general, the plane of incidence is determined by the k
vector in the reciprocal space as displayed in Fig. 4, whose particular symmetry points are
denoted Γ, X, M, or K according to the corresponding periodicity.

In this section we study a 2D photonic crystal composed of infinite cylinders with a circular
cross-section with either square [Fig. 4(a)] or hexagonal [Fig. 4(b)] periodicity. For the square
symmetry the unit cell has the dimensions Λx = Λy = Λ, and for the hexagonal symmetry
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with

ε0 = wε I + (1 − w)ε II , (42)

η0 = wηI + (1 − w)ηII , (43)

Assuming a Floquet mode with the eigenvalues of Ω being Ω± = e±ik0q0Λ ≈ 1 ± ik0q0Λ, we
see that in the small-period limit the periodic structure behaves as a homogeneous anisotropic
medium with the y-component of the normalized wave vector q0 = (ε0 − p2

0)
1/2 for the TE

polarization and q0 = [(1 − p2
0η0)ε0]

1/2 for the TM polarization. These formulae are identical
with Equations 35 and 36 if we retain only the 0th element of all matrices. This is a very
interesting disclosure that the results obtained by Yeh and coauthors already in 1970s are
consistent with the extensive, more general research carried out in 1990.

3.4 Numerical example

Example of the comparison of applying the correct Fourier factorization rules with applying
the opposite ones is shown in Fig. 2 for both polarizations. The normalized eigenfrequency
ωΛ/2πc of the first band is displayed according to N; the structure is made as two alternating
layers of the equal thicknesses 500 nm (Λ = 1000 nm) and permittivities ε I = 3 and ε II = 1.
The wave vector is chosen k = (0.5π/Λ)[1, 1, 0].
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it can be chosen as an Λ-by-Λ
√

3 rectangle. The corresponding first Brillouin zones of the
reciprocal space are depicted in the bottom part of Fig. 4.

Maxwel’s equation are again

∂yEz = −iωμ0Hz, ∂xEz = iωμ0Hy, ∂x Hy − ∂y Hx = iωε0εEz, (44)

∂y Hz = iωε0εEx, ∂x Hz = −iωε0εEy, ∂xEy − ∂yEx = −iωμ0Hz. (45)

However, now we cannot put there the labels (L) or (I) for the factorization type as easily
as above, because the discontinuities of the permittivity function are now mixed among the
components of E.

Assuming a hypothetical anisotropy of the relative permittivity function, we define a scaled
electrical displacement D̃,

[
D̃x
D̃y

]
= ε

[
Ex
Ey

]
=

[
εxx εxy
εyx εyy

] [
Ex
Ey

]
, (TE) (46)

D̃z = εzzEz = ε(L)Ez, (TM) (47)

where εzz is obviously the only component of the permittivity tensor for which we can use the
Laurent rule.

Defining also a 2-by-2 matrix of electrical impermittivity η = ε−1 helps in the formulation of
the wave equations

(−∂yηxx∂y + ∂xηyx∂y + ∂yηxy∂x − ∂xηyy∂x)Hz = ω2

c2 Hz, (TE) (48)

−
(

∂2
x + ∂2

y

)
Ez = ω2

c2 ε(L)Ez, (TM) (49)

where ηjk are the components of the electrical impermittivity. For the simplicity of the TM
polarization case we below focus our attention only to the TE polarization.

4.2 Methods of Fourier factorization

In this section we compare several models corresponding to different factorization
approaches.

4.2.1 Elementary (Cartesian) method (Model A)

First, Model A assumes the solution in the basis of the x̂ and ŷ polarizations uniform within
the periodic cell, where in accordance with Ho et al. (1990) we choose the Laurent rules

[D̃x] = [εEx] = [[ε]][Ex], (50)

[D̃y] = [εEy] = [[ε]][Ey]. (51)

The components of the electric impermittivity in Equation 48 then becomes [[ε]]−1 for the cases
of ηxx, ηyy, and zero for the cases of ηxy, ηyx, or

[[η]]A =

[
[[ε]]−1 [[0]]
[[0]] [[ε]]−1

]
. (52)

For illustration we show the distribution of the first basis polarization vector (identical with
the constant vector x̂) in Fig. 5(a), where the black circle denotes the element boundary (the
permittivity discontinuity).
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4.2.2 Normal vector method (Model B)
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Fig. 5. Distribution of the basis polarization vector u for the factorization models

According to the factorization theorems, neither the Laurent rule nor the inverse rule is correct
for both products in Equations 50 and 51, because both pairs of functions have concurrent
discontinuities and both products D̃x and D̃y are discontinuous as well. On the other hand,
by an appropriate change of the polarization bases at all points (using a space-dependent
Jones matrix transform F), [

Ex
Ey

]
= F

[
Eu
Ev

]
, (53)

we can treat independently the normal (u) and tangential (v) components of the fields by the
correct rules,

[D̃u] = [[1/ε]]−1[Eu], (54)

[D̃v] = [[ε]][Ev]. (55)
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According to the factorization theorems, neither the Laurent rule nor the inverse rule is correct
for both products in Equations 50 and 51, because both pairs of functions have concurrent
discontinuities and both products D̃x and D̃y are discontinuous as well. On the other hand,
by an appropriate change of the polarization bases at all points (using a space-dependent
Jones matrix transform F), [

Ex
Ey

]
= F

[
Eu
Ev

]
, (53)

we can treat independently the normal (u) and tangential (v) components of the fields by the
correct rules,

[D̃u] = [[1/ε]]−1[Eu], (54)

[D̃v] = [[ε]][Ev]. (55)
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The field components Eu, D̃u are normal to the discontinuities of the relative permittivity
function, while Ev, D̃v are tangential. The factorization rules used in Equations 54 and 55 are
justified simply because Ev and D̃u are continuous.

A suitable distribution of the matrix F within the periodic cell can obviously be the rotation

F =

[
cos φ − sin φ
sin φ cos φ

]
, (56)

where the polar angle φ(x, y) is in the first cell distributed according to the polar coordinates
reiφ = x + iy, and then periodically repeated over the entire 2D space. This enables defining
the matrices [[c]], [[s]] from the corresponding 2D-periodic functions c = cos φ, s = sin φ.

Let u and v be the two columns of the matrix F, both being mutually orthogonal basis vectors
of linear polarization. From the above definitions we see that u is a polarization vector normal
to the structure discontinuities, whereas v is tangential. In Fig. 5(b) we show the distribution
of u within the periodic cell. The basis polarization vectors are constant along the lines of the
constant azimuth (φ = const) and rotate as φ increases. It is obvious that the matrix function
F(x, y) has no discontinuities concurrent with the electric field, so that we can use both Laurent
and inverse rules for the transformation of polarization, e.g.,

[
[Ex]
[Ey]

]
= [[F]]

[
[Eu]
[Ev]

]
, (57)

[[F]] =
[
[[c]] [[−s]]
[[s]] [[c]]

]
. (58)

Combining Equations 54, 55, and 57 yields
[
[Ex]
[Ey]

]
= [[F]]

[
[[ 1

ε ]] [[0]]
[[0]] [[ε]]−1

]
[[F−1]]

[
[D̃x]
[D̃y]

]
, (59)

from where we derive the electric impermittivity in the reciprocal space (corresponding to
Model B)

[[η]]B = [[F]]
[
[[ 1

ε ]] [[0]]
[[0]] [[ε]]−1

]
[[F−1]]

=

[
[[ 1

ε ]][[c
2]] + [[ε]]−1[[s2]], [[ 1

ε ]][[cs]]− [[ε]]−1[[cs]]
[[ 1

ε ]][[cs]]− [[ε]]−1[[cs]], [[ 1
ε ]][[s

2]] + [[ε]]−1[[c2]]

]
, (60)

whose components are immediately applicable to Equation 48.

4.2.3 Method with elliptical polarization bases (Model C)

The above approach (Model B) only deals with linear polarizations and thus suffers from
the fact that the matrix function F(x, y) has a singularity at the central point of the periodic
cell and other discontinuities along the cell boundaries. This slows down the convergence of
the numerical implementation, as will be evidenced below. On the other hand, we can make F
continuous by using complex functions ξ and ζ or, in other words, by defining u, v as complex
vectors corresponding to generally elliptic polarizations,

u =

[
ξ
ζ

]
, v =

[−ζ∗
ξ∗

]
(61)
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(still orthogonal). By means of rotation θ and ellipticity � we define the first basis vector

u = eiθ
[

cos θ − sin θ
sin θ cos θ

] [
cos �
i sin �

]
, (62)

where

θ(r, φ) = φ, (63)

�(r, φ) =

{
π
8
(
1 + cos πr

R
)

(r ≤ R)
π
8

{
1 + cos π[r+D(φ)−2R]

D(φ)−R

}
(r > R). (64)

Here R denotes the radius of the circular element and

D(φ) =
Λ/2

max(| cos φ|, | sin φ|) (65)

is the distance from the cell’s center to its edge. In Equation 62 the Jones vector on the right
represents a polarization ellipse (with ellipticity �) oriented along the x coordinate, the matrix
in the middle rotates this polarization by the azimuth θ, and the factor eiθ preserves the
continuity of the phase at the center and along the boundaries of the cell. This continuity
can be easily checked by evaluating the limits

lim
r→0

u = lim
r→D(φ)

u =
1√
2

[
1
i

]
, (66)

which is the vector of left circular polarization (independent of φ).

The distribution of the basis polarization vector u within the periodic cell is shown in Fig. 5(c).
Here the azimuth of the polarization ellipse is constant along the lines coming from the cell’s
center, which is similar to Model B. However, the ellipticity is now zero (corresponding to
linear polarization) only on the boundaries of the circular element, has the maximum value
(π/4 for circular polarization) at the cell’s center and along its boundaries, and continuously
varies (with a smooth sine dependence) in the intermediate ranges. Thus we obtain a smooth
and completely continuous matrix function F(x, y), which is analogously used to calculate the
impermittivity in the reciprocal space

[[η]]C =

[
[[ 1

ε ]][[ξξ∗]] + [[ε]]−1[[ζζ∗]], [[ 1
ε ]][[ξζ∗]]− [[ε]]−1[[ξζ∗]]

[[ 1
ε ]][[ξ

∗ζ]]− [[ε]]−1[[ξ∗ζ]], [[ 1
ε ]][[ζζ∗]] + [[ε]]−1[[ξξ∗]]

]
. (67)

In the case of the hexagonal periodicity we define u and the other periodic quantities inside
one hexagon (half the area of the rectangular unit cell) where we can use formally the same
equations as above, except for

D(φ) =
Λ/2

max
n=0,...,5

[
cos

(
φ − nπ

3
)] , (68)

which is now the distance from the hexagon’s center to its edge. Here Λ is the hexagon’s
shortest width (equal to the width Λx of the rectangular cell).
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4.2.4 Modified method for densely arranged elements (Model C’)

To analyze a more complicated situation, we consider a photonic crystal with square
periodicity where circular elements are densely arranged near each other, i.e., where the
radius R is almost the half width Λ/2 of the periodic cell. Then the convergence properties of
F becomes worse, which affects all the derived quantities. For this reason we again redefine
the polarization distribution. For the modified Model C’ we define u to be still same inside the
circle (r < R), but different outside. Assuming the rotation and ellipticity along the boundary
of the square cell

θb(φ) = θ (D(φ), φ) = π
2 round

(
φ/ π

2
)
, (69)

�b(φ) = � (D(φ), φ) = π
8 (1 − cos 4φ) (70)

(where “round” denotes rounding towards the nearest integer), we define the rotation and
ellipticity outside the circle (r > R) as

θ(r, φ) = 1
2

{
θb(φ) + φ + [θb(φ)− φ] cos π[r+D(φ)−2R]

D(φ)−R

}
, (71)

�(r, φ) =
�b(φ)

2

{
1 + cos π[r+D(φ)−2R]

D(φ)−R

}
. (72)

Assuming otherwise the same Equations 59, 61, 62, and 65, we obtain for [[η]]C� formally the
same matrix as in Equation 67, except that the functions ξ and ζ are now derived from different
azimuth and ellipticity distributions of u. Note that u is again continuous along the cell’s
boundaries; to evaluate its precise limits [when x → ±D(0), y = const or y → ±D(φ/2),
x = const] would now be more complicated. The distribution of the basis polarization vector
u within the periodic cell is depicted in Fig. 5(d) together with dimensions.

4.3 Numerical examples

We examine the numerical performances of all factorization models presented in Section 4.2 on
three samples of 2D photonic crystals, for which we calculate the eigenfrequencies ωκ (where
the band number κ = 1 stands for the lowest eigenfrequency, κ = 2 for the second lowest, etc.)
and the corresponding eigenvectors [Hz]κ of Equation 48. All convergences will be presented
according to the maximum Fourier harmonics retained inside the periodic medium, which
will be kept same for the x and y directions (M = N).

First, Sample S1 is a square array of cylindrical rods of the circular cross-section with the
diameter 2R = 500 nm, square period Λ = 1000 nm, relative permittivity of the rods ε1 = 9,
and relative permittivity of the surrounding medium corresponding to vacuum (ε2 = 1). Its
dispersion relation is displayed in Fig. 6(a). Similarly, for Sample S2 we assume exactly the
same parameters except the diameter of the rods, now being 2R = 900 nm. This corresponds
to densely arranged elements (the distance between two adjacent rods is only 100 nm). Finally,
for Sample H we consider a hexagonal array of cylindrical holes of the circular cross-section
with the diameter 2R = 600 nm, hexagonal periodicity Λ = 1000 nm (corresponding to the
rectangular cell of the dimensions Λx = 1 μm, Λy =

√
3 μm), relative permittivity of the

holes corresponding to vacuum (ε1 = 1), and relative permittivity of the substrate medium
(surrounding holes) ε2 = 12. The dispersion relation of Sample H is displayed in Fig. 6(b).

For our analysis we choose the eigenmodes Γ2 and Γ3 of Sample S1, the eigenmode X3 of
Sample S2, and the eigenmode M1 of Sample H, where the letter denotes a point of symmetry
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and the number corresponds to the band. The amplitude distributions of the modes are
displayed in Fig. 7, and the corresponding convergence properties of the eigenfrequencies
calculated by the above described models are shown in Fig. 8 (Model C’ is only compared for
Sample S2).

The result of a careful comparison of the numerical efficiencies of all the factorization models
can be summarized as follows. Models B, C, and C’ always converge considerably faster
than Model A. Model C converges faster (having usually one order higher precision) than
Model B with two exceptions. The first exception is the case such as in Fig. 7 (S1-Γ2) and
Fig. 8(a), where the discontinuities of the polarization transformation matrix F coincide with
a nearly zero amplitude of the field, so that the discontinuities do not manifest themselves.
The second exception is the case such as Fig. 7 (S2-X3) and Fig. 8(d), where the elements
are densely arranged which causes rapid variations of the ellipticity between two adjacent
elements (which are very close to each other); this requires more Fourier components than the
weak discontinuity of the linear polarization u in Model B. The problem is solved in Model C’,
which obviously converges fastest among all the four models applied to Sample S2.
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4.2.4 Modified method for densely arranged elements (Model C’)
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θb(φ) = θ (D(φ), φ) = π
2 round

(
φ/ π

2
)
, (69)

�b(φ) = � (D(φ), φ) = π
8 (1 − cos 4φ) (70)

(where “round” denotes rounding towards the nearest integer), we define the rotation and
ellipticity outside the circle (r > R) as

θ(r, φ) = 1
2

{
θb(φ) + φ + [θb(φ)− φ] cos π[r+D(φ)−2R]

D(φ)−R

}
, (71)

�(r, φ) =
�b(φ)

2

{
1 + cos π[r+D(φ)−2R]

D(φ)−R

}
. (72)

Assuming otherwise the same Equations 59, 61, 62, and 65, we obtain for [[η]]C� formally the
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diameter 2R = 500 nm, square period Λ = 1000 nm, relative permittivity of the rods ε1 = 9,
and relative permittivity of the surrounding medium corresponding to vacuum (ε2 = 1). Its
dispersion relation is displayed in Fig. 6(a). Similarly, for Sample S2 we assume exactly the
same parameters except the diameter of the rods, now being 2R = 900 nm. This corresponds
to densely arranged elements (the distance between two adjacent rods is only 100 nm). Finally,
for Sample H we consider a hexagonal array of cylindrical holes of the circular cross-section
with the diameter 2R = 600 nm, hexagonal periodicity Λ = 1000 nm (corresponding to the
rectangular cell of the dimensions Λx = 1 μm, Λy =

√
3 μm), relative permittivity of the

holes corresponding to vacuum (ε1 = 1), and relative permittivity of the substrate medium
(surrounding holes) ε2 = 12. The dispersion relation of Sample H is displayed in Fig. 6(b).

For our analysis we choose the eigenmodes Γ2 and Γ3 of Sample S1, the eigenmode X3 of
Sample S2, and the eigenmode M1 of Sample H, where the letter denotes a point of symmetry
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and the number corresponds to the band. The amplitude distributions of the modes are
displayed in Fig. 7, and the corresponding convergence properties of the eigenfrequencies
calculated by the above described models are shown in Fig. 8 (Model C’ is only compared for
Sample S2).

The result of a careful comparison of the numerical efficiencies of all the factorization models
can be summarized as follows. Models B, C, and C’ always converge considerably faster
than Model A. Model C converges faster (having usually one order higher precision) than
Model B with two exceptions. The first exception is the case such as in Fig. 7 (S1-Γ2) and
Fig. 8(a), where the discontinuities of the polarization transformation matrix F coincide with
a nearly zero amplitude of the field, so that the discontinuities do not manifest themselves.
The second exception is the case such as Fig. 7 (S2-X3) and Fig. 8(d), where the elements
are densely arranged which causes rapid variations of the ellipticity between two adjacent
elements (which are very close to each other); this requires more Fourier components than the
weak discontinuity of the linear polarization u in Model B. The problem is solved in Model C’,
which obviously converges fastest among all the four models applied to Sample S2.
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Fig. 8. Convergences of the Fourier factorization methods for three samples

5. Two-dimensional photonic crystals with non-circular elements

In this section we briefly show numerical efficiencies of three factorization models derived
above (Models A, B, and C) applied to 2D photonic crystals made as long elements of other
shapes, namely rods with the square cross-section and tubes with the ring and split-ring
cross-sections, arranged with the square periodicity. For all the three samples we choose the
permittivity of the elements ε = 9 and permittivity of vacuum ε = 1 for the surrounding
medium.

5.1 Periodic rods with the square cross-section

For the photonic crystals made of square-sectioned rods, the period is chosen Λ = 1000 nm,
and the width of the square d = 600 nm. The distribution of the basis polarization vector u,
analogously to Section 4, is displayed in Fig. 9 for all the three compared models.

For Model A, of course, u = x̂ as visible in Fig. 9(a). For Model B, we divide the unit cell into
four parts by its diagonals (the lines x = y and x = −y). The vector u(φ), depending only
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on the azimuthal angle, is set x̂ for φ ∈ �−π
4 , π

4 ) ∪ � 3π
4 , 5π

4 ), and ŷ for the remaining angles.
This means that u is always linear, perpendicular to the permittivity discontinuities, and its
discontinuities (along the lines x = y and x = −y) have no concurrent discontinuities with
the permittivity function except those at the four corners of the square. Hence, Model B here
fulfills nearly the same conditions for the application of the factorization rules as demanded
in Section 4 for circular elements.

For Model C we divide the unit cell into four areas in the same manner. This time, however,
the basis vector u(r, φ) depends on both polar coordinates and the corresponding polarization
is in general elliptic. In analogy with Section 4 we want u to be perpendicular to the
permittivity discontinuities and to remove its discontinuities as much as possible. The most
simple way how to do this, although the discontinuities will not be completely removed, is
to set the azimuth θ(φ) of the polarization to zero for φ ∈ �−π

4 , π
4 ) ∪ � 3π

4 , 5π
4 ), and π

2 for
the remaining angles, and to use Equation 64 for the ellipticity distribution, where D(φ) now
corresponds to the square element.
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Fig. 10. Convergence of the factorization methods for rods with the square cross-section
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5. Two-dimensional photonic crystals with non-circular elements

In this section we briefly show numerical efficiencies of three factorization models derived
above (Models A, B, and C) applied to 2D photonic crystals made as long elements of other
shapes, namely rods with the square cross-section and tubes with the ring and split-ring
cross-sections, arranged with the square periodicity. For all the three samples we choose the
permittivity of the elements ε = 9 and permittivity of vacuum ε = 1 for the surrounding
medium.

5.1 Periodic rods with the square cross-section

For the photonic crystals made of square-sectioned rods, the period is chosen Λ = 1000 nm,
and the width of the square d = 600 nm. The distribution of the basis polarization vector u,
analogously to Section 4, is displayed in Fig. 9 for all the three compared models.

For Model A, of course, u = x̂ as visible in Fig. 9(a). For Model B, we divide the unit cell into
four parts by its diagonals (the lines x = y and x = −y). The vector u(φ), depending only
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discontinuities (along the lines x = y and x = −y) have no concurrent discontinuities with
the permittivity function except those at the four corners of the square. Hence, Model B here
fulfills nearly the same conditions for the application of the factorization rules as demanded
in Section 4 for circular elements.

For Model C we divide the unit cell into four areas in the same manner. This time, however,
the basis vector u(r, φ) depends on both polar coordinates and the corresponding polarization
is in general elliptic. In analogy with Section 4 we want u to be perpendicular to the
permittivity discontinuities and to remove its discontinuities as much as possible. The most
simple way how to do this, although the discontinuities will not be completely removed, is
to set the azimuth θ(φ) of the polarization to zero for φ ∈ �−π
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The numerical efficiencies of all the three models are displayed in Fig. 10 for the 3rd band of
the symmetry point Γ. As clearly visible, Models B and C converge considerably faster than
Model A, with Model C being a little better. Although the improvement from Model B towards
Model C is not so distinct, it could be improved by a more careful choice of a completely
continuous distribution of the polarization basis.

5.2 Periodic hollow cylinders

For the photonic crystals made of periodic hollow cylinders (tubes with the symmetric ring
cross-section) we choose the period Λ = 1000 nm, the inner diameter (the diameter of the
inner circular hole) R1 = 400 nm, and the outer diameter R2 = 680 nm. The distribution of
the basis polarization vector u for all the three compared models is displayed in Fig. 11.

(a) Model A (b) Model B (c) Model C

Fig. 11. Polarization distribution of the factorization methods for hollow cylinders

For Model A again u = x̂. For both Models B and C we use the same polarization distributions
as in Section 4 for the inner area (r < R1) and for the outer area (r > R2). For the annulus
area (R1 < r < R2) we simply choose the polarization distribution same as that in Model B.
These distributions are obviously the most straightforward analogies of the distributions used
in Section 4 for circular elements.

The numerical efficiencies of all the three models are displayed in Fig. 12 for the 3rd band
of the symmetry point Γ. As clearly visible, Models B and C converge considerably faster
than Model A, but now Model C exhibits no improvement against Model B. This is because
the discontinuities of u at the center and along the boundaries of the periodic cell quite well
coincide with the zero amplitude of the mode, as visible in the inset of Fig. 12, so that the
discontinuities do not manifest themselves in the calculations.

5.3 Periodic split hollow cylinders

For the photonic crystals made of split hollow cylinders (tubes with an asymmetric, split ring
cross-section) we choose the period Λ = 1000 nm, the inner diameter (the diameter of the
inner semi-circular hole) R1 = 600 nm, the outer diameter R2 = 720 nm, and the relative
azimuthal length of the ring wφ = 0.9 (where wφ = 1 means the complete, symmetric ring).
The distributions of the basis polarization vector u for all the three compared models are
displayed in Fig. 13.
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Fig. 12. Convergence of the factorization methods for hollow cylinders
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Fig. 13. Polarization distribution of the factorization methods for split hollow cylinders

Since the area of splitting is quite small compared to the full area of the unit cell, we have
chosen the polarization distributions of all the three models exactly same as for the symmetric
rings in Section 5.2. The condition for normal u and tangential v is not satisfied on the surface
proportional to the length 2 × 120 = 240 nm, but is satisfied on the surface proportional
to 0.9 × 2π(R1 + R2) ≈ 7 464 nm, which is 30 times higher area, justifying this negligence.
Of course, for modes with most of electromagnetic field resonating in the critical area this
approximation would be insufficient.

The numerical efficiencies of all the three models are displayed in Fig. 14, again for the 3rd
band of the symmetry point Γ. We can describe these performances by exactly the same
conclusion as for the symmetric rings in Section 5.2. Models B and C converge similarly and
both considerably faster than Model A. The discontinuities of u at the center and along the
boundaries of the periodic cell again coincide with the zero amplitude of the mode, though
with some deviations visible in the inset of Fig. 14.
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For Model A again u = x̂. For both Models B and C we use the same polarization distributions
as in Section 4 for the inner area (r < R1) and for the outer area (r > R2). For the annulus
area (R1 < r < R2) we simply choose the polarization distribution same as that in Model B.
These distributions are obviously the most straightforward analogies of the distributions used
in Section 4 for circular elements.

The numerical efficiencies of all the three models are displayed in Fig. 12 for the 3rd band
of the symmetry point Γ. As clearly visible, Models B and C converge considerably faster
than Model A, but now Model C exhibits no improvement against Model B. This is because
the discontinuities of u at the center and along the boundaries of the periodic cell quite well
coincide with the zero amplitude of the mode, as visible in the inset of Fig. 12, so that the
discontinuities do not manifest themselves in the calculations.

5.3 Periodic split hollow cylinders

For the photonic crystals made of split hollow cylinders (tubes with an asymmetric, split ring
cross-section) we choose the period Λ = 1000 nm, the inner diameter (the diameter of the
inner semi-circular hole) R1 = 600 nm, the outer diameter R2 = 720 nm, and the relative
azimuthal length of the ring wφ = 0.9 (where wφ = 1 means the complete, symmetric ring).
The distributions of the basis polarization vector u for all the three compared models are
displayed in Fig. 13.
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Fig. 13. Polarization distribution of the factorization methods for split hollow cylinders

Since the area of splitting is quite small compared to the full area of the unit cell, we have
chosen the polarization distributions of all the three models exactly same as for the symmetric
rings in Section 5.2. The condition for normal u and tangential v is not satisfied on the surface
proportional to the length 2 × 120 = 240 nm, but is satisfied on the surface proportional
to 0.9 × 2π(R1 + R2) ≈ 7 464 nm, which is 30 times higher area, justifying this negligence.
Of course, for modes with most of electromagnetic field resonating in the critical area this
approximation would be insufficient.

The numerical efficiencies of all the three models are displayed in Fig. 14, again for the 3rd
band of the symmetry point Γ. We can describe these performances by exactly the same
conclusion as for the symmetric rings in Section 5.2. Models B and C converge similarly and
both considerably faster than Model A. The discontinuities of u at the center and along the
boundaries of the periodic cell again coincide with the zero amplitude of the mode, though
with some deviations visible in the inset of Fig. 14.
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Fig. 14. Convergence of the factorization methods for split hollow cylinders

6. Anisotropic photonic crystals

In this section we will briefly demonstrate the application of the factorization rules to 2D
photonic crystals made of anisotropic materials, again with the plane of incidence parallel
to the z axis (with geometry of Fig. 3). Unlike the isotropic crystals, now the TE and TM
polarizations are not separable. Instead of the scalar permittivity we define and expand the
components of the relative permittivity tensor function

ε jk(x, y) =
+∞

∑
m,n=−∞

ε jk,mne−i(mpx+nqy), (73)

where ε jk,mn are the Fourier coefficients. The wave equation for a generally anisotropic
medium, now described by the permittivity tensor

ε =

⎡
⎢⎢⎣

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤
⎥⎥⎦ , (74)

is the operator equation

ĈE =
ω2

c2 E, Ĉ = ε−1

⎡
⎢⎢⎣

−∂2
y ∂x∂y 0

∂x∂y −∂2
x 0

0 0 −∂2
x − ∂2

y

⎤
⎥⎥⎦ . (75)

Similarly as above, Model A assumes all components of the permittivity tensor treated by the
Laurent rule, i.e.,

[D̃j] = ∑
k
[[ε jk]][Ek]. (76)
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To apply the factorization correctly, we must again separate the normal and tangential
components of all fields for which we can use the correct rules. Let us define a
space-dependent matrix transform F(x, y) so that

⎡
⎣

Ex
Ey
Ez

⎤
⎦ = F

⎡
⎣

Eu
Ev
Ez

⎤
⎦ , (77)

where Eu and Ev are the normal and tangential components of the vector E to all
discontinuities of the permittivity.

Analogously to Section 4, for the case of circular elements we can choose the polarization basis
distribution corresponding to Models B and C as

F =

⎡
⎢⎣

cos φ − sin φ 0

sin φ cos φ 0

0 0 1

⎤
⎥⎦ , (Model B) (78)

F =

⎡
⎢⎣

ξ −ζ∗ 0

ζ ξ∗ 0

0 0 1

⎤
⎥⎦ , (Model C) (79)

where the matrix elements have the same meaning as in Section 4. In the new coordinates we
can write ⎡

⎣
D̃u
D̃v
D̃z

⎤
⎦ =

⎡
⎢⎣

εuu εuv εuz

εvu εvv εvz

εzu εzv εzz

⎤
⎥⎦
⎡
⎣

Eu
Ev
Ez

⎤
⎦ . (80)

Now let us separate two sets of quantities, those which are continuous (D̃u, Ev, Ez) and those
which are not continuous (D̃v, D̃z, Eu) to the discontinuities of the permittivity. Expressing
the second set according to the first one yields

⎡
⎣

Eu
D̃v
D̃z

⎤
⎦ = G

⎡
⎣

D̃u
Ev
Ez

⎤
⎦ , G =

⎡
⎢⎢⎢⎣

1
εuu

− εuv
εuu

− εuz
εuu

εvu
εuu

εvv − εvuεuv
εuu

εvz − εvuεuz
εuu

εzu
εuu

εzv − εzuεuv
εuu

εzz − εzuεuz
εuu

⎤
⎥⎥⎥⎦ , (81)

for which we can simply use the Laurent rule,
⎡
⎢⎣
[Eu]

[D̃v]

[D̃z]

⎤
⎥⎦ = [[G]]

⎡
⎢⎣
[D̃u]

[Ev]

[Ez]

⎤
⎥⎦ . (82)

From this we express [D̃j] according to [Ej],

⎡
⎢⎣
[D̃u]

[D̃v]
[D̃z]

⎤
⎥⎦ = [[ε{uvz}]]B, C

⎡
⎢⎣
[Eu]

[Ev]

[Ez]

⎤
⎥⎦ , (83)
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Fig. 14. Convergence of the factorization methods for split hollow cylinders

6. Anisotropic photonic crystals

In this section we will briefly demonstrate the application of the factorization rules to 2D
photonic crystals made of anisotropic materials, again with the plane of incidence parallel
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Similarly as above, Model A assumes all components of the permittivity tensor treated by the
Laurent rule, i.e.,

[D̃j] = ∑
k
[[ε jk]][Ek]. (76)
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To apply the factorization correctly, we must again separate the normal and tangential
components of all fields for which we can use the correct rules. Let us define a
space-dependent matrix transform F(x, y) so that

⎡
⎣

Ex
Ey
Ez

⎤
⎦ = F

⎡
⎣

Eu
Ev
Ez

⎤
⎦ , (77)

where Eu and Ev are the normal and tangential components of the vector E to all
discontinuities of the permittivity.

Analogously to Section 4, for the case of circular elements we can choose the polarization basis
distribution corresponding to Models B and C as

F =

⎡
⎢⎣

cos φ − sin φ 0

sin φ cos φ 0

0 0 1

⎤
⎥⎦ , (Model B) (78)

F =

⎡
⎢⎣

ξ −ζ∗ 0

ζ ξ∗ 0

0 0 1

⎤
⎥⎦ , (Model C) (79)

where the matrix elements have the same meaning as in Section 4. In the new coordinates we
can write ⎡

⎣
D̃u
D̃v
D̃z

⎤
⎦ =

⎡
⎢⎣

εuu εuv εuz

εvu εvv εvz

εzu εzv εzz

⎤
⎥⎦
⎡
⎣

Eu
Ev
Ez

⎤
⎦ . (80)

Now let us separate two sets of quantities, those which are continuous (D̃u, Ev, Ez) and those
which are not continuous (D̃v, D̃z, Eu) to the discontinuities of the permittivity. Expressing
the second set according to the first one yields

⎡
⎣

Eu
D̃v
D̃z

⎤
⎦ = G

⎡
⎣

D̃u
Ev
Ez

⎤
⎦ , G =

⎡
⎢⎢⎢⎣

1
εuu

− εuv
εuu

− εuz
εuu

εvu
εuu

εvv − εvuεuv
εuu

εvz − εvuεuz
εuu

εzu
εuu

εzv − εzuεuv
εuu

εzz − εzuεuz
εuu

⎤
⎥⎥⎥⎦ , (81)

for which we can simply use the Laurent rule,
⎡
⎢⎣
[Eu]

[D̃v]

[D̃z]

⎤
⎥⎦ = [[G]]

⎡
⎢⎣
[D̃u]

[Ev]

[Ez]

⎤
⎥⎦ . (82)

From this we express [D̃j] according to [Ej],

⎡
⎢⎣
[D̃u]

[D̃v]
[D̃z]

⎤
⎥⎦ = [[ε{uvz}]]B, C

⎡
⎢⎣
[Eu]

[Ev]

[Ez]

⎤
⎥⎦ , (83)
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with
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εuu
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εuv
εuu
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,

��
1

εuu

��−1��
εuz
εuu

��
��

εvz − εvuεuz
εuu

��
+
��

εvu
εuu

����
1

εuu

��−1��
εuz
εuu

��
��

εzz − εzuεuz
εuu

��
+
��

εzu
εuu

����
1

εuu

��−1��
εuz
εuu

��

⎤
⎥⎥⎥⎥⎦

. (84)

Finally we obtain the matrix of permittivity in the Cartesian coordinates via the formula

[[ε{xyz}]]B, C
= [[F]][[ε{uvz}]]B, C

[[F−1]], (85)

where the index B or C corresponds to the chosen model.

7. Distribution of polarization basis for 3D structures

In this section we will suggest how to create the polarization basis distribution for a 3D
photonic crystal. Unlike the previous cases, we now have a fully vectorial wave Equation 1.
The corresponding material equation D̃ = ε(x, y, z)E must be changed to separate the normal
and tangential components of the fields to the ε discontinuities, which are now surfaces in
the 3D space. For simplicity we assume a 3D photonic crystal made as spheres (with the
radius R) arranged in the space with the cubic periodicity. To make a 3D analogy with Model C
described in the previous sections, we must find a matrix transform F(x, y, z) whose columns,
denoted u, v, and w, are complex vectorial functions of space, mutually orthonormal and
continuous at all points, where u is the normal vector at each point of the sphere’s surface and
v and w are tangential.

As the first step we choose the distribution of these vectors on the sphere. Defining the
spherical coordinates

x = r sin ϑ cos φ, (86)

y = r sin ϑ sin φ, (87)

z = r cos ϑ (88)

and the corresponding unit vectors r̂, ϑ̂, and φ̂ (pointing along the increase of the
corresponding coordinate) helps us to define the vectors

uR(ϑ, φ) = u(R, ϑ, φ) = ei(ϑ+φ)r̂, (89)

vR(ϑ, φ) = v(R, ϑ, φ) = ei(ϑ+φ) 1√
1 + cos2 ϑ

(ϑ̂+ iφ̂ cos ϑ), (90)

wR(ϑ, φ) = w(R, ϑ, φ) = ei(ϑ+φ) 1√
1 + cos2 ϑ

(ϑ̂ cos ϑ − iφ̂). (91)
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Obviously, u is normal on the whole sphere’s surface. The vector v corresponds to the left
circular polarization at the sphere’s poles (z = ±R), to the vertical linear polarization on the
sphere’s equator (z = 0), and is elliptical and continuous in the intermediate ranges. The
vector w is simply chosen orthogonal to both u and v. Both v and w are tangential to the
sphere’s surface.

If we extend the radial dependence of the vectors defined by Equations 89–91 to the entire
cubic cell (formally replacing R by r), then we obtain some analogy with Model B. The
obtained matrix F has no concurrent discontinuities with ε, but it is discontinuous at the center
and on the boundaries of the cubic cell. To remove the discontinuity at the cell’s center, we
will proceed differently.

As the second step, we define the basis vectors at the center of the sphere,

u0 = u(0, ϑ, φ) =
1√
2
(x̂− iŷ), (92)

v0 = v(0, ϑ, φ) = ẑ, (93)

w0 = w(0, ϑ, φ) =
1√
2
(x̂+ iŷ), (94)

which are again mutually orthogonal. Then we extend u onto the whole cubic cell,

uext(r, ϑ, φ) =

{
1
2 (u0 +uR) +

1
2 (u0 −uR) cos πr

R (r ≤ R)
1
2 (u0 +uR) +

1
2 (u0 −uR) cos π(r+D−2R)

D−R (R < r ≤ D).
(95)

where D(ϑ, φ) is the distance from the cell’s center to its boundary along the ray determined
by the spherical angles. The desired unit vector of the polarization basis is then

u = Auuext, (96)

where Au = [ 1
2 (1 + cos2 πr

R )]−1/2 for r < R and Au = [ 1
2 (1 + cos2 π(r+D−2R)

D−R )]−1/2 for r > R
is a scalar function ensuring that u becomes a unit vector everywhere. We could extend v and
w in a similar way,

vext(r, ϑ, φ) =

{
1
2 (v0 + vR) +

1
2 (v0 − vR) cos πr

R (r ≤ R)
1
2 (v0 + vR) +

1
2 (v0 − vR) cos π(r+D−2R)

D−R (R < r ≤ D).
(97)

wext(r, ϑ, φ) =

{
1
2 (w0 +wR) +

1
2 (w0 −wR) cos πr

R (r ≤ R)
1
2 (w0 +wR) +

1
2 (w0 −wR) cos π(r+D−2R)

D−R (R < r ≤ D).
(98)

but it is not clear whether vext or wext are both perpendicular to u and mutually. To ensure it
we define

v = Av(1 − Pu)vext, (99)

where Pu = uu† is the projector into the space of vectors proportional to u, so that 1 − Pu is
the projector to its orthogonal complement. Similarly,

w = Aw(1 − Pu − Pv)wext, (100)

where 1 − Pu − Pv is the projector into the space of vectors perpendicular to both u and v.
Here Av and Aw are analogously chosen scalar functions ensuring the unit size of the
corresponding vectors.
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⎤
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Finally we obtain the matrix of permittivity in the Cartesian coordinates via the formula

[[ε{xyz}]]B, C
= [[F]][[ε{uvz}]]B, C

[[F−1]], (85)

where the index B or C corresponds to the chosen model.

7. Distribution of polarization basis for 3D structures

In this section we will suggest how to create the polarization basis distribution for a 3D
photonic crystal. Unlike the previous cases, we now have a fully vectorial wave Equation 1.
The corresponding material equation D̃ = ε(x, y, z)E must be changed to separate the normal
and tangential components of the fields to the ε discontinuities, which are now surfaces in
the 3D space. For simplicity we assume a 3D photonic crystal made as spheres (with the
radius R) arranged in the space with the cubic periodicity. To make a 3D analogy with Model C
described in the previous sections, we must find a matrix transform F(x, y, z) whose columns,
denoted u, v, and w, are complex vectorial functions of space, mutually orthonormal and
continuous at all points, where u is the normal vector at each point of the sphere’s surface and
v and w are tangential.

As the first step we choose the distribution of these vectors on the sphere. Defining the
spherical coordinates

x = r sin ϑ cos φ, (86)

y = r sin ϑ sin φ, (87)

z = r cos ϑ (88)

and the corresponding unit vectors r̂, ϑ̂, and φ̂ (pointing along the increase of the
corresponding coordinate) helps us to define the vectors

uR(ϑ, φ) = u(R, ϑ, φ) = ei(ϑ+φ)r̂, (89)

vR(ϑ, φ) = v(R, ϑ, φ) = ei(ϑ+φ) 1√
1 + cos2 ϑ

(ϑ̂+ iφ̂ cos ϑ), (90)
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1 + cos2 ϑ

(ϑ̂ cos ϑ − iφ̂). (91)
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Obviously, u is normal on the whole sphere’s surface. The vector v corresponds to the left
circular polarization at the sphere’s poles (z = ±R), to the vertical linear polarization on the
sphere’s equator (z = 0), and is elliptical and continuous in the intermediate ranges. The
vector w is simply chosen orthogonal to both u and v. Both v and w are tangential to the
sphere’s surface.

If we extend the radial dependence of the vectors defined by Equations 89–91 to the entire
cubic cell (formally replacing R by r), then we obtain some analogy with Model B. The
obtained matrix F has no concurrent discontinuities with ε, but it is discontinuous at the center
and on the boundaries of the cubic cell. To remove the discontinuity at the cell’s center, we
will proceed differently.

As the second step, we define the basis vectors at the center of the sphere,

u0 = u(0, ϑ, φ) =
1√
2
(x̂− iŷ), (92)

v0 = v(0, ϑ, φ) = ẑ, (93)

w0 = w(0, ϑ, φ) =
1√
2
(x̂+ iŷ), (94)

which are again mutually orthogonal. Then we extend u onto the whole cubic cell,

uext(r, ϑ, φ) =

{
1
2 (u0 +uR) +

1
2 (u0 −uR) cos πr

R (r ≤ R)
1
2 (u0 +uR) +

1
2 (u0 −uR) cos π(r+D−2R)

D−R (R < r ≤ D).
(95)

where D(ϑ, φ) is the distance from the cell’s center to its boundary along the ray determined
by the spherical angles. The desired unit vector of the polarization basis is then

u = Auuext, (96)

where Au = [ 1
2 (1 + cos2 πr

R )]−1/2 for r < R and Au = [ 1
2 (1 + cos2 π(r+D−2R)

D−R )]−1/2 for r > R
is a scalar function ensuring that u becomes a unit vector everywhere. We could extend v and
w in a similar way,

vext(r, ϑ, φ) =

{
1
2 (v0 + vR) +

1
2 (v0 − vR) cos πr

R (r ≤ R)
1
2 (v0 + vR) +

1
2 (v0 − vR) cos π(r+D−2R)

D−R (R < r ≤ D).
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{
1
2 (w0 +wR) +

1
2 (w0 −wR) cos πr

R (r ≤ R)
1
2 (w0 +wR) +

1
2 (w0 −wR) cos π(r+D−2R)

D−R (R < r ≤ D).
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but it is not clear whether vext or wext are both perpendicular to u and mutually. To ensure it
we define

v = Av(1 − Pu)vext, (99)

where Pu = uu† is the projector into the space of vectors proportional to u, so that 1 − Pu is
the projector to its orthogonal complement. Similarly,

w = Aw(1 − Pu − Pv)wext, (100)

where 1 − Pu − Pv is the projector into the space of vectors perpendicular to both u and v.
Here Av and Aw are analogously chosen scalar functions ensuring the unit size of the
corresponding vectors.
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Finally, the matrix of permittivity in the reciprocal space with correct Fourier factorization,
directly applicable to the wave Equation 1, becomes

[[ε]]C = [[F]]

⎡
⎣ [[ 1

ε ]]
−1

[[0]] [[0]]
[[0]] [[ε]] [[0]]
[[0]] [[0]] [[ε]]

⎤
⎦ [[F−1]], (101)

because the first element on the diagonal corresponds to the normal (u) components of the
fields and the other two correspond to the tangential components (v, w) of the fields.

8. Conclusion

We have derived the methodology how to apply the Fourier factorization rules of Li (1996) to
various photonic crystals. For the case of 1D crystals there is clear consistency of the correct
rules with the classical theory of Yeh et al. (1977). For 2D crystals the convergence properties
strongly depend on the chosen distribution of the polarization basis; we have shown that it
is desirable to choose a distribution as smooth as possible. The method is also usable for
periodic elements of any shape, where complicated shapes require complicated distributions
of polarization bases. We can also use it to simulate 2D periodic elements made of anisotropic
materials, as well as 3D periodic crystals. Moreover, the method can also be used to photonic
devices such as photonic crystal waveguides by applying the demonstrated methodology
to the device supercell. It is particularly advantageous for devices where high accuracy is
required, e.g., for analyzing defect modes near photonic band edges [Dossou et al. (2009);
Mahmoodian et al. (2009)], and for large devices for which the available computer memory
enables calculations with only a few Fourier components (photonic crystals fibers with large
cladding, or asymmetric 3D crystals).
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