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Preface 

In the last decade, video has turned to be one of the most widely transmitted 
information sources, due to the extraordinary upsurge of new techniques, protocols 
and communication standards of increased bandwidth, computational performance, 
resilience and efficiency. 

Disruptive technologies, standards, services and applications – as exemplified by 
on-demand digital video broadcasting, interactive DVB, mobile TV, Bluray® or  
Youtube® – have undoubtedly benefited from significant advances on aspects 
belonging to the whole set of OSI layers, ranging from new video semantic models 
and context-aware video processing, to peer-to-peer information networking and 
enhanced physical-layer techniques allowing for a better exploitation of the available 
communication resources.  

As a result, this trend has given rise to a plethora of video coding standards such as 
H.261, H.263, ISO IEC MPEG-1, MPEG-2 and MPEG-4, which has progressively met
the video quality requirements (e.g. bit rate, visual quality, error resilience, compres-
sion ratios and/or encoding delay) demanded by applications of ever-growing
complexity. Research on video coding is foreseen to spread over the following years,
in light of recent developments on three-dimensional and multi-view video coding.

Motivated by this flurry of activity at both industry and academia, this book aims at 
providing the reader with a self-contained review of the latest advances and  
techniques gravitating on video coding, with a strong emphasis in what relates to 
architectures, algorithms and implementations. In particular, the contents of this 
compilation are mainly focused on technical advances in the video coding procedures 
involved in recently coined video coding standards such as H.264/AVC or H.264/SVC. 
Readers may also find in this work a useful overview on how video coding can benefit 
from cross-disciplinary tools (e.g. combinatorial heuristics) to attain significant end-to-
end performance improvements.  

On this purpose, the book is divided in 5 different yet related sections. First, three 
introductory chapters to H.264/SVC, H.264/AVC and region of interest video coding 
are presented to the reader. Next, Section II concentrates on reviewing and analysing 
different methods for controlling the rate of video encoding schemes, whereas the 



XII      Preface

third section is devoted to novel algorithms and techniques for video coding. Section 
IV is dedicated to the design and hardware implementation of video coding schemes. 
Finally, Section V concludes the book by outlining recent research on semantic video 
coding.  

The editor would like to eagerly thank the authors for their contribution to this book, 
and especially the editorial assistance provided by the INTECH publishing process 
managers Ms. Natalia Reinic and Ms. Iva Lipovic. Last but not least, the editor’s 
gratitude extends to the anonymous manuscript processing team for their arduous 
formatting work. 

Javier Del Ser 
Senior Research Scientist 

TECNALIA RESEARCH & INNOVATION 
48170 Zamudio,  

Spain 



Part 1 

Tutorials and Review



 

Iraide Unanue1, Iñigo Urteaga2, Ronaldo Husemann3, Javier Del Ser4,
Valter Roesler5, Aitor Rodríguez6 and Pedro Sánchez7

1,2,4TECNALIA RESEARCH & INNOVATION, P. Tecnológico, Zamudio,
3,5UFRGS - Instituto de Informática. Av. Bento Gonçalves, Porto Alegre,
6,7IKUSI-Ángel Iglesias, S. A., Paseo Miramón, Donostia-San Sebastian

1,2,4,6,7Spain
3,5Brazil

1. Introduction

The evolution of digital video technology and the continuous improvements in
communication infrastructure is propelling a great number of interactive multimedia
applications, such as real-time video conference, web video streaming and mobile TV, among
others. The new possibilities on interactive video usage have created an exigent market of
consumers, which demands the best video quality wherever they are and whatever their
network support is (Schwarz et al., 2006). On this purpose, the transmitted video must match
the receiver’s characteristics such as the required bit rate, resolution and frame rate, thus
aiming to provide the best quality subject to receiver’s and network’s limitations. Besides, the
same link is often used to transmit to either restricted devices such as small cell phones, or to
high-performance equipments, e.g. HDTV workstations. In addition, the stream should adapt
to wireless lossy networks (Ohm, 2005). Based on this reasoning, these heterogeneous and
non-deterministic networks represent a great problem for traditional video encoders which
do not allow for on-the-fly video streaming adaptation.
To circumvent this drawback, the concept of scalability for video coding has been lately
proposed as an emergent solution for supporting, in a given network, endpoints with
distinct video processing capabilities. The principle of a scalable video encoder is to
break the conventional single-stream video in a multi-stream flow, composed by distinct
and complementary components, often referred to as layers (Huang et al., 2007). Figure 1
illustrates this concept by depicting a transmitter encoding the input video sequence into three
complementary layers. Therefore, receivers can select and decode different number of layers
– each corresponding to distinct video characteristics – in accordance with the processing
constraints of both the network and the device itself.
The layered structure of any scalable video content can be defined as the combination of a base
layer and several additional enhancement layers. The base layer corresponds to the lowest
supported video performance, whereas the enhancement layers allow for the refinement of
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Fig. 1. Adaptation in scalable video encoding.

the aforementioned base layer. The adaptation is based on a combination within the set of
selected strategies for the spatial, temporal and quality scalability (Ohm, 2005).
In the last years, several specific scalable video profiles have been included in video codecs
such as MPEG-2 (MPEG-2 Video, 2000), H.263 (H.263 ITU-T Rec., 2000) and MPEG-4 Visual
(MPEG-4 Visual, 2004). However, all these solutions present a reduced coding efficiency
when compared with non-scalable video profiles (Wien, Schwarz & Oelbaum, 2007). As
a consequence, scalable profiles have been scarcely utilized in real applications, whereas
widespread solutions have been strictly limited to non-scalable single-layer coding schemes.
In October 2007, the scalable extension of the H.264 codec, also known as H.264/SVC (Scalable
Video Coding) (H.264/SVC, 2010), was jointly standardized by ITU-T VCEG and ISO MPEG
as an amendment of the H.264/AVC (Advanced Video Coding) standard. Among several
innovative features, H.264/SVC combines temporal, spatial and quality scalabilities into a
single multi-layer stream (Rieckl, 2008).
To exemplify the temporal scalability, Figure 2(a) presents a simple scenario where the base
layer consists of one subgroup of frames and the enhancement layer of another. A hypothetical
receiver in a slow-bandwidth network would receive only the base layer, hence producing a
jerkier video (15 frames per second, hereafter labeled as fps) than the other. On the contrary,
the second receiver (that would benefit from a network with higher bandwidth) would be
able to process and combine both layers, thus yielding a full-frame-rate (30 fps) video and
ultimately a smoother video reproduction. Thereafter, Figure 2(b) illustrates an example of
spatial scalability, where the inclusion of enhancement layers increases the resolution of the
decoded video sample. As shown, the more layers are made available to the receiver, the
higher the resolution of the decoded video is. Finally, Figure 2(c) show the concept of quality
scalability, where the enhancement layers improve the SNR quality of the received video
stream. Once again, the more layers the receiver acquires, the better the user’s quality of
experience is.
On top of the benefits of the above introduced scalabilities, there are several other advantages
furnished by H.264/SVC. One of such remarkable features of H.264/SVC is the support
for video bit rate adaptation at NAL (Network Application Layer) packet level, which
significantly increases the flexibility of the video encoder. Alternative scalable solutions,
however, only support adaptation at the level of slices or entire frames (Huang et al., 2007).
Furthermore, H.264/SVC improves the compression efficiency by incorporating an enhanced
and innovative mechanism for inter-layer estimation, called ILP (Inter-Layer Prediction). ILP
reuses inter-layer motion vectors, intra texture and residue information among subsequent
layers (Husemann et al., 2009).
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Fig. 2. Illustrative example of scalability approaches in H.264/SVC.

As a consequence of all these aspects, the H.264/SVC standard is currently considered the
state-of-the-art of scalable video codecs. As opposed to prior video codecs, H.264/SVC has
been designed as a flexible and powerful scalable video codec, which provides – for a given
quality level – similar compression ratios at a lower decoding complexity with respect to
its non-scalable single-layer counterparts. So as to corroborate this design principle, let us
briefly compare H.264/SVC to non-scalable profiles of previous codecs, namely, MPEG-4
Visual (MPEG-4 Visual, 2004), H.263 (H.263 ITU-T Rec., 2000) and H.264/AVC (H.264/AVC,
2010). Codec performance has been analyzed in terms of both compression efficiency and
video quality (focusing on the Peak Signal-to-Noise Ratio PSNR of the luminance component).
In this analysis, three different video sequences (further details of these video sequences are
included in Section 3) have been encoded, based on equivalent configurations and appropriate
bit rates for each one, with the following implementations of the aforementioned codecs:
H.263 (Ffmpeg project, 2010), MPEG-4 Visual (Ffmpeg project, 2010) and H.264/AVC (JVT
reference software, 2010).
As shown in Figure 3(a), the real encoded file size is different for each codec, even if the
same theoretical encoding bit rate has been set. The reason for this dissimilarity lies on
the performance of the tested codec implementations, which loosely adjust the encoding
process to the specified bit rate. From both Figures 3(a) and 3(b), it is clear that H.264/SVC
and H.264/AVC are those codecs generating the lowest file size while achieving similar
quality (e.g. 36.61 dB by H.264/AVC and 36.41 dB by H.264/SVC for the CREW video

5
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Fig. 3. Performance of different codecs over several video sequences.

sequence). Based on these simulations, it is concluded that H.264/SVC outperforms previous
non-scalable approaches, by supporting three types of scalabilities at a high coding efficiency.
These results not only evaluate the theoretical behavior of each analyzed codec, but also
elucidate the outstanding performance of H.264/SVC with respect to other coding approaches
when applied on a given video sample.
In this line of research, this chapter delves into the roots of H.264/SVC by analyzing, through
practical experiments, its tradeoff between quality, coding efficiency and performance. First,
Section 2 introduces the reader to the details of the H.264/SVC standard by thoroughly
describing the functional structure of a H.264/SVC encoder and its supported scalabilities.
Next, several applied experiments are provided in Section 3 in order to evaluate the real
requirements of a practical H.264/SVC video coding solution. These experiments have all
been performed using the official H.264/SVC reference implementation: the JSVM (Joint
Scalable Video Model) software (JSVM reference software, 2010). Obviously, the scalable nature
of this new video coding standard requires a rigorous analysis of its temporal, spatial and
quality processing capabilities. Consequently, three scenarios of experiments have been
defined to specifically address each type of scalability:

• First, Subsection 3.1 presents the scenario utilized for evaluating the temporal scalability,
where the effects of the GOP (Group of Pictures) size parameter and the frame structure
are analyzed on practical H.264/SVC encoding procedures. Since the arrangement of
the frames within a GOP impacts directly on the performance of the video codec, it is
deemed essential to evaluate the advantages and disadvantages of different GOP sizes
and structures in the overall encoding and decoding process (Wien, Schwarz & Oelbaum,
2007).

• A second scenario is next included in Subsection 3.2 aimed at evaluating the spatial
scalability of H.264/SVC. This subsection analyzes the performance of both video encoder
and decoder, emphasizing on distinct relations between screen resolutions of consecutive
video layers. Two main algorithms are supported by H.264/SVC: the traditional dyadic
solution (only when a resolution ratio of 2:1 among consecutive layer is used) or
non-dyadic solution (when any other resolution ratio is possible).

• Subsection 3.3, which comprises the third scenario, analyzes the quality scalability of the
H.264/SVC over different configurations. First, the fidelity of the H.264/SVC codec is
examined by focusing on the influence of the quantization parameter and the relationship
between quality enhancement layers. Besides, the evaluation of the coding efficiency of the
H.264/SVC prediction structure between quality layers is also covered. This subsection
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concludes by presenting a practical comparison between coarse and medium quality
granularity.

Subsequently in Subsection 3.4, other equally-influential features of this scalable codec
are scrutinized. On one hand, this final set of experiments investigate the complexity
load rendered by different motion-search algorithms and related configurations on practical
video encoding procedures. Particularly, the influence in the prediction module of relevant
parameters such as the search-window size and the block-search algorithm is evaluated.
On the other hand, the benefits of applying distinct deblocking filter types in the encoding
and decoding process is examined. Deblocking filters are applied to block-coding based
techniques to blocks within slices, looking for the prediction performance improvement
by smoothing potentially sharp edges formed between macroblocks (Marpe et al., 2006).
Finally, this subsection concludes with the evaluation of the Motion-Compensated Temporal
pre-processing Filter (MCTF) included in the H.264/SVC standard.
Based on all the results presented through the chapter, optimized H.264/SVC configurations
are suggested in Section 4. These configurations are specifically designed to improve either
the efficiency of the encoder or the encoded video quality, which yield significant gains
when compared to conventional H.264/SVC solutions. Finally, Section 5 brings up our final
considerations.

2. Overview of H.264/SVC

The sophisticated architecture of the H.264/SVC standard is particularly designed to increase
the codec capabilities while offering a flexible encoder solution that supports three different
scalabilities: temporal, spatial and SNR quality (Wien, Cazoulat, Graffunder, Hutter & Amon,
2007). Figure 4 illustrates the structure of a H.264/SVC encoder for a basic two-spatial-layer
scalable configuration.
In H.264/SVC, each spatial dependency layer requires its own prediction module in order to
perform both motion-compensated prediction and intra prediction within the layer. Besides,
there is a SNR refinement module that provides the necessary mechanisms for quality
scalability within each layer. The dependency between subsequent spatial layers is managed
by the inter-layer prediction module, which can support reusing of motion vectors, intra
texture or residual signals from inferior layers so as to improve compression efficiency.
Finally, the scalable H.264/SVC bitstream is merged by the so-called multiplex, where
different temporal, spatial and SNR levels are simultaneously integrated into a single scalable
bitstream.
The following subsections present each scalability type individually, describing their features
according to the standardized specifications of the H.264/SVC video codec.

2.1 Temporal scalability
The term “temporal scalability” refers to the ability to represent video content with different
frame rates by as many bitstream subsets as needed (Figure 2(a)). Encoded video streams can
be composed by three distinct type of frames: I (intra), P (predictive) or B (Bi-predictive).
I frames only explore the spatial coding within the picture, i.e. compression techniques
are applied to information contained only inside the current picture, not using references
to any other picture. On the contrary, both P and B frames do have interrelation with
different pictures, as they explore directly the dependencies between them. While in P
frames inter-picture predictive coding is performed based on (at least) one preceding reference
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sequence). Based on these simulations, it is concluded that H.264/SVC outperforms previous
non-scalable approaches, by supporting three types of scalabilities at a high coding efficiency.
These results not only evaluate the theoretical behavior of each analyzed codec, but also
elucidate the outstanding performance of H.264/SVC with respect to other coding approaches
when applied on a given video sample.
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• First, Subsection 3.1 presents the scenario utilized for evaluating the temporal scalability,
where the effects of the GOP (Group of Pictures) size parameter and the frame structure
are analyzed on practical H.264/SVC encoding procedures. Since the arrangement of
the frames within a GOP impacts directly on the performance of the video codec, it is
deemed essential to evaluate the advantages and disadvantages of different GOP sizes
and structures in the overall encoding and decoding process (Wien, Schwarz & Oelbaum,
2007).

• A second scenario is next included in Subsection 3.2 aimed at evaluating the spatial
scalability of H.264/SVC. This subsection analyzes the performance of both video encoder
and decoder, emphasizing on distinct relations between screen resolutions of consecutive
video layers. Two main algorithms are supported by H.264/SVC: the traditional dyadic
solution (only when a resolution ratio of 2:1 among consecutive layer is used) or
non-dyadic solution (when any other resolution ratio is possible).

• Subsection 3.3, which comprises the third scenario, analyzes the quality scalability of the
H.264/SVC over different configurations. First, the fidelity of the H.264/SVC codec is
examined by focusing on the influence of the quantization parameter and the relationship
between quality enhancement layers. Besides, the evaluation of the coding efficiency of the
H.264/SVC prediction structure between quality layers is also covered. This subsection

6 Recent Advances on Video Coding A Tutorial on H.264/SVC Scalable Video Coding and Its Tradeoff between Quality, Coding Efficiency and Performance 5

concludes by presenting a practical comparison between coarse and medium quality
granularity.

Subsequently in Subsection 3.4, other equally-influential features of this scalable codec
are scrutinized. On one hand, this final set of experiments investigate the complexity
load rendered by different motion-search algorithms and related configurations on practical
video encoding procedures. Particularly, the influence in the prediction module of relevant
parameters such as the search-window size and the block-search algorithm is evaluated.
On the other hand, the benefits of applying distinct deblocking filter types in the encoding
and decoding process is examined. Deblocking filters are applied to block-coding based
techniques to blocks within slices, looking for the prediction performance improvement
by smoothing potentially sharp edges formed between macroblocks (Marpe et al., 2006).
Finally, this subsection concludes with the evaluation of the Motion-Compensated Temporal
pre-processing Filter (MCTF) included in the H.264/SVC standard.
Based on all the results presented through the chapter, optimized H.264/SVC configurations
are suggested in Section 4. These configurations are specifically designed to improve either
the efficiency of the encoder or the encoded video quality, which yield significant gains
when compared to conventional H.264/SVC solutions. Finally, Section 5 brings up our final
considerations.

2. Overview of H.264/SVC

The sophisticated architecture of the H.264/SVC standard is particularly designed to increase
the codec capabilities while offering a flexible encoder solution that supports three different
scalabilities: temporal, spatial and SNR quality (Wien, Cazoulat, Graffunder, Hutter & Amon,
2007). Figure 4 illustrates the structure of a H.264/SVC encoder for a basic two-spatial-layer
scalable configuration.
In H.264/SVC, each spatial dependency layer requires its own prediction module in order to
perform both motion-compensated prediction and intra prediction within the layer. Besides,
there is a SNR refinement module that provides the necessary mechanisms for quality
scalability within each layer. The dependency between subsequent spatial layers is managed
by the inter-layer prediction module, which can support reusing of motion vectors, intra
texture or residual signals from inferior layers so as to improve compression efficiency.
Finally, the scalable H.264/SVC bitstream is merged by the so-called multiplex, where
different temporal, spatial and SNR levels are simultaneously integrated into a single scalable
bitstream.
The following subsections present each scalability type individually, describing their features
according to the standardized specifications of the H.264/SVC video codec.

2.1 Temporal scalability
The term “temporal scalability” refers to the ability to represent video content with different
frame rates by as many bitstream subsets as needed (Figure 2(a)). Encoded video streams can
be composed by three distinct type of frames: I (intra), P (predictive) or B (Bi-predictive).
I frames only explore the spatial coding within the picture, i.e. compression techniques
are applied to information contained only inside the current picture, not using references
to any other picture. On the contrary, both P and B frames do have interrelation with
different pictures, as they explore directly the dependencies between them. While in P
frames inter-picture predictive coding is performed based on (at least) one preceding reference
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Fig. 4. Block diagram of a H.264/SVC encoder for two spatial layers.

picture, B frames consist of a combination of inter-picture bi-predictive coding (i.e. samples of
both previous and posterior reference pictures are considered for the prediction). In addition,
the H.264 standard family requires the first frame to be an Instantaneous Decoding Refresh
(IDR) access unit, which corresponds to the union of one I frame with several critical non-data
related information (e.g. the set of coding parameters). Generally speaking, the GOP structure
specifies the arrangement of those frames within an encoded video sequence.
Certainly, the singular dependency and predictive characteristics of each frame type imply
divergent coded video stream features. In previous scalable standards (e.g. MPEG-2, H.263
and MPEG-4 Visual), the temporal scalability was basically performed by segmenting layers
according to different frame types. For example, a video composed by a traditional "IBBP"
format (one I frame followed by two B frames and one P frame) could be used to build three
temporal layers: base layer (L0) with I frames, first enhancement layer (L1) with P frames and
the second enhancement layer (L2) with B frames. This dyadic approach (2:1 decomposition
format) has been proven to be functional, although it provides limited bandwidth flexibility
(i.e. the total bit rate required by I frames is significantly larger than that of P and B frames
(Rieckl, 2008)). By contrast, in H.264/SVC the basis of temporal scalability is found on the
GOP structure, since it divides each frame into distinct scalability layers (by jointly combining
I, P and B frame types). As for the H.264/SVC codec, the GOP definition can be rephrased
as the arrangement of the coded bitstream’s frames between two successive pictures of the
temporal base layer (Schwarz et al., 2007). It is important to recall that the frames of the
temporal base layer do not necessarily need to be an I frame. Actually, only the first picture of
a video stream is strictly forced to be coded as an I frame and to be included in the initial IDR
access unit.
In order to increase the flexibility of the codec, the H.264/SVC standard defines a distinct
structure for temporal prediction, where reference frames for each video sequence are
reorganized in a hierarchical tree scheme. This tree scheme improves the distribution of
information between consecutive frames and allows for both a dyadic and a non-dyadic
temporal scalability. Figure 5(a) exemplifies this hierarchical temporal decomposition for a
2:1 frame rate relation in a four-layer encoded video. In this example, the base layer L0,
which is constituted by I or P frames, permits to reconstruct one picture per GOP. The first
enhancement layer L1, usually composed by B frames, extracts one additional picture per
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GOP in addition to that of L0. The second enhancement layer L2, which is comprised by B
frames, further extracts two additional pictures per GOP jointly with those of previous layers.
Finally, the third enhancement layer L3 allows recovering eight pictures.

(a) H.264/SVC hierarchical tree structure in a four-layer
temporal scalability example.

(b) Motion vector scaling in
dyadic spatial scalability.

Fig. 5. Graphical support examples for H.264/SVC temporal and spatial scalabilities.

On top of this, H.264/SVC suggests the inclusion of a pre-processing filter before the
motion prediction module, which can improve the data information distribution and
eliminate redundancies between consecutive layers. The proposed algorithm is referenced
as MCTF. This additional filter, when applied over the original data, performs motion aligned
decomposition processing. As a result, the correlation between filtered layers is improved,
while the overall complexity of the encoder is increased (Schafer et al., 2005).

2.2 Spatial scalability
The spatial scalability is based on representing, through a layered structure, videos with
distinct resolutions, i.e. each enhancement layer is responsible for improving the resolution of
lower layers (as in Figure 2(b)). The most common configuration (i.e. dyadic) adopts the 2:1
relation between neighbor layers, although H.264/SVC also contemplates non-dyadic ratios
(Segall & Sullivan, 2007). This last solution demands the inclusion of a new class of algorithm
called Extended Spatial Scalability (ESS) (Huang et al., 2007).
The approaches of previous scalable encoders basically consist of reusing motion prediction
information from lower layers in order to reduce the global stream size. Unfortunately, the
image quality obtained by this methodology is quite limited. On the contrary, and in order
to improve its efficiency, the H.264/SVC encoder introduces a more flexible and complex
prediction module called Inter-Layer Prediction (ILP). The main goal of the ILP module is to
increase the amount of reused data in the prediction from inferior layers, so that the reduction
of redundancies increases the overall efficiency. To this end, three prediction techniques are
supported by the ILP module:

• Inter-Layer Motion Prediction: the motion vectors from lower layers can be used by
superior enhancement layers. In some cases, the motion vectors and their attached
information must be rescaled (see Figure 5(b)) so as to adjust the values to the correct
equivalents in higher layers (Husemann et al., 2009).

• Inter-Layer Intra Texture Prediction: H.264/SVC supports texture prediction for internal
blocks within the same reference layer (intra). The intra block predicted in the reference
layer can be used for other blocks in superior layers. This module up-samples the
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picture, B frames consist of a combination of inter-picture bi-predictive coding (i.e. samples of
both previous and posterior reference pictures are considered for the prediction). In addition,
the H.264 standard family requires the first frame to be an Instantaneous Decoding Refresh
(IDR) access unit, which corresponds to the union of one I frame with several critical non-data
related information (e.g. the set of coding parameters). Generally speaking, the GOP structure
specifies the arrangement of those frames within an encoded video sequence.
Certainly, the singular dependency and predictive characteristics of each frame type imply
divergent coded video stream features. In previous scalable standards (e.g. MPEG-2, H.263
and MPEG-4 Visual), the temporal scalability was basically performed by segmenting layers
according to different frame types. For example, a video composed by a traditional "IBBP"
format (one I frame followed by two B frames and one P frame) could be used to build three
temporal layers: base layer (L0) with I frames, first enhancement layer (L1) with P frames and
the second enhancement layer (L2) with B frames. This dyadic approach (2:1 decomposition
format) has been proven to be functional, although it provides limited bandwidth flexibility
(i.e. the total bit rate required by I frames is significantly larger than that of P and B frames
(Rieckl, 2008)). By contrast, in H.264/SVC the basis of temporal scalability is found on the
GOP structure, since it divides each frame into distinct scalability layers (by jointly combining
I, P and B frame types). As for the H.264/SVC codec, the GOP definition can be rephrased
as the arrangement of the coded bitstream’s frames between two successive pictures of the
temporal base layer (Schwarz et al., 2007). It is important to recall that the frames of the
temporal base layer do not necessarily need to be an I frame. Actually, only the first picture of
a video stream is strictly forced to be coded as an I frame and to be included in the initial IDR
access unit.
In order to increase the flexibility of the codec, the H.264/SVC standard defines a distinct
structure for temporal prediction, where reference frames for each video sequence are
reorganized in a hierarchical tree scheme. This tree scheme improves the distribution of
information between consecutive frames and allows for both a dyadic and a non-dyadic
temporal scalability. Figure 5(a) exemplifies this hierarchical temporal decomposition for a
2:1 frame rate relation in a four-layer encoded video. In this example, the base layer L0,
which is constituted by I or P frames, permits to reconstruct one picture per GOP. The first
enhancement layer L1, usually composed by B frames, extracts one additional picture per
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GOP in addition to that of L0. The second enhancement layer L2, which is comprised by B
frames, further extracts two additional pictures per GOP jointly with those of previous layers.
Finally, the third enhancement layer L3 allows recovering eight pictures.

(a) H.264/SVC hierarchical tree structure in a four-layer
temporal scalability example.

(b) Motion vector scaling in
dyadic spatial scalability.

Fig. 5. Graphical support examples for H.264/SVC temporal and spatial scalabilities.

On top of this, H.264/SVC suggests the inclusion of a pre-processing filter before the
motion prediction module, which can improve the data information distribution and
eliminate redundancies between consecutive layers. The proposed algorithm is referenced
as MCTF. This additional filter, when applied over the original data, performs motion aligned
decomposition processing. As a result, the correlation between filtered layers is improved,
while the overall complexity of the encoder is increased (Schafer et al., 2005).

2.2 Spatial scalability
The spatial scalability is based on representing, through a layered structure, videos with
distinct resolutions, i.e. each enhancement layer is responsible for improving the resolution of
lower layers (as in Figure 2(b)). The most common configuration (i.e. dyadic) adopts the 2:1
relation between neighbor layers, although H.264/SVC also contemplates non-dyadic ratios
(Segall & Sullivan, 2007). This last solution demands the inclusion of a new class of algorithm
called Extended Spatial Scalability (ESS) (Huang et al., 2007).
The approaches of previous scalable encoders basically consist of reusing motion prediction
information from lower layers in order to reduce the global stream size. Unfortunately, the
image quality obtained by this methodology is quite limited. On the contrary, and in order
to improve its efficiency, the H.264/SVC encoder introduces a more flexible and complex
prediction module called Inter-Layer Prediction (ILP). The main goal of the ILP module is to
increase the amount of reused data in the prediction from inferior layers, so that the reduction
of redundancies increases the overall efficiency. To this end, three prediction techniques are
supported by the ILP module:

• Inter-Layer Motion Prediction: the motion vectors from lower layers can be used by
superior enhancement layers. In some cases, the motion vectors and their attached
information must be rescaled (see Figure 5(b)) so as to adjust the values to the correct
equivalents in higher layers (Husemann et al., 2009).

• Inter-Layer Intra Texture Prediction: H.264/SVC supports texture prediction for internal
blocks within the same reference layer (intra). The intra block predicted in the reference
layer can be used for other blocks in superior layers. This module up-samples the
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resolution of inferior layer’s texture to superior layer resolutions, subsequently calculating
the difference between them.

• Inter-Layer Residual Prediction: as a consequence of several coding process observations,
it has been identified that when two consecutive layers have similar motion information,
the inter-layer residues register high correlation. Based on this, in H.264/SVC the
inter-layer residual prediction method can be used after the motion compensation process
to explore redundancies in the spatial residual domain.

Supplementarily, the H.264/SVC standard supports any resolution, cropping and
dimensional aspect relation between two consecutive layers. For instance, a certain layer may
use SD resolution (4:3 aspect), while the next layer is characterized by HD resolution (16:9
aspect) (Schafer et al., 2005). The most flexible solution, which does not use a dyadic relation,
is called ESS (Extended Spatial Scalability), where any relation between consecutive layers is
supported.

2.3 SNR scalability
The SNR scalability (or quality scalability) empowers transporting complementary data in
different layers in order to produce videos with distinct quality levels. In H.264/SVC, SNR
scalability is implemented in the frequency domain (i.e. it is performed over the internal
transform module). This scalability type basically hinges on adopting distinct quantization
parameters for each layer. The H.264/SVC standard supports three distinct SNR scalability
modes (Rieckl, 2008):

• Coarse Grain Scalability (CGS): in this strategy (Figure 6(a)), each layer has an
independent prediction procedure (all references have the same quality level) in a similar
fashion to the SNR scalability of MPEG-2. In fact, the CGS strategy can be regarded as a
special case of spatial scalability when consecutive layers have the same resolution (Huang
et al., 2007).

• Medium Grain Scalability (MGS): the MGS approach (Figure 6(b)) increases efficiency by
using a more flexible prediction module, where both types of layer (base and enhancement)
can be referenced. However this strategy can induce a drifting effect (i.e. it can introduce a
synchronism offset between the encoder and the decoder) if only the base layer is received.
To solve this issue, the MGS specification proposes the use of periodic key pictures, which
immediately resynchronizes the prediction module.

• Fine Grain Scalability (FGS): this version (Figure 6(c)) of the SNR scalability aims
at providing a continuous adaptation of the output bit rate in relation to the real
network bandwidth. FGS employs an advanced bit-plane technique where different
layers are responsible for transporting distinct subsets of bits corresponding to each data
information. The scheme allows for data truncation at any arbitrary point in order to
support the progressive refinement of transform coefficients. In this type of scalability,
only the base layer casts motion prediction techniques.

As a means to understand each SNR scalability granularity mode of H.264/SVC, the internal
correlation between layers for a two-layer video stream can be observed in Figure 6. Note that
the black frames in Figure 6(b) represent key pictures with periodicity of 4 pictures.
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Fig. 6. H.264/SVC SNR scalability granularity mode for a two-layer example.

3. Performance experiments

Heretofore this tutorial has introduced the H.264/SVC video coding standard and its
pivotal underlying concepts. This section delves into the description of several experiments
evaluating the requirements of a practical H.264/SVC solution. As a consequence of the
standardization process of H.264, the different entities involved in it (including the industry
members, the ITU-T body and MPEG) formed the so-called Joint Video Team (JVT) which,
among various duties, has developed the official H.264/SVC reference code. This reference
implementation of the codec, coined as JSVM, undergoes continuous developments so as
to track the numerous features of this standard. For the purpose of the experiments later
detailed, JSVM version 9.19.4 (JSVM reference software, 2010) has been used, which even if not
necessarily efficient or optimized, guarantees full compliance with the standard. Since the
goal of this section is to provide an overview of the practical characteristics of this scalable
codec, it is considered mandatory to tackle every tests from a generic video-sample-agnostic
approach. Consequently, experiments have been repeated with different video sequences,
thus the performance of the codecs is evaluated over video samples of diverse characteristics:
miscellaneous motion patterns, various spatial complexities, shapes, etc.
Specifically, the tested video samples are the conventional CREW, CITY and HARBOUR
sequences (YUV video repository, 2010). These video sequences cover a wide range of
dynamism scales: CREW presents a spatial craft crew walking quickly (i.e. constant object
movement); CITY is a 360-degree view of a skyscraper recorded by a slow-motion camera
(slow panning motion); finally, HARBOUR shows the filming from a fixed camera in a sailboat
race (high dynamism). In addition to the different attributes of each video sequence, diverse
resolutions and frame rates have been further considered: 176x144 pixels (QCIF) at 15 fps,
352x288 pixels (CIF) at 30 fps and 704x576 pixels (4CIF) at 60 fps.
For the performance evaluation of the H.264/SVC codec, the following metrics have been
used for all the experiments (unless specifically indicated): encoding complexity (measured
as the time in seconds required to encode a 10-second video sample), encoding efficiency
(defined as the size of the encoded video sequence), decoding complexity (as the number
of seconds to decode a 10-second encoded video sequence) and, finally, the objective
video-quality resulting from the encoding and decoding process (i.e. the PSNR value of
the luma component of the video sequence). The description, results and conclusions of the
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resolution of inferior layer’s texture to superior layer resolutions, subsequently calculating
the difference between them.

• Inter-Layer Residual Prediction: as a consequence of several coding process observations,
it has been identified that when two consecutive layers have similar motion information,
the inter-layer residues register high correlation. Based on this, in H.264/SVC the
inter-layer residual prediction method can be used after the motion compensation process
to explore redundancies in the spatial residual domain.

Supplementarily, the H.264/SVC standard supports any resolution, cropping and
dimensional aspect relation between two consecutive layers. For instance, a certain layer may
use SD resolution (4:3 aspect), while the next layer is characterized by HD resolution (16:9
aspect) (Schafer et al., 2005). The most flexible solution, which does not use a dyadic relation,
is called ESS (Extended Spatial Scalability), where any relation between consecutive layers is
supported.

2.3 SNR scalability
The SNR scalability (or quality scalability) empowers transporting complementary data in
different layers in order to produce videos with distinct quality levels. In H.264/SVC, SNR
scalability is implemented in the frequency domain (i.e. it is performed over the internal
transform module). This scalability type basically hinges on adopting distinct quantization
parameters for each layer. The H.264/SVC standard supports three distinct SNR scalability
modes (Rieckl, 2008):

• Coarse Grain Scalability (CGS): in this strategy (Figure 6(a)), each layer has an
independent prediction procedure (all references have the same quality level) in a similar
fashion to the SNR scalability of MPEG-2. In fact, the CGS strategy can be regarded as a
special case of spatial scalability when consecutive layers have the same resolution (Huang
et al., 2007).

• Medium Grain Scalability (MGS): the MGS approach (Figure 6(b)) increases efficiency by
using a more flexible prediction module, where both types of layer (base and enhancement)
can be referenced. However this strategy can induce a drifting effect (i.e. it can introduce a
synchronism offset between the encoder and the decoder) if only the base layer is received.
To solve this issue, the MGS specification proposes the use of periodic key pictures, which
immediately resynchronizes the prediction module.

• Fine Grain Scalability (FGS): this version (Figure 6(c)) of the SNR scalability aims
at providing a continuous adaptation of the output bit rate in relation to the real
network bandwidth. FGS employs an advanced bit-plane technique where different
layers are responsible for transporting distinct subsets of bits corresponding to each data
information. The scheme allows for data truncation at any arbitrary point in order to
support the progressive refinement of transform coefficients. In this type of scalability,
only the base layer casts motion prediction techniques.

As a means to understand each SNR scalability granularity mode of H.264/SVC, the internal
correlation between layers for a two-layer video stream can be observed in Figure 6. Note that
the black frames in Figure 6(b) represent key pictures with periodicity of 4 pictures.
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Fig. 6. H.264/SVC SNR scalability granularity mode for a two-layer example.

3. Performance experiments

Heretofore this tutorial has introduced the H.264/SVC video coding standard and its
pivotal underlying concepts. This section delves into the description of several experiments
evaluating the requirements of a practical H.264/SVC solution. As a consequence of the
standardization process of H.264, the different entities involved in it (including the industry
members, the ITU-T body and MPEG) formed the so-called Joint Video Team (JVT) which,
among various duties, has developed the official H.264/SVC reference code. This reference
implementation of the codec, coined as JSVM, undergoes continuous developments so as
to track the numerous features of this standard. For the purpose of the experiments later
detailed, JSVM version 9.19.4 (JSVM reference software, 2010) has been used, which even if not
necessarily efficient or optimized, guarantees full compliance with the standard. Since the
goal of this section is to provide an overview of the practical characteristics of this scalable
codec, it is considered mandatory to tackle every tests from a generic video-sample-agnostic
approach. Consequently, experiments have been repeated with different video sequences,
thus the performance of the codecs is evaluated over video samples of diverse characteristics:
miscellaneous motion patterns, various spatial complexities, shapes, etc.
Specifically, the tested video samples are the conventional CREW, CITY and HARBOUR
sequences (YUV video repository, 2010). These video sequences cover a wide range of
dynamism scales: CREW presents a spatial craft crew walking quickly (i.e. constant object
movement); CITY is a 360-degree view of a skyscraper recorded by a slow-motion camera
(slow panning motion); finally, HARBOUR shows the filming from a fixed camera in a sailboat
race (high dynamism). In addition to the different attributes of each video sequence, diverse
resolutions and frame rates have been further considered: 176x144 pixels (QCIF) at 15 fps,
352x288 pixels (CIF) at 30 fps and 704x576 pixels (4CIF) at 60 fps.
For the performance evaluation of the H.264/SVC codec, the following metrics have been
used for all the experiments (unless specifically indicated): encoding complexity (measured
as the time in seconds required to encode a 10-second video sample), encoding efficiency
(defined as the size of the encoded video sequence), decoding complexity (as the number
of seconds to decode a 10-second encoded video sequence) and, finally, the objective
video-quality resulting from the encoding and decoding process (i.e. the PSNR value of
the luma component of the video sequence). The description, results and conclusions of the
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different experiments provided in the following sections permit to evaluate the key features
of H.264/SVC.

3.1 Temporal scalability
As explained in Section 2.1, the frame structure imposed on the GOP (Group of Pictures)
is essential not only for the temporal scalability offered by this scalable codec, but also for
the features of the resulting video stream. In fact, changing the GOP size directly affects the
number of temporal layers contained in the encoded bitstream. For example, in a temporal
dyadic approach, a video stream encoded with GOP size equal to 16 generates the following
five temporal layers: T0 (1 frame per GOP), T1 (2 frames per GOP), T2 (4 frames per GOP), T3
(8 frames per GOP) and T4 (16 frames per GOP). However, encoding the same video with GOP
size equal to 8 renders four temporal layers: T0 (1 frame per GOP), T1 (2 frames per GOP),
T2 (4 frames per GOP) and T3 (8 frames per GOP). Finally, defining a GOP size of 4 produces
only three temporal layers: T0, T1 and T2. Therefore, it may be concluded that the flexibility of
a temporal scalable solution (in terms of the number of layers) is directly proportional to the
selected GOP size. Nevertheless, increasing the GOP size does have some implicit collateral
effects: it influences the overall encoding efficiency, as it imposes a variation in the number of
I, P and B frames per GOP.
In order to prove this effect, several experiments have been performed by changing the GOP
size parameter while the output bit rate is kept constant. Figure 7 show the obtained results
in terms of the quality for the upper and base layer.

32

33

34

35

36

37

38

39

CITY CREW HARBOUR

PS
N

R
 (d

B
)

GOP size=16

GOP size=8

GOP size=4 

(a) Upper layer (QCIF resolution)

33

34

35

36

37

38

39

40

41

CITY CREW HARBOUR

PS
N

R
 (d

B
)

GOP size=16

GOP size=8

GOP size=4 

(b) Base layer (QCIF resolution)

30

31

32

33

34

35

36

37

38

39

40

CITY CREW HARBOUR

PS
N

R
 (d

B
)

GOP size=16

GOP size=8

GOP size=4 

(c) Upper layer (CIF resolution)

33

34

35

36

37

38

39

40

41

CITY CREW HARBOUR 

PS
N

R
 (d

B
)

GOP size=16

GOP size=8

GOP size=4 

(d) Base layer (CIF resolution)

Fig. 7. Impact of the GOP size on the H.264/SVC quality for different video sequences.

By taking a closer look at Figures 7(a) and 7(c) the reader may notice that there is no significant
quality difference in the final recovered video (i.e. upper layer) when increasing the GOP
size. Nevertheless, the behavior of the quality of the base layer lightly varies depending
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on both the particularly used video samples and the selected resolutions, as can be seen in
Figures 7(b) and 7(d). An increment of the GOP size entails an increment of the quality of the
base layer for CREW-QCIF, HARBOUR-QCIF and HARBOUR-CIF video sequences whereas,
for instance, such a direct relation in the CREW-CIF video sample is not so evident. This
variability in the quality performance can be, in part, induced by the particularities of the
scalable prediction module (H.264/SVC ILP). Theoretically speaking, a GOP size increment
should imply a quality improvement, as the number of B frames rises while contributing to
an efficient encoding.
On the contrary, the complexity of the encoder is clearly influenced by the GOP size parameter,
i.e. the increase in the number of layers (and therefore B frames) implies higher requirements
for the encoder prediction module. Such an encoding complexity increase (measured in terms
of the encoding execution time) is depicted in Figure 8. For instance, an increment around
20% in encoding time is obtained when comparing GOP sizes of 4 and 16 for the CITY video
sequence at QCIF resolution.
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Fig. 8. GOP size impact in H.264/SVC encoding time for different video sequences.

It is also interesting to analyze the advantages of using higher GOP sizes for the temporal
scalability, as an increment in the GOP size augmentates the number of available temporal
layers and ultimately, enhances the flexibility of the video stream. As aforementioned
in Section 2.1, three frames types are generally considered to encode a video picture:
I, P and B frames. The difference between those frame types mainly resides on the
references used by them for the predictive coding. Certainly, the singular dependency and
predictive characteristics of each frame type lead to divergent encoded video stream features.
Furthermore, the arrangement of the frames within a GOP directly impacts on the codec
performance as well. In this context, Figure 9 shows how different GOP structures influences
the encoding and decoding complexity, while maintaining a similar video quality. The
evaluated GOP structures are:

• B: an initial P frame and 15 consecutive B frames form the GOP structure.

• B_I: the GOP is composed by an initial I frame and 15 consecutive B frames.

• B_IDR: the GOP arrangement corresponds to an initial IDR frame, followed by 15 B
frames.

• NoB: only P frames (16) are used in the whole GOP.

• NoB_I: the GOP is composed by an initial I frame, followed by 15 P frames.

• NoB_IDR: an initial IDR frame followed by 15 P frames form the GOP structure.
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different experiments provided in the following sections permit to evaluate the key features
of H.264/SVC.

3.1 Temporal scalability
As explained in Section 2.1, the frame structure imposed on the GOP (Group of Pictures)
is essential not only for the temporal scalability offered by this scalable codec, but also for
the features of the resulting video stream. In fact, changing the GOP size directly affects the
number of temporal layers contained in the encoded bitstream. For example, in a temporal
dyadic approach, a video stream encoded with GOP size equal to 16 generates the following
five temporal layers: T0 (1 frame per GOP), T1 (2 frames per GOP), T2 (4 frames per GOP), T3
(8 frames per GOP) and T4 (16 frames per GOP). However, encoding the same video with GOP
size equal to 8 renders four temporal layers: T0 (1 frame per GOP), T1 (2 frames per GOP),
T2 (4 frames per GOP) and T3 (8 frames per GOP). Finally, defining a GOP size of 4 produces
only three temporal layers: T0, T1 and T2. Therefore, it may be concluded that the flexibility of
a temporal scalable solution (in terms of the number of layers) is directly proportional to the
selected GOP size. Nevertheless, increasing the GOP size does have some implicit collateral
effects: it influences the overall encoding efficiency, as it imposes a variation in the number of
I, P and B frames per GOP.
In order to prove this effect, several experiments have been performed by changing the GOP
size parameter while the output bit rate is kept constant. Figure 7 show the obtained results
in terms of the quality for the upper and base layer.
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By taking a closer look at Figures 7(a) and 7(c) the reader may notice that there is no significant
quality difference in the final recovered video (i.e. upper layer) when increasing the GOP
size. Nevertheless, the behavior of the quality of the base layer lightly varies depending
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on both the particularly used video samples and the selected resolutions, as can be seen in
Figures 7(b) and 7(d). An increment of the GOP size entails an increment of the quality of the
base layer for CREW-QCIF, HARBOUR-QCIF and HARBOUR-CIF video sequences whereas,
for instance, such a direct relation in the CREW-CIF video sample is not so evident. This
variability in the quality performance can be, in part, induced by the particularities of the
scalable prediction module (H.264/SVC ILP). Theoretically speaking, a GOP size increment
should imply a quality improvement, as the number of B frames rises while contributing to
an efficient encoding.
On the contrary, the complexity of the encoder is clearly influenced by the GOP size parameter,
i.e. the increase in the number of layers (and therefore B frames) implies higher requirements
for the encoder prediction module. Such an encoding complexity increase (measured in terms
of the encoding execution time) is depicted in Figure 8. For instance, an increment around
20% in encoding time is obtained when comparing GOP sizes of 4 and 16 for the CITY video
sequence at QCIF resolution.
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It is also interesting to analyze the advantages of using higher GOP sizes for the temporal
scalability, as an increment in the GOP size augmentates the number of available temporal
layers and ultimately, enhances the flexibility of the video stream. As aforementioned
in Section 2.1, three frames types are generally considered to encode a video picture:
I, P and B frames. The difference between those frame types mainly resides on the
references used by them for the predictive coding. Certainly, the singular dependency and
predictive characteristics of each frame type lead to divergent encoded video stream features.
Furthermore, the arrangement of the frames within a GOP directly impacts on the codec
performance as well. In this context, Figure 9 shows how different GOP structures influences
the encoding and decoding complexity, while maintaining a similar video quality. The
evaluated GOP structures are:

• B: an initial P frame and 15 consecutive B frames form the GOP structure.

• B_I: the GOP is composed by an initial I frame and 15 consecutive B frames.

• B_IDR: the GOP arrangement corresponds to an initial IDR frame, followed by 15 B
frames.

• NoB: only P frames (16) are used in the whole GOP.

• NoB_I: the GOP is composed by an initial I frame, followed by 15 P frames.

• NoB_IDR: an initial IDR frame followed by 15 P frames form the GOP structure.
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Fig. 9. GOP’s structure impact in H.264/SVC codec for the HARBOUR video sequence.

This experiment clearly stresses on the influence of B frames within a GOP, since they impose
a significant coding complexity increase. However, their inclusion does not provide any
comparable advantage, as quality remains almost equal – differences of less than 0.5 dB were
obtained in performed experiments – at the cost of a small bit rate variation. Similar results
have been observed for other experiments based on different GOP sizes and video sequences,
which are not included here for the sake of space. Regarding the influence of I and IDR
pictures, further tests indicate that the quality, complexity and bit rate behaviors are similar
for both type of frames. Figure 10 supports this claim for different I and IDR inclusion periods
(a stream encoded only with P frames has been employed as a reference).
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Fig. 10. GOP structure’s (I Vs IDR) impact in H.264/SVC codec.

Along with the implications on video bit rate, the determination of the intra-frame
frequency also plays an important role when dealing with packet losses in real video
streaming applications, which may be due to different phenomena, e.g. congestion, wireless
communication losses or handovers (Unanue et al., 2009). As exemplified in Figure 11,
video-quality recovery is directly influenced by the GOP structure and particularly, by the
reception of an intra-type frame. Due to the intrinsic features of intra-type frames, the sooner
an intra-type frame is received, the sooner the video quality is recovered. Based on this
rationale and referring to the plotted example, the video quality recovery for H.264/SVC
sequences including intra-type frames is much faster (maroon line in Figure 11) than that
corresponding to streams without intra-type frames (green line in Figure 11). It is important
to remark that with the reception of an intra-type frame, the quality of the received video is
almost immediately recovered, whereas the intrinsic dependencies of P and B frames involve
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a slower quality recovery when facing losses. In other words, due to the use of a predictive
encoding structure, a frame loss not only affects the current GOP, but may have impact in
preceding and subsequent GOPs as well.
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Fig. 11. Frame loss impact on H.264/SVC streams subject to different GOP structures.

Nevertheless, and besides the above proven fact that intra-frames provide faster quality
recovery, the speed of video sequence’s quality recovery not only depends on the GOP
structure, but also on the particular video sequence characteristics. That is, for almost similar
frame sequences (e.g. semi-static motion in CITY sequence), the coded P and B frames provide
little information with respect to each other. Therefore, in those kinds of motion sequences,
it is difficult to recover from the loss of previous frames unless intra-frames are included
(Unanue et al., 2009). Consequently, it is deemed crucial to carefully determine the frequency
of these type of frames – whether they are I or IDR – which poses a tradeoff between file size
and recovery speed: a higher inclusion frequency accelerates the video-quality recovery in
lossy environments at a penalty in file size. In summary, granting priority to the bit rate of the
stream or to the recovery speed of the video quality is a decision to be taken as a function of the
considered scenario. Similarly, the selection between I and IDR frames (or any combination of
both) should be also left open to each particular application.

3.2 Spatial scalability
With spatial scalability, different layers within the same encoded video stream contain distinct
video resolutions. To support this scalability, motion, texture and residual information from
previous layers (after rescaling to the new resolution) can be reused at the H.264/SVC encoder.
When the relation between layers is 2:1 (i.e. dyadic case), the rescaling algorithm in a
H.264/SVC encoder is rather simple, since in this case the operation to rescale a layer reduces
to a simple bit-shift operation. However, H.264/SVC also supports any other resolution ratio
between subsequent layers (i.e. non-dyadic cases), for which more complex mathematical
operations are necessitated.
In order to determine the real requirements of H.264/SVC’s spatial scalability encoding,
several practical experiments have been performed varying the resolution ratios between
layers. In the first case, a QCIF resolution base layer and a CIF resolution enhancement layer
(dyadic scenario) were used. In the second experiment, the enhancement layer is adjusted to
240x112 pixels, while keeping the same base layer (non-dyadic scenario). Please note that in
order to simplify the comparison, the output bit rate has been adjusted to the same value in
both cases.
On one hand, Figure 12(a) depicts the quality comparison for both experiments, where a
slightly higher quality for the dyadic scenario can be observed. This phenomenon is explained
by noticing that a 2:1 relation does not produce any rescaling distortion, which does not hold
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This experiment clearly stresses on the influence of B frames within a GOP, since they impose
a significant coding complexity increase. However, their inclusion does not provide any
comparable advantage, as quality remains almost equal – differences of less than 0.5 dB were
obtained in performed experiments – at the cost of a small bit rate variation. Similar results
have been observed for other experiments based on different GOP sizes and video sequences,
which are not included here for the sake of space. Regarding the influence of I and IDR
pictures, further tests indicate that the quality, complexity and bit rate behaviors are similar
for both type of frames. Figure 10 supports this claim for different I and IDR inclusion periods
(a stream encoded only with P frames has been employed as a reference).
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Along with the implications on video bit rate, the determination of the intra-frame
frequency also plays an important role when dealing with packet losses in real video
streaming applications, which may be due to different phenomena, e.g. congestion, wireless
communication losses or handovers (Unanue et al., 2009). As exemplified in Figure 11,
video-quality recovery is directly influenced by the GOP structure and particularly, by the
reception of an intra-type frame. Due to the intrinsic features of intra-type frames, the sooner
an intra-type frame is received, the sooner the video quality is recovered. Based on this
rationale and referring to the plotted example, the video quality recovery for H.264/SVC
sequences including intra-type frames is much faster (maroon line in Figure 11) than that
corresponding to streams without intra-type frames (green line in Figure 11). It is important
to remark that with the reception of an intra-type frame, the quality of the received video is
almost immediately recovered, whereas the intrinsic dependencies of P and B frames involve
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a slower quality recovery when facing losses. In other words, due to the use of a predictive
encoding structure, a frame loss not only affects the current GOP, but may have impact in
preceding and subsequent GOPs as well.
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Nevertheless, and besides the above proven fact that intra-frames provide faster quality
recovery, the speed of video sequence’s quality recovery not only depends on the GOP
structure, but also on the particular video sequence characteristics. That is, for almost similar
frame sequences (e.g. semi-static motion in CITY sequence), the coded P and B frames provide
little information with respect to each other. Therefore, in those kinds of motion sequences,
it is difficult to recover from the loss of previous frames unless intra-frames are included
(Unanue et al., 2009). Consequently, it is deemed crucial to carefully determine the frequency
of these type of frames – whether they are I or IDR – which poses a tradeoff between file size
and recovery speed: a higher inclusion frequency accelerates the video-quality recovery in
lossy environments at a penalty in file size. In summary, granting priority to the bit rate of the
stream or to the recovery speed of the video quality is a decision to be taken as a function of the
considered scenario. Similarly, the selection between I and IDR frames (or any combination of
both) should be also left open to each particular application.

3.2 Spatial scalability
With spatial scalability, different layers within the same encoded video stream contain distinct
video resolutions. To support this scalability, motion, texture and residual information from
previous layers (after rescaling to the new resolution) can be reused at the H.264/SVC encoder.
When the relation between layers is 2:1 (i.e. dyadic case), the rescaling algorithm in a
H.264/SVC encoder is rather simple, since in this case the operation to rescale a layer reduces
to a simple bit-shift operation. However, H.264/SVC also supports any other resolution ratio
between subsequent layers (i.e. non-dyadic cases), for which more complex mathematical
operations are necessitated.
In order to determine the real requirements of H.264/SVC’s spatial scalability encoding,
several practical experiments have been performed varying the resolution ratios between
layers. In the first case, a QCIF resolution base layer and a CIF resolution enhancement layer
(dyadic scenario) were used. In the second experiment, the enhancement layer is adjusted to
240x112 pixels, while keeping the same base layer (non-dyadic scenario). Please note that in
order to simplify the comparison, the output bit rate has been adjusted to the same value in
both cases.
On one hand, Figure 12(a) depicts the quality comparison for both experiments, where a
slightly higher quality for the dyadic scenario can be observed. This phenomenon is explained
by noticing that a 2:1 relation does not produce any rescaling distortion, which does not hold
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Fig. 12. Spatial scalability evaluation: dyadic and non-dyadic solutions.

for non-integer resolution ratios. On the other hand, when addressing non-dyadic cases the
encoder complexity increases significantly, as shown in Figure 12(b). In other words, dyadic
configurations can be processed with significant lower encoding time than the non-dyadic
ones, e.g. the non-dyadic approach increases the encoding load up to approximately 18% for
the CREW video sequence.

3.3 SNR scalability
The SNR scalability implicates several techniques in order to create layers of different quality
levels within the same encoded bitstream. In this regard, JSVM provides several options to
specify the desired quality not only for each particular layer, but also for the overall encoded
stream. First, this subsection focuses on the so-called Quantization Parameter (QP), which is
directly related to the quantization process of the original video sequence. Then, the specific
properties of two of the distinct SNR scalability modes of H.264/SVC are analyzed, namely,
CGS and MGS. The FGS mode has not been included in these experiments since, as opposed
to CGS and MGS, it does not allow personal configuration of relevant parameters, such as the
number of layers or the value of quantization step per layer.
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Fig. 13. Evaluation of the SNR scalability: impact of the quantization parameter QP.

In general lower quantization parameter values lead to both better PSNR level and higher bit
rate for the encoded video stream. However, during the encoding process, the QP value is
not maintained exactly equal for all the frames within the given stream, i.e. it varies slightly
depending on the position of each frame within the GOP. The appropriate QP value for each
particular scenario or multimedia application should be selected by not only taking into
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account the desired quality, but also by analyzing the practical impact of the QP on the file
size of the encoded bitstream. On one hand, Figure 13 attests the direct relationship between
the selected quantization parameter and the resulting video quality and file size. On the other
hand, Figure 14 represents the visual quality incurred when assigning different QP values to
the encoding process of the CREW video sample.

QP=40 QP=36 QP=32

Fig. 14. Quality for different QP-value based H.264/SVC captured pictures (QCIF resolution).

Once the influence of the QP parameter has been explored, a deeper analysis is performed
by evaluating the quality scalability intrinsically provided by H.264/SVC. In the following
test two SNR scalable layers are incorporated into the encoded stream (lower quality for
the inferior layer, QPL, and better quality for the upper layer, QPU), since with JSVM an
independent QP value can be assigned to each scalable layer. One of the basics of H.264/SVC
is the ability to benefit from its inter-layer prediction mechanisms so as to perform efficient
scalable encoding. However, there is a close dependency between the selected quality
scalabilities and the inter-layer prediction into the resulting video stream, as the experiment
results included in Figure 15 clearly show.
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Fig. 15. Evaluation of the dependency between the assigned QP to each SNR scalable layer
and the overall quality.

In this example, the quality obtained in the upper layers (defined by QPU) certainly depends
on the quality of the lower layers as specified by QPL. Referring to Figure 15(a), even if
the same QPU is set, the resulting video quality is slightly different based on the quality of
the underlying lower layer. The reason for this phenomenon gravitates on the inter-layer
prediction mechanism: since the enhancement layers progressively refine the quality of lower
layers, even when the same QPU is used, the PSNR achieved by the content roughly depends
on the quality of lower layers, which is established by the QPL parameter.
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for non-integer resolution ratios. On the other hand, when addressing non-dyadic cases the
encoder complexity increases significantly, as shown in Figure 12(b). In other words, dyadic
configurations can be processed with significant lower encoding time than the non-dyadic
ones, e.g. the non-dyadic approach increases the encoding load up to approximately 18% for
the CREW video sequence.

3.3 SNR scalability
The SNR scalability implicates several techniques in order to create layers of different quality
levels within the same encoded bitstream. In this regard, JSVM provides several options to
specify the desired quality not only for each particular layer, but also for the overall encoded
stream. First, this subsection focuses on the so-called Quantization Parameter (QP), which is
directly related to the quantization process of the original video sequence. Then, the specific
properties of two of the distinct SNR scalability modes of H.264/SVC are analyzed, namely,
CGS and MGS. The FGS mode has not been included in these experiments since, as opposed
to CGS and MGS, it does not allow personal configuration of relevant parameters, such as the
number of layers or the value of quantization step per layer.
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In general lower quantization parameter values lead to both better PSNR level and higher bit
rate for the encoded video stream. However, during the encoding process, the QP value is
not maintained exactly equal for all the frames within the given stream, i.e. it varies slightly
depending on the position of each frame within the GOP. The appropriate QP value for each
particular scenario or multimedia application should be selected by not only taking into
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account the desired quality, but also by analyzing the practical impact of the QP on the file
size of the encoded bitstream. On one hand, Figure 13 attests the direct relationship between
the selected quantization parameter and the resulting video quality and file size. On the other
hand, Figure 14 represents the visual quality incurred when assigning different QP values to
the encoding process of the CREW video sample.

QP=40 QP=36 QP=32

Fig. 14. Quality for different QP-value based H.264/SVC captured pictures (QCIF resolution).

Once the influence of the QP parameter has been explored, a deeper analysis is performed
by evaluating the quality scalability intrinsically provided by H.264/SVC. In the following
test two SNR scalable layers are incorporated into the encoded stream (lower quality for
the inferior layer, QPL, and better quality for the upper layer, QPU), since with JSVM an
independent QP value can be assigned to each scalable layer. One of the basics of H.264/SVC
is the ability to benefit from its inter-layer prediction mechanisms so as to perform efficient
scalable encoding. However, there is a close dependency between the selected quality
scalabilities and the inter-layer prediction into the resulting video stream, as the experiment
results included in Figure 15 clearly show.
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In this example, the quality obtained in the upper layers (defined by QPU) certainly depends
on the quality of the lower layers as specified by QPL. Referring to Figure 15(a), even if
the same QPU is set, the resulting video quality is slightly different based on the quality of
the underlying lower layer. The reason for this phenomenon gravitates on the inter-layer
prediction mechanism: since the enhancement layers progressively refine the quality of lower
layers, even when the same QPU is used, the PSNR achieved by the content roughly depends
on the quality of lower layers, which is established by the QPL parameter.
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Additional experiments have been carried out to analyze the specific characteristics of
H.264/SVC’s distinct SNR scalability modes: CGS and MGS. For both experiments, the same
configuration for the quantization parameter has been used: QPL=39 for the base layer, and
QPU=33 for the enhancement layer. Besides, and in order to simplify the analysis, both modes
have been forced to produce the same output bit rate. The results for these experiments are
presented in Figure 16, both for video quality and encoding performance metrics. For all
evaluated video sequences, the MGS approach produces better quality results, as evidenced
in figures 16(a) and 16(b). This interesting result is due to the improved flexibility of MGS’s
internal prediction algorithm (as more possible references are supported), which contributes
to a reduction of matching errors (i.e. residual data). On the other hand, both scalability
modes present similar results in terms of codec’s performance (encoding execution time).
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Fig. 16. Comparison between MGS and CGS SNR scalable modes for different resolutions.

3.4 Additional features
Along with its differentiated temporal, quality and spatial scalabilities, the H.264/SVC
standard provides several other innovative features, which are subject to practical
experimentation through this subsection.

3.4.1 Prediction module
In general, motion estimation techniques stand for those algorithms that allow determining
the vectors that describe the correlation between two adjacent frames in a video sequence. In
this context, H.264/SVC allows tuning the searching parameters for its motion estimation
algorithm: it is possible to decide whether an exhaustive block-searching algorithm or a
speed-optimized approach is to be utilized. Furthermore, the search-range of the chosen
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block-search function can also be tweaked. However, the exhaustive block-searching function
demands a high computational complexity in the encoding process, while its repercussion
on the quality and encoding efficiency is not significant. These claims are buttressed by
the results of performed experiments given in Table 1. Notice that these results have been
generated by encoding QCIF resolution video sequences, since the encoding complexity
increases dramatically for higher resolutions. Since video coding quality is comparable for
both search-functions (results not shown due to space constraints), it is highly recommended
to select the fast-searching algorithm in practical H.264/SVC encoders due to the derived
significant reduction in computational load.
A deeper experimental analysis of the searching algorithm is illustrated in Figure 17, where
the influence of the search-range parameter is studied for several CIF resolution video
sequences. Experimental results verify that the higher the search-range is, the longer the
coding time is. No significant impact has been detected in any other metric.

Video sequence Motion-search algorithm Search-range Decoding time (%)
CITY Fast Exhaustive 100%
CITY Exhaustive Exhaustive 6133,20%

CREW Fast Exhaustive 100%
CREW Exhaustive Exhaustive 3153,25%

HARBOUR Fast Exhaustive 100%
HARBOUR Exhaustive Exhaustive 6482,42%

Table 1. Impact of the selected motion-search algorithm in H.264/SVC.

Closely related to the motion compensation, enabling additional 8x8 motion-compensated
blocks can notoriously increase the complexity of the encoder. As the experimental results in
Figure 18 certify, enabling additional sub-macroblock partitions of 8x8 requires more resources
when encoding a given video sequence, whereas it surprisingly has little benefits in the other
considered metrics (file size and quality).
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Fig. 17. Search-range parameter impact on H.264/SVC video coding.

Consequently, regarding motion estimation mechanisms in H.264/SVC it is highly
recommended to use fast-searching algorithms, small search-ranges, and no additional 8x8
block compensation if the target application requires minimizing the encoder complexity.

3.4.2 Deblocking filter
Within this subsection, the benefits of applying distinct deblocking filter approaches in
H.264/SVC video coding have been analyzed. Deblocking filters are exploited in block-coding
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Additional experiments have been carried out to analyze the specific characteristics of
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QPU=33 for the enhancement layer. Besides, and in order to simplify the analysis, both modes
have been forced to produce the same output bit rate. The results for these experiments are
presented in Figure 16, both for video quality and encoding performance metrics. For all
evaluated video sequences, the MGS approach produces better quality results, as evidenced
in figures 16(a) and 16(b). This interesting result is due to the improved flexibility of MGS’s
internal prediction algorithm (as more possible references are supported), which contributes
to a reduction of matching errors (i.e. residual data). On the other hand, both scalability
modes present similar results in terms of codec’s performance (encoding execution time).
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3.4 Additional features
Along with its differentiated temporal, quality and spatial scalabilities, the H.264/SVC
standard provides several other innovative features, which are subject to practical
experimentation through this subsection.

3.4.1 Prediction module
In general, motion estimation techniques stand for those algorithms that allow determining
the vectors that describe the correlation between two adjacent frames in a video sequence. In
this context, H.264/SVC allows tuning the searching parameters for its motion estimation
algorithm: it is possible to decide whether an exhaustive block-searching algorithm or a
speed-optimized approach is to be utilized. Furthermore, the search-range of the chosen
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block-search function can also be tweaked. However, the exhaustive block-searching function
demands a high computational complexity in the encoding process, while its repercussion
on the quality and encoding efficiency is not significant. These claims are buttressed by
the results of performed experiments given in Table 1. Notice that these results have been
generated by encoding QCIF resolution video sequences, since the encoding complexity
increases dramatically for higher resolutions. Since video coding quality is comparable for
both search-functions (results not shown due to space constraints), it is highly recommended
to select the fast-searching algorithm in practical H.264/SVC encoders due to the derived
significant reduction in computational load.
A deeper experimental analysis of the searching algorithm is illustrated in Figure 17, where
the influence of the search-range parameter is studied for several CIF resolution video
sequences. Experimental results verify that the higher the search-range is, the longer the
coding time is. No significant impact has been detected in any other metric.

Video sequence Motion-search algorithm Search-range Decoding time (%)
CITY Fast Exhaustive 100%
CITY Exhaustive Exhaustive 6133,20%

CREW Fast Exhaustive 100%
CREW Exhaustive Exhaustive 3153,25%

HARBOUR Fast Exhaustive 100%
HARBOUR Exhaustive Exhaustive 6482,42%

Table 1. Impact of the selected motion-search algorithm in H.264/SVC.

Closely related to the motion compensation, enabling additional 8x8 motion-compensated
blocks can notoriously increase the complexity of the encoder. As the experimental results in
Figure 18 certify, enabling additional sub-macroblock partitions of 8x8 requires more resources
when encoding a given video sequence, whereas it surprisingly has little benefits in the other
considered metrics (file size and quality).
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Consequently, regarding motion estimation mechanisms in H.264/SVC it is highly
recommended to use fast-searching algorithms, small search-ranges, and no additional 8x8
block compensation if the target application requires minimizing the encoder complexity.

3.4.2 Deblocking filter
Within this subsection, the benefits of applying distinct deblocking filter approaches in
H.264/SVC video coding have been analyzed. Deblocking filters are exploited in block-coding
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Fig. 18. Impact of enabling additional 8x8 sub-macroblock partitions.

techniques by applying them to blocks within frames, which lead to an improved prediction as
they smooth potentially sharp edges between macroblocks. The H.264/SVC deblocking filter
operates within the motion-compensated prediction loop, embodying an enhanced quality for
the end user (Schwarz et al., 2007).
In these experiments the in-loop deblocking filter and the inter-layer deblocking filter
included in the H.264/SVC standard are evaluated. To this end, the following cases have
been considered in the JSVM reference software: 1) no filter is applied (LF0); 2) filter is
applied to all block edges (LF1); 3) two stage filtering where slice boundaries are filtered in
the second stage (LF2); and, finally, 4) two-stage deblocking filtering is applied to the luma
component (its frame boundaries are filtered in a second stage), but chroma is not filtered
(LF3). The assessment of the benefits and drawbacks of each of the aforementioned filtering
cases has been done, on top of the metrics used heretofore (i.e. encoding/decoding time,
encoding efficiency and PSNR), by resorting to the MSU Blocking Metric (MSU Video Quality
Measurement Tool, 2010). The MSU Blocking Metric measures the frame-to-frame blocking
effect in a given video sequence, by detecting object edges with heuristic methods. A higher
value of the MSU Blocking Metric corresponds to a better video quality.
The experiments for the analysis of the in-loop deblocking filter have been performed over
different video sequences and configurations combining temporal, spatial and SNR scalable
layers. Table 2 shows experiment results for one single spatial layer (QCIF resolution) and
two quality layers (a similar behavior has been obtained for other combinations). From these
extensive tests an interesting conclusion can be extracted: the performance of the in-loop
deblocking filter heavily depends on the specific video sequence and the combination of
scalable layers. On one hand, the quality obtained when applying each of the tested filtering
techniques diverges substantially and hinges, not only on the dynamics and features of the
original video sequence, but also on the specific combination of scalabilities in the H.264/SVC
encoding process. On the other hand, the coding and decoding complexity of these filters
shows a clear dependency on each input video sequence.

Video Sequence LF0 LF1 LF2 LF3
CITY 1222159 1175891 1175891 1174807

CREW 1051660 1356914 1356914 1362196
HARBOUR 1208833 1252369 1252369 1251459

Table 2. Impact of selected in-loop deblocking filtering techniques in the performance of
H.264/SVC (in terms of average MSU Blocking Metric).
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Similarly, the inter-layer deblocking filter has been evaluated over the above mentioned
scenarios. The same analysis and procedure has been done and, again, the obtained results
have not been conclusive. In this case, the benefit of applying different techniques is not
significant and, for the same H.264/SVC encoding configuration, results are tightly coupled
to the characteristics of the processed video sequence.
Therefore, the best filtering technique can not be determined beforehand and, for each
multimedia application or scenario, a deep analysis needs to be done in order to select the
appropriate deblocking filtering technique.

3.4.3 Pre-processing filter
To conclude with this practical section, this set of experiments evaluate the practical impact
of including an additional pre-processing filter supported by the H.264/SVC standard: the
so-called Motion-Compensated Temporal Filtering. This filter has been suggested as an
additional solution to improve data similarity between consecutive layers by mainly helping
temporal decomposition. Basically, the MCTF scheme consists of a 2-tap filter based on Haar
or 5/3 wavelet transforms (Schafer et al., 2005), which must be applied over the original input
video, i.e. before any encoder processing.
Within the JSVM reference platform, this filter is an independent software module (labeled
as “MCTFPreProcessorStatic”). It receives as input a raw video sequence (in YUV format),
generating a filtered output file. In order to integrate this MCTF module into the encoding
process, the original video sequences are first filtered and then fed to the JSVM encoder, which
is preconfigured to work with the new filtered files. For this experiment, the output bit rate
has been adjusted to the same value in order to simplify the comparison.
Results in Figures 19(a) and 19(b) present the obtained video quality with and without MCTF
pre-processing filter. It is doubtlessly proven that the filter produces a small improvement in
video quality. In order to further quantify the impact of the inclusion of the MCTF filter in the
encoding procedure, the filtering time – the delay caused by the "MCTFPreProcessorStatic" – is
added to the JSVM encoding time. The comparative results are presented in Figures 19(c) and
19(d) for CIF and 4CIF resolutions, respectively. It is clearly observed therein how enabling
MCTF significantly deteriorates the global performance, increasing the total execution time in
more than 300% in all cases.

4. Recommended configurations for practical integration

The experimental results shown in the previous section highlight the practical influence of
several H.264/SVC configuration parameters in the performance of the codec. Therefore,
the correct setting of these parameters is critical in order to customize practical scalable
solutions. Due to the inherent complexity of the H.264/SVC specification, a plethora of
variables must be taken into account so as to tailor each configuration to the particular
demands and requisites (objective or subjective) of the scalable application at hand. Even
if each particular scenario might present specific requirements, the tradeoff between two
opposing metrics must be met in most practical applications: to maximize the video quality
(disregarding any computational complexity and processing requirements of the codec), or to
minimize the encoding complexity with the minimum associated reduction in quality.
On one hand, and based on the results of previous sections, for those applications where
quality is more relevant than computational performance (e.g. video storing), the following
recommendations have been concluded: an extensive use of B frames (in order to reduce the
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techniques by applying them to blocks within frames, which lead to an improved prediction as
they smooth potentially sharp edges between macroblocks. The H.264/SVC deblocking filter
operates within the motion-compensated prediction loop, embodying an enhanced quality for
the end user (Schwarz et al., 2007).
In these experiments the in-loop deblocking filter and the inter-layer deblocking filter
included in the H.264/SVC standard are evaluated. To this end, the following cases have
been considered in the JSVM reference software: 1) no filter is applied (LF0); 2) filter is
applied to all block edges (LF1); 3) two stage filtering where slice boundaries are filtered in
the second stage (LF2); and, finally, 4) two-stage deblocking filtering is applied to the luma
component (its frame boundaries are filtered in a second stage), but chroma is not filtered
(LF3). The assessment of the benefits and drawbacks of each of the aforementioned filtering
cases has been done, on top of the metrics used heretofore (i.e. encoding/decoding time,
encoding efficiency and PSNR), by resorting to the MSU Blocking Metric (MSU Video Quality
Measurement Tool, 2010). The MSU Blocking Metric measures the frame-to-frame blocking
effect in a given video sequence, by detecting object edges with heuristic methods. A higher
value of the MSU Blocking Metric corresponds to a better video quality.
The experiments for the analysis of the in-loop deblocking filter have been performed over
different video sequences and configurations combining temporal, spatial and SNR scalable
layers. Table 2 shows experiment results for one single spatial layer (QCIF resolution) and
two quality layers (a similar behavior has been obtained for other combinations). From these
extensive tests an interesting conclusion can be extracted: the performance of the in-loop
deblocking filter heavily depends on the specific video sequence and the combination of
scalable layers. On one hand, the quality obtained when applying each of the tested filtering
techniques diverges substantially and hinges, not only on the dynamics and features of the
original video sequence, but also on the specific combination of scalabilities in the H.264/SVC
encoding process. On the other hand, the coding and decoding complexity of these filters
shows a clear dependency on each input video sequence.

Video Sequence LF0 LF1 LF2 LF3
CITY 1222159 1175891 1175891 1174807

CREW 1051660 1356914 1356914 1362196
HARBOUR 1208833 1252369 1252369 1251459

Table 2. Impact of selected in-loop deblocking filtering techniques in the performance of
H.264/SVC (in terms of average MSU Blocking Metric).
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Similarly, the inter-layer deblocking filter has been evaluated over the above mentioned
scenarios. The same analysis and procedure has been done and, again, the obtained results
have not been conclusive. In this case, the benefit of applying different techniques is not
significant and, for the same H.264/SVC encoding configuration, results are tightly coupled
to the characteristics of the processed video sequence.
Therefore, the best filtering technique can not be determined beforehand and, for each
multimedia application or scenario, a deep analysis needs to be done in order to select the
appropriate deblocking filtering technique.

3.4.3 Pre-processing filter
To conclude with this practical section, this set of experiments evaluate the practical impact
of including an additional pre-processing filter supported by the H.264/SVC standard: the
so-called Motion-Compensated Temporal Filtering. This filter has been suggested as an
additional solution to improve data similarity between consecutive layers by mainly helping
temporal decomposition. Basically, the MCTF scheme consists of a 2-tap filter based on Haar
or 5/3 wavelet transforms (Schafer et al., 2005), which must be applied over the original input
video, i.e. before any encoder processing.
Within the JSVM reference platform, this filter is an independent software module (labeled
as “MCTFPreProcessorStatic”). It receives as input a raw video sequence (in YUV format),
generating a filtered output file. In order to integrate this MCTF module into the encoding
process, the original video sequences are first filtered and then fed to the JSVM encoder, which
is preconfigured to work with the new filtered files. For this experiment, the output bit rate
has been adjusted to the same value in order to simplify the comparison.
Results in Figures 19(a) and 19(b) present the obtained video quality with and without MCTF
pre-processing filter. It is doubtlessly proven that the filter produces a small improvement in
video quality. In order to further quantify the impact of the inclusion of the MCTF filter in the
encoding procedure, the filtering time – the delay caused by the "MCTFPreProcessorStatic" – is
added to the JSVM encoding time. The comparative results are presented in Figures 19(c) and
19(d) for CIF and 4CIF resolutions, respectively. It is clearly observed therein how enabling
MCTF significantly deteriorates the global performance, increasing the total execution time in
more than 300% in all cases.

4. Recommended configurations for practical integration

The experimental results shown in the previous section highlight the practical influence of
several H.264/SVC configuration parameters in the performance of the codec. Therefore,
the correct setting of these parameters is critical in order to customize practical scalable
solutions. Due to the inherent complexity of the H.264/SVC specification, a plethora of
variables must be taken into account so as to tailor each configuration to the particular
demands and requisites (objective or subjective) of the scalable application at hand. Even
if each particular scenario might present specific requirements, the tradeoff between two
opposing metrics must be met in most practical applications: to maximize the video quality
(disregarding any computational complexity and processing requirements of the codec), or to
minimize the encoding complexity with the minimum associated reduction in quality.
On one hand, and based on the results of previous sections, for those applications where
quality is more relevant than computational performance (e.g. video storing), the following
recommendations have been concluded: an extensive use of B frames (in order to reduce the
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Fig. 19. Impact of enabling MCTF pre-processing filter.

bit rate increment due to the quality requirements), the selection of a high search-area size
for inter-layer prediction, the adoption of the MGS mode for the SNR scalability and, finally,
setting a sufficiently small quantization parameter. On the other hand, for high-performance
scalable applications (e.g. IPTV-based solutions), other configuration schemes are more
suitable: small GOP values, I and P frame-based GOP structures, high QP values, the use
of fast-searching algorithms, disable additional 8x8 motion-compensated blocks and, when
possible, the avoidance of non-dyadic spatial scalability ratios. Moreover, and as a general
rule for both cases, the inclusion of the MCTF pre-processing filter is deemed unnecessary,
since no quality or performance improvement has been obtained in our experiments. The
responsibility for selecting advanced techniques as deblocking filters is left on the application,
as their performance strongly depends on the specifically processed video sequence.
In order to illustrate this advice, two experimental scenarios have been defined: a high-quality
and a high-performance demanding scalable application. In both experiments, a conventional
reference configuration is compared to the proposed advanced approaches. This hereafter
coined basic-reference configuration consists of the following configured parameters: GOP
size equal to 8 in a "IBBP" frame pattern, ILP with fast-search mode, search-area equal to 48,
CGS mode for SNR scalability, QPU=32 for the upper quality layer, and QPL=38 the lowest
quality layer.

4.1 High-quality configuration
For this quality-demanding scenario, a hybrid scalable configuration with temporal (4 layers)
and SNR (2 layers) scalability has been designed. This high-quality configuration is designed
so as to provide a quality improvement with respect to the basic-reference configuration.
The key parameters modified for the proposed high-quality configuration are the use of
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only B frames, an expanded search-area of 92 and MGS mode for providing SNR scalability.
Specifically, the QP values determined for this high-quality configuration are QPU=25 and
QPL=30. Please recall that these parameters are just particular examples of the general
guidelines provided in this chapter, and might need further tweaking in other real scenarios.
The practical results obtained from the evaluation of the two suggested configurations
(basic-reference and high-quality) for the three video sequences at CIF resolution are shown
in Figure 20. Note that, for the sake of fairness in the comparison, the output bit rate
of all configurations has been adjusted to the same value (1 Mbps) in order to evaluate
only variations in quality and performance. First, it is important to observe the quality
improvement obtained in Figure 20(a) when using the suggested high-quality configuration,
with gains up to 2.5 dB in some cases. However, a considerable impact in the global
computational performance is obtained for this last configuration (Figure 20(b)): the encoding
time increases more than five times in some cases.
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Fig. 20. Comparative between basic-reference and high-quality configurations.

4.2 High-performance configuration
For real-time performance-demanding applications such as widespread video conference
systems or video-surveillance systems, the time spent in encoding a video sequence is critical.
In such cases, the computational performance of the codec is considered decisive as long
as the quality of the video stream does not degrade dramatically. For these applications a
high-performance configuration – aimed at achieving fast execution – is proposed with the
following parameters: GOP size equal to 4 with "IPPP" structure (one I and three P frames
per GOP without including B frames), fast search-mode ILP with search-area reduced to 16,
and quantization steps adjusted to QPU=36 and QPL=38. Here again, these specific values are
a consequence of the general design guidelines provided throughout this chapter.
When comparing both the basic-reference and the high-performance configurations in terms
of quality (Figure 21(a)), observe that the degradation in PSNR varies depending on the
encoded video sequence, i.e. the PSNR for the CREW video sequence is almost equal with
both configurations, whereas the PSNR for CITY and HARBOUR video sequences decreases
approximately down to 1 and 2 dB respectively. However, this drawback finds its counterpart
at the noticeable computational performance improvement shown in Figure 21(b), where it is
concluded that the encoding time for the high-performance configuration is at least two times
faster than the basic-reference solution for all the evaluated video sequences.
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bit rate increment due to the quality requirements), the selection of a high search-area size
for inter-layer prediction, the adoption of the MGS mode for the SNR scalability and, finally,
setting a sufficiently small quantization parameter. On the other hand, for high-performance
scalable applications (e.g. IPTV-based solutions), other configuration schemes are more
suitable: small GOP values, I and P frame-based GOP structures, high QP values, the use
of fast-searching algorithms, disable additional 8x8 motion-compensated blocks and, when
possible, the avoidance of non-dyadic spatial scalability ratios. Moreover, and as a general
rule for both cases, the inclusion of the MCTF pre-processing filter is deemed unnecessary,
since no quality or performance improvement has been obtained in our experiments. The
responsibility for selecting advanced techniques as deblocking filters is left on the application,
as their performance strongly depends on the specifically processed video sequence.
In order to illustrate this advice, two experimental scenarios have been defined: a high-quality
and a high-performance demanding scalable application. In both experiments, a conventional
reference configuration is compared to the proposed advanced approaches. This hereafter
coined basic-reference configuration consists of the following configured parameters: GOP
size equal to 8 in a "IBBP" frame pattern, ILP with fast-search mode, search-area equal to 48,
CGS mode for SNR scalability, QPU=32 for the upper quality layer, and QPL=38 the lowest
quality layer.

4.1 High-quality configuration
For this quality-demanding scenario, a hybrid scalable configuration with temporal (4 layers)
and SNR (2 layers) scalability has been designed. This high-quality configuration is designed
so as to provide a quality improvement with respect to the basic-reference configuration.
The key parameters modified for the proposed high-quality configuration are the use of
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only B frames, an expanded search-area of 92 and MGS mode for providing SNR scalability.
Specifically, the QP values determined for this high-quality configuration are QPU=25 and
QPL=30. Please recall that these parameters are just particular examples of the general
guidelines provided in this chapter, and might need further tweaking in other real scenarios.
The practical results obtained from the evaluation of the two suggested configurations
(basic-reference and high-quality) for the three video sequences at CIF resolution are shown
in Figure 20. Note that, for the sake of fairness in the comparison, the output bit rate
of all configurations has been adjusted to the same value (1 Mbps) in order to evaluate
only variations in quality and performance. First, it is important to observe the quality
improvement obtained in Figure 20(a) when using the suggested high-quality configuration,
with gains up to 2.5 dB in some cases. However, a considerable impact in the global
computational performance is obtained for this last configuration (Figure 20(b)): the encoding
time increases more than five times in some cases.
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4.2 High-performance configuration
For real-time performance-demanding applications such as widespread video conference
systems or video-surveillance systems, the time spent in encoding a video sequence is critical.
In such cases, the computational performance of the codec is considered decisive as long
as the quality of the video stream does not degrade dramatically. For these applications a
high-performance configuration – aimed at achieving fast execution – is proposed with the
following parameters: GOP size equal to 4 with "IPPP" structure (one I and three P frames
per GOP without including B frames), fast search-mode ILP with search-area reduced to 16,
and quantization steps adjusted to QPU=36 and QPL=38. Here again, these specific values are
a consequence of the general design guidelines provided throughout this chapter.
When comparing both the basic-reference and the high-performance configurations in terms
of quality (Figure 21(a)), observe that the degradation in PSNR varies depending on the
encoded video sequence, i.e. the PSNR for the CREW video sequence is almost equal with
both configurations, whereas the PSNR for CITY and HARBOUR video sequences decreases
approximately down to 1 and 2 dB respectively. However, this drawback finds its counterpart
at the noticeable computational performance improvement shown in Figure 21(b), where it is
concluded that the encoding time for the high-performance configuration is at least two times
faster than the basic-reference solution for all the evaluated video sequences.
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Fig. 21. Comparative between the basic-reference and the high-performance configurations.

5. Conclusion

The goal of this tutorial has been to provide an overview of the advances of the H.264/SVC
video standard, focusing on both its features and on an experimental analysis of its
configuration parameters. H.264/SVC’s superiority over other non-scalable approaches is
mainly due to its three different scalabilities (temporal, spatial and SNR), which allow for
an improved encoding flexibility and efficiency. By combining different scalabilities into a
single bitstream it is possible to achieve, in comparison to previous scalable solutions, similar
compression ratios with much lower encoding complexity.
After a brief introduction to this scalable standard, the encoding architecture of H.264/SVC
and its most important characteristics have been presented in Section 2. The goal of this
section has been to discern the most relevant parameters of the H.264/SVC codification, so
as to pave the way for later evaluation of their empirical impact on video quality, coding
efficiency and performance while considering, at the same time, its scalability levels.
Next, Section 3 has elaborated on the practical performance of H.264/SVC. Several among the
numerous parameters to be configured in this standard are highly influential to the overall
coding performance. The imprint of the GOP structure has been proven to be crucial in
all the considered metrics, not only because it determines the temporal scalability features
of the video stream, but also due to its GOP size, the frame type contained therein and
their arrangement. Regarding spatial scalability, H.264/SVC’s rescaling algorithms have been
examined for both the dyadic and the non-dyadic resolution ratios. Finally, as a result of
the experiments done on the quantization parameter and the analysis of the supported SNR
scalability modes (i.e. CGS and MGS), interesting concluding remarks have been drawn
regarding the H.264/SVC’s SNR scalability.
Leveraging the insights of all the performed experiments, Section 4 collects the most important
conclusions for practical applications of H.264/SVC video coding. From the experiments
contained in this chapter, a tradeoff between video quality and coding complexity has been
identified. Therefore, for each scenario, the configuration of the H.264/SVC video coding
needs to be adjusted, following the guidelines provided in this last section.
All in all, this chapter intends to be an useful wherewithal to help the reader understanding
the H.264/SVC standard, as well as a practical design guide for researchers and practitioners
for future scalable video applications.
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1. Introduction 
The evolution of digital video industry is being driven by continuous improvements in 
processing performance, availability of higher-capacity storage and transmission 
mechanisms. Getting digital video from its source (a camera or a stored clip) to its 
destination (a display) involves a chain of components. Key to this chain are the processes of 
compression and decompression, in which bandwidth-intensive raw digital video is 
reduced to a manageable size for transmission or storage, then reconstructed for display 
(Richardson, 2003). The early successes in the digital video industry were underpinned by 
international standard ISO/IEC 13818 (ISO/IEC, 1995), popularly known as MPEG-2. 
Anticipation of a need for better compression tools has led to the development of the new 
generation H.264/AVC video standard. The H.264/AVC is aiming to do what previous 
standards did in a more efficient, robust and practical way, supporting widespread types of 
conversational (bidirectional and real-time video telephony, videoconferencing) and no 
conversational (broadcast, storage and streaming) applications for a wide range of bitrates 
over wireless and wired transmission networks (Joch et al., 2002). 
The H.264/AVC has been designed with the goal of enabling significantly improved 
compression performance relative to all existing video coding standards (Joch et al., 2002). 
Such a standard uses advanced compression techniques that in turn, require high 
computational power (Alvarez et al., 2005). For a H.264 encoder using all the new coding 
features, more than 50% average bit saving with 1–2 dB PSNR (Peak Signal-to-Noise Ratio) 
video quality gain are achieved compared to previous video encoding standards (Saponara 
et al., 2004). However, this comes with a complexity increase of a factor 2 for the decoder 
and larger than one order of magnitude for the encoder (Saponara et al., 2004). 
Implementing a H.264/AVC video encoder represents a big challenge for resource-
constrained multimedia systems such as wireless devices or high-volume consumer 
electronics since this requires very high computational power to achieve real-time encoding. 
While the basic framework is similar to the motion compensated hybrid scheme of previous 
video coding standards, additional tools improve the compression efficiency at the expense 
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mechanisms. Getting digital video from its source (a camera or a stored clip) to its 
destination (a display) involves a chain of components. Key to this chain are the processes of 
compression and decompression, in which bandwidth-intensive raw digital video is 
reduced to a manageable size for transmission or storage, then reconstructed for display 
(Richardson, 2003). The early successes in the digital video industry were underpinned by 
international standard ISO/IEC 13818 (ISO/IEC, 1995), popularly known as MPEG-2. 
Anticipation of a need for better compression tools has led to the development of the new 
generation H.264/AVC video standard. The H.264/AVC is aiming to do what previous 
standards did in a more efficient, robust and practical way, supporting widespread types of 
conversational (bidirectional and real-time video telephony, videoconferencing) and no 
conversational (broadcast, storage and streaming) applications for a wide range of bitrates 
over wireless and wired transmission networks (Joch et al., 2002). 
The H.264/AVC has been designed with the goal of enabling significantly improved 
compression performance relative to all existing video coding standards (Joch et al., 2002). 
Such a standard uses advanced compression techniques that in turn, require high 
computational power (Alvarez et al., 2005). For a H.264 encoder using all the new coding 
features, more than 50% average bit saving with 1–2 dB PSNR (Peak Signal-to-Noise Ratio) 
video quality gain are achieved compared to previous video encoding standards (Saponara 
et al., 2004). However, this comes with a complexity increase of a factor 2 for the decoder 
and larger than one order of magnitude for the encoder (Saponara et al., 2004). 
Implementing a H.264/AVC video encoder represents a big challenge for resource-
constrained multimedia systems such as wireless devices or high-volume consumer 
electronics since this requires very high computational power to achieve real-time encoding. 
While the basic framework is similar to the motion compensated hybrid scheme of previous 
video coding standards, additional tools improve the compression efficiency at the expense 
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of an increased implementation cost. For this, the exploration of the compression efficiency 
versus implementation cost is needed to provide early feedbacks on the standard 
bottlenecks and select the optimal use of its coding features.  
The objective of this chapter is to perform a high-level performance analysis of a 
H.264/AVC video encoder to evaluate its compression efficiency versus its implementation 
complexity and to highlight important properties of the H.264/AVC framework allowing 
for complexity reduction at the high system level. The complexity analysis focus mainly on 
computational processing time measures with instruction-level (Kuhn et al., 1998) profiling 
on a general purpose CISC Pentium processor. Processing time metrics are completed by 
memory cost measures as this have a dominant impact on the cost-effective realization of 
multimedia systems for both hardware and software based platforms (Catthoor et al., 2002), 
(Chimienti et al., 2002). 
Actually, when combining the new coding features, the implementation complexity 
accumulates, while the global compression efficiency becomes saturated (Saponara et al., 
2004). To find an optimal balance between the coding efficiency and the implementation 
cost, a proper use of the AVC tools is needed to maintain the same coding performance as 
the most complex coding parameters configuration (all tools on) while considerably 
reducing complexity. In this chapter, we will cover major H.264 encoding tools. Each new 
tool is typically tested independently comparing the performance and complexity of a 
complex configuration to the same configuration minus the tool under evaluation. The 
coding performance is reported in terms of PSNR and bit rate, while the complexity is 
estimated as the total computational execution time of the application and the maximum 
memory usage allocated by the source code. Absolute complexity values of the obtained 
cost-efficient configuration of the H.264 encoder shall confirm the big challenge of its cost-
effective implementation using of a well-defined multiprocessor approach to share the 
encoding time between several embedded processors. 
The chapter is organized as follows. The next section provides an overview of the new H.264 
technical features. Section 3 defines the adopted experimental environment. The coding 
performance and complexity of the H.264 major encoding tools are evaluated in section 4. 
Section 5 shall give the complexity analysis, memory and task level profiling of an obtained 
cost-efficient configuration. Section 6 discusses some aspects related to previous 
parallelization studies for an efficient parallel implementation of this standard on a given 
multiprocessor platform. 

2. Overview of the H.264/AVC video encoder 
An important concept in the design of H.264/AVC is the separation of the standard into two 
distinct layers: a video coding layer (VCL), which is responsible for generating an efficient 
representation of the video data; and a network adaptation layer (NAL) (Richardson, 2003) 
which is responsible for packaging the coded data in an appropriate manner based on the 
characteristics of the network upon which the data will be used. This chapter is concerned 
with the VCL layer.  

2.1 The coding layer block diagram 
The block diagram of the video coding layer of a H.264/AVC encoder is presented in 
figure1. This figure includes a forward path (left to right) and a reconstruction path (right to 
left) (Richardson, 2003). 

 
Complexity/Performance Analysis of a H.264/AVC Video Encoder   

 

29 

 
Fig. 1. H.264 /AVC video encoder block diagram 

An input frame or field Fn is processed in units of a macro-block (MB). Each MB is encoded 
in intra or inter mode and, for each block in the MB, a prediction PRED (marked ‘P’ in 
figure1) is formed based on reconstructed picture samples. In Intra mode, PRED is formed 
from spatially neighboring samples in the current slice that have previously been encoded, 
decoded and reconstructed (uF’n in the figure1 note that unfiltered samples are used to 
form PRED). The encoding process chooses which and how neighboring samples are used 
for Intra prediction, which is simultaneously conducted at the encoder and decoder using 
the transmitted Intra prediction side information (Malvar et al., 2003).  
In Inter mode, PRED is formed by motion-compensated prediction from one or multiple 
reference picture(s) selected from the set of reference pictures. In the figure1, the reference 
picture is shown as the previous encoded picture F’n-1 but the prediction reference for each 
MB partition (in inter mode) may be chosen from a selection of past or future pictures (in 
display order) that have already been encoded, reconstructed and filtered. The prediction 
PRED is subtracted from the current block to produce a residual difference block Dn that is 
transformed (using a block transform) and quantized to give X, a set of quantized transform 
coefficients which are reordered and entropy encoded. The entropy-encoded coefficients, 
together with side information required to decode each block within the MB (prediction 
modes, quantization parameter, motion vector information, etc.) form the compressed bit 
stream which is passed to a Network Abstraction Layer (NAL) for transmission or storage. 
As well as encoding and transmitting each block in a MB, the encoder decodes (reconstructs) 
it to provide a reference for further predictions. The coefficients X are scaled (Q-1) and 
inverse transformed (T-1) to produce a difference block D’n. The prediction block PRED is 
added to D’n to create a reconstructed block uF’n a decoded version of the original block (u 
indicates that it is unfiltered). A filter is applied to reduce the effects of blocking distortion 
and the reconstructed reference picture is created from a series of blocks F’n. 

2.2 Main innovations in comparison to previous standards 
The basic functional elements of H.264 /AVC presented in figure1 represent a similar set of 
the generic DPCM/DCT (Richardson, 2003) coding and decoding functions of earlier 
standards. The H.264 provides higher coding efficiency through added features and 
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functionality that in turn entails additional complexity. Here we present a summary of the 
most relevant key features for the performance of this standard.  
First, the motion compensation model supports the use of multiple reference frames for 
prediction with a weighted combination of the prediction signals. Also, it introduces 
variable block-size motion compensation with small block sizes that range from 16x16 up to 
7 modes including 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4 pixel blocks. Motion vectors can be 
specified with higher spatial accuracy with quarter-pixel and eighth-pixel instead of half-
pixel accuracy. In order to estimate and compensate fractional-pel displacements, the image 
signal of the reference image has to be generated on sub-pel positions by interpolation. Pixel 
interpolation is based on a finite impulse response (FIR) filtering operation: 6 taps for the 
quarter resolution and 8 taps for the eighth one (Schäfer et al., 2003). A rate-distortion (RD) 
Lagrangian technique optimizes both motion estimation and coding mode decisions. 
Moreover, an adaptive deblocking filter is added to reduce visual artifacts produced by the 
block-based structure of the coding process (Ostermann et al., 2004). 
For the intra-frame prediction, in contrast to previous video coding standards where 
prediction is conducted in the transform domain, prediction in H.264/AVC is always 
conducted in the spatial domain by referring to neighboring samples of already coded 
blocks (Schäfer et al., 2003). Two classes of intra coding modes are supported. When using 
the INTRA-4x4 class, each 4x4 block of the luma component utilizes one of nine prediction 
modes. Beside DC prediction, the standard supports eight directional prediction modes 
involving linear combinations of the samples. For the INTRA 16x16 classes, four prediction 
modes are supported (ISO/IEC, 2003). 
The concept of Bipredictive (B) slices is generalized in H.264/AVC. B slices use a similar 
macroblock partitioning as for the Predicted (P) slices. This includes the Intra 4x4, the intra 
16x16 all the inter 16 x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4 modes. B slices are coded in a 
manner in which some macroblocks may use a weighted average of two distinct motion 
compensated prediction values, for building the prediction signal. Generally, B slices utilize 
two distinct reference picture buffers referred as the first and the second reference picture 
buffer, respectively. Four different types of inter prediction are supported: list0, list1, bi-
predictive, and direct prediction. List 0 or List 1 prediction indicates that the prediction 
signal is formed by motion compensation from a picture of the first respectively the second 
reference buffer. In the bi-predictive mode, the prediction signal is formed by a weighted 
average of a motion-compensated list 0 and list 1 prediction signal. The direct prediction 
mode is inferred from previously transmitted syntax elements and can be either list 0 or list1 
prediction or bi-predictive (Schäfer et al., 2003). 
For the (T) transform, H.264/AVC employs a purely integer spatial approximation discrete 
cosine transform (DCT). This transform basically works on 4x4 shapes, as opposed to the 
conventional floating-point 8x8 DCT specified with rounding error tolerances that is used in 
earlier standards. The small size helps to reduce blocking and ringing artifacts, while the 
precise integer specification eliminates any mismatch between the encoder and decoder in 
the inverse transform (Ostermann et al., 2004). For the quantization (Q) of transform 
coefficients, H.264/AVC uses scalar quantization. The quantization step size is chosen by a 
so called quantization parameter QP which supports 52 different quantization parameters. 
One of 52 quantizers is selected for each macroblock by the Quantization Parameter (QP). 
The quantizers are arranged so that there is an increase of approximately 12.5% in the 
quantization step size when incrementing the QP by one (Malvar et al., 2003). 
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Finally, H.264/AVC specifies two alternative methods of entropy coding: a low-complexity 
technique based on the usage of context-adaptively switched sets of variable length codes, 
so-called CAVLC, and the computationally more demanding algorithm of context-based 
adaptive binary arithmetic coding (CABAC). Both methods represent major improvements 
in terms of coding efficiency compared to the techniques of statistical coding traditionally 
used in prior video coding standards (Ostermann et al., 2004). 

3. Experimental environment 
The complexity of the H.264 video encoder application depends on the algorithm, the 
encoding option tools, the input sequences and the architecture in which it is implemented. 
For making a complete analysis of the effect of the encoding option parameters on 
performance and complexity of a H.264 video encoding application, the JM encoder 
software reference version 10.2 is used with main profile @ level 4 (JM 10.2, 2005). 
Measurements have been done on a General-Purpose Processor (GPP) platform based on an 
INTEL Centrino 1.6 GHZ running a Linux operating system. 
The encoding option parameters are representative of the standard encoding new tools. For 
this analysis, each coding tool is tested independently comparing the performance and 
complexity of a complex configuration to the same configuration minus the tool under 
evaluation. For the starting complex configuration, a full search algorithm for motion 
estimation is fixed, P (predicted) and B (Bi predicted) frame weighted prediction is used, 
motion vectors fractional pixel accuracy is applied with variable block sizes supported  
(7 motion compensation block types) and multi-frame references fixed to 5. A loop filter and 
Hadamard transform are used. The Rate-Distortion (R-D) optimization technique with an 
explicit Lagrangian parameter selection is activated. The input search range is fixed to 32, 
and the quantization parameter (QP) values is fixed to 28 for I and P slices, 30 for B slices 
and 29 for B reference slices. For B frame generalization, only one reference is used for list0 
and list1. Motion estimation based on the spatial direct and bi-predictive modes is thus 
activated. The CABAC entropy method is used. 
For video streaming and video conferencing applications, we used popular test video 
sequences in the Common Intermediate Format (CIF, 352 × 288 picture elements) and in the 
Quarter Common Intermediate Format (QCIF, 176×144 picture elements). 7 test sequences in 
a 4:2:0 YUV format with different grades of motion characteristics and frame rate (trace.eas, 
n.d.) are used as given in table1. “Bridge far”, “container” and “Mother & Daughter” offer a 
wide variety of video QCIF content occurring in low-bit-rate applications of tens of Kbps. 
“Foreman” is a good medium complexity QCIF test sequence for medium bit rate 
applications of hundreds of Kbps. The CIF version of “Paris” and “Bridge close” are useful 
test cases for middle-rate applications. Finally, “Mobile” is a high-complexity CIF sequence 
with lot of movements including rotation and is a good test for high-rate applications of 
thousands of Kbps. 

4. H.264/AVC performance and complexity parametric analysis 
In this section, the coding performance and complexity of the H.264 major encoding tools 
are evaluated. The coding performance is reported in terms of PSNR and bit rate output, 
while the complexity metrics focus mainly on the amount of computing time required to 
encode a given test sequence on the used GPP platform. As motion estimation is the most 
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functionality that in turn entails additional complexity. Here we present a summary of the 
most relevant key features for the performance of this standard.  
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important computing part of the encoder, the computing complexity of this module is 
particularly noted for all the experimented simulations. Processing time metrics are 
completed by memory cost measures as this have a dominant impact on the cost-effective 
realization for both hardware and software based platforms.  
 

Sequence Format (Pixel) Frame Rate (Hz) Frames Coded 
Bridge close CIF (352x288) 15 2000 

Mobile CIF 25 300 
Paris CIF 15 1065 

Bridge far QCIF (176x144) 15 2101 
Container QCIF 25 300 
Foreman QCIF 25 400 

Mother & Daughter QCIF 25 961 

Table 1. Used test video sequences 

4.1 Coding structures influence evaluation 
The influence of the different H.264 encoding structures, including the classical coding types 
and the advanced pyramid coding structures is analyzed. In this section, only the first 150 
frames of all the test sequences are used. This shall provide the best optimal coding order 
for the best encoding performance. The used structures are described as follows: 
 An I-P-P-P-P… coding and display order using P only coding, 
 an I-B-P-B-P… coding order with one non reference B slice, 
 an I-B-B-P-B-B-P… coding order with 2 non reference B slices, 
 an I0-P4-RB2-B1-B3-P8… coding order with 3 level pyramid using 3 B pictures (3L3B), 
 an I0-P6-RB2-RB4-B1-B3-B5-P12… coding order with 3 level pyramid using 5 B pictures 

(3L5B), 
 an I0-P8-RB2-RB4-RB6-B1-B3-B5-B7-P16.. coding order with 3 level pyramid using 7 B 

pictures (3L7B), 
 an I0-P8-RB4-RB2-RB6-B1-B3-B5-B7-P16.. coding order with 4 level pyramid using 7 B 

pictures (4L7B), 
 and an I0-P12-RB6-RB3-B1-B2-B4-B5-RB9-B7-B8-B10-B11-P24… coding order with 4 

level pyramid using 11 B pictures (4L11B). 
Bit rate output performance results are presented in figure 2 for four selected sequences. 
This figure indicates clearly that the bit rate output is significantly improved using reference 
B slices (up to 35% bit rate reduction with one non reference B slice and 15% more bit rate 
reduction with two non reference B slices for the CIF version of “Bridge-close”). The bit rate 
output and the PSNR video quality are better using Pyramid structures compared to the 
classical coding structures (between 5 and 10% bit rate reduction with a light PSNR 
improvement with 3L3B, and much better with 3L5B and 3L7B). For this, making the use of 
these pyramid structures is interesting. According to the obtained results, the best structure 
in term of coding performance is 3Level-7B pyramid. However, compared to 3Level-5B 
pyramid structure, the 3Level-7B requires more computational time for practical the same 
performance. Thus, to achieve the best performance with a minimum complexity, the 
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3Level-5B pyramid is preferred. The 4Level-7B pyramid and the 4Level-11B pyramid don’t 
appear to provide any additional performance compared to the 3Level-5B pyramid as a 
small performance loss in bit rate is observed.  
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Fig. 2. Bit rate for various coding structures and video format 

Given these obtained results, it is clear that the 3Level-5B hierarchical coding order offers 
the best performance/complexity values. Given this, the 3Level-5B is the adopted structure 
for the starting complex configuration. 

4.2 Performance and computing complexity of the reference configuration 
Performance and computing complexity of the H.264 complex reference encoder 
configuration is first estimated for all the test sequences of table 1. Results of this analysis 
are reported in table 2 as the total processing time, the motion estimation ME time, the bit 
rate output, and the luminance PSNR values. The PSNR values, given in dB, are 
representative of the obtained encoding performance. More the PSNR value is high, more 
the image quality and the encoding performance are better. Given these results, it is 
obtained that even for the low-bit-rate QCIF “bridge far” sequence, the time required to 
compute the encoding algorithms on the GPP platform is of 5137.08 second. The associated 
encoding performance in frames per second is of 0.41 fps. Really, this is too far from a real 
time video encoding performance of 25 frames per second. As a consequence, an optimal 
selection of the new coding tools can allow for roughly the same performance as for the 
complex reference configuration but with a considerable complexity reduction.  

4.3 Performance and computing complexity of major encoding tools 
This section presents a performance and computing complexity analysis of some major 
encoding tools. The considered tools are the search size, the variable block size, the multiple 
reference frames, the fractional pixel accuracy, and the bi-prediction motion estimation. The 
efficiency of the fast motion estimation algorithms, the R-D Lagrange technique, the 
Hadamard transform and the entropy coding techniques are also evaluated. To find an 
optimal trade-off between coding efficiency and implementation complexity, the effect of 
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important computing part of the encoder, the computing complexity of this module is 
particularly noted for all the experimented simulations. Processing time metrics are 
completed by memory cost measures as this have a dominant impact on the cost-effective 
realization for both hardware and software based platforms.  
 

Sequence Format (Pixel) Frame Rate (Hz) Frames Coded 
Bridge close CIF (352x288) 15 2000 

Mobile CIF 25 300 
Paris CIF 15 1065 

Bridge far QCIF (176x144) 15 2101 
Container QCIF 25 300 
Foreman QCIF 25 400 

Mother & Daughter QCIF 25 961 

Table 1. Used test video sequences 

4.1 Coding structures influence evaluation 
The influence of the different H.264 encoding structures, including the classical coding types 
and the advanced pyramid coding structures is analyzed. In this section, only the first 150 
frames of all the test sequences are used. This shall provide the best optimal coding order 
for the best encoding performance. The used structures are described as follows: 
 An I-P-P-P-P… coding and display order using P only coding, 
 an I-B-P-B-P… coding order with one non reference B slice, 
 an I-B-B-P-B-B-P… coding order with 2 non reference B slices, 
 an I0-P4-RB2-B1-B3-P8… coding order with 3 level pyramid using 3 B pictures (3L3B), 
 an I0-P6-RB2-RB4-B1-B3-B5-P12… coding order with 3 level pyramid using 5 B pictures 

(3L5B), 
 an I0-P8-RB2-RB4-RB6-B1-B3-B5-B7-P16.. coding order with 3 level pyramid using 7 B 

pictures (3L7B), 
 an I0-P8-RB4-RB2-RB6-B1-B3-B5-B7-P16.. coding order with 4 level pyramid using 7 B 

pictures (4L7B), 
 and an I0-P12-RB6-RB3-B1-B2-B4-B5-RB9-B7-B8-B10-B11-P24… coding order with 4 

level pyramid using 11 B pictures (4L11B). 
Bit rate output performance results are presented in figure 2 for four selected sequences. 
This figure indicates clearly that the bit rate output is significantly improved using reference 
B slices (up to 35% bit rate reduction with one non reference B slice and 15% more bit rate 
reduction with two non reference B slices for the CIF version of “Bridge-close”). The bit rate 
output and the PSNR video quality are better using Pyramid structures compared to the 
classical coding structures (between 5 and 10% bit rate reduction with a light PSNR 
improvement with 3L3B, and much better with 3L5B and 3L7B). For this, making the use of 
these pyramid structures is interesting. According to the obtained results, the best structure 
in term of coding performance is 3Level-7B pyramid. However, compared to 3Level-5B 
pyramid structure, the 3Level-7B requires more computational time for practical the same 
performance. Thus, to achieve the best performance with a minimum complexity, the 
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3Level-5B pyramid is preferred. The 4Level-7B pyramid and the 4Level-11B pyramid don’t 
appear to provide any additional performance compared to the 3Level-5B pyramid as a 
small performance loss in bit rate is observed.  
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Fig. 2. Bit rate for various coding structures and video format 

Given these obtained results, it is clear that the 3Level-5B hierarchical coding order offers 
the best performance/complexity values. Given this, the 3Level-5B is the adopted structure 
for the starting complex configuration. 

4.2 Performance and computing complexity of the reference configuration 
Performance and computing complexity of the H.264 complex reference encoder 
configuration is first estimated for all the test sequences of table 1. Results of this analysis 
are reported in table 2 as the total processing time, the motion estimation ME time, the bit 
rate output, and the luminance PSNR values. The PSNR values, given in dB, are 
representative of the obtained encoding performance. More the PSNR value is high, more 
the image quality and the encoding performance are better. Given these results, it is 
obtained that even for the low-bit-rate QCIF “bridge far” sequence, the time required to 
compute the encoding algorithms on the GPP platform is of 5137.08 second. The associated 
encoding performance in frames per second is of 0.41 fps. Really, this is too far from a real 
time video encoding performance of 25 frames per second. As a consequence, an optimal 
selection of the new coding tools can allow for roughly the same performance as for the 
complex reference configuration but with a considerable complexity reduction.  

4.3 Performance and computing complexity of major encoding tools 
This section presents a performance and computing complexity analysis of some major 
encoding tools. The considered tools are the search size, the variable block size, the multiple 
reference frames, the fractional pixel accuracy, and the bi-prediction motion estimation. The 
efficiency of the fast motion estimation algorithms, the R-D Lagrange technique, the 
Hadamard transform and the entropy coding techniques are also evaluated. To find an 
optimal trade-off between coding efficiency and implementation complexity, the effect of 
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each coding tool is tested separately in comparison with the fixed reference configuration. 
We will observe varying complexity values at a gain in the obtained video quality and bit-
rate output. 
 

Res. Sequence Total time 
(s) 

ME 
Time (s) 

ME 
Complexity 
(ME C %) 

frames per 
Seconds 

(fps) 

Bit rate 
(Kbps) 

PSNR-Y 
(dB) 

 
CIF 

 

Bridge-close 19259,41 15670,33 81,36 0,1 106,44 35,01 
Mobile 3027,4 2343,04 77,39 0,1 676,08 32,82 
Paris 9479,15 7327,81 77,3 0,11 129,54 35,28 

 
QCIF 

Bridge-far 5137,08 4295,38 83,62 0,41 2,74 37,84 
Container 715,06 580,44 81,17 0,41 19,37 36,17 
Foreman 1026,86 838,6 81,67 0,39 79,2 35,01 
Mother & 
Daughter 2145,51 1728,42 80,56 0,45 30,32 36,3 

Table 2. Performance/complexity of the reference configuration 

4.3.1 Full/Fast full motion estimation 
The full Search motion estimation is reported to be the most-consuming part of the entire 
encoding process (Pascalis et al., 2004). For this, several fast motion estimation algorithms 
have been proposed (Pascalis et al., 2004), (Chen et al., 2002). In our case, the efficiency of 
the UMHexagonS fast search algorithm (Chen et al., 2002) is analyzed in comparison with 
the full search estimation scheme. The obtained results of this analysis are reported in table 
3. It is clear from table 3 that using the UMHexagonS search method we got a very slight bit 
rate and PSNR degradations in comparison with a full search algorithm. But, this comes 
with up to 45% of computation time complexity reduction. Thus, as the fast full search 
technique considerably improves the coding complexity without a notable loss in video 
quality and bit rate for all test sequences, the UMHexagonS will be adopted as a fast motion 
estimation scheme. 

4.3.2 Search range  
The influence of the search range (SR) window is evaluated for different SR values. The 
obtained results are given in table 4 as the total processing time, the bit rate output, and 
PSNR values. As shown in table 4, an important complexity reduction is obtained using a 
search range of 8 compared to 16 and 32 values, at a cost of a negligible loss in bit rate and 
video quality. For consequence and for a cost-efficient configuration, a search range of 8 is 
chosen. 

4.3.3 Variable block sizes 
The influence of three block size modes is evaluated. The first mode is with 7 block sizes 
activated (16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4), the second is with 4 (16x16, 16x8, 8x16, 
and 8x8), and the third is with only one 16x16 block size. As presented in table 5, supporting 
all the seven block sizes increases the computational complexity especially for the motion 
estimation module, at a gain in the coding efficiency. Compared, with the 4 block size 
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(16x16, 16x8, 8x16, and 8x8), we got a light video quality degradation with a negligible loss 
in bit rate (negligible loss for the QCIF version of “bridge far” and less than 2.5% for the CIF 
version of “mobile”), but with a 10% average complexity reduction. With only one 16x16 
block size mode, we got more significant video quality degradation compared to that with 
four block sizes, but with an encoding time further reduced 10% average. These results 
confirm that block sizes smaller than 8x8 (i.e. the seven block size mode on) do not provide 
significant benefits compared with the 4 block size mode. However, with the use of only 
16x16 block size, the encoding performance is significantly decreased. For consequence, to 
reduce the implementation complexity while maintaining the same encoding performance, 
the 4 block size mode is adopted. 
 

Resolution CIF QCIF 

ME 
Algo Seq. Bridge- 

close Mobile Paris Bridge-
far Container Foreman Mother & 

Daughter 

Full 
Search 

ME C (%) 81,36 77,39 77,3 83,62 81,17 81,67 80,56 
Bit rate 106,44 676,08 129,54 2,74 19,37 79,2 30,32 
PSNR-Y 35,01 32,82 35,28 37,84 36,17 35,01 36,3 

Fast ME 

TEC (%) -39,43 -32,33 -40,16 -41,66 -40,03 -38,53 -42,92 
ME C (%) 70,26 66,28 62,81 72,81 69,19 71,41 66,43 
Bit rate -0,03 1,43 0,8 -0,01 0,08 0,08 -0,04 
PSNR-Y -0,02 0 -0,02 -0,03 0 -0,02 -0,03 

Total Encoding Complexity (TEC (%)) = Encoding Complexity (with Fast ME algorithm) – Encoding 
Complexity (with Full Search). Bit rate (Kbps) = Bit rate (with Fast ME algorithm) – bit rate (with Full 
Search), idem for PSNR-Y  

Table 3. Performance and Complexity Results for Full Search and Fast Full Search Algorithms 

 

Resolution CIF QCIF 

Search 
Range Seq. Bridge- 

close Mobile Paris Bridge-
far Container Foreman Mother & 

Daughter 

32 
ME C (%) 70,26 66,28 62,81 72,81 69,19 71,41 66,43 

Bit rate 106,41 677,51 130,34 2,73 19,45 79,28 30,28 
PSNR-Y 34,99 32,82 35,26 37,81 36,17 34,99 36,27 

16 

TEC (%) -42,68 -42,58 -37,46 -40,63 -43,09 -43,61 -39,68 
ME C (%) 47,52 41,91 40,22 53,21 47,36 49,57 44,9 
Bit rate 0 -0,12 0,16 -0,01 -0,03 0,35 0 
PSNR-Y 0,01 -0,01 0 0 0 -0,01 0,01 

8 

TEC (%) -23,98 -19,87 -19,85 -28,73 -23,45 -24,80 -20,26 
ME C (%) 30,72 26,38 25,78 36,4 29,81 33,42 30,94 
Bit rate 0,26 1,07 0,73 0,01 0 1,81 0,08 
PSNR-Y -0,01 0 0 0 0 0 -0,01 

Table 4. Performance and complexity results for various search sizes 
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each coding tool is tested separately in comparison with the fixed reference configuration. 
We will observe varying complexity values at a gain in the obtained video quality and bit-
rate output. 
 

Res. Sequence Total time 
(s) 

ME 
Time (s) 

ME 
Complexity 
(ME C %) 

frames per 
Seconds 

(fps) 

Bit rate 
(Kbps) 

PSNR-Y 
(dB) 

 
CIF 

 

Bridge-close 19259,41 15670,33 81,36 0,1 106,44 35,01 
Mobile 3027,4 2343,04 77,39 0,1 676,08 32,82 
Paris 9479,15 7327,81 77,3 0,11 129,54 35,28 

 
QCIF 

Bridge-far 5137,08 4295,38 83,62 0,41 2,74 37,84 
Container 715,06 580,44 81,17 0,41 19,37 36,17 
Foreman 1026,86 838,6 81,67 0,39 79,2 35,01 
Mother & 
Daughter 2145,51 1728,42 80,56 0,45 30,32 36,3 

Table 2. Performance/complexity of the reference configuration 

4.3.1 Full/Fast full motion estimation 
The full Search motion estimation is reported to be the most-consuming part of the entire 
encoding process (Pascalis et al., 2004). For this, several fast motion estimation algorithms 
have been proposed (Pascalis et al., 2004), (Chen et al., 2002). In our case, the efficiency of 
the UMHexagonS fast search algorithm (Chen et al., 2002) is analyzed in comparison with 
the full search estimation scheme. The obtained results of this analysis are reported in table 
3. It is clear from table 3 that using the UMHexagonS search method we got a very slight bit 
rate and PSNR degradations in comparison with a full search algorithm. But, this comes 
with up to 45% of computation time complexity reduction. Thus, as the fast full search 
technique considerably improves the coding complexity without a notable loss in video 
quality and bit rate for all test sequences, the UMHexagonS will be adopted as a fast motion 
estimation scheme. 

4.3.2 Search range  
The influence of the search range (SR) window is evaluated for different SR values. The 
obtained results are given in table 4 as the total processing time, the bit rate output, and 
PSNR values. As shown in table 4, an important complexity reduction is obtained using a 
search range of 8 compared to 16 and 32 values, at a cost of a negligible loss in bit rate and 
video quality. For consequence and for a cost-efficient configuration, a search range of 8 is 
chosen. 

4.3.3 Variable block sizes 
The influence of three block size modes is evaluated. The first mode is with 7 block sizes 
activated (16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4), the second is with 4 (16x16, 16x8, 8x16, 
and 8x8), and the third is with only one 16x16 block size. As presented in table 5, supporting 
all the seven block sizes increases the computational complexity especially for the motion 
estimation module, at a gain in the coding efficiency. Compared, with the 4 block size 
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(16x16, 16x8, 8x16, and 8x8), we got a light video quality degradation with a negligible loss 
in bit rate (negligible loss for the QCIF version of “bridge far” and less than 2.5% for the CIF 
version of “mobile”), but with a 10% average complexity reduction. With only one 16x16 
block size mode, we got more significant video quality degradation compared to that with 
four block sizes, but with an encoding time further reduced 10% average. These results 
confirm that block sizes smaller than 8x8 (i.e. the seven block size mode on) do not provide 
significant benefits compared with the 4 block size mode. However, with the use of only 
16x16 block size, the encoding performance is significantly decreased. For consequence, to 
reduce the implementation complexity while maintaining the same encoding performance, 
the 4 block size mode is adopted. 
 

Resolution CIF QCIF 

ME 
Algo Seq. Bridge- 

close Mobile Paris Bridge-
far Container Foreman Mother & 

Daughter 

Full 
Search 

ME C (%) 81,36 77,39 77,3 83,62 81,17 81,67 80,56 
Bit rate 106,44 676,08 129,54 2,74 19,37 79,2 30,32 
PSNR-Y 35,01 32,82 35,28 37,84 36,17 35,01 36,3 

Fast ME 

TEC (%) -39,43 -32,33 -40,16 -41,66 -40,03 -38,53 -42,92 
ME C (%) 70,26 66,28 62,81 72,81 69,19 71,41 66,43 
Bit rate -0,03 1,43 0,8 -0,01 0,08 0,08 -0,04 
PSNR-Y -0,02 0 -0,02 -0,03 0 -0,02 -0,03 

Total Encoding Complexity (TEC (%)) = Encoding Complexity (with Fast ME algorithm) – Encoding 
Complexity (with Full Search). Bit rate (Kbps) = Bit rate (with Fast ME algorithm) – bit rate (with Full 
Search), idem for PSNR-Y  

Table 3. Performance and Complexity Results for Full Search and Fast Full Search Algorithms 

 

Resolution CIF QCIF 

Search 
Range Seq. Bridge- 

close Mobile Paris Bridge-
far Container Foreman Mother & 

Daughter 

32 
ME C (%) 70,26 66,28 62,81 72,81 69,19 71,41 66,43 

Bit rate 106,41 677,51 130,34 2,73 19,45 79,28 30,28 
PSNR-Y 34,99 32,82 35,26 37,81 36,17 34,99 36,27 

16 

TEC (%) -42,68 -42,58 -37,46 -40,63 -43,09 -43,61 -39,68 
ME C (%) 47,52 41,91 40,22 53,21 47,36 49,57 44,9 
Bit rate 0 -0,12 0,16 -0,01 -0,03 0,35 0 
PSNR-Y 0,01 -0,01 0 0 0 -0,01 0,01 

8 

TEC (%) -23,98 -19,87 -19,85 -28,73 -23,45 -24,80 -20,26 
ME C (%) 30,72 26,38 25,78 36,4 29,81 33,42 30,94 
Bit rate 0,26 1,07 0,73 0,01 0 1,81 0,08 
PSNR-Y -0,01 0 0 0 0 0 -0,01 

Table 4. Performance and complexity results for various search sizes 
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Resolution CIF QCIF 

Block 
Sizes Seq. Bridge- 

close Mobile Paris Bridge-
far Container Foreman Mother & 

Daughter 

7 
ME C (%) 30,72 26,38 25,78 36,4 29,81 33,42 30,94 

Bit rate 
 

106,67 678,46 131,23 2,73 19,42 81,44 30,36 
PSNR-Y 34,99 32,81 35,26 37,81 36,17 34,98 36,27 

4 

TEC (%) -11,32 -10,51 -10,23 -9,11 -9,16 -11,91 -11,26 
ME C (%) 27,42 22,21 22,34 33,81 26,71 29,31 26,99 
Bit rate 0,67 14,53 5,19 0 0,45 1,32 0,18 
PSNR-Y -0,06 -0,11 -0,13 -0,03 -0,09 -0,09 -0,14 

1 

TEC (%) -11,62 -14,17 -11,24 -13,14 -12,33 -13,87 -12,75 
ME C (%) 25,67 19,11 19,98 32,8 25,14 26,73 24,58 
Bit rate 2,3 58,35 15,36 0,01 2,96 9,15 2,82 
PSNR-Y -0,09 -0,14 -0,17 -0,07 -0,18 -0,2 -0,22 

Block sizes=7, then all seven modes (16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4) are on. 
Block sizes=4, then 16x16, 16x8, 8x16, and 8x8 modes are on. 
Block sizes=1 only 16x16 mode is on 

Table 5. Performance and complexity results for motion compensation blocks sizes 

4.3.4 Multiple reference frames 
Results concerning the influence of the multiple reference frame option are reported in table 
6. Using this table, we observe for example for the CIF “bridge close” an increase of 43% bit 
rate for a reference frame number reduction from 5 to 1. This goes also for the QCIF 
“Foreman” video sequence with a 50% of bit rate increase for also a reference frame 
reduction from 5 to 1. However, with the use of only 3 reference frames, we observe a slight 
gain in the computational complexity and less than 5% bit rate increase with a little video 
quality degradation. Thus, using only 3 reference frames leads to a somewhat computational 
burden decrease without a noticeable coding efficiency degradation compared to that 
obtained with 5 reference frames. However, using only one reference frame leads to a 
sensible loss in coding performance with a slight complexity reduction. Thus, the optimal 
reference frame number is fixed to 3 for an optimized configuration. 

4.3.5 RD-Lagrangian optimization 
The R-D optimization is the criterion for selecting the best coding mode. It evaluates the cost 
of every possible coding mode, considering the balance of the distortion and the number of 
consumed bits. The obtained mode with the smallest cost will be considered as the best 
coding mode. As presented in table 7, the R-D Lagrangian technique gives a substantial 
compression efficiency improvement at a double complexity cost. The encoder without RD 
optimization is about 2~3 times faster and gives a noticeable loss in bit rate-distortion 
compared to the case with an RD-Lagrangian technique enabled (an average of 40% in bit 
rate increase in case of QCIF “bridge far” sequence, as described in table 7). While the 
considerable computational complexity required by the R-D optimization, it is a very 
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important tool of the JM reference software. As our objective is to obtain comparable 
performance as for the reference configuration, this option will be maintained. 

4.3.6 Hadamard transform 
A Hadamard transform may be used to improve the error cost functions performance such 
as the sum of absolute differences (SAD). However, given the obtained results of table 8, 
activating the Hadamard transform causes a slight complexity increase without any coding 
efficiency gain. Thus, the Hadamard transform will be disabled for the optimized parameter 
configuration. 
 

Resolution CIF QCIF 

Reference 
Frames Seq. Bridge- 

close Mobile Paris Bridge-
far Container Foreman Mother & 

Daughter 

5 
ME C (%) 27,42 22,21 22,34 33,81 26,71 29,31 26,99 

Bit rate 
 

107,34 692,99 136,42 2,73 19,87 82,76 30,54 
PSNR-Y 34,93 32,7 35,13 37,78 36,08 34,89 36,13 

3 

TEC (%) 0,59 -1,78 0,05 0,30 -0,91 1,15 0,79 
ME C (%) 27,68 22,81 22,57 33,55 27,13 30,23 27,6 
Bit rate 6,7 26,98 6,47 0 0,81 2,59 1,15 
PSNR-Y -0,02 -0,03 -0,02 0 -0,03 -0,04 -0,04 

1 

TEC (%) 0,19 1,80 0,68 -0,43 -0,21 3,89 2,53 
ME C (%) 27,81 24,12 22,91 33,9 27,61 30,79 27,98 
Bit rate 39,5 285,65 50,9 -0,08 5,27 41,43 12,44 
PSNR-Y -0,1 -0,43 -0,19 -0,01 -0,27 -0,43 -0,36 

Table 6. Performance and complexity results for multiple reference frames 

 
Resolution CIF QCIF 

RD-
Lagrange Seq. Bridge- 

close Mobile Paris Bridge-far Container Foreman Mother & 
Daughter 

Enabled 
ME C (%) 27,68 22,81 22,57 33,55 27,13 30,23 27,6 

Bit rate 
 

114,04 719,97 142,89 2,73 20,68 85,35 31,69 
PSNR-Y 34,91 32,67 35,11 37,78 36,05 34,85 36,09 

Disabled 

TEC (%) -61,65 -68,63 -66,85 -53,81 -59,31 -59,61 -60,69 
ME C (%) 74,28 73,26 71,26 78,43 70,66 76,48 74,68 
Bit rate 23,34 152,46 13,93 1,09 2,51 14,3 5,1 
PSNR-Y 0,24 0,32 0,06 -0,08 -0,11 0,04 0,01 

 

Table 7. Performance and complexity results for R-D Lagrangian technique 
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Resolution CIF QCIF 

Block 
Sizes Seq. Bridge- 

close Mobile Paris Bridge-
far Container Foreman Mother & 

Daughter 

7 
ME C (%) 30,72 26,38 25,78 36,4 29,81 33,42 30,94 

Bit rate 
 

106,67 678,46 131,23 2,73 19,42 81,44 30,36 
PSNR-Y 34,99 32,81 35,26 37,81 36,17 34,98 36,27 

4 

TEC (%) -11,32 -10,51 -10,23 -9,11 -9,16 -11,91 -11,26 
ME C (%) 27,42 22,21 22,34 33,81 26,71 29,31 26,99 
Bit rate 0,67 14,53 5,19 0 0,45 1,32 0,18 
PSNR-Y -0,06 -0,11 -0,13 -0,03 -0,09 -0,09 -0,14 

1 

TEC (%) -11,62 -14,17 -11,24 -13,14 -12,33 -13,87 -12,75 
ME C (%) 25,67 19,11 19,98 32,8 25,14 26,73 24,58 
Bit rate 2,3 58,35 15,36 0,01 2,96 9,15 2,82 
PSNR-Y -0,09 -0,14 -0,17 -0,07 -0,18 -0,2 -0,22 

Block sizes=7, then all seven modes (16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4) are on. 
Block sizes=4, then 16x16, 16x8, 8x16, and 8x8 modes are on. 
Block sizes=1 only 16x16 mode is on 

Table 5. Performance and complexity results for motion compensation blocks sizes 

4.3.4 Multiple reference frames 
Results concerning the influence of the multiple reference frame option are reported in table 
6. Using this table, we observe for example for the CIF “bridge close” an increase of 43% bit 
rate for a reference frame number reduction from 5 to 1. This goes also for the QCIF 
“Foreman” video sequence with a 50% of bit rate increase for also a reference frame 
reduction from 5 to 1. However, with the use of only 3 reference frames, we observe a slight 
gain in the computational complexity and less than 5% bit rate increase with a little video 
quality degradation. Thus, using only 3 reference frames leads to a somewhat computational 
burden decrease without a noticeable coding efficiency degradation compared to that 
obtained with 5 reference frames. However, using only one reference frame leads to a 
sensible loss in coding performance with a slight complexity reduction. Thus, the optimal 
reference frame number is fixed to 3 for an optimized configuration. 

4.3.5 RD-Lagrangian optimization 
The R-D optimization is the criterion for selecting the best coding mode. It evaluates the cost 
of every possible coding mode, considering the balance of the distortion and the number of 
consumed bits. The obtained mode with the smallest cost will be considered as the best 
coding mode. As presented in table 7, the R-D Lagrangian technique gives a substantial 
compression efficiency improvement at a double complexity cost. The encoder without RD 
optimization is about 2~3 times faster and gives a noticeable loss in bit rate-distortion 
compared to the case with an RD-Lagrangian technique enabled (an average of 40% in bit 
rate increase in case of QCIF “bridge far” sequence, as described in table 7). While the 
considerable computational complexity required by the R-D optimization, it is a very 
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important tool of the JM reference software. As our objective is to obtain comparable 
performance as for the reference configuration, this option will be maintained. 

4.3.6 Hadamard transform 
A Hadamard transform may be used to improve the error cost functions performance such 
as the sum of absolute differences (SAD). However, given the obtained results of table 8, 
activating the Hadamard transform causes a slight complexity increase without any coding 
efficiency gain. Thus, the Hadamard transform will be disabled for the optimized parameter 
configuration. 
 

Resolution CIF QCIF 

Reference 
Frames Seq. Bridge- 

close Mobile Paris Bridge-
far Container Foreman Mother & 

Daughter 

5 
ME C (%) 27,42 22,21 22,34 33,81 26,71 29,31 26,99 

Bit rate 
 

107,34 692,99 136,42 2,73 19,87 82,76 30,54 
PSNR-Y 34,93 32,7 35,13 37,78 36,08 34,89 36,13 

3 

TEC (%) 0,59 -1,78 0,05 0,30 -0,91 1,15 0,79 
ME C (%) 27,68 22,81 22,57 33,55 27,13 30,23 27,6 
Bit rate 6,7 26,98 6,47 0 0,81 2,59 1,15 
PSNR-Y -0,02 -0,03 -0,02 0 -0,03 -0,04 -0,04 

1 

TEC (%) 0,19 1,80 0,68 -0,43 -0,21 3,89 2,53 
ME C (%) 27,81 24,12 22,91 33,9 27,61 30,79 27,98 
Bit rate 39,5 285,65 50,9 -0,08 5,27 41,43 12,44 
PSNR-Y -0,1 -0,43 -0,19 -0,01 -0,27 -0,43 -0,36 

Table 6. Performance and complexity results for multiple reference frames 

 
Resolution CIF QCIF 

RD-
Lagrange Seq. Bridge- 

close Mobile Paris Bridge-far Container Foreman Mother & 
Daughter 

Enabled 
ME C (%) 27,68 22,81 22,57 33,55 27,13 30,23 27,6 

Bit rate 
 

114,04 719,97 142,89 2,73 20,68 85,35 31,69 
PSNR-Y 34,91 32,67 35,11 37,78 36,05 34,85 36,09 

Disabled 

TEC (%) -61,65 -68,63 -66,85 -53,81 -59,31 -59,61 -60,69 
ME C (%) 74,28 73,26 71,26 78,43 70,66 76,48 74,68 
Bit rate 23,34 152,46 13,93 1,09 2,51 14,3 5,1 
PSNR-Y 0,24 0,32 0,06 -0,08 -0,11 0,04 0,01 

 

Table 7. Performance and complexity results for R-D Lagrangian technique 
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Resolution CIF QCIF 

Hadamard Seq. Bridge- 
close Mobile Paris Bridge-

far Container Foreman Mother & 
Daughter 

Enabled 
ME C (%) 27,68 22,81 22,57 33,55 27,13 30,23 27,6 

Bit rate 
 

114,04 719,97 142,89 2,73 20,68 85,35 31,69 
PSNR-Y 34,91 32,67 35,11 37,78 36,05 34,85 36,09 

Disabled 

TEC (%) -3,25 -2,10 -1,41 -3,92 -2,53 -2,60 -2,93 
ME C (%) 25,29 20,6 20,47 31,38 25,09 27,65 24,89 
Bit rate 0,12 1,49 0,76 0 0 0,44 0,05 
PSNR-Y -0,01 -0,04 -0,05 0,01 -0,03 -0,06 -0,07 

Table 8. Performance and complexity results for Hadamard transform 

 
Resolution CIF QCIF 

 Seq. Bridge- 
close Mobile Paris Bridge-

far Container Foreman Mother & 
Daughter 

With 
Fractional 
Pixel 
Accuracy 

ME C (%) 25,29 20,6 20,47 31,38 25,09 27,65 24,89 

Bit rate 114,16 721,46 143,65 2,73 20,68 85,79 31,74 

PSNR-Y 34,9 32,63 35,06 37,79 36,02 34,79 36,02 

Without 
Fractional 
Pixel 
Accuracy 

TEC (%) -4,60 -3,98 -6,25 -7,05 -5,87 -6,08 -7,09 

ME C (%) 21,52 16,52 16,65 26,81 20,62 22,44 20,13 

Bit rate 2,84 452,18 25,32 0,02 9,06 26,96 9,62 

PSNR-Y -0,14 -0,45 -0,12 -0,05 0 -0,34 -0,24 

Table 9. Performance and complexity results for fractional pixel motion compensation 
accuracy 

4.3.7 Fractional pixel motion compensation  
According to table 9, disabling the fractional pixel motion compensation accuracy option 
results in a significant increase of the bit rate output (more than 30% of bit rate increase 
for the QCIF “foreman” sequence and about 63% for CIF “mobile” sequence), with a light 
video quality degradation and a 5% average gain in complexity reduction. Thus, in order 
to maximize the coding performance, the fractional pixel accuracy option should be 
activated. 

4.3.8 Bi-prediction motion estimation 
Given results of table 10, disabling the bi-prediction motion estimation tool leads to a 20% 
average complexity reduction, without any noticeable coding efficiency degradation in 
terms of bit rate output and PSNR video quality. Thus, the use of bi-prediction motion 
estimation does not provide any significant improvement in the compression efficiency for 
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all the tested CIF and QCIF sequences. So, the bi-prediction motion estimation option shall 
be disabled. 

4.3.9 Entropy coding  
Given the results of table 11, it is clear that the CABAC entropy coding method provides 
noticeable gains in coding efficiency. Typically, it offers, for many sequences, between 5 to 
10 percent efficiency gain and larger gains for higher resolution sequences. This comes with 
noticeable complexity drawbacks. However, The CAVLC entropy method offers much more 
implementation simplicity and offer about 25% of complexity reduction, with only a slight 
bit rate increase. Thus, for an optimized complexity configuration, CAVLC entropy coding 
method will be used. 
 

Resolution CIF QCIF 

Bi-Predict 
ME Seq. Bridge- 

close Mobile Paris Bridge-
far Container Foreman Mother & 

Daughter 

Enabled 
ME C (%) 25,29 20,6 20,47 31,38 25,09 27,65 24,89 

Bit rate 
 

114,16 721,46 143,65 2,73 20,68 85,79 31,74 
PSNR-Y 34,9 32,63 35,06 37,79 36,02 34,79 36,02 

Disabled 

TEC (%) -21,29 -17,58 -19,27 -28,81 -23,13 -23,32 -24,31 
ME C (%) 6,45 6,59 5,58 7,2 6,29 8,76 7,32 
Bit rate 0,01 6,4 0,81 0 0,05 1,32 0,07 
PSNR-Y -0,01 -0,04 0 0 0 -0,03 0 

Table 10. Performance and complexity results for bi-prediction motion estimation  

 
Resolution CIF QCIF 

Entropy 
Coding 
Method 

Sequence Bridge- 
close Mobile Paris Bridge-

far Container Foreman Mother & 
Daughter 

CABAC 

ME C (%) 6,68 6,74 5,75 7,39 6,33 8,89 7,33 
Bit rate 

 
113,95 727,49 143,5 2,51 20,92 82,88 31,11 

PSNR-Y 34,89 32,59 35,04 37,79 35,94 34,76 36,06 

CAVLC 

TEC (%) -24,60 -24,61 -26,58 -21,54 -26,94 -23,76 -24,89 

ME C (%) 8,66 9,28 7,62 9,46 8,29 11,66 9,56 
Bit rate 

 
8,31 37,63 6,43 0,07 1,11 5,11 2,08 

PSNR-Y 0,02 -0,06 0,02 0,05 -0,04 -0,02 -0,01 

Table 11. Performance and complexity results for the two entropy coding methods 
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results in a significant increase of the bit rate output (more than 30% of bit rate increase 
for the QCIF “foreman” sequence and about 63% for CIF “mobile” sequence), with a light 
video quality degradation and a 5% average gain in complexity reduction. Thus, in order 
to maximize the coding performance, the fractional pixel accuracy option should be 
activated. 

4.3.8 Bi-prediction motion estimation 
Given results of table 10, disabling the bi-prediction motion estimation tool leads to a 20% 
average complexity reduction, without any noticeable coding efficiency degradation in 
terms of bit rate output and PSNR video quality. Thus, the use of bi-prediction motion 
estimation does not provide any significant improvement in the compression efficiency for 
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all the tested CIF and QCIF sequences. So, the bi-prediction motion estimation option shall 
be disabled. 

4.3.9 Entropy coding  
Given the results of table 11, it is clear that the CABAC entropy coding method provides 
noticeable gains in coding efficiency. Typically, it offers, for many sequences, between 5 to 
10 percent efficiency gain and larger gains for higher resolution sequences. This comes with 
noticeable complexity drawbacks. However, The CAVLC entropy method offers much more 
implementation simplicity and offer about 25% of complexity reduction, with only a slight 
bit rate increase. Thus, for an optimized complexity configuration, CAVLC entropy coding 
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4.4 Memory cost analysis  
The data dominance of a video system implies that the memory cost have a dominant 
impact on the realization efficiency (Denolf et al., 2002). Application specific hardware 
implementations have to match memory system to the application. An efficient design flow 
uses this to reduce area and power. Thus, providing for the H.264/AVC a high level 
analysis of memory cost is essential to identify its resource requirements for hardware and 
software platforms. For each test sequence and for all the previously reported H.264 
configurations, peak memory usage is measured using the “memprof” GNU profiler 
(memprof, n.d.). The obtained peak memory usage dependencies are reported in table 12. It 
is obtained that the encoder peak memory usage depends on the video format and linearly 
on the number of reference frames and the search size. The influence of the other coding 
tools and the input video characteristics is negligible. 
 

Search 
size 

QCIF CIF 

1F 3F 5F 1F 3F 5F 

32 5.68 10.52 15.52 10.74 18.68 26.6 

16 2.87 5.02 7.1 7.92 12.92 18.23 

8 2.15 3.59 4.93 7.13 11.81 16.08 

Table 12. Memory cost (in Mb) for different video formats, search size and reference frames 

5. Complexity analysis of the optimized configuration  
Given the previous analysis, the optimized configuration is presented as follows. A 3L5B 
pyramid coding structure, an UMHexagonS fast motion estimation scheme, a search range 
fixed to 8, 4 variable block sizes, 3 reference frames, R-D Lagrangian optimization activated, 
Hadamard transform disabled, motion vector fractional pixel accuracy enabled, P and B 
frames weighted prediction with bi-prediction motion estimation disabled, a QP value fixed 
to 28, and CAVLC entropy coding technique used. 

5.1 Performance/computing time complexity 
For this final configuration, the encoding performance and computing time complexity are 
obtained and given in table 13. In comparison with results of table 2, one order of 
magnitude in complexity reduction has been achieved with less than 10% average bit rate 
increase for all the CIF and QCIF used video test sequences. However, for this optimized 
configuration and even for the very low bit rate QCIF “bridge far” sequence, the time 
required to compute the encoding algorithms on the GPP platform is of 597.87 second. The 
associated complexity in frames per second is of 3.51 fps. Even with this configuration 
offering an optimal trade-off between coding efficiency and implementation complexity, we 
are still very far from a real time performance of 25 frames per second. Implementing this 
configuration of the encoder represents a big challenge for resource-constrained multimedia 
systems such as wireless devices or high-volume consumer electronics since this requires 
very high computational power to achieve real-time encoding. 
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Res. Sequence Total time 
(s) 

ME Time  
(s) 

ME C  
(%) 

frames per 
Seconds (fps) 

Bit rate 
(Kbps) 

PSNR-Y 
(dB) 

 
CIF 

 

Bridge-close 2463,25 213,42 8,66 0,81 122,26 34,91 
Mobile 488,26 45,3 9,28 0,6 765,12 32,53 
Paris 1451,57 110,57 7,62 0,73 149,93 35,06 

QCIF 

Bridge-far 597,87 56,54 9,46 3,51 2,58 37,84 
Container 91,71 7,6 8,29 3,22 22,03 35,9 
Foreman 130,24 15,19 11,66 3,05 87,89 34,71 
Mother & 
Daughter 289,85 27,71 9,56 3,32 33,19 36,05 

Table 13. Performance/computing time complexity of the reference configuration 

5.2 Memory profiling 
For the optimized configuration, the peak memory cost is of 5.02 MB for the QCIF and 12.92 
MB for the CIF sequences. Comparisons with MPEG 4 Part2, simple profile with a 16 search 
size, half pixel resolution and I and P pictures are provided in (Saponara et al., 2004). For the 
memory usage, MPEG4 requires 2.97 MB for the QCIF and 9.88 for the CIF sequences. This 
result refers to no optimized MPEG4 source code. Applying platform independent memory 
optimizations through C level code transformations may be used to get a memory and 
algorithmic optimized version of the reference code. An example of such optimizations is 
applied in (Denolf et al., 2000) for an MPEG4 simple profile video decoder and in 
(Vleeschouwerand et al., 2001) for an encoder. By applying such optimization techniques, an 
optimized MPEG 4 simple profile is obtained using only 348.2 Kb of memory for CIF 
sequences (Vleeschouwerand et al., 2001). This represents a memory decrease with a factor 
of 30. 
These memory optimizations can also be applied to our AVC optimized configuration. 
However, for the AVC case, the number of B frames is not limited to one B between two I/P 
frames, thus the memory compactation transformations used in (Vleeschouwerand et al., 
2001) become invalid. Actually, even with possible optimizations, still around a minimum of 
few MB would be required, which is a problematic size for a realistic implementation. 
Memory profiling of this optimized configuration is shown in figure 3. This figure presents 
the memory usage distribution over the main modules of the encoder. The 
“Init_Motion_Search_module” for the motion estimation is the most memory consuming 
with 67% of the total memory usage.  

5.3 instruction-level profiling 
For the 300 frames QCIF “Container” sequence and using the H.264/AVC encoder with the 
optimized configuration, we have performed an analysis of dynamic instruction distribution 
using the “Iprof” GNU profiler (Kuhn, 1999). The obtained results are shown in the 
following figure 4. It is clear from this figure that the H.264/AVC is dominated by integer 
operations, most of them are add, sub and shift instructions. Given the lot of data transfer 
operations, there are more memory instructions (more of 41%) than effective computation 
ones.  
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4.4 Memory cost analysis  
The data dominance of a video system implies that the memory cost have a dominant 
impact on the realization efficiency (Denolf et al., 2002). Application specific hardware 
implementations have to match memory system to the application. An efficient design flow 
uses this to reduce area and power. Thus, providing for the H.264/AVC a high level 
analysis of memory cost is essential to identify its resource requirements for hardware and 
software platforms. For each test sequence and for all the previously reported H.264 
configurations, peak memory usage is measured using the “memprof” GNU profiler 
(memprof, n.d.). The obtained peak memory usage dependencies are reported in table 12. It 
is obtained that the encoder peak memory usage depends on the video format and linearly 
on the number of reference frames and the search size. The influence of the other coding 
tools and the input video characteristics is negligible. 
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5. Complexity analysis of the optimized configuration  
Given the previous analysis, the optimized configuration is presented as follows. A 3L5B 
pyramid coding structure, an UMHexagonS fast motion estimation scheme, a search range 
fixed to 8, 4 variable block sizes, 3 reference frames, R-D Lagrangian optimization activated, 
Hadamard transform disabled, motion vector fractional pixel accuracy enabled, P and B 
frames weighted prediction with bi-prediction motion estimation disabled, a QP value fixed 
to 28, and CAVLC entropy coding technique used. 

5.1 Performance/computing time complexity 
For this final configuration, the encoding performance and computing time complexity are 
obtained and given in table 13. In comparison with results of table 2, one order of 
magnitude in complexity reduction has been achieved with less than 10% average bit rate 
increase for all the CIF and QCIF used video test sequences. However, for this optimized 
configuration and even for the very low bit rate QCIF “bridge far” sequence, the time 
required to compute the encoding algorithms on the GPP platform is of 597.87 second. The 
associated complexity in frames per second is of 3.51 fps. Even with this configuration 
offering an optimal trade-off between coding efficiency and implementation complexity, we 
are still very far from a real time performance of 25 frames per second. Implementing this 
configuration of the encoder represents a big challenge for resource-constrained multimedia 
systems such as wireless devices or high-volume consumer electronics since this requires 
very high computational power to achieve real-time encoding. 
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Res. Sequence Total time 
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ME Time  
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ME C  
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frames per 
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Bit rate 
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5.2 Memory profiling 
For the optimized configuration, the peak memory cost is of 5.02 MB for the QCIF and 12.92 
MB for the CIF sequences. Comparisons with MPEG 4 Part2, simple profile with a 16 search 
size, half pixel resolution and I and P pictures are provided in (Saponara et al., 2004). For the 
memory usage, MPEG4 requires 2.97 MB for the QCIF and 9.88 for the CIF sequences. This 
result refers to no optimized MPEG4 source code. Applying platform independent memory 
optimizations through C level code transformations may be used to get a memory and 
algorithmic optimized version of the reference code. An example of such optimizations is 
applied in (Denolf et al., 2000) for an MPEG4 simple profile video decoder and in 
(Vleeschouwerand et al., 2001) for an encoder. By applying such optimization techniques, an 
optimized MPEG 4 simple profile is obtained using only 348.2 Kb of memory for CIF 
sequences (Vleeschouwerand et al., 2001). This represents a memory decrease with a factor 
of 30. 
These memory optimizations can also be applied to our AVC optimized configuration. 
However, for the AVC case, the number of B frames is not limited to one B between two I/P 
frames, thus the memory compactation transformations used in (Vleeschouwerand et al., 
2001) become invalid. Actually, even with possible optimizations, still around a minimum of 
few MB would be required, which is a problematic size for a realistic implementation. 
Memory profiling of this optimized configuration is shown in figure 3. This figure presents 
the memory usage distribution over the main modules of the encoder. The 
“Init_Motion_Search_module” for the motion estimation is the most memory consuming 
with 67% of the total memory usage.  

5.3 instruction-level profiling 
For the 300 frames QCIF “Container” sequence and using the H.264/AVC encoder with the 
optimized configuration, we have performed an analysis of dynamic instruction distribution 
using the “Iprof” GNU profiler (Kuhn, 1999). The obtained results are shown in the 
following figure 4. It is clear from this figure that the H.264/AVC is dominated by integer 
operations, most of them are add, sub and shift instructions. Given the lot of data transfer 
operations, there are more memory instructions (more of 41%) than effective computation 
ones.  
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Fig. 3. Memory profiling of the optimized encoder configuration 
 

 
Fig. 4. Instruction breakdown of the optimized encoder configuration 
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Taken that the instruction per cycle is given by IPC=InstCount/(Feq*ExecTime), for the 
used 1.6 GHz clock frequency GPP machine, and with an obtained number of instructions 
per frame of 598.55 106 (179565.059106 / 300), the obtained IPC is of 0.92. For a higher 
performance 3.0 GHz GPP machine, the necessary IPC for encoding H.264/AVC in real time 
should be 4.98. From these results we can note that even with a high frequency 3.0 GHz 
processor, approximately 5 instructions per cycle have to be executed to achieve H.264 real 
time encoding QCIF video sequences. Thus, using a single processor to real time encode 
H.264 bit streams may require a very high performance, high frequency super scalar 
processor. Such a choice is not suitable for embedded systems that have strict power and 
cost constraints.  
An alternative solution is to use a multiprocessor approach to share the encoding execution 
time between several embedded processors. The sequential encoder application has to be 
distributed using a parallel programming model over a multiprocessor architecture. Based 
on that, we can conclude that it is necessary to explore multiple ways of parallelization apart 
from SIMD extensions in order to achieve the required performance for real time operation. 
To find the best scheme for parallel code execution, profiling the execution of the obtained 
configuration shall identify the major application bottlenecks and the main subcomponents 
candidate for efficient parallelization. 

5.4 Execution profiling 
Typically, tasks will not need the same amount of processing time. Thus, a computational 
profiling should be considered to identify the most computationally-expensive tasks and to 
give a clear picture of the critical code parts candidate for task-level parallelization. After 
that, complex tasks may also be subdivided further into smaller ones, i.e. each slowest 
compute node must be split in a set of compute nodes with better execution values. 
For this, we have profiled the execution of the 300 frames of QCIF “Container” sequence 
with the “Gprof” GNU profiler (Graham et al., 1982). The obtained results are reported in 
the following figure 5 in terms of the CPU time percentage spent in the execution of each 
module. The obtained profile shows that the motion estimation and compensation (MEC), 
DCT transform, the entropy coding, the rate-distortion optimization (RDO) intra/inter 
mode decision, and the intra-prediction modules are the most time-consuming modules. 
These tasks constitute the major bottlenecks of the encoder. 

6. Parallelization of the H.264/AVC video encoder 
In the previous sections, we motivated the implementation of H.264/AVC encoder 
application on a multiprocessor platform. Actually, using a single processor to real time 
encode H.264/AVC bit streams may require a high performance, high frequency super 
scalar processor. Such a choice is not suitable for systems that have strict power and cost 
constraints. For such case, it may be probably necessary to use some kind of multiprocessor 
approach to share the encoding application execution time between several processors.  
For the cost-efficient H.264/AVC parameters configuration, the obtained absolute complexity 
values and profiling analysis results confirmed the big challenge needed for a parallel 
multiprocessor execution. Parallelization consists in transforming the sequential encoding 
algorithms into concurrent tasks for execution in a multiprocessor system (Li et al., 2005). 
The predominant forms of parallelism in such systems are data-level parallelism (DLP) and 
task-level parallelism (TLP). DLP is perhaps the most commonly used form of parallelism, 
implemented through vector or SIMD architectures. The benefits of TLP are achieved by 
 



  
Recent Advances on Video Coding 

 

42

67%
11%

11%
7% 2% 0%

1%
1%

Init_Motion_Search_Module

encode_one_frame

init_img

init_global_buffer

AllocNalPayloadBuffer

init_rdopt

GenerateParameterSets

Autres

 
Fig. 3. Memory profiling of the optimized encoder configuration 
 

 
Fig. 4. Instruction breakdown of the optimized encoder configuration 

 
Complexity/Performance Analysis of a H.264/AVC Video Encoder   

 

43 
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An alternative solution is to use a multiprocessor approach to share the encoding execution 
time between several embedded processors. The sequential encoder application has to be 
distributed using a parallel programming model over a multiprocessor architecture. Based 
on that, we can conclude that it is necessary to explore multiple ways of parallelization apart 
from SIMD extensions in order to achieve the required performance for real time operation. 
To find the best scheme for parallel code execution, profiling the execution of the obtained 
configuration shall identify the major application bottlenecks and the main subcomponents 
candidate for efficient parallelization. 

5.4 Execution profiling 
Typically, tasks will not need the same amount of processing time. Thus, a computational 
profiling should be considered to identify the most computationally-expensive tasks and to 
give a clear picture of the critical code parts candidate for task-level parallelization. After 
that, complex tasks may also be subdivided further into smaller ones, i.e. each slowest 
compute node must be split in a set of compute nodes with better execution values. 
For this, we have profiled the execution of the 300 frames of QCIF “Container” sequence 
with the “Gprof” GNU profiler (Graham et al., 1982). The obtained results are reported in 
the following figure 5 in terms of the CPU time percentage spent in the execution of each 
module. The obtained profile shows that the motion estimation and compensation (MEC), 
DCT transform, the entropy coding, the rate-distortion optimization (RDO) intra/inter 
mode decision, and the intra-prediction modules are the most time-consuming modules. 
These tasks constitute the major bottlenecks of the encoder. 

6. Parallelization of the H.264/AVC video encoder 
In the previous sections, we motivated the implementation of H.264/AVC encoder 
application on a multiprocessor platform. Actually, using a single processor to real time 
encode H.264/AVC bit streams may require a high performance, high frequency super 
scalar processor. Such a choice is not suitable for systems that have strict power and cost 
constraints. For such case, it may be probably necessary to use some kind of multiprocessor 
approach to share the encoding application execution time between several processors.  
For the cost-efficient H.264/AVC parameters configuration, the obtained absolute complexity 
values and profiling analysis results confirmed the big challenge needed for a parallel 
multiprocessor execution. Parallelization consists in transforming the sequential encoding 
algorithms into concurrent tasks for execution in a multiprocessor system (Li et al., 2005). 
The predominant forms of parallelism in such systems are data-level parallelism (DLP) and 
task-level parallelism (TLP). DLP is perhaps the most commonly used form of parallelism, 
implemented through vector or SIMD architectures. The benefits of TLP are achieved by 
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distributing the workload of a single high performance processor among a number of 
slower and simpler processor cores. This requires first to split the algorithms into separate 
tasks that may be executed at the same time, then to establish the necessary inter-task 
communication using parallel programming model primitives (Youssef et al., 2004). 
Generally, the parallel task execution is limited by data dependency between tasks. A data 
dependency means that one task needs the result of another one to be processed therefore 
limiting ways for parallelization (Pastrnak et al., 2006). 
Given this, several multiprocessor and multi-threading encoding systems and parallel 
implementation methodologies have been proposed and discussed in many previous 
research studies (Gulati et al., 2005; Chen, 2004; Zhao, 2006; Sun, 2007) to find the best 
parallel execution scheme of the H.264/AVC video encoder for a chosen multiprocessor 
platform. Based on the performance results obtained in these previous works, and given our 
concern with resource constrained devices, we developed in a dedicated work a new high-
level independent target-architecture parallelization approach (Krichene Zrida et al., 2009) 
based on the use of the parallel streaming programming models of computation and the 
simultaneous exploration of the two predominant concepts of parallelism; the data-level 
partitioning and the task-level splitting and merging. The goal of this approach is to derive 
in a structured way a parallel model of the encoder with the best computation and 
communication workload balance. Based on this parallelization approach (Krichene Zrida et 
al., 2009), a starting parallel model of the H.264/AVC reference encoder is first proposed. 
The implementation of this model is performed according to an appropriate programming 
strategy. According to the communication and computation concurrency properties of the 
implemented starting model, concurrency optimizations using task-merging and data-
partitioning forms of parallelism have been considered. This resulted in an optimized 
parallel model with the best computation and communication workload balance. 
To evaluate the effectiveness of the optimized parallel model, the system-level 
Sesame/Artemis simulation framework (Coffland et al., 2003) has been used targeting 
multiple multiprocessor platforms (Krichene Zrida et al., 2010). It has been shown that the 
encoding performance obtained, in terms of frames per second, are getting linearly better 
with the number of simulated processors (assumed to be MIPS R3000) as presented in the 
figure 6.  
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In addition, the encoding performance results of this optimized parallel model have also 
been compared to those previously obtained using the data-level parallelization approaches 
proposed in (Zhao, 2006; Sun, 2007). Results of this comparison are given in the table14. This 
table clearly shows that our solution (Krichene Zrida et al., 2009), based on simultaneous 
task and data level parallelism, has achieved better performance of the encoding process. 
Actually, using references (Zhao, 2006; Sun, 2007), data splitting is performed respectively at 
the Macro-Blocks MBs row and MBs region communication granularity levels. But for our 
case, a more fine-grain Macro-Block communication granularity level is exploited. Thus, 
with a more fine grain data amount exchanged by the processors, our proposed approach is 
more appropriate for use in embedded multiprocessor SoC implementations having limited 
on-chip memory resources.  
 

 Number of 
processors 

QCIF YUV 
frames 

Encoding 
simulation time 

(s) 

Number of 
frames per 

second (fps) 
Speedup 

Speedup in 
(Zhao, 
2006) 

Speedup in 
(Sun, 
2007) 

Sequential 
H.264 code 

(JM10.2) 

Mono-
Processor __ 2.16 1 1 1 

Optimized 
parallel 
H.264 
model 

2 Processors 1,6 4.72 2.19 __ __ 

4 Processors 1.00 7.77 3.6 3.1 3.3 
 

Table 14. Obtained Multiprocessor simulation results in comparison to those obtained in 
(Zhao, 2006; Sun, 2007) 
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distributing the workload of a single high performance processor among a number of 
slower and simpler processor cores. This requires first to split the algorithms into separate 
tasks that may be executed at the same time, then to establish the necessary inter-task 
communication using parallel programming model primitives (Youssef et al., 2004). 
Generally, the parallel task execution is limited by data dependency between tasks. A data 
dependency means that one task needs the result of another one to be processed therefore 
limiting ways for parallelization (Pastrnak et al., 2006). 
Given this, several multiprocessor and multi-threading encoding systems and parallel 
implementation methodologies have been proposed and discussed in many previous 
research studies (Gulati et al., 2005; Chen, 2004; Zhao, 2006; Sun, 2007) to find the best 
parallel execution scheme of the H.264/AVC video encoder for a chosen multiprocessor 
platform. Based on the performance results obtained in these previous works, and given our 
concern with resource constrained devices, we developed in a dedicated work a new high-
level independent target-architecture parallelization approach (Krichene Zrida et al., 2009) 
based on the use of the parallel streaming programming models of computation and the 
simultaneous exploration of the two predominant concepts of parallelism; the data-level 
partitioning and the task-level splitting and merging. The goal of this approach is to derive 
in a structured way a parallel model of the encoder with the best computation and 
communication workload balance. Based on this parallelization approach (Krichene Zrida et 
al., 2009), a starting parallel model of the H.264/AVC reference encoder is first proposed. 
The implementation of this model is performed according to an appropriate programming 
strategy. According to the communication and computation concurrency properties of the 
implemented starting model, concurrency optimizations using task-merging and data-
partitioning forms of parallelism have been considered. This resulted in an optimized 
parallel model with the best computation and communication workload balance. 
To evaluate the effectiveness of the optimized parallel model, the system-level 
Sesame/Artemis simulation framework (Coffland et al., 2003) has been used targeting 
multiple multiprocessor platforms (Krichene Zrida et al., 2010). It has been shown that the 
encoding performance obtained, in terms of frames per second, are getting linearly better 
with the number of simulated processors (assumed to be MIPS R3000) as presented in the 
figure 6.  
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In addition, the encoding performance results of this optimized parallel model have also 
been compared to those previously obtained using the data-level parallelization approaches 
proposed in (Zhao, 2006; Sun, 2007). Results of this comparison are given in the table14. This 
table clearly shows that our solution (Krichene Zrida et al., 2009), based on simultaneous 
task and data level parallelism, has achieved better performance of the encoding process. 
Actually, using references (Zhao, 2006; Sun, 2007), data splitting is performed respectively at 
the Macro-Blocks MBs row and MBs region communication granularity levels. But for our 
case, a more fine-grain Macro-Block communication granularity level is exploited. Thus, 
with a more fine grain data amount exchanged by the processors, our proposed approach is 
more appropriate for use in embedded multiprocessor SoC implementations having limited 
on-chip memory resources.  
 

 Number of 
processors 

QCIF YUV 
frames 

Encoding 
simulation time 

(s) 

Number of 
frames per 

second (fps) 
Speedup 

Speedup in 
(Zhao, 
2006) 

Speedup in 
(Sun, 
2007) 

Sequential 
H.264 code 

(JM10.2) 

Mono-
Processor __ 2.16 1 1 1 

Optimized 
parallel 
H.264 
model 

2 Processors 1,6 4.72 2.19 __ __ 

4 Processors 1.00 7.77 3.6 3.1 3.3 
 

Table 14. Obtained Multiprocessor simulation results in comparison to those obtained in 
(Zhao, 2006; Sun, 2007) 



  
Recent Advances on Video Coding 

 

46

Finally it has been shown, for a four-processor platform with the common bus structure, 
that the computation cost is much more important than the time spent in reading/writing 
from/to the shared memory. The communication and computation loads are nearly 
balanced for all the used components, as shown in the figure 7. These results represent again 
a solid confirm of the good concurrency properties of the obtained optimized model.  
 

0% 20% 40% 60% 80% 100%

µP1

µP2

µP3

µP4

Memory

Read/Write time

Busy time

Idle time

 
Fig. 7. Reading-Writing/Execution/Idle statistics for the common-bus-based architecture 

However given the results of the figure 7, the times being idle are too much important in 
comparison with those being busy for all the architecture components. This has probably 
caused a substantial degradation of the final encoding performances. Given the important 
amount of data communicated between processes for the H.264/AVC encoding process, it is 
clear that the common memory bus structure constitutes a serious communication 
bottleneck. Actually, the very important data dependency between processors requires a 
potential memory access and allocation for the read/write operations. For a common-bus 
multiprocessor architecture, this causes a saturation of bus and thus a lot of time is spent in 
waiting to read/write data from/to other component. For further design space exploration 
and in order to reduce the communication bottleneck observed for the common-bus-based 
architecture, others inter processors communication structures and topologies need to be 
evaluated for a better encoding performance.  

7. Conclusions 
The H.264/AVC has been designed with the goal of enabling significantly improved 
compression performance relative to all existing video coding standards. Implementing a 
H.264 video encoder represents a big challenge for resource-constrained multimedia 
systems such as wireless devices or high-volume consumer electronics since this requires 
very high computational power to achieve real-time encoding. In this chapter, a high-level 
performance analysis of a H.264 video encoder is first performed to find an optimal balance 
between the coding efficiency and the implementation cost allowing for a complexity 
reduction at the high system level.  
For an optimal use of the AVC tools, the best configuration parameters are obtained. For this 
cost-efficient configuration, the absolute complexity values, the memory and task level 
profiling results confirmed the big challenge needed for its effective implementation. For 
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such implementation, a multiprocessor approach is needed to share the encoding 
application execution time between several processors for achieving better execution 
performances and real time encoding. 
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a solid confirm of the good concurrency properties of the obtained optimized model.  
 

0% 20% 40% 60% 80% 100%

µP1

µP2

µP3

µP4

Memory

Read/Write time

Busy time

Idle time

 
Fig. 7. Reading-Writing/Execution/Idle statistics for the common-bus-based architecture 
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1. Introduction 
Recently, the content distribution network industry has become exposed to significant 
changes. The advent of cheaper and more powerful mobile devices having the ability to 
play, create, and transmit video content and which maximize a number of multimedia content 
distributions on various mobile networks will place unprecedented demands on networks 
for high capacity, low-latency, and low-loss communications paths. The reduction of cost of 
digital video cameras along with development of user-generated video sites (e.g., iTunes™, 
Google™ Video and YouTube™) have stimulated the new user-generated content sector. 
Growing premium content coupled with advanced video technologies, such as the Internet 
TV, will replace in the near future conventional technologies (e.g., cable or satellite TV).  
The relatively recent ITU-T H.264/AVC (ISO/IEC MPEG-4 Part 10) video coding standard 
(Wiegand & Sullivan, 2003), which was officially issued in 2003, has become a challenge for 
real-time video applications. Compared to others standards, it gains about 50% in bit rate, 
while providing the same visual quality. In addition to having all the advantages of MPEG-
2, H.263 and MPEG-4, the H.264 video coding standard possesses a number of 
improvements, such as the content-adaptive-based arithmetic codec (CABAC), enhanced 
transform and quantization, prediction of "Intra" macroblocks (spatial prediction), and 
others. H.264 is designed for both constant bit rate (CBR) and variable bit rate (VBR) video 
coding, useful for transmitting video sequences over statistically multiplexed networks (e.g. 
asynchronous transfer mode (ATM), the Ethernet, or other Internet networks). This video 
coding standard can also be used at any bit rate range for various applications, varying from 
wireless video phones to high definition television (HDTV) and digital video broadcasting 
(DVB). In addition, H.264 provides significantly improved coding efficiency and greater 
functionality, such as rate scalability, “Intra” prediction and error resilience in comparison 
with its predecessors, MPEG-2 and H.263. However, H.264/AVC is much more complex in 
comparison to other coding standards and to achieve maximum quality encoding, high 
computational resources are required.   
Due to the recent technological achievements and trends, the high-definition, highly 
interactive networked media applications pose challenges to network operators. The variety 
of end-user devices with different capabilities, ranging from cell phones with small screens 
and restricted processing power to high-end PCs with high-definition displays, have 
stimulated significant interest in effective technologies for video adaptation for spatial 
formats, consuming power and bit rate.  
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1. Introduction 
Recently, the content distribution network industry has become exposed to significant 
changes. The advent of cheaper and more powerful mobile devices having the ability to 
play, create, and transmit video content and which maximize a number of multimedia content 
distributions on various mobile networks will place unprecedented demands on networks 
for high capacity, low-latency, and low-loss communications paths. The reduction of cost of 
digital video cameras along with development of user-generated video sites (e.g., iTunes™, 
Google™ Video and YouTube™) have stimulated the new user-generated content sector. 
Growing premium content coupled with advanced video technologies, such as the Internet 
TV, will replace in the near future conventional technologies (e.g., cable or satellite TV).  
The relatively recent ITU-T H.264/AVC (ISO/IEC MPEG-4 Part 10) video coding standard 
(Wiegand & Sullivan, 2003), which was officially issued in 2003, has become a challenge for 
real-time video applications. Compared to others standards, it gains about 50% in bit rate, 
while providing the same visual quality. In addition to having all the advantages of MPEG-
2, H.263 and MPEG-4, the H.264 video coding standard possesses a number of 
improvements, such as the content-adaptive-based arithmetic codec (CABAC), enhanced 
transform and quantization, prediction of "Intra" macroblocks (spatial prediction), and 
others. H.264 is designed for both constant bit rate (CBR) and variable bit rate (VBR) video 
coding, useful for transmitting video sequences over statistically multiplexed networks (e.g. 
asynchronous transfer mode (ATM), the Ethernet, or other Internet networks). This video 
coding standard can also be used at any bit rate range for various applications, varying from 
wireless video phones to high definition television (HDTV) and digital video broadcasting 
(DVB). In addition, H.264 provides significantly improved coding efficiency and greater 
functionality, such as rate scalability, “Intra” prediction and error resilience in comparison 
with its predecessors, MPEG-2 and H.263. However, H.264/AVC is much more complex in 
comparison to other coding standards and to achieve maximum quality encoding, high 
computational resources are required.   
Due to the recent technological achievements and trends, the high-definition, highly 
interactive networked media applications pose challenges to network operators. The variety 
of end-user devices with different capabilities, ranging from cell phones with small screens 
and restricted processing power to high-end PCs with high-definition displays, have 
stimulated significant interest in effective technologies for video adaptation for spatial 
formats, consuming power and bit rate.  
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As a result, much of the attention in the field of video adaptation is currently directed to the 
Scalable Video Coding (SVC), which was standardized in 2007 as an extension of 
H.264/AVC (Schwarz et al., 2007), since the bit-stream scalability for video is currently a 
very desirable feature for many multimedia applications.  
The need for the scalability arises from the need for spatial formats, bit rates or power 
(Wiegand & Sullivan, 2003). To fulfill these requirements, it would be beneficial to 
simultaneously transmit or store video in variety of spatial/temporal resolutions and 
qualities, leading to the video bit-stream scalability. Major requirements for the Scalable 
Video Coding are to enable encoding of a high-quality video bitstream that contains one or 
more subset bitstreams, each of which can be transmitted and decoded to provide video 
services with lower temporal or spatial resolutions, or to provide reduced reliability, while 
retaining reconstruction quality that is highly relative to the rate of the subset bitstreams. 
Therefore, the Scalable Video Coding provides important functionalities, such as the spatial, 
temporal and SNR (quality) scalability, thereby enabling the power adaptation. In turn, 
these functionalities lead to enhancements of video transmission and storage applications.  
SVC has achieved significant improvements in coding efficiency comparing to the scalable 
profiles of prior video coding standards. Also, in addition to the temporal, spatial and 
quality scalabilities, the SVC supports the Region-of-Interest (ROI) scalability. The ROI is a 
desirable feature in many future scalable video coding applications, such as mobile device 
applications, which have to be adapted to be displayed on a relatively small screen (thus, a 
mobile device user may require to extract and track only a predefined Region-of-Interest 
within the displayed video). At the same time, other users having a larger mobile device 
screen may wish to extract other ROI(s) to receive greater video stream resolution. 
Therefore, to fulfill these requirements, it would be beneficial to simultaneously transmit or 
store a video stream in a variety of Regions-of-Interest (e.g., each Region-of-Interest having 
different spatial resolution, as illustrated in Fig. 1), as well to enable efficiently tracking the 
predefined Region-of-Interest. 
 

 
Fig. 1. Defining ROIs with different spatial resolutions (e.g., CIF, SD/4CIF, 720p resolutions) 
to be provided within a Scalable Video Coding stream. 

This chapter is organized as follows: in Section 2, the Region-of-Interest (ROI) detection and 
tracking is described in detail, while presenting the Pixel-Domain approach (Section 2.1) and 
Compressed-Domain approach (Section 2.2), and further presenting various models and 
techniques, such as the Visual Attention model (Section 2.1.1), Object Detection (Section 
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2.1.2), Face Detection (Section 2.1.3), Skin Detection (Section 2.1.4), etc.; in Section 3, the ROI 
Coding in H.264/SVC Standard is presented, including the ROI Scalability by Performing 
Cropping (Section 3.1) and the ROI Scalability by Using Flexible Macroblock Ordering 
(FMO) technique (Section 3.2); in Section 4, the bit-rate control for the ROI coding is 
presented; and Conclusions are provided in Section 5.   

2. Region-of-interest detection and tracking 
In order to successfully perform the ROI coding, it is important to accurately detect, and 
then correctly track, the desired Region-of-Interest. There are mainly two methods for the 
ROI detection and tracking: (a) the pixel-domain approach; and (b) the compressed-domain 
approach. The pixel-domain approach is more accurate compared to the compressed-
domain approach, but it requires relatively high computational complexity resources. On 
the other hand, the compressed-domain approach does not consume many resources since it 
exploits the encoded information (such as DCT coefficients, motion vectors, macroblock 
types which are extracted in a compressed bitstream, etc.) (Manerba et al., 2008; Kas & 
Nicolas, 2009; Hanfeng et al., 2001; Zeng et al., 2005), but it results in a relatively poor 
performance. Also, for the same reason, the compressed-domain approach has significantly 
fast processing time and is adaptive to compressed videos. As a result, the compressed-
domain approach is applicable mainly for simple scenarios.  
Both the pixel-domain and compressed-domain approaches are explained in detail in the 
following Sections 2.1 and 2.2.  

2.1 Pixel-domain approach 
Generally, the main researches on object detection and tracking have been focused on the 
pixel domain approach since it can provide powerful capability of object tracking by using 
varyous technologies. The pixel-domain detection can be classified into the following types: 
• Region-based methods. According to these methods, the object detection is performed 

according to ROI features, such as motion distribution and color histogram. The 
information with regard to the object colors can be especially useful when these colors 
are distinguishable from the image background or from other objects within the image 
(Vezhnevets, 2002). 

• Feature-based methods (Shokurov et al., 2003). According to these methods, various 
motion parameters of feature points are calculated (the motion parameters are related 
to affine transformation information, which in turn contains rotation and 2D translation 
data). 

• Contour-based methods. According to these methods, the shape and position of objects 
are detected by modeling the contour data (Wang et al., 2002). 

• Template-based methods. According to these methods, the objects (such as faces) are 
detected by using predetermined templates (Schoepflin et al., 2001). 

As mentioned above, phe pixel-domain approach is, generally, more accurate than the 
compressed-domain approach, but has relatively high computational complexity and 
requires further additional computational resources for decoding compressed video 
streams. Therefore, the desired ROI can be predicted in a relatively accurate manner by 
defining various pixel-domain models, such as visual attention models, object detection 
models, face detection models, etc., as presented in detail in the following Sub-Sections 2.1.1 
to 2.1.4. 
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data). 
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• Template-based methods. According to these methods, the objects (such as faces) are 
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As mentioned above, phe pixel-domain approach is, generally, more accurate than the 
compressed-domain approach, but has relatively high computational complexity and 
requires further additional computational resources for decoding compressed video 
streams. Therefore, the desired ROI can be predicted in a relatively accurate manner by 
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models, face detection models, etc., as presented in detail in the following Sub-Sections 2.1.1 
to 2.1.4. 
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2.1.1 Visual attention  
The visual attention models refer to the ability of a human user to concentrate his/her 
attention on a specific region of an image/video. This involves selection of the sensory 
information by the primary visual cortex in the brain by using a number of characteristic, 
such as intensity, color, size, orientation in space, and the like (Hu et al., 2008). Actually, the 
visual attention models simulate the behavior of the Human Visual System (HVS), and in 
turn enable to detect the Region-of-Interest within the image/video, such as presented in 
Fig. 2.  
 

 
Fig. 2. An example of concentrating the attention on a specific region of an image.  

Several researches have been conducted with this regard in order to achieve better ROI 
detection performance, and in turn improve the ROI visual presentation quality. Thus, for 
example (Cheng et al., 2005) presents a framework for automatic video Region-of-Interest 
determination based on user attention model, while considering the three types of visual 
attention features, i.e. intensity, color and motion. The contrast-based intensity model is 
based on the fact that particular color pairs, such as red-green and blue-yellow possess high 
spatial and chromatic opposition; the same characteristics exist in high deference lighting or 
intensity pairs. Thus, according to (Cheng et al., 2005), the intensity, red-green color and 
blue-yellow color constant models should be included into the user attention representation 
module. Also, when there is more than one ROI within the frame (e.g., a number of football 
players), then a saliency map is used which shows the ability to characterize the visual 
attraction of the image/video. The saliency map is divided into n regions, and ROI is 
declared for each such region, thereby enabling to dynamically and automatically determine 
ROI for each frame-segment.  
Further, (Sun et al., 2010) proposes a visual attention based approach to extract texts from 
complicated background in camera-based images. First, it applies the simplified visual 
attention model to highlight the region of interest (ROI) in an input image and to yield a 
map consisting of the ROIs. Second, an edge map of image containing the edge information 
of four directions is obtained by Sobel operators; character areas are detected by connected 
component analysis and merged into candidate text regions. Finally, the map consisting of 
the ROIs is employed to confirm the candidate text regions.  
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Further, other visual attention models have been recently proposed to improve the ROI 
visual presentation quality, such as (Engelke et al., 2009), which discusses two ways of 
obtaining subjective visual attention data that can be subsequently used to develop visual 
attention models based on the selective region-of-interest and visual fixation patterns; (Chen 
et al., 2010) discloses a model of the focus of attention for detecting the attended regions in 
video sequences by using the similarity between the adjacent frames, establishing the gray 
histogram, selecting the maximum similarity as predicable model, and finally obtaining a 
position of the focus of attention in the next fame; (Li et al., 2010) presents a three-stage 
method that combines the visual attention model with target detection by using the saliency 
map, covering the region of interest with blocks and measuring the similarity between the 
blocks and the template; (Kwon et al., 2010) shows a ROI based video preprocessor method 
that deals with the perceptual quality in a low-bit rate communication environment, further 
proposing three separated processes: the ROI detection, the image enhancement, and the 
boundary reduction in order to deliver better video quality at the videoconferencing 
application for use in a fixed camera and to be compatible as a preprocessor for the 
conventional video coding standards.  
As seen from the above, the visual attention approach has recently become quite popular 
among researchers, and many improved techniques have been lately presented.  

2.1.2 Object detection  
Automatic object detection is one of the important steps in image processing and computer 
vision (Bhanu et al., 1997; Lin et al., 2005). The major task of object detection is to locate 
objects in images and extract the regions containing them (the extracted regions are ROIs). 
The quality of object detection is highly dependent on the effectiveness of the features used 
in the detection. Finding or designing appropriate features to capture the characteristics of 
objects and building the feature-based representation of objects are the key to the success of 
detection. Usually, it is not easy for human experts to figure out a set of features to 
characterize complex objects, and sometimes, simple features directly extracted from images 
may not be effective in object detection.  
The ROI detection is especially useful for medical applications (Liu, 2006). Automatic 
detection of ROI in a complex image or video like endoscopic neurosurgery video, is an 
important task in many image and video processing applications such as image-guide 
surgery system, real-time patient monitoring system, and object-based video compression. 
In telemedical applications, object-based video coding is highly useful because it produces a 
good perceptual quality in a specified region, i.e., a region of interest (ROI), without 
requiring an excessive bandwidth. By using a dedicated video encoder, the ROI can be 
coded with more bits to obtain a much higher quality than that of the non-ROI which is 
coded with fewer bits.  
In the last decade, various object detection techniques have been proposed. For example, 
(Han et al., 2008) presents a fully automated architecture for object-based ROI detection, 
based on the principle of discriminant saliency, which defines as salient the image regions of 
strongest response to a set of features that optimally discriminate the object class of interest 
from all the others. It consists of two stages, saliency detection and saliency validation. The 
first detects salient points, the second verifies the consistency of their geometric configuration 
with that of training examples. Both the saliency detector and the configuration model can 
be learned from cluttered images downloaded from the web.  
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Also, (Wang J. M. et al., 2008) describes a simple and novel algorithm for detecting 
foreground objects in video sequences using just two consecutive frames. The method is 
divided in three layers: sensory layer, perceptual layer, and memory layer (short-term 
memory in conceptual layer). In sensory layer, successive images are obtained from one 
fixed camera, and some early computer vision processing techniques are applied here to 
extract the image information, which are edges and inconsistent region. In perceptual layer, 
moving objects are extracted based on the information from the sensory layer, and may 
request the sensory layer support more detail. The detecting results are stored in the 
memory layer, and help the perceptual layer to detect the temporal static objects. 
In addition, (Jeong, 2006) proposes an objectionable image detection system based on the 
ROI. The system proposed by (Jeong, 2006) excels in that ROI detection method is 
specialized in objectionable image detection. In addition, a novel feature consisting of 
weighted SCD based on ROI and skin color structure descriptor is presented for classifying 
objectionable image. Using the ROI detection method, (Jeong, 2006)  can reduce the noisy 
information in image and extract more accurate features for classifying objectionable image. 
Further, (Lin et al., 2005) uses genetic programming (GP) to synthesize composite operators 
and composite features from combinations of primitive operations and primitive features 
for object detection. The motivation for using GP is to overcome the human experts' 
limitations of focusing only on conventional combinations of primitive image processing 
operations in the feature synthesis. GP attempts many unconventional combinations that in 
some cases yield exceptionally good results. Compared to a traditional region-of-interest 
extraction algorithm, the composite operators learned by GP are more effective and efficient 
for object detection. Still further, (Kim & Wang, 2009) proposes a method for smoke 
detection in outdoor video sequences, which contains three steps. The first step is to decide 
whether the camera is moving or not. While the camera is moving, the authors skip the 
ensuing steps. Otherwise, the second step is to detect the areas of change in the current 
input frame against the background image and to locate regions of interest (ROIs) by 
connected component analysis. In the final step, the authors decide whether the detected 
ROI is smoke by using the k-temporal information of its color and shape extracted from the 
ROI.   

2.1.3 Face detection 
The face detection can be regarded as a specific case of object-class detection. In object-class 
detection, the task is to find the locations and sizes of all objects in an image that belong to a 
given class (such as pedestrians, cars, and the like). Also, the face detection can be regarded 
as a more general case of face localization. In face localization, the task is to find the 
locations and sizes of a known number of faces (usually one). In face detection, one does not 
have this additional information. 
Early face-detection algorithms focused on the detection of frontal human faces, whereas 
recent face detection method aim to solve the more general and difficult problem of multi-
view face detection. The face detection from an image video is considered to be a 
relatively difficult task due to a plurality of possible visual representations of the same 
face: the face scale, pose, location, orientation in space, varying lighting conditions, face 
emotional expression, and many others (e.g., as presented in Fig. 3). Therefore, in spite of 
the recent technological progress, this field still has many challenges and problems to be 
resolved.  
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Generally, the challenges associated with face detection can be attributed to the following 
factors (Yang et al., 2010):  
• Facial expression. The appearance of faces is directly affected by a person’s facial 

expression. 
• Pose. The images of a face vary due to the relative camera-face pose (frontal, 45 degree, 

profile, upside down), and some facial features such as an eye or the nose may become 
partially or wholly occluded. 

• Occlusion. Faces may be partially occluded by other objects. In an image with a group of 
people, some faces may partially occlude other faces.  

• Image orientation. Face images directly vary for different rotations about the camera’s 
optical axis.  

• Imaging conditions. When the image is formed, factors such as lighting (spectra, source 
distribution and intensity) and camera characteristics (sensor response, lenses) affect the 
appearance of a face.   

• Presence or absence of structural components. Facial features such as beards, mustaches, 
and glasses may or may not be present and there is a great deal of variability among 
these components including shape, color, and size. 

 

    
Fig. 3. An example of a plurality of possible visual representations of the same face, which 
has an influence on the accurate face detection. Although the accuracy of face detection 
systems has dramatically increased during the last decade, such systems still have many 
challenges and problems to be resolved, such as varying lighting conditions, facial expression, 
presence or absence of structural components, etc. 

During the last decade, many researchers around the world tried to improve the face 
detection and develop an efficient and accurate detection system. Such for example, 
(Mustafah et al., 2009) proposes a design of a face detection system for real-time high 
resolution smart camera, while making an emphasis on the problem of crowd surveillance 
where the static color camera is used to monitor a wide area of interest, and utilizing a 
background subtraction method to reduce the Region-of-Interest (ROI) to areas where the 
moving objects are located. Another work was performed by (Zhang et al., 2009), in which 
was presented a ROI based H.264 encoder for videophone with a hardware macroblock 
level face detector. The ROI definition module operates as a face detector in videophone, 
and it is embedded into the encoder to define the currently processed and encoded ROI 
macroclocks, while the encoding process is dynamically controlled according to the ROI (the 
encoding parameters vary according to ROI).  
Further, other face detection techniques have been recently proposed to improve the face 
detection, such as: (Micheloni et al., 2005) presents an integrated surveillance system for the 
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Also, (Wang J. M. et al., 2008) describes a simple and novel algorithm for detecting 
foreground objects in video sequences using just two consecutive frames. The method is 
divided in three layers: sensory layer, perceptual layer, and memory layer (short-term 
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for object detection. The motivation for using GP is to overcome the human experts' 
limitations of focusing only on conventional combinations of primitive image processing 
operations in the feature synthesis. GP attempts many unconventional combinations that in 
some cases yield exceptionally good results. Compared to a traditional region-of-interest 
extraction algorithm, the composite operators learned by GP are more effective and efficient 
for object detection. Still further, (Kim & Wang, 2009) proposes a method for smoke 
detection in outdoor video sequences, which contains three steps. The first step is to decide 
whether the camera is moving or not. While the camera is moving, the authors skip the 
ensuing steps. Otherwise, the second step is to detect the areas of change in the current 
input frame against the background image and to locate regions of interest (ROIs) by 
connected component analysis. In the final step, the authors decide whether the detected 
ROI is smoke by using the k-temporal information of its color and shape extracted from the 
ROI.   

2.1.3 Face detection 
The face detection can be regarded as a specific case of object-class detection. In object-class 
detection, the task is to find the locations and sizes of all objects in an image that belong to a 
given class (such as pedestrians, cars, and the like). Also, the face detection can be regarded 
as a more general case of face localization. In face localization, the task is to find the 
locations and sizes of a known number of faces (usually one). In face detection, one does not 
have this additional information. 
Early face-detection algorithms focused on the detection of frontal human faces, whereas 
recent face detection method aim to solve the more general and difficult problem of multi-
view face detection. The face detection from an image video is considered to be a 
relatively difficult task due to a plurality of possible visual representations of the same 
face: the face scale, pose, location, orientation in space, varying lighting conditions, face 
emotional expression, and many others (e.g., as presented in Fig. 3). Therefore, in spite of 
the recent technological progress, this field still has many challenges and problems to be 
resolved.  
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Generally, the challenges associated with face detection can be attributed to the following 
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distribution and intensity) and camera characteristics (sensor response, lenses) affect the 
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• Presence or absence of structural components. Facial features such as beards, mustaches, 
and glasses may or may not be present and there is a great deal of variability among 
these components including shape, color, and size. 

 

    
Fig. 3. An example of a plurality of possible visual representations of the same face, which 
has an influence on the accurate face detection. Although the accuracy of face detection 
systems has dramatically increased during the last decade, such systems still have many 
challenges and problems to be resolved, such as varying lighting conditions, facial expression, 
presence or absence of structural components, etc. 

During the last decade, many researchers around the world tried to improve the face 
detection and develop an efficient and accurate detection system. Such for example, 
(Mustafah et al., 2009) proposes a design of a face detection system for real-time high 
resolution smart camera, while making an emphasis on the problem of crowd surveillance 
where the static color camera is used to monitor a wide area of interest, and utilizing a 
background subtraction method to reduce the Region-of-Interest (ROI) to areas where the 
moving objects are located. Another work was performed by (Zhang et al., 2009), in which 
was presented a ROI based H.264 encoder for videophone with a hardware macroblock 
level face detector. The ROI definition module operates as a face detector in videophone, 
and it is embedded into the encoder to define the currently processed and encoded ROI 
macroclocks, while the encoding process is dynamically controlled according to the ROI (the 
encoding parameters vary according to ROI).  
Further, other face detection techniques have been recently proposed to improve the face 
detection, such as: (Micheloni et al., 2005) presents an integrated surveillance system for the 
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outdoor security; (Qayyum & Javed, 2006) discloses a notch based face detection, tracking 
and facial feature localization system, which contains two phases: visual guidance and 
face/non-face classification; and (Sadykhov & Lamovsky, 2008) discloses a method for real-
time face detection in 3D space.  

2.1.4 Skin detection  
The successful recognition of the skin ROI simplifies the further processing of such ROI. The 
main aim of traditional skin ROI detection schemes is to detect skin pixels in images, 
thereby generating skin areas. According to (Abdullah-Al-Wadud & Oksam, 2007), if ROI 
detection process misses a skin region or provides regions having lots of holes in it, then the 
reliability of applications significantly decreases. Therefore, it is important to maintain the 
efficiency of the human-computer interaction (HCI) based systems. In turn, (Abdullah-Al-
Wadud & Oksam, 2007) presents an improved region-of-interest selection method for skin 
detection applications. This method can be applied in any explicit skin cluster classifier in 
any color space, while do not requiring any learning or training procedure. The proposed 
algorithm mainly operates on a grayscale image (DM), but the processing is based on color 
information. The scalar distance map contains the information of the vector image, thereby 
making this method relatively simple to implement. 
Also, (Yuan & Mu, 2007) presents an ear detection method, which is based on skin-color 
and contour information, while introducing a modified Continuously Adaptive Mean 
Shift (CAMSHAFT) algorithm for rough and fast profile tracking. The aim for profile 
tracking is to locate the main skin-color region, such as the ROI that contains the ear. The 
CAMSHIFT algorithm is based on a robust non-parameter technique for climbing density 
gradients to find peak of probability distribution called the mean shift algorithm. The 
mean shift algorithm operates on probability distribution, so in order to track colored 
objects in video sequence, the color image data has to be represented as the color 
distribution first. According to (Yuan & Mu, 2007), the modified CAMSHIFT method is 
performed as follows:  
• Generating the skin-color histogram on training set skin images.  
• Setting the initial location of the 2D mean shift search window at a fixed poison in the 

first frame such as the center of the frame.  
• Using the generated skin-color histogram to calculate the skin-color probability 

distribution of the 2D region centered at the area slightly larger than the mean shift 
window size. 

• Calculating the zeroth moment (area of size) and mean location (the centroid). 
• For the next frame, centering the search window at the calculated mean location and 

setting the window size using a function of the zeroth moment. Then the previous two 
steps are repeated. 

In addition, (Chen et al., 2003) presents a video coding H263 based technique for robust 
skin-color detection, which is suitable for real time videoconferencing.  According to (Chen 
et al., 2003), the ROIs are automatically selected by a robust skin-color detection which 
utilizes the Cr and RGB variance instead of the traditional skin color models, such as YCbCr, 
HSI, etc. The skin color model defined by Cr and RGB variance can choose the skin color 
region more accurately than other methods. The distortion weight parameter and variance 
at the macroblock layer are adjusted to control the qualities at different regions. As a result, 
the quality at the ROI is can significantly improved.  
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2.2 Compressed-domain detection 
The conventional compressed domain algorithms exploit motion vectors or DCT coefficients 
instead of original pixel data as resources in order to reduce computational complexity of 
object detection and tracking (You, 2010).  
In general, the compressed domain algorithms can be categorized as follows: the clustering-
based methods and the filtering-based methods.  
The clustering-based methods (Benzougar et al., 2001; Babu et al., 2004; Ji & Park, 2000; 
Jamrozik & Hayes, 2002) attempt to perform grouping and merging all blocks into several 
regions according to their spatial or temporal similarity. Then, these regions are merged 
with each other or classified as background or foreground. The most advanced clustering-
based method, which handles the H.264/AVC standard, is the region growing approach, in 
which several seed fragments grow spatially and temporally by merging similar 
neighboring fragments.  
On the other hand, the filtering-based methods (Aggarwal et al., 2006; Zheg et al., 2005; You 
et al., 2007; You et al., 2009) extract foreground regions by filtering blocks, which are 
expected to belong to background or by classifying all blocks into foreground and 
background. Then, the foreground region is split into several object parts through clustering 
procedure.  

2.3 Region-of-interest tracking  
Object tracking based on video sequence plays an important role in many modern vision 
applications such as intelligent surveillance, video compression, human-computer 
interfaces, sports analysis (Haritaoglu et al, 2000). When object is tracked with an active 
camera, traditional methods such as background subtraction, temporal differencing and 
optical flow may not work well due to the motion of camera, tremor of camera and the 
disturbance from background (Xiang, 2009).  
Some researchers propose methods of tracking moving target with an active camera, yet 
most of their algorithms are too computationally complex due to their dependence on 
accurate mathematical model and motion model, and can’t be applied to real-time tracking 
in presence of fast motion from the object or the active camera, irregular motion and un-
calibrated camera. (Xiang, 2009) makes great effort to find a fast, computationally efficient 
algorithm, which can handle fast motion, and can smoothly follow-up track moving target 
with an active camera, by proposing a method for real-time follow-up tracking fast moving 
object with an active camera. (Xiang, 2009) focuses on the color-based Mean Shift algorithm 
which shows excellent performance both on computationally complexity and robustness.  
(Wei & Zhou, 2010) presents a novel algorithm that uses the selective visual attention 
mechanisms to develop a reliable algorithm for objects tracking that can effectively deal 
with the relatively big influence by external interference in a-priori approaches. To extract 
the ROI, it makes use of the "local statistic" of the object. By integrating the image feature 
with state feature, the synergistic benefits can bring following obvious advantages: 
• It doesn't use any a-priori knowledge about blobs and no heuristic assumptions must be 

provided; 
• The computation of the model for a generic blob doesn't take a long processing time. 
According to (Wei & Zhou, 2010), during the detection phase, there are some false-alarms in 
any actual image. To reduce the fictitious targets as much as possible, it needs to identify the 
extracted ROI, while the tracing target can be defined by the following characteristics:  
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outdoor security; (Qayyum & Javed, 2006) discloses a notch based face detection, tracking 
and facial feature localization system, which contains two phases: visual guidance and 
face/non-face classification; and (Sadykhov & Lamovsky, 2008) discloses a method for real-
time face detection in 3D space.  

2.1.4 Skin detection  
The successful recognition of the skin ROI simplifies the further processing of such ROI. The 
main aim of traditional skin ROI detection schemes is to detect skin pixels in images, 
thereby generating skin areas. According to (Abdullah-Al-Wadud & Oksam, 2007), if ROI 
detection process misses a skin region or provides regions having lots of holes in it, then the 
reliability of applications significantly decreases. Therefore, it is important to maintain the 
efficiency of the human-computer interaction (HCI) based systems. In turn, (Abdullah-Al-
Wadud & Oksam, 2007) presents an improved region-of-interest selection method for skin 
detection applications. This method can be applied in any explicit skin cluster classifier in 
any color space, while do not requiring any learning or training procedure. The proposed 
algorithm mainly operates on a grayscale image (DM), but the processing is based on color 
information. The scalar distance map contains the information of the vector image, thereby 
making this method relatively simple to implement. 
Also, (Yuan & Mu, 2007) presents an ear detection method, which is based on skin-color 
and contour information, while introducing a modified Continuously Adaptive Mean 
Shift (CAMSHAFT) algorithm for rough and fast profile tracking. The aim for profile 
tracking is to locate the main skin-color region, such as the ROI that contains the ear. The 
CAMSHIFT algorithm is based on a robust non-parameter technique for climbing density 
gradients to find peak of probability distribution called the mean shift algorithm. The 
mean shift algorithm operates on probability distribution, so in order to track colored 
objects in video sequence, the color image data has to be represented as the color 
distribution first. According to (Yuan & Mu, 2007), the modified CAMSHIFT method is 
performed as follows:  
• Generating the skin-color histogram on training set skin images.  
• Setting the initial location of the 2D mean shift search window at a fixed poison in the 

first frame such as the center of the frame.  
• Using the generated skin-color histogram to calculate the skin-color probability 

distribution of the 2D region centered at the area slightly larger than the mean shift 
window size. 

• Calculating the zeroth moment (area of size) and mean location (the centroid). 
• For the next frame, centering the search window at the calculated mean location and 

setting the window size using a function of the zeroth moment. Then the previous two 
steps are repeated. 

In addition, (Chen et al., 2003) presents a video coding H263 based technique for robust 
skin-color detection, which is suitable for real time videoconferencing.  According to (Chen 
et al., 2003), the ROIs are automatically selected by a robust skin-color detection which 
utilizes the Cr and RGB variance instead of the traditional skin color models, such as YCbCr, 
HSI, etc. The skin color model defined by Cr and RGB variance can choose the skin color 
region more accurately than other methods. The distortion weight parameter and variance 
at the macroblock layer are adjusted to control the qualities at different regions. As a result, 
the quality at the ROI is can significantly improved.  
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2.2 Compressed-domain detection 
The conventional compressed domain algorithms exploit motion vectors or DCT coefficients 
instead of original pixel data as resources in order to reduce computational complexity of 
object detection and tracking (You, 2010).  
In general, the compressed domain algorithms can be categorized as follows: the clustering-
based methods and the filtering-based methods.  
The clustering-based methods (Benzougar et al., 2001; Babu et al., 2004; Ji & Park, 2000; 
Jamrozik & Hayes, 2002) attempt to perform grouping and merging all blocks into several 
regions according to their spatial or temporal similarity. Then, these regions are merged 
with each other or classified as background or foreground. The most advanced clustering-
based method, which handles the H.264/AVC standard, is the region growing approach, in 
which several seed fragments grow spatially and temporally by merging similar 
neighboring fragments.  
On the other hand, the filtering-based methods (Aggarwal et al., 2006; Zheg et al., 2005; You 
et al., 2007; You et al., 2009) extract foreground regions by filtering blocks, which are 
expected to belong to background or by classifying all blocks into foreground and 
background. Then, the foreground region is split into several object parts through clustering 
procedure.  

2.3 Region-of-interest tracking  
Object tracking based on video sequence plays an important role in many modern vision 
applications such as intelligent surveillance, video compression, human-computer 
interfaces, sports analysis (Haritaoglu et al, 2000). When object is tracked with an active 
camera, traditional methods such as background subtraction, temporal differencing and 
optical flow may not work well due to the motion of camera, tremor of camera and the 
disturbance from background (Xiang, 2009).  
Some researchers propose methods of tracking moving target with an active camera, yet 
most of their algorithms are too computationally complex due to their dependence on 
accurate mathematical model and motion model, and can’t be applied to real-time tracking 
in presence of fast motion from the object or the active camera, irregular motion and un-
calibrated camera. (Xiang, 2009) makes great effort to find a fast, computationally efficient 
algorithm, which can handle fast motion, and can smoothly follow-up track moving target 
with an active camera, by proposing a method for real-time follow-up tracking fast moving 
object with an active camera. (Xiang, 2009) focuses on the color-based Mean Shift algorithm 
which shows excellent performance both on computationally complexity and robustness.  
(Wei & Zhou, 2010) presents a novel algorithm that uses the selective visual attention 
mechanisms to develop a reliable algorithm for objects tracking that can effectively deal 
with the relatively big influence by external interference in a-priori approaches. To extract 
the ROI, it makes use of the "local statistic" of the object. By integrating the image feature 
with state feature, the synergistic benefits can bring following obvious advantages: 
• It doesn't use any a-priori knowledge about blobs and no heuristic assumptions must be 

provided; 
• The computation of the model for a generic blob doesn't take a long processing time. 
According to (Wei & Zhou, 2010), during the detection phase, there are some false-alarms in 
any actual image. To reduce the fictitious targets as much as possible, it needs to identify the 
extracted ROI, while the tracing target can be defined by the following characteristics:  
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• The length of boundary of the tracing target in the ROI. 
• Aspect ratio. The length and the width of the target can be expressed by the two 

orthogonal axes of minimum enclosing rectangle. The radio between them is the aspect 
ratio.  

• Shape complexity. The radio between the length of the boundary and the area.  
The ROI, whose parameters accord with the above three features, can be considered as the 
ROI including the real- target. 
Further, there are many other recent tracking methods, such as: (Mehmood, 2009) 
implements kernel tracking of density-based appearance models for real-time object 
tracking applications; (Wang et al., 2009) discloses a wireless, embedded smart camera 
system for cooperative object tracking and event detection; (Sun, Z. & Sun, J., 2008) presents 
an approach for detecting and tracking dynamic objects with complex topology from image 
sequences based on intensive restraint topology adaptive snake mode; (Wang & Zhu, 2008) 
presents a sensor platform with multi-modalities, consisting of a dual-panoramic peripheral 
vision system and a narrow field-of-view hyperspectral fovea; thus, only hyperspectal 
images in the ROI should be captured;  (Liu et al., 2006) presents a new method that 
addresses several challenges in automatic detection of ROI of neurosurgical video for ROI 
coding, which is used for neurophysiological intraoperative monitoring (IOM) system. 
According to (Liu et al., 2006), the method is based on an object tracking technique with 
multivariate density estimation theory, combined with the shape information of the object, 
thereby by defining the ROIs for neurosurgical video, this method produces a smooth and 
convex emphasis region, within which surgical procedures are performed. (Abousleman, 
2009) presents an automated region-of-interest-based video coding system for use in ultra-
low-bandwidth applications.  

3. Region-of-interest coding in H.264/SVC standard  
Region-of-Interest (ROI) coding is a desirable feature in future applications of Scalable 
Video Coding (SVC), especially in applications for the wireless networks, which have a 
limited bandwidth. However, the H.264/AVC standard does not explicitly teach as how to 
perform the ROI coding. 
The ROI coding is supported by various techniques in the H.264/AVC standard (Wiegand 
& Sullivan, 2003) and the SVC (Schwarz et al., 2007) extensions.  Some of these techniques 
include quantization step size control at the slice and macroblock levels, and are related to 
the concept of slice grouping, also known as Flexible Macroblock Ordering (FMO).  For 
example, (Lu et al., 2005a) handles the ROI-based fine granular scalability (FGS) coding, in 
which a user at the decoder side requires to receive better decoded quality ROIs, while the 
pre-encoded scalable bit-stream is truncated. (Lu et al., 2005a) presents a number of ROI 
enhancement quality layers to provide fine granular scalability. In addition, (Thang et al., 
2005) presents ROI-based spatial scalability scheme, concerning two main issues: 
overlapped regions between ROIs and providing different ROIs resolutions. However, 
(Thang et al., 2005) follows the concept of slice grouping of H.264/AVC, considering the 
following two solutions to improve the coding efficiency: (a) supporting different spatial 
resolutions for various ROIs by introducing a concept of virtual layers; and (b) enabling to 
avoid duplicate coding of overlapped regions in multiple ROIs by encoding the overlapped 
regions such that the corresponding encoded regions can be independently decoded. 
Further, (Lu et al., 2005b) presents ROI-based coarse granular scalability (CGS), using a 
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perceptual ROI technique to generate a number of quality profiles, and in turn, to realize the 
CGS. According to (Lu et al., 2005b), the proposed ROI based compression achieves better 
perceptual quality and improves coding efficiency. Moreover, (Lampert et al., 2006) relates 
to extracting the ROIs (i.e., of an original bit-stream by introducing a description-driven 
content adaptation framework. According to (Lampert et al., 2006), two methods for ROI 
extraction are implemented: (a) the removal of the non-ROI portions of a bit-stream; and (b) 
the replacement of coded background with corresponding placeholder slices. In turn, bit-
streams that are adapted by this ROI extraction process have a significantly lower bit-rate 
than their original versions. While this has, in general, a profound impact on the quality of 
the decoded video sequence, this impact is marginal in case of a fixed camera and static 
background. This observation may lead to new opportunities in the domain of video 
surveillance or video conferencing. According to (Lampert et al., 2006), in addition to the 
bandwidth decrease, the adaptation process has a positive effect on the decoder due to the 
relatively easy processing of placeholder slices, thereby increasing the decoding speed. 
Below we present a novel dynamically adjustable and scalable ROI video coding scheme, 
enabling to adaptively and efficiently set the desirable ROI location, size, resolution and bit-
rate, according to the network bandwidth (especially, if it is a wireless network in which the 
bandwidth is limited), power constraints of resource-limited systems (such as mobile 
devices/servers) where the low power consumption is required,  and according to end-user 
resource-limited devices (such as mobile devices, PDAs, and the like), thereby effectively 
selecting best encoding scenarios suitable for most heterogonous and time-invariant end-
user terminals (i.e., different users can be connected each time) and network bandwidths.   
In the following Sections 3.1 and 3.2, different types of ROI scalability are presented: the ROI 
scalability by performing cropping and ROI scalability by employing the Flexible 
Macroblock Ordering (FMO) technique, respectively.    

3.1 ROI scalability by performing cropping  
According to the first method for the ROI video coding, and in order to enable obtaining a 
high-quality ROI on resource-limited devices (such as mobile devices), we crop the ROI 
from the original image and use it as a baselayer (or other low enhancement layers, such as 
Layer 1 or 2), as schematically illustrated in Fig. 4 below (Grois et al., 2010a). 
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Fig. 4. The example of the ROI dynamic adjustment and scalability (e.g., for mobile devices 
with different spatial resolutions) by using a cropping method. 
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ratio.  
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The ROI, whose parameters accord with the above three features, can be considered as the 
ROI including the real- target. 
Further, there are many other recent tracking methods, such as: (Mehmood, 2009) 
implements kernel tracking of density-based appearance models for real-time object 
tracking applications; (Wang et al., 2009) discloses a wireless, embedded smart camera 
system for cooperative object tracking and event detection; (Sun, Z. & Sun, J., 2008) presents 
an approach for detecting and tracking dynamic objects with complex topology from image 
sequences based on intensive restraint topology adaptive snake mode; (Wang & Zhu, 2008) 
presents a sensor platform with multi-modalities, consisting of a dual-panoramic peripheral 
vision system and a narrow field-of-view hyperspectral fovea; thus, only hyperspectal 
images in the ROI should be captured;  (Liu et al., 2006) presents a new method that 
addresses several challenges in automatic detection of ROI of neurosurgical video for ROI 
coding, which is used for neurophysiological intraoperative monitoring (IOM) system. 
According to (Liu et al., 2006), the method is based on an object tracking technique with 
multivariate density estimation theory, combined with the shape information of the object, 
thereby by defining the ROIs for neurosurgical video, this method produces a smooth and 
convex emphasis region, within which surgical procedures are performed. (Abousleman, 
2009) presents an automated region-of-interest-based video coding system for use in ultra-
low-bandwidth applications.  
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Region-of-Interest (ROI) coding is a desirable feature in future applications of Scalable 
Video Coding (SVC), especially in applications for the wireless networks, which have a 
limited bandwidth. However, the H.264/AVC standard does not explicitly teach as how to 
perform the ROI coding. 
The ROI coding is supported by various techniques in the H.264/AVC standard (Wiegand 
& Sullivan, 2003) and the SVC (Schwarz et al., 2007) extensions.  Some of these techniques 
include quantization step size control at the slice and macroblock levels, and are related to 
the concept of slice grouping, also known as Flexible Macroblock Ordering (FMO).  For 
example, (Lu et al., 2005a) handles the ROI-based fine granular scalability (FGS) coding, in 
which a user at the decoder side requires to receive better decoded quality ROIs, while the 
pre-encoded scalable bit-stream is truncated. (Lu et al., 2005a) presents a number of ROI 
enhancement quality layers to provide fine granular scalability. In addition, (Thang et al., 
2005) presents ROI-based spatial scalability scheme, concerning two main issues: 
overlapped regions between ROIs and providing different ROIs resolutions. However, 
(Thang et al., 2005) follows the concept of slice grouping of H.264/AVC, considering the 
following two solutions to improve the coding efficiency: (a) supporting different spatial 
resolutions for various ROIs by introducing a concept of virtual layers; and (b) enabling to 
avoid duplicate coding of overlapped regions in multiple ROIs by encoding the overlapped 
regions such that the corresponding encoded regions can be independently decoded. 
Further, (Lu et al., 2005b) presents ROI-based coarse granular scalability (CGS), using a 
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perceptual ROI technique to generate a number of quality profiles, and in turn, to realize the 
CGS. According to (Lu et al., 2005b), the proposed ROI based compression achieves better 
perceptual quality and improves coding efficiency. Moreover, (Lampert et al., 2006) relates 
to extracting the ROIs (i.e., of an original bit-stream by introducing a description-driven 
content adaptation framework. According to (Lampert et al., 2006), two methods for ROI 
extraction are implemented: (a) the removal of the non-ROI portions of a bit-stream; and (b) 
the replacement of coded background with corresponding placeholder slices. In turn, bit-
streams that are adapted by this ROI extraction process have a significantly lower bit-rate 
than their original versions. While this has, in general, a profound impact on the quality of 
the decoded video sequence, this impact is marginal in case of a fixed camera and static 
background. This observation may lead to new opportunities in the domain of video 
surveillance or video conferencing. According to (Lampert et al., 2006), in addition to the 
bandwidth decrease, the adaptation process has a positive effect on the decoder due to the 
relatively easy processing of placeholder slices, thereby increasing the decoding speed. 
Below we present a novel dynamically adjustable and scalable ROI video coding scheme, 
enabling to adaptively and efficiently set the desirable ROI location, size, resolution and bit-
rate, according to the network bandwidth (especially, if it is a wireless network in which the 
bandwidth is limited), power constraints of resource-limited systems (such as mobile 
devices/servers) where the low power consumption is required,  and according to end-user 
resource-limited devices (such as mobile devices, PDAs, and the like), thereby effectively 
selecting best encoding scenarios suitable for most heterogonous and time-invariant end-
user terminals (i.e., different users can be connected each time) and network bandwidths.   
In the following Sections 3.1 and 3.2, different types of ROI scalability are presented: the ROI 
scalability by performing cropping and ROI scalability by employing the Flexible 
Macroblock Ordering (FMO) technique, respectively.    

3.1 ROI scalability by performing cropping  
According to the first method for the ROI video coding, and in order to enable obtaining a 
high-quality ROI on resource-limited devices (such as mobile devices), we crop the ROI 
from the original image and use it as a baselayer (or other low enhancement layers, such as 
Layer 1 or 2), as schematically illustrated in Fig. 4 below (Grois et al., 2010a). 
 

Inter Layer Prediction

CIF
SD

QCIF ROI

Layer 0
Layer 1

Layer 2Intra/Inter Prediction
 

Fig. 4. The example of the ROI dynamic adjustment and scalability (e.g., for mobile devices 
with different spatial resolutions) by using a cropping method. 
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Then, we perform an Inter-layer prediction in the similar sections of the image, i.e., in the 
cropping areas. As a result, for example (Fig. 4), by using the Inter-layer prediction for the 
three-layer (QCIF-CIF-SD) coding (with the similar quantization parameter (QP) settings at 
each layer), we achieve the significantly low bit-rate overhead. Prior to cropping the image, 
we determine the location of a cropping area in the successive layer of the image (in Layer 1, 
and then in Layer 2, as shown on Fig. 4). For this, we employ an ESS (Extended Spatial 
Scalability) method (Shoaib & Anni, 2010). In addition, we define a GOP for the SVC as a 
group between two I/P frames, or any combination thereof. Thus, as shown for example in 
Table 3, for the "SOCCER" video sequence (30 fp/sec; 300 frames; GOP size 16; QPs varying 
from 22 to 34) we obtain the bit-rate overhead of only 4.7% to 7.9% compared to 
conventional single layer coding.  
Tables 1 to 3 below present R-D (Rate-Distortion) experimental results for the variable-layer 
coding with different cropping spatial resolutions, while using the Inter/Intra-layer 
prediction. As it is clearly seen from these tables, there is significantly low bit–rate overhead, 
which is especially important for transmitting over limited-bandwidth networks (such as 
wireless networks). Particularly, the Tables 1 below presents the R-D (Rate-Distortion) 
experimental results for the two-layer coding (QCIF-CIF) with the QCIF cropping versus the 
single layer coding.  
 

Single layer QCIF-CIF Quantization 
Parameters PSRN 

[dB] 
Bit-
Rate[K/sec] 

PSNR 
[dB] 

Bit-
Rate[K/sec]

Bit–Rate 
Overhead (%) 

22 40.9 1636.8 40.9 1713.5 4.5 
26 38.6 917.2 38.6 968.8 5.3 
30 36.5 544.0 36.5 578.1 5.9 
34 34.4 332.9 34.4 357.5 6.9 

Table 1. Two-layer (QCIF-CIF) spatial scalability coding vs. single layer coding ("SOCCER" 
video sequence, 30 fp/s, 300 frames, GOP size 16). 

Also, the Tables 2 below presents the R-D (Rate-Distortion) experimental results for the two-
layer coding (CIF-SD) with the CIF cropping versus the single layer coding. 
 

Single layer CIF-SD Quantization 
Parameters PSRN 

[dB] 
Bit-Rate 
[K/sec] 

PSNR 
[dB] 

Bit-Rate 
[K/sec] 

Bit–Rate 
Overhead (%) 

22 41.0 5663.3 40.9 5870.7 3.5 
26 38.8 3054.9 38.7 3190.6 4.3 
30 36.8 1770.2 36.7 1860.2 4.8 
34 34.8 1071.3 34.7 1137.0 5.8 

Table 2. Three-layer (CIF-SD) spatial scalability coding vs. single layer coding ("SOCCER" 
video sequence, 30 fp/s, 300 frames, GOP size 16). 

Further, the Tables 3 below presents the R-D (Rate-Distortion) experimental results for the 
three-layer coding (QCIF-CIF-SD) with the QCIF-CIF cropping versus the single layer 
coding.  
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Single layer  QCIF-CIF-SD Quantization  
Parameters PSRN 

[dB] 
Bit-Rate 
[K/sec] 

PSNR 
[dB] 

Bit-Rate 
[K/sec] 

Bit–Rate 
Overhead (%) 

22 41.0 5663.3 41.0 5940.6 4.7 
26 38.8 3054.9 38.8 3248.1 6.0 
30 36.8 1770.2 36.8 1894.9 6.6 
34 34.8 1071.3 34.8 1163.6 7.9 

Table 3. Three-layer (QCIF-CIF-SD) spatial scalability coding vs. single layer coding 
("SOCCER" video sequence, 30 fp/s, 300 frames, GOP size 16). 

As was mentioned above, it is clearly seen from the above experimental results that when 
using the Inter/Intra-layer prediction, the bit-rate overhead is very small and is much less 
than 10%.  

3.2 ROI scalability by using flexible macroblock ordering   
The second method refers to the ROI dynamic adjustment and scalability (Grois et al., 2010a) 
by using the FMO (Flexible Macroblock Ordering) in the scalable baseline profile (not for 
Layer 0, which is similar to the H.264/AVC baseline profile without the FMO).  
One of the basic elements of the H.264 video sequence is a slice, which contains a group of 
macroblocks. Each picture can be subdivided into one or more slices and each slice can be 
provided with increased importance as the basic spatial segment, which can be encoded 
independently from its neighbors (the slice coding is one of the techniques used in H.264 for 
transmission) (Chen et al., 2008; Liu et al., 2005; Ndili & Ogunfunmi, 2006; Kodikara et al., 
2006). Usually, slices are provided in a raster scan order with continuously ascending 
addresses; on the other hand, the FMO is an advanced tool of H.264 that defines the 
information of slice groups and enables to employ different macroblocks to slice groups of 
mapping patterns. 
 

 
Fig. 5. Six fixed types of the FMO (interleaved, dispersed, foreground, box-out, raster scan 
and wipe-out), while each color represents a slice group). 

Each slice of each picture/frame is independently intra predicted, and the macroblock order 
within a slice must be in the ascending order. In H.264 standard, FMO consists of seven slice 
group map types (Type 0 to Type 6), six of them are predefined fixed macroblock mapping 
types (as illustrated in Fig. 5: interleaved, dispersed, foreground, box-out, raster scan and 
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Then, we perform an Inter-layer prediction in the similar sections of the image, i.e., in the 
cropping areas. As a result, for example (Fig. 4), by using the Inter-layer prediction for the 
three-layer (QCIF-CIF-SD) coding (with the similar quantization parameter (QP) settings at 
each layer), we achieve the significantly low bit-rate overhead. Prior to cropping the image, 
we determine the location of a cropping area in the successive layer of the image (in Layer 1, 
and then in Layer 2, as shown on Fig. 4). For this, we employ an ESS (Extended Spatial 
Scalability) method (Shoaib & Anni, 2010). In addition, we define a GOP for the SVC as a 
group between two I/P frames, or any combination thereof. Thus, as shown for example in 
Table 3, for the "SOCCER" video sequence (30 fp/sec; 300 frames; GOP size 16; QPs varying 
from 22 to 34) we obtain the bit-rate overhead of only 4.7% to 7.9% compared to 
conventional single layer coding.  
Tables 1 to 3 below present R-D (Rate-Distortion) experimental results for the variable-layer 
coding with different cropping spatial resolutions, while using the Inter/Intra-layer 
prediction. As it is clearly seen from these tables, there is significantly low bit–rate overhead, 
which is especially important for transmitting over limited-bandwidth networks (such as 
wireless networks). Particularly, the Tables 1 below presents the R-D (Rate-Distortion) 
experimental results for the two-layer coding (QCIF-CIF) with the QCIF cropping versus the 
single layer coding.  
 

Single layer QCIF-CIF Quantization 
Parameters PSRN 

[dB] 
Bit-
Rate[K/sec] 

PSNR 
[dB] 

Bit-
Rate[K/sec]

Bit–Rate 
Overhead (%) 

22 40.9 1636.8 40.9 1713.5 4.5 
26 38.6 917.2 38.6 968.8 5.3 
30 36.5 544.0 36.5 578.1 5.9 
34 34.4 332.9 34.4 357.5 6.9 

Table 1. Two-layer (QCIF-CIF) spatial scalability coding vs. single layer coding ("SOCCER" 
video sequence, 30 fp/s, 300 frames, GOP size 16). 

Also, the Tables 2 below presents the R-D (Rate-Distortion) experimental results for the two-
layer coding (CIF-SD) with the CIF cropping versus the single layer coding. 
 

Single layer CIF-SD Quantization 
Parameters PSRN 

[dB] 
Bit-Rate 
[K/sec] 

PSNR 
[dB] 

Bit-Rate 
[K/sec] 

Bit–Rate 
Overhead (%) 

22 41.0 5663.3 40.9 5870.7 3.5 
26 38.8 3054.9 38.7 3190.6 4.3 
30 36.8 1770.2 36.7 1860.2 4.8 
34 34.8 1071.3 34.7 1137.0 5.8 

Table 2. Three-layer (CIF-SD) spatial scalability coding vs. single layer coding ("SOCCER" 
video sequence, 30 fp/s, 300 frames, GOP size 16). 

Further, the Tables 3 below presents the R-D (Rate-Distortion) experimental results for the 
three-layer coding (QCIF-CIF-SD) with the QCIF-CIF cropping versus the single layer 
coding.  
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Single layer  QCIF-CIF-SD Quantization  
Parameters PSRN 

[dB] 
Bit-Rate 
[K/sec] 

PSNR 
[dB] 

Bit-Rate 
[K/sec] 

Bit–Rate 
Overhead (%) 

22 41.0 5663.3 41.0 5940.6 4.7 
26 38.8 3054.9 38.8 3248.1 6.0 
30 36.8 1770.2 36.8 1894.9 6.6 
34 34.8 1071.3 34.8 1163.6 7.9 

Table 3. Three-layer (QCIF-CIF-SD) spatial scalability coding vs. single layer coding 
("SOCCER" video sequence, 30 fp/s, 300 frames, GOP size 16). 

As was mentioned above, it is clearly seen from the above experimental results that when 
using the Inter/Intra-layer prediction, the bit-rate overhead is very small and is much less 
than 10%.  

3.2 ROI scalability by using flexible macroblock ordering   
The second method refers to the ROI dynamic adjustment and scalability (Grois et al., 2010a) 
by using the FMO (Flexible Macroblock Ordering) in the scalable baseline profile (not for 
Layer 0, which is similar to the H.264/AVC baseline profile without the FMO).  
One of the basic elements of the H.264 video sequence is a slice, which contains a group of 
macroblocks. Each picture can be subdivided into one or more slices and each slice can be 
provided with increased importance as the basic spatial segment, which can be encoded 
independently from its neighbors (the slice coding is one of the techniques used in H.264 for 
transmission) (Chen et al., 2008; Liu et al., 2005; Ndili & Ogunfunmi, 2006; Kodikara et al., 
2006). Usually, slices are provided in a raster scan order with continuously ascending 
addresses; on the other hand, the FMO is an advanced tool of H.264 that defines the 
information of slice groups and enables to employ different macroblocks to slice groups of 
mapping patterns. 
 

 
Fig. 5. Six fixed types of the FMO (interleaved, dispersed, foreground, box-out, raster scan 
and wipe-out), while each color represents a slice group). 

Each slice of each picture/frame is independently intra predicted, and the macroblock order 
within a slice must be in the ascending order. In H.264 standard, FMO consists of seven slice 
group map types (Type 0 to Type 6), six of them are predefined fixed macroblock mapping 
types (as illustrated in Fig. 5: interleaved, dispersed, foreground, box-out, raster scan and 
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wipe-out), which can be specified through picture parameter setting (PPS), and the last one 
is a custom type, which allows the full flexibility of assigning macroblock to any slice group. 
The ROI can be defined as a separate slice in the FMO Type 2 which enables defining slices 
of rectangular regions, and then the whole sequence can be encoded accordingly, while 
making it possible to define more than one ROI regions (these definitions should be made in 
the SVC configuration files, according to the JSVM 9.19 reference software manual (JSVM, 
2009). 
For the Scalable Video Coding, we use the FMO Type 2 above, where each ROI is 
represented by a separate rectangular region and is encoded as a separate slice.  Tables 4 
presents experimental results for the four layers spatial scalability coding versus six layers 
coding of the "SOCCER" sequence (30 fp/s; 300 frames; GOP size is 16), where four layers 
are presented by one CIF layer and three SD layers having the CIF-resolution ROI in an 
upper-left corner of the image. In turn, the six layers are presented by three CIF layers (each 
layer is a crop from the SD resolution) and three 4CIF/SD layers. 
 

Four Layers (CIF and three 
SD layers) 

Six Layers (three CIF layers 
and three SD layers)  

Quantization 
Parameters 

PSRN [dB] Bit-Rate 
[K/sec] 

PSNR [dB] Bit-Rate 
[K/sec] 

Bit-Rate 
Savings 
(%) 

32 36.0 2140.1 36.0 2290.1 6.6 
34 35.1 1549.4 35.1 1680.1 7.8 
36 34.0 1140.1 34.0 1279.4 10.9 

Table 4. FMO: Four-layer spatial scalability coding vs. six-layer coding ("SOCCER" video 
sequence, 30 fp/s, 300 frames, GOP size 16). 

It should be noted that each of the above three CIF layers (crops extracted from the SD 
resolution image) can be considered, for example, as a zoom of the image in a upper-left 
corner, as shown in Fig. 6 below. 
 

 
 

 
                                 (a)                                                                               (b) 

Fig. 6. (a) the CIF crop (representing Layer 0, i.e. the base-layer) extracted from the SD 
resolution frame of the "SOCCER" sequence; (b) the corresponding HD resolution image, 
representing Layer 1 of the "SOCCER" sequence. The white dashed lines show the zoomed 
ROI.  

Further, Table 5 presents R-D (Rate-Distortion) experimental results for the HD (High 
Definition) video sequence "STOCKHOLM" (Fig. 1, 1280x720, 30 fp/sec, GOP size 8, 160 
frames) by using four-layer coding (640x360 layer and three HD layers having two ROIs 
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(CIF and 4CIF/SD resolutions) in the upper left corner of the image) versus eight-layer 
coding (two CIF layers (scalable baseline profile without B frames), three 4CIF/SD layers, 
and three HD layers having different quantization parameters). The quantization 
parameters vary from 32 to 36 with a step size of 2. 
 

Four Layers (640x360, and 
three HD layers) 

Eight Layers (two CIF 
layers, three SD layers, and 
three HD layers)  

Quantization 
Parameters 

PSRN 
[dB] 

Bit-Rate 
[K/sec] 

PSNR 
[dB] 

Bit-Rate 
[K/sec] 

Bit–Rate 
Savings 
(%) 

32 34.5 2566.2 34.5 3237.0 20.7 
34 33.9 1730.2 33.9 2359.1 26.7 
36 33.3 1170.0 33.3 1759.0 33.5 

Table 5. FMO: Four-layer coding vs. eight-layer coding  ("STOCKHOLM", 30 fp/s, 96 frames, 
GOP size 8) 

Further, Table 6 below presents R-D (Rate-Distortion) experimental results for the HD video 
sequence "STOCKHOLM" by using four-layer coding (640x360 layer and three HD layers 
having two ROIs (CIF and SD resolution, respectively) in the upper-left corner of the image) 
versus six-layer coding (three CIF and three SD layers). 
 

Four Layers (640x360, 
and three HD layers) 

Six Layers (three CIF 
layers and three SD 
layers) 

Quantization 
Parameters 

PSRN 
[dB] 

Bit-Rate 
[K/sec] 

PSNR 
[dB] 

Bit-Rate 
[K/sec] 

Bit–Rate 
Savings (%) 

32 34.5 2566.2 34.5 3237.0 19.3 
34 33.9 1730.2 33.9 2359.1 29.7 
36 33.3 1170.0 33.3 1759.0 39.9 

Table 6. FMO: Four-layer coding vs. six-layer coding ("STOCKHOLM", 30 fp/s, 96 frames, 
GOP size 8) 

As it is clearly observed from Table 4 to 6 above, there are very significant bit-rate savings – 
up to 39%, when using the FMO techniques.  

4. Bit-rate control for region-of-interest coding   
The bit-rate control is crucial in providing desired compression bit rates for H264/AVC 
video applications, and especially for the Scalable Video Coding, which is the extension of 
H264/AVC.  
The bit-rate control has been intensively studied in existing single layer coding standards, 
such as MPEG 2, MPEG 4, and H.264/AVC (Li et al., 2003). According to the existing single 
layer rate control schemes, the encoder employs the rate control as a way to control varying 
bit-rate characteristics of the coded bit-stream. Generally, there are two objectives of the bit-
rate control for the single layer video coding: one is to meet the bandwidth that is provided 
by the network, and another is to produce high quality decoded pictures (Li et al., 2007). 
Thus, the inputs of the bit-rate control scheme are: the given bandwidth; usually, the 
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wipe-out), which can be specified through picture parameter setting (PPS), and the last one 
is a custom type, which allows the full flexibility of assigning macroblock to any slice group. 
The ROI can be defined as a separate slice in the FMO Type 2 which enables defining slices 
of rectangular regions, and then the whole sequence can be encoded accordingly, while 
making it possible to define more than one ROI regions (these definitions should be made in 
the SVC configuration files, according to the JSVM 9.19 reference software manual (JSVM, 
2009). 
For the Scalable Video Coding, we use the FMO Type 2 above, where each ROI is 
represented by a separate rectangular region and is encoded as a separate slice.  Tables 4 
presents experimental results for the four layers spatial scalability coding versus six layers 
coding of the "SOCCER" sequence (30 fp/s; 300 frames; GOP size is 16), where four layers 
are presented by one CIF layer and three SD layers having the CIF-resolution ROI in an 
upper-left corner of the image. In turn, the six layers are presented by three CIF layers (each 
layer is a crop from the SD resolution) and three 4CIF/SD layers. 
 

Four Layers (CIF and three 
SD layers) 

Six Layers (three CIF layers 
and three SD layers)  

Quantization 
Parameters 

PSRN [dB] Bit-Rate 
[K/sec] 

PSNR [dB] Bit-Rate 
[K/sec] 

Bit-Rate 
Savings 
(%) 

32 36.0 2140.1 36.0 2290.1 6.6 
34 35.1 1549.4 35.1 1680.1 7.8 
36 34.0 1140.1 34.0 1279.4 10.9 

Table 4. FMO: Four-layer spatial scalability coding vs. six-layer coding ("SOCCER" video 
sequence, 30 fp/s, 300 frames, GOP size 16). 

It should be noted that each of the above three CIF layers (crops extracted from the SD 
resolution image) can be considered, for example, as a zoom of the image in a upper-left 
corner, as shown in Fig. 6 below. 
 

 
 

 
                                 (a)                                                                               (b) 

Fig. 6. (a) the CIF crop (representing Layer 0, i.e. the base-layer) extracted from the SD 
resolution frame of the "SOCCER" sequence; (b) the corresponding HD resolution image, 
representing Layer 1 of the "SOCCER" sequence. The white dashed lines show the zoomed 
ROI.  

Further, Table 5 presents R-D (Rate-Distortion) experimental results for the HD (High 
Definition) video sequence "STOCKHOLM" (Fig. 1, 1280x720, 30 fp/sec, GOP size 8, 160 
frames) by using four-layer coding (640x360 layer and three HD layers having two ROIs 
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(CIF and 4CIF/SD resolutions) in the upper left corner of the image) versus eight-layer 
coding (two CIF layers (scalable baseline profile without B frames), three 4CIF/SD layers, 
and three HD layers having different quantization parameters). The quantization 
parameters vary from 32 to 36 with a step size of 2. 
 

Four Layers (640x360, and 
three HD layers) 

Eight Layers (two CIF 
layers, three SD layers, and 
three HD layers)  

Quantization 
Parameters 

PSRN 
[dB] 

Bit-Rate 
[K/sec] 

PSNR 
[dB] 

Bit-Rate 
[K/sec] 

Bit–Rate 
Savings 
(%) 

32 34.5 2566.2 34.5 3237.0 20.7 
34 33.9 1730.2 33.9 2359.1 26.7 
36 33.3 1170.0 33.3 1759.0 33.5 

Table 5. FMO: Four-layer coding vs. eight-layer coding  ("STOCKHOLM", 30 fp/s, 96 frames, 
GOP size 8) 

Further, Table 6 below presents R-D (Rate-Distortion) experimental results for the HD video 
sequence "STOCKHOLM" by using four-layer coding (640x360 layer and three HD layers 
having two ROIs (CIF and SD resolution, respectively) in the upper-left corner of the image) 
versus six-layer coding (three CIF and three SD layers). 
 

Four Layers (640x360, 
and three HD layers) 

Six Layers (three CIF 
layers and three SD 
layers) 

Quantization 
Parameters 

PSRN 
[dB] 

Bit-Rate 
[K/sec] 

PSNR 
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Bit-Rate 
[K/sec] 

Bit–Rate 
Savings (%) 

32 34.5 2566.2 34.5 3237.0 19.3 
34 33.9 1730.2 33.9 2359.1 29.7 
36 33.3 1170.0 33.3 1759.0 39.9 

Table 6. FMO: Four-layer coding vs. six-layer coding ("STOCKHOLM", 30 fp/s, 96 frames, 
GOP size 8) 

As it is clearly observed from Table 4 to 6 above, there are very significant bit-rate savings – 
up to 39%, when using the FMO techniques.  

4. Bit-rate control for region-of-interest coding   
The bit-rate control is crucial in providing desired compression bit rates for H264/AVC 
video applications, and especially for the Scalable Video Coding, which is the extension of 
H264/AVC.  
The bit-rate control has been intensively studied in existing single layer coding standards, 
such as MPEG 2, MPEG 4, and H.264/AVC (Li et al., 2003). According to the existing single 
layer rate control schemes, the encoder employs the rate control as a way to control varying 
bit-rate characteristics of the coded bit-stream. Generally, there are two objectives of the bit-
rate control for the single layer video coding: one is to meet the bandwidth that is provided 
by the network, and another is to produce high quality decoded pictures (Li et al., 2007). 
Thus, the inputs of the bit-rate control scheme are: the given bandwidth; usually, the 
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statistics of video sequence including Mean Squared Error (MSE); and a header of each 
predefined unit (e.g., a basic unit, macroblock, frame, slice). In turn, the outputs are a 
quantization parameter (QP) for the quantization process and another QP for the rate-
distortion optimization (RDO) process of each basic unit, while these two quantization 
parameters, in the single layer video coding, are usually equal in order to maximize the 
coding efficiency. 
In the current JSVM reference software (JSVM, 2009) there is no rate control mechanism, 
besides the base-layer rate control, which do not consider enhancement layers. The target 
bit-rate for each SVC layer is achieved by coding each layer with a fixed QP, which is 
determined by a logarithmic search (JSVM, 2009; Liu et al., 2008). Of course, this is very 
inefficient and much time-consuming. For solving this problem, only a few works have been 
published during the last years, trying to provide an efficient rate control mechanism for the 
SVC. However, none of them handles scalable bit-rate control for the Region-of-Interest 
(ROI) coding. Such, in (Xu et al., 2005) the rate distortion optimization (RDO) involved in 
the step of encoding temporal subband pictures is only implemented on low-pass subband 
pictures, and rate control is independently applied to each spatial layer. Furthermore, for 
the temporal subband pictures obtained from the motion compensation temporal filtering 
(MCTF), the target bit allocation and quantization parameter selection inside a GOP make a 
full use of the hierarchical relations inheritance from the MCTF. In addition, (Liu et al., 2008) 
proposes a switched model to predict the mean absolute difference (MAD) of the residual 
texture from the available MAD information of the previous frame in the same layer and the 
same frame in its “base layer”. Further, (Anselmo & Alfonso, 2010) describes a constant 
quality variable bit-rate (VBR) control algorithm for multiple layer coding. According to  0 
(Anselmo & Alfonso, 2010), the algorithm allows achieving a target quality by specifying 
memory capabilities and the bit-rate limitations of the storage device. In the more recent 
work (Roodaki et al., 2010), the joint optimization of layers in the layered video coding is 
investigated. The authors show that spatial scalability, like the SNR scalability, does benefit 
from joint optimization, though not being able to exploit the relation between the quantizer 
step sizes. However, as mentioned above, there is currently no efficient bit-rate control 
scheme for the ROI Scalable Video Coding.  
Below, we present a method and system for the efficient ROI Scalable Video Coding, 
according to which we achieve a bit-rate that is very close to the target bit-rate, while being 
able to define the desirable ROI quality (in term of QP or Peak Signal-To-Noise Ratio 
(PSNR)) and while adaptively changing the background region quality (the background 
region excludes the ROI), according to the overall bit-rate.  
In order to provide the different visual presentation quality to at least one ROI and to the 
background (or other less important region of the frame), we divide each frame to at least 
two slices, while one slice is used for defining the ROI and at least one additional slice is 
used for defining the background region, for which fewer bits should be allocated. If more 
than one ROI is used, then the frame is divided on larger number of slices, such that for each 
ROI we use a separate slice.  
The general proposed method for performing the adaptive ROI SVC bit-rate control for each 
SVC layer is as follows.  
a. Compute the number of target bits for the current GOP and after that for each frame (of 

each SVC layer) within the above GOP by using a Hypothetical Reference Decoder 
(HRD) ((Ribas-Corbera et al., 2003). The calculation should consider that each SVC layer 
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contains a number of predefined slices (the ROI slice, background slice, etc.), which 
should be encoded with different QPs. 

b. Allocate the remaining bits to all non-coded macroblocks (MBs) for each predefined 
slice in the current frame of the particular SVC layer. 

c. Estimate the MAD (Mean Absolute Difference) for the current macroblock in the 
current slice by a linear prediction model (Li et al., 2003; Lim et al., 2005) using the 
actual MAD of the macroblocks in the co-located position of the previous slices (in the 
previous frames) within the same SVC layer and the MAD of neighbor macroblocks in 
the current slice. 

d. Estimate a set of groups of coding modes (e.g., modes such as Inter-Search16X8, Inter-
Search8X16, Inter-Search8X8, Inter-Search8X4, Inter-Search4X8, Inter-Search4X4 modes, 
and the like) of the current macroblock in the current frame within the above SVC layer 
by using the actual group of coding modes for the macroblocks in the co-located 
positions of the previous frame(s) and the actual group of coding modes of neighbor 
macroblocks in the current frame. 

e. Compute the corresponding QPs by using a quadratic model (Chiang & Zhang, 1997; 
Kaminsky et al., 2008; Grois et al., 2010c). 

f. Perform the Rate-Distortion Optimization (RDO) for each MB by using the QPs derived 
from the above step 5. 

g. Adaptively adjust the QPs (increase/decrease the QPs by a predefined quantization 
step size) according to the current overall bit-rate. 

In Fig. 7 below, is presented a system for performing the proposed adaptive bit-rate control 
for the Scalable Video Coding (for simplicity, only two layers are shown – Base-Layer (Layer 
0), and Enhancement Layer (Layer 1). The system contains the SVC adaptive bit-rate 
controller, which continuously receives data regarding the current buffer occupancy, actual 
bit-rate and quantization parameters (Grois et al., 2010b).  
The step (f) above can be performed by using a method (Lim et al., 2005; Wiegand et al., 
2003) for determining an optimal coding mode for encoding each macroblock. According to 
method (Lim et al., 2005; Wiegand et al., 2003), the RDO for each macroblock is performed 
for selecting an optimal coding mode by minimizing the Lagrangian function as follows: 

 ( ) ( ) ( ), , , , , ,MODE MODEJ orig rec MODE D orig rec MODE QP R orig rec MODE QPλ λ= + ⋅  (1) 

where the distortion ( ), ,D orig rec MODE QP  can be the sum of squared differences (SSD) or 
the sum of absolute differences (SAD) between the original block ( orig ) and the 
reconstructed block ( rec ); QP  is the macroblock quantization parameter; MODE is a mode 
selected from the set of available prediction modes; ( ), ,R orig rec MODE QP  is the number of 
bits associated with selecting MODE; and MODEλ  is a Lagrangian multiplier for the mode 
decision (Lim et al., 2005).   
According to a buffer occupancy constraint due to the finite reference SVC buffer size, the 
buffer at each SVC layer should not be full or empty (overloaded or underloaded, 
respectively). The formulation of the optimal buffer control (for controlling the buffer 
occupancy for each SVC layer) can be given by: 
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statistics of video sequence including Mean Squared Error (MSE); and a header of each 
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where ( )e i  is a distortion for basic unit i; ( )LayerB i  is a buffer size and max
LayerB  is the 

maximal buffer size. The state of the buffer occupancy can be defined as: 
 

 ( 1) ( ) ( )Layer Layer Layer Layer
outB i B i r i r+ = + −  (3) 

 

where ( )Layerr i  is the buffer input bit-rate with regard to each SVC layer and Layer
outr  is the 

output bit-rate of buffer contents.  
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Fig. 7. The system for performing the presented adaptive spatial bit-rate control for the 
Scalable Video Coding (for simplicity, only two layers – Layer 0 and Layer 1 - are presented). 

The optimal buffer control approach is related to the following optimal bit allocation 
formulation, 
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for i = 1, 2, ..., N 
and is schematically presented in Fig. 8 below. 
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Fig. 8. (a) Each block (1...BN) in the sequence has different R-D characteristics (for a given set 
of quantizers (1...QM) for blocks in the sequence, we can obtain R-D (Rate-Distortion) points 
(rN1, rN2, rN3 and dN1, dN2, dN, etc.) to form composite characteristics); and (b) R at t2 is not a 
feasible solution to the selected maximum buffer size BMAX. 

For overcoming the buffer control drawbacks and overcoming buffer size limitations, 
preventing underflow/overflow of the buffer, and significantly decreasing the buffer delay, 
the computational complexity (such as a number of CPU clocks) and bits of each basic unit 
within a video sequence can be dynamically allocated, according to its predicted MAD. In 
turn, the optimal buffer control problem (2) can be solved by implementing the C-R-D 
analysis of (Grois et al., 2009) for each SVC layer. 
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Fig. 9. (a) Defining two or more layers with corresponding QPs. The QP of the background 
region in Layer 1 is determined adaptively by our bit-rate control; (b) CIF ROI is used as 
Base Layer (Layer 0), and 4CIF (SD) is used as an Enhancement Layer (Layer 1). The Intra/ 
Inter-prediction is used for reducing the overall bit-rate. 

For simplicity, in this section, we show results for the bit-rate control of two layers: Base 
Layer (Layer 0) and Enhancement Layer (Layer 1), while the ROI region is provided in both 
Layer 0 and Layer 1, and the background region is provided only in Layer 1, as illustrated in 
Fig. 9. According to the presented adaptive bit-rate control, we preset for each layer different 
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Fig. 7. The system for performing the presented adaptive spatial bit-rate control for the 
Scalable Video Coding (for simplicity, only two layers – Layer 0 and Layer 1 - are presented). 
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the computational complexity (such as a number of CPU clocks) and bits of each basic unit 
within a video sequence can be dynamically allocated, according to its predicted MAD. In 
turn, the optimal buffer control problem (2) can be solved by implementing the C-R-D 
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Fig. 9. (a) Defining two or more layers with corresponding QPs. The QP of the background 
region in Layer 1 is determined adaptively by our bit-rate control; (b) CIF ROI is used as 
Base Layer (Layer 0), and 4CIF (SD) is used as an Enhancement Layer (Layer 1). The Intra/ 
Inter-prediction is used for reducing the overall bit-rate. 

For simplicity, in this section, we show results for the bit-rate control of two layers: Base 
Layer (Layer 0) and Enhancement Layer (Layer 1), while the ROI region is provided in both 
Layer 0 and Layer 1, and the background region is provided only in Layer 1, as illustrated in 
Fig. 9. According to the presented adaptive bit-rate control, we preset for each layer different 



  
Recent Advances on Video Coding 

 

68 

initial quantization parameters (QPs): e.g., for the whole Layer 0 we can define an initial 
quantization parameter to be equal to 40, and for the ROI region provided in Layer 1 we can 
define an initial quantization parameter to be equal to 20; and then the QP of the remaining 
background region in Layer 1 is determined adaptively by our bit-rate control. In such a 
way, we can obtain the desired quality of the Region-of-Interest, and as a result, of the 
remaining background region (or any other less important region) according to the overall 
network bandwidth (either constant or variable bandwidth). 
As a result, by encoding the video sequence with different QPs, we enable obtaining the 
optimal presentation quality of the predefined ROI region and enable reducing the quality 
of the background, as presented for example, in Fig. 10 ("SOCCER" video sequence, SD 
resolution). 
 

 
Fig. 10. The "SOCCER" video sequence (SD 704x576, 25 fp/sec.) containing the ROI region in 
the upper-left corner. 

Figs. 11 and 12 below illustrate sample frames of the “PARKRUN” video sequence, which 
contains the ROI region – the man with an umbrella. The quantization parameter of the 
background region can be determined adaptively in order to achieve optimal video 
presentation quality (as it is clearly seen from Figs. 11(b) and 12(b), the QP of the background 
region is much higher than the QP of the ROI region). 
 

     
                       (a)                                                               (b) 

Fig. 11. The "PARKRUN" video sequence containing the ROI region in the middle of the 
frame – the man with an umbrella (the quantization parameter of the background region can 
be determined adaptively); (a) the original frame; and (b) the compressed frame with the 
higher-quality ROI region. 
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                                       (a)                                                                        (b) 

Fig. 12. The "PARKRUN" video sequence containing the ROI region in the middle of the 
frame – the man with an umbrella (the quantization parameter of the background region can 
be determined adaptively); (a) the original frame; and (b) the compressed frame with the 
higher-quality ROI region.    

Further, Fig. 13 below shows another frame of the “SHIELDS” video sequence, which 
contains the ROI region – man's head and hand pointing to the shields. The quantization 
parameter of the background region can be determined adaptively according to the adaptive 
bit-rate control (as it is seen from Fig. 13(b), the QP of the background region is much higher 
than the QP of the ROI region). 
 

           
(a)                                                                     (b) 

Fig. 13. The "SHIELDS" video sequence containing the ROI region – man's head and hand 
pointing to the shields (the quantization parameter of the background region can be 
determined adaptively); (a) the original frame; and (b) the compressed frame with the 
higher-quality ROI region. 

The following Table 7 presents experimental results for the bit-rate control operation for 
various video sequences ("CITY", “CREW”, "HARBOR", "ICE", and "SOCCER"), along with 
the corresponding PSNR and bit-rate values. According to the conducted tests, the QP of 
Layer 0 is equal to 40, and the QP of the ROI in Layer 1 is equal to 37, while the QP of the 
background of Layer 1 is determined by our adaptive SVC bit-rate control scheme. 
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Fig. 13. The "SHIELDS" video sequence containing the ROI region – man's head and hand 
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Layers  
Target Bit-Rate for  
Layer 1 with our  
Bit-Rate Control 

Actual Bit-Rate:  
Layer 1 with our Bit- 
Rate Control (ROI 
QP=20, the rest by our 
Rate Control) 

Actual Bit-Rate of  
Layer 0 with JSVM 
9.19 Bit-Rate Control 
(QP=40) 

 
Video 
Sequence 

Bit-Rate [K/sec] Bit-Rate 
[K/sec] 

Average 
PSNR [dB]  

Bit-
Rate 
[K/sec] 

Average 
PSNR [dB]  

1600 1691.4 30.1 
CREW 

1700 1691.4 30.1 
2195.0 35.0 

5000 6393.1 37.8 
SHIELDS 

6000 6399.6 38.3 
6969.0 38.3 

7000 7010.5 24.0 

7500 7140.9 24.1 

8000 7172.4 24.2 
PARKRUN 

8500 8431.8 25.1 

3435.2 28.1 

2300 2473.9 28.1 
SOCCER 

2500 2478.4 28.2 
2105.9 34.1 

 

Table 7. Bit-rate control experimental results for “CREW”, “SHIELDS”, “PARKRUN”, and 
“SOCCER” video sequences (ROI QP in “Layer 1” is equal to 20; the rest is determined by 
our bit-rate control). 

5. Conclusions 
In this chapter we have presented a comprehensive overview of recent developments in the 
area of Region-of-Interest Video Coding, making an emphasis on the ROI Scalable Video 
Coding field, which has become popular in the last couple of years due to standardization of 
the SVC in 2007, as an extension of H.264/AVC.  
Also, we have presented our efficient novel scalable video coding schemes, enabling to 
adaptively set the desirable ROI location, size, resolution (e.g., the spatial resolution), ROI 
visual quality and amount of bits allocated for the ROI, and perform other predefined 
settings. According to these schemes, we achieve a significantly low bit–rate overhead and 
very significant savings in bit-rate, thereby enabling to provide an efficient adaptive bit-rate 
control for the ROI Scalable Video Coding, which was also presented in detail. In turn, the 
adaptive bit-rate control has enabled us to provide the high-quality video coding for the 
desired Region-of-Interest, while considering the overall available bandwidth, and other 
predefined parameters. The performance of the presented schemes was demonstrated and 
compared with the (Joint Scalable Video Model) JSVM reference software (JSVM 9.19), 
thereby showing a significant improvement in term of the PSNR values and bit-rate. 
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Layers  
Target Bit-Rate for  
Layer 1 with our  
Bit-Rate Control 

Actual Bit-Rate:  
Layer 1 with our Bit- 
Rate Control (ROI 
QP=20, the rest by our 
Rate Control) 

Actual Bit-Rate of  
Layer 0 with JSVM 
9.19 Bit-Rate Control 
(QP=40) 

 
Video 
Sequence 

Bit-Rate [K/sec] Bit-Rate 
[K/sec] 

Average 
PSNR [dB]  

Bit-
Rate 
[K/sec] 

Average 
PSNR [dB]  

1600 1691.4 30.1 
CREW 

1700 1691.4 30.1 
2195.0 35.0 

5000 6393.1 37.8 
SHIELDS 

6000 6399.6 38.3 
6969.0 38.3 

7000 7010.5 24.0 

7500 7140.9 24.1 

8000 7172.4 24.2 
PARKRUN 

8500 8431.8 25.1 

3435.2 28.1 

2300 2473.9 28.1 
SOCCER 

2500 2478.4 28.2 
2105.9 34.1 

 

Table 7. Bit-rate control experimental results for “CREW”, “SHIELDS”, “PARKRUN”, and 
“SOCCER” video sequences (ROI QP in “Layer 1” is equal to 20; the rest is determined by 
our bit-rate control). 

5. Conclusions 
In this chapter we have presented a comprehensive overview of recent developments in the 
area of Region-of-Interest Video Coding, making an emphasis on the ROI Scalable Video 
Coding field, which has become popular in the last couple of years due to standardization of 
the SVC in 2007, as an extension of H.264/AVC.  
Also, we have presented our efficient novel scalable video coding schemes, enabling to 
adaptively set the desirable ROI location, size, resolution (e.g., the spatial resolution), ROI 
visual quality and amount of bits allocated for the ROI, and perform other predefined 
settings. According to these schemes, we achieve a significantly low bit–rate overhead and 
very significant savings in bit-rate, thereby enabling to provide an efficient adaptive bit-rate 
control for the ROI Scalable Video Coding, which was also presented in detail. In turn, the 
adaptive bit-rate control has enabled us to provide the high-quality video coding for the 
desired Region-of-Interest, while considering the overall available bandwidth, and other 
predefined parameters. The performance of the presented schemes was demonstrated and 
compared with the (Joint Scalable Video Model) JSVM reference software (JSVM 9.19), 
thereby showing a significant improvement in term of the PSNR values and bit-rate. 
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1. Introduction  
Rate control plays an important role in video coding, although it’s not a normative tool for 
any video coding standard. In video communications, rate control must ensure the coded 
bitstream can be transmitted successfully and make full use of the limited bandwidth. As a 
consequence, a proper rate control scheme is usually recommended by a standard during 
the development, e.g. TM5 for MPEG-2, TMN8 and TMN12 for H.263, and VM8 for MPEG-
4, etc. H.264/AVC is the newest international video coding standard, and some work on 
rate control has been done for H.264/AVC too. In the contribution, a rate control scheme 
based on VM8 is adopted by H.264/AVC test model. In another contribution, an improved 
rate control scheme for H.264/AVC is provided with rate distortion optimization (RDO) and 
hypothetical reference decoder (HRD) jointly considered, part of which has also been 
adopted by H.264/AVC test model. 

1.1 Function of rate control 
Rate control is that the encoder estimates the video bitrate based on the network available 
bandwidth, ensures the coded bitstream can be transmitted successfully and makes full use 
of the limited bandwidth. In other words, it is adjusting video output bits according to the 
channel is fixed or variable transmission rate.  
Now the core part of many video coding standards is the motion compensation and the 
DCT transform coding based on block. The number of the encoder output bits of each frame 
is changing with the active input image. Therefore, the bitstream has the inherent 
characteristics of changing. If the coding parameters remain unchanged in the compression 
process, the bits of the consumption of different frame will be significantly different. Due to 
the actual network bandwidth and storage medium, if we have nothing to do with the 
bitstream, the video communication system is likely to go abnormally. Generally, using a 
buffer makes the output bitstream smooth. The buffer capacity has certain limitation (If 
buffer is too big, the propagation delay of real-time communication is longer which is 
difficult to be accepted). In order to prevent buffer “overflow” and “underflow”, rate control 
must be used in encoder.  



 4 

Rate Control in Video Coding 
Zongze Wu1, Shengli Xie1,2, Kexin Zhang1 and Rong Wu1 

1School of Electronic and Information Engineering,  
South China University of Technology  

NO.381 Wushan Road, Tianhe Area, Guangzhou, 
2Faculty of Automation, Guangdong University of Technology,  

NO.100 Waihuanxi Road, Guangzhou university City, Panyu Area Guangzhou, 
China 

 
1. Introduction  
Rate control plays an important role in video coding, although it’s not a normative tool for 
any video coding standard. In video communications, rate control must ensure the coded 
bitstream can be transmitted successfully and make full use of the limited bandwidth. As a 
consequence, a proper rate control scheme is usually recommended by a standard during 
the development, e.g. TM5 for MPEG-2, TMN8 and TMN12 for H.263, and VM8 for MPEG-
4, etc. H.264/AVC is the newest international video coding standard, and some work on 
rate control has been done for H.264/AVC too. In the contribution, a rate control scheme 
based on VM8 is adopted by H.264/AVC test model. In another contribution, an improved 
rate control scheme for H.264/AVC is provided with rate distortion optimization (RDO) and 
hypothetical reference decoder (HRD) jointly considered, part of which has also been 
adopted by H.264/AVC test model. 

1.1 Function of rate control 
Rate control is that the encoder estimates the video bitrate based on the network available 
bandwidth, ensures the coded bitstream can be transmitted successfully and makes full use 
of the limited bandwidth. In other words, it is adjusting video output bits according to the 
channel is fixed or variable transmission rate.  
Now the core part of many video coding standards is the motion compensation and the 
DCT transform coding based on block. The number of the encoder output bits of each frame 
is changing with the active input image. Therefore, the bitstream has the inherent 
characteristics of changing. If the coding parameters remain unchanged in the compression 
process, the bits of the consumption of different frame will be significantly different. Due to 
the actual network bandwidth and storage medium, if we have nothing to do with the 
bitstream, the video communication system is likely to go abnormally. Generally, using a 
buffer makes the output bitstream smooth. The buffer capacity has certain limitation (If 
buffer is too big, the propagation delay of real-time communication is longer which is 
difficult to be accepted). In order to prevent buffer “overflow” and “underflow”, rate control 
must be used in encoder.  



 
Recent Advances in Video Coding 80

1.2 History of rate control 
In recent years, rate control has been the research focus in the field of video coding, many 
scholars and experts have achieved a lot of research achievements in the video rate control. 
The rate control in the video coding was proposed in 1992. The core of TM5 rate control 
algorithm is, under the situation that buffer is not overflow or overflow, distributing bits 
and determining the reference value of quantitative parameter by estimating the global 
complexity of the encoding frame, and adjusting the quantitative parameter by the activity 
of each block.  In 1997, Chen (Chem., Hang.H.M., 1997) proposed a rate control algorithm 
which adjusting the frame rate adaptively is by the comprehensive consideration of the 
image contents and buffer state. This algorithm predicts the bitrate and quality of the 
image by source video model which is deduced according to the rate-distortion theory 
and used to describe the relationship of the bitrate, distortion and quantization step, and 
thus decides the number of skip frames. TMN8 infers the predicted formula of the target 
bitrate according to the experience of entropy model, then refers to the rate-distortion 
model, then computes the optimum quantization step under the MSE rule by Lagrange 
optimization. VM8 is based on quadratic R-Q model, and uses the model in different 
types of image frames to achieve rate control, meanwhile introduces sliding window to 
adjust the parameters of the model in order to realized multi-scale, different complexity rate 
control. In 2001, he (Zhihai He, 2001) proposed a ρ domain code rate control algorithm; it 
establishes the one-to-one correspondents between output rate and the quantification step 
by the linear relationship of the percentage of the quantified DCT coefficients and the output 
rate. This algorithm has achieved good results in the standard of JPEG, H.263, MPEG-4 and 
so on. 
The latest video coding H.264 standard in the code control is proposed by Li Zhengguo etc 
in 2003.The problem with the JM H.264 encoder lies with the fact that the residual signal 
depends on the choice of coding mode and the choice of coding mode depends on the choice 
of QP which in turn depends on the residual signal (a chicken and egg type of problem). The 
adopted solution in the JM encoder is one where the choice of QP is made prior to the 
coding mode decision using a linear model for predicting the activity of the residual signal 
of the current basic unit (e.g. frame, slice, macroblock) based on the activity of the residual 
signal of past (co-located) basic units. Once the residual signal activity is predicted, the same 
rate model used in VM8 is employed to find a QP which will lead to a bit stream that 
adheres to the specific bit budget allocation and the buffer restrictions. 
In order to get a better effect on rate control, we usually make some melioration based on 
the joint scalable video model (JSVM).  The JSVM provides a rate control scheme, and the 
JSVM software is the reference software for the Scalable Video Coding (SVC) project of the 
Joint Video Team (JVT) of the ISO/IEC Moving Pictures Experts Group (MPEG) and the 
ITU-T Video Coding Experts Group (VCEG). The JSVM Software is still under development 
and changes frequently. 

1.3 The key technique in rate control 
Because of transmission bandwidth and storage space limitation, video applications for 
higher compression ratio, nondestructive coding can provide the compression ratio but 
cannot satisfy the demand of actual video applications, but if we can accept some degree of 
distortion, high compression ratio is easy to get. Human visual system for high frequency 
signals change not sensitive information loss, high frequency part does not reduce subjective 
visual quality. Video coding algorithm of mainstream DCT quantization method is adopted 
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to eliminate video signals, the visual physiology redundant than lossless higher compression 
ratio and will not bring the video quality decrease significantly. 
When using a lossy coding method, it is related to the difference between the reconstruction 
images g (x, y) and the original image f (x, y). Generally, the distortion factor D function can 
form according to need, such as selecting any cost function, absolute square cost function, 
etc. In the image coding D is computed as: 

D � �����x, y� � ��x, y���� 

1.3.1 Rate distortion model 
Beneath the image compression, there is a problem: under the premise of certain bitrate, 
how to make the distortion of the reconstructed image coding minimum. Essentially, it is the 
problem of the relationship between encoding rate and the distortion. The rate-distortion 
theory is to describe the relations of the distortion of coding and encoding speed. Although 
the rate-distortion theory is not optimal encoder, but it gives the lower compression allows 
under the condition of the certain information distortion allows. Practical application of 
many rate-distortion models is built on the basis of experience. For example, in TM5, a 
simple linear rate-distortion model is introduced. In TMN8 and VM8, a more accurate 
quadratic R-D model is used, which can reduce rate control error and provide better 
performance but have relatively higher computational complexity. In a different way, the 
relation between rate and QP is indirectly represented with the relation between rate and ρ, 
where ρ is the percent of zero coefficients after quantization; and also, a modified linear R-D 
model with an offset indication overhead bits is used for rate control on H.261/3/4 in the 
contributions. Here are some of the common empirical models: 

1. A simple linear rate-distortion model 

R�QP� � C��	 � S
QP 

 

Where R(QP) is the bits to encode when then quantization step is QP, S is the encoding 
complexity. C��	is the coefficient of the model. 

2. Second rate distortion model 

Model hypothesizes information source obey Laplace distribution, namely: 
 

p�x� � α
2 e

����� 
 

Where x is the value of the information source, and α	is a coefficient. 
The distortion defined with absolute deviation as: 
 

D�x, x�� � �x � x�� . 
 

So we can get the rate-distortion function:   

R�D� � ��� 1
αD 

The Taylor expansion of R(D) is 



 
Recent Advances in Video Coding 80

1.2 History of rate control 
In recent years, rate control has been the research focus in the field of video coding, many 
scholars and experts have achieved a lot of research achievements in the video rate control. 
The rate control in the video coding was proposed in 1992. The core of TM5 rate control 
algorithm is, under the situation that buffer is not overflow or overflow, distributing bits 
and determining the reference value of quantitative parameter by estimating the global 
complexity of the encoding frame, and adjusting the quantitative parameter by the activity 
of each block.  In 1997, Chen (Chem., Hang.H.M., 1997) proposed a rate control algorithm 
which adjusting the frame rate adaptively is by the comprehensive consideration of the 
image contents and buffer state. This algorithm predicts the bitrate and quality of the 
image by source video model which is deduced according to the rate-distortion theory 
and used to describe the relationship of the bitrate, distortion and quantization step, and 
thus decides the number of skip frames. TMN8 infers the predicted formula of the target 
bitrate according to the experience of entropy model, then refers to the rate-distortion 
model, then computes the optimum quantization step under the MSE rule by Lagrange 
optimization. VM8 is based on quadratic R-Q model, and uses the model in different 
types of image frames to achieve rate control, meanwhile introduces sliding window to 
adjust the parameters of the model in order to realized multi-scale, different complexity rate 
control. In 2001, he (Zhihai He, 2001) proposed a ρ domain code rate control algorithm; it 
establishes the one-to-one correspondents between output rate and the quantification step 
by the linear relationship of the percentage of the quantified DCT coefficients and the output 
rate. This algorithm has achieved good results in the standard of JPEG, H.263, MPEG-4 and 
so on. 
The latest video coding H.264 standard in the code control is proposed by Li Zhengguo etc 
in 2003.The problem with the JM H.264 encoder lies with the fact that the residual signal 
depends on the choice of coding mode and the choice of coding mode depends on the choice 
of QP which in turn depends on the residual signal (a chicken and egg type of problem). The 
adopted solution in the JM encoder is one where the choice of QP is made prior to the 
coding mode decision using a linear model for predicting the activity of the residual signal 
of the current basic unit (e.g. frame, slice, macroblock) based on the activity of the residual 
signal of past (co-located) basic units. Once the residual signal activity is predicted, the same 
rate model used in VM8 is employed to find a QP which will lead to a bit stream that 
adheres to the specific bit budget allocation and the buffer restrictions. 
In order to get a better effect on rate control, we usually make some melioration based on 
the joint scalable video model (JSVM).  The JSVM provides a rate control scheme, and the 
JSVM software is the reference software for the Scalable Video Coding (SVC) project of the 
Joint Video Team (JVT) of the ISO/IEC Moving Pictures Experts Group (MPEG) and the 
ITU-T Video Coding Experts Group (VCEG). The JSVM Software is still under development 
and changes frequently. 

1.3 The key technique in rate control 
Because of transmission bandwidth and storage space limitation, video applications for 
higher compression ratio, nondestructive coding can provide the compression ratio but 
cannot satisfy the demand of actual video applications, but if we can accept some degree of 
distortion, high compression ratio is easy to get. Human visual system for high frequency 
signals change not sensitive information loss, high frequency part does not reduce subjective 
visual quality. Video coding algorithm of mainstream DCT quantization method is adopted 

 
Rate Control in Video Coding 81 

to eliminate video signals, the visual physiology redundant than lossless higher compression 
ratio and will not bring the video quality decrease significantly. 
When using a lossy coding method, it is related to the difference between the reconstruction 
images g (x, y) and the original image f (x, y). Generally, the distortion factor D function can 
form according to need, such as selecting any cost function, absolute square cost function, 
etc. In the image coding D is computed as: 

D � �����x, y� � ��x, y���� 

1.3.1 Rate distortion model 
Beneath the image compression, there is a problem: under the premise of certain bitrate, 
how to make the distortion of the reconstructed image coding minimum. Essentially, it is the 
problem of the relationship between encoding rate and the distortion. The rate-distortion 
theory is to describe the relations of the distortion of coding and encoding speed. Although 
the rate-distortion theory is not optimal encoder, but it gives the lower compression allows 
under the condition of the certain information distortion allows. Practical application of 
many rate-distortion models is built on the basis of experience. For example, in TM5, a 
simple linear rate-distortion model is introduced. In TMN8 and VM8, a more accurate 
quadratic R-D model is used, which can reduce rate control error and provide better 
performance but have relatively higher computational complexity. In a different way, the 
relation between rate and QP is indirectly represented with the relation between rate and ρ, 
where ρ is the percent of zero coefficients after quantization; and also, a modified linear R-D 
model with an offset indication overhead bits is used for rate control on H.261/3/4 in the 
contributions. Here are some of the common empirical models: 

1. A simple linear rate-distortion model 

R�QP� � C��	 � S
QP 

 

Where R(QP) is the bits to encode when then quantization step is QP, S is the encoding 
complexity. C��	is the coefficient of the model. 

2. Second rate distortion model 

Model hypothesizes information source obey Laplace distribution, namely: 
 

p�x� � α
2 e

����� 
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R�D� � � 1αD � 1� � 1
2 �

1
αD � 1�

�
� R��D� � �32 �

2
αD

�� � 1
2α� D

�� � R��D� 
Then we get the R-D model: 

R� � α�Q��� � α�Q��� 

Where α� and α� are two coefficients. 
In order to enhance the accuracy of the R-D model, bring in two parameters MAD and Rh, 
then: 

R�Q� � R� � X� ∗ MAD
Q � X� ∗ MAD

Q�  

Where MAD is the mean absolute difference between the original frame and reconstruction 
of frame	R� is the number of bits of the header information and information such as the 
motion vector occupies; 	X�and X� are two coefficients. 

3.  domain linear model 

He (Zhihai He,2001) found, the proportion of the coefficient after quantification of zero, 
increases in a monotonic way with the growth of Quantization step. So the original R - D 
relationship may be allude to R-ρ	relationship. The research finds R-ρ meets the relationship 
as follow: 

R�ρ� � θ�1 � ρ� 
Where	θ is a constant. 
4. Logarithmic model  
Provided the source obeys Gaussian distribution which the mean is 0 and the variance is σ�, 
The distortion defined as :D�x, x�� � �x � x�� . While the rate-distortion function is: 

R�D� � �
1
2 log

δ�
D

								�						,							D � δ�
	 , � � D � δ� 

Where R(D) is the average coding bits of every pixel. 
Supposed that distortion and the quantification coefficients is linear relationship, namely: 

D�Q� � � � Q 

So get the R – Q model: 

R�Q� � α � � log 1Q 

This model is much simpler, used by many documents. But because the image of the DCT 
coefficients do not accord with Gaussian distribution and D and Q usually is not linear 
relationship. Therefore, this adaption of the model is so-so. 

1.3.2 Rate distortion optimization (RDO) 
Rate control usually incorporate with rate distortion optimization (RDO), which could 
brings more coding efficiency for optimized mode decision and bit allocation. In order to 
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reduce the temporal correlations among successive frames, inter-frame coding is widely 
used, which is usually realized by motion compensation prediction (MCP). With block basis 
motion estimation, the residual texture and motion vectors associated in the current block 
need to be coded finally. Obviously, for a given bit rate, over-large motion information or 
residual information wouldn’t give the best coding efficiency, so the trade-off between the 
motion information and the residual information, on which the motion compensated video 
coding heavily depends, should be considered. The trade-off is usually achieved by a rate 
distortion optimization (RDO) that is formulated by minimizing the cost J, shown as follows  

� � � � λ���R 

Here the distortion D representing the residual (texture or prediction error) measured as 
sum absolute distortion (SAD) or mean absolute distortion (MAD), is weighted against the 
number of bits R associated with the motion information by using the Lagrange multiplier 
λ���. Each λ��� corresponds to a bit rate range and a trade-off between the motion 
information and the residual information. A large 	λ��� works well at a low bit rate while a 
small λ���works well at a high bit rate.  

1.3.3 The influences of the coding parameters on the code rate control 
Any control on encoding bitrate must consider the tradeoff of the quality and efficiency of 
compression. The bitrate reduce is at the cost of lower quality. In video encoder, we can 
control output bitrate by adjusting the following four coding parameters: 
1. Frame rate, namely frames per second coding. By adjusting the frame rate, make the 

encoder output rate achieve specified requirements. A control frame rate for video 
signal is temporal redundancy, rather than spatial redundancy. Usually the quality 
requirements in a single image are higher, so we cannot decrease rate by reducing the 
number of each frame coding bits. 

2. The coding for some transform coefficients of each image block, for example, transform 
coefficient as diagonal coefficient (1,1), (2,2), or just to code pixel pieces of low-
frequency coefficients. The DC coefficients have a large proportion in the pixel block 
energy, therefore, in order to maintain certain quality of image they must be encoded. 
However, AC coefficients can be discarded or encode a part of them to decrease the 
output bitrate. In the image with a few of details, spatial correlation, this method can 
get good quality image in low bit rate, but when the image with a lot of details, if we 
remove much AC coefficient, the image quality will greatly reduce. 

3. Quantization parameter (QP). Quantitative parameter has considerable influence on the 
coding bits of the image block. When the video sequences have acuteness exercise, in 
order to obtain high temporal video quality, we can reduce spatial video quality to 
achieve the code rate control with details quantified roughly by increasing the value of 
each image QP. With the QP increasing, the value of the quantified DCT coefficients 
decrease, then the zero coefficient will be more, as a result, the output encoding bits 
become less. On the other hand, if the QP is smaller, the value of the quantified DCT 
coefficients increase, then the output encoding bits become more. In H.264, we can 
achieve different levels of the code rate control through the adjustment frame, the Basic 
Unit or the quantitative parameters. 

4. The optimal QP value, through quantitative determination coefficient of smaller, after 
can be obtained in the run-length coding before the zero coding, quantity higher degree 
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Then we get the R-D model: 

R� � α�Q��� � α�Q��� 

Where α� and α� are two coefficients. 
In order to enhance the accuracy of the R-D model, bring in two parameters MAD and Rh, 
then: 

R�Q� � R� � X� ∗ MAD
Q � X� ∗ MAD

Q�  

Where MAD is the mean absolute difference between the original frame and reconstruction 
of frame	R� is the number of bits of the header information and information such as the 
motion vector occupies; 	X�and X� are two coefficients. 

3.  domain linear model 

He (Zhihai He,2001) found, the proportion of the coefficient after quantification of zero, 
increases in a monotonic way with the growth of Quantization step. So the original R - D 
relationship may be allude to R-ρ	relationship. The research finds R-ρ meets the relationship 
as follow: 

R�ρ� � θ�1 � ρ� 
Where	θ is a constant. 
4. Logarithmic model  
Provided the source obeys Gaussian distribution which the mean is 0 and the variance is σ�, 
The distortion defined as :D�x, x�� � �x � x�� . While the rate-distortion function is: 
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Where R(D) is the average coding bits of every pixel. 
Supposed that distortion and the quantification coefficients is linear relationship, namely: 

D�Q� � � � Q 

So get the R – Q model: 

R�Q� � α � � log 1Q 

This model is much simpler, used by many documents. But because the image of the DCT 
coefficients do not accord with Gaussian distribution and D and Q usually is not linear 
relationship. Therefore, this adaption of the model is so-so. 

1.3.2 Rate distortion optimization (RDO) 
Rate control usually incorporate with rate distortion optimization (RDO), which could 
brings more coding efficiency for optimized mode decision and bit allocation. In order to 
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reduce the temporal correlations among successive frames, inter-frame coding is widely 
used, which is usually realized by motion compensation prediction (MCP). With block basis 
motion estimation, the residual texture and motion vectors associated in the current block 
need to be coded finally. Obviously, for a given bit rate, over-large motion information or 
residual information wouldn’t give the best coding efficiency, so the trade-off between the 
motion information and the residual information, on which the motion compensated video 
coding heavily depends, should be considered. The trade-off is usually achieved by a rate 
distortion optimization (RDO) that is formulated by minimizing the cost J, shown as follows  

� � � � λ���R 

Here the distortion D representing the residual (texture or prediction error) measured as 
sum absolute distortion (SAD) or mean absolute distortion (MAD), is weighted against the 
number of bits R associated with the motion information by using the Lagrange multiplier 
λ���. Each λ��� corresponds to a bit rate range and a trade-off between the motion 
information and the residual information. A large 	λ��� works well at a low bit rate while a 
small λ���works well at a high bit rate.  

1.3.3 The influences of the coding parameters on the code rate control 
Any control on encoding bitrate must consider the tradeoff of the quality and efficiency of 
compression. The bitrate reduce is at the cost of lower quality. In video encoder, we can 
control output bitrate by adjusting the following four coding parameters: 
1. Frame rate, namely frames per second coding. By adjusting the frame rate, make the 

encoder output rate achieve specified requirements. A control frame rate for video 
signal is temporal redundancy, rather than spatial redundancy. Usually the quality 
requirements in a single image are higher, so we cannot decrease rate by reducing the 
number of each frame coding bits. 

2. The coding for some transform coefficients of each image block, for example, transform 
coefficient as diagonal coefficient (1,1), (2,2), or just to code pixel pieces of low-
frequency coefficients. The DC coefficients have a large proportion in the pixel block 
energy, therefore, in order to maintain certain quality of image they must be encoded. 
However, AC coefficients can be discarded or encode a part of them to decrease the 
output bitrate. In the image with a few of details, spatial correlation, this method can 
get good quality image in low bit rate, but when the image with a lot of details, if we 
remove much AC coefficient, the image quality will greatly reduce. 

3. Quantization parameter (QP). Quantitative parameter has considerable influence on the 
coding bits of the image block. When the video sequences have acuteness exercise, in 
order to obtain high temporal video quality, we can reduce spatial video quality to 
achieve the code rate control with details quantified roughly by increasing the value of 
each image QP. With the QP increasing, the value of the quantified DCT coefficients 
decrease, then the zero coefficient will be more, as a result, the output encoding bits 
become less. On the other hand, if the QP is smaller, the value of the quantified DCT 
coefficients increase, then the output encoding bits become more. In H.264, we can 
achieve different levels of the code rate control through the adjustment frame, the Basic 
Unit or the quantitative parameters. 

4. The optimal QP value, through quantitative determination coefficient of smaller, after 
can be obtained in the run-length coding before the zero coding, quantity higher degree 
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after compression coding, output bits less. Instead, the small, DCT QP coefficients 
quantification, the value after the coding bits. In the h.264 encoder, through the 
adjustment frame, the Basic Unit (Basic Unit) or the quantitative parameters can achieve 
different levels of the code rate control. 

5. Motion detection threshold. Motion detection threshold is used to determine the 
macroblock of the prediction frames (P) to code or skip. If the threshold improves, the 
sensitivity of the movement of the encoder reduces, then the number of coding 
macroblocks decrease, therefore, the bits of P frame needing to code decrease. However, 
it is at the cost of image motion video quality. On the other hand, if the threshold is 
lower, the movement sensitivity will improve, so there will be more macroblock 
needing to code, as a result, the bits will increase.  While INTRA or INTER detection 
threshold is also available for controlling the output bitrate of P frame. More INTRA 
coded, more the output bits become, and higher the video quality is. 

The process of adjusting the coding the four values of the parameters of the code, can 
effectively control the output video encoder to meet current rate control requirements. 
However, they also may cause changes in the image quality. At present, most of the code 
rate control schemes use quantitative parameters control mode to achieve rate control. 

2. Rate control theory 
The video communication system widely use MC-DPCM or DCT video coding algorithm, 
the stream has the inherent characteristics of variable bit rate. If encoding parameters 
remain the same during the compression, different number of bits between frames will 
consume significantly different. As the actual network bandwidth and storage media 
capacity constraints on the rate of this stream without any constraints on the impact of video 
communication system is catastrophic and cannot guarantee that the system work. 
Now main international video coding standards (i.e., MPEG-1, MPEG-2, MPEG-4, H.261, 
H.263 and H.264) video images use DCT to eliminate spatial correlation. Image data (image 
data to be the original frame and the predicted residual error between frames using the 
temporal prediction) is divided into blocks of such size, and then block by block 
implemented of the DCT and quantization. Less or does not contain details of the details of 
the block will have fewer non-zero coefficient, therefore the details of the block produced 
more non-zero coefficient is greater. Block of varying degrees of redundancy has led to 
different blocks of the same frame number of bits needed to encode a big difference. 
If only intra-frame coding is taken into account, the number of bits consumed by each frame 
as the scene complexity will vary. Complex scene is much larger than the number of bits 
needed to simple scenes. In the same scene, the rate changes are usually small. Figure 2.1 (a) 
shows the varying bit rate of MPEG-2 using intra-prediction coding in which all coding 
parameters are unchanged. From the figure we can see: in the same scene, the rate has 
changed little; when the scene change or changes, the rate changes dramatically. 
Motion estimation is another cause to the bit rate fluctuations of compressed bit stream. 
When using temporal motion estimation, the encoded data includes motion vectors and 
residual coefficients. Motion estimation in MC-DPCM / DCT coding is based on the basis of 
translational motion model. If the scene contains only small movements or simple linear 
sports (such as moving the camera lens), block-based motion estimation can be effective to 
predict the movement. In this case, the motion vector has relatively high share of the 
number of bits. If the scene contains fast or complex motion (such as rotation, scaling or 
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random movement, etc.), the block-based motion estimation is difficult to predict the actual 
movement, especially in the scene change or changes, many of the macro block coding 
frame will be used intra encoding mode, allows a significant residual coding bits by force 
mouth. 
 

     
                         (a) Stefan/MPEG-2                                             (b) Coatguard/H.263 

Fig. 2.1 

Figure 2.1 (b) shows the H.263 stream in the frame bits curve. Each frame is the frame from 
its precursor predicted residual frame using the DCT transform compression. Because there 
is no prediction reference frame to the first frame, all macro blocks in the first frame are 
coded in intra mode and therefore consume more bits; the rate of the following frames don’t 
change much, because they are highly related which means containing the same detail and 
movement. But in the 30-th frame or so, there is a peak value, because the camera lens is 
dragged here and therefore reduces the efficiency of motion estimation; as a result, most of 
the macro blocks in these several frames were intra coded, resulting in a rate increase. In the 
subsequent long period of time, no scene change occurs, rate changes are small. 
In video coding, the coding type of frame is another factor that affects the bit rate. I frame 
uses only intra prediction, so the compression ratio is usually very low. P frame uses inter-
frame prediction, and its compression efficiency is usually higher than I frame. B frames can 
effectively deal with the new target occlusion and scene access issues because of the use of 
the bi-directional prediction: compared to P frame, the mean of B frame using the two 
images to compensate obtains higher signal to noise ratio. However, B frames will not be 
used for prediction and allowing the use of fewer bits encoding the number of coding which 
will not cause distortion proliferation. In A group of pictures (GOP) of the MPEG-1 and 
MPEG-2, different types of frame encoding result in a significant difference between the 
numbers of bit.  
Before transmission, all rate fluctuations (including intra-frame, inter-frame and within a 
GOP) must be effectively controlled, since the actual network bandwidth and storage media 
capacity is limited. Many of the existing network and storage media are operating in 
constant bit rate (CBR). Even if they work at a variable bit rate (VBR) model, the maximum 
stream rate fluctuations will also have the corresponding constraints. So the coded video 
sequence must be adjusted to meet the network bandwidth and storage media capacity 
requirements. In addition, the non-binding rate is not conducive to the management of 
channel bandwidth. 
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after compression coding, output bits less. Instead, the small, DCT QP coefficients 
quantification, the value after the coding bits. In the h.264 encoder, through the 
adjustment frame, the Basic Unit (Basic Unit) or the quantitative parameters can achieve 
different levels of the code rate control. 

5. Motion detection threshold. Motion detection threshold is used to determine the 
macroblock of the prediction frames (P) to code or skip. If the threshold improves, the 
sensitivity of the movement of the encoder reduces, then the number of coding 
macroblocks decrease, therefore, the bits of P frame needing to code decrease. However, 
it is at the cost of image motion video quality. On the other hand, if the threshold is 
lower, the movement sensitivity will improve, so there will be more macroblock 
needing to code, as a result, the bits will increase.  While INTRA or INTER detection 
threshold is also available for controlling the output bitrate of P frame. More INTRA 
coded, more the output bits become, and higher the video quality is. 

The process of adjusting the coding the four values of the parameters of the code, can 
effectively control the output video encoder to meet current rate control requirements. 
However, they also may cause changes in the image quality. At present, most of the code 
rate control schemes use quantitative parameters control mode to achieve rate control. 

2. Rate control theory 
The video communication system widely use MC-DPCM or DCT video coding algorithm, 
the stream has the inherent characteristics of variable bit rate. If encoding parameters 
remain the same during the compression, different number of bits between frames will 
consume significantly different. As the actual network bandwidth and storage media 
capacity constraints on the rate of this stream without any constraints on the impact of video 
communication system is catastrophic and cannot guarantee that the system work. 
Now main international video coding standards (i.e., MPEG-1, MPEG-2, MPEG-4, H.261, 
H.263 and H.264) video images use DCT to eliminate spatial correlation. Image data (image 
data to be the original frame and the predicted residual error between frames using the 
temporal prediction) is divided into blocks of such size, and then block by block 
implemented of the DCT and quantization. Less or does not contain details of the details of 
the block will have fewer non-zero coefficient, therefore the details of the block produced 
more non-zero coefficient is greater. Block of varying degrees of redundancy has led to 
different blocks of the same frame number of bits needed to encode a big difference. 
If only intra-frame coding is taken into account, the number of bits consumed by each frame 
as the scene complexity will vary. Complex scene is much larger than the number of bits 
needed to simple scenes. In the same scene, the rate changes are usually small. Figure 2.1 (a) 
shows the varying bit rate of MPEG-2 using intra-prediction coding in which all coding 
parameters are unchanged. From the figure we can see: in the same scene, the rate has 
changed little; when the scene change or changes, the rate changes dramatically. 
Motion estimation is another cause to the bit rate fluctuations of compressed bit stream. 
When using temporal motion estimation, the encoded data includes motion vectors and 
residual coefficients. Motion estimation in MC-DPCM / DCT coding is based on the basis of 
translational motion model. If the scene contains only small movements or simple linear 
sports (such as moving the camera lens), block-based motion estimation can be effective to 
predict the movement. In this case, the motion vector has relatively high share of the 
number of bits. If the scene contains fast or complex motion (such as rotation, scaling or 
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random movement, etc.), the block-based motion estimation is difficult to predict the actual 
movement, especially in the scene change or changes, many of the macro block coding 
frame will be used intra encoding mode, allows a significant residual coding bits by force 
mouth. 
 

     
                         (a) Stefan/MPEG-2                                             (b) Coatguard/H.263 

Fig. 2.1 

Figure 2.1 (b) shows the H.263 stream in the frame bits curve. Each frame is the frame from 
its precursor predicted residual frame using the DCT transform compression. Because there 
is no prediction reference frame to the first frame, all macro blocks in the first frame are 
coded in intra mode and therefore consume more bits; the rate of the following frames don’t 
change much, because they are highly related which means containing the same detail and 
movement. But in the 30-th frame or so, there is a peak value, because the camera lens is 
dragged here and therefore reduces the efficiency of motion estimation; as a result, most of 
the macro blocks in these several frames were intra coded, resulting in a rate increase. In the 
subsequent long period of time, no scene change occurs, rate changes are small. 
In video coding, the coding type of frame is another factor that affects the bit rate. I frame 
uses only intra prediction, so the compression ratio is usually very low. P frame uses inter-
frame prediction, and its compression efficiency is usually higher than I frame. B frames can 
effectively deal with the new target occlusion and scene access issues because of the use of 
the bi-directional prediction: compared to P frame, the mean of B frame using the two 
images to compensate obtains higher signal to noise ratio. However, B frames will not be 
used for prediction and allowing the use of fewer bits encoding the number of coding which 
will not cause distortion proliferation. In A group of pictures (GOP) of the MPEG-1 and 
MPEG-2, different types of frame encoding result in a significant difference between the 
numbers of bit.  
Before transmission, all rate fluctuations (including intra-frame, inter-frame and within a 
GOP) must be effectively controlled, since the actual network bandwidth and storage media 
capacity is limited. Many of the existing network and storage media are operating in 
constant bit rate (CBR). Even if they work at a variable bit rate (VBR) model, the maximum 
stream rate fluctuations will also have the corresponding constraints. So the coded video 
sequence must be adjusted to meet the network bandwidth and storage media capacity 
requirements. In addition, the non-binding rate is not conducive to the management of 
channel bandwidth. 
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Rate control is a necessary part of an encoder, and has been widely applied in standards 
including MPEG-2, MPEG-4, H.263, and so on. Rate control belongs to the budget-
constrained bit allocation problem whose goal is to determine how many bits to use on 
different parts of the video sequence and to do so in such a way as to maximize the quality 
delivered to the end user. A natural way to approach these problems is to consider the R-D 
trade-offs in the allocation. Therefore, a practical video encoder employs rate control as a 
way to regulate varying bit rate characteristics of the coded bit stream in order to produce 
high quality decoded frame at a given target bit rate. In this process, there are two key 
phrases: 1) to find out a reasonable and accurate R-D model to describe the characteristic of 
a specific signal source; 2) to allocate every bit unit appropriately in order to minimize to 
overall distortion.  
Rate control in video coding is typical accomplished in three steps: 
1. Update the target average bit rate in terms of bps for each short time interval, also 

referred to as the rate update interval; 
2. Determine the coding mode(e.g., I-, P-, or B-frame) and the target bit budget for each 

frame to be coded in this interval, which is usually based on the target average rate for 
the interval and the current buffer fullness;  

3. Determine the coding mode and QP for each MB in a frame to meet the target rate for 
this frame. 

2.1 Bit allocation 
We now present a series of generic allocation problem formulations that spell out some of 
the possible constrains, the encoder will have to meet when performing this parameter 
selection. It would be trivial to achieve minimal distortion if no constraints on the rate were 
imposed. We will formulate two classes of closely related problems where the rate 
constraints are driven by (i) total bit budget (e.g., for storage applications) and (ii) 
transmission delay (e.g., for video transmission). 

Storage constraints: Budget-constrained allocation 
In this class of problems, the rate is constrained by some restriction on the maximum total 
number of bits that can be used. This total number of budget �� has to be distributed among 
the different coding units with the goal of minimizing some overall distortion metric. The 
problem can be restated as follows: 

Find the optimal quantizer, or operating point, x(i) for each coding unit i, such that 
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and some metric ��������� ������� � � ������� is minimized. 
Several kinds of metric are mostly used in video coding, such as minimum average 
distortion (MMSE), minimax approach (MMAX), and lexicographically optimal approach 
(MLEX).  
Minimum average distortion 
In a MMSE problem, we have that 

��������� ������� � � ������� � ∑ ���������� . 
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Minimax approach 
Alternatively, a MMAX approach would be such that  

��������� ������� � � ������� � ������� ������. 
Lexicographically optimal approach 
MLEX approaches have been extensions of the mini-max solution. The MLEX approach 
compares two solutions by sorting their distortions or their quantization indices. 
Allocations derived under the MLEX constraint have the interesting property of tending 
to equalize the distortion or the quantization scale across all coding units.  

A more general version of the problem of budget-constrained allocation may arise in 
situations where there are not only limitations on total rate but also in the rate available for 
subset of coding units. Assume, for example, that a set of images has to be placed in a 
storage device that is physically partitioned and that it is impossible for undesirable for 
performance reasons to split images across one or more devices. In this case, we will have to 
deal with partial constraints on the set of images assigned to each particular devide, in 
addition to the overall budget constraint. An optimal allocation that considers only the 
aggregate storage constraint may result in an invalid distribution between the storage 
devices. 
Consider the case where two storage devices, each one of size���/2, are used. We will have 
the following constraint, in addition to the budget constraint of Eq.(1a): 

∑ ����������� � ��/2, 

Where ��� is the number of coding units that are stored in the first storage device. �� itself 
may not be given and may have to be determined.  

Delay-constrained allocation 
Solutions of storage-constrained allocation above cannot encompass situations where the 
coding units, for example, a series of video frames, are streamed across a link or a network 
to a receiver. In this situation, each coding unit is subject to a delay constraint; therefore, it 
has to be available at the decoder by a certain time in order to be played back.  
For example, let a coding unit be coded at time t  and assume that it will have to be 
available at the decoder at time t T  , where T  is the end-to-end delay of the system. 
This imposes a constraint on the rate, which has to be low enough that transmission can be 
guaranteed within the delay, can be used for each frame. If each coding unit lasts ut  
seconds, then the end-to-end delay can be expressed as / uN T t    in coding units. The 
video encoder will have to ensure that the rate selection for each frame is such that no 
frames arrive too late at the encoder. Given the delay constraints for each coding unit, the 
problem can be restated as follows: 
Find the optimal set of quantizers x(i) such that (1) each coding unit i encoded at time it  is 
received at the decoder before its “deadline” i it  , and, (2) a given distortion metric, such 
as MMSE and MMAX, is minimized.  
Note that the problem doesn’t impose any constraint on the transmission bandwidth; 
however, in practical applications we must deal with limited bandwidth and expenditures 
which rise to meet the incomes.  
The complexity of this allocation problem depends on the channel characteristics: we need 
to know if the channel provides a constant bit rate (CBR) or a variable bit rate (VBR), if the 
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Rate control is a necessary part of an encoder, and has been widely applied in standards 
including MPEG-2, MPEG-4, H.263, and so on. Rate control belongs to the budget-
constrained bit allocation problem whose goal is to determine how many bits to use on 
different parts of the video sequence and to do so in such a way as to maximize the quality 
delivered to the end user. A natural way to approach these problems is to consider the R-D 
trade-offs in the allocation. Therefore, a practical video encoder employs rate control as a 
way to regulate varying bit rate characteristics of the coded bit stream in order to produce 
high quality decoded frame at a given target bit rate. In this process, there are two key 
phrases: 1) to find out a reasonable and accurate R-D model to describe the characteristic of 
a specific signal source; 2) to allocate every bit unit appropriately in order to minimize to 
overall distortion.  
Rate control in video coding is typical accomplished in three steps: 
1. Update the target average bit rate in terms of bps for each short time interval, also 

referred to as the rate update interval; 
2. Determine the coding mode(e.g., I-, P-, or B-frame) and the target bit budget for each 

frame to be coded in this interval, which is usually based on the target average rate for 
the interval and the current buffer fullness;  

3. Determine the coding mode and QP for each MB in a frame to meet the target rate for 
this frame. 

2.1 Bit allocation 
We now present a series of generic allocation problem formulations that spell out some of 
the possible constrains, the encoder will have to meet when performing this parameter 
selection. It would be trivial to achieve minimal distortion if no constraints on the rate were 
imposed. We will formulate two classes of closely related problems where the rate 
constraints are driven by (i) total bit budget (e.g., for storage applications) and (ii) 
transmission delay (e.g., for video transmission). 

Storage constraints: Budget-constrained allocation 
In this class of problems, the rate is constrained by some restriction on the maximum total 
number of bits that can be used. This total number of budget �� has to be distributed among 
the different coding units with the goal of minimizing some overall distortion metric. The 
problem can be restated as follows: 

Find the optimal quantizer, or operating point, x(i) for each coding unit i, such that 
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and some metric ��������� ������� � � ������� is minimized. 
Several kinds of metric are mostly used in video coding, such as minimum average 
distortion (MMSE), minimax approach (MMAX), and lexicographically optimal approach 
(MLEX).  
Minimum average distortion 
In a MMSE problem, we have that 
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Minimax approach 
Alternatively, a MMAX approach would be such that  

��������� ������� � � ������� � ������� ������. 
Lexicographically optimal approach 
MLEX approaches have been extensions of the mini-max solution. The MLEX approach 
compares two solutions by sorting their distortions or their quantization indices. 
Allocations derived under the MLEX constraint have the interesting property of tending 
to equalize the distortion or the quantization scale across all coding units.  

A more general version of the problem of budget-constrained allocation may arise in 
situations where there are not only limitations on total rate but also in the rate available for 
subset of coding units. Assume, for example, that a set of images has to be placed in a 
storage device that is physically partitioned and that it is impossible for undesirable for 
performance reasons to split images across one or more devices. In this case, we will have to 
deal with partial constraints on the set of images assigned to each particular devide, in 
addition to the overall budget constraint. An optimal allocation that considers only the 
aggregate storage constraint may result in an invalid distribution between the storage 
devices. 
Consider the case where two storage devices, each one of size���/2, are used. We will have 
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∑ ����������� � ��/2, 

Where ��� is the number of coding units that are stored in the first storage device. �� itself 
may not be given and may have to be determined.  

Delay-constrained allocation 
Solutions of storage-constrained allocation above cannot encompass situations where the 
coding units, for example, a series of video frames, are streamed across a link or a network 
to a receiver. In this situation, each coding unit is subject to a delay constraint; therefore, it 
has to be available at the decoder by a certain time in order to be played back.  
For example, let a coding unit be coded at time t  and assume that it will have to be 
available at the decoder at time t T  , where T  is the end-to-end delay of the system. 
This imposes a constraint on the rate, which has to be low enough that transmission can be 
guaranteed within the delay, can be used for each frame. If each coding unit lasts ut  
seconds, then the end-to-end delay can be expressed as / uN T t    in coding units. The 
video encoder will have to ensure that the rate selection for each frame is such that no 
frames arrive too late at the encoder. Given the delay constraints for each coding unit, the 
problem can be restated as follows: 
Find the optimal set of quantizers x(i) such that (1) each coding unit i encoded at time it  is 
received at the decoder before its “deadline” i it  , and, (2) a given distortion metric, such 
as MMSE and MMAX, is minimized.  
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however, in practical applications we must deal with limited bandwidth and expenditures 
which rise to meet the incomes.  
The complexity of this allocation problem depends on the channel characteristics: we need 
to know if the channel provides a constant bit rate (CBR) or a variable bit rate (VBR), if the 
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channel delay is constant, if the channel is reliable, etc. For simplicity, in the followings we 
assume that i T    for all i.  
In both CBR and VBR cases, data will be stored in buffers at encoder and decoder. Assume a 
variable channel rate of C(i) during the i-th coding unit interval. Then we will have that the 
encoder buffer state at time I is  

( )( ) max( ( 1) ( ),0)ix iB i B i r C i    , 

with B(0) = 0 being the initial state of the buffer.  
Consider the constraints need to be applied to the encoder buffer state. First, the buffer state 
B(i) cannot grow indefinitely because of the finite physical buffer. If maxB  is the physical 
memory available then we need to guarantee that max( )B i B  at all time. Secondly, in order 
to the delay constraint not to be violated, we need to guarantee that the data corresponding 
to coding unit i  is transmitted before it T  ; that is, transmission has to be completed 
during the next N  coding unit intervals.  
Then, we can define the effective buffer size ( )effB i  as 

1
( ) ( )

i N

eff
k i

B i C k


 
  , 

Then correct transmission is guaranteed if  

( ) ( ),effB i B i i  . 

As an example, consider the case where ( ) /TC i C R N   is constant. If the system operates 
with an end-to-end delay N  the buffer can store no more than N C  bits at time t.  
In general, the applicable constraint will be imposed by the smallest of ( )effB i and maxB . 
Assuming that sufficient physical buffer storage is available, the problem becomes: 
Buffer-constrained allocation 

Find the optimal set of quantizers ( )x i  for each i  such that the buffer occupancy 

( )( ) max( ( 1) ( ),0)ix iB i B i r C i    , 

is such that  

( ) ( )effB i B i
 

and some metric 1 (1) 2 (2) ( )( , ,..., )x x Nx Nf d d d  is minimized.  

2.2 Rate distortion optimization  
Rate distortion optimization theory, which is derived from information theory, is the 
theoretical basis for optimization of video coding. Also the rate distortion optimal coding 
techniques are widely used in every video coding system. First of all, the distortion rate 
distortion optimization is closely related with the quantization, thus the rate distortion 
optimization in the quantizer design plays an important role in the design of weighted 
quantization matrix and adjusting quantified deadzone interval, etc.; rate distortion 
optimization can also be used to select the macro-block encoding parameters, such as the 
choosing of the best motion vector and coding mode, etc.  
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Another important application of rate distortion optimization techniques is to solve the 
optimization problems of bit allocation, i.e., how to find the optimal solution of numbers of 
bit distributed among different macro blocks and pictures in order to obtain the minimum 
total distortion within the total bit budget constraint. And this issue is the goal of rate 
control. Since the basic unit (macro-block or image) in bit allocation and the distortion is 
related to each other, which makes the bit allocation problem become more complex. As a 
result, we often utilize the monotonicity of R-D characteristic or assume independent cases 
to reduce the complexity of solving the problem. 
We first introduce the basic concepts of rate distortion theory, including the definition of 
rate distortion function and the forms of R-D function about the source of Gaussian 
distribution and Laplacian distribution. This is because natural images are usually assumed 
to obey Gaussian distribution, while transformation coefficient is usually assumed to obey 
the Laplacian distribution. R-D models are generally derived from the typical rate-distortion 
function based on the foregoing assumptions. 
Rate-distortion theory is an important part of information theory and is the theoretical basis 
of data compression and quantization. "Rate" represents the measure of signal; “distortion” 
reflects the difference between source signals in current rate and the source. The amount of 
information is measure by entropy which is defined as: 

logi iH p p   

For two signals X, Y, the mutual information is defined as: 

( ; ) ( ) ( | )I X Y H X H X Y   
Rate distortion function reflects the entropy of mutual information between source signals 
and received signals through the channel transmission or coding distortion. Assume that X 
to be the source signals, Y to be the signal through channel transmission at the receiver, the 
rate distortion function is defined as: 

( | )
( ) min ( ; ).

j jp y x
R D I X Y  

We can use a curve with convex hull to characterize the relation between R and D, as 
following Figure 2.2. The convexity of R-D characteristic is essential in the solution of bit 
allocation. 
In video coding, image data is usually assumed to be zero mean and variance as 2  non-
memory Gaussian source. Its probability density function is: 
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If the mean square error is as a measure of distortion of the standard, then the rate distortion 
function is: 
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Another important application of rate distortion optimization techniques is to solve the 
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related to each other, which makes the bit allocation problem become more complex. As a 
result, we often utilize the monotonicity of R-D characteristic or assume independent cases 
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function based on the foregoing assumptions. 
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reflects the difference between source signals in current rate and the source. The amount of 
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Fig. 2.2 The convexity of R-D characteristic is essential in the solution of bit allocation 

In transform coding, DCT transform coefficients are usually simulated with Laplacian 
distribution. For the Laplacian distribution of rate-distortion function is usually expressed 
respectively as: 
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where Q is the quantization step size. Note that when the quantization step Q increases, 
distortion D is close to the source variance 2

2
2
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Bit allocation optimization problem in video coding is given under the constraints of bit rate 
to find the optimal solution that obtains the best image quality. In order word, it is restated 
as follow: 
min{ }D , with the constraint that maxR R  
Note that the bit allocation constraints can be either to the entire video sequence bit 
constrained, minimizing the cost of rate distortion of each image and the final optimal effect 
of encoded sequence, or to a single frame so that obtains the optimal coding of each macro 
block. Current methods commonly are used Lagrangian optimization, dynamic programming 
method and etc. 
Lagrangian optimization  
Consider the case where the rate R and distortion D can be measured independently for 
each coding unit; i.e., the R-D data for coding unit i can be computed without requiring that 
other coding units be encoded as well. One example of this scenario is the allocation of bits 
to different blocks in a DCT image coder where blocks are individually quantized and 
entropy coded.  
Assume that the basic coding units (block or image) are mutually unrelated. Then the 
distortion and rate are irrelative to the adapted quantization parameter. Suppose the k-th 
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block adapts quantization parameter Qk, then we obtain the corresponding distortion and bit 
rate of Dk and Rk, respectively. To solve the problem, we need to find an optimal set of Qk*  such 
that minimizing the total distortion within the constraint of total budget R: 

1

* * * *
1 2

( ,..., ) 1
( , ,..., ) arg min ( ),

n

n

k n i i
Q Q i

Q Q Q Q D Q


    

with the constraint that 
1

( )
n

i i
i

R Q R


 . 

Lagrangian multiplier can be used to solve this problem. Firstly, we convert it to the 
optimization without constraints:  

1

*

( ,..., ) 1 1
arg min ( ) ( ).

n
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i i i i
Q Q i i

Q D Q R Q
 

    

Since the distortions and rates in different units are mutually unrelated, we restate the 
former equation as: 

* arg min[ ( ) ( )]
k

k i i i iQ
Q D Q R Q  

 

Note that for each coding unit i , the point on the R-D characteristic that minimizes 
( ) ( )ix i ix id r   is the point at which the line of absolute slope   is tangent to the convex hull 

of the R-D characteristic. Since   is the same for every coding unit on the sequence, we can 
refer to this algorithm as a “constant slope optimization”. 
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Fig. 2.3 

Dynamic programming 
The foregoing Lagrangian optimization assumes that the basic units are mutually 
independent, so that minimizing the cost of rate-distortion in each unit results in the optimal 
solution. However, in the practical encoding process, each unit will have correlations with 
others because of the introduction of temporal and spatial prediction. As a result, their cost 
of rate distortion is mutually affected. Dependency exists in this rate-distortion problem can 
be stated as: 
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block adapts quantization parameter Qk, then we obtain the corresponding distortion and bit 
rate of Dk and Rk, respectively. To solve the problem, we need to find an optimal set of Qk*  such 
that minimizing the total distortion within the constraint of total budget R: 
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independent, so that minimizing the cost of rate-distortion in each unit results in the optimal 
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others because of the introduction of temporal and spatial prediction. As a result, their cost 
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with the constraint that 
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Dependent optimization problems are more complex. We have to calculate the 
corresponding costs of rate distortion of every combination of quantization parameters, 
which is quite computationally expensive. Simplified version of this dependency is to 
assume the quality of encoded picture is better with a good reference than a bad one. Based 
on this criterion dynamic programming is commonly used to solve this problem. 
Dynamic programming is generally used to find the best path, as shown below. Each node 
corresponds to a current coding mode, and the path between nodes represents the cost of 
coding. Therefore, the problem of finding an optimal coding solution is equivalent to 
finding the optimal path. If consider the dependencies between frames or macro blocks, the 
computational complexity is high. A simplified method is to use greedy method to get the 
best path at each step, finally get a sub-optimal path. 
 

 
Fig. 2.4 

2.3 Calculate the quantization parameter
 After DCT transformation, the residual signal must be quantized to form the final estimate. 

Ideally, the choice of quantizer step size Q  should be optimized in a rate-distortion sense. 
Given a quantizer step size Q , the quantization of the residual signal (the mapping of the 
transformed samples to quantization index values) should also be rate-distortion optimized. 
The choice of the quantizer output level sent for a given input value should balance the 
needs of rate and distortion. A simple way to do this is to move the decision thresholds of 
the quantizer somewhat toward lower bit-rate indices . This is the method used in the ITU-T 
test model. Alternatively, a D R  decision can be made explicitly to choose the quantization 
index. However, in modern video coders such as H.263 the bit rate needed to represent a 
given quantization index depends not only on the index chosen for a particular sample, but 
on the values of neighboring quantized indices as well (due to the structure of the coefficient 
index entropy coding method used). The best performance can be obtained by accounting 
for these interactions. In recent video coder designs, the interactions have become complex, 
such that a trellis-based quantization technique may be justified. 
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Transform coefficient bit allocations are optimized quantization of the wavelet coefficients, 
its purpose is to choose the appropriate quantized index for all transform coefficients, which 
makes coding coefficients and the number of bits used in coding distortion to achieve a 
desired balance between, that is the minimum cost. This is one of typical applications using 
the rate distortion optimization techniques. Quantization is to balance the amount of data 
encoded with the coding distortion. At the same time it is also closely related with the 
features of transformation (usually orthogonal transform). 
In the latest coding standard H.264 and AVS there is an emergence of new technologies in 
quantitative transform characteristics. They use integer transform instead of floating-point 
of the traditional DCT. This modification not only reduces the complexity of transform, but 
also avoids mismatch caused by floating point calculations. At the same time quantitative 
and transform normalized combination can be achieved only through multiplication and 
shift. However, the magnitude of each line in transformation matrix is not necessarily equal, 
which means to require for normalization in encoder and decoder. If the encoder and 
decoder implementation with parameter quantization table, more storage space is in need. 
In AVS, each line of transformation matrix is approximate in magnitude, so there only 
requires for normalization in encoder, and therefore the size of quantization table in decoder 
is decreased. As a result, the storage complexity in decoder is reduced. However, this 
transformation method brings new problems on rate-distortion analysis. 
Transform is one of the core technologies in video coding. Through transformation the 
spatial redundancy between image data can be effectively removed. As DCT transform has 
excellent property of energy concentration, it is widely applied to various types of coding 
standards, such as MPEG-2, MPEG-4, H.263, etc. 
The algorithm for the rate-constrained mode decision can be modified in order to 
incorporate macro block quantization step-size changes. For that, the set of macro block 
modes to choose from can be extended by also including the prediction mode type 
INTER Q  for each macro block, which permits changing Q  by a small amount when 
sending an INTER  macro block. More precisely, for each macro block a mode M  can be 
chosen from the set 

{ , , , 4 ,..., ( 4),
( 2), ( 2), ( 4)}

M INTRA SKIP INTER INTER V INTER Q
INTER Q INTER Q INTER Q

   
     

 

where, for example, ( 2)INTER Q   stands for the INTER mode being coded with quantizer 
step size reduced by two relative to the previous macroblock. Hence, the macroblock Q 
selected by the minimization routine becomes dependent on MODE  Otherwise the 
algorithm for running the rate-distortion optimized coder remains unchanged. 
Figure 2.5 shows the obtained average macro block QUANT  gathered when coding the 
complete sequences Foreman, Mobile-Calendar, Mother-Daughter, and New. The red curve 
relates to the function  

20.85 ( )MODE QUANT    

which is an approximation of the functional relationship between the macro block QUANT 
and the Lagrange parameter MODE  up to QUANT values of 25, and H.263 allows only a 
choice of {1,2,...,31}QUANT . Particularly remarkable is the strong dependency between 

MODE  and QUANT , even for sequences with widely varying content. Note, however, that 



 
Recent Advances in Video Coding 92

with the constraint that 
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for a given value of MODE , the chosen QUANT tends to be higher for sequences that 
require higher amounts of bits (Mobile-Calendar) in comparison to sequences requiring 
smaller amounts of bits for coding at that particular MODE  (Mother-Daughter)-but these 
differences are rather small. 
 

 
Fig. 2.5 Language parameter  VS. average macroblock QUANT 

As a further justification of our simple approximation of the relationship between MODE  
and Q, let us assume a typical quantization curve high-rate approximation [ 59, 60] as 
follows 

2
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where a  is a constant that depends on the source pdf. The minimization of cost function 
J D R   for a given value of MODE  then is accomplished by setting the derivative of  

J  with respect to  D  equal to zero. This is equivalent to setting the derivative of R(D)  with 

respect to D  equal to 1
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At sufficiently high rates, a reasonably well-behaved source probability distribution can be 
approximated as a constant within each quantization interval [60]. This leads readily to the 
typical high bit-rate approximation 2(2 ) /12D QUANT  . The approximations then yield 

2( )MODE c QUANT    

 
Rate Control in Video Coding 95 

where  c  4 / 12a . Although our assumptions may not be completely realistic, the 
derivation reveals at least the qualitative insight that it may be reasonable for the value of 
the Lagrange parameter MODE  to be proportional to the square of the quantization 
parameter. As shown above, 0.85 appears to be a reasonable value for use as the constant c.  
This ties together two of the three optimization parameters, QUANT and MODE . For the 
third, MOTION , we make an adjustment to the relationship to allow use of the SAD measure 
rather than the SSD measure in that stage of encoding. Experimentally, we have found that 
an effective method to measure distortion during motion estimation using SAD and to 
simply adjust   for the lack of the squaring operation in the error computation, as given by  

MOTION MODE   

This strong dependency that we have thus derived between QUANT, MODE , and MOTION  
offers a simple treatment of each of these quantities as a dependent variable of another. For 
example, the rate control method may adjust the macro block QUANT occasionally so as to 
control the average bit rate of a video sequence, while treating hand MODE  and MOTION  
dependent variables using Eqs. (13) and (17). In the experiments reported herein, we 
therefore used the approximation (17) with the SAD error measure for motion estimation 
and the approximation (13) with the SSD error measure for mode decisions. 

2.4 Buffering mechanism 
Video buffer verifier model is an important part of coding standards. According to this 
buffer model, decoder determines the memory size, decoding delay and other parameters to 
ensure that neither overflow nor underflow will occur in the decoding process. Encoder 
buffer model uses this model to impose constraint on the encoded bit stream to ensure the 
decoding in which case the memory size of the decoder is determined. This process usually 
requires rate control techniques. 
Buffer model can usually be expressed as a ternary parameter model (R,B,F), which is often 
referred as leaky bucket model. Where R is the rate of data into the buffer zone; it can be 
either constant or variable. For variable bit rate, rate can be regarded as the general case of a 
constant rate, which means subparagraph a constant rate. Where R is the peak rate; B is the 
buffer size; F to buffer the initial saturation. Different kinds of decoders and applications can 
be expressed by different set of parameters (R,B,F).  
A leaky bucket is a direct metaphor for the encoder’s output buffer, At frame time, the encoder 
instantaneously encodes frame i into bi bits and pours these bits into the leaky bucket. In the 
constant bit rate (CBR) case, the leaky bucket drains its accumulated bits into the 
communication channel at a fixed bit rate R, and the encoder must add enough bits to the 
leaky bucket often enough so that the leaky bucket does not underflow in any interval of time. 
On the other hand, the encoder must not add too many bits to the leaky bucket too frequently, 
or else the leaky bucket, which has capacity B, will overflow. Thus, the leaky bucket, which 
may begin at an arbitrary initial state F (with 0 ≤ F ≤ B), constrains the encoding sequence 
(si,bi), i = 0, 1, 2,... Graphically, the encoding sequence, or encoding schedule, can be 
represented by the cumulative number of bits encoded by time, as illustrated in the left half 
of Figure. Furthermore, the leaky bucket constraint can be represented by the two parallel 
lines bounding the encoding schedule. The later/lower line represents the schedule on 
which bits drain from the leaky bucket, and the earlier/upper line represents the capacity 
constraint of the leaky bucket, that is, an upward shift of the later/lower line by B  bits.  
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for a given value of MODE , the chosen QUANT tends to be higher for sequences that 
require higher amounts of bits (Mobile-Calendar) in comparison to sequences requiring 
smaller amounts of bits for coding at that particular MODE  (Mother-Daughter)-but these 
differences are rather small. 
 

 
Fig. 2.5 Language parameter  VS. average macroblock QUANT 
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where  c  4 / 12a . Although our assumptions may not be completely realistic, the 
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referred as leaky bucket model. Where R is the rate of data into the buffer zone; it can be 
either constant or variable. For variable bit rate, rate can be regarded as the general case of a 
constant rate, which means subparagraph a constant rate. Where R is the peak rate; B is the 
buffer size; F to buffer the initial saturation. Different kinds of decoders and applications can 
be expressed by different set of parameters (R,B,F).  
A leaky bucket is a direct metaphor for the encoder’s output buffer, At frame time, the encoder 
instantaneously encodes frame i into bi bits and pours these bits into the leaky bucket. In the 
constant bit rate (CBR) case, the leaky bucket drains its accumulated bits into the 
communication channel at a fixed bit rate R, and the encoder must add enough bits to the 
leaky bucket often enough so that the leaky bucket does not underflow in any interval of time. 
On the other hand, the encoder must not add too many bits to the leaky bucket too frequently, 
or else the leaky bucket, which has capacity B, will overflow. Thus, the leaky bucket, which 
may begin at an arbitrary initial state F (with 0 ≤ F ≤ B), constrains the encoding sequence 
(si,bi), i = 0, 1, 2,... Graphically, the encoding sequence, or encoding schedule, can be 
represented by the cumulative number of bits encoded by time, as illustrated in the left half 
of Figure. Furthermore, the leaky bucket constraint can be represented by the two parallel 
lines bounding the encoding schedule. The later/lower line represents the schedule on 
which bits drain from the leaky bucket, and the earlier/upper line represents the capacity 
constraint of the leaky bucket, that is, an upward shift of the later/lower line by B  bits.  
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Fig. 2.7 The decoding schedule  

Although a leaky bucket is a metaphor for the encoder buffer, it also characterizes the 
decoder buffer. In the CBR case, after the encoded bits traverse the channel, they enter the 
decoder buffer at a fixed bit rate R. Then, at frame time i it s   , where   is a constant 
end-to-end delay, the decoder instantaneously extracts bits from the decoder buffer and 
decompresses frame. This decoding schedule is illustrated in the right half of Fig. 2.7. If, 
after the first bit enters the decoder buffer, the decoder delays at least seconds before 
decoding the first frame, then the decoding schedule is guaranteed not to underflow the 
decoder buffer, due to the leaky bucket bounds inherited from the parallel encoding 
schedule. Furthermore, with delay, if the capacity of the decoder buffer is at least, then the 
decoding schedule is guaranteed not to overflow the decoder buffer, again due to the leaky 
bucket bounds inherited from the parallel encoding schedule. In fact, observe that the 
fullness of the encoder and decoder buffers are complements of each other in the CBR case. 
Thus, the leaky bucket model determines both the minimum decoder buffer size and the 
minimum decoder buffer delay using three parameters, R, B, and F, by succinctly 
summarizing with upper and lower bounds the encoded sequence. 
The leaky bucket model can also be used with variable bit rate (VBR) channels, such as 
packet networks. If the VBR channel has a long-term average bit rate that equals the long-
term average bit rate of the encoded sequence, then it is often convenient to continue to use 
the above CBR leaky bucket bounds. At the decoder, the buffering and the delay due to the 
leaky bucket can be augmented by additional buffering and delay to accommodate both de-
packetization and packet network delivery jitter. Likewise, at the encoder, the buffering and 
delay can be augmented by additional buffering and delay to accommodate packetization. 
The additional buffering and delay at both the encoder and decoder are illustrated in Fig. 
2.8. The resulting total amount of buffering and delay are sufficient to guarantee continuous 
media playback without stalling due to decoder buffer underflow and without loss due to 
decoder buffer overflow. In essence, at the decoder, the leaky bucket provides a deadline by 
which packets must be available for decoding, or risk being late. Similarly, at the encoder, 
the leaky bucket provides a deadline by which the encoded bits will be available for 
packetization.  
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Fig. 2.8 

3. Rate control in video coding 
In the video coding, the module of the rate control adjusts the output bitrate based on the 
bandwidth and the signal channel and improves the quality of the video. The main purpose 
of the rate control is to find a rate-distortion model to improve the quality of the 
compression video in given conditions. The classic rate control algorithms or models mainly 
are the RM8 (Reference Model 8) in H.264, TM5 (Test Model 5) in MPEG-2, TMN8 (Test 
Model Near-term 8) in H.263 and VM8 (Verification Model 8). 

3.1 Several classical rate control schemes 
3.1.1 Simulation model 3 (SM3) 
Simulation Model 3 (SM3) is the final version of the MPEG-1 simulation model.  In SM3, the 
motion estimation technique uses one forward and/or one backward motion vector per 
macroblock with half-pixel accuracy. A two-step search scheme which consists of a full-
search in the range of +/- 7 pixels with the integer-pixel precision, followed by a search in 8 
neighboring half-pixel positions, is used. The decision of the coding mode for each 
macroblock (whether or not it will use motion compensated prediction and intra/inter 
coding), the quantizer decision levels, and the rate-control algorithm are all specified. 

3.1.2 TM5 (Test model 5) 
“Test Model 5” (TM5) is the final test model of MPEG-2. TM5 was defined only for main 
profile experiments. The motion compensated prediction techniques involve frame, field, 
dual-prime prediction and have forward and backward motion vectors as in MPEG-1.  
The dual-prime was kept in main profile but restricted to P-pictures with no intervening  
B-pictures. Two-step search, which consists of an integer-pixel full-search followed by a 
half-pixel search, is used for motion estimation. The mode decision (intra/inter coding) is 
also specified. Main profiles were restricted to only two quantization matrices, the default 
table specified in MPEG-1and the nonlinear quantizer tables. The traditional zigzag scan is 
used for inter-coding while the alternate scan is used for intra-coding. The rate-control 
algorithm in TMN5 consists of three layers operating at the GOP, the picture, and the 
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macroblock levels. A bit-allocation per picture is determined at the GOP layer and updated 
based on the buffer fullness and the complexity of the pictures. And the rate control model 
comprises the following three steps: 
1. Target bit allocation 
This step first allocates bits for given Group of Pictures (GOP) based on the target bit rate 
and the number of frames in the GOP. Then before encoding of each frame, it allocates bits 
for that frame based on the frame type (I, P or B), the complexity measure, the remaining 
number of bits in the current GOP. 
2. Rate control  
This is a macroblock level step. Here, a quantization parameter Q is computed for the 
macroblock j under consideration based on the difference between the allocated bits and the 
actually generated bits till the encoding of previous macroblock in this picture. 
3. Adaptive quantization 
This step tries to refine the quantization parameter calculated in Step 2 based on the 
complexity of the macroblock. For this an "activity measure" of the macroblock is found 
using variance of the four sub-blocks in the macroblock. The adaptation of the quantization 
parameter is done to prevent abrupt changes in the quantization parameter and to achieve a 
more uniform picture quality. 
To find the spatial activity measure act� for the macroblock j using its four sub-blocks, 
following computations are done on the intra (i.e. original) pixel values:  

act� � 1 � m�n��vblk1� vblk2� vblk�� vblk4� 
Where vblk� is the variance of the nth sub-block and is given by: 

vblk� � 1
64��P�� � P_mean���

��

���
 

and  

P_mean� � 1
64�P��

��

���
 

and P� are the sample values in the nth original 8*8blosk. 

3.1.3 VM8 (Verification model 8) 
There are five steps in the MPEG-4 VM8 rate control algorithm (Fukunaga et al., 1999): 
1. Initialization 

 α1 and α2 are the first and second order coefficients. 
2. Computation of the target bit rate before encoding 

 The computation of target bit rate is based on the bits available and the last 
encoded frame bits. If the last frame is complex and uses excessive bits, more bits 
should be assigned to this frame. However, there are fewer number of bits left for 
encoding thus, these bits can be assigned to this frame. A weighed average reflects 
a compromise of these two factors. 
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 A lower bound of target bit rate (F/30) is used so that the minimal quality is 
guaranteed (where F denotes total target bits per second). 

 The target bit rate is adjusted according to the buffer status to prevent both 
overflow and underflow. 

3. Computation of the quantization parameter (Q) before encoding 
 Q is solved based on the model parameters, a1and a2. 
 Q is clipped between 1 and 31. 
 Q varies within 25% of the previous Q to maintain a variable bit rate (VBR) quality. 

4. Encoding current frame 
 

5. After encoding, model parameters are updated based on the encoding results of the current 
frame. 
 The rate distortion model is updated based on the encoding results of the current 

frame. The bits used for the header and the motion vectors are deducted since they 
are not related to Q. 

 The data points are selected using a window whose size depends on the change in 
complexity. If the complexity changes significantly, a smaller window with more 
recent data points is used. 

 The model is again calibrated by rejecting the outlier data points. The rejection 
criterion is the data point and is discarded when the prediction error is more than 
one standard deviation. 

 The next frame is skipped if the current buffer status is above 80%. 

3.1.4 TMN8 (Test model near-term 8) 
TMN8 includes two steps: (1) the bit allocation in the frame layer, (2) the adaptive 
quantization in the macroblock layer  
1. Frame rate control algorithm 

The main work of the frame rate control is calculate the target bits(B) based on the encoding 
bits of last frame(B�), the encoding rate R, target frame rate (F), the original frame rate (G) , 
the delaying of the buffer A and threshold of skip frame (M): 

B � �R F⁄ � � � 

and 

�� � W F⁄ �������W � ��
W� ����������������� 

 

and the bits in buffer: 
 

� � �����W � B � R F⁄ � ��. 
 

If W � �, then the skip frames are needed to leave enough space to store the next symbol to 
be encoded. 

2. Macroblock rate control algorithm 

The unit that TMN8 works is macroblock, and it uses the information of the encoded 
macroblock to update the current macroblock information. And TMN8 is based on the R-D 
model as follow: 
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3.2 Rate control scheme in MPEG 
3.2.1 Rate control scheme in MPFG-2 
In MPEG-2, a video sequence is partitioned into units of group of pictures (GOPs) with 
N���frames to accommodate random access, and each frame is coded as I-, P-, or B-picture. 
And there are M� B-frames between two consecutive anchor frames (i.e., I- or P-frames). B-
pictures employ the  noncausal temporal prediction, that is bi-directional prediction, and 
thus use an immediate previous coded anchor picture (I- or P-picture) as the first reference 
and the immediate following coded anchor picture (I- or P-picture) as the second reference. 
This causes the difference between encoding order and display order.  
Considering the coding performance, 	N��� is usually set between 12 and 15 and is set to 2. 
Fig. 3.2.1 shows the GOP structure in display order and coding type for each frame when 
N��� � 12 and M� � 2.  
 

 
Fig. 3.2.1 GOP structure in display order and picture coding types. 

The I-picture removes the spatial redundancy within the present frame, and it is coded 
independently of other frames. Hence, I-picture is used at the beginning of a GOP, and this 
picture can also provide the function of periodic re-synchronization to reduce the damages 
from the transmission errors. P-picture can be coded more efficiently than I-picture because 
this picture removes not only spatial redundancy but also temporal redundancy from the 
previous anchor frame by using the forward motion estimation and compensation. B-picture 
achieves the highest coding efficiency by using the neighboring previous and future anchor 
frames as references for motion estimation and compensation. Consequently, B-picture 
results in higher complexity and more delay than P-picture. B-picture is not referred by any 
other prediction. Therefore, the quality degradation or coding errors in B-picture will not 
propagate to other frames. In contrast, the quality degradation or coding errors in anchor 
frames will propagate to other future frames, thus the quality of the anchor frame should be 
maintained over a certain level. 
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The rate control model in MPEG-2 is TM5, and the rate control model comprises the 
following three steps: 
1. Target bit allocation 

This step first allocates bits for given Group of Pictures (GOP) based on the target bit rate 
and the number of frames in the GOP. Then before encoding of each frame, it allocates bits 
for that frame based on the frame type (I, P or B), the complexity measure, and the 
remaining number of bits in the current GOP. 
2. Rate control  

This is a macroblock level step. Here, a quantization parameter Q is computed for the 
macroblock j under consideration based on the difference between the allocated bits and the 
actually generated bits till the encoding of previous macroblock in this picture. 
3. Adaptive quantization 

This step tries to refine the quantization parameter calculated in Step 2 based on the 
complexity of the macroblock. For this an "activity measure" of the macroblock is found 
using variance of the four sub-blocks in the macroblock. The adaptation of the quantization 
parameter is done to prevent abrupt changes in the quantization parameter and to achieve a 
more uniform picture quality. 
To find the spatial activity measure act� for the macroblock j using its four sub-blocks, 
following computations are done on the intra (i.e . original) pixel values:  

act� � 1 � m�n��vblk1� vblk�� vblk�� vblk4� 
Where vblk� is the variance of the nth sub-block and is given by: 

vblk� � 1
64��P�� � P_mean���
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���
 

and  

P_mean� � 1
64�P��

��

���
 

and P� is the sample value in the nth original 8*8blosk. 

3.2.2 Rate control scheme in MPFG-4 
The MPEG group officially initiated an MPEG-4 standardization phase with mandate to 
standardize algorithms for audio-visual coding in multimedia applications, allowing for 
interactivity, high compression, universal accessibility and portability of audio and video 
contents. Target bitrate for the video standard is between 5±64 k bits/s for mobile applications 
and up to 4 M bits/s for TV/®lm applications. The MPEG-4 video standard will support the 
decoding of conventional rectangular images and video as well as the decoding of images 
and video of arbitrary shape. The coding of frame-based video is achieved similar to 
conventional MPEG-1/2 coding that involves motion prediction/compensation and texture 
coding. For the content-based functionalities, where the image sequence input may be of 
arbitrary shaped and location, this approach is extended by also coding shape information. 
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3.2 Rate control scheme in MPEG 
3.2.1 Rate control scheme in MPFG-2 
In MPEG-2, a video sequence is partitioned into units of group of pictures (GOPs) with 
N���frames to accommodate random access, and each frame is coded as I-, P-, or B-picture. 
And there are M� B-frames between two consecutive anchor frames (i.e., I- or P-frames). B-
pictures employ the  noncausal temporal prediction, that is bi-directional prediction, and 
thus use an immediate previous coded anchor picture (I- or P-picture) as the first reference 
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This causes the difference between encoding order and display order.  
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Fig. 3.2.1 shows the GOP structure in display order and coding type for each frame when 
N��� � 12 and M� � 2.  
 

 
Fig. 3.2.1 GOP structure in display order and picture coding types. 

The I-picture removes the spatial redundancy within the present frame, and it is coded 
independently of other frames. Hence, I-picture is used at the beginning of a GOP, and this 
picture can also provide the function of periodic re-synchronization to reduce the damages 
from the transmission errors. P-picture can be coded more efficiently than I-picture because 
this picture removes not only spatial redundancy but also temporal redundancy from the 
previous anchor frame by using the forward motion estimation and compensation. B-picture 
achieves the highest coding efficiency by using the neighboring previous and future anchor 
frames as references for motion estimation and compensation. Consequently, B-picture 
results in higher complexity and more delay than P-picture. B-picture is not referred by any 
other prediction. Therefore, the quality degradation or coding errors in B-picture will not 
propagate to other frames. In contrast, the quality degradation or coding errors in anchor 
frames will propagate to other future frames, thus the quality of the anchor frame should be 
maintained over a certain level. 
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The rate control model in MPEG-2 is TM5, and the rate control model comprises the 
following three steps: 
1. Target bit allocation 

This step first allocates bits for given Group of Pictures (GOP) based on the target bit rate 
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and P� is the sample value in the nth original 8*8blosk. 

3.2.2 Rate control scheme in MPFG-4 
The MPEG group officially initiated an MPEG-4 standardization phase with mandate to 
standardize algorithms for audio-visual coding in multimedia applications, allowing for 
interactivity, high compression, universal accessibility and portability of audio and video 
contents. Target bitrate for the video standard is between 5±64 k bits/s for mobile applications 
and up to 4 M bits/s for TV/®lm applications. The MPEG-4 video standard will support the 
decoding of conventional rectangular images and video as well as the decoding of images 
and video of arbitrary shape. The coding of frame-based video is achieved similar to 
conventional MPEG-1/2 coding that involves motion prediction/compensation and texture 
coding. For the content-based functionalities, where the image sequence input may be of 
arbitrary shaped and location, this approach is extended by also coding shape information. 
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Shape may be either represented by an 8-bit transparency component or by a binary mask 
(Fukunaga et al., 1999; Koenen, 1999; Chiariglione, 1997). 
According to information theory, two problems are stated: one is source coding (what 
information should be sent) and the other is channel coding problem (how should it be 
sent). Rate distortion theory (RDT) is directly related to the source coding problem and that 
is also related to the lossy image data compression. The key factor in RDT is the rate 
distortion function (RDF) R(D), which represents the lower bound on the rate: if a certain 
channel capacity C is given, the RDF can be used to find the necessary minimum average 
distortion Dave so that the condition for error-free transmission R(Dave) < C is achieved 
(Schuster et al., 1997). The RDF model shown in Fig. 3.2.2 has been considered as a good 
choice to represent relations between quantizing distortions and encoder output rates and 
thus it has been used in wide range. The rate control algorithm based on RDF model 
(recommended in the MPEG society) has low complexity and yields reasonably good visual 
quality, however it does not fully exploit the potential of the MPEG standards (MPEG-1, 
MPEG-2, and MPEG-4).  
 

 
Fig. 3.2.2 Schematic illustration of the mathematical rate distortion function model of MPEG-4 

In typical video coding techniques, the choice of quantizer steps at the encoder plays a key 
role in determining the actually encoded bitrate and the quality of the transmitted video 
scenes. MPEG specifies only a decoding method and allows much flexibility in encoding 
methods. Therefore, the picture quality of the reconstructed video sequence is considerably 
dependent on the rate control strategy at the encoding process. The recommended rate 
control algorithm in MPEG, to determine the quantizer steps, consists of three steps namely, 
bit allocation, rate control, and adaptive quantization based on the mathematical model. In 
bit allocation, past bit usage and quantizer steps are used to estimate the relative complexity 
of the three kinds of pictures (I, P, and B) and thereby determine the target bit rate for the 
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present picture. In rate control, a reference quantizer step is determined on a macroblock or 
frame level by evaluating a virtual buffer status and the difference between the target bit 
rate and the rate that is already consumed till now. In adaptive quantization, regression 
based on mathematical model is carried out to decide actual quantizer for the present frame 
or macroblocks. However, updating the regression procedure using mathematical model 
needs quite an amount of time and the accuracy may not be predictable. 
In the MPEG-4 VM rate control algorithm, the quadratic rate distortion model is used to 
estimate the rate distortion curve to evaluate the target bit rate before performing the actual 
encoding (Fukunaga et al., 1999): 

� � ��MAD, Q� � MAD � ��1 � 1Q � �2 � 1Q�� 
Where, T is denoted as target bits and the mean absolute difference (MAD) is encoding 
complexity which is sum of absolute difference (SAD) between original image frame and 
motion compensated reconstructed image frame, and it is already known in the encoding 
process before rate coding is carried out. And a1 and a2 are the RD modeling parameters 
that should be updated after finishing encoding process for each image frame. 
There are five steps in the MPEG-4 VM8 rate control algorithm (Fukunaga et al., 1999): 
1. Initialization 

 α1 and α2 are the first and second order coefficients. 
2. Computation of the target bit rate before encoding 

 The computation of target bit rate is based on the bits available and the last 
encoded frame bits. If the last frame is complex and uses excessive bits, more bits 
should be assigned to this frame. However, there are fewer number of bits left for 
encoding thus, these bits can be assigned to this frame. A weighed average reflects 
a compromise of these two factors. 

 A lower bound of target bit rate (F/30) is used so that the minimal quality is 
guaranteed (where F denotes total target bits per second). 

 The target bit rate is adjusted according to the buffer status to prevent both 
overflow and underflow. 

3. Computation of the quantization parameter (Q) before encoding 
 Q is solved based on the model parameters, a1and a2. 
 Q is clipped between 1 and 31. 
 Q varies within 25% of the previous Q to maintain a variable bit rate (VBR) quality. 

4. Encoding current frame 
5. After encoding, model parameters are updated based on the encoding results of the current 

frame. 
 The rate distortion model is updated based on the encoding results of the current 

frame. The bits used for the header and the motion vectors are deducted since they 
are not related to Q. 

 The data points are selected by using a window 
 Whose size depends on the change in complexity. If the complexity changes 

significantly, a smaller window with more recent data points is used. 
 The model is again calibrated by rejecting the outlier data points. The rejection 

criterion is the data point and is discarded when the prediction error is more than 
one standard deviation. 

 The next frame is skipped if the current buffer status is above 80%. 
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present picture. In rate control, a reference quantizer step is determined on a macroblock or 
frame level by evaluating a virtual buffer status and the difference between the target bit 
rate and the rate that is already consumed till now. In adaptive quantization, regression 
based on mathematical model is carried out to decide actual quantizer for the present frame 
or macroblocks. However, updating the regression procedure using mathematical model 
needs quite an amount of time and the accuracy may not be predictable. 
In the MPEG-4 VM rate control algorithm, the quadratic rate distortion model is used to 
estimate the rate distortion curve to evaluate the target bit rate before performing the actual 
encoding (Fukunaga et al., 1999): 
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Where, T is denoted as target bits and the mean absolute difference (MAD) is encoding 
complexity which is sum of absolute difference (SAD) between original image frame and 
motion compensated reconstructed image frame, and it is already known in the encoding 
process before rate coding is carried out. And a1 and a2 are the RD modeling parameters 
that should be updated after finishing encoding process for each image frame. 
There are five steps in the MPEG-4 VM8 rate control algorithm (Fukunaga et al., 1999): 
1. Initialization 

 α1 and α2 are the first and second order coefficients. 
2. Computation of the target bit rate before encoding 

 The computation of target bit rate is based on the bits available and the last 
encoded frame bits. If the last frame is complex and uses excessive bits, more bits 
should be assigned to this frame. However, there are fewer number of bits left for 
encoding thus, these bits can be assigned to this frame. A weighed average reflects 
a compromise of these two factors. 

 A lower bound of target bit rate (F/30) is used so that the minimal quality is 
guaranteed (where F denotes total target bits per second). 

 The target bit rate is adjusted according to the buffer status to prevent both 
overflow and underflow. 

3. Computation of the quantization parameter (Q) before encoding 
 Q is solved based on the model parameters, a1and a2. 
 Q is clipped between 1 and 31. 
 Q varies within 25% of the previous Q to maintain a variable bit rate (VBR) quality. 

4. Encoding current frame 
5. After encoding, model parameters are updated based on the encoding results of the current 

frame. 
 The rate distortion model is updated based on the encoding results of the current 

frame. The bits used for the header and the motion vectors are deducted since they 
are not related to Q. 

 The data points are selected by using a window 
 Whose size depends on the change in complexity. If the complexity changes 

significantly, a smaller window with more recent data points is used. 
 The model is again calibrated by rejecting the outlier data points. The rejection 

criterion is the data point and is discarded when the prediction error is more than 
one standard deviation. 

 The next frame is skipped if the current buffer status is above 80%. 
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Fig. 3.2.2 Procedure of the MPEG-4 VM rate control algorithm 

3.3 Rate control scheme in H.26x 
3.3.1 Rate control scheme in H.263 
The rate control model in H.263 is TMN8. In H.263, the current video frame to be encoded is 
decomposed into macroblocks of 16_16 pixels per block, and the pixel values for each of the 
four 8_8 blocks in a macroblock are transformed into a set of coefficients using the DCT. 
These coefficients are then quantized and encoded with some type of variable-length 
coding. The number of bits and distortion for a given macroblock depend on the 
macroblock's quantization parameter used for quantizing the transformed coefficients. In 
the test model TMN8 for the H.263 standard, the quantization parameter is denoted by QP 
whose value corresponds to half the quantization step size. The TMN8 rate control uses a 
frame-layer rate control to select a target number of bits for the current frame and a 
macroblock-layer rate control to select the values of the quantization step-sizes for the 
macroblocks. In the following discussions, the following definitions are used: 
B : target number of bits for a frame; 
R : channel rate in bits per second; 
F : frame rate in frames per second; 
W : number of bits in the encoder buffer; 
M : some maximum value indicating buffer fullness, by default, set R=F; 
Wprev : previous number of bits in the buffer; 
B` : actual number of bits used of encoding the previous frame. 
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In the frame-layer rate control, a target number of bits for the current frame is determined by 

� � �
� � � (1)

�� �� � � � � ���⁄
� � � ∙ �� ��������� (2)

� � ��������� � �� � � �� �⁄ �� (3)

Where Z = 0:1 by default. The frame target varies depending on the nature of the video 
frame, the buffer fullness, and the channel throughput. To achieve low delay, the algorithm 
tries to maintain the buffer fullness at about 10% of the maximum M. If W is larger than 10% 
of the maximum M, the frame target B is slightly decreased. Otherwise, B is slightly 
increased. 
The macroblock-layer rate control selects the values of the quantization step-sizes for all the 
macroblocks in the frame, so that the sum of the bits used in all macroblocks is close to the 
frame target B in (1). The optimized quantization step size ��∗ for macroblock i in a frame 
can be determined by 

Q�∗ � � AK
β� � A��C ∙

δ�
α�� 	α�σ�

�

���
			 

Where, 
K : model parameter; 
A : number of pixels in a macroblock; 
Ni : number of macroblocks that remain to be encoded in the frame; 
σi : standard deviation of the ith macroblock; 
i : distortion weight of the ith macroblock; 
C : overhead rate; 
βi : number of bits left for encoding the frame, where β1 = B at the initialization stage.  

3.3.2 Rate control scheme in H.264 
H.264 rate control algorithm adopts a linear prediction model of MAD. Meanwhile, 
according to Fluid Traffic Model, use rate-distortion function to calculate quantization 
parameter, and then predict the current processing unit MAD. 
Rate control can be divided into three levels: GOP level rate control, picture level rate 
control, the basic unit level rate control. Each level may need to consider the pre-allocation 
of bits, therefore, how to measure the complexity of each layer is the key. Distribute pre-
allocation bits to each level according to the complexity of each level, and then set the 
quantization parameters. Therefore, complexity and how to set reasonable QP value, is 
particularly critical. 
3.3.2.1 GOP level rate control 
GOP level rate control calculates the remaining bits for the rest pictures, and initializes the 
quantization parameter of the first picture (I or P) in the current GOP. When the ���picture 
in the ���GOP is coded, the number of total bits for the restpictures in this GOP is computed 
as follows, 
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Where Z = 0:1 by default. The frame target varies depending on the nature of the video 
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tries to maintain the buffer fullness at about 10% of the maximum M. If W is larger than 10% 
of the maximum M, the frame target B is slightly decreased. Otherwise, B is slightly 
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Where, 
K : model parameter; 
A : number of pixels in a macroblock; 
Ni : number of macroblocks that remain to be encoded in the frame; 
σi : standard deviation of the ith macroblock; 
i : distortion weight of the ith macroblock; 
C : overhead rate; 
βi : number of bits left for encoding the frame, where β1 = B at the initialization stage.  

3.3.2 Rate control scheme in H.264 
H.264 rate control algorithm adopts a linear prediction model of MAD. Meanwhile, 
according to Fluid Traffic Model, use rate-distortion function to calculate quantization 
parameter, and then predict the current processing unit MAD. 
Rate control can be divided into three levels: GOP level rate control, picture level rate 
control, the basic unit level rate control. Each level may need to consider the pre-allocation 
of bits, therefore, how to measure the complexity of each layer is the key. Distribute pre-
allocation bits to each level according to the complexity of each level, and then set the 
quantization parameters. Therefore, complexity and how to set reasonable QP value, is 
particularly critical. 
3.3.2.1 GOP level rate control 
GOP level rate control calculates the remaining bits for the rest pictures, and initializes the 
quantization parameter of the first picture (I or P) in the current GOP. When the ���picture 
in the ���GOP is coded, the number of total bits for the restpictures in this GOP is computed 
as follows, 
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Where f is the predefined frame rate, ��is the size of the���GOP, R����, B����and V���� are the 
instant available bit rate, actual generated bits and occupancy of the virtual buffer for 
the���picture in the ���GOP, respectively. For the first picture (j = 1) in a GOP, the number of 
remaining bits calculated from the upper formula in (4) is the allocated bits for the current 
GOP in fact. Besides, the instant available bit rate R����can be variable for the different 
frames or GOPs Considering the VBR case, while in the CBR case, R���� is always equal to 
R��� � 1� and (4) can be simplified as: 

����� � ���� � 1� � ���� � 1� (5)

Initially, the virtual buffer is filled by the motion bits generated previously in the MCTF, so 
the occupancy of virtual buffer is initialized as M����which presents the motion bits of the 
���picture in the ��� GOP. Except the first GOP, besides initial motion bits, the virtual 
buffer’s occupancy of the last GOP coded also is considered as upper formula (6) shown. 
After a picture coded, the V���� is updated as bottom formula (6): 

�� � ����1� 	 � � 1
��������� � ���1��			�����

����� � ���� � 1� � ���� � 1� � ���� � 1�
� � � ������

(6)

Besides bit allocation, the initial quantization parameter decision is also included in the GOP 
level rate control. For the first GOP, the predefined quantization parameter specified for 
motion estimation/mode decision in the MCTF is used as the initial quantization parameter 
for simplicity. For other GOPs, the initial quantization parameter is predicted as follows, 

����1� � ������� � 1�
1 � �����

(7)

Where sumQP(i-1) is the sum of average QP for all I/P pictures in the (i-1)th GOP, and 
����� is the total number of P pictures in the (i-1 )the GOP. 

3.3.2.2 Picture level rate control 
Picture level rate control allocates target bits for each picture based on the remaining bits, 
picture’s complexity and virtual buffer’s occupancy. Getting the target bits and MAD of 
current picture, the quantization parameter can be obtained based on the R-D model15. The 
MAD of a block A of size N×N located at (x, y) inside the current picture compared to a 
block B located at a displacement of (vx, vy) relative to A in a previous picture is defined as: 

������ �� � 1
�� � |���� � �� � � ������ � �� � �� � � �� � ���

���

�����
(8)

Where Fi is the current picture and Fi-t is a previously coded picture. In our proposed rate 
control algorithm, the picture level rate control consists of two stages: pre-encoding and 
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post-encoding. In the pre-encoding stage, QP decision for each picture are accomplished 
with virtual buffer considerations, while in the post-encoding stage, the models updating 
with the statistical results is implemented. 
3.3.2.1.1 Pre-encoding stage 
In this stage, the quantization parameter of each picture is calculated. Firstly, the target bits 
are allocated for the current picture, and then the quantization parameter for the current 
picture can be obtained with the pre-defined rate distortion (R-D) model.  
The target bit allocation should both consider the occupancy of virtual buffer and remaining 
bits for the rest pictures. Firstly, smoothing the occupancy of virtual buffer by regulating bit 
rate arriving, the target bits allocated for the ��� picture in the ��� GOP based on instant bit 
rate and the occupancy of virtual buffer are determined as: 

T ���� � �1 � ���� � 1� � �����
����� � �����

� � (9)
 

Secondly, remaining bit allocation for the ��� picture in the ��� GOP is computed as: 
 

T̂ �
�
��� � X̂ ��

�
� �����

∑ �� � X̂ �
��
��� � ���������

(10)

 

Where ����, and ����, are the number of the remaining I/P pictures and the number of the 
remaining B pictures ,respectively, X��(j)is the predicted complexity measure for the current 
coding picture, and Kp/Kb is the ratio of I picture’s QP and P/B picture’s QP regulated with 
the selected wavelet function in the MCTF1. The complexity measure is the product of target 
bits and average QP for a picture (basic unit or MB). For pictures with type B, the 
complexity can be determined beforehand, while for the pictures with type I/P, the 
complexity only can be predicted from the nearest picture coded previously. After coding a 
picture in the ��� GOP, the actual generated bits and average QP can be obtained, and then, 
the complexity measure is updated as: 
 

����� � � � ���� � 1� � �������� � 1� (11)
 

Where avgQPi(j-1) is the average of quantization parameters of the previously coded 
picture,  is a constant and set as 0.9 when next picture is P type otherwise set as 1 in our 
experiments. Specially, in the SVM, the pictures with type of I or P both are the temporal 
low sub-band pictures, and also except the first GOP with one I and one P pictures, only one 
I or P picture is in a GOP, so the complexity of I/P picture in the next GOP shall be 
predicted from that of I/P picture in the previously coded GOP. In conclusion, the predicted 
complexity measure is computed as: 

X̂ �
�
��� � �

�����1� � � �� �� � � 1
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����� �� � �

(12)

Lastly, the parameter of target bits is determined with a weighted combination of ������ and 
������ 

jˆ ( ) (1 ) ( )i i iT T j T       (13)
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Where f is the predefined frame rate, ��is the size of the���GOP, R����, B����and V���� are the 
instant available bit rate, actual generated bits and occupancy of the virtual buffer for 
the���picture in the ���GOP, respectively. For the first picture (j = 1) in a GOP, the number of 
remaining bits calculated from the upper formula in (4) is the allocated bits for the current 
GOP in fact. Besides, the instant available bit rate R����can be variable for the different 
frames or GOPs Considering the VBR case, while in the CBR case, R���� is always equal to 
R��� � 1� and (4) can be simplified as: 

����� � ���� � 1� � ���� � 1� (5)

Initially, the virtual buffer is filled by the motion bits generated previously in the MCTF, so 
the occupancy of virtual buffer is initialized as M����which presents the motion bits of the 
���picture in the ��� GOP. Except the first GOP, besides initial motion bits, the virtual 
buffer’s occupancy of the last GOP coded also is considered as upper formula (6) shown. 
After a picture coded, the V���� is updated as bottom formula (6): 

�� � ����1� 	 � � 1
��������� � ���1��			�����

����� � ���� � 1� � ���� � 1� � ���� � 1�
� � � ������

(6)

Besides bit allocation, the initial quantization parameter decision is also included in the GOP 
level rate control. For the first GOP, the predefined quantization parameter specified for 
motion estimation/mode decision in the MCTF is used as the initial quantization parameter 
for simplicity. For other GOPs, the initial quantization parameter is predicted as follows, 

����1� � ������� � 1�
1 � �����

(7)

Where sumQP(i-1) is the sum of average QP for all I/P pictures in the (i-1)th GOP, and 
����� is the total number of P pictures in the (i-1 )the GOP. 

3.3.2.2 Picture level rate control 
Picture level rate control allocates target bits for each picture based on the remaining bits, 
picture’s complexity and virtual buffer’s occupancy. Getting the target bits and MAD of 
current picture, the quantization parameter can be obtained based on the R-D model15. The 
MAD of a block A of size N×N located at (x, y) inside the current picture compared to a 
block B located at a displacement of (vx, vy) relative to A in a previous picture is defined as: 

������ �� � 1
�� � |���� � �� � � ������ � �� � �� � � �� � ���

���

�����
(8)

Where Fi is the current picture and Fi-t is a previously coded picture. In our proposed rate 
control algorithm, the picture level rate control consists of two stages: pre-encoding and 
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post-encoding. In the pre-encoding stage, QP decision for each picture are accomplished 
with virtual buffer considerations, while in the post-encoding stage, the models updating 
with the statistical results is implemented. 
3.3.2.1.1 Pre-encoding stage 
In this stage, the quantization parameter of each picture is calculated. Firstly, the target bits 
are allocated for the current picture, and then the quantization parameter for the current 
picture can be obtained with the pre-defined rate distortion (R-D) model.  
The target bit allocation should both consider the occupancy of virtual buffer and remaining 
bits for the rest pictures. Firstly, smoothing the occupancy of virtual buffer by regulating bit 
rate arriving, the target bits allocated for the ��� picture in the ��� GOP based on instant bit 
rate and the occupancy of virtual buffer are determined as: 

T ���� � �1 � ���� � 1� � �����
����� � �����

� � (9)
 

Secondly, remaining bit allocation for the ��� picture in the ��� GOP is computed as: 
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�
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Where ����, and ����, are the number of the remaining I/P pictures and the number of the 
remaining B pictures ,respectively, X��(j)is the predicted complexity measure for the current 
coding picture, and Kp/Kb is the ratio of I picture’s QP and P/B picture’s QP regulated with 
the selected wavelet function in the MCTF1. The complexity measure is the product of target 
bits and average QP for a picture (basic unit or MB). For pictures with type B, the 
complexity can be determined beforehand, while for the pictures with type I/P, the 
complexity only can be predicted from the nearest picture coded previously. After coding a 
picture in the ��� GOP, the actual generated bits and average QP can be obtained, and then, 
the complexity measure is updated as: 
 

����� � � � ���� � 1� � �������� � 1� (11)
 

Where avgQPi(j-1) is the average of quantization parameters of the previously coded 
picture,  is a constant and set as 0.9 when next picture is P type otherwise set as 1 in our 
experiments. Specially, in the SVM, the pictures with type of I or P both are the temporal 
low sub-band pictures, and also except the first GOP with one I and one P pictures, only one 
I or P picture is in a GOP, so the complexity of I/P picture in the next GOP shall be 
predicted from that of I/P picture in the previously coded GOP. In conclusion, the predicted 
complexity measure is computed as: 
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Lastly, the parameter of target bits is determined with a weighted combination of ������ and 
������ 
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Where β is a constant and set as 0.9 in our experiments. To conform to the virtual buffer 
requirement, the target bits are further bounded by: 

����� � �������������������� ������� (14)

Where Zi(j) and Ui(j) are the minimum buffer constraint and maximum buffer constraint for 
preventing buffer from overflow and underflow. Same as the state-of-the-art hybrid coding, 
at least a picture needs buffering for decoding successfully. At the same time, the maximum 
buffer constraint is set as (16) avoiding buffer overflow. 
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Where tr,1(1) is the removal time of the first picture from the coded picture buffer. 
Getting the target bits for a picture, the QP can be obtained with pre-defined R-D model. 
After motion estimation and mode selection in the MCTF (pre-mode-decision), the MAD of 
I/P pictures is still unable to be determined, so it is predicted from the closet picture coded 
previously by a linear model, 

( ) 1 ( 1) 2ij a j a     (17)

Where a1 and a2 are two coefficients with initial values 1 and 0. And then, the quantization 
parameter corresponding to the target bits is computed as: 
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(18)

Where mh,i(j) is the total number of header bits and motion vector bits, c1and c2are two 
coefficients. Since a drop in peak signal-to-noise ratios (PSNR) among successive pictures 
will deteriorates the visual quality of the whole sequence, the quantization parameter QPi(j) 
is adjusted by: 

1 -1(1) max{ (1) - 2,min{ (1) 2, (1)}}i i i iQP QP QP QP  (19)

With such modifications, the difference in PSNR is not more than 2 between two successive 
pictures. And more, considering QP boundary in the SVM, the final quantization parameter 
is further bounded by 51 and 0. The quantization parameter is then used to perform 
quantization for each MB in the current picture. Specially, for B pictures, the MAD can be 
calculated from the current picture except intra block determined in the MCTF. The 
quantization parameter corresponding to the target bits is then calculated by using the 
formula (18). But for the intra blocks in B pictures, the MAD can’t be obtained, and also is 
unreasonable predicted from any coded picture; however, only few intra blocks lie in a B 
picture. When pre-mode-decision is implemented, those intra modes can be recorded. 
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Therefore, the MAD of the current intra block can be calculated approximately based on the 
recorded information in the pre-mode-decision stage. 
3.3.2.1.2 Post-encoding stage 
After encoding a picture, the parameters a1 and a2 of linear prediction model (17), as well as 
c1 and c2 of quadratic R-D model (18) are updated with a linear regression method similar 
to MPEG-4 Q226,27. Meanwhile, the remaining bits for the rest pictures Bi(j) is updated 
using (5). 
3.3.2.3 Basic unit level rate control 
Basic unit is defined to be a group of continuous MBs. It is used to obtain a trade-off 
between the overall coding efficiency and the bits fluctuation. The basic unit level rate 
control is similar to the picture level rate control, including MAD prediction, bit allocation, 
and quantization parameter decision in basic unit level. In our simulating system, the spatial 
layers with different resolutions from QCIF (176×144) to 4CIF (704×576) are coded for a 
same video clip. Generally, the basic unit level rate control is efficient for the large size 
pictures (>QCIF) from our experience. 
Firstly, the MAD of the l th basic unit is calculated in the current coding picture. In case I/P 
pictures, the predictive ,, ( )l iMAD j ,is obtained by model (17) using the actual MAD of co-
located basic units in the picture coded previously. In case B pictures, the MAD of current 
basic unit can be calculated directly. Secondly, determining the target bits for the lth basic 
unit is implemented as follows,  
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  (20)

Where Tr is the remaining bits for the rest basic units in the current picture, and initialized 
as the picture target bits Ti(j). Thirdly, the quantization parameter QP����j� for the lth basic 
unit of jth picture in ith GOP is calculated using the quadratic R-D model (18), and then 
bounded by: 

�������� � �������������� � �������������������� ���������� � �������� (21)

Where DQuant is a constant, and generally is regulated with the quantization parameter. In 
our experiments, DQuant is 1 if  	QP������j� is greater than 27, otherwise is 2. Meanwhile, to 
maintain the smoothness of visual quality, (21) is further bounded by 

, ,( ) max{0, ( 1) 6,min{51, ( 1) 6, ( )}}l i i i l iQP j QP j L QP j L QP j       (22)

Specially, for the first basic unit in the current picture, the QP can be derived from average 
QP of all basic units in the previously coded picture, 

������ � � � �������� � ��
����� (23)

Where N���� is the number of basic unit in this picture,  is a constant as provided in (11). 
When the number of remaining bits is less than 0, the QP is set as: 

�������� � ���������� � ������ (24)
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Where β is a constant and set as 0.9 in our experiments. To conform to the virtual buffer 
requirement, the target bits are further bounded by: 

����� � �������������������� ������� (14)

Where Zi(j) and Ui(j) are the minimum buffer constraint and maximum buffer constraint for 
preventing buffer from overflow and underflow. Same as the state-of-the-art hybrid coding, 
at least a picture needs buffering for decoding successfully. At the same time, the maximum 
buffer constraint is set as (16) avoiding buffer overflow. 
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Where tr,1(1) is the removal time of the first picture from the coded picture buffer. 
Getting the target bits for a picture, the QP can be obtained with pre-defined R-D model. 
After motion estimation and mode selection in the MCTF (pre-mode-decision), the MAD of 
I/P pictures is still unable to be determined, so it is predicted from the closet picture coded 
previously by a linear model, 

( ) 1 ( 1) 2ij a j a     (17)

Where a1 and a2 are two coefficients with initial values 1 and 0. And then, the quantization 
parameter corresponding to the target bits is computed as: 

,2
( ) ( )( ) 1 2 ( )
( ) ( )

i i
i h i

i i

j jT j c c m j
QP j QP j
 

    
 

(18)

Where mh,i(j) is the total number of header bits and motion vector bits, c1and c2are two 
coefficients. Since a drop in peak signal-to-noise ratios (PSNR) among successive pictures 
will deteriorates the visual quality of the whole sequence, the quantization parameter QPi(j) 
is adjusted by: 

1 -1(1) max{ (1) - 2,min{ (1) 2, (1)}}i i i iQP QP QP QP  (19)

With such modifications, the difference in PSNR is not more than 2 between two successive 
pictures. And more, considering QP boundary in the SVM, the final quantization parameter 
is further bounded by 51 and 0. The quantization parameter is then used to perform 
quantization for each MB in the current picture. Specially, for B pictures, the MAD can be 
calculated from the current picture except intra block determined in the MCTF. The 
quantization parameter corresponding to the target bits is then calculated by using the 
formula (18). But for the intra blocks in B pictures, the MAD can’t be obtained, and also is 
unreasonable predicted from any coded picture; however, only few intra blocks lie in a B 
picture. When pre-mode-decision is implemented, those intra modes can be recorded. 
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Therefore, the MAD of the current intra block can be calculated approximately based on the 
recorded information in the pre-mode-decision stage. 
3.3.2.1.2 Post-encoding stage 
After encoding a picture, the parameters a1 and a2 of linear prediction model (17), as well as 
c1 and c2 of quadratic R-D model (18) are updated with a linear regression method similar 
to MPEG-4 Q226,27. Meanwhile, the remaining bits for the rest pictures Bi(j) is updated 
using (5). 
3.3.2.3 Basic unit level rate control 
Basic unit is defined to be a group of continuous MBs. It is used to obtain a trade-off 
between the overall coding efficiency and the bits fluctuation. The basic unit level rate 
control is similar to the picture level rate control, including MAD prediction, bit allocation, 
and quantization parameter decision in basic unit level. In our simulating system, the spatial 
layers with different resolutions from QCIF (176×144) to 4CIF (704×576) are coded for a 
same video clip. Generally, the basic unit level rate control is efficient for the large size 
pictures (>QCIF) from our experience. 
Firstly, the MAD of the l th basic unit is calculated in the current coding picture. In case I/P 
pictures, the predictive ,, ( )l iMAD j ,is obtained by model (17) using the actual MAD of co-
located basic units in the picture coded previously. In case B pictures, the MAD of current 
basic unit can be calculated directly. Secondly, determining the target bits for the lth basic 
unit is implemented as follows,  
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Where Tr is the remaining bits for the rest basic units in the current picture, and initialized 
as the picture target bits Ti(j). Thirdly, the quantization parameter QP����j� for the lth basic 
unit of jth picture in ith GOP is calculated using the quadratic R-D model (18), and then 
bounded by: 

�������� � �������������� � �������������������� ���������� � �������� (21)

Where DQuant is a constant, and generally is regulated with the quantization parameter. In 
our experiments, DQuant is 1 if  	QP������j� is greater than 27, otherwise is 2. Meanwhile, to 
maintain the smoothness of visual quality, (21) is further bounded by 

, ,( ) max{0, ( 1) 6,min{51, ( 1) 6, ( )}}l i i i l iQP j QP j L QP j L QP j       (22)

Specially, for the first basic unit in the current picture, the QP can be derived from average 
QP of all basic units in the previously coded picture, 
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Where N���� is the number of basic unit in this picture,  is a constant as provided in (11). 
When the number of remaining bits is less than 0, the QP is set as: 

�������� � ���������� � ������ (24)
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Similarly, the QP is further bounded by (20) to maintain the smoothness of perceptual 
quality. Lastly, the QP is used to perform RDO for all MBs in the current basic unit. After 
coding a basic unit, the number of remaining bits, the coefficients of linear prediction model 
(17) and quadratic R-D model (18) are updated. 

4. Development of rate control method 
4.1 The development of rate control 
The video compression technology has more than 30 years of development history. 
However, it hadn’t made great success and got a wide range of applications until CCJTT 
approved H. 261 standard in 1988. With the development of the video compression, the 
MPEG-1, MPEG-2, H.263, MPEG-4 and H.264 and so on had been proposed as the standards 
of the video compression. Rate control is one of the key technologies of the standards, has a 
great effect on the systems of the video compression. 
In1990, the H.261 has been proposed, and the rate control model is RM8 (Reference Model 
8). It proposed a simple algorithm to control rate, but the result is not very well. In 1994, the 
Moving Picture Experts Group proposed the MPEG-2, and its rate control model is TM5 
(Test Model 5). MPEG-2 didn’t propose the concrete realization method, but it proposed and 
integrated the algorithm of rate control in TM5. The rate control concluded 3 steps: target bit 
allocation, rate control and adaptive quantization. However, this model didn’t take the 
problems into consideration, which was caused by dealing with scene switch. As a result, 
the quality of different macroblock in the same frame was different and the reference QP 
had a big difference with the actual QP in the algorithm. In order to control the bitrate more 
effective, MPEG-4 adopted VM8 (Verification Model 8) to realize rate control in 1998. The 
thought that there is a strong connection between the neighboring frames and the R-D 
relation of the coded frames which can be used to predict the encoding frames was used by 
VM8, and it worked well in the video with low movement. However, when there were 
many scene switches and changes in the video, the efficiency of the algorithm decreased. At 
the same year, The H.263 had been proposed, and the TMN8 (Test Model Near-Term 8) was 
used in the rate control. TMN8 has two steps: the bits allocation in the frame layer and the 
adaptive quantization in the macroblock layer. Compared to the VM8, TMN8 can realize the 
rate control more accurately, thereby maintaining the stability of the buffer. However, the 
TMN8 didn’t adjust the dynamic quantization parameter to each macroblock, especially 
can’t realize rate control effectively under the condition of the scene switch.  
The latest video coding H.264 standard was proposed in 2003, and the rate control method 
is different from the previous approaches in that the QP values are chosen prior to the 
prediction taking place. More specifically, the existence in the H.264 standard of a number 
of coding modes for each MB - multiple inter and intra modes - and the use of rate distortion 
optimization in the JM encoder for selecting one makes the application of typical rate control 
strategies quite problematic. Most of the previously mentioned rate control methods rely on 
a rate model and a distortion model for choosing an optimal quantiser for each macroblock 
or frame, given a measure of the variance of the residual signal (the prediction difference 
signal) and a specific bit budget allocation. The rate model is used to predict the number of 
bits output after coding a macroblock or frame with a specific quantiser and the distortion 
model is used to predict the distortion associated with each quantiser. Lagrangian optimisation 
can then be employed to choose the best QP in a rate distortion sense. The problem with the 
JM H.264 encoder lies with the fact that the residual signal depends on the choice of coding 
mode and the choice of coding mode depends on the choice of QP which in turn depends on 
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the residual signal (a chicken and egg type of problem). The adopted solution in the JM 
encoder is one where the choice of QP is made prior to the coding mode decision using a 
linear model for predicting the activity of the residual signal of the current basic unit (e.g. 
frame, slice, macroblock) based on the activity of the residual signal of past (co-located) 
basic units. Though the rate control in H.264 works well in the rate control, there are some 
aspects to make rate control more effectively and accurately which are worth studying. 

4.2 The direction of the development 
In the video compression, rate control plays an important role. Because the video quality of 
the output is related to the bitrate, in order to get a better quality in the video, the output 
bitrate will be higher. But because of the limited bandwidth or the capacity of the storage, it 
is required to keep the output bitrate in a certain range to meet the limited of the bandwidth 
or the capacity of the storage and get as better video quality as possible. So the strategy of 
the rate control is one of the key success factors of the video encoding.  
The purpose of the rate control is getting a better video quality in the limited bandwidth or 
storage. In order to achieve the goal, the rate control usually has two steps: the allocation of 
the resources and the calculation of the QP. The allocation of the resources researches the 
rate control from the angle of from top to bottom, stresses the reasonable allocation of the 
coding resources among the different frames (the rate control of single sequence) or 
different sequences (the rate control of the joint sequences); the calculation if the QP 
researches the rate control in the angle of from bottom to top, chooses the coding mode 
within the limited of the coding resources based on the rate distortion model and the RDO 
(rate distortion optimization) in order to make the actual rate and the target rate consistent. 
The current video compression standards only make strict restrictive provisions for the 
streaming grammar, streaming multiplexing and decoding process and so on which are 
relevant to the compatibility. However, they don’t make strict restrictive provisions for the 
aspects such as motion estimation and rate control and so on which have an important 
influence on the coding, but have little effect on the compatibility.  As a result, they provide 
a large space to developers, manufacturers and research workers to improve the quality of 
the coding. 
The fundamental tenet of the design of the rate control is determining the appropriate 
coding parameters to obtain optimal decoding video quality under the limited bandwidth. 
Though there are many effective rate control schemes nowadays, the requirements on the 
quality of the video images are higher and higher. As a result, the methods of the rate 
control should get further developments and improvements. We think the future rate 
control technology in the following respects will get further development.    
1. The more accurate rate distortion model 
The key problem of the rate control is to estimate or model the rate-distortion model of the 
video encoder, there are some rate distortion models put forward in the existing documents, 
but these models are usually assumed source obey Gaussian distribution or Laplace 
distribution, and when the actual video does not satisfy assumptions, the accuracy of the 
model will be affected and the quality of the algorithms will decrease. Furthermore, the 
application scope of some models is very small, because they are usually only for the fixed 
encoder and not accurate for the rest encoder. Therefore, it is necessary to propose more 
accurate rate distortion models which are suitable for various video encoders and can reflect 
the features of the actual video sequences rate-distortion accurately. 
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Similarly, the QP is further bounded by (20) to maintain the smoothness of perceptual 
quality. Lastly, the QP is used to perform RDO for all MBs in the current basic unit. After 
coding a basic unit, the number of remaining bits, the coefficients of linear prediction model 
(17) and quadratic R-D model (18) are updated. 

4. Development of rate control method 
4.1 The development of rate control 
The video compression technology has more than 30 years of development history. 
However, it hadn’t made great success and got a wide range of applications until CCJTT 
approved H. 261 standard in 1988. With the development of the video compression, the 
MPEG-1, MPEG-2, H.263, MPEG-4 and H.264 and so on had been proposed as the standards 
of the video compression. Rate control is one of the key technologies of the standards, has a 
great effect on the systems of the video compression. 
In1990, the H.261 has been proposed, and the rate control model is RM8 (Reference Model 
8). It proposed a simple algorithm to control rate, but the result is not very well. In 1994, the 
Moving Picture Experts Group proposed the MPEG-2, and its rate control model is TM5 
(Test Model 5). MPEG-2 didn’t propose the concrete realization method, but it proposed and 
integrated the algorithm of rate control in TM5. The rate control concluded 3 steps: target bit 
allocation, rate control and adaptive quantization. However, this model didn’t take the 
problems into consideration, which was caused by dealing with scene switch. As a result, 
the quality of different macroblock in the same frame was different and the reference QP 
had a big difference with the actual QP in the algorithm. In order to control the bitrate more 
effective, MPEG-4 adopted VM8 (Verification Model 8) to realize rate control in 1998. The 
thought that there is a strong connection between the neighboring frames and the R-D 
relation of the coded frames which can be used to predict the encoding frames was used by 
VM8, and it worked well in the video with low movement. However, when there were 
many scene switches and changes in the video, the efficiency of the algorithm decreased. At 
the same year, The H.263 had been proposed, and the TMN8 (Test Model Near-Term 8) was 
used in the rate control. TMN8 has two steps: the bits allocation in the frame layer and the 
adaptive quantization in the macroblock layer. Compared to the VM8, TMN8 can realize the 
rate control more accurately, thereby maintaining the stability of the buffer. However, the 
TMN8 didn’t adjust the dynamic quantization parameter to each macroblock, especially 
can’t realize rate control effectively under the condition of the scene switch.  
The latest video coding H.264 standard was proposed in 2003, and the rate control method 
is different from the previous approaches in that the QP values are chosen prior to the 
prediction taking place. More specifically, the existence in the H.264 standard of a number 
of coding modes for each MB - multiple inter and intra modes - and the use of rate distortion 
optimization in the JM encoder for selecting one makes the application of typical rate control 
strategies quite problematic. Most of the previously mentioned rate control methods rely on 
a rate model and a distortion model for choosing an optimal quantiser for each macroblock 
or frame, given a measure of the variance of the residual signal (the prediction difference 
signal) and a specific bit budget allocation. The rate model is used to predict the number of 
bits output after coding a macroblock or frame with a specific quantiser and the distortion 
model is used to predict the distortion associated with each quantiser. Lagrangian optimisation 
can then be employed to choose the best QP in a rate distortion sense. The problem with the 
JM H.264 encoder lies with the fact that the residual signal depends on the choice of coding 
mode and the choice of coding mode depends on the choice of QP which in turn depends on 
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the residual signal (a chicken and egg type of problem). The adopted solution in the JM 
encoder is one where the choice of QP is made prior to the coding mode decision using a 
linear model for predicting the activity of the residual signal of the current basic unit (e.g. 
frame, slice, macroblock) based on the activity of the residual signal of past (co-located) 
basic units. Though the rate control in H.264 works well in the rate control, there are some 
aspects to make rate control more effectively and accurately which are worth studying. 

4.2 The direction of the development 
In the video compression, rate control plays an important role. Because the video quality of 
the output is related to the bitrate, in order to get a better quality in the video, the output 
bitrate will be higher. But because of the limited bandwidth or the capacity of the storage, it 
is required to keep the output bitrate in a certain range to meet the limited of the bandwidth 
or the capacity of the storage and get as better video quality as possible. So the strategy of 
the rate control is one of the key success factors of the video encoding.  
The purpose of the rate control is getting a better video quality in the limited bandwidth or 
storage. In order to achieve the goal, the rate control usually has two steps: the allocation of 
the resources and the calculation of the QP. The allocation of the resources researches the 
rate control from the angle of from top to bottom, stresses the reasonable allocation of the 
coding resources among the different frames (the rate control of single sequence) or 
different sequences (the rate control of the joint sequences); the calculation if the QP 
researches the rate control in the angle of from bottom to top, chooses the coding mode 
within the limited of the coding resources based on the rate distortion model and the RDO 
(rate distortion optimization) in order to make the actual rate and the target rate consistent. 
The current video compression standards only make strict restrictive provisions for the 
streaming grammar, streaming multiplexing and decoding process and so on which are 
relevant to the compatibility. However, they don’t make strict restrictive provisions for the 
aspects such as motion estimation and rate control and so on which have an important 
influence on the coding, but have little effect on the compatibility.  As a result, they provide 
a large space to developers, manufacturers and research workers to improve the quality of 
the coding. 
The fundamental tenet of the design of the rate control is determining the appropriate 
coding parameters to obtain optimal decoding video quality under the limited bandwidth. 
Though there are many effective rate control schemes nowadays, the requirements on the 
quality of the video images are higher and higher. As a result, the methods of the rate 
control should get further developments and improvements. We think the future rate 
control technology in the following respects will get further development.    
1. The more accurate rate distortion model 
The key problem of the rate control is to estimate or model the rate-distortion model of the 
video encoder, there are some rate distortion models put forward in the existing documents, 
but these models are usually assumed source obey Gaussian distribution or Laplace 
distribution, and when the actual video does not satisfy assumptions, the accuracy of the 
model will be affected and the quality of the algorithms will decrease. Furthermore, the 
application scope of some models is very small, because they are usually only for the fixed 
encoder and not accurate for the rest encoder. Therefore, it is necessary to propose more 
accurate rate distortion models which are suitable for various video encoders and can reflect 
the features of the actual video sequences rate-distortion accurately. 
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2. The more reasonable control strategy to buffer 
In order to prevent buffer overflow or underflow, the consideration in many documents is 
making the occupancy degree of the buffer is about 50% when each frame has been coded. 
The rate control in MPEG-4 keeps the capacity of the buffer not less than 10% and more than 
90% by skipping the frame in the stage of the bit allocation to each frame when the occupancy 
degree of the buffer is more than 80% after the previous frame has been coded. However, 
the bits of I frame are more than the bits of P or B frame several times, so setting the occupy 
degree to a fixed value is not a scientific approach. If it can adjust the buffer occupancy 
degree to a more reasonable value adaptively based on the situation of the encoder, it not 
only can deal with the buffer overflow, but also can avoid the skip frames where possible.  
3. The processing of the scene switch 
In the real-time video applications, the complexity of the video sequences is changing. In 
order to adapt to the scene switch, the method of adjusting the size of GOP dynamically and 
the method of testing the scene switch have been proposed to give special treatment to the 
pictures with scene switch. But these methods are usually not accurate, and the computations 
are complex. Therefore, putting forward a more accurate detection method and the reasonable 
allocation method to the scene switch pictures is a meaningful work.  
4. The rate control algorithm based on the wavelet video encoder 
The wavelet encoder has some advantages: (a). providing a better compromise of R-D; (b). 
providing a satisfactory subjective image quality; (c). having the character that the 
interception bits at any point won’t cause serious distortion; (d). there is no need to consider 
the quantification parameters and just only to allocate reasonable bits to each frame. The 
rate control methods based on the wavelet are simpler than the methods based on DCT, and 
can be adjusted more easily. The rate control researches relative to the MPEG are very few 
now, but with the application of the wavelet transform in the video coding and video 
information transmission, the direction will become a hotspot. 
5. The rate control algorithm based on the video object  
Since MPEG-4 based on video object proposed, many scholars have researched the rate 
control based on video object and have put forward some effective rate control algorithms. 
But most of these algorithms are just the continuation of the methods based on the signal 
video object and not very accurate. The solution to allocate reasonable bits based on video 
object, the information of shape and motion vector plays an important role in the quality of 
the decoding pictures. With the wide application of video information based on video 
object, the rate control algorithm based on video object will get a good development. 
6. The fine granularity scalable rate control allocation algorithm 
The initial goal of the video coding is achieving the optimal decoding quality at the given 
bitrate, because of the increase in Internet video services in recent years, the goal of the 
video coding is not just to pursue the best video quality and pay more and more attention to 
the scalability. Nowadays, it has appeared many effective fine granularity scalable rate 
control algorithms, and many scholars have been working to improve and develop fine 
granularity scalable encoding technology. How to design a scalable rate control algorithm 
adapted to various fine granularity, how to allocate bits to basic and strengthen layers; how 
to allocate bits in the strengthen layers, which can achieve scalable requirements and can 
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obtain more satisfactory video effect. These are the important problems to solve in the 
further researchers.  
7. The rate control algorithm in the real-time communication of low bitrate 
The main challenge in the design of multimedia applications in communications network is 
how to transmit the smallest multimedia streaming to users. The real-time communication 
applications such as video conference, online ordering require the rate control scheme with 
low latency and low complexity. The methods based on the optimization of Lagrange have 
existed in the documents, but they are of high complexity. Simplifying the complexity of the 
methods to make them meet the requirements of the real-time communication applications 
has high theoretic and commercial value. 
In addition, some of the rate control methods are based on the content of the pictures and 
the visual characteristic. Compared to the rate-distortion scheme, they are relative simple 
and easy to realize, but they are not very accurate and need to continue to improve. 
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1. Introduction 
MPEG standards family specify the decoding process and the bit-stream syntaxes allowing 
research towards the optimizations of the encoding process regarding coding performance 
improvement and complexity reduction. The purpose of a video encoder for broadcast or 
storage is to generate the optimal perceptual video quality, or the minimized distortion, 
under a certain constraint such as storage space or channel bandwidth. In particular, by 
minimizing the distortion D, the video encoder should optimally compute a set of optimal 
quantisers to control the output bit-rate for each coding unit to satisfy the allocated bit 
budget. 
There are two main approaches to solve the optimal bit allocation problem: Lagrange 
optimization (Everett, 1963; Ramchandran et al., 1994) and dynamic programming (DP) 
(Bellman, 2003). The optimal bit allocation was first addressed in (Huang & Schultheiss, 
1963) where the Lagrange multiplier approach for R-D analysis in transform coding was 
used. Further improvements have been reported in (Shoham & Gersho, 1988) for source 
quantization and coding. However, the Lagrange multiplier method suffer from problems, 
such as having negative bits and real numbers (Schuster & Katsaggelos, 1997a) and the 
computational complexity is very high due to the need to determine R-D characteristics of 
current and future video frames. DP is employed to achieve the minimum overall distortion 
through a tree or trellis with known quantisers and their R-D characteristics (Forney, 1973; 
Ortega, 1996; Ramchandran et al., 1994). 
The total of the required bits and coding distortion depend on the quantization step-size. 
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for all the possible quantisers to obtain the bit-rate and the quantization error. In order to 
know how to select a quantization parameter under a specific constraint, e.g., the target bit-
budget or distortion, it is importance to model or estimate the coding bit rate in terms of the 
quantization parameter, namely rate-quantization (R-Q) functions. Together with distortion-
quantization (D-Q) functions, R-Q functions characterize the rate-distortion (R-D) behaviour 
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Ortega, 1996; Ribas-Corbera & Lei, 1999; Sullivan & Wiegand, 1998; Yin & Boyce, 2004). 
Some of these schemes were adopted in standard-compliant video coders, such as TM-5 
(ISO/IEC, 1993), the test model for MPEG-2, TMN-8 (ITU-T, 1997), the test model for H.263, 
and VM-8 (ISO/IEC, 1997), the verification model for MPEG-4. 
Usually rate control algorithms accept as an assumption that video source statistics are 
stationary. In this case, video source statistics correspond to some form of probability model 
such as Gaussian (Hang & J.J. Chen, 1997) or Laplacian (Chiang & Zhang, 1997) and R-D 
models based on the R-D theory, the theoretical foundation of rate control, can be obtained 
(Berger, 1971; Chiang & Zhang, 1997; Ribas-Corbera & Lei, 1999). 
A video coding algorithm focus on the trade-off between the distortion and bit rate, where 
usually to a decreasing distortion corresponds an increasing rate and vice-versa. In R-D 
theory, the R-D function allows to estimate the lower bound for the rate at a given 
distortion. However, this value may not be possible to obtain in practical video encoders 
implementations. Operational R-D (ORD) theory applies to lossy data compression with 
finite number of possible R-D pairs (Schuster & Katsaggelos, 1997a). 
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Fig. 1. Operational rate-distortion and rate-distortion model curves. 

The ORD function presents the convex curve of the specific compression scheme such that 
the optimal solution of rate control, i.e., optimal quantiser achieving minimum distortion at 
given bit rate, can be obtained (Schuster& Katsaggelos, 1997a) (Figure 1). Efficiency 
problems in many practical video coding applications may occur due to high computational 
complexity in this approach (Z. Chen & Ngan, 2007). Therefore, in numerous systems, 
model-based rate control schemes have been adopted (Chiang & Zhang, 1997; Ding& Liu, 
1996; Vetro et al., 1999; Z. Chen & Ngan, 2005a; Zhang et al., 2005). R-D models can be 
obtained based on the statistical properties of video signal and R-D theory (Chiang & 
Zhang, 1997; Hang & J.J. Chen, 1997; Ribas-Corbera & Lei, 1999), or on empirical observation 
and benefiting from various regression techniques (Ding& Liu, 1996; Kim, 2003; Lin & 
Ortega, 1998; Z. Chen & Ngan, 2004; Z. Chen & Ngan, 2005b).  
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Some rate control schemes incorporate spatio-temporal correlations to improve the accuracy 
of R-D models, by using statistical regress analysis for dynamical model parameters update. 
Representative of this approach is the MPEG-4 Q2 (Chiang & Zhang, 1997), and the linear 
MAD models (Lee et al., 2000), where model parameters are updated by linear regression 
method from previous coded parameters. H.264/AVC JM rate-control algorithm also uses a 
quadratic rate model. In addition, the H.264/AVC rate-control solves “chicken-and-egg” 
dilemma as the Lagrange multiplier is modelled as a function of quantization parameter 
(Wiegand & Girod, 2001). Rate-quantization relationship can be used to compute the 
quantization parameter. Nevertheless, the model-based rate functions frequently depend on 
the complexity of the coding unit that is obtained after the rate-constrained motion 
estimation and mode decision with the Lagrange multiplier. The JM algorithm of 
H.264/AVC proposes a linear prediction model to solve this problem by estimating the 
mean of absolute difference (MAD) from the previously coded units. Then the quadratic 
model can estimate the quantization parameter. However, rate-distortion re-analysis can be 
further investigated based on the coding characteristics of the H.264/AVC for improving 
the coding performance (Kamaci et al., 2005; Ma et al., 2005) particularly in the case of joint 
video coding and the use of different distortion metrics.  
We may find in the literature extensive studies regarding optimizing a video encoder 
encoder with R-D considerations include mode decision (Chan & Siu, 2001; Chung & Chang, 
2003), motion estimation (Pur et al., 1987; Rhee et al., 2001; Wiegand et al., 2003b), optimal 
bit allocation and rate control in video coding field (H.-Y.C. Tourapis & A.M. Tourapis, 
2003; He & Mitra, 2002; J.J. Chen & Lin 1996; Ortega, 1996; Ramchandran et al., 1994; Ribas-
Corbera & Neuhoff, 1998; Schuster& Katsaggelos, 1997b; Sullivan & Wiegand, 1997; 
Wiegand et al., 2003a, 2003c; Zhang et al., 2003). 
In summary, to optimize a video encoder, the rate-distortion optimization techniques play a 
very important role. R-D models are functions that predict the expected distortion at a given 
bit rate. This is very important for joint video coding applications that attempt to optimized 
quality, e.g. minimize distortion, in environments where the channel conditions vary 
dynamically or the number of broadcast programs varies through time. Thus in this section 
we propose to present and evaluate several R-D models. 
At the same time, we propose also to study the bit rate variability as a function of the video 
quality (Seeling et al., 2004, 2007). This type of analyse is typical of a communication 
network perspective. By re-analyzing the characteristics of the bit-rate and the data in the 
transform domain, a simple rate estimation function can be obtained that will allow support 
the allocating of video bandwidth within different video programmes. 

2. Rate control in international standards 
Although the MPEG video coding standard recommended a general coding methodology 
and syntax for the creation of a legitimate MPEG bitstream, there are many areas of research 
left open regarding how to generate high-quality MPEG bitstreams. This allows the 
designers of MPEG encoder great flexibility in developing and implementing their own 
MPEG specific algorithms. To optimise the performance-of an MPEG encoder system, it is 
important to study research areas such as motion estimation, coding mode decisions, and 
rate control.  
The main goal of rate control is to manage the process of bit allocation within a video 
sequence and thus the quality of the encoded bitstream. Regarding rate control, encoders 
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can operate at Constant Bit Rate (CBR) or in Variable Bit Rate (VBR). In CBR, the video 
encoder maintains the average bit rate constant. The encoder output has a buffer and its 
occupancy is controlled dynamically by adjusting the quantization scale, denote as q in 
MPEG coders. Likewise, the quality of the video sequence varies due to the variations in the 
scene complexity. VBR reduces the variation in the picture quality by allocating more bits to 
complex images. A common use of VBR is Open-Loop Variable Bit Rate (OL-VBR), where 
the quantization scale is constant for all the images of the video sequence. Another VBR 
scheme is Constant Quality - Variable Bit Rate (CQ-VBR) which aims to maintain an 
objective video quality constant. 
The rate control algorithms usually adjust the coded bit stream according different 
constraints, such as buffer over- or underflow prevention, variable and/or low bandwidth 
constraints resulting from limited storage size or communication bandwidth (Ortega, 1996). 
In order to accomplish this goal rate control schemes are responsible to adjust the 
quantization parameters. 
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Fig. 2. Rate control in video coding system. 

A generic bit rate control is composed the following steps: given an input video signal and a 
desired bit rate, constant or variable, what should be the encoder settings to maintain the 
picture quality as high and constant as possible. In MPEG encoding, a quantization scale 
controls the trade-off between picture quality and the bit rate. This parameter is used to 
compute the step size of the uniform quantisers used for the different AC DCT coefficients 
(ISO/IEC, 1993). For each macroblock, a quantiser, q, is selected. It is named “adaptive 
quantization” to the process for adjusting the value of q between macroblocks within an 
image frame. There are several schemes for doing the adaptive quantization. For example, in 
MPEG-2 Test Model 5 (TM5) (ISO/IEC, 1993), a non-linear mapping based on the block 
variance is used to adapt the q's. Besides the quantization scale, the quantization coarseness 
is also dependent of the quantization matrix. In MPEG-1, the quantization matrix can be 
altered in each sequence while in MPEG-2 on a picture basis. It sets the relative coarseness of 
quantization for each coefficient. 
As MPEG does not specify how to control the bit rate, different approaches can be found in 
the literature (ISO/IEC, 1993; Keesman et al., 1995; Ramchandran et al., 1993). Two approaches 
have been used: ‘feed forward bit rate control’ and ‘feed backward bit rate control’. In the 
first approach, after performing a pre-analysis, the optimum settings are compute. This 
process will increase the computational complexity and time needed while yielding better 
results. In the second approach, there is limited knowledge of the sequence complexity. Bits 
are allocated on a picture basis and spatially uniform distributed throughout the image. 
Thus, too many bits may be spent at the beginning of the picture while the end of the picture 
may present a higher degree of complexity. The ‘feed backward bit rate control’ is suitable 
for real time applications and ‘feed forward bit rate control’ for applications where the 
quality is the main goal and time is not a constraint. 
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3. Rate control in H.264/AVC 
Existing studies indicate that H.264/AVC brings major improvement in coding performance 
in relation to prior coding standards (Wiegand et al., 2003a). H.264/AVC presents many 
new features, which represent huge challenges to the operative encoder control such as how 
to allocate the bandwidth between the texture coding and the overhead coding. 
A major contributor to the high coding efficiency of H.264/AVC compared with previous 
video compression standards is the rate and distortion (R-D) optimized motion estimation 
and mode decision (also referred to as RDO) with various intra and inter prediction modes 
and multiple reference frames. Nevertheless, these innovations increase the rate control 
process complexity due to the inter-dependency between the RDO and rate control. Only 
after the end of intra/inters prediction, the rate control scheme can access the exact coding 
characteristics. This information is necessary for the computation of the quantization 
parameter. Such a dilemma prevents the rate control scheme from directly accessing the 
coding characteristic in advance. The dilemma of selecting which parameter should be first 
determine is sometimes referred in the literature as to the “chicken and egg” dilemma (Li et 
al., 2003c, 2004; Wu et al., 2005).  
To avoid this dilemma, in JVT-D030 a two-pass scheme was proposed, where in each pass a 
TM-5-alike method was used (Ma et al., 2002). This approach uses an extremely simplified 
R-D function, which fails to achieve accurate and robust rate control and due to the two-
pass increase the level of complexity. Because of these drawbacks, JVT-G012 (Li et al., 2003a) 
was proposed and accepted as the standardized rate control scheme for H.264/AVC. In JVT-
G012, a linear MAD model predicts the coding complexity, and a MPEG-4 Q2 function 
employed to estimate the quantization parameter (Li et al., 2003a).  
First step occurs at GOP level. This step estimates the bits available for the remaining frames 
in the GOP. In addition, it initializes the QP of instantaneous decoding refresh (IDR) frame. 
In the following step, rate control algorithm operates at Picture level: an estimation of the 
target bits for the current basic unit is determined. A basic unit is a group of macroblocks 
and its size can vary from one macroblock up to the entire picture. The target bits estimation 
should be allocate so that a similar number of bits are allocate for every picture and the 
target buffer level is preserve.  
The next step is, based on the number of bits used to encode the previous basic units, to 
estimate the necessary bits to encode the header. The target texture is obtained by 
subtracting the header estimation to the total target bits estimate. After that, this value is 
converted to a target QP value using a quadratic model that correlates the QP with the 
texture bits. The quadratic model needs an estimation of the MAD of the motion-
compensated or intra prediction error of the current basic unit’s. Consequently, the rate 
control model requires an additional linear MAD model that, from the previous basic unit 
MAD, allows the computation of the current basic unit MAD. In summary, the Picture level 
process consist in computing the quantization step Qstep using a quadratic model and then 
performing a R-D optimization (RDO) (Wiegand et al., 2003a)  for each MB in the frame.  
The MAD of the current stored picture, , is predicted by a linear regression method similar 
to that of MPEG-4 Q2 after coding each picture or each basic unit (1) using the actual MAD 
of the previous stored picture, ( 1 )i j L    

 1 2( ) ( 1 )i ij a j L a       (1) 
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employed to estimate the quantization parameter (Li et al., 2003a).  
First step occurs at GOP level. This step estimates the bits available for the remaining frames 
in the GOP. In addition, it initializes the QP of instantaneous decoding refresh (IDR) frame. 
In the following step, rate control algorithm operates at Picture level: an estimation of the 
target bits for the current basic unit is determined. A basic unit is a group of macroblocks 
and its size can vary from one macroblock up to the entire picture. The target bits estimation 
should be allocate so that a similar number of bits are allocate for every picture and the 
target buffer level is preserve.  
The next step is, based on the number of bits used to encode the previous basic units, to 
estimate the necessary bits to encode the header. The target texture is obtained by 
subtracting the header estimation to the total target bits estimate. After that, this value is 
converted to a target QP value using a quadratic model that correlates the QP with the 
texture bits. The quadratic model needs an estimation of the MAD of the motion-
compensated or intra prediction error of the current basic unit’s. Consequently, the rate 
control model requires an additional linear MAD model that, from the previous basic unit 
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The MAD of the current stored picture, , is predicted by a linear regression method similar 
to that of MPEG-4 Q2 after coding each picture or each basic unit (1) using the actual MAD 
of the previous stored picture, ( 1 )i j L    
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where a1 and a2 are the model parameters (first-order and second-order coefficients). The 
initial value of a1 and a2 are set to one and zero, respectively (Lim et al., 2007). The 
quantization step corresponding to the target bits is computed by the equation (2) 
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where )(, jm ih  is the total number of header bits and motion vector bits, c1 and c2 are two 
coefficients. The corresponding quantization parameter QPi(j) is computed by using the 
relationship between the quantization step and the quantization parameter of AVC (Lim et 
al., 2007). Final step consists in updating the quadratic QP/bits linear model and the MAD 
model. This process repeats for each basic unit until the complete video sequence has been 
encoded.  
In this section, it was introduce the basis of rate control architecture in JM H.264/AVC (Lim 
et al., 2007). More detail information is available at (Li et al., 2003b , 2003c , 2004; Lim et al., 
2007; Ma et al., 2002). Other solutions can be found in the literature. For example, Zhihai He 
(He, 2001) has proposed a new model that achieves a good performance for H.263 and 
MPEG4-2 (ISO/IEC 14496-2) codecs. The parameter ρ represents the percentage of zeros 
among the quantized transform coefficients. He found a linear relationship between the 
value ρ and the real bit rate because the percentage of zeros plays an important role in 
determining the final bit rate 

4. Test video sequences 
Selecting a representative set of video sequences is a crucial step in evaluating and analysing 
the performance of R-D models. A homogeneous set of video sequences may generate 
biased comparison results, because some models may perform especially well under certain 
sequences. Two key features are used to characterize video sequences: spatial complexity 
and temporal complexity. Usually, spatial complexity is measured by averaging all 
neighbourhood differences in the same frame while temporal complexity is measured by 
averaging neighbourhood differences between adjacent frames (Adjeroh & Lee, 2004).  
The set of test video sequences is composed by twelve CIF video sequences, with the 
duration of 10 seconds that are known as test video sequences (ITU-T, 2005). 
It were included sequences with low spatial and temporal complexity (low complexity 
sequences) up to sequences with high spatial and temporal complexity (high complexity 
sequences). Sequences that have either high spatial or temporal complexity but nor both the 
designated them as medium-complexity sequences. It follows a brief description of the 
sequences. 
In seven video sequences, the position of the camera is fixed: Akiyo (aki), Deadline (dea), 
Hall (hal), Mother and Daughter (mad), News (new), Paris (par) and Silence (sil). In the 
Akiyo sequence, the camera is focus on a human subject with a synthetic background (a 
female anchor reading the news). The movements are very limited, mainly head movements 
in front of a fixed camera. In Deadline, Mother and Daughter and Paris sequences, the 
camera is still fixed but there are more movements of the bodies and heads. These are 
typical videoconferencing content. In the News sequence two reporters, a male and a female 
anchor, reading the news in front of a fixed camera in a newsroom while in the background, 
two dancers execute movements. Hall sequence is an example of a video supervision, with 
stationary camera and two moving persons: one people entering from the left with a 
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briefcase and then leaving the hall. In the middle of the sequence, a second person enters the 
hall from the right and then grabs a monitor. In the Silence sequence, one can observe a fast 
moving subject executing deaf gesture language.  
 

 
              (a) Akiyo                  (b) Coastguard              (c) Deadlined          (d) Flower Garden 

 
             (e) Football                 (f) Foreman                    (g) Hall              (h) Mobile & Calendar 

 
              (i) News                       (j) Paris                      (k) Silence              (l) Mother & Daughter 

Fig. 3. Video test sequences 

The Foreman sequence (for) contain the head of a person talking and geometric shapes. Fast 
camera movement and content motion with a pan to a construction site at the end 
characterize this sequence. The main characteristics of the Flower Garden sequence (flg) is 
the slow and steady camera panning over landscape over landscape; the spatial and the 
colour detail. Coastguard sequence (cgd) was shot as a pan from left to right movement in 
the first third and a pan from left to right in the rest of the sequence. The camera movement 
follows the movements of two boats (the first from right to left and the second movement 
from left to right). The Mobile and Calendar (mcl) sequence is characterized by the slow 
panning and zooming of the camera, complex motion; high spatial and colour detail. Fast 
and complex motion movements of the camera and contents and the level of detail 
characterize the Football sequence (fot). This is a very diverse set of video sequences 

5. Experimental setup 
Simulations were performed with the JM reference software, the official MPEG and ITU 
reference implementation, for the H.264/AVC Main profile (ITU-T, 2005). Source code was 
compiled with Microsoft Visual C++: 
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GOP Pattern IntraPeriod Number of  
B Frames 

Pattern 

IBBP_GOP1 10 2 IBBPBBPBBPBBPBBPBBPBBPBBPBBPBB 
IBBP_GOP2 4 2 IBBPBBPBBPBB 
IPPP_GOP1 4 0 IPPP 
IPPP_GOP2 10 0 IPPPPPPPPP 

Table 1. Evaluated GOP Patterns 

Four different type of GOP patterns were used (Table 1). A typical GOP pattern 
(IBBP_GOP2), an “extend” B frame version of the typical GOP pattern, and two GOP 
patterns without Interpolated images. 
Additionally, each video test sequence was encoded in two modes: Open-loop (fixed QP 
with values ranging from 10 up to 42) and Constant Bit Rate (Fixed Rate - 64kbps, 128kbps, 
256kbps, 384kbps, 512kbps, 640kbps, 768kbps, 1024kbps, 1536kbps, 2048kbps. The goal was 
to obtain sufficient data to obtain R-D curves.  
Typical quality metrics include Peak signal-to-noise ratio (PSNR) and the Mean Square 
Error (MSE), Sum of Squared Differences (SSD), Mean Absolute Difference (MAD), and Sum 
of Absolute Differences (SAD). 
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where H and W are the height and the width of the image frame, and p(x, y) and   ˆ ,p x y  
represent the “original” and the reconstructed image frame pixels at (x, y). 
Complementary with the study of rate-distortion performance it is propose to include an 
analysis of the bit rate variability as a function of the video quality. This is an important 
topic when considering multimedia traffic. The bit rate variability is usually characterized 
by the Coefficient of Variation (CoV) of the frame sizes (in bits), whereby the CoV is defined 
as the standard deviation of the frame sizes normalized by their mean X  (Seeling et al., 
2004, 2007) 
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where  X  is mean size (in bits)  
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and the variance  2  (square of the standard deviation) of the frame sizes being defined as 

  22

1

1
( 1)

M

m
m

X X
M




 
   (10) 

6. Experimental results and discussion 
This section presents experimental results: Rate-Distortion analysis and bit rate variability 
analysis as a function of the video quality. 

6.1 R-D models 
The RD graphs obtained for the video sequences Akiyo, Foreman and Football, in open 
loop, are show in Figure 4 (bit-rate axe is in logarithm scale). One can observe that a 
proportional relation exists between Bit-rate and Picture Quality and that quality depend on 
the video nature: for the same bit-rate, low complexity sequences present higher values of 
quality and vice-versa. This behaviour occurs in all the different GOP patterns. Figure 5   
 

 
 

 
Fig. 4. Rate-distortion curve (Akiyo, Foreman, Football; FixeQP) 
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present graphic representation for RD data in Constant Bit Rate for the same three video 
sequences using JM rate control. In this case a relation between bit rate and quality can be 
observed. 
 

 
 

 
Fig. 5. Rate-distortion curve (Akiyo, Foreman, Football; FixeRate) 

Frequently data can be noisy in its nature. Thus recognizing the trends in the data is 
important (Vardeman, 1994). One of the available methods for data analysis and identify 
existing trends in physical systems is curve fitting. The concept of curve fitting is rather 
simple: to use a simple function to describe a trend by minimizing the error between the 
selected function to fit and a set of data (Vardeman, 1994). The principle of least squares is 
applied to the fitting of a line to (x, y) data. Representative work for estimate the 
quantization step size has been most direct towards developing all kinds of rate-
quantization (R-Q) models like polynomial (including linear and quadratic) (Chiang & 
Zhang, 1997; Lin & Ortega, 1998; Ronda et al., 1999; Yan & Liou, 1997), spline ( Lin et al., 
1996), logarithmic (Ding& Liu, 1996; Hang & J.J. Chen, 1997), power (Ding& Liu, 1996), etc. 
Yang et al. (Kyeong Ho Yang at al, 1997) proposed a more complex model that combines a 
logarithmic and a quadratic model. Most of the models only consider the rate function, and 
often implicitly assume that the distortion is a linear function of the quantization scale. This 
work has been extended to include D(QP) implementing several methods in order to 
compare their results. In fact, the goal is to model the quality versus quantization step 
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relationship and then to evaluate the different approaches to quality metric. It is presume 
that there is an inverse relationship between quality and distortion. 
Before fitting data into a function that models the relationship between two measured 
quantities, it is a normal procedure to determine if a relationship exists between these 
quantities. It was decide to use the correlation method to confirm the degree of probability 
that a relationship exists between two measured quantities (Vardeman, 1994). In the case of 
no correlation between the two quantities, then there is no tendency for the values of one 
quantity to increase or decrease with the values of the second quantity. To evaluate the 
quality of the fit, it is used the sample correlation that represents the normalized measure of 
the strength of linear relationship between variables (Vardeman, 1994): 
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where r is a matrix of correlation coefficients (Vardeman, 1994). The sample correlation 
always lies in the interval from -1 to 1. A value of r near of positive one or negative one, it is 
interpreted as indicating a relatively strong relationship and r near zero is inferred as 
indicating a lack of relationship. The sign of r indicates whether y tends to increase or 
decrease with increase x. 
 

 IBBP-GOP1 IBBP-GOP2 
Sequence I Type P Type B Type I Type P Type B Type 
Aki 0.8380 0.8470 0,9016 0,8645 0,8447 0,9034 
Cgd 0.9210 0.9136 0,9595 0,9180 0,9139 0,9609 
Dea 0.8853 0.8909 0,9303 0,8943 0,8878 0,9318 
Flg 0.9137 0.9035 0,9349 0,9147 0,8962 0,9342 
For 0.8964 0.8881 0,9197 0,8968 0,8836 0,9197 
Fot 0.9588 0.9557 0,9691 0,9567 0,9550 0,9695 
Hal 0.8154 0.7972 0,8589 0,8003 0,7936 0,8628 
Mad 0.8797 0.8666 0,9124 0,8653 0,8645 0,9129 
New 0.9554 0.9081 0,9511 0,9091 0,9128 0,9524 
Par 0.9455 0.9435 0,9638 0,9461 0,9434 0,9651 
Sil 0.9451 0.9412 0,9567 0,9419 0,9421 0,9576 
Mcl 0.9356 0.9272 0,9470 0,9329 0,9250 0.9488 

Table 2. Correlation coefficients between Bits Frames and Quality Metric (PSNR) for 
different H.264/AVC video sequences (IBBP-GOP1 and IBBP-GOP2). 
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where r is a matrix of correlation coefficients (Vardeman, 1994). The sample correlation 
always lies in the interval from -1 to 1. A value of r near of positive one or negative one, it is 
interpreted as indicating a relatively strong relationship and r near zero is inferred as 
indicating a lack of relationship. The sign of r indicates whether y tends to increase or 
decrease with increase x. 
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Table 2. Correlation coefficients between Bits Frames and Quality Metric (PSNR) for 
different H.264/AVC video sequences (IBBP-GOP1 and IBBP-GOP2). 
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 IPPP – GOP1 IPPP – GOP2 
Sequence I Type P Type I Type P Type 
Aki 0.8962 0.9170 0.9107 0.9065 
Cgd 0.9608 0.9617 0.9615 0.9609 
Dea 0.9304 0.9406 0.9354 0.9348 
Flg 0.9555 0.9586 0.9567 0.9572 
For 0.9268 0.9333 0.9326 0.9289 
Fot 0.9659 0.9686 0.9649 0.9665 
Hal 0.8540 0.8848 0.8598 0.8646 
Mad 0.9019 0.9200 0.9225 0.9121 
New 0.9353 0.9492 0.9526 0.9391 
Par 0.9609 0.9668 0.9627 0.9630 
Sil 0.9605 0.9662 0.9613 0.9621 
Mcl 0.9584 0.9715 0.9615 0.9636 

Table 3. Correlation coefficients between Bits Frames and Quality Metric (PSNR) for 
different H.264/AVC video sequences (IPPP-GOP1 and IPPP-GOP2). 

Equation (12) was computed for all the twelve sequences, and results were obtained 
according the different Picture Type and GOP pattern (Table 2 and Table 3). Thus, it was 
assess the hypothesis of a relationship between PSNR and Rate. Results are very high, for all 
the video sequences and GOP patterns, near positive one, pointing clearly to a strong 
positive linear relationship evident. Next step is thus to select what curve fitting functions 
should be assessed. Due to its simplicity, the first selected is one of the most commonly used 
techniques: the fitting of a straight line to a set of bivariate data generating a linear equation 
such as (13) (Vardeman, 1994): 

 0 1Linear y x    (13) 

A natural generalization of equation (13) is the polynomial equation (14) 
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The goal is thus to minimize the function of k + 1 variables. 
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by selecting the coefficients 0 1 2, , ,..., k     (Vardeman, 1994). Upon setting the partial 
derivatives of S( 0 1 2, , ,..., k    ) equal to zero and doing some simplifications, one obtains 
the normal equations for this least squares problem: 
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Solving the system of k+1 linear equations presented in Equation 16 it is typically possible to 
obtained a single set of values S( 0 1 2, , ,..., kb b b b ) that minimize S( 0 1 2, , ,..., k    ). Polynomials 
are often used when a simple empirical model is required. One of the most uses polynomial 
models is the quadratic model (Equation 17): 

 2
0 1 2Quadratic y x x      (17) 

To compare with the solution available in the literature it was decide to extend the models 
and thus include the logarithmic (18), the exponential (19), the power (20) and the linear 
with nonpolynomial model (LNP)  (21). 

 0Logarithmic logy x   (18) 

 1
0Exponential xy e  (19) 

 2
0 1Power y x    (20) 

 0 1 2Linear with nonpolynomial x xy e xe       (21) 

After selecting these six models, it was computed the average absolute error when trying to 
model the relation between bit-rate and quantization parameter (QP), PSNR and 
quantization parameter, and bit-rate and PSNR regarding the picture type using each of the 
six models for all the GOP patterns.  
 

1. for each method do 
2. square error R(QP)(Picture Type) = 0; 
3. square error D(QP)(Picture Type) = 0; 
4. for each frame in the sequence do 
5.  for each QP do 
6.   Extract Statistics [Bits, PSNR, Picture Type]; 
7.  endfor 
8.  Estimate the parameters of the model for R(QP) (Picture Type); 
9.  Compute the square error R for each D value (Picture Type); 
10.  Update the accumulative squared error R(Picture Type); 
11.  Estimate the parameters of the model for D(QP) (Picture Type); 
12.  Compute the square error D for each D value (Picture Type); 
13.  Update the accumulative squared error D(Picture Type); 
14.  Estimate the parameters of the model for R(D) (Picture Type); 
15.  Compute the square error R for each D value(Picture Type); 
16.  Update the accumulative squared error R_D(Picture Type); 
17. endfor 
18. endfor 

Fig. 6. Pseudo code for R-D model fitting. 

It was implemented the procedure described in Figure 6. Results are presented in Table 4, 
Table 5, and Table 6 for the twelve video sequences. 
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 IPPP – GOP1 IPPP – GOP2 
Sequence I Type P Type I Type P Type 
Aki 0.8962 0.9170 0.9107 0.9065 
Cgd 0.9608 0.9617 0.9615 0.9609 
Dea 0.9304 0.9406 0.9354 0.9348 
Flg 0.9555 0.9586 0.9567 0.9572 
For 0.9268 0.9333 0.9326 0.9289 
Fot 0.9659 0.9686 0.9649 0.9665 
Hal 0.8540 0.8848 0.8598 0.8646 
Mad 0.9019 0.9200 0.9225 0.9121 
New 0.9353 0.9492 0.9526 0.9391 
Par 0.9609 0.9668 0.9627 0.9630 
Sil 0.9605 0.9662 0.9613 0.9621 
Mcl 0.9584 0.9715 0.9615 0.9636 

Table 3. Correlation coefficients between Bits Frames and Quality Metric (PSNR) for 
different H.264/AVC video sequences (IPPP-GOP1 and IPPP-GOP2). 

Equation (12) was computed for all the twelve sequences, and results were obtained 
according the different Picture Type and GOP pattern (Table 2 and Table 3). Thus, it was 
assess the hypothesis of a relationship between PSNR and Rate. Results are very high, for all 
the video sequences and GOP patterns, near positive one, pointing clearly to a strong 
positive linear relationship evident. Next step is thus to select what curve fitting functions 
should be assessed. Due to its simplicity, the first selected is one of the most commonly used 
techniques: the fitting of a straight line to a set of bivariate data generating a linear equation 
such as (13) (Vardeman, 1994): 

 0 1Linear y x    (13) 

A natural generalization of equation (13) is the polynomial equation (14) 
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The goal is thus to minimize the function of k + 1 variables. 
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by selecting the coefficients 0 1 2, , ,..., k     (Vardeman, 1994). Upon setting the partial 
derivatives of S( 0 1 2, , ,..., k    ) equal to zero and doing some simplifications, one obtains 
the normal equations for this least squares problem: 
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Solving the system of k+1 linear equations presented in Equation 16 it is typically possible to 
obtained a single set of values S( 0 1 2, , ,..., kb b b b ) that minimize S( 0 1 2, , ,..., k    ). Polynomials 
are often used when a simple empirical model is required. One of the most uses polynomial 
models is the quadratic model (Equation 17): 

 2
0 1 2Quadratic y x x      (17) 

To compare with the solution available in the literature it was decide to extend the models 
and thus include the logarithmic (18), the exponential (19), the power (20) and the linear 
with nonpolynomial model (LNP)  (21). 

 0Logarithmic logy x   (18) 

 1
0Exponential xy e  (19) 

 2
0 1Power y x    (20) 

 0 1 2Linear with nonpolynomial x xy e xe       (21) 

After selecting these six models, it was computed the average absolute error when trying to 
model the relation between bit-rate and quantization parameter (QP), PSNR and 
quantization parameter, and bit-rate and PSNR regarding the picture type using each of the 
six models for all the GOP patterns.  
 

1. for each method do 
2. square error R(QP)(Picture Type) = 0; 
3. square error D(QP)(Picture Type) = 0; 
4. for each frame in the sequence do 
5.  for each QP do 
6.   Extract Statistics [Bits, PSNR, Picture Type]; 
7.  endfor 
8.  Estimate the parameters of the model for R(QP) (Picture Type); 
9.  Compute the square error R for each D value (Picture Type); 
10.  Update the accumulative squared error R(Picture Type); 
11.  Estimate the parameters of the model for D(QP) (Picture Type); 
12.  Compute the square error D for each D value (Picture Type); 
13.  Update the accumulative squared error D(Picture Type); 
14.  Estimate the parameters of the model for R(D) (Picture Type); 
15.  Compute the square error R for each D value(Picture Type); 
16.  Update the accumulative squared error R_D(Picture Type); 
17. endfor 
18. endfor 

Fig. 6. Pseudo code for R-D model fitting. 

It was implemented the procedure described in Figure 6. Results are presented in Table 4, 
Table 5, and Table 6 for the twelve video sequences. 
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 Fit Method 
IPPP GOP1 IPPP GOP2 IBBP GOP1 IBBP GOP2 

I Type P Type I Type P Type I Type P Type B Type I Type P Type B Type 
 Linear fit 1285 1110 2114 807 4290 1166 965 2453 1264 1051 
 Quadratic fit 231 154 361 128 1002 328 196 614 363 200 
 Exponential fit 542 505 864 358 1584 410 396 872 442 436 
 Logarithmic fit 996 762 1603 590 3329 980 740 1976 1065 782 
 Power Regression 1023 1045 1712 712 3255 747 780 1725 778 880 
 LNP fit 1606 2344 2998 1389 6326 802 1377 2830 856 1760 

Table 4. Mean Absolute Error for Rate-QP curve fitting. 

 

 Fit Method 
IPPP GOP1 IPPP GOP2 IBBP GOP1 IBBP GOP2 

I Type P Type I Type P Type I Type P Type B Type I Type P Type B Type 
 Linear fit 0.05 0.03 0.08 0.03 0.18 0.06 0.04 0.11 0.06 0.04 
 Quadratic fit 0.02 0.01 0.03 0.01 0.06 0.02 0.01 0.04 0.02 0.01 
 Exponential fit 0.05 0.03 0.08 0.03 0.15 0.05 0.03 0.10 0.06 0.04 
 Logarithmic fit 0.08 0.04 0.12 0.04 0.20 0.07 0.05 0.13 0.08 0.05 
 Power Regression 0.14 0.08 0.22 0.07 0.35 0.12 0.08 0.22 0.13 0.08 
 LNP fit 0.77 0.45 1.23 0.41 2.10 0.70 0.47 1.31 0.76 0.47 

Table 5. Mean Absolute Error for PSNR-QP curve fitting. 

 

 Fit Method 
IPPP GOP1 IPPP GOP2 IBBP GOP1 IBBP GOP2 

I Type P Type I Type P Type I Type P Type BI Type I Type P Type B Type 
 Linear fit 9789 13947 10153 11387 11411 9470 11659 10344 9421 12543 
 Quadratic fit 1548 1845 1576 1652 2045 1976 1914 1908 2013 1970 
 Exponential fit 6954 11853 7034 8854 9265 6966 9087 8261 6726 10193 
 Logarithmic fit 11497 17611 12097 13859 13586 10704 13852 12030 10613 15178 
 Power Regression 4541 7258 4312 5525 5788 4655 5934 5321 4616 6574 
 LNP fit 25074 50461 27787 35324 33094 19738 32635 26451 19489 38917 

Table 6. Mean Absolute Error for Rate-PSNR curve fitting. 

From the results, several observations can be produce. First, the linear with nonpolynomial 
model is the least accurate while the quadratic approach is the most accurate overall. The 
second observation is that the accuracy of all models varies with the level of complexity of 
the video source data. Results improve for low complexity video sequences while decrease 
for sequence with higher complexity. Third observation, GOP pattern has impact on the 
average of the absolute error for the different type of pictures. For most of the models, the 
average absolute error (excluding linear with nonpolynomial model) is rather small. 
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Sequence Fit Method 
Rate-QP PSNR-QP Rate - PSNR 

I Type P Type I Type P Type I Type P Type 

Akiyo 

Linear fit 237 406 0.03 0.02 2128 6295 
Quadratic fit 65 62 0.01 0.01 635 1175 
Exponential fit 79 46 0.07 0.04 761 718 
Logarithmic fit 185 269 0.11 0.07 2369 7386 
Power Regression 91 211 0.16 0.10 1024 1751 
LNP fit 329 856 0.75 0.44 5755 22485 

Foreman 

Linear fit 1052 1076 0.05 0.03 8368 13411 
Quadratic fit 288 209 0.01 0.01 1917 2238 
Exponential fit 320 449 0.05 0.03 2658 10807 
Logarithmic fit 866 780 0.08 0.04 9314 16117 
Power Regression 317 831 0.12 0.07 3151 7614 
LNP fit 930 1872 0.70 0.41 19274 44875 

Football 

Linear fit 1864 1393 0.07 0.04 13364 15256 
Quadratic fit 324 194 0.02 0.01 1931 2186 
Exponential fit 394 377 0.04 0.02 8330 15092 
Logarithmic fit 1370 981 0.05 0.03 15922 19000 
Power Regression 1191 1007 0.10 0.05 4711 9574 
LNP fit 2831 2481 0.68 0.39 38402 55186 

Table 7. Absolute error for Rate-QP, PSNR-QP and Rate-PSNR curve fitting (IPPP GOP1) 

Considering individual video sequence results, they can be analysed according model fit, 
picture type, and GOP pattern for the different rate-distortion-quantization models. 
Regarding Rate-QP, quadratic approach is the best solution in most of the cases (for IPPP 
GOP1 and IPPP GOP2 quadratic approach is the best solution for 9 video sequences 
regarding pictures type Intra and 10 video sequences for pictures type P and for the 
remaining video sequences the best solution is the exponential fit and power regression). 
Worst results of quadratic approach take place with IBBP GOP1 and IBBP GOP2 patterns 
(regarding picture type I, P and B, quadratic approach present the best results in 11, 6 and 8 
video sequences for IBBP GOP1 and 10, 6 and 10 for IBBP GOP2). Besides quadratic 
approach, exponential fit and power regression also present good results, particularly in 
GOP patterns containing B images and for low to medium spatial and temporal complexity 
where motion estimation is most effective. In these cases, quadratic approach is usually the 
second best approach. Finally, quadratic is also the best approach for modelling Rate-PSNR 
(11 of 12 video sequences for IPPP GOP1 for both I and P frame types; 10 and 11 of 12 video 
sequences regarding respectively Intra and P frames for IPPP GOP2; 10, 11 and 10 for I, P 
and B frames regarding IBBP GOP1 and 10, 9 and 10 for I, P and B frames regarding IBBP 
GOP2). In this case, also exponential and power regression presents good results. Thus, 
quadratic approach is a good solution particularly for GOP sequences without B frames. For 
quality versus quantization parameter global results from different models are very good. In  
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 Fit Method 
IPPP GOP1 IPPP GOP2 IBBP GOP1 IBBP GOP2 

I Type P Type I Type P Type I Type P Type B Type I Type P Type B Type 
 Linear fit 1285 1110 2114 807 4290 1166 965 2453 1264 1051 
 Quadratic fit 231 154 361 128 1002 328 196 614 363 200 
 Exponential fit 542 505 864 358 1584 410 396 872 442 436 
 Logarithmic fit 996 762 1603 590 3329 980 740 1976 1065 782 
 Power Regression 1023 1045 1712 712 3255 747 780 1725 778 880 
 LNP fit 1606 2344 2998 1389 6326 802 1377 2830 856 1760 

Table 4. Mean Absolute Error for Rate-QP curve fitting. 

 

 Fit Method 
IPPP GOP1 IPPP GOP2 IBBP GOP1 IBBP GOP2 

I Type P Type I Type P Type I Type P Type B Type I Type P Type B Type 
 Linear fit 0.05 0.03 0.08 0.03 0.18 0.06 0.04 0.11 0.06 0.04 
 Quadratic fit 0.02 0.01 0.03 0.01 0.06 0.02 0.01 0.04 0.02 0.01 
 Exponential fit 0.05 0.03 0.08 0.03 0.15 0.05 0.03 0.10 0.06 0.04 
 Logarithmic fit 0.08 0.04 0.12 0.04 0.20 0.07 0.05 0.13 0.08 0.05 
 Power Regression 0.14 0.08 0.22 0.07 0.35 0.12 0.08 0.22 0.13 0.08 
 LNP fit 0.77 0.45 1.23 0.41 2.10 0.70 0.47 1.31 0.76 0.47 

Table 5. Mean Absolute Error for PSNR-QP curve fitting. 

 

 Fit Method 
IPPP GOP1 IPPP GOP2 IBBP GOP1 IBBP GOP2 

I Type P Type I Type P Type I Type P Type BI Type I Type P Type B Type 
 Linear fit 9789 13947 10153 11387 11411 9470 11659 10344 9421 12543 
 Quadratic fit 1548 1845 1576 1652 2045 1976 1914 1908 2013 1970 
 Exponential fit 6954 11853 7034 8854 9265 6966 9087 8261 6726 10193 
 Logarithmic fit 11497 17611 12097 13859 13586 10704 13852 12030 10613 15178 
 Power Regression 4541 7258 4312 5525 5788 4655 5934 5321 4616 6574 
 LNP fit 25074 50461 27787 35324 33094 19738 32635 26451 19489 38917 

Table 6. Mean Absolute Error for Rate-PSNR curve fitting. 

From the results, several observations can be produce. First, the linear with nonpolynomial 
model is the least accurate while the quadratic approach is the most accurate overall. The 
second observation is that the accuracy of all models varies with the level of complexity of 
the video source data. Results improve for low complexity video sequences while decrease 
for sequence with higher complexity. Third observation, GOP pattern has impact on the 
average of the absolute error for the different type of pictures. For most of the models, the 
average absolute error (excluding linear with nonpolynomial model) is rather small. 
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Sequence Fit Method 
Rate-QP PSNR-QP Rate - PSNR 

I Type P Type I Type P Type I Type P Type 

Akiyo 

Linear fit 237 406 0.03 0.02 2128 6295 
Quadratic fit 65 62 0.01 0.01 635 1175 
Exponential fit 79 46 0.07 0.04 761 718 
Logarithmic fit 185 269 0.11 0.07 2369 7386 
Power Regression 91 211 0.16 0.10 1024 1751 
LNP fit 329 856 0.75 0.44 5755 22485 

Foreman 

Linear fit 1052 1076 0.05 0.03 8368 13411 
Quadratic fit 288 209 0.01 0.01 1917 2238 
Exponential fit 320 449 0.05 0.03 2658 10807 
Logarithmic fit 866 780 0.08 0.04 9314 16117 
Power Regression 317 831 0.12 0.07 3151 7614 
LNP fit 930 1872 0.70 0.41 19274 44875 

Football 

Linear fit 1864 1393 0.07 0.04 13364 15256 
Quadratic fit 324 194 0.02 0.01 1931 2186 
Exponential fit 394 377 0.04 0.02 8330 15092 
Logarithmic fit 1370 981 0.05 0.03 15922 19000 
Power Regression 1191 1007 0.10 0.05 4711 9574 
LNP fit 2831 2481 0.68 0.39 38402 55186 

Table 7. Absolute error for Rate-QP, PSNR-QP and Rate-PSNR curve fitting (IPPP GOP1) 

Considering individual video sequence results, they can be analysed according model fit, 
picture type, and GOP pattern for the different rate-distortion-quantization models. 
Regarding Rate-QP, quadratic approach is the best solution in most of the cases (for IPPP 
GOP1 and IPPP GOP2 quadratic approach is the best solution for 9 video sequences 
regarding pictures type Intra and 10 video sequences for pictures type P and for the 
remaining video sequences the best solution is the exponential fit and power regression). 
Worst results of quadratic approach take place with IBBP GOP1 and IBBP GOP2 patterns 
(regarding picture type I, P and B, quadratic approach present the best results in 11, 6 and 8 
video sequences for IBBP GOP1 and 10, 6 and 10 for IBBP GOP2). Besides quadratic 
approach, exponential fit and power regression also present good results, particularly in 
GOP patterns containing B images and for low to medium spatial and temporal complexity 
where motion estimation is most effective. In these cases, quadratic approach is usually the 
second best approach. Finally, quadratic is also the best approach for modelling Rate-PSNR 
(11 of 12 video sequences for IPPP GOP1 for both I and P frame types; 10 and 11 of 12 video 
sequences regarding respectively Intra and P frames for IPPP GOP2; 10, 11 and 10 for I, P 
and B frames regarding IBBP GOP1 and 10, 9 and 10 for I, P and B frames regarding IBBP 
GOP2). In this case, also exponential and power regression presents good results. Thus, 
quadratic approach is a good solution particularly for GOP sequences without B frames. For 
quality versus quantization parameter global results from different models are very good. In  
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Sequence Fit Method Rate-QP PSNR-QP Rate - PSNR 
I Type P Type I Type P Type I Type P Type 

Akiyo 

Linear fit 462 228 0.03 0.01 2620 3879 
Quadratic fit 108 43 0.02 0.01 671 828 
Exponential fit 111 39 0.10 0.04 627 687 
Logarithmic fit 339 157 0.17 0.06 2985 4504 
Power Regression 212 112 0.25 0.09 974 1252 
LNP fit 791 451 1.18 0.40 8110 13199 

Foreman 

Linear fit 1776 717 0.09 0.03 8771 10188 
Quadratic fit 460 169 0.02 0.01 1804 2044 
Exponential fit 434 277 0.07 0.02 2585 6455 
Logarithmic fit 1444 550 0.11 0.04 9857 11844 
Power Regression 542 450 0.19 0.06 2680 5056 
LNP fit 1707 1045 1.11 0.37 21255 29684 

Football 

Linear fit 3043 1068 0.11 0.04 13687 13833 
Quadratic fit 532 179 0.03 0.01 2111 2059 
Exponential fit 664 250 0.07 0.02 8938 10504 
Logarithmic fit 2212 774 0.09 0.03 16452 16704 
Power Regression 1974 711 0.16 0.05 5008 6378 
LNP fit 4872 1722 1.09 0.36 40679 43617 

Table 8. Absolute error for Rate-QP, PSNR-QP and Rate-PSNR curve fitting (IPPP GOP2). 

 

Sequence Fit Method Rate-QP PSNR-QP Rate - PSNR 
I Type P Type B Type I Type P Type B Type I Type P Type B Type 

Akiyo 

Linear fit 1063 115 221 0.05 0.02 0.01 3554 1101 3211 
Quadratic fit 190 46 51 0.04 0.02 0.01 787 467 821 
Exponential fit 218 56 44 0.17 0.06 0.04 689 561 694 
Logarithmic fit 707 99 163 0.28 0.10 0.07 4164 1173 3649 
Power Regression 605 37 96 0.42 0.14 0.10 1134 683 1129 
LNP fit 2269 65 368 2.04 0.68 0.46 12646 2065 9806 

Foreman 

Linear fit 2736 726 767 0.14 0.04 0.03 8112 6506 9608 
Quadratic fit 894 312 209 0.06 0.02 0.01 2140 2286 2200 
Exponential fit 1123 389 286 0.11 0.05 0.03 2798 2561 5044 
Logarithmic fit 2175 634 605 0.19 0.08 0.04 9144 7028 10961 
Power Regression 1132 265 428 0.32 0.12 0.07 3557 3533 4228 
LNP fit 3396 414 970 1.92 0.66 0.43 22550 12363 25987 

Football 

Linear fit 5893 1564 1368 0.21 0.07 0.05 14309 12830 15554 
Quadratic fit 1038 289 241 0.07 0.03 0.02 2248 2243 2346 
Exponential fit 1779 558 369 0.12 0.04 0.03 12625 8303 11469 
Logarithmic fit 4261 1179 991 0.15 0.06 0.04 17668 15125 18796 
Power Regression 4411 1254 962 0.28 0.10 0.06 7311 4577 6842 
LNP fit 9912 2162 2207 1.95 0.67 0.43 45468 33470 47853 

Table 9. Absolute error for Rate-QP, PSNR-QP and Rate-PSNR curve fitting (IBBP GOP1). 
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this case, linear fit results are very interesting as although they are not among the best 
approaches, the error is rather small, particularly for low complex video sequences. These 
results indicate that aggregate video results might be represented by the following equations: 

 2
0 1 2R QP QP      (22) 

 2
0 1 2PSNR QP QP          (23) 

 2
0 1 2R PSNR PSNR          (24) 

 

Sequence Fit Method 
Rate-QP PSNR-QP Rate - PSNR 

I Type P Type B Type I Type P Type B Type I Type P Type B Type 

Akiyo 

Linear fit 467 120 296 0.04 0.03 0.02 2452 1056 4331 
Quadratic fit 109 49 58 0.03 0.02 0.01 644 447 939 
Exponential fit 118 59 48 0.12 0.07 0.04 606 547 740 
Logarithmic fit 328 104 206 0.19 0.12 0.07 2835 1124 5009 
Power Regression 247 38 142 0.27 0.16 0.10 897 664 1358 
LNP fit 915 67 568 1.29 0.75 0.46 8218 1961 14468 

Foreman 

Linear fit 1559 768 861 0.08 0.04 0.03 7387 6307 10540 
Quadratic fit 565 331 206 0.04 0.02 0.01 2144 2255 2173 
Exponential fit 677 430 342 0.09 0.05 0.03 2361 2753 6879 
Logarithmic fit 1297 671 652 0.15 0.09 0.05 8159 6801 12310 
Power Regression 544 296 575 0.23 0.14 0.08 3318 3672 5214 
LNP fit 1517 431 1315 1.24 0.72 0.44 17604 11880 31947 

Football 

Linear fit 3228 1714 1428 0.12 0.07 0.05 13308 12846 15837 
Quadratic fit 547 328 237 0.04 0.03 0.02 2263 2280 2469 
Exponential fit 1047 609 398 0.08 0.05 0.03 10027 8032 12944 
Logarithmic fit 2368 1295 1024 0.11 0.06 0.04 16052 15114 19319 
Power Regression 2510 1357 1031 0.20 0.11 0.06 5714 4359 7924 
LNP fit 5049 2352 2398 1.27 0.73 0.44 38424 33451 51582 

Table 10. Absolute error for Rate-QP, PSNR-QP and Rate-PSNR curve fitting (IBBP GOP2) 

7. Rate variability as a function of the video quality. 
A second important issue for joint video coding broadcasting is the Rate Variability-
Distortion (VD). Two sub-sets have been consider from the initial set of twelve video 
sequences: a first sub-set with camera movement, medium to high spatial detail and 
temporal complexity (sequences Foreman, Football, Coastguard, Flower Garden, and Mobile 
and Calendar), and a second sub-set with fixed camera and low to medium spatial detail 
and motion activity (Akiyo, Deadline, Hall, Mother and Daughter, News, Paris, and Silence).  
Results are presented in Figure 7, Figure 8, Figure 9, and Figure 10. In the left side it can be 
observe the results from the first sub-set and in the right the charts for the second sub-set. 
Simulations results are from open-loop coding setup. 
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Sequence Fit Method Rate-QP PSNR-QP Rate - PSNR 
I Type P Type I Type P Type I Type P Type 
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Exponential fit 111 39 0.10 0.04 627 687 
Logarithmic fit 339 157 0.17 0.06 2985 4504 
Power Regression 212 112 0.25 0.09 974 1252 
LNP fit 791 451 1.18 0.40 8110 13199 

Foreman 

Linear fit 1776 717 0.09 0.03 8771 10188 
Quadratic fit 460 169 0.02 0.01 1804 2044 
Exponential fit 434 277 0.07 0.02 2585 6455 
Logarithmic fit 1444 550 0.11 0.04 9857 11844 
Power Regression 542 450 0.19 0.06 2680 5056 
LNP fit 1707 1045 1.11 0.37 21255 29684 

Football 

Linear fit 3043 1068 0.11 0.04 13687 13833 
Quadratic fit 532 179 0.03 0.01 2111 2059 
Exponential fit 664 250 0.07 0.02 8938 10504 
Logarithmic fit 2212 774 0.09 0.03 16452 16704 
Power Regression 1974 711 0.16 0.05 5008 6378 
LNP fit 4872 1722 1.09 0.36 40679 43617 

Table 8. Absolute error for Rate-QP, PSNR-QP and Rate-PSNR curve fitting (IPPP GOP2). 
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Quadratic fit 894 312 209 0.06 0.02 0.01 2140 2286 2200 
Exponential fit 1123 389 286 0.11 0.05 0.03 2798 2561 5044 
Logarithmic fit 2175 634 605 0.19 0.08 0.04 9144 7028 10961 
Power Regression 1132 265 428 0.32 0.12 0.07 3557 3533 4228 
LNP fit 3396 414 970 1.92 0.66 0.43 22550 12363 25987 

Football 

Linear fit 5893 1564 1368 0.21 0.07 0.05 14309 12830 15554 
Quadratic fit 1038 289 241 0.07 0.03 0.02 2248 2243 2346 
Exponential fit 1779 558 369 0.12 0.04 0.03 12625 8303 11469 
Logarithmic fit 4261 1179 991 0.15 0.06 0.04 17668 15125 18796 
Power Regression 4411 1254 962 0.28 0.10 0.06 7311 4577 6842 
LNP fit 9912 2162 2207 1.95 0.67 0.43 45468 33470 47853 

Table 9. Absolute error for Rate-QP, PSNR-QP and Rate-PSNR curve fitting (IBBP GOP1). 
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this case, linear fit results are very interesting as although they are not among the best 
approaches, the error is rather small, particularly for low complex video sequences. These 
results indicate that aggregate video results might be represented by the following equations: 

 2
0 1 2R QP QP      (22) 

 2
0 1 2PSNR QP QP          (23) 

 2
0 1 2R PSNR PSNR          (24) 

 

Sequence Fit Method 
Rate-QP PSNR-QP Rate - PSNR 

I Type P Type B Type I Type P Type B Type I Type P Type B Type 

Akiyo 

Linear fit 467 120 296 0.04 0.03 0.02 2452 1056 4331 
Quadratic fit 109 49 58 0.03 0.02 0.01 644 447 939 
Exponential fit 118 59 48 0.12 0.07 0.04 606 547 740 
Logarithmic fit 328 104 206 0.19 0.12 0.07 2835 1124 5009 
Power Regression 247 38 142 0.27 0.16 0.10 897 664 1358 
LNP fit 915 67 568 1.29 0.75 0.46 8218 1961 14468 

Foreman 

Linear fit 1559 768 861 0.08 0.04 0.03 7387 6307 10540 
Quadratic fit 565 331 206 0.04 0.02 0.01 2144 2255 2173 
Exponential fit 677 430 342 0.09 0.05 0.03 2361 2753 6879 
Logarithmic fit 1297 671 652 0.15 0.09 0.05 8159 6801 12310 
Power Regression 544 296 575 0.23 0.14 0.08 3318 3672 5214 
LNP fit 1517 431 1315 1.24 0.72 0.44 17604 11880 31947 

Football 

Linear fit 3228 1714 1428 0.12 0.07 0.05 13308 12846 15837 
Quadratic fit 547 328 237 0.04 0.03 0.02 2263 2280 2469 
Exponential fit 1047 609 398 0.08 0.05 0.03 10027 8032 12944 
Logarithmic fit 2368 1295 1024 0.11 0.06 0.04 16052 15114 19319 
Power Regression 2510 1357 1031 0.20 0.11 0.06 5714 4359 7924 
LNP fit 5049 2352 2398 1.27 0.73 0.44 38424 33451 51582 

Table 10. Absolute error for Rate-QP, PSNR-QP and Rate-PSNR curve fitting (IBBP GOP2) 

7. Rate variability as a function of the video quality. 
A second important issue for joint video coding broadcasting is the Rate Variability-
Distortion (VD). Two sub-sets have been consider from the initial set of twelve video 
sequences: a first sub-set with camera movement, medium to high spatial detail and 
temporal complexity (sequences Foreman, Football, Coastguard, Flower Garden, and Mobile 
and Calendar), and a second sub-set with fixed camera and low to medium spatial detail 
and motion activity (Akiyo, Deadline, Hall, Mother and Daughter, News, Paris, and Silence).  
Results are presented in Figure 7, Figure 8, Figure 9, and Figure 10. In the left side it can be 
observe the results from the first sub-set and in the right the charts for the second sub-set. 
Simulations results are from open-loop coding setup. 
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Fig. 7. Rate Variability-distortion (VD) Curve (PSNR; IBBP GOP1). 

 

 
Fig. 8. Rate Variability-distortion (VD) Curve (PSNR; IBBP GOP2). 

 

 
Fig. 9. Rate Variability-distortion (VD) Curve (PSNR; IPPP GOP1). 
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Fig. 10. Rate Variability-distortion (VD) Curve (PSNR; IPPP GOP2).  

For high spatial complexity and motion activity sequences, variability is significantly lower 
than the sub-set of sequences with lower spatial and temporal complexity. At the same time, 
GOP patterns with B frames present higher values of variability regarding GOP patterns 
without B frames. As frames of type I show lower compression ratio compared to Predicted 
and Interpolated frames type, the combination of the different types of frames results in the 
observed higher bit-rate variability.  
As the GOP size increases, the amplitude variation regarding the variability increases. This 
effect is stronger with the video sub-set of lower spatial and temporal complexity sequences. 
In these cases, motion estimation is very effective resulting in higher compression ratios for 
P and B pictures comparing to the bits budget of a typical Intra image. B frames, in general, 
present a small reduction of the variability in sequences with higher complexity. The 
amplitude of this variation increases while the sequence complexity decreases. 

8. Acknowledgment 
This work has been supported by “Fundação para a Ciência e Tecnologia” and “Programa 
Operacional Ciência e Inovação 2010” (POCI 2010), co-funded by the Portuguese 
Government and European Union by FEDER Program.  

9. References 
Adjeroh, D.A. & Lee, M.C. (2004). Scene-adaptive transform domain video partitioning, 

IEEE Transaction on Multimedia, Vol. 6. No 1 (February 2004), pp 58-69, ISSN 1520-
9210. 

Bellman, R.E. (2003). Dynamic Programming, Princeton University Press, Dover paperback 
edition (2003), ISBN 0486428095. 

Berger, T. (1971). Rate Distortion Theory, Prentice-Hall, Inc., ISBN 0137531036, Englewood 
Cliffs, NJ. 

Chan, Y.-L & Siu, W.-C. (2001). An efficient search strategy for block motion estimation 
using image features, IEEE Transactions on Image Processing, Vol 10, No 8 
(August 2001), pp 1223-1238, ISSN 1057-7149. 



 
Recent Advances on Video Coding 

 

134 

 
Fig. 7. Rate Variability-distortion (VD) Curve (PSNR; IBBP GOP1). 

 

 
Fig. 8. Rate Variability-distortion (VD) Curve (PSNR; IBBP GOP2). 

 

 
Fig. 9. Rate Variability-distortion (VD) Curve (PSNR; IPPP GOP1). 

 
Rate-Distortion Analysis for H.264/AVC Video Statistics   

 

135 

 
Fig. 10. Rate Variability-distortion (VD) Curve (PSNR; IPPP GOP2).  

For high spatial complexity and motion activity sequences, variability is significantly lower 
than the sub-set of sequences with lower spatial and temporal complexity. At the same time, 
GOP patterns with B frames present higher values of variability regarding GOP patterns 
without B frames. As frames of type I show lower compression ratio compared to Predicted 
and Interpolated frames type, the combination of the different types of frames results in the 
observed higher bit-rate variability.  
As the GOP size increases, the amplitude variation regarding the variability increases. This 
effect is stronger with the video sub-set of lower spatial and temporal complexity sequences. 
In these cases, motion estimation is very effective resulting in higher compression ratios for 
P and B pictures comparing to the bits budget of a typical Intra image. B frames, in general, 
present a small reduction of the variability in sequences with higher complexity. The 
amplitude of this variation increases while the sequence complexity decreases. 

8. Acknowledgment 
This work has been supported by “Fundação para a Ciência e Tecnologia” and “Programa 
Operacional Ciência e Inovação 2010” (POCI 2010), co-funded by the Portuguese 
Government and European Union by FEDER Program.  

9. References 
Adjeroh, D.A. & Lee, M.C. (2004). Scene-adaptive transform domain video partitioning, 

IEEE Transaction on Multimedia, Vol. 6. No 1 (February 2004), pp 58-69, ISSN 1520-
9210. 

Bellman, R.E. (2003). Dynamic Programming, Princeton University Press, Dover paperback 
edition (2003), ISBN 0486428095. 

Berger, T. (1971). Rate Distortion Theory, Prentice-Hall, Inc., ISBN 0137531036, Englewood 
Cliffs, NJ. 

Chan, Y.-L & Siu, W.-C. (2001). An efficient search strategy for block motion estimation 
using image features, IEEE Transactions on Image Processing, Vol 10, No 8 
(August 2001), pp 1223-1238, ISSN 1057-7149. 



 
Recent Advances on Video Coding 

 

136 

Chen, J.J. & Lin, D.W. (1996). Optimal bit allocation for video coding under multiple 
constraints, Proceedings of the IEEE International Conference Image Processing 1996, 
Vol. 3, pp 403 – 406, ISBN 0-7803-3259-8, Lausanne, Switzerland, Sep 16-19, 
1996. 

Chen, Z. & Ngan, K. N. (2004). Linear rate-distortion models for MPEG-4 shape coding, 
IEEE Transactions on Circuits and Systems for Video Technology, Vol. 14, No 6 (June 
2004), pp 869–873, ISSN 1051-8215.  

Chen, Z. & Ngan, K. N. (2005b). Rate-distortion analysis for MPEG-4 binary shape coding, 
Proceedings of IEEE International Symposium on Intelligent Signal Processing and 
Communications Systems, pp 801 - 804, ISBN 0-7803-9266-3, Hong Kong, December 
13-16, 2005. 

Chen, Z. & Ngan, K. N. (2005a). Joint texture-shape optimization for MPEG-4 multiple video 
objects, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 15, No 2 
(September 2005). pp 1170–1174, ISSN 1051-8215.  

Chen, Z. & Ngan, K. N. (2007). Recent advances in rate control for video coding, Signal 
Processing: Image Communication, Vol 22, No 1 (January 2007), pp 19-38, ISSN 
0923-5965. 

Chiang, T. & Zhang, Y.-Q. (1997). A new rate control scheme using quadratic rate distortion 
model, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 7, No 1 
(January 1997), pp 246-250, ISSN 1051-8215. 

Chung, K.-L. & Chang, L-.C (2003). A new predictive search area approach for fast block 
motion estimation, IEEE Transactions on Image Processing, Vol. 12, No 6 (June 2003), 
pp 648-652, ISSN 1057-7149. 

Ding, W. & Liu, B. (1996). Rate control of MPEG video coding and recording by rate-
quantization modeling, IEEE Transactions on Circuits and Systems for Video 
Technology, Vol. 6, No 1 (January 1996), pp 12-20, ISSN 1051-8215.  

Everett, H. (1963). Generalized Lagrange multiplier method for solving problems of 
optimum allocation of resource, in Operations Research, Vol 11, N0. 3, pp 399–417, 
ISSN 0030-364X. 

Forney, G. D. (1973). The Viterbi algorithm, Proceedings of the IEEE , Vol 61, No 3, pp 
268–278, ISSN 0018-9219. 

Kim, H.M. (2003). Adaptive rate control using nonlinear regression, IEEE Transactions on 
Circuits and Systems for Video Technology, Vol. 13, No  5 (May 2003), pp 432-439, 
ISSN 1051-8215. 

Hang, H. M. & Chen, J.J. (1997). Source model for transform video coder and its application 
– part I: fundamental theory, IEEE Transactions on Circuits and Systems for Video 
Technology, Vol. 7, No 2 (April 1997), pp 287-298, ISSN 1051-8215. 

He, Z. & Mitra, S. K. (2002). Optimum bit allocation and accurate rate control for video 
coding via-domain source modelling, IEEE Transactions on Circuits and Systems for 
Video Technology, Vol. 12, No 10 (Octobre 2002), pp 840–849, ISSN 1051-8215. 

He, Z. (2001). rho-Domain Rate-Distortion Analysis and Rate Control for Visual Coding and 
Communication, PhD Dissertation, University of California, Santa Barbara, June 
2001. 

 
Rate-Distortion Analysis for H.264/AVC Video Statistics   

 

137 

Huang, J. J. Y. & Schultheiss, P.M. (1963). Block quantization of correlated Gaussian random 
variables, IEEE Transaction on Communications Systems, Vol 11, N 3, pp 289–296, 
ISSN 0096-1965. 

ISO/IEC (1997). Text of ISO/IEC 14496-2 MPEG-4 Video VM-Version 8.0, ISO/IEC 
JTC1/SC29/WG11 Coding of Moving Pictures and Associated Audio MPEG 
97/W1796, Stochholm, Sweden, July 1997. 

ISO/IEC, JTC1/SC29/WG11 (1993). MPEG Video Test Model 5 (TM-5), document 
MPEG93/457, April 1993. 

ITU-T (2005). Rec. H.264.2 : Reference software for advanced video coding, 2005. 
ITU-T, SG16 (1997). Video Codec Test Model, near-term, Version 8 (TMN8), Document Q15-

A-59, Portland, USA, June 1997. 
Kamaci, N.; Altunbasak, Y. & Mersereau, R. M. (2005). Frame bit allocation for the 

H.264/AVC video coder via Cauchy-density-based rate and distortion models, 
IEEE Transactions on Circuits and Systems for Video Technology, Vol. 15, No  5 (August 
2005), pp 994–1006, ISSN 1051-8215.  

Keesman, G.; Shah, I. & Klein-Gunnewiek, R. (1995). Bit-rate control for MPEG encoders, 
Signal Processing: Image Communication, Vol 6, No 6 (February 1995), pp 545-560, 
ISSN 0923-5965. 

Lee, H. J.; Chiang, T. & Zhang, Y. Q. (2000). Scalable rate control for MPEG-4 video, IEEE 
Transactions on Circuits and Systems for Video Technology, Vol. 10, No  6 (September 
2000), pp 878-894, ISSN 1051-8215.  

Li, Z. G.; Pan, F.; Lim, K. P.; Feng, G. ; Lin, X. & Rahardja, S. (2003a). Adaptive basic unit 
layer rate control for JVT, Joint Video Team of ISO/IEC MPEG and ITU-T VCEG, 
document JVT-G012r1, March 2003. 

Li, Z. G.; Gao, W.; Pan, F.; Ma, S. ; Lin, K. P. ; Feng, G.; Lin, X.; Rahardja, S.; Lu, H. & Lu, Y. 
(2003b). Adaptive Rate Control with HRD Consideration, document JVT-H014, 8th 
meeting, Geneva, May 2003. 

Li, Z. G.; Pan, F.; Lim, K.P.; Feng, G.N. ; Lin, X. ; Rahardja, S. & Wu, D.J. (2003c). Adaptive 
frame layer rate control for H.264, Proceedings. 2003 International Conference on 
Multimedia and Expo, 2003, Vol 1, pp 581-584, ISBN 0-7803-7965-9, July 6-9, 2003. 

Li, Z. G.; Pan, F.; Lim, K.P.; Lin, X. & Rahardja, S. (2004). Adaptive rate control for H.264, 
2004 International Conference on Image Processing, pp 745-748, ISBN 0-7803-8554-
3, October 24-27, 2004. 

Lim, K. P ; Sullivan, G. & Wiegand, T. (2007). Text Description of Joint Model Reference 
Encoding Methods and Decoding Concealment Methods, Joint Video Team of 
ISO/IEC MPEG and ITU-T VCEG, document JVT-W057, San Jose, April 2007. 

Lin, L. J. & Ortega, A. (1998). Bit-rate control using piecewise approximated rate-distortion 
characteristics, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 8, 
No 4 (August 1998), pp 446-459, ISSN 1051-8215. 

Lin, L. J.; Ortega, A. & Kuo, C.-C.J.(1996). Rate control using spline-interpolated R-D 
characteristics, SPIE Visual Communication Image Processing, Cambridge Visual 
Communication Image Processing, Cambridge, Orlando, FL, 1996, pp. 111-122. 



 
Recent Advances on Video Coding 

 

136 

Chen, J.J. & Lin, D.W. (1996). Optimal bit allocation for video coding under multiple 
constraints, Proceedings of the IEEE International Conference Image Processing 1996, 
Vol. 3, pp 403 – 406, ISBN 0-7803-3259-8, Lausanne, Switzerland, Sep 16-19, 
1996. 

Chen, Z. & Ngan, K. N. (2004). Linear rate-distortion models for MPEG-4 shape coding, 
IEEE Transactions on Circuits and Systems for Video Technology, Vol. 14, No 6 (June 
2004), pp 869–873, ISSN 1051-8215.  

Chen, Z. & Ngan, K. N. (2005b). Rate-distortion analysis for MPEG-4 binary shape coding, 
Proceedings of IEEE International Symposium on Intelligent Signal Processing and 
Communications Systems, pp 801 - 804, ISBN 0-7803-9266-3, Hong Kong, December 
13-16, 2005. 

Chen, Z. & Ngan, K. N. (2005a). Joint texture-shape optimization for MPEG-4 multiple video 
objects, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 15, No 2 
(September 2005). pp 1170–1174, ISSN 1051-8215.  

Chen, Z. & Ngan, K. N. (2007). Recent advances in rate control for video coding, Signal 
Processing: Image Communication, Vol 22, No 1 (January 2007), pp 19-38, ISSN 
0923-5965. 

Chiang, T. & Zhang, Y.-Q. (1997). A new rate control scheme using quadratic rate distortion 
model, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 7, No 1 
(January 1997), pp 246-250, ISSN 1051-8215. 

Chung, K.-L. & Chang, L-.C (2003). A new predictive search area approach for fast block 
motion estimation, IEEE Transactions on Image Processing, Vol. 12, No 6 (June 2003), 
pp 648-652, ISSN 1057-7149. 

Ding, W. & Liu, B. (1996). Rate control of MPEG video coding and recording by rate-
quantization modeling, IEEE Transactions on Circuits and Systems for Video 
Technology, Vol. 6, No 1 (January 1996), pp 12-20, ISSN 1051-8215.  

Everett, H. (1963). Generalized Lagrange multiplier method for solving problems of 
optimum allocation of resource, in Operations Research, Vol 11, N0. 3, pp 399–417, 
ISSN 0030-364X. 

Forney, G. D. (1973). The Viterbi algorithm, Proceedings of the IEEE , Vol 61, No 3, pp 
268–278, ISSN 0018-9219. 

Kim, H.M. (2003). Adaptive rate control using nonlinear regression, IEEE Transactions on 
Circuits and Systems for Video Technology, Vol. 13, No  5 (May 2003), pp 432-439, 
ISSN 1051-8215. 

Hang, H. M. & Chen, J.J. (1997). Source model for transform video coder and its application 
– part I: fundamental theory, IEEE Transactions on Circuits and Systems for Video 
Technology, Vol. 7, No 2 (April 1997), pp 287-298, ISSN 1051-8215. 

He, Z. & Mitra, S. K. (2002). Optimum bit allocation and accurate rate control for video 
coding via-domain source modelling, IEEE Transactions on Circuits and Systems for 
Video Technology, Vol. 12, No 10 (Octobre 2002), pp 840–849, ISSN 1051-8215. 

He, Z. (2001). rho-Domain Rate-Distortion Analysis and Rate Control for Visual Coding and 
Communication, PhD Dissertation, University of California, Santa Barbara, June 
2001. 

 
Rate-Distortion Analysis for H.264/AVC Video Statistics   

 

137 

Huang, J. J. Y. & Schultheiss, P.M. (1963). Block quantization of correlated Gaussian random 
variables, IEEE Transaction on Communications Systems, Vol 11, N 3, pp 289–296, 
ISSN 0096-1965. 

ISO/IEC (1997). Text of ISO/IEC 14496-2 MPEG-4 Video VM-Version 8.0, ISO/IEC 
JTC1/SC29/WG11 Coding of Moving Pictures and Associated Audio MPEG 
97/W1796, Stochholm, Sweden, July 1997. 

ISO/IEC, JTC1/SC29/WG11 (1993). MPEG Video Test Model 5 (TM-5), document 
MPEG93/457, April 1993. 

ITU-T (2005). Rec. H.264.2 : Reference software for advanced video coding, 2005. 
ITU-T, SG16 (1997). Video Codec Test Model, near-term, Version 8 (TMN8), Document Q15-

A-59, Portland, USA, June 1997. 
Kamaci, N.; Altunbasak, Y. & Mersereau, R. M. (2005). Frame bit allocation for the 

H.264/AVC video coder via Cauchy-density-based rate and distortion models, 
IEEE Transactions on Circuits and Systems for Video Technology, Vol. 15, No  5 (August 
2005), pp 994–1006, ISSN 1051-8215.  

Keesman, G.; Shah, I. & Klein-Gunnewiek, R. (1995). Bit-rate control for MPEG encoders, 
Signal Processing: Image Communication, Vol 6, No 6 (February 1995), pp 545-560, 
ISSN 0923-5965. 

Lee, H. J.; Chiang, T. & Zhang, Y. Q. (2000). Scalable rate control for MPEG-4 video, IEEE 
Transactions on Circuits and Systems for Video Technology, Vol. 10, No  6 (September 
2000), pp 878-894, ISSN 1051-8215.  

Li, Z. G.; Pan, F.; Lim, K. P.; Feng, G. ; Lin, X. & Rahardja, S. (2003a). Adaptive basic unit 
layer rate control for JVT, Joint Video Team of ISO/IEC MPEG and ITU-T VCEG, 
document JVT-G012r1, March 2003. 

Li, Z. G.; Gao, W.; Pan, F.; Ma, S. ; Lin, K. P. ; Feng, G.; Lin, X.; Rahardja, S.; Lu, H. & Lu, Y. 
(2003b). Adaptive Rate Control with HRD Consideration, document JVT-H014, 8th 
meeting, Geneva, May 2003. 

Li, Z. G.; Pan, F.; Lim, K.P.; Feng, G.N. ; Lin, X. ; Rahardja, S. & Wu, D.J. (2003c). Adaptive 
frame layer rate control for H.264, Proceedings. 2003 International Conference on 
Multimedia and Expo, 2003, Vol 1, pp 581-584, ISBN 0-7803-7965-9, July 6-9, 2003. 

Li, Z. G.; Pan, F.; Lim, K.P.; Lin, X. & Rahardja, S. (2004). Adaptive rate control for H.264, 
2004 International Conference on Image Processing, pp 745-748, ISBN 0-7803-8554-
3, October 24-27, 2004. 

Lim, K. P ; Sullivan, G. & Wiegand, T. (2007). Text Description of Joint Model Reference 
Encoding Methods and Decoding Concealment Methods, Joint Video Team of 
ISO/IEC MPEG and ITU-T VCEG, document JVT-W057, San Jose, April 2007. 

Lin, L. J. & Ortega, A. (1998). Bit-rate control using piecewise approximated rate-distortion 
characteristics, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 8, 
No 4 (August 1998), pp 446-459, ISSN 1051-8215. 

Lin, L. J.; Ortega, A. & Kuo, C.-C.J.(1996). Rate control using spline-interpolated R-D 
characteristics, SPIE Visual Communication Image Processing, Cambridge Visual 
Communication Image Processing, Cambridge, Orlando, FL, 1996, pp. 111-122. 



 
Recent Advances on Video Coding 

 

138 

Ma, S.; Gao, W & Lu, Y. (2002). Rate Control on JVT Standard, Joint Video Team (JVT) of 
ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6), 
document JVT-D030, 4th Meeting: Klagenfurt, Austria, July 22-26, 2002. 

Ma, S.; Gao, W.  & Lu, Y. (2005). Rate-distortion analysis for H.264/AVC video coding and 
its application to rate control, IEEE Transactions on Circuits and Systems for Video 
Technology, Vol. 15, No  12 (December 2005), pp 1533-1544, ISSN 1051-8215. 

Ortega, A. (1996). Optimal bit allocation under multiple rate constraints, Proceedings of the 
Data Compression Conference, pp 349–358, ISBN 0-8186-7358-3, Snowbird, UT, 
USA, 31 Mar – 01 April, 1996. 

Puri, A.; Hang, H.-M. & Schilling, D. L. (1987). Interframe coding with variable block-size 
motion compensation, Proceedings of IEEE Global Telecomm. Conf. (GLOBECOM), pp 
65-69, 1987. 

Ramchandran, K.; Ortega, A. & Vetterli, M. (1993). Bit allocation for dependent quantization 
with applications to MPEG video codec, 1993 IEEE International Conference on 
Acoustics, Speech, and Signal Processing, pp. 381-385, ISBN 0-7803-7402-9, 
Minneapolis, April 27-30, 1993. 

Ramchandran, K.; Ortega, A. & Vetterli, M. (1994). Bit allocation for dependent quantization 
with applications to multiresolution and MPEG video coders, IEEE Transactions on 
Image Processing, Vol.3, No.5, pp.533-545, ISSN 1057-7149. 

Rhee, I.; Martin, G. R. ; Muthukrishnan, S. & Packwood, R. A.  (2001). Quadtree-structured 
variable-size block-matching motion estimation with minimal error, IEEE 
Transactions on Circuits and Systems for Video Technology, Vol. 10, No  2 (February 
2001), pp 42-50, ISSN 1051-8215.  

Ribas-Corbera, J. & Lei, S. (1999). Rate control in DCT video coding for low-delay 
communications, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 
9, No 1 (February 1999), pp 172-185, ISSN 1051-8215. 

Ribas-Corbera, J. & Neuhoff, David L. (1998). Optimizing block size in motion compensated 
video coding, Journal of Electronic Imaging, Vol. 7, No 1 (January 1998), pp.155-165, 
ISSN 1017-9909. 

Ronda, J. I.; Eckert, M.; Jaureguizar, F. & Garcia, N. (1999). Rate control and bit allocation for 
MPEG-4, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 9, No  
12 (December 1999), pp 1243–1258, ISSN 1051-8215. 

Schuster, G. M. & Katsaggelos, A.K. (1997a). Rate Distortion based Video Compression, Kluwer 
Academic Publishers, ISBN 978-1-4419-5172-4, Norwell, MA. 

Schuster, G. M. & Katsaggelos, A.K. (1997b). A video compression scheme with optimal bit 
allocation among segmentation motion and residual error, IEEE Transactions on 
Image Processing, Vol 6, No 11 (November 1997), pp 1487–1502, ISSN 1057-7149. 

Seeling, P.; Fitzek, F. H. P. & Reisslein, M. (2007). Video Traces for Network Performance 
Evaluation - A Comprehensive Overview and Guide on Video Traces and Their 
Utilization in Networking Research, Springer Verlag, 272 pages, ISBN 978-1-4020-
5565-2, 2007. 

Seeling, P.; Reisslein, M. & Kulapala, B. (2004). Network Performance Evaluation with 
Frame Size and Quality Traces of Single-Layer and Two-Layer Video: A Tutorial,  

 
Rate-Distortion Analysis for H.264/AVC Video Statistics   

 

139 

IEEE Communications Surveys & Tutorials, Vol. 6, No. 3 (Third Quarter 2004), pp 58-
78, ISSN 1553-877X. 

Shoham, Y. & Gersho, A. (1988). Efficient bit allocation for an arbitrary set of quantizers, 
IEEE Transaction in Acoustics, Speech and Signal Processing, Vol. 36, pages 1445–1453, 
ISSN 1053-587X. 

Sullivan, G. J. & Wiegand, T. (1998). Rate-distortion optimization for video compression, 
IEEE Signal Processing Magazine, Vol. 15, No. 6 (November 1998), pp 74–90, ISSN 
1053-5888. 

Sullivan, G.J. & Wiegand, T. (1997). A theory for the optimal bit allocation between 
displacement vector field and displaced frame difference, IEEE Journal on Selected 
Areas in Communications, Vol 15, No 9 (December 1997), pp 1739–1751, ISSN 0733-
8716. 

Tourapis, H.-Y.C. & Tourapis, A.M. (2003). Fast motion estimation within the H.264 codec, 
Proceedings. 2003 International Conference on ICME '03, Vol 3, pp 517-520, ISBN 0-
7803-7965-9, July 6-9, 2003. 

Vardeman, S. (1994). Statistics for Engineering Problem Solving, PWS Publishing Company, 
ISBN 0-534-92871-4, boston, USA. 

Vetro, A. ; Sun, H. & Wang. Y. (1999). MPEG-4 rate control for multiple video objects, IEEE 
Transactions on Circuits and Systems for Video Technology, Vol. 9, No  2 (February 
1999), pp 186–199, ISSN 1051-8215. 

Wiegand, T. & Girod, B. (2001). Lagrange multiplier selection in hybrid video coder control, 
Proceedings of 2001 International Conference on Image Processing, pp 542–545, ISBN 0-
7803-6725-1, 07 Oct 2001-10 Oct 2001. 

Wiegand, T.; Schwarz, H.; Joch, A.; Kossentini, F. & Sullivan, G. J. (2003a). Rate-Constrained 
Coder Control and Comparison of Video Coding Standards, IEEE Transactions on 
Circuits and Systems for Video Technology, Vol. 13, No  7 (July 2003), pp 688-703, ISSN 
1051-8215. 

Wiegand, T.; Sullivan, G. J.  & Luthran, A. (2003b). Draft  ITU-T Recommendation H.264 and 
Final Draft International Standard 14496-10 Advanced Video Coding, Joint Video 
Team of ISO/IEC JTC1/SC29/WG11 and ITU-T SG16/Q.6, document JVT-G050rl; 
Geneva, Switzerland, May 2003 

Wiegand, T.; Sullivan, G. J.; Bjontegaard, G. & Luthra, A. (2003c). Overview of the 
H.264/AVC video coding standard, IEEE Transactions on Circuits and Systems for 
Video Technology, Vol. 13, No  7 (July 2003), pp 560-576, ISSN 1051-8215. 

Wu, Y.; Shouxun, L. & Zhang (2005). Optimum Bit Allocation and Rate Control for 
H.264/AVC, Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC 
JTC1/SC29/WG11 and ITU-T SG16 Q.6), document JVT- O016, 15th Meeting, 
Busan, KR, April 16-22, 2005. 

Yan, A. Y. K. & Liou, M. L. (1997). Adaptive predictive rate control algorithm for MPEG 
videos by rate quantization method, Proceedings on Picture Coding Symposium, pp 
619-624, Berlin, Germany, September 1997. 

Yin, P. & Boyce, J. (2004). A new rate control scheme for H.264 video coding, Proceedings of 
ICIP '04. 2004 International Conference on Image Processing, pp 449-452, ISBN 0-
7803-8554-3, October 24-27, 2004. 



 
Recent Advances on Video Coding 

 

138 

Ma, S.; Gao, W & Lu, Y. (2002). Rate Control on JVT Standard, Joint Video Team (JVT) of 
ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6), 
document JVT-D030, 4th Meeting: Klagenfurt, Austria, July 22-26, 2002. 

Ma, S.; Gao, W.  & Lu, Y. (2005). Rate-distortion analysis for H.264/AVC video coding and 
its application to rate control, IEEE Transactions on Circuits and Systems for Video 
Technology, Vol. 15, No  12 (December 2005), pp 1533-1544, ISSN 1051-8215. 

Ortega, A. (1996). Optimal bit allocation under multiple rate constraints, Proceedings of the 
Data Compression Conference, pp 349–358, ISBN 0-8186-7358-3, Snowbird, UT, 
USA, 31 Mar – 01 April, 1996. 

Puri, A.; Hang, H.-M. & Schilling, D. L. (1987). Interframe coding with variable block-size 
motion compensation, Proceedings of IEEE Global Telecomm. Conf. (GLOBECOM), pp 
65-69, 1987. 

Ramchandran, K.; Ortega, A. & Vetterli, M. (1993). Bit allocation for dependent quantization 
with applications to MPEG video codec, 1993 IEEE International Conference on 
Acoustics, Speech, and Signal Processing, pp. 381-385, ISBN 0-7803-7402-9, 
Minneapolis, April 27-30, 1993. 

Ramchandran, K.; Ortega, A. & Vetterli, M. (1994). Bit allocation for dependent quantization 
with applications to multiresolution and MPEG video coders, IEEE Transactions on 
Image Processing, Vol.3, No.5, pp.533-545, ISSN 1057-7149. 

Rhee, I.; Martin, G. R. ; Muthukrishnan, S. & Packwood, R. A.  (2001). Quadtree-structured 
variable-size block-matching motion estimation with minimal error, IEEE 
Transactions on Circuits and Systems for Video Technology, Vol. 10, No  2 (February 
2001), pp 42-50, ISSN 1051-8215.  

Ribas-Corbera, J. & Lei, S. (1999). Rate control in DCT video coding for low-delay 
communications, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 
9, No 1 (February 1999), pp 172-185, ISSN 1051-8215. 

Ribas-Corbera, J. & Neuhoff, David L. (1998). Optimizing block size in motion compensated 
video coding, Journal of Electronic Imaging, Vol. 7, No 1 (January 1998), pp.155-165, 
ISSN 1017-9909. 

Ronda, J. I.; Eckert, M.; Jaureguizar, F. & Garcia, N. (1999). Rate control and bit allocation for 
MPEG-4, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 9, No  
12 (December 1999), pp 1243–1258, ISSN 1051-8215. 

Schuster, G. M. & Katsaggelos, A.K. (1997a). Rate Distortion based Video Compression, Kluwer 
Academic Publishers, ISBN 978-1-4419-5172-4, Norwell, MA. 

Schuster, G. M. & Katsaggelos, A.K. (1997b). A video compression scheme with optimal bit 
allocation among segmentation motion and residual error, IEEE Transactions on 
Image Processing, Vol 6, No 11 (November 1997), pp 1487–1502, ISSN 1057-7149. 

Seeling, P.; Fitzek, F. H. P. & Reisslein, M. (2007). Video Traces for Network Performance 
Evaluation - A Comprehensive Overview and Guide on Video Traces and Their 
Utilization in Networking Research, Springer Verlag, 272 pages, ISBN 978-1-4020-
5565-2, 2007. 

Seeling, P.; Reisslein, M. & Kulapala, B. (2004). Network Performance Evaluation with 
Frame Size and Quality Traces of Single-Layer and Two-Layer Video: A Tutorial,  

 
Rate-Distortion Analysis for H.264/AVC Video Statistics   

 

139 

IEEE Communications Surveys & Tutorials, Vol. 6, No. 3 (Third Quarter 2004), pp 58-
78, ISSN 1553-877X. 

Shoham, Y. & Gersho, A. (1988). Efficient bit allocation for an arbitrary set of quantizers, 
IEEE Transaction in Acoustics, Speech and Signal Processing, Vol. 36, pages 1445–1453, 
ISSN 1053-587X. 

Sullivan, G. J. & Wiegand, T. (1998). Rate-distortion optimization for video compression, 
IEEE Signal Processing Magazine, Vol. 15, No. 6 (November 1998), pp 74–90, ISSN 
1053-5888. 

Sullivan, G.J. & Wiegand, T. (1997). A theory for the optimal bit allocation between 
displacement vector field and displaced frame difference, IEEE Journal on Selected 
Areas in Communications, Vol 15, No 9 (December 1997), pp 1739–1751, ISSN 0733-
8716. 

Tourapis, H.-Y.C. & Tourapis, A.M. (2003). Fast motion estimation within the H.264 codec, 
Proceedings. 2003 International Conference on ICME '03, Vol 3, pp 517-520, ISBN 0-
7803-7965-9, July 6-9, 2003. 

Vardeman, S. (1994). Statistics for Engineering Problem Solving, PWS Publishing Company, 
ISBN 0-534-92871-4, boston, USA. 

Vetro, A. ; Sun, H. & Wang. Y. (1999). MPEG-4 rate control for multiple video objects, IEEE 
Transactions on Circuits and Systems for Video Technology, Vol. 9, No  2 (February 
1999), pp 186–199, ISSN 1051-8215. 

Wiegand, T. & Girod, B. (2001). Lagrange multiplier selection in hybrid video coder control, 
Proceedings of 2001 International Conference on Image Processing, pp 542–545, ISBN 0-
7803-6725-1, 07 Oct 2001-10 Oct 2001. 

Wiegand, T.; Schwarz, H.; Joch, A.; Kossentini, F. & Sullivan, G. J. (2003a). Rate-Constrained 
Coder Control and Comparison of Video Coding Standards, IEEE Transactions on 
Circuits and Systems for Video Technology, Vol. 13, No  7 (July 2003), pp 688-703, ISSN 
1051-8215. 

Wiegand, T.; Sullivan, G. J.  & Luthran, A. (2003b). Draft  ITU-T Recommendation H.264 and 
Final Draft International Standard 14496-10 Advanced Video Coding, Joint Video 
Team of ISO/IEC JTC1/SC29/WG11 and ITU-T SG16/Q.6, document JVT-G050rl; 
Geneva, Switzerland, May 2003 

Wiegand, T.; Sullivan, G. J.; Bjontegaard, G. & Luthra, A. (2003c). Overview of the 
H.264/AVC video coding standard, IEEE Transactions on Circuits and Systems for 
Video Technology, Vol. 13, No  7 (July 2003), pp 560-576, ISSN 1051-8215. 

Wu, Y.; Shouxun, L. & Zhang (2005). Optimum Bit Allocation and Rate Control for 
H.264/AVC, Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC 
JTC1/SC29/WG11 and ITU-T SG16 Q.6), document JVT- O016, 15th Meeting, 
Busan, KR, April 16-22, 2005. 

Yan, A. Y. K. & Liou, M. L. (1997). Adaptive predictive rate control algorithm for MPEG 
videos by rate quantization method, Proceedings on Picture Coding Symposium, pp 
619-624, Berlin, Germany, September 1997. 

Yin, P. & Boyce, J. (2004). A new rate control scheme for H.264 video coding, Proceedings of 
ICIP '04. 2004 International Conference on Image Processing, pp 449-452, ISBN 0-
7803-8554-3, October 24-27, 2004. 



 
Recent Advances on Video Coding 

 

140 

Zhang, J. ; He, Y. ; Yang, S. & Zhong, Y. (2003). Performance and complexity joint 
optimization for H.264 video coding, Proceedings on IEEE International Symposium 
Circuits and Systems 2003 (ISCAS’03), pp 888-891, ISBN 0-7803-7761-3, May 25-28 , 
2003. 

Zhang, Z.; Liu, G. ; Li, H.  & Li, Y. (2005). A novel PDE-based rate distortion model for rate 
control, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 15, No 
(2005), pp 1354–1364, ISSN 1051-8215. 

6 

Rate Control for Low Delay Video 
Communication of H.264 Standard 

Chou-Chen Wang and Chi-Wei Tung 
I-Shou University 

Taiwan 

1. Introduction 
The demand for multimedia services is increasing rapidly in the last years. Therefore, 
efficient video compression has become a very important research for the multimedia 
communication. H.264 is the state-of-the-art digital video coding recommendation, which is 
also known as H.264/MPEG-4 Advanced Video Coding (H.264/AVC) (ITU-T, 2003). The 
standard is a joint collaborative effort between the ISO/IEC Moving Picture Experts Group 
(MPEG) and the ITU-T Video Coding Experts Group (VCEG). The team responsible for the 
development and evolution of the standard is known as the Joint Video Team (JVT) and 
officially the standard is known as H.264 by the ITU-T and MPEG-4 Part 10 by ISO/IEC. The 
H.264 standard can achieve much higher coding efficiency than the previous standards such 
as MPEG-1/2/4 (LeGall, 1991; ISO/IEC, 1994 & ISO/IEC, 1999) and H.261/H.263 (CCITT, 
1990 and ITU-T, 2003). In addition to coding efficiency, the rate control also plays a key role 
in a video encoder for multimedia services, especially for real-time communication such as 
video streaming, video conference and video surveillance. The number of bits required for 
encoding a video sequence varies with time to provide consistent visual quality because 
complexity of each frame generally differs from the other frames in the input sequence. 
Therefore, a rate control scheme which meets a constrained channel rate by controlling the 
number of generated bits is necessary in an encoder. Nowadays, real-time video streaming 
scenarios requiring very low end-to-end delay are getting more and more popular. 
However, it is very difficult to adjust the encoding parameters directly to obtain fixed bits 
for every encoded frame in the constant bit rate channel. Therefore, it is necessary that the 
buffer to regulate the bit stream before transmission. With a good rate control technique, it 
should adjust the output rate to prevent the buffer from overflow and underflow. If the 
buffer suffers from overflow and underflow, it will cause frames skipping and wastage of 
channel resource, respectively. Furthermore, the size of buffer is usually very small to 
achieve low end-to-end delay requirement for real-time communication. It causes the buffer 
overflowing and underflow easier. So, the low delay video communication requires more 
accurate bit allocation and encoder parameter adjustment to achieve a suitable rate control. 
There are two parts that should be considered when designing a rate control scheme. One is 
about the bit allocation for each basic unit according to its complexity. The other is the 
adjustment of the encoder parameter, i.e., quantization parameter (QP) to encode each basic 
unit to match target bits. Rate control scheme have been widely studied in video standards, 
such as TM5 for MPEG-2 (ISO/IEC, 1993), TMN8 for H.263 (ITU-T, 1997), and VM-8 for 
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MPEG-4 (ISO/IEC, 1997). Figure 1 shows the rate control scheme for MPEG-2, H.263 and 
MPEG-4 using rate-distortion (R-D) model. The amount of encoding bits of the current basic 
units (macroblock: MB) is predicted from the recent encoded basic units. The encoder shown 
in Fig. 1 can obtain the motion vectors (MV) using motion estimator (ME) and calculate the 
statistical data of the residual frame with actual mean absolute difference (MAD) after 
motion compensation (MC). And then, the rate controller can adjust the quantization 
parameter (QP) according to the rate-quantization (R-Q) model. 
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Fig. 1. Rate control scheme for MPEG-2, H.263 and MPEG-4 

Compared with these previous standards, there is an additional problem for rate control in 
H.264 as shown in Fig. 2. The problem is due to that the H.264 encoder determines motion 
information by using the rate-distortion optimization (RDO) calculations. Before performing 
RDO for each MB, the quantization parameter should be defined by using MAD of MB. 
However, the statistical MAD of MB is only available after performing RDO. This is typical 
chicken and egg dilemma. Therefore, the rate control scheme is more difficult in H.264 (Li, et 
al., 2003). 
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Fig. 2. The problem of QP dilemma for rate control scheme in H.264 

In order to solve the QP dilemma problem caused by RDO, one rate control scheme was 
proposed in JVT-G012 (Li, et al., 2003) and was adopted by the JVT in the H.264 reference 
model JM 12.1 (JVT). JVT-G012 utilizes the method of temporal MAD prediction and R-Q 
quadratic model to achieve rate control. However, there are three problems existing in this 
scheme. 
1. Inaccurate initial quantization parameter: For real time video applications, an improper 

initial QP maybe lead to the buffer overflowing and underflow seriously the front 
frames. It will affect continuity, quality and the demand of low delay directly.   
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2. Inaccurate overhead bit prediction: Due to a much more complex motion compensation 
strategy adopted by inter/intra coding mode in the H.264, the bits of overhead may 
highly fluctuate at the differential modes. Therefore, it is inaccuracy to predict overhead 
bit rate by using an average overhead bits in the JVT-G012. 

3. Inaccurate MAD prediction: If the high motion or scene changes in the video sequences, 
the temporal correlation is reduced in the presence of such sudden changes. Therefore, 
only using the temporal MAD prediction model in the JVT-G012 is poorly in this status. 

In this chapter, we will introduce a new rate control scheme for low delay H.264 video 
communication. A fast and best selection of initial QP is first proposed in the GOP layer rate 
control (Armstrong, et al. 2006 and Wang, 2008). Then, an improved MAD prediction model 
and overhead bits prediction method is adopted in the MB layer rate control. The simulation 
results show that the proposed scheme gives an average PSNRY gain of about 0.55 dB and 
0.58 dB when compared with JVT-G012 and the method proposed in (Jiang & Lin, 2006), 
respectively. In addition, the proposed scheme improves the number of frame skipped and 
reduces the quality deviations of the initial frames by choosing the best initial QP. 

2. Improved rate control in H.264 
2.1 Efficient selection of initial QP 
In JVT-G012, the I frame and the first P frame of the GOP are coded by initial QP.  Therefore, 
the initial QP has a great effect in the front frames. The bad selection of initial QP may 
highly exceed buffer budgets so that the encoder attempting to salvage the over-spend bits 
in later frames. It leads to decrease rapidly the quality in later frames and even frame 
skipped. Therefore, according to channel bandwidth and complexity of encoded sequence to 
choose the best quantization parameter is a very important issue to be overcome. To 
increase the accuracy of selection, (Armstrong et al. 2006) proposed a selection of initial QP 
based on binary search scheme. As we know that the optimal QP setting can be obtained by 
full search for all QP indexes. To reduce the cost time of the full search, they use the binary 
search algorithm (BSA) to obtain the initial QP. For an example, assuming the bit-rate at 
QP=1 is 1,040 kbps and QP=51 is 20 kbps, the following example shown in Fig. 3 
demonstrates the binary search for a desired target rate of 128 kbps on the first frame of a 
sequence. The QP=47 is determined as an initial QP to meet the channel bandwidth. The 
BSA can achieve the selection of QP with 6 processes, while a full search would require 51 
processes. By using BSA, we can decrease the huge processing time rapidly. 
 

 
Fig. 3. Example of BSA for a desired target rate of 128 kbps. 
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Fig. 3. Example of BSA for a desired target rate of 128 kbps. 
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However, the time of the search processes is still expended too much for each intra frame of 
a sequence (or on the first intra frame of each sequence in a group). To further speed up the 
best decision of initial QP, we propose a fast intra mode decision (FIMD) method to combine 
the BSA. In our previous research (Wang et al, 2006), we have proposed a fast intra mode 
selection algorithm for H.264 standard that take advantage of the correlation between 
MBs/blocks. Since H.264 is a block-based coding scheme, the frame is encoded block by 
block in a raster scan order, i.e., from the left to right and top to bottom. For a luma MB in an 
I-slice, RDO exhaustively searches the combinations of the predefined 13 intra modes to 
produce the best mode for this MB. Figure 4 shows part of the RDO intra-mode map of an I-
frame (News video sequence) conducted by the JM 12.1 (JVT) with RDO procedure. Each 
point (location) in the two intra-mode maps corresponds to a luma Intra_16×16 MB and a 
luma Intra_4×4 block, respectively. Since MBs/blocks are highly correlated, many 
MBs/blocks in I-frame correspond to the same modes. In other words, many points in the 
map have same mode, as shown in Fig. 4. 
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Fig. 4. RDO intra-mode map for an I-frame (a) luma Intra_16×16 (b) luma Intra_4×4 

According to the observation of intra prediction modes (including luma Intra_4×4 and luma 
Intra_16×16) of any MB and those of its four neighboring blocks from different real video 
sequences, we find that there are a high mode correlation exists in intra mode map of H.264. 
We exploit the interblock correlation in the intra mode domain to early terminate the RDO 
calculations. Four modes of neighboring coded macroblocks/blocks shown in Fig. 5 are 
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Fig. 5. Four causal neighboring modes of the current block (a) 16×16 MB (b) 4 ×4 block 
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considered as the good candidate intra modes of the current block in I frame, and we can 
use the threshold combination to achieve early detection. A detailed description of the 
method is available in (Wang et al, 2006). In order to evaluate the performance, we use the 
News in QCIF (176×144) format and 15 Hz frame rate as testing sequence. We compare the 
results using different methods in terms of PSNR and bitrate. Figure 6 demonstrates the 
performance of the proposed decision of initial QP is almost the same as BSA under 24 kbps 
for channel rate. In addition, from the Table 1, we can find that the decision time of initial 
QP using the proposed method is obviously less than the BSA. The simulation results show 
that the proposed method achieves an average 62% computational saving compared to BSA 
method. 
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However, the time of the search processes is still expended too much for each intra frame of 
a sequence (or on the first intra frame of each sequence in a group). To further speed up the 
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luma Intra_4×4 block, respectively. Since MBs/blocks are highly correlated, many 
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considered as the good candidate intra modes of the current block in I frame, and we can 
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method is available in (Wang et al, 2006). In order to evaluate the performance, we use the 
News in QCIF (176×144) format and 15 Hz frame rate as testing sequence. We compare the 
results using different methods in terms of PSNR and bitrate. Figure 6 demonstrates the 
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                Sequence 
Method  News Forman Bus 

Full Search 44.3 42.2 49.7 
BSA 3.3 3.3 3.4 
Proposed 1.2 1.1 1.2 

Table 1. Comparisons of processing times (seconds) for initial QP using various sequences 

2.2 Improved overhead bit rate prediction 
The overall bitstream generated by the source code is mainly comprised of texture bits and 
overhead bits. And texture bits are used to recode MB’s residua after motion compensation. 
The overhead bits are used for differential coding and the overhead bits are used to record 
importance information such as the MB mode, the motion vector and the QP. The overhead 
bit prediction of rate control schemes in previous standards (including MPEG-1/2/4 and 
H.261/H.263) usually adopt the average overhead bits to predict, and update it with the 
average overhead bit rate after coding a MB or a frame. As we know that a more complex 
motion compensation adopted by the H.264 will lead to the overhead bits fluctuate at the 
differential mode.Unfortunately, the JVT-G012 rate control scheme follows that way and it 
produces large prediction error. 
From (Yuan, et al., 2006), we can observe that the overhead bit rate is usually close among 
spatially and temporally adjacent MBs. Figure 7 shows the correlation of overhead bits 
count for two successive P frames by the Forman sequence in QCIF format, 15 Hz and initial 
QP=32. A further experiment is conducted to justify the temporal correlation and the typical 
experiment results are shown in Fig. 8. The experiment is simulated by searching for 
minimum difference of overhead bits count between the current MB and all of MBs in the 
previous P frame with a distance to the same position of the current MB not exceeding the 
searching radius. 
 

1214827231028211401

11137118144401

18131558691024822

4331571291912312125

8181977371942152109

888236271231301010

82454411382510421

23256233911928

44138204931422101047

1214827231028211401

11137118144401

18131558691024822

4331571291912312125

8181977371942152109

888236271231301010

82454411382510421

23256233911928

44138204931422101047

    9154867271241171510

1424243799312101

14163286308927211

220192312122021936

31839214931623121915

22061231513705631211

76519321824261421713

3296752310223226

524377127201042442

9154867271241171510

1424243799312101

14163286308927211

220192312122021936

31839214931623121915

22061231513705631211

76519321824261421713

3296752310223226

524377127201042442

 
                                (j-1)th frame                                                         jth frame 

Fig. 7. Temporal correlation of overhead bits count for two successive P frames 

From the Fig. 8, we can observe that the relation between the MB percentage and the 
difference of overhead bits count in the different searching radius. When the searching 
radius is increasing, the probability of the similar overhead bits count and the searching 
complexity are also increasing at the same time. Furthermore, if the searching radius is other 
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than 0, we will get confused with the choice among more than one MB. In order to simplify 
the problem, (Yuan, et al., 2006) predict the overhead bits count of not yet coded MB directly 
by that at the co-located position in the previous P frame. However the accuracy of 
prediction is limited by using their method. In addition, we can also find when the radius 
more than two, the cumulated probability distribution (CDF) of the overhead bit rate 
correlation is almost the same. So, we select the searching radius equal to 2 (R=2) to achieve 
a trade-off between the accuracy of prediction and the searching complexity. In order to 
overcome the confusion with the choice among more than one MB, we will make use of the 
rough motion compensation information of MB to determine the overhead bit rate 
prediction in the searching radius. The rough MAD will be explained in the subsection 2.3 
explicitly. 
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Fig. 8. The CDF of temporal correlation of overhead bits count 

2.3 Improved MAD prediction 
Because RDO in H.264 needs QP parameter before encoding, bit rate controller can’t get 
MAD information of the current MB. To solve the QP dilemma caused by RDO in H.264, a 
simple linear model is proposed in the JVT-G012 to predict the MAD of not yet coded MB.  
The prediction model using the temporal information is then given by 

 , 1 2[ ] [ ]cur temp preMAD i a MAD i a= × +  (1) 

where , [ ]cur tempMAD i  denotes the temporal predicted MAD of the current ith MB, 
[ ]preMAD i  denotes the actual MAD of the co-located MB in the previous frame, 1a  and 2a  

are two coefficients of prediction model. The initial value of 1a  and 2a  are set to 1 and 0, 
respectively. They would be updated after coding each MB.  
The accuracy of prediction model using the previous temporal information is poorly when 
MAD changes abruptly due to high motion or scene changes. Thus, the prediction model is 
unable to predict the current changes, and is less sensitive to input data fluctuations. This 
situation will lead to error of prediction and error propagation by linear regression model. 
Therefore, it is desirable to collect more information that is helpful to predict MAD before 
RDO. In the procedure of H.264 encoding, the RDO module select the best mode by 
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From the Fig. 8, we can observe that the relation between the MB percentage and the 
difference of overhead bits count in the different searching radius. When the searching 
radius is increasing, the probability of the similar overhead bits count and the searching 
complexity are also increasing at the same time. Furthermore, if the searching radius is other 
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than 0, we will get confused with the choice among more than one MB. In order to simplify 
the problem, (Yuan, et al., 2006) predict the overhead bits count of not yet coded MB directly 
by that at the co-located position in the previous P frame. However the accuracy of 
prediction is limited by using their method. In addition, we can also find when the radius 
more than two, the cumulated probability distribution (CDF) of the overhead bit rate 
correlation is almost the same. So, we select the searching radius equal to 2 (R=2) to achieve 
a trade-off between the accuracy of prediction and the searching complexity. In order to 
overcome the confusion with the choice among more than one MB, we will make use of the 
rough motion compensation information of MB to determine the overhead bit rate 
prediction in the searching radius. The rough MAD will be explained in the subsection 2.3 
explicitly. 
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2.3 Improved MAD prediction 
Because RDO in H.264 needs QP parameter before encoding, bit rate controller can’t get 
MAD information of the current MB. To solve the QP dilemma caused by RDO in H.264, a 
simple linear model is proposed in the JVT-G012 to predict the MAD of not yet coded MB.  
The prediction model using the temporal information is then given by 

 , 1 2[ ] [ ]cur temp preMAD i a MAD i a= × +  (1) 

where , [ ]cur tempMAD i  denotes the temporal predicted MAD of the current ith MB, 
[ ]preMAD i  denotes the actual MAD of the co-located MB in the previous frame, 1a  and 2a  

are two coefficients of prediction model. The initial value of 1a  and 2a  are set to 1 and 0, 
respectively. They would be updated after coding each MB.  
The accuracy of prediction model using the previous temporal information is poorly when 
MAD changes abruptly due to high motion or scene changes. Thus, the prediction model is 
unable to predict the current changes, and is less sensitive to input data fluctuations. This 
situation will lead to error of prediction and error propagation by linear regression model. 
Therefore, it is desirable to collect more information that is helpful to predict MAD before 
RDO. In the procedure of H.264 encoding, the RDO module select the best mode by 
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calculating the rate-distortion cost (RDcost) for 9 modes including INTRA16×16, INTRA 
4×4, INTER16×16, INTER 16×8, INTER 8×16, INTER 8×8, INTER 8×4, INTER 4×8 and 
INTER 4×4. Let MADrough be a rough measure for evaluating the difference between the 
current original frame and the previous reconstructed frame. To get the additional 
information, Liu et al. build the MADrough after rough motion determination only with the 
INTRA16×16 and INTER 16×16 modes. (Liu, et al., 2007) has shown that the MADrough is 
highly related to MADactual. A detailed description of the experimental results regarding the 
relationship between MADrough and MADactual is available in (Liu, et al., 2007). Therefore, the 
prediction model is helpful to improve the accuracy of prediction, especially for abrupt 
changes. The spatial linear prediction model is determined by   

 , 1 2[ ] [ ]cur spat roughMAD i b MAD i b= × +  (2) 

where , [ ]cur spatMAD i  denotes the spatial MAD of the current MB, [ ]roughMAD i  represents 
the rough MAD of the current MB, 1b  and 2b  are two coefficients of prediction model. They 
would be updated after coding each MB. 
To combine the temporal prediction model with the spatial prediction model so that we can 
obtain more accurate MAD prediction. Therefore, we introduce two similarity measures as 
indicators to switch temporal and spatial prediction models 

 ,[ ] [ ] [ ]
i

temp cur temp actual
n i S

E i MAD n MAD n
= −

= −∑  (3) 

 ,[ ] [ ] [ ]
i

spat cur spat actual
n i S

E i MAD n MAD n
= −

= −∑  (4) 

where S is the number of MAD samples used to measure E. When the measure spatE  is greater 
than tempE , the MAD of current MB could be predicted by the temporal prediction model. On 
the other hand, it could be predicted by the spatial prediction model if tempE  is greater than 

spatE . Therefore, in addition to the temporal prediction model, we can also use the spatial 
prediction model to predict current MB. Due to the fluctuation of roughMAD  roughly reflects 
the fluctuation of actualMAD  (Liu, et al., 2007), we adopt the characteristics to determine the 
optimal position ( , )x yv v  of MB in the searching radius ( 2)R =  for the temporal and spatial 
prediction model. Therefore, the optimal position is obtained when the difference of MAD 
between MADrough and MADactual around the searching radius is the minimum value. 
Figure 9 shows the proposed searching procedure to find the optimal position of predicted 
MB. We further use the MB in the position ( , )x yv v  to substitute for the co-located MB 
adopted in JVT-G012 to predict MAD of the current MB. Therefore, the equations (1) and (2) 
are rewritten as the following: 

 , 1 , ,min 2[ ] ( , )cur temp pre temp x yMAD i a MAD v v a= × +  (5) 

 , 1 , ,min 2[ ] ( , )cur spat pre spat x yMAD i b MAD v v b= × +  (6) 

where ,min( , )pre x yMAD v v  denotes the actual MAD of the position ( , )x yv v  in the temporal 
or spatial frame. In addition, the same technique as MAD prediction is also employed to the 
prediction of overhead bit rate. They are formulated as the following: 
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 , 2 2,min[ ] [ 1]i temp rough actual RH MAD i MAD i − ≤ ≤= − −  (7) 

 , , 2 2,min[ ] [ ]i spat pred spat actual RH MAD i MAD i − ≤ ≤= −  (8) 

where ,i tempH  denotes the temporal prediction and the spatial prediction of overhead bit 
rate of the ith MB in the previous P frame, and ,i spatH  denotes the spatial prediction of 
overhead bit rate of the MB in the current P frame. 
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Fig. 9. The proposed searching procedure 

3. Rate control for low delay video communication 
The proposed rate control scheme is composed of three layers: group of picture (GOP) layer 
rate control, frame layer rate control and MB layer rate control. In the GOP layer, we have to 
select the best initial QP in each GOP and compute the total number of remaining bits for all 
non-coded frames. The frame layer rate control determines the target bits for each P frame. 
The MB layer rate control mainly determines the QP for each MB so that the sum of MB bits 
count is close to the target bits of frame. Figure 10 shows the flowchart of our proposed rate 
control scheme. 

3.1 GOP layer rate control 
In low delay applications, the typical format of a GOP used is IPPP…P. In this layer, we first 
compute the initial QP using our proposed method described in Section 2.1, and then 
compute the total number of remaining bits for all non-coded frames in the GOP as follows: 

 ,

,

1
[ ]

[ 1] [ 1] 2

GOP
r GOP

r GOP GOP

u N j
T j F

T j A j j N

⎧ × =⎪= ⎨
⎪ − − − ≤ ≤⎩

 (9) 

where Tr,GOP [j] denotes the remaining bits of the jth frame that not yet coded in the GOP, u 
denotes the channel bandwidth, F denotes the frame rate, NGOP denotes the total number of 
frames in the GOP, and the A[j-1] denotes the actually generated bits in the (j-1)th frame. 
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In low delay applications, the typical format of a GOP used is IPPP…P. In this layer, we first 
compute the initial QP using our proposed method described in Section 2.1, and then 
compute the total number of remaining bits for all non-coded frames in the GOP as follows: 
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where Tr,GOP [j] denotes the remaining bits of the jth frame that not yet coded in the GOP, u 
denotes the channel bandwidth, F denotes the frame rate, NGOP denotes the total number of 
frames in the GOP, and the A[j-1] denotes the actually generated bits in the (j-1)th frame. 
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Fig. 10. The flowchart of proposed rate control scheme 
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3.2 Frame layer rate control 
The layer mainly allocates the target bits for each frame. It can be calculated from 

 1 2[ ] [ ] [1 ] [ ]frameT j f j f jβ β= × + − ×  (10) 

where Tframe [j] is the target sum bits to encode the jth frame, β is a constant and is set 0.75 in 
JVT-G012. In addition, the two parameters of f1 and f2 are expressed as follows: 
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where f1 represents the number of remaining bits for remaining frames. f2 is estimated from 
the previous actual buffer occupancy Bc, target buffer level Tbl, frame rate and the channel 
bandwidth. The details of these parameters are referred in JVT-G012. 
Finally, the target bits of frame Tframe [i] is used to avoide overflow and underflow with the 
hypothetical reference decoder (HRD) which has been defined in H.264. So, the target bit of 
frame is bounded as follows:  
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where Lbound and Ubound denote the lower and upper boundary, respectively. 

3.3 MB layer rate control 
The MB layer rate control is the detail section to achieve more accurate output rate. If the 
basic unit is set as one frame, the MB layer rate control is skipped and using the frame layer 
predicted QP to encode all MBs within the frame. In other words, if the basic unit is set as 
one MB, the MB layer is to compute QP for each MB. For low delay applications with a small 
buffer size, the MB layer rate control is demanded generally to avoid buffer overflow and 
underflow accurately. The MB layer rate control can be described as follows. 
Step 1. Check whether ith MB is the first MB in the current frame. If it is true, calculate the 

average value of QP for all MBs in the previous frame, then go to step 8. Otherwise 
go to step 2. 

Step 2. Update the budget of the current frame as follows:  
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where Tbudget[i] denotes the number of remaining bits in the current frame after 
coding (i-1)th MB, and RMB[i] denotes the actual bits after coding. 

Step 3. Check whether Tbudget is not enough. If Tbudget is smaller than zero, go to step 7. 
Otherwise go to step 4. 
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where Tbudget[i] denotes the number of remaining bits in the current frame after 
coding (i-1)th MB, and RMB[i] denotes the actual bits after coding. 

Step 3. Check whether Tbudget is not enough. If Tbudget is smaller than zero, go to step 7. 
Otherwise go to step 4. 
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Step 4. Predict the MAD of current MB using the two improved prediction model 
described in Section 2.3. 

Step 5. Predict the overhead bits of current MB using our method described in Section 2.2 
and Section 2.3, and compute the texture bits for the current MB as follows: 

 rb
text header

rb

fR R
N

= −  (15) 

where Rtext denotes the texture bits, Rheader denotes overhead bits that is predicted by 
ours method. frb and Nrb denote the number of remaining bits for all non-coded MB 
in the current frame and the number of non-coded MB, respectively. 

Step 6. Determine the quantization step of current MB using the quadratic Rate-
Quantization 
(R-Q) model. Then go to step 8. 

 1 2 2
cur cur

text
step step

MAD MADR X X
Q Q

= × + ×  (16) 

where X1 and X2 are coefficients of R-Q model, MADcur denotes MADpre,temp or 
MADpre,spat described in Section 2.3. 

Step 7. Due to the budget of frame is overspent early, the QP value is increased by 1 to  
reduce the output rate, that is 

 1 1i iQP QP −= +  (17) 

where QPi denotes the QP of the ith MB. 
Step 8. Actual encoding of the current MB. The QP is applied to perform RDO for the 

current MB. 
Step 9. Update the R-D model and two MAD prediction models. After encoding each MB, 

the encoder should update the parameters of R-Q model and MAD prediction 
model using the linear regression method.  

Step 10. Check whether ith MB is the last MB in current frame. If it is true, go to step 12.  
Otherwise go to step 11. 

Step 11. Set i = i+1, then repeat step 1 to step 10. 
Step 12. Finish the MB layer rate control. 

4. Experimental results 
4.1 Simulation setup 
In this section, we discuss the experimental model used to simulate the proposed low delay 
H.264 video communication scheme, the performance metrics to evaluate performance of 
different methods, and the parameters and methods to encode the video for comparison. We 
evaluate eight video sequences including Foreman, Bus, Highway, Coastguard, News, 
Stefan, Mobile and Akiyo. Each sequence consists of 100 frames at QCIF format. For the real-
time applications, all the sequences are intra-coded for the first frame (I-frame) and the 
remaining frames (P-frames) are inter-coded. In addition, the initial QP is set as 38 for JVT-
G012 and the rate control presented by (Jiang & Lin, 2006), the channel bandwidth is set as 
24 kbps, the symbol mode is CAVLC for low-delay, and RDO is enabled. To evaluate and 
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compare the performance of the different methods, we have implemented our proposed rate 
control scheme with JVT reference software JM 12.1 (JVT) serving as a test benchmark. For a 
fair comparison, the JVT-G012 and (Jiang & Lin, 2006) are also implemented based on JM 
12.1 (JVT), respectively.  

4.2 Performance metrics 
To analyze the performance of the decoded video sequences, we use the average peak 
signal-to-noise ratio for luma (PSNRY) of all frames over all realizations to evaluate the 
objective video quality, because it is the most widely used objective video quality metric. 
PSNRY is defined by 

 
225510logPSNRY

MSE
=     dB (18) 

where MSE is the mean square error between the original pixel and the decoded pixel. 
The video quality is evaluated in terms of PSNRY, buffer fullness and skipped frames. In 
this work, the size of buffer is set as u/F×1.25 for low delay applications. The buffer 
overflow threshold is set as 80% of the buffer size, which it is u/F. If the current buffer 
fullness exceeds 80% of the encoder buffer size, the encoder will skip encoding the next 
frame until the buffer fullness is lower than 80% of the encoder buffer size. When frame 
skipping occurs, the decoder displays the previous encode frame in place of the skipped 
one. Therefore, the previous frame is used in the PSNRY calculation.  

4.3 Performance evaluation 
To evaluate the performance of the proposed rate control scheme for low delay video 
communication, we compare the JVT-G012 and the coding scheme in (Jiang & Lin, 2006). All 
other parameters are selected the same among these schemes.  
The comparisons of PSNRYs and buffer fullness by adopting the proposed scheme, JVT-
G012 and (Jiang & Lin, 2006) are shown in Fig. 11 and Fig. 12, respectively. Figs. 11(a)-(h) 
shows frame by frame PSNRYs for various sequences, and Figs. 12(a)-(h) shows the number 
of bits in the buffer at each frame. From Fig. 11, we can find that our proposed scheme can 
improve the PSNRY significantly for most frames in these sequences. In addition, our 
proposed scheme can achieve much fewer skipped frames for sequences with high motion 
than the other two schemes. The improvements in PSNRY and skipped frames are very high 
for scene change video such as “Mobile”. Despite the first frame has higher PSNRY quality 
for JVT-G012, the buffer fullness above the buffer threshold at the same time as shown in 
Fig. 12. Therefore, the number of frame skipped is increased for initial frames. The proposed 
scheme improves the number of frame skipped and reduces the quality deviations of the 
initial frames by choosing the best initial QP. Thus, it can supply user with a stable and 
constant viewing experience. In addition, the proposed scheme also improves the accuracy 
of prediction method to increase the reconstructed quality. From the experimental results, 
the best initial QP can improve the buffer fullness of initial frames efficiently. It is found 
from Figs. 12(a)-(h) that our proposed scheme achieves much steadier buffer fullness when 
compared to that of JVT-G012 and (Jiang & Lin, 2006). This implies that our proposed 
scheme produces stable buffer delay so that it is suit for real-time video communication. In 
Figs. 12(a)-(h), if the curve of buffer fullness falls below zero, it yields a buffer underflow 
problem. In such case, stuffing bits should be inserted into bit stream. Although underflow 
does not affect motion continuity, it wastes channel bandwidth.  
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Step 4. Predict the MAD of current MB using the two improved prediction model 
described in Section 2.3. 
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the encoder should update the parameters of R-Q model and MAD prediction 
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Step 10. Check whether ith MB is the last MB in current frame. If it is true, go to step 12.  
Otherwise go to step 11. 
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Step 12. Finish the MB layer rate control. 
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different methods, and the parameters and methods to encode the video for comparison. We 
evaluate eight video sequences including Foreman, Bus, Highway, Coastguard, News, 
Stefan, Mobile and Akiyo. Each sequence consists of 100 frames at QCIF format. For the real-
time applications, all the sequences are intra-coded for the first frame (I-frame) and the 
remaining frames (P-frames) are inter-coded. In addition, the initial QP is set as 38 for JVT-
G012 and the rate control presented by (Jiang & Lin, 2006), the channel bandwidth is set as 
24 kbps, the symbol mode is CAVLC for low-delay, and RDO is enabled. To evaluate and 
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compare the performance of the different methods, we have implemented our proposed rate 
control scheme with JVT reference software JM 12.1 (JVT) serving as a test benchmark. For a 
fair comparison, the JVT-G012 and (Jiang & Lin, 2006) are also implemented based on JM 
12.1 (JVT), respectively.  

4.2 Performance metrics 
To analyze the performance of the decoded video sequences, we use the average peak 
signal-to-noise ratio for luma (PSNRY) of all frames over all realizations to evaluate the 
objective video quality, because it is the most widely used objective video quality metric. 
PSNRY is defined by 
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MSE
=     dB (18) 

where MSE is the mean square error between the original pixel and the decoded pixel. 
The video quality is evaluated in terms of PSNRY, buffer fullness and skipped frames. In 
this work, the size of buffer is set as u/F×1.25 for low delay applications. The buffer 
overflow threshold is set as 80% of the buffer size, which it is u/F. If the current buffer 
fullness exceeds 80% of the encoder buffer size, the encoder will skip encoding the next 
frame until the buffer fullness is lower than 80% of the encoder buffer size. When frame 
skipping occurs, the decoder displays the previous encode frame in place of the skipped 
one. Therefore, the previous frame is used in the PSNRY calculation.  

4.3 Performance evaluation 
To evaluate the performance of the proposed rate control scheme for low delay video 
communication, we compare the JVT-G012 and the coding scheme in (Jiang & Lin, 2006). All 
other parameters are selected the same among these schemes.  
The comparisons of PSNRYs and buffer fullness by adopting the proposed scheme, JVT-
G012 and (Jiang & Lin, 2006) are shown in Fig. 11 and Fig. 12, respectively. Figs. 11(a)-(h) 
shows frame by frame PSNRYs for various sequences, and Figs. 12(a)-(h) shows the number 
of bits in the buffer at each frame. From Fig. 11, we can find that our proposed scheme can 
improve the PSNRY significantly for most frames in these sequences. In addition, our 
proposed scheme can achieve much fewer skipped frames for sequences with high motion 
than the other two schemes. The improvements in PSNRY and skipped frames are very high 
for scene change video such as “Mobile”. Despite the first frame has higher PSNRY quality 
for JVT-G012, the buffer fullness above the buffer threshold at the same time as shown in 
Fig. 12. Therefore, the number of frame skipped is increased for initial frames. The proposed 
scheme improves the number of frame skipped and reduces the quality deviations of the 
initial frames by choosing the best initial QP. Thus, it can supply user with a stable and 
constant viewing experience. In addition, the proposed scheme also improves the accuracy 
of prediction method to increase the reconstructed quality. From the experimental results, 
the best initial QP can improve the buffer fullness of initial frames efficiently. It is found 
from Figs. 12(a)-(h) that our proposed scheme achieves much steadier buffer fullness when 
compared to that of JVT-G012 and (Jiang & Lin, 2006). This implies that our proposed 
scheme produces stable buffer delay so that it is suit for real-time video communication. In 
Figs. 12(a)-(h), if the curve of buffer fullness falls below zero, it yields a buffer underflow 
problem. In such case, stuffing bits should be inserted into bit stream. Although underflow 
does not affect motion continuity, it wastes channel bandwidth.  
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On the other hand, since the bit allocation of each basic unit is not further considered in our 
rate control scheme, we still use the method of JVT-G012 to allocate the target bits for frame 
layer and MB layer. Therefore, the improvement of buffer control is limited when compared 
with JVT-G012. From the analysis of the experimental results, the proposed rate control 
scheme indeed can achieve better improvements than those of the JVT-G012 and the (Jiang 
& Lin, 2006) in low delay video communication. 
The experimental results are further reported in Table 2. and Table 3. From the two tables 
we can find that the proposed scheme gives an average PSNRY gain of about 0.55 dB and 
0.58 dB when compared with JVT-G012 and (Jiang & Lin, 2006), respectively. In addition, 
the proposed scheme improves the number of frame skipped and reduces the quality 
deviations of the initial frames. To compare with all test sequences, the proposed rate 
control scheme achieves more accurate rate control, especially for high motion sequences. 
For all sequences, the proposed method can reduce the number of skipped frames with the 
best reconstructed video quality. 
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Fig. 11. Comparisons of PSNRYs for the proposed scheme, JVT-G012 and (Jiang & Lin, 2006) 
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Fig. 12. Comparisons of buffer fullness for the proposed scheme, JVT-G012 and (Jiang & Lin, 
2006) 

5. Conclusion 
In this chapter, we proposed a more efficient rate control scheme for low delay H.264 video 
coding. A fast and best selection of initial QP is first proposed in the GOP layer rate control. 
Then, an improved MAD prediction model and overhead bits prediction method is adopted 
in the MB layer rate control. For low-bandwidth transmission channel applications, the 
simulation results show that the proposed rate control scheme is more efficient than JVT-
G012 and (Jiang & Lin, 2006) for low-delay applications. In addition, the proposed scheme 
improves the number of frame skipped and reduces the quality deviations of the initial 
frames by choosing the best initial QP. 
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5. Conclusion 
In this chapter, we proposed a more efficient rate control scheme for low delay H.264 video 
coding. A fast and best selection of initial QP is first proposed in the GOP layer rate control. 
Then, an improved MAD prediction model and overhead bits prediction method is adopted 
in the MB layer rate control. For low-bandwidth transmission channel applications, the 
simulation results show that the proposed rate control scheme is more efficient than JVT-
G012 and (Jiang & Lin, 2006) for low-delay applications. In addition, the proposed scheme 
improves the number of frame skipped and reduces the quality deviations of the initial 
frames by choosing the best initial QP. 
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No. of skipped frames Average PSNRY ( dB ) Bitrate (kbps) 
Sequences 

( QCIF ) 
G012 Proposed Gain G012 Proposed Gain G012 Proposed 

Foreman 9 4 5 28.07 28.16 + 0.09 24.02 24.03 

Bus 11 2 9 24.23 25.04 + 0.81 24.11 24.11 

Highway 4 2 2 35.28 35.29 + 0.01 24.05 24.08 

Coastguard 3 1 2 27.19 27.80 + 0.61 24.02 24.03 

News 7 2 5 30.51 30.57 + 0.06 24.00 23.98 

Stefan 20 1 19 21.80 22.56 + 0.76 24.00 24.00 

Mobile 21 2 19 21.45 22.95 + 1.50 24.06 24.05 

Akiyo 3 2 1 37.35 38.30 + 0.95 24.00 24.00 

Table 2. Comparisons of the number of skipped frames, average PSNRY and bitrate between 
the proposed scheme and JVT-G012 

 

No. of skipped frames Average PSNRY ( dB ) Bit rate (kbps) 
Sequences 

( QCIF ) 
Jiang Proposed Gain Jiang Proposed Gain G012 Proposed 

Foreman 8 4 4 28.09 28.16 + 0.07 24.01 24.03 

Bus 11 2 9 24.21 25.04 + 0.83 24.08 24.11 

Highway 1 2 1 35.36 35.29 - 0.07 24.02 24.08 

Coastguard 3 1 2 27.17 27.80 + 0.63 24.00 24.03 

News 6 2 1 30.32 30.57 + 0.25 23.95 23.98 

Stefan 20 1 19 21.77 22.56 + 0.79 23.98 24.00 

Mobile 21 2 19 21.46 22.95 + 1.49 24.04 24.05 

Akiyo 3 2 1 37.19 38.30 + 1.11 24.00 24.00 

Table 3. Comparisons of the number of skipped frames, average PSNRY and bitrate between 
the proposed scheme and (Jiang & Lin, 2006) 
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Effective Video Encoding in  
Lossless and Near-lossless Modes 

Grzegorz Ulacha 
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Poland 

1. Introduction 
The main goal of the research is to develop an algorithm appropriate for hardware 
realization of a lossless and near-lossless video sequences. The importance of compression is 
unquestionable in contemporary digital video signal processing systems, with an extensive 
requirement on a high storage and bandwidth imposed on data storage and transmission. 
For example, a 60 minutes long uncompressed movie with the TV PAL quality (i.e., 25 
frames per second, 720x576 pixels) requires 104.28 GB hard disk space and 9.89 Mpixels/s of 
bandwidth in the 4:4:4 profile. One of the major requirements for the system is its work in 
the real-time. This is caused by one of the primary applications of the lossless video 
compression, i.e., edition of television programs, movies etc. (Andriani et al., 2004). In this 
situation it is not recommended to use lossy compression methods, such as MPEG2, MPEG4 
etc.  
Other important applications of the lossless video sequence compression is a storage of 
medical 2D and 3D images (in general, multi-planar 3D objects) (Xie et al., 2007), as well as 
astronomical images, and satellite photos compression (photographs of the Earth, Mars and 
other celestial bodies made by satellites and spaceships should be sent and stored in a 
lossless form) (Chen et al., 2004; CCSDS, 2007). A novel kind of application is the slow 
motion video technique for recording from scientific experiments up to dozen of thousands 
frames per second (fps). For example, recording of one second long video sequence 
(lumination signal, 8 bit/pixel) using 1000 fps and the SD (720576 pixel) resolution needs 
3955 MB of memory. Nowadays video cameras in the slow motion mode stores the images 
without any compression and the time of the recording is limited with the volume of the 
storage card in the device. Recording and archiving files of a larger size becomes an 
important issue that may be solved by introducing fast, hardware-based, parallel 
compression realization, e.g., in the near-lossless mode (see Section 3). In combination with 
the matrix of the effective SSD discs, it may lead to the increase of the functionality of the 
scientific site using the slow-motion camera. 

2. Lossless static images and video sequences compression 
This section presents the basic features and the motivation of the choice of the prediction 
blending technique. There are also described the blocks for contextual removing the 
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constant coefficient and for adaptive arithmetic encoding. The proposed method is 
compared, in terms of effectiveness, with other techniques known from literature.  

2.1 Existing solutions in the field of lossless image compression 
The CALIC method, up to today perceived as one of the most efficient techniques, was 
presented in 1996 (Wu & Memon, 1996). In that time this method was too computational 
complex, especially in comparison with the LOCO-I, whose modification has become the 
JPEG-LS standard (Weinberger et al., 2000). Among the algorithms with high 
implementation complexity three methods are worth to be mentioned: the TMW method 
(Meyer & Tischer, 1997) and its further extension, TMWLEGO (Meyer & Tischer, 2001b), 
WAVE-WLS (Ye, 2002) and MRP 0.5 (Matsuda et al., 2005). An encoding of a single image 
with any of these methods required a few hours in the time of their proposals (a dozen of 
minutes using the most efficient contemporary processor). Apart from the mentioned above 
methods utilizing predictive modelling, there are lossless versions of wavelet codecs used 
for encoding (e.g. JPEG-2000 (Marcellin et al., 2000)). However, the obtained results are 
inferior in comparison with the best predictive methods. 
In (Andriani et al., 2004), it was presented an analysis of lossles video sequences 
compression, where methods LOPT-3D, GLICBAWLS-3D, JPEG-LS and JPEG-2000 have 
been compared. Based on the complexity analysis for the real-time applications, it was 
proposed to encode each video sequence frame independently with a reduced version of the 
JPEG-2000 standard (Andriani et al., 2004). It allows us to compress in the visually lossless 
mode (i.e., with low loss, unvisible for humans). Such the proposals as GLICBAWLS-3D, 
LOPT-3D (and its extension to the LPOSTC method (Andriani et al., 2005) belong to the 
solutions of high efficiency, but are too demanding in terms of computational complexity to 
be applied as real-time implementations. 
Having looked for a solution being a compromise between efficiency and complexity, we 
decided to apply the blending predictors method, which is characterized with the highest 
flexibility (Seemann & Tisher, 1997a). 

2.2 Subpredictor blending method 
In the case of using contemporary compression methods, two stages must be devised: data 
modeling, and then compression with one of the efficient entropy method, among whom the 
most effective are arithmetic and Huffman encoding (Sayood, 2002). Data modeling in such 
cases aims at reducing maximum possible mutual information between neighboring pixels. 
In modeling stage, an r-th order linear predictor computes an estimated value x̂  of the n-th 
pixel taking into account values of the previously r neighboring pixels. Then, only the 
estimation errors is encoded, i.e., the difference between the actual and the predicted values 
(rounded up to the closest integer), which is usually small values close to zero: 

 ˆ(0)e P x  . (1) 

The obtained error values of the prediction are considerably lower than the initial values of 
the variance. Moreover, their distribution resembles the Laplace one. Both these features 
result in decreasing the value of unconditional entropy. 
From the hardware realization point of view, one of the most important factor is time 
proportion between encoding and decoding. Time symmetric methods are of similar 
computational complexity of encoder and decoder. It is the reason why we resigned from 
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the methods for selecting an individual static predictor (or a set of such the predictors) 
based on the criteria of minimizing a minimum mean square error, MMSE (Sayood, 2002; 
Wu & Memon, 1996) (which requires introducing delays and solving sets of linear equations 
using floating numbers), and other methods needed an introductory preparation of 
modeling and compression parameters. 
The works of G. Deng (Deng & Ye, 1999, 2003; Ye et al., 2000) show high efficiency of the 
blending prediction method. Having a given set a simple, constant predictors (named 
further subpredictors), one may conclude that the unconditional entropy (0-order) value 
obtained by an encoding with each of these subpredictors individually are far from being 
efficient; however, using even 7 simple subpredictors together leads to significant decrease 
of the entropy value (Seemann & Tisher, 1997a) in the majority of benchmark images. It is 
the main motivation of our interest in this approach. Another benefit of this method is the 
possibility of performing a number of computation in parallel for a single pixel. In order to 
evaluate our results and compare them with other authors' and choose the most appropriate 
set of subpredictors, we made usage of the fact that every author of algorithms utilizing 
methods of subpredictors blending has presented his own set of subpredictors. Taking into 
account the problems of implementation complexity, it was usually simple constant 
subpredictors of the range form 1 to 3. In case of the predictors of range 1, it was proposed 
to use the closest, neighbour pixels P(i), where i is the index of the neighbour pixels (see Fig. 
1). To these simplest subpredictors, there were added also constant predictors, such as 
planar (known also as Plane or JPEG4), Pirsh, etc. 
 

19 11 8 6 9 12 22  
15 7 3 2 4 10 18 28 
13 5 1 0     

Fig. 1. Numbering of the neighboring pixels 

In this section we present the proposed flow for modeling and lossless image and video 
sequences compression, named Blend-V. This method uses 14 subpredictors: x1 = GAP+ 
(Wang & Zhang, 2004) (an improved version of the non-linear prediction used in the CALIC 
algorithm, which is a modification of GAP+ described in (Wu & Memon, 1996), in our 
previous research, we also analysed a MED+ modification from (Jiang & Grecos, 2002), but 
later we concluded that better results are obtained when this subpredictor is excluded), 
x2 = GradWest = 2P(1) – P(5), x3 = GradNorth = 2P(2) – P(6), x4 = Plane = P(1) + P(2) – P(3), 
x5 = Plane2 = P(1) – P(2) + P(4) (Seemann, et al. 1997b), x6 = P(1), x7 = P(2), x8 = P(3), x9 = P(4), 
x10 = P(5), x11 = P(10), x12 = P(18), x13 = P(28), x14 = Pj-1(0), where P(i) denotes the pixel with 
index i from the closest neighborhood - see Fig. 1, and Pj-1(0) denotes the pixel from the 
previous frame of the same coordinates that the currently encoded pixel, P(0). Each of these 
proposals is suitable for encoding without any delay, they do not require any preliminary 
calculations referring to data from the entire image. Due to the encoding order (the 
consecutive rows are encoded top-down, and each of them left-right), both encoder and 
decoder have an access to the pixels placed above and on the left on the pixel being encoded 
(decoded). It is then required and access to the 3 previous rows (the row currently encoded 
and the two previous ones). In the proposed technique, we assigned numbers to neighbor 
pixels according to the Euclidean metric. The assignment of the numbers with the same 
distance is performed clock-wise. 
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estimation errors is encoded, i.e., the difference between the actual and the predicted values 
(rounded up to the closest integer), which is usually small values close to zero: 

 ˆ(0)e P x  . (1) 

The obtained error values of the prediction are considerably lower than the initial values of 
the variance. Moreover, their distribution resembles the Laplace one. Both these features 
result in decreasing the value of unconditional entropy. 
From the hardware realization point of view, one of the most important factor is time 
proportion between encoding and decoding. Time symmetric methods are of similar 
computational complexity of encoder and decoder. It is the reason why we resigned from 
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the methods for selecting an individual static predictor (or a set of such the predictors) 
based on the criteria of minimizing a minimum mean square error, MMSE (Sayood, 2002; 
Wu & Memon, 1996) (which requires introducing delays and solving sets of linear equations 
using floating numbers), and other methods needed an introductory preparation of 
modeling and compression parameters. 
The works of G. Deng (Deng & Ye, 1999, 2003; Ye et al., 2000) show high efficiency of the 
blending prediction method. Having a given set a simple, constant predictors (named 
further subpredictors), one may conclude that the unconditional entropy (0-order) value 
obtained by an encoding with each of these subpredictors individually are far from being 
efficient; however, using even 7 simple subpredictors together leads to significant decrease 
of the entropy value (Seemann & Tisher, 1997a) in the majority of benchmark images. It is 
the main motivation of our interest in this approach. Another benefit of this method is the 
possibility of performing a number of computation in parallel for a single pixel. In order to 
evaluate our results and compare them with other authors' and choose the most appropriate 
set of subpredictors, we made usage of the fact that every author of algorithms utilizing 
methods of subpredictors blending has presented his own set of subpredictors. Taking into 
account the problems of implementation complexity, it was usually simple constant 
subpredictors of the range form 1 to 3. In case of the predictors of range 1, it was proposed 
to use the closest, neighbour pixels P(i), where i is the index of the neighbour pixels (see Fig. 
1). To these simplest subpredictors, there were added also constant predictors, such as 
planar (known also as Plane or JPEG4), Pirsh, etc. 
 

19 11 8 6 9 12 22  
15 7 3 2 4 10 18 28 
13 5 1 0     

Fig. 1. Numbering of the neighboring pixels 

In this section we present the proposed flow for modeling and lossless image and video 
sequences compression, named Blend-V. This method uses 14 subpredictors: x1 = GAP+ 
(Wang & Zhang, 2004) (an improved version of the non-linear prediction used in the CALIC 
algorithm, which is a modification of GAP+ described in (Wu & Memon, 1996), in our 
previous research, we also analysed a MED+ modification from (Jiang & Grecos, 2002), but 
later we concluded that better results are obtained when this subpredictor is excluded), 
x2 = GradWest = 2P(1) – P(5), x3 = GradNorth = 2P(2) – P(6), x4 = Plane = P(1) + P(2) – P(3), 
x5 = Plane2 = P(1) – P(2) + P(4) (Seemann, et al. 1997b), x6 = P(1), x7 = P(2), x8 = P(3), x9 = P(4), 
x10 = P(5), x11 = P(10), x12 = P(18), x13 = P(28), x14 = Pj-1(0), where P(i) denotes the pixel with 
index i from the closest neighborhood - see Fig. 1, and Pj-1(0) denotes the pixel from the 
previous frame of the same coordinates that the currently encoded pixel, P(0). Each of these 
proposals is suitable for encoding without any delay, they do not require any preliminary 
calculations referring to data from the entire image. Due to the encoding order (the 
consecutive rows are encoded top-down, and each of them left-right), both encoder and 
decoder have an access to the pixels placed above and on the left on the pixel being encoded 
(decoded). It is then required and access to the 3 previous rows (the row currently encoded 
and the two previous ones). In the proposed technique, we assigned numbers to neighbor 
pixels according to the Euclidean metric. The assignment of the numbers with the same 
distance is performed clock-wise. 
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A prediction error, ei(0) = P(0) - xi, is associated with each subpredictor xi. A significance of a 
particular subpredictor is inversely proportional to prediction errors obtained in the closest 
neighborhood. The problem to be solved was the fact, that for the analyzed images the 
optimal neighborhood (common for all subpredictors) were situated in the whole analyzed 
range of k, i.e., from 3 to 30. Seemann and Tisher (Seemann & Tisher, 1997a) have proposed 
k = 3, Deng in his works has used k = 4 (Deng & Ye, 1999, 2003; Ye et al., 2000). As a result of 
our works, for a set of 45 various benchmark images, the best average results have been 
obtained for k = 10. The total error value, Ei, of the neighborhood associated with an i-th 
subpredictor is calculated with formula: 
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where ei(j) denotes the value of the prediction error obtained with the i-th subpredictor in 
the neighborhood with relative number j. To ensure that the value of the subpredictor 
weight, wi, belongs to range 0 to i, it is necessary to determine it with the following 
equation: 
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setting the importance parameter i = 1 for each subpredictor but Plane2, for which i = 1.5, 
and i = 2 for the GradNorth and GradWest subpredictor. Taking into consideration a set of 
m subpredictors, we may determine its positive prediction coefficients, ai, using their 
normalization (i.e., a sum of all the coefficients is to be equal to 1): 
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Finally, the estimated value is computed in the following way: 
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2.3 Context-based error correction 
Some particular properties of coded pixel neighborhoods may induce (transient, but long 
lasting) DC components in prediction errors associated with contexts. Each context is 
characterised with the individual properties of the closest neighbourhood of the pixels being 
encoded, taking into account mutual dependences existing between subsequent pixels, and 
often also their variance value. Context-based error correction methods consist in using 
occurrence number and cumulated error for each context for correcting current prediction 
error (Wu & Memon, 1996). Therefore, in our method the next stage is bias cancelation, i.e., 
usage of an adaptive method to remove the constant component C(i), which determines the 
error correction of the prediction associated with the appropriate context of the index i. This 
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method is used in both the CALIC and JPEG-LS algorithms. In our algorithm we use 1024 
contexts and the arithmetic average from the results of these two methods: 

 CALIC( ) JPEG-LS( )ˆ
2
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Then, only the estimation errors is encoded, i.e., the difference between the actual and the 
predicted values (rounded up to the closest integer): 

 (0)e P x   . (7) 

The simplest method of calculating the number of context is to determine the weighted 
average of n constant subpredictors: 
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e.g., for n = 8, the following subpredictors are utilised: P(1), P(2), P(3), P(4), P(5), P(6), 
GradNorth and GradWest. Next, the value of each of them is compared with the weighted 
average. If the value of the i-th subpredictor is higher than the average, bit flag zi is set to 1, 
otherwise it is set to 0. From these flags, an n-bit number zn-1...z3z2z1z0 is assembled. This 
number is the number of the context. In case of n = 8 we obtain number of the contexts equal 
to 256. Moreover, it is possible to determine the measure of the deviation from the average, 
measuring the variance level of these n subpredictors. This value can be quantized into Q 
partitions, which results in 2nQ   = 1024 contexts. The variance level (multiplied by 8) can 
be determined with the formula: 
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To obtain the split into 4 quantisation levels, it was determined experimentally 3 thresholds 
of 2  values equal to 400, 2500, 8000, respectively. More details on the update component 
C(i) are described in (Ulacha & Stasiński, 2008). 

2.4 Adaptive arithmetic encoder 
In the developed system, an adaptive encoder of prediction errors has been designed as a 
separate module. Two main assumptions are the encoding without delays (i.e., in the real-
time) and no feed-back between the modeling and the encoding/decoding blocks.  
As we encode absolute values of the prediction errors, the distribution is close to the Laplace 
one. The initial distribution, i.e., the instance vector ne(i) of value i (the values of the absolute 
values of the prediction errors), can be treated as its approximation utilizing the simplified 
formula (Meyer & Tischer, 2001a): 

 ( ) 0.8 1i
en i A     . (10) 

Good results are obtained for A = 10. After reading and encoding each subsequent value of 
|e|, it is necessary to actualise the instance vector by increasing the |e| index by 1. 
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Additionally, one can introduce the forgetting effect, which may lead to decreasign the 
weights of the instances which have appeared rarelier (or have not appeared at all) among 
the recently encoded values in comparison with the earlier encoding stage (Gallager, 1978). 
It is the reason why the total number of encoded values (or, more precisely, the counter 
value) is increased by 1 after every encoded number |e|. 
The adaptive encoder is capable of adjusting to the distribution in long-term, but it is 
possible to use also the presence of short-term dependences between subsequently encoded 
data utilizing the closest neighbourhood of the two-dimensional error prediction signal. The 
properties of the neighbouring prediction errors (without considering the knowledge of the 
properties of the pixels neighbourhood) are capable of determining with better precision the 
distribution type of the currently encoded value |en|. Consequently, it is possible to design 
a context-based arithmetic encoder including K probability distributions (instead of one), 
associated with the context numbers from 0 to K – 1. Theoretically, one can assume the 
increase of compression efficiency with the growing number of contexts, but the problem of 
too slow adaptiveness of their distribution may appear. The adaptativeness of the 
distribution construction requires fast stabilisation of the target characteristics of each from 
the K distributions, so a certain trade-off between the number of contexts and the time of 
their adaptiveness has to be made. One often use 8 (Wu & Memon, 1996), 16, or even 20 
contexts (Deng & Ye, 1999). 
The errors, e, are compressed using a contextual, adaptive arithmetic encoder. We use seven 
universal and two 16-contextual adaptive arithmetic encoders (K = 16). In order to increase 
the adaptation speed of the distributions associated with the contextes, the quantisation of 
|e| values is often applied. It is possible thanks to scaling down the number range from 0 to 
255 to a lower range, e.g., from 0 to 17. This idea is applied in numerous encoding methods, 
e.g., in the JPEG standard. The first 16-contextual encoder compresses the absolute value of 
the error, |e|, quantized according to rule T(k)  |e| < T(k + 1), where T = {0, 1, 2, 3, 4, 5, 6, 
7, 8, 10, 12, 14, 16, 20, 24, 32, 64, 128}. The value of k is send to the arithmetic encoder. The 
quantization error, eq = |e| - T(k), is treated as q(k)-bit number, where q(k) is the k-th value 
from vector q = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 5, 6, 7}. If q(k) > 0, the value of eq is 
encoded using one of the 7 universal adaptive arithmetic encoders (with index q(k)). 
Due to the symmetry of the prediction error distribution, it is more convenient to encode 
their absolute values |e|, which results in faster adaptation of the distribution of each 
context of the arithmetic encoder. The second contextual encoder encodes the sign bit of the 
e value. Both these encoders use context switching based on the error level from the closest 
neighborhood, which allows us to determine the individual probability distribution type 
(one of the 16 contexts) for the currently encoded pixel. More details on the selection of the 
context number are described in (Ulacha & Dziurzański, 2008). 

2.5 Experimental results 
In Table 1, it is presented a comparison of the bitrates of the method proposed in this paper, 
Blend-V (the intraframe mode), with a few software-based, but fast and effective methods 
known from literature: JPEG-LS (Strutz, 2002), HBB (Seemann, et al. 1997b), CALIC (Ye et 
al., 2000), P13 (Deng & Ye, 1999). Among the compared methods there is also a bit slower, 
but effective method LAT-RLMS (Marusic & Deng, 2002), which shows the high efficiency 
of the proposed method, which is characterized with the lowest bitrate. The experiment has 
been performed for the set of 9 grayscale benchmark images of the resolution equal to 
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720576 pixels. Relatively few proposals of hardware realizations of the lossless 
compression systems for video sequences have been presented. The system proposed in 
(Drost & Bourbakis, 2001) is one of the solutions well-known from literature. For example, 
for that proposal the bit average for the Lenna image of the 512512 pixel size in 8-bit 
grayscale is equal to 4.609 bit/pixel. Applying our system, we are obtaining the average 
4.006 bit/pixel, which is about 13 % efficiency improvement. 
 

Images JPEG-LS HBB CALIC P13 LAT- RLMS Blend-V 
Balloon 2.889 2.80 2.78 2.74 2.75 2.746 

Barb 4.690 4.28 4.31 4.29 4.15 4.172 
Barb2 4.684 4.48 4.46 4.47 4.45 4.441 
Board 3.674 3.54 3.51 3.48 3.48 3.465 
Boats 3.930 3.80 3.78 3.75 3.74 3.716 
Girl 3.922 3.74 3.72 3.67 3.68 3.640 
Gold 4.475 4.37 4.35 4.33 4.34 4.323 
Hotel 4.378 4.27 4.18 4.19 4.21 4.189 
Zelda 3.884 3.72 3.69 3.68 3.61 3.673 

Average 4.058 3.889 3.864 3.844 3.823 3.818 

Table 1. Average bitrates for standard benchmark images 

3. Near-lossless mode and color mode 
In order to obtain higher compression ratio, it is possible to use an irreversible encoding. 
There exist a large number of lossy compression methods based on discrete cosines 
transform, DCT (e.g. JPEG), or wavelet transform (e.g. JPEG-2000) (Sayood, 2002). These 
methods allows us to adjust the compression level, but their basic implementations do not 
offer the capabilities of selecting the maximal possible error. This possibility is offered by the 
near-lossless mode, where it is possible to determine the highest acceptable value of the 
difference module, d, between the original and the decoded images. This mode is usually 
based on the predictive encoding, where the set of prediction error, e, is quantized in the 
following way (Carotti et al., 2004): 
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and the original color value can be restored with the accuracy ± d. When d = 0, we obtain the 
lossless mode. 
The near-lossless method may be used for medical images compression, where experts 
should determine the error tolerance d that does not influence the diagnosis of the medical 
images of the given type (that compression kind is sometimes referred to as visually lossless 
(Andriani et al., 2004)), and in the situation when there is recording of video sequences with 
very large number of frames and only a slight error level can be acceptable. Often used 
quality measure, PSNR, is treated as not utterly capable of considering human visual 
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and the original color value can be restored with the accuracy ± d. When d = 0, we obtain the 
lossless mode. 
The near-lossless method may be used for medical images compression, where experts 
should determine the error tolerance d that does not influence the diagnosis of the medical 
images of the given type (that compression kind is sometimes referred to as visually lossless 
(Andriani et al., 2004)), and in the situation when there is recording of video sequences with 
very large number of frames and only a slight error level can be acceptable. Often used 
quality measure, PSNR, is treated as not utterly capable of considering human visual 
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perception. The quality measure Mean Structural SIMilarity Index (MSSIM), developed in 
(Wang Z. et al., 2004), takes into consideration the comparison of the structural features of 
the source and the encoded images, as well as the features connected with luminance and 
contrast. This measure is a value ranged from -1 to 1; the higher value, the higher the images 
resemblance. 
 

  Blend-V     JPEG2000  
d bitrate PSNR MSSIM  d bitrate PSNR MSSIM 
1 2.49144 49.89429 0.99473  7 2.49145 45.09458 0.98501 
2 1.85465 45.15079 0.98462  8 1.85480 43.15705 0.97573 
3 1.46825 42.26534 0.97124  11 1.46783 41.74485 0.96705 
4 1.19771 40.26459 0.95682  12 1.20132 40.74678 0.95868 
5 0.99264 38.75684 0.94257  17 0.99277 39.81996 0.95150 
6 0.84358 37.51494 0.92906  17 0.84363 39.10160 0.94507 
7 0.72745 36.45099 0.91631  24 0.72781 38.60727 0.93805 
8 0.64068 35.47136 0.90388  27 0.64258 38.06484 0.93290 
9 0.57260 34.61310 0.89212  27 0.57275 37.49548 0.92723 
10 0.51554 33.86520 0.88133  29 0.51157 37.12479 0.92410 

Table 2. Comparison of Blend-V in the near-lossless mode with JPEG2000 using the 
Lennagrey image 
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Fig. 2. Comparison of the PSNR of the Lennagrey image with respect to the average bitrate 
for JPEG2000 (the dashed line) and the Blend-V method in the near-lossless mode with d  10 
(the solid line) 

In Fig. 2 and 3, there is a comparison of PSNR and MSSIM, respectively, between Blend-V 
and JPEG2000. For majority of the benchmark images the values of PSNR and MSSIM 
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obtained with the Blend-V method with d  3 is higher than with the JPEG2000 standard. It 
is worth stressing that for the wavelet method it is impossible to define the maximal error 
value d a priori. Under the same average bitrate, the maximum error d is considerably 
higher in the case of JPEG2000 (see Table 2). Considering the average bitrate and better 
values of PSNR and MSSIM, Blend-V should be the method of choice when the average 
bitrate is higher than 1.5 bit per pixel. 
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Fig. 3. Comparison of the MSSIM of the Lennagrey image with respect to the average bitrate 
for JPEG2000 (the dashed line) and the Blend-V method in the near-lossless mode with d  10 
(the solid line) 

Table 3 includes the experimental results of grayscale images for d = {2, 10}. It is compared 
the proposed Blend-V method (in the intraframe mode) with two other techniques, known 
from literature: LOCO-I (Weinberger et al., 2000) and TMW (Meyer & Tischer, 1997). The 
obtained results show the high efficiency of the Blend-V method not only in the lossless 
mode, but also in the near-lossless one, where it turns out to be competitive even with 
TMW, one of the most efficient techniques, but characterized with high computational 
complexity. 
In the case of encoding color images in Blend-V in the lossless mode, the YDbDr transform, 
known from the JPEG2000 standard, is used. This transformation also requires only the 
addition, subtraction, and bit shifting operation. The equations for this transformation are as 
follows: 
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  d = 2    d = 10  

Image LOCO-I 
v.0.90N 

TMW 
(mode 3) Blend-V  LOCO-I 

v.0.90N 
TMW 

(mode 4) Blend-V 

Balloon 1.242 0.90 0.905  0.49 0.32 0.198 
Boats 1.902 1.65 1.646  0.78 0.66 0.546 
Gold 2.333 2.19 2.166  0.99 0.81 0.710 

Airplane 1.84 1.64 1.660  0.72 0.57 0.517 
Baboon 3.72 3.49 3.481  1.91 1.68 1.656 

Lennagrey 2.09 1.83 1.855  0.93 0.55 0.516 
Peppers 2.29 2.09 2.096  0.93 0.64 0.558 
Shapes 0.79 0.75 0.709  0.47 0.58 0.320 

Bridge256 3.49 3.38 3.325  1.73 1.63 1.570 
Camera256 2.28 2.08 2.024  0.96 0.90 0.795 
Couple256 1.82 1.60 1.606  0.86 0.70 0.559 

Average 2.163 1.964 1.952  0.979 0.822 0.722 

Table 3. Average bitrates in the near-lossless mode with error value d = {2, 10} 

The reverse transform is of the following form: 
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However, in the near-lossless mode, there is no color transformation. In Table 4, it is 
presented an efficiency comparison between the proposed Blend-V method with the 
hardware compression realization system Enhanced Lossless Image Compression (ELIC) 
from GEMAC (Dittrich, 2005). In table, there is the compression ratio measurement of five 
color images in the lossless (d = 0) and near-lossless mode. 
 

Image Blend-V 
d = 0 

ELIC 
d = 0 

Blend-V 
d = 1 

ELIC 
d = 1 

Blend-V 
d = 2 

ELIC 
d = 2 

Blend-V 
d = 4 

ELIC 
d = 4 

Blend-V 
d = 8 

ELIC 
d = 8 

lena 1.869 1.33 2.884 1.95 3.788 2.40 5.634 3.14 10.364 4.34 
monarch 2.741 1.84 3.841 2.76 5.298 3.34 8.383 4.20 13.515 5.68 
peppers 2.502 1.69 3.560 2.57 4.826 3.18 7.530 4.03 14.432 5.44 

sail 2.322 1.50 2.444 2.16 3.072 2.58 4.187 3.16 6.233 4.03 
tulips 2.472 1.63 3.420 2.44 4.519 2.97 6.572 3.77 10.716 4.89 

Average 2.381 1.598 3.230 2.376 4.300 2.894 6.461 3.660 11.052 4.876 

Table 4. Compression ratio of color images in the near-lossless mode with error value d = {0, 
1, 2, 4, 8} 

4. Video sequence encoding 
Although there exist a few non-linear editing systems (NLEs) offering lossless video 
compression, some of them do not work in real-time, whereas others split video data in long 
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sequences and are not capable of decoding the n-th frame in a sequence without 
decompressing of n-1 previous frames (Ohanian, 1998). These requirements are covered in 
the proposed approach. The basic rule of a lossless video sequences compression is 
exploiting both the spatial dependencies (the intraframe mode - in the currently encoded 
image) and the temporal dependencies (the interframe mode), taking into account the 
neighboring frames of the sequence. The most popular is encoding of so-called Group of 
Pictures (GoPs), where the first frame is encoded in the intraframe mode, and the remaining 
N - 1 frames - in the interframe mode. This technique facilitates a quick access to any video 
sequences fragment with the accuracy up to N frames. When the whole sequence is encoded 
in the interframe mode, the correct reconstruction of the last frame is possible only after 
decoding all the previous frames. 
According to (Andriani et al., 2005), only a low number of the papers about lossless video 
compression is available. Consequently, it is difficult to make some comparison in a solid 
way. Thus the efficiency of the proposed method has been earlier assessed mainly in the 
intraframe mode.  
In this section, we present the further compression efficiency improvement thanks to the 
interframe mode introduction. 
Among lossy video sequence compression methods, the most popular technique for finding 
the dependencies between the neighboring frames is to split the image into square blocks 
(usually 88 pixels), for which individual movement vectors are determined, and then the 
information about shifting according to the previous frame is added to each encoded block. 
This technique used for a lossless encoding is presented in (Matsuda et al., 2004), but this 
method is characterized with rather high computational complexity. In (Carotti et al., 2004), 
it is described a method for expecting a value of the current pixel based on the pixel from 
the previous frame, whose coordinates are calculated using the movement vector computed 
from the two previous frames, whereas five reference frames are used in (Maeda et al., 
2006). 
Each of these methods requires an extra computational expenditure due to the determining 
the movement vectors. Moreover, one has to consider also a quite complex mechanism for 
detecting a scene change, which should activate an entrance into the intraframe mode while 
encoding the first frame from each new scene (Yang & Faryar, 2000). In (Andriani & 
Calvagno, 2007), the authors resigned from the movement compensation obtaining quite 
promising results at the scene changes due to rather computationally complex technique 
named Octopus. 
In our proposal, there is also no movement vector analysis; the encoding is performed with 
the usage of 13 subpredictors operating in the intraframe mode and one referring to the 
previous frame. As the predictor of the interframe mode, it is used a value of the pixel Pj-1(0) 
from the previous frame of the coordinates the same as in the encoded pixel, Pj(0). The 
blending prediction method automatically reduces the negative impact of the interframe 
mode predictor in the situation of the scene change. It is worth stressing that the usage of a 
simple predictor, which does not take into consideration the movement vector, leads to 
surprisingly good results. It results from the fact that in numerous situations big image 
fragments are stable (usually a background of the stage). On the basis of the analysis of the 
video sequences set, a compromise value of the importance of the interframe predictor is  
 = 6. The influence of the number of frames forming the GoP, N, on the average bitrate of 
the sequence for the Y component is presented in Fig. 4. 



 
Recent Advances on Video Coding 

 

174 

  d = 2    d = 10  

Image LOCO-I 
v.0.90N 

TMW 
(mode 3) Blend-V  LOCO-I 

v.0.90N 
TMW 

(mode 4) Blend-V 

Balloon 1.242 0.90 0.905  0.49 0.32 0.198 
Boats 1.902 1.65 1.646  0.78 0.66 0.546 
Gold 2.333 2.19 2.166  0.99 0.81 0.710 

Airplane 1.84 1.64 1.660  0.72 0.57 0.517 
Baboon 3.72 3.49 3.481  1.91 1.68 1.656 

Lennagrey 2.09 1.83 1.855  0.93 0.55 0.516 
Peppers 2.29 2.09 2.096  0.93 0.64 0.558 
Shapes 0.79 0.75 0.709  0.47 0.58 0.320 

Bridge256 3.49 3.38 3.325  1.73 1.63 1.570 
Camera256 2.28 2.08 2.024  0.96 0.90 0.795 
Couple256 1.82 1.60 1.606  0.86 0.70 0.559 

Average 2.163 1.964 1.952  0.979 0.822 0.722 

Table 3. Average bitrates in the near-lossless mode with error value d = {2, 10} 

The reverse transform is of the following form: 

 
4

b r

b

r

D DG Y

B D G
R D G

     
 
 

. (13) 

However, in the near-lossless mode, there is no color transformation. In Table 4, it is 
presented an efficiency comparison between the proposed Blend-V method with the 
hardware compression realization system Enhanced Lossless Image Compression (ELIC) 
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In Table 5, it is presented an example of the compression efficiency comparison between the 
proposed system, denoted here as Blend-V, with the results of the JPEG-LS and CPC 
encoders (Yang & Faryar, 2000). The results consider 30 frames of the Y luminance signal of 
the Salesman sequence. The experiment has been conducted for both the lossless and near-
lossless modes with parameter d = {1, 2, 3, 4}. The measurement of the Blend-V method is 
taken in the intraframe mode (N = 1), and form the interframe mode with parameters N = 10 
and Nmax = 30, where Nmax denotes that in the whole sequence only the first frame is to be 
encoded in the intrafame mode. 
When designing a hardware module it is necessary to determine the trade-off between the 
compression and the module efficiency so that it can operate in real-time. Considering the 
dependencies between frames during decoding, we have decided to introduce a pipeline of 
length N = 10 for encoding/decoding separate frames in an image group. Larger value of N 
does not improve the efficiency significantly, whereas higher number of pipeline stages 
would result in further increase of hardware resource utilization and a more difficult access 
to any fragment of a decoded sequence. 
 

d JPEG-
LS CPC Blend-V 

intraframe 
Blend-V 
N = 10 

Blend-V 
Nmax 

0 4.377 3.760 4.102 3.686 3.656 
1 2.872 2.321 2.623 2.225 2.197 
2 2.243 1.765 2.011 1.647 1.620 
3 1.868 1.453 1.644 1.309 1.286 
4 1.617 1.252 1.393 1.071 1.048 

Table 5. Average bitrates for the Salesman video sequence (30 frames, 352x288 resolution) 
for various maximal error parameter, d, using the near-lossless mode 
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5. System-level hardware model 
One of disadvantages of the prediction-based methods is a sequential image decoding that 
makes it impossible to perform computation in parallel (i.e., simultaneously decode more 
than one pixel). This property is caused with maintaining the principle of causality, where to 
decode pixel P(0) it is required to have the value of its predecessor P(1) (in general, values of 
the pixels situated directly on the left side and the rows above the P(0) pixel). 
In order to confirm the benefits of hardware realization of the proposed technique, we 
prepared its system level model; the individual stages of the algorithm are implemented as 
an MPSoC cores connected with a regular 2D mesh. As the communication infrastructure 
we utilize the Network on Chip (NoC) paradigm where the cores follow the GALS (Globally 
Asynchronous, Locally Synchronous) synchronization scheme, i.e., each core is equipped 
with its individual clock and the clocks communicate each other in the asynchronous 
manner. Besides, each core is equipped with a router for determining the next-hop port for 
the data to be sent. We decided to use the wormhole routing scheme, where data is sent in 
packages split into smaller portion of equal length, flits (flow control digits). The first flit of 
each package is used by the routers to select the route; the remaining packages follows the 
same path. For more details about our technique, the reader is referred to (Ulacha & 
Dziurzański, 2009). 
We decomposed the algorithm in the following way. The subpredictor values are computed 
by separate cores in the parallel mode. Having computed these values, each core sends the 
obtained data to the core realizing the blending procedure. Then the data is transmitted into 
the core realizing arithmetic encoding.  
As in the mesh architecture each core (except the boundary ones) is connected with its four 
neighbours only, it is crucial to map the functionalities into cores in a meticulous way so 
that the cores sending each other vast amount of data are located close to each other. Since 
in our case the amount of cores is relatively low, we managed to check all the possible 
permutation of the cores with regards to their NoC node mappings and determined the 
mappings leading to the lowest traffic in the network. After choosing the NoC router 
architecture, the routing type and the core mapping into mesh nodes, we could start with 
preparing a system-level model.  
The model has been written in the SystemC language at the bus cycle accurate (BCA) level 
of abstraction and tested with CoCentric® System Studio by SynopsysTM 1. According to the 
simulation, the system operates in real-time, confirming our assumptions described in 
section 1. 

6. Conclusions 
In this paper, a motivation for lossless and near-lossless compression of images and video 
sequences has been provided. The state of the art of modern compression methods 
considering their implementation complexity has been described. A technique for blending 
predictors as an new effective modeling method, which in combination with an adaptive 
arithmetic encoder allows us to obtain high compression ratio of video sequences. The 
proposed method leads also to high efficiency in the near-lossless mode. 
The Blend-V benefits from various aspects connected with its hardware realization in a 
novel architecture based on Network on Chip (NoC) (Ulacha & Dziurzański, 2008). 

                                                 
1 Synopsys and the Synopsys product names described herein are trademarks of Synopsys, Inc.  
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does not improve the efficiency significantly, whereas higher number of pipeline stages 
would result in further increase of hardware resource utilization and a more difficult access 
to any fragment of a decoded sequence. 
 

d JPEG-
LS CPC Blend-V 

intraframe 
Blend-V 
N = 10 

Blend-V 
Nmax 

0 4.377 3.760 4.102 3.686 3.656 
1 2.872 2.321 2.623 2.225 2.197 
2 2.243 1.765 2.011 1.647 1.620 
3 1.868 1.453 1.644 1.309 1.286 
4 1.617 1.252 1.393 1.071 1.048 

Table 5. Average bitrates for the Salesman video sequence (30 frames, 352x288 resolution) 
for various maximal error parameter, d, using the near-lossless mode 
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Fig. 4. Average bitrate of the Tennis video sequence with respect to the number of frames, N, 
in GoP 

 
Effective Video Encoding in Lossless and Near-lossless Modes   

 

177 

5. System-level hardware model 
One of disadvantages of the prediction-based methods is a sequential image decoding that 
makes it impossible to perform computation in parallel (i.e., simultaneously decode more 
than one pixel). This property is caused with maintaining the principle of causality, where to 
decode pixel P(0) it is required to have the value of its predecessor P(1) (in general, values of 
the pixels situated directly on the left side and the rows above the P(0) pixel). 
In order to confirm the benefits of hardware realization of the proposed technique, we 
prepared its system level model; the individual stages of the algorithm are implemented as 
an MPSoC cores connected with a regular 2D mesh. As the communication infrastructure 
we utilize the Network on Chip (NoC) paradigm where the cores follow the GALS (Globally 
Asynchronous, Locally Synchronous) synchronization scheme, i.e., each core is equipped 
with its individual clock and the clocks communicate each other in the asynchronous 
manner. Besides, each core is equipped with a router for determining the next-hop port for 
the data to be sent. We decided to use the wormhole routing scheme, where data is sent in 
packages split into smaller portion of equal length, flits (flow control digits). The first flit of 
each package is used by the routers to select the route; the remaining packages follows the 
same path. For more details about our technique, the reader is referred to (Ulacha & 
Dziurzański, 2009). 
We decomposed the algorithm in the following way. The subpredictor values are computed 
by separate cores in the parallel mode. Having computed these values, each core sends the 
obtained data to the core realizing the blending procedure. Then the data is transmitted into 
the core realizing arithmetic encoding.  
As in the mesh architecture each core (except the boundary ones) is connected with its four 
neighbours only, it is crucial to map the functionalities into cores in a meticulous way so 
that the cores sending each other vast amount of data are located close to each other. Since 
in our case the amount of cores is relatively low, we managed to check all the possible 
permutation of the cores with regards to their NoC node mappings and determined the 
mappings leading to the lowest traffic in the network. After choosing the NoC router 
architecture, the routing type and the core mapping into mesh nodes, we could start with 
preparing a system-level model.  
The model has been written in the SystemC language at the bus cycle accurate (BCA) level 
of abstraction and tested with CoCentric® System Studio by SynopsysTM 1. According to the 
simulation, the system operates in real-time, confirming our assumptions described in 
section 1. 

6. Conclusions 
In this paper, a motivation for lossless and near-lossless compression of images and video 
sequences has been provided. The state of the art of modern compression methods 
considering their implementation complexity has been described. A technique for blending 
predictors as an new effective modeling method, which in combination with an adaptive 
arithmetic encoder allows us to obtain high compression ratio of video sequences. The 
proposed method leads also to high efficiency in the near-lossless mode. 
The Blend-V benefits from various aspects connected with its hardware realization in a 
novel architecture based on Network on Chip (NoC) (Ulacha & Dziurzański, 2008). 

                                                 
1 Synopsys and the Synopsys product names described herein are trademarks of Synopsys, Inc.  
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1. Introduction 
Information has become one of the most valuable assets in the modern era. Recent 
technology has introduced the paradigm of digital information and its associated benefits 
and drawbacks. A thousand pictures require a very large amount of storage. While the 
advancement of computer storage technology continues at a rapid pace a means of reducing 
the storage requirements of an image and video is still needed in most situations. Thus, the 
science of digital image and video compression has emerged. For example, one of the 
formats defined for High Definition Television (HDTV) (Ben Waggoner 2002) broadcasting 
is 1920 pixels horizontally by 1080 lines vertically, at 30 frames per second. If these numbers 
are multiplied together with 8 bits for each of the three primary colors, the total data rate 
required would be 1.5 GB/sec approximately. So compression is highly necessary. This 
storage capacity seems to be more impressive when it is realized that the intent is to deliver 
very high quality video to the end user with as few visible artifacts as possible. Current 
methods of video compression such as Moving Pictures Experts Group (MPEG) standard 
(Peter Symes 2000, Keith Jack 1996) can provide good performance in terms of retaining 
video quality while reducing the storage requirements. But even the popular standards like 
MPEG have limitations.  
Research in new and better methods of image and video compression is ongoing, and recent 
results suggest that some newer techniques may provide much greater performance. This 
motivates to go for video compression. An extension of image compression algorithms 
based on multiwavelets and making them suitable for video (as video contains sequence of 
still pictures) is essential. This chapter gives a summary of the new multiwavelet 
decomposition algorithm along with quantization techniques and illustrates their potential 
for inclusion in new video compression applications and standards (Sudhakar et al., 2009, 
Sudhakar & Jayaraman 2007, Sudhakar & Jayaraman 2008). Video coding for 
telecommunication applications has evolved through the development of the ISO/IEC 
MPEG-1, MPEG-2 and ITU-T H.261, H.262 and H.263 video coding standards (and later 
enhancements of H.263 known as H.263+ and H.263++), (Iain E.G. Richardson 2002) and has 
diversified from ISDN and T1/E1 service to embrace PSTN, mobile wireless networks, and 
LAN/Internet network delivery.  
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are multiplied together with 8 bits for each of the three primary colors, the total data rate 
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storage capacity seems to be more impressive when it is realized that the intent is to deliver 
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methods of video compression such as Moving Pictures Experts Group (MPEG) standard 
(Peter Symes 2000, Keith Jack 1996) can provide good performance in terms of retaining 
video quality while reducing the storage requirements. But even the popular standards like 
MPEG have limitations.  
Research in new and better methods of image and video compression is ongoing, and recent 
results suggest that some newer techniques may provide much greater performance. This 
motivates to go for video compression. An extension of image compression algorithms 
based on multiwavelets and making them suitable for video (as video contains sequence of 
still pictures) is essential. This chapter gives a summary of the new multiwavelet 
decomposition algorithm along with quantization techniques and illustrates their potential 
for inclusion in new video compression applications and standards (Sudhakar et al., 2009, 
Sudhakar & Jayaraman 2007, Sudhakar & Jayaraman 2008). Video coding for 
telecommunication applications has evolved through the development of the ISO/IEC 
MPEG-1, MPEG-2 and ITU-T H.261, H.262 and H.263 video coding standards (and later 
enhancements of H.263 known as H.263+ and H.263++), (Iain E.G. Richardson 2002) and has 
diversified from ISDN and T1/E1 service to embrace PSTN, mobile wireless networks, and 
LAN/Internet network delivery.  
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2. Significance of the present work 
Multiwavelets (Cheung, K.W & Po L.M, 1997.; Chui, C.K. & Lian J., 1996) are beginning only 
now to approach the maturity of development of their scalar counterparts Wavelets and 
DCT (Xiong et al., 1999.; Devore et al 1992; Gilbert Strang & Truong Nguyen 1996) A few 
papers that have tested the image compression properties of multiwavelets suggest that 
multiwavelets (Cotronei et al 2000; Shen 1997; Strela et al 1999; Gilbert Strang & Strela 1994; 
Michael & Amy E. Bell 2001 and Michael, B.M 1999) can sometimes perform as well as or 
better than scalar wavelets and DCT. But to date, no researchers have pursued this more 
thoroughly with the intention of determining whether multiwavelets might be a better 
choice for video compression than scalar wavelets and DCT. In this chapter, evaluations of 
the performance of state-of-the-art multiwavelet methods for compression of general classes 
of videos have been presented. The videos taken for comparison include ‘Football’, ‘Dancer’, 
‘Claire’, ‘Foreman’, ‘Trevor’ and ‘Miss America’. This chapter presents the following new 
results: 
 An efficient algorithm is presented for motion estimation with half pixel accuracy using 

fast approach algorithms. A comparison between the popularly used block matching 
algorithm (Diamond search algorithm) (Shan Zhu & Kai-Kuang Ma 2000) and the new 
Kite cross diamond algorithm (Chi-Wai Lam et al 2004) is provided.  

 A comparison between the best known multiwavelets and the best known scalar 
wavelets is made. Both quantitative and qualitative measures of performance are 
examined for several videos.  

 A novel video encoder combining the advantages of multiwavelets, Kite Cross 
Diamond Search algorithm and the novel scheme is also provided. 

3. Proposed video coder 
This section deals with proposed video coder and the new concepts which matches with the 
existing standards. The proposed novel encoder is shown in Figure 1. The new schemes 
used in this video coder are highlighted first and are explained in the subsequent sections. 
 In Intra frame coding the following new schemes are introduced. 

 Multiwavelet transform is used for coding the frames (I-frames) 
 ‘SPIHT’, ‘SPECK’, ‘Novel scheme’ is used for coding of multiwavelet coefficients 

 In Inter frame coding the following new schemes are introduced. 
 Fast algorithms for motion estimation 
 Half pixel accuracy motion estimation 
 Predictive coding of motion vectors 
 Multiple reference frame motion compensation 

3.1 Intra frame coding 
Removing the spatial redundancy within a frame is called as intraframe coding. Normally I-
frames are coded in this way. This is achieved using transform. There are many transforms 
like ‘DCT’, ‘DWT’, and Multiwavelet transform. As it is obvious that ‘DCT’ introduces 
blocking artifacts, normally ‘DWT’ is used in JPEG 2000 (Skodras, A.N et al 2000). As 
demonstrated in the papers (Sudhakar et al., 2009; Sudhakar & Jayaraman 2007; Sudhakar & 
Jayaraman 2008), that multiwavelet transform supersedes wavelets in still image 
compression, in this proposed coder multiwavelet based transform is extended for video 
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also. The simple reason is that video is a set of still frames arranged in a regular order. 
Before applying the multiwavelet transform to the input images or residuals, the image is to 
be preprocessed. The prefilter (Strela, V., 1996; Strela, V., 1998) is chosen corresponding to 
the filters chosen for applying multiwavelet transforms (Strela, V & Walden A.T., 1998; 
Strela V et al., 1999). Similarly, the post processing is to be done at the receiver side.  
 

 
Fig. 1. Block diagram of the Proposed Novel encoder 

3.1.1 Coding of multiwavelet coefficients 
The coding and quantization of the multiwavelet coefficients could be done by SPIHT or 
SPECK algorithm. The coding of the multiwavelet coefficients using SPIHT and SPECK 
(Said A & Pearlman 1996; Pearlman et al. 2004) are explained and completely available in 
the papers (Sudhakar et al., 2009; Sudhakar & Jayaraman 2007; Sudhakar & Jayaraman 
2008). Compression is the result of quantization. In this work different multiwavelets 
(Sudhakar, R.; & Jayaraman, S., 2008) are used and their performances are studied. SPIHT 
performs better for high bit rate but produces poor quality at low bit rates. SPECK performs 
well at low bit rates but results in poor compression. So a novel scheme is introduced. In this 
coder the ‘Y’ and ‘U’ components are coded using ‘SPIHT’ and the ‘V’ component is coded 
using ‘SPECK’ at 75% of the rates used in ‘SPIHT’. The very first frame or every twelfth 
frame of video sequences is coded as I-frame. Every other frame is coded as P-frame. If the 
mean square error between the predicted frame and the actual frame is greater than the 
threshold then the current frame is coded as the I-frame. The ‘bpp’ settings of SPIHT 
encoder for residual are set to very less rate compared to the I-frame rate. 
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2. Significance of the present work 
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3.1.2 Entropy coding 
The purpose of the entropy coding algorithm (Lei and Sun 1991), is to represent frequently 
occurring (run, level) pairs with a short code and less frequently occurring pairs with a 
longer code. In this way, the run-level data may be compressed into a small number of bits. 
Huffman coding and arithmetic coding are used widely for entropy coding of image and 
video data. In this chapter Huffman coding is used as the entropy coding. 

3.2 Inter frame coding 
The temporal redundancy between the successive frames is removed by interframe 
prediction. This is achieved by Motion estimation and compensation. An efficient fast 
motion estimation algorithm to predict the current frame from the previous reference frames 
is used. Here the motion estimation is done up to half pixel accuracy. The detailed 
explanations are given in the subsequent sections 

3.2.1 Fast motion estimation algortihm 
Full search (FS) block motion estimation matches all possible points within a search area in 
the reference (target) frame to find the block with the minimum block distortion measure 
(BDM). Thus this algorithm gives the best possible results. However, a full search algorithm 
accounts for about two-thirds of the total computational power and it is very intensive 
computationally. Due to the high requirement of intensive computation for the full search 
algorithm many fast motion algorithms (Peter Symes 2000) have been proposed over the last 
two decades to give a faster estimation with similar block distortion compared to the full 
search method. The most well known fast Block Motion Algorithms (BMA) are the three-
step search (TSS) (Li et al 1994; Koga et al 1981), the new three-step search (NTSS), the four-
step search (4SS) (Po Ma 1996) and the diamond search (DS) (Shan Zhu and Kai-Kuang Ma 
2000). Diamond search is more popular among the existing standards. The main aim of 
these fast search algorithms is to reduce the number of search points in the search window 
and hence the computations. This is completely evident from the Table. 1. The motion field 
for a block of a real world image sequence is gentle, smooth usually and varies slowly. One 
of the most important assumptions of all fast motion estimation algorithm is ‘error surface is 
monotonic’ i.e. BDM is the least at the center or the global minima of the search area and it 
increases monotonically as the checking point moves away from the global minima. 
 

Video FS TSS NTSS 4SS DS KCDS 
Trevor 202.1 23.2 20.67 18.65 16.25 12.67 
Dancer 202.1 23.24 21.38 18.80 16.84 12.89 
Foot ball 202.1 23.06 17.65 16.69 13.67 7.73 
Miss America 202.1 23.46 19.99 18.319 16.36 9.54 
Claire 202.1 23.22 15.924 16.19 12.4 5.23 

Table 1. Average Searching Points for different fast searching Algorithms 

Many fast motion estimation algorithms is based on the centre biased motion vector 
distribution. But this assumption may not hold for videos with very fast motions. Kite Cross 
Diamond Search (KCDS) algorithm (Chi-Wai Lam et al 2004) which is based on the cross 
centre biased distribution characteristics is employed in this chapter.  
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3.2.2 Half pixel accuracy motion estimation 
Fractional pixel motion estimation is employed in modern coding standards in which the 
displacement of an object between two frames in videos is not an integer no of pixels. Here 
motion vectors are used. These vectors point to candidate blocks that are placed at half pixel 
locations. It is advantageous to place a candidate block at fractional location. This gives 
better matching properties than at an integer location. Further it helps to reduce the degree 
of error between origilnal and predicted image. Interpolating linearly or bilinearly the 
nearest pixels at integer locations, it is possible to obtain the pixel values in the fractional 
locations. But the demerit here is that the computational overhead increases. 
Hence it becomes necessary to save the computation overhead. Conventional encoders can 
be used for this purpose. The process of motion estimation in this conventional encoder is 
dealt in two steps. 
1. Criteria minimum is found at integer location. 
2. Interpolation of candidate block correponding to the eight nearest half pixel 

displacement motion vectors as shown in fig. 2  
Interpolation is done to the best integer and motion vector is refined into sbupixel by 
computing the criterain between the current block and its eight half pixel candidate block. 
Real time encoder finds this process too difficult to be implemented because of its 
complexity in computation, hence much faster methods have been investigated in the 
literature (Lee and Chen 1997). 
 

 
Fig. 2. Integer and half pixel displacements 

3.2.3 Predictive coding of motion vectors 
The motion vectors are predicted from the previously coded motion vectors (Lee et al 2000) 
so as to reduce the number of bits required to code them. Variable bit rate coding is used to 
encode the difference. Based on the previously found motion vectors, a predicted vector 
MVp is formed, which depends on the motion compensation partition size and its 
availability of nearby vectors. The Motion Vector Difference (MVD) between current and 
predicted vector is encoded and transmitted. Variable bit length coding is used for encoding 
the difference. Short codes are used code the most frequenly occuring motion vector. Figure 
3 shows the actual motion vectors and the difference between the predicted one and the 
actual motion vectors.  
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3.2.3 Predictive coding of motion vectors 
The motion vectors are predicted from the previously coded motion vectors (Lee et al 2000) 
so as to reduce the number of bits required to code them. Variable bit rate coding is used to 
encode the difference. Based on the previously found motion vectors, a predicted vector 
MVp is formed, which depends on the motion compensation partition size and its 
availability of nearby vectors. The Motion Vector Difference (MVD) between current and 
predicted vector is encoded and transmitted. Variable bit length coding is used for encoding 
the difference. Short codes are used code the most frequenly occuring motion vector. Figure 
3 shows the actual motion vectors and the difference between the predicted one and the 
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Fig. 3. (a) Actual motion vectors (b) Difference between the predicted and actual motion 
vectors  

Now the difference is encoded as: 
 First bit represents the sign of the difference; negative difference is represented by 1 and 

positive as 0.  
 Next to the sign bit is M ones followed by one zero; M is the absolute value of 

difference. 
 Last bit represent the decimal value; 0.5 is represented as 1 and 0.0 is represented as 0 
For example, -1.0 and 0.5 are coded as  
 

-1.0     1100 
0.5     001 

4. Block diagram of the proposed decoder system 
The block diagram of the proposed decoder is shown in the figure 4. Here every step is a 
reverse process to the encoder except the motion prediction. By using the reference frames and 
the decoded motion vectors a new frame is reconstructed by motion compensation method. 
 

 

 
Fig. 4. Block diagram of the proposed decoder system 
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5. Results and discussion  
This section has four sub sections. Section 5.1 deals with “SPIHT results” and it gives the 
information about the performance of SPIHT due to the variation of I rate and P rate. 
Several comparisons are made here like comparison between ‘DS’ and ‘KCDS’ and also 
between Wavelet and Multiwavelet. Section 5.2 discusses the results between ‘SPECK’ and 
‘Novel scheme’. This section also features the performance of ‘SPECK’ for different videos 
and the comparison among SPIHT, SPECK and Novel scheme. Novel scheme is one in 
which the ‘Y’ and ‘U’ components are coded with ‘SPIHT’ but ‘V’ component is coded using 
SPECK at 75% of rate used in ‘SPIHT’. Summary of the results is provided in section 5.3. 
Section 5.4 deals with reconstructed frames illustrating the Comparison of ‘SPIHT’, ‘SPECK’ 
and ‘Novel scheme’. In this work, two sets of video sequences are used. First set is CIF  
(352  288) which includes “Dancer”, “Football” video sequences. The other set is QCIF  
(176  144) with the video sequences, “Claire”, “Foreman”, “Trevor” and “Miss America”. 
The videos used are listed in the Table 2 and their visuals are shown in Figure 5, followed by 
some description about them. 
 

Name Frame Size 
Claire 144  176 

Foreman 144  176 
Trevor 144  176 

Miss America 144  176 
Dancer 288  352 
Football 288  352 

Table 2. List of test videos 

The ‘Claire’ and ‘Miss America’ videos have very small motions with still background and 
contain the motion of only one object. The ‘foreman’ has large motion and variable 
background due to camera motion. ‘Trevor’ video has random motions involving different 
objects. The ‘Dancer’ video has moving background and contains the slow motions of two 
objects. The ‘football’ video has a very large motion without moving background in the 
opposite direction. It also contains the motion of many objects moving with different 
velocities.  
The parameters used here are PSNR and Compression ratio. The video format used is 
“YUV”. Each component i.e. ‘Y’, ‘U’, ‘V’ are processed separately and hence the peak signal 
value is 255. The average of these 3 values will give the average PSNR for a particular frame. 
When many frames are considered the average PSNR for all the frames is used as the 
performance factor.  
The PSNR in dB for an M  N Video frame for each component is calculated as 

 
225510 logPSNR dB

MSE
 

   
 

 (1) 

where the mean square error (MSE) is defined as 



 
Recent Advances on Video Coding 

 

186 

1.5 1.0 -0.5 -1.5 

 

1.5 0.5 1.5 1.0 

1.0 1.5 2.0 1.5 0.5 -0.5 -0.5 0.5 

0.5 -0.5 -0.5 -1.0 0.5 1.0 0.0 0.5 

-0.5 -0.5 -1.0 -1.5 1.0 0.0 0.5 0.5 

                                            (a)                                                                  (b) 

Fig. 3. (a) Actual motion vectors (b) Difference between the predicted and actual motion 
vectors  

Now the difference is encoded as: 
 First bit represents the sign of the difference; negative difference is represented by 1 and 

positive as 0.  
 Next to the sign bit is M ones followed by one zero; M is the absolute value of 

difference. 
 Last bit represent the decimal value; 0.5 is represented as 1 and 0.0 is represented as 0 
For example, -1.0 and 0.5 are coded as  
 

-1.0     1100 
0.5     001 

4. Block diagram of the proposed decoder system 
The block diagram of the proposed decoder is shown in the figure 4. Here every step is a 
reverse process to the encoder except the motion prediction. By using the reference frames and 
the decoded motion vectors a new frame is reconstructed by motion compensation method. 
 

 

 
Fig. 4. Block diagram of the proposed decoder system 

 
Novel Video Coder Using Multiwavelets   

 

187 

5. Results and discussion  
This section has four sub sections. Section 5.1 deals with “SPIHT results” and it gives the 
information about the performance of SPIHT due to the variation of I rate and P rate. 
Several comparisons are made here like comparison between ‘DS’ and ‘KCDS’ and also 
between Wavelet and Multiwavelet. Section 5.2 discusses the results between ‘SPECK’ and 
‘Novel scheme’. This section also features the performance of ‘SPECK’ for different videos 
and the comparison among SPIHT, SPECK and Novel scheme. Novel scheme is one in 
which the ‘Y’ and ‘U’ components are coded with ‘SPIHT’ but ‘V’ component is coded using 
SPECK at 75% of rate used in ‘SPIHT’. Summary of the results is provided in section 5.3. 
Section 5.4 deals with reconstructed frames illustrating the Comparison of ‘SPIHT’, ‘SPECK’ 
and ‘Novel scheme’. In this work, two sets of video sequences are used. First set is CIF  
(352  288) which includes “Dancer”, “Football” video sequences. The other set is QCIF  
(176  144) with the video sequences, “Claire”, “Foreman”, “Trevor” and “Miss America”. 
The videos used are listed in the Table 2 and their visuals are shown in Figure 5, followed by 
some description about them. 
 

Name Frame Size 
Claire 144  176 

Foreman 144  176 
Trevor 144  176 

Miss America 144  176 
Dancer 288  352 
Football 288  352 

Table 2. List of test videos 

The ‘Claire’ and ‘Miss America’ videos have very small motions with still background and 
contain the motion of only one object. The ‘foreman’ has large motion and variable 
background due to camera motion. ‘Trevor’ video has random motions involving different 
objects. The ‘Dancer’ video has moving background and contains the slow motions of two 
objects. The ‘football’ video has a very large motion without moving background in the 
opposite direction. It also contains the motion of many objects moving with different 
velocities.  
The parameters used here are PSNR and Compression ratio. The video format used is 
“YUV”. Each component i.e. ‘Y’, ‘U’, ‘V’ are processed separately and hence the peak signal 
value is 255. The average of these 3 values will give the average PSNR for a particular frame. 
When many frames are considered the average PSNR for all the frames is used as the 
performance factor.  
The PSNR in dB for an M  N Video frame for each component is calculated as 

 
225510 logPSNR dB

MSE
 

   
 

 (1) 

where the mean square error (MSE) is defined as 
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Compression ratio (CR) is calculated as CR = M  N  3  8  No of Frames / No of bits after 
coding. M  N is the size of the frame 
 

 
                 (a)                                    (b)                                     (c)                                      (d) 

 

 
                                      (f)                                                                             (e) 

Fig. 5. Test videos (a) ‘Claire’, (b) ‘Foreman’, (c)‘Trevor’, (d) ‘Miss America’ , (e)‘Dancer’ and 
(f)‘Football’ 

The other conventions used are the ‘I’ rate and ‘P’ rate. ’I’ rate is the rate at which the 
reference or intra frame is coded and ‘P’ rate is the rate at which the residue is coded. 
Residue is the difference between the reference frame and the predicted frame. Both have 
the unit of bpp (bits per pixel). Similarly, the default search algorithm is ‘KCDS’, and default 
transform is Multiwavelet. In the case of discrepancy, these conventions can be assumed as 
default. The multiwavelet filters (Sudhakar, R.; & Jayaraman, S., 2008) used in this work are 
symmetric / anti symmetric multifilter (“Sa4”), Chui-Lian orthogonal multifilter (“Cl”), 
“GHM” pair of multifilters, and Cardinal 2-balanced orthogonal multifilter (“Cardbal2”). 
The corresponding prefilters used are “Sa4ap”, “Clap”, “Ghmmap”, and “Id” respectively. 
The scalar wavelet filter taken for comparison are Haar wavelet (“Haar”), Daubechies 4 
coefficient scalar filter (“Db4”) and Daubechies 8 coefficient scalar filter (“La8”).  

5.1 ‘SPIHT’ results 
The results are observed with ‘I’ rate = 0.9 and ‘P’ rate = 0.05. 
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5.1.1 ‘Claire’ video 
Here “Cardbal2” performs well in terms of Average PSNR and “Cl” produces higher 
compression ratio. In terms of search algorithm, ‘KCDS’ and ‘DS’ almost perform equally in 
terms of average PSNR with ‘KCDS’ gives better compression ratio. 
 

Wavelet Average PSNR (dB) CR 

Haar 38.49 73.34 
Db4 39.51 72.12 
La8 39.7 72.32 

Table 3. Comparison of average ‘PSNR’, ‘CR’ for different Wavelets in ‘Claire’ video  
(84 Frames) using ‘KCDS’ 
 

Multiwavelet 
Average PSNR (dB) CR 

KCDS DS KCDS DS 
Sa4 38.99 38.98 81.61 78.95 
Cl 39.11 39.14 82.47 79.41 

GHM 39.21 39.21 72.64 70.56 
Cardbal2 39.59 39.58 71.35 69.46 

Table 4. Comparison of average ‘PSNR’, ‘CR’ for different multiwavelets in ‘Claire’ video  
(84 Frames) 

5.1.2 ‘Foreman’ video 
Here “GHM” multifilter performs better in terms of average PSNR and “Cl” in terms of 
compression ratio. “Sa4” performs better as well. In all the cases ‘KCDS’ performs 
marginally better than ‘DS’. 
 

Wavelet Average PSNR (dB) CR 

Haar 35.87 67.57 
Db4 36.1 66.36 
La8 36.31 66.19 

Table 5. Comparison of average ‘PSNR’, ‘CR’ for different Wavelets in ‘Foreman’ video  
(84 Frames) using ‘KCDS’ 
 

Multiwavelet 
Average PSNR (dB) CR 

KCDS DS KCDS DS 
Sa4 35.87 35.85 73.39 69.14 
Cl 35.71 35.68 73.71 69.68 

GHM 36.21 36.17 65.05 62.21 
Cardbal2 36.12 36.08 67.03 63.69 

Table 6. Comparison of average ‘PSNR’, ‘CR’ for different multiwavelets in ‘Foreman’ video 
(84 Frames) 
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(f)‘Football’ 

The other conventions used are the ‘I’ rate and ‘P’ rate. ’I’ rate is the rate at which the 
reference or intra frame is coded and ‘P’ rate is the rate at which the residue is coded. 
Residue is the difference between the reference frame and the predicted frame. Both have 
the unit of bpp (bits per pixel). Similarly, the default search algorithm is ‘KCDS’, and default 
transform is Multiwavelet. In the case of discrepancy, these conventions can be assumed as 
default. The multiwavelet filters (Sudhakar, R.; & Jayaraman, S., 2008) used in this work are 
symmetric / anti symmetric multifilter (“Sa4”), Chui-Lian orthogonal multifilter (“Cl”), 
“GHM” pair of multifilters, and Cardinal 2-balanced orthogonal multifilter (“Cardbal2”). 
The corresponding prefilters used are “Sa4ap”, “Clap”, “Ghmmap”, and “Id” respectively. 
The scalar wavelet filter taken for comparison are Haar wavelet (“Haar”), Daubechies 4 
coefficient scalar filter (“Db4”) and Daubechies 8 coefficient scalar filter (“La8”).  

5.1 ‘SPIHT’ results 
The results are observed with ‘I’ rate = 0.9 and ‘P’ rate = 0.05. 

 
Novel Video Coder Using Multiwavelets   

 

189 

5.1.1 ‘Claire’ video 
Here “Cardbal2” performs well in terms of Average PSNR and “Cl” produces higher 
compression ratio. In terms of search algorithm, ‘KCDS’ and ‘DS’ almost perform equally in 
terms of average PSNR with ‘KCDS’ gives better compression ratio. 
 

Wavelet Average PSNR (dB) CR 

Haar 38.49 73.34 
Db4 39.51 72.12 
La8 39.7 72.32 

Table 3. Comparison of average ‘PSNR’, ‘CR’ for different Wavelets in ‘Claire’ video  
(84 Frames) using ‘KCDS’ 
 

Multiwavelet 
Average PSNR (dB) CR 

KCDS DS KCDS DS 
Sa4 38.99 38.98 81.61 78.95 
Cl 39.11 39.14 82.47 79.41 

GHM 39.21 39.21 72.64 70.56 
Cardbal2 39.59 39.58 71.35 69.46 

Table 4. Comparison of average ‘PSNR’, ‘CR’ for different multiwavelets in ‘Claire’ video  
(84 Frames) 

5.1.2 ‘Foreman’ video 
Here “GHM” multifilter performs better in terms of average PSNR and “Cl” in terms of 
compression ratio. “Sa4” performs better as well. In all the cases ‘KCDS’ performs 
marginally better than ‘DS’. 
 

Wavelet Average PSNR (dB) CR 

Haar 35.87 67.57 
Db4 36.1 66.36 
La8 36.31 66.19 

Table 5. Comparison of average ‘PSNR’, ‘CR’ for different Wavelets in ‘Foreman’ video  
(84 Frames) using ‘KCDS’ 
 

Multiwavelet 
Average PSNR (dB) CR 

KCDS DS KCDS DS 
Sa4 35.87 35.85 73.39 69.14 
Cl 35.71 35.68 73.71 69.68 

GHM 36.21 36.17 65.05 62.21 
Cardbal2 36.12 36.08 67.03 63.69 

Table 6. Comparison of average ‘PSNR’, ‘CR’ for different multiwavelets in ‘Foreman’ video 
(84 Frames) 
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5.1.3 ‘Dancer’ video 
Here in terms of multiwavelet “cardbal2” performs better in terms of average PSNR and 
“Cl” in terms of compression ratio. Here also, “Sa4” performs better. ‘DS’ performs 
marginally better than KCDS in terms of average PSNR and ‘KCDS’ perform better in terms 
of compression ratio. 
 

Wavelet Average PSNR (dB) CR 

Haar 38.1 53.69 
Db4 38.63 53.27 
La8 38.76 52.95 

Table 7. Comparison of average ‘PSNR’, ‘CR’ for different Wavelets in ‘Dancer’ video  
(84 Frames) using ‘KCDS’ 
 

Multiwavelet 
Average PSNR (dB) CR 

KCDS DS KCDS DS 
Sa4 37.82 37.82 56.27 55.67 
Cl 37.65 37.69 56.55 55.86 

GHM 37.76 37.84 51.99 51.38 
Cardbal2 38.08 38.11 51.56 51.04 

Table 8. Comparison of average ‘PSNR’, ‘CR’ for different Multiwavelets in ‘Dancer’ video 
(84 Frames) 

5.1.4 ‘Football’ video 
Here in terms of multiwavelet “cardbal2” performs better in terms of average ‘PSNR’ and 
“Cl” in terms of compression ratio. But overall “Sa4” performs better. In all the cases KCDS 
performs marginally better than DS. 
 

Wavelet Average PSNR (dB) CR 

Haar 32.02 43.29 
Db4 32.47 42.94 
La8 32.31 44.31 

Table 9. Comparison of average ‘PSNR’, ‘CR’ for different Wavelets in ‘Football’ video  
(84 Frames) using ‘KCDS’ 
 

Multiwavelet 
Average PSNR (dB) CR 

KCDS DS KCDS DS 
Sa4 32.43 32.41 46.69 46.67 
Cl 31.88 30.57 48.32 48.29 

GHM 32.49 31.87 42.88 41.98 
Cardbal2 32.53 32.50 43.15 43.10 

Table 10. Comparison of average ‘PSNR’, ‘CR’ for different multiwavelets in ‘Football’ video 
(84 Frames) 
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5.1.5 ‘Trevor’ video 
Here “Cardbal2” performs better in terms of average ‘PSNR’ and “Cl” in terms of 
compression ratio. But overall “Sa4” performs better. In all the cases ‘KCDS’ performs 
marginally better than DS. 
 

Wavelet Average PSNR (dB) CR 

Haar 34.8 70.2 
Db4 35.33 68.48 
La8 35.53 68.17 

Table 11. Comparison of average ‘PSNR’, ‘CR’ for different Wavelets in ‘Trevor’ video  
(84 Frames) using ‘KCDS’ 

 

Multiwavelet 
Average PSNR(dB) CR 

KCDS DS KCDS DS 
Sa4 36.46 36.44 77.02 75.39 
Cl 36.08 36.04 78.61 76.71 

GHM 36.58 36.55 69.36 68.11 
Cardbal2 36.61 36.58 68.96 67.74 

Table 12. Comparison of average ‘PSNR’, ‘CR’ for different multiwavelets in ‘Trevor’ video 
(84 Frames)  

5.1.6 ‘Miss America’ video 
Here “Cardbal2” performs better in terms of average ‘PSNR’ and “Sa4” in terms of 
compression ratio.  
 

Wavelet Average PSNR (dB) CR 

Haar 39.14 67.82 
Db4 39.65 67.53 
La8 39.77 67.51 

Table 13. Comparison of average PSNR, CR for different Wavelets in ‘Miss America’ video 
(84 Frames) using ‘KCDS’ 

 

Multiwavelet 
Average PSNR(dB) CR 

KCDS DS KCDS DS 
Sa4 38.81 37.44 76.37 75.39 
Cl 38.75 37.45 75.21 75.11 

GHM 38.36 37.54 70.02 69.01 
Cardbal2 39.37 37.62 67.31 66.32 

Table 14. Comparison of average ‘PSNR’, CR’ for different multiwavelets in a ‘Miss 
America’ video (84 Frames) 
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5.1.3 ‘Dancer’ video 
Here in terms of multiwavelet “cardbal2” performs better in terms of average PSNR and 
“Cl” in terms of compression ratio. Here also, “Sa4” performs better. ‘DS’ performs 
marginally better than KCDS in terms of average PSNR and ‘KCDS’ perform better in terms 
of compression ratio. 
 

Wavelet Average PSNR (dB) CR 

Haar 38.1 53.69 
Db4 38.63 53.27 
La8 38.76 52.95 

Table 7. Comparison of average ‘PSNR’, ‘CR’ for different Wavelets in ‘Dancer’ video  
(84 Frames) using ‘KCDS’ 
 

Multiwavelet 
Average PSNR (dB) CR 

KCDS DS KCDS DS 
Sa4 37.82 37.82 56.27 55.67 
Cl 37.65 37.69 56.55 55.86 

GHM 37.76 37.84 51.99 51.38 
Cardbal2 38.08 38.11 51.56 51.04 

Table 8. Comparison of average ‘PSNR’, ‘CR’ for different Multiwavelets in ‘Dancer’ video 
(84 Frames) 

5.1.4 ‘Football’ video 
Here in terms of multiwavelet “cardbal2” performs better in terms of average ‘PSNR’ and 
“Cl” in terms of compression ratio. But overall “Sa4” performs better. In all the cases KCDS 
performs marginally better than DS. 
 

Wavelet Average PSNR (dB) CR 

Haar 32.02 43.29 
Db4 32.47 42.94 
La8 32.31 44.31 

Table 9. Comparison of average ‘PSNR’, ‘CR’ for different Wavelets in ‘Football’ video  
(84 Frames) using ‘KCDS’ 
 

Multiwavelet 
Average PSNR (dB) CR 

KCDS DS KCDS DS 
Sa4 32.43 32.41 46.69 46.67 
Cl 31.88 30.57 48.32 48.29 

GHM 32.49 31.87 42.88 41.98 
Cardbal2 32.53 32.50 43.15 43.10 

Table 10. Comparison of average ‘PSNR’, ‘CR’ for different multiwavelets in ‘Football’ video 
(84 Frames) 
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5.1.5 ‘Trevor’ video 
Here “Cardbal2” performs better in terms of average ‘PSNR’ and “Cl” in terms of 
compression ratio. But overall “Sa4” performs better. In all the cases ‘KCDS’ performs 
marginally better than DS. 
 

Wavelet Average PSNR (dB) CR 

Haar 34.8 70.2 
Db4 35.33 68.48 
La8 35.53 68.17 

Table 11. Comparison of average ‘PSNR’, ‘CR’ for different Wavelets in ‘Trevor’ video  
(84 Frames) using ‘KCDS’ 

 

Multiwavelet 
Average PSNR(dB) CR 

KCDS DS KCDS DS 
Sa4 36.46 36.44 77.02 75.39 
Cl 36.08 36.04 78.61 76.71 

GHM 36.58 36.55 69.36 68.11 
Cardbal2 36.61 36.58 68.96 67.74 

Table 12. Comparison of average ‘PSNR’, ‘CR’ for different multiwavelets in ‘Trevor’ video 
(84 Frames)  

5.1.6 ‘Miss America’ video 
Here “Cardbal2” performs better in terms of average ‘PSNR’ and “Sa4” in terms of 
compression ratio.  
 

Wavelet Average PSNR (dB) CR 

Haar 39.14 67.82 
Db4 39.65 67.53 
La8 39.77 67.51 

Table 13. Comparison of average PSNR, CR for different Wavelets in ‘Miss America’ video 
(84 Frames) using ‘KCDS’ 

 

Multiwavelet 
Average PSNR(dB) CR 

KCDS DS KCDS DS 
Sa4 38.81 37.44 76.37 75.39 
Cl 38.75 37.45 75.21 75.11 

GHM 38.36 37.54 70.02 69.01 
Cardbal2 39.37 37.62 67.31 66.32 

Table 14. Comparison of average ‘PSNR’, CR’ for different multiwavelets in a ‘Miss 
America’ video (84 Frames) 
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Video Wavelet/ 
Multiwavelet 

Average PSNR (dB) for a ‘I’ rate of 

0.6 0.8 0.9 1 

Miss America 
Sa4 35.78 37.96 38.59 39.37 
Cl 35.69 37.88 38.49 39.37 

La8 36.56 38.49 39.44 39.83 

Trevor 
Sa4 33.18 35.72 36.67 37.39 
Cl 32.88 35.36 36.29 37.1 

La8 33.21 36.31 37.09 37.65 

Table 15. Average PSNR values for different ‘I’ rates with a constant ‘P’ rate of 0.05 bpp;  
96 frames 

 

Video Wavelet/ 
Multiwavelet 

CR (for a ‘I’ rate of) 

0.6 0.8 0.9 1 

Miss America 
Sa4 96.04 83.01 77.41 71.53 
Cl 96.74 83.02 77.39 71.68 

La8 85.74 73.86 68.24 63.76 

Trevor 
Sa4 101.71 87.66 80.92 74.84 
Cl 102.35 89.13 82.38 75.98 

La8 91.02 78.35 72.55 67.35 

Table 16. CR values for different ‘I’ rates with a constant  ‘P’ rate of 0.05 bpp; 96 frames 

The results available in Tables 15 and 16 show the variation of I rate with constant ‘P’ rate, 
for two different videos ‘Miss America’ (slow motion) and ‘Trevor’ (Fast and Random 
motion). Irrespective of the videos, the PSNR values show an improvement as ‘I’ rate 
increases, with the reduction of compression ratio. The Compression ratio (roughly 5 to 10) 
is increased in the case of multiwavelets compared to wavelets, irrespective of the videos.  
 

Video Wavelet/ 
Multiwavelet 

Average PSNR (For a ‘P’ rate of) 

0.01 0.05 0.07 0.1 

Miss America 
Sa4 38.33 38.59 38.7 38.93 
Cl 38.22 38.49 38.62 38.86 

La8 39.21 39.44 39.6 39.79 

Trevor 
Sa4 36.4 36.67 36.77 36.96 
Cl 36.04 36.29 36.4 36.57 

La8 36.81 37.08 37.24 37.46 

Table 17. Average PSNR values for the variation of ‘P’ rate with a constant ‘I’ rate of 0.9 bpp; 
96 frames 

The results available in tables 17 and 18 show the variation of ‘P’ rate with constant ‘I’ rate, 
for two different videos ‘Miss America’ (slow motion) and ‘Trevor’(Fast and Random 
motion). The PSNR is increased with the increase in P rate with a little variation, at the same 
time compression ratio is increased in a larger way.  
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Video Wavelet/ 
Multiwavelet 

Compression Ratio (for a ‘P’ rate of) 

0.01 0.05 0.07 0.1 

Miss America 
Sa4 81.42 77.4 74.43 69.81 
Cl 81.23 77.39 74.32 69.59 

La8 71.28 68.24 65.93 60.78 

Trevor 
Sa4 86.32 80.92 77.48 71.93 
Cl 87.52 82.38 79.02 73.38 

La8 76.49 72.54 69.71 65.39 

Table 18. ‘CR’ values for the variation of ‘P’ rate with a constant ‘I’ rate of 0.9 bpp; 96 frames 

5.2 ‘SPECK’ and ‘Novel scheme’ results 
5.2.1 ‘SPECK’ results 
From the above tables it is evident that “Sa4” multiwavelet performs better. Hence the 
following results are achieved with “Sa4” as the reference. KCDS is used as a prediction 
technique. From the results available in Table 19, ‘SPECK’ performs well for all the videos 
with less compression ratio compared to ‘SPIHT’ results shown in the previous section. On 
comparing the results available in table 20, SPECK performs better than SPIHT for all the 
videos at low bit rate (0.4 bpp) whereas SPIHT performs better than SPECK at a bit rate of 
1.0 bpp. 
 

Videos Average PSNR (dB) CR 

Claire 40.07 54.48 
Trevor 34.79 53.95 

Foreman 36.44 53.20 
Miss America 39.49 52.79 

Table 19. Performance of ‘SPECK’ for different videos with ‘I’ rate of 0.9bpp and ‘P’ rate of 
0.07bpp; 84 frames 
 

Videos Average PSNR for SPECK Average PSNR for SPIHT 

 ‘I’ rate=1bpp and ‘p’ rate=0.01bpp 
Claire 40.56 41.1 
Trevor 34.8 36.99 

Miss America 41.04 41.29 
Foreman 38.67 38.3 
Dancer 38.49 44.47 

 ‘I’ rate=1bpp and ‘p’ rate=0.01bpp 
Claire 36.13 30.07 
Trevor 31.48 26.53 

Miss America 36.64 32.03 
Foreman 34.54 27.54 
Dancer 36.82 29.6 

Table 20. Comparison between ‘SPIHT’ and ‘SPECK’ for different ‘I’ rates  
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Video Wavelet/ 
Multiwavelet 

Average PSNR (dB) for a ‘I’ rate of 

0.6 0.8 0.9 1 

Miss America 
Sa4 35.78 37.96 38.59 39.37 
Cl 35.69 37.88 38.49 39.37 

La8 36.56 38.49 39.44 39.83 

Trevor 
Sa4 33.18 35.72 36.67 37.39 
Cl 32.88 35.36 36.29 37.1 

La8 33.21 36.31 37.09 37.65 

Table 15. Average PSNR values for different ‘I’ rates with a constant ‘P’ rate of 0.05 bpp;  
96 frames 

 

Video Wavelet/ 
Multiwavelet 

CR (for a ‘I’ rate of) 

0.6 0.8 0.9 1 

Miss America 
Sa4 96.04 83.01 77.41 71.53 
Cl 96.74 83.02 77.39 71.68 

La8 85.74 73.86 68.24 63.76 

Trevor 
Sa4 101.71 87.66 80.92 74.84 
Cl 102.35 89.13 82.38 75.98 

La8 91.02 78.35 72.55 67.35 

Table 16. CR values for different ‘I’ rates with a constant  ‘P’ rate of 0.05 bpp; 96 frames 

The results available in Tables 15 and 16 show the variation of I rate with constant ‘P’ rate, 
for two different videos ‘Miss America’ (slow motion) and ‘Trevor’ (Fast and Random 
motion). Irrespective of the videos, the PSNR values show an improvement as ‘I’ rate 
increases, with the reduction of compression ratio. The Compression ratio (roughly 5 to 10) 
is increased in the case of multiwavelets compared to wavelets, irrespective of the videos.  
 

Video Wavelet/ 
Multiwavelet 

Average PSNR (For a ‘P’ rate of) 

0.01 0.05 0.07 0.1 

Miss America 
Sa4 38.33 38.59 38.7 38.93 
Cl 38.22 38.49 38.62 38.86 

La8 39.21 39.44 39.6 39.79 

Trevor 
Sa4 36.4 36.67 36.77 36.96 
Cl 36.04 36.29 36.4 36.57 

La8 36.81 37.08 37.24 37.46 

Table 17. Average PSNR values for the variation of ‘P’ rate with a constant ‘I’ rate of 0.9 bpp; 
96 frames 

The results available in tables 17 and 18 show the variation of ‘P’ rate with constant ‘I’ rate, 
for two different videos ‘Miss America’ (slow motion) and ‘Trevor’(Fast and Random 
motion). The PSNR is increased with the increase in P rate with a little variation, at the same 
time compression ratio is increased in a larger way.  

 
Novel Video Coder Using Multiwavelets   

 

193 

Video Wavelet/ 
Multiwavelet 

Compression Ratio (for a ‘P’ rate of) 

0.01 0.05 0.07 0.1 

Miss America 
Sa4 81.42 77.4 74.43 69.81 
Cl 81.23 77.39 74.32 69.59 

La8 71.28 68.24 65.93 60.78 

Trevor 
Sa4 86.32 80.92 77.48 71.93 
Cl 87.52 82.38 79.02 73.38 

La8 76.49 72.54 69.71 65.39 

Table 18. ‘CR’ values for the variation of ‘P’ rate with a constant ‘I’ rate of 0.9 bpp; 96 frames 

5.2 ‘SPECK’ and ‘Novel scheme’ results 
5.2.1 ‘SPECK’ results 
From the above tables it is evident that “Sa4” multiwavelet performs better. Hence the 
following results are achieved with “Sa4” as the reference. KCDS is used as a prediction 
technique. From the results available in Table 19, ‘SPECK’ performs well for all the videos 
with less compression ratio compared to ‘SPIHT’ results shown in the previous section. On 
comparing the results available in table 20, SPECK performs better than SPIHT for all the 
videos at low bit rate (0.4 bpp) whereas SPIHT performs better than SPECK at a bit rate of 
1.0 bpp. 
 

Videos Average PSNR (dB) CR 

Claire 40.07 54.48 
Trevor 34.79 53.95 

Foreman 36.44 53.20 
Miss America 39.49 52.79 

Table 19. Performance of ‘SPECK’ for different videos with ‘I’ rate of 0.9bpp and ‘P’ rate of 
0.07bpp; 84 frames 
 

Videos Average PSNR for SPECK Average PSNR for SPIHT 

 ‘I’ rate=1bpp and ‘p’ rate=0.01bpp 
Claire 40.56 41.1 
Trevor 34.8 36.99 

Miss America 41.04 41.29 
Foreman 38.67 38.3 
Dancer 38.49 44.47 

 ‘I’ rate=1bpp and ‘p’ rate=0.01bpp 
Claire 36.13 30.07 
Trevor 31.48 26.53 

Miss America 36.64 32.03 
Foreman 34.54 27.54 
Dancer 36.82 29.6 

Table 20. Comparison between ‘SPIHT’ and ‘SPECK’ for different ‘I’ rates  
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5.2.2 ‘Novel scheme’ results 
The results of the ‘Novel scheme’ explained previously are available in table 21. The 
multiwavelet chosen is “Sa4”. It is shown that the novel scheme performs well for all the 
videos both in terms of ‘PSNR’ and ‘CR’. 
 

Videos Average PSNR (dB) CR 

Claire 39.67 75.79 
Trevor 35.32 72.67 

Foreman 36.11 68.82 
Miss America 38.72 71.22 

Table 21. Performance of ‘Novel scheme’ for different videos with ‘I’ rate of 0.9bpp ‘P’ rate 
of 0.07bpp; 84 frames 

5.3 Summary of results 
5.3.1 Comparison between ‘DS’ and ‘KCDS’ 
As mentioned previously “Sa4” multiwavelet performs well, and all the comparisons are 
with respect to “Sa4” alone. From the results available in table 22, ‘KCDS’ performs better 
than ‘DS’ both in terms of Average PSNR and compression ratio. 
 

Videos 
Average PSNR CR 

KCDS DS KCDS DS 
Claire 38.99 38.98 81.61 78.95 
Trevor 36.46 36.44 77.02 75.39 

Foreman 35.87 35.87 73.39 69.14 
Dancer 37.82 37.82 56.27 55.67 

Table 22. Comparison between ‘DS’ and ‘KCDS using ‘SPIHT’ for different videos with ‘I’ 
rate of 0.9bpp; ‘P’ rate of 0.05bpp; 84 frames 

 

Videos 
Average PSNR(dB) Compression Ratio Execution time (Secs) 

KCDS DS KCDS DS KCDS DS 
Claire 38.84 38.81 79.07 76.45 189 201 

Foreman 35.39 35.39 71.24 67.17 200 211 
Trevor 33.53 33.54 75.34 74.14 194 202 
Dancer 37.52 37.59 56.27 55.52 2796 2892 
Football 32.24 31.62 46.72 49.74 3640 3365 

Table 23. Comparison between ‘DS’ and ‘KCDS’ in ‘Novel scheme’ for different videos with 
‘I’ rate of 0.8bpp; ‘P’ rate of 0.08bpp; 84 frames 

From the results shown in table 23, it is completely evident that for all the videos ‘KCDS’ 
and ‘DS’ performs equally in terms of PSNR with ‘KCDS’ resulting in higher compression 
ratio. For the same PSNR, ‘KCDS’ is faster than ‘DS’. In Football video ‘KCDS’ produces 
better PSNR and hence it takes more time than ‘DS’.  

 
Novel Video Coder Using Multiwavelets   

 

195 

Videos 
Average PSNR (dB) CR 

Sa4 La8 Sa4 La8 
Claire 38.99 39.88 81.61 79.5 
Trevor 36.46 36.94 77.02 69.4 

Foreman 35.87 36.52 73.39 66.86 
Dancer 37.82 38.27 56.27 51.36 

Table 24. Comparison between wavelet and multiwavelet using ‘SPIHT’ with ‘P’ rate of 
0.05bpp; ‘I’ rate of 0.9bpp; 84 frames (KCDS) 

 

Videos 

Average PSNR (dB) for SPECK; 
I-rate:0.8bpp; 
P-rate:0.08bpp 

Average PSNR (dB) for Novel Scheme 
I-rate:0.8bpp; 
P-rate:0.08bpp 

La8 Sa4 La8 Sa4 
Claire 37.42 39.95 37.95 38.84 

Foreman 32.54 36.18 33.19 35.39 
Trevor 29.07 33.34 31.98 33.53 
Dancer 34.39 37.22 36.33 37.52 
Football 31.85 32.76 31.67 32.24 

 

CR for SPECK 
I-rate:0.8bpp; 
P-rate:0.08bpp 

CR for Novel Scheme;  
I-rate:0.8bpp; 
P-rate:0.08bpp 

La8 Sa4 La8 Sa4 
Claire 57.29 57.41 73.99 79.07 

Foreman 56.72 56.67 67.32 71.24 
Trevor 57.53 57.55 71.53 75.34 
Dancer 48.45 48.84 54.09 56.27 
Football 43.34 43.38 44.63 46.72 

 

Execution time(Secs) for SPECK  
I-rate:0.8bpp; 
P-rate:0.08bpp 

Execution time(Secs) for Novel Scheme 
I-rate:0.8bpp; 
P-rate:0.08bpp 

La8 Sa4 La8 Sa4 
Claire 441 185 443 189 

Foreman 444 198 456 200 
Trevor 448 198 453 194 
Dancer 3314 2332 3838 2796 
Football 3672 2735 4743 3640 

 

Table 25. Comparison of wavelet and multiwavelet using ‘SPECK’ and ‘Novel scheme’ with 
respect to average PSNR,CR and execution time; 84 frames  

5.3.2 Comparison between wavelet and multiwavelet 
The performance of wavelets and multiwavelets using “SPIHT”, for different videos are 
displayed in table 24. Here, ‘La8’ performs better for all videos in terms of average PSNR 
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5.2.2 ‘Novel scheme’ results 
The results of the ‘Novel scheme’ explained previously are available in table 21. The 
multiwavelet chosen is “Sa4”. It is shown that the novel scheme performs well for all the 
videos both in terms of ‘PSNR’ and ‘CR’. 
 

Videos Average PSNR (dB) CR 

Claire 39.67 75.79 
Trevor 35.32 72.67 

Foreman 36.11 68.82 
Miss America 38.72 71.22 

Table 21. Performance of ‘Novel scheme’ for different videos with ‘I’ rate of 0.9bpp ‘P’ rate 
of 0.07bpp; 84 frames 

5.3 Summary of results 
5.3.1 Comparison between ‘DS’ and ‘KCDS’ 
As mentioned previously “Sa4” multiwavelet performs well, and all the comparisons are 
with respect to “Sa4” alone. From the results available in table 22, ‘KCDS’ performs better 
than ‘DS’ both in terms of Average PSNR and compression ratio. 
 

Videos 
Average PSNR CR 

KCDS DS KCDS DS 
Claire 38.99 38.98 81.61 78.95 
Trevor 36.46 36.44 77.02 75.39 

Foreman 35.87 35.87 73.39 69.14 
Dancer 37.82 37.82 56.27 55.67 

Table 22. Comparison between ‘DS’ and ‘KCDS using ‘SPIHT’ for different videos with ‘I’ 
rate of 0.9bpp; ‘P’ rate of 0.05bpp; 84 frames 

 

Videos 
Average PSNR(dB) Compression Ratio Execution time (Secs) 

KCDS DS KCDS DS KCDS DS 
Claire 38.84 38.81 79.07 76.45 189 201 

Foreman 35.39 35.39 71.24 67.17 200 211 
Trevor 33.53 33.54 75.34 74.14 194 202 
Dancer 37.52 37.59 56.27 55.52 2796 2892 
Football 32.24 31.62 46.72 49.74 3640 3365 

Table 23. Comparison between ‘DS’ and ‘KCDS’ in ‘Novel scheme’ for different videos with 
‘I’ rate of 0.8bpp; ‘P’ rate of 0.08bpp; 84 frames 

From the results shown in table 23, it is completely evident that for all the videos ‘KCDS’ 
and ‘DS’ performs equally in terms of PSNR with ‘KCDS’ resulting in higher compression 
ratio. For the same PSNR, ‘KCDS’ is faster than ‘DS’. In Football video ‘KCDS’ produces 
better PSNR and hence it takes more time than ‘DS’.  
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Videos 
Average PSNR (dB) CR 

Sa4 La8 Sa4 La8 
Claire 38.99 39.88 81.61 79.5 
Trevor 36.46 36.94 77.02 69.4 

Foreman 35.87 36.52 73.39 66.86 
Dancer 37.82 38.27 56.27 51.36 

Table 24. Comparison between wavelet and multiwavelet using ‘SPIHT’ with ‘P’ rate of 
0.05bpp; ‘I’ rate of 0.9bpp; 84 frames (KCDS) 

 

Videos 

Average PSNR (dB) for SPECK; 
I-rate:0.8bpp; 
P-rate:0.08bpp 

Average PSNR (dB) for Novel Scheme 
I-rate:0.8bpp; 
P-rate:0.08bpp 

La8 Sa4 La8 Sa4 
Claire 37.42 39.95 37.95 38.84 

Foreman 32.54 36.18 33.19 35.39 
Trevor 29.07 33.34 31.98 33.53 
Dancer 34.39 37.22 36.33 37.52 
Football 31.85 32.76 31.67 32.24 

 

CR for SPECK 
I-rate:0.8bpp; 
P-rate:0.08bpp 

CR for Novel Scheme;  
I-rate:0.8bpp; 
P-rate:0.08bpp 

La8 Sa4 La8 Sa4 
Claire 57.29 57.41 73.99 79.07 

Foreman 56.72 56.67 67.32 71.24 
Trevor 57.53 57.55 71.53 75.34 
Dancer 48.45 48.84 54.09 56.27 
Football 43.34 43.38 44.63 46.72 

 

Execution time(Secs) for SPECK  
I-rate:0.8bpp; 
P-rate:0.08bpp 

Execution time(Secs) for Novel Scheme 
I-rate:0.8bpp; 
P-rate:0.08bpp 

La8 Sa4 La8 Sa4 
Claire 441 185 443 189 

Foreman 444 198 456 200 
Trevor 448 198 453 194 
Dancer 3314 2332 3838 2796 
Football 3672 2735 4743 3640 

 

Table 25. Comparison of wavelet and multiwavelet using ‘SPECK’ and ‘Novel scheme’ with 
respect to average PSNR,CR and execution time; 84 frames  

5.3.2 Comparison between wavelet and multiwavelet 
The performance of wavelets and multiwavelets using “SPIHT”, for different videos are 
displayed in table 24. Here, ‘La8’ performs better for all videos in terms of average PSNR 
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and ‘Sa4’ in terms of compression ratio. Hence the conclusion is that irrespective of the 
videos selected, multiwavelet gives good Compression ratio with nearing average PSNR as 
that of wavelets. 

5.3.3 Comparison between wavelet and multiwavelet in ‘SPECK’ and ‘Novel scheme’ 
From the results available in table 25, multiwavelet performs better than wavelets in both 
‘SPECK’ and ‘Novel scheme’ for all the videos in terms of PSNR, CR, and Execution time. 

5.3.4 Comparison between ‘SPIHT’, ‘SPECK’ and ‘Novel scheme’  
The results available in table 26, are taken with I rate of 0.8 and ‘P’ rate of 0.08. The first 84 
frames are considered for all the videos. In general ‘SPECK’ performs better in terms of 
average PSNR and execution time but with poor compression ratio for all the videos. Novel 
scheme is found to be a close competitor with better compression ratio. ‘SPIHT’ yields high 
compression ratio but it is very slow. Novel scheme matches ‘SPIHT’ closely and it is also 
faster than ‘SPIHT’. In overall comparison, ‘Novel Scheme’ performs better than ‘SPIHT’ 
and ‘SPECK’.  
 

Videos Average PSNR (dB) for  
SPIHT 

Average PSNR (dB) for  
SPECK 

Average PSNR (dB) for  
Novel Scheme 

Claire 37.85 39.95 38.84 
Foreman 34.68 36.18 35.39 
Trevor 34.12 33.34 33.53 
Dancer 37.44 37.22 37.52 
Football 31.85 32.76 32.24 

 

 CR for SPIHT CR for SPECK CR for 
Novel Scheme 

Claire 85.41 57.41 79.07 
Foreman 76.26 56.67 71.24 
Trevor 79.83 57.55 75.34 
Dancer 59.62 48.84 56.27 
Football 49.36 43.38 46.72 

    

Videos Execution time (Secs) for 
SPIHT 

Execution time (Secs) 
for SPECK 

Execution time (Secs) for 
Novel Scheme 

Claire 205 185 189 
Foreman 211 198 200 
Trevor 208 198 194 
Dancer 3162 2332 2796 
Football 4128 2735 3640 

 

Table 26. Comparison of ‘SPIHT’, ‘SPECK’ and ‘Novel Scheme’ for different videos based on 
average PSNR,CR and execution time; 84 frames 
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5.4 Reconstructed frames illustrating the comparison of ‘SPIHT’, ‘SPECK’ and ‘Novel 
scheme’ 
The Figures 6(a)-(c) show the reconstructed frames (1, 9 and 13) for ‘Miss America’ using 
‘SPIHT’. The Figures 7(a)-(c) show the reconstructed frames (1, 9 and 13) for ‘Miss America’ 
using ’SPECK’ and Figures 8 (a)-(c) show the reconstructed frames (1, 9 and 13) for the 
‘Novel Scheme’.  
 

 
                        (a)                                                    (b)                                                 (c) 
Fig. 6. Reconstructed frames in ‘Miss America’ using ‘SPIHT’ at ‘I’ rate =0.4bpp and ‘P’ rate 
of 0.04bpp (a) 1st frame (b) 9th frame (c) 13th frame 
 

 
                       (a)                                                  (b)                                                   (c) 
Fig. 7. Reconstructed frames in ‘Miss America’ using ‘SPECK’ at ‘I’ rate =0.4bpp and ‘P’ rate 
of 0.04bpp (a) 1st frame (b) 9th frame (c) 13th frame 
 

 
                        (a)                                                  (b)                                                   (c) 
Fig. 8. Reconstructed frames in ‘Miss America’ using ‘Novel Scheme’ at ‘I’ rate =0.4 bpp and 
‘P’ rate of 0.04 bpp (a) 1st frame (b) 9th frame (c) 13th frame 
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6. Conclusion 
The above results lead to the following conclusions based on block matching Algorithms, 
Transforms, and quantization schemes,as listed below. Based on the block matching 
algorithm for motion estimation, kite cross diamond search (KCDS) based video 
compression is faster and gives better quality compared to diamond search (DS).The 
numerical results elucidate the above fact. The video compression based on wavelets is 
better for high bit rates (above 0.8 bpp) in terms of average PSNR but it is slow and also 
results in less compression. But at low bit rate, Multiwavelet performs extremely better than 
wavelets in terms of average PSNR, compression ratio, and speed. Based on quantization 
scheme SPIHT based video compression is good for high bit rates but fails for low bit rates 
where SPECK performs well but with low compression ratio. The proposed novel scheme 
performs well both at low and high bit rates. Addressing individual multiwavelets, the ‘Sa4’ 
and ‘Cl’ multifilters tend to perform better for all type of videos. Since the Novel scheme 
employs both SPIHT and SPECK quantization schemes, the merits of both quantization 
schemes are added to give very good results in terms of PSNR, CR, execution time, and 
thus, it is found to be a close competitor between the two quantization schemes taken 
individually. Hence, multiwavelet based coder will give efficient storage space because of 
higher amount of compression ratio. The lower value in PSNR at high bit rates can be 
improved by the introduction of better prediction schemes that exploits the statistical nature 
of every video.  
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1. Introduction 
H.264/AVC is the latest international video coding standard. It is currently the most 
powerful and state-of-the-art standard; thus, it can provide enhanced coding efficiency for a 
wide range of video applications, including video telephony, video conferencing, TV, 
storage, streaming video, digital cinema, and many others (Luthra et al., 2003; Sullivan & 
Wiegand, 2005; Wiegand et al., 2003). To date, since H.264/AVC has been developed by 
mainly focusing on lossy coding, its algorithms have reached a quite mature stage for lossy 
video compression. 
Lossless compression has long been recognized as another important option for application 
areas that require high quality such as source distribution, digital document, digital cinema, 
and medical imaging. Recently, as the number of services and popularity for higher quality 
video representation are expanding, the interest and importance for lossless or near lossless 
video coding is also increasing (Brunello et al., 2003). However, since the majority of 
research pertaining to the H.264/AVC standard has focused on lossy video coding, it does 
not provide good coding performance for lossless video coding. 
In order to provide improved functionality for lossless coding, the H.264/AVC standard 
first included a pulse-code modulation (PCM) macroblock coding mode, and then a  
transform-bypass lossless coding mode (Joint video Team of the International 
Telecommunications Union-Telecommunication and the International Organization for 
Standardization/International Electrotechnical Commission [JVT of ITU-T and ISO/IEC], 
2002) that employed two main coding processes: prediction and entropy coding which were 
not previously used in the PCM macroblock coding mode in the fidelity range extensions 
(FRExt) (JVT of ITU-T and ISO/IEC, 2004; Sullivan et al., 2004). However, since the 
algorithms for lossless coding are not efficient, more efficient coding techniques for 
prediction and entropy coding are still required.  
Recently, instead of developing a block-based intra prediction, new intra prediction 
methods, referred to as sample-wise differential pulse-code modulation (DPCM) (JVT of ITU-T 
and ISO/IEC, 2005; Lee et al., 2006) were introduced for lossless coding. As a result, they 
have been shown to provide better compression performance. 
Two entropy coding methods: context-based adaptive variable length coding (CAVLC) (JVT of 
ITU-T and ISO/IEC, 2002; Richardson, 2003) and context-based adaptive binary arithmetic 
coding (CABAC) (Marpe et al., 2003) in the H.264/AVC standard were originally developed 
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1. Introduction 
H.264/AVC is the latest international video coding standard. It is currently the most 
powerful and state-of-the-art standard; thus, it can provide enhanced coding efficiency for a 
wide range of video applications, including video telephony, video conferencing, TV, 
storage, streaming video, digital cinema, and many others (Luthra et al., 2003; Sullivan & 
Wiegand, 2005; Wiegand et al., 2003). To date, since H.264/AVC has been developed by 
mainly focusing on lossy coding, its algorithms have reached a quite mature stage for lossy 
video compression. 
Lossless compression has long been recognized as another important option for application 
areas that require high quality such as source distribution, digital document, digital cinema, 
and medical imaging. Recently, as the number of services and popularity for higher quality 
video representation are expanding, the interest and importance for lossless or near lossless 
video coding is also increasing (Brunello et al., 2003). However, since the majority of 
research pertaining to the H.264/AVC standard has focused on lossy video coding, it does 
not provide good coding performance for lossless video coding. 
In order to provide improved functionality for lossless coding, the H.264/AVC standard 
first included a pulse-code modulation (PCM) macroblock coding mode, and then a  
transform-bypass lossless coding mode (Joint video Team of the International 
Telecommunications Union-Telecommunication and the International Organization for 
Standardization/International Electrotechnical Commission [JVT of ITU-T and ISO/IEC], 
2002) that employed two main coding processes: prediction and entropy coding which were 
not previously used in the PCM macroblock coding mode in the fidelity range extensions 
(FRExt) (JVT of ITU-T and ISO/IEC, 2004; Sullivan et al., 2004). However, since the 
algorithms for lossless coding are not efficient, more efficient coding techniques for 
prediction and entropy coding are still required.  
Recently, instead of developing a block-based intra prediction, new intra prediction 
methods, referred to as sample-wise differential pulse-code modulation (DPCM) (JVT of ITU-T 
and ISO/IEC, 2005; Lee et al., 2006) were introduced for lossless coding. As a result, they 
have been shown to provide better compression performance. 
Two entropy coding methods: context-based adaptive variable length coding (CAVLC) (JVT of 
ITU-T and ISO/IEC, 2002; Richardson, 2003) and context-based adaptive binary arithmetic 
coding (CABAC) (Marpe et al., 2003) in the H.264/AVC standard were originally developed 
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for lossy video coding; they were designed by taking into consideration the typically 
observed statistical properties of residual data, i.e., the quantized transform coefficients. 
However, in lossless coding, residual data are just prediction residuals without transform 
and quantization (Malvar et al., 2003). Thus, the statistical characteristics of residual data 
from lossy and lossless coding are quite different. As such, the use of conventional entropy 
coding methods in H.264/AVC is inappropriate for lossless video coding. Nevertheless, 
most researches into lossless coding in the H.264/AVC standard have focused on improving 
its prediction ability, rather than on the development of entropy coders (Heo et al., 2010). 
Therefore, in this chapter, we have tried to improve coding performance of entropy coders 
in H.264/AVC for lossless intra coding. After we analyzed the statistical differences of 
residual data between lossy and lossless coding, we explained an improved CAVLC and 
CABAC methods for lossless intra coding based on the observed statistical characteristics of 
lossless coding. Note that our research goal is to improved coding performance of CAVLC 
and CABAC, which can then be easily applied to H.264/AVC lossless intra coding by 
modifying the semantics and decoding processes without requiring any other syntax 
elements in the H.264/AVC standard. 

2. Overview of entropy coding methods in the H.264/AVC standard 
In this section, we review two entropy coding methods: CAVLC and CABAC in 
H.264/AVC. The entropy coders are employed to encode residual data; zigzag scanned the 
quantized transform coefficients, for a 4×4 sub-block. Fig. 1 illustrates the zigzag scan order 
for the 4×4 sub-block. 
 

Scanning Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Coefficient
Level

Absolute
Value 3 7 9 8 7 1 2 2 3 2 2 5 0 1 1 0

Sign + + + + + - - + - + - - - +

3 7 -1 -2

9 7 2 0

8 -3 -5 -1

2 -2 1 0

1 2 6 7

3 5 8 13

4 9 12 14

10 11 15 16

Residual data in the sub-block Zigzag scan order for the sub-block

Reordered residual data according to scan order  
Fig. 1. Zigzag scan order for the sub-block 

2.1 Overview of CAVLC 
The encoding structure of CAVLC for a 4×4 sub-block is depicted in Fig. 2. First, both the 
number of non-zero coefficients and the number of trailing ones are encoded using a 
combined codeword (coeff_token). Second, the sign of each trailing one is encoded using a 1-
bit codeword in reverse order (trailing_ones_sign_flag). Third, the absolute value of the level 
of each remaining non-zero coefficient is encoded in reverse order using one of the seven 
predefined Lev-VLC tables and the sign information is encoded (level). Fourth, the number of 
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all zeros before the last non-zero coefficient is encoded (total_zeros). Last, the number of 
consecutive zeros preceding each non-zero coefficient is encoded in reverse order 
(run_before).  
 

Coeff_token
Encode numcoeff and numtrailingones ;

Level Information
for(i=lastcoeff -numtrailingones ; i>=0; i--)
{

Encode level [i];
Encode sign[i];
if (Abs(level[i]>(3<<(suffixLength-1))

&& suffixLength<6)
suffixLength++;

}

Trailing One Sign Flag
if (numtrailingones )

Encode traling _ones_sign_flag;

Zero Information
if (numcoeff<maxNumCoeff)

Encode total _zeros;
for(i=lastcoeff ; i>=0; i--)
{

if (numcoeff>1 && zerosleft)
Encode run_before;

}

END
 

Fig. 2. Encoding structure of CAVLC for residual data coding 

More details of each coding step are described below. 
Step 1. Encode the number of non-zero coefficients (numcoeff) and the number of trailing 

ones (numtrailingones). 
A trailing one is one of up to three consecutive non-zero coefficient at the end of the 
scan of non-zero coefficients having an absolute value equal to 1. If there are more 
than three trailing ones, only the last three are treated as trailing ones, with any 
others being coded as normal coefficients. 
The four VLC tables used for encoding coeff_token are comprised of three variable-
length code tables (Num-VLC0, Num-VLC1, and Num-VLC2) and one fixed-length 
code table (FLC). The choice of VLC table depends on the number of non-zero 
coefficients in the previously coded upper and left sub-blocks. If both the upper and 
left sub-blocks are available, N=round(NU+NL)/2. If only the upper sub-block is 
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of each remaining non-zero coefficient is encoded in reverse order using one of the seven 
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all zeros before the last non-zero coefficient is encoded (total_zeros). Last, the number of 
consecutive zeros preceding each non-zero coefficient is encoded in reverse order 
(run_before).  
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Trailing One Sign Flag
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Zero Information
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Encode total _zeros;
for(i=lastcoeff ; i>=0; i--)
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Fig. 2. Encoding structure of CAVLC for residual data coding 

More details of each coding step are described below. 
Step 1. Encode the number of non-zero coefficients (numcoeff) and the number of trailing 

ones (numtrailingones). 
A trailing one is one of up to three consecutive non-zero coefficient at the end of the 
scan of non-zero coefficients having an absolute value equal to 1. If there are more 
than three trailing ones, only the last three are treated as trailing ones, with any 
others being coded as normal coefficients. 
The four VLC tables used for encoding coeff_token are comprised of three variable-
length code tables (Num-VLC0, Num-VLC1, and Num-VLC2) and one fixed-length 
code table (FLC). The choice of VLC table depends on the number of non-zero 
coefficients in the previously coded upper and left sub-blocks. If both the upper and 
left sub-blocks are available, N=round(NU+NL)/2. If only the upper sub-block is 
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available, N=NU; if only the left sub-block is available, N=NL. If neither is available, 
N is set to zero. Where N is the number of predicted non-zero coefficients in the 
current sub-block, and NU and NL represent the number of non-zero coefficients in 
the upper and left previously encoded sub-blocks, respectively. Thus, based on the 
parameter N, an appropriate VLC table for the current sub-block is selected from 
Table 1. 

 
N Table for coeff_token 

0, 1 Num-VLC0 
2, 3 Num-VLC1 

4, 5, 6, 7 Num-VLC2 
8 or above FLC 

Table 1. Choice of VLC table 

Step 2. Encode the sign of each trailing one. 
The trailing one sign flag indicates the sign information of a trailing one coefficient; 
the sign information is simply encoded by a 1-bit codeword in reverse order. If the 
sign information is positive (+), trailing_ones_sign_flag is equal to zero. Conversely, 
if the sign information is negative (-), trailing_ones_sign_flag is equal to one. 

Step 3. Encode the levels. 
The level (sign and magnitude) of each remaining non-zero coefficient in the sub-
block is encoded in reverse order, starting from the highest frequency and working 
back toward the DC coefficient. Each absolute level value is encoded by a selected 
Lev-VLC table from among seven Lev-VLC tables (Table 2), with selection of the Lev-
VLC table dependent on the magnitude of each recently encoded level. The choice 
of Lev-VLC table is adapted as follows: 
1. If (numcoeff > 10 && numtrailingones ==3) 

Initialize Lev-VLC1. 
Otherwise 

Initialize Lev-VLC0. 
2. Encode the absolute value of the last scanned coefficient. 
3. Encode the sign of the last scanned coefficient. 
4. If the magnitude of the current encoded coefficient is larger than a predefined 

threshold in Table 2, increment the Lev-VLC table. 
 

Lev-VLC table Threshold to increment Lev-VLC table 
Lev-VLC0 0 
Lev-VLC1 3 
Lev-VLC2 6 
Lev-VLC3 12 
Lev-VLC4 24 
Lev-VLC5 48 
Lev-VLC6 > 48 

 

Table 2. Thresholds for determining whether to increment Lev-VLC table 
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Step 4. Encode the total number of zeros. 
After the encoding process for level information, zeros remain. CAVLC encodes the 
syntax element, total_zeros which represents the number of zero coefficients located 
before the last non-zero coefficient. 

Step 5. Encode each run of zeros.  
After encoding total_zeros, the position of each zero coefficient is encoded. The 
syntax element run_before indicates the number of consecutive zero coefficients 
between the non-zero coefficients and is encoded with zerosleft in reverse order. 
Note that zerosleft indicates the number of zeros that has not yet been encoded. The 
syntax element run_before is encoded for each non-zero coefficient, with two 
exceptions: 
1. If there are no zerosleft to encode, processing can be stopped. 
2. Processing can be stopped to encode run_before for the final (lowest frequency) 

non-zero coefficient. 

2.2 Overview of CABAC 
2.2.1 CABAC framework 
The encoding process of CABAC consists of four coding steps: binarization, context 
modeling, binary arithmetic coding, and probability update. The block diagram for 
encoding a single syntax element in CABAC is depicted in Fig. 3. 
 

Binarizer Context
modeler

Regular 
coding 
engine

Bypass 
coding 
engine

Syntax 
element

Regular

Bitstream

Context model update

Binarized syntax element Bypass

Non-binarized 
syntax element

Bin string

Binary arithmetic coder  
Fig. 3. CABAC encoder framework 

In the first step, a given non-binary valued syntax element is uniquely mapped to a binary 
sequence (bin string); when the binary valued syntax element is given, the first step is 
bypassed. In the regular coding mode, each binary value (bin) of the binary sequence enters 
the context modeling stage, where a probability model is selected based on the previously 
encoded syntax elements. Then, the arithmetic coding engine encodes each binary value 
with its associated probability model. Finally, the selected context model is updated 
according to the actual coded binary value. Alternatively, in the bypass coding mode, each 
binary value is directly encoded via the bypass coding engine without using an explicitly 
assigned model. 
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available, N=NU; if only the left sub-block is available, N=NL. If neither is available, 
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block is encoded in reverse order, starting from the highest frequency and working 
back toward the DC coefficient. Each absolute level value is encoded by a selected 
Lev-VLC table from among seven Lev-VLC tables (Table 2), with selection of the Lev-
VLC table dependent on the magnitude of each recently encoded level. The choice 
of Lev-VLC table is adapted as follows: 
1. If (numcoeff > 10 && numtrailingones ==3) 

Initialize Lev-VLC1. 
Otherwise 

Initialize Lev-VLC0. 
2. Encode the absolute value of the last scanned coefficient. 
3. Encode the sign of the last scanned coefficient. 
4. If the magnitude of the current encoded coefficient is larger than a predefined 

threshold in Table 2, increment the Lev-VLC table. 
 

Lev-VLC table Threshold to increment Lev-VLC table 
Lev-VLC0 0 
Lev-VLC1 3 
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Step 4. Encode the total number of zeros. 
After the encoding process for level information, zeros remain. CAVLC encodes the 
syntax element, total_zeros which represents the number of zero coefficients located 
before the last non-zero coefficient. 

Step 5. Encode each run of zeros.  
After encoding total_zeros, the position of each zero coefficient is encoded. The 
syntax element run_before indicates the number of consecutive zero coefficients 
between the non-zero coefficients and is encoded with zerosleft in reverse order. 
Note that zerosleft indicates the number of zeros that has not yet been encoded. The 
syntax element run_before is encoded for each non-zero coefficient, with two 
exceptions: 
1. If there are no zerosleft to encode, processing can be stopped. 
2. Processing can be stopped to encode run_before for the final (lowest frequency) 

non-zero coefficient. 

2.2 Overview of CABAC 
2.2.1 CABAC framework 
The encoding process of CABAC consists of four coding steps: binarization, context 
modeling, binary arithmetic coding, and probability update. The block diagram for 
encoding a single syntax element in CABAC is depicted in Fig. 3. 
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coding 
engine

Syntax 
element

Regular

Bitstream

Context model update

Binarized syntax element Bypass
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syntax element

Bin string

Binary arithmetic coder  
Fig. 3. CABAC encoder framework 

In the first step, a given non-binary valued syntax element is uniquely mapped to a binary 
sequence (bin string); when the binary valued syntax element is given, the first step is 
bypassed. In the regular coding mode, each binary value (bin) of the binary sequence enters 
the context modeling stage, where a probability model is selected based on the previously 
encoded syntax elements. Then, the arithmetic coding engine encodes each binary value 
with its associated probability model. Finally, the selected context model is updated 
according to the actual coded binary value. Alternatively, in the bypass coding mode, each 
binary value is directly encoded via the bypass coding engine without using an explicitly 
assigned model. 
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2.2.2 CABAC for residual data coding 
Fig. 4 illustrates the CABAC encoding structure for a 4×4 sub-block of the quantized 
transform coefficients. First, the coded block flag is transmitted for the given sub-block 
unless the coded block pattern or the macroblock mode indicates that the specific sub-block 
has no non-zero coefficient. If the coded block flag is zero, no further information is 
transmitted for the current sub-block; otherwise, the significance map and level information 
are sequentially encoded. More details of each coding step are described below. 
 

Coded Block Flag
Encode coded _block_flag;

Significance Map
for(i=0; i<MaxNumCoeff(BlockType)-1; i++)
{

Encode significant _coeff_flag[i];
if (significant _coeff_flag)

Encode last _significant_coeff_flag[i];     
if (last_significant _coeff_flag[i])

return;
}

Level Information
for(i=MaxNumCoeff(BlockType)-1; i>=0; i--)     
{

if (significant _coeff_flag[i])  
{   

Encode coeff _abs_level_minus1[i];
Encode coeff _sign_flag[i];

}
}

End

coded_block_flag == 1

YES

NO

 
Fig. 4. Encoding structure of CABAC for residual data coding. 

Step 1. Encode coded block flag. 
For each 4×4 sub-block, a 1-bit symbol coded_block_flag is transmitted to indicate that 
a sub-block has significant coefficients. If coded_block_flag is zero, no further 
information is transmitted and the coded block flag coding process is terminated 
for the current sub-block. However, if coded_block_flag is one, the significance map 
and level information coding processes are continued. 

Step 2. Encode significance map. 
If coded_block_flag indicates that a sub-block has significant coefficients, a binary-
valued significance map is encoded. For each coefficient, a 1-bit syntax element 
significant_coeff_flag is encoded in scanning order. If significant_coeff_flag is one, i.e., 
if a non-zero coefficient exists at this scanning position, a further 1-bit syntax 
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element last_significant_coeff_flag is encoded. This syntax element states whether the 
current significant coefficient is the last coefficient inside the sub-block or not. Note 
that significant_coeff_flag and last_significant_coeff_flag for the last scanning position 
of a sub-block are not encoded. 

Step 3. Encode level information. 
After the encoded significance map determines the locations of all significant 
coefficients inside a sub-block, the values of the significant coefficients are encoded 
by using two syntax elements: coeff_abs_level_minus1 and coeff_sign_flag. The syntax 
element coeff_sign_flag is encoded by a 1-bit symbol, whereas the Unary/0th order 
Exponential Golomb (UEG0) binarization method is used to encode the values of 
coeff_abs_level_minus1 representing the absolute value of the level minus 1. The 
values of the significant coefficients are encoded in reverse scanning order. 

3. Analysis of the statistical characteristics of residual data in lossless 
coding 
In lossy coding, residual data represent the quantized transform coefficients. The statistical 
characteristics of residual data in lossy coding are as follows. In a given sub-block, the 
probability of a non-zero coefficient existing is likely to decrease as the scanning position 
increases. Moreover, the absolute value of a non-zero coefficient tends to decrease as the 
scanning position increases. Hence, the occurrence probability of a trailing one is relatively 
high. 
In lossless coding, however, residual data do not represent the quantized transform 
coefficients, but rather the differential pixel values between the original and predicted pixel 
values. Therefore, the statistical characteristics of residual data in lossless coding are as 
follows. First, the probability of a non-zero pixel existing is independent of the scanning 
position, and the number of non-zero pixels is generally large, compared to the number of 
non-zero coefficients in lossy coding. Second, the absolute value of a non-zero pixel does not 
decrease as the scanning position increases and is independent of the scanning position. 
Finally, the occurrence probability of a trailing one is not so high. 
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Fig. 5. Probability distribution of non-zero coefficients according to the scanning position. 
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Step 1. Encode coded block flag. 
For each 4×4 sub-block, a 1-bit symbol coded_block_flag is transmitted to indicate that 
a sub-block has significant coefficients. If coded_block_flag is zero, no further 
information is transmitted and the coded block flag coding process is terminated 
for the current sub-block. However, if coded_block_flag is one, the significance map 
and level information coding processes are continued. 
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If coded_block_flag indicates that a sub-block has significant coefficients, a binary-
valued significance map is encoded. For each coefficient, a 1-bit syntax element 
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element last_significant_coeff_flag is encoded. This syntax element states whether the 
current significant coefficient is the last coefficient inside the sub-block or not. Note 
that significant_coeff_flag and last_significant_coeff_flag for the last scanning position 
of a sub-block are not encoded. 

Step 3. Encode level information. 
After the encoded significance map determines the locations of all significant 
coefficients inside a sub-block, the values of the significant coefficients are encoded 
by using two syntax elements: coeff_abs_level_minus1 and coeff_sign_flag. The syntax 
element coeff_sign_flag is encoded by a 1-bit symbol, whereas the Unary/0th order 
Exponential Golomb (UEG0) binarization method is used to encode the values of 
coeff_abs_level_minus1 representing the absolute value of the level minus 1. The 
values of the significant coefficients are encoded in reverse scanning order. 

3. Analysis of the statistical characteristics of residual data in lossless 
coding 
In lossy coding, residual data represent the quantized transform coefficients. The statistical 
characteristics of residual data in lossy coding are as follows. In a given sub-block, the 
probability of a non-zero coefficient existing is likely to decrease as the scanning position 
increases. Moreover, the absolute value of a non-zero coefficient tends to decrease as the 
scanning position increases. Hence, the occurrence probability of a trailing one is relatively 
high. 
In lossless coding, however, residual data do not represent the quantized transform 
coefficients, but rather the differential pixel values between the original and predicted pixel 
values. Therefore, the statistical characteristics of residual data in lossless coding are as 
follows. First, the probability of a non-zero pixel existing is independent of the scanning 
position, and the number of non-zero pixels is generally large, compared to the number of 
non-zero coefficients in lossy coding. Second, the absolute value of a non-zero pixel does not 
decrease as the scanning position increases and is independent of the scanning position. 
Finally, the occurrence probability of a trailing one is not so high. 
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Fig. 6. Distribution of average absolute value according to the scanning position. 

 
Diffpix_token

Encode numdiffpix ;

Level Information
for(i=lastcoeff ; i>=0; i--)
{

Encode level [i];
Encode sign[i];
Update adaptive Lev -VLC table ;

}

Zero Information
if (numcoeff<maxNumCoeff)

Encode total _zeros;
for(i=lastcoeff ; i>=0; i--)
{

if (numcoeff>1 && zerosleft)
Encode run_before;

}

END
  

Fig. 7. Encoding structure of the proposed CAVLC for differential pixel value coding. 

Figs. 5 and 6 represent the probability distribution of non-zero coefficients existing and the 
distribution of average absolute value according to the scanning position, respectively. As 
expected, significant differences can be seen in the statistics between the residual data of 
lossy and lossless coding. 
Therefore, based on the above statistical characteristics of residual data in lossless coding, 
we propose more efficient CAVLC and CABAC methods for lossless compression in 
H.264/AVC by modifying the relevant coding parts of each entropy coder. 

 
Adaptive Entropy Coder Design based on the Statistics of Lossless Video Signal   

 

209 

4. Improved CAVLC 
In this section, we introduce an improved CAVLC for lossless intra coding. In Fig. 7, we 
depict the encoding structure of the proposed method for encoding the differential pixel 
value in lossless coding. The encoding procedure of the proposed CAVLC method can be 
summarized in the following steps: 
Step 1. Encode the total number of non-zero differential pixels (diffpix_token). 
Step 2. Encode the level (sign and magnitude) of all non-zero differential pixels (level). 
Step 3. Encode the number of all zeros before the last non-zero differential pixel 

(total_zeros). 
Step 4. Encode the number of consecutive zeros preceding each non-zero differential pixel 

(run_before). 
Further details of these coding methods are described in the following subsections. 

4.1 Coding the number of non-zero differential pixels 
Table 3 represents the occurrence probability distribution of trailing ones according to the 
quantization parameter (QP). Since, in lossless coding, the occurrence probability of trailing 
ones turns out to be relatively lower than that in lossy coding, the trailing one does not need 
to be treated as a special case of encoding. Therefore, in this step, we encode the total 
number of non-zero differential pixels (numdiffpix) but do not consider the number of 
trailing ones (numtrailingones). Since the trailing ones are treated as normal coefficients, they 
are encoded in the level coding step, which thereby enabled the removal of Step 2, a coding 
stage of the sign information for each trailing one. 
 

QP 
Sequence 

0 (Lossless) 12 24 36 
News 0.3719 0.8161 0.8825 0.9458 

Foreman 0.2598 0.7947 0.9117 0.9585 
Mobile 0.2107 0.6962 0.8566 0.9268 

Tempete 0.2274 0.7842 0.8861 0.9449 
City_corr 0.2100 0.8140 0.8914 0.9507 

Crowdrun 0.1813 0.7673 0.9240 0.9478 

Table 3. Occurrence probability distribution of trailing ones according to the QP 

In CAVLC, the corresponding VLC table is selected based on the predicted numcoeff; further 
details have already been explained in Section 2.1. Note that if the predicted numcoeff is 
larger than seven, the fixed length code (FLC) table is selected, as described in Table 1. In 
lossless coding, the FLC table is most often selected because numdiffpix is generally larger 
than seven, as shown in Table 4. From extensive experiments on lossless intra coding with 
various test sequences, we observed that the FLC table was selected about 95% of the time. 
Hence, we could remove three VLC tables (Num-VLC0 to Num-VLC2) in this step. Since only 
the FLC table is used, we do not need to consider the process for predicting numcoeff. 
The FLC table consists of 4 bits for numcoeff and 2 bits for numtrailingones in lossy coding; 
since numtrailingones does not need to be considered in lossless coding; only 4 bits for 
numdiffpix remain. However, instead of using the FLC table, which uniformly assigns 4 bits 
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Fig. 6. Distribution of average absolute value according to the scanning position. 
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expected, significant differences can be seen in the statistics between the residual data of 
lossy and lossless coding. 
Therefore, based on the above statistical characteristics of residual data in lossless coding, 
we propose more efficient CAVLC and CABAC methods for lossless compression in 
H.264/AVC by modifying the relevant coding parts of each entropy coder. 
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lossless coding, the FLC table is most often selected because numdiffpix is generally larger 
than seven, as shown in Table 4. From extensive experiments on lossless intra coding with 
various test sequences, we observed that the FLC table was selected about 95% of the time. 
Hence, we could remove three VLC tables (Num-VLC0 to Num-VLC2) in this step. Since only 
the FLC table is used, we do not need to consider the process for predicting numcoeff. 
The FLC table consists of 4 bits for numcoeff and 2 bits for numtrailingones in lossy coding; 
since numtrailingones does not need to be considered in lossless coding; only 4 bits for 
numdiffpix remain. However, instead of using the FLC table, which uniformly assigns 4 bits 
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for all numdiffpixs, we designed a simple but effective VLC table according to the statistical 
characteristics of numdiffpix in lossless coding. 
 

QP Sequence 0 (Lossless) 12 24 36 
News 12.5791 6.3077 3.3553 1.5448 

Foreman 13.7457 7.8073 3.3253 1.0017 
Mobile 14.6338 10.9796 6.6945 2.4879 

Tempete 13.9684 9.0754 4.9113 1.6940 
City_corr 14.4775 6.5353 3.3869 0.9449 

Crowdrun 14.9614 10.4297 4.0696 1.3231 

Table 4. Average number of non-zero coefficients in a sub-block 

Fig. 8 shows the cumulative probability distribution of the number of non-zero coefficients 
in the sub-block. A significant difference can be seen in the statistical characteristics of the 
number of non-zero coefficients between lossy and lossless coding. In lossless coding, the 
probability of the number of non-zero differential pixels turns out to be very low when the 
number of non-zero differential pixels is small (the number of non-zero differential pixels < 
10). However, the probability of the number of non-zero differential pixels drastically 
increases as the number of non-zero differential pixels increases, especially the number of 
non-zero differential pixels from 13 to 16. 
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Fig. 8. Cumulative probability distribution of the number of non-zero coefficients. 

In our proposed VLC table, first, we assign 4-bit and 2-bit codewords to numdiffpix from 1 to 
12 and 13 to 16, respectively. In order to enhance coding performance, we assign the 
different length of codeword to numdiffpix from 1 to 12 according to the statistical 
characteristics of numdiffpix instead of assigning 4-bit codewords uniformly. Thus, we use 
the phased-in code (Salomon, 2007) which is a slight extension of fixed length code (FLC). 
The phased-in code consists of codewords with two different lengths. Therefore, we assign 
4-bit and 3-bit codewords to numdiffpix from 1 to 9 and 10 to 12, respectively. In order to 
avoid ambiguity at the decoder, we inserted a check bit into the prefix of each codeword; 
details regarding the codewords are further described in Table 5. 
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Codeword numdiffpix 
Check bit Bits for numdiffpix Codeword length 

1 1 1110 5 
2 1 1101 5 
3 1 1100 5 
4 1 1011 5 
5 1 1010 5 
6 1 1001 5 
7 1 1000 5 
8 1 0111 5 
9 1 0110 5 
10 1 010 4 
11 1 001 4 
12 1 000 4 
13 0 00 3 
14 0 01 3 
15 0 10 3 
16 0 11 3 

Table 5. Codeword table for numdiffpix 

4.2 Level coding 
In level coding, the absolute value of each non-zero coefficient (abs_level) is adaptively 
encoded by a selected Lev-VLC table from the seven predefined Lev-VLC tables (Lev-VLC0 to 
Lev-VLC6) in reverse scanning order. Each Lev-VLC table is designed to encode efficiently in 
a specified range of abs_level, as described in Table 2. As previously mentioned, selection of 
the Lev-VLC table for level coding in CAVLC is based on the expectation that abs_level is 
likely to increase at low frequencies. Hence, selection of the Lev-VLC table number 
monotonically increases according to the previously encoded abs_level. 
However, the absolute value of the differential pixel (abs_diff_pixel) in lossless coding is 
independent of the scanning position, as shown in Fig. 6. Therefore, we designed an 
adaptive method for Lev-VLC table selection that can decrease or increase according to the 
previously encoded abs_diff_pixel. 
In lossy coding, CAVLC typically determines the smallest Lev-VLC table in the range of 
possible Lev-VLC tables based on the assumption that the next abs_level to be coded is going 
to be larger. However, in lossless coding, the next abs_diff_pixel does not necessarily increase 
at lower frequencies—we cannot assume that the next abs_diff_pixel is larger than the current 
abs_diff_pixel. Therefore, the Lev-VLC table for each abs_diff_pixel should be selected by 
considering the previously encoded abs_diff_pixels because we cannot predict whether or not 
the next abs_diff_pixel will increase. 
In order to determine the most appropriate Lev-VLC table, we assign a weighting value to 
the previously encoded abs_diff_pixels. The basic idea for this concept is that the Lev-VLC 
table for the next abs_diff_pixel can be determined using the weighted sum of the previously 
encoded abs_diff_pixels. The decision procedure for determining the Lev-VLC table is 
described as follows. 
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Fig. 8. Cumulative probability distribution of the number of non-zero coefficients. 

In our proposed VLC table, first, we assign 4-bit and 2-bit codewords to numdiffpix from 1 to 
12 and 13 to 16, respectively. In order to enhance coding performance, we assign the 
different length of codeword to numdiffpix from 1 to 12 according to the statistical 
characteristics of numdiffpix instead of assigning 4-bit codewords uniformly. Thus, we use 
the phased-in code (Salomon, 2007) which is a slight extension of fixed length code (FLC). 
The phased-in code consists of codewords with two different lengths. Therefore, we assign 
4-bit and 3-bit codewords to numdiffpix from 1 to 9 and 10 to 12, respectively. In order to 
avoid ambiguity at the decoder, we inserted a check bit into the prefix of each codeword; 
details regarding the codewords are further described in Table 5. 

 
Adaptive Entropy Coder Design based on the Statistics of Lossless Video Signal   

 

211 

Codeword numdiffpix 
Check bit Bits for numdiffpix Codeword length 

1 1 1110 5 
2 1 1101 5 
3 1 1100 5 
4 1 1011 5 
5 1 1010 5 
6 1 1001 5 
7 1 1000 5 
8 1 0111 5 
9 1 0110 5 
10 1 010 4 
11 1 001 4 
12 1 000 4 
13 0 00 3 
14 0 01 3 
15 0 10 3 
16 0 11 3 

Table 5. Codeword table for numdiffpix 

4.2 Level coding 
In level coding, the absolute value of each non-zero coefficient (abs_level) is adaptively 
encoded by a selected Lev-VLC table from the seven predefined Lev-VLC tables (Lev-VLC0 to 
Lev-VLC6) in reverse scanning order. Each Lev-VLC table is designed to encode efficiently in 
a specified range of abs_level, as described in Table 2. As previously mentioned, selection of 
the Lev-VLC table for level coding in CAVLC is based on the expectation that abs_level is 
likely to increase at low frequencies. Hence, selection of the Lev-VLC table number 
monotonically increases according to the previously encoded abs_level. 
However, the absolute value of the differential pixel (abs_diff_pixel) in lossless coding is 
independent of the scanning position, as shown in Fig. 6. Therefore, we designed an 
adaptive method for Lev-VLC table selection that can decrease or increase according to the 
previously encoded abs_diff_pixel. 
In lossy coding, CAVLC typically determines the smallest Lev-VLC table in the range of 
possible Lev-VLC tables based on the assumption that the next abs_level to be coded is going 
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abs_diff_pixel. Therefore, the Lev-VLC table for each abs_diff_pixel should be selected by 
considering the previously encoded abs_diff_pixels because we cannot predict whether or not 
the next abs_diff_pixel will increase. 
In order to determine the most appropriate Lev-VLC table, we assign a weighting value to 
the previously encoded abs_diff_pixels. The basic idea for this concept is that the Lev-VLC 
table for the next abs_diff_pixel can be determined using the weighted sum of the previously 
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where ai and abs_diff_pixeli are the weighting coefficient and abs_diff_pixel value, respectively, 
where both values are related to the current scanning position i. In addition, T(abs_diff_pixeli) 
and lastdiffpix represent the threshold value for selecting the corresponding Lev-VLC table 
used to encode the next abs_diff_pixel ((i-1)th abs_diff_pixel) and the scanning position number 
of the last non-zero differential pixel, respectively. Note that abs_diff_pixel is encoded in 
reverse order. In Table 6, we represent the Lev-VLC table for level coding according to 
T(abs_diff_pixeli). From extensive experiments on lossless intra coding using various test 
sequences, we could determine these optimal threshold values. 
 

Lev-VLC table T(abs_diff_pixeli)
Lev-VLC0 0 
Lev-VLC1 2 
Lev-VLC2 4 
Lev-VLC3 9 
Lev-VLC4 19 
Lev-VLC5 39 
Lev-VLC6 > 39 

Table 6. New thresholds for determining the Lev-VLC table 

In Fig. 6, we can note that the last scanned absolute values are quite different between lossy 
and lossless coding. In level coding, encoding starts with Lev-VLC0 or Lev-VLC1 because the 
last scanned abs_level represents the highest frequency coefficient in lossy coding, and it is 
likely to be small. However, in lossless coding, the last scanned abs_diff_pixel is not small 
enough to use either Lev-VLC0 or Lev-VLC1. Table 7 represents the average absolute value of 
the last scanned level for the sub-blocks. In Table 7, the last scanned abs_diff_pixel in lossless 
coding is larger than the last scanned abs_level in lossy coding. The average absolute value of 
the last scanned differential pixel in the sub-blocks is approximately 10.09 in lossless coding. 
Based on this value, we adjusted the initial Lev-VLC table for level coding. The modified Lev-
VLC table selection method is follows. 
1. Level coding starts with Lev-VLC4. 
2. Encode the absolute value of the last scanned differential pixel. 
3. Encode the sign of the last scanned differential pixel. 
4. Update the Lev-VLC table by considering the previously encoded abs_diff_pixels and 

new threshold for each Lev-VLC table. 
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QP Sequence 0 (Lossless) 12 24 36 
News 9.9371 2.5228 2.0837 1.9113 

Foreman 9.2097 2.2939 1.8902 1.8881 
Mobile 16.3748 3.0935 2.1962 1.7870 

Tempete 11.5824 2.6421 1.9960 1.7655 
City_corr 6.9376 1.2654 1.1340 1.0572 

Crowdrun 8.8483 1.3609 1.0906 1.0611 

Table 7. Average absolute value of the last non-zero coefficient for the sub-blocks 

5. Improved CABAC 
In this section, we describe an improved CABAC for lossless intra coding. In Fig. 9, we 
depict the encoding structure of the proposed method for encoding the differential pixel 
value in lossless coding. The encoding procedure of the proposed CABAC can be 
summarized in the following steps: 
Step 1. Encode whether the current sub-block contains non-zero pixel values 

(coded_block_flag) 
Step 2. Encode whether the differential pixel value at each scanning position is non-zero to 

the last scanning position (significant_diff_pixel_flag). 
Step 3. Encode the absolute value of a differential pixel value minus 1 with modified 

binarization method (abs_diff_pixel_minus1). 
Step 4. Encode the sign of a differential pixel value (diff_pixel_sign_flag). 
 

Coded Block Flag
Encode coded _block_flag;

Significance Map
for(i=0; i<MaxNumCoeff(BlockType)-1; i++)

Encode significant _diff_pixel_flag[i];

Differential Pixel Value
for(i=MaxNumCoeff(BlockType)-1; i>=0; i--)     
{

if (significant _coeff_flag[i])  
{   

Encode abs_diff_pixel_minus1[i];
Encode diff_pixel_sign_flag[i];

}
}

End

coded_block_flag == 1

YES

NO

 
Fig. 9. Encoding structure of the proposed CABAC for differential pixel value coding. 
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where ai and abs_diff_pixeli are the weighting coefficient and abs_diff_pixel value, respectively, 
where both values are related to the current scanning position i. In addition, T(abs_diff_pixeli) 
and lastdiffpix represent the threshold value for selecting the corresponding Lev-VLC table 
used to encode the next abs_diff_pixel ((i-1)th abs_diff_pixel) and the scanning position number 
of the last non-zero differential pixel, respectively. Note that abs_diff_pixel is encoded in 
reverse order. In Table 6, we represent the Lev-VLC table for level coding according to 
T(abs_diff_pixeli). From extensive experiments on lossless intra coding using various test 
sequences, we could determine these optimal threshold values. 
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In Fig. 6, we can note that the last scanned absolute values are quite different between lossy 
and lossless coding. In level coding, encoding starts with Lev-VLC0 or Lev-VLC1 because the 
last scanned abs_level represents the highest frequency coefficient in lossy coding, and it is 
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enough to use either Lev-VLC0 or Lev-VLC1. Table 7 represents the average absolute value of 
the last scanned level for the sub-blocks. In Table 7, the last scanned abs_diff_pixel in lossless 
coding is larger than the last scanned abs_level in lossy coding. The average absolute value of 
the last scanned differential pixel in the sub-blocks is approximately 10.09 in lossless coding. 
Based on this value, we adjusted the initial Lev-VLC table for level coding. The modified Lev-
VLC table selection method is follows. 
1. Level coding starts with Lev-VLC4. 
2. Encode the absolute value of the last scanned differential pixel. 
3. Encode the sign of the last scanned differential pixel. 
4. Update the Lev-VLC table by considering the previously encoded abs_diff_pixels and 

new threshold for each Lev-VLC table. 
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value in lossless coding. The encoding procedure of the proposed CABAC can be 
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Step 4. Encode the sign of a differential pixel value (diff_pixel_sign_flag). 
 

Coded Block Flag
Encode coded _block_flag;

Significance Map
for(i=0; i<MaxNumCoeff(BlockType)-1; i++)

Encode significant _diff_pixel_flag[i];

Differential Pixel Value
for(i=MaxNumCoeff(BlockType)-1; i>=0; i--)     
{
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Encode abs_diff_pixel_minus1[i];
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}
}

End

coded_block_flag == 1
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Fig. 9. Encoding structure of the proposed CABAC for differential pixel value coding. 
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Further details of these coding methods are described in the following subsections. 

5.1 Significance map coding 
In lossy coding, the occurrence probability of a non-zero coefficient is likely to decrease as 
the scanning position increases because residual data are the quantized transform 
coefficients. Therefore, the significant coefficient tends to be located at earlier scanning 
positions. In this case, last_significant_coeff_flag plays an important role in the early 
termination of significance map coding. 
However, in lossless coding, since neither transform nor quantization is performed, the 
occurrence probability of a non-zero differential pixel is independent of the scanning 
position, as shown in Fig. 5. Thus, the last non-zero differential pixel is terminated at the end 
of the scanning position, as shown in Table 8. In this case, it is meaningless to encode 
last_significant_coeff_flag to indicate the position of the last significant differential pixel. 
Therefore, we remove the last_significant_coeff_flag coding process and directly encode 
significant_diff_pixel_flags at all scanning positions from 1 to 16 in the proposed significance 
map coding. 
 

QP Sequence 
0 (Lossless) 12 24 36 

News 14.5484 9.8368 6.6348 4.0463 
Foreman 14.7669 12.5503 6.9935 2.8340 
Mobile 14.7906 12.8480 10.4510 6.2891 

Tempete 14.7868 12.4645 9.0398 3.8092 
City_corr 14.7806 10.4116 5.6708 2.3080 

Crowdrun 14.8204 13.6042 6.6730 2.6177 

Table 8. Average location of the last non-zero coefficient in a sub-block 

Fig. 10 represents an example of significance map coding for CABAC in lossy coding when 
the scanning position of the last significant coefficient is 14; the gray shaded 
significant_coeff_flag and last_significant_coeff_flag are encoded in significance map coding. 
Note that both significant_coeff_flag and last_significant_coeff_flag for the last scanning 
position of a sub-block are never encoded. 
 

Scanning position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Transform coefficient level 9 0 -5 3 0 -7 4 0 8 -11 -6 0 3 1 0 0

significant_coeff_flag 1 0 1 1 0 1 1 0 1 1 1 0 1 1

last_significant_coeff_flag 0 0 0 0 0 0 0 0 0 1
 

Fig. 10. Example of significance map coding in lossy coding. 

However, since we removed the last_significant_coeff_flag coding process in lossless coding, 
significant_diff_pixel_flag is unconditionally encoded up to the last scanning position. Fig. 11 
presents an example of significance map coding in lossless coding. All gray shaded 
significant_diff_pixel_flags are encoded in the proposed significance map coding. 
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Scanning position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Differential pixel value 9 0 -5 3 0 -7 4 0 8 -11 -6 0 3 1 0 0

significant_diff_pixel_flag 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 0
 

Fig. 11. Example of significance map coding in lossless coding. 

5.2 Binarization for differential pixel value 
For the absolute value of the quantized transform coefficient (abs_level) in lossy coding, the 
Unary/kth order Exponential Golomb (UEGk) binarization method is applied. The design of the 
UEGk binarization method is motivated by the fact that the unary code is the simplest 
prefix-free code in terms of implementation cost and it permits the fast adaptation of 
individual symbol probabilities in the subsequent context modeling stage. These 
observations are only accurate for small abs_levels; however, for larger abs_levels, adaptive 
modeling has limited functionality. Therefore, these observations have led to the idea of 
concatenating an adapted truncated unary (TU) code as a prefix and a static Exp-Golomb 
code (Teuhola, 1978) as a suffix. 
The UEGk binarization of abs_level has a cutoff value S = 14 for the TU prefix and the order 
k = 0 for the Exp-Golomb (EG0) suffix. Previously, Golomb codes have been proven to be 
optimal prefix-free codes for geometrically distributed sources (Gallager & Voorhis, 1975). 
Moreover, EG0 is the optimal code for a probability density function (pdf) as follows: 

 2( ) 1 / 2 ( 1) 0p x x with x−= ⋅ + ≥  (4) 

The statistical properties of the absolute value of the differential pixel (abs_diff_pixel) in 
lossless coding are quite different from those of abs_level in lossy coding. In lossy coding, the 
statistical distribution of abs_level is highly skewed on small values. However, in lossless 
coding, the statistical distribution of abs_diff_pixel is quite wide; note the large variation and 
wide tails, shown in Fig. 12. Moreover, we can also observe that the TU code is a fairly good 
model for the statistical distribution of abs_level in lossy coding; whereas, it is not 
appropriate for the statistical distribution of abs_diff_pixel in lossless coding. Therefore, as 
UEG0 binarization was originally designed for lossy coding, it is not appropriate for lossless 
coding. 
In order to efficiently encode abs_diff_pixel in lossless coding, we adjusted the cutoff value S 
of the TU prefix in UEG0 binarization. In Fig. 12, the optimal pdf curve for the TU code and 
the statistical distribution curve for abs_diff_pixel in lossless coding intersect at an absolute 
value of 5. Moreover, as the absolute value increases, the statistical difference between the 
TU code and abs_diff_pixel in lossless coding becomes larger. Therefore, we determined a 
new cutoff value S = 5 for the TU prefix in the proposed binarization method. 
In order to provide a good prefix-free code for lossless coding, we also determined an 
appropriate parameter k for the EGk code. The prefix of the EGk codeword consists of a 
unary code corresponding to the value 2( ) log ( / 2 1)kl x x⎢ ⎥= +⎣ ⎦ . The suffix is then computed 
as the binary representation of ( )2 (1 2 )l xkx + −  using ( )k l x+  significant bits. Consequently, 
for EGk binarization, the number of symbols having the same code length of 2 ( ) 1k l x+ +  
grows geometrically. Then, by inverting Shannon’s relationship between the ideal code 
length and the symbol probability, we can find each pdf corresponding to an EGk having an 
optimal code according to a parameter k. 
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Further details of these coding methods are described in the following subsections. 
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the scanning position increases because residual data are the quantized transform 
coefficients. Therefore, the significant coefficient tends to be located at earlier scanning 
positions. In this case, last_significant_coeff_flag plays an important role in the early 
termination of significance map coding. 
However, in lossless coding, since neither transform nor quantization is performed, the 
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position, as shown in Fig. 5. Thus, the last non-zero differential pixel is terminated at the end 
of the scanning position, as shown in Table 8. In this case, it is meaningless to encode 
last_significant_coeff_flag to indicate the position of the last significant differential pixel. 
Therefore, we remove the last_significant_coeff_flag coding process and directly encode 
significant_diff_pixel_flags at all scanning positions from 1 to 16 in the proposed significance 
map coding. 
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Table 8. Average location of the last non-zero coefficient in a sub-block 

Fig. 10 represents an example of significance map coding for CABAC in lossy coding when 
the scanning position of the last significant coefficient is 14; the gray shaded 
significant_coeff_flag and last_significant_coeff_flag are encoded in significance map coding. 
Note that both significant_coeff_flag and last_significant_coeff_flag for the last scanning 
position of a sub-block are never encoded. 
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significant_coeff_flag 1 0 1 1 0 1 1 0 1 1 1 0 1 1
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Fig. 10. Example of significance map coding in lossy coding. 

However, since we removed the last_significant_coeff_flag coding process in lossless coding, 
significant_diff_pixel_flag is unconditionally encoded up to the last scanning position. Fig. 11 
presents an example of significance map coding in lossless coding. All gray shaded 
significant_diff_pixel_flags are encoded in the proposed significance map coding. 
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Fig. 11. Example of significance map coding in lossless coding. 

5.2 Binarization for differential pixel value 
For the absolute value of the quantized transform coefficient (abs_level) in lossy coding, the 
Unary/kth order Exponential Golomb (UEGk) binarization method is applied. The design of the 
UEGk binarization method is motivated by the fact that the unary code is the simplest 
prefix-free code in terms of implementation cost and it permits the fast adaptation of 
individual symbol probabilities in the subsequent context modeling stage. These 
observations are only accurate for small abs_levels; however, for larger abs_levels, adaptive 
modeling has limited functionality. Therefore, these observations have led to the idea of 
concatenating an adapted truncated unary (TU) code as a prefix and a static Exp-Golomb 
code (Teuhola, 1978) as a suffix. 
The UEGk binarization of abs_level has a cutoff value S = 14 for the TU prefix and the order 
k = 0 for the Exp-Golomb (EG0) suffix. Previously, Golomb codes have been proven to be 
optimal prefix-free codes for geometrically distributed sources (Gallager & Voorhis, 1975). 
Moreover, EG0 is the optimal code for a probability density function (pdf) as follows: 
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The statistical properties of the absolute value of the differential pixel (abs_diff_pixel) in 
lossless coding are quite different from those of abs_level in lossy coding. In lossy coding, the 
statistical distribution of abs_level is highly skewed on small values. However, in lossless 
coding, the statistical distribution of abs_diff_pixel is quite wide; note the large variation and 
wide tails, shown in Fig. 12. Moreover, we can also observe that the TU code is a fairly good 
model for the statistical distribution of abs_level in lossy coding; whereas, it is not 
appropriate for the statistical distribution of abs_diff_pixel in lossless coding. Therefore, as 
UEG0 binarization was originally designed for lossy coding, it is not appropriate for lossless 
coding. 
In order to efficiently encode abs_diff_pixel in lossless coding, we adjusted the cutoff value S 
of the TU prefix in UEG0 binarization. In Fig. 12, the optimal pdf curve for the TU code and 
the statistical distribution curve for abs_diff_pixel in lossless coding intersect at an absolute 
value of 5. Moreover, as the absolute value increases, the statistical difference between the 
TU code and abs_diff_pixel in lossless coding becomes larger. Therefore, we determined a 
new cutoff value S = 5 for the TU prefix in the proposed binarization method. 
In order to provide a good prefix-free code for lossless coding, we also determined an 
appropriate parameter k for the EGk code. The prefix of the EGk codeword consists of a 
unary code corresponding to the value 2( ) log ( / 2 1)kl x x⎢ ⎥= +⎣ ⎦ . The suffix is then computed 
as the binary representation of ( )2 (1 2 )l xkx + −  using ( )k l x+  significant bits. Consequently, 
for EGk binarization, the number of symbols having the same code length of 2 ( ) 1k l x+ +  
grows geometrically. Then, by inverting Shannon’s relationship between the ideal code 
length and the symbol probability, we can find each pdf corresponding to an EGk having an 
optimal code according to a parameter k. 
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Fig. 12. Probability distribution of the absolute value of residual data and the optimal pdf of 
the TU code. 

 1 2( ) 1 / 2 ( / 2 1) 0k k
kp x x with x+ −= ⋅ + ≥  (5) 

where ( )kp x  is the optimal pdf corresponding to the EGk code for a parameter k. This 
implies that for an appropriately chosen parameter k, the EGk code represents a fairly good 
prefix-free code for tails of typically observed pdfs. 
Fig. 13 represents the probability distribution of ( )kp x  for k = 0, 1, 2, and 3 and the 
occurrence probability distribution of abs_diff_pixel from 6 to 20, where abs_diff_pixels up to 5 
are specified by the TU code. In the figure, the probability distribution of ( )kp x  for k = 3 is 
well matched to the occurrence probability distribution of abs_diff_pixel. This result implies 
that the EG3 code represents a fairly good approximation of the ideal prefix-free code for 
encoding abs_diff_pixel in lossless coding. 
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Fig. 13. Probability distribution of the optimal pdf corresponding to the EGk code for k = 0, 
1, 2, and 3 and the probability distribution of the absolute value of the differential pixel. 
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Based on these observations, we designed an efficient binarization algorithm to encode 
abs_diff_pixel in lossless coding. In the proposed algorithm, UEGk binarization of 
abs_diff_pixel is specified by the cutoff value S = 5 for the TU prefix and the order k = 3 for 
the EGk suffix. Table 9 shows the proposed UEG3 binarization for abs_diff_pixel. 
 

Bin string abs_diff_pixel 
TU prefix EG3 suffix 

1 0            
2 1 0           
3 1 1 0          
4 1 1 1 0         
5 1 1 1 1 0        
6 1 1 1 1 1 0 0 0 0    
7 1 1 1 1 1 0 0 0 1    
8 1 1 1 1 1 0 0 1 0    
9 1 1 1 1 1 0 0 1 1    
10 1 1 1 1 1 0 1 0 0    
11 1 1 1 1 1 0 1 0 1    
12 1 1 1 1 1 0 1 1 0    
13 1 1 1 1 1 0 1 1 1    
14 1 1 1 1 1 1 0 0 0 0 0  
15 1 1 1 1 1 1 0 0 0 0 1  
... ...     ...       

Bin index 1 2 3 4 5 6 7 8 9 10 11 ... 

Table 9. Proposed UEG3 binarization for encoding the absolute value of the differential pixel 

6. Experimental results and analysis 
In this chapter, we introduced the improved CAVLC and CABAC methods for lossless intra 
coding. In order to verify coding efficiency of the proposed methods, we performed 
experiments on several test sequences of YUV 4:2:0 and 8 bits per pixel format with QCIF, 
CIF, and HD resolutions. We implemented our proposed methods in the H.264/AVC 
reference software version JM13.2 (Fraunhofer Institute for Telecommunications Heinrich 
Hertz Institute, 2011). Table 10 shows the encoding parameters for the reference software. 
 

Parameter CAVLC CABAC 
ProfileIDC 244 (High 4:4:4) 
IntraPeriod 1 (only intra coding) 

QPISlice 0 (lossless) 
QPPrimeYZeroTransformBypassFlag 1 

SymbolMode 0 1 

Table 10. Encoding parameters 

In order to evaluate coding performance for the proposed CAVLC and CABAC methods, 
we consider two sections based on the following settings in each method. 
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Fig. 12. Probability distribution of the absolute value of residual data and the optimal pdf of 
the TU code. 
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where ( )kp x  is the optimal pdf corresponding to the EGk code for a parameter k. This 
implies that for an appropriately chosen parameter k, the EGk code represents a fairly good 
prefix-free code for tails of typically observed pdfs. 
Fig. 13 represents the probability distribution of ( )kp x  for k = 0, 1, 2, and 3 and the 
occurrence probability distribution of abs_diff_pixel from 6 to 20, where abs_diff_pixels up to 5 
are specified by the TU code. In the figure, the probability distribution of ( )kp x  for k = 3 is 
well matched to the occurrence probability distribution of abs_diff_pixel. This result implies 
that the EG3 code represents a fairly good approximation of the ideal prefix-free code for 
encoding abs_diff_pixel in lossless coding. 
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Fig. 13. Probability distribution of the optimal pdf corresponding to the EGk code for k = 0, 
1, 2, and 3 and the probability distribution of the absolute value of the differential pixel. 
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Based on these observations, we designed an efficient binarization algorithm to encode 
abs_diff_pixel in lossless coding. In the proposed algorithm, UEGk binarization of 
abs_diff_pixel is specified by the cutoff value S = 5 for the TU prefix and the order k = 3 for 
the EGk suffix. Table 9 shows the proposed UEG3 binarization for abs_diff_pixel. 
 

Bin string abs_diff_pixel 
TU prefix EG3 suffix 

1 0            
2 1 0           
3 1 1 0          
4 1 1 1 0         
5 1 1 1 1 0        
6 1 1 1 1 1 0 0 0 0    
7 1 1 1 1 1 0 0 0 1    
8 1 1 1 1 1 0 0 1 0    
9 1 1 1 1 1 0 0 1 1    
10 1 1 1 1 1 0 1 0 0    
11 1 1 1 1 1 0 1 0 1    
12 1 1 1 1 1 0 1 1 0    
13 1 1 1 1 1 0 1 1 1    
14 1 1 1 1 1 1 0 0 0 0 0  
15 1 1 1 1 1 1 0 0 0 0 1  
... ...     ...       

Bin index 1 2 3 4 5 6 7 8 9 10 11 ... 

Table 9. Proposed UEG3 binarization for encoding the absolute value of the differential pixel 

6. Experimental results and analysis 
In this chapter, we introduced the improved CAVLC and CABAC methods for lossless intra 
coding. In order to verify coding efficiency of the proposed methods, we performed 
experiments on several test sequences of YUV 4:2:0 and 8 bits per pixel format with QCIF, 
CIF, and HD resolutions. We implemented our proposed methods in the H.264/AVC 
reference software version JM13.2 (Fraunhofer Institute for Telecommunications Heinrich 
Hertz Institute, 2011). Table 10 shows the encoding parameters for the reference software. 
 

Parameter CAVLC CABAC 
ProfileIDC 244 (High 4:4:4) 
IntraPeriod 1 (only intra coding) 

QPISlice 0 (lossless) 
QPPrimeYZeroTransformBypassFlag 1 

SymbolMode 0 1 

Table 10. Encoding parameters 

In order to evaluate coding performance for the proposed CAVLC and CABAC methods, 
we consider two sections based on the following settings in each method. 
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Entropy coder Method Description 
Method I Modify numdiffpix coding CAVLC Method II Method I + modify level coding 

Method III Modify significance map coding CABAC Method IV Method III + modify binarization 

Table 11. Each two coding variations in the proposed CAVLC and CABAC methods 

Note that these proposed methods were applied to H.264/AVC lossless intra coding by 
modifying the semantics and decoding processes, without adding any syntax elements to 
the H.264/AVC standard. The proposed method was implemented on top of the previous 
sample-wise DPCM prediction method, and it further enhanced coding efficiency for 
lossless intra coding in H.264/AVC. 
To verify efficiency of the proposed methods, we performed two kinds of experiments. In 
the first experiment, we compared coding perforamcne of the origianl CAVLC and 
proposed CAVLC methods and then coding performance of the original CABAC and 
proposed CABAC methods in Tables 12 and 13, respectively. In the second experiment, we 
encoded only one frame (first frame) for each test sequence using our proposed methods 
(Method II and Method IV) and a well-known lossless coding techniques, lossless joint 
photographic experts group (JPEG-LS) (Sayood, 2006; Weinberger et al., 2000) used as a 
comparison for coding performance of our proposed methods. 
 

Sequence Size (bits) Method Total bits (bits) Bit saving (%) 
H.264/AVC CAVLC 13319592 0 

Method I 12772832 4.105 
News 

(QCIF, 176×144)
100 frames 

30412800 
Method II 12260784 7.949 

H.264/AVC CAVLC 14151096 0 
Method I 13595488 3.926 

Foreman 
(QCIF, 176×144)

100 frames 
30412800 

Method II 12960664 8.412 
H.264/AVC CAVLC 72406600 0 

Method I 70186288 3.066 
Mobile 

(CIF, 352×288) 
100 frames 

121651200 
Method II 62959352 13.047 

H.264/AVC CAVLC 65508056 0 
Method I 63271688 3.414 

Tempete 
(CIF, 352×288) 

100 frames 
121651200 

Method II 58310688 10.987 
H.264/AVC CAVLC 517138472 0 

Method I 497092864 3.876 
City_corr 

(HD, 1280×720)
100 frames 

1105920000 
Method II 478721808 7.429 

H.264/AVC CAVLC 1177553944 0 
Method I 1131495264 3.911 

Crwodrun 
(HD, 1920×1080)

100 frames 
2488320000 

Method II 1080073896 8.278 
H.264/AVC CAVLC  0 

Method I  3.716 Average 
Method II  9.350 

 

Table 12. Comparison of bit savings for H.264/AVC CAVLC and the proposed CAVLC 
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Comparisons were made in terms of bit-rate percentage differences (Tables 12 and 13) and 
compression ratio differences (Table 14) with respect to the origianl entropy coding methods 
in H.264/AVC and JPEG-LS, respectively. These changes were calculated as follows: 

 .264/

.264/
(%) 100H AVC Method

H AVC

Bitrate Bitrate
Saving Bits

Bitrate
−

Δ = ×  (6) 

 
Method

Original image sizeCompression Ratio
Bitrate

=  (7) 

 
Sequence Size (bits) Method Total bits (bits) Bit saving (%) 

H.264/AVC CABAC 13941080 0 
Method III 12563136 9.884 

News 
(QCIF, 176×144)

100 frames 
30412800 

Method IV 11760776 15.639 
H.264/AVC CABAC 14344176 0 

Method III 12857928 10.361 
Foreman 

(QCIF, 176×144)
100 frames 

30412800 
Method IV 12572368 12.352 

H.264/AVC CABAC 91371512 0 
Method III 85034984 6.935 

Mobile 
(CIF, 352×288) 

100 frames 
121651200 

Method IV 68152408 25.412 
H.264/AVC CABAC 79063136 0 

Method III 72756080 7.977 
Tempete 

(CIF, 352×288) 
100 frames 

121651200 
Method IV 60830560 23.061 

H.264/AVC CABAC 565080864 0 
Method III 507403880 10.207 

City_corr 
(HD, 1280×720)

100 frames 
1105920000 

Method IV 470393024 16.757 
H.264/AVC CABAC 1250235376 0 

Method III 1120777696 10.355 
Crowdrun 

(HD, 1920×1080)
100 frames 

2488320000 
Method IV 1047171240 16.242 

H.264/AVC CABAC  0 
Method III  9.287 Average 
Method IV  18.244 

Table 13. Comparison of bit savings for H.264/AVC CABAC and the proposed CABAC 

In Tables 12 and 13, we confirmed that the proposed CAVLC and CABAC methods 
provided better coding performance compared to the conventioanl CAVLC and CABAC 
methods—by approximately 9% and 18% bit savings, respectively. Table 14 presents the 
experimental results comparing a well-known lossless coding techniques, JPEG-LS, in terms 
of lossless intra coding, which again shows that the proposed methods displayed better 
coding performance compared to JPEG-LS in lossless coding. 
Lossless compression techniques, such as JPEG-LS and H.264/AVC lossless mode consist of 
two independent coding parts; prediction based on modeling and entropy coding of 
prediction residuals. In JPEG-LS, a simple predictive coding model called differential pulse-
code modulation (DPCM) is employed. This is a model in which predictions of the sample 
values are estimated from the neighboring samples that are previously coded in the image. 
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Comparisons were made in terms of bit-rate percentage differences (Tables 12 and 13) and 
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100 frames 

121651200 
Method IV 60830560 23.061 

H.264/AVC CABAC 565080864 0 
Method III 507403880 10.207 

City_corr 
(HD, 1280×720)

100 frames 
1105920000 

Method IV 470393024 16.757 
H.264/AVC CABAC 1250235376 0 

Method III 1120777696 10.355 
Crowdrun 

(HD, 1920×1080)
100 frames 

2488320000 
Method IV 1047171240 16.242 

H.264/AVC CABAC  0 
Method III  9.287 Average 
Method IV  18.244 

Table 13. Comparison of bit savings for H.264/AVC CABAC and the proposed CABAC 

In Tables 12 and 13, we confirmed that the proposed CAVLC and CABAC methods 
provided better coding performance compared to the conventioanl CAVLC and CABAC 
methods—by approximately 9% and 18% bit savings, respectively. Table 14 presents the 
experimental results comparing a well-known lossless coding techniques, JPEG-LS, in terms 
of lossless intra coding, which again shows that the proposed methods displayed better 
coding performance compared to JPEG-LS in lossless coding. 
Lossless compression techniques, such as JPEG-LS and H.264/AVC lossless mode consist of 
two independent coding parts; prediction based on modeling and entropy coding of 
prediction residuals. In JPEG-LS, a simple predictive coding model called differential pulse-
code modulation (DPCM) is employed. This is a model in which predictions of the sample 
values are estimated from the neighboring samples that are previously coded in the image. 



 
Recent Advances on Video Coding 

 

220 

Most predictors take the average of the samples immediately above and to the left of the 
target sample. In H.264/AVC, a similar DPCM is employed to predict the original pixel 
value, but it employs rate-distortion optimization (RDO) (Sullivan & Wiegand, 1998) 
method to find the best prediction. Hence, H.264/AVC requires the additional coding bits to 
send the prediction mode but it can reduce more coding bits in the residual coding. 
However, when the residual data is entered into the entropy coding part, JPEG-LS provides 
better coding performance than H.264/AVC lossless mode because H.264/AVC still 
employs CAVLC or CABAC which are mainly designed for discrete cosine transform(DCT)-
based lossy coding. As a result, JPEG-LS and H.264/AVC lossless mode provide quite 
similar coding performance. Since, in this chapter, we have proposed the improved CAVLC 
and CABAC methods for lossless intra coding, coding performance of the H.264/AVC 
lossless mode based on the proposed methods is better than that of JPEG-LS, as shown in 
Table 14. 
 

Sequence Method Compression ratio
JPEG-LS 2.0872 
Method II 2.4660 

News 
(QCIF, 176×144) 

1 frame Method IV 2.5948 
JPEG-LS 1.8179 
Method II 2.3554 

Foreman 
(QCIF, 176×144) 

1 frame Method IV 2.4528 
JPEG-LS 1.4865 
Method II 1.9515 

Mobile 
(CIF, 352×288) 

1 frame Method IV 1.7992 
JPEG-LS 1.6556 
Method II 2.0813 

Tempete 
(CIF, 352×288) 

1 frame Method IV 2.0013 
JPEG-LS 1.9079 
Method II 2.2809 

City_corr 
(HD, 1280×720) 

1 frame Method IV 2.3248 
JPEG-LS 1.6802 
Method II 2.1745 

Crwodrun 
(HD, 1920×1080) 

1 frame Method IV 2.1628 
JPEG-LS 1.7726 
Method II 2.2183 Average 
Method IV 2.2226 

Table 14. Comparison of compression ratio for JPEG-LS, Method II, and Method IV 

Let us now give some information on why we do not address lossless inter coding and why 
it is outside the scope of our work. Since transform and quantization are not used in lossless 
video coding, the statistical properties of residual data highly depend on prediction. In 
general, since video sequences contain more redundancy in time than in space, the accuracy 
of inter prediction is better than that of intra prediction. Thus, there are significant statistical 
differences in residual data between lossless intra and lossless inter coding. In other words, 
for lossless intra prediction, the distribution of the amplitude of residual data is quite wide; 
in contrast, for lossless inter prediction, the distribution of the amplitude of residual data is 
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skewed on small values. Finally, it is not easy to determine the best entropy coding method 
that can generally be used for lossless video coding (for both intra and inter coding). 
Therefore, in this chapter, we focused on the improvement of an appropriate entropy coder 
for lossless intra coding—though there could be a future work focused on improving upon 
current entropy coders for lossless video coding. 
In terms of scanning patterns for lossy coding, coding performance can change according to 
various scanning patterns because residual data are the quantized transform coefficients, 
and the statistical distribution of these coefficients is highly skewed on small values, as 
depicted in Figs. 5, 6, and 12. Hence, if we can determine an appropriate scanning pattern, 
we can enhance coding performance by arranging the quantized transform coefficients 
according to their amplitudes. However, in lossless coding, the statistical distribution of 
residual data is quite wide; the figures also show that large variations and wide tails are 
independent of the scanning position. Therefore, theoretically, there is no scanning order 
that can provide better coding efficiency than that obtained here; we subsequently 
confirmed this fact by performing extensive experiments using various scanning patterns, 
including experiments using a zigzag scanning order. Finally, determining the optimum 
scanning pattern that can be generally accepted for lossless coding is rather difficult. 
However, a future work may be based on this topic. 

7. Conclusion 
In this chapter, we proposed the improved context-based adaptive variable length coding 
(CAVLC) and context-based adaptive binary arithmetic coding (CABAC) methods for lossless 
intra coding. Considering the statistical differences in residual data between lossy and 
lossless coding, we designed each new entropy coder by modifying the corresponding 
encoding parts of each conventional entropy coder based on the observed statistical 
characteristics of residual data in lossless coding. Experimental results show that the 
proposed CAVLC and CABAC methods provided approximately 9% and 18% bit savings, 
compared to the original CAVLC and CABAC methods in the H.264/AVC FRExt high 
profile, respectively. 
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Most predictors take the average of the samples immediately above and to the left of the 
target sample. In H.264/AVC, a similar DPCM is employed to predict the original pixel 
value, but it employs rate-distortion optimization (RDO) (Sullivan & Wiegand, 1998) 
method to find the best prediction. Hence, H.264/AVC requires the additional coding bits to 
send the prediction mode but it can reduce more coding bits in the residual coding. 
However, when the residual data is entered into the entropy coding part, JPEG-LS provides 
better coding performance than H.264/AVC lossless mode because H.264/AVC still 
employs CAVLC or CABAC which are mainly designed for discrete cosine transform(DCT)-
based lossy coding. As a result, JPEG-LS and H.264/AVC lossless mode provide quite 
similar coding performance. Since, in this chapter, we have proposed the improved CAVLC 
and CABAC methods for lossless intra coding, coding performance of the H.264/AVC 
lossless mode based on the proposed methods is better than that of JPEG-LS, as shown in 
Table 14. 
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JPEG-LS 2.0872 
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Let us now give some information on why we do not address lossless inter coding and why 
it is outside the scope of our work. Since transform and quantization are not used in lossless 
video coding, the statistical properties of residual data highly depend on prediction. In 
general, since video sequences contain more redundancy in time than in space, the accuracy 
of inter prediction is better than that of intra prediction. Thus, there are significant statistical 
differences in residual data between lossless intra and lossless inter coding. In other words, 
for lossless intra prediction, the distribution of the amplitude of residual data is quite wide; 
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skewed on small values. Finally, it is not easy to determine the best entropy coding method 
that can generally be used for lossless video coding (for both intra and inter coding). 
Therefore, in this chapter, we focused on the improvement of an appropriate entropy coder 
for lossless intra coding—though there could be a future work focused on improving upon 
current entropy coders for lossless video coding. 
In terms of scanning patterns for lossy coding, coding performance can change according to 
various scanning patterns because residual data are the quantized transform coefficients, 
and the statistical distribution of these coefficients is highly skewed on small values, as 
depicted in Figs. 5, 6, and 12. Hence, if we can determine an appropriate scanning pattern, 
we can enhance coding performance by arranging the quantized transform coefficients 
according to their amplitudes. However, in lossless coding, the statistical distribution of 
residual data is quite wide; the figures also show that large variations and wide tails are 
independent of the scanning position. Therefore, theoretically, there is no scanning order 
that can provide better coding efficiency than that obtained here; we subsequently 
confirmed this fact by performing extensive experiments using various scanning patterns, 
including experiments using a zigzag scanning order. Finally, determining the optimum 
scanning pattern that can be generally accepted for lossless coding is rather difficult. 
However, a future work may be based on this topic. 

7. Conclusion 
In this chapter, we proposed the improved context-based adaptive variable length coding 
(CAVLC) and context-based adaptive binary arithmetic coding (CABAC) methods for lossless 
intra coding. Considering the statistical differences in residual data between lossy and 
lossless coding, we designed each new entropy coder by modifying the corresponding 
encoding parts of each conventional entropy coder based on the observed statistical 
characteristics of residual data in lossless coding. Experimental results show that the 
proposed CAVLC and CABAC methods provided approximately 9% and 18% bit savings, 
compared to the original CAVLC and CABAC methods in the H.264/AVC FRExt high 
profile, respectively. 
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1. Introduction

The demand of video transmission over wireless networks exhibits an ever growing trend.
However, content distribution and resource allocation are typically studied and optimized
separately, which leads to suboptimal network performance. This problem becomes more
prominent in wireless networks, where the available network resource is highly dynamic and
typically limited in terms of supporting high quality multimedia applications. This makes it
challenging to achieve efficient multi-user video streaming over wireless channels.
In this chapter, we consider the problem of multi-user video streaming over Orthogonal
Frequency Division Multiplexing (OFDM) networks, where videos are coded in Scalable
Video Coding (SVC) format. OFDM is a promising technology for future broadband wireless
networks, due to many of its advantages such as robustness against intersymbol interference
and the usage of lower complexity equalization at the receiver. It is suitable for supporting
high spectrum efficiency communications, and thus is chosen as the core technology for a
number of wireless data systems such as IEEE 802.16 (WiMAX), IEEE 802.11a/g (Wireless
LANs), and IEEE 802.20 (Mobile Broadband Wireless Access) (34). The resource allocation
in OFDM is done in the dimension of power, frequency, and time, and thus is very flexible.
SVC, on the other hand, is one of the most promising technologies to enable high coding
performance and flexibility (29). It has the attractive capabilities of reconstructing lower
resolution or lower quality signals from partially received bitstreams, and hence provides
flexible solutions for transmission over heterogeneous networks and allows easy adaptation
to various storage devices and terminals. In this chapter, we focus on designing efficient
multi-user video streaming protocols that fully exploit the resource allocation flexibility in
OFDM and performance scalabilities in SVC.
Most of the previous work on downlink resource allocation in OFDM system focused on
elastic data transmissions, where users do not have stringent deadline constraints (e.g.,
(5; 8; 19; 35; 41)). In (35), the goal was to minimize the total transmit power given users’
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1. Introduction

The demand of video transmission over wireless networks exhibits an ever growing trend.
However, content distribution and resource allocation are typically studied and optimized
separately, which leads to suboptimal network performance. This problem becomes more
prominent in wireless networks, where the available network resource is highly dynamic and
typically limited in terms of supporting high quality multimedia applications. This makes it
challenging to achieve efficient multi-user video streaming over wireless channels.
In this chapter, we consider the problem of multi-user video streaming over Orthogonal
Frequency Division Multiplexing (OFDM) networks, where videos are coded in Scalable
Video Coding (SVC) format. OFDM is a promising technology for future broadband wireless
networks, due to many of its advantages such as robustness against intersymbol interference
and the usage of lower complexity equalization at the receiver. It is suitable for supporting
high spectrum efficiency communications, and thus is chosen as the core technology for a
number of wireless data systems such as IEEE 802.16 (WiMAX), IEEE 802.11a/g (Wireless
LANs), and IEEE 802.20 (Mobile Broadband Wireless Access) (34). The resource allocation
in OFDM is done in the dimension of power, frequency, and time, and thus is very flexible.
SVC, on the other hand, is one of the most promising technologies to enable high coding
performance and flexibility (29). It has the attractive capabilities of reconstructing lower
resolution or lower quality signals from partially received bitstreams, and hence provides
flexible solutions for transmission over heterogeneous networks and allows easy adaptation
to various storage devices and terminals. In this chapter, we focus on designing efficient
multi-user video streaming protocols that fully exploit the resource allocation flexibility in
OFDM and performance scalabilities in SVC.
Most of the previous work on downlink resource allocation in OFDM system focused on
elastic data transmissions, where users do not have stringent deadline constraints (e.g.,
(5; 8; 19; 35; 41)). In (35), the goal was to minimize the total transmit power given users’
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target bit rates. In (41), the authors investigated the downlink throughput maximization
problem with dynamic sub-carrier allocation and fixed power allocation. (19) also considered
maximizing the sum-rate without any minimum bit-rate target. In (8), the authors proposed
Best Sub-carrier Allocation (BSA) for voice and data users that utilizes the feedback of the
radio channel quality and sorts users to choose sub-carrier based on their radio channel
feedback. Moreover, (5; 19; 41) considered suboptimal heuristics that use a constant power per
sub-carrier. However, due to the deadline requirement feature of real-time video applications,
these solutions may not be optimal for delivering multi-user, delay-constrained, real-time
streaming video applications.
Video transmission over OFDM channels has been studied recently (15; 36). However,
neither of these results considered power allocation, which is critical to wireless multimedia
data transmission. For multi-user video streaming over wireless networks, it has been
shown that the system performance can be significantly improved by taking the video
contents into explicit consideration. In (10), sub-carriers and power are allocated based
on rate-distortion model. In (31), video distortion is minimized by considering power and
sub-carrier constraints in OFDM systems. Neither (10) nor (31) explicitly took the delay
constraint into account.
SVC standard brings various scalabilities (e.g. temporal, spatial, and quality) through
adaptation of the bit stream, thus is particularly relevant in heterogeneous network contexts.
One niche area of the application of SVC is the transmission over wireless networks. There
have been several research results reporting SVC transmission over wireless networks. Most
of them focused on exploiting the scalable feature of SVC to provide QoS quarantee for
the end users ((6; 28), and the references therein). In (11), the layered bitstream of SVC is
exploited in conjunction with a specific congestion control algorithm for distributing video
to subscriber stations of an 802.16 system. In (9), the rate distortion model proposed for
H.264/AVC is extended to include the effect of random packet loss on the scalable video
layers of SVC and the resulting overall video distortion. Reference (32) focused on maximizing
the number of admitted users in the communication system by giving different priorities
to different video subflows according to their importance. None of the aforementioned
solutions for SVC transmission over wireless networks considered power control. An unequal
power allocation scheme was proposed in (3) for the transmission of SVC packets over
WiMAX communications channels. In (26), a distortion-based gradient scheduling algorithm
was proposed. However, they did not consider the influence of video latency on resource
allocation.
The main contribution of this chapter is to provide a framework for efficient multi-user SVC
video streaming over OFDM wireless channels. The objective is to maximize the average
PSNR of all video users under a total downlink transmission power constraint. The
basis of our approach is the stochastic subgradient-based scheduling framework presented
in ((2; 16; 30)). In previous work (13), an efficient downlink OFDM resource allocation
algorithm for elastic data traffic has been successfully designed, which is provably optimal for
long term utility maximization subject to stochastic channel variations of wireless networks.
In this chapter, we generalize such framework to real-time video streaming by further
considering dynamically adjusted priority weights based on the current video contents,
deadline requirements, and the previous transmission results. The following steps are
involved in the proposed joint optimization:

1. Unlike conventional wireless streaming approach, where video data is transmitted
indifferently with the achievable rate, we divide the video data into subflows based on the
contribution of distortion decrease and the delay requirements of individual video frames.

224 Recent Advances on Video Coding Scheduling and Resource Allocation for SVC Streaming over OFDM Downlink Systems 3

As discussed in Section 3, this allows the most important video data get transmitted with
more priorities and avoid the waste of the network resources.

2. Based on the existing gradient related approach, the rate-distortion weighted transmission
scheduling strategy is established in Section 4.3. Our proposed solution involves
calculating the weights of the current subflows according to their rate-distortion
properties, playback deadline requirements and the previous transmission results.

3. The inherent prioritization brought from the aforementioned weight definition is however
conflict with the so-called deadline approaching effect. In Section 4.4, we proposed
to deliberately add a product term to the weight calculation which increases when the
deadline approaches. This allows the weights of the subflows with low rate-distortion ratio
being gracefully increased when their playback deadline approach. We propose a family
of algorithms and identify the best tradeoff between meeting deadlines and maximizing
the overall video quality.

The resulting algorithms not only fully utilize the temporal and quality scalabilities of the
SVC scheme, but also thoroughly explore the time, frequency and multi-user diversities
of the OFDM system. Simulations show that the proposed algorithms are better than the
content-blind and delay-blind approaches, and the improvement becomes quite significant
(e.g., PSNR improvement of as high as 6 dB) in a congested network.
The remainder of this chapter is organized as follows. Section 2 introduces the OFDM network
model. Section 3 describes the SVC scheme. Section 4 describes the problem formulation and
the proposed algorithms. In Section 5, we examine the performance of our proposed solutions
through simulations. Concluding remarks are given in Section 6.

2. OFDM model of the wireless transmission

The OFDM network model considered here is similar as in (13). Different video bitstreams are
transmitted from the base station to a set I = {1, . . . , I} of mobile users in an OFDM cell. Time
is divided into TDM time-slots that contain an integer number of OFDM symbols. The entire
frequency band is divided into a set J = {1, . . . , J} of tones (carriers). The rate achieved by
user i at time t, ri,t, depends on the resource (tone and power) allocation and the channel gains.
In each time-slot, the scheduling and resource allocation decision can be viewed as selecting
a rate vector rt = (r1,t, . . . , rI,t) from the current feasible rate region R(et) ⊆ RK

+, where et
indicates the time-varying channel state information available at the scheduler at time t. For
presentation simplicity, we omit the time index t in the following.
For each tone j ∈ J and user i ∈ I , let eij be the received signal-to-noise ratio (SNR) per unit
power. We denote the power allocated to user i on tone j as pij and the fraction of time that
tone allocated to user i as xij. The total power allocation must satisfy ∑i,j pij ≤ P, i.e., the
total downlink power constraint at the base station. The total allocation for each tone j must
satisfy ∑i xij ≤ 1. For a given allocation with perfect channel estimation, user i’s feasible rate
on tone j is rij = xijB log(1 + pij eij

xij
), which corresponds to the Shannon capacity of a Gaussian

noise channel with bandwidth xijB and received SNR pijeij/xij.1 This SNR arises since the
active transmission power that user i transmits on tone j is pij/xij when only a fraction xij
of the tone is allocated. Without loss of generality we set bandwidth B = 1 in the following
analysis.
In practical OFDM networks, imperfect carrier synchronization and channel estimation may
result in “self-noise” (e.g. (20; 22)). With self-noise, user i’s feasible rate on tone j becomes

1 To better model the achievable rates in a practical system we can re-normalize eij by γeij, where γ ∈ [0, 1]
represents the system’s “gap” from capacity.
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The main contribution of this chapter is to provide a framework for efficient multi-user SVC
video streaming over OFDM wireless channels. The objective is to maximize the average
PSNR of all video users under a total downlink transmission power constraint. The
basis of our approach is the stochastic subgradient-based scheduling framework presented
in ((2; 16; 30)). In previous work (13), an efficient downlink OFDM resource allocation
algorithm for elastic data traffic has been successfully designed, which is provably optimal for
long term utility maximization subject to stochastic channel variations of wireless networks.
In this chapter, we generalize such framework to real-time video streaming by further
considering dynamically adjusted priority weights based on the current video contents,
deadline requirements, and the previous transmission results. The following steps are
involved in the proposed joint optimization:

1. Unlike conventional wireless streaming approach, where video data is transmitted
indifferently with the achievable rate, we divide the video data into subflows based on the
contribution of distortion decrease and the delay requirements of individual video frames.
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a rate vector rt = (r1,t, . . . , rI,t) from the current feasible rate region R(et) ⊆ RK

+, where et
indicates the time-varying channel state information available at the scheduler at time t. For
presentation simplicity, we omit the time index t in the following.
For each tone j ∈ J and user i ∈ I , let eij be the received signal-to-noise ratio (SNR) per unit
power. We denote the power allocated to user i on tone j as pij and the fraction of time that
tone allocated to user i as xij. The total power allocation must satisfy ∑i,j pij ≤ P, i.e., the
total downlink power constraint at the base station. The total allocation for each tone j must
satisfy ∑i xij ≤ 1. For a given allocation with perfect channel estimation, user i’s feasible rate
on tone j is rij = xijB log(1 + pij eij
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), which corresponds to the Shannon capacity of a Gaussian

noise channel with bandwidth xijB and received SNR pijeij/xij.1 This SNR arises since the
active transmission power that user i transmits on tone j is pij/xij when only a fraction xij
of the tone is allocated. Without loss of generality we set bandwidth B = 1 in the following
analysis.
In practical OFDM networks, imperfect carrier synchronization and channel estimation may
result in “self-noise” (e.g. (20; 22)). With self-noise, user i’s feasible rate on tone j becomes

1 To better model the achievable rates in a practical system we can re-normalize eij by γeij, where γ ∈ [0, 1]
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rij = xij log(1 +
pijẽij

xij + βpij ẽij
),

where β << 1 is the self-noise coefficient. Under these assumptions, we have

R(e) =

{
r : ri = ∑

j
xij log

(
1 + pij ẽij

xij+βpij ẽij

)
, ∀i ∈ I , ∑

i,j
pij ≤ P, ∑

i
xij ≤ 1 ∀j ∈ J , (x,p) ∈ X

}
,

(1)
where X := ∏N

j=1 Xj, and for all j ∈ J ,

Xj :=
{
(xj,pj) ≥ 0 : xij ≤ 1, pij ≤ xij s̃ij

ẽij
, ∀i ∈ I , ∀j ∈ J

}
, (2)

with xj := (xij, ∀i ∈ I) and pj := (pij, ∀i ∈ I). Here, s̃ij =
Γij

1−Γij β
, where Γij < 1/β is a

maximum SNR constraint on tone j for user i, e.g., to model a constraint on the maximum rate
per tone due to a limitation on the available modulation and coding schemes. 2

We assume that ẽij is known by the scheduler for all i and j as is β (equivalently, the estimation
error variance). In a frequency division duplex (FDD) system, this knowledge can be acquired
by having the base station transmit pilot signals, from which the users can estimate their
channel gains and feedback to the base station. In a time division duplex (TDD) system, these
gains can also be acquired by having the users transmit uplink pilots; the base station can
then exploit reciprocity to measure the channel gains. In both cases, this feedback information
would need to be provided within the channel’s coherence time.

3. SVC Scheme of video coding

SVC is an extension of the H.264/MPEG4-AVC video coding standard (33) and provides
three different scalabilities: spatial, temporal, and quality. An overview of the features and
applications of SVC can be found in (29). In this chapter, we focus on how to exploit the
temporal and quality salabilities by adaptive scheduling and resource allocation.3

In SVC, the video frames are usually divided into groups, or called groups of pictures (GOPs).
The typical SVC GOP structure is shown in Fig. 1, where we assume that one GOP consists
of 4 frames. The video frames are further encoded into different temporal and quality layers.
One box in Fig. 1 represents the data belonging to one specific temporal layer and one specific
quality layer. For the purpose of video distortion calculation, we regard a box as the smallest
decodable data unit and call it a “packet”. All the packets in one column represent one frame.
For example, frame L1 consists of three packets: L10, L11, and L12.
The packets at the same horizontal level belong to the same quality layer. The quality scalability
refers to the fact that a video decoder can reconstruct video sequences without receiving all
quality layers. After receiving the base layer, the decoder can already provide a video with
some reasonable quality. The video quality can be improved if one or more enhancement
quality layers are received before the required playback deadline of the corresponding video
frames. In Fig. 1, the dashed arrows depict the enhancement layers order for each video frame.

2 Another important practical constraint is that each subchannel can be allocated to at most one user, i.e.,
xij ∈ [0, 1]. For simplicity, we do not consider such constraint in this chapter. Interested readers are
referred to (13) for related detailed discussions.

3 The spatial scalability is related to downsampling of the video frames, and its effect is difficult to
measure in terms of PSNR. We will consider it in the future work.
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Fig. 1. GOP structure of SVC.

The packets at the same vertical level (i.e., in the same frame) belong to the same temporal
layer, and different frames may belong to the same temporal layer. The temporal scalability
is based on a temporal decomposition using hierarchical B pictures scheme. In Fig. 1, the
solid arrows depict the motion predictions for each frame. For example, only after receiving
packets L�

40 and L40 (together with all the base layer of video frames they depend on), packet
L20 becomes decodable at the receiver. Notice that the temporal and quality salabilities are
not independent. For example, packet L21 can only be decoded if the packets from its lower
level quality layer (i.e., L20) and previous temporal layer (i.e., L�

41 and L41) are all received.
The quality and temporal scalabilities provide the possibility of adapting the video
transmission to different network environments. It is clear that different packets in a GOP
have different priorities. Some packets need to be received first in order to make other packets
useful (i.e., decodable at the receiver), and this may not follow their own playback order. Also,
the sizes of the packets at different quality and temporal layers are typically different. Because
this, the compressed SVC video bitstream exhibits a Variable Bit Rate (VBR) nature. It is thus
useful to calculate the required rate for delivering the video data with same priority, and use
that to facilitate the scheduling and resource allocation decisions.
Let’s assume the GOP size is g. The total number of temporal levels within a GOP is log2 g
then. Also we use Pt,q,k to denote the packet that belongs to frame k, quality layer q, and
temporal level t in the current GOP. Here 1 ≤ k ≤ g, 1 ≤ t ≤ log2 g, and 0 ≤ q ≤ Q. Normally
we have Q ≤ 3 (29). We group the packets with the same deadline as one subflow in a way
similar as that proposed in (32). For example, in Figure 1, suppose all the packets that are
necessary for decoding frame L1 to be one subflow. This subflow consists of packet L40, L41,
L42 (and all the packets of former key pictures they depend on, i.e. L�

40, L�
41, L�

42; L��
40, L��

41, L��
42

... etc. ), L20, L21, L22, L10, L11, L12. Different from the subflow concept in (32), here we also
differentiate different quality layers within the same subflow. Among the packets inside this
subflow, L40 (and the corresponding dependent packets from former GOPs), L20, L10 belong
to the base layer of the current subflow. Other packets belong to the enhancement layers 1 and
2, respectively. This allows us to accurately capture the rate requirements of different packets
within one GOP.

4. Scheduling and resource allocation algorithms

4.1 Gradient-based scheduling framework
Consider a media server that is connected to the base station through a high bandwidth
backbone network. Each of the K mobile users in the OFDM cell requests a separate video
sequence to be streamed from the media server. We assume that the backbone network is
lossless and has high bandwidth, thus the transmission delay from the media server to the
OFDM base station is negligible. For each user, only one GOP of the requested sequence will
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maximum SNR constraint on tone j for user i, e.g., to model a constraint on the maximum rate
per tone due to a limitation on the available modulation and coding schemes. 2

We assume that ẽij is known by the scheduler for all i and j as is β (equivalently, the estimation
error variance). In a frequency division duplex (FDD) system, this knowledge can be acquired
by having the base station transmit pilot signals, from which the users can estimate their
channel gains and feedback to the base station. In a time division duplex (TDD) system, these
gains can also be acquired by having the users transmit uplink pilots; the base station can
then exploit reciprocity to measure the channel gains. In both cases, this feedback information
would need to be provided within the channel’s coherence time.

3. SVC Scheme of video coding

SVC is an extension of the H.264/MPEG4-AVC video coding standard (33) and provides
three different scalabilities: spatial, temporal, and quality. An overview of the features and
applications of SVC can be found in (29). In this chapter, we focus on how to exploit the
temporal and quality salabilities by adaptive scheduling and resource allocation.3

In SVC, the video frames are usually divided into groups, or called groups of pictures (GOPs).
The typical SVC GOP structure is shown in Fig. 1, where we assume that one GOP consists
of 4 frames. The video frames are further encoded into different temporal and quality layers.
One box in Fig. 1 represents the data belonging to one specific temporal layer and one specific
quality layer. For the purpose of video distortion calculation, we regard a box as the smallest
decodable data unit and call it a “packet”. All the packets in one column represent one frame.
For example, frame L1 consists of three packets: L10, L11, and L12.
The packets at the same horizontal level belong to the same quality layer. The quality scalability
refers to the fact that a video decoder can reconstruct video sequences without receiving all
quality layers. After receiving the base layer, the decoder can already provide a video with
some reasonable quality. The video quality can be improved if one or more enhancement
quality layers are received before the required playback deadline of the corresponding video
frames. In Fig. 1, the dashed arrows depict the enhancement layers order for each video frame.

2 Another important practical constraint is that each subchannel can be allocated to at most one user, i.e.,
xij ∈ [0, 1]. For simplicity, we do not consider such constraint in this chapter. Interested readers are
referred to (13) for related detailed discussions.

3 The spatial scalability is related to downsampling of the video frames, and its effect is difficult to
measure in terms of PSNR. We will consider it in the future work.
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The packets at the same vertical level (i.e., in the same frame) belong to the same temporal
layer, and different frames may belong to the same temporal layer. The temporal scalability
is based on a temporal decomposition using hierarchical B pictures scheme. In Fig. 1, the
solid arrows depict the motion predictions for each frame. For example, only after receiving
packets L�

40 and L40 (together with all the base layer of video frames they depend on), packet
L20 becomes decodable at the receiver. Notice that the temporal and quality salabilities are
not independent. For example, packet L21 can only be decoded if the packets from its lower
level quality layer (i.e., L20) and previous temporal layer (i.e., L�

41 and L41) are all received.
The quality and temporal scalabilities provide the possibility of adapting the video
transmission to different network environments. It is clear that different packets in a GOP
have different priorities. Some packets need to be received first in order to make other packets
useful (i.e., decodable at the receiver), and this may not follow their own playback order. Also,
the sizes of the packets at different quality and temporal layers are typically different. Because
this, the compressed SVC video bitstream exhibits a Variable Bit Rate (VBR) nature. It is thus
useful to calculate the required rate for delivering the video data with same priority, and use
that to facilitate the scheduling and resource allocation decisions.
Let’s assume the GOP size is g. The total number of temporal levels within a GOP is log2 g
then. Also we use Pt,q,k to denote the packet that belongs to frame k, quality layer q, and
temporal level t in the current GOP. Here 1 ≤ k ≤ g, 1 ≤ t ≤ log2 g, and 0 ≤ q ≤ Q. Normally
we have Q ≤ 3 (29). We group the packets with the same deadline as one subflow in a way
similar as that proposed in (32). For example, in Figure 1, suppose all the packets that are
necessary for decoding frame L1 to be one subflow. This subflow consists of packet L40, L41,
L42 (and all the packets of former key pictures they depend on, i.e. L�

40, L�
41, L�

42; L��
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41, L��
42

... etc. ), L20, L21, L22, L10, L11, L12. Different from the subflow concept in (32), here we also
differentiate different quality layers within the same subflow. Among the packets inside this
subflow, L40 (and the corresponding dependent packets from former GOPs), L20, L10 belong
to the base layer of the current subflow. Other packets belong to the enhancement layers 1 and
2, respectively. This allows us to accurately capture the rate requirements of different packets
within one GOP.

4. Scheduling and resource allocation algorithms

4.1 Gradient-based scheduling framework
Consider a media server that is connected to the base station through a high bandwidth
backbone network. Each of the K mobile users in the OFDM cell requests a separate video
sequence to be streamed from the media server. We assume that the backbone network is
lossless and has high bandwidth, thus the transmission delay from the media server to the
OFDM base station is negligible. For each user, only one GOP of the requested sequence will

227Scheduling and Resource Allocation for SVC Streaming over OFDM Downlink Systems



6 Will-be-set-by-IN-TECH

be buffered at the base station at any given time.4 If the subflow cannot be fully received by
the mobile user before its playback deadline, the frames within the partially received subflow
may not be able to be decoded at the receiver. Our objective is to design a scheduling and
resource allocation algorithm that achieves the maximum overall network streaming quality
in the long run, under time varying channel conditions and variable rate video contents.
Our starting point is the stochastic gradient-based scheduling framework presented in
(2; 16; 30). In this framework, each user i is assigned a utility function Ui(Wi,t) depending
on their average throughput Wi,t up to time t, which is used to quantify fairness between
users. During each scheduling epoch t, the system objective is to choose a rate vector rt in
R(et) that maximizes a (dynamic) weighted sum of the users’ rates, where the weights are
determined by the gradient of the sum utility across all users. Hence, the scheduling and
resource allocation decision is to obtain

max
rt∈R(et)

∑
i∈I

∂Ui(Wi,t)

∂Wi,t
ri,t. (3)

The above policy has been shown to yield utility maximizing solutions under time-varying
rate region (2; 16; 30), i.e., maximizing ∑i∈I Ui(Wi,t). The main advantage of this policy is its
greedy nature, i.e., the optimization at time t does not require any rate region information of
other time slots (past or future). We notice that Problem (3) needs to be solved for each time
slot.
In (13), we proposed an efficient algorithm to solve Problem (3) for an OFDM downlink
system with elastic data transmission. Next in Section 4.2 we will briefly review the proposed
algorithm in (13). Then in Section 4.3 we will explain the special challenges introduced by the
real-time streaming applications and discuss how the algorithm in (13) can be generalized to
our case.

4.2 Weighted rate maximization algorithm under fixed weights
Consider a given time slot t, where we define wi,t = ∂Ui(Wi,t)/∂Wi,t. According to (1),
Problem (3) can be stated as follows,

max
(x,p)∈X

V(x,p) := ∑
i

wi ∑
j

xij log
(

1 + pij ẽij
xij+βpij ẽij

)

subject to: ∑
i,j

pij ≤ P, and ∑
i

xij ≤ 1, ∀j ∈ N .
(4)

Here we omit time index t for simplicity. We can solve this problem via a dual decomposition
method (4) with complexity O(NK).
First consider the Lagrangian,

L(x,p, λ,μ) := λP +
N

∑
j=1

Lj(x
j,pj, λ, μj), (5)

where

Lj(x
j,pj, λ, μj) := μj +

K

∑
i=1

wixij log

(
1 +

pij ẽij

xij + βpij ẽij

)
− μj

K

∑
i=1

xij − λ
K

∑
i=1

pij, (6)

4 If there is enough memory at the base station, we can buffer more than one GOP per user, which does
not change the analysis.
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and μ = (μj)
N
j=1. The corresponding dual function is

L(λ,μ) := max
(p,x)∈X

L(x,p, λ,μ) = λP +
N

∑
j=1

max
(pj,xj)∈Xj

Lj(x
j,pj, λ, μj).

Since Problem (4) is convex and satisfies Slater’s condition, there is no duality gap and so
V∗ := minλ≥0,μ≥0 L(λ,μ) is the optimal objective value (4).
First, we show that the dual function can be calculated in closed form. Define5

q(β, z) :=

⎧⎨
⎩

z, if β = 0,�
2β+1

2β(β+1)

���
1 + 4β(β+1)

(2β+1)2 z − 1
�

, if β > 0,

h
�

β, ω, s̃ij

�
:= log

�
1 +

q(β,(ω−1)+)∧s̃ij

1+β(q(β,(ω−1)+)∧s̃ij)

�
− 1

ω

�
q
�

β, (ω − 1)+
�
∧ s̃ij

�
.

and μij(λ) := wih
�

β, wiẽij
λ , s̃ij

�
. Then the dual function is
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Second, we can further simplify the dual function by optimizing over μ, i.e.,

L(λ) := min
μ≥0

L(λ,μ) = λP + ∑
j

μ∗
j (λ), (8)

where for every tone j, the minimizing value of μ∗
j is achieved by μ∗

j (λ) = maxi μij(λ).
Since L(λ) is the minimum of a convex function over a convex set, it is a convex function of
λ and can be solved numerically. The overall dual-based algorithm involves evaluating L(λ)
for a fixed value of λ as an inner loop, and a one-dimensional search over λ as an outer loop.
The outer loop has a constant complexity that is independent of J and I6. The inner loop has
a complexity of O(J I) due to searching for the maximum of I metrics on each of the J tones.
Thus the total complexity of this stage is O(J I). Details of the algorithm can be found in (13).

4.3 Dynamic weight calculation for streaming applications
The algorithm presented in Section 4.2 solves the weighted rate maximization problem under
fixed weights. For elastic data applications, the weights are calculated as the gradients of the
utility functions. This weight calculation method, however, is not suitable for real-time video
streaming application since the stringent delay constraints are not explicitly considered. This
motivates us to design a different weight calculation method in this chapter, which will be
based on the required rates to deliver the current subflow and the corresponding distortion
decrease.
Without loss of generality, assume that the current time slot starts at t = 0. For user i’s current
unfinished subflow at the base station, its length is li bits and the playback deadline is ti > 0.

5 Here (x)+ = max(x, 0) and x ∧ y = min(x, y).
6 The computational complexity of a bi-section search is O(log(1/�)), where � is the relative error bound

target for the search.
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be buffered at the base station at any given time.4 If the subflow cannot be fully received by
the mobile user before its playback deadline, the frames within the partially received subflow
may not be able to be decoded at the receiver. Our objective is to design a scheduling and
resource allocation algorithm that achieves the maximum overall network streaming quality
in the long run, under time varying channel conditions and variable rate video contents.
Our starting point is the stochastic gradient-based scheduling framework presented in
(2; 16; 30). In this framework, each user i is assigned a utility function Ui(Wi,t) depending
on their average throughput Wi,t up to time t, which is used to quantify fairness between
users. During each scheduling epoch t, the system objective is to choose a rate vector rt in
R(et) that maximizes a (dynamic) weighted sum of the users’ rates, where the weights are
determined by the gradient of the sum utility across all users. Hence, the scheduling and
resource allocation decision is to obtain

max
rt∈R(et)

∑
i∈I

∂Ui(Wi,t)

∂Wi,t
ri,t. (3)

The above policy has been shown to yield utility maximizing solutions under time-varying
rate region (2; 16; 30), i.e., maximizing ∑i∈I Ui(Wi,t). The main advantage of this policy is its
greedy nature, i.e., the optimization at time t does not require any rate region information of
other time slots (past or future). We notice that Problem (3) needs to be solved for each time
slot.
In (13), we proposed an efficient algorithm to solve Problem (3) for an OFDM downlink
system with elastic data transmission. Next in Section 4.2 we will briefly review the proposed
algorithm in (13). Then in Section 4.3 we will explain the special challenges introduced by the
real-time streaming applications and discuss how the algorithm in (13) can be generalized to
our case.

4.2 Weighted rate maximization algorithm under fixed weights
Consider a given time slot t, where we define wi,t = ∂Ui(Wi,t)/∂Wi,t. According to (1),
Problem (3) can be stated as follows,

max
(x,p)∈X

V(x,p) := ∑
i

wi ∑
j

xij log
(

1 + pij ẽij
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4 If there is enough memory at the base station, we can buffer more than one GOP per user, which does
not change the analysis.
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In order to meet the deadline, the subflow needs to be transmitted at an average rate of

r̂i =
li
ti

. (9)

Note that this may not be the actual rate that user i gets, which depends on the resource
allocation decisions.
Denote the distortion of the corresponding frame is Dic if the current subflow can be
successfully received before the required playback deadline. Video distortion can be regarded
as the negative function of user’s utility. The distortion decrease depends on how much
distortion is at time t = 0. This can be calculated as follows:

1. If some of the base layer packets within the current subflow have not been received by the
users at time t = 0, then the receiver will use the last decodable frames to substitute the
desired frames and achieves distortion Dil(> Dic) at time t = 0. In this case, successfully
delivering the current subflow on time can lead to distortion decrease of

ΔDi = Dil − Dic. (10)

2. If up to q quality layer packets within the current subflow have been fully received at
time t = 0, where q is less than the maximum number of quality layer available, then the
receiver can construct the video frames based on the received quality layers and achieves
a distortion Diq(> Dic). In this case, successfully delivering the current subflow on time
can lead to distortion decrease of

ΔDi = Dil − Diq. (11)

Similar as the utility gradient for elastic data traffic, here we can calculate the speed of
distortion decrease (i.e., priority weight) in the current time slot as follows:

wi,t =
ΔDi

r̂i
=

ΔDi
li

ti. (12)

By taking the users’ video contents and deadlines into explicit consideration, we connect the
distortion (i.e., utility) with the rate requirement of the video bitstreams.
Nevertheless, using the weight definition of (12) and solving Problem (3) may not lead to
good overall video quality. This is due to the “approaching deadline effect”. Assume user
i’s unfinished subflow length li is fixed, and so is the possible distortion decrease ΔDi. If
the deadline is approaching, i.e., ti becomes smaller, priority weight calculated based on
(12) actually decreases. This is because for a given amount of data, delivering it within a
shorter amount of time requires a larger transmission rate, which leads to a smaller distortion
decrease per unit rate. This is counter-intuitive, however, since we would expect that a user
with approaching deadline will have higher priority. As a result, weighted rate maximization
based on (12) will give users in good channels extra advantage.
For users with the same weight, a user in good channel condition requires less resource to
achieve the same transmission rate and thus is favorable. Once a user’s current subflow is
transmitted completely, the next new subflow has a longer deadline (i.e., a larger ti), which
leads to a higher priority weight and more resource allocation. This means that users in
worse channels will seldom have chances to transmit and will face a lot of deadline violations.
Simulation results in Section 5 also confirm this problem.
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To tackle this problem, we next propose a framework to explicitly consider the effect of
approaching deadline, which can enforce the deadline to be satisfied with high probability
while still achieving an overall good video quality.

4.4 Mitigating the approaching deadline effect
We propose to explicitly add a product term to the weight calculation. This term is a
decreasing function of ti, i.e., it increases when the deadline approaches. This enforces the
system to allocate more resources to “urgent” users and reduce deadline violations. The new
priority weight can be calculated as:

wi,t =
ΔDi

r̂i
Γ(ti). (13)

where the delay function Γ decreases with ti. One choice that achieves the best overall
performance in our simulation is to have

Γ(ti) =
1

(ti)2 .

We will give more examples of function Γ in Section 5.

4.5 Proposed algorithms
The proposed joint scheduling and resource allocation algorithm for video streaming is given
in Algorithm 1, which describes how the scheduling (i.e., which users to transmit) and
resource allocation (how much rate each active user gets). For each time slot t, there are three
key steps in the algorithm:

1. The priority weight of each user is calculated based on its previous transmission results
and the deadline of the current subflow.

2. The base station performs the scheduling and resource allocation based on users’ priority
weights using the algorithm in Section 4.2.

3. Each user transmits the packets based on the allocated resource.

According to the way that the subflow is defined in Section 3, each user transmits the
packets in the base quality layer first (from all temporal layers), and then the packets from
enhancement quality layers. The video quality degradation is mainly due to two reasons:
(i) some packets are discarded at the scheduler before transmission since their deadlines
have already passed, or (ii) some packets are discarded at the receiver because they are not
decodable due to lack of necessary dependent packets.7 It is clear that all three steps converge,
thus we know that Algorithm 1 converges.
The computational complexity of the proposed algorithm comes from three parts:

1. Merging the remaining packets with the next subflow. The worst case complexity of this
step is O(g(Q + 1)), where g is the GOP size and Q is the maximum number of the quality
layers. Since this needs to be done by each user, the overall complexity is O(Ig(Q + 1)),
where I is the total number of users.

2. Calculating the priority weight wi,t according to(13). For a video frame, the distortion of
different quality layers can be pre-calculated before streaming. Only if the base layer of a
subflow is not successfully received during the transmission, the distortion decrease needs

7 We assume that the transmitter chooses the appropriate modulation and coding schemes to match the
channel conditions of each user such that there is no data corruption during the transmission.
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1 initialization t = 0;
2 repeat
3 t = t + 1;
4 forall the user i do
5 repeat
6 check the deadline of the current subflow;
7 if the deadline has passed then
8 discard those packets not useful for decoding future packets;
9 merge the remaining packets with the next subflow, which becomes

the “current” subflow;
10 end
11 Calculate the priority weight wi,t according to (13)
12 until the deadline of the current subflow has not passed;
13 end
14 Solve weighted rate maximization problem (4) using the algorithm described in

Section 4.2, and each user i is allocated transmission rate ri,t;
15 forall the user i do
16 continue to transmit the current subflow with rate ri,t;
17 if the current subflow is transmitted successfully before the end of the time slot then
18 obtain the next subflow from the media server;
19 transmit with rate ri,t;

20 end
21 end
22 until no more video to be streamed;

Algorithm 1: Joint Scheduling and Resource Allocation Algorithm for Multi-user Video

Streaming

to be recalculated between the different frames. Since this rarely happens in practice (as
verified by our simulations), the complexity comes from this part is negligible.

3. Solving the weighted rate maximization problem (4), which has complexity O(I J), where
J is the total number of subchannels.

The overall complexity of the algorithm for each time slot t is then O(I(J + g(Q + 1)).

5. Simulation study

5.1 Simulation setup
We perform extensive simulations to show the performance gain of our proposed delay-aware
scheduling and resource allocation algorithm with different delay functions.
The video sequences used in the experiments are encoded according in H.264 extended SVC
standard (using JVT reference software, JSVM 8.12 [5]) at variable bit rates with an average
PSNR of 35dB for each sequences. Four sequences (“Harbor”, “City”, “Foreman”, “Mobile
and calendar”) are used to represent video with dramatically different levels of motion
activities. The rate and the quality of the different sequences are shown in Table 1. All the
sequences are coded at CIF resolution (352 × 288, 4:2:0) and 30 frames per second. A GOP size
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of 8 is used. The first frame is encoded as I frame and all the key pictures of each GOP were
encoded as P frames.

Sequence Bitrate Average PSNR
Mobile 2019 kbps 35.17 dB

Foreman 449.2 kbps 35.16 dB
City 585.8 kbps 35.98 dB

Harbour 1599.7 kbps 35.32 dB

Table 1. Encoding rates and average PSNRs of different sequences

For the wireless system, we perform simulation based on a realistic OFDM simulator
with realistic industry measurements and assumptions commonly found in IEEE 802.16
standards (17). We simulate a single OFDM cell with a total transmission power of P = 6W
at the base station. The channel gains eij are the products of a fixed location-based term
for each user i and a frequency-selective fast fading term. The location-based components
were picked using an empirically obtained distribution for many users in a large system.
The fast-fading term was generated using a block-fading model based upon the Doppler
frequency (for the block-length in time) and a standard reference mobile delay-spread model
(for variation in frequency). For a user’s fast-fading term, each multi-path component was
held fixed for 2msec (i.e., a fading block length), which corresponds to a 250MHz Doppler
frequency. The delay-spread is 1μsec. The users’ channel conditions are averaged over the
applicable channelization scheme and fed back to the scheduler at the base station. All video
users are randomly selected from the users with an average channel normalized SNR of at
least 20dB. This makes sure that it is possible to support the minimum quality of the video
streaming.
We considered a system bandwidth of 5MHz consisting of 512 OFDM tones, which are
grouped into 64 subchannels (8 tones per subchannel). The symbol duration is 100μsec with
a cyclic prefix of 10μsec. This roughly corresponds to 20 OFDM symbols per fading block
(i.e., 2msec). This is one of the allowed configurations in the IEEE 802.16 standards (17). The
resource allocation is done once per fading block. For each video sequence, we report results
that are averaged over 5 randomly generated channel realizations with a length of 10 seconds
each (which corresponds to 105 OFDM symbols).

5.2 Different weight definitions
We simulate the algorithm with different counter-deadline approaching effect functions Γ
when calculating the weights wi,t in (13). To illustrate the effectiveness of our proposed
algorithm, we also compared with rate maximization algorithm and the algorithm proposed
in (26). In total, we simulate seven algorithms. The first two algorithms are benchmark
algorithms, and the last five algorithms are our proposed ones with different levels of
emphasis on deadline violation avoidance. We will show that algorithm WΓ2 achieves the
best performance among all proposed ones.

• W1 (benchmark 1: content-blind approach): wi,t = 1 for all i and t. This is the rate
maximization algorithm, which is “content-blind” but widely accepted in data-oriented
wireless communication systems (e.g., (13)). On top of this, we use the packet dropping
policy for SVC proposed in (24).

• W2 (benchmark 2: deadline-blind approach): the weights in this approach are defined
according to (26). Instead of grouping packets into subflows, the schedular will transmit
every packet following the order of Method II proposed in (27), which has been proven
to achieve similar results as the optimal one. Though special care has been taken to
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best performance among all proposed ones.

• W1 (benchmark 1: content-blind approach): wi,t = 1 for all i and t. This is the rate
maximization algorithm, which is “content-blind” but widely accepted in data-oriented
wireless communication systems (e.g., (13)). On top of this, we use the packet dropping
policy for SVC proposed in (24).

• W2 (benchmark 2: deadline-blind approach): the weights in this approach are defined
according to (26). Instead of grouping packets into subflows, the schedular will transmit
every packet following the order of Method II proposed in (27), which has been proven
to achieve similar results as the optimal one. Though special care has been taken to
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force every new GOP data to be buffered either after the current GOP’s deadline is
expired or until all the current GOPs of each user have been transmitted, compared to our
subflow scheme (which explicitly consider the deadline of each frame), it is considered as
a “deadline-blind” benchmark.

• Wrd: Γ(ti − tc) = 1. This algorithm takes users’ contents into consideration but does not
explicit address the deadline approaching effect and thus is “deadline-blind”.

• WΓ1: Γ(ti − tc) = 1/(ti − tc).
• WΓ2: Γ(ti − tc) = 1/(ti − tc)2.
• WΓ3: Γ(ti − tc) = 1/(ti − tc)3.
• WΓ4: Γ(ti − tc) = 1/(ti − tc)4.
Table 2 shows average PSNR achieved by four users requesting four different video clips with
the same starting time. The initial playback deadline is set to be 200ms (25).

Sequence W1 W2 Wrd WΓ1 WΓ2 WΓ3 WΓ4

Mobile 28.5316 26.7014 18.6482 20.6136 28.0960 27.6642 27.4646
Foreman 29.0880 30.7430 27.2240 30.6424 33.5992 33.2444 33.0476

City 34.2552 31.0290 33.5274 34.1902 34.0882 33.8188 33.6754
Harbour 23.5310 26.9150 20.1732 21.6224 26.1610 26.0774 25.9670

Average 28.8514 28.8470 24.8932 26.7672 30.4862 30.2012 30.0388

Table 2. Average PSNR for 4 users with 200ms initial playback deadline

As we can see, the weighted gradient based scheduling reflects the rate-distortion properties
of different video contents. Under W1 algorithm, the qualities of Mobile and Foreman
are similar, although they have very different rate-distortion properties. This is because
W1 simply maximizes the rate without considering the resulting video quality. Instead,
by allocating network resource according to the users’ video rate-distortion properties, the
weighted scheduling and resource allocation schemes can dynamically adjust the resource
allocation based on video contents. Since the benchmark algorithm W2 does not dynamically
organize the video packet into different subflow or change the weights according to
the run-time transmission results, it achieves inferior results compared to our proposed
algorithms (WΓ2 to WΓ4).
Compared to the benchmark W1 and W2 algorithms, the Wrd algorithm actually decreases the
average video quality among different users. This is due to the deadline approaching effect
explained in Section 4.3. Once we take care of this effect by properly chosen Γ functions in WΓ1
to WΓ4, the average PSNR among users is improved over the simple total rate maximization
scheme (W1) by 1.1 dB to 1.6 dB. Results of WΓ2 reaches the best average PSNR value, while
WΓ3 and WΓ4 tend to decrease the average PSNR value compared with WΓ2 since they put too
much emphasis on not violating the deadlines.
Figures 2, 3, 4 and 5 show the PSNR values of the first 200 frames achieved by four users
requesting different four video clips concurrently under a particular channel realization. The
initial playback deadline is set to be 400ms. In these figures, the results of weight definition
W1, W2 and our best approach WΓ2 are compared.
From the figures, we see that compared to algorithm WΓ2, algorithm W1 only considers rate
maximization and hence user 2 and user 4’s video qualities are sacrificed. Some of the frames’
PSNR value of user 1 and user 3 may be higher than those of our proposed algorithm, however
without significant performance improvement compared to the video quality of the proposed
ones. This proves that our proposed rate-distortion related gradient based scheme is more
efficient.
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Fig. 3. Frame PSNR of User 2 - Foreman.

5.3 Effect of different initial playback deadlines
We now study the impact of different initial playback deadlines in Figure 6. The initial
playback deadline means the delay between the time when the user requests the video and
the time when the video starts to play at the receiver. According to the user satisfactory study
in (25), we test various initial playback deadlines between 200ms to 800ms. Four users request
the different video sequences from the server simultaneously. Other parameters are the same
as in Section 5.1. We can see that WΓ2 always reaches the highest average PSNR value under
different deadlines.

5.4 Synchronous and asynchronous requirements’ influence
So far we have only considered the cases of synchronously deadlines, i.e., all users start
requesting the video streaming applications at the same time. In reality, it is more common
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of different video contents. Under W1 algorithm, the qualities of Mobile and Foreman
are similar, although they have very different rate-distortion properties. This is because
W1 simply maximizes the rate without considering the resulting video quality. Instead,
by allocating network resource according to the users’ video rate-distortion properties, the
weighted scheduling and resource allocation schemes can dynamically adjust the resource
allocation based on video contents. Since the benchmark algorithm W2 does not dynamically
organize the video packet into different subflow or change the weights according to
the run-time transmission results, it achieves inferior results compared to our proposed
algorithms (WΓ2 to WΓ4).
Compared to the benchmark W1 and W2 algorithms, the Wrd algorithm actually decreases the
average video quality among different users. This is due to the deadline approaching effect
explained in Section 4.3. Once we take care of this effect by properly chosen Γ functions in WΓ1
to WΓ4, the average PSNR among users is improved over the simple total rate maximization
scheme (W1) by 1.1 dB to 1.6 dB. Results of WΓ2 reaches the best average PSNR value, while
WΓ3 and WΓ4 tend to decrease the average PSNR value compared with WΓ2 since they put too
much emphasis on not violating the deadlines.
Figures 2, 3, 4 and 5 show the PSNR values of the first 200 frames achieved by four users
requesting different four video clips concurrently under a particular channel realization. The
initial playback deadline is set to be 400ms. In these figures, the results of weight definition
W1, W2 and our best approach WΓ2 are compared.
From the figures, we see that compared to algorithm WΓ2, algorithm W1 only considers rate
maximization and hence user 2 and user 4’s video qualities are sacrificed. Some of the frames’
PSNR value of user 1 and user 3 may be higher than those of our proposed algorithm, however
without significant performance improvement compared to the video quality of the proposed
ones. This proves that our proposed rate-distortion related gradient based scheme is more
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5.3 Effect of different initial playback deadlines
We now study the impact of different initial playback deadlines in Figure 6. The initial
playback deadline means the delay between the time when the user requests the video and
the time when the video starts to play at the receiver. According to the user satisfactory study
in (25), we test various initial playback deadlines between 200ms to 800ms. Four users request
the different video sequences from the server simultaneously. Other parameters are the same
as in Section 5.1. We can see that WΓ2 always reaches the highest average PSNR value under
different deadlines.

5.4 Synchronous and asynchronous requirements’ influence
So far we have only considered the cases of synchronously deadlines, i.e., all users start
requesting the video streaming applications at the same time. In reality, it is more common
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that different users request video clips at different time, which we call asynchronous deadlines
cases. In Figure 7, we compare the results of these cases for four users. In the asynchronous
deadline cases, four users randomly start to request the different video sequences from the
server within the first initial playback deadline. We again observe that the WΓ2 algorithm
always performs the best.

5.5 Different user content and congestion range’s influence
Figure 8 shows the results of eight users requesting video sequences concurrently. Each of
the 4 video sequences is requested by 2 users. Synchronous and asynchronous cases are both
shown here. For the asynchronous cases, users randomly request the video sequence within
one playback deadline. The other setups are the same as in Section 5.2.
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Fig. 6. Synchronous deadlines for 4 users. Horizontal axis represent different algorithms: 1 -
W1; 2 - W2; 3 - Wrd; 4 - WΓ1; 5 - WΓ2; 6 - WΓ3; 7 - WΓ4;

The effectiveness of our proposed algorithms is more obvious compared to the rate
maximization algorithm W1 in heavily congested network case. For asynchronous cases with
playback deadline of 800ms, algorithm WΓ2 achieves as high as 6dB improvement in users’
average PSNR value. In the asynchronous cases, the advantage of porposed alogirthm is not
so obvious as compared to algorithm W2. This is because, the congestion of network is so
heavy that “GOP control” is almost as effective as the deadline approaching control. Besides,
little can be exploited by dynamically adapting weights according to the video rate-distortion
properties.

5.6 Fairness analysis
Motived by the Jain’s fairness index (18), we propose the following index to evaluate the
fairness of video qualities achieved by different algorithms:

VideoQualityFairness =
(∑i PSNRi)

2

n ∑i (PSNRi)
2 (14)

The fairness index ranges from 1/n (worst case) to 1 (best case). For each algorithm, we show
the fairness index of different simulation settings in Tables 3, 4, 5 and 6. In all cases, Algorithm
W2 always achieves the highest fairness index. However, Table 2 shows that it achieves so by
sacrificing the video quality. All of our five proposed algorithms achieve a fairness index
of more than 0.98 most of the time. We also find that Wrd always has the worst fairness
property, which means this algorithm does not consider the fairness but only emphasizes
on the rate-distortion property. In fact, both considering the deadline approaching effect and
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that different users request video clips at different time, which we call asynchronous deadlines
cases. In Figure 7, we compare the results of these cases for four users. In the asynchronous
deadline cases, four users randomly start to request the different video sequences from the
server within the first initial playback deadline. We again observe that the WΓ2 algorithm
always performs the best.

5.5 Different user content and congestion range’s influence
Figure 8 shows the results of eight users requesting video sequences concurrently. Each of
the 4 video sequences is requested by 2 users. Synchronous and asynchronous cases are both
shown here. For the asynchronous cases, users randomly request the video sequence within
one playback deadline. The other setups are the same as in Section 5.2.

236 Recent Advances on Video Coding Scheduling and Resource Allocation for SVC Streaming over OFDM Downlink Systems 15

1 2 3 4 5 6 7
21

22

23

24

25

26

27

28

29

30

31
Synchronous comparison − 4users

Weight definition 1−7

A
ve

ra
ge

 P
S

N
R

 a
m

on
g 

us
er

s 
(d

B
)

 

 

Synchronous deadline 200ms
Synchronous deadline 400ms
Synchronous deadline 600ms
Synchronous deadline 800ms

Fig. 6. Synchronous deadlines for 4 users. Horizontal axis represent different algorithms: 1 -
W1; 2 - W2; 3 - Wrd; 4 - WΓ1; 5 - WΓ2; 6 - WΓ3; 7 - WΓ4;

The effectiveness of our proposed algorithms is more obvious compared to the rate
maximization algorithm W1 in heavily congested network case. For asynchronous cases with
playback deadline of 800ms, algorithm WΓ2 achieves as high as 6dB improvement in users’
average PSNR value. In the asynchronous cases, the advantage of porposed alogirthm is not
so obvious as compared to algorithm W2. This is because, the congestion of network is so
heavy that “GOP control” is almost as effective as the deadline approaching control. Besides,
little can be exploited by dynamically adapting weights according to the video rate-distortion
properties.

5.6 Fairness analysis
Motived by the Jain’s fairness index (18), we propose the following index to evaluate the
fairness of video qualities achieved by different algorithms:

VideoQualityFairness =
(∑i PSNRi)

2

n ∑i (PSNRi)
2 (14)

The fairness index ranges from 1/n (worst case) to 1 (best case). For each algorithm, we show
the fairness index of different simulation settings in Tables 3, 4, 5 and 6. In all cases, Algorithm
W2 always achieves the highest fairness index. However, Table 2 shows that it achieves so by
sacrificing the video quality. All of our five proposed algorithms achieve a fairness index
of more than 0.98 most of the time. We also find that Wrd always has the worst fairness
property, which means this algorithm does not consider the fairness but only emphasizes
on the rate-distortion property. In fact, both considering the deadline approaching effect and
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using “GOP control” can improve fairness. The “GOP control” benchmark algorithm (W2)
pursues absolute fairness, thus decreases the overall video quality.

Weight Channel 1 Channel 2 Channel 3 Channel 4 Channel 5
W1 0.9848 0.9354 0.986 0.941 0.9426
W2 0.995 0.9953 0.9962 0.9898 0.9942
Wrd 0.9423 0.9328 0.8281 0.9314 0.9341
WΓ1 0.9799 0.9162 0.9287 0.9544 0.9335
WΓ2 0.9856 0.9845 0.9868 0.9806 0.9818
WΓ3 0.9873 0.9855 0.9877 0.9797 0.982
WΓ4 0.9869 0.9848 0.988 0.9794 0.9821

Table 3. 4 users with synchronous initial playback deadline of 200ms

6. Conclusion

Traditionally the content distribution and network resource allocation are designed separately.
Although working well in the wireline communication settings, this approach could be far
from optimal for wireless communication networks, where the available network resource
changes rapidly in time. In this chapter, we apply a joint design approach to solve the
challenging problem of multi-user video streaming over wireless channels. We focused on
the SVC coding schemes and the OFDM schemes, which are among the most promising
technologies for video coding and wireless communications, respectively.
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Fig. 8. Synchronous and Asynchronous deadlines for 8 users: 1 - W1; 2 - W2; 3 - Wrd; 4 - WΓ1; 5
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Weight Channel 1 Channel 2 Channel 3 Channel 4 Channel 5
W1 0.9656 0.8883 0.9139 0.9342 0.9088
W2 0.9938 0.9949 0.9888 0.9931 0.9951
Wrd 0.971 0.8965 0.9292 0.9373 0.947
WΓ1 0.9806 0.9804 0.9747 0.9751 0.9816
WΓ2 0.9839 0.9832 0.9773 0.9777 0.9861
WΓ3 0.9836 0.9836 0.9774 0.978 0.9859
WΓ4 0.9841 0.9829 0.9767 0.9779 0.9845

Table 4. 8 users with synchronous initial playback deadline of 200ms

Weight Channel 1 Channel 2 Channel 3 Channel 4 Channel 5
W1 0.9851 0.9172 0.9805 0.8884 0.9428
W2 0.9945 0.9947 0.9963 0.9793 0.9936
Wrd 0.8701 0.9534 0.8264 0.8208 0.941
WΓ1 0.9725 0.9817 0.95 0.8494 0.9754
WΓ2 0.9851 0.9846 0.9869 0.9813 0.9824
WΓ3 0.9831 0.9805 0.9861 0.9804 0.9823
WΓ4 0.9834 0.9778 0.9867 0.9811 0.9823

Table 5. 4 users with asynchronous initial playback deadline of 200ms
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using “GOP control” can improve fairness. The “GOP control” benchmark algorithm (W2)
pursues absolute fairness, thus decreases the overall video quality.
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Wrd 0.9423 0.9328 0.8281 0.9314 0.9341
WΓ1 0.9799 0.9162 0.9287 0.9544 0.9335
WΓ2 0.9856 0.9845 0.9868 0.9806 0.9818
WΓ3 0.9873 0.9855 0.9877 0.9797 0.982
WΓ4 0.9869 0.9848 0.988 0.9794 0.9821

Table 3. 4 users with synchronous initial playback deadline of 200ms

6. Conclusion

Traditionally the content distribution and network resource allocation are designed separately.
Although working well in the wireline communication settings, this approach could be far
from optimal for wireless communication networks, where the available network resource
changes rapidly in time. In this chapter, we apply a joint design approach to solve the
challenging problem of multi-user video streaming over wireless channels. We focused on
the SVC coding schemes and the OFDM schemes, which are among the most promising
technologies for video coding and wireless communications, respectively.
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Table 4. 8 users with synchronous initial playback deadline of 200ms

Weight Channel 1 Channel 2 Channel 3 Channel 4 Channel 5
W1 0.9851 0.9172 0.9805 0.8884 0.9428
W2 0.9945 0.9947 0.9963 0.9793 0.9936
Wrd 0.8701 0.9534 0.8264 0.8208 0.941
WΓ1 0.9725 0.9817 0.95 0.8494 0.9754
WΓ2 0.9851 0.9846 0.9869 0.9813 0.9824
WΓ3 0.9831 0.9805 0.9861 0.9804 0.9823
WΓ4 0.9834 0.9778 0.9867 0.9811 0.9823

Table 5. 4 users with asynchronous initial playback deadline of 200ms
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Weight Channel 1 Channel 2 Channel 3 Channel 4 Channel 5
W1 0.9863 0.9414 0.9799 0.9417 0.9429
W1 0.9949 0.9956 0.9956 0.9897 0.9936
Wrd 0.9437 0.9247 0.9436 0.9329 0.8332
WΓ1 0.9803 0.8958 0.9826 0.9763 0.9254
WΓ2 0.9853 0.9834 0.9893 0.982 0.9832
WΓ2 0.9861 0.9852 0.9893 0.9812 0.9823
WΓ2 0.9865 0.9847 0.9893 0.9818 0.9843

Table 6. 4 users with synchronous initial playback deadline of 800ms

Building on the gradient-based scheduling framework in our previous work, we proposed a
family of algorithms that explicitly calculate the users’ priority weights based on the video
contents, deadline requirements, and previous transmission results, and then optimize the
resource allocation taking various wireless practical constraints into consideration. We first
divide the video data into subflows based on their contribution of distortion decrease and the
delay requirements of individual video frames. Then we propose to calculate the weights
of the current subflows according to their rate-distortion properties, playback deadline
requirements and the previous transmission results. To tackle the deadline approaching effect,
we also propose to explicitly add to the weight calculation a product term which increases
when the deadline approaches.
Simulation results show that our algorithms always outperform the rate maximization
(content-blind) scheme and the pure gradient-based (deadline-blind) scheme. Besides
improving the average video quality, the proposed algorithms also lead to a fair allocation.
Finally, the performance of the algorithms are consistent under both synchronous or
asynchronous deadlines.
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Weight Channel 1 Channel 2 Channel 3 Channel 4 Channel 5
W1 0.9863 0.9414 0.9799 0.9417 0.9429
W1 0.9949 0.9956 0.9956 0.9897 0.9936
Wrd 0.9437 0.9247 0.9436 0.9329 0.8332
WΓ1 0.9803 0.8958 0.9826 0.9763 0.9254
WΓ2 0.9853 0.9834 0.9893 0.982 0.9832
WΓ2 0.9861 0.9852 0.9893 0.9812 0.9823
WΓ2 0.9865 0.9847 0.9893 0.9818 0.9843

Table 6. 4 users with synchronous initial playback deadline of 800ms

Building on the gradient-based scheduling framework in our previous work, we proposed a
family of algorithms that explicitly calculate the users’ priority weights based on the video
contents, deadline requirements, and previous transmission results, and then optimize the
resource allocation taking various wireless practical constraints into consideration. We first
divide the video data into subflows based on their contribution of distortion decrease and the
delay requirements of individual video frames. Then we propose to calculate the weights
of the current subflows according to their rate-distortion properties, playback deadline
requirements and the previous transmission results. To tackle the deadline approaching effect,
we also propose to explicitly add to the weight calculation a product term which increases
when the deadline approaches.
Simulation results show that our algorithms always outperform the rate maximization
(content-blind) scheme and the pure gradient-based (deadline-blind) scheme. Besides
improving the average video quality, the proposed algorithms also lead to a fair allocation.
Finally, the performance of the algorithms are consistent under both synchronous or
asynchronous deadlines.
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1. Introduction 
Video compression technologies have been extensively studied in recent years. The basic 
concept of video compression is to reduce the amount of bits for video representation by 
exploiting spatial and temporal correlations in image sequences. In recent years, 
H.264/AVC (Advanced Video Coding) is the state-of-the-art video coding standard 
established by ITU-T Video Coding Experts Group and ISO/IEC Moving Pictures Experts 
Group. H.264/AVC provides a better compression efficiency and visual quality than prior 
standards, owing to it adopts some unique techniques to reduce the redundant information, 
such as multiple reference frames, variable block size, quarter-sample-accurate motion 
compensation, etc. In H.264/AVC encoder, integer DCT procedure transforms residual data 
into the frequency domain. Further through quantization will generate many continuous 
zero coefficients. Two excellent entropy coding schemes can reduce coding redundancy: 
context-adaptive variable length coding (CAVLC) (Bjontegarrd and Lillevold, 2002) and 
context-adaptive binary arithmetic coding (CABAC) (Marpe et al., 2003). Therefore, 
H.264/AVC has higher compression ratio than prior standards and is more appropriate to 
limited transmission channel. However, this highly compressed video bit stream is very 
fragile over transmission environments. 
In the error-prone transmission channel, packet loss of the highly compressed video bit 
stream will cause the serious distortion. The distortion will propagate to its successive 
frames. This is because video coding standards utilize complex predictions to enhance the 
coding efficiency, especially as H.264/AVC. Thus, how to recover the lost video data in the 
decoder is critically essential. Since erroneous data would not only make seriously degrade 
in the current frame but also propagate to the following frames. For solving above-
mentioned problems, the error resilience and the error concealment techniques have been 
proposed in many literatures. 
The error resilience is a mechanism in the encoder for resisting packet loss. These 
preventative mechanisms are designed to improve the robustness of bit streams in noisy 
networks. On the other hand, the error concealment is an effective mechanism in the 
decoder. It applies to concealing corrupted regions by referencing previous decoded data. 
As a video sequence usually has strong spatial and temporal correlation, the corrupted 
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1. Introduction 
Video compression technologies have been extensively studied in recent years. The basic 
concept of video compression is to reduce the amount of bits for video representation by 
exploiting spatial and temporal correlations in image sequences. In recent years, 
H.264/AVC (Advanced Video Coding) is the state-of-the-art video coding standard 
established by ITU-T Video Coding Experts Group and ISO/IEC Moving Pictures Experts 
Group. H.264/AVC provides a better compression efficiency and visual quality than prior 
standards, owing to it adopts some unique techniques to reduce the redundant information, 
such as multiple reference frames, variable block size, quarter-sample-accurate motion 
compensation, etc. In H.264/AVC encoder, integer DCT procedure transforms residual data 
into the frequency domain. Further through quantization will generate many continuous 
zero coefficients. Two excellent entropy coding schemes can reduce coding redundancy: 
context-adaptive variable length coding (CAVLC) (Bjontegarrd and Lillevold, 2002) and 
context-adaptive binary arithmetic coding (CABAC) (Marpe et al., 2003). Therefore, 
H.264/AVC has higher compression ratio than prior standards and is more appropriate to 
limited transmission channel. However, this highly compressed video bit stream is very 
fragile over transmission environments. 
In the error-prone transmission channel, packet loss of the highly compressed video bit 
stream will cause the serious distortion. The distortion will propagate to its successive 
frames. This is because video coding standards utilize complex predictions to enhance the 
coding efficiency, especially as H.264/AVC. Thus, how to recover the lost video data in the 
decoder is critically essential. Since erroneous data would not only make seriously degrade 
in the current frame but also propagate to the following frames. For solving above-
mentioned problems, the error resilience and the error concealment techniques have been 
proposed in many literatures. 
The error resilience is a mechanism in the encoder for resisting packet loss. These 
preventative mechanisms are designed to improve the robustness of bit streams in noisy 
networks. On the other hand, the error concealment is an effective mechanism in the 
decoder. It applies to concealing corrupted regions by referencing previous decoded data. 
As a video sequence usually has strong spatial and temporal correlation, the corrupted 
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macro-blocks (MBs) can be approximated from the information of the neighbouring MBs in 
spatial or temporal domain.  
Temporal error concealment (TEC) approaches usually employ the dependence of 
continuous frames to estimate the lost motion vectors (MVs). Further corrupted MBs can be 
replaced with the corresponding MBs in reference frames. Corresponding MBs are judged 
by estimated MVs, obtained by boundary matching algorithms (BMA) (Lam et al., 1993). 
Spatial error concealment (SEC) approaches adopt neighbouring correct data in the current 
frame to restore the lost data. One of the remarkable SECs is bilinear interpolation (BI). 
Bilinear interpolation (BI) calculates weighted average pixel values from boundary pixels. 
Some SECs interpolate the lost pixels according to the estimated edge directions, such as 
directional interpolation (DI) mode, multi-directional interpolation (MDI) (Kwok and Sun, 
1993) mode and selective directional interpolation (SDI) (Kung et al., 2006) mode. 
This article proposes a hybrid error concealment technique which consists of both the 
proposed temporal and the proposed spatial error concealment approaches. If TEC 
approach is not appropriate for the corrupted MB, SEC approach will further be adopted. 
Simulation results show that the recovery performance could be enhanced by the proposed 
hybrid error concealment technique, even by the proposed temporal error concealment 
approach. 

2. The proposed hybrid error concealment in H.264/AVC 
The proposed hybrid error concealment technique is implemented in H.264/AVC decoder. 
It could make trade-off not only between TEC and SEC approaches but also between 
different error concealment schemes. The flowchart of the proposed technique is shown in 
Figure 1. In general, the recovery performance of TEC is better than SEC. However, SEC is 
better than TEC in some circumstances, such as scene-change frames or high motion regions. 
Therefore, while error occurs, the proposed technique will initially adopt the proposed TEC 
approach. If temporal information is unobtainable or inappropriate for restoring the 
corrupted data, the proposed technique will further switch to utilize the SEC approach 
according to the measure of temporal activity, TMSE, and spatial activity, SVar. The proposed 
SEC approach (Wang et al., 2010), adaptively integrating some interpolation schemes, will 
restore the corrupted data. Therefore, the proposed hybrid error concealment technique 
could enhance the recovery performance especially in scene-change frames and high motion 
regions. In other words, the recovery performance of the proposed TEC approach could be 
enhanced by adaptively utilizing the proposed SEC approach (Wang et al., 2010). 
The switching mechanism in the proposed hybrid error concealment is based on temporal 
activity, TMSE. While the temporal activity is greater than the spatial activity, SVar, and a pre-
determined threshold, the proposed SEC approach will further be adopted. TMSE and SVar are 
calculated by the Equation (1) and (2), respectively. 
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where xi and xi‘ denote boundary pixel values around the corrupted MB in current frame 
and boundary pixel values around the replacement MB in reference frame, respectively. µ is 
the mean value of boundary pixel values around the corrupted MB. 
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Fig. 1. The flowchart of the proposed hybrid error concealment technique 

In the temporal domain, the proposed TEC approach determines an optimal result to restore 
the corrupted MB according to the internal boundary distortion estimation. This optimal 
result can be determined from one of the following two restored candidate MBs. One 
candidate is obtained by adopting mean absolute difference (MAD) of external boundary 
pixels to search for the most similar MB. The other is obtained by adaptively integrating the 
above-mentioned MB’s data and an enhanced data with the proposed texture-based 
selective calibration. Inspired by bi-linearity interpolation filter (BIF) (Cui et al., 2009), this 
enhanced data is measured by the proposed estimated boundary residuals. In the spatial 
domain, the proposed SEC approach determines an integrated method to optimize recovery 
performance. The determination is based on a unique measure, the proposed external 
boundary distortion estimation. One of the integrated methods combines results of selective 
directional interpolation (SDI) (Yi et al., 2009) and bilinear interpolation (BI) with the 
adaptive weight. The other integrates results of multi-directional interpolation (MDI) (Zhan 
and Zhu, 2009) and BI with the adaptive weight. The details of the proposed TEC and SEC 
approaches will be briefly described in the following sub-sections. 

2.1 The proposed temporal error concealment approach 
The proposed temporal error concealment approach could find out the optimal restored 
data for concealment. Its flowchart is shown in Figure 2. First, the similar MB is estimated by 
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macro-blocks (MBs) can be approximated from the information of the neighbouring MBs in 
spatial or temporal domain.  
Temporal error concealment (TEC) approaches usually employ the dependence of 
continuous frames to estimate the lost motion vectors (MVs). Further corrupted MBs can be 
replaced with the corresponding MBs in reference frames. Corresponding MBs are judged 
by estimated MVs, obtained by boundary matching algorithms (BMA) (Lam et al., 1993). 
Spatial error concealment (SEC) approaches adopt neighbouring correct data in the current 
frame to restore the lost data. One of the remarkable SECs is bilinear interpolation (BI). 
Bilinear interpolation (BI) calculates weighted average pixel values from boundary pixels. 
Some SECs interpolate the lost pixels according to the estimated edge directions, such as 
directional interpolation (DI) mode, multi-directional interpolation (MDI) (Kwok and Sun, 
1993) mode and selective directional interpolation (SDI) (Kung et al., 2006) mode. 
This article proposes a hybrid error concealment technique which consists of both the 
proposed temporal and the proposed spatial error concealment approaches. If TEC 
approach is not appropriate for the corrupted MB, SEC approach will further be adopted. 
Simulation results show that the recovery performance could be enhanced by the proposed 
hybrid error concealment technique, even by the proposed temporal error concealment 
approach. 

2. The proposed hybrid error concealment in H.264/AVC 
The proposed hybrid error concealment technique is implemented in H.264/AVC decoder. 
It could make trade-off not only between TEC and SEC approaches but also between 
different error concealment schemes. The flowchart of the proposed technique is shown in 
Figure 1. In general, the recovery performance of TEC is better than SEC. However, SEC is 
better than TEC in some circumstances, such as scene-change frames or high motion regions. 
Therefore, while error occurs, the proposed technique will initially adopt the proposed TEC 
approach. If temporal information is unobtainable or inappropriate for restoring the 
corrupted data, the proposed technique will further switch to utilize the SEC approach 
according to the measure of temporal activity, TMSE, and spatial activity, SVar. The proposed 
SEC approach (Wang et al., 2010), adaptively integrating some interpolation schemes, will 
restore the corrupted data. Therefore, the proposed hybrid error concealment technique 
could enhance the recovery performance especially in scene-change frames and high motion 
regions. In other words, the recovery performance of the proposed TEC approach could be 
enhanced by adaptively utilizing the proposed SEC approach (Wang et al., 2010). 
The switching mechanism in the proposed hybrid error concealment is based on temporal 
activity, TMSE. While the temporal activity is greater than the spatial activity, SVar, and a pre-
determined threshold, the proposed SEC approach will further be adopted. TMSE and SVar are 
calculated by the Equation (1) and (2), respectively. 
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where xi and xi‘ denote boundary pixel values around the corrupted MB in current frame 
and boundary pixel values around the replacement MB in reference frame, respectively. µ is 
the mean value of boundary pixel values around the corrupted MB. 
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Fig. 1. The flowchart of the proposed hybrid error concealment technique 

In the temporal domain, the proposed TEC approach determines an optimal result to restore 
the corrupted MB according to the internal boundary distortion estimation. This optimal 
result can be determined from one of the following two restored candidate MBs. One 
candidate is obtained by adopting mean absolute difference (MAD) of external boundary 
pixels to search for the most similar MB. The other is obtained by adaptively integrating the 
above-mentioned MB’s data and an enhanced data with the proposed texture-based 
selective calibration. Inspired by bi-linearity interpolation filter (BIF) (Cui et al., 2009), this 
enhanced data is measured by the proposed estimated boundary residuals. In the spatial 
domain, the proposed SEC approach determines an integrated method to optimize recovery 
performance. The determination is based on a unique measure, the proposed external 
boundary distortion estimation. One of the integrated methods combines results of selective 
directional interpolation (SDI) (Yi et al., 2009) and bilinear interpolation (BI) with the 
adaptive weight. The other integrates results of multi-directional interpolation (MDI) (Zhan 
and Zhu, 2009) and BI with the adaptive weight. The details of the proposed TEC and SEC 
approaches will be briefly described in the following sub-sections. 

2.1 The proposed temporal error concealment approach 
The proposed temporal error concealment approach could find out the optimal restored 
data for concealment. Its flowchart is shown in Figure 2. First, the similar MB is estimated by 
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a conventional temporal method to replace the corrupted MB. Secondly, the enhanced MB is 
calculated by appending enhanced residuals to the replaced MB. Then the proposed 
temporal adaptive weight-based switching (TAWS) algorithm adaptively integrates above 
two estimated data into the integrated MB. Finally, the proposed texture-based selective 
calibration (TSC) algorithm will find out the most appropriate restored data for corrupted 
MBs based on boundary distortion estimation. These exhaustive steps are described in the 
following sub-sections. 
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Fig. 2. The flowchart of the proposed temporal error concealment approach 

2.1.1 Searching for the most similar MB by mean absolute difference 
The most similar MB for corrupted MB is estimated in the first step. Like the restoring 
component of AECOD (Qian et al., 2009), the mean absolute difference (MAD) of external 
boundary pixels is adopted to search for the most similar MB. Then the corrupted MB is 
replaced with the most similar MB, namely replaced MB (MBrep). If certain boundary of the 
corrupted MB is not available, the corresponding coefficient is set to be 0. 

2.1.2 Calculation of boundary residuals for generating enhanced macro-blocks 
This step utilizes boundary residuals to perform the proposed 5-tap interpolation filter in 
order to enhance the recovery performance. Firstly, boundary residuals are obtained by 
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subtracting the boundary pixels around corrupted MB from the boundary pixels around the 
most similar MB in the previous frame. These are calculated by Equation (3), where BR, 
CBP, and RBP denote the boundary residual, the boundary pixels of the current frame and 
the boundary pixels of the reference frame, respectively. 

 ( , , ) ( , , ) ( , , 1)BR CBP RBPMB x y n MB x y n MB x y n= − −  (3) 

Secondly, inspired by (Zhan and Zhu, 2009), enhanced residuals for the replaced MB are 
estimated. The improved 5-tap filter is developed to interpolate the enhanced residuals. Its 
equations are expressed as Equation (4) and (5), 
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and its corresponding figure is shown in Figure 3. Then, the estimated residuals will be 
appended to the replaced MB. In the beginning, the proposed interpolation filter estimates 
the enhanced residual of the outermost loop by Equation (4), except for the four corner 
points. Next, the enhanced residual of corner point is calculated by adopting Equation (5) to 
average the four neighbouring values, where BRc3, BRc4, erc1 and erc3 are shown in Figure 
3(a). 
 

 
                                                             (a)                                                                 (b) 

Fig. 3. The proposed 5-tap interpolation filter (a) The filter in the outer loop of the replaced 
MB; (b) The filter in the innermost loop of the replaced MB. 

Similarly, enhanced residuals of the second-outer loop are interpolated by adopting 
enhanced residuals of the first-outer loop. The filter can estimate enhanced residuals for the 
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a conventional temporal method to replace the corrupted MB. Secondly, the enhanced MB is 
calculated by appending enhanced residuals to the replaced MB. Then the proposed 
temporal adaptive weight-based switching (TAWS) algorithm adaptively integrates above 
two estimated data into the integrated MB. Finally, the proposed texture-based selective 
calibration (TSC) algorithm will find out the most appropriate restored data for corrupted 
MBs based on boundary distortion estimation. These exhaustive steps are described in the 
following sub-sections. 
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Fig. 2. The flowchart of the proposed temporal error concealment approach 

2.1.1 Searching for the most similar MB by mean absolute difference 
The most similar MB for corrupted MB is estimated in the first step. Like the restoring 
component of AECOD (Qian et al., 2009), the mean absolute difference (MAD) of external 
boundary pixels is adopted to search for the most similar MB. Then the corrupted MB is 
replaced with the most similar MB, namely replaced MB (MBrep). If certain boundary of the 
corrupted MB is not available, the corresponding coefficient is set to be 0. 

2.1.2 Calculation of boundary residuals for generating enhanced macro-blocks 
This step utilizes boundary residuals to perform the proposed 5-tap interpolation filter in 
order to enhance the recovery performance. Firstly, boundary residuals are obtained by 
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subtracting the boundary pixels around corrupted MB from the boundary pixels around the 
most similar MB in the previous frame. These are calculated by Equation (3), where BR, 
CBP, and RBP denote the boundary residual, the boundary pixels of the current frame and 
the boundary pixels of the reference frame, respectively. 

 ( , , ) ( , , ) ( , , 1)BR CBP RBPMB x y n MB x y n MB x y n= − −  (3) 

Secondly, inspired by (Zhan and Zhu, 2009), enhanced residuals for the replaced MB are 
estimated. The improved 5-tap filter is developed to interpolate the enhanced residuals. Its 
equations are expressed as Equation (4) and (5), 
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and its corresponding figure is shown in Figure 3. Then, the estimated residuals will be 
appended to the replaced MB. In the beginning, the proposed interpolation filter estimates 
the enhanced residual of the outermost loop by Equation (4), except for the four corner 
points. Next, the enhanced residual of corner point is calculated by adopting Equation (5) to 
average the four neighbouring values, where BRc3, BRc4, erc1 and erc3 are shown in Figure 
3(a). 
 

 
                                                             (a)                                                                 (b) 

Fig. 3. The proposed 5-tap interpolation filter (a) The filter in the outer loop of the replaced 
MB; (b) The filter in the innermost loop of the replaced MB. 

Similarly, enhanced residuals of the second-outer loop are interpolated by adopting 
enhanced residuals of the first-outer loop. The filter can estimate enhanced residuals for the 
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replaced MB sequentially from the outermost loop to inner loops. Then, enhanced residuals 
of the innermost loop are calculated by averaging the partially five surrounding values, 
such as er1, er2, er3, er4 and er5 in Figure 3(b). Therefore, 256 enhanced residuals can be 
estimated by above-mentioned procedures. 
Finally, the estimated residuals are appended to the enhanced MB. The appended data is the 
enhanced MB, MBen. 

2.1.3 The proposed boundary distortion estimation 
This step calculates the standard deviation and the proposed boundary distortion estimation 
for two following sub-sections. The standard deviation, σ, of correctly received 4-pixels wide 
neighbouring boundary pixels is calculated to represent the texture intensity of corrupted 
MB. Its equations are shown as Equation (6) and Equation (7). 
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In Equation (6) and Equation (7), P(i, j) and μ denote the pixel value of correctly received 
neighbouring boundary region and the mean value of boundary pixels, respectively. N×M 
denotes the amount of all boundary pixels. 
The proposed boundary distortion estimation is estimated from two values, the replaced 
MB and enhanced MB. It is illustrated in Figure 4 and its equation is expressed as 
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In Equation (8), BDn, EB(i) and IB(i), respectively, denote the boundary distortion value of 
the replaced MB or enhanced MB (MBn), the external boundary pixels around MBn and the 
internal boundary pixels of MBn. 
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Fig. 4. The proposed boundary distortion estimation 
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2.1.4 Applying the temporal adaptive weight-based switching algorithm 
The proposed temporal adaptive weight-based switching algorithm (TAWS) is adopted to 
determine a weight, ω, and calculating the optimal integrated MB, MBopt_aw, for the last step. 
The optimal integrated MB is calculated by adaptively integrating the replaced MB, MBrep, 
and enhanced MB, MBen, with the adaptive weight. This algorithm is described as follows: 
 

 ω = 1 
 for (i = 1; i < 10; i++)  
 { 
   MBaw(i) = ω × MBrep + (1 - ω) × MBen 
   ω = ω - 0.125 
 } 
 MBopt_aw = MinBD( MBaw(i) ) 
 

In above algorithm, MBaw is the integrated MB with the temporal adaptive weight-based 
switching algorithm. The function MinBD( ) is utilized to find the optimal integrated MB, 
MBopt_aw, with minimal boundary distortion. 

2.1.5 Applying the texture-based selective calibration algorithm 
In the last step of the proposed temporal error concealment technique, the texture-based 
selective calibration algorithm (TSC) is proposed to determine the optimal restored MB, 
MBopt. The determination is based on many criteria, such as boundary distortions and 
standard deviation, σ. The proposed TSC algorithm is described as follows: 
 

 Set initial thresholds (SDup = 100; SDlow = 75; BDth = 1) 
 for (i = 0; i < 4; i++) 
 { 
  if (i = 0) 
   if (σ > SDlow) 
    if (BDrep > BDen  & |BDrep – BDen| > BDth) 
     MBopt = 0.5 × MBrep + 0.5 × MBen 
    else 
     MBopt = MBrep 
   else 
    if (σ > SDlow & σ < SDup) 
     if (BDrep > BDen & |BDrep – BDen| > BDth) 
      MBopt = MBopt_aw 
     else 
      MBopt = MBrep 
  SDup = SDup – 25 
  SDlow = SDlow – 25 
  BDth = BDth + 2 
 } 
 

In the above algorithm, the standard deviation is normalized form 0 to 100 firstly. SDup and 
SDlow are the dynamic upper-bound and dynamic lower-bound of the standard deviation, 
respectively. They could determine four intervals of standard deviation to represent 
different texture intensity: high, medium-high, medium-low and low texture. The threshold, 
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replaced MB sequentially from the outermost loop to inner loops. Then, enhanced residuals 
of the innermost loop are calculated by averaging the partially five surrounding values, 
such as er1, er2, er3, er4 and er5 in Figure 3(b). Therefore, 256 enhanced residuals can be 
estimated by above-mentioned procedures. 
Finally, the estimated residuals are appended to the enhanced MB. The appended data is the 
enhanced MB, MBen. 

2.1.3 The proposed boundary distortion estimation 
This step calculates the standard deviation and the proposed boundary distortion estimation 
for two following sub-sections. The standard deviation, σ, of correctly received 4-pixels wide 
neighbouring boundary pixels is calculated to represent the texture intensity of corrupted 
MB. Its equations are shown as Equation (6) and Equation (7). 
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In Equation (6) and Equation (7), P(i, j) and μ denote the pixel value of correctly received 
neighbouring boundary region and the mean value of boundary pixels, respectively. N×M 
denotes the amount of all boundary pixels. 
The proposed boundary distortion estimation is estimated from two values, the replaced 
MB and enhanced MB. It is illustrated in Figure 4 and its equation is expressed as 
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In Equation (8), BDn, EB(i) and IB(i), respectively, denote the boundary distortion value of 
the replaced MB or enhanced MB (MBn), the external boundary pixels around MBn and the 
internal boundary pixels of MBn. 
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Fig. 4. The proposed boundary distortion estimation 
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2.1.4 Applying the temporal adaptive weight-based switching algorithm 
The proposed temporal adaptive weight-based switching algorithm (TAWS) is adopted to 
determine a weight, ω, and calculating the optimal integrated MB, MBopt_aw, for the last step. 
The optimal integrated MB is calculated by adaptively integrating the replaced MB, MBrep, 
and enhanced MB, MBen, with the adaptive weight. This algorithm is described as follows: 
 

 ω = 1 
 for (i = 1; i < 10; i++)  
 { 
   MBaw(i) = ω × MBrep + (1 - ω) × MBen 
   ω = ω - 0.125 
 } 
 MBopt_aw = MinBD( MBaw(i) ) 
 

In above algorithm, MBaw is the integrated MB with the temporal adaptive weight-based 
switching algorithm. The function MinBD( ) is utilized to find the optimal integrated MB, 
MBopt_aw, with minimal boundary distortion. 

2.1.5 Applying the texture-based selective calibration algorithm 
In the last step of the proposed temporal error concealment technique, the texture-based 
selective calibration algorithm (TSC) is proposed to determine the optimal restored MB, 
MBopt. The determination is based on many criteria, such as boundary distortions and 
standard deviation, σ. The proposed TSC algorithm is described as follows: 
 

 Set initial thresholds (SDup = 100; SDlow = 75; BDth = 1) 
 for (i = 0; i < 4; i++) 
 { 
  if (i = 0) 
   if (σ > SDlow) 
    if (BDrep > BDen  & |BDrep – BDen| > BDth) 
     MBopt = 0.5 × MBrep + 0.5 × MBen 
    else 
     MBopt = MBrep 
   else 
    if (σ > SDlow & σ < SDup) 
     if (BDrep > BDen & |BDrep – BDen| > BDth) 
      MBopt = MBopt_aw 
     else 
      MBopt = MBrep 
  SDup = SDup – 25 
  SDlow = SDlow – 25 
  BDth = BDth + 2 
 } 
 

In the above algorithm, the standard deviation is normalized form 0 to 100 firstly. SDup and 
SDlow are the dynamic upper-bound and dynamic lower-bound of the standard deviation, 
respectively. They could determine four intervals of standard deviation to represent 
different texture intensity: high, medium-high, medium-low and low texture. The threshold, 
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BDth, is utilized to determine the magnitude of boundary distortion. It is calculated by BDrep 
and BDen, the boundary distortion of the replaced MB, MBrep, and the enhanced MB, MBen, 
respectively. SDup and SDlow decrease 25 and BDth increases 2 after each iteration. In other 
words, the interval with higher texture corresponds to smaller threshold for boundary 
distortion, BDth. In our observations, the optimal restored MB is generally the replaced MB. 
As to the interval with higher texture, it will be obtained by averaging MBr and MBe. 
Therefore, this proposed TSC algorithm could optimize the recovery performance for 
damaged MBs by many above-mentioned criteria. 

2.2 The proposed spatial error concealment approach 
The proposed spatial error concealment approach is based on adaptive weight-based 
switching directional interpolation, namely AWSDI (Wang et al., 2010). It utilizes a spatial 
adaptive weight-based switching algorithm (SAWS) to adaptively switch two integrated 
modes in order to optimize recovery performance. This approach adopts a unique spatial 
evaluation criterion, judged by boundary distortion estimation. One of the integrated modes 
combines SDI (Kung et al., 2006) and BI with the adaptive weight. The other integrates MDI 
and BI with the adaptive weight. Flowchart of the proposed spatial error concealment is 
shown in Figure 5. The steps of the proposed spatial error concealment are addressed in the 
following sub-sections. 
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Fig. 5. Flowchart of the proposed spatial error concealment approach 

2.2.1 Determining the dominant edge points by edge detection 
Firstly, the edges of boundary regions around a corrupted MB are detected. Then, estimated 
edges would be refined according to the detected edges. In spatial error concealment 
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approaches, directional interpolation algorithms recover the corrupted MB by interpolating 
lost pixels along estimated edge directions. The estimated edge directions of the corrupted 
MB are corresponding to detected edges in boundary regions due to spatial dependency. 
Therefore, the proposed spatial error concealment approach adopts Sobel gradient filter 
with 4-pixel wide boundary regions. Then the dominant edge points, Pedge(i, j), are 
determined for the following directional interpolations. The determination is expressed as 
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Equation (9) means that if the gradient magnitude G(i, j) of the pixel P(i, j) is greater than or 
equal to one-half of the maximum magnitude, the pixel will be determined as the dominant 
edge point. The maximum magnitude, max(G(i,j)), denotes the maximum gradient 
magnitude of all the boundary pixels. 

2.2.2 Integration of three interpolation modes 
In this step, the proposed technique integrates pre-recovery results of three interpolation 
modes (BI, SDI and MDI) with an adaptive weight, w. The weight will be determined in the 
last step. Each corrupted macro-block has to be recovered by BI, SDI and MDI initially. Then 
three pre-recovery results, MBBI, MBSDI and MBMDI, are integrated into two results, MBBISDI 
and MBBIMDI, with an adaptive weight w, respectively. In addition, the main difference 
between our integration and recent literatures (Kung et al., 2006; Zhan and Zhu, 2009) is that 
other methods adopted fixed weight to integrate or switch pre-recovery results. Conversely, 
the proposed integrated results are generated with an adaptive weight, which will be 
determined by the evaluation criterion. 
The main reason of above-mentioned integrations is that SDI and MDI could not restore 
well in some cases, such as the smooth MB, too complex texture MB. Conversely, BI could 
not restore well in the slant directions texture MB. Therefore, it is essential to adaptively 
integrate various interpolation modes. These two integrated results will be applied to 
enhancing the recovery performance. 

2.2.3 Calculation for the proposed spatial evaluation criterion 
This step calculates the boundary distortion for the last step. The last step will select the best 
integrated result with minimal boundary distortion for one corrupted macro-block. By 
subtracting the correctly received boundary from pseudo-recovered boundary as shown in 
Figure 6, the boundary distortion is calculated. The pseudo-recovered boundary is generated 
as the following. 
Firstly, the first-loop external boundary is assumed to be lost. Then, the second-loop 
external boundary is utilized to restore the first-loop external boundary. The recovered first-
loop external boundary is the pseudo-recovered boundary. In this process, the recovery 
method is the same as the integrated macro-block, MBBISDI or MBBIMDI. It is worth pointing 
that the criterion is based on the similarity between original external boundary and pseudo-
recovered boundary. This is because if the pseudo-recovered boundary using certain 
integrated mode is more similar with original boundary, this integrated mode is more 
adequate to the corrupted macro-block. 



 
Recent Advances on Video Coding 

 

250 

BDth, is utilized to determine the magnitude of boundary distortion. It is calculated by BDrep 
and BDen, the boundary distortion of the replaced MB, MBrep, and the enhanced MB, MBen, 
respectively. SDup and SDlow decrease 25 and BDth increases 2 after each iteration. In other 
words, the interval with higher texture corresponds to smaller threshold for boundary 
distortion, BDth. In our observations, the optimal restored MB is generally the replaced MB. 
As to the interval with higher texture, it will be obtained by averaging MBr and MBe. 
Therefore, this proposed TSC algorithm could optimize the recovery performance for 
damaged MBs by many above-mentioned criteria. 

2.2 The proposed spatial error concealment approach 
The proposed spatial error concealment approach is based on adaptive weight-based 
switching directional interpolation, namely AWSDI (Wang et al., 2010). It utilizes a spatial 
adaptive weight-based switching algorithm (SAWS) to adaptively switch two integrated 
modes in order to optimize recovery performance. This approach adopts a unique spatial 
evaluation criterion, judged by boundary distortion estimation. One of the integrated modes 
combines SDI (Kung et al., 2006) and BI with the adaptive weight. The other integrates MDI 
and BI with the adaptive weight. Flowchart of the proposed spatial error concealment is 
shown in Figure 5. The steps of the proposed spatial error concealment are addressed in the 
following sub-sections. 
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2.2.1 Determining the dominant edge points by edge detection 
Firstly, the edges of boundary regions around a corrupted MB are detected. Then, estimated 
edges would be refined according to the detected edges. In spatial error concealment 
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approaches, directional interpolation algorithms recover the corrupted MB by interpolating 
lost pixels along estimated edge directions. The estimated edge directions of the corrupted 
MB are corresponding to detected edges in boundary regions due to spatial dependency. 
Therefore, the proposed spatial error concealment approach adopts Sobel gradient filter 
with 4-pixel wide boundary regions. Then the dominant edge points, Pedge(i, j), are 
determined for the following directional interpolations. The determination is expressed as 
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Equation (9) means that if the gradient magnitude G(i, j) of the pixel P(i, j) is greater than or 
equal to one-half of the maximum magnitude, the pixel will be determined as the dominant 
edge point. The maximum magnitude, max(G(i,j)), denotes the maximum gradient 
magnitude of all the boundary pixels. 

2.2.2 Integration of three interpolation modes 
In this step, the proposed technique integrates pre-recovery results of three interpolation 
modes (BI, SDI and MDI) with an adaptive weight, w. The weight will be determined in the 
last step. Each corrupted macro-block has to be recovered by BI, SDI and MDI initially. Then 
three pre-recovery results, MBBI, MBSDI and MBMDI, are integrated into two results, MBBISDI 
and MBBIMDI, with an adaptive weight w, respectively. In addition, the main difference 
between our integration and recent literatures (Kung et al., 2006; Zhan and Zhu, 2009) is that 
other methods adopted fixed weight to integrate or switch pre-recovery results. Conversely, 
the proposed integrated results are generated with an adaptive weight, which will be 
determined by the evaluation criterion. 
The main reason of above-mentioned integrations is that SDI and MDI could not restore 
well in some cases, such as the smooth MB, too complex texture MB. Conversely, BI could 
not restore well in the slant directions texture MB. Therefore, it is essential to adaptively 
integrate various interpolation modes. These two integrated results will be applied to 
enhancing the recovery performance. 

2.2.3 Calculation for the proposed spatial evaluation criterion 
This step calculates the boundary distortion for the last step. The last step will select the best 
integrated result with minimal boundary distortion for one corrupted macro-block. By 
subtracting the correctly received boundary from pseudo-recovered boundary as shown in 
Figure 6, the boundary distortion is calculated. The pseudo-recovered boundary is generated 
as the following. 
Firstly, the first-loop external boundary is assumed to be lost. Then, the second-loop 
external boundary is utilized to restore the first-loop external boundary. The recovered first-
loop external boundary is the pseudo-recovered boundary. In this process, the recovery 
method is the same as the integrated macro-block, MBBISDI or MBBIMDI. It is worth pointing 
that the criterion is based on the similarity between original external boundary and pseudo-
recovered boundary. This is because if the pseudo-recovered boundary using certain 
integrated mode is more similar with original boundary, this integrated mode is more 
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Fig. 6. The proposed evaluation criterion based on boundary distortion estimation 

2.2.4 Applying the spatial adaptive weight-based switching algorithm 
In the last step, the proposed spatial error concealment adopts the spatial adaptive weight-
based switching (SAWS) algorithm to determine the optimal recovered MB, MBopt. The 
determination is based on boundary distortion estimation calculated by Step 3. It is defined 
as the following algorithm: 
 

 ω = 1 
 For (i = 1; i < 10; i++) 
 { 
 MBBISDI (i) = ω．MBBI + (1 – ω)．MBSDI 

 MBBIMDI (i) = ω．MBBI + (1 – ω)．MBMDI 
   ω = ω – 0.125 
 } 
 MBopt = MinBD( MinBD( MBBISDI (i) ), MinBD( MBBIMDI (i) ) ) 
 

MBBISDI and MBBIMDI are the integrated results obtained by section 2.2.2. In this algorithm, 
the interval of each adaptive weight is 0.125. The most adequate weight will be found out by 
the function MinBD( ), utilized to select the optimal recovered macro-block with minimal 
boundary distortion. Therefore, the spatial adaptive weight-based switching algorithm 
could optimize the recovery performance of corrupted macro-blocks. 

3. Simulation results 
The proposed hybrid error concealment technique is implemented in the decoder of 
H.264/AVC Reference Software Joint Model 16.2 (JM 16.2). Three benchmark sequences, 
such as carphone, Stefan and foreman are employed in our simulations. These sequences are 
encoded by the H.264/AVC standard. The frame size is both at QCIF (176×144) and CIF 
(352×288) resolution, and the frame rate is 30 fps. The period of I frame reset is 15 and the 
number of reference frames is 1. A constant quantization parameter (QP) of 28 is maintained 
for all frames and the slice type is set to be dispersed FMO. The packets are randomly 
selected and dropped according to the predefined packet loss rate (PLR). The PLR is set to 
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be 5%, 10% and 15%. Table 1 lists the comparison of the proposed temporal error 
concealment approach and the proposed hybrid error concealment technique with JM 16.2. 
And the comparisons of subjective quality are shown in Figures 7~9. 
The performance of the proposed hybrid error concealment technique is impressive. This is 
because the proposed technique not only adaptively switches TEC approach to SEC 
approach but also enhances each approach. The proposed TEC approach improves the BIF 
and adaptively integrates BIF with a conventional scheme, using MAD criterion. In cases of 
scene-change frames or high motion regions, the performance of the proposed TEC 
approach may be not good enough. Then the proposed SEC approach will further be 
adopted. It adaptively combines several interpolation modes to two integrated methods. 
Finally, the unique evaluation criterion, based on external boundary distortion estimation, is 
utilized to measure out the best integrated method. Thus, the proposed hybrid error 
concealment technique has excellent performance. 
 

Sequence PLR (%) JM 16.2 Proposed 
TEC 

Proposed 
HEC 

5 32.53 34.52 34.64 

10 30.98 32.35 32.44 carphone 

15 28.96 30.70 30.78 

5 29.15 29.34 29.53 

10 26.12 26.34 26.47 Stefan 

15 23.97 23.99 24.20 

5 31.86 32.63 32.93 

10 28.78 29.46 29.56 

QCIF 

foreman 

15 26.39 26.94 27.28 

5 33.51 35.37 35.37 

10 31.50 32.93 32.93 carphone 

15 29.76 31.10 31.19 

5 31.02 31.22 31.38 

10 27.58 27.36 27.56 Stefan 

15 25.38 24.92 25.20 

5 32.84 33.75 34.13 

10 29.69 30.77 30.94 

CIF 

foreman 

15 27.30 28.15 28.35 
 

Table 1. Comparison of the proposed hybrid error concealment technique with JM 
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2.2.4 Applying the spatial adaptive weight-based switching algorithm 
In the last step, the proposed spatial error concealment adopts the spatial adaptive weight-
based switching (SAWS) algorithm to determine the optimal recovered MB, MBopt. The 
determination is based on boundary distortion estimation calculated by Step 3. It is defined 
as the following algorithm: 
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 For (i = 1; i < 10; i++) 
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MBBISDI and MBBIMDI are the integrated results obtained by section 2.2.2. In this algorithm, 
the interval of each adaptive weight is 0.125. The most adequate weight will be found out by 
the function MinBD( ), utilized to select the optimal recovered macro-block with minimal 
boundary distortion. Therefore, the spatial adaptive weight-based switching algorithm 
could optimize the recovery performance of corrupted macro-blocks. 

3. Simulation results 
The proposed hybrid error concealment technique is implemented in the decoder of 
H.264/AVC Reference Software Joint Model 16.2 (JM 16.2). Three benchmark sequences, 
such as carphone, Stefan and foreman are employed in our simulations. These sequences are 
encoded by the H.264/AVC standard. The frame size is both at QCIF (176×144) and CIF 
(352×288) resolution, and the frame rate is 30 fps. The period of I frame reset is 15 and the 
number of reference frames is 1. A constant quantization parameter (QP) of 28 is maintained 
for all frames and the slice type is set to be dispersed FMO. The packets are randomly 
selected and dropped according to the predefined packet loss rate (PLR). The PLR is set to 
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be 5%, 10% and 15%. Table 1 lists the comparison of the proposed temporal error 
concealment approach and the proposed hybrid error concealment technique with JM 16.2. 
And the comparisons of subjective quality are shown in Figures 7~9. 
The performance of the proposed hybrid error concealment technique is impressive. This is 
because the proposed technique not only adaptively switches TEC approach to SEC 
approach but also enhances each approach. The proposed TEC approach improves the BIF 
and adaptively integrates BIF with a conventional scheme, using MAD criterion. In cases of 
scene-change frames or high motion regions, the performance of the proposed TEC 
approach may be not good enough. Then the proposed SEC approach will further be 
adopted. It adaptively combines several interpolation modes to two integrated methods. 
Finally, the unique evaluation criterion, based on external boundary distortion estimation, is 
utilized to measure out the best integrated method. Thus, the proposed hybrid error 
concealment technique has excellent performance. 
 

Sequence PLR (%) JM 16.2 Proposed 
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Proposed 
HEC 

5 32.53 34.52 34.64 

10 30.98 32.35 32.44 carphone 

15 28.96 30.70 30.78 

5 29.15 29.34 29.53 

10 26.12 26.34 26.47 Stefan 

15 23.97 23.99 24.20 
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15 26.39 26.94 27.28 
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(a) 

 
                                    (b)                                                                                (c) 

 
                                    (d)                                                                                (e) 
Fig. 7. Recovery performance for the 190th frame of Stefan (QCIF, GOP=10) (a) The error-free 
frame; (b)The corrupted frame; (c)JM (21.7594 dB); (d)Proposed TEC (20.9881 dB); (e) Proposed 
HEC (22.1987 dB) 
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(a) 

 
                                      (b)                                                                             (c) 

 
                                      (d)                                                                             (e) 

Fig. 8. Recovery performance for the 152th frame of foreman (QCIF, GOP=10) (a) The error-
free frame; (b)The corrupted frame; (c)JM (26.7743 dB); (d) Proposed TEC (28.9247 dB);  
(e) Proposed HEC (30.3790 dB) 
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(a) 

 
                                      (b)                                                                             (c) 

 
                                      (d)                                                                             (e) 

Fig. 9. Recovery performance for the 225 th frame of foreman (QCIF, GOP=10) (a) The error-
free frame; (b)The corrupted frame; (c)JM (23.1123 dB); (d) Proposed TEC (21.6732 dB);  
(e) Proposed HEC (23.4388 dB) 
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4. Conclusion 
In this article, a hybrid error concealment technique in H.264/AVC decoder has been 
proposed. It could effectively restore the corrupted data by adaptively switching temporal 
error concealment approach to spatial error concealment approach. The hybrid error 
concealment technique performs a temporal error concealment approach initially. If the 
performance is not good enough, especially in scene-change frames or high motion regions, 
the spatial error concealment approach is employed. Both temporal and spatial error 
concealment approaches adopt the proposed temporal or spatial adaptive weight-based 
switching algorithm to optimize the performance of each integrated macro-block. Then the 
boundary distortion estimation is utilized to determine the best integrated method for a 
corrupted macro-block. Simulation results show that the proposed hybrid error concealment 
technique performs excellent gains of up to 2 dB compared to that of the Joint Model (JM) 
decoder for a wide range of benchmark sequences. 
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4. Conclusion 
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error concealment approach to spatial error concealment approach. The hybrid error 
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1. Introduction

With the recent advancement of video coding techniques and wide spread use of broadband
networks, video streaming services over the Internet have attracted considerable attention.
The recent video streaming services cover multimedia messaging, video telephony, video
conferencing, standard and high-definition TV broadcasting, and those services are provided
over wired/wireless networks (Schwarz et al. 2007). The Internet, however, is a best-effort
network, and hence the quality of service (QoS) for video streaming is not strictly guaranteed
due to packet loss and/or delay. The varying connection quality of the Internet has accelerated
the development of adaptive mechanisms of video coding technologies.
MPEG and H.26x are video coding standards which have been widely deployed. MPEG4’s
latest video codec is Part 10 or the advanced video codec (AVC), which is also identically
standardized as ITU H.264 (Marpe et al. 2006). The fundamental coding mechanism of
H.264/AVC consists of a Video Coding Layer (VCL) and a Network Abstraction Layer (NAL).
The VCL generates a coded representation of a source content, and the resulting data is
formatted with header information by the NAL. Pictures are partitioned into small coding
units called macroblocks, which organized by the following three slices:

• I-slice: intra-picture predictive coding based on spatial prediction from neighboring
regions.

• P-slice: intra-picture predictive coding and inter-picture predictive coding.

• B-slice: intra-picture predictive coding, inter-picture predictive coding, and inter-picture
bi-predictive coding.

With these three types of slices, H.264/AVC succeeds in providing largely increased
flexibility and adaptability in comparison with previous standards such as H.261, MPEG-1
Video, H.262, MPEG2 Video, H.263, and MPEG-4 Visual. The latest standardization effort
addressing scalability is the extension of H.264/AVC called scalable video coding (SVC)
(Schwarz et al. 2007; Wien et al. 2007). In 2007, the SVC scalability extension has been added
to the H.264/AVC standard. In this paper, this extended version of H.264/AVC is referred to
as H.264/SVC.
In (Van der Auwera et al. 2008a; Van der Auwera et al. 2008b), the fundamental traffic
characteristics of H.264/AVC were extensively studied. It was reported that the bit rate
variability for H.264/AVC is significantly higher than that for the MPEG-4 Part 2 encoder,
particularly in the low to medium quality range. This large variability of H.264/AVC may
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as H.264/SVC.
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characteristics of H.264/AVC were extensively studied. It was reported that the bit rate
variability for H.264/AVC is significantly higher than that for the MPEG-4 Part 2 encoder,
particularly in the low to medium quality range. This large variability of H.264/AVC may
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cause heavily bursty nature of packet traffic over the Internet. It is also expected that this
bursty nature emerges even for the streaming services based on H.264/SVC.
Now consider H.264/SVC-based streaming services over the network consisting of optical
backbone networks and low-speed access networks. Note that in this network, backbone
edge routers are likely to be the bottleneck of the packet flows of H.264/SVC-based streaming
services. It was reported in (Van der Auwera et al. 2008a) that the coefficient of variation
(CoV) of the frame size increases as the video quality increases, indicating that the video traffic
becomes more variable. Therefore, it is important to investigate the impact of the variability
of the frame size on video quality.
In terms of the resilience to packet loss due to network congestion, there are two basic
techniques for packet-loss recovery: Automatic Repeat reQuest (ARQ) and Forward Error
Correction (FEC). ARQ is an acknowledgement-based error recovery technique, in which lost
data packets are retransmitted by the sender host. However, this retransmission mechanism is
activated by receiving duplicate acknowledgement (ACK) packets or timer time-out, causing
a large end-to-end delay. This large delay is not suitable for real-time applications such as
video streaming and web conference.
On the other hand, FEC is a well-known coding-based error recovery scheme
(Carle & Biersack 1997; Perkins et al. 1998). FEC is a one-way recovery technique based on
open-loop error control, and hence FEC is suitable for real-time applications. In FEC,
redundant data is generated from original data, and both original and redundant data are
transmitted to the receiver host. If the amount of lost data is less than or equal to a prespecified
threshold, the lost data can be reconstructed on the receiver host. In this paper, we consider a
packet-level FEC scheme (Shacham & Pckenney 1990). Because FEC needs no retransmission,
it is suitable for real-time applications with stringent delay constraint such as video streaming.
However, FEC does not work well against packet burst loss because the amount of redundant
data has to be pre-determined with the estimate of the packet loss probability.
In this paper, focusing on the bottleneck router, we consider variable frame size’s impact
on frame loss. It is assumed that the number of packets in a frame is variable and that the
interval of sending packets is constant on the transport layer. We model the bottleneck router
as a single-server queueing system with two independent input processes: a general renewal
input process for video streaming packets and a Poisson arrival process for background traffic
multiplexed at the bottleneck router. Taking into account the variable nature of the number
of packets in a frame, we derive the data-loss ratio of main traffic. In numerical examples,
we investigate how the variability of the frame size affects the data-loss ratio. FEC recovery
performance is also studied.
The rest of this paper is organized as follows. Section 2 shows related work, and in Section 3,
we describe our analysis model, deriving the performance measure. Section 4 presents some
numerical examples, and Section 5 concludes the paper.

2. Related work

H.264/AVC and its extension to the scalable video coding have been aggressively and
extensively studied. The history of H.264/AVC and recent advancement toward SVC are well
surveyed in (Schwarz et al. 2007).
It is well known that the traffic characteristics of encoded video have a significant impact
on network transport. Its characteristics have been extensively studied in the literature.
In particular, the authors in (Van der Auwera et al. 2008a; Van der Auwera et al. 2008b)
compared H.264/AVC and MPEG4 Part 2 using two performance measures: the peak
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signal-to-noise ratio (PSNR) and CoV of the frame size. They claimed that H.264/AVC codec
can save the average bit rate more largely than MPEG4 Part 2 codec, and that the variability of
H.264/AVC video traffic is higher than that MPEG4 Part 2 video traffic. They also examined
how the frame-size smoothing is effective in mitigating the bit rate variability.
In general, video traffic exhibits a long-term correlation nature, which is hardly modeled with
traditional Markovian arriving processes. In (Kempken et al. 2008), the authors considered
discrete-time semi-Markov models of H.264/AVC video traffic. Focusing on the short term
autocorrelation and the preservation of the mean value of the distribution of the size of
group of pictures (GoP), the parameters of a discrete-time batch Markovian arrival process
are optimized by simulated annealing approach.
In (Avramova et al. 2008), the tail probability of the queue length of a bottleneck router was
studied with the effective bandwidth approach and trace-driven simulation experiments.
In the effective bandwidth approach, the tail probability of the queue length can be well
approximated when the number of input sources is large. The authors derived two estimates
of the tail probability from two arrival processes: one is based on a fractional Brownian motion
and the other a Markov-modulated fluid one. Those estimates were compared to trace-driven
simulation.
In this paper, we focus on the multiplexing nature of the bottleneck router. In
terms of this modeling point of view, the authors in (Muraoka et al. 2007) focused on
the bottleneck edge router, evaluating the packet recovery performance of FEC for a
single-server queueing system with finite buffer fed by two input processes: one is a
general renewal input process, and the other is Poisson arrival process. Assuming that the
packet size is exponentially distributed, the packet- and block-level loss probabilities were
analyzed. In (Muraoka et al. 2009), the authors extended the model in (Muraoka et al. 2007)
to a GI+M/SM/1/K queue in which the packet transfer time is governed by a
two-state Markovian service process, investigating the recovery performance of FEC over
wired-wireless networks. Note that in (Muraoka et al. 2007; Muraoka et al. 2009), the frame
size is assumed to be constant. In this paper, we consider the case in which the frame size is
variable.

3. Model and analysis

3.1 Variable frame size
We consider H.264/SVC-based streaming service. Each video frame contains original data
packets and FEC redundant data packets, where the latter ones are generated from the former
ones. The original data packets of a video frame is retrieved if the number of loss packets is
less than or equal to that of the FEC redundant data packets. Otherwise the frame is lost. In
what follows, we assume that the first packet of a video frame arrives to the bottleneck router
at time T1 > 0. The video frame is called “frame 1" hereafter. The subsequent video frames is
called “frame 2", “frame 3", “frame 4" and so on. Let Dk (k = 1, 2, . . . ) denote the number of
the original data packets in frame k. We assume that Dk’s are independently and identically
distributed (i.i.d.) with a probability mass function d(n) (n = 1, 2, . . . ). We also assume that
the number of FEC packets in frame k is equal to �γDk�, where γ ≥ 0 denotes the redundancy.
Thus the total number of packets in frame k is equal to Dk + �γDk�.

3.2 Model
We model the bottleneck router as a single-server queueing system with a buffer of capacity
K, which is fed by two independent input processes. The one is a Poisson flow of packets in
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transmitted to the receiver host. If the amount of lost data is less than or equal to a prespecified
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However, FEC does not work well against packet burst loss because the amount of redundant
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extensively studied. The history of H.264/AVC and recent advancement toward SVC are well
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It is well known that the traffic characteristics of encoded video have a significant impact
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can save the average bit rate more largely than MPEG4 Part 2 codec, and that the variability of
H.264/AVC video traffic is higher than that MPEG4 Part 2 video traffic. They also examined
how the frame-size smoothing is effective in mitigating the bit rate variability.
In general, video traffic exhibits a long-term correlation nature, which is hardly modeled with
traditional Markovian arriving processes. In (Kempken et al. 2008), the authors considered
discrete-time semi-Markov models of H.264/AVC video traffic. Focusing on the short term
autocorrelation and the preservation of the mean value of the distribution of the size of
group of pictures (GoP), the parameters of a discrete-time batch Markovian arrival process
are optimized by simulated annealing approach.
In (Avramova et al. 2008), the tail probability of the queue length of a bottleneck router was
studied with the effective bandwidth approach and trace-driven simulation experiments.
In the effective bandwidth approach, the tail probability of the queue length can be well
approximated when the number of input sources is large. The authors derived two estimates
of the tail probability from two arrival processes: one is based on a fractional Brownian motion
and the other a Markov-modulated fluid one. Those estimates were compared to trace-driven
simulation.
In this paper, we focus on the multiplexing nature of the bottleneck router. In
terms of this modeling point of view, the authors in (Muraoka et al. 2007) focused on
the bottleneck edge router, evaluating the packet recovery performance of FEC for a
single-server queueing system with finite buffer fed by two input processes: one is a
general renewal input process, and the other is Poisson arrival process. Assuming that the
packet size is exponentially distributed, the packet- and block-level loss probabilities were
analyzed. In (Muraoka et al. 2009), the authors extended the model in (Muraoka et al. 2007)
to a GI+M/SM/1/K queue in which the packet transfer time is governed by a
two-state Markovian service process, investigating the recovery performance of FEC over
wired-wireless networks. Note that in (Muraoka et al. 2007; Muraoka et al. 2009), the frame
size is assumed to be constant. In this paper, we consider the case in which the frame size is
variable.

3. Model and analysis

3.1 Variable frame size
We consider H.264/SVC-based streaming service. Each video frame contains original data
packets and FEC redundant data packets, where the latter ones are generated from the former
ones. The original data packets of a video frame is retrieved if the number of loss packets is
less than or equal to that of the FEC redundant data packets. Otherwise the frame is lost. In
what follows, we assume that the first packet of a video frame arrives to the bottleneck router
at time T1 > 0. The video frame is called “frame 1" hereafter. The subsequent video frames is
called “frame 2", “frame 3", “frame 4" and so on. Let Dk (k = 1, 2, . . . ) denote the number of
the original data packets in frame k. We assume that Dk’s are independently and identically
distributed (i.i.d.) with a probability mass function d(n) (n = 1, 2, . . . ). We also assume that
the number of FEC packets in frame k is equal to �γDk�, where γ ≥ 0 denotes the redundancy.
Thus the total number of packets in frame k is equal to Dk + �γDk�.

3.2 Model
We model the bottleneck router as a single-server queueing system with a buffer of capacity
K, which is fed by two independent input processes. The one is a Poisson flow of packets in
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background traffic, whose arrival rate is equal to λ. The other is a renewal packet flow of video
frames from a streaming server, which is called main traffic. Let Tm’s (m = 2, 3, . . . ) denote
arrival epochs of main-traffic packets after the arrival of the first packet of frame 1 at time T1,
where 0 < T1 < T2 < T3 < · · · . Note here that the first packet of frame k (k = 1, 2, . . . )
arrives at time Tmk , where mk = ∑k−1

i=1 (Di + �γDi�) + 1. The interarrival times of packets
in main traffic are i.i.d. with a general distribution G(x) (x ≥ 0), i.e., for each m = 1, 2, . . . ,
Pr[τm ≤ x] = G(x) (x ≥ 0), where τm = Tm+1 − Tm. The service times of packets in both
main and background traffic are i.i.d. according to an exponential distribution with mean
1/μ. Consequently, we have a GI+M/M/1/K queueing system for the bottleneck router.

3.3 Stationary distribution of packets in the bottleneck router
This subsection considers the stationary queue length distribution immediately before an
arrival from main traffic in the GI+M/M/1/K queueing system, which is described in the
previous subsection. Recall that packets in main traffic arrive at times Tm’s (m = 1, 2, . . . ).
Let L−

m (m = 1, 2, . . . ) denote the total number of packets in the system immediately before
time Tm. Note that during the interval (Tm, Tm+1), the behavior of the GI+M/M/1/K queue
is stochastically equivalent to that of the M/M/1/K queue with arrival rate λ and service rate
μ. Thus {L−

m ; m = 1, 2, . . . } is a Markov chain whose transition probability matrix Π is given
by

Π = Λ

� ∞

0
exp(Qx)dG(x), (1)

where Λ and Q denote (K + 1)× (K + 1) matrices that are given by

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0

0 0 1
. . . 0 0

...
...

. . .
. . .

...
...

0 0 0
. . . 1 0

0 0 0 . . . 0 1
0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ λ 0 . . . 0 0

μ −(λ + μ) λ
. . .

...
...

0 μ −(λ + μ)
. . . 0 0

0 0 μ
. . . λ 0

...
...

. . .
. . . −(λ + μ) λ

0 0 0
. . . μ −μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note here that Π is aperiodic. Let π denote a 1 × (K + 1) probability vector whose jth (j =
0, 1, . . . , K) element πj represents limm→∞ Pr[L−

m = j]. We then have

πΠ = π, πe = 1,

where e denotes a column vector of ones with appropriate dimension.
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3.4 Derivation of data-loss ratio
This subsection derives the long-term ratio Pdata of the number of unretrieved data packets
to that of all the original data packets. Let N(t) (t ≥ 0) denote the total number of video
frames arriving to the system in the time interval (0, t]. Without loss of generality, we assume
N(0) = 0. Let Xk (k = 1, 2, . . . ) denote the number of lost packets among frame k. The formal
definition of Pdata is as follows:

Pdata = 1 − lim
t→∞

∑
N(t)
k=1 Dk · 1(Xk ≤ �γDk�)

∑
N(t)
k=1 Dk

,

where 1(χ) denotes the indicator function of event χ. Let Q−
k (k = 1, 2, . . . ) denote the

number of packets in the system immediate before the arrival of the first packet of frame
k. By definition (see subsection 3.2), Q−

k = L−
mk

for k = 1, 2, . . . . Therefore limk→∞ Pr[Q−
k =

i] = limm→∞ Pr[L−
m = i] = πi for all i = 0, 1, . . . , K. Note here that {(Dk, Q−

k ); k = 1, 2, . . . } is
a Markov renewal process because {Dk; k = 1, 2, . . . } is a sequence of i.i.d. random variables
and independent of a Markov chain {Q−

k ; k = 1, 2, . . . }. Note also that each Dk · 1(Xk ≤
�γDk�) can be regarded as reward depending on Dk and Q−

k . It then follows from the Markov
renewal reward theorem (Wolf 1989) that

Pdata = 1 − Eπ [D1 · 1(X1 ≤ �γD1�)]
E[D1]

, (3)

where Eπ [ · ] = ∑K
i=0 πiE[ · | Q−

1 = i]. From (3) and Q−
1 = L−

1 , we have

Pdata = 1 − ∑K
i=0 πi ∑∞

n=1 nd(n)Pr[X1 ≤ �γn� | D1 = n, L−
1 = i]

∑∞
n=1 nd(n)

= 1 − ∑∞
n=1 nd(n) · ∑K

i=0 πiq(�γn�; n, i)
∑∞

n=1 nd(n)
, (4)

where q(ν; n, i) (ν = 0, 1, . . . , n, n = 1, 2, . . . , i = 0, 1, . . . , K) denotes

q(ν; n, i) = Pr[X1 ≤ ν | D1 = n, L−
1 = i]. (5)

We can readily compute ∑K
i=0 πiq(�γn�; n, i) by the recursion given in subsection 3.2 of

(Muraoka et al. 2007), because ∑K
i=0 πiq(�γn�; n, i) is equivalent to ∑

�γn�
k=0 pn+�γn�(k)e therein.

4. Numerical examples

In this section, we evaluate the impact of the variable frame size using the data-loss ratio
derived in the previous section. The transmission rate of video streaming service is set to 20
Mbps, and the output transmission speed of the bottleneck router is 100 Mbps. We consider
two system capacity cases: K = 10 and 100. It is assumed that the video-frame rate is 30
[frame/s], and that the packet size is constant and equal to 500 bytes. Then, the service rate of
a packet at the bottleneck router is μ = 2.5 × 104 [packet/s].
We assume that the packet interarrival time of main traffic is constant. Let Dmin (Dmax) denote
the minimum (maximum) value of the frame size. In terms of d(n), we consider the following
uniform distribution.

d(n) =
{

1/(Dmax − Dmin + 1), Dmin ≤ n ≤ Dmax,
0, 0 ≤ n < Dmin, n > Dmax.
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background traffic, whose arrival rate is equal to λ. The other is a renewal packet flow of video
frames from a streaming server, which is called main traffic. Let Tm’s (m = 2, 3, . . . ) denote
arrival epochs of main-traffic packets after the arrival of the first packet of frame 1 at time T1,
where 0 < T1 < T2 < T3 < · · · . Note here that the first packet of frame k (k = 1, 2, . . . )
arrives at time Tmk , where mk = ∑k−1

i=1 (Di + �γDi�) + 1. The interarrival times of packets
in main traffic are i.i.d. with a general distribution G(x) (x ≥ 0), i.e., for each m = 1, 2, . . . ,
Pr[τm ≤ x] = G(x) (x ≥ 0), where τm = Tm+1 − Tm. The service times of packets in both
main and background traffic are i.i.d. according to an exponential distribution with mean
1/μ. Consequently, we have a GI+M/M/1/K queueing system for the bottleneck router.

3.3 Stationary distribution of packets in the bottleneck router
This subsection considers the stationary queue length distribution immediately before an
arrival from main traffic in the GI+M/M/1/K queueing system, which is described in the
previous subsection. Recall that packets in main traffic arrive at times Tm’s (m = 1, 2, . . . ).
Let L−

m (m = 1, 2, . . . ) denote the total number of packets in the system immediately before
time Tm. Note that during the interval (Tm, Tm+1), the behavior of the GI+M/M/1/K queue
is stochastically equivalent to that of the M/M/1/K queue with arrival rate λ and service rate
μ. Thus {L−

m ; m = 1, 2, . . . } is a Markov chain whose transition probability matrix Π is given
by

Π = Λ
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0
exp(Qx)dG(x), (1)

where Λ and Q denote (K + 1)× (K + 1) matrices that are given by

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0

0 0 1
. . . 0 0

...
...

. . .
. . .

...
...

0 0 0
. . . 1 0

0 0 0 . . . 0 1
0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ λ 0 . . . 0 0

μ −(λ + μ) λ
. . .

...
...

0 μ −(λ + μ)
. . . 0 0

0 0 μ
. . . λ 0

...
...

. . .
. . . −(λ + μ) λ

0 0 0
. . . μ −μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note here that Π is aperiodic. Let π denote a 1 × (K + 1) probability vector whose jth (j =
0, 1, . . . , K) element πj represents limm→∞ Pr[L−

m = j]. We then have

πΠ = π, πe = 1,

where e denotes a column vector of ones with appropriate dimension.
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In this section, we evaluate the impact of the variable frame size using the data-loss ratio
derived in the previous section. The transmission rate of video streaming service is set to 20
Mbps, and the output transmission speed of the bottleneck router is 100 Mbps. We consider
two system capacity cases: K = 10 and 100. It is assumed that the video-frame rate is 30
[frame/s], and that the packet size is constant and equal to 500 bytes. Then, the service rate of
a packet at the bottleneck router is μ = 2.5 × 104 [packet/s].
We assume that the packet interarrival time of main traffic is constant. Let Dmin (Dmax) denote
the minimum (maximum) value of the frame size. In terms of d(n), we consider the following
uniform distribution.
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Type Main traffic M̄ Dmin Dmax CoV
I 20 Mbps 167 151 183 0.0570
II 20 Mbps 167 39 295 0.442

Table 1. Basic parameters for uniform distribution.

Name Original filename Date/Cpat.on Duration
Leipzig-II 20030221-121359-0.g2 February 21 12:13:59 2003 164min
Leipzig-II 20030222-150000-0.g2 February 22 15:00:00 2003 360min

Table 2. General information about the trace used for simulation experiments.
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Fig. 1. The average bit rate of trace data.

The basic parameter set is shown in Table 1. In the following, we denote CoV as the coefficient
of variation of the frame size. Let M̄(γ) denote the average of the number of packets in a
frame, which is given by

M̄(γ) =
∞

∑
n=1

(n + �γn�)d(n).

When the video transmission rate is 20 Mbps, the mean number of original data packets in a
frame is M̄(0) = 167.
We validate the analytical model by simulation experiments driven by traces of the NLANR
repository (PMA). The trace data was used for the inter-arrival times of background traffic,
and the other settings are the same as the analysis. Table 2 shows the details of the trace data
used for simulation experiments in this paper. The subset of each trace data was used for
the simulation experiment. In the following, we call the trace data from 20030222-150000-0.g2
(resp. 20030221-121359-0.g2) is called Trace A (resp. Trace B). Each trace was used for the
inter-arrival times of packets in background traffic.
Figure 1 shows the average bit rate of the trace data. Note that Trace B represents the trace data
whose volume varies greatly. Figure 2 illustrates the histogram of the trace data. The left-hand
(resp. right-hand) figure in Fig. 2 shows the histogram of Trace A (resp. Trace B). When the
packet size is 500 bytes, the volume of Trace A (resp. Trace B) is equal to 20.3 Mbps (resp. 25.5
Mbps) and the corresponding arrival rate λ is 5.09 × 103 (resp. 6.37 × 103) [packet/s]. The
average of the packet inter-arrival times for Trace A (resp. Trace B) is 1.97 × 10−1 (resp. 1.56 ×
10−1). The variance of the packet inter-arrival times for Trace A (resp. Trace B) is 4.56 × 10−2

(resp. 3.11 × 10−2). The resulting CoV of the packet inter-arrival times for Trace A (resp. Trace
B) is 1.08 (resp. 1.13).
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4.1 Impact of system capacity
In this subsection, we investigate how the system capacity affects the data-loss ratio. In the
following figures, analytical results are shown with lines, compared with simulation results
represented by dots with 95% confidence intervals.
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Figure 3 (4) shows the data-loss ratio against the system capacity K when the frame size
distribution is Type I (II). We calculated the data-loss ratio for γ = 0, 0.003 and 0.027. Note
that the corresponding value of M̄(γ) is M̄(0) = 167, M̄(0.003) = 168 and M̄(0.027) = 172.
Here, the transmission rate of the bottleneck router is 50 Mbps, and the packet arrival rate of
background traffic is 5.09 × 103 [packet/s], the mean packet arrival rate of Trace A.
In Figure 3, for each γ, simulation results are greater than analytical results. In addition, the
discrepancy between analysis and simulation is large even for a small K. This is because the
packet interarrival times of the trace data used for background traffic in simulation are more
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Type Main traffic M̄ Dmin Dmax CoV
I 20 Mbps 167 151 183 0.0570
II 20 Mbps 167 39 295 0.442

Table 1. Basic parameters for uniform distribution.

Name Original filename Date/Cpat.on Duration
Leipzig-II 20030221-121359-0.g2 February 21 12:13:59 2003 164min
Leipzig-II 20030222-150000-0.g2 February 22 15:00:00 2003 360min

Table 2. General information about the trace used for simulation experiments.
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The basic parameter set is shown in Table 1. In the following, we denote CoV as the coefficient
of variation of the frame size. Let M̄(γ) denote the average of the number of packets in a
frame, which is given by
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(n + �γn�)d(n).
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frame is M̄(0) = 167.
We validate the analytical model by simulation experiments driven by traces of the NLANR
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and the other settings are the same as the analysis. Table 2 shows the details of the trace data
used for simulation experiments in this paper. The subset of each trace data was used for
the simulation experiment. In the following, we call the trace data from 20030222-150000-0.g2
(resp. 20030221-121359-0.g2) is called Trace A (resp. Trace B). Each trace was used for the
inter-arrival times of packets in background traffic.
Figure 1 shows the average bit rate of the trace data. Note that Trace B represents the trace data
whose volume varies greatly. Figure 2 illustrates the histogram of the trace data. The left-hand
(resp. right-hand) figure in Fig. 2 shows the histogram of Trace A (resp. Trace B). When the
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4.1 Impact of system capacity
In this subsection, we investigate how the system capacity affects the data-loss ratio. In the
following figures, analytical results are shown with lines, compared with simulation results
represented by dots with 95% confidence intervals.
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Figure 3 (4) shows the data-loss ratio against the system capacity K when the frame size
distribution is Type I (II). We calculated the data-loss ratio for γ = 0, 0.003 and 0.027. Note
that the corresponding value of M̄(γ) is M̄(0) = 167, M̄(0.003) = 168 and M̄(0.027) = 172.
Here, the transmission rate of the bottleneck router is 50 Mbps, and the packet arrival rate of
background traffic is 5.09 × 103 [packet/s], the mean packet arrival rate of Trace A.
In Figure 3, for each γ, simulation results are greater than analytical results. In addition, the
discrepancy between analysis and simulation is large even for a small K. This is because the
packet interarrival times of the trace data used for background traffic in simulation are more
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correlated than the Poisson process assumed for the analytical model. We also observe that the
data-loss ratio decreases with the increase in K, as expected. The data-loss ratio is decreased
by FEC, however, increasing the system capacity is more effective than FEC.
Comparing Figures 3 and 4, we observe that when CoV is large, the data-loss ratio for a large
FEC redundancy is slightly smaller than that for a small FEC redundancy. This implies that
FEC is effective for the video transmission in which the video frame size has a large variability.
Figure 5 (6) shows the data-loss ratio against the system capacity K when the frame size
distribution is Type I (II). Most of the parameters are the same as Figure 3 (4), except that
the packet arrival rate of background traffic is 6.37 × 103 [packet/s], the mean packet arrival
rate of Trace B. Note that the CoV of the packet inter-arrival times for Trace B is larger than
that for Trace A. From Figures 5 and 6, we observe the same tendencies as Figures 3 and 4.
From these results, we can claim that the analysis is useful in a qualitative sense to investigate
the effect of the variability of the frame size on the data-loss ratio.

4.2 Impact of variable frame size
In this subsection, we investigate how the variable frame size affects the data-loss ratio. It is
supposed that the transmission rate of the bottleneck router is 50 Mbps (100 Mbps). Thus the
packet service rate of the bottleneck router is μ = 1, 25 × 104 (2.5 × 104) [packet/s].
Figures 7 and 8 illustrate the data-loss ratio against the CoV of the frame size in case of the
K=10 and 40. In each K, we calculated the data loss ratio for γ = 0, 0.003 and 0.027. Note that
the corresponding value of M̄(γ) is M̄(0) = 167, M̄(0.003) = 168 and M̄(0.027) = 172. In
order to change the value of CoV, we decrement (increment) Dmin (Dmax) by one, keeping the
mean frame size constant.
In Figure 7, the data-loss ratio grows monotonically with the increase in CoV in cases of γ=0
and 0.003. This is simply due to a small FEC redundancy. On the other hand, the data-loss
ratio gradually decreases when the redundancy γ is 0.027. In Figure 8, we observe similar
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correlated than the Poisson process assumed for the analytical model. We also observe that the
data-loss ratio decreases with the increase in K, as expected. The data-loss ratio is decreased
by FEC, however, increasing the system capacity is more effective than FEC.
Comparing Figures 3 and 4, we observe that when CoV is large, the data-loss ratio for a large
FEC redundancy is slightly smaller than that for a small FEC redundancy. This implies that
FEC is effective for the video transmission in which the video frame size has a large variability.
Figure 5 (6) shows the data-loss ratio against the system capacity K when the frame size
distribution is Type I (II). Most of the parameters are the same as Figure 3 (4), except that
the packet arrival rate of background traffic is 6.37 × 103 [packet/s], the mean packet arrival
rate of Trace B. Note that the CoV of the packet inter-arrival times for Trace B is larger than
that for Trace A. From Figures 5 and 6, we observe the same tendencies as Figures 3 and 4.
From these results, we can claim that the analysis is useful in a qualitative sense to investigate
the effect of the variability of the frame size on the data-loss ratio.

4.2 Impact of variable frame size
In this subsection, we investigate how the variable frame size affects the data-loss ratio. It is
supposed that the transmission rate of the bottleneck router is 50 Mbps (100 Mbps). Thus the
packet service rate of the bottleneck router is μ = 1, 25 × 104 (2.5 × 104) [packet/s].
Figures 7 and 8 illustrate the data-loss ratio against the CoV of the frame size in case of the
K=10 and 40. In each K, we calculated the data loss ratio for γ = 0, 0.003 and 0.027. Note that
the corresponding value of M̄(γ) is M̄(0) = 167, M̄(0.003) = 168 and M̄(0.027) = 172. In
order to change the value of CoV, we decrement (increment) Dmin (Dmax) by one, keeping the
mean frame size constant.
In Figure 7, the data-loss ratio grows monotonically with the increase in CoV in cases of γ=0
and 0.003. This is simply due to a small FEC redundancy. On the other hand, the data-loss
ratio gradually decreases when the redundancy γ is 0.027. In Figure 8, we observe similar
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characteristics as Figure 7. Note that the data-loss ratio in Figure 8 is smaller than that in
Figure 7 and the impact of the variable frame size is small.
Figures 9 and 10 illustrate the data-loss ratio against the frame size in cases of K =10 and 20.
Here, the transmission rate of the bottleneck router is 100 Mbps. In Figure 9, when γ=0 and
0.003, the data-loss ratio gradually grows with the increase in CoV, so the tendency is similar to
the case where the transmission rate of the bottleneck router is 50 Mbps. In case of γ=0.027, on
the other hand, the data-loss ratio increases step by step when the CoV increases. The data-loss
ratio of a large CoV is about 400 times larger than that of a small CoV. In other words, when
the FEC redundancy increases, the data-loss ratio becomes small but is significantly affected
by CoV. In Figure 10, we observe the same characteristics as Figure 9. Note that the data-loss
ratio is more improved for the system with a large capacity.

4.3 Impact of background traffic
In this subsection, we investigate how the data-loss ratio is affected by the volume of
background traffic. Figure 11 represents the data-loss ratio against the volume of background
traffic in cases of K = 10 and 100. In terms of d(n), we consider Types I and II. The FEC
redundancy γ is set to 0 and 0.027. It is observed that the data-loss ratio grows with the
increase in the volume of background traffic, as expected. When K is small, FEC is effective
in decreasing the data-loss ratio. However, the data-loss ratio for a large FEC redundancy
is significantly affected by CoV. When K is large, on the other hand, the data-loss ratio is
significantly improved. This implies that increasing the buffer size is more effective than FEC
for a bottleneck router in congestion.
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characteristics as Figure 7. Note that the data-loss ratio in Figure 8 is smaller than that in
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the other hand, the data-loss ratio increases step by step when the CoV increases. The data-loss
ratio of a large CoV is about 400 times larger than that of a small CoV. In other words, when
the FEC redundancy increases, the data-loss ratio becomes small but is significantly affected
by CoV. In Figure 10, we observe the same characteristics as Figure 9. Note that the data-loss
ratio is more improved for the system with a large capacity.

4.3 Impact of background traffic
In this subsection, we investigate how the data-loss ratio is affected by the volume of
background traffic. Figure 11 represents the data-loss ratio against the volume of background
traffic in cases of K = 10 and 100. In terms of d(n), we consider Types I and II. The FEC
redundancy γ is set to 0 and 0.027. It is observed that the data-loss ratio grows with the
increase in the volume of background traffic, as expected. When K is small, FEC is effective
in decreasing the data-loss ratio. However, the data-loss ratio for a large FEC redundancy
is significantly affected by CoV. When K is large, on the other hand, the data-loss ratio is
significantly improved. This implies that increasing the buffer size is more effective than FEC
for a bottleneck router in congestion.
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5. Conclusions

In this paper, focusing on the bottleneck router, we considered the impact of the frame-size
variability on frame loss. We modeled the bottleneck router as a single-server queueing
system with two independent input processes: a general renewal input process and a Poisson
arrival process, deriving the data-loss ratio of main traffic. The analysis was validated in
a qualitative sense by trace-driven simulation. Numerical examples showed the data-loss
ratio is not significantly affected by the variability of the frame size. It was also claimed that
increasing the buffer size is more effective than FEC for a bottleneck router in congestion.
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5. Conclusions

In this paper, focusing on the bottleneck router, we considered the impact of the frame-size
variability on frame loss. We modeled the bottleneck router as a single-server queueing
system with two independent input processes: a general renewal input process and a Poisson
arrival process, deriving the data-loss ratio of main traffic. The analysis was validated in
a qualitative sense by trace-driven simulation. Numerical examples showed the data-loss
ratio is not significantly affected by the variability of the frame size. It was also claimed that
increasing the buffer size is more effective than FEC for a bottleneck router in congestion.
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1. Introduction 
H.264/AVC is currently one of the most commonly used video coding standards. The 
compression efficiency of H.264/AVC is higher than any other previous video coding 
standards, as it includes more sophisticated coding techniques, such as intra prediction, 
variable block size motion estimation, rate-distortion optimized mode decision, and entropy 
coding (Luthra et al., 2003; Sullivan & Wiegand, 2005; Wiegand et al., 2003). 
Intra prediction is an important technique in image and video coding to reduce the spatial 
redundancy between spatially adjacent blocks. Unlike previous coding standards such as 
H.263+ and MPEG-4 Part-2, in which intra predictions were performed in the transform 
domain, the intra prediction of H.264/AVC is completely defined in the pixel domain by 
referring to neighboring samples of coded blocks (Sullivan et al., 2004; Sullivan et al., 2004). 
Recently, many intra prediction approaches have been proposed. To capture the local 
information of neighboring reconstructed samples more accurately, 34 prediction modes are 
employed in angular intra prediction for the Intra_88 mode (Ugur et al., 2010), and 
arbitrary directional intra (ADI) for the Intra_1616 mode (McCann et al., 2010). In order to 
combine two types of the H.264/AVC intra prediction modes, bidirectional intra prediction 
(BIP) is proposed (Matsuo et al., 2007). 
In some cases, the image blocks have repeated patterns instead of distinctive direction 
information. In this case, utilizing the global information in place of the spatial neighboring 
samples will bring better coding efficiency. Related works include intra displacement 
compensation (IDC) (Yu & Chrysafis, 2002) and template matching (TM). IDC uses an intra-
displacement vector per block partition to get the reference samples. In TM, they choose to 
match the templates which have already been reconstructed. Further enhancements using 
the TM scheme are matching using a single template (Tan et al., 2006), backward-adaptive 
texture synthesis (Wei & Levoy, 2000), multiple candidates (Tan et al., 2007), priority-guided 
template matching (Guo et al., 2008), and locally adaptive illumination compensation (Zheng 
et al., 2008). 
Although these approaches improve the coding performance, they still suffer from the 
limitation of the block-based structure. In the block-based structure, it is difficult to predict 
the samples far from the reconstructed block boundaries. Thus, a new intra prediction 
method, line-based intra prediction (Sohn & Han, 2007; Peng et al., 2010) is suggested. Until 
now, line-based coding seems to overcome the shortcomings of block-based prediction, 
because each line within the current block shares an equal processing and is predicted and 



14 Will-be-set-by-IN-TECH

[Wolf 1989] Wolff, R. W. (1989). Stochastic modeling and the theory of queues, Prentice-Hall.
[PMA] Passive Measurement and Analysis (PMA). URL: http://pma.nlanr.net

/Special/leip2.html

272 Recent Advances on Video Coding

13 

Line-based Intra Coding for  
High Quality Video Using H.264/AVC 

Jung-Ah Choi and Yo-Sung Ho 
Gwangju Institute of Science and Technology (GIST) 

Republic of Korea 

1. Introduction 
H.264/AVC is currently one of the most commonly used video coding standards. The 
compression efficiency of H.264/AVC is higher than any other previous video coding 
standards, as it includes more sophisticated coding techniques, such as intra prediction, 
variable block size motion estimation, rate-distortion optimized mode decision, and entropy 
coding (Luthra et al., 2003; Sullivan & Wiegand, 2005; Wiegand et al., 2003). 
Intra prediction is an important technique in image and video coding to reduce the spatial 
redundancy between spatially adjacent blocks. Unlike previous coding standards such as 
H.263+ and MPEG-4 Part-2, in which intra predictions were performed in the transform 
domain, the intra prediction of H.264/AVC is completely defined in the pixel domain by 
referring to neighboring samples of coded blocks (Sullivan et al., 2004; Sullivan et al., 2004). 
Recently, many intra prediction approaches have been proposed. To capture the local 
information of neighboring reconstructed samples more accurately, 34 prediction modes are 
employed in angular intra prediction for the Intra_88 mode (Ugur et al., 2010), and 
arbitrary directional intra (ADI) for the Intra_1616 mode (McCann et al., 2010). In order to 
combine two types of the H.264/AVC intra prediction modes, bidirectional intra prediction 
(BIP) is proposed (Matsuo et al., 2007). 
In some cases, the image blocks have repeated patterns instead of distinctive direction 
information. In this case, utilizing the global information in place of the spatial neighboring 
samples will bring better coding efficiency. Related works include intra displacement 
compensation (IDC) (Yu & Chrysafis, 2002) and template matching (TM). IDC uses an intra-
displacement vector per block partition to get the reference samples. In TM, they choose to 
match the templates which have already been reconstructed. Further enhancements using 
the TM scheme are matching using a single template (Tan et al., 2006), backward-adaptive 
texture synthesis (Wei & Levoy, 2000), multiple candidates (Tan et al., 2007), priority-guided 
template matching (Guo et al., 2008), and locally adaptive illumination compensation (Zheng 
et al., 2008). 
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because each line within the current block shares an equal processing and is predicted and 
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transformed as a basic unit. Since the basic prediction unit is smaller than the case of block-
based prediction, the amount of the residual data is reduced so that entire coding efficiency 
is improved. However, these works require modifying syntax elements of H.264/AVC and 
overhead bits for prediction modes should be delivered to the decoder side. Also, it is not 
easy to implement in the current H.264/AVC standard. 
In this chapter, we have tried to design the implicit line-based prediction for high bit-rate 
compression. In our observation, high-definition (HD) contents are likely to have complex 
patterns - a lot of homogeneous texture patterns with variations such as gradation. 
However, Intra_16×16 has only four simple prediction directions. In H.264/AVC 
Intra_16×16 prediction, 256 pixels within the current block are predicted from maximum 33 
neighboring pixels. Thus, its prediction accuracy is not enough to be selected as the best 
mode. As a result, Intra_4×4 or Intra_8×8 is determined as the best mode for most 
macroblocks.  
To improve the prediction accuracy of the Intra_16×16 mode and take full advantage of the 
line-based structure, we implicitly implement line-based coding to directional prediction 
modes of the Intra_16×16 mode such as vertical and horizontal mode. In terms of syntax 
elements that are transmitted to the decoder, the Intra_4×4 mode requires more bits to 
represent the mode information than the Intra_16×16 mode. As such, with the proposed 
method, the entire number of coding bits will be efficiently reduced. Note that the proposed 
method does not require any modification of syntax element in H.264/AVC, so it can be 
easily applied to the current standard. 

2. Overview of intra prediction methods in H.264/AVC 
Intra prediction requires data from only within the current picture. Unlike the previous 
video coding standards such as H.263+ and MPEG-4 Visual, intra prediction in H.264/AVC 
is always conducted in the spatial domain, by referring to neighboring pixels of the current 
block. Moreover, to better capture the local properties of video signal, H.264/AVC employs 
flexible macroblock partition modes: Intra_44, Intra_88, and Intra_1616. For predicting 
the luminance component, nine prediction modes are employed in both Intra_44 and 
Intra_88 modes, and four prediction modes are utilized for Intra_1616. The details of the 
prediction process are shown in following subsections. 
The efficiency of each partition mode is first evaluated by the encoder using the Lagrangian 
cost function, defined as 

 {Intra _ 4 4,Intra_16 16}MODEJ D R where MODE       (1) 

where the distortion term is the absolute difference between the original and reconstructed 
signals, the rate term represents the amount of actual bits produced by H.264/AVC entropy 
coding, and λMODE is the Lagrangian constant, which depends on the quantization level. 
After this, the best mode which optimizes the cost function will then be selected for the 
actual coding. After intra prediction, the difference between estimated and real sample 
values, called residual data is coded and transmitted. 

2.1 Overview of Intra_4x4 prediction 
In Intra_44 mode, each 44 luma block is predicted from spatially neighboring pixels. The 
16 pixels within the 44 block are predicted using position-specific linear combinations of 
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previously-decoded pixels from adjacent blocks. The encoder can either select DC prediction 
or one of eight directional prediction types, as illustrated on Fig. 1. The directional modes 
are designed to model object edges at various angles. 
 

Mode number Name of prediction mode

0 Vertical

1 Horizontal
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3 Diagonal Down-Left

4 Diagonal Down-Right

5 Vertical -Right

6 Horizontal-Down

7 Vertical-Left

8 Horizontal-Up0
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Fig. 1. Nine prediction directions of Intra_4×4 mode. 

2.2 Overview of Intra_8x8 prediction 
For high quality video, Intra_8×8 prediction is introduced in H.264/AVC high profile by 
extending the concepts of Intra_4×4 mode. Prediction directions of Intra_8×8 mode are same 
with those of Intra_4×4 mode, except the size of block. Each Intra_8×8 prediction generates 
64 predicted pixel values within the 8×8 block using some or all of the upper and left-hand 
neighboring pixels. 

2.3 Overview of Intra_16x16 prediction 
The Intra_16×16 prediction mode is selected in relatively homogeneous area. Four 
prediction modes are supported, as shown in Fig. 2. The 256 pixel values within the 
macroblock are generated from some or all of the upper and left-hand neighboring pixels. 
These modes are specified similar to modes in Intra_4×4 predictions except the plane 
prediction. 
 

Mode number Name of prediction mode
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Fig. 2. Four prediction mode directions for Intra_16×16. 
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Although the intra prediction in H.264/AVC shows lower complexity and good coding 
efficiency, there is still room for further improvement. The correlation between two samples 
is inversely relative to the distance between them. Therefore, samples at each position 
within one block should be predicted closer reference pixels. 

3. Analysis of characteristics of high quality video coding for HD contents 
In high resolution video service, the quality of reconstructed video is important. Figure 3 
shows the decoded video of the high definition (HD) contents, BQTerrace using various 
quantization parameters (QP) from 24 to 32. Over 28, we can observe that the complex 
texture region within the white circle is abruptly corrupted. 
 

 
Fig. 3. Decoded quality comparison (left: QP=24, middle: QP=28, right: QP=32). 

Since an intra-coded frame can be used as a reference frame of inter frames, the quality is 
more important than any others. Thus, we determine that the suitable QP for high quality 
video coding is below 28. In this research, we set QP from 16 to 28 (high bitrate 
compression). Using this range of QP, we can encode the high resolution video without 
noticeable quality degradation. 
 

 
Fig. 4. Selected best mode distribution for various quantization parameters. 

We checked the selected best mode distribution for various QPs, as shown in Fig. 4. In low 
bitrate, the number of Intra_16×16 modes is larger than the number of Intra_4×4 modes. In 
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high bitrate, the number of Intra_16×16 modes is smaller. This result indicates that the 
prediction accuracy of Intra_16×16 mode is not sufficient for selection as the best mode in 
high bitrate compression. From this observation, we can know that the performance of 
H.264/AVC Intra_16×16 prediction in high bitrate compression should be improved. 
 

H.264/AVC Intra_16x16
vertical prediction

Residual dataOriginal data

H.264/AVC Intra_4x4
vertical prediction

Residual data
 

Fig. 5. Prediction result comparison between the Intra_1616 and Intra_44 modes. 

High resolution video generally has many complex patterns due to its substantially higher 
resolution. Figure 5 shows the prediction results of Intra_1616 and Intra_44 modes, when 
we try to predict the left-hand block. Red circle in Fig. 5 stands for remaining pixels that are 
not removed by prediction, i.e. residual data. We can know that the amount of residual data 
after Intra_44 prediction is smaller than that after Intra_1616 prediction. Simple 
directional prediction of Intra_1616 cannot cover this kind of block. In this reason, 
Intra_44 mode is frequently selected as the best mode. Especially, in high bitrate, the 
correlation between reference pixels and current pixels is kept, because the noise of 
quantization and the smoothing effect of deblocking filter in high bitrate are smaller than 
that in low bitrate. 

4. Implicit line-based intra prediction 
In this section, we introduce an implicit line-based intra coding method (Choi et al., 2010). In 
the conventional intra prediction of H.264/AVC, the Intra_16×16 mode is selected as the 
best mode in the homogeneous region. However, since the prediction unit is 16×16 block, 
pixels located further provide poor prediction performance in the vertical and horizontal 
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modes. Thus, when the input sequence has a homogeneous texture pattern with variations 
such as gradation, the Intra_16×16 mode in H.264/AVC cannot yield sufficient prediction 
accuracy. It results in the increase of the residual data. 
 

Line-based Prediction Encoding Reconstruction

Update Line-of-pixels (LOP) for Further Prediction  
Fig. 6. Line-based prediction process. 

In order to improve prediction accuracy of the Intra_16×16 mode, we propose a more 
efficient line-based intra prediction method in H.264/AVC by modifying the relevant 
coding procedure of the Intra_16×16 mode. The entire coding procedure of the proposed 
line-based intra prediction is shown in Fig. 6. The proposed method can be summarized in 
the following steps: 
Step 1. Prediction of the first line of pixels (LOP). 
Step 2. Transformation and quantization of the residual LOP (Encoding). 
Step 3. Inverse quantization and inverse transformation (Reconstruction). 
Step 4. Encoding next LOP using the reconstructed LOP. 
Further details of the proposed coding method are described in the following subsections. 

4.1 Prediction of the first LOP 
To take full advantage of the correlation between pixels, we perform a line-based prediction 
instead of the traditional block-based prediction. Note also that in the proposed method we 
do not predict the entire macroblock in one operation. Figures 7(a) and 7(b) show the 
proposed line-based prediction procedures for the vertical and horizontal modes, 
respectively. 
For the vertical mode, we define 1×16 pixels as the LOP. Then, we make prediction values 
for this LOP by copying neighboring pixels in the upper macroblock, as shown in Fig. 7 (a). 
The prediction equation of the vertical mode is given by 

 ( ,0) ( , 1), {0,1,2, 15}pred x p x x     (2) 

where pred(·) and p(x, -1) represent predicted values and neighboring pixel values of 
previously coded upper macroblock. After this prediction, the predicted LOP is subtracted 
from the corresponding LOP of the original block to produce residual data; only the residual 
LOP is encoded. 
On the other hand, we define 16×1 pixels as the LOP for the horizontal mode, then make 
prediction values for this LOP using 
 

 (0, ) ( 1, ), {0,1,2, 15}.pred y p y y     (3) 
 

The predicted LOP is subsequently subtracted from the corresponding LOP of the original 
block to produce residual LOP. 
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(a) Vertical mode of the Intra_16  16 mode 
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Fig. 7. Prediction method for the first LOP. 

4.2 Transformation and quantization of residual LOP 
After prediction of the first LOP, the residual LOP is transformed and quantized to give a 
set of quantized transform coefficients. In recent research works, line-based prediction with 
one dimensional (1D) transform has been introduced (Chen & Han, 2009; Sohn & Han, 
2007). Their Intra_44 prediction method is cooperated with 1D transform. However, in the 
case of Intra_1616 block, coding performance is not guaranteed because the residual signal 
after line-based prediction is quite random and there is not so much dependency in 1D 
signal. Thus, the 44 integer discrete cosine transform (DCT) and the quantization of the 
conventional H.264/AVC are used. There could be a potential work for finding the best 
rearrangement pattern for residual 1D data. 
Prior to the transformation, the residual LOP should be rearranged to construct the 4×4 
block, X. Note that an accurate prediction reduces the quantity of residual data to be coded. 
As the residual data decreases, its correlation is subject to a substantial decrease; thus, since 
line-based prediction gives more accurate prediction results than the conventional 
prediction, the correlation of its residual data becomes lower. To construct the 4×4 block to 
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modes. Thus, when the input sequence has a homogeneous texture pattern with variations 
such as gradation, the Intra_16×16 mode in H.264/AVC cannot yield sufficient prediction 
accuracy. It results in the increase of the residual data. 
 

Line-based Prediction Encoding Reconstruction

Update Line-of-pixels (LOP) for Further Prediction  
Fig. 6. Line-based prediction process. 

In order to improve prediction accuracy of the Intra_16×16 mode, we propose a more 
efficient line-based intra prediction method in H.264/AVC by modifying the relevant 
coding procedure of the Intra_16×16 mode. The entire coding procedure of the proposed 
line-based intra prediction is shown in Fig. 6. The proposed method can be summarized in 
the following steps: 
Step 1. Prediction of the first line of pixels (LOP). 
Step 2. Transformation and quantization of the residual LOP (Encoding). 
Step 3. Inverse quantization and inverse transformation (Reconstruction). 
Step 4. Encoding next LOP using the reconstructed LOP. 
Further details of the proposed coding method are described in the following subsections. 

4.1 Prediction of the first LOP 
To take full advantage of the correlation between pixels, we perform a line-based prediction 
instead of the traditional block-based prediction. Note also that in the proposed method we 
do not predict the entire macroblock in one operation. Figures 7(a) and 7(b) show the 
proposed line-based prediction procedures for the vertical and horizontal modes, 
respectively. 
For the vertical mode, we define 1×16 pixels as the LOP. Then, we make prediction values 
for this LOP by copying neighboring pixels in the upper macroblock, as shown in Fig. 7 (a). 
The prediction equation of the vertical mode is given by 

 ( ,0) ( , 1), {0,1,2, 15}pred x p x x     (2) 

where pred(·) and p(x, -1) represent predicted values and neighboring pixel values of 
previously coded upper macroblock. After this prediction, the predicted LOP is subtracted 
from the corresponding LOP of the original block to produce residual data; only the residual 
LOP is encoded. 
On the other hand, we define 16×1 pixels as the LOP for the horizontal mode, then make 
prediction values for this LOP using 
 

 (0, ) ( 1, ), {0,1,2, 15}.pred y p y y     (3) 
 

The predicted LOP is subsequently subtracted from the corresponding LOP of the original 
block to produce residual LOP. 
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Fig. 7. Prediction method for the first LOP. 

4.2 Transformation and quantization of residual LOP 
After prediction of the first LOP, the residual LOP is transformed and quantized to give a 
set of quantized transform coefficients. In recent research works, line-based prediction with 
one dimensional (1D) transform has been introduced (Chen & Han, 2009; Sohn & Han, 
2007). Their Intra_44 prediction method is cooperated with 1D transform. However, in the 
case of Intra_1616 block, coding performance is not guaranteed because the residual signal 
after line-based prediction is quite random and there is not so much dependency in 1D 
signal. Thus, the 44 integer discrete cosine transform (DCT) and the quantization of the 
conventional H.264/AVC are used. There could be a potential work for finding the best 
rearrangement pattern for residual 1D data. 
Prior to the transformation, the residual LOP should be rearranged to construct the 4×4 
block, X. Note that an accurate prediction reduces the quantity of residual data to be coded. 
As the residual data decreases, its correlation is subject to a substantial decrease; thus, since 
line-based prediction gives more accurate prediction results than the conventional 
prediction, the correlation of its residual data becomes lower. To construct the 4×4 block to 
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be used for the transformation and quantization, we rearrange the residual LOP in raster 
order, as shown in Fig. 8. For this low-correlated signal, there is no rearrangement method 
that can provide an even better coding efficiency than the raster scan, which we have 
confirmed by performing extensive experiments using various rearrangement methods, 
including zigzag order. 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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9 10 11 12

13 14 15 16
 

Fig. 8. Rearrangement of residual LOP for transformation. 

The transformation operates on the 4×4 rearranged block of the residual data, with the 
procedure of the 4×4 forward transform being as follows: 

  

1 1 1 1 1 2 1 1
2 1 1 2 1 1 1 2
1 1 1 1 1 1 1 2
1 2 2 1 1 2 1 1

Y X

   
         
      
   

      

 (4) 

where X is the reordered residual LOP and Y represents the transformed coefficients. 
After performing the forward transform, the quantization of transformed coefficients is 
given by 

 ( , ) ( , ) ( , ) ( , )( ) ( ) (15 )i j i j i j i j DZ sign W W MF f Q       (5) 

where MF(i,j) represents the multiplication factor and f controls the dead zone. In the 
reference model software, f is (15 )2 /3DQ . In addition, the symbol >> indicates a binary shift 
right, sign(·) represents the sign function, and QD represents the greatest integer smaller than 
or equal to QP/6. 

4.3 Inverse quantization and inverse transformation 
The encoder immediately reconstructs the inverse transformed and inverse quantized block 
of the residual LOP to provide reference data for further predictions of the next LOPs. First, 
the inverse quantization is performed as follows: 

 ( , ) ( , ) ( , )( )i j i j i j DY Z SF Q     (6) 

where SF(i,j) is the scaling factor. The following equation represents the inverse transform. 
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1 1 1 1 / 2 1 1 1 1
1 1 / 2 1 1 1 1 / 2 1 / 2 1
1 1 / 2 1 1 1 1 1 1
1 1 1 1 / 2 1 / 2 1 1 1 / 2

X Y

   
          
      
   

      

 (7) 

The differential block X’ is produced; note that X’ is not same as X because of the 
quantization error. Then, X’ is rearranged from a 4×4 block to a line, as shown in Fig. 9. We 
add the predicted LOP to X’ to create the reconstructed LOP, which is then used as reference 
data for predicting the next LOP. 
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Fig. 9. Rearrangement of the reconstructed block for further prediction. 

4.4 Further prediction using reconstructed LOP 
Using the reconstructed LOP, the next LOP is predicted, as shown in Fig. 10. Figures 10(a) 
and 10(b) show the prediction process of the vertical and horizontal modes, respectively; 
this process is repeated until the last LOP within the current macroblock. 
The equation for further predictions of the vertical mode is 

 ( , ) ( , 1), {0,1,2, 15}, {1,2, 15}pred x y r x y x y      (8) 

where r(x, y-1) indicates the reconstructed pixels and y is the line index that represents the 
position of the current line within the macroblock, which varies from 1 to 15. 
Predictions of the horizontal mode are performed using a similar method. Equation (9) 
shows the prediction equation for the horizontal mode, with the only change being the 
prediction direction. Unlike the vertical mode, x is the line index that represents the position 
of the current line, and it varies from 1 to 15. 

 ( , ) ( 1, ), {1,2, 15}, {0,1,2, 15}.pred x y r x y x y      (9) 

The coded block pattern (cbp) signals as to whether there are coefficients in the transform 
block or not. In the conventional H.264/AVC, one cbp is calculated for each macroblock in 
the intra 16×16 mode. Thus, we should change the calculation procedure for cbp in the 
proposed algorithm. Since the prediction unit of the proposed intra 16×16 coding is in terms 
of LOP, we can compute the cbp for each LOP. The cbp for the macroblock is then calculated 
from the cumulative value of cbp for each LOP. 
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Fig. 9. Rearrangement of the reconstructed block for further prediction. 

4.4 Further prediction using reconstructed LOP 
Using the reconstructed LOP, the next LOP is predicted, as shown in Fig. 10. Figures 10(a) 
and 10(b) show the prediction process of the vertical and horizontal modes, respectively; 
this process is repeated until the last LOP within the current macroblock. 
The equation for further predictions of the vertical mode is 

 ( , ) ( , 1), {0,1,2, 15}, {1,2, 15}pred x y r x y x y      (8) 

where r(x, y-1) indicates the reconstructed pixels and y is the line index that represents the 
position of the current line within the macroblock, which varies from 1 to 15. 
Predictions of the horizontal mode are performed using a similar method. Equation (9) 
shows the prediction equation for the horizontal mode, with the only change being the 
prediction direction. Unlike the vertical mode, x is the line index that represents the position 
of the current line, and it varies from 1 to 15. 

 ( , ) ( 1, ), {1,2, 15}, {0,1,2, 15}.pred x y r x y x y      (9) 

The coded block pattern (cbp) signals as to whether there are coefficients in the transform 
block or not. In the conventional H.264/AVC, one cbp is calculated for each macroblock in 
the intra 16×16 mode. Thus, we should change the calculation procedure for cbp in the 
proposed algorithm. Since the prediction unit of the proposed intra 16×16 coding is in terms 
of LOP, we can compute the cbp for each LOP. The cbp for the macroblock is then calculated 
from the cumulative value of cbp for each LOP. 
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(a) Vertical mode of the Intra_16×16 mode 
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(b) Horizontal mode of the Intra_16×16 mode 

Fig. 10. Further prediction using the reconstructed LOP. 

Figure 11 shows the improvement of the prediction accuracy by the proposed method. The 
left-hand original data is same with that in Fig. 5. Using the proposed method, we can 
predict the original data well and the amount of the residual data is significantly reduced. 
Moreover, by comparing Fig. 5 and Fig. 11, we can confirm that the prediction performance 
of the proposed method is better than that of the Intra_4×4 mode. 

5. Experimental results and analysis 
In order to verify the efficiency of this method, we performed experiments on Bigships 
(1280x720), Jets (1280x720), ShuttleStart (1280x720), BasketballDrive (1920x1080), Cactus 
(1920x1080), BQTerrace (1920x1080) with YUV 4:2:0 in 8 bits per pixel format. The proposed 
method is implemented in the H.264/AVC reference software version JM 12.2(Fraunhofer 
Institute for Telecommunications Heinrich Hertz Institute, 2011). 
Implementation of the proposed method was achieved by replacing the conventional 
Intra_16×16 vertical and horizontal modes. All the tested sequences are intra only coded and 
have various frame rates. The detailed encoding parameters for the experiment are 
summarized in Table 1. 
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Fig. 11. Prediction result comparison between the conventional Intra_16×16 and proposed 
line-based Intra_16×16 predictions. 

 
Parameter Value 

ProfileIDC 100 (High) 

IntraPeriod 1 (only intra coding) 

QPISlice 16, 20, 24, 28 

Transform8x8Mode 1 

SymbolMode 1 

Table 1. Encoding parameters 

In order to verify the efficiency of our proposed method, we compare coding result of the 
proposed method with that of H.264/AVC. The results for several test sequences are 
shown in Table 2. Here, the Bjøntegaard delta peak signal-to-noise ratio (dB) and the 
Bjøntegaard delta bitrate (%) are used to evaluate performance of the proposed 
algorithm(Bjontegaard, 2008). In the experiment, we used all intra prediction modes 
(Intra_16×16, Intra_8×8, and Intra_4×4 modes) by turning on the Transform8x8Mode 
option. We confirmed that the proposed method provides average bit savings of 6.42% for 
720p and 1080p HD resolution sequences, compared to the conventional H.264/AVC 
FRExt high profile. 
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(b) Horizontal mode of the Intra_16×16 mode 

Fig. 10. Further prediction using the reconstructed LOP. 

Figure 11 shows the improvement of the prediction accuracy by the proposed method. The 
left-hand original data is same with that in Fig. 5. Using the proposed method, we can 
predict the original data well and the amount of the residual data is significantly reduced. 
Moreover, by comparing Fig. 5 and Fig. 11, we can confirm that the prediction performance 
of the proposed method is better than that of the Intra_4×4 mode. 

5. Experimental results and analysis 
In order to verify the efficiency of this method, we performed experiments on Bigships 
(1280x720), Jets (1280x720), ShuttleStart (1280x720), BasketballDrive (1920x1080), Cactus 
(1920x1080), BQTerrace (1920x1080) with YUV 4:2:0 in 8 bits per pixel format. The proposed 
method is implemented in the H.264/AVC reference software version JM 12.2(Fraunhofer 
Institute for Telecommunications Heinrich Hertz Institute, 2011). 
Implementation of the proposed method was achieved by replacing the conventional 
Intra_16×16 vertical and horizontal modes. All the tested sequences are intra only coded and 
have various frame rates. The detailed encoding parameters for the experiment are 
summarized in Table 1. 
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Fig. 11. Prediction result comparison between the conventional Intra_16×16 and proposed 
line-based Intra_16×16 predictions. 
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ProfileIDC 100 (High) 

IntraPeriod 1 (only intra coding) 

QPISlice 16, 20, 24, 28 

Transform8x8Mode 1 

SymbolMode 1 

Table 1. Encoding parameters 

In order to verify the efficiency of our proposed method, we compare coding result of the 
proposed method with that of H.264/AVC. The results for several test sequences are 
shown in Table 2. Here, the Bjøntegaard delta peak signal-to-noise ratio (dB) and the 
Bjøntegaard delta bitrate (%) are used to evaluate performance of the proposed 
algorithm(Bjontegaard, 2008). In the experiment, we used all intra prediction modes 
(Intra_16×16, Intra_8×8, and Intra_4×4 modes) by turning on the Transform8x8Mode 
option. We confirmed that the proposed method provides average bit savings of 6.42% for 
720p and 1080p HD resolution sequences, compared to the conventional H.264/AVC 
FRExt high profile. 
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Sequence QP 
H.264/AVC Proposed Algorithm Bjøntegaard Delta 

PSNR 
(dB) 

Bitrate 
(Kbps) 

PSNR 
(dB) 

Bitrate 
(Kbps) 

BDPSNR 
(dB) 

BDRATE 
(%) 

Bigships 
(HD, 1280×720) 

First frame 

16 47.08 61143.12 46.00 51110.40 

0.31 -4.74 
20 43.47 40422.96 42.62 33569.76 
24 40.54 25798.08 40.01 23119.68 
28 37.76 16042.80 37.46 15061.68 

Jets 
(HD, 1280×720) 

First frame 

16 46.45 32622.48 45.99 23141.04 

0.20 -7.57 
20 43.67 16313.04 43.37 13814.40 
24 42.00 8712.00 41.82 8208.72 
28 40.45 5236.56 40.25 4983.12 

ShuttleStart 
(HD, 1280×720) 

First frame 

16 48.58 19584.24 48.04 16558.56 

0.09 -2.55 
20 46.13 11039.04 45.77 9649.68 
24 44.14 6380.64 43.89 5915.28 
28 42.13 3559.20 41.97 3405.12 

BasketballDrive 
(HD, 

1920×1080) 
First frame 

16 48.13 112107.12 46.42 76696.56 

0.51 -14.90 
20 42.83 59862.48 42.34 45584.40 
24 40.33 27544.08 40.16 25075.44 
28 38.84 14913.84 38.70 14117.28 

Cactus 
(HD, 

1920×1080) 
First frame 

16 46.48 172070.88 45.79 150515.00 

0.29 -5.78 
20 42.25 106455.36 41.83 92064.72 
24 39.38 60227.52 39.07 54915.84 
28 37.36 34913.28 37.13 32742.72 

BQTerrace 
(HD, 

1920×1080) 
First frame 

16 48.06 169545.12 47.26 158143.90 

0.30 -2.98 
20 44.52 124250.16 43.64 112598.60 
24 40.23 83761.44 39.51 73423.44 
28 36.90 53018.64 36.38 47027.52 

Average 0.28 -6.42 

Table 2. Performance comparison between H.264/AVC and the proposed method 

Figure 12 shows the rate-distortion curve of test sequences. We can find that the proposed 
technique achieves consistent gains for all test sequences and especially efficient in the high 
bitrate range. As expected, the proposed method performed much better in test sequences 
such as BasketballDrive that contain a lot of gradation patterns, as shown in Fig. 13. Table 3 
shows the mode distribution change for all test sequences when we use the proposed 
method. In the tables, we can observe that the number of intra 16×16 modes, i.e., the best 
modes of some blocks changed to Intra_16×16 mode. This change implies that the proposed 
prediction method improves prediction accuracy of intra 16×16 coding quite well. Providing 
same image quality, Intra_4×4 requires more bits to represent the mode information than 
the Intra_16×16 mode, we can reduce the bit rate using the proposed method. 
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Fig. 12. Rate-distortion curve of proposed technique. 

 

 
Fig. 13. BasketballDrive that contains a lot of complex patterns. 
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Table 2. Performance comparison between H.264/AVC and the proposed method 
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shows the mode distribution change for all test sequences when we use the proposed 
method. In the tables, we can observe that the number of intra 16×16 modes, i.e., the best 
modes of some blocks changed to Intra_16×16 mode. This change implies that the proposed 
prediction method improves prediction accuracy of intra 16×16 coding quite well. Providing 
same image quality, Intra_4×4 requires more bits to represent the mode information than 
the Intra_16×16 mode, we can reduce the bit rate using the proposed method. 
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Fig. 12. Rate-distortion curve of proposed technique. 

 

 
Fig. 13. BasketballDrive that contains a lot of complex patterns. 
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Sequence QP 
H.264/AVC Proposed Method I16MB 

Increase 
(%) I16MB 

(%) 
I8MB 
(%) 

I4MB 
(%) 

I16MB 
(%) 

I8MB 
(%) 

I4MB 
(%) 

Bigships 
(HD, 1280×720) 

First frame 

16 0.1 96.3 3.5 33.5 64.1 2.5 33.3 
20 3.7 81.6 14.7 25.7 67.5 6.8 21.9 
24 15.7 64.7 19.6 12.7 69.5 17.8 -3.0 
28 28.4 59.4 12.2 26.7 61.5 11.8 -1.7 

Jets 
(HD, 1280×720) 

First frame 

16 5.6 47.3 47.1 18.4 42.0 39.6 12.8 
20 4.1 60.9 34.9 18.9 51.0 30.1 14.7 
24 9.4 59.4 31.2 14.6 57.9 27.5 5.2 
28 14.9 63.7 21.4 18.2 61.9 19.9 3.3 

ShuttleStart 
(HD, 1280×720) 

First frame 

16 1.4 76.2 22.4 7.3 70.0 22.8 5.8 
20 6.3 69.1 24.6 10.8 63.2 26.0 4.5 
24 15.4 37.7 46.9 26.2 34.3 39.5 10.8 
28 12.7 37.4 49.9 23.5 35.7 40.7 10.8 

BasketballDrive 
(HD, 

1920×1080) 
First frame 

16 1.6 45.8 52.6 19.3 36.9 43.8 17.7 
20 2.4 51.3 46.3 17.6 46.7 35.7 15.1 
24 5.8 53.5 40.7 10.9 53.4 35.8 5.1 
28 9.3 60.7 30.0 10.3 60.2 29.5 1.0 

Cactus 
(HD, 

1920×1080) 
First frame 

16 25.2 39.4 35.4 51.5 24.4 24.1 26.4 
20 13.9 61.7 24.4 21.8 58.3 19.9 7.8 
24 22.4 50.3 27.3 26.0 53.8 20.2 3.6 
28 32.4 52.4 15.2 45.2 40.1 14.7 12.8 

BQTerrace 
(HD, 

1920×1080) 
First frame 

16 35.0 58.4 6.6 34.0 33.8 32.2 -1.0 
20 45.3 46.9 7.9 45.6 46.0 8.4 0.3 
24 58.6 31.4 10.0 59.8 31.3 8.9 1.2 
28 65.5 29.5 5.0 63.8 30.6 5.6 -1.7 

Table 3. Mode distribution change 

6. Conclusion 
In this chapter, we proposed an efficient line-based intra 16×16 prediction method for 
high bitrate compression. Considering the different characteristics of high definition (HD) 
contents, we modified the intra coding mechanism without any change of syntax elements 
of the H.264/AVC standard. Note that we break from the traditional block-based 
prediction method and designed a new prediction method based on line-of-pixels (LOP). 
As a result, we could achieve a more accurate intra 16×16 mode by reducing the distance 
between the reference and current pixels. Experimental results show that the proposed 
method provides approximately 6.42% bit savings, compared to the H.264/AVC FRExt 
high profile. 

 
Line-based Intra Coding for High Quality Video Using H.264/AVC   

 

287 

7. Acknowledgment 
This research was supported by the MKE (The Ministry of Knowledge Economy), Korea, 
under the ITRC (Information Technology Research Center) support program supervised by 
the NIPA (National IT Industry Promotion Agency). (NIPA-2011-(C1090-1111-0003)). 

8. References 
Bjontegaard G. (2008). Improvements of the BD-PSNR model. Document of ITU-T Q.6/SG16, 

Berlin, Germany, July 16-18, 2008 
Chen J. & Han W. (2009). Adaptive linear prediction for block-based lossy image coding. 

Proceedings of International Conference on Image Processing, ISBN 978-1-4244-5654-3, 
Cairo, Egypt, November 2009 

Choi J. & Ho Y. (2010). Line-by-line intra 1616 prediction for high-quality video coding. 
Proceedings of International Conference on Multimedia & Expo, ISBN 978-1-4244-
7492-9, Singapore, July 2010 

Fraunhofer Institute for Telecommunications Heinrich Hertz Institute. Joint Video Team, 
H.264/AVC Reference Software Version 12.2 [Online], January 2011, Available from: 
http://iphome.hhi.de/shehring/tml/download/old_jm/jm12.2.zip 

Guo Y., Wang Y., & Li Q. (2008). Priority-based template matching intra prediction. 
Proceedings of International Conference on Multimedia and Expo, ISBN 978-1-4244-2570-9, 
Hannover, Germany, June 2008 

Luthra A., Sullivan G., & Wiegand T. (2003). Introduction to the special issue on the 
H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for 
Video Technology, Vol.13, No.7, (July 2003), pp. 557–559, ISSN 1051-8215 

Matsuo S., Takamura S., Kamikura K., & Yashima Y. (2007). Weighted intra prediction. 
Document of ITU-T Q.6/SG16, Shenzhen, China, October 20, 2007 

McCann K., Han W., & Kim I. (2010). Samsung’s response to the call for proposals on video 
compression technology. Document of Joint Collaborative Team on Video Coding of 
ISO/IEC JTC1/SC29/WG11 and ITU-T Q.6/SG16, Dresden, DE, April 15-23, 2010 

Peng X., Xu J., & Wu. F. (2010). Line-based image coding using adaptive prediction filters. 
Proceedings of International Symposium on Circuits and Systems, ISBN 978-1-4244-5309-2, 
Paris, France, May 2010 

Sullivan G., McMahon T., Wiegand T., & Luthra A. (2004). Draft text of H.264/AVC fidelity 
range extensions amendment to ITU-T Rec. H.264|ISO/IEC 14496-10 AVC. 
Document of Joint Video Team of ISO/IEC JTC1/SC29/WG11 and ITU-T Q.6/SG16, 
Redmond, WA, USA, July 17-23, 2004 

Sullivan G., Topiwala P., & Luthra A. (2004). The H.264/AVC advanced video coding 
standard: Overview and introduction to the fidelity range extensions. Proceedings of 
SPIE Conference, Special Session on Advances in the New Emerging Standard: 
H.264/AVC, pp. 454–474, Denver, Colorado, USA, August 2004 

Sullivan G. & Wiegand T. (2005). Video compression–from concepts to the H.264/AVC 
standard. Proceedings of the IEEE, Vol.93, No.1, (January 2005), pp. 18–31, ISSN  
0018-9219 

Sohn Y. & Han W. (2007). One dimensional transform for H.264-based intra coding. 
Proceedings of Picture Coding Symposium, ISBN 978-989-8109-04-0, Lisboa, Portugal, 
November 2007 



 
Recent Advances on Video Coding 

 

286 

Sequence QP 
H.264/AVC Proposed Method I16MB 

Increase 
(%) I16MB 

(%) 
I8MB 
(%) 

I4MB 
(%) 

I16MB 
(%) 

I8MB 
(%) 

I4MB 
(%) 

Bigships 
(HD, 1280×720) 

First frame 

16 0.1 96.3 3.5 33.5 64.1 2.5 33.3 
20 3.7 81.6 14.7 25.7 67.5 6.8 21.9 
24 15.7 64.7 19.6 12.7 69.5 17.8 -3.0 
28 28.4 59.4 12.2 26.7 61.5 11.8 -1.7 

Jets 
(HD, 1280×720) 

First frame 

16 5.6 47.3 47.1 18.4 42.0 39.6 12.8 
20 4.1 60.9 34.9 18.9 51.0 30.1 14.7 
24 9.4 59.4 31.2 14.6 57.9 27.5 5.2 
28 14.9 63.7 21.4 18.2 61.9 19.9 3.3 

ShuttleStart 
(HD, 1280×720) 

First frame 

16 1.4 76.2 22.4 7.3 70.0 22.8 5.8 
20 6.3 69.1 24.6 10.8 63.2 26.0 4.5 
24 15.4 37.7 46.9 26.2 34.3 39.5 10.8 
28 12.7 37.4 49.9 23.5 35.7 40.7 10.8 

BasketballDrive 
(HD, 

1920×1080) 
First frame 

16 1.6 45.8 52.6 19.3 36.9 43.8 17.7 
20 2.4 51.3 46.3 17.6 46.7 35.7 15.1 
24 5.8 53.5 40.7 10.9 53.4 35.8 5.1 
28 9.3 60.7 30.0 10.3 60.2 29.5 1.0 

Cactus 
(HD, 

1920×1080) 
First frame 

16 25.2 39.4 35.4 51.5 24.4 24.1 26.4 
20 13.9 61.7 24.4 21.8 58.3 19.9 7.8 
24 22.4 50.3 27.3 26.0 53.8 20.2 3.6 
28 32.4 52.4 15.2 45.2 40.1 14.7 12.8 

BQTerrace 
(HD, 

1920×1080) 
First frame 

16 35.0 58.4 6.6 34.0 33.8 32.2 -1.0 
20 45.3 46.9 7.9 45.6 46.0 8.4 0.3 
24 58.6 31.4 10.0 59.8 31.3 8.9 1.2 
28 65.5 29.5 5.0 63.8 30.6 5.6 -1.7 

Table 3. Mode distribution change 

6. Conclusion 
In this chapter, we proposed an efficient line-based intra 16×16 prediction method for 
high bitrate compression. Considering the different characteristics of high definition (HD) 
contents, we modified the intra coding mechanism without any change of syntax elements 
of the H.264/AVC standard. Note that we break from the traditional block-based 
prediction method and designed a new prediction method based on line-of-pixels (LOP). 
As a result, we could achieve a more accurate intra 16×16 mode by reducing the distance 
between the reference and current pixels. Experimental results show that the proposed 
method provides approximately 6.42% bit savings, compared to the H.264/AVC FRExt 
high profile. 

 
Line-based Intra Coding for High Quality Video Using H.264/AVC   

 

287 

7. Acknowledgment 
This research was supported by the MKE (The Ministry of Knowledge Economy), Korea, 
under the ITRC (Information Technology Research Center) support program supervised by 
the NIPA (National IT Industry Promotion Agency). (NIPA-2011-(C1090-1111-0003)). 

8. References 
Bjontegaard G. (2008). Improvements of the BD-PSNR model. Document of ITU-T Q.6/SG16, 

Berlin, Germany, July 16-18, 2008 
Chen J. & Han W. (2009). Adaptive linear prediction for block-based lossy image coding. 

Proceedings of International Conference on Image Processing, ISBN 978-1-4244-5654-3, 
Cairo, Egypt, November 2009 

Choi J. & Ho Y. (2010). Line-by-line intra 1616 prediction for high-quality video coding. 
Proceedings of International Conference on Multimedia & Expo, ISBN 978-1-4244-
7492-9, Singapore, July 2010 

Fraunhofer Institute for Telecommunications Heinrich Hertz Institute. Joint Video Team, 
H.264/AVC Reference Software Version 12.2 [Online], January 2011, Available from: 
http://iphome.hhi.de/shehring/tml/download/old_jm/jm12.2.zip 

Guo Y., Wang Y., & Li Q. (2008). Priority-based template matching intra prediction. 
Proceedings of International Conference on Multimedia and Expo, ISBN 978-1-4244-2570-9, 
Hannover, Germany, June 2008 

Luthra A., Sullivan G., & Wiegand T. (2003). Introduction to the special issue on the 
H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for 
Video Technology, Vol.13, No.7, (July 2003), pp. 557–559, ISSN 1051-8215 

Matsuo S., Takamura S., Kamikura K., & Yashima Y. (2007). Weighted intra prediction. 
Document of ITU-T Q.6/SG16, Shenzhen, China, October 20, 2007 

McCann K., Han W., & Kim I. (2010). Samsung’s response to the call for proposals on video 
compression technology. Document of Joint Collaborative Team on Video Coding of 
ISO/IEC JTC1/SC29/WG11 and ITU-T Q.6/SG16, Dresden, DE, April 15-23, 2010 

Peng X., Xu J., & Wu. F. (2010). Line-based image coding using adaptive prediction filters. 
Proceedings of International Symposium on Circuits and Systems, ISBN 978-1-4244-5309-2, 
Paris, France, May 2010 

Sullivan G., McMahon T., Wiegand T., & Luthra A. (2004). Draft text of H.264/AVC fidelity 
range extensions amendment to ITU-T Rec. H.264|ISO/IEC 14496-10 AVC. 
Document of Joint Video Team of ISO/IEC JTC1/SC29/WG11 and ITU-T Q.6/SG16, 
Redmond, WA, USA, July 17-23, 2004 

Sullivan G., Topiwala P., & Luthra A. (2004). The H.264/AVC advanced video coding 
standard: Overview and introduction to the fidelity range extensions. Proceedings of 
SPIE Conference, Special Session on Advances in the New Emerging Standard: 
H.264/AVC, pp. 454–474, Denver, Colorado, USA, August 2004 

Sullivan G. & Wiegand T. (2005). Video compression–from concepts to the H.264/AVC 
standard. Proceedings of the IEEE, Vol.93, No.1, (January 2005), pp. 18–31, ISSN  
0018-9219 

Sohn Y. & Han W. (2007). One dimensional transform for H.264-based intra coding. 
Proceedings of Picture Coding Symposium, ISBN 978-989-8109-04-0, Lisboa, Portugal, 
November 2007 



 
Recent Advances on Video Coding 

 

288 

Tan T., Boon C., & Suzuki Y. (2006). Intra prediction by template matching. Proceedings of 
International Conference on Image Processing, ISBN 1-4244-0481-9, Atlanta, Georgia, 
USA, October 2006 

Tan T., Boon C., & Suzuki Y. (2007). Intra prediction by averaged template matching 
predictors. Proceedings of Consumer Communications and Networking Conference, ISBN 
1-4244-0667-6, Las Vegas, Nevada, USA, January 2007 

Ugur K., Andersson K., & Fuldseth A. (2010). Description of video coding technology 
proposal by Tandberg, Nokia, Ericsson. Document of Joint Collaborative Team on 
Video Coding of ISO/IEC JTC1/SC29/WG11 and ITU-T Q.6/SG16, Dresden, DE, April 
15-23, 2010 

Wei L. & Levoy M. (2000). Fast texture synthesis using tree-structured vector quantization. 
Proceedings of SIGGRAPH, ISBN 978-020-1485-64-6, New Orleans, Louisiana, USA, 
July 2000 

Wiegand T., Sullivan G., Bjøntegaard G., & Luthra A. (2003). Overview of the H.264/AVC 
video coding standard. IEEE Transactions on Circuits and Systems for Video 
Technology, Vol.13, Vo.7, (July 2003), pp. 560–576, ISSN 1051-8215 

Yu S. & Chrysafis C. (2002). New intra prediction using intra-macroblock motion 
compensation. Document of Joint Collaborative Team on Video Coding of ISO/IEC 
JTC1/SC29/WG11 and ITU-T Q.6/SG16, Fairfax, VA, USA, May 4-11, 2002 

Zheng Y. Yin P., Escoda O., Li X., & Gomila C. (2008). Intra prediction using template 
matching with adaptive illumination compensation. Proceedings of International 
Conference on Image Processing, ISBN 978-4244-1764-3, San Diego, California, USA, 
October 2008 

 

14 

Swarm Intelligence in  
Wavelet Based Video Coding 

M. Thamarai and R. Shanmugalakshmi 
Karpagam college of Engineering, Government college of Technology, Coimbatore, 

India 

1. Introduction 
Video compression plays an important role in modern multimedia applications such as 
video streaming, video telephony, video conferencing, etc., A lot of compression algorithms 
those have been developed are not sufficient for the multimedia applications. In general 
video coding techniques are classified into two. Discrete Cosine transform (Block based) 
technique, which is used in the standard compression algorithms such as H.261, H.262, 
H.264 and wavelet transform based technique. Motion compensated wavelet transform 
based video coding algorithms are going to be taken as one of the standard compression 
techniques, since multi resolution capability of the wavelets improves the quality of the 
signal than that of the DCT based one. 

1.1 Necessity of video compression and standards 
A low bit rate video coding (bit rate less than 64 kbs) needs high compression ratio (above 
150). In high compression ratio video coding, block based coders introduce blocking artifact 
and ringing effect (Due to Gibbs phenomena) in the reconstructed signal. High compression 
image coding has triggered strong interests in recent years. In this type of coding, visible 
distortions of the original image are accepted in order to obtain very high compression 
factors. High compression image coders can be split into three distinct groups. The first 
group is called waveform coding and consists of transform and subband coding. The second 
group called second generation techniques, consisting of techniques attempting to describe 
an image in terms of visually meaningful primitives (contour and texture, for example). The 
third group is based on the fractal theory. 
An uncompressed video sequence for very low bit rate applications typically requires a bit 
stream of up to 10 Mbit/s. In order to achieve very low data rates, compression ratios of 
about 1000 : 1 are required to meet the needs of the large public. Intensive research has been 
performed in the last decade to attain this objective [Touradjebrahimi et. al, 1995]. Variations 
of the recommendation H.261 for very low bit rate applications have been defined as 
simulation models. For these simulation models, severe blocking artifacts occur at very low 
data rates. 
Wavelet based video coding is developing a new area in video coding for last two decades. 
Because of the multi resolution property, wavelet tool is suitable for image enhancement 
and compression. Rather than a complete transformation into the frequency domain, as in 
DCT or FFT (Fast Fourier Transform), the wavelet transform produces coefficient values 
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performed in the last decade to attain this objective [Touradjebrahimi et. al, 1995]. Variations 
of the recommendation H.261 for very low bit rate applications have been defined as 
simulation models. For these simulation models, severe blocking artifacts occur at very low 
data rates. 
Wavelet based video coding is developing a new area in video coding for last two decades. 
Because of the multi resolution property, wavelet tool is suitable for image enhancement 
and compression. Rather than a complete transformation into the frequency domain, as in 
DCT or FFT (Fast Fourier Transform), the wavelet transform produces coefficient values 
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which represent both time and frequency information. The hybrid spatial-frequency 
representation of the wavelet coefficients allows for analysis based on both spatial position 
and spatial frequency content. While most wavelet-based compression techniques employ 
the traditional critically sampled discrete wavelet transform (DWT), alternative wavelet 
transforms have recently been proposed. Specifically, the complex dual-tree discrete wavelet 
transform (DTCWT) has undergone investigation in 3D video-coding systems [B. Wang, et. 
al, 2004]. 

1.2 Particle swarm optimization 
Particle Swarm Optimization (PSO) is global optimization technique based on swarm 
intelligence. It simulates the behavior of bird flocking [Kennedy et. al, 1995]. It is widely 
accepted and focused by researchers due to its profound intelligence and simple algorithm 
structure. Currently PSO has been implemented in a wide range of research areas such as 
functional optimization, pattern recognition, neural network training and fuzzy system 
control etc., and is successful. In PSO, each potential solution is considered as one particle. 
The system is initialized with a population of random solutions (particles)and searches for 
optima (global best particle), according to some fitness function, by updating particles over 
generations; that is, particles “fly” through the N-dimensional problem search space to find 
the best solution by following the current better-performing particle. When compared to 
Genetic Algorithm, PSO has very few parameters to adjust and easy to implement. The 
variants of PSO’s such as Binary PSO, Hybrid PSO, Adaptive PSO and Dissipative PSO are 
used in various image processing applications.  
Recently PSO has been extended to deal with multiple objective optimization problems 
[K. U. Parsopoulos et. al, 2002]. In the past few years many research works have been 
focused on modifying PSO to handle multiple objective optimization problems known as 
multi objective particle swarm optimizer MOPSO. The fixed population size MOPSO and 
variable population size PSO (Dynamic PSO) are used throughout the evolution process to 
explore the search space to discover the non dominated individuals (particles). Most of the 
real life problems are multi objective nature.  
Multi objective optimization using PSO has been used in Digital image processing like 
image segmentation, data clustering etc. Here Video compression also viewed as a 
muliobjective one. The constraints are Means Square Error (MSE), Computation Time, and 
Computation complexity and compression ratio. In this chapter the only three constrains 
(Means Square Error (MSE), Computation Time and compression ratio) are considered for 
the PSO based optimization. All the three are minimization functions. The fixed population 
size MOPSO is used throughout the evolution process to explore the search space to 
discover the non dominated individuals (particles). 
First the image is decomposed into subband using the Dual tree wavelet transform and the 
subband coefficients are minimized using noise shaping method. After that the MOPSO 
algorithm is used to select the optimum subband which provides less mean square error and 
desired bit rate. In this MOPSO weighted average approach is used. The constraints total 
weight age is one. The obtained results are compared with the standard algorithms.  

2. Shortcomings in the conventional discrete wavelet transform 
Theoretically-sampled form of the wavelet transform (Discrete Wavelet transform DWT) 
provides the most compact representation; DWT has the following advantages: 

 
Swarm Intelligence in Wavelet Based Video Coding   

 

291 

 Multi-scale signal processing technique (Both frequency and time resolution). 
 DWT transform itself introduces compression. 
 Straightforward computation technique. 
However, it has several limitations as explained below. It lacks the shift-invariance property 
and in Image processing applications it has poor resolution in distinguishing the 
orientations of the object and in multiple dimensions it does a poor job of distinguishing 
orientations, which is important in image processing. The four drawbacks of DWT are as 
follows [Ivan. W. Selesnick et. al, 2005]. 
 wavelet coefficients are oscillatory in nature. 
 Since wavelets are band pass filters the wavelet coefficients tend to oscillate between 

positive and negative singularities as shown in fig. 1 This considerably complicates the 
singularity extraction and modeling and feature extraction. Shift variant 

 

 
Fig. 1. Oscillatory nature of DWT Coefficients for the signal x(n-0.5) 

A small shift of the signal greatly perturbs the wavelet coefficient oscillation pattern around 
singularities (see Figure 2). Shift variance also complicates wavelet-domain processing; 
algorithms must be made capable of coping with the wide range of possible wavelet 
coefficient patterns caused by shifted singularities. 
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which represent both time and frequency information. The hybrid spatial-frequency 
representation of the wavelet coefficients allows for analysis based on both spatial position 
and spatial frequency content. While most wavelet-based compression techniques employ 
the traditional critically sampled discrete wavelet transform (DWT), alternative wavelet 
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al, 2004]. 
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Theoretically-sampled form of the wavelet transform (Discrete Wavelet transform DWT) 
provides the most compact representation; DWT has the following advantages: 
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Fig. 2. Shift variant property of DWT 

This can be explained with the help of the unit step signal x(n). The x(n) and its shifted 
version x(n-3) are subjected to DWT and DT CWT decomposition at a level of 3. The 
spectrum of DWT (n-10) is different from the (n-20). These two signals are shown in 
figure 2. Therefore small shift in the input signal results the variation of the DWT 
coefficients. DWT coefficient values varies based on shifting than DT CWT.  
 Aliasing: 
The wavelet coefficients of a signal are computed iteratively with the help of sub band 
decomposition using low pass and high pass filters. These filters are non ideal and results in 
substantial aliasing. The inverse DWT cancels this aliasing, only if the wavelet and scaling 
coefficients are not changed. Any wavelet coefficient processing (thresholding, filtering, and 
quantization) upsets the delicate balance between the forward and inverse transforms, 
leading to artifacts in the reconstructed signal. 
 Lack of directionality: 
The multidimensional wavelets produce a check board pattern, and is oriented in several 
directions. This lack of directional selectivity greatly complicates modeling and processing 
of geometric image features like ridges and edges. 
2D wavelet transform is formed by three wavelets. 
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3. Dual tree discrete wavelet transform (DTDWT) 
It is an expansive type of transform. An expansive type transform is one which converts M 
number of samples into N coefficients (N>M). According to its name it uses two critically 
sampled DWTs in parallel for signal decomposition and reconstruction. 

3.1 Properties  
1. The coefficients of dualtree wavelet transform (1-D) are positive. The dualtree wavelet 

coefficients of signal x(n-0.5) is shown in figure 3 and are non oscillatory nature. 
2. Shift invariant property [Ivan. W. Selesnick et. al, 2005]. The DTDWT of x(n) = δ(n − 60) 

and x(n) = δ(n − 70) are shown in figure 4. The wavelet coefficients of both cases are 
more or less equal and thus the transform satisfies the shift invariant property. 

Directional property: The basis function of dual tree discrete wavelet transform is oriented 
at a certain direction as +75, -75, +45, -45, +15 and -15. Because of this, check board problems 
are not present in Dual tree wavelet transforms and no need to estimate motion vectors in a 
video sequence. Since the transform has multi directional kernels, motion estimation and 
compensation is a tedious process in the conventional video coding standards. But in the 
case of DWT, HH band mixes the directions of +45 and -45 together, resulting in check 
board pattern. The kernels of DWT and Dual tree DWT are shown in figure 5, figure 6 and 
figure 7. 
 

 
Fig. 3. Signal x(n-0.5) and its dtdwt spectrum 
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Fig. 4. The two impulse signals x(n) = δ(n − 60) and x(n) = δ(n − 70) and their dual-tree 
complex discrete wavelet transform coefficients 
 

 
Fig. 5. Kernels of DWT and dual tree DWT 

2D dual tree wavelet transform uses six wavelets. The spatial and frequency domain 
representation of these six wavelets are shown in fig. 7. In both domains the check board 
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problem is not there. Figure 8 represents the high compact representation property of 2D 
DTDWT [Ivan. w. Selesnick 2003]. 
 

 
Fig. 6. Three different wavelets. Top row - discrete wavelet transforms in spatial domain. 
Bottom row - corresponding dwt in frequency domain 

 

 
Fig. 7. Top row shows the 2D Dual tree wavelet transform in spatial domain and bottom 
row shows the same in frequency domain.  

 

 
Fig. 8. Compact representation of DTDWT 
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3.2 Filter bank of dualtree discrete wavelet transform 
According to its name the 1 D Dual tree wavelet transform uses two wavelet trees. The input 
signal is applied to the two trees and it is decomposed into four subband. h0(n), h1(n) and 
g0(n), g1(n) are the low pass and high pass filters of the two wavelet trees respectively. The 
three level decomposition of the transform results in 8 subbands as shown in figure 9. 
Similarly the synthesis filter bank of 1-D dual tree wavelet transform contains two synthesis 
wavelet filter banks as shown in figure 10. 
 

 
Fig. 9. Analysis filter bank of 1-D dualtree wavelet transform 
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Fig. 10. Synthesis filter bank of 1-D dual tree wavelet transform 
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3.3 3-D Dual tree wavelet transform 
The 3-D wavelet transform is obtained as a combination of four wavelets. 
The one dimensional complex wavelet transform is given by 
 
 

 (x) = h (x) + jg(x) (1) 
 
 

2D dual tree complex wavelet function 
 
 

 
         

               
x,y   ( h x j g x )  ( h y j g y )

  ( h x h y )  ( g x g y ) j( g x h y ) ( h x g y )
        

           
 (2) 

 
 

Real part of 
 

 (x,y) = (h (x)h(y)) - (g(x)g(y)) (3) 
 
 

The 3-D separable dual tree wavelet transform is obtained as follows [Ivan. w. Selesnick et. 
al, 2003]. 
The three dimensional complex wavelet is defined as  
 
 

 (x,y,z) = (h (x) + jg(x)) (h(y) + jg(y)) (h(z) + jg(z)) (4) 
 
 

Real part 
 
 

 [(x,y,z)] = 1(x,y,z) - 2(x,y,z) - 3(x,y,z) - 4(x,y,z) (5) 
 
 

So it is necessary to take four separable transforms instead of three in the case of 2-D 
transform. 
3-D separable wavelet transform is obtained by the orthonormal combination matrix of four 
three dimensional wavelet transforms as in equation (6)  
 
 

 

         
         
         
         

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

a x,y,z 0.5 [ x, y,z x,y,z x,y,z x,y,z ]  
b x,y,z 0.5 [ x,y,z x,y,z x,y,z x,y,z ]  
c x,y,z 0.5 [ x,y,z x,y,z x,y,z x,y,z ]  
d x,y,z 0.5 [ x,y,z x,y,z x,y,z x,y,z ]  

     
        
       
        

 (6) 

 
 

where ψ1, ψ2, ψ3, ψ4 are real 3-D wavelets defined in [Ivan. w. Selesnick, et. al, 2003].  
By applying this combination matrix to each sub band, the 3-D oriented dual-tree wavelet 
transform is obtained. The low subbands ψ1, ψ2, ψ3, ψ4 are always positive (because they are 
low-pass filtered values of the original image pixels), ψa is always negative and other three 
low subbands are all positive. This property of low sub bands can be used to code the sign 
information of low sub bands very efficiently. 
However, [Wang’s et. al, 2004] investigation has shown that after noise shaping, 3-D DTDWT 
needs fewer coefficients than 3-D DWT to achieve the same video quality for all sequences. 
This result is encouraging and has prompted to explore the use of this transform for video 
coding. 
The one level decomposition of such a filter is shown in figure 11. 
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Fig. 11. The 3D Dual tree wavelet transform filter bank with one level decomposition of 
input signal x 

Being an expansive type transform, the number of significant coefficients are identified by 
noise shaping algorithm [T. H. Reeves et. al, 2002]. In this algorithm, the coefficients are 
obtained by running the projection algorithm with a preset initial threshold and gradually 
reducing it until the number of coefficients reach N,a target number. In each iteration the 
error coefficients are multiplied by a positive real number K and added back to the 
previously chosen large coefficients to compensate for the loss of small coefficients due to 
thresholding. This algorithm is applied for video signals and its performance is verified   [ 
Beibei Wang et.al,2004].  
The DTDWT is an over complete transform with limited reduncy (2m:1 for m dimensional 
signals) Thus for 3D DTCWT the redundancy becomes 8:1 However the real DT DWT 
reduces the redundancy as 4:1 but with the same motion selectivity. [Beibei Wang et al 2004] 
proved that without motion compensation (conventional method) the DTDWT performs 
video coding in a better way. 

4. Particle swarm optimization and Multi objective PSO 
In PSO algorithm, each individual is called a particle and is subjected to movement in a 
multidimensional search space to find the best solution. Particles have their own memory, 
so they retain the part of their previous states. Each particle’s movement from initial value 
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to next position during iteration period is based on their initial velocity and two randomly 
weighted influences such as Individuality and Sociality 
Individuality is the ability to retain the particle’s best position and Sociality is the ability to 
move towards the neighborhood’s best previous position. The velocity and position of the 
particles are updated as follows 

 Vid(t+1) = w × vid(t) + c1 × rand1(.) × (pid – xid) + c2 × rand2(.) × (pgd – xid) (7) 

 xid(t+1) = xid(t) + vid(t+1),   1  i  N,   1  d  D  (8) 

where, N is the number of particles and D is the dimensionality; Vi = (vi1, vi2,…, viD),  
vid   [−vmax, vmax] is the velocity vector of particle i, which decides the particle’s displacement 
in each iteration. Similarly, Xi = (xi1, xi2, … , xiD), xid   [−xmax, xmax] is the position vector of 
particle i which is a potential solution in the solution space. The quality of the solution is 
measured by a fitness function; w is the inertia weight which decreases linearly during a 
run; c1, c2 are both positive constants, called the acceleration factors which are generally set 
to 2.0; rand1(.) and rand2(.) are two independent random number distributed uniformly over 
the range [0, 1]; and pg, pi are the best solutions discovered so far by the group and itself 
respectively.  
In the t + 1 time iteration, particle i uses pg and pi as the heuristic information to update its 
own velocity and position. The first term in the above equation represents diversification, 
while the second and third intensification. The second and third terms should be 
understood as the trustworthiness towards itself and the entire social system respectively. 
Therefore, a balance between the diversification and intensification is achieved based on 
which the optimization progress is possible 

4.1 Simple PSO algorithm 
1. Initialize particles of population size N 
2. Find the fitness value of each particle using the defined fitness function 
3. Update the velocity and position of each particle according to equations  
4. Check the stopping criteria. If it is reached then stop. Otherwise go to step 2 

4.1.1 Stopping criteria 
There are two types of stopping criteria used. 
1. Maximum number of iterations: In certain problems after certain number of maximum 

iteration there is much more change in the particles position and velocity. After 
reaching this condition the algorithm stops. 

2. Minimum inertia weight: The inertia weight w is reduced from iteration to iteration as 
follows 

 wmax-wminwmax- Iter
Itermax

 
 
 

 (9) 

Where Itermax-maximum iteration number and Iter-current iteration 
For minimization problems, we specify a very small threshold , and if the change of pg 
during t times of 4 iteration is smaller than the threshold, we consider the group’s best value 
very near to the global optimum, thus the matching procedure stops. 
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4.2 Multi objective PSO 
Most of the problems in the real world are multi objective in nature. And they have multiple 
optimum solutions for different objectives. Initially most proposed of the PSO methods deal 
with single solution. Some problems may have more than one global optimum or both 
global and local optima need to be located. Therefore some variants have been developed to 
deal with particular problem with multiple solutions. Niching algorithms have been 
proposed to deal with particular problem with multiple solutions. Multi objective 
optimization with particle swarms, called MOPSO is developed to solve the problems those 
require simultaneous optimization of number of objectives. Many PSO algorithms have been 
developed under dynamic environments rather than static environment.  
The general multi objective optimization problems can be defined in the following format. 
Optimize 

  f(x) = f1(x), f2(x) ... fn(x)   where  x=(x1,x2,...... Xn) Rn  (10) 

which satisfies the m inequality constrains gj( x ) 0 for j=1,2 …. m and p equality 
constraints hj( x )= 0 for j=1,2, …. P the constraints gi(x) and hj(x) define the feasible region 
 and any point in the  defines a feasible solution. 
For multi objective optimization problems, objective functions may be optimized separately 
from each other and of the best solution can be found for each objective dimension. 
However suitable solutions for all the functions can seldom be found. This is because most 
of the objective functions are in conflict with each other. 
The family of solutions of a multi objective optimization problem is composed of all those 
potential solutions such that the components of the corresponding objective vectors cannot 
be improved simultaneously. These types of solutions are known as pereto optimal 
solutions. The population size of MOPSO is larger than the traditional PSO, in order to cover 
more pereto optimal solutions. 
In order to handle multiple objectives, PSO must be modified before being applied to MO 
problems. In most approaches [Xiaohui et. al, 2003] the major modifications of the PSO 
algorithms are the selection process of gbest and pbest. In [Cello cello et al, 2004] the paper 
developed a grid based gbest selection process and also employed a second population to 
store the non dominated solutions. From the second population, using roulette wheel 
selection, they selected the gbest randomly. The pbest is selected according to the pareto 
dominace. 
[Parsopoulos et al 2002] used different population for different objectives. It is called vector 
evaluated particle swarm, n no.of swarms are used to solve n objectives. In their algorithm, 
when one swarm updates the velocities of the particle the other swarm is used to find the 
best particle to follow. In another method [Fields et. al, 2002] a new data structure is 
proposed to cope with the shortcomings of using constant size population. Ans also 
[Xiaohui et. al, 2003] proposed a method called dynamic neighborhood PSO. In [Xiaohui et 
al 2003], multiobjectives are divided into two groups F1 and F2. F1 is the neighborhood 
objective and F2 is the optimization objective. Based on the distance measured, the nearest 
m particles are grouped as the neighbors of F1 and remaining are assumed as the neighbors 
of F2. From the grouped neighborhood around F1 the nbest(gbest) is selected. Pbest is the 
position in a particles history. Whenever the current solution dominates the pbest,only then 
the pbest is updated. 
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Evolutionary optimization techniques play an important role in image processing such as 
Image compression, clustering and object tracking etc., but there has not been much in video 
coding. In this work we explore the possibility of applying multi objective optimization 
algorithm to improve the performance of compression algorithm in order to support 
multimedia applications especially for video. To formulate the mathematical equation to the 
problem, we consider functions related to the compression rate, computation time and 
number of frames. 
The objective functions describing the MOPSO system for video coding can be represented 
in figure 12. 
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Fig. 12. MOPSO system for video coding 

In this MOPSO two swarms are assigned for two objective functions. The objective functions 
taken are shown in figure 12. The compression ratio and bit rate are considered here as 
constraints. According to the given constraints the PSNR and MSE are measured.  

5. Video coding with Multi objective PSO 
The proposed video coder block diagram is shown in figure 13. The input video sequence at 
the frame rate of 10 frames per second is decomposed (3- levels) using dual tree discrete 
wavelet transform. There are two sets of filters are used. At level 1, 13-19 near orthogonal 
filters and at levels  2, 14 tap Qshift filters are used. The number of significant coefficients is 
obtained using noise shaping algorithm. Here the initial preset threshold value is set as 220 
and is reduced until the number of coefficients reach 40. The energy compensation 
parameter K is set as 1.8 for better performance. The selected 40 coefficients are considered 
as particles. These particles are subjected to the MOPSO algorithm. Here fixed population 
size of 40 is used. The non dominated solutions (individual particles) are selected according 
to constrains of compression ratio and bit rate. 
The conventional linear aggregating function is used to select the global best solution. Here 
the 40 swarms are simultaneously searched for their individual objective function. The 
aggregate multi objective function is calculated as follows. 
F(x) =  wiki wi –non negative weights Here w1 = 0.6 and w2 = 0.4 The summation of wi is 
equals to one. 
F1(x) = Means square error 
F2(x) = computation complexity 
Two video sequences foreman and rhinos are tested and their PSNR values of different 
compression ratios are given in the table 1. 
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Fig. 13. The block diagram of the proposed system 

5.1 Modification in the coder blocks (MOPSO) 
In our improved PSO, the new positions are calculated by performing single-point crossover 
operation with the existing position as performed in GA. This operation avoids the local 
minima and leads to find the optimum blocks with minimum computational complexity.  
where the size of a frame is N × N. The motion estimate quality between the original Iogn 
and the constructed video sequences Icont is measured in PSNR which is defined as: 
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where K is the number of frames in the video sequence and  Imax is the maximum gray level 
value in the frame. 
In standard PSO, at each iteration a best position is chosen from the particles known as 
‘Xpbest’. This best solution is compared with the best solution so far (Xgbest). If current is 
the best then the global best is interchanged with Xpbest, otherwise the procedure is 
continued with previous best. In this case, the particles are independent of each other, they 
are not sharing the information about their travel. This leads to local minimum and may be 
taking long time for convergence. In our proposed method, we are choosing ‘n’ number of 
best solutions at each iteration. The value should satisfy the condition: 1 < n < N/2, where  
N = total number of particles. 
And these ‘n’ best solutions are compared with previous best solutions. Finally ‘n’ best 
solutions are chosen globally. And with these ‘n’ best solutions are matted with each other 
at random to fill the population size. Here, we are performing single-point crossover 
operation to perform matting. For example, if n = 3, and the population size is 5, consider 
the following 3 best solutions. 

1 0 1 0 0 1 0 1 0 1 0 1 0 
1 0 0 0 0 1 1 1 0 0 0 1 1 
1 0 1 0 0 1 0 1 1 1 0 0 1  
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With these 3 best solutions, to fill the population we need 2 more series that can be 
generated by performing single point crossover between 2 & 3 as given below. 
(2nd best)  1 0 0 0 0 1 1 1 0 0 0 1 1  
(3rd best)   1 0 1 0 0 1 0 1 1 1 0 0 1 
(Crossover at 5th bit) 
(4th solution)  1 0 1 0 0 1 0 1 0 0 0 1 1 
(5th solution)   1 0 0 0 0 1 1 1 1 1 0 0 1 
And we have introduced a parameter called Velocity Rate (VR) to control the updation of 
velocity based on the performance history of the particles. Initially all particles are assigned 
1 as velocity rate. At each iteration, based on the fitness value the VR is either increased or 
decreased by 0.1 for each particle. If VR value of the particle which gives the optimum value 
will be increased to 0.5, and the updated velocity is multiplied with VR. The equation (1) is 
modified as 
 

  Vid(t+1) = w × vid(t) + c1 × rand1(.) × (pid – xid) + c2 × rand2(.) × (pgd – xid) +VR (11) 
 

And we are introducing one more parameter in our modified PSO, which is the direction 
(angle) of the particles. Here we have eight different directions, 0o, 45o, 90o, 135o, 180o, 225o, 
270o, and 315o, from these the particles can choose any one direction at random to select the 
optimum value, but the condition is that, all the particles have to move in the same 
direction. With these novel parameters, the PSO can avoid premature convergence. 

Algorithm:  

Step 1. Generate initial population of Swarm (Xi) and Velocity (Vi). 
Step 2. Each swarm represents subset of blocks. 
Step 3. Calculate the fitness value of each swarm. 
Step 4. Calculate ‘n’ number of Xgbest for each particle. 
Step 5. Change the position and velocity of each particle based on crossover operator and 

modify velocity rate. 
Step 6. Again calculate the fitness value of each swarm. 
Step 7. Find out ‘n’ number of Xpbest for each particle. 
Step 8. Evaluate the objective function(Weighted average g approach) 
Step 9. Compare Xgbest and XPbest, hold best as Xgbest. 
Step 10. Repeat steps from 3 to 9 until the stopping criteria 

The algorithm for the general MOPSO system: 

Step 1. MOPSO() 
Step 2. Iinitialize swarms() 
Step 3. Iteration=1 
Step 4. White iteration<maximum iteration do 
Step 5. Fitness function evaluation 
Step 6. Update position and velocity 
Step 7. Calculate objective vector 
Step 8. Update non dominant set() 
Step 9. Iter=iter+1 
Step 10. End while 
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Video Sequences Foreman Rhinos 

Compression Ratio 1:4 1:3 1:2 1:4 1:3 1:2 
Bit-rate(kbps) 730 1000 1424 730 1000 1424 

DTDWT 31.79 32.45 34.51 26.95 29.62 31.15 
DTDWT+PSO 33.90 34.90 35.90 28.66 33.11 34.97 

DTDWT+MOPSO 34.01 37.43 40.45 29.11 33.94 35.98 
3D-SPIHT 29.32 31.47 33.86 26.42 27.29 30.93 

Table 1. Average PSNR comparison at different bit rates and compression ratios. 

 

 
Fig. 14. Performance analysis of Rhinos Sequence. 

 

 
 

Fig. 15. Performance analysis of Foreman Sequence. 
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Two video sequences “Foreman” and “Rhinos” are used for testing. Both sequences have 80 
frames with a frame rate of 30 fps. Table 1 lists the average PSNR of the two sequences at 
different bit rates. For a video sequence which has many edges and motions, such like 
“Foreman”, DTDWT+PSO outperforms 3-D SPIHT more than 4 dB. For sequence “Rhinos”, 
DTDWT+PSO offers around 2 dB better PSNR results. Whereas our proposed codec 
DTDWT+MOPSO outperforms better than DTDWT, 3-D SPIHT with more than 3 dB for 
both the sequences. Subjectively, DTDWT+MOPSO has better performance than the existing 
and has the redundancy caused by symmetric extension, the coding results are very 
promising. Figures 14 and 15 show the performance of the system(PSNR value) with 
increasing number of frames. The proposed system provides constant PSNR with increasing 
number of frames.  

6. Conclusion 
The excellent directional and shift invariant property of Dual tree discrete wavelet transform 
is used for video coding without motion estimation and compensation. The optimum 
subband coefficients are selected using multi objective pso with the objective factors of 
compression ratio and bit rate. The n best solutions particles are selected by means of 
modification in the velocity rate and incorporating the directional properties of the 
subbands of DT DWT and crossover among the best solutions. In the multi objective PSO, 
the pareto optimal solutions are selected based on the constraints and weighted average 
approach. The performance of the proposed method is measured in terms of PSNR. The 
PSNR value of this combination(DTDWT+MOPSO) is better when compared to the other 
methods. In future, by analyzing the inter and intra correlations among the subbands of 
DTDWT and also by adding the constraints of minimum computation complexity and 
computation time in the MOPSO, the system performance can be improved. 
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1. Introduction 
The H.264/AVC (Advanced Video Codec) is the latest standard for video coding established 
by the Joint Video Team ITU-T VCEG and ISO/IEC MPEG (Wiegand et al., 2003)  
(Sühring, 2010) (Links, 2010). This standard has many innovations, such as hybrid 
prediction/transform coding of intra frames and integer transforms (Richardson, 2004). Fig. 
1 presents a simplified block diagram of the H.264/AVC encoder with the following main 
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transform (IT), entropy coding and de-blocking filter, among others. Initially, most of the 
work done on H.264 was oriented toward its software implementation. However, in recent 
years the contributions to the hardware implementation of H.264 have increased greatly, 
enabling the implementation of fast architectures for real-time video applications (Lin et al., 
2008) (Finchelstein et al., 2009) (Liu et al., 2009).  
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of the most significant differences between the H.264 FRExt codification and the non-FRExt 
one is the use of an 8×8 integer transform (Gordon, 2004), which is an integer approximation 
of the 8×8 2-D Discrete Cosine Transform (DCT), as well as the original 4×4 and 2×2 
transforms. The H.264 FRExt enables high quality video by supporting varied chroma sub-
sampling formats 4:2:0, 4:2:2 and 4:4:4 with greater color bit-depth ranging from 8-bit up 
to 14-bit and resolution ranging from QCIF (176x144) to Full HD (1920x1080), both in 
progressive and interlaced scanning. There are several AVC/H.264 profiles to encode pixels 
with a bit depth greater than 8 bits: High 10 Profile (8 bits up to 10 bits), high 4:2:2 profile (8 
bits up to 10 bits), high 4:4:4 predictive profile (8 bits up to 14 bits), high 10 intra profile (8 
bits up to 10 bits), high 4:2:2 intra profile (8 bits up to 10 bits), high 4:4:4 intra profile (8 bits 
up to 14 bits) and CAVLC 4:4:4 intra profile (8 bits up to 14 bits). Increasing bit depth 
provides improved accuracy in the compression scheme as well as in motion compensation, 
in intra prediction and in-loop filtering (Gish, 2002) (Gish, 2003) (Lavier, 2009). Indeed, 
extensive experimentation proves that the coding efficiency with the largest bit-depth is 
higher on videos that contain shallow textures and low noise, and perceivable gains exist in 
the reduction of three kinds of artifacts: contouring, banding and mosquito noise. Currently, 
bit-depth is especially focused on video quality (Sims et al., 2005). The coding efficiency can 
be improved by increasing the internal bit depth in relation to the external bit depth used in 
the video codec (Chujoh & Noda, 2007a, 2007b). Moreover, bit-depth scalability is 
potentially useful considering that for the foreseeable future, conventional 8-bit and high-bit 
digital imaging systems will exist simultaneously in the market, providing multiple 
representations of different bit-depths for the same visual content (Chujoh & Noda, 2006) 
(Gao & Wu, 2006) (Gao et al., 2010). Other applications of bit-depth are the bit-depth 
transform of the characteristics for high bit-depth images to maximize the encoding 
efficiency (Ito et al., 2010), the novel bit-depth expansion method used to remove the 
contouring effects in smooth regions when mapping low-color bit-depth image to high-color 
bit-depth (Chen et al., 2009) or the three bit-depth scalable coding architectures compatible 
with H.264 (Chiang at al., 2009). 
This chapter presents a variable bit-depth processor with pipeline architecture for real-time 
implementation of the complete process for the 8×8 transform and quantization coding in 
the H.264/AVC. The processor manages different bit-depths – 8 bits up to 14 bits – and 
quantization parameters (QP) fulfilling the requirements of H.264/AVC. Hardware 
solutions to reduce its complexity, combined with an efficient implementation, provide a 
high-speed, high-throughput circuit at a low cost in area. A prototype of the processor, 
which has been synthesized in a 130nm HCMOS technology, uses 26.5k gates and achieves a 
maximum speed of 330 MHz with a throughput of 2640 Mpixels/s; this throughput is 
enough to reach a processing capacity for 1080HD (1920×1088@30fps) real-time video 
streams. 
The remainder of this chapter is organized as follows. Sections 2 and 3 describe the 8×8 
transform and quantization in H.264/AVC, providing the necessary mathematical 
background with special emphasis on describing the effect of the bit-depth in quantization 
and rescaling expressions. The 8×8 transform provides excellent compression performance 
in high-resolution video streams with a level of complexity only slightly higher than the 4×4 
transform. Its implementation can also be done in terms of additions and shifts and no 
multiplications are necessary, despite the fact that the coefficients are not powers of 2 in all 
cases. Quantization and rescaling enable the encoder to control the trade-off between bit-
rate and quality. H.264 assumes a bit-depth-dependent scalar quantizer without division 
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and/or floating arithmetic based on post and pre-scaling matrices. Section 4 describes the 
proposed architecture for implementing the configurable process of transform and 
quantization for an 8×8 luma block capable of operating with different bit-depths (8 bits up 
to 14 bits). This section includes a description of the main modules: 1D configurable forward 
and inverse transform, 8×8 transpose register and the optimized arithmetic circuit needed to 
perform the computation of bit-depth-dependent quantization and rescaling in a unified 
structure. A review of the state-of-the-art of the previous implementations and references is 
also included. However, most hardware implementations only operate in 8 bits and further 
bit-depths have not been taken into account. Section 5 shows the characteristics and the 
performance of the proposed processor as well as comparisons with other published and 
related implementations. These comparisons are made in terms of area, speed and power. 

2. 8×8 Transform in the H.264/AVC 
The FRExt amendment to H.264 proposes a scheme based on an 8×8 integer approximation 
of DCT transform to be added to the existing 4×4 transform in order to improve high-
definition video compression (Gordon & Wiegand, 2004). This transform provides excellent 
compression performance in high-resolution video streams with a level of complexity only 
slightly higher than the 4×4 transform even though the coefficients are not powers of 2 in all 
the cases. However, it’s implemented using additions and shifts and no multiplications are 
necessary. Moreover it uses integer arithmetic which eliminates the mismatch issues 
between the encoder and the decoder. 
The forward 8×8 integer transform is applied to each block in the residual luminance 
component (x) of the input video stream as follows 

 t=X T x T   (1) 

where T is a matrix of dimension 8×8 which represents the transform kernel defined as 
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 (2) 

In the JM reference software (Sühring, 2010), the property of separability of this 8×8 
transform is used to implement equation (1) in a separable way as a 1D horizontal (Eq. (3)) 
transform followed by a 1D vertical (Eq. (4)) transform according to the following equations 

    t t t
1 2 3=p x T T T    (3) 

    t t t t
1 2 3=tX p T T T    (4) 
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Equations (3) and (4) are obtained from the decomposition of T as a sparse matrix product 
of matrices T1, T2 and T3 defined as 

 1

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0

=
1 0 0 0 0 0 0 -1
0 1 0 0 0 0 -1 0
0 0 1 0 0 -1 0 0
0 0 0 1 -1 0 0 0

T

 
 
 
 
 
 
 
 
 
 
 
  

 (5) 

 2

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 -1 0 0 0 0
0 1 -1 0 0 0 0 0

=
0 0 0 0 3 / 2 1 1 0
0 0 0 0 1 0 -3 / 2 -1
0 0 0 0 1 -3 / 2 0 1
0 0 0 0 0 1 -1 3 / 2

T

 
 
 
 
 
 
 
 
 
 
 
  

 (6) 

 3

1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 1/4
0 0 1 1/2 0 0 0 0
0 0 0 0 0 1 1/4 0

=
1 -1 0 0 0 0 0 0
0 0 0 0 0 -1/4 1 0
0 0 1/2 -1 0 0 0 0
0 0 0 0 1/4 0 0 -1

T

 
 
 
 
 
 
 
 
 
 
 
  

 (7) 

Table 1, which it is directly extracted from the JM reference software, shows the expressions 
used to compute the 1D transforms involved in equations (3) and (4). In this Table, IF 
denotes the vector of input values (IF represents either each row of x in equation (3) or each 
column of p in (4)), OF denotes the transformed output vector (OF represents either each 
row of p in equation (3) or each column of X in (4)), and a and b are internal variables. In a 
3-stage butterfly, stage 1 implements the operations involved in T1, stage 2 implements T2 
and stage 3 implements T3. The multiplications by the coefficients 1/2, 1/4 and 3/2=1+1/2 
are implemented by means of shift-right (>>) operations which cause truncation errors 
which are propagated through the datapath. To avoid mismatch between the encoder and 
decoder, the implementation of 1D transform must fulfill the operations specified in the 
standard. As a result, any implementation of this transform must be in compliance with the 
arithmetic described in Table 1 and no other alternative is possible. 
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Stage 1 – T1 Stage 2– T2 Stage 3 – T3 
a0=IF0+IF7 
a1=IF1+IF6 
a2=IF2+IF5 
a3=IF3+IF4 
a4=IF0IF7 
a5=IF1IF6 
a6=IF2IF5 
a7=IF3IF4 

b0=a0+a3 
b1=a1+a2 
b2=a0a3 
b3=a1a2 
b4=a5+a6+((a4>>1)+a4) 
b5=a4a7 ((a6>>1)+a6) 
b6=a4+a7 ((a5>>1)+a5) 
b7=a5a6+((a7>>1)+a7) 

OF0=b0+b1 
OF1=b4+(b7>>2) 
OF2=b2+(b3>>1) 
OF3=b5+(b6>>2) 
OF4=b0b1 
OF5=b6 (b5>>2) 
OF6=(b2>>1)b3 
OF7=b7+(b4>>2) 

Table 1. Forward 1D transform algorithm extracted from the JM software reference. 

The inverse 8×8 integer transform of a block of coefficients of size 8×8 (Z) is defined through 
the equation 

 t=z T Z T   (8) 

Likewise to the forward transform, the 8×8 inverse transform can be computed as the 
concatenation of a 1D horizontal inverse transform (Eq. (9)) and a 1D vertical inverse 
transform (Eq. (10)) through the decomposition of T as a sparse matrix product of matrices 
G1, G2 and G3 giving 

    1 2 3=q Z G G G    (9) 

    t
1 2 3=tz q G G G    (10) 

The G1, G2 and G3 matrices are defined as 

 1

1 0 0 0 1 0 0 0
0 0 0 1 0 -1 0 3/2
0 0 1 / 2 0 0 0 1 0
0 -1 0 -3/2 0 0 0 1

=
1 0 0 0 -1 0 0 0
0 1 0 0 0 3/2 0 1
0 0 -1 0 0 0 3/2 0
0 -3/2 0 1 0 1 0 0

G

 
 
 
 
 
 
 
 
 
 
 
  

 (11) 

  2

1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 -1/4
0 0 1 0 -1 0 0 0
0 0 0 1 0 1/4 0 0

=
0 0 1 0 1 0 0 0
0 0 0 1/4 0 -1 0 0
1 0 0 0 0 0 -1 0
0 1/4 0 0 0 0 0 1

G

 
 
 
 
 
 
 
 
 
 
 
  

 (12) 
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 3

1 0 0 0 0 0 0 1
0 0 0 1 -1 0 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 -1 0 0

=
0 0 1 0 0 1 0 0
0 1 0 0 0 0 -1 0
0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 -1

G

 
 
 
 
 
 
 
 
 
 
 
  

 (13) 

Table 2 shows the expressions for computing these 1D transforms used in the JM reference 
software. In a similar way to the forward 1D transform, a 3-stage butterfly structure is used 
where stage 1 implements the operations specified in G1, stage 2 in G2 and stage 3 in G3. 
Here, II denotes the vector of input values (II represents either each file of Z in equation (9) 
or each column of q in (10)), OI denotes the transformed output vector (OI represents either 
each file of q in equation (9) or each column z in (10)), and ia and ib are internal variables. 
 

Stage 1 – G1 Stage 2– G2 Stage 3 – G3 
ia0=II0+II4 
ia1=II3+II5–II7–(II7>>1) 
ia2=(II2>>1)–II6 
ia3=II1+II7–II3–(II3>>1) 
ia4=II0–II4 
ia5=–II1+II7+II5+(II5>>1) 
ia6=II2+(II6>>1) 
ia7=II 3+II5+II1+(II1>>1) 

ib0=ia0+ia6 
ib1=ia1+(ia7>>2) 
ib2=ia4+ia2 
ib3=ia3+(ia5>>2) 
ib4=ia4–ia2 
ib5=(ia3>>2)ia5 
ib6=ia0ia6 
ib7=–(ia1>>2)+ia7 

OI0=ib0+ib7 
OI1=ib2+ib5 
OI2=ib4+ib3 
OI3=ib6+ib1 
OI4=ib6ib1 
OI5=ib4ib3 
OI6=ib2ib5 
OI7=ib0ib7 

Table 2. Inverse 1D transform algorithm extracted from the JM software reference. 

3. Quantization and rescaling in the H.264/AVC 
The forward quantization process in H.264/AVC FRExt is performed for the transformed 
coefficients (X) computed in equations (3) and (4) according to the following equations 

 
 
   

i,j i,j i,j

i,j i,j

Y = QF X +lev_off >>qbits

sign Y =sign X


 (14) 

where 

 scqbits=QP /6+16  (15) 

In this equation, QPsc is the scaled quantization parameter defined as 

  scQP =QP+6 bd-8  (16) 

QP takes an integer value (from 0 to 51) and determines the level of coarseness of the 
quantization process enabling the encoder to control the trade-off between bit rate and 
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quality. The parameter bd represents the bit-depth video content, 8 ≤ bd ≤ 14. There are lots 
of professional applications which require higher bit depth support such as studio 
application and HD application. In H.264/AVC, 7 of 11 profiles support more than 8-bit bit 
depth starting from High10 which supports 10-bit bit depth. High 444 Predictive and some 
related profiles support up to 14 bits. As can be seen in equation (16), QPsc depends on the 
quantization parameter QP as well as bd; note QPsc=QP for bd=8 bits. This means that QPsc 
can have a value from 0 to 51 when bd=8 and from 36 to 87 for bd=14. 
The approximation factor, lev_off, used in equation (14) is defined as 

      lev_off= 682 intra+342 intra << qbits-11 , intra 0, 1    (17) 

where intra=1 is used for intra coefficient quantization and intra=0 for inter coefficient 
quantization. 
The forward quantization matrix, QF, is  
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=
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whose elements are obtained by evaluating the expression 

    m sckf  = mod(QP ,6), m , m 0, 1, 2,3,4,5MF    (19) 

In this equation, MF is the multiplication factor matrix of dimension 6×6, and the term 
mod(QPsc, 6) and m denote the row and column indices respectively. MF is specified as 
 

 

13107 12222 11428 16777 15481 20972
11916 11058 14980 10826 14290 19174
10082 9675 12710 8943 11985 15978

=
9362 8931 11984 8228 11259 14913
8192 7740 10486 7346 9777 13159
7282 6830 9118 6428 8640 11570

MF

 
 
 
 
 
 
 
 
  

 (20) 

 

The inverse quantization or rescaling “re-scales” the quantized transform coefficients (Y) 
coefficients computed in (14). The rescaling process, which is different to that used in the 
4×4 transform (Malvar et al., 2006), is defined by the following equation directly extracted 
from the JM reference software as 

      i,j i,j i,j scZ = QI <<4 Y << QP /6 +1<<5 >>6  (21) 
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1 0 0 0 0 0 0 1
0 0 0 1 -1 0 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 -1 0 0

=
0 0 1 0 0 1 0 0
0 1 0 0 0 0 -1 0
0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 -1

G

 
 
 
 
 
 
 
 
 
 
 
  

 (13) 

Table 2 shows the expressions for computing these 1D transforms used in the JM reference 
software. In a similar way to the forward 1D transform, a 3-stage butterfly structure is used 
where stage 1 implements the operations specified in G1, stage 2 in G2 and stage 3 in G3. 
Here, II denotes the vector of input values (II represents either each file of Z in equation (9) 
or each column of q in (10)), OI denotes the transformed output vector (OI represents either 
each file of q in equation (9) or each column z in (10)), and ia and ib are internal variables. 
 

Stage 1 – G1 Stage 2– G2 Stage 3 – G3 
ia0=II0+II4 
ia1=II3+II5–II7–(II7>>1) 
ia2=(II2>>1)–II6 
ia3=II1+II7–II3–(II3>>1) 
ia4=II0–II4 
ia5=–II1+II7+II5+(II5>>1) 
ia6=II2+(II6>>1) 
ia7=II 3+II5+II1+(II1>>1) 

ib0=ia0+ia6 
ib1=ia1+(ia7>>2) 
ib2=ia4+ia2 
ib3=ia3+(ia5>>2) 
ib4=ia4–ia2 
ib5=(ia3>>2)ia5 
ib6=ia0ia6 
ib7=–(ia1>>2)+ia7 

OI0=ib0+ib7 
OI1=ib2+ib5 
OI2=ib4+ib3 
OI3=ib6+ib1 
OI4=ib6ib1 
OI5=ib4ib3 
OI6=ib2ib5 
OI7=ib0ib7 

Table 2. Inverse 1D transform algorithm extracted from the JM software reference. 

3. Quantization and rescaling in the H.264/AVC 
The forward quantization process in H.264/AVC FRExt is performed for the transformed 
coefficients (X) computed in equations (3) and (4) according to the following equations 

 
 
   

i,j i,j i,j

i,j i,j

Y = QF X +lev_off >>qbits

sign Y =sign X


 (14) 

where 

 scqbits=QP /6+16  (15) 

In this equation, QPsc is the scaled quantization parameter defined as 

  scQP =QP+6 bd-8  (16) 

QP takes an integer value (from 0 to 51) and determines the level of coarseness of the 
quantization process enabling the encoder to control the trade-off between bit rate and 
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quality. The parameter bd represents the bit-depth video content, 8 ≤ bd ≤ 14. There are lots 
of professional applications which require higher bit depth support such as studio 
application and HD application. In H.264/AVC, 7 of 11 profiles support more than 8-bit bit 
depth starting from High10 which supports 10-bit bit depth. High 444 Predictive and some 
related profiles support up to 14 bits. As can be seen in equation (16), QPsc depends on the 
quantization parameter QP as well as bd; note QPsc=QP for bd=8 bits. This means that QPsc 
can have a value from 0 to 51 when bd=8 and from 36 to 87 for bd=14. 
The approximation factor, lev_off, used in equation (14) is defined as 

      lev_off= 682 intra+342 intra << qbits-11 , intra 0, 1    (17) 

where intra=1 is used for intra coefficient quantization and intra=0 for inter coefficient 
quantization. 
The forward quantization matrix, QF, is  
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whose elements are obtained by evaluating the expression 

    m sckf  = mod(QP ,6), m , m 0, 1, 2,3,4,5MF    (19) 

In this equation, MF is the multiplication factor matrix of dimension 6×6, and the term 
mod(QPsc, 6) and m denote the row and column indices respectively. MF is specified as 
 

 

13107 12222 11428 16777 15481 20972
11916 11058 14980 10826 14290 19174
10082 9675 12710 8943 11985 15978

=
9362 8931 11984 8228 11259 14913
8192 7740 10486 7346 9777 13159
7282 6830 9118 6428 8640 11570

MF

 
 
 
 
 
 
 
 
  

 (20) 

 

The inverse quantization or rescaling “re-scales” the quantized transform coefficients (Y) 
coefficients computed in (14). The rescaling process, which is different to that used in the 
4×4 transform (Malvar et al., 2006), is defined by the following equation directly extracted 
from the JM reference software as 

      i,j i,j i,j scZ = QI <<4 Y << QP /6 +1<<5 >>6  (21) 
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where QI is the rescaling matrix defined as 

 

0 1 2 1 0 1 2 1

1 3 4 3 1 3 4 3

2 4 5 4 2 4 5 4

1 3 4 3 1 3 4 3

0 1 2 1 0 1 2 1

1 3 4 3 1 3 4 3
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=
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QI













 
 
 
 
 
 
 
 

 (22) 

whose elements are obtained by evaluating the expression 

    m scki  = mod(QP ,6), m , m 0, 1, 2, 3, 4, 5MI    (23) 

Here, MI is the rescaling factor matrix specified as 

 

20 19 25 18 24 32
22 21 28 19 26 35
26 24 33 23 31 42

=
28 26 35 25 33 45
32 30 40 28 38 51
36 34 46 32 43 58

MI

 
 
 
 
 
 
 
 
  

 (24) 

4. Variable bit-depth processor for the 8×8 transform and quantization 
Fig. 2 shows the block diagram of the proposed variable bit-depth processor for real-time 
implementation of the complete process for the 8×8 transform and quantization coding in 
the H.264/AVC. This processor includes the following main modules: configurable forward 
and inverse 1D integer transform, bit-depth dependent quantization and rescaling module, 
and transpose register memory. This architecture, which fulfils the requirements of 
H.264/AVC FRExt, has been conceived to operate with different bit-depth (bd) – 8 bits up to 
14 bits with the aim of achieving a high performance with a reduced hardware complexity 
implementation. In order to provide an efficient processor, hardware solutions have been 
developed for the different circuit modules. The 8×8 forward and inverse transforms are 
calculated using the separability property simplifying its architecture to a single 
configurable 1D forward (FT)/inverse (IT) transform processor and a transpose register 
array. Forward quantization (FQ) and rescaling (IQ) operations are computed in the same 
circuit for the different bit-depth requirements. Here, new expressions are proposed 
allowing efficient hardware implementation by avoiding the sign conversion and 
minimizing the arithmetic operations involved. Furthermore, an exhaustive analysis in the 
dynamic range of the datapath was performed to fix the optimum bus widths with the aim 
of reducing the size of the circuit while avoiding overflow. Finally, the critical paths of the 
various computing units have been carefully analyzed and balanced using a pipeline scheme 
in order to maximize the operation frequency without introducing an excessive latency. 
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Fig. 2. Block diagram of the variable bit-depth processor. 

This circuit processes 8 input data in parallel, starting by reading the residual luminance 
component (x) row by row until the entire 8×8 input block is read. The forward 1D 
transform module generates the intermediate coefficients p to be stored in the transpose 
register row-wise. After 8 clock cycles, these coefficients are read column-wise and 
processed again in the 1D transform module. Then, the resulting X coefficients are 
quantized column by column in parallel in the quantization and rescaling module and 
stored in the transpose register column-wise. On finishing this operation, the quantized 
coefficients (Y) are rescaled row by row and the results (Z) are sent to inverse 1D transform 
whose output data (q) are stored in the transpose register row-wise. Finally, the coefficients 
q are fetched to the transpose register column-wise to be processed in the inverse 1D 
transform to obtain the recovered residual luminance (z). 

4.1 Forward and Inverse 8×8 transform 
The 8×8 transform proposed in FRExt for addition to the JVT specification in the 
H.264/AVC is based on the fact that at SD resolutions and above, the use of block sizes 
smaller than 8×8 is limited. One of the first papers (Amer et al., 2005) related to this matter 
was the FPGA pipelined implementation of a simplified 8×8 transform and quantization. 
Another FPGA implementation of an algebraic integer quantization approach to computing 
the 8×8 TRANSFROM was presented in (Wahid et al., 2006). (Silva et al., 2007) proposed 
high-throughput architecture of the forward 8×8 transform to encode high-definition videos 
in real time with a latency of 5 clock cycles to process 1D transform. This architecture was 
synthesized in FPGA with a minimum period of 8.13ns and in a TSMC 0.35µm CMOS 
standard cell technology leading to a period of 8.05ns. Recently, (Park & Ogunfunmi, 2009) 
presented a reduced and parallel FPGA implementation of an 8×8 integer transform, 
quantization and scaling for H.264. Here, each pixel is processed one by one on a simplified 
pipelined architecture without multiplication. 
In the adaptive block-size transform of the FRExt, different kinds of transforms are required: 
8×8 forward/inverse transform, 4×4 forward/inverse transform, 4×4 forward/inverse 
Hadamard transform and 2×2 forward/inverse Hadamard transform. In order to reduce 
hardware, diverse configurable data-path architectures to support all of these transforms in 



 
Recent Advances on Video Coding 

 

316 

where QI is the rescaling matrix defined as 
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whose elements are obtained by evaluating the expression 

    m scki  = mod(QP ,6), m , m 0, 1, 2, 3, 4, 5MI    (23) 

Here, MI is the rescaling factor matrix specified as 
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4. Variable bit-depth processor for the 8×8 transform and quantization 
Fig. 2 shows the block diagram of the proposed variable bit-depth processor for real-time 
implementation of the complete process for the 8×8 transform and quantization coding in 
the H.264/AVC. This processor includes the following main modules: configurable forward 
and inverse 1D integer transform, bit-depth dependent quantization and rescaling module, 
and transpose register memory. This architecture, which fulfils the requirements of 
H.264/AVC FRExt, has been conceived to operate with different bit-depth (bd) – 8 bits up to 
14 bits with the aim of achieving a high performance with a reduced hardware complexity 
implementation. In order to provide an efficient processor, hardware solutions have been 
developed for the different circuit modules. The 8×8 forward and inverse transforms are 
calculated using the separability property simplifying its architecture to a single 
configurable 1D forward (FT)/inverse (IT) transform processor and a transpose register 
array. Forward quantization (FQ) and rescaling (IQ) operations are computed in the same 
circuit for the different bit-depth requirements. Here, new expressions are proposed 
allowing efficient hardware implementation by avoiding the sign conversion and 
minimizing the arithmetic operations involved. Furthermore, an exhaustive analysis in the 
dynamic range of the datapath was performed to fix the optimum bus widths with the aim 
of reducing the size of the circuit while avoiding overflow. Finally, the critical paths of the 
various computing units have been carefully analyzed and balanced using a pipeline scheme 
in order to maximize the operation frequency without introducing an excessive latency. 
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Fig. 2. Block diagram of the variable bit-depth processor. 

This circuit processes 8 input data in parallel, starting by reading the residual luminance 
component (x) row by row until the entire 8×8 input block is read. The forward 1D 
transform module generates the intermediate coefficients p to be stored in the transpose 
register row-wise. After 8 clock cycles, these coefficients are read column-wise and 
processed again in the 1D transform module. Then, the resulting X coefficients are 
quantized column by column in parallel in the quantization and rescaling module and 
stored in the transpose register column-wise. On finishing this operation, the quantized 
coefficients (Y) are rescaled row by row and the results (Z) are sent to inverse 1D transform 
whose output data (q) are stored in the transpose register row-wise. Finally, the coefficients 
q are fetched to the transpose register column-wise to be processed in the inverse 1D 
transform to obtain the recovered residual luminance (z). 

4.1 Forward and Inverse 8×8 transform 
The 8×8 transform proposed in FRExt for addition to the JVT specification in the 
H.264/AVC is based on the fact that at SD resolutions and above, the use of block sizes 
smaller than 8×8 is limited. One of the first papers (Amer et al., 2005) related to this matter 
was the FPGA pipelined implementation of a simplified 8×8 transform and quantization. 
Another FPGA implementation of an algebraic integer quantization approach to computing 
the 8×8 TRANSFROM was presented in (Wahid et al., 2006). (Silva et al., 2007) proposed 
high-throughput architecture of the forward 8×8 transform to encode high-definition videos 
in real time with a latency of 5 clock cycles to process 1D transform. This architecture was 
synthesized in FPGA with a minimum period of 8.13ns and in a TSMC 0.35µm CMOS 
standard cell technology leading to a period of 8.05ns. Recently, (Park & Ogunfunmi, 2009) 
presented a reduced and parallel FPGA implementation of an 8×8 integer transform, 
quantization and scaling for H.264. Here, each pixel is processed one by one on a simplified 
pipelined architecture without multiplication. 
In the adaptive block-size transform of the FRExt, different kinds of transforms are required: 
8×8 forward/inverse transform, 4×4 forward/inverse transform, 4×4 forward/inverse 
Hadamard transform and 2×2 forward/inverse Hadamard transform. In order to reduce 
hardware, diverse configurable data-path architectures to support all of these transforms in 
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a unified scheme have been proposed. Other examples of this kind of architectures include; 
the multi-transform processor where the quantization is performed at the pace demanded 
by the entropy coder in (Bruguera & Osorio, 2006), the low hardware cost suitable for VLSI 
implementations in (Fan, 2006), the reduced hardware and high latency in (Chao et al., 
2007), the high-performance architecture for high-definition applications in ( Ma & et. al, 
2007), the IP design to be implemented on an ASIP-controlled SoC platform in (Ngo et al., 
2008), the high-performance, low-power unified transform architecture in (Choi et al., 2008), 
the highly parallel joint circuit architecture in (Li et al., 2008), and the fast, high-throughput 
and cost-effective implementation in (Hwangbo & Kyung, 2010). 
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Fig. 3. Block diagram of the forward/inverse transform. The equivalent scheme is also 
shown for the forward transform (bottom-left) and inverse transform (bottom-right). 
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Initially, the specifications of H.264 adopted an integer approximation of 4×4, but when 
transforms are larger, significant compression performance gains have been reported for 
High-Definition (HD) resolutions. Thus, a new integer transform of 8×8 was proposed in the 
Fidelity Range Extensions (FRExt) to be added to the previously existing specifications, 
which were verified in SD resolutions. In fact, the use of block sizes 8x8 and bigger is 
dominant. Following this assumption, we proposed architecture for computing the 8×8 
forward/inverse transform based on a configurable high-throughput 1D processor which 
has been conceived to implement the arithmetic operations described in Table 1 and Table 2 
aiming to fulfill two objectives. First, to avoid mismatches between the encoder and decoder 
there is no possible alternative in the implementation of the operations other than those 
specified in these tables, which are directly extracted from the JM reference software. 
Second, these equations share compatible arithmetic which leads to hardware reduction if a 
configurable data-path is used. To comply with these prerequisites, arithmetic operations 
presented in Tables I and II can be implemented in terms of a three-processor architecture 
that fulfils the requirements of H.264. These processors, as is shown in Fig. 3, are named 
I/O, even and odd. The operation mode, forward (FT) and inverse (IT), is arranged by 
multiplexers which select the inputs and modify the inner arithmetic operations of each 
processor. The schematic at the bottom left in Fig. 3 represents the equivalent scheme for 
computing the forward 1D transform. In this configuration, the eight elements of IF are 
input to the I/O processor and their outputs run in parallel into the even and odd 
processors to generate the output OF. In the first 1D transform, the input IF takes each row 
of x and generates each row of p at the output OF according to equation (3), and in the 
second one, each column of p is processed to generate each column of X according to 
equation (4). In contrast, the schematic at the bottom left shows the equivalent scheme for 
the inverse 1D transform. The input data II are connected to the even and odd processors 
while the output data OI are generated in the I/O processor. In this configuration, the first 
inverse 1D transform processes each row of Z, generating each column of q at the output OI 
according to equation (9), and the second one q is read column by column generating each 
row of z according to equation (10).  
Fig. 4 shows the data-path of the processors I/O, even and odd. The I/O processor 
implements the arithmetic operations involved in T1 (Stage 1 in Table 1) and in G3 (Stage 3 
in Table 2). It is exclusively made up of adders and subtractors where the inputs are 
properly arranged depending on the operation mode: forward or inverse. Nonetheless, the 
operations of T2, G2, T3 and G1 are split up into two processors (even and odd) aiming for 
the maximum compatibility. As a result, the arithmetic of the even processor varies 
depending on the operation mode as 
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This means that this processor is configurable by means of multiplexers used to modify the 
data path according to the operation mode. In a similar way, the odd processor implements 
the following equations 
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a unified scheme have been proposed. Other examples of this kind of architectures include; 
the multi-transform processor where the quantization is performed at the pace demanded 
by the entropy coder in (Bruguera & Osorio, 2006), the low hardware cost suitable for VLSI 
implementations in (Fan, 2006), the reduced hardware and high latency in (Chao et al., 
2007), the high-performance architecture for high-definition applications in ( Ma & et. al, 
2007), the IP design to be implemented on an ASIP-controlled SoC platform in (Ngo et al., 
2008), the high-performance, low-power unified transform architecture in (Choi et al., 2008), 
the highly parallel joint circuit architecture in (Li et al., 2008), and the fast, high-throughput 
and cost-effective implementation in (Hwangbo & Kyung, 2010). 
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Fig. 3. Block diagram of the forward/inverse transform. The equivalent scheme is also 
shown for the forward transform (bottom-left) and inverse transform (bottom-right). 
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Initially, the specifications of H.264 adopted an integer approximation of 4×4, but when 
transforms are larger, significant compression performance gains have been reported for 
High-Definition (HD) resolutions. Thus, a new integer transform of 8×8 was proposed in the 
Fidelity Range Extensions (FRExt) to be added to the previously existing specifications, 
which were verified in SD resolutions. In fact, the use of block sizes 8x8 and bigger is 
dominant. Following this assumption, we proposed architecture for computing the 8×8 
forward/inverse transform based on a configurable high-throughput 1D processor which 
has been conceived to implement the arithmetic operations described in Table 1 and Table 2 
aiming to fulfill two objectives. First, to avoid mismatches between the encoder and decoder 
there is no possible alternative in the implementation of the operations other than those 
specified in these tables, which are directly extracted from the JM reference software. 
Second, these equations share compatible arithmetic which leads to hardware reduction if a 
configurable data-path is used. To comply with these prerequisites, arithmetic operations 
presented in Tables I and II can be implemented in terms of a three-processor architecture 
that fulfils the requirements of H.264. These processors, as is shown in Fig. 3, are named 
I/O, even and odd. The operation mode, forward (FT) and inverse (IT), is arranged by 
multiplexers which select the inputs and modify the inner arithmetic operations of each 
processor. The schematic at the bottom left in Fig. 3 represents the equivalent scheme for 
computing the forward 1D transform. In this configuration, the eight elements of IF are 
input to the I/O processor and their outputs run in parallel into the even and odd 
processors to generate the output OF. In the first 1D transform, the input IF takes each row 
of x and generates each row of p at the output OF according to equation (3), and in the 
second one, each column of p is processed to generate each column of X according to 
equation (4). In contrast, the schematic at the bottom left shows the equivalent scheme for 
the inverse 1D transform. The input data II are connected to the even and odd processors 
while the output data OI are generated in the I/O processor. In this configuration, the first 
inverse 1D transform processes each row of Z, generating each column of q at the output OI 
according to equation (9), and the second one q is read column by column generating each 
row of z according to equation (10).  
Fig. 4 shows the data-path of the processors I/O, even and odd. The I/O processor 
implements the arithmetic operations involved in T1 (Stage 1 in Table 1) and in G3 (Stage 3 
in Table 2). It is exclusively made up of adders and subtractors where the inputs are 
properly arranged depending on the operation mode: forward or inverse. Nonetheless, the 
operations of T2, G2, T3 and G1 are split up into two processors (even and odd) aiming for 
the maximum compatibility. As a result, the arithmetic of the even processor varies 
depending on the operation mode as 
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This means that this processor is configurable by means of multiplexers used to modify the 
data path according to the operation mode. In a similar way, the odd processor implements 
the following equations 
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Fig. 4. Schematic of the processors shown in Fig. 3. 

The entire circuit to work out the 1D transform takes a total of 32 additions/subtractions 
and 10 right-shifts that are built by means of data-bus wiring (no additional hardware is 
necessary). To prevent overflow in the computing of the transform, we consider the biggest 
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bit-depth of 14 bits for each luminance sample; this means an unsigned integer number from 
0 to 16383. However, this processor operates with the residual luminance whose value is 
±16383, 15 bits being necessary for its representation. If k represents the input bus width, 
then k=15 bits for the first forward 1D transform and k=18 for the second one. The 
intermediate data a0 to 7 must be of k+1 bits, b0 to 3 of k+2, b4 to 7 of k+3, and, finally, the output 
data of k+3. The range of the coefficients is ±16383·8=±131064 (18 bit) for the first 1D 
transform, and ±131064·8=±1048512 (21 bit) for the second one. However, the quantization 
and scaling process increases the data-path by 1 bit, giving input data of 22 bits before 
calculating the inverse 8×8 transform, this bit width being what limits the data-path of the 
whole transform module to prevent overflow. This means that all arithmetic in the forward 
and inverse 1D transform module is performed in 22 bits and the latency is 2 clock cycles. 

4.2 Transpose register array 
The transpose memory stores 8×8 data and allows simultaneous read and write operations 
while doing matrix transposition. To achieve this, the 8 input data are read out of the buffer 
column-wise if the previous intermediate data were written into the buffer row-wise, and 
vice versa. The transpose buffer based on D-type flip-flops (DFF) (Zhang & Meng, 2009) has 
been chosen as it is more suitable for pipeline architectures, unlike other proposed 
architectures based on RAM memories. Indeed, solutions based on a single RAM (Do & Le, 
2010) lead to high latency, while those based on duplication of the RAMs (one for processing 
columns and the other for rows) have a high area cost (Ruiz & Michell, 1998), and those 
based on bank of SRAMs have a high cost in area (Bojnordi et al., 2006) or in alignment 
modules (Li et al., 2008). 
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Fig. 5. 8×8 transpose register array. 

Fig. 5 shows the schematic of an 8×8 transpose register array of 22 bits each element whose 
basic cell is a FFD and a multiplexer. Each FFD of the array is interconnected via 2:1 
multiplexers forming 8 shift-registers of length 8 either in the horizontal direction (columns) 
or in the vertical direction (rows). A selection signal controls the direction of shift in the 
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Fig. 4. Schematic of the processors shown in Fig. 3. 

The entire circuit to work out the 1D transform takes a total of 32 additions/subtractions 
and 10 right-shifts that are built by means of data-bus wiring (no additional hardware is 
necessary). To prevent overflow in the computing of the transform, we consider the biggest 
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bit-depth of 14 bits for each luminance sample; this means an unsigned integer number from 
0 to 16383. However, this processor operates with the residual luminance whose value is 
±16383, 15 bits being necessary for its representation. If k represents the input bus width, 
then k=15 bits for the first forward 1D transform and k=18 for the second one. The 
intermediate data a0 to 7 must be of k+1 bits, b0 to 3 of k+2, b4 to 7 of k+3, and, finally, the output 
data of k+3. The range of the coefficients is ±16383·8=±131064 (18 bit) for the first 1D 
transform, and ±131064·8=±1048512 (21 bit) for the second one. However, the quantization 
and scaling process increases the data-path by 1 bit, giving input data of 22 bits before 
calculating the inverse 8×8 transform, this bit width being what limits the data-path of the 
whole transform module to prevent overflow. This means that all arithmetic in the forward 
and inverse 1D transform module is performed in 22 bits and the latency is 2 clock cycles. 

4.2 Transpose register array 
The transpose memory stores 8×8 data and allows simultaneous read and write operations 
while doing matrix transposition. To achieve this, the 8 input data are read out of the buffer 
column-wise if the previous intermediate data were written into the buffer row-wise, and 
vice versa. The transpose buffer based on D-type flip-flops (DFF) (Zhang & Meng, 2009) has 
been chosen as it is more suitable for pipeline architectures, unlike other proposed 
architectures based on RAM memories. Indeed, solutions based on a single RAM (Do & Le, 
2010) lead to high latency, while those based on duplication of the RAMs (one for processing 
columns and the other for rows) have a high area cost (Ruiz & Michell, 1998), and those 
based on bank of SRAMs have a high cost in area (Bojnordi et al., 2006) or in alignment 
modules (Li et al., 2008). 
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Fig. 5. 8×8 transpose register array. 

Fig. 5 shows the schematic of an 8×8 transpose register array of 22 bits each element whose 
basic cell is a FFD and a multiplexer. Each FFD of the array is interconnected via 2:1 
multiplexers forming 8 shift-registers of length 8 either in the horizontal direction (columns) 
or in the vertical direction (rows). A selection signal controls the direction of shift in the 
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registers. The loading and shifting mode in the buffer alternates each time a new block of 
input data is processed: the even (odd) 8×8 block is stored by columns (rows) in the buffer. 
As a result, the transpose buffer has a parallel input/output structure and the data are 
transposed on the fly supporting a continuous data flow with the smallest possible size and 
minimal latency (8 clock cycles). 

4.3 Quantization and rescaling 
H.264 assumes a scalar quantizer avoiding division and/or floating point arithmetic. Most 
of the proposed quantization and rescaling hardware solutions attempt to directly 
implement the expressions defined in the standard, but only a few facilitate its 
implementation. Moreover, all of them work in 8-bit bit-depth and further bits are not 
considered. (Amer et al., 2005) presented a simple forward quantizer FPGA design to be run 
on a Digital Signal Processor. (Wahid et al., 2006) proposed an Algebraic Integer 
Quantization to reduce the complexity of the quantization and rescaling parameters 
required for the H.264. The architecture described by (Bruguera and Osorio, 2006) is based 
on a prediction scheme that allows parallel quantization by detecting zero coefficients to 
facilitate the entropy encoding. In (Chunganet al., 2007), the multiplier and RAM/ROM 
were removed by using a 16 parallel shift-adder scheme. An inverse quantizer based on 6-
stage pipelined dual issue VLIW-SIMD architecture was proposed in (Lee, J.J. et al., 2008). 
(Pastuszak, 2008) presented an architecture in a FPGA capable of processing up to 32 
coefficients per clock cycle. (Lee & Cho, 2008) proposed a scheme to be applied in several 
video compression standards such as JPEG, MPEG-1/2/4, H.264 and VC-1 where only one 
multiplier is used to minimize circuit size. A simplification of the quantization process to 
reduce overhead logic by removing absolute values leads to a decrease of around 20% in 
power consumption (Owaida et al., 2009). Another simplification consists of replacing the 
multiplier with adders and shifters to reduce hardware (Park & Ogunfunmi, 2009). An 
inverse quantization that adopts three kinds of inverse quantizers based on prediction 
modes and coefficients used in a H.264/AVC decoder was presented in (Chao et al., 2009). 
(Husemann et al., 2010) proposed a four forward parallel quantizer architecture 
implemented in a commercial FPGA board.  
We propose a single circuit to compute the forward quantization and rescaling for different 
bit-depth requirements. In both procedures, multiplication, addition and shifting operations 
are involved and a configurable architecture enables the same module to perform all the 
specific operations in order to save hardware. The forward quantization (FQ) operates, cycle 
by cycle, on the coefficients of each column of the forward 8×8 transform (X) and the 
quantized coefficients (Y) are generated according to what is established in equation (14). In 
this equation, the modulus operation is necessary because the arithmetic operation 
“>>qbits” performs an integer division with truncation of the result toward zero which 
causes errors for Xi,j<0. For example, the integer 3 in a 4-bit two’s-complement 
representation is 1101. The operation 3>>2 should be 0, but 1101>>2 gives 1. To resolve 
this error, 1<<n1 must be added to the negative number, where n is the number of right 
shifts. Thus, (1101+1<<21)>>2 is 0. Applying this procedure, the absolute value of i, jX  can 
be eliminated from equation (14) by assigning lev_off the same sign as Xi,j. To do this, a term 
1<<qbits1 must be added when Xi,j <0. Then, equation (14) can be directly implemented as 
follows 

  i,j i,j i,jY = QF X +lev >>qbits  (28) 
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Therefore, i, jX  and a subsequent sign conversion should not be necessary in equation (28) 
which leads to a more efficient hardware implementation than that directly proposed from 
equation (14). The design to implement equation (28) must be able to manage up to 14-bit 
depth, that is bd=14. In this case, equation (16) shows that QPsc varies from 36 to 87 as QP 
does from 0 to 51, and qbits from 22 to 30 according to equation (15). From equations (17) 
and (29), lev_off(+) for intra mode varies from 1396736 to 357564416, lev_off() for intra 
mode from 2797567 to 716177407, lev_off(+) for inter mode from 700416 to 179306496 and 
lev_off() for inter mode from 3493887 to 894435327. These bounds fix the lev’s bit width to 
30 bits. Table 3 depicts the definition of lev according to the sign of Xi,j and whether intra is 0 
or 1, which can be easily implemented by using basic logic and shift operations. 
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Table 3. Definition of lev. 

The inverse quantization (IQ) or rescaling specified in (21) can be simplified if this equation 
is rewritten as follows 

     i,j i,j i,j scZ = QI Y << QP /6 +2 >>2  (30) 

Equations (28) and (30) are hardware compatible as they share the same basic arithmetic 
operations. Fig. 6.a shows the block diagram of the quantizer and rescaling module that is 
capable of processing 8 coefficients in parallel. It is composed of a control circuit and an 8-
way data-path based on a configurable arithmetic unit. The control circuit generates the 
intermediate parameters needed for the forward quantization or rescaling mode, all of these 
are obtained from the scaled compression factor (QPsc), the intra value (intra), the operation 
mode (FQ/IQ) and the operation synchronization (init). These parameters are: lev(+) and 
lev(), {kn, ko, kp}, qbits and qpper defined as 

 scqpper=QP /6  (31) 

The three coefficients {kn, ko, kp} represent either the quantization multiplication factors 
kfmQFi,j specified in equations (18), (19) and (20) or the rescaling multiplication factors 
kimQIi,j defined in equations (22), (23) and (24). The indexes {n,o,p} take some of these 
possible values {0, 1, 2}, {1, 3, 4} or {2, 4, 5}. Only three coefficients need to be generated for 
the 8 arithmetic units because each row or column of the matrix QF in (18) or the matrix QI 
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registers. The loading and shifting mode in the buffer alternates each time a new block of 
input data is processed: the even (odd) 8×8 block is stored by columns (rows) in the buffer. 
As a result, the transpose buffer has a parallel input/output structure and the data are 
transposed on the fly supporting a continuous data flow with the smallest possible size and 
minimal latency (8 clock cycles). 

4.3 Quantization and rescaling 
H.264 assumes a scalar quantizer avoiding division and/or floating point arithmetic. Most 
of the proposed quantization and rescaling hardware solutions attempt to directly 
implement the expressions defined in the standard, but only a few facilitate its 
implementation. Moreover, all of them work in 8-bit bit-depth and further bits are not 
considered. (Amer et al., 2005) presented a simple forward quantizer FPGA design to be run 
on a Digital Signal Processor. (Wahid et al., 2006) proposed an Algebraic Integer 
Quantization to reduce the complexity of the quantization and rescaling parameters 
required for the H.264. The architecture described by (Bruguera and Osorio, 2006) is based 
on a prediction scheme that allows parallel quantization by detecting zero coefficients to 
facilitate the entropy encoding. In (Chunganet al., 2007), the multiplier and RAM/ROM 
were removed by using a 16 parallel shift-adder scheme. An inverse quantizer based on 6-
stage pipelined dual issue VLIW-SIMD architecture was proposed in (Lee, J.J. et al., 2008). 
(Pastuszak, 2008) presented an architecture in a FPGA capable of processing up to 32 
coefficients per clock cycle. (Lee & Cho, 2008) proposed a scheme to be applied in several 
video compression standards such as JPEG, MPEG-1/2/4, H.264 and VC-1 where only one 
multiplier is used to minimize circuit size. A simplification of the quantization process to 
reduce overhead logic by removing absolute values leads to a decrease of around 20% in 
power consumption (Owaida et al., 2009). Another simplification consists of replacing the 
multiplier with adders and shifters to reduce hardware (Park & Ogunfunmi, 2009). An 
inverse quantization that adopts three kinds of inverse quantizers based on prediction 
modes and coefficients used in a H.264/AVC decoder was presented in (Chao et al., 2009). 
(Husemann et al., 2010) proposed a four forward parallel quantizer architecture 
implemented in a commercial FPGA board.  
We propose a single circuit to compute the forward quantization and rescaling for different 
bit-depth requirements. In both procedures, multiplication, addition and shifting operations 
are involved and a configurable architecture enables the same module to perform all the 
specific operations in order to save hardware. The forward quantization (FQ) operates, cycle 
by cycle, on the coefficients of each column of the forward 8×8 transform (X) and the 
quantized coefficients (Y) are generated according to what is established in equation (14). In 
this equation, the modulus operation is necessary because the arithmetic operation 
“>>qbits” performs an integer division with truncation of the result toward zero which 
causes errors for Xi,j<0. For example, the integer 3 in a 4-bit two’s-complement 
representation is 1101. The operation 3>>2 should be 0, but 1101>>2 gives 1. To resolve 
this error, 1<<n1 must be added to the negative number, where n is the number of right 
shifts. Thus, (1101+1<<21)>>2 is 0. Applying this procedure, the absolute value of i, jX  can 
be eliminated from equation (14) by assigning lev_off the same sign as Xi,j. To do this, a term 
1<<qbits1 must be added when Xi,j <0. Then, equation (14) can be directly implemented as 
follows 

  i,j i,j i,jY = QF X +lev >>qbits  (28) 
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Therefore, i, jX  and a subsequent sign conversion should not be necessary in equation (28) 
which leads to a more efficient hardware implementation than that directly proposed from 
equation (14). The design to implement equation (28) must be able to manage up to 14-bit 
depth, that is bd=14. In this case, equation (16) shows that QPsc varies from 36 to 87 as QP 
does from 0 to 51, and qbits from 22 to 30 according to equation (15). From equations (17) 
and (29), lev_off(+) for intra mode varies from 1396736 to 357564416, lev_off() for intra 
mode from 2797567 to 716177407, lev_off(+) for inter mode from 700416 to 179306496 and 
lev_off() for inter mode from 3493887 to 894435327. These bounds fix the lev’s bit width to 
30 bits. Table 3 depicts the definition of lev according to the sign of Xi,j and whether intra is 0 
or 1, which can be easily implemented by using basic logic and shift operations. 
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are obtained from the scaled compression factor (QPsc), the intra value (intra), the operation 
mode (FQ/IQ) and the operation synchronization (init). These parameters are: lev(+) and 
lev(), {kn, ko, kp}, qbits and qpper defined as 

 scqpper=QP /6  (31) 

The three coefficients {kn, ko, kp} represent either the quantization multiplication factors 
kfmQFi,j specified in equations (18), (19) and (20) or the rescaling multiplication factors 
kimQIi,j defined in equations (22), (23) and (24). The indexes {n,o,p} take some of these 
possible values {0, 1, 2}, {1, 3, 4} or {2, 4, 5}. Only three coefficients need to be generated for 
the 8 arithmetic units because each row or column of the matrix QF in (18) or the matrix QI 



 
Recent Advances on Video Coding 

 

324 

in (22) is composed of three different coefficients. All coefficients are read in a look-up table 
depending on the operation mode and the value of QPsc. 
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Fig. 6. Configurable forward quantizer and scaling module: a) Block diagram, and b) 
Schematic of the arithmetic unit. 

Fig. 6.b shows a more detailed description of the configurable arithmetic unit. The main 
arithmetic elements are a multiplier and a adder, and multiplexers and additional logic are 
used to configure the implementation of equations (28) and (30). The multiplier has a high 
area cost and delay, so some papers (Michael & Hsu, 2008) (Zhang and et al., 2009) have 
proposed replacing it with a reduced number of shifts and additions by modifying the QF 
factors to be more suitable for hardware optimization. However, they introduce an error 
between the quantization and the inverse quantization which leads to a reduction of the 
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rate-distortion performance. In order to avoid mismatching between encoder and decoder, 
in our approach an implementation of the whole multiplier is selected, with a pipeline 
strategy to increase its speed. After an exhaustive analysis, a Wallace-tree 4-stage pipeline 
multiplier was demonstrated to be the optimal solution to balance the critical path of the 
multiplier with the critical path of the rest of circuit. In the FQ mode, first the inputs Xi,j and 
QFi,j are multiplied. A multiplexer selects the factor lev(+) or lev() to be added to the 
output of the multiplier depending on the sign of Xi,j. Here, a delay of 4 clock cycles in the 
signal of sign(Xi,j) is introduced to compensate for the delay in the multiplier. At the output 
of the adder, a qbit shift-right (>>) operation is performed to obtain the quantized coefficient 
Yi,j. In the IQ mode, the inputs Yi,j and QIi,j are multiplied. A constant 2 is added to the result 
and the last >>2 operation generates the scaled coefficients Zi,j. 

5. ASIC implementation and comparisons 
A prototype of the proposed bit-depth processor has been designed and verified using 
different abstraction levels. Fig. 7 presents the simulation environment used to verify the 
functional behavior of the proposed architecture by comparing the data processed with 
those provided by the JM reference software (Sühring, 2010) for different data blocks of 
input residual luminance. The results of the diverse comparisons performed between the 
simulation and the reference software indicate that there are no differences between them. 
Initially, the processor was designed using the CoWare® Signal Processing Worksystem 
(SPW), editing the block diagram with the elements of the Hardware Design System (HDS) 
library. The first test bench was made by simulating the design with Simulation Program 
Builder-Interpreted (SPB-I). The code description in Verilog-RTL was automatically 
generated by the Verilog RTL Link from the HDS library. A new comparison was performed 
at this abstraction level to guarantee the correct description of the generated code. Finally, 
this Verilog description was synthesized using the Synopsys design compiler under 
HCMOS9 STMicroelectronics 130nm standard cell technology. The resulting circuit contains 
26.5k cells with an area of 625700m2 and the estimated maximum operating frequency is 
330 MHz. After the logic synthesis, the PrimePowerTM tool was applied to estimate the 
power consumption, giving 120mW@330MHz (VDD=1.2V). The data throughput is 2640 
Mpixels per second. This characteristic enables enough processing capacity for 1080HD 
(1920x1088@30fps) real-time video streams. 
With the proposed architecture, each 8×8 block input data is processed with a latency of 44 
clock cycles according to the time scheduling described in Fig. 8. BUSA indicates the output 
of the transform module, BUSB the output of quantization and scaling module, and IN and 
OUT are the input and output of the transpose register (TR); all these signals are depicted in 
Fig. 2. On inputting luma (x), it takes 3 clock cycles to generate the coefficients (p) and the 
output coefficients (X) are obtained from the 13th clock. These coefficients go to the 
quantization module and the “quantized” coefficients (Y), which are generated from the 18th 
clock cycle, are stored in the transpose register. In the rescaling process, the data Y are read 
in transpose order to compute the “rescaled” coefficients Z from the 31st clock cycle. On 
processing these coefficients in the 1D transform module, the intermediate data q are 
obtained in the 34st clock cycle. Finally, the recovered residual luminance (z) is ready to be 
processed from the 44th clock cycle and the next luma block can be input in the 49th clock 
cycle.  
For comparison purposes, Table 4 shows the characteristics and the performances of 
previously published ASIC implementations, although some of them only implement parts 
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in (22) is composed of three different coefficients. All coefficients are read in a look-up table 
depending on the operation mode and the value of QPsc. 
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Fig. 6. Configurable forward quantizer and scaling module: a) Block diagram, and b) 
Schematic of the arithmetic unit. 

Fig. 6.b shows a more detailed description of the configurable arithmetic unit. The main 
arithmetic elements are a multiplier and a adder, and multiplexers and additional logic are 
used to configure the implementation of equations (28) and (30). The multiplier has a high 
area cost and delay, so some papers (Michael & Hsu, 2008) (Zhang and et al., 2009) have 
proposed replacing it with a reduced number of shifts and additions by modifying the QF 
factors to be more suitable for hardware optimization. However, they introduce an error 
between the quantization and the inverse quantization which leads to a reduction of the 
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rate-distortion performance. In order to avoid mismatching between encoder and decoder, 
in our approach an implementation of the whole multiplier is selected, with a pipeline 
strategy to increase its speed. After an exhaustive analysis, a Wallace-tree 4-stage pipeline 
multiplier was demonstrated to be the optimal solution to balance the critical path of the 
multiplier with the critical path of the rest of circuit. In the FQ mode, first the inputs Xi,j and 
QFi,j are multiplied. A multiplexer selects the factor lev(+) or lev() to be added to the 
output of the multiplier depending on the sign of Xi,j. Here, a delay of 4 clock cycles in the 
signal of sign(Xi,j) is introduced to compensate for the delay in the multiplier. At the output 
of the adder, a qbit shift-right (>>) operation is performed to obtain the quantized coefficient 
Yi,j. In the IQ mode, the inputs Yi,j and QIi,j are multiplied. A constant 2 is added to the result 
and the last >>2 operation generates the scaled coefficients Zi,j. 

5. ASIC implementation and comparisons 
A prototype of the proposed bit-depth processor has been designed and verified using 
different abstraction levels. Fig. 7 presents the simulation environment used to verify the 
functional behavior of the proposed architecture by comparing the data processed with 
those provided by the JM reference software (Sühring, 2010) for different data blocks of 
input residual luminance. The results of the diverse comparisons performed between the 
simulation and the reference software indicate that there are no differences between them. 
Initially, the processor was designed using the CoWare® Signal Processing Worksystem 
(SPW), editing the block diagram with the elements of the Hardware Design System (HDS) 
library. The first test bench was made by simulating the design with Simulation Program 
Builder-Interpreted (SPB-I). The code description in Verilog-RTL was automatically 
generated by the Verilog RTL Link from the HDS library. A new comparison was performed 
at this abstraction level to guarantee the correct description of the generated code. Finally, 
this Verilog description was synthesized using the Synopsys design compiler under 
HCMOS9 STMicroelectronics 130nm standard cell technology. The resulting circuit contains 
26.5k cells with an area of 625700m2 and the estimated maximum operating frequency is 
330 MHz. After the logic synthesis, the PrimePowerTM tool was applied to estimate the 
power consumption, giving 120mW@330MHz (VDD=1.2V). The data throughput is 2640 
Mpixels per second. This characteristic enables enough processing capacity for 1080HD 
(1920x1088@30fps) real-time video streams. 
With the proposed architecture, each 8×8 block input data is processed with a latency of 44 
clock cycles according to the time scheduling described in Fig. 8. BUSA indicates the output 
of the transform module, BUSB the output of quantization and scaling module, and IN and 
OUT are the input and output of the transpose register (TR); all these signals are depicted in 
Fig. 2. On inputting luma (x), it takes 3 clock cycles to generate the coefficients (p) and the 
output coefficients (X) are obtained from the 13th clock. These coefficients go to the 
quantization module and the “quantized” coefficients (Y), which are generated from the 18th 
clock cycle, are stored in the transpose register. In the rescaling process, the data Y are read 
in transpose order to compute the “rescaled” coefficients Z from the 31st clock cycle. On 
processing these coefficients in the 1D transform module, the intermediate data q are 
obtained in the 34st clock cycle. Finally, the recovered residual luminance (z) is ready to be 
processed from the 44th clock cycle and the next luma block can be input in the 49th clock 
cycle.  
For comparison purposes, Table 4 shows the characteristics and the performances of 
previously published ASIC implementations, although some of them only implement parts 
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Fig. 7. Block diagram for functional verification of the proposed bit-depth processor. 
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Fig. 8. Time scheduling. 

of the H.264/AVC transform coding process. In (Fan, 2006), a cost effective architecture for 
fast (1-D) 4×4 and 8×8 forward/inverse transform was derived through the Kronecker and 
direct sum operations. The configurable architecture presented in (Li et al., 2008) supports 
the six kinds of 4×4 transforms required in the adaptive block-size transform of H.264 in 
order to more efficiently reuse the data-path; in this architecture, one 8×8 transform can be 
finished within 16 clock cycles. Based on this reusability property, another unified 4×4 and 
8×8 transform architecture is proposed in (Choi at al., 2008). To increase its throughput, 4 
units operate in parallel and only 5 clock cycles are needed to perform an 8×8 transform. 
The low power consumption is because the circuit works at quite low speed (27MHz). A 
pipeline 8×8 2D forward transform architecture is proposed which is capable of consuming 
and producing one sample per clock cycle in (Silva et al., 2007). It uses two 1-D transform 
processors and transpose RAM with a latency of 144 clock cycles. The high-throughput and 
cost-effective implementation of six different integer transforms is proposed in (Hwangbo & 
Kyung, 2010). This implementation maximizes the shared hardware and it is able to process 
64 input pixels in a two-stage pipelined architecture to compute the direct 8×8 transform or 
two 4×4 transforms in parallel. Another flexible architecture is presented in (Chao at al., 
2007), which is suitable for a H.264 high profile decoder capable of processing a macroblock 
in 95 clock cycles with the 8×8 inverse transform or only 54 clock cycles without it. The 
architecture described in (Lee & Cho, 2008) performs the forward 4×4 and 8×8 transform 
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Ref. Transform FQ 
IQ bd Techn. 

(µm) 
Area 

(gates) 
Speed 
(MHz) 

Throughput 
(Mpixel/s) Power Type Size 

(Fan, 2006) FWD 
INV 

(1-D) 
4, 8 

no 
no 8 TSMC 

0.18 6.5k 125 1000 2.5mW 
@62.5MHz 

(Li et al.,  
2008) 

FWD 
INV 

4×4 
8×8 

no 
no 8 UMC 

0.18 
13.6k+ 
RAM 200 800 N/A 

(Choi at al., 
2008) FWD 4×4 

8×8 
no 
no 8 AMS 

0.35 27k 27 346 9.78mW 
@27MHz 

(Silva et al., 
2007) FWD 8×8 no 

no 8 TSMC 
0.35 33.9k 125 124 N/A 

(Chao at al., 
2007) INV 4×4 

8×8 
no 
no 8 TSMC 

0.18 18.5k 125 860 N/A 

(Huang et al., 
2008) 

FWD 
INV 

4×4 
8×8 

no 
no 8 UMC 

0.18 
39.8k 

(NAND2) 200 400 38.7mW 
@50MHz 

(Hwangbo & 
Kyung, 2010) 

FWD 
INV 

4×4 no 
no 8 UMC 

0.18 63.6k 200 3200 86.9mW 
@200MHz 8×8 6400 

(Lee & Cho, 
2008) FWD 4×4 

8×8 
yes 
no 8 0.18 36.6k+ 

RAM 103 412 N/A 

Pastuszak, 
2008) 

FWD 
INV 

4×4 
8×8 

yes 
yes 8 0.35 229k 79 2528 N/A 0.18 320k 76 2432 

(Bruguera et 
al., 2006) 

FWD 
INV 

4×4 
8×8 

yes 
yes 8 AMS 

0.35 23.8k 67 266 N/A 

(Michell et 
al., 2011) 

FWD 
INV 8×8 yes 8 STM 

0.13 29.3k 330 2640 147mW 
@330MHz 

Ours FWD 
INV 8×8 yes 

yes 
8 to 
14 

STM 
0.13 26.5k 330 2640 120mW 

@330MHz 
 

Table 4. Comparison with other architectures for ASIC implementation. 

and quantization for unified standard video CODEC (JPEG, MPEG-1/2/4, H.264 and VC-1). 
A high-throughput architecture which integrates forward transform, quantization, scaling, 
inverse transform and the sample reconstruction is presented in (Pastuszak, 2008). It uses 
reconfigurable 4×4 and 8×8 transform architecture and is able to process 32 
samples/coefficients per clock cycle. The 8×8 transform is performed in only 2 clock cycles 
by processing a whole block of 64 input samples through a scheme based on eight 1-D 
transforms operating in parallel. The quantization and rescaling operate on 32 coefficients in 
each clock cycle. Although this architecture has low latency, the cost in area is 10 times more 
than in other proposed designs. In a similar way to (Li et al., 2008), a single data-path for 
implementing 4×4 and 8×8 forward and inverse transform as well as Hadamard transform 
is presented in (Bruguera et al., 2006). However, the quantization and rescaling are 
computed using only one multiplier each and they are performed at the pace demanded by 
the entropy coder. 
In a previous work (Michell et al., 2011), we described a parallel architecture capable of 
processing 8×8 blocks without interruption with a bit-depth fixed to 8 bit. The latency of 38 
clock cycles is achieved by implementing in a pipeline scheme each module used in the 
transform coding. Indeed, the procesor presented here uses a configurable architecture 
based on the reusing of different variable bit-depth modules to reduce hardware and power, 
all of this with a latency of 44 clock clycles. It has been designed attempting to achieve the 
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of the H.264/AVC transform coding process. In (Fan, 2006), a cost effective architecture for 
fast (1-D) 4×4 and 8×8 forward/inverse transform was derived through the Kronecker and 
direct sum operations. The configurable architecture presented in (Li et al., 2008) supports 
the six kinds of 4×4 transforms required in the adaptive block-size transform of H.264 in 
order to more efficiently reuse the data-path; in this architecture, one 8×8 transform can be 
finished within 16 clock cycles. Based on this reusability property, another unified 4×4 and 
8×8 transform architecture is proposed in (Choi at al., 2008). To increase its throughput, 4 
units operate in parallel and only 5 clock cycles are needed to perform an 8×8 transform. 
The low power consumption is because the circuit works at quite low speed (27MHz). A 
pipeline 8×8 2D forward transform architecture is proposed which is capable of consuming 
and producing one sample per clock cycle in (Silva et al., 2007). It uses two 1-D transform 
processors and transpose RAM with a latency of 144 clock cycles. The high-throughput and 
cost-effective implementation of six different integer transforms is proposed in (Hwangbo & 
Kyung, 2010). This implementation maximizes the shared hardware and it is able to process 
64 input pixels in a two-stage pipelined architecture to compute the direct 8×8 transform or 
two 4×4 transforms in parallel. Another flexible architecture is presented in (Chao at al., 
2007), which is suitable for a H.264 high profile decoder capable of processing a macroblock 
in 95 clock cycles with the 8×8 inverse transform or only 54 clock cycles without it. The 
architecture described in (Lee & Cho, 2008) performs the forward 4×4 and 8×8 transform 
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(Huang et al., 
2008) 

FWD 
INV 

4×4 
8×8 

no 
no 8 UMC 

0.18 
39.8k 

(NAND2) 200 400 38.7mW 
@50MHz 

(Hwangbo & 
Kyung, 2010) 

FWD 
INV 

4×4 no 
no 8 UMC 

0.18 63.6k 200 3200 86.9mW 
@200MHz 8×8 6400 

(Lee & Cho, 
2008) FWD 4×4 

8×8 
yes 
no 8 0.18 36.6k+ 

RAM 103 412 N/A 

Pastuszak, 
2008) 

FWD 
INV 

4×4 
8×8 

yes 
yes 8 0.35 229k 79 2528 N/A 0.18 320k 76 2432 

(Bruguera et 
al., 2006) 

FWD 
INV 

4×4 
8×8 

yes 
yes 8 AMS 

0.35 23.8k 67 266 N/A 

(Michell et 
al., 2011) 

FWD 
INV 8×8 yes 8 STM 

0.13 29.3k 330 2640 147mW 
@330MHz 

Ours FWD 
INV 8×8 yes 

yes 
8 to 
14 

STM 
0.13 26.5k 330 2640 120mW 

@330MHz 
 

Table 4. Comparison with other architectures for ASIC implementation. 

and quantization for unified standard video CODEC (JPEG, MPEG-1/2/4, H.264 and VC-1). 
A high-throughput architecture which integrates forward transform, quantization, scaling, 
inverse transform and the sample reconstruction is presented in (Pastuszak, 2008). It uses 
reconfigurable 4×4 and 8×8 transform architecture and is able to process 32 
samples/coefficients per clock cycle. The 8×8 transform is performed in only 2 clock cycles 
by processing a whole block of 64 input samples through a scheme based on eight 1-D 
transforms operating in parallel. The quantization and rescaling operate on 32 coefficients in 
each clock cycle. Although this architecture has low latency, the cost in area is 10 times more 
than in other proposed designs. In a similar way to (Li et al., 2008), a single data-path for 
implementing 4×4 and 8×8 forward and inverse transform as well as Hadamard transform 
is presented in (Bruguera et al., 2006). However, the quantization and rescaling are 
computed using only one multiplier each and they are performed at the pace demanded by 
the entropy coder. 
In a previous work (Michell et al., 2011), we described a parallel architecture capable of 
processing 8×8 blocks without interruption with a bit-depth fixed to 8 bit. The latency of 38 
clock cycles is achieved by implementing in a pipeline scheme each module used in the 
transform coding. Indeed, the procesor presented here uses a configurable architecture 
based on the reusing of different variable bit-depth modules to reduce hardware and power, 
all of this with a latency of 44 clock clycles. It has been designed attempting to achieve the 
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maximum throughput at the highest possible speed. To achieve these goals, the pipeline 
stages have been balanced during the synthesis to maintain the critical path equivalent to 2 
adders as a limit, independently of the technology used. Other challenges were the 
hardware-efficient modifications in the quantization and rescaling module to reduce the 
arithmetic complexity combined with balanced pipelined multipliers, as it is the more 
complex arithmetic component, to attain the high performance parameters. According to the 
results shown in Table 4, our design is the fastest. Its high throughput it is only surpassed 
by that in (Hwangbo & Kyung, 2010), which processes 16 and 32 input samples in 
comparison with 8 in our design, but that scheme has a large area cost despite the fact that it 
only implements the direct transform without quantization and rescaling. The design 
proposed in (Bruguera et al., 2006) has fewer gates than ours but the quite low speed 
(67MHz) reduces the throughput to 266Mpixels/s. By observing the differences in the speed 
and throughput achieved by our processor, we can conclude that these differences cannot 
only be attributed to the technology used, but are a consequence of the hardware 
modifications introduced in our design.  

6. Conclusions 
In July 2004, a new amendment called Fidelity Range Extensions (FRExt) was added to the 
H.264/AVC as a standardization initiative motivated by the rapidly growing demands 
focusing on professional applications and high-definition videos. Improvements present in 
FRExt include a new 8x8 integer transform, the variety of chroma sub-sampling formats and 
a greater colour bit-depth ranging from 8-bit up to 14-bit. Increasing bit depth provides 
improved accuracy in the coding efficiency with a reduction of noise and artifacts. Indeed, 
bit-depth scalability is potentially useful as, in a foreseeable future where different bit-
depths will simultaneously coexist in the market, it provides multiple representations of 
different bit-depths for the same visual content. 
This chapter presents a variable bit-depth processor with pipeline architecture for real-time 
implementation of the complete process for the 8×8 transform and quantization coding in 
the H.264/AVC. This architecture has been conceived with the aim of achieving a high 
operation frequency and high throughput without increasing the hardware complexity. 
Initially, the mathematical expressions of the 8×8 transform and quantization used in the 
standard H.264/AVC are presented to facilitate the readers’ understanding of this matter. A 
review of the state-of-the-art of the previous implementations and references is also included; 
here, special emphasis is given to describing the effect of the bit-depth in quantization and 
rescaling formulas. However, most hardware implementations only operate in 8 bits and 
further bit-depths have not been taken into account. In order to achieve an efficient 
implementation of the processor, hardware solutions have been developed for the different 
circuit modules. A configurable forward and inverse 1D processor and a transpose register 
array enable an efficient hardware computation of the 8x8 transform. Forward quantization 
and rescaling operations are computed in the same circuit for different bit-depth 
requirements and new expressions are included enabling efficient hardware implementation 
by minimizing the arithmetic operations involved. Finally, the critical paths of the distinct 
computing units have been carefully analyzed and balanced using a pipeline scheme in 
order to maximize the operation frequency without introducing an excessive latency. A 
prototype with the proposed architecture has been synthesized in a 130nm HCMOS 
technology process which achieves a maximum speed of 330 MHz. The throughput of 2640 
Mpixels/s allows real-time video streams of 1080HD (1920×1088@30fps) to be processed. 
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maximum throughput at the highest possible speed. To achieve these goals, the pipeline 
stages have been balanced during the synthesis to maintain the critical path equivalent to 2 
adders as a limit, independently of the technology used. Other challenges were the 
hardware-efficient modifications in the quantization and rescaling module to reduce the 
arithmetic complexity combined with balanced pipelined multipliers, as it is the more 
complex arithmetic component, to attain the high performance parameters. According to the 
results shown in Table 4, our design is the fastest. Its high throughput it is only surpassed 
by that in (Hwangbo & Kyung, 2010), which processes 16 and 32 input samples in 
comparison with 8 in our design, but that scheme has a large area cost despite the fact that it 
only implements the direct transform without quantization and rescaling. The design 
proposed in (Bruguera et al., 2006) has fewer gates than ours but the quite low speed 
(67MHz) reduces the throughput to 266Mpixels/s. By observing the differences in the speed 
and throughput achieved by our processor, we can conclude that these differences cannot 
only be attributed to the technology used, but are a consequence of the hardware 
modifications introduced in our design.  

6. Conclusions 
In July 2004, a new amendment called Fidelity Range Extensions (FRExt) was added to the 
H.264/AVC as a standardization initiative motivated by the rapidly growing demands 
focusing on professional applications and high-definition videos. Improvements present in 
FRExt include a new 8x8 integer transform, the variety of chroma sub-sampling formats and 
a greater colour bit-depth ranging from 8-bit up to 14-bit. Increasing bit depth provides 
improved accuracy in the coding efficiency with a reduction of noise and artifacts. Indeed, 
bit-depth scalability is potentially useful as, in a foreseeable future where different bit-
depths will simultaneously coexist in the market, it provides multiple representations of 
different bit-depths for the same visual content. 
This chapter presents a variable bit-depth processor with pipeline architecture for real-time 
implementation of the complete process for the 8×8 transform and quantization coding in 
the H.264/AVC. This architecture has been conceived with the aim of achieving a high 
operation frequency and high throughput without increasing the hardware complexity. 
Initially, the mathematical expressions of the 8×8 transform and quantization used in the 
standard H.264/AVC are presented to facilitate the readers’ understanding of this matter. A 
review of the state-of-the-art of the previous implementations and references is also included; 
here, special emphasis is given to describing the effect of the bit-depth in quantization and 
rescaling formulas. However, most hardware implementations only operate in 8 bits and 
further bit-depths have not been taken into account. In order to achieve an efficient 
implementation of the processor, hardware solutions have been developed for the different 
circuit modules. A configurable forward and inverse 1D processor and a transpose register 
array enable an efficient hardware computation of the 8x8 transform. Forward quantization 
and rescaling operations are computed in the same circuit for different bit-depth 
requirements and new expressions are included enabling efficient hardware implementation 
by minimizing the arithmetic operations involved. Finally, the critical paths of the distinct 
computing units have been carefully analyzed and balanced using a pipeline scheme in 
order to maximize the operation frequency without introducing an excessive latency. A 
prototype with the proposed architecture has been synthesized in a 130nm HCMOS 
technology process which achieves a maximum speed of 330 MHz. The throughput of 2640 
Mpixels/s allows real-time video streams of 1080HD (1920×1088@30fps) to be processed. 
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1. Introduction

When the noise dramatically increases, the similarity between successive images is reduced,
causing an increase in residue and involving the presence of more indistinguishable, non-zero
coefficients. The prediction becomes less accurate and the bitrate rapidly increases. As
consequence, more bandwidth is required to transmit a video sequence and pictures quality
are affected. To solve this problem, we explored different motion analysis techniques.
The analysis of motion is approached mathematically through the extraction of motion
information from a sequence of images by means of specific data processing algorithms.
Many algorithms of detection, estimation and interpretation of motion were developed
with various parameters models. We reworked and developed a Markov model using the
potential functions foreseen by the motion detection combining the spatial and the temporal
information[1][2]. This algorithm allow a robust moving pixel segmentation and reduces the
variation of the luminance that results more often from noise rather than motion. In [3], we
explored the impact of adding the Markov technique to MJPEG2000 video codecs. In this work
we propose to improve the MMJPEG2000 video codec by adding a new techniques allowing
to improve the quality of the decoded sequence. The paper consists of 5 sections devoted
to the following topics : First, we provide an explanation of the basis and contribution of
the Markov model. Next, we explain the steps followed to embed the Markov algorithm in
the MJPEG2000. We evaluate the new techniques and we assess theirs true performance with
regard to different video types. We also estimate the different gains in bitrate and the resulting
image quality. Next, we explore the possibility to embed the Markov technique on embedded
platefroms as Stratix FPGA.

2. Motion detection algorithm based on Markov Model

The purpose of this technique is to localize moving and static areas in a dynamic scene. Then
we attribute to each site s(x, y) one of the two labels : 1 if s belongs to a moving area and 0
if s belongs to the static background. The most probable configuration is done by using the
Maximum A Posteriori criterion (MAP).
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causing an increase in residue and involving the presence of more indistinguishable, non-zero
coefficients. The prediction becomes less accurate and the bitrate rapidly increases. As
consequence, more bandwidth is required to transmit a video sequence and pictures quality
are affected. To solve this problem, we explored different motion analysis techniques.
The analysis of motion is approached mathematically through the extraction of motion
information from a sequence of images by means of specific data processing algorithms.
Many algorithms of detection, estimation and interpretation of motion were developed
with various parameters models. We reworked and developed a Markov model using the
potential functions foreseen by the motion detection combining the spatial and the temporal
information[1][2]. This algorithm allow a robust moving pixel segmentation and reduces the
variation of the luminance that results more often from noise rather than motion. In [3], we
explored the impact of adding the Markov technique to MJPEG2000 video codecs. In this work
we propose to improve the MMJPEG2000 video codec by adding a new techniques allowing
to improve the quality of the decoded sequence. The paper consists of 5 sections devoted
to the following topics : First, we provide an explanation of the basis and contribution of
the Markov model. Next, we explain the steps followed to embed the Markov algorithm in
the MJPEG2000. We evaluate the new techniques and we assess theirs true performance with
regard to different video types. We also estimate the different gains in bitrate and the resulting
image quality. Next, we explore the possibility to embed the Markov technique on embedded
platefroms as Stratix FPGA.

2. Motion detection algorithm based on Markov Model

The purpose of this technique is to localize moving and static areas in a dynamic scene. Then
we attribute to each site s(x, y) one of the two labels : 1 if s belongs to a moving area and 0
if s belongs to the static background. The most probable configuration is done by using the
Maximum A Posteriori criterion (MAP).
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2 Will-be-set-by-IN-TECH

2.1 Notations

Symbols Explanations

s Site, imply also pixel with (x,y) coordinates.
Ot+1 = {Ot+1(s), s ∈ E} The absolute value of the frame of difference.
It+1 = {It+1(s), s ∈ E} The current frame.

Ot+1(s) Indicates one site in the Ot+1frame.
E The set of the frame sites.

r,rp,rf Neighbours (r: spatial, rp and rf : temporal, past and future)
ψ Modeling the observation.
b White noise with a variance of σ2

Um The energy associated with the model.
Us Spatial energy.
Ut Temporal energy.
Vs Potential function associated with each spatial clique
Vt Potential function associated with each temporal clique
Vp Potential function associated with the past temporal clique
Vf Potential function associated with the future temporal clique

Table 1. Notations

2.2 Algorithm Principle
It is composed of two distinct steps (Fig. 1):

Fig. 1. Generation of the binary map

1. we compute the absolute value of the difference matrix between the current frame It+1
and the reference frame R, we binarize the Ot+1 matrix by setting a threshold θ, and we
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determine the variance of the Ot+1 matrix.

Ot+1 = |It+1 − R| (1)

2. For each image site, we calculate the local energy relative to both the immobile and
the mobile state. After, we allocate the state which minimizes the energy to the site
being treated. Leaving the Iterated Conditional Mode algorithm, we achieve an image
of minimal energy which represents the binary motion map. The scheme of the complete
algorithm is given in Fig. 1. We note that D(t) represents the frame of difference, S the
actual binary frame to code and P the past binary frame.

2.3 Energy calculation
The energy expression is the sum of two terms :

• The energy associated with the data (Ud) (2):

Ud(s) =
1

2σ2 (Ot+1(s)− ψ(s))2
{

ψ(s) = 0, i f s = 0
ψ(s) = α, i f s = 1

(2)

Ot+1(s) = ψ(s) + b (3)

• The energy associated with the model Um (4): It is a regularisation term. Its expression is given
by the some of the spatial energy Us and the temporal energy Ut:

Um(s) = Us(s) + Ut(s, rp, r f ) (4)

• The energy associated with the model consists of the spatial energy (5) that is supposed to
model the consistency and the compactness of a moving object and the temporal energy
(6) which represents the variation of the intensity function when the frame changes.

Us(s) = ∑
s

Vs(s)
{

Vs(s) = −βs, i f s = r
Vs(s) = +βs, i f s �= r

(5)

Vs is an elementary potential function associated with each spatial clique. The positive
parameter βs is defined for spatial cliques.

Ut(s, rp, r f ) = Vp(s, rp) + V f (s, r f ) (6)
{

Vp = −βp, i f s = rp
Vp = +βp, i f s �= rp

{
V f = −β f , i f s = r f
V f = +β f , i f s �= r f

Vp and V f are two potential functions associated respectively with the past and future
temporal cliques. The parameters βp and β f are defined for temporal cliques.

2.4 Parameters setting
The different parameters values which were tested and used in previous work are given in
Table 2.

The setting of the parameters value is based on empirical observations: good agreement
between contours of masks and actual moving objects, contextual homogeneity of detected
masks and insensitivity to acquisition noise[6][7].
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Parameters Parameter values

βp 10
βs 20
β f 30
α 15
θ 7

Table 2. Parameters values

2.5 Experimental results
Some of our results can be visualized below (Fig. 2). In the first image, we find simple motion
detection by a difference between two consecutives frames. The second represents the binary
motion map created from the frame of differences. The multiplication by the mask allows only
the conservation of the variation of luminance which reflects the motion.

Fig. 2. Markov tests results

3. Markov algorithm Integration on MJPEG2000 video codec

The JPEG2000 standard is based on two principles: the wavelet transform and EBCOT
(Embedded Block Coding With Optimized Truncation). It has better performance in terms
of quality/bitrate than the JPEG standard and has more features than other coding standards
for still images [8] [9][10]. The compression algorithm considers each component of the image
as divided into rectangular tiles treated independently. The first step is the subtraction of an
offset coefficient for each tile (DC shift). After that, a lossless color transform RCT (Reversible
Color Transform) or ICT (Irreversible Color Transform) is performed. A quantization is
achived after selecting the compression mode. The value of this quantization can be modified
by using a region of interest (ROI, Region Of Interest). It is a region of the encoded
image compressed with higher accuracy at the expense of other areas of the image that are
compressed to a lower rate and then degraded [11][12]. The tiles are then broken down
into blocks. Coding blocks is done bit-plane by bit plane by an adaptive arithmetic coder
(MQ-coder). At the end of the coding, if the output target is not reached, a post-compression
algorithm used to truncate the compressed stream. Finally, this flow is encapsulated and
organized in one of five modes of data provided by the standard. The video stream
MJPEG2000 is a juxtaposition of images compressed by JPEG2000 algorithm. Despite its
performance in terms of quality/speed, several authors worked on image stream improving.
Two approaches are possible: The first is described in [13] for video monitoring applications.

336 Recent Advances on Video Coding MJPEG2000 Performances Improvement
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The image stream is divided into reference image and images containing objects from the
regions of interest. The reference images are updated (using a cutting area) by an adaptive
Gaussian method [14]. The ROI [15] is obtained dynamically by detecting areas of movement
and is encoded by the method "maxshift". It should be noted that in [15], the standard
color transform is modified by a logarithmic color transform called LUX, which improves
the color rendering of images. A similar approach is presented in [16] where the ROI and the
background image are obtained using an algorithm based on Gaussian statistics. We present
in [3] a different approach. Indeed, the image stream is separated into reference images
and images obtained by masking differences with a bitmap of the movement. This method
derives from Frantz Lohier [17] who demonstarted that the masking technique coupled with
an encoder MJPEG greatly improves the performance of the encoder. In [18], the technique has
been used with an encoder based on wavelets [19], demonstrating the feasibility of extending
the technique. Table 3 summarizes the results of the community in this area.

Method improvement References
artefacts filtring PSNR + 0.2 à 0.5 dB [20]

psycho ponderation PSNR + 0.2 à 0.5 dB [21]
motion detecting bit rate - 10 % [22]
Post-compression Speed/memory [23]

Table 3. state of the art

The methods described in this section are primarily based on the determination of the ROI, the
application of the weighting psycho-visual coefficients and the improvement of the wavelet
truncation points of the compressed stream. Despite the improvements they make, they
remain small compared to the use of methods that alter the flow of images and in particular the
differential method (Table 4). We propose in this paper an approach based on the differential
method coupled with Markov algorithms to significantly improve MJPEG2000 performances.

Methods Improvements Authors

ROI JPEG2000 1 CIF/s GSM. CIF à 660 kbps, PSNR + 4 dB [25]
differential masking decreasing the bitrate from 15% to 35% [18]

Table 4. Quality-bitrate improvement

3.1 Impact of the number of iterations
Respecting the fact that the real-time constraints of digital systems is not compatible with
the expectation of convergence of the regularization algorithm, a small number of iterations
is used to solve this problem. Its influence on the quality of the images were assessed by
measuring the PSNR of the reconstructed images and the entropy of images of differences.
Figure 3 shows the impact of the use of 1, 2, 3 and 4 iterations on PSNR. We note that using
a single iteration of ICM for the regularization of the binary map degrade the performance of
masking. Therefore we chose a single iteration.

3.2 Thresholding
The quality of the final bitmap depends on the result of thresholding. The background noise
corresponds to the sites where there is no motion and where the intensity variations is due to
the noise of the acquisition system. For further developments, we consider the distributions of
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the noise of the acquisition system. For further developments, we consider the distributions of
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Fig. 3. Iteration impact on PSNR

moving objects and background noise are Gaussian. The analysis of the intensity distribution
of pixels in the image is one of the methods allowing the separation of classes. Several
methods using histogram thresholding are presented and discussed in [24]. In this section, an
adaptive thresholding method based on the histogram of the image observations is proposed.
It has low complexity and meet our needs. The conditions of the good working of our
algorithm are as follow [25] :

• Fixed camera.

• Illumination changes slowly and gradually.

• The noise is additive Gaussian, uncorrelated, has a low intensity compared to the signal.

Under these assumptions:

• The pixels belonging to moving objects occupy a small portion of the image.

With these assumptions, the difference image contains a large population of pixels close to
zero. Figure 4 is an example of image histogram differences of a sequence of video monitoring.
An histogram that respects these assumptions can be represented as a bimodal curve. The
first lobe is the background (to eliminate). it has a height much greater than the second and a
large population of low intensity, close to zero. The second lobe represents the moving objects.
Figure 5 illustrates the proposed method.
Based on our method [26] corresponding to a graphical analysis of the histogram to extract
the first lobe, we offer an estimation of the mean μ and the standard deviation of background
σb from the histogram of the image. The first lobe of the histogram is based on the intensity of
x expressed as follows:

B(x) =
1

σb
√

2π

exp− 1
2 (

x−μ
σb

)2

(1)

In the circumstances described above, the average value is the maximum H of the Gaussian
and is close to zero. H also corresponds to the maximum of the histogram of the image. If
x = μ , we get :

B(μ) =
1

σb
√

2π

= max(B(x)) = H (2)
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Fig. 4. image histogram

Fig. 5. Gaussian model

we obtain a relationship between the position of the Gaussian and the maximum value H.

B(x) = H � exp− 1
2 (

x−μ
σb

)2

(3)

To get an estimate of the standard deviation, we simply compute x = μ + σb, then:

B(μ + σb) = H � exp
1
2 � H � 0.6 (4)

So there is a relationship between standard deviation and the maximum height. If we place
ourselves at a height equal to the Gaussian P(x) = H × 0.6, the corresponding value of x
gives a direct estimate of μ + σb. The mean μ and standard deviation σb can be obtained
by a sequential scan of the histogram. The value of standard deviation is approximated by
standing at a height of H × 0.5. Right shifting the bits of the Gaussian height value gives a
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good estimate of the standard deviation: 1.1774 ∗ σb, we define the threshold of binarization
as follow :

seuil = μ + k.σb (5)

The parameter k adjusts the rate of the gaussian background elimination. Figure 6 shows the
variation of the automatic threshold value according to k.

Fig. 6. Thereshold according to k parameter, Akyio séquence

3.3 Reference frames update
In the literature, there are several strategies to update the reference image [27] [28]. Methods
related to motion detection zones will update the reference image for each new image if there
is a change in the reference image. This approach provides an accurate motion detection
but, at the same time, inscreases the number of transmitted reference frames. To refresh
the reference image, we used an indexing video technique. The purpuse is to classify the
transition effects in a video sequences [29] [30]. Transition effects are abrupt changes of
context and gradual changes. We must define two thresholds, τ1, the high threshold and
τ2 the low threshold, τ1>> τ2, and compare τ percentage of pixels affected by motion. τ is
obtained as follows : P(x,y) is the pixel value of the binary map of moving E(t) at position (x,
y), l and c being respectively the number of line and column of the image then:

τ =
∑l−1

x=0 ∑c−1
y=0 P(x, y)

l × c
× 100 (6)

In our approach, τ1 and τ2 are chosen empirically to values equal to 10% and 40%. We have
considered three configurations (Table 5) :

3.4 Masking operation
The masking operation is needed to regulate and eliminate the impulse noise. This operation
plays a gatekeeper role and only the intensity variations that are relevant will be retained
while others will be forced to zero. The masking operation is obtained by performing a binary
AND between the bitmap of motion E (t) and the absolute difference image O (t). At the same
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τ Motion Action

1) τ > τ1 high We send immediatly a reference frame
2) τ1 > τ > τ2 intermediate If 12 successive frame, update the reference frame.
3) τ < τ2 low There is no need to update the reference image.

Table 5. Reference frames update

time, a dynamic shift is made so that the masked difference image D * t has the same dynamics
as the original image. The value dt(s) of the difference is masked:

dt(s) = 128 + (1 − 2 ∗ sigt(s) ∗
(

et(s).ot(s)
2

)
) (7)

This forces to zero the pixels which are not detected as motion pixels.

4. Évaluation de l’algorithme

The test database consists of 14 video sequences with very different contexts with a number
of images ranging from 100 to 1500. We present two sequences: Akyio and Survey in QCIF
format. We performed a software version of the algorithm for masking images of difference.
We chose two methods to assess quality:

• The PSNR (Peak Signal to Noise Ratio). It gives a statistical measure of damages.

• Estimation with a perceptual quality metric (double stimulus method) : We compare the
original sequence to decompressed sequences. The observer must then assign a rating to
the degraded image using a predefined scale. But these tests have the disadvantage of
being expensive and time consuming. The perceptual metric represent an alternative to
subjective tests. They exploit the HVS characteristics to improve the correlation between
the notes that they provide and those given by a set of observers [31]. The perceptual
evaluation is performed with the software VQM (Video Quality Metric).

4.1 MJPEG2000 and MMJPEG2000 comparison
The compression system we used to perform our tests consists of three separate modules.
The first of these modules is the difference image generator. The used encoder is Kakadu
[32]. It follows the standard JPEG2000. We used 4 levels of wavelet decomposition and the
"-no_weights" option is enabled. The last module is a module to concatenate the compressed
stream and to add the Motion JPEG2000 headers [33]. We notice that we created sequences
with reference frames compression ratios equal to 16 and 6 values for difference frames,
ranging from 32 to 256.

4.1.1 statistical comparaison
Figure 7 shows the evolution of the PSNR (sequence Survey). It enables a statistical
comparison between MMJPEG200 and MJPEG2000. We notice that the MMJPEG2000 video
codecs improves the quality compared to a classic MJPEG2000 video codec. The gain varies
between 4 dB and 10 dB.
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"-no_weights" option is enabled. The last module is a module to concatenate the compressed
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Fig. 7. MMJPEG2000 vs MJPEG2000 : Survey sequence

4.1.2 Comparison with an objective perceptual quality metric
Figure 8 shows the evolution of MOS sequence Survey. It allows a fair comparison between
MMJPEG200 MJPEG2000 by estimating the perceived quality. We notice a big improvement
except for the low compression ratio.

Fig. 8. Perceptual metric quality, Akiyo sequence

4.1.3 Visual comparison
Figure 9 shows part of the sequence Survey. It allows to compare the visual quality of
compressed sequence by MJPEG2000, Markov-MJPEG2000 and the original sequence. The
sequences are compressed to obtain a rate of 120 kbit/s for the sequence Survey.

5. Implementation on the Stratix FPGA platforme

The design of the Markov motion detection algorithm was done under QuartusII. VHDL
language was used for the system description and the synthesis process was oriented for
maximum speed. In the conception, we split the algorithm into three functional blocks.
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Fig. 9. Comparaison visuelle : séquence survey

The first one is the data controller allowing to grab and store the data to the memory.
The next functional block performs the binarization function. The last achieves the energy
minimization. In the following, we give more details about the threshold module and the
energy minimization module.

5.0.4 The Threshold module
The threshold module gives the binary data to the energy minimization module. To perform
this task, the differences between matching blocks and the variance must be computed. We
note that the difference is obtained by the subtraction between the reference block and the
actual block to code. The results are stored in a dedicated memory and the standard deviation
calculation is performed at the same time (Figure 10). When the processing is finished, a flag
is set indicating to the controller to start the data thresholding. It consists in comparing the
pixel differences to a fixed threshold θ.

5.0.5 The Energy minimization module
The energy minimization module gets the needed pixel from the thresholding module and
decides if the pixel is moving or not. It is composed of four sub-modules (Figure 11).
The line buffer sub-module allow to store the pixel neighbors. In our algorithm, we need 3
lines and the newest line overwrites the oldest one. ( L0 is the current line, L-1 the oldest) (Fig
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Fig. 10. Threshold module

Fig. 11. Energy minimization module

12). We note that the size of the lines depends on the number of columns in the frame. Thus
for a bloc size (M x N), we need 3 lines of N columns.

Fig. 12. Line buffer

The minimization is achieved line by line, left to right. We created 9 registers for the spatial
neighbors and one register for the temporal. At each clock cycle, the neighborhood is updated
with 3 new pixels from the 3 line buffers. Each data moves by one position, so the oldest
values are discarded (Fig. 18). To compute the spatio-temporal energy, we compute the energy
corresponding to the state of the binary current pixel, the surrounding spatial and temporal
pixels. This value is stored in a model energy Look-Up Table. The model energy, the variance
and the current observation value are used to process the energy minimization (Fig. 13).
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Fig. 13. Model energy processing

5.0.6 Experimental setup and results
The experimental board is composed principally of an Altera Stratix FPGA paltform. We
added to the FPGA two daughter boards :

• A video daughter board connected to the digital CMOS camera[34].

• A Lancelot daughter board allowing to display the created mask and the video input[35].

The stratix M-RAM is used to store the binary motion map and the current frame. By this way,
both frames can be displayed on a VGA screen (Fig 14).

Fig. 14. Motion detection experimental prototype

The system process 3200 macroblock per second (312 us/Macroblock). The maximum IC
frequency is 75 MHz. The motion detection IC takes only 4.6% of the total FPGA logic
elements. This result allows us to implement more functionality in the FPGA such as the
other parts of the H264 or MJPEG2000 video codecs. We used 13 embedded multipliers in
our design. The majority are used to compute the variance. Without the embedded Stratix
multipliers, we note that the number of used Logic Elements grows by a factor of three and
the maximum working frequency fall down to 50 MHZ.
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6. Conclusion

Within this framework, we have been interested in the discovery of new methodologies
allowing the reduction of the bitrate for noisy sequences while maintaining adequate
quality of the rebuilt sequences. Particularly, we have demonstrated that the addition of the
Markov algorithm presents an effective solution in reducing the noise contained in the video
sequences. We showed that the new Markov/MJPEG2000 video codec improve significantly
the performances achived by a classic MJPEG2000 video codec while keeping a standard
bitstream. We have also been interested in evaluating Markovian technique under a PC
platform and on embedded architectures intended for the multi-media applications. The
complete implementation of the Markov algorithm carried out exclusively on a stratix FPGA,
demonstrated the possibility of using this technique on embedded architecture.
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6. Conclusion

Within this framework, we have been interested in the discovery of new methodologies
allowing the reduction of the bitrate for noisy sequences while maintaining adequate
quality of the rebuilt sequences. Particularly, we have demonstrated that the addition of the
Markov algorithm presents an effective solution in reducing the noise contained in the video
sequences. We showed that the new Markov/MJPEG2000 video codec improve significantly
the performances achived by a classic MJPEG2000 video codec while keeping a standard
bitstream. We have also been interested in evaluating Markovian technique under a PC
platform and on embedded architectures intended for the multi-media applications. The
complete implementation of the Markov algorithm carried out exclusively on a stratix FPGA,
demonstrated the possibility of using this technique on embedded architecture.

7. References

[1] J.Zhang, Mean field theory in EM procedures for MRFs, IEEE Trans.Signal Processing,
vol. 40, pp. 2570-2583, October 1992.

[2] Khalil Hachicha, Patrick Garda: Noise-robustness improvement of the H.264 video
coder. J. Electronic Imaging 17(3): 033019 (2008)

[3] David Faura, Olivier Romain, Patrick Garda: MMJPEG2000: A Video Compression
Scheme Based on JPEG2000. ICIP 2006: 3145-3148

[4] F.Luthon, A.Caplier, M.Liévin, Spatiotemporal approach to video segmentation :
Application to motion detection and lip segmentation, Signal Processing, 76(1) : 61-80,
July 1999.

[5] C.Dumontier, F.Luthon, J-P.Charras, Real-time DSP implementation for MRF-based
video motion detection, IEEE Transactions on Image Processing, Volume 8, Issue 10,
Oct. 1999 Page(s) : 1341-1347.

[6] A.Caplier, F.Luthon and C.Dumontier, Real-time implementations of an MRF-based
motion detection algorithm. Real time Imaging, 4: 41-54, 1998.

[7] F.Lohier, P.Garda, L.Lacassagne Procédé et dispositif de traitement de sequences
dimages avec masquage. National Patent N FR 62060 L, 3 february 2000, France.
International extension pending.

[8] D.Santa-Cruz, T.Ebrahimi, "An analytical study of JPEG 2000 functionalities", ICIP’00,
vol 2, pp 49-52, Septembre 2000.

[9] A.Skodras, C.Christopoulos et T.Ebrahimi, "The JPEG2000 Still Image Compression
Standard", IEEE Signal Processing Magazine, vol 18, pp 36-58, September 2001.

[10] M.D.Adams, "The JPEG-2000 Still Image Compression Standard", Tech Rep N2412,
ISO/IEC JTC1/SC29/WG1 , September 2001.

[11] M.M.Subedar, L.J.Karam, G.P,Abousleman, "JPEG2000-Based shape adaptive algorithm
for the efficient coding of multiple region of interest", ICIP’04, vol 2, pp 1293-1296,
October 2004.

[12] Z.Wang, S.Banerfee, B.L.Evans, and A.C.Bovik, "Generalized bitplane by bitplane shift
method for JPEG2000 ROI coding", ICIP’02, vol 3, pp 81-84, October 2002.

[13] T.Totozafiny, O.Patrouix, F.Luthon, J.M.Coutelier, "Motion reference image JPEG2000:
Road surveillance application with wireless device", Visual Communications and Image
Processing, VCIP’05, Beijing, July 2005.

346 Recent Advances on Video Coding MJPEG2000 Performances Improvement
by Markov Models 15

[14] T.Totozafiny, "Compression d’images couleur pour application à la télésurveillance
routière par transmission vidéo à très bas débit", Université de Pau et des pays de
l’Adour, Juillet 2007.

[15] F.Luthon, B.Beaumesnil, "Color and ROI with JPEG2000 for wireless videosurveillance",
International Conference on Image Processing, 2004, vol 5, pp 3205-3208, October 2004.

[16] F.Luthon and A.Caplier, "Motion detection and segmentation in image sequences
using Markov Random Field Modeling", 4th Eurographics Animation and Simulation
Workshop, pp 265-275, September 1993.

[17] F.Lohier, P.Garda, L.Lacassagne, "Masked-Motion-JPEG2000: A new reduced
complexity video sequence compression scheme based on a MRF-motion detection
algorithm toward inter frame masking", Conf. On Signal Processing Applications and
Technology, October 2000.

[18] http://www.analog.com/en/prod/0„765_810_ADV601,00.html.
[19] P.Bourdon, B.Augereau, C.Olivier, C.Chatellier, "A PDE-based method for ringing

artefact removal on greyscale and color JPEG2000 images", IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol 3, pp 729-732, April 2003.

[20] K.Varma, A.E.Bell, "Improving JPEG2000’s perceptual performance with weights based
on both constrast sensitivity and standard deviation", ICASSP’04, vol 3, pp 665-668, May
2004.

[21] J.H.Kim , S.B.Kim and C.S.Won, "Motion JPEG2000 Coding Scheme Based on Human
Visual System for Digital Cinema", Springer Berlin / Heidelberg Book Advances in
Image and Video Technology, vol 4319, pp 869-877, 2006.

[22] Y.M.Yeung, O.C.Au, "Efficient Rate Control for JPEG2000 Image Coding", IEEE
Transactions on Circuits and Systems for Video Technology, vol 15, no 3, pp 335-344,
March 2005.

[23] P.K.Sahoo, S.Soltani, A.K.C.Wong, and Y.C.Chen "A survey of thresholding techniques".
Computer Vision, Graphics and Image Processing, vol 41, pp 233-260, 1988.

[24] F.Luthon, M.Lievin, F.Faux , "On the use of entropy power for threshold selection",
Elsevier Science, Signal processing, vol 84, no 10, pp. 1789-1804 , 2004.

[25] P.L.Rosin, "Unimodal thresholding", ELSEVIER Pattern Recognition, vol 34, pp
2083-2096, 2001.

[26] P.Vannoorenberghe, C. Motamed, J.-G.Postaire, "Réactualisation d’une image de
référence pour la détection du mouvement dans les scènes urbaines", Traitement du
Signal, vol 15, no 2, pp 139-148, 1998.

[27] G.Ahanger, T.Little, "A survey of technologies for parsing and indexing digital video",
Journal of visual communication and image representation, vol 7, pp 28- 43, March 1996.

[28] I.Oliveira , N.Correira, N.Guimaraes, "Image Processing Technique for Video Content
Extraction", Image indexing and retrieval, pp 61-70, August 1997.

[29] ITU-R Recommendation BT.1683, "Objective perceptual video quality measurement
techniques for standard definition digital broadcast television in the presence of a full
reference", Recommendations of the ITU, Radiocommunication Sector, 2004.

[30] T.Tiffany et S.Hakim, " L’apport d’un bloc de segmentation d’erreur dans l’évaluation
de la qualité d’images", GRETSI’01, Toulouse, 2001.

[31] M.Pinson and S.Wolf, "A new standardized method for objectively measuring video
quality", IEEE Transactions on Broadcasting, vol. 50, No 3, pp. 312- 322, September 2004.

347MJPEG2000 Performances Improvement by Markov Models



16 Will-be-set-by-IN-TECH

[32] D.S.Taubman, M.W.Marcellin JPEG2000, "Image Compression, Fundamentals,
Standards and Practice". Boston: Kluwer Academic Publishers, 2002.

[33] OV6620 single chip CMOS CIF Color difital camera, http://www.ovt.com.
[34] Lancelot User Manual, Product Brochure, Microtronix, http://www.microtronix.com

348 Recent Advances on Video Coding

Part 5 

Semantic-based Video Coding 



16 Will-be-set-by-IN-TECH

[32] D.S.Taubman, M.W.Marcellin JPEG2000, "Image Compression, Fundamentals,
Standards and Practice". Boston: Kluwer Academic Publishers, 2002.

[33] OV6620 single chip CMOS CIF Color difital camera, http://www.ovt.com.
[34] Lancelot User Manual, Product Brochure, Microtronix, http://www.microtronix.com

348 Recent Advances on Video Coding

Part 5 

Semantic-based Video Coding 



 0

What Are You Trying to Say? Format-Independent
Semantic-Aware Streaming and Delivery

Joseph Thomas-Kerr1, Ian Burnett2 and Christian Ritz3

1,3University of Wollongong
2Royal Melbourne Institute of Technology

Australia

1. Introduction

“[Elizabeth Bennett] looked at her father to entreat his interference, lest Mary should
be singing all night. He took the hint, and, when Mary had finished her second song, said

aloud, ‘That will do extremely well, child. You have delighted us long enough.’ ” —

Pride and Prejudice, 1813, Jane Austen (1813)

Users automatically associate many layers of meaning with the media content they consume,
yet computers have barely begun to scrape the surface of this information. For example,
consider the passage above. The subtle exchange of glances between Elizabeth and her
father would be readily apparent to most human observers, but it is unlikely that a computer
processing a video of the scene would be able to recognise their meaning. Furthermore,
while the double-entendre in Mr Bennett’s remark would be clear to most human listeners,
algorithmic recoginition of this or other modes of speech are in their infancy (Paleari & Huet,
2008).
Other research communities are developing means to communicate such semantic
information (whether computed or manually generated) in ways that are able to transcend the
original context of the information.This work—originating from Knowledge Representation,
but more popularly known as the Semantic Web—has provided languages such as the
Resource Description Framework (RDF) (Beckett, 2004) and Web Ontology Language (OWL)
(Dean & Schreiber, 2004) which can be used to express concepts in such a way that “this
picture has many buildings” may also imply that “it is a cityscape”, and “it contains
man-made objects.”
Recent multimedia coding formats developed by MPEG and ITU-T such as Scalable Video
Coding (SVC) (ISO/IEC, 2007) and Scalable-to-Lossless Coding (SLS) (ISO/IEC, 2004a) offer
the ability to dynamically adapt their bitrate to changing conditions. Current systems perform
this adaptation on the basis of static channel parameters such as terminal and network
capabilities (Timmerer et al., 2006) or dynamic estimation of channel capacity (Chou, 2006).
There are, in fact, numerous examples of using content semantics to identify the best way to
adapt content to dynamic conditions: Section 2 describes this in further detail. However,
while others have proposed specific semantics to be used in the delivery process, there exists
no generic system for connecting arbitrary semantics to the adaptation/delivery process.
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Fig. 1. A framework for semantic-aware multimedia delivery

Fig. 2. News reports have a regular structure

This chapter proposes and demonstrates just such a system, as shown in Figure 1. An
overview of the system was presented in Thomas-Kerr et al. (2009); the present work
greatly expands upon the complexities of its concept and design. Combining semantics
and multimedia delivery in a generic fashion is, unsurprisingly, a task that draws on
numerous disparate fields. When possible, sufficient detail has been provided to appreciate
the background concepts, however, the reader is referred to the relevant citations for further
information.

2. Semantics in the delivery process

A typical news report (Figure 2) provides a good example of how content semantics could be
useful in multimedia delivery. News reports often have a fairly consistent structure, beginning
with a studio introduction, then footage of the event (often with commentary overlaid on
top of audio from the event), using subtitles if subjects are speaking in a foreign language,
and sometimes concluding with further studio footage. As a report proceeds through these
various stages, the relative importance of the audio and video varies. For example, in the
studio introduction, virtually all of the semantic content of the presentation is carried in the
audio. On a low-bandwidth (e.g. mobile) channel, reduction of the frame-rate in this region
would have little impact on the transmission of the content semantics. When the report cuts
to on-site footage, a much greater proportion of the semantic content is carried by the visuals,
though the amount would vary from one report to another. If subtitles are overlaid on the
video, virtually all of the semantic content is conveyed by the video, and bits spent on audio
in this section will contribute much less to the successful delivery of the semantics.
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As a second example, instead of comparing relative semantic importance along the modal
dimension (as is the case above), similar comparisons could be made on the temporal axis.
Here, segments of the news report would be annotated with an indication of the relative
importance of the segment to the story as a whole. Users could receive a short “digest”, the
full story, or something in between. This approach could also work for coverage of sporting
events.
Numerous other types of semantic metadata have been identified which can assist in delivery
optimisation: Bertini et al. (2006), Xu et al. (2006), and Baba et al. (2004) all argue that
applying the same adaptation operation to different parts of a multimedia presentation will
have differing effects in the perceptual quality of the presentation as a whole.
More specifically, both Bertini et al. (2006) and Xu et al. (2006) propose adaptation on the
basis of semantic classification of sporting events into categories such as Shot on Goal, Corner
(for soccer), or Shot, Foul, Penalty (for Basketball), among others. User preferences are
used to prioritize the categories, and this priority information is then used to guide the
adaptation. That is, given a bandwidth constraint such that the full content can’t be delivered,
the adaptation engine reduces the bit rate of lower priority sections before those with higher
priority.
The semantic metadata used in the preceding examples can be considered as very high-level,
and coarse-grained. That is, it identifies relatively large segments of content, using concepts
with a high level of abstraction from the digital representation of the content. In the first case,
heuristic methods are proposed to automatically classify content segments, with a precision
of 83% to 96% Bertini et al. (2006).
Baba et al. (2004) propose adaptation of speech signals on the basis of a much lower-level
semantic concept: sound volume. They argue that regions of (relative) silence within a speech
signal carry no semantic information, and as such may be truncated during playback. In fact,
this feature of speech1 may be used to guide adaptation, allowing regions of silence to be
constrained to a zero bit-rate (or as close as the scalable codec or synchronization scheme will
allow) with no perceptible loss of fidelity.
Cranley & Murphy (2006) suggest further low-level semantics that may be used to optimize
delivery. They use measures of the temporal and spatial complexity to trade-off frame rate
with resolution for scalable codecs, to achieve a so-called Optimum Adaptation Trajectory.
The semantic-aware content delivery framework proposed in this chapter provides a way to
incorporate these and other semantics into the delivery of multimedia. This is achieved in a
way that is flexible enough to support the increasingly diverse range of formats, semantics,
and networks that are used (or useful) for content delivery (Brightman, 2005). Before a
detailed discussion of this framework, Section 3 (below) identifies a number of key features
that are necessary for the framework to successfully address the challenges posed by this
diversity. The proposed framework itself is then detailed in Section 4, along with an analysis
of existing work that is able to fulfil some constituent parts. Section 5 describes subjective
testing validating the approach, and Section 6 offers some concluding remarks.

3. Features

Multimedia semantics is an extremely diverse field. Similarly, multimedia delivery is
categorised by an exponentially growing array of devices that access and process multimedia,

1 or audio, although silence is less prevalent there
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and an increasing number of formats in which multimedia content is encoded. Given this
complexity, this section argues that sucessfully combining semantics and delivery requires
a flexible approach, where the semantics and formats used are not hard-coded, but instead
described declaratively as content metadata.

3.1 Format-independence
The present, exponential rate of growth in both multimedia devices (hardware and software)
and content formats is increasing the difficulty of maintaining interoperability. To be effective
in this environment, a semantic-aware delivery framework must support content that is
encoded in any current, or future, format. As has been shown (Thomas-Kerr et al., 2008),
for many multimedia operations, it is possible to abstract the format-specific details of any
given codec into a data file (hardware and software is then format-independent). This greatly
simplifies interoperability, since a new content format can be integrated into existing devices
merely by dissemninating a file that describes its format-specific details. Crucially (given
the exponential growth in the range and diversity of multimedia devices) no modification of
hardware or software is necessary.
This argument also holds for the syntax in which semantic metadata is encoded; as discussed
(Section 4.2.2 on page 12) there are many syntaxes used to encode the metadata needed for
semantic-aware delivery. Further, as is the case for content formats, the framework must also
cope with new metadata formats, as they are developed. In response to these observations,
methods for adapting metadata syntax without requiring changes to software or hardware
have been proposed (Thomas-Kerr et al., 2006) and are important to allow a semantic-aware
delivery framework to be as widely applicable as possible.

3.2 Semantic-independence
The range of semantics that people associate with media content is effectively infinite. The
examples cited in Section 2 therefore represent just a small sample of the possibilities for
using semantics to guide multimedia delivery. As such, it is important that a semantic-aware
delivery framework not be limited to using a small, defined set of concepts.

3.3 Multiple optimisation algorithms
As will be seen in Section 4.1, a considerable number of algorithms have been developed
for optimising the Rate-Distortion (R-D) performance of multimedia delivery (Chakareski
et al., 2004a; Chou, 2006; Cranley & Murphy, 2006; Eichhorn, 2006). These algorithms vary
in their guarantees of tractability, complexity, and the range of metadata required as inputs
to the process. As a result, different algorithms may be preferable in certain scenarios,
and so flexibility in this regard is an important characteristic of a semantic-aware delivery
framework.

3.4 Segmentation and association
The examples cited in Section 2 on page 2 differentiate the semantic importance of segments
of content that have been segmented along numerous axes. The most straightforward is
with the sporting analysis and speech sound-level concepts, where some temporal segments
are more important than others. This is also the case in the news example, but here a
distinction is also made along the mode axis: in some temporal segments the video has more
semantic importance, in other segments it is the audio. Cranley et al. (2003) distinguish
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Fig. 3. An architecture for Mulimedia Delivery that incorporates content semantics

between semantic importance along the temporal and spatial axes. Although it has not been
widely utilised, MPEG-4 (ISO/IEC, 2004b) generalises this concept still further by introducing
other modes (text, graphics, and hybrid coding), and additionally provides the ability to
arrange multiple audiovisual “objects” within a scene. In such a scenario, it may be highly
advantageous to attach (time-varying) semantic importance to each of these modes and
objects.
Clearly, the utility of a semantic delivery framework would depend considerably on it having
the flexibility to segment content along all of these (and potentially other) dimensions. After
segmentation, such a framework would need to be able to associate semantic and other
metadata with these segments, in such a way that they can be input to an algorithm that
makes the trade-offs described.

4. A framework for format-independent semantic-aware multimedia delivery

Figure 3 depicts the proposed architecture of a semantic-aware delivery framework. As
proposed by Chakareski et al. (2004b), the Rate-Distortion Optimisation (RDO) process is split
into two parts: generation of R-D metadata is performed offline by a hinter, minimising the
amount of computation that must be done by the real-time delivery node. The present work
extends this concept by proposing an architecture for the hinter that is format-independent,
for the reasons outlined earlier in Section 3. Additionally, the hinter in Figure 3 provides for
Semantic Distortion (see below, Section 4.2.2 on page 12) to be combined with the “classical”
approach to distortion where decoded samples are compared to the samples that were
originally encoded, using a measure such as (peak-)SNR, referred to as Sample Distortion.

4.1 Delivery node
With the static content analysis performed offline by a hinter, a delivery node (Figure 4 on
the next page) is left only to decide whether and when to forward, drop or truncate (where
applicable) each packet. That decision is made on the basis of some type of rate-distortion
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between semantic importance along the temporal and spatial axes. Although it has not been
widely utilised, MPEG-4 (ISO/IEC, 2004b) generalises this concept still further by introducing
other modes (text, graphics, and hybrid coding), and additionally provides the ability to
arrange multiple audiovisual “objects” within a scene. In such a scenario, it may be highly
advantageous to attach (time-varying) semantic importance to each of these modes and
objects.
Clearly, the utility of a semantic delivery framework would depend considerably on it having
the flexibility to segment content along all of these (and potentially other) dimensions. After
segmentation, such a framework would need to be able to associate semantic and other
metadata with these segments, in such a way that they can be input to an algorithm that
makes the trade-offs described.

4. A framework for format-independent semantic-aware multimedia delivery

Figure 3 depicts the proposed architecture of a semantic-aware delivery framework. As
proposed by Chakareski et al. (2004b), the Rate-Distortion Optimisation (RDO) process is split
into two parts: generation of R-D metadata is performed offline by a hinter, minimising the
amount of computation that must be done by the real-time delivery node. The present work
extends this concept by proposing an architecture for the hinter that is format-independent,
for the reasons outlined earlier in Section 3. Additionally, the hinter in Figure 3 provides for
Semantic Distortion (see below, Section 4.2.2 on page 12) to be combined with the “classical”
approach to distortion where decoded samples are compared to the samples that were
originally encoded, using a measure such as (peak-)SNR, referred to as Sample Distortion.

4.1 Delivery node
With the static content analysis performed offline by a hinter, a delivery node (Figure 4 on
the next page) is left only to decide whether and when to forward, drop or truncate (where
applicable) each packet. That decision is made on the basis of some type of rate-distortion
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optimisation algorithm, which takes as its inputs feedback about the channel condition, and
metadata from the semantic hinter. These elements are described in the following sections.

4.1.1 R-D optimisation
There are a number of rate-distortion optimisation algorithms. Different algorithms perform
better in particular scenarios, and so this semantic-aware framework avoids prescribing one
over another. Instead, the framework allows the most suitable algorithm(s) to be implemented
on any given delivery node.
Chou (2006) proposes the use of classical optimisation of R-D performance D(R) by
minimising the Lagrangian D + λR for some λ. The formulation of distortion must consider
the error probability-cost functions for each unit of data, as well as the interdependencies
between Data Units, since descendent packets (e.g. any motion-compensated frame, or
enhancement layers in SVC) generally cannot be decoded if their ancestors are not received.
Chakareski et al. (2004a) note that although the algorithm proposed by Chou is theoretically
optimal and suitable for certain applications, it comes at the cost of significant computational
complexity. Consequently, Chakareski proposes a low-complexity approximation of the
lagrangian optimisation problem, by ignoring interdependencies between Data Units and
instead assuming that distortion from packet loss on subsequent packets is additive.
Eichhorn (2006) suggests the opposite approximation: Chakareski ignores actual
dependencies; Eichhorn ignores actual distortions, and asserts that dependency alone may
be sufficient. Finally, Cranley & Murphy (2006) trade temporal resolution against spatial
resolution and use subjective testing to arrive at a so-called Optimum Adaptation Trajectory.

4.1.2 Serialisation of hinter metadata
On the one hand, a binary syntax could be specified for hinter metadata, in order to maximise
space efficiency over-the-wire2. However, this makes extension of the data set (as is likely
inevitable as new optimisation techniques are developed) difficult to achieve without breaking
existing implementations. For this and other reasons, most recent metadata uses XML rather
than binary syntax, because of the ease with which it is processed and parsed, despite its
inherent verbosity. As it turns out, it is possible to achieve most of the benefits of both,
using the so-called Binary format for Metadata (BiM) (Niedermeier et al., 2002). BiM uses
XML Schema to provide efficient binary encodings of XML data. This means that the R-D
metadata can be created and processed as XML, but if it must be transmitted, BiM can achieve

2 That is, when this metadata must be transmitted on-the-wire, which is only the case if the Delivery
Node is remote from the content, for example if it is a gateway node.
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transmission efficiencies close to those of a dedicated binary syntax. Furthermore, at the
downstream node, the binary representation may be parsed directly, without decompression,
avoiding any additional time complexity.

4.1.3 Summary
In deciding whether to forward or drop each packet as it is received, the Delivery Node utilises
some sort of optimisation algorithm. Several of these were discussed above (Section 4.1.1).
Depending on the algorithm chosen, different metadata is required from the R-D Hinter,
although a common subset of data including Δtime, Δrate and segmentation is required for the
forward/drop routine. Otherwise, this metadata may contain the set of distortion increments
ΔDl , the Data Unit dependence graph, or Spatial Information (SI) and Temporal Information
(TI) values3. This also points to the need for a negotiation process between the Delivery Node
and the node holding the content to identify the desired optimisation algorithm based on the
available metadata, although in some cases a node may be able to generate missing metadata
on-the-fly (with the concordant time penalty).
If the Delivery Node is remote from the content and metadata, for example if it is a gateway
node that spans two heterogeneous networks, then it may be desirable to minimise the
bandwidth used by the R-D metadata, by utilising BiM (Niedermeier et al., 2002) to binarise
the data. In this case, the Delivery Node would use a BiM parser that directly interprets the
binarised metadata and passes the output data points directly to the RDO algorithm.

4.2 Semantic R-D hinter
The role of the hinter (Figure 5) is to prepare the metadata needed by the R-D Optimisation
algorithm. This metadata can then be stored in a file (such as an ISO (ISO/IEC, 2005a) or
Quicktime (Apple, 2001) container) for later use, or transmitted with the content to a local or
remote delivery node. The hinter itself is composed by elements that analyse the semantics

3 refer to Cranley & Murphy (2006) for a detailed discussion of these parameters.
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and the syntax of the content. The former (semantic analysis) obtains the higher-level
characteristics of the content which are typically not evident in the compressed domain, but
must be identified from the original (reference) samples or entered manually. Section 4.2.2 on
page 12 considers semantic analysis in greater detail. On the other hand, syntactic analysis
(discussed in Section 4.2.1) extracts the interdependency, temporal and scalability metadata
that are direct parameters of the compressed bitstream.

4.2.1 Syntactic analysis
Syntactic analysis is the process by which the hinter exposes the syntactical elements of
multimedia that are needed by a given RDO algorithm. This occurs in two stages. First,
the underlying syntactic structure of the content must be exposed so as to provide access to
the internal data fields. In this work, binary schemata (Thomas-Kerr et al., 2007) are used to
achieve this functionality. Secondly, a mapping must be made from the arbitrary raw data
fields exposed by a schema, to the specific concepts needed for RDO.

Binary Schemata

Recent coding formats utilise increasingly complex multi-layer structures to encode media
in ever-fewer bits. As a result, identifying the timestamp, interdependencies or even
byte-boundaries of an encoded Data Unit requires significant parsing. In most systems,
this parsing is performed by format-specific software or hardware, that is, the format of the
codec is “hard coded” into the parser. However, because the number of coding formats is
large and growing, such a hard-coded approach makes it increasingly difficult to maintain
interoperability with the available coded content.
An alternative is to use a reconfigurable or generic parser for syntactic analysis, where the
specific syntax of individual codecs is stored in a schema data file. Support for additional
formats may then be added via a new file, rather than new hardware or software. While
there are numerous syntax description languages (such as the common EBNF (Klint et al.,
2005)), only a few of which provide sufficient expressivity to function as a schema language
for a generic parser (see Thomas-Kerr, Janneck, Mattavelli, Burnett & Ritz (2007)): BSDL and
XFlavor (Hong & Eleftheriadis, 2002) (and a hybrid of the two—BFlavor (Neve et al., 2006)).
Any of these languages are suitable for syntax schemata in the model. Each provides an XML
“view" of binary data which can be used to construct the rules required for further analysis.
In XFlavor and BFlavor there is a level of indirection between the binary schema and the XML
schema, whereas in BSDL they are one and the same: a BSDL Schema is an augmented XML
Schema (Thompson et al., 2004).
Lehti & Fankhauser (2004) show that the object-based structure of XML Schemata (and the
XML data they describe) means that it is possible to map from XML Schema complex and
simple types (which directly or indirectly represent binary structures in the case of a BSDL
Schema) to OWL classes and properties (respectively).
This approach is far from elegant, because XML Schemata describe syntax whereas OWL
(Dean & Schreiber, 2004) and RDF (Beckett, 2004) describe semantics, and mixing the two
in this way can lead to significant ambiguity. Nonetheless, it is useful, since combining it
with one of the binary schemata languages described above allows binary data to be directly
integrated with OWL/RDF-based data). This means that binary content may be processed
and queried as if it were RDF triples. Figure 6 on the next page depicts an example of the
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approach. A BSDL schema describes the binary structure of an SLS bitstream (the example
shows an SLSSpecificConfig structure (ISO/IEC, 2005b)). At the same time, this BSDL schema
describes the structure of an XML representation of the syntax of the binary bitstream. Lehti’s
technique is then used to map the BSDL/XML schema into OWL classes, and to map the
XML metadata into RDF triples. This allows the binary structure of the SLS bitstream, along
with the data it contains, to be reasoned on and combined with other OWL/RDF semantic
metadata. 4

Mapping Rules

The metadata exposed by using a binary schema will be specific to the format that the
schema describes (e.g. SLS, Flash, SVC). In order to use this metadata in a semantic-aware
delivery framework, it is necessary to be able to map from the format-specific structures
exposed by the binary schema, to the set of format-independent metadata needed by the RDO
algorithm being used. The list of metadata required will vary depending on the particular
RDO algorithm being used, but will generally include items such as

� segmentation of the content into Data Units;

� decoding interdependencies between Data Units; and

� temporal relations between Data Units;

One such set of mapping rules may be used to describe the extraction of RDO metadata from
SLS bitstreams, while another set of mappings describe the process for Flash, and a third for
H.264/SVC (as shown – Figure 7).

4 It should also be noted that BSDL allows the bitstream to be described at whatever level is required,
in order to avoid unnecessary verbosity. That is, if the reasoning to be performed requires only that
the binary data be split into frames, then the BSDL Schema may be written in such a way that it emits
a single XML element per frame. On the other hand, if certain fields within a frame are necessary for
reasoning (such as a timestamp, sample rate, etc.) then the schema is able to expose these fields without
showing the entire detail of the inside of a frame. See (Thomas-Kerr et al., 2007) for more information.
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Fig. 7. Mapping rules can be used to translate from format-specific structures into the
format-independent metadata needed for a semantic-aware RDO delivery framework

<xsd:element name="pic_parameter_set_rbsp">
<xsd:annotation><xsd:appinfo>

<bs2x:variable name="pps" bs2x:position="pic_parameter_set_id + 1"/>
</xsd:appinfo></xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element name="pic_parameter_set_id" type="bs1:unsignedExpGolomb"/>
<xsd:element name="seq_parameter_set_id" type="bs1:unsignedExpGolomb"/>
<!−− ... −−>

</xsd:sequence>
<xsd:attribute ref="rdo:ancestors" bs0:value="for $spsID in svc:seq_parameter_set_id return $svc:sps
[$spsID+1]/../@rdo:id"/>

</xsd:complexType>
</xsd:element>

Listing 1. Augmented BSDL test schema exposing the ancestor Data Units of an SVC PPS

A number of options exist for expressing such rules:

� In the binary domain: A BSDL Schema may be extended so that it appends attributes to
the output which correspond to the needed RDO content features (size, dependencies, etc).
The advantage of this approach is that the description of how these features are extracted
from the binary data is very concise. The disadvantage is that this description is embedded
in the BSDL Schema and is therefore tightly coupled, limiting reusability.
Listing 1 is an example of this approach. It shows part of a BSDL schema that outputs
an rdo:ancestors attribute expressing the interdependency of Data Units5. Thus, attribute
declarations like this are one way to provide mapping rules from the format-specific binary
structure of the schema, to the format-independent concepts needed for RDO (which are
represented by members of the rdo namespace).

5 The for structure used by the attribute value specification is not a loop, but rather a workaround for the
fact that XPath does not have a current() function (cf. the sps variable in Listing 3).

360 Recent Advances on Video Coding What Are You Trying to Say? Format-Independent Semantic-Aware Streaming and Delivery 11

<xsl:template match="pps">
<xsl:variable name="sps"

select="preceding::sps[seq_parameter_set_id =
current()/seq_parameter_set_id][1]"/>

<xsl:copy>
<xsl:attribute name="rdo:ancestors" select="$sps/@rdo:groupID"/>

</xsl:copy>
</xsl:template>

Listing 3. XSLT fragment annotating pps elements with ancestor metadata

� In the XML domain: A second option is to describe the identification of the necessary
features using XQuery (Boag et al., 2007) or an XSLT (Clark, 1999) stylesheet. This removes
the tight coupling with the BSDL Schema, but is less succint, and adds an additional layer
of complexity to the process. Listing 3 shows a fragment of an XSLT stylesheet that adds
the same rdo:ancestors attribute to a BSDL description.

� In the semantic domain: Alternatively, the BSDL Schema may be directly converted
to OWL classes, allowing the feature identification process to be specified using an
ontological reasoning tool such as the Semantic Web Rule Language (SWRL) (Horrocks
et al., 2004). One disadvantage of this approach is that RDF is inherently unordered, and
so Data Unit order must be explicitly imposed using sequence numbers, timestamps or
the like. Furthermore, some assertions about the order of such sequence numbers are
non-monotonic (see for example Listing 4).
Examples of mapping rules using SWRL are (the prefix svc is used for the BSDL Schema,
and rdo for the RDO ontology):

svc:nalUnit(?x) A rdo:dataUnit(?x)
. . . (2)

which implies that a Network Abstraction Layer (NAL) Unit is an atomic unit of data for
the purposes of RDO. This deceptively simple rule is in fact making use of the inheritance
properties afforded by SWRL and the semantic web, since there are no direct instances
of svc:nalUnit within an svc instance, but rather it is the abstract superclass of all other
top-level objects in an SVC stream. This inheritance is unavailable to an XSLT-based rule
(e.g. Listing 3), where separate rules must be specified for each instance type); and Listing
4 which (almost) states that a Picture Parameter Set (PPS) has a dependency to the most
recent SPS with an ID that matches the one given in the PPS. If multiple SPS’ with the given ID
are present in the bitstream prior to the PPS, then rule 4 on the next page will incorrectly
match all of them. The missing constraint—”most recent”—is nonmonotonic and hence
not supported by SWRL or OWL-DL6. Consequently, an XML-based approach has been
applied to the mapping rules for syntactic parameters in the example system implemented
in this work (see Section 5 on page 19). Future work on SWRL and/or other Semantic Web
rule languages may provide the expressivity needed for this and other rules required for
RDO parameters.

Examples of mapping rules for Δrate and Δtime are given in Section 5 on page 19.

6 The missing “most recent” constraint is specified in the XSLT example (Listing 3) by the preceeding::
axis and [1] predicate
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the like. Furthermore, some assertions about the order of such sequence numbers are
non-monotonic (see for example Listing 4).
Examples of mapping rules using SWRL are (the prefix svc is used for the BSDL Schema,
and rdo for the RDO ontology):
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. . . (2)
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(e.g. Listing 3), where separate rules must be specified for each instance type); and Listing
4 which (almost) states that a Picture Parameter Set (PPS) has a dependency to the most
recent SPS with an ID that matches the one given in the PPS. If multiple SPS’ with the given ID
are present in the bitstream prior to the PPS, then rule 4 on the next page will incorrectly
match all of them. The missing constraint—”most recent”—is nonmonotonic and hence
not supported by SWRL or OWL-DL6. Consequently, an XML-based approach has been
applied to the mapping rules for syntactic parameters in the example system implemented
in this work (see Section 5 on page 19). Future work on SWRL and/or other Semantic Web
rule languages may provide the expressivity needed for this and other rules required for
RDO parameters.

Examples of mapping rules for Δrate and Δtime are given in Section 5 on page 19.

6 The missing “most recent” constraint is specified in the XSLT example (Listing 3) by the preceeding::
axis and [1] predicate
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svc:pps(?pps) ∧ svc:spsID(?pps,?spsID) ∧ svc:sps(?sps) ∧ svc:spsID(?sps,?spsID) ∧
svc:seqNo(?pps,?ppsSeqNo) ∧ svc:seqNo(?sps,?spsSeqNo) ∧ swrlb:lessThan(?spsSeqNo,?ppsSeqNo)

A rdo:dependsOn(?pps,?sps)

Listing 4. A not-quite-complete rule for specifying the interdependency between a PPS and
the SPS it references

4.2.2 Semantic analysis
The aim of semantic analysis is to generate metadata that can subsequently be reasoned on to
compute Semantic Distortion. There are many options for generating and obtaining semantic
metadata, as discussed below. Crucially, there are also several disparate widely-used methods
for serialising this metadata (RDF (Beckett, 2004), XML (Bray et al., 2008), as well as numerous
binary forms (ISO/IEC, 2002b; Matroska, n.d.; Nilsson, 2000)). To be able to reason on such
metadata (in order to compute Semantic Distortion) it must generally be translated into a
single form. There are several options for this, but for the sake of brevity, and because it is the
most powerful option for semantic reasoning, this section will focus on translation of binary
and XML metadata into RDF/OWL.

Generating the desired content semantics

The first stage of semantic analysis involves extracting the desired semantics from the content
(e.g. “this scene depicts the studio anchor discussing the news story”—see Figure 9 on
page 17). As described in the introduction, this remains a challenging problem, with many
efforts directed toward algorithms able to expose various specific semantics for media content.
This process typically uses the uncompressed samples of the original content and (partly
because of the volume of this data) can be very computationally expensive (Figure 5 on
page 7). While such semantic metadata may not be specifically designed for the delivery
process, it can often, nonetheless, contribute to it. For either of these reasons the semantic
analysis may often be performed asynchrononously to the operation of the RDO-hinter.
Further, much semantic metadata is presently annotated by hand, consider Flickr/Youtube
tags, or iTunes song ratings, for example.
Whether semantic metadata is the result of an (a)synchronous analysis step or manual
annotation, the result is a set of metadata about the content that is expressed in some
machine-processable form. Such metadata is increasingly specified using ontologies, which
simplify the integration of heterogeneous data sources as well as the reuse of information for
applications other than those for which it was first developed (Naphade et al., 2006). However,
this is far from universal, and a great deal of existing semantic metadata is stored as XML or
binary data (see, for example, (ISO/IEC, 2002b; Matroska, n.d.; Nilsson, 2000)).

Translating XML metadata

As discussed earlier (Section 4.2.1), it is possible to map XML-Schema-based metadata directly
into the semantic domain (Lehti & Fankhauser, 2004). This may be imprecise—it is generally
possible to express the same semantics using several different XML structures (e.g. element
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Listing 5. A SWRL rule that specifies the Semantic Distortion of English Communication

content vs attributes)7. An alternative proposed by Hunter is to use an upper-level ontology
(Hunter, 2001), which is more robust, specifically because it involves a time-consuming
manual mapping from the (implicit) semantics underlying the XML representation to a set
of explicit ontological relations. Both of these approaches are feasible for a semantic-aware
delivery framework.

Translating binary metadata

There are a number of very widely used binary formats for semantic metadata: ID3
(Nilsson, 2000), EXIF (JEITA, 2002), and MPEG-4/Quicktime (Apple, 2001; ISO/IEC, 2004b)
for instance. In this case, a syntactic analysis of this metadata must precede further processing
of the semantics themselves. This syntactic analysis can be performed in the same manner
that interdependencies and other constructs are exposed (Section 4.2.1). This will yield an
XML description of the structure of the metadata, including the name and value of all of the
desired metadata fields. This XML may then be mapped into the semantic domain, as above.

Computation of Semantic Distortion

This is the second stage of semantic analysis, and is one of the central contributions of this
work. Semantic Distortion (SD) is defined as a measure of the “SNR” between the intended
semantic (meaning) of the content before it is encoded, as compared to the semantics conveyed
by the content that is rendered for its recipient(s). The contribution to Semantic Distortion that
this chapter is primarily concerned with is that contributed by the delivery process, however
the approach may also potentially be useful for other aspects of multimedia processing.

7 In contrast, when Section 4.2.1 discussed mapping BSDL Schema to an ontology, there was no such
imprecision. BSDL has already restricted the expressivity of XML Schema in order to guarantee an
unambiguous mapping between the binary and XML domain and back again. As a result, mapping
BSDL into the semantic domain is also unambiguous.
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Clearly, this notion of Semantic Distortion is highly subjective (as indeed are many of the
semantics of any given piece of media content). However, even approximations of Semantic
Distortion as perceived by parties on the server-side of the process possess substantial value
for optimising the delivery of the content semantics, as shown in Section 5 on page 19.
Given this definition of Semantic Distortion, it is possible to define a series of rules that map
from concepts expressed in semantic metadata to a quantitative measure of SD. Although
the content of mapping rules for SD will differ from those of syntactic analysis (see 4.2.1
on page 8), they have the same range of options for specification: directly within a (binary)
schema, in the XML domain, or in the ontological domain. In contrast to the aforementioned
syntactic mappings, SD rules translate readily into SWRL, such as Listing 58 which states that
if there is an instance of Communicating during a certain time interval that uses the English
Language, then the magnitude of the Semantic Distortion for that interval is doubled9. This
rule covers both spoken communication (in which case the SD is associated with the audio
track(s)), and visual communication (e.g. subtitles; where the SD is applied to the video).

Combination of Semantic Distortion with sample distortion

This is pivotal to the correct operation of the R-D optimisation algorithm. Chou (2006)
considers Sample Distortion to be additive, that is, the overall distortion D(π) is a large initial
value D0 less the sum of the distortion of all packets Dl received and useful (which are computed
by the product sequence):10

D(π) = D0 − ∑l ΔDl ∏l��l(1 − �(πl� ))
. . . (6)

However, the sample distortions used in Equation 6 are all measured according to a single
algorithm, and hence have the same scaling and are directly comparable. This is not usually
the case for Semantic Distortion, and is certainly not so when comparing Semantic Distortion
with Sample Distortion. Instead, it is proposed that Semantic Distortion be considered to be
multiplicative; that is, that SD represents a weighting factor that may be applied to a value of
sample distortion for a packet, or group of packets. There are several motivations for this:

� First, multiplicative combination obviates the need for normalisation based on potentially
unknown response curves for distortion algorithms (both sample and semantic). For
example, say a Data Unit has a Sample Distortion with a magnitude of 0.3 dB, and
a Semantic Distortion (based on the language of the communication) of magnitude
2. It is clear that these values cannot be combined additively without ensuring
that they are first normalised to the same scale. However, while sample distortion
uses objective measurements such as (P)SNR, the same cannot in general be said of

8 where cyc: refers to the CYC upper-level ontology (Matuszek et al., 2006), time: to the OWL-Time
ontology (Pan & Hobbs, 2004), dolce: to the DOLCE ontology (Gangemi et al., 2002), and rdo: to the
ontology defined in 4.3 on the facing page. Note that the use of Cyc, OWL-Time, and DOLCE are not
intended to be normative, they are used merely as an example of how to define mapping rules for SD.

9 Note that the factor of 2 is in this case relatively arbitrary—yet still shown to be useful (Section 5)—see
Section 6.1 on page 23 for a discussion about possible future work on methods for evaluating Semantic
Distortion.

10 where l� � l selects all packets l� that are ancestors of l as well as l itself, π is the vector of packet
transmission policies, and � the error/delay probability distribution for any given policy
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subjective measurements of Semantic Distortion. Even though there are numerous
quantitative measures (see for example ITU-T (1998)), comparison between data from
different quantitative tests is challenging. Furthermore, Semantic Distortion is intended
to encompass a wide range of data, as discussed (Section 2), beyond formal subjective
testing. Combining disparate data sets multiplicitively avoids this need to normalise.

� Combination of several Semantic Distortion data-sets relating to a piece of content typically
has similar issues relating to normalisation. Consider, with the above example, the
addition of a second Semantic Distortion data set computed from Temporal Information
(TI). The SD for the Data Unit in question has a magnitude of 0.7. Combining this datum
with the others is straightforward as a scaling factor (i.e. multiplicative).

� Finally, multiplicative combination retains a known zero point. This is important if either
sample or any Semantic Distortion has a magnitude of zero; in the first case, this indicates
that the packet has no effect on the reconstruction of the signal; in the second, that it does
not convey any semantics. Either way, these features must be transmitted to the output
distortion value.

4.3 An Ontology for Semantic Distortion
The mapping process described in Section 4.2.2 on page 12 requires the definition of
appropriate concepts to be used as the destination of the rules. These concepts fall into two
categories: the formal definition of a Data Unit in so far as it pertains to R-D optimisation, and
the definition of Semantic Distortion itself. These are described below in Sections 4.3.1 and
4.3.2, respectively. These definitions and their associated concepts are attached to the DOLCE
(Gangemi et al., 2002) upper-level ontology, because of its precise separation of fundamental
concepts11. Figure 8 on the following page depicts the Semantic Distortion ontology (prefixed
by sd) along with its DOLCE ancestors (prefixed by dolce). Refer to (Gangemi et al., 2002) for a
full treatment of DOLCE; the following description should suffice for this work.
The fundamental distinction in DOLCE is between enduring and perduring entities (Figure
8). The precise philosophical definition of these terms is complex and also somewhat
controversial (Gangemi et al., 2002), but for the purpose of this chapter it will suffice to say that
the former are entities that exist in some region of time (and possibly space), whereas the latter
are events that occur during a region of (space-)time. Both endurants and perdurants have
qualities, and a distinction is made between a quality (e.g. color, temperature) and its quale—a
region defining the “value space” of a particular quality (e.g. red, 298K). This is partly inspired
by the fact that an endurant individual will permanently have particular quality individuals
(i.e. it will always have a color), but the value of those qualities may change over time. Quales
belong to the class of all abstract concepts that are neither endurant nor perdurant.
While DOLCE includes the abstract notions of a temporal quality and a temporal region,
RDO requires a more concrete conceptualisation of time in order to be able to synchronise
semantic metadata with the underlying media Data Units. Furthermore, the metadata
that a semantic-aware delivery framework must assimilate will have a large variety of
fundamentally different representations of time:

� MPEG-7 (ISO/IEC, 2002a);

� SMPTE (of Motion Picture & Engineers, 1999);

11 As described previously (Section 4.2.2 on page 12), the choice of DOLCE is not normative but rather a
preferred embodiment
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Fig. 8. An ontology for Semantic Distortion
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Fig. 9. Example of the semantic annotation of an Audio-Visual Clip

� XML Schema (XML Schema Part 2: Datatypes Second Edition, 2004);

� OWL Time (Hobbs & Pan, 2006); as well as

� the innumerable binary syntaxes used by media formats.

Each representation uses a different syntax to represent time. If these are to be reasoned on as
part of semantic-aware delivery, methods are required to translate from one to another.
Throughout the proceeding discussion, the example shown in Figure 912 will be used
to illustrate each concept. The example consists of a short Audio-Visual clip that forms
part of a news article on events in the Middle-East13. The first part of the clip depicts
a studio presenter introducing the story (the temporal interval containing this section is
described by an owlT:DateTimeInterval, and the visual and aural communication features with
cyc:(Visual/Audio)Communicating). Subsequently, contextual footage is shown of the subject
walking to the podium while an off-screen narrator continues the story. Finally, the subject
speaks in Persian with English subtitles appearing below (using similar owlT:DateTimeInterval
and cyc:(Visual/Audio)Communicating instances). These features are annotated via CYC (Matuszek
et al., 2006) classes and properties and then reasoned on using mapping rules (Listing 4).

4.3.1 Data units
For the purposes of R-D Optimisation, Chou (2006) designates an atomic segment of data as
a DataUnit, where each packet on the network may contain at most one Data Unit. Rule 2 on
page 11 is an example of the use of DataUnit, showing how it enables format-independence

12 Individual IDs used in Figures 9–10 are used purely to differentiate individuals from each other. The
general naming scheme used for these IDs is to abbreviate the type name of the individual and append
a number which increments from 0, 1. . . n for each type. For example, the first instance of the Owl-Time
class DateTimeInterval in Figure 9 has the ID dti0.

13 This clip was used by permission from SBS World News Australia.
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Fig. 10. Example instances of SD classes describing the distortion of a H.264/AVC bitstream

by mapping from arbitrary format-based structures to a single interface for RDO. Figure 10
depicts an example H.264/SVC bitstream, along with instances of the Semantic Distortion
classes that deliniate the Data Units in the stream.

4.3.2 Distortion
Distortion is the other central concept in RDO. It is a type of Logical Quantity that measures
“the amount by which the distortion at the receiver will decrease if the Data Unit is decoded
(on time)” (Chou, 2006). Distortion has at least two distinct types: sample and semantic,
which were described earlier (Section 4.2.2 on page 12). Distortion in general has a continuous
value-space (continuousQuale), which in turn has a data-type property hasMagnitude. Distortion
also has an hasAggregativeBehaviour property (this relation is not shown), which may be Additive
or Multiplicative. It is left to the user to decide which behaviour(s) to assign.
Figure 10 shows an example of the distortion instances for a bitstream. In this example, each
NAL unit in a H.264 bitstream is given a sample-based distortion according to its contribution
to a scheme (for example that proposed by Chou (2006))—these are the DataUnit, Distortion
and Quale individuals toward the top of the figure. In this instance, SemanticDistortion applies
to more coarsely-grained Data Units. These are specified using OWL-Time intervals (by
mapping from the intervals previously shown in Figure 9 on the preceding page). Each
instance of Semantic Distortion intersects many Data Units in the actual media. Assigning
Semantic Distortion to individual media Data Units is done by the mapping rules associated
with syntactic analysis (Section 4.2.1, above).
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4.4 Summary
In summary (refer to Figure 1 on page 2), there are three primary components to the proposed
semantic-aware multimedia delivery framework:

� a hinter, which computes all of the content-based metadata offline;

� a delivery node which is left with as little work to do as possible, since the hinter has already
performed much of the necessary computation. The delivery node simply forwards or
drops each packet as it arrives, based on some optimisation algorithm; and

� semantic analysis, used to provide the hinter with metadata that can be used to compute
Semantic Distortion.

The novelty of this work consists in tying semantic analysis and semantic metadata to the R-D
hinter, as well as an architecture for this hinter so that it operates in a format-independent
manner. More specifically, the work contributes:

(a) the definition of Semantic Distortion (SD) (Section 4.2.2 on page 12);

(b) an ontology for RDO concepts and for SD that enables it to be inferred from arbitrary
semantics, and then combined with sample distortion (Section 4.3 on page 15);

(c) extension of the concept of an R-D Hinter to encompass SD (Section 4.2 on page 7);

(d) a format-independent architecture for the semantic hinter, which operates by extracting
all format-specific details into declarative data (schemata and mapping rules). It is argued
that this is imperative to allow the increasingly diverse range of formats and devices to
interoperate (Section 4.2.1 on page 8); and

(e) a semantic-independent architecture for the hinter, again accomplished by using schemata
(ontologies) and mapping rules (Section 4.2.2 on page 12);

5. Subjective testing

5.1 Methodology
Double-blind, randomised subjective testing was used to validate the hypothesis that the
use of Semantic Distortion can improve multimedia delivery. The scenario used for these
tests was a mobile environment—where channel characteristics are often highly variable, and
handset capabilities mean that audio and video require relatively similar bandwidth. As
such, the source material was encoded at 22.05kHz for the audio, and the video at QVGA
resolution and 15 frames per second. Initial trials were conducted using a mobile (cellular)
handset, but it was decided that this introduced a significant number of variables (e.g. the
particularly small screen size, problems with controlling playback, and uncertainties about
the quality of the audio rendering hardware) without lending any additional credence to
the experiment per se (as opposed to conducting the trials using a notebook, but using
mobile-ready content). Consequently, respondents evaluated video displayed on the screen
of a Compaq nc4000 notebook (1024x768 total resolution, 12” screen), and listened through
Sony MDR-V500 headphones. Respondents were free to adjust volume and viewing distance
as desired, with the latter ranging from 8 to 16H (the QVGA image measured 75mm W
× 58mm H). The testing was conducted according to ITU-T P.911 (ITU-T, 1998), including
the conditions prescribed in Table 414. Pairwise Comparison (PC) was used to evaluate the
hypothesis that

14 screen luminance, ratios & chromitacity, background illumination and noise level

369What Are You Trying to Say? Format-Independent Semantic-Aware Streaming and Delivery



18 Video Coding

Fig. 10. Example instances of SD classes describing the distortion of a H.264/AVC bitstream
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cyc:VisualCommunicating(?vid) ∧ t:DateTimeInterval(?dti) ∧ dolce:HAPPENS−AT(?vid, ?dti) ∧
cyc:imageDepicts(?vid, cyc:StillImage)∧swrlx:makeOWLThing(?sd, ?dti)∧swrlx:makeOWLThing(?sdq, ?dti)

A

rdo:hasDistortion(?vid, ?sd) ∧ rdo:SemanticDistortion(?sd) ∧ dolce:HAS−QUALE(?sd, rdo:Multiplicative) ∧
dolce:HAS−QUALE(?sd, ?sdq) ∧ rdo:ContinuousQuale(?sdq) ∧ rdo:hasMagnitude(?sdq, 0.5)

Listing 7. A rule from the test data asserting that still images have a (relative) SD of 0.5

“use of Semantic Distortion in multimedia delivery improves the communication of the
meaning/semantics of the content.”

To this end, the nineteen respondents were asked to decide which clip (A or B) “best
conveys the gist of the news article to you.” Respondents were not skilled in the arts of
multimedia delivery, or subjective testing. An approximately equal number of each gender
was chosen, and participants ranged in age from 16 to 70. Levels of familiarity with digital
media varied as may be expected within the stated age range. Respondents had normal or
corrected-to-normal eyesight, and normal hearing (with the exception of two participants who
had mild age-related high-frequency hearing loss).
There were four clips plus an initial (hidden) training clip, all exhibiting some or all of the
characteristics depicted in Figure 2 on page 2. Three were news footage, and the fourth
part of an interview between an English interviewer and a Japanese interviewee, all between
25 and 45 seconds in length. The audio from each clip was encoded using Scalable to
Lossless Coding (SLS) (ISO/IEC, 2005b) with an AAC base layer of 6kbps to provide a large
scalable range. Scalable Video Coding (SVC) (ISO/IEC, 2007) was used for the video with
8 coarse-grained scalability (CGS) SNR (quality) layers (with LQP at 30, 34, 38, 42, 45, 48,
51, 54 for layer 0 to 7 (respectively), and RQP = LQP + 2dB) and 4 medium-grained SNR
layers. Spatial and Temporal layers can be beneficial to semantic-aware optimisation (see, for
example Cranley & Murphy (2006)) but it was decided to limit the sources of variability for
the present experiment. In that regard, no attempts were made at error concealment15, even
though this would have an impact on a user’s perception of a real world system employing
SD.

5.1.1 Semantic analysis
Semantic analysis for each clip was conducted using classes from the Cyc (Matuszek et al.,
2006) ontology, to provide semantics indicating the language of communication (spoken or
written), among other things. The choice of Cyc for this task was purely as an example, the
semantic-aware delivery framework places no constraints on specific metadata ontology(s) (as
discussed in Section 3 on page 3). Mapping rules were created for these classes (Listing 4 is
one of these, and Listing 7 another16 describe how particular semantics relate to SD. Temporal
regions were specified using OWL-Time (Hobbs & Pan, 2006). Again, this choice is by way
of example only, other temporal schemata may equally be used. Figure 10 on page 18 depicts
example SD and OWL-Time instances.

15 except for silencing of an SLS decoder bug observed at particularly low bit rates that that led to
saturation of the signal in sections where there should be silence. This bug was observed equally on
both clips in a pair, and would otherwise have caused discomfort for test subjects.

16 Full rules are available in Appendix I of Thomas-Kerr (2009)
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5.1.2 Syntactic analysis
Syntactic analysis was conducted using a BSDL Schema for SLS and another for SVC (see
Appendix I in Thomas-Kerr (2009)), then an XSLT stylesheet to map SLS & SVC fields to
the necessary RDO metadata (as per Section 4.2.1 on page 8). Delivery optimisation was
performed using a very simple algorithm, so as to limit (as much as possible) the testing
to the Semantic Distortion concept, rather than introduce a second independent variable in a
sophisticated optimisation routine. Essentially, the algorithm used was

1. Using the rules generated in Section 5.1.1, compute SD values for the entire clip;

2. Aggregate the SD values separately for audio and for video, according to the behavior
specified (see Sections 4.2.2 and 4.3);

3. Segment the clip into regions so that each region has a constant SD for audio and a constant
SD for video;

4. For each region
(a) Apportion the target bandwidth between the audio and video stream according to the

aggregated SD for each component;
(b) Truncate each SLS frame so as to achieve the apportioned audio bit-rate; and
(c) Drop SVC NALUs to most closely approximate the target video rate (while respecting

the discardable flag).

Each clip was encoded to three different bit rates using this method, for a total of twelve
clips, plus the hidden training clip. For each semantic-aware clip produced using this
algorithm, a reference clip was created with the same average audio and video bit rates as
the semantic-aware clip (by truncating the SLS and dropping SVC NALUs). This means that
the semantic-aware clip devotes more of the available bandwidth to that part (in this example,
audio or video) that carries more of the semantics of the content, whereas the reference sample
uses the same total bandwidth, but has a static ratio between audio and video. This is
illustrated in Figure 11 which shows the semantically-adapted and equivalent average rate
series for the audio tracks of the high-bitrate “iran” sequence. The video tracks are not shown
since the coarser granularity of the video scalability means that variance is too great to discern
average trends. Nonetheless, the audio tracks clearly show how the adaptation algorithm
responds to varying SD, and also that both audio tracks have the same total average rate.

5.2 Results
In total, 72% of the semantic-aware clips were preferred by subjects when compared to the
average-rate reference clip (as shown, Figure 12), with a variance of 20.57%17 and a 95%
confidence interval of ±5.74%.
Of the twelve pairs, one very low-rate semantic-aware clip was rated as worse than its
average-rate partner. It is likely that this is due to the deliberate simplicity of the adaptation
algorithm. A more sophisticated algorithm would be expected to deal with such outliers
more effectively. Having said this, three respondents independently remarked that they
preferred one particular low-rate non-semantic-aware clip because it accorded the speaker
"more respect" by making his voice clear, even though they couldn’t understand it. Because

17 variance is not considered to be particularly informative in this instance, due to the binary nature of
each sample in a Parwise Comparison (the respondant picks one clip or the other). Because of this,
every sample is relatively distant from the mean.
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Fig. 11. Semantic adaptation apportions bandwidth according to the content meaning

the tests were double-blind, it is not known whether this comment corresponded to the clip
in question.
Another two clips were voted as no better and no worse, and the remaining nine
semantic-aware clips were preferred 84% of the time. This demonstrates that Semantic
Distortion is of significant benefit in the multimedia delivery process. Moreover, the
system proposed in Section 4 is effective in processing Semantic Distortion and R-D
optimisation-related metadata in a way that meets the objectives identified in Section 3. In
contrast, however, the result also suggests that the use of Semantic Distortion to optimise
the apportionment of bandwidth between audio and video streams could possibly not
be beneficial for a minority of content, at least without more sophisticated optimisation
algorithms. However, while the modal trade-offs employed for these few cases fails to yield
an improvement, it is quite possible that other uses of Semantic Distortion (see Section 4.1 on
page 5) may give the desired results. Further investigation of this is left to future work.

6. Conclusion

This chapter describes a framework for incorporating semantics into the multimedia delivery
process. It builds on existing work for exposing semantics in content and delivering media in
a rate-distortion optimal way. In effect, this alters the conceptual end-points of the multimedia
delivery chain. Instead of server-client, using semantics extends the process to (human)
creator-consumer, by minimising distortion of the intended meaning of the content (see for
example the news report in Figure 2 on page 2). At the same time, the framework provides
the flexibility to incorporate new semantics, optimisation algorithms, and content formats as
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Fig. 12. Subjective testing shows a 72% preference for Semantically-aware media delivery

they become relevant. This process can operate largely without the addition of new software
or hardware, since format-specific details are provided in schemata rather than hard-coded.
The framework has been validated via subjective testing that asked candidates to make
a pairwise comparison between a video clip that had been semantically adapted (more
bandwidth devoted to that mode carrying more of the content semantics) and one adapted
to an equivalent constant average bitrate. In total, 72% of the semantically adapted clips were
preferred by subjects when compared to the average-rate reference clip. Of the twelve pairs,
one semantically adapted clip was rated worse than its average-rate partner. Two were voted
as no better and no worse, and the remaining semantically adapted clips were preferred 84%
of the time.
This result demonstrates that Semantic Distortion is of significant benefit in the multimedia
delivery process. Furthermore, it validates the format-independent architecture proposed
in Figure 3, as well as the simple algorithm used to semantically adapt content along its
modal axis, across a range of bit-rates typical of current mobile communication channels.
Nevertheless, the results suggest significant scope to develop higher performance semantic
adaptation algorithms. Some possibilities for this are suggested in the following chapter.

6.1 Future work
The present work has focused predominantly on the format-independent semantic hinter.
Future work may consider more closely the design of the semantic analysis and delivery
node modules (see Figure 3 on page 5). In this work, the syntax of compressed media
content was described declaratively (using schemata) to enable a generic hinter to extract
data for the R-D process. Semantic analysis, on the other hand, is generally conducted
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using raw (uncompressed) media data, however here too numerous content formats are
used. Furthermore, there are a wide range of low-level semantic features (e.g. color, texture,
luminance) that are extracted from the raw data in order to infer higher-level semantics.
Future work could therefore investigate declarative mechanisms for (a) describing how
low-level features are computed from a given content format, and (b) mapping such features
to high-level semantics.
Secondly, future work should consider how to describe an R-D optimisation algorithm using
declarative language. This chapter has addressed the format-independent design of the RDO
metadata and send/drop module (Figure 4 on page 6). However, it has not fully addressed a
generic mechanism for describing the RDO algorithm itself. Such a mechanism would allow
new RDO algorithms to be installed in a diverse variety of existing delivery nodes without
requiring their hardware or software to be upgraded.
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using raw (uncompressed) media data, however here too numerous content formats are
used. Furthermore, there are a wide range of low-level semantic features (e.g. color, texture,
luminance) that are extracted from the raw data in order to infer higher-level semantics.
Future work could therefore investigate declarative mechanisms for (a) describing how
low-level features are computed from a given content format, and (b) mapping such features
to high-level semantics.
Secondly, future work should consider how to describe an R-D optimisation algorithm using
declarative language. This chapter has addressed the format-independent design of the RDO
metadata and send/drop module (Figure 4 on page 6). However, it has not fully addressed a
generic mechanism for describing the RDO algorithm itself. Such a mechanism would allow
new RDO algorithms to be installed in a diverse variety of existing delivery nodes without
requiring their hardware or software to be upgraded.
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Time and Control Code.
Paleari, M. & Huet, B. (2008). Toward emotion indexing of multimedia excerpts, Content-Based

Multimedia Indexing, 2008. CBMI 2008. International Workshop on, pp. 425–432.
Pan, F. & Hobbs, J. (2004). Time in OWL-S, Semantic Web Services, AIII Symp. on pp. 29–36.
Thomas-Kerr, J. (2009). Building Babel: Freeing multimedia processing and delivery from hard-coded

formats, PhD thesis, University of Wollongong.
Thomas-Kerr, J., Burnett, I. & Ritz, C. (2006). Enhancing Interoperability via Generic

Multimedia Syntax Translation, Proceedings of the Second International Conference on
Automated Production of Cross Media Content for Multi-Channel Distribution pp. 85–92.

Thomas-Kerr, J., Burnett, I. & Ritz, C. (2008). Format-Independent Rich Media Delivery Using
the Bitstream Binding Language, Multimedia, IEEE Transactions on 10(3): 514–522.

Thomas-Kerr, J., Burnett, I. & Ritz, C. (2009). A system for intelligent delivery of multimedia
based on semantics, Communications and Information Technologies, 2009. ISCIT’09.
International Symposium on.

375What Are You Trying to Say? Format-Independent Semantic-Aware Streaming and Delivery



26 Video Coding

Thomas-Kerr, J., Janneck, J., Mattavelli, M., Burnett, I. & Ritz, C. (2007). Reconfigurable
Media Coding: Self-Describing Multimedia Bitstreams, 2007 IEEE Workshop on Signal
Processing Systems, pp. 319–324.

Thomas-Kerr, J. et al. (2007). Is That a Fish in Your Ear? A Universal Metalanguage for
Multimedia, IEEE MultiMedia 14(2): 72–77.

Thompson, H. S. et al. (2004). XML Schema Part 1: Structures, http://www.w3.org/TR/
xmlschema-1/.

Timmerer, C. et al. (2006). Digital Item Adaptation - Coding Format Independence, in
I. Burnett et al. (eds), MPEG-21, Wiley, Chichester, UK.

XML Schema Part 2: Datatypes Second Edition (2004). http://www.w3.org/TR/xmlschema-2/.
Xu, M. et al. (2006). Event on demand with MPEG-21 video adaptation system, Multimedia,

14th ACM intl. conf. on , pp. 921–930.

376 Recent Advances on Video Coding

18 

User-aware Video Coding Based on  
Semantic Video Understanding and Enhancing 

Yu-Tzu Lin1 and Chia-Hu Chang2 
1National Chi Nan University 

2National Taiwan University 
Taiwan 

1. Introduction 
Traditional video coding is devoted to represent the video data compactly by dealing with 
low-level features (e.g., color, motion, texture, etc.) of the video. However, with the 
insatiable demand of Internet and increased use of multimedia, the bit-rate control issues 
are more and more important. In order to achieve more efficient representation for coping 
with diverse network or devices, many researches devised scalable video coding schemes 
which adaptively change the bit-rate according to the available bandwidth or user 
requirements. However, most scalable video coding algorithms only consider low-level 
features of video content in frame-based format without utilizing semantic information, 
which lose the possibility of improving coding efficiency by employing semantic meaning of 
content. Therefore, it is valuable to investigate methodologies of semantic-level video 
coding to produce more compact and flexible coding results for various user preferences. 
Semantic analysis for video content will provide richer information about the content and 
then assist achieving higher compression rate with good visual quality. Besides the coding 
efficiency, various functions are required in current video services, such as manipulating, 
searching and interacting with semantic-level objects. To enhance the flexibility and 
interactivity for accessing and manipulating the video content adaptively for different users, 
user-aware functionalities based on semantic video analysis should be discussed. In this 
chapter, we will discuss the theory and practice of user-aware semantic video coding, 
focusing on the aspect of semantic manipulation and user adaptation of video, including the 
semantic analysis techniques, scalable coding, user attention model construction, and user-
aware video coding, by considering requirements for different applications and giving an 
explanation about the methodologies for some example applications.  

2. Semantic video coding 
For instance, the background except the couple in the wedding video can be compressed 
with a higher rate than the area of the bride and groom because of its lower semantic 
importance (less interesting to humans). Many researches (Cheng et al., 2008; Bertini et al., 
2006; Ng et al., 2010) investigate methodologies for analyzing the semantic meaning of the 
video. Within the MPEG-7 (ISO/IEC 15938) Multimedia Description Schemes specification, 
"event" is used in the Creation and Production description tools to describe the agents and 



26 Video Coding

Thomas-Kerr, J., Janneck, J., Mattavelli, M., Burnett, I. & Ritz, C. (2007). Reconfigurable
Media Coding: Self-Describing Multimedia Bitstreams, 2007 IEEE Workshop on Signal
Processing Systems, pp. 319–324.

Thomas-Kerr, J. et al. (2007). Is That a Fish in Your Ear? A Universal Metalanguage for
Multimedia, IEEE MultiMedia 14(2): 72–77.

Thompson, H. S. et al. (2004). XML Schema Part 1: Structures, http://www.w3.org/TR/
xmlschema-1/.

Timmerer, C. et al. (2006). Digital Item Adaptation - Coding Format Independence, in
I. Burnett et al. (eds), MPEG-21, Wiley, Chichester, UK.

XML Schema Part 2: Datatypes Second Edition (2004). http://www.w3.org/TR/xmlschema-2/.
Xu, M. et al. (2006). Event on demand with MPEG-21 video adaptation system, Multimedia,

14th ACM intl. conf. on , pp. 921–930.

376 Recent Advances on Video Coding

18 

User-aware Video Coding Based on  
Semantic Video Understanding and Enhancing 

Yu-Tzu Lin1 and Chia-Hu Chang2 
1National Chi Nan University 

2National Taiwan University 
Taiwan 

1. Introduction 
Traditional video coding is devoted to represent the video data compactly by dealing with 
low-level features (e.g., color, motion, texture, etc.) of the video. However, with the 
insatiable demand of Internet and increased use of multimedia, the bit-rate control issues 
are more and more important. In order to achieve more efficient representation for coping 
with diverse network or devices, many researches devised scalable video coding schemes 
which adaptively change the bit-rate according to the available bandwidth or user 
requirements. However, most scalable video coding algorithms only consider low-level 
features of video content in frame-based format without utilizing semantic information, 
which lose the possibility of improving coding efficiency by employing semantic meaning of 
content. Therefore, it is valuable to investigate methodologies of semantic-level video 
coding to produce more compact and flexible coding results for various user preferences. 
Semantic analysis for video content will provide richer information about the content and 
then assist achieving higher compression rate with good visual quality. Besides the coding 
efficiency, various functions are required in current video services, such as manipulating, 
searching and interacting with semantic-level objects. To enhance the flexibility and 
interactivity for accessing and manipulating the video content adaptively for different users, 
user-aware functionalities based on semantic video analysis should be discussed. In this 
chapter, we will discuss the theory and practice of user-aware semantic video coding, 
focusing on the aspect of semantic manipulation and user adaptation of video, including the 
semantic analysis techniques, scalable coding, user attention model construction, and user-
aware video coding, by considering requirements for different applications and giving an 
explanation about the methodologies for some example applications.  

2. Semantic video coding 
For instance, the background except the couple in the wedding video can be compressed 
with a higher rate than the area of the bride and groom because of its lower semantic 
importance (less interesting to humans). Many researches (Cheng et al., 2008; Bertini et al., 
2006; Ng et al., 2010) investigate methodologies for analyzing the semantic meaning of the 
video. Within the MPEG-7 (ISO/IEC 15938) Multimedia Description Schemes specification, 
"event" is used in the Creation and Production description tools to describe the agents and 



 
Recent Advances on Video Coding 

 

378 

tools involved in creation process. The semantic event is also a fundamental concept in the 
Semantics Description tools where it is used to describe what is happening or being 
depicted in the actual content of the video object, which also plays a major role in MPEG's 
latest initiative, MPEG-21 (ISO/IEC 21000). Since the MPEG-21 standard (Vetro, 2004) 
highlights the importance of semantic video coding, more and more semantic video analysis 
approaches were devised for various applications. Fig. 1 shows the architecture of semantic 
video coding. The result of semantic analysis provides information for enhancing the spatial 
and temporal processing and then improves the coding efficiency. 
 

 
Fig. 1. The architecture of semantic video coding. 

2.1 Object extraction and encoding 
To mine semantic meaning from the video, low-level features have to be extracted at first, 
such as colour, texture, edge, shape, or motion features, to segment and describe objects 
with various descriptions, such as histogram, slope, graphs, and coefficients transformed to 
frequency-domain. By using the obtained low-level features of the objects, semantic rules 
can be applied to understand the video content by detecting meaningful events in the video. 
Object extraction is an essential procedure in semantic video analysis. The extracted objects 
are important basis for content event detection, and background except objects is the minor 
part of the video, which can be compressed with a higher rate while video coding. Fig. 2 
(Bertini et al., 2006) shows one example of object extraction in the sports video. 
 

 
                                (a)                                         (b)                                           (c) 

Fig. 2. (a) Original frame; (b) playfield shape and playfield lines; (c) soccer players’ blobs 
and playfield lines (Bertini et al., 2006). 
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However, in many applications, the objects in the video can not be easily found without 
segmenting the frame image at first. And the stability of the object-segment extraction is 
important for correctly detecting events in the video content. Before object extraction, the 
video frame has to be firstly segmented into several segments for locating candidates of the 
object-segment. Unfortunately, the pixel-based segmentation results of gray-level images are 
usually sensitive to the changes of the image pixels. Some researches (Lin et al., 2006) 
proposed reliable segmentation techniques called Geometric-Invariant Segmentation which 
is invariant to pixel changes. Even though the object moves, different frames will have the 
same segmentation result, so that the object extraction would be stable. Image pixels are 
firstly smoothed and binarized to reduce the noise possibly introduced in the edge detection 
step of the proposed segmentation algorithm. Instead of binarizing the image by a hard 
decision method, a fuzzy binarization approach was applied. A well-known segmentation 
method, Fuzzy Kohonen Clustering Network (FKCN) (Bezdek et al., 1992), was often 
applied to segment images. The comparison is provided in Fig. 3. After segmenting the 
video frame, the objects can be extracted according to criteria based on domain knowledge, 
 

 

       (a)                         (b)                           (c) 

Original 
Lena 

Noise 
addition 

Rotation 

Shift right 

Sim=0.67649Sim=0.82375

Sim=0.853419 Sim=0.77111

Sim=0.8770Sim=0.94463

 
Fig. 3. The comparison between Geometric-Invariant Segmentation (GIS) and FKCN: 
Corresponding Sim values (the similarity between the segments of the manipulated image 
and original one) of GIS and FKCN after applying various attacks are listed below the images: 
(a) images manipulated by geometrical operations or signal processing, (b) the resulting 
images segmented by GIS, and (c) by FKCN. (Lin et al., 2006) 
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such as skin colour in the news video or playfield colour in the sports video. Bertini et al. 
(2006) segmented the playfield region from colour histogramming using grass colour 
information. There are many other segmentation algorithms and schemes proposed in the 
literature (Chen et al., 2005; Mezaris, et al., 2004; Borenstein & Ulman, 2008; Kokkinos et al., 
2009). 
Another type of object extraction methods is to find objects using motion features. The 
highlight (the atomic entities of videos at semantic level) often has specific motions in the 
video rather than static, so it can be detected by analyzing the motion information. Some 
sport analysis algorithms (Li et al., 2010) estimate the motion vector to align the background. 
From the global motion analyzing result of two successive frames, the background can be 
accurately aligned (Fig. 4). This method also can be applied in moving background sports 
video. The player can be detected correctly in the video of diving game. Some researches 
(Papadopoulos et al., 2009) derived statistical approaches to determining the motion area. 
The kurtosis was used to localize active and static pixels in a video sequence to measure 
each pixel’s s activity (Fig. 5).  
 

 
                           (a)                                             (b)                                                 (c) 

Fig. 4. Result of global motion estimation: (a) -(b) two successive video frames, and (c) the 
detected background (Li et al., 2010).  
 

 
Fig. 5. One example of kurtosis field and activity area mask computation for a news video 
(Papadopoulos et al., 2009). 

The object with higher semantic-level can be encoded by a structural description using low 
semantic-level objects. Xu et al. (2008) designed a hierarchical compositional model to 
represent the face, which makes the face representation more condensed and efficient for 
coding and recognition, as shown in Fig. 6. In another object-based video coding scheme 
(Wang et al., 2005), the high-level object is composed of the low-level shape and texture 
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information (Fig. 7). Another semantic video coding for videophone sequences (Zhang, 
1998) used an adaptive face model using the deformable template to construct a 3D 
wireframe for the face (Fig. 8). 
 

Fig. 6. The hierarchical compositional model for face representation (Xu et al., 2008). 

 

 
                               (a)                                             (b)                                           (c) 

Fig. 7. Example of composition of shape and texture. (a) Shape. (b) Texture. (c) Composed 
object (Wang et al., 2005). 
 

 
Fig. 8. The 3D wireframe of the face (Zhang, 1998). 
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(2006) segmented the playfield region from colour histogramming using grass colour 
information. There are many other segmentation algorithms and schemes proposed in the 
literature (Chen et al., 2005; Mezaris, et al., 2004; Borenstein & Ulman, 2008; Kokkinos et al., 
2009). 
Another type of object extraction methods is to find objects using motion features. The 
highlight (the atomic entities of videos at semantic level) often has specific motions in the 
video rather than static, so it can be detected by analyzing the motion information. Some 
sport analysis algorithms (Li et al., 2010) estimate the motion vector to align the background. 
From the global motion analyzing result of two successive frames, the background can be 
accurately aligned (Fig. 4). This method also can be applied in moving background sports 
video. The player can be detected correctly in the video of diving game. Some researches 
(Papadopoulos et al., 2009) derived statistical approaches to determining the motion area. 
The kurtosis was used to localize active and static pixels in a video sequence to measure 
each pixel’s s activity (Fig. 5).  
 

 
                           (a)                                             (b)                                                 (c) 

Fig. 4. Result of global motion estimation: (a) -(b) two successive video frames, and (c) the 
detected background (Li et al., 2010).  
 

 
Fig. 5. One example of kurtosis field and activity area mask computation for a news video 
(Papadopoulos et al., 2009). 
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information (Fig. 7). Another semantic video coding for videophone sequences (Zhang, 
1998) used an adaptive face model using the deformable template to construct a 3D 
wireframe for the face (Fig. 8). 
 

Fig. 6. The hierarchical compositional model for face representation (Xu et al., 2008). 
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Fig. 7. Example of composition of shape and texture. (a) Shape. (b) Texture. (c) Composed 
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Fig. 8. The 3D wireframe of the face (Zhang, 1998). 
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2.2 Event detection and encoding 
An event in the video content contains not only its spatial characteristics, but also particular 
features of the temporal order. Since it has even more semantic-level messages than objects, 
the structure of the video content should be analyzed based on more domain knowledge. A 
video can be represented as a multilayer structure, as illustrated in Fig. 9. Scenes, shots and 
frames are the units that can be found in video. A meaningful story is composed of several 
scenes. And a scene contains several shots which consist of the video frames that have been 
continuously recorded with a single camera operation. Shot change detection (Cotsaces et 
al., 2006; Koprinska & Carrato, 2001; Yuan et al., 2007) is to identify the shots of the video for 
the purpose of further video analyses and encoding. 
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Scene

Shot

Frame Shot change

Scene

Shot Shot Shot

 
Fig. 9. The video structure.  

Sports videos (Bertini et al., 2006; Li et al., 2010) were a frequently discussed application in 
semantic coding. Bertini et al. (2006) designed a automatic annotation scheme for soccer 
video based on MPEG-2 (ISO/IEC 13818), which performed event and event-object level 
compression by detecting camera motion, playfield zone, and players’ position in the 
playfield (Fig. 2). And the players’ position determines penalty kicks or free kicks. Further 
event detection for Forward launch, Shot on goal, Placed kicks, Attack action, and Counter 
attack are modelled with finite state machine constructed based on soccer rules. 
 

 
Fig. 10. One example of four successive wedding events (Cheng et al., 2008). 
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Besides the finite sate machine, the Hidden Markov Model (Rabiner, 1989) is another 
common tool for modelling the content event. Based on the observation of wedding events, 
including speech/music types, applause activities, picture-taking activities, and leading 
roles, Cheng et al. (2008) exploited an HMM framework for segmenting wedding videos, 
which integrates the wedding event statistical models and the event transition model. 
Fig. 10 illustrates one example of four successive events, in which OP, WV, RE, WK 
represents officiant presenting, wedding vows, ring exchange, and wedding kiss, respectively. 

3. User-aware semantic video coding 
In a heterogeneous network/device environment, the video content should be adaptively 
encoded to satisfy different users’ requirements. However, conventional user adaptive video 
coding approaches transform the video into bitstreams of various formats independently of 
the video content. The video is represented and compressed to the adaptive transmission 
rate and quality by only considering the physical environment, despite of user preferences. 
Therefore, besides the codec aspects of transmission and presentation constraints of the 
user’s device or transmission capacity, understanding semantic components of the video 
content while coding, by analyzing the video content using semantic-based temporal or 
spatial features, could also be a major issue to help produce more condensed and 
meaningful video for different transmission requirements and user preferences. In this 
section, we will firstly introduce scalable video coding, then explain how user-aware 
semantic analysis and manipulations (including construction of user attention models, ROI 
extraction, and enhancing the interactivity of video coding) assist in improving the coding 
efficiency.  

3.1 Scalable video coding 
Scalable video coding is a technique to enable the encoding standard to encode the video 
into a set of bitstreams with different visual quality to satisfy the needs of different 
terminals/channels. As defined in MPEG-2, the bitstream is encoded into a base layer and a 
few enhancement layers, in which the enhancement layers add spatial, temporal, and/or 
SNR quality to the reconstructed base layer. Later, the fine granular scalability (FGS) is 
developed in the MPEG-4 (ISO/IEC 14496) Visual standard, which allows a much finer 
scaling of bits in the enhancement layer. Based on FGS provided in the MPEG-4, (Barrau, 
2002) proposed both close-loop and open-loop solutions for the FGS transcoder, which 
reduce the bit-rate by cutting the enhancement information at know locations.(Qian et al., 
2005) combined a scalable transcoder with space time block codes (STBBC) for an 
orthogonal frequency division multiplexing (OFDM) system to provide robust access to the 
pre-encoded high quality video server from mobile wireless terminals. 
Heterogeneous transcoding converts the pre-compressed bitstream into another bitstream 
with different format. It is particularly important for the multimedia services which pre-
encode the bitstream for storage and transmission. In (Siu et al., 2007), a transcoder from 
MPEG-2 to H.263 is proposed to convert a B-picture to a P-picture using the information of 
motion compensation in the DCT domain. Since one of the major differences between 
MPEG-2 and H.264/AVC is that MPEG-2 uses 8-tap DCT and H.264 uses 4-tap integer 
(DCT-like) transform (IT), (Shen, 2004; Chen et al., 2006a) designed fast DCT-to-IT 
algorithms to perform the MPEG-2-to-H.264 transcoding. Since wireless channels have 
lower bandwidth and higher error rate than wired channels, the error resilience transcoding 
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spatial features, could also be a major issue to help produce more condensed and 
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semantic analysis and manipulations (including construction of user attention models, ROI 
extraction, and enhancing the interactivity of video coding) assist in improving the coding 
efficiency.  
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into a set of bitstreams with different visual quality to satisfy the needs of different 
terminals/channels. As defined in MPEG-2, the bitstream is encoded into a base layer and a 
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SNR quality to the reconstructed base layer. Later, the fine granular scalability (FGS) is 
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MPEG-2 to H.263 is proposed to convert a B-picture to a P-picture using the information of 
motion compensation in the DCT domain. Since one of the major differences between 
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algorithms to perform the MPEG-2-to-H.264 transcoding. Since wireless channels have 
lower bandwidth and higher error rate than wired channels, the error resilience transcoding 
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over wireless channel is more important. It is particularly useful in hostile environments, 
such as mobile networks and the Internet. There are many strategies to provide error 
resilience transcoding (Vetro et al., 2005): 1. Removing the spatial/temporal redundancy can 
help reduce the error propagation. 2. Group the coded data into several parts according to 
their importance to allow the unequal protection. 3. Add error-checking bits to the bitstream 
for robust decoding. 4. Embed additional information into the coded stream to enable the 
improved error concealment. (Chen et al., 2006b) designed a content-aware intra-refresh 
(CAIR) transcoding to improve efficiency of the intra-refresh allocation by avoiding the 
error propagation in the same prediction path.  
Fig. 11 illustrates a video transcoder, which provides a seamless interaction between content 
creation and consumption, or among different channels/terminals. The format can be 
characterized by the bit-rate, frame rate, coding syntax, spatial resolution, or content (as 
shown in Fig. 11, in which RI, FI, CI are parameters of the input video, and RO, FO, CO are 
those of the output video). 
 

Video 
Transcoder 

Bit-rate: RI 
Frame rate: FI 

… 
Coding standard CI 

Bit-rate: RO 
Frame rate: FO 

… 
Coding standard CO 

 
Fig. 11. The video transcoder.  

Since video or image have much larger data sizes than other types of data, they have more 
needs for trascoding.  For different applications, the requirements and techniques of the 
video/image trascoding are still quite different. A common requirement of transcoding is to 
reduce the complexity of the transcoder and the bit-rate of the data while preserving 
suitable content quality. It is especially an important issue for video streaming applications 
in both wired and wireless networks (Chen & Zakhor, 2005).  To achieve a target bit-rate 
while maintaining consistent video/image quality and satisfying the required parameters, 
(e.g. bandwidth, delay, resolution, and memory constraints), there are various types of 
trancoding detailed as the following: 
A. Frequency domain transcoding 
Many video/image compression standards (e.g. JPEG, MPEG-2, MPEG-4, and H.264/AVC) 
carry out the residual coding in the DCT domain, which consists several steps: the run-
length coding, quantization, and the motion compensation (MC). Consequently, many 
researches try to design DCT-based transcoders because the computational complexity will 
be much lower than in the pixel domain. (Kim et al., 2006) proposed a bit-rate adaptation 
method for streaming video in a QoS-based home gateway service, in which the input 
bitstream is partially decoded into the DCT domain first, then an adaptive motion mapping 
refinement and a DCT-based image downsizer are utilized to adapt the bit-rate. In (Assunco 
& Ghanbari, 1998), a drift-free transcoder working entirely in the frequency domain was 
proposed, in which a Lagrangian rate-distortion optimization was applied for bit 
reallocation to ensure the quality of the bitstream. Some literatures requantized the DCT 
coefficients to transcode the bitstream: (Werner, 1999) derived a cost function to estimate the 
quantizer so that the quantizer can achieve a larger SNR at the same bit-rate compared with 
the original quantizer used in MPEG-2. Besides, the MSE-based cost function and maximum 
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a posteriori used in this paper need minor additional complexity. Since the time complexity 
issue is significant in the real-time applications, (Seo et al., 2000) found an efficient 
requantization by using a piecewise linearly decreasing model.     
B. Temporal resolution adaptation 
Both spatial and temporal redundancies should be considered in a video compression 
algorithm. Besides the MC-based transcodings, temporal redundancies can also be removed 
by dropping some redundant frames while preserving the temporal smoothness of coded 
frames. Of course, temporal resolution adaptation is also one of the bit-rate control 
trascoding for video. In (Shu & Chau, 2005), some video frames are skipped by considering 
the motion change and reduces the jerky effect caused by undesired frame skipping. 
(Bonuccelli et al., 2005) designed a buffer-based temporal transcoding in a real-time mobile 
video application. Rather than dropping frames directly, Shu & Chau (2005) proposed a 
frame-layer bit allocation method to assign different number of bits for different frames.    
C. Spatial resolution adaptation 
Resizing is needed to adapt the spatial resolutions to devices with different display 
capabilities. Moreover, with the emergence of mobile devices and the desire for users to 
access video originally captured in a high spatial resolution, there is also a need to reduce 
the resolution for transmitting to and being displayed in such devices. (Shu & Chau, 2007) 
designed a two-stage structure for arbitrary resizing in DCT-based transcoding, in which 
some constraints are derived for anti-aliasing.    
Although many studies (Lei & Georganas, 2003; Warabino et al., 2000; Elsharkawy et al., 
2007) have investigated methodologies to solve the problems related to transcoding in the 
wireless environment, the rate control and error resilience for wireless applications are still 
challenging problems, especially for H.264/AVC, the more efficient but complex video 
standard.  

3.2 User-aware semantic video analysis 
As described in Section 3.1, different coding requirements should be satisfied for 
heterogeneous display resolution or communication abilities, which can give temporal, 
spatial, and quality scalability for the encoded bit stream. However, only considering low-
level codec aspects produces limited efficiency gains. Semantic-level analysis will help 
design more feasible and flexible coding algorithms for different users’ needs. To achieve 
this purpose, the user-aware attention model should be constructed for different 
applications: For real-time road traffic monitoring, content-based scalable coding (Ho et al., 
2005) can help increase the compression rate. In the wireless environment, a temporal 
scalability scheme with background composition (Hung & Huang, 2003) was proposed in 
MPEG4. And effective bit-rate control can be achieved by considering the Region of Interest 
(ROI) (Grois et al., 2010). As shown in Fig. 12, the ROI is used as the baselayer of 
H.264/AVC standard, which can provide various resolution and bit-rates for different users’ 
needs. Table 1 presents the bit-rate savings when exploiting this method. For lecture videos, 
a learner-focused model can be designed to reduce the network traffic in case of the real-
time streaming video (Lin et al., 2009, 2010a). Fig. 13 illustrates one example of lecture 
video coding, in which a lot of lecture video frames are compressed into one lecture slide 
with teaching focus and the temporal redundancy is reduced based on semantic-level 
analysis.  
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a posteriori used in this paper need minor additional complexity. Since the time complexity 
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wireless environment, the rate control and error resilience for wireless applications are still 
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As described in Section 3.1, different coding requirements should be satisfied for 
heterogeneous display resolution or communication abilities, which can give temporal, 
spatial, and quality scalability for the encoded bit stream. However, only considering low-
level codec aspects produces limited efficiency gains. Semantic-level analysis will help 
design more feasible and flexible coding algorithms for different users’ needs. To achieve 
this purpose, the user-aware attention model should be constructed for different 
applications: For real-time road traffic monitoring, content-based scalable coding (Ho et al., 
2005) can help increase the compression rate. In the wireless environment, a temporal 
scalability scheme with background composition (Hung & Huang, 2003) was proposed in 
MPEG4. And effective bit-rate control can be achieved by considering the Region of Interest 
(ROI) (Grois et al., 2010). As shown in Fig. 12, the ROI is used as the baselayer of 
H.264/AVC standard, which can provide various resolution and bit-rates for different users’ 
needs. Table 1 presents the bit-rate savings when exploiting this method. For lecture videos, 
a learner-focused model can be designed to reduce the network traffic in case of the real-
time streaming video (Lin et al., 2009, 2010a). Fig. 13 illustrates one example of lecture 
video coding, in which a lot of lecture video frames are compressed into one lecture slide 
with teaching focus and the temporal redundancy is reduced based on semantic-level 
analysis.  
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Fig. 12. Example of the ROI dynamic adjustment and scalability for mobile devices with 
different spatial resolution (Grois et al., 2010). 

 
Quantization 
Parameters 

Four Layers (640x360, and 
three HD layers) 

Eight Layers (two CIF 
layers, three SD layers, and 

three HD layers) 

Bit-Rate 
Savings 

(%) 
PSRN Bit-Rate PSNR Bit-Rate 

32 34.48 2566.15 34.49 3237 20.73 
34 33.93 1730.21 33.93 2359 26.66 
36 33.27 1170.01 33.27 1759 33.48 

Table 1. The bit-rate savings when using ROI adaptive scalable video coding (Grois et al., 
2010). 

… 
Compression 

 
Fig. 13. Lecture video coding: (a) the lecture video frames are compressed into (b) the lecture 
slide with detected teaching focuses (Lin et al., 2009).  

In the following, we will introduce user-aware semantic understanding techniques for 
videos by extracting and analyzing user-aware visual/aural features, including the analysis 
of expression, gesture, emotion, motion, and event detection, for the purpose of enhancing 
the video coding. 
Fig. 14 illustrates one example of user-aware video analysis schemes, in which the learner-
focused attention model was constructed and provided for enhancing the video lecture 
representation (Lin et al., 2010b). 
Visual analysis can be used to understand the video semantically by merely finding low-
level features (color, texture, pixel histogram, etc.) or further extracting semantic-level 
features (gesture, expression, action, etc.) from low-level visual features, which will be 
introduced by providing examples in the following. 
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Fig. 14. One example of the user-aware video analysis scheme for constructing a learner-
focused attention model. (Lin et al., Sept. 2010b) 

3.2.1 User-aware visual analysis 
Low-level features can be extracted by directed computig the visual characteristics in the 
spatical or frequency domain, which contains no semantic meaning for humans at first 
glance. In the adaptive video learning system proposed in (Lin et al., 2010b),  the importance 
of the lecture content are decided by analyzing the extracted lecture content and also the 
instructor’s behavior. In lecture content, color features are used to couting the chalk pixels. 
The blackboard region is at first obtained by extracting the regions of the blackboard colour 
and merging them(Fig. 15 (a)). After deciding the blackboard region, the set of chalk pixels 
Pchalk can be computed as  

  ( )chalk cpP x I x I  , (1) 

where I(x) is the luminance of pixel x and Icp  is the luminance threshold. Fig. 15 shows one 
example of lecture content extraction. 
The chalk text or figures written on the blackboard by the lecturer are undoubtedly the most 
important part that lecturers want students to pay attention to. It is obvious that the more 
there is lecture content (chalk handwriting or figures), the more revealed semantics are in 
the lecture video. Therefore, the attention values are evaluated by extracting the lecture 
content on the blackboard and analyzing the content fluctuation in lecture videos. 
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glance. In the adaptive video learning system proposed in (Lin et al., 2010b),  the importance 
of the lecture content are decided by analyzing the extracted lecture content and also the 
instructor’s behavior. In lecture content, color features are used to couting the chalk pixels. 
The blackboard region is at first obtained by extracting the regions of the blackboard colour 
and merging them(Fig. 15 (a)). After deciding the blackboard region, the set of chalk pixels 
Pchalk can be computed as  

  ( )chalk cpP x I x I  , (1) 

where I(x) is the luminance of pixel x and Icp  is the luminance threshold. Fig. 15 shows one 
example of lecture content extraction. 
The chalk text or figures written on the blackboard by the lecturer are undoubtedly the most 
important part that lecturers want students to pay attention to. It is obvious that the more 
there is lecture content (chalk handwriting or figures), the more revealed semantics are in 
the lecture video. Therefore, the attention values are evaluated by extracting the lecture 
content on the blackboard and analyzing the content fluctuation in lecture videos. 
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                                        (a)                                                                       (b) 

Fig. 15. Lecture content extraction: (a) the blackboard region, and (b) the extracted lecture 
content. 

Another important low-level feature for videos is motion extracted in the pixel or 
compression domain. Many sophisticated motion estimation algorithms has been developed 
in the literature, for examples, the optical flow in (Beauchemin & Barron, 1995) and the 
feature tracking in (Shi & Tomasi, 1994). However, they often have high computational 
complexity because the operations are executed in the pixel domain and the estimated 
motions are accurate. In the work of (Chang et al., 2010a), accurate motion estimation is not 
needed, so the motion information can be directly extracted from the motion vectors of a 
compressed video. Since the process is done directly in the compression domain, the 
induced complexity is very low. Therefore, the motions in each video frame can be 
efficiently obtained.  
As mentioned in Section 3.1.1, object extraction is an important process before deciding 
video events. In many user-aware applications, human detection is the major work while 
extracting objects. In the lecture video application, the lecturer should be detected for 
further analysis. In the work of Lin et al. (2009), the human area was extracted by detecting 
the moving object in the video frames, which was carried out by finding the eigenregions in 
the frames. That is, the moving objects can be distinguished from the still objects by 
methods of classification. The PCA (Principal Component Analysis)-based approach is used 
in this paper, which is detailed in the following. Three successive frames Fi-1, Fi, and Fi+1 are 
firstly transformed into a matrix X=[Fi-1 Fi Fi+1], then the covariance C is computed as 
C=XTX. Finally, each frame is aligned with the first two principle vectors (which are the 
eigenvectors of C associated with the two largest eigenvalues. Thus, the area with higher 
values represents that with higher variances, i.e., the moving object.  
After the eigenregion is extracted, the produced image (Fig. 16 (d)) is binarized and applied 
by morphological operators to fill and smooth the region in order to obtain a more stable 
mask. Fig. 16 shows one example of moving object detection, in which (a), (b), and (c) are 
three successive frames, (d) is the corresponding eigenregion, (e) is the binarized one, and (f) 
is the final mask after morphological operations.    
Low-level feature can provide limited information for human perception, for example, the 
DCT coefficients could not be understood well by humans, even though these features play 
an important role in pattern recognition. Therefore, semantic understanding for videos can 
be improved by extracting semantic-level features like gestures, expression, actions, etc. For 
instance, the posture of the lecturer will generally change with the delivered lecture content 
or the situation in lecture presentation. For example, when teaching the math problems, the 
lecturer may firstly write the lecture content on the blackboard and shows their back to the 
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Fig. 16. Human detection: (a), (b), and (c) are successive frames, (d) Eigenregion (lighter area), 
(e) binarized  eigenregion, and (f) the resulting mask. (Lin et al., Sept. 2010b) 

students. Next, he starts to narrate the written equations and moves sideways to avoid 
occluding the content which students should focus their gazes on. After writing the 
complete lecture content, the lecturer will face the students to further explain the details. All 
of the lecturing statuses and postures mentioned above will repeatedly occur with 
alternative random order in a course presentation. Different states represent different 
presentation states and also different semantics. Therefore, the lecturing states can be 
decided according to the changes of the lecturer’s posture. In (Lin et al., 2010b), the skeleton 
of the lecturer is extracted to represent the posture and then the lecturing states are 
identified by using the SVM approach. The regions of the head and hands are detected by 
using the skin-color features. The lecturer’s skeleton is then constructed by considering the 
relations between the positions of head and hands. 
 

 
Fig. 17. Analysis of lecturer’s posture. 

After constructing skeletons, several features derived from the skeleton are used for posture 
discrimination to estimate the lecturing state (Fig. 17), including the distance between end 
points of the skeleton, the joint angle of the skeleton, and the orientation of the joint angle. 
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the moving object in the video frames, which was carried out by finding the eigenregions in 
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After the eigenregion is extracted, the produced image (Fig. 16 (d)) is binarized and applied 
by morphological operators to fill and smooth the region in order to obtain a more stable 
mask. Fig. 16 shows one example of moving object detection, in which (a), (b), and (c) are 
three successive frames, (d) is the corresponding eigenregion, (e) is the binarized one, and (f) 
is the final mask after morphological operations.    
Low-level feature can provide limited information for human perception, for example, the 
DCT coefficients could not be understood well by humans, even though these features play 
an important role in pattern recognition. Therefore, semantic understanding for videos can 
be improved by extracting semantic-level features like gestures, expression, actions, etc. For 
instance, the posture of the lecturer will generally change with the delivered lecture content 
or the situation in lecture presentation. For example, when teaching the math problems, the 
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Fig. 16. Human detection: (a), (b), and (c) are successive frames, (d) Eigenregion (lighter area), 
(e) binarized  eigenregion, and (f) the resulting mask. (Lin et al., Sept. 2010b) 

students. Next, he starts to narrate the written equations and moves sideways to avoid 
occluding the content which students should focus their gazes on. After writing the 
complete lecture content, the lecturer will face the students to further explain the details. All 
of the lecturing statuses and postures mentioned above will repeatedly occur with 
alternative random order in a course presentation. Different states represent different 
presentation states and also different semantics. Therefore, the lecturing states can be 
decided according to the changes of the lecturer’s posture. In (Lin et al., 2010b), the skeleton 
of the lecturer is extracted to represent the posture and then the lecturing states are 
identified by using the SVM approach. The regions of the head and hands are detected by 
using the skin-color features. The lecturer’s skeleton is then constructed by considering the 
relations between the positions of head and hands. 
 

 
Fig. 17. Analysis of lecturer’s posture. 

After constructing skeletons, several features derived from the skeleton are used for posture 
discrimination to estimate the lecturing state (Fig. 17), including the distance between end 
points of the skeleton, the joint angle of the skeleton, and the orientation of the joint angle. 
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Then features mentioned above are used to train a SVM classifie, so that the other defined 
lecturing states can be identified. 

3.2.2 User-aware aural analysis 
Aural information in multimedia contents is also an important stimulus to attract viewers 
and should be utilized to affect the inserted virtual content. Compared to visual saliency 
analysis, researches on aural saliency analysis are rare. In (Ma et al., 2005), an aural attention 
modeling method, taking aural signal, as well as speech and music into account, was 
proposed to incorporate with the visual attention models for benefiting video summarization. 
Intuitively, a sound with loud volume or sudden change usually grabs human’s attention no 
matter what they are looking at. If the volume of sound keeps low, even if a special sound 
effect or music is played, the aural stimulus will easily be ignored or be treated as the 
environmental noise. In other words, loudness of aural information is a primary and critical 
factor to influence human perception and can be used to model aural saliency. Similar to the 
ideas stated in  (Ma et al., 2005), the sound is considered as a salient stimulus in terms of 
aural signal if the following situation occurs: loudness of sound at a specific time unit 
averages higher than the ones within a historical period which human continued listening 
so far, especially with peaks.  
Based on the observations and assumptions, the aural saliency response ( , ),hAR T T  is 
defined at a time unit T  and within a duration hT , to quantify the salient strength of the 
sound. That is, 
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where ( )avrE T and ( )peakE T are the average sound energy and the sound energy peak in the 
period T, respectively.  
After analyzing the aural saliency of the video, an AS feature sequence is generated which 
describes the aural saliency response with the range [0, 1] at each time unit T, as shown in 
Fig. 18. 
 

 
Fig. 18. The normalized aural saliency response of the audio segment. 

In (Lin et al., 2010b), besides gesture and posture, making sounds or changing tones is 
another way that lecturers usually used to grab students’ attentions while narrating the 
lecture content. Therefore, aural information of lecturers is an important cue to estimate the 
attentions for lecture videos. Since more words are spoken by lecturers within a period may 
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imply more semantics are conveyed or delivered in such duration, the aural attention can be 
modeled based on the lecturer’s speech speed. Generally, each Chinese character 
corresponds to at least one syllable, so we can analyze the syllables by extracting the 
envelope (Iked et al., 2005) of audio samples to estimate the lecturer’s speech speed as (3). 

 
 1  ,     ( ) ( )

( )
0  ,   

w
syllable

if e t C Max e T
W t

otherwise
  


, (3) 

where ( )syllablesW t represents whether it is a syllable ending at time t, ( )e t is the envelope size 
at time t, T is a time period, and wc  is a threshold. 

3.3 ROI estimation 
ROI could be considered as one of the semantic scalability in spatial dimension. The virtual 
content should be inserted at suitable spatial and temporal location, which is often an area 
attractive to humans, that is, the ROI region. While considering the human perception and 
viewing experience, a compelling multimedia content is usually created by artfully 
manipulating the salience of visual and aural stimulus. Therefore, attractive regions or 
objects are usually utilized to direct and grab viewers’ attention and play an important role 
in multimedia contents. Algorithms of both patial and temporal ROI estimation will be 
discussed in this section. 
In order to automatically identify such attractive information in visual contents, a great deal 
of research efforts on estimating and modeling the visual attention in human perception 
have proliferated for years. The systematic investigations about the relationships between 
the vision perceived by humans and attentions are provided in (Chun & Wolfe, 2001; Itti & 
Koch, 2001; Chen et al., 2003; Ma et al., 2005; Liu et al., 2007; Zhang et al., 2009). Itti et al. 
(2001) presented a frameworkfor a computational and neurobiological understanding of 
visual attention modeling. Ma et al.(2005) proposed a generic framework of user attention 
model by fusing several visual and aural features and applied it to video summarization. As 
for practical applications, numerous visual attention models were explored to adapt images 
(Chen et al., 2003; Liu et al., 2007) and videos (Cheng et al., 2007) for improving viewing 
experience on the devices with small displays. Zhang et al. (2009) proposed a distortion-
weighing spatiotemporal visual attention model to extract the attention regions from the 
distorted videos. Instead of directly computing a bounding contour for attractive regions or 
objects, most approaches construct a saliency map to represent the attention strength or 
attractiveness of each pixel or image block in visual contents. The value of a saliency map is 
normalized to [0, 255] and the brighter pixel means higher salience. Several fusion methods 
for integrating each of the developed visual feature models have been developed and 
discussed in (Dymitr & Bogdans, 2000). Different fusion methods are designed for different 
visual attention models and applications. The goal of this module is to be able to provide a 
flexible mechanism to detect various ROIs as the targets, which the inserted ads can interact 
with, according to the users’ requirements. For this purpose, Chang et al. (2009) utilize linear 
combinations for fusion, so that users can flexibly set each weight of corresponding feature 
salience maps. The ROI saliency map, which is denoted as SROI , is computed as  
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Then features mentioned above are used to train a SVM classifie, so that the other defined 
lecturing states can be identified. 
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environmental noise. In other words, loudness of aural information is a primary and critical 
factor to influence human perception and can be used to model aural saliency. Similar to the 
ideas stated in  (Ma et al., 2005), the sound is considered as a salient stimulus in terms of 
aural signal if the following situation occurs: loudness of sound at a specific time unit 
averages higher than the ones within a historical period which human continued listening 
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defined at a time unit T  and within a duration hT , to quantify the salient strength of the 
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imply more semantics are conveyed or delivered in such duration, the aural attention can be 
modeled based on the lecturer’s speech speed. Generally, each Chinese character 
corresponds to at least one syllable, so we can analyze the syllables by extracting the 
envelope (Iked et al., 2005) of audio samples to estimate the lecturer’s speech speed as (3). 
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where Fi is the i-th feature map of that frame, and wi is the i-th weight of the corresponding 

i-th feature map Fi with the constraints of 
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  . The ROI can be easily 

derived by evaluating the center of gravity and the ranging variance on the basis of the 
saliency map.  
A human visual system (HVS) has been introduced for finding ROIs in many researches. In 
(Lee et al., 2006) and (Kankanhalli & Ramakrishnan, 1998), an HVS was used to improve the 
quality of a watermarked image. In (Geisler & Perry, 1998), an HVS was used to skip bits 
without influencing the visual perceptibility of video encoding applications. It also can be 
applied to build the user-attentive model proposed in (Cox et al., 1997) for deciding the ROI. 
In (Lin et al., 2010b), the user-attentive model is constructed based on the graylevel and 
texture features of the image. Regions with mid-gray levels will have a high score for 
selection because regions with very high or low gray levels are less noticeable to human 
beings. In addition, the strongly textured segments will have low scores. The distances to 
the image center are also considered because human beings often focus on the area near the 
center of an image.  
Besides the spatial ROIs, temporal ROIs should also be considered for removing temporal 
redundancy. The temporal ROI is the video clip which is attractive to humans. The curve 
derived from the user attention model can be used to determine the temporal ROIs, which 
have higher values of user attention function. 

3.4 Interactivity of video coding 
Some video coding standards, such as the MPEG-4, allow developing algorithms of audio-
visual coding for not only high compression, but also interactivity and universal 
accessibility of the video content. In addition to the traditional “frame”-based functionalities 
of the MPEG-1 and MPEG-2 standards, the MPEG-4 video coding algorithm will also 
support access and manipulation of “objects” within video scenes. The “content-based” 
video functionality is to encode the sequence in a way that will allow the separate decoding 
and reconstruction of the objects using the concept of Visual Objects (VOs), and to allow the 
manipulation of the original scene by simple operations on the bit stream. The properties of 
objects are described in the bit stream of each object layer. As illustrated in Fig. 19, a video 
scene can be encoded into several Visual Object Planes (VOPs), wich can be manipulated by 
simple operations. 
 

 
Fig. 19. Composition and manipulation of MPEG-4 videos. 
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To enhance the interactivity of the video content for user adaptive applications, Chang et al. 
(2010a, 2010b) presented an interactive virtual content insertion architecture which can 
insert virtual contents into videos with evolved animations according to predefined 
behaviors emulating the characteristics of evolutionary biology. The videos are considered 
not only as carriers of message conveyed by the virtual content but also the environment in 
which the lifelike virtual contents live. Thus, the inserted virtual content will be affected by 
the videos to trigger a series of artificial evolutions and evolve its appearances and 
behaviors while interacting with video contents. By inserting virtual contents into videos 
through the system, additional entertaining storylines can be easily created and the videos 
will be turned into visually appealing ones. The above mentioned concept is illustrated in 
Fig. 20. 
 

 
Fig. 20. The augmented videos can be served by using techniques in interactive virtual 
content insertion to enrich the original videos. 
 

 
Fig. 21. Snapshots of sample results of the virtual learning e-Partner. The e-Partner can 
evolve according to the lecturer’s teaching behavior in the lecture video and assist in 
pointing out or enhancing the important lecture content. 

In (Chang et al., 2010b), a virtual learning e-partner scheme was presented. The e-partner is 
assigned the ability to seek for the salient object, which is detected by finding the ROIs 
based on the algorithms described in Section 3.3, and is simulated to obtain the color and 
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and reconstruction of the objects using the concept of Visual Objects (VOs), and to allow the 
manipulation of the original scene by simple operations on the bit stream. The properties of 
objects are described in the bit stream of each object layer. As illustrated in Fig. 19, a video 
scene can be encoded into several Visual Object Planes (VOPs), wich can be manipulated by 
simple operations. 
 

 
Fig. 19. Composition and manipulation of MPEG-4 videos. 

VOP1

VOP2

Encoding 

Content-based 
manipulation 

VOP3

VOP2

Decoding 

 
User-aware Video Coding Based on Semantic Video Understanding and Enhancing   

 

393 

To enhance the interactivity of the video content for user adaptive applications, Chang et al. 
(2010a, 2010b) presented an interactive virtual content insertion architecture which can 
insert virtual contents into videos with evolved animations according to predefined 
behaviors emulating the characteristics of evolutionary biology. The videos are considered 
not only as carriers of message conveyed by the virtual content but also the environment in 
which the lifelike virtual contents live. Thus, the inserted virtual content will be affected by 
the videos to trigger a series of artificial evolutions and evolve its appearances and 
behaviors while interacting with video contents. By inserting virtual contents into videos 
through the system, additional entertaining storylines can be easily created and the videos 
will be turned into visually appealing ones. The above mentioned concept is illustrated in 
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Fig. 21. Snapshots of sample results of the virtual learning e-Partner. The e-Partner can 
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pointing out or enhancing the important lecture content. 

In (Chang et al., 2010b), a virtual learning e-partner scheme was presented. The e-partner is 
assigned the ability to seek for the salient object, which is detected by finding the ROIs 
based on the algorithms described in Section 3.3, and is simulated to obtain the color and 
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texture by absorbing the energy of the salient object. At last, the e-partner owns the ability to 
dance with the music or show the astonished expression while perceiving loud sound. 
Besides, the e-partner would interact with the moving salient object in an intelligent 
manner. The e-partner would either tend to imitate the behavior of the moving salient 
object, or moves to the salient object for further interactions. With the extracted feature 
space of the lecture videos and the behavior modeling of the e-partner, the proposed system 
automatically generates impressive animations with an evolution way on a virtual layer. 
Finally, the virtual layer, in which the e-partner is animated on, is integrated with the video 
layer. Fig. 21 shows sample results of the virtual learning e-partner, in which the e-partner 
can evolve according to the lecturer’s teaching behavior in the lecture video and assist in 
pointing out or enhancing the important part of lecture content. 
To support the interactivity of video coding, many researches (Naman & Taubman, 2007; 
Ng et al., 2010; Wang et al., 2005; Tran et al., 2004) propsed content-based scalable coding 
schemes, most of which applied the concept of VOPs of MPEG-4. Fig. 22 shows a generic 
architecture of semantic scalable video coding based on the multilayer structure.  
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5. Conclusion 
With the rapid development of information technology, access to internet service and use of 
multimedia has been increasing in recent years. Since the network bandwidth is limited, it is 
important to investigate approaches to control the bit-rate adaptively for various 
requirements of different transmission capacity, devices, or user preferences. Moreover, in 
order to increase the flexitility and interactivitly for accessing and manipulating the video 
content, semantic-level analysis should be considered to achieve user-aware functionalities. 
In this chapter, we have introduced theory and practice of user-aware semantic video 
coding., includng concepts and techniques of salable video coding, transcoding, semantic 
analysis, and semantic coding. In addition, related methods for user adaptive video coding, 
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