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Preface

The Stone Age, the Bronze Age, the Iron Age ... Every global epoch in the history of the 
mankind is characterized by materials used in it. In 2004 a new era in the material sci-
ence was opened: the era of graphene or, more generally, of two-dimensional materials 
[K. Novoselov, A. Geim et al. Science 306, 666 (2004)]. Graphene is the one-atom thin 
layer of sp2-bonded carbon atoms arranged in a honey-comb lattice. It possesses the 
unique physical properties: graphene is the strongest and the most stretchable known 
material, has the record thermal conductivity and the very high intrinsic mobility and
is completely impermeable. The charge carriers in graphene are the massless Dirac 
fermions and its unique electronic structure leads to a number of interesting physical
effects, such as the minimal electrical conductivity, anomalous quantum Hall effect,
Klein tunneling, the universal optical conductivity and the strong nonlinear electro-
magnetic response. Graphene offers and promises a lot of different applications, in-
cluding conductive ink, terahertz transistors, ultrafast photodetectors, bendable touch 
screens, strain tensors and many other. In 2010 Andre Geim and Konstantin Novoselov 
were awarded the Nobel Prize in Physics “for groundbreaking experiments regarding 
the two-dimensional material graphene”.

Nowadays, graphene is in the focus of research activity of condensed matt er physi-
cists in the whole world. Research articles reporting on different aspects of graphene 
studies are collected in the present two volumes “Physics and Applications of Gra-
phene”. These books cover a broad spectrum of experimental and theoretical studies 
of graphene and present contributions from research groups and laboratories from the 
North and South America, Europe, Asia and Australia.

The contributed articles are presented in two volumes. The readers interested in ex-
perimental studies of graphene are referred to the rst volume. The second volume
contains theoretical contributions, divided into ve Sections. In Part I ab initio studies 
of the electronic structure of graphene in the presence of defects and impurities are
described. In Part II the theory of graphene nano-akes and nano-ribbons is presented.
The magnetic properties of grapheme are discussed in Part III and the transport prop-
erties are studied in Part IV. The last Part of the volume is devoted to the linear and 
nonlinear optical properties of graphene.

Sergey Mikhailov
University of Augsburg

Germany
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Theoretical Studies on Formation, Property 
Tuning and Adsorption of Graphene Segments 

R.Q. Zhang and Abir De Sarkar 
City University of Hong Kong,  

 Department of Physics and Materials Science, Hong Kong SAR, 
 China 

1. Introduction  
A single graphene sheet is a planar monolayer of sp2-bonded carbon atoms arranged on a 
two-dimensional honeycomb lattice made of hexagonal rings. Graphene is the basic 
structural element of some carbon allotropes including graphite, carbon nanotubes and 
fullerenes. Planar polycyclic aromatic hydrocarbons (PAHs) with only benzenoid hexagonal 
rings can be viewed as fragments of a graphene sheet with the peripheral atoms saturated 
with hydrogen, and thus provide molecular models of graphene segments. Graphene 
segments are of paramount importance both from scientific and technological perspectives. 
Moreover, the PAHs or graphene segments themselves are of great research interest per se, 
since they are widely found in the residues of domestic and natural combustion of coal, 
wood, and other organic materials, and their unique electronic properties provide 
opportunities for novel functionalized nanomaterials and nanodevices (Wu, Pisula et al. 
2007). Understanding the mechanism of formation of graphene segments is necessary to 
control its formation and in turn, to meet its application requirements. In our work, we have 
elucidated the role played by H during CVD growth of carbon materials (Zhang, Chu et al. 
2000) including graphene and diamond. Graphene materials are endowed with a wealth of 
properties, including luminescence; which has been frequently reported in various CVD 
Diamond or a-C:H films (Bergman, McClure et al. 1994; Kania and Oelhafen 1995; Rusli, 
Amaratunga et al. 1995; Bourée, Godet et al. 1996; Liu, Gangopadhyay et al. 1997). Visible 
photoluminescence (PL) has been observed in carbon nanoclusters embedded in SiO2 matrix 
(Zhang, Bayliss et al. 1996) and from C60 thin films (Gapozzi, Casamassima et al. 1996). 
Unlike a-Si:H, the PL efficiency of a-C:H film is high and it shows luminescence even at 
room temperatures (Wagner and Lautenschlager 1986; Fang 1991; Schütte, Will et al. 1993; 
Xu, Hundhausen et al. 1993; Nevin, Yamagishi et al. 1994). A clear understanding of the 
luminescence phenomenon would help to produce high-quality luminescent films by a 
proper control of the experimental conditions. Correspondingly, the structure property 
relationship responsible for broadband luminescence in a:C-H films and carbon 
nanostructures was clearly pinpointed in our work (Zhang, Bertran et al. 1998; Feng, Lin et 
al. 2009). To the best of our knowledge, size-dependent PL mechanism was first reported by 
us (Zhang, Bertran et al. 1998).  
The intermolecular, weak π-π interactions are of utmost importance for understanding the 
various properties of graphene sheets (Novoselov, Geim et al. 2004; Feng, Lin et al. 2010) 
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and other carbon-related nanostructures, including hydrogen-terminated graphene 
nanoribbons with a finite nanosize width (Barone, Hod et al. 2006). The role of π-π 
interactions in benzene dimers (Feng, Lin et al. 2010) and in the stacking of graphene sheets 
(or graphene multilayers) have been thoroughly addressed in our detailed theoretical 
studies (Feng, Lin et al. 2009). In our investigations (Lin, Zhang et al. 2007; Fan, Zeng et al. 
2009), the weak van der Waal’s (vdW) interactions were also found to be of pivotal 
significance in binding bio-molecules to carbon nanotubes (CNTs) from the viewpoints of 
important biological applications and bio-compatibility. These non-covalent, weak 
interactions do not affect the chemical and conductive properties of carbon nanotubes unlike 
covalent bonds and thereby aid an efficient retention of its pristine properties during their 
actual practical applications. 
Water is a universal solvent and plays a crucial role in the mechanism of a variety of 
chemical and biological processes. The properties of water molecules or clusters in different 
ambiences can be a lot different from that of its bulk phase. To shed light on that, we have 
probed theoretically into the interaction of water clusters with graphite (Lin, Zhang et al. 
2005). Single-walled carbon nanotubes (SW-CNTs) have novel structural, mechanical, and 
electronic properties but are hydrophobic. Water encapsulated within hydrophobic SW-
CNTs, commonly known as ice nanotubes (INT), provide important clues to the 
functionality of biological nanopores (Sansom and Biggin 2001). Moreover, INTs have been 
found to exhibit novel properties such as proton conduction, hydrogen-bond network, 
phase transitions, etc (Maniwa, Kumazawa et al. 1999; Hummer, Rasaiah et al. 2001; Koga, 
Gao et al. 2001; Martí and Gordillo 2001; Noon, Ausman et al. 2002; Mann and Halls 2003; 
Martí and Gordillo 2003; Mashl, Joseph et al. 2003; Wang, Zhu et al. 2004). Through a 
systematic investigation, we have revealed the geometrical structure adopted by INTs 
within SW-CNT and the signatures in its vibrational spectra (Feng, Zhang et al. 2007).  
Hydrogen is one of the most promising energy fuels for automobiles and can be potentially 
exploited in smaller portable devices. Due to the large surface area, carbon-based 
nanostructures, such as CNTs, appear to be ideal storage materials for the hydrogen storage. 
There is an ongoing debate within the experimental community with regard to the viability 
of CNTs as hydrogen storage materials. Our effective predictive modelling (Fan, Zhang et 
al. 2009) provides important and useful pointers to experimentalists on this. The chapter 
systematically organizes our computational findings pertaining to graphene segments into 
different sections, which is intended to provide a deep insight into the properties of 
graphene segments and useful guidance to future research and applications.  

2. Graphene synthesis 
A scientifically clear understanding of the different methods for graphene synthesis is 
essential to realize the optimum potentiality of graphene in a large variety of its 
applications. The size and quality of the graphene produced depends on the techniques 
used and the next sub-sections are devoted to some of the commonly used methods, their 
merits and demerits. 

2.1 Chemical Vapor Deposition (CVD) approach 
Synthesis of graphene by CVD has been introduced recently (Sutter, Flege et al. 2008; Li, Cai 
et al. 2009; Li, Zhu et al. 2009; Reina, Jia et al. 2009; Reina, Thiele et al. 2009). Graphene 
acquired from the CVD process has demonstrated large area, high quality, controllable 
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number of layers and low defects. CVD approach has been found to be by far the most 
effective technique to produce high quality, large scale graphene that can be compatibly 
integrated into the Si device flows.  
The CVD based graphene synthesis process typically involves a thin layer of a transition 
metal (usually a few hundred nanometers thick) deposited on a substrate e.g. SiO2. The 
substrate is then put into a furnace to be heated up to about 1000º C in a hydrocarbon gas 
(e.g. methane and hydrogen) environment. The transition metallic layer catalyzes the 
decomposition of hydrocarbon gas and the dissociated carbon atoms gradually absorbs into 
the metal layer or diffuses/remains on the metal surface depending on the metal. 
Experimentally, many different transition metal catalysts, (e.g. Ru, Ir, Pd, Ni, Cu) have been 
used to synthesize graphene and two distinct growth mechanisms have been proposed (Li, 
Cai et al. 2009). (I) Precipitated growth, in which decomposed C atoms dissolve into the 
catalyst first and then precipitate to the metal surface to form graphene during the 
subsequent cooling. This is because the solubility of carbon in the metal decreases with 
temperature and the concentration of carbon decrease exponentially from the surface into 
the bulk. The follow-up cooling process helps the carbon atoms to segregate to the metal 
surface to form graphene. (II). Diffusive mechanism, in which the decomposed C atoms 
remain or diffuse on the metal surface and then incorporate into graphene directly. 
Mechanism I corresponds to those metals that interact strongly with C atoms and has the 
binary phase of metal carbide (e.g., Ni) and growth mechanism II corresponds to those 
which have no metal carbide phase (e.g., Cu). For mechanism I, continuous precipitation of 
C from the interior of catalysts normally leads to the non-uniform, multilayer formation of 
graphene layer as carbon prefers to segregate at the nickel grain boundaries (Yu, Lian et al. 
2008). This problem is alleviated in mechanism II (Li, Cai et al. 2009) and it is known to be 
the best for the synthesis of monolayer graphene. Notably, inch-sized graphene has been 
demonstrated and synthesized on the Cu foil surface (Li, Cai et al. 2009; Li, Zhu et al. 2009). 
A rapid cooling rate in mechanism I can aid the suppression of preferential segregation of 
carbon at grain boundaries of the metal (e.g Ni) and thereby control the number of graphene 
layers (Kim, Zhao et al. 2009), as demonstrated by Kim et al. Graphene segregation during 
cooling is a non-equilibrium process (mechanism I). Non-equilibrium segregation in general 
involves the transport of vacancy-impurity (vacancy-carbon in this case) complexes to sinks, 
such as grain boundaries and surfaces during cooling, and strongly depends on the cooling 
rate (Thuvander and Andrén ; Yu, Lian et al. 2008). Different cooling rates lead to different 
segregation behaviors. Extremely fast cooling rate results in a quench effect in which the 
solute atoms lose the mobility before they can diffuse. A finite amount of carbon is found to 
segregate at the surface at medium cooling rates, which is found to be optimal. The 
extremely slow cooling rate allows carbon with enough time to diffuse into the bulk, so 
there will not be enough carbon segregated at the surface. Roughness of the metal substrates 
affects the uniformity of graphene layers synthesized by CVD (Yu, Lian et al. 2008). Thinner 
and more uniform graphene can be synthesized on smoother Ni substrates.  
Metal-catalyzed graphene synthesis has been very well studied. Yet, the role of H2 in the 
growth atmosphere, which is also very crucial for graphene growth, needs to be addressed 
duly. 

2.1.1 Role of H2 during CVD growth 
It is well-known that hydrogen gas plays a key role for CVD diamond growth, while it acts 
as an etchant for amorphous carbon. A hydrogen molecule is very stable at temperatures up 
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to 1000 °C. However, in the presence of a metal catalyst, at about 450 °C, the molecule 
dissociates and becomes reactive. Dissociation of the H2 molecules in the presence of Ni and 
other metals was clearly demonstrated in an experiment done by Haluška et al. (Haluska, 
Hirscher et al. 2004). Atomic hydrogen then acts as an etching agent reducing preferably 
amorphous carbon that contains unsaturated dangling bonds. The role of etching by 
hydrogen during CVD is discussed in the following sub-section.   
2.1.1.1 Etching by hydrogen during CVD 
Diamond deposition with CVD has been successfully demonstrated using hydrogen as an 
etchant to remove the non-diamond phase. The selectivity of hydrogen in etching the two 
carbon phases, graphite and diamond, is considered the key factor for success in the 
synthesis of high-quality diamond films. The preferential etching of the sp2 phase over the 
sp3 phase by atomic hydrogen has been extensively reported. The role of atomic hydrogen 
both as sp2 etchant and sp3 promoter during the diamond growth is therefore well 
recognized experimentally and theoretically (Loh, Foord et al. 1996; Mendes, Corat et al. 
1997). In addition, the etching selectivity of hydrogen has also been used to control the 
preferential growth orientation for obtaining oriented diamond crystals (Zhang, Jiang et al. 
1997).Our comprehensive theoretical study based on Hartree-Fock (HF) molecular orbital 
approaches (Zhang, Chu et al. 2000) revealed the role of hydrogen species during the CVD 
growth and clarified the etching effect of the hydrogen species on sp2 phase of carbon. 
The overlap between the Highest Occupied Molecular Orbital (HOMO) of one molecule and 
the Lowest Unoccupied MO (LUMO) of another (also known as electron delocalization) 
determines the nature of chemical reaction between the two molecules (Hoffmann 1988; 
Fukui and Fujimoto 1997). Because the extent of electron delocalization is inversely 
proportional to the energy difference between these MOs, a small energy difference between 
the HOMO of one molecule (electron donor) and the LUMO of the other (electron acceptor) 
indicates a favorable reaction. This energy difference between HOMO of the electron donor 
and LUMO of the electron acceptor is hereafter referred to as the HOMO−LUMO difference 
of the reacting system. The frontier orbitals (HOMO and LUMO) were determined in this 
work using HF and configuration interaction (CI) instead of density functional theory (DFT) 
because the latter theory provides too close occupied and unoccupied states to analyze. 
Under typical CVD conditions of diamond growth, hydrogen exists as various species of 
neutrals and ions. The HOMO-LUMO difference (with hydrogen as electron donor) as a 
function of the cluster size of two types of clusters is shown in Fig. 1.  Each curve displays an 
overall tendency to decrease as the cluster size increases. This result is consistent with our 
earlier report (Zhang, Bertran et al. 1998) that the HOMO-LUMO gap of the same silicon or 
carbon cluster decreases as the cluster size increases and levels off when the cluster size 
reaches about 30 atoms. Thus, the reactivity of hydrogen species is less sensitive to the 
cluster size for larger clusters. The HOMO-LUMO differences between neutral hydrogen 
and all the clusters are illustrated in Figure 1(a), in which molecular hydrogen shows larger 
HOMO-LUMO differences and thus exhibits a lower reactivity than the atomic hydrogen. 
This relatively low reactivity of molecular hydrogen gives rise to the well-known small 
etching effect of molecular hydrogen in CVD processes (Harris, Doll et al. 1995). Being an 
abundant species in some CVD processes, atomic hydrogen is considered to act as the phase 
etchant. As illustrated in Figure 1(a), the HOMO-LUMO difference of H/sp2-carbon is 
significantly different from that of H/sp3-carbon, indicating that the reactivity of atomic 
hydrogen with the two carbon phases should be considerably different. The smaller HOMO-
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LUMO difference of H/sp2-carbon implies the preferential etching selectivity for the sp2 
phase, which is in good agreement with experiments (Donnelly, McCullough et al. 1997; 
Ishikawa, Yoshimi et al. 1997). 
 

 

Fig. 1. HOMO-LUMO differences between (a) neutral hydrogen species and (b) negative 
hydrogen species; and BN, carbon clusters as functions of atomic number (Zhang, Chu et al. 
2000). 

Fig. 1(b) shows the HOMO-LUMO difference of the H- ion and the clusters. The result 
shows that the reactivity of the H- ion is considerably higher than that of the neutral 
hydrogen. Similar to the case of neutral hydrogen, the H- ion shows preferential etching of 
the sp2-carbon over the sp3-carbon phase. In fact, when the charged hydrogen ion 
approaches the carbon clusters, charge transfer may take place. This may lead to 
neutralization of the H- ion and charging of the carbon clusters. Finally, the chemical 
reaction occurs between the charged clusters and neutral hydrogen. Hence, the reactivity of 
the hydrogen ion can also be explored from the point of view of charge transfer. Although it 
is impossible to obtain the HOMO-LUMO data for H+, using the concept of charge transfer, 
the information about H+ may be indirectly studied by considering the reactivity between 
positively charged clusters and the atomic hydrogen. Table 1 lists the results on small 
charged clusters. Comparing with the neutral, the negatively charged cluster has its HOMO 
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and LUMO moved up. The energy difference between the HOMO of the negatively charged 
cluster and the LUMO of hydrogen is relatively small, indicating that the reactivity between 
the charged cluster and hydrogen is still higher than that between neutrals. For the 
positively charged cluster, the calculated HOMOs and LUMOs move to lower energies. The 
reactivity of atomic hydrogen (electron donor now) with the positively charged cluster is 
still higher than that with neutral cluster. Hydrogen ions also found in experiments have a 
higher reactivity than their neutral one (Davis, Haasz et al. 1987), which is in good 
agreement with our results. 
 

 HOMO HOMO of neutral LUMO LUMO of neutral 
C6+ (sp2) −0.55619 −0.33067 −0.23272 0.14906 
C6+ (sp3) −0.59758 −0.42311 −0.36760 0.22666 
C6- (sp2) 0.05325 −0.33067 0.36703 0.14906 
C6- (sp3) 0.20480 −0.42311 0.37316 0.22666 

Table 1. HOMO and LUMO Values of Small Charged Clusters in Comparison with Those of 
Neutral Ones, Obtained Using HF Method with Basis Set 6-31G** (Unit: au) (Zhang, Chu et 
al. 2000). 
 

 HOMO LUMO 
 carried charge (atomic unit) carried charge (atomic unit) 
 −1 0 +1 −1 0 +1 

C6 (sp2) 0.05325 −0.33067 −0.55619 0.36703 0.14906 −0.23272 
C10 (sp2) 0.02096 −0.28689 −0.48896 0.29973 0.10296 −0.20351 
C6 (sp3) 0.20480 −0.42311 −0.59758 0.37316 0.22666 −0.36760 
C10 (sp3) 0.18870 −0.42209 −0.55917 0.34822 0.21937 −0.33920 

Table 2. Trend for HOMO and LUMO with Cluster Size (Unit: au) (Zhang, Chu et al. 2000). 

As shown in Table 2, the influence of carried charge on the HOMO and LUMO energies 
decreases as the cluster size increases. This suggests that charge transfer has only a minor 
influence on the larger clusters. Accordingly, the charge-transfer effect should have little 
influence on the conclusions drawn from the calculations for neutral species. We note that 
while charging might influence the sticking probability of the species with the substrate, the 
bonding characteristics between the two parties would be mainly determined by the 
reactivity between their neutrals. The interaction between hydrogen species and the 
substrate has two meanings: their sticking to the substrate and their chemical reaction with 
the substrate. The higher reactivity of the hydrogen ion implies a higher sticking probability 
with the substrate than for atomic hydrogen. In summary, atomic hydrogen and hydrogen 
ions show a large difference in their reactivities towards the sp2 and the sp3 carbon phases. 
This difference facilitates the diamond growth via CVD methods. Hydrogen ions also show 
higher reactivity than the neutral. 
2.1.1.2 Prevention or minimization of etching 
The effects of hydrogen can be turned around to the aid of synthesis and growth of 
graphene during CVD by a careful control of the growth conditions. Despite the etching 
action of hydrogen on the sp2 phase of carbon, it is found that a critical amount of hydrogen 
is necessary to synthesize a few layers of graphene. This is because hydrogen maintains a 
balance between the production of reactive hydrocarbonaceous radicals and the etching of 
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the graphene layer during the CVD process. If the ratio of methane to hydrogen is too low, 
the etching reaction becomes much faster than the formation of graphene layers. This was 
also experimentally proved in a recent work of Kong’s group (Reina, Thiele et al. 2009). As a 
result, the ratio of gas mixture between methane and hydrogen needs to be optimized in 
order to obtain a continuous, homogeneous and uniform graphene layer(s) (Park, Meyer et 
al. 2010). 
2.1.1.3 Beneficial effects of H2 
If the growth conditions are properly adjusted, H2 may be utilized to promote the synthesis 
and growth of graphene during CVD. H2 in growth atmosphere influences the uniformity of 
graphene layers synthesized by CVD (Yu, Lian et al. 2008). With a high dosage of H2 
introduced 1 h before introducing the hydrocarbon gases, the uniformity of graphene is 
significantly enhanced, which suggests an annealing effect of H2. It is believed that H2 can 
eliminate certain impurities (such as S and P) that may cause local variations in the carbon 
dissolvability in the metal substrates (Angermann and Hörz 1993). In addition, atomic H can 
remove defects in carbon (and anneal dangling bonds) at elevated temperatures. 

2.1.2 Improvisations on CVD 
In general, graphene synthesized by CVD has a high quality and a large area. Yet, they are 
multi-crystalline in structure (Li, Cai et al. 2009). This is attributable to multiple factors: the 
epitaxial growth mechanism of graphene on transition metal surfaces, the multi-crystalline 
nature of the catalyst substrate, and the simultaneous nucleation of C atoms from multiple 
sites of the substrate surface. Therefore, further scientific research is required for fabricating 
high quality graphene with large single crystal domains. The recent experimental 
observation clearly showed the domain formation of CVD synthesized graphene and the 
defects are lined along the boundaries of the domains (Li, Cai et al. 2009). There are many 
experimental studies on the growth mechanism of graphene on the catalyst surface 
(Loginova, Bartelt et al. 2008; Gruneis, Kummer et al. 2009; Loginova, Bartelt et al. 2009; 
McCarty, Feibelman et al. 2009; Starodub, Maier et al. 2009). McCarty and his co-workers 
(Loginova, Bartelt et al. 2008; Loginova, Bartelt et al. 2009; McCarty, Feibelman et al. 2009; 
Starodub, Maier et al. 2009) have highlighted the significance of C dimer super-saturation on 
the metal surface to initiate the nucleation of graphene. They have also shown that graphene 
nucleation preferentially occurs at metal steps rather than at terraces. While theoretical 
studies in this nucleation are still scarce, Chen and his co-workers have recently studied the 
formation of carbon monomer and dimer on transition metal terraces and steps to probe the 
epitaxial growth of graphene (Chen, Zhu et al. 2010). 
The methods of graphene synthesis which preceded CVD are briefly mentioned below. 

2.2 Exfoliation method 
One of the earliest and simplest methods consisted in micromechanical exfoliation or 
cleavage of graphite (Novoselov, Geim et al. 2004; Novoselov, Geim et al. 2005; Novoselov, 
Jiang et al. 2005). Layer(s) of graphene are peeled off mechanically from highly ordered 
graphite using a Scotch tape and then deposited on a substrate e.g. SiO2. This is a simple yet 
efficient method, as graphene is obtained from highly ordered graphite crystals. Graphene 
extracted by microexfoliation shows very good electrical and structural quality. However, 
the shortcoming of this most elementary method is its non-scalability and production of 
uneven graphene films with small area.  
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2.3 Epitaxial growth 
Graphene is also synthesizable by annealing of SiC crystal (Berger, Song et al. 2004; Berger, 
Song et al. 2006) at a very elevated temperature (~2000 K) in ultra-high vacuum. Thermal 
desorption of Si from the top layers of SiC crystalline wafer yields a multilayered graphene 

structure that behaves like graphene. The number of layers can be controlled by limiting 
time or temperature of the heating treatment. The quality and the number of layers in the 
samples depend on the SiC face used for their growth (Castro Neto, Guinea et al. 2009) (and 
references therein). Although the produced structure has a larger area than that obtainable 
by the exfoliation technique, still the coverage or area is way below the size required in 
electronic applications. Moreover, it is difficult to functionalize graphene obtained by this 
route.  

2.4 Wet-chemistry approach  
Wet-chemistry based approach is also employed to synthesize graphene by reduction of 
chemically synthesized graphene oxide (Stankovich, Dikin et al. 2007; Eda, Fanchini et al. 
2008; Pichon 2008) (and references therein). Graphite is transformed into acid-intercalated 
graphite oxide by a severe oxidative treatment in sulphuric and nitric acid (Hummers and 
Offeman 1958). The intercalant is then rapidly evaporated at elevated temperatures, 
followed by its exposure to ultrasound or ball milling. Exfoliation of the graphite oxide 
readily occurs in aqueous medium due to the hydrophilicity of the former. Subsequent 
reduction of exfoliated graphite oxide sheets by hydrazine results in the precipitation of 
graphene owing to its hydrophobicity (Stankovich, Dikin et al. 2007). It is more versatile 
than the methods comprising exfoliation and epitaxial growth on SiC and easier to scale up. 
Yet, it has a poor control on the number of layers of graphene produced. Graphene 
synthesized by this method may remain partially oxidized, which potentially changes its 
electronic, optical, and mechanical properties.  

3. Properties of graphene 
The distinctive electronic, thermal and mechanical properties of graphene make it a very 
promising candidate for a wide range of applications in nanoscience and nanotechnology. 
The versatile properties of graphene are very well documented in the exponentially growing 
scientific literature. Some of its interesting properties and its technological implications are 
discussed hereafter.  

3.1 Electronic properties 
Graphene has immense potential for electronics for its extraordinarily high mobility of its 
charge carriers at room temperature. When Si-based technology is approaching its 
fundamental limits, graphene seems to be an ideal candidate to take over from silicon (Geim 
and Novoselov 2007). Yet, graphene is semi-metallic with no band gap, which severely 
limits its applications in electronics (Wei, Wang et al. 2010) due to its high leakage current in 
many applications. The electronic band gap plays a central role in modern device physics 
and technology and controls the performance of semiconductor devices. Moreover, it is a 
property inherent to semiconductors and insulators which considerably govern their 
transport and optical properties (Zhang, Tang et al. 2009). It has been possible to open and 
tune the band gap of graphene bilayers by applying an electric field (Zhang, Tang et al. 
2009) or by doping (Ohta, Bostwick et al. 2006). These results have profound implications for 
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potential utilization of graphene in electronics. The structure of graphene can be tailored to 
change its electronic properties (spectrum) by several means discussed in the next sub-
section. The structural manipulation may induce optical properties (i.e band-gap opening), 
which in turn gets incorporated into it, resulting in its potential for opto-electronic 
applications. 

3.2 Optical properties 
Quantum size effects show up when the π electrons in graphene are confined laterally e.g. in 
graphene segments (Zhang, Bertran et al. 1998; Feng, Lin et al. 2009) or graphene 
nanoribbons (GNR) (Han, Ouml et al. 2007). An energy gap opens up when carriers are 
confined to a quasi-one dimensional system like GNR. GNR shows optical properties which 
are sensitive to their width, family, crystallographic orientation and edge termination 
(Nakada, Fujita et al. 1996; Wakabayashi, Fujita et al. 1999); similar to the CNTs. The energy 
gap of lithographically patterned GNR structures has been found to scale inversely with the 
ribbon width, which demonstrates the possibility to engineer the band gap of graphene 
nanostructures by lithographic processes (Han, Ouml et al. 2007). An alternative route to 
induce the formation of a band gap is through the hydrogenation of graphene (Elias, Nair et 
al. 2009; Guisinger, Rutter et al. 2009; Samarakoon and Wang 2010). The modification of the 
carbon bonds associated with the hydrogenation preserves the crystalline order of the lattice 
but leads to rehybridization of the carbon atoms from a planar sp2 to a distorted sp3 state 
(Sofo, Chaudhari et al. 2007). Recent experimental studies have demonstrated reversible 
hydrogenation through heating (Elias, Nair et al. 2009). Our theoretical findings relevant to 
structure and size dependent PL in carbon nanostructures (Zhang, Bertran et al. 1998; Feng, 
Lin et al. 2009) are discussed in the following sub-section. 
  

 
Fig. 2. Models for hexagonal clusters (or graphene segments): (a) C6H6, (b) C10H8, (c) C16H10, 
(d) C24H12, (e) C32H14, (f) C42H16, (g) C54H18 and (h) C66H18. The terminated bonds indicate the 
sites of boundary hydrogen atoms (Zhang, Bertran et al. 1998).  
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Fig. 3. Schematic diagram illustrates the distribution of band-gap states in a-C:H materials. 
A solid line indicates the total density of states (DOS); a dashed line represents the 
unlocalized states; and the dash-dotted line shows the localized states (Zhang, Bertran et al. 
1998). 

The broadband luminescence between 1.5 and 2.5 eV from carbon-based films has been 
attributed to the presence of a sp2 amorphous phase or graphite phase (Badzian, Badzian et 
al. 1988; Nemanich, Glass et al. 1988). The distribution of states within the energy gap 
introduced by an sp2 disordered phase in CVD diamond film has been considered as the 
origin of the broadband luminescence (Bergman, McClure et al. 1994), based on the theory 
of amorphous material (Street 1984). Further, the mechanism of luminescence and 
recombination in a-C:H and its alloys has been proposed (Robertson 1996 (a); Robertson 
1996 (b); Silva, Robertson et al. 1996) to be due to a modification of the band edges in 
hydrogenated amorphous silicon. The band-tail states were assumed to arise from clusters 
of sp2 sites. The π-bonding sp2 phase has frequently been related to the origin of the 
luminescence (Rusli, Amaratunga et al. 1995; Bourée, Godet et al. 1996; Liu, Gangopadhyay 
et al. 1997). The broadband luminescence is commonly believed to be related to the gap/tail 
states produced from small sp2 clusters with various sizes and/or shapes. A new 
photoluminescence model taking account of individual cluster has presented a convincing 
mechanism (Demichelis, Schreiter et al. 1995). Still, clear pictures of which structures or 
shapes of sp2 carbon-clusters contribute to the highly efficient luminescence were missing. 
For a crystal diamond that is also a pure sp3-bonded material, the gap is not only indirect 
but also wide (5.49 eV at 77 K (Collins 1993)). The gap of a nano-structural diamond-like 
crystallite may be even larger, and thus may not relate to the luminescence that is presently 
concerned in the range 1.5~2.5 eV generated by means of optical transition between band 
states. On the other hand, the π-bonding states of graphite lie closest to the Fermi level, so it 
does not seem realistic to relate the gap formed by these states to the luminescence between 
1.5 and 2.5 eV, too. However, a nano-sized π-bonding sp2 cluster may show a fairly wide 
energy gap in comparison with that of the graphite material, as shown in our work (Zhang, 
Bertran et al. 1998), which coincides with the size-dependence rule that normally holds for 
many other materials. This feature has actually been seen in the calculations with a Hückel 
approximation for several sp2 carbon clusters (Robertson and O'Reilly 1987; Robertson 
1995). However, the previous study was only qualitative and did not distinguish the 
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different features of states in the gap-tail caused by the individual sp2 carbon clusters due to 
their different sizes and/or shapes. Such a distinction, in our opinion, is very important for 
understanding the origin of highly efficient luminescence from carbon-based materials. 
For the carbon-based materials described here, it is widely believed that both the size and 
shape determine the energy gap and the broadband luminescence (Demichelis, Schreiter et 
al. 1995; Robertson 1996 (a); Robertson 1996 (b); Silva, Robertson et al. 1996). However, any 
structural deviation from the stable configurations (for carbon, the stable structures are 
tetrahedral or sp3 and hexagonal or sp2) may produce localized states so that the energy gap 
is influenced. Obviously, the localized states do not relate to the efficient, room temperature 
luminescence. Thus, the small clusters with structures such as a fivefold ring, sevenfold ring 
and off-plane hexagonal that are not the stable hexagonal structures are doubtful for the 
main contribution to the efficient broadband luminescence. Also, the main source for such 
luminescence would be the stable hexagonal carbon clusters. We carried out calculations for 
a series of tetrahedral and hexagonal atomic clusters, shown in Fig 2 based on semi-
empirical molecular orbital and density functional theories to determine the size-
dependence effect of the energy gap in such clusters. We have classified the band-tail states 
into localized and confined, as shown in Fig 3 in order to emphasize the role of hexagonal 
planar shape of carbon-clusters in the broad band visible PL. The localized states result from 
the structural deviation from graphite-like configuration, and the associated luminescence 
may be described by using the conventional theory for amorphous materials. The confined 
states are generated due to the existence of stable graphite-like local structures with various 
sizes shown in Fig. 2 and are the main factor for giving efficient, room-temperature 
luminescence. Our calculations of a series of small hexagonal carbon clusters shown in Fig. 2 
demonstrate that the energy-gap distribution, due to the difference in size, is considerably 
broad, which explains the broadband feature of luminescence. Weak π-π interaction enables 
multilayer stacking of graphene sheets in different possible ways shown in Fig 4 (Feng, Lin 
et al. 2009) and thereby helps the formation and stability of large-sized sp2 C-H films. Our 
calculations show that the energy gaps of graphene are strongly dependent on their sizes 
(Feng, Lin et al. 2009), while the stacking order and the number of stacked layers have a 
minor influence. The energy gap is found to decrease with the increasing size, as shown in 
Fig 5. It turns out that by controlling the formation of graphene during CVD, it would be 
possible to control the size of the growing graphene and thereby tune its luminescent 
properties by utilizing our results on the size dependence of energy gap. 

3.3 Non-covalent binding properties 
The weak, intermolecular, vdW, π-π interactions (Hunter and Sanders 1990) play a crucial 
role in the crystal packing of organic molecules containing aromatic rings (Desiraju and 
Gavezzotti 1989; Hunter, Lawson et al. 2001), the intercalation of certain drug molecules into 
DNA (Brana, Cacho et al. 2001), the binding affinities of host-guest complexes (Muehldorf, 
Van Engen et al. 1988; Ferguson, Sanford et al. 1991; Chipot, Jaffe et al. 1996), as well as the 
three-dimensional structures of biological systems, including proteins and nucleic acids, and 
their molecular organization and recognition processes (Burley and Petsko 1985; Blundell, 
Singh et al. 1986; Hobza, Selzle et al. 1994). Graphene sheets can be stacked into bilayers and 
multilayers by virtue of π-π interactions between the neighboring sheets. The electronic 
properties of graphene multilayers vary with the stacking order, and rapidly evolve with 
the number of layers, approaching the 3D limit of graphite (Geim and Novoselov 2007; 
Castro Neto, Guinea et al. 2009).  
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Fig. 4. Top views of the arrangement of the carbon atoms in two adjacent coronene planes in 
(a) staggered and (b) parallel-displaced stacking, and in coronene trimers with (c) ABA and 
(d) ABC stacking; gray, red, and blue represent the lowest, middle, and top layers, 
respectively (Feng, Lin et al. 2009). 
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Fig. 5. Variation of the energy gap with the size of graphene sheet model dimers for the 
staggered, hexagonal, and parallel-displaced stackings, respectively. The open symbols and 
the insets show the energy gaps of  C24H12 and C54H18 monomers, and their trimers with 
ABA and ABC stackings, and tetramers with an ABAB sequence (Feng, Lin et al. 2009). 
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Theoretically, it is challenging to model weak vdW interaction with the conventional DFT 
unless an appropriate, correction term for vDW interaction is incorporated. With such a 
treatment, we have shown in our work that the stacked graphene segments can be held 
together in different orientations by π-π interactions and the binding energy is strongly 
dependent on the size of the PAH, on stacking order, and on the number of stacked layers 
(Feng, Lin et al. 2009).  A graphene bilayer has very unusual electronic properties, such as 
the anomalous integer quantum Hall effect that significantly changes with respect to a single 
layer (McCann and Fal'ko 2006; Novoselov, McCann et al. 2006; Malard, Nilsson et al. 2007), 
and which can be used to distinguish between a graphene bilayer and a monolayer. 
Moreover, as already mentioned in a preceding sub-section, the band-gap of graphene 
bilayer is tunable in different ways (Ohta, Bostwick et al. 2006; Zhang, Tang et al. 2009). The 
importance of graphene bilayers emphasizes the need to understand the binding between 
the two sheets in graphene bilayers. We have shown in our work using dimer, bilayer 
models that the binding energy increases with size until it saturates when it reaches the size 
of about 80 atoms (Feng, Lin et al. 2009). A clear understanding of the weak vdW 
interactions discussed in the section is relevant to some potential applications of graphene. 

4. Physisorption and related applications 
4.1 Water physisorption and novel ice structure formation   
A water cluster adsorbed on a graphite surface is a prototypical weakly bound vdW π-system 
that involves water-graphite and water-water interactions. Our investigations show that the 
binding energy of water clusters interacting with graphite is dependent on the number of 
water molecules that form hydrogen bonds, but is independent of the water cluster size. 
Furthermore, we have found that these physically adsorbed or physisorbed water clusters 
show little change in their IR peak position and leave an almost perfect planar graphite surface 
(Lin, Zhang et al. 2005). SW-CNTs provide a well-defined nanoscale cylindrical pore that can 
serve as a nanometer-sized capillary in the fabrication of quasi-one-dimensional (Q1D) 
materials by filling SW-CNTs with chosen materials (Saito, Dresselhaus et al. 1998; Ugarte, 
Stoeckli et al. 1998). Even though water has been extensively studied, some of its properties 
remain partially unknown. A significant number of them are related to the behavior of water 
under confinement within nanoscale Q1D channels such as SW-CNTs, and the confined water 
is expected to exhibit different physical properties from its bulk counterparts. Since many 
similar scientifically relevant systems can be found in nature, this issue is of great interest to 
biology, geology, and materials science (Sansom and Biggin 2001). 
We have systematically studied using a self-consistent charge density-functional tight-
binding method complemented with an empirical vdW force correction to show that water 
molecules can form cylindrical crystalline structures (see Fig 6), referred to as INTs, by 
hydrogen bonding under confinement within single-walled carbon nanotubes (Feng, Zhang 
et al. 2007). Each water molecule in the optimized INTs is hydrogen bonded to its four 
nearest-neighbor water molecules in a tetra-coordinate configuration, and all water 
molecules constituted a novel cylindrical ice phase with ordered hydrogen-bond network, 
which is weaker than that of conventional hexagonal ice. 
Our calculations show that for the confining CNTs, e.g., (16,0) SW-CNT, the HOMO-LUMO 
gap was slightly reduced from 0.567 to 0.554 eV while the Fermi level increased from −4.619 
to −4.607 eV after it was filled with 6-gonal INT. Figure 7 also shows that both the HOMO 
and LUMO of INT−CNT complex are solely composed of the ones of the confining CNT and  
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Fig. 5. Variation of the energy gap with the size of graphene sheet model dimers for the 
staggered, hexagonal, and parallel-displaced stackings, respectively. The open symbols and 
the insets show the energy gaps of  C24H12 and C54H18 monomers, and their trimers with 
ABA and ABC stackings, and tetramers with an ABAB sequence (Feng, Lin et al. 2009). 
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Theoretically, it is challenging to model weak vdW interaction with the conventional DFT 
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hydrogen bonding under confinement within single-walled carbon nanotubes (Feng, Zhang 
et al. 2007). Each water molecule in the optimized INTs is hydrogen bonded to its four 
nearest-neighbor water molecules in a tetra-coordinate configuration, and all water 
molecules constituted a novel cylindrical ice phase with ordered hydrogen-bond network, 
which is weaker than that of conventional hexagonal ice. 
Our calculations show that for the confining CNTs, e.g., (16,0) SW-CNT, the HOMO-LUMO 
gap was slightly reduced from 0.567 to 0.554 eV while the Fermi level increased from −4.619 
to −4.607 eV after it was filled with 6-gonal INT. Figure 7 also shows that both the HOMO 
and LUMO of INT−CNT complex are solely composed of the ones of the confining CNT and  
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Fig. 6. Optimized (a) pentagonal, (b) hexagonal, and (c) heptagonal INT confined in zigzag 
(l,0) SW-CNT, l = 15, 16, and 17, respectively, and (d) side view of hexagonal INT model; (e) 
structural parameters used for quantifying hydrogen bond as discussed in the text. Red, 
white, and gray spheres represent oxygen, hydrogen, and carbon atoms, respectively (Feng, 
Zhang et al. 2007). 
 

 

Fig. 7. Two isosurfaces of the wave functions of the HOMO (left) and LUMO (right) derived 
from bands at the Γ point for the 6-gonal INT confined in the zigzag (16,0) SW-CNT (Feng, 
Zhang et al. 2007). 

that there is no overlap between molecular orbitals from CNT and INT. Consequently, it can 
be derived that water molecules of INTs can hardly interact with confining CNTs via the 
ordinary OH/π interactions, which are the main intermolecular forces between the water 
molecule and aromatic rings, for instance, in water-benzene/graphite complexes (Lin, 
Zhang et al. 2005). The reason is that each water molecule of INTs is hydrogen bonded to 
two water molecules with its two O−H bonds as hydrogen donors, and there is no other 
O−H bond available for a water molecule to interact with the hexagonal carbon rings of 
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confining CNTs via OH/π interaction. We have revealed that the unique crystalline 
structures of INTs are mainly due to the steric hindrance effect induced by the confining 
CNT rather than the ordinary OH/π interaction between INT and CNT. 

4.2 Hydrogen molecule physisorption and storage 
Hydrogen physisorption by carbon-based nanostructures, which has potential for hydrogen 
storage, still remains challenging. The current preparative methods for CNTs generate 
heterogeneous tubes varying in length, diameter, and chirality. The presence of multiply (n, 
m) chiral SW-CNTs in a given sample poses a major barrier towards realizing many 
potential applications of CNTs. It may also contribute to the many inconsistencies in the 
experimental results.  
The interaction between H2 and CNT is a typical π-involved weak interaction. Using an 
approximate density functional method augmented with a vdW dispersion term, we have 
systematically investigated the role of CNT’s curvature and chirality on the physisorption of 
H2. In our work, we have explored the different possible physisorption sites for H2 molecule 
on SW-CNT, as shown in Fig 8. Based on our results shown in Fig 9, we propose that CNTs 
with diameter of 6–7 Å, such as (5, 5), (8, 0), and (6, 3) tubes, are energetically optimal 
candidates for physisorption of H2. In this relatively narrow range of diameters, the internal 
adsorption binding energies are around −0.22 eV, which is three times as large as that of H2 
on graphene surface; for external adsorption, the binding energy of −0.061 eV is just 18% 
below that of H2 on graphene surface. It is conceivable that the inconsistencies in the 
experimental results (in terms of the hydrogen storage capacities of CNTs) were caused in 
part by the varying diameters of the as-prepared CNT samples used. We have found that 
nanotube’s curvature plays an important role in the physisorption process of hydrogen, 
while the chirality of the tube has a negligible effect. 
 

 
Fig. 8. Different adsorption sites for a hydrogen molecule on a segment of armchair SW-
CNTs (Fan, Zhang et al. 2009).  

4.3 Interaction with bio molecules, its relevance to biosensing 
4.3.1 Flavin Adenine dinucleotide (FAD) 
FAD is in the redox active group of flavoenzymes that catalyzes important biological redox 
reactions and is perhaps the most versatile of all of the redox coenzymes. We simulated the 
adsorption procedure of the FAD on the semiconducting (10,0) and the metallic (5,5) carbon 
nanotubes (CNTs) using a density functional tight binding method with the inclusion of an 
empirical dispersion term in total energy. 
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Fig. 9. Optimized binding energies of molecular hydrogen internally and externally 
adsorbed to CNTs for armchair (a) and zigzag (b) CNTs (Fan, Zhang et al. 2009). 
 

                 
                   (a)                                             (b) 

Fig. 10. Optimized structures of the (a) perpendicular and (b) parallel configurations of FAD 
adsorbed on (10,0) CNT (Lin, Zhang et al. 2007). 

The flavin and adenine groups of FAD could be attracted to the CNT surface through π-π 
stacking but remain at the physisorption distances. The configurations with the FAD long 
axis perpendicular or parallel to the tube axes of the semiconducting (10,0) and metallic (5,5) 
CNTs, shown in Fig 10 were almost energetically degenerate. In the FAD/(10,0) system, the 
FAD flavin group contributed more components in the band structure at the Fermi energy 
level (see Fig 11), which was responsible for the enhancement of the electronic 
transferability as observed in a cyclic voltammogram experiment (Guiseppi-Elie, Lei et al. 
2002). 
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Fig. 11. (Left) Band structure of (a) an isolated (10,0) CNT, (b) FAD/(10,0), and (c) an 
isolated FAD molecule calculated with the same periodic condition. (Right) Total density of 
states of (10,0) CNT (dashed line) and FAD/(10,0) (solid line), and (b) projected density of 
states of O, N, and C atoms of the FAD flavin group in the FAD/(10,0) system. The largest 
five components were marked with different colors, and those from others atoms are shown 
as black color (Lin, Zhang et al. 2007). 
 

     
Fig. 12. Isosurfaces of the wave functions of the HOMO (left panel) and LUMO (right panel) 
derived bands at the Γ point for the FAD adsorbed on the (10,0) CNT surface. The isovalue is 
0.02 au (Lin, Zhang et al. 2007).  
The total DOS and projected density of states (PDOS) of FAD/(10,0) showed that the flavin 
group contributed significant components at the Fermi energy while the adenine group had 
few such components and the phosphate group had none. Hence, the flavin group served as 
the active unit relating to the electronic mobility of the FAD interacting with the CNT.  In 
the FAD/(10,0) system, both HOMO and LUMO have significant contribution from the FAD 
flavin group (Fig. 12). The HOMO and LUMO of the FAD/(5,5) system showed their main 
features contributed by the CNT and the FAD flavin group respectively. This shows that the 
CNT may have contributed to the electron excitation procedure.  
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level (see Fig 11), which was responsible for the enhancement of the electronic 
transferability as observed in a cyclic voltammogram experiment (Guiseppi-Elie, Lei et al. 
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Fig. 11. (Left) Band structure of (a) an isolated (10,0) CNT, (b) FAD/(10,0), and (c) an 
isolated FAD molecule calculated with the same periodic condition. (Right) Total density of 
states of (10,0) CNT (dashed line) and FAD/(10,0) (solid line), and (b) projected density of 
states of O, N, and C atoms of the FAD flavin group in the FAD/(10,0) system. The largest 
five components were marked with different colors, and those from others atoms are shown 
as black color (Lin, Zhang et al. 2007). 
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group contributed significant components at the Fermi energy while the adenine group had 
few such components and the phosphate group had none. Hence, the flavin group served as 
the active unit relating to the electronic mobility of the FAD interacting with the CNT.  In 
the FAD/(10,0) system, both HOMO and LUMO have significant contribution from the FAD 
flavin group (Fig. 12). The HOMO and LUMO of the FAD/(5,5) system showed their main 
features contributed by the CNT and the FAD flavin group respectively. This shows that the 
CNT may have contributed to the electron excitation procedure.  
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Despite a physisorption, there was a noticeable effect on the CNT electronic structure and 
mobility. Our results have prompted others (Ju, Doll et al. 2008; Ju and 
Papadimitrakopoulos 2008; Ju, Kopcha et al. 2009) to experimentally explore the properties 
of CNTs functionalized by flavin mononucleotide and its analogue. 

4.3.2 Peptides 
SW-CNTs have potential for biological applications ranging from biomedical sensors to 
drug delivery (Martin and Kohli 2003; Li, Ng et al. 2005; Contarino, Sergi et al. 2006). Yet, 
such biological applications have, so far, been limited due to two major obstacles: 
hydrophobicity and conformational heterogeneity. Although the solubility in water can be 
improved by chemically modifying the SW-CNTs through covalent bonding of various 
functional groups to the nanotubes (Hirsch 2002; Huang, Fernando et al. 2003), these 
modifications can perturb the intrinsic properties of SW-CNTs, such as electrical properties. 
As a result, alternative approaches using the non-covalent adsorption of surfactants 
(O'Connell, Bachilo et al. 2002), polymers (Dalton, Blau et al. 2001) and biomolecules (Zheng, 
Jagota et al. 2003; Zheng, Jagota et al. 2003; Numata, Asai et al. 2005) to solubilize the SW-
CNTs have been proposed and tested. To that end, much research attention has been 
focused on the design and utilization of polypeptide/CNT complexes because of their 
functionality in biological systems (Dieckmann, Dalton et al. 2003; Zorbas, Ortiz-Acevedo et 
al. 2004; Ortiz-Acevedo, Xie et al. 2005; Pender, Sowards et al. 2005; Karajanagi, Yang et al. 
2006; Su, Leung et al. 2006) recently. 
We investigated the binding nature of three peptides (inactive NB1 and active B1 and B3) to 
single-walled carbon nanotubes (SWCNTs) using a density functional tight-binding (DFTB) 
method with an empirical vdW force correction (Fan, Zeng et al. 2009). Figure 13 shows the 
optimized geometries of the three peptides/(5,5) CNT complexes. We have shown that 
peptides (inactive NB1 and active B1 and B3) could be spontaneously attracted to the 
sidewall of CNTs through π−π and/or H−π stacking, which is at the physisorption distance. 
The competition of π−π and/or H−π stacking plays a key role in binding the peptides to the 
CNTs, thus, determining and stabilizing the binding of the peptide/CNT systems. The 
preservation of the helical conformation upon peptide B3 adsorption to the side wall of 
SWCNT is consistent with the experimental observation obtained using CD spectroscopy 
(Su, Leung et al. 2006). Our results demonstrate that the geometric structure of CNT remains 
almost unchanged after the adsorption of peptides. Moreover, the isosurfaces of the selected 
frontier orbitals show that the π-electronic structures of the CNTs are preserved upon the 
non-covalent adsorption of B3 peptides, which is similar to the features for simple planar 
organic molecules adsorbed on CNTs (Tournus and Charlier 2005; Tournus, Latil et al. 
2005). DOS in Fig 14 furthers our understanding of its electronic properties. Compared with 
the pristine semiconducting (8,0) CNT, the DOS of the B3/(8,0) CNT shows new states near 
the Fermi level, which were contributed by the peptide B3. Still, the nature of physisorption 
is shown since the total DOS preserves the features of the DOS of pristine (8,0) CNT.  
We find new DOS, composed mainly of the HOMO of B3 molecular orbitals, between the 
(8,0) CNT conduction and valence bands. Hence, the band gap of the system has sharply 
decreased from the pristine (8,0) tube 0.58 to 0.29 eV of the complexes. Similar finding of 
band gap reduction has been found in the (7,3) polyC−DNA complex compared to the free 
semiconducing (7,3) tube (Enyashin and et al. 2007). The finding of the new DOS formed 
between the (8,0) CNT conduction and valence bands is quite similar to our previous study 
of FAD/(10,0) CNT (Lin, Zhang et al. 2007). This implies that the non-covalent modification  
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Fig. 13. Illustration of the peptide/(5,5) CNT interactions: (a) inactive peptide NB1, (b) the 
active peptide B1, and (c) the active peptide B3. The π−π stacking and XH−π (X = C and N) 
interactions are displayed in the left and right panels for the (b) B1/CNT complex, 
respectively. Key residues are labelled in red (Fan, Zeng et al. 2009).  

of SW-CNTs by the active peptides might increase the former’s electron transfer capabilities. 
Our study confirms the experimental findings (Wang, Humphreys et al. 2003) on the key 
role of the arene parts, such as His and Trp, and also agree with earlier theoretical reports 
(Chen, Hong et al. 2006; Tomásio and Walsh 2007). 

5. Conclusion 
A proper understanding of the growth and properties of graphene is a must for its optimal 
utilization. We have clarified the functionality of H in etching out the sp2 phase of carbon 
nanostructures and thereby in promoting the sp3 phase during CVD growth of 
graphene/diamond. The growth atmosphere and conditions needs to be properly adjusted 
during CVD growth in order to avoid this etching effect of hydrogen and invoke the 
beneficial effects of H2. The size of graphene segments needs to be controlled during its 
growth by CVD in order to tune its luminescent properties as the energy gap scales 
inversely with the size of graphene segments. The structure of PAHs or graphene segments, 
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SWCNT is consistent with the experimental observation obtained using CD spectroscopy 
(Su, Leung et al. 2006). Our results demonstrate that the geometric structure of CNT remains 
almost unchanged after the adsorption of peptides. Moreover, the isosurfaces of the selected 
frontier orbitals show that the π-electronic structures of the CNTs are preserved upon the 
non-covalent adsorption of B3 peptides, which is similar to the features for simple planar 
organic molecules adsorbed on CNTs (Tournus and Charlier 2005; Tournus, Latil et al. 
2005). DOS in Fig 14 furthers our understanding of its electronic properties. Compared with 
the pristine semiconducting (8,0) CNT, the DOS of the B3/(8,0) CNT shows new states near 
the Fermi level, which were contributed by the peptide B3. Still, the nature of physisorption 
is shown since the total DOS preserves the features of the DOS of pristine (8,0) CNT.  
We find new DOS, composed mainly of the HOMO of B3 molecular orbitals, between the 
(8,0) CNT conduction and valence bands. Hence, the band gap of the system has sharply 
decreased from the pristine (8,0) tube 0.58 to 0.29 eV of the complexes. Similar finding of 
band gap reduction has been found in the (7,3) polyC−DNA complex compared to the free 
semiconducing (7,3) tube (Enyashin and et al. 2007). The finding of the new DOS formed 
between the (8,0) CNT conduction and valence bands is quite similar to our previous study 
of FAD/(10,0) CNT (Lin, Zhang et al. 2007). This implies that the non-covalent modification  
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Fig. 13. Illustration of the peptide/(5,5) CNT interactions: (a) inactive peptide NB1, (b) the 
active peptide B1, and (c) the active peptide B3. The π−π stacking and XH−π (X = C and N) 
interactions are displayed in the left and right panels for the (b) B1/CNT complex, 
respectively. Key residues are labelled in red (Fan, Zeng et al. 2009).  

of SW-CNTs by the active peptides might increase the former’s electron transfer capabilities. 
Our study confirms the experimental findings (Wang, Humphreys et al. 2003) on the key 
role of the arene parts, such as His and Trp, and also agree with earlier theoretical reports 
(Chen, Hong et al. 2006; Tomásio and Walsh 2007). 

5. Conclusion 
A proper understanding of the growth and properties of graphene is a must for its optimal 
utilization. We have clarified the functionality of H in etching out the sp2 phase of carbon 
nanostructures and thereby in promoting the sp3 phase during CVD growth of 
graphene/diamond. The growth atmosphere and conditions needs to be properly adjusted 
during CVD growth in order to avoid this etching effect of hydrogen and invoke the 
beneficial effects of H2. The size of graphene segments needs to be controlled during its 
growth by CVD in order to tune its luminescent properties as the energy gap scales 
inversely with the size of graphene segments. The structure of PAHs or graphene segments, 
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Fig. 14. Total density of states for B3/(8,0) CNT (Fan, Zeng et al. 2009).  

both mono and multi layered, is solely attributed to visible and efficient luminescence at 
room temperature in our comprehensive findings. Weak, intermolecular, vdW interactions 
and its importance have been thoroughly explored in our work. We have found the π-π 
weak vdW interaction to bind together the planar graphene segments or PAHs in bilayers 
and multi-layers over a large size range. Besides, in our theoretical studies, the weak 
interactions of graphene with some important bio molecules provide crucial clues to its 
possible bio applications. For instance, the encapsulation of water molecules within 
hydrophobic CNTs provides pointers to the capillary functionality of biological nanopores. 
We have practically ruled out the role of chirality of CNTs in binding H2 molecules, while 
we have pointed out the role of curvature of CNTs in the same. This has important 
implications for the hydrogen storage potential of CNTs. Furthermore, we have highlighted 
the importance of weak interaction of CNTs with a few important biomolecules in 
preserving the chemical, electrical and other properties of the former. The weak interaction 
was found to enhance the electron transfer capabilities of some bio molecules in our study. 
This signifies the bio-comptability of CNTs and its viability in different bio and other 
practical applications. A good understanding of the binding or interaction between bio-
molecules and CNTs obtained from our work provides useful indicators for designing 
biosensors and drug delivery devices with bio-functionalized CNTs.   
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1. Introduction

The discovery of graphene (Novoselov et al., 2004) and its remarkable electronic properties
(Castro Neto et al., 2009; Geim & Novoselov, 2007; Katsnelson, 2007) initiated great research
interest in this material. Particularly prospective for applications is its extraordinarily high
charge carrier mobility (Bolotin et al., 2008; Du et al., 2008; Novoselov et al., 2004).
Realistic graphene samples are subject to disorder including ripples, impurities, edges
or strains. While these present undesirable obstacles when trying to minimize electron
scattering, controlled external perturbations recently evoked broad interest in the context of
functionalization of graphene (Elias et al., 2009).
Impurities on a graphene sample are imaginable in various ways. While lattice imperfections
like vacancies do not exist in noticeable concentrations unless they are not created artificially
(Chen et al., 2009), adatoms or molecules from the experimental environment can be seen as
a frequent source of electron scattering. The impact of adsorbate-induced scattering processes
on the transport properties has been subject of ongoing discussion since the first fabrication
of single graphene sheets in 2004 (see Peres (2010) for a review).
Transport experiments with chemically doped graphene samples yield different results
regarding the strength of electron scattering due to the dopants: While room temperature
experiments with NO2, e.g., reported chemical doping without significant loss of carrier
mobility (Schedin et al., 2007), the deposition of K at cryogenic temperatures clearly reduced
the electron mobility (Chen et al., 2008). Correspondingly, the role of charged impurity
scattering as compared to, e.g., scattering by resonant impurities or ripples has been
controversially debated: Depending on experimental details both, charged impurities (Adam
et al., 2007; Chen et al., 2008; Hwang et al., 2007; Nomura & MacDonald, 2006; Tan et al.,
2007), as well as resonant impurities were discussed as dominant scattering sources (Katoch
et al., 2010; Katsnelson & Novoselov, 2007; Ni et al., 2010; Ostrovsky et al., 2006; Stauber et al.,
2007). Understanding charge redistributions in realistic graphene-adsorbate systems is hence
crucial.
The high sensitivity of graphene to adsorbate-induced doping has been proven in numerous
experiments (Bostwick et al., 2006; Ohta et al., 2006; Zhou et al., 2008). The two-dimensional
nature maximizes surface effects, which even allows the detection of single adsorption events.
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1. Introduction

The discovery of graphene (Novoselov et al., 2004) and its remarkable electronic properties
(Castro Neto et al., 2009; Geim & Novoselov, 2007; Katsnelson, 2007) initiated great research
interest in this material. Particularly prospective for applications is its extraordinarily high
charge carrier mobility (Bolotin et al., 2008; Du et al., 2008; Novoselov et al., 2004).
Realistic graphene samples are subject to disorder including ripples, impurities, edges
or strains. While these present undesirable obstacles when trying to minimize electron
scattering, controlled external perturbations recently evoked broad interest in the context of
functionalization of graphene (Elias et al., 2009).
Impurities on a graphene sample are imaginable in various ways. While lattice imperfections
like vacancies do not exist in noticeable concentrations unless they are not created artificially
(Chen et al., 2009), adatoms or molecules from the experimental environment can be seen as
a frequent source of electron scattering. The impact of adsorbate-induced scattering processes
on the transport properties has been subject of ongoing discussion since the first fabrication
of single graphene sheets in 2004 (see Peres (2010) for a review).
Transport experiments with chemically doped graphene samples yield different results
regarding the strength of electron scattering due to the dopants: While room temperature
experiments with NO2, e.g., reported chemical doping without significant loss of carrier
mobility (Schedin et al., 2007), the deposition of K at cryogenic temperatures clearly reduced
the electron mobility (Chen et al., 2008). Correspondingly, the role of charged impurity
scattering as compared to, e.g., scattering by resonant impurities or ripples has been
controversially debated: Depending on experimental details both, charged impurities (Adam
et al., 2007; Chen et al., 2008; Hwang et al., 2007; Nomura & MacDonald, 2006; Tan et al.,
2007), as well as resonant impurities were discussed as dominant scattering sources (Katoch
et al., 2010; Katsnelson & Novoselov, 2007; Ni et al., 2010; Ostrovsky et al., 2006; Stauber et al.,
2007). Understanding charge redistributions in realistic graphene-adsorbate systems is hence
crucial.
The high sensitivity of graphene to adsorbate-induced doping has been proven in numerous
experiments (Bostwick et al., 2006; Ohta et al., 2006; Zhou et al., 2008). The two-dimensional
nature maximizes surface effects, which even allows the detection of single adsorption events.
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Using exfoliated graphene on a SiO2 substrate with Ti/Au contacts, Schedin et al. (2007)
visualized events of single molecule adsorption on graphene. Recently developed gas sensors
(Collins et al., 2000; Kong et al., 2000; Robinson, Perkins, Snow, Wei & Sheehan, 2008) raise
hope for a future realization of marketable single molecule detectors.

The natural concentration of impurities in graphene devices depends crucially on the sample
preparation and the experimental setup. Meyer et al. (2008) reported the detection of single
hydrogen adsorbates on graphene on a SiO2 substrate by transmission electron microscopy
(TEM). Under atmospheric conditions at room temperature they estimated the adsorbate
concentration to 0.3%, which relates to about one impurity per 10nm2.
Especially hydrogenation, as demonstrated by Elias et al. (2009), provides a good prospect
for controlled design of graphene’s electronic properties. Hence, there is wide interest in
fractionally and fully hydrogenated graphene, the graphane. Attaching hydrogen on graphene
from both sides leads to a change from sp2 to sp3 hybridization, which opens a band gap.
Through annealing, hydrogenation turns out to be reversible, i.e. the electronic properties of
pristine graphene can be restored. Several theoretical works (Lebègue et al., 2009; Liu & Shen,
2009; Sofo et al., 2007) found a band gap of graphane between 3.5eV and 5.4eV. While this is
slightly too high for electronic applications, partially hydrogenated graphene might be useful
(Xiang et al., 2009). Hence, understanding of the adsorption mechanisms of atomic hydrogen
is essential in search of new paths towards functionalization.
Equally, fluorination of graphene promises a route towards a graphene-based wide band gap
semiconductor (Cheng et al., 2010; Nair et al., 2010; Robinson et al., 2010). At coverages of
70% or more, graphene-fluorine systems with reversible modification of the conductivity by
several orders of magnitudes has been achieved.

Motivated by these recent and promising experiments on impurity effects in graphene, a
theoretical investigation of doping effects in graphene is given in this chapter; in particular,
monovalent adsorbates are considered. Extensive density functional theory (DFT) calculations
are presented to derive a theory of doping and charge redistributions in graphene and to
identify simple models describing these effects realistically. We concentrate on two issues:
charge transfer as relevant for doping, i.e. changes in the number of mobile carriers, as well
as charge transfer as relevant for Coulomb scattering. For hydrogen, fluorine, hydroxyl,
chlorine and potassium adsorbates we determine the amount of the charge transfer by means
of different electrostatic models and compare to band structure based methods (section
(3)). Furthermore, by means of a tight-binding model, impurities are illustrated to lead to
long-range doping of graphene such that even ultra-low concentrations of contamination do
affect the carrier concentration. We investigate the effects of long range Coulomb interaction
in this context and show that the Coulomb repulsion plays a minor role in the process of
charge redistribution for impurity concentrations higher than 0.007%.

2. Calculation of charge transfer

The investigation of adsorption processes rises the question of the doping and Coulomb
scattering due to single adsorbates. For instance, theoretical transport calculations predict a
strong dependence of the scattering cross section on the amount of charge transferred between
adsorbates and graphene (Robinson, Schomerus, Oroszlány & Fal’ko, 2008). A priori charge
transfer is an ambiguous quantity as it comes back to defining the spacial extent of individual
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atoms within a solid. Therefore, several concepts for the description of charge transfer will
be taken into consideration, carefully compared and their implications for experimental
observables like doping or scattering properties will be discussed.

2.1 Population analysis and partitioning of the electron density
A widely employed class of approaches to charge transfer analysis like the Mulliken, Bader
or Hirshfeld analysis aims at directly partitioning the electronic charge density among the
atoms of the system. To this end, a DFT calculation is performed which yields the electronic
density and the Kohn-Sham wave functions. Partitioning schemes using projections of the
Kohn-Sham wavefunctions onto localized atomic orbitals (Löwdin or Mulliken analysis, see,
e.g., Segall et al. (1996)) as well as schemes dealing with the electronic density (Hirshfeld
or Bader analysis, see, e.g., Meister & Schwarz (1994)) have been employed in the context
of graphene adsorbate systems. While ionically bond systems are likely well suited to be
correctly described by this kind of charge transfer analysis, the interpretation of Mulliken,
Bader or Hirshfeld charges in physisorbed graphene-impurity systems (Leenaerts et al., 2008)
or strongly covalent systems (see section 3.2) can be ambiguous. In the latter case, e.g., charge
is smeared out in covalent bonds, and therefore a partition of the interstitial region in solids is
hard.
In general, we expect conventional space partition methods to be more precise for ionic than
for covalent adsorbates. The Bader analysis (Bader, 1991) of covalently and ionically bond
adatoms presented in sections 3.1 and 3.2 will confirm this presumption. On that account,
methods to obtain charge transfer based on electrostatic potentials or the band structure will
be explained in the following.

2.2 Electrostatic approaches to charge transfer
An alternative way to describe the amount of charge transfer is to utilize electrostatic models
and to apply them on output from electronic structure methods like density functional theory.
In this sense, the DFT results can be seen as ”experimental data” being analysed by theoretical
tools and models.
The DFT calculations presented, here, were performed by means of the Vienna Ab-initio
Simulation Package (Kresse & Furthmüller, 1996a;b) (VASP) with PW91-GGA functionals;
the geometric structure was modelled by a three-dimensional supercell and an interlayer
spacing of about 25Å in order to prevent interaction. The Brillouin zones were sampled within
the tetrahedron and the Methfessel-Paxton method in combination with carefully chosen
k-meshes and cut-off energies. Geometries were relaxed until all forces were smaller than
0.02eV/Å per atom.
Electrostatic potential landscapes, experimentally investigated on graphene in EFM
experiments (Moser et al., 2008), can be extracted from DFT simulations (Fig. 1, left) and
used to determine impurity induced charge transfer. From the point of view that (doped)
graphene is metallic, the sheet can be considered as a grounded metal plate of infinite size,
such that — in the simplest model — charged adsorbates can be described by means of
an image charge model: the adatoms are assumed as partial point charges which induces
image charges in graphene. This model is valid at length scales above the screening length of
the doped graphene sheet (Katsnelson (2006)). Then, the electrostatic potential, V(r), in the
vacuum region above the graphene sheet and the impurity can be modelled as

V(�r) = Ve(z) +
1

4π�0
∑
i=1

qi

[
1

|�r −�ri | −
1

|�r −�r�i |
]

. (1)
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Fig. 1. Left: Periodic 4x4 graphene supercell with fluorine adsorbates (red dots). The contour
plot shows the electrostatic potential (in eV) in a height of z = 2agr (with agr ≈ 2.46Å the
graphene lattice constant). To calculate the charge transfer, several paths through the cell are
considered for different heights z and the image charge potential (Eqn. (1)) is fitted to the
data by optimization of the parameters qi. Right: Potential along paths connecting two
adjacent chlorine adatoms on graphene 4x4 for heights z = 3agr (red), z = 4agr (green),
z = 5agr (blue) and fitted curves in units of the lattice constant; the curves are vertically
shifted to the x-axis. Small noise occurs for certain x where a carbon atom is located.

The fitting parameters of this model are the adsorbate point charges qi and an offset Ve(z); the
charges are centered at the positions of the impurity atoms,�ri = (xi , yi, zi), and their mirror
images �r�i = (xi, yi,−zi). The offset is given by Ve(z) = V0 + E0z, where V0 is a constant
and E0 a constant electric field in z-direction due to the three-dimensional periodicity of the
supercell.
The method proves well-suited to fit the charge values for all atomic adsorbates regarded.
Merely for adsorbate groups like hydroxyl, additional dipole fields make the fitting procedure
error-prone (sec. 3.2). Determining partial charges based on Eq. (1) is similar to analysing
dipole moments obtained from the charge density as, e.g., performed for metal adatoms on
graphene by Chan et al. (2008).
An alternative approach to charge transfer based on electrostatic potential is to analyse core
potential shifts of the carbon atoms. These core level shifts arise from charge rearrangement
around the impurity in the graphene sheet and can be calculated within VASP. The analysis of
core level shifts allows estimates of the impurity charge and gives qualitative insight into the
range of redistributions (Fig. 2). Within VASP, the averaged core potential for an atom sitting
at position �Rn is determined by (Kresse, 2010)

Vn =
∫

VDFT(�r)ρtest(|�r − �Rn|)d3r, (2)

where VDFT denotes the electrostatic potential from DFT and ρtest a test charge with norm 1 in
the core region of each atom. This approach is similar to Adessi et al. (2006), where also atom
centered test charges have been employed. The shift of these averaged core potentials, ΔV, as
function of the distance to the bonding C atom is illustrated in Fig. 2.
Assuming screening within the linear response regime, the analysis of the core potentials
allows to obtain the relative strength of charge transfer between the different adsorbates and
graphene. If the charge transfer for one reference system is known, also absolute values for the
charge transfer of all systems can be obtained. Additionally, the core potential shifts allow to
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qualitatively characterize the spacial extent of doped regions. A detailed discussion of these
issues will be given in sections 3.1, 3.2 and 3.3.

Fig. 2. Average core potential shift with respect to a C atom at large distance from the
impurity as function of the in-plane distance for hydrogen and fluorine. The maximum
distance considered, here, is about half the way through the supercell (here 4.5 lattice
constants). It is visible that the doping of hydrogen is opposite to fluorine.

2.3 Band structure and density of states based determination of charge transfer
Spectroscopy experiments are a common tool to study the electronic structure of solids; in
particular, these allow the determination of the density of states of graphene samples. Doping
adsorbates donate or accept electrons from the graphene sheet, which leads to a shift of the
Fermi level. This shift, the difference between the Fermi level EF and the Dirac point energy
ED , is denoted by

ΔEF = EF − ED . (3)

Note that in the case of pristine graphene, EF = ED, such that ΔEF = 0; the sign of ΔEF
denotes p- or n-type doping. Integrating the total density of states per unit cell of pristine
graphene from ED to ED + ΔEF

Δq = e
∫ ED+ΔEF

ED

D(E)dE, (4)

hence yields the charge transfer between the adsorbate and the graphene sheet which
corresponds to a change in the number of mobile carriers. This method relies in the
assumption that the adatoms do not change the density of states in the integration interval.
While covalently bond adsorbates induce resonances in the DOS near the Dirac point (sec.
3.2), the method is well legitimate to apply for ionically bond impurities, where resonances
only occur far away from the Dirac point (ΔEF ≤ 1.5eV; Fig. 3).
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Fig. 3. Total density of states of pristine graphene (green) and of K on a graphene 4x4
supercell (red). The Fermi level is set to zero.

3. Monovalent adsorbates

We now consider monovalent adsorbates and show that these interact strongly with
graphene. The charge transfer between the adsorbates and the graphene sheet is calculated
by the approaches explained above and its relation to carrier doping as well as electron
scattering is pointed out. The electronic structure of a graphene-impurity system features
fundamental differences between covalently and ionically bond adsorbates; for instance,
ARPES (angle-resolved photoemission spectroscopy) experiments yield that ionic potassium
is a strong dopant with rather weak bond (Chen et al., 2008), while weak doping is found
for covalent hydrogen in Raman experiments (Ryu et al., 2008). On this account, we will
investigate doping processes with regard to the bonding mechanism and briefly point out
reasons for the different bonding behaviour. In detail, calculations of monovalent hydrogen,
fluorine, chlorine, potassium and hydroxyl adsorbed on graphene within DFT are presented
in the following. Next to an extensive analysis of the charge transfer, we will discuss the range
of charge redistributions with the help of a tight-binding model.

3.1 Ionically bond impurities
By definition, ionically bond impurites mean high charge transfer and low hybridization
with the graphene bands. I.e. monovalent ionic adsorbates are expected to cause charge
transfer in the range of |q| � e 1. This kind of charge transfer is detectable as a shift of the
chemical potential in ARPES experiments (Ohta et al., 2006; Zhou et al., 2008). In the density
of states, potassium and chlorine create a sharp resonance, which gives rise to an acceptor
level below the Dirac point (Cl) or a donor level above (K; Fig. 3). The weak hybridization of
the ionic impurities is also reflected in the migration barrier. These are typically in the range

1 The reason for having |q| � e instead of |q| = e, in a general case, lies in the fractional covalent character
of any ionic bond.
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Type Size (conc.) Image Charges Core levels Bader analysis Fermi level shifts
K 4x4 (3.1%) +0.68 +0.83 +0.64

9x9 (0.6%) +0.80 +0.80 (ref) +0.91 +0.97

Cl 4x4 (3.1%) -0.40 -0.50 -0.38
9x9 (0.6%) -0.54 -0.56 -0.57 -0.65

Table 1. Charge transfer between potassium / chlorine and graphene for the image charge
model, the averaged core potential method, Bader analysis and the Fermi energy shifts in the
DOS (all values in units of e) and two different supercell sizes (impurity concentrations). The
value named "ref" for potassium is the charge value from the image charge method. It is used
as a reference value to be able to extract absolute values for the charges of chlorine,
hydrogen, fluorine and hydroxyl from the core levels.

of less than 0.1eV and therefore about one order smaller than for neutral covalent impurities
(Wehling et al., 2009b).

We calculated charge transfer of potassium and chlorine adatoms by means of Bader analysis,
in both electrostatic models and from Fermi level shifts. To this end, we fully relaxed the
graphene adsorbate systems and obtained the minimum energy adsorption geometries (c.f.
Wehling et al. (2009b)). Chlorine favours a top site (T) bonding (on top of a carbon atom) at
2.7Å above the graphene sheet, whereas potassium prefers the hollow site (H) in the middle
of a carbon ring at a height of about 2.6Å.
In table 1 we present the charge transfer for both adsorbates obtained within the different
approaches and as function of impurity concentration (supercell size). The signs of the partial
charges show that potassium acts as a donor while chlorine behaves as an acceptor. The results
for potassium are in rough agreement with Chan et al. (2008); they found a value of 0.76e for
a 4x4 supercell, as well from Fermi level shifts. Similar findings were published by Lugo-Solis
& Vasiliev (2007).
Obviously, the amount of charge transfer is concentration dependent: the strength of the
doping decreases with the impurity concentration. This trend is consistently obtained within
all methods to calculate charge transfer, here.
For the two ionic impurities all approaches are qualitatively consistent with each other.
Depending on the experimental observable to be modelled either the electrostatic potential
based methods or the Fermi level shifts should be considered. The values derived from the
electrostatic potential should be most useful to discuss contribution to Coulomb scattering
while the Fermi level shifts should yield quantitatively the best estimate of doping. The
Bader results for ionically bond impurities tend to yield slightly higher charge values than the
electrostatic models; covalent adsorbates, presented in the next section, are more problematic
within this method.

3.2 Covalently bond impurities
In contrast to ionically bond impurities, covalent adsorbates show strong hybridization with
graphene orbitals leading to a formation of stable states with strong bonds. The local density
of states (LDOS) of covalently bond impurities is broad and constitutes a midgap state at the
Fermi level as well as characteristic resonances at high energies (Wehling et al., 2009b).
All covalent monovalent adsorbates prefer top-site bonding and create impurity states that
are localized at the adsorbate and the nearest neighbours of the bonding C atom (Fig. 4).
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Fig. 3. Total density of states of pristine graphene (green) and of K on a graphene 4x4
supercell (red). The Fermi level is set to zero.
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1 The reason for having |q| � e instead of |q| = e, in a general case, lies in the fractional covalent character
of any ionic bond.
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Type Size (conc.) Image Charges Core levels Bader analysis Fermi level shifts
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9x9 (0.6%) +0.80 +0.80 (ref) +0.91 +0.97

Cl 4x4 (3.1%) -0.40 -0.50 -0.38
9x9 (0.6%) -0.54 -0.56 -0.57 -0.65

Table 1. Charge transfer between potassium / chlorine and graphene for the image charge
model, the averaged core potential method, Bader analysis and the Fermi energy shifts in the
DOS (all values in units of e) and two different supercell sizes (impurity concentrations). The
value named "ref" for potassium is the charge value from the image charge method. It is used
as a reference value to be able to extract absolute values for the charges of chlorine,
hydrogen, fluorine and hydroxyl from the core levels.
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Type Size (conc.) Image Charges Core level shifts Bader analysis
H 4x4 (3.1%) +0.18 +0.04

5x5 (2.0%) +0.16 +0.03
7x7 (1.0%) +0.14 +0.02
9x9 (0.6%) +0.15 +0.12 +0.01

F 4x4 (3.1%) -0.39 -0.58
5x5 (2.0%) -0.39 -0.59
6x6 (1.4%) -0.38 -0.58
9x9 (0.6%) -0.39 -0.52 -0.57

OH 4x4 (3.1%) -0.43
5x5 (2.0%) -0.45
9x9 (0.6%) -0.44 -0.45

Table 2. Charge transfer between hydrogen / fluorine / hydroxyl and graphene for the image
charge model, the averaged core potential method and the Fermi energy shifts in the DOS
and different different supercell sizes (impurity concentrations). All values in units of e.

The bonding partner of the impurity is decoupled from graphene’s Dirac bands and scatters
electrons similarly to vacancies. The universality of midgap states in graphene has been
investigated by several groups (Boukhvalov & Katsnelson, 2009; Casolo et al., 2009; Wehling
et al., 2008; 2009a;b).

We now turn to the description of charge redistributions due to covalent adsorbates. Their
contribution to Coulomb scattering is directly related to changes in the electrostatic potential
and consequently to the partial charges derived from the core level shifts or the image
charge model. Our results for charge transfer within different models between graphene and
hydrogen, fluorine, and hydroxyl adsorbates are given in table 2.
For hydrogen we obtain modulations in the electrostatic potential and the core levels
corresponding to a ”charge” as relevant for Coulomb scattering on the order of 0.1 − 0.2e.

Fig. 4. Local density of states (LDOS) of hydrogen, the bonding partner, and the nearest
neighbour on a 4x4 supercell (from Wehling et al. (2009b)).
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Bader analysis yields a hydrogen partial charge of q = 0.01 − 0.04e. This is qualitatively
consistent with the electrostatic models, as |q| � e in both cases, but using the Bader charge in
the context of Coulomb scattering would lead to an underestimation of the scattering strength.
A hydrogen charge |q| � e has also been obtained within Mulliken population analysis by
Zhu et al. (2005).
Experimentally, the contribution of H adatoms on graphene to Coulomb scattering has not
yet been determined. Ryu et al. (2008) investigated hydrogen doping effects by means of
Raman spectroscopy. They estimate, under a hydrogen contamination saturating about 13%
of carbon bonds (corresponding to approximately one hydrogen atom per 2x2 supercell), a
charge donation of 0.003e per hydrogen atom. This is qualitatively in line with |q| � e as
obtained in the context of Coulomb scattering from DFT. However, it also demonstrates that
an effective electrostatic charge on the order of 0.1 − 0.2e does not necessarily imply doping
of the graphene bands by the same amount. As the LDOS in the vicinity of the Fermi level is
significantly altered by the covalent adsorbates, Eq. (4) cannot be used to extract the doping
from the DFT calculations.
Fluorine adatoms show covalent bonding, in contrast to the other groups VII elements
(Wehling et al., 2009b). Due to the strong hybridization, the bonding carbon atom is lifted
in z-direction by around 0.5Å. The fluorine adatom sits in a height of z ≈ 1.6Å. Consistent
with the large eletronegativity of F, the partial charge obtained within the electrostatic models
(−0.4 — −0.5e) as well as by Bader analysis (∼ −0.6e) is significantly bigger than for H
and correspondingly stronger Coulomb scattering due to F adsorbates is expected. The same
holds for hydroxyl adsorbates which have been analysed within Bader and the averaged core
potential method. Long range charge redistributions due to hydroxyl and fluorine will be
further investigated within a tight-binding model in sec. 3.3.
Our charge analysis shows that the (electrostatic) charge of covalently bond adsorbates is
rather constant in the range of impurity concentrations between 0.6% and 3%. This is in
contrast to the ionically bond impurities, where charge transfer has been proven to increase
with the supercell size.

3.3 Charge redistributions and coulomb interactions in a tight-binding model
To learn more about charge redistributions induced by covalent impurities in graphene
we investigate this problem within a tight-binding (TB) model. For pristine graphene a
TB model has been first considered by Wallace (1947). Concerning the question of charge
rearrangement, the key benefit of this method lies in the possibility to calculate at much lower
impurity concentrations than possible in full-potential DFT simulations. Supercells of a size
up to around 100x100, thus concentrations of 0.005%, could be taken into account in our TB
simulations.
Omitting the spin index and restricting to nearest-neighbour hopping, t ≈ 2.7eV, the
tight-binding Hamiltonian of pristine graphene reads

H0 = −t ∑
�i,j�

(
a†

i bj + h.c.
)

. (5)

Here, ai(a†
i ) and bi(b†

i ) are the annihilation(creation) operators acting on electrons on site �Ri in
sublattice A or B.
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Fluorine adatoms show covalent bonding, in contrast to the other groups VII elements
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(−0.4 — −0.5e) as well as by Bader analysis (∼ −0.6e) is significantly bigger than for H
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holds for hydroxyl adsorbates which have been analysed within Bader and the averaged core
potential method. Long range charge redistributions due to hydroxyl and fluorine will be
further investigated within a tight-binding model in sec. 3.3.
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TB model has been first considered by Wallace (1947). Concerning the question of charge
rearrangement, the key benefit of this method lies in the possibility to calculate at much lower
impurity concentrations than possible in full-potential DFT simulations. Supercells of a size
up to around 100x100, thus concentrations of 0.005%, could be taken into account in our TB
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Omitting the spin index and restricting to nearest-neighbour hopping, t ≈ 2.7eV, the
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i ) are the annihilation(creation) operators acting on electrons on site �Ri in
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In order to take impurity states into account, we extend the Hamiltonian by an orbital with
on-site energy �imp which is coupled to a carbon atom orbital via the hopping V:

H = H0 + V
(

a†
i�o + h.c.

)
+ �impo†o. (6)

Here, o† (o) denotes the creation (annihilation) operator of an impurity adsorbed at a carbon
atom of sublattice A on site �Ri� .
In order to simulate realistic impurities, one has to find accurate values for V and �imp first.
This can be done by a fit of the tight-binding band structure to the DFT band structure of
the considered graphene-impurity system (see e.g. Wehling et al. (2010)). In this section, we
consider impurities with the parameters V = 4.0eV and �imp = −2.0eV which roughly fit,
both, the hydroxyl and the fluorine band structures from Wehling et al. (2009b). To investigate
different adsorbate concentrations we simulate supercells of size d × d containing 2d2 carbon
π orbitals and one impurity.
With the number operator ni = a†

i ai and ni = b†
i bi for i belonging to sublattice A and

B, respectively, we consider the on-site occupancies ρi = 2�ni� (the factor 2 is due to spin
degeneracy) and its deviation

qi = e(ρi − 1) (7)

from the pristine graphene value. Analogously, we define for the impurity occupation ρimp =
2�o†o� and charge qimp = e(ρi − 1).
Table 3 gives the impurity charges, qimp, obtained for different concentrations; it increases only
slightly with the supercell size and saturates around −0.6e.

Partial impurity charge qimp in units of e
5x5 7x7 11x11 23x23 37x37 61x61 83x83

-0.341 -0.344 -0.431 -0.536 -0.573 -0.588 -0.591

Table 3. Charge transfer to the hydroxyl group within tight-binding.

The impurity charges obtained in the TB model mimicking hydroxyl or fluorine are in
qualitative agreement with the strength of the Coulomb potentials extracted from core
potential shifts in section (3.2).
The lateral extent of the doped regions can be studied by constructing a circular disk of radius
rd around the impurity and summing up all partial charges of the atoms within the disk,
including the impurity. The total disk charge is given by

qdisk = qimp + ∑
i∈{|�R0−�Ri|≤rd}

qi (8)

where �R0 is the lateral position of the impurity, �Ri the position of the carbon atom at site i.
For different disk radii, the total charge can be obtained from the model and the range of
redistributions estimated (Fig. 5, right).

In the region of the impurity, the sign of the on-site partial charge allows clear distinction
between the sublattices (Fig. 5, left). With impurity binding to a sublattice A atom, the A
sublattice is hole-doped, while the B sublattice is electron-doped near the impurity and
slightly hole-doped far away. In close proximity to the impurity, the disk is charged by the
adatom and a maximum in the disk charge due to the midgap impurity state occurs within
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Fig. 5. Hydroxyl in nn TB: Partial charges of graphene atoms on sublattice A (red) and B
(green) for a 23x23 supercell as function of the distance (left) together with a zoom (inset).
The total disk charge for several supercell sizes is shown right.

some lattice constants off the impurity. For larger supercells, i.e. lower concentrations of
impurities, the maximum disk charge increases (Fig. 5, right); the slope of the disk charge is
simply given by the single partial charges (Fig. 5, left) which show small Friedel oscillations.
Far away from the impurity, the B sublattice is charged negatively such that the total disk
charge decreases almost linearly. We note that the range of charge redistributions (region with
linear slope in Fig. 5, right) is on the order of the inter impurity distance even for impurity
concentrations as low as 0.007% corresponding to the 83 × 83 supercell.
Concerning long-range doping, the question of a possible oversimplification of the TB
model arises. In reality, the Coulomb energy cost might suppress long range charge
redistributions. Therefore, we extend the Hamiltonian (6) by an additional term, taking
electrostatic interaction between all N electrons into account (Castro Neto et al., 2009):

HC =
1
2 ∑

i,j
Ui,jninj. (9)

The term Ui,j describes the Coulomb repulsion

Ui,j =
e2

4π�0|�Ri − �Rj|
(10)

between two electrons on different sites (�Ri �= �Rj). The on-site repulsion was chosen to
Uii = 15eV. We solve the Hamiltonian H + HC within the Hartree approximation, wherein
the many-body electron-electron interaction (9) is replaced by the electrostatic potential from
charge distribution in the system. Hence, we replace (9) by the Hartree Hamiltonian

HH =
N

∑
i

Vini (11)

with

Vi =
N

∑
j

Ui,j�nj�. (12)
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Fig. 5. Hydroxyl in nn TB: Partial charges of graphene atoms on sublattice A (red) and B
(green) for a 23x23 supercell as function of the distance (left) together with a zoom (inset).
The total disk charge for several supercell sizes is shown right.
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impurities, the maximum disk charge increases (Fig. 5, right); the slope of the disk charge is
simply given by the single partial charges (Fig. 5, left) which show small Friedel oscillations.
Far away from the impurity, the B sublattice is charged negatively such that the total disk
charge decreases almost linearly. We note that the range of charge redistributions (region with
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The problem is solved self-consistently; after the initial determination of an eigensystem
from Hamiltonian (6), the Coulomb part (11) is calculated and the eigensystem updated; this
procedure is repeated until a converged solution is obtained.

Fig. 6. Charge of the disk around the adsorbate as function of the radius for OH on graphene.
The plot shows curves for different supercell sizes A (see legend); “TB” calculations are
performed in nn tight-binding without Coulomb repulsion, “TB+H” curves are from nn
tight-binding with Coulomb interaction in Hartree approximation.

The results for the impurity with V = 4.0eV and εimp = −2.0eV show that the long range
Coulomb interaction does not significantly affect the charge distribution in the doped region
(Fig. 6). For supercells larger than 23x23, the Coulomb repulsion tends to slightly reduce
the disk charges, whereas for small supercells, i.e. high concentrations, the charges slightly
increase. The transfer between adsorbate and graphene layer only changes insignificantly,
such that Coulomb interactions keep charge transfer and redistribution almost unaffected in
the window of investigated impurity concentrations from 0.007% to 2%.

4. Conclusions

In this chapter we investigated adsorption processes under the general aspect of charge
transfer. Charge transfer can either refer to doping, i.e. from electrons transferred from states
localized at the impurity to the host bands, or to the redistribution of charge density associated
electrostatic potentials. These two types of charge transfer have to be carefully distinguished.
The electrostatic potentials due to charge redistributions are particularly important in the
context of Coulomb scattering. We investigated charge transfer of realistic monovalent
adsorbates on graphene by electrostatic means, i.e. the image charge method and core level
shifts, and derived the effective charge q of the impurities to be used in the context of Coulomb
scattering. For ionic impurities we find effective charges on the order of |q| ∼ 0.5 − 1e
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and for covalent impurities |q| in the range of 0.0 − 0.5e. Hydrogen adatoms which are of
particular experimental importance create electrostatic fields corresponding to a partial charge
of q ≈ 0.1e.
For the ionic impurities the graphene bands remain mainly intact and the doping can be
estimated from the position of the Fermi level with respect to the Dirac point. Qualitatively, the
impurity charges obtained in this method for K and Cl coincide with the respective effective
charges in the context of Coulomb scattering. Moreover, the charge transfer of ionic potassium
and chlorine proved to be similarly and consistently sensitive to the impurity concentration,
both, in the context of doping as well as Coulomb scattering. There are, however, quantitative
differences between the charge as relevant for Coulomb scattering and for doping. The latter
turned out to be up to 20% bigger than the former.
Further investigated charge redistributions within the graphene sheet by means of a
tight-binding describe impurities like hydroxyl or fluorine. The model illustrates that even
far away from the impurity and for low impurity concentrations rearrangement of electrons
is detectable. These results hold true if Coulomb repulsion is taken into account. The impurity
charge in the TB model is in qualitative agreement with the charge transfer obtained from the
core potential method applied to the DFT data of hydroxyl or fluorine adsorbates.
In the future, the contribution of different realistic adsorbates to minimum carrier
concentrations achievable in graphene would be worth to investigate. Moreover, interfacing
the charge transfer with electron transport theory would be desirable and might be a key to a
realistic first-principles based theory of electron transport in graphene.
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The problem is solved self-consistently; after the initial determination of an eigensystem
from Hamiltonian (6), the Coulomb part (11) is calculated and the eigensystem updated; this
procedure is repeated until a converged solution is obtained.

Fig. 6. Charge of the disk around the adsorbate as function of the radius for OH on graphene.
The plot shows curves for different supercell sizes A (see legend); “TB” calculations are
performed in nn tight-binding without Coulomb repulsion, “TB+H” curves are from nn
tight-binding with Coulomb interaction in Hartree approximation.

The results for the impurity with V = 4.0eV and εimp = −2.0eV show that the long range
Coulomb interaction does not significantly affect the charge distribution in the doped region
(Fig. 6). For supercells larger than 23x23, the Coulomb repulsion tends to slightly reduce
the disk charges, whereas for small supercells, i.e. high concentrations, the charges slightly
increase. The transfer between adsorbate and graphene layer only changes insignificantly,
such that Coulomb interactions keep charge transfer and redistribution almost unaffected in
the window of investigated impurity concentrations from 0.007% to 2%.

4. Conclusions

In this chapter we investigated adsorption processes under the general aspect of charge
transfer. Charge transfer can either refer to doping, i.e. from electrons transferred from states
localized at the impurity to the host bands, or to the redistribution of charge density associated
electrostatic potentials. These two types of charge transfer have to be carefully distinguished.
The electrostatic potentials due to charge redistributions are particularly important in the
context of Coulomb scattering. We investigated charge transfer of realistic monovalent
adsorbates on graphene by electrostatic means, i.e. the image charge method and core level
shifts, and derived the effective charge q of the impurities to be used in the context of Coulomb
scattering. For ionic impurities we find effective charges on the order of |q| ∼ 0.5 − 1e
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and for covalent impurities |q| in the range of 0.0 − 0.5e. Hydrogen adatoms which are of
particular experimental importance create electrostatic fields corresponding to a partial charge
of q ≈ 0.1e.
For the ionic impurities the graphene bands remain mainly intact and the doping can be
estimated from the position of the Fermi level with respect to the Dirac point. Qualitatively, the
impurity charges obtained in this method for K and Cl coincide with the respective effective
charges in the context of Coulomb scattering. Moreover, the charge transfer of ionic potassium
and chlorine proved to be similarly and consistently sensitive to the impurity concentration,
both, in the context of doping as well as Coulomb scattering. There are, however, quantitative
differences between the charge as relevant for Coulomb scattering and for doping. The latter
turned out to be up to 20% bigger than the former.
Further investigated charge redistributions within the graphene sheet by means of a
tight-binding describe impurities like hydroxyl or fluorine. The model illustrates that even
far away from the impurity and for low impurity concentrations rearrangement of electrons
is detectable. These results hold true if Coulomb repulsion is taken into account. The impurity
charge in the TB model is in qualitative agreement with the charge transfer obtained from the
core potential method applied to the DFT data of hydroxyl or fluorine adsorbates.
In the future, the contribution of different realistic adsorbates to minimum carrier
concentrations achievable in graphene would be worth to investigate. Moreover, interfacing
the charge transfer with electron transport theory would be desirable and might be a key to a
realistic first-principles based theory of electron transport in graphene.
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1. Introduction

Graphene, thanks to its extraordinary electronic and mechanical properties, is a potential
candidate for a number of applications. Being one-atom thick, it is extremely sensitive to the
presence of adsorbed atoms and molecules (either physisorbed or chemisorbed on the surface)
and, more generally, to defects such as vacancies, holes and/or substitutional dopants. This
property, apart from being directly usable in molecular sensor devices, can also be employed
to tune graphene electronic properties.
In this Chapter we review that basic features of atomic-scale defects that can be useful for
material design. After a brief introduction (Section 2) of the main properties determining
the peculiar electronic structure of graphene, and the experimental realisation of defective
substrates (Section 3), we focus in Section 4 on isolated “pz defects” such as atom vacancies
or adsorbed species which covalently bind carbon atoms. In particular, we discuss in
detail the formation of so-called midgap states and the microscopically ordered magnetic
structures which give rise to. In Section 5 we analyse the electronic structure of multiple
defective graphene substrates and show, in particular, how it is possible to use simple rules
to predict the presence of magnetic moments and midgap states by looking at the defect
locations on the lattice. Subsequently, we analyse the more complicated situation where the
electronic structure, as modified by the presence of some defects, affects chemical reactivity
of the substrate towards adsorption (chemisorption) of atomic/molecular species, leading
to a preferential sticking on specific lattice positions. In Section 6 we consider the reverse
problem, that is how to use defects (vacancies, adsorbed species, substitutional dopants,
etc..) to engineer graphene electronic properties. This is possible nowadays since recent
advances in lithographic and self-assembling techniques allow one to produce well-ordered
structures and thus ‘tune’ the electronic bands. In this context, we show for instance how it is
possible to open a band-gap in graphene and preserve at the same time the pseudo-relativistic
behaviour of its charge carriers. We further analyse the case of substitutional dopants
(group IIIA/VA elements) which, if periodically arranged, may show a gapped quasi-conical
structure corresponding to massive Dirac carriers. All these possible structures might find
important technological applications in the development of novel graphene-based logic
transistors.
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1. Introduction

Graphene, thanks to its extraordinary electronic and mechanical properties, is a potential
candidate for a number of applications. Being one-atom thick, it is extremely sensitive to the
presence of adsorbed atoms and molecules (either physisorbed or chemisorbed on the surface)
and, more generally, to defects such as vacancies, holes and/or substitutional dopants. This
property, apart from being directly usable in molecular sensor devices, can also be employed
to tune graphene electronic properties.
In this Chapter we review that basic features of atomic-scale defects that can be useful for
material design. After a brief introduction (Section 2) of the main properties determining
the peculiar electronic structure of graphene, and the experimental realisation of defective
substrates (Section 3), we focus in Section 4 on isolated “pz defects” such as atom vacancies
or adsorbed species which covalently bind carbon atoms. In particular, we discuss in
detail the formation of so-called midgap states and the microscopically ordered magnetic
structures which give rise to. In Section 5 we analyse the electronic structure of multiple
defective graphene substrates and show, in particular, how it is possible to use simple rules
to predict the presence of magnetic moments and midgap states by looking at the defect
locations on the lattice. Subsequently, we analyse the more complicated situation where the
electronic structure, as modified by the presence of some defects, affects chemical reactivity
of the substrate towards adsorption (chemisorption) of atomic/molecular species, leading
to a preferential sticking on specific lattice positions. In Section 6 we consider the reverse
problem, that is how to use defects (vacancies, adsorbed species, substitutional dopants,
etc..) to engineer graphene electronic properties. This is possible nowadays since recent
advances in lithographic and self-assembling techniques allow one to produce well-ordered
structures and thus ‘tune’ the electronic bands. In this context, we show for instance how it is
possible to open a band-gap in graphene and preserve at the same time the pseudo-relativistic
behaviour of its charge carriers. We further analyse the case of substitutional dopants
(group IIIA/VA elements) which, if periodically arranged, may show a gapped quasi-conical
structure corresponding to massive Dirac carriers. All these possible structures might find
important technological applications in the development of novel graphene-based logic
transistors.
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2. The π-electron gas

Carbon atoms in graphene are arranged to form a honeycomb lattice tightly held by strong
σ bonds between sp2 orbitals which form occupied σ bands at energies well below the Fermi
level. The remaining valence electrons (one for each carbon atom) populate a π band which
localises above and below the lattice with a node on the surface plane. An ‘antibonding’ π∗
band is empty when the system is at T = 0 K and charge-neutral, but can easily be occupied,
e.g. by applying a gate potential in a typical field-effect transistor (FET) configuration. Such
π/π∗ band system governs the low-energy (say up to ∼ 2 eV) behaviour of charge carriers in
graphene and is responsible for most of the extraordinary properties of this material. This “π
cloud” is the focus of this section, where we introduce the main theoretical tools used in this
Chapter.

2.1 Tight-binding Hamiltonian
In building up a simple, one-electron model for these π electrons only one writes the wave
function as a linear combination of two Wannier basis functions built with pz orbitals, one for
each sublattice (Wallace, 1947),

ψk(r) = cAψA
k (r) + cBψB

k(r) (1)

ψA
k (r) =

1√
N

∑
j∈S

e−ikr pz(r − RA
j ) ψB

k(r) =
1√
N

∑
j∈S

e−ikr pz(r − RB
j ) (2)

where the sums run over lattice vectors Rj within a large supercell S including N graphene
unit cells, RA

j = Rj + δA is the position of A site in the j-th cell, and analogously for RB
j .

Equivalently, in second-quantized form

ĤTB = −t1 ∑
<i,j>

∑
σ

(
â†

i,σ b̂j,σ + h.c.
)
− t2 ∑

<<i,j>>
∑
σ

â†
i,σ âj,σ − t2 ∑

<<i,j>>
∑
σ

b̂†
i,σ b̂j,σ + etc. (3)

where â†
i,σ (b̂†

i,σ) creates an electron with spin σ =↑, ↓ on the i-th lattice site of the A(B)
sublattice, the first two sums run over nearest neighbouring sites (t1 is the hopping energy)
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and the second ones over sites which are nearest neighbours in each sublattice (t2 is the
corresponding hopping) 1. In absence of magnetic fields the hoppings can be chosen real,
and the accepted value for t1 is ∼ 2.7 eV while |t2| << t1 depends on the parametrization
used. Neglecting overlap between orbitals on different C atoms, the usual anticommutation
rules [ĉ†

i,σ, ĉ� j,σ� ]+ = δc,c�δi,jδσ,σ� (c = a, b) hold; hence, introducing the Fourier transformed
operators âk,σ according to

âi,σ =
1√
N

∑
k∈BZ

e−ikRi âk,σ (4)

where the sum runs over k points in the first Brillouin zone (BZ) (analogously for b̂k,σ) the
above Hamiltonian can be rewritten as

ĤTB = −t1 ∑
k,σ

f (k)â†
k,σ b̂k,σ + h.c. − t2 ∑

k,σ
g(k)â†

k,σ âk,σ − t2 ∑
k,σ

g(k)b̂†
k,σ b̂k,σ (5)

or, in matrix notation,

ĤTB = −∑
k,σ

[
â†

k,σ, b̂†
k,σ

] [
t2g(k) t1 f (k)

t1 f ∗(k) t2g(k)

] [
âk,σ
b̂k,σ

]

Here f (k) and g(k) are ‘structure factors’ for the nearest- and next-nearest neighbours,

f (k) = ∑
i=1,3

e−ikδi

g(k) = ∑
i=1,6

e−ikδ
�
i

Diagonalization is trivial and gives the energy bands,

�(k)± = −t2g(k) ± t1| f (k)| = −t2g(k) ± t1

√
3 + g(k) (6)

where | f (k)|2 = 3 + g(k) has been used and the minus (plus) sign solution correspond to the
π (π∗) band (see e.g. Bena & Montambaux (2009); Castro Neto et al. (2009); Wallace (1947)).
Close to the K(K�) point | f (K + q)|2 ∼ v2

Fq2 and the dispersion is conical, giving rise to the

so-called Dirac cones. Here vF =
√

3
2 a = 3

2 d, where d is the carbon-carbon distance, ∼ 1.42
Å, and a the lattice constant. Consequently, the density-of-states (DOS) is linearly vanishing
at zero energy, ρ(�) ∼ 2|�|/π

√
3t2, one of the fingerprints of massless Dirac electrons. Its

vanishing value challenges one’s intuition since experiments find a finite, non-zero minimum
conductivity at this energy (Peres, 2010).
Albeit simple, this tight-binding model is accurate enough to correctly represent graphene π
bands, at least close to the high symmetry points K and K�. The latter control the low-energy
physics of charge carriers, and are the source of the exceptional interest in graphene. If only
nearest-neighbours interaction is allowed the two sublattices form two disjoint sets where
A-type sites connect to B-type sites only and vice versa. The Hamiltonians is said bipartitic
and displays an interesting symmetry: for each non-zero energy level � and eigenfunction

1 Notice that the on-site energies (the energy of carbon pz orbitals) have been set equal to zero, but
additional terms of the form ∑i �i ĉ†

i ĉi would appear if graphene were subjected to an inhomogeneous
external potential.
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Carbon atoms in graphene are arranged to form a honeycomb lattice tightly held by strong
σ bonds between sp2 orbitals which form occupied σ bands at energies well below the Fermi
level. The remaining valence electrons (one for each carbon atom) populate a π band which
localises above and below the lattice with a node on the surface plane. An ‘antibonding’ π∗
band is empty when the system is at T = 0 K and charge-neutral, but can easily be occupied,
e.g. by applying a gate potential in a typical field-effect transistor (FET) configuration. Such
π/π∗ band system governs the low-energy (say up to ∼ 2 eV) behaviour of charge carriers in
graphene and is responsible for most of the extraordinary properties of this material. This “π
cloud” is the focus of this section, where we introduce the main theoretical tools used in this
Chapter.

2.1 Tight-binding Hamiltonian
In building up a simple, one-electron model for these π electrons only one writes the wave
function as a linear combination of two Wannier basis functions built with pz orbitals, one for
each sublattice (Wallace, 1947),
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unit cells, RA
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â†
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and the second ones over sites which are nearest neighbours in each sublattice (t2 is the
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where | f (k)|2 = 3 + g(k) has been used and the minus (plus) sign solution correspond to the
π (π∗) band (see e.g. Bena & Montambaux (2009); Castro Neto et al. (2009); Wallace (1947)).
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Fq2 and the dispersion is conical, giving rise to the

so-called Dirac cones. Here vF =
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Å, and a the lattice constant. Consequently, the density-of-states (DOS) is linearly vanishing
at zero energy, ρ(�) ∼ 2|�|/π

√
3t2, one of the fingerprints of massless Dirac electrons. Its

vanishing value challenges one’s intuition since experiments find a finite, non-zero minimum
conductivity at this energy (Peres, 2010).
Albeit simple, this tight-binding model is accurate enough to correctly represent graphene π
bands, at least close to the high symmetry points K and K�. The latter control the low-energy
physics of charge carriers, and are the source of the exceptional interest in graphene. If only
nearest-neighbours interaction is allowed the two sublattices form two disjoint sets where
A-type sites connect to B-type sites only and vice versa. The Hamiltonians is said bipartitic
and displays an interesting symmetry: for each non-zero energy level � and eigenfunction
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Fig. 2. Left panel: Point symmetry elements in graphene lattice. Reflection planes orthogonal
to the page, σv and σd, are replicated by the six-fold rotation axis C6, along with the two-fold
rotation axis on the page plane, C2. I is the inversion center, at the center of the Wigner-Seitz
cell (solid line). The page plane is, of course, a reflection plane (σh). Right panel: symmetry
elements of the k-group at the K point (D3h). Black dots mark the K point and its images.

|ψ+� = cA |A� + cB |B� (where |A�/|B� is non-zero on A/B lattice sites only), there exists a
‘conjugate’ level with energy −� and wavefunction |ψ−� = cA |A� − cB |B�. This is called
electron-hole (e − h) symmetry since at half-filling (as it is case of graphene with one electron
per site), the Fermi level lies at zero energy, and the above symmetry relates electron and
holes. For a proof, just apply a phase-change to one of the two sets of sublattices states 2, e.g.
b̂i,σ → −b̂i,σ, as this converts H into −H.
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Fig. 3. Left panel: point-symmetry classification of Bloch states in graphene. k-groups are
color coded as indicated. Right panel: symmetry labels for graphene electronic states on the
highest-symmetry lines of the BZ.

Electron-hole symmetry, as we shall see in the following, plays an important role in
graphene, even if it holds only approximately (i.e. with nearest-neighbour interaction only
and neglecting orbital overlap). Here we just notice that, because of such symmetry, the

2 Interestingly, this operation corresponds to an operator π̂, π̂ĉi,σ = (−)τ ĉi,σπ̂ (τ = 1, 2 for c = a, b),
which reduces to the z component of the pseudospin in spinor notation.

48 Physics and Applications of Graphene - Theory

band-structure is expected to have a gap at the Fermi level unless there are specific reasons
for having energy levels exactly at zero. As we now show, the specific reason is provided by
the spatial symmetry of the substrate.
Graphene lattice is highly symmetric. Its Wigner-Seitz unit cell has the same point symmetry
of benzene, namely it belongs to the D6h point group, see fig.2, which is the point group for
symmetry operations in real-space. For Bloch electronic states with k-vector k, symmetry
is reduced to that subgroup of D6h which either leaves k invariant or transform it into
one its images, i.e. k → k + G with G a reciprocal lattice vector (Mirman, 1999). Such
subgroup is known as k-group at k, G(k), and determines the possible symmetry of the
electronic states. For instance, at the K point the k-group is D3h since only three-fold
rotation axes and σd planes transform the K images into themselves 3. A full analysis of
the symmetry properties of Bloch electrons is given in fig.3, left panel, where the k-groups
are color-coded, grey for Cs, black for C2v, green for D2h, blue for D3h and red for D6h. The
main point here is that graphene is sufficiently symmetric that allows for k-groups supporting
two-dimensional irreducible representations (E irreps), namely D6h at Γ and D3h at K, K�. As
spatial symmetry is (almost) compatible with e − h symmetry, a zero energy state results
whenever the electronic wavefunctions span a two-dimensional irreducible representation
(odd in number, in general), i.e. they give rise to a doubly-degenerate level. This is exactly
the case of the K (K�) point, where Wannier functions built with pz orbitals of the A and
B sublattice span the E�� irrep of the above D3h k-group. Notice also that this symmetry
argument is enough to explain the conical dispersion of the energy at the K (K�) point which
makes graphene so attractive: without an inversion center, degeneracy is lifted already at first
order in k · p perturbation theory when moving away from the BZ corners.
While spatial symmetry is exact, e − h symmetry holds in the nearest-neighbour
approximation only. Nevertheless, since inclusion of higher order hopping terms does not
modify the level ordering (i.e. the minimum of the π∗ band lies always above the top of the
π band) the Fermi level at charge neutrality matches exactly the energy where the E irrep is
found (called Dirac point as it is the cone apex).

2.2 Hubbard Hamiltonian
The tight-binding (TB) Hamiltonian is a model in which each electron moves independently
from the others. Despite it represents a good approximation for graphene energy spectrum,
such a simple picture will necessarily fail in computing spin properties in all but the simplest
situations. A simple way to include electron-electron interactions is given by the Hubbard
model

Ĥ = ĤTB + U ∑
i

n̂i,↑n̂i,↓ (7)

where ĤTB is the tight-binding Hamiltonian of eq.3, the sum runs over all carbon sites and
n̂i,σ = ĉ†

i,σ ĉi,σ are the corresponding number operators. This Hamiltonian combines the
tendency of electrons to delocalize onto the lattice due to their kinetic (hopping) energy
together with an “on-site” Coulomb repulsion that tends (for U > 0) to localize them to
minimize double orbital occupation.
The Hubbard model is a very useful tool for the study of magnetism in complex materials.

3 The remaining symmetry elements determine the so-called star of the given k point, which is the set of
points generated by these elements once applied to k. Such set of physically distinct points in k space
are degenerate in energy; this is the case of K� and K, for instance, since they belong to the star of each
other.
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order in k · p perturbation theory when moving away from the BZ corners.
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approximation only. Nevertheless, since inclusion of higher order hopping terms does not
modify the level ordering (i.e. the minimum of the π∗ band lies always above the top of the
π band) the Fermi level at charge neutrality matches exactly the energy where the E irrep is
found (called Dirac point as it is the cone apex).

2.2 Hubbard Hamiltonian
The tight-binding (TB) Hamiltonian is a model in which each electron moves independently
from the others. Despite it represents a good approximation for graphene energy spectrum,
such a simple picture will necessarily fail in computing spin properties in all but the simplest
situations. A simple way to include electron-electron interactions is given by the Hubbard
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Ĥ = ĤTB + U ∑
i

n̂i,↑n̂i,↓ (7)
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It has long been used in the chemical community4 -and proved to be rather accurate for
such systems- to investigate excitation spectra in polycyclic aromatic hydrocarbons (today,
graphene dots). Though simple, the model requires quite a large effort for its solution.
Therefore, one often resorts to its mean-field approximation,

Ĥm f = ĤTB + U ∑
i

n̂i,↑ < n̂i,↓ > +U ∑
i

< n̂i,↑ > n̂i,↓ − U ∑
i

< n̂i,↑ >< n̂i,↓ > (8)

where the average occupation number of one spin-species at given site tunes an effective
on-site energy for the other spin-species, e.g. �

e f f
i,↑ = +U < n̂i,↓ >. This is essentially

equivalent to an (unrestricted) Hartree-Fock approach to the π electrons and is useful, as
compared with density functional theory (DFT) methods applied to the exact Hamiltonian, to
study very large systems, of dimension comparable to those experimentally realized. Though
we will not solve the Hubbard model in the following, there are some exact, analytic results
that can be obtained from it and that turn out to be an important tool in discussing defects in
graphene.

2.3 Valence bond picture
An alternative, easy-to-use way of looking at graphene electronic structure is provided by the
‘chemical picture’. With this we mean the traditional picture of chemical bonds as given by
the Lewis structures and modified to account for the ‘chemical resonance’. In this picture,
electrons are mostly localized on atomic orbitals (usually hybridzed) of the atoms forming
the molecule, and couple in singlet pairs to form bonds and lone-pairs. For carbon atoms
in graphene the three sp2 orbitals (with one electron each) are singlet-coupled with electrons
in sp2 orbitals of neighbouring sites. The remaining electron (the one described by the TB
Hamiltonian above) can couple with its counterpart of one of the three neighbours. The state
of the system is a superposition of these different ways of binding, and the system gains
energy from such a resonance phenomenon.
This naïve picture finds its root in the Valence Bond (VB) theory of chemical bond, which
developed from the Heitler-London study of the H2 molecule, soon after the foundation of
quantum mechanics. The theory, as intensively pushed forward by Slater and Pauling, is
a practical way of looking at the chemical bond and at the bond-breaking, bond-forming
processes which are essential for chemical reactivity. It can also be turned into a variational
method for the many-electron problem which uses a correlated wavefunction ansatz and
captures the important part of the electron correlation 5(Cooper, 2002; Cooper et al., 1987;
Raimondi et al., 1985; Shaik & Hiberty, 2007). In many respects, it has to be considered
complementary to the Molecular Orbital (MO) approach, though the latter proved to be more
efficient.
Valence Bond theory focuses on spin and builds the singlet wavefunction of an
even-numbered ground-state molecule as a ‘product’ of singlet pairs, one for each bond
(pairs of orbitals), thereby identifying a chemical formula. For less standard species such
as graphene, different products are equally likely and the correct wavefunction is the linear
combinations of all the possible structures. For instance, let us look at the benzene molecule

4 In the chemical community is dubbed Parisier-Parr-Pople approximation, after Pariser-Parr and Pople
who first introduced it in the early fifties.

5 This is so because even the simplest VB wavefunctions can be re-written as linear combinations of Slater
determinants, and include the so-called ‘static’ correlation. The latter is essential for describing bond
formation and near-degeneracies; in extended systems is responsible for Mott transitions.
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Fig. 4. The five possible perfect pairing Rumer diagrams for the benzene molecule with their
correspondence with Kekulé (1-2) and Dewar (3-5) resonance structures.

as prototypical case of aromatic compounds. Considering only the six π electrons localized
in their respective pz orbitals, the possible linearly independent (“perfect pairing”) functions
can be schematically depicted as in figure 4; for six electron and an overall singlet state there
are five couplings6. In the graphical representation of Fig.4, known as Rumer diagrams, one
represents each atomic center with a dot and uses a line for singlet coupling between them.
The chemical picture (bottom row of the same figure) uses only the 2 Kekulé structures on
the left, since the 3 Dewar structures gives a negligible contribution to the energy, as can be
guessed from the bond pattern.
Notice that VB theory is closely related to the Hubbard model discussed in the previous
section: the atomic orbitals housing the electrons need not be those of the free atoms. If they
are ’polarized’ by the environment (e.g. they are linear combinations of free-atomic orbitals)
the VB ansatz accounts both for localization and band-like behaviour, as in the Hubbard
model. It is not hard to show, indeed, that the Hubbard model for the H2 molecule can
be obtained from a simple7 VB ansatz to the two-electron wavefunction. In the following
we will make a qualitative use of this chemical picture, as it provides insights into defect
formation and properties; see also Wassmann et al. (2010) for its role in interpreting details of
STM pictures.

3. Defect formation

In this Section we describe defect formation8. As we shall see in the following, even though
vacancies and adatoms turn out to have very similar effects on the π electron system, we
distinguish them here according to their preparation methods, i.e. high (e−, ions, etc.) vs. low
(neutrals) energy beams. The reason is that only in the first case defects can be considered
randomly arranged. Adatoms at all but very low concentration tend to cluster on the surface,
and understanding this phenomenon requires knowledge of how the electronic structure of
the substrate is modified upon formation of the very first defects.
Notice, however, that defects are also naturally present in graphene as in any common

6 The number of linearly independent spin-function for N electrons in the S spin state, usually denoted as
f N
S , can be easily obtained by angular momentum coupling rules. The properties of the corresponding

spin spaces stem from their deep connection to the group of permutations of N objects.
7 It is enough to consider the so-called Coulson-Fisher wavefunction.
8 With this we mean point defects, i.e. adatoms, substituted or displaced atoms. It should be noticed,

however, that other defects may also be important for the transport properties.
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It has long been used in the chemical community4 -and proved to be rather accurate for
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Ĥm f = ĤTB + U ∑
i

n̂i,↑ < n̂i,↓ > +U ∑
i

< n̂i,↑ > n̂i,↓ − U ∑
i

< n̂i,↑ >< n̂i,↓ > (8)
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e f f
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material. Adatoms as hydrogen or hydrocarbons, for instance, can be introduced by
the preparation method, while other point defects affecting transport properties, e.g.
charge-impurities, local potentials, etc., may result from imperfections on the substrates where
graphene is accommodated.

3.1 Electron and ion bombardment
The irradiation by high energy particles is the main tool for creating defects in graphene
and in other carbon nanostructures. When the projectile particle impinges on the structure
it transfers energy to the lattice. In bulk materials (e.g. in graphite) energy dissipation is
rather effective, up to eventually stop the projectile, and it occurs through nuclear and electronic
stopping mechanisms. Nuclear stopping is due to the collisions between the projectile
and the carbon nuclei, an essentially classical process governed by momentum transfer and
Coulomb interaction. On the other hand, (inelastic) electronic stopping occurs by the many
possible electron transitions in the material, hence promotion into conduction band (hot
electrons), ionizations, but also through plasmon excitations, photoemissions, etc. The relative
importance of the two mechanisms depends on the beam energy, on the projectile mass
and on the electronic structure of the target material. Nevertheless a microscopic theory of
energy dissipation in nanostructures is still under study since the models developed for bulk
materials cannot be easily applied in a reduced dimensionality material such as graphene
(Krasheninnikov & Nordlund, 2010).
The mechanism for the defect formation has been studied intensively in the last decade.
In brief, when the energy transferred to an atom is larger than the so-called displacement
threshold (∼20 eV in case of graphite) this can leave its equilibrium position and move trough
the bulk to form, for instance, a Frenkel pair or, for single layer graphene, a vacancy. Large
ions can produce multiple vacancies up to small holes in the lattice depending on their size.
Electron beams produced in transmission electron microscopes (TEM) can instead be focused
down to scales comparable to the carbon-carbon distance, giving a precise control of the
induced damage up to form single vacancies. Moreover TEMs allow a real-time imaging of
the damage process and of the chemical reaction that follows the vacancies formation (Meyer
et al., 2008; 2010).
The formation a single vacancy in graphene leaves three σ dangling bonds and it removes a
π electron. The first span a low-energy, one-dimensional irreducible representation (A irrep
in the following) of the (local) D3h point group and an E irrep. Therefore, the ground-state
is degenerate and undergoes a Jahn-Teller distortion: the closure of two dangling bonds
to form a pentagon, with an energy gain of about 0.2 eV. The strain induced by the other
hexagons in the lattice prevents further distortions of the third unsaturated atom out of plane
(El-Barbary et al., 2003) and the final magnetic moment for such a structure has been reported
to be between 1.0 and 1.5 μB (Lehtinen et al., 2004; Yazyev & Helm, 2007), localized on the
unpaired site. When exposed to a hydrogen flux, the vacancy rapidly saturates its dangling
bonds, with H atoms pointing slightly out of the graphene plane (Lehtinen et al., 2004).
In the case of neutral-atom bombardment, the projectile can also react to form a covalent bond
with a carbon atom. This is what happens by irradiating samples with low energies hydrogen
atoms. It has been shown that at very low densities the chemisorbed H atom defect produces
STM images very similar to the single vacancy case. As already mentioned, at higher densities
H atoms tend instead to cluster in dimers or larger structures due to electronic effects that will
be discussed in the following. Nevertheless, when considering π electrons only, vacancy and
singly-bond chemisorbed species are equivalent, since a single electron is removed from the
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Fig. 5. Left Panel: chemisorption curves for a H atom on a graphene top site as obtained from
periodic DFT calculations using a 2x2 supercell. In the adiabatic path (black) the carbon atom
is allowed to relax at each C-H distance, while in the diabatic path (blue) the top site is kept
fixed in the puckered geometry. z is the adsorbate height on the surface. The inset on the
bottom shows the equilibrium geometry. Right panel: map of potential energy surface as a
function of the heights of H and C atoms above the surface, for a collinear geometry. Also
indicated the diabatic and adiabatic paths. Units are eV and Å.

aromatic network of graphene. As an example, chemisorption of a single H atom is detailed
in the following section.

3.2 Sticking of atomic and molecular species
A hydrogen atom impinging on graphene with a low collision energy can either physisorb
or chemisorb. The physisorption regime has long been probed with the help of
selective-adsorption resonances in H atom scattering off graphite (Ghio et al., 1980). The
extrapolated value for the physisorption binding energy (∼40 meV) to a single layer is in very
good agreement with recent theoretical studies (Bonfanti et al., 2007). Physisorbed species
are highly mobile and easily desorb from the surface since they couple only weakly with the
substrate. For this reason, chemisorption turns to be more interesting for graphene electronic
structure engineering.

Chemisorption of single H atoms on graphite has been studied since the first theoretical
works of Jeloaica & Sidis (1999) and Sha & Jackson (2002), who first showed that it indeed
occurs if the substrate is allowed to relax. Among the four possible adsorption sites the
hollow and bridge were found not binding while the two kinds of atop sites (with or without an
carbon atom on the layer underneath for graphite) give essentially the same behaviour, since
graphene layers in graphite lay ∼ 3.4 Å apart. This implies that the (surface) chemistry of
graphene is very similar to that of graphite.
Adsorption on the top site induces a surface reconstruction (‘puckering’). Such a
reconstruction consists in the outward motion of the carbon atom beneath the adsorbed
hydrogen, and occurs as a consequence of sp2 − sp3 re-hybridization of the carbon valence
orbitals needed to form the CH bond. The re-hybridization induces a change in geometry
of the substrate site, from a planar (sp2) to a tetrahedral (sp3) form, thereby leading to the
surface puckering. The energy required for such a process, defined as the energy difference
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or chemisorb. The physisorption regime has long been probed with the help of
selective-adsorption resonances in H atom scattering off graphite (Ghio et al., 1980). The
extrapolated value for the physisorption binding energy (∼40 meV) to a single layer is in very
good agreement with recent theoretical studies (Bonfanti et al., 2007). Physisorbed species
are highly mobile and easily desorb from the surface since they couple only weakly with the
substrate. For this reason, chemisorption turns to be more interesting for graphene electronic
structure engineering.

Chemisorption of single H atoms on graphite has been studied since the first theoretical
works of Jeloaica & Sidis (1999) and Sha & Jackson (2002), who first showed that it indeed
occurs if the substrate is allowed to relax. Among the four possible adsorption sites the
hollow and bridge were found not binding while the two kinds of atop sites (with or without an
carbon atom on the layer underneath for graphite) give essentially the same behaviour, since
graphene layers in graphite lay ∼ 3.4 Å apart. This implies that the (surface) chemistry of
graphene is very similar to that of graphite.
Adsorption on the top site induces a surface reconstruction (‘puckering’). Such a
reconstruction consists in the outward motion of the carbon atom beneath the adsorbed
hydrogen, and occurs as a consequence of sp2 − sp3 re-hybridization of the carbon valence
orbitals needed to form the CH bond. The re-hybridization induces a change in geometry
of the substrate site, from a planar (sp2) to a tetrahedral (sp3) form, thereby leading to the
surface puckering. The energy required for such a process, defined as the energy difference
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between the relaxed and the puckered configuration, is substantial (∼ 0.8 eV) and this explains
why binding energies to graphene are typically smaller than for other carbon species. If the
graphene layer is kept flat the carbon - hydrogen bond is metastable only (Casolo et al., 2010;
Sha & Jackson, 2002), while allowing surface relaxation chemisorption becomes an activated
process with stable products (∼ 0.80 eV).
When the hydrogen atom collides on a carbon site already puckered, i.e. already in the
sp3 form, chemisorption is a barrierless process. Otherwise, following an adiabatic path
(hence allowing the carbon atom relaxation to its equilibrium position at every point along
the reaction coordinate) an energy barrier ∼0.2 eV high is found, as a consequence of the
re-hybridization. These adsorption curves are shown in fig.5. The barrier (which is also
present when the substrate is kept planar) has an important, purely electronic origin. Indeed,
it has been shown (Bonfanti et al., 2008) that it results from an avoided crossing between
a repulsive interaction with the Kekulé-like ground-state and an attractive interaction with
the low-lying, Dewar-like excited state (see Fig.4 in Casolo et al. (2009a)). This can be nicely
understood in terms of the chemical picture above since the Kekulé-like structures do not have
unpaired electrons which can readily couple with that of the incoming H atom.
The overall binding picture of H atoms has found substantial experimental proof for graphite
surfaces. Hot hydrogen atoms produced by dissociating H2 molecules at ∼ 2000 K are
required to overcome the barrier and observe sticking. Thus, chemisorption is under kinetic
control9, in marked contrast with vacancy formation through e−/ion bombardment discussed
above. Indeed, as we show below, H atoms do not adsorb completely random on the surface.
A number of TPD, AES, EELS and HREELS spectroscopy data (Andree et al., 2006; Güttler
et al., 2004a;b; Zecho et al., 2004; 2002) is available, along with detailed kinetic Monte Carlo
simulations (Cuppen & Hornekær, 2008; Gavardi et al., 2009) of TP desorption curves and
accurate studies of vibrational relaxation dynamics (Sakong & Kratzer, 2010) and reaction
dynamics to form H2 (Casolo et al., 2009b; Jackson & Lemoine, 2001; Martinazzo & Tantardini,
2005; 2006a;b; Morisset et al., 2004; 2005). Notice that even though we focused here on
adsorption of H atoms the same holds for other simple, monovalent chemical species.

4. Low density: π-defect structure

4.1 The appearance of midgap state
The effect of atomic scale defects in graphite, and later on in graphene, has been
experimentally studied since the late eighties, when scanning tunneling microscopy (STM)
allowed to capture images on solid surfaces at atomic scale resolution. It appeared
immediately that when a vacancy was created by irradiating the sample, a bright
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charge density reconstruction appears (Mizes & Foster, 1989; Ruffieux et al., 2000; Ugeda et al.,
2010).
A carbon vacancy or a defect in the π-network due to a monovalent chemisorbed species
creates in graphene an imbalance between the number of sites in each sublattices. This
lowers the overall lattice symmetry, up to eventually remove the Dirac cones and open a
band gap. Looking at the tight-binding Hamiltoninan in equation 3 the introduction of a
π-defect in the graphene lattice reads as the removal of the basis function corresponding
to the defect site, and the system eigenstates become necessarily odd-numbered. Therefore,
in the nearest-neighbour approximation, because of the electron-hole symmetry, one of the
eigenvalues in the energy spectrum necessarily lies at the Fermi level. This zero-energy state

9 H diffusion is largely impeded by electronic/geometrical effects, see below.
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is a singly occupied molecular orbital called midgap state, even when a gap is not really
present. When relaxing the nearest-neighbour approximation such states move from the
Fermi level, but remain close to it. Their presence is important for the transport properties
being responsible for resonant scattering mechanisms.
The appearance of midgap states in bipartitic systems has been intensively studied in solid
state physics because of the implications they have for the appearance of magnetism. Inui et
al. (Inui et al., 1994) formulated a useful theorem for bipartitic tight-binding models with a
sublattice imbalance. According to their result, in any bipartite lattice in which the numbers of
sublattices sites NA and NB are not equal, there are at least η = |nA − nB| linearly independent
eigenfunctions of the Hamiltonian at zero energy, all with null amplitudes on the minority
sublattice sites. The proof is simple: for let NA > NB and |ψ� = ∑i αi |ai� be a trial solution
at zero energy. The coefficients αi need to satisfy ∑i �bj|H|ai� αi = 0 for j = 1, ..NB which is a
set of NB equations for the NA > NB coefficients, with η linearly independent solutions. This
also shows that ψ’s localize on the A lattice sites.
Analogous results have been already known in hydrocarbon chemistry for some time. The
tight-binding approach described above has been used for decades in quantum chemistry
to study aromatic hydrocarbons, under the name of Hückel method. The mathematical
properties of the Hückel Hamiltonian have been formalized in a series of theorems and
corollaries in a famous book of Dewar (Dewar, 1969). Bipartite lattices were listed there as
“alternant” hydrocarbons, and the emergence of midgap states formally predicted in case of
odd-numbered alternant hydrocarbons.
Calculations, both at tight-binding and at higher levels of theory (DFT), confirm these
expectations: in graphene the zero-energy states originated in this way correspond to
semilocalized modes around the defect which decay slowly with the distance, i.e. with a
r−1 power law (Pereira et al., 2006; 2008), a result which has been recently confirmed by
experiments (Ugeda et al., 2010). Pereira et al. (2008) performed a comprehensive analysis
of the effect low-density defects have on the graphene DOS, by using numerical tight-binding
calculations for ∼ 4x106 lattice sites and analytic results. Analogous results have been found
in DFT studies10 of isolated vacancies (Yazyev & Helm, 2007) and adatoms (Boukhvalov et al.,
2008; Casolo et al., 2009a).

4.2 Chemical resonance formula
In the case of a single π-defect, or a random distribution of them, the appearance of midgap
states may be easily understood by applying the resonance-based VB picture described in
Section 2. Considering benzene as the simplest building block of graphene, it is easy to realize
how adsorption of a H atom breaks the aromatic network and leaves one unpaired electron
free to move on the lattice by bond switching: spin-recoupling with a neighbouring double
bond creates an unpaired electron in one every two lattice sites. Ab-initio VB calculations
(Bonfanti et al., 2008) show that this indeed the case: the 5 π electrons have 5 different ways of
couplings (Fig.6) but only those with the unpaired electron in the so-called ortho and para
positions are relevant; an electron in meta position would involve a Dewar-like structure,
which has a high energy bond-pattern (see Fig.6). The bond switching mechanism is very
useful and well known in basic organic chemistry, where it easily allows predictions for
orientation effects, e.g. in electrophilic aromatic substitutions. In contrast to the full analysis

10 The approach used is intrinsically periodic. Therefore, the results are best viewed as referring to defects
which are periodically arranged on superlattices with large unit cells.
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between the relaxed and the puckered configuration, is substantial (∼ 0.8 eV) and this explains
why binding energies to graphene are typically smaller than for other carbon species. If the
graphene layer is kept flat the carbon - hydrogen bond is metastable only (Casolo et al., 2010;
Sha & Jackson, 2002), while allowing surface relaxation chemisorption becomes an activated
process with stable products (∼ 0.80 eV).
When the hydrogen atom collides on a carbon site already puckered, i.e. already in the
sp3 form, chemisorption is a barrierless process. Otherwise, following an adiabatic path
(hence allowing the carbon atom relaxation to its equilibrium position at every point along
the reaction coordinate) an energy barrier ∼0.2 eV high is found, as a consequence of the
re-hybridization. These adsorption curves are shown in fig.5. The barrier (which is also
present when the substrate is kept planar) has an important, purely electronic origin. Indeed,
it has been shown (Bonfanti et al., 2008) that it results from an avoided crossing between
a repulsive interaction with the Kekulé-like ground-state and an attractive interaction with
the low-lying, Dewar-like excited state (see Fig.4 in Casolo et al. (2009a)). This can be nicely
understood in terms of the chemical picture above since the Kekulé-like structures do not have
unpaired electrons which can readily couple with that of the incoming H atom.
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4. Low density: π-defect structure
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charge density reconstruction appears (Mizes & Foster, 1989; Ruffieux et al., 2000; Ugeda et al.,
2010).
A carbon vacancy or a defect in the π-network due to a monovalent chemisorbed species
creates in graphene an imbalance between the number of sites in each sublattices. This
lowers the overall lattice symmetry, up to eventually remove the Dirac cones and open a
band gap. Looking at the tight-binding Hamiltoninan in equation 3 the introduction of a
π-defect in the graphene lattice reads as the removal of the basis function corresponding
to the defect site, and the system eigenstates become necessarily odd-numbered. Therefore,
in the nearest-neighbour approximation, because of the electron-hole symmetry, one of the
eigenvalues in the energy spectrum necessarily lies at the Fermi level. This zero-energy state

9 H diffusion is largely impeded by electronic/geometrical effects, see below.
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is a singly occupied molecular orbital called midgap state, even when a gap is not really
present. When relaxing the nearest-neighbour approximation such states move from the
Fermi level, but remain close to it. Their presence is important for the transport properties
being responsible for resonant scattering mechanisms.
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sublattices sites NA and NB are not equal, there are at least η = |nA − nB| linearly independent
eigenfunctions of the Hamiltonian at zero energy, all with null amplitudes on the minority
sublattice sites. The proof is simple: for let NA > NB and |ψ� = ∑i αi |ai� be a trial solution
at zero energy. The coefficients αi need to satisfy ∑i �bj|H|ai� αi = 0 for j = 1, ..NB which is a
set of NB equations for the NA > NB coefficients, with η linearly independent solutions. This
also shows that ψ’s localize on the A lattice sites.
Analogous results have been already known in hydrocarbon chemistry for some time. The
tight-binding approach described above has been used for decades in quantum chemistry
to study aromatic hydrocarbons, under the name of Hückel method. The mathematical
properties of the Hückel Hamiltonian have been formalized in a series of theorems and
corollaries in a famous book of Dewar (Dewar, 1969). Bipartite lattices were listed there as
“alternant” hydrocarbons, and the emergence of midgap states formally predicted in case of
odd-numbered alternant hydrocarbons.
Calculations, both at tight-binding and at higher levels of theory (DFT), confirm these
expectations: in graphene the zero-energy states originated in this way correspond to
semilocalized modes around the defect which decay slowly with the distance, i.e. with a
r−1 power law (Pereira et al., 2006; 2008), a result which has been recently confirmed by
experiments (Ugeda et al., 2010). Pereira et al. (2008) performed a comprehensive analysis
of the effect low-density defects have on the graphene DOS, by using numerical tight-binding
calculations for ∼ 4x106 lattice sites and analytic results. Analogous results have been found
in DFT studies10 of isolated vacancies (Yazyev & Helm, 2007) and adatoms (Boukhvalov et al.,
2008; Casolo et al., 2009a).

4.2 Chemical resonance formula
In the case of a single π-defect, or a random distribution of them, the appearance of midgap
states may be easily understood by applying the resonance-based VB picture described in
Section 2. Considering benzene as the simplest building block of graphene, it is easy to realize
how adsorption of a H atom breaks the aromatic network and leaves one unpaired electron
free to move on the lattice by bond switching: spin-recoupling with a neighbouring double
bond creates an unpaired electron in one every two lattice sites. Ab-initio VB calculations
(Bonfanti et al., 2008) show that this indeed the case: the 5 π electrons have 5 different ways of
couplings (Fig.6) but only those with the unpaired electron in the so-called ortho and para
positions are relevant; an electron in meta position would involve a Dewar-like structure,
which has a high energy bond-pattern (see Fig.6). The bond switching mechanism is very
useful and well known in basic organic chemistry, where it easily allows predictions for
orientation effects, e.g. in electrophilic aromatic substitutions. In contrast to the full analysis

10 The approach used is intrinsically periodic. Therefore, the results are best viewed as referring to defects
which are periodically arranged on superlattices with large unit cells.
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Fig. 6. Valence Bond model for the binding of a radical species (a H atom) on benzene. The
numbers give the weights of the corresponding VB structures (Bonfanti et al., 2008). The
resulting unpaired electron localizes mostly in ortho (two leftmost structures on the top row)
and para (mid panel) position, as emphasized by the bond-switching mechanism reported in
the chemical formula of the bottom row.

of possible spin-couplings, exporting this model to graphene is rather straightforward11. A
picture of the mechanism is shown in fig.7 for a coronene model, that is meant to represent
the whole graphene lattice. The itinerant electron hops between sites of one type only,
thereby occupying a delocalized state which is the midgap state described previously in the
tight-binding (MO) picture.
Whatever picture we use the result is a spin density (magnetization) localized close to
the defect, on the sites of the hexagonal sublattice not housing it 12. At low density,
where hybridization does not occur, such spin-density thus determines the appearance of
(microscopic) magnetically ordered domains. It further influences reactivity of the substrate
with foreign species, which can readily ‘saturate’ (singlet-couple) this electron if they land on
the correct sites, as will be shown in the next section.
Before concluding this Section, we can now understand why simple adatoms do not move on
the surface. Indeed, for the H atom to hop on the neighbouring site the unpaired spin has
to move from one sublattice to the other and this requires breaking completely the existing
CH bond and forming a new one: the barrier to diffusion, then, matches the desorption

Fig. 7. Itinerant electron model for the pz-vacancy-induced midgap state

11 This amounts to consider Kekulé structures only, which are much fewer than the whole set of f N
S

couplings for all but small N values.
12 It can also be turned into a charge-density by addition/removal of one electron.
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Fig. 8. Molecules with no sublattice imbalance. The first two molecules on the left are
di-radical species, i.e. they have two midgap states. The Schlenk-Brauns hydrocarbon shown
in the middle panel differs from the Chichibabin hydrocarbon shown in the right panel by
the connectivity only. Nevertheless, the latter does not present unpaired electrons. In the first
two molecules, the largest set of non-adjacent sites is marked by red dots.

energy. This explains the experimental observation that H atoms are immobile on the surface
(Hornekær et al., 2006b). For more complex species, e.g. O atoms, spin-recoupling on the
adatom may help the diffusion (isomerization) process via formation of a ‘bridge‘ between the
two sites. This would explains why DFT computed barriers for diffusion of OH species are
definitely smaller than the desorption energy (Ghaderi, 2010).

5. High density: spin-ordering, clustering and related issues

5.1 Predicting midgap states and magnetism
The very simple counting rule for midgap states introduced above usually works fine for
graphene, but fails to be predictive for some class of finite size graphenes or analogous
(complementary) holes on the graphene sheet. For instance, the first two molecules in Fig.8
have no sublattice imbalance (being symmetric) but are radical species, i.e. they necessarily
have midgap states (Pogodin & Agranat, 2003). To a closer inspection, sublattice imbalance is
indeed only a sufficient condition for midgap states to appear.
To rationalize the situation, it is necessary to introduce the concept of non-adjacent sites in
a N-site bipartitic system. We say that two sites are non-adjacent if they are not bound
(connected) to each other; for instance, two sites on the same sublattice are non-adjacent.
Clearly, there exists a maximal set of non-adjacent sites and we call α the sites in this set,
and β the remaining ones (Nα, Nβ = N − Nα in number, respectively). Each site α binds at
least to one site β, otherwise it would represent a completely isolated site. Arranging one
electron per site α, however, we can form at most Nβ bonds at a time, and therefore we are left
with η = Nα − Nβ = 2Nα − N unpaired electrons, i.e. midgap states. The case of a sublattice
imbalance discussed above is a special result of this rule: when NA > NB, since the A lattice
sites are always non-adjacent and Nα ≥ NA, we have η ≥ NA − NB. Fig.8 shows molecules
having η > 0 and no sublattice imbalance, with the indicated α sets. As it is evident from
its derivation, this result can be equivalently re-phrased by defining η to be the number of
unpaired electrons in the Lewis structure(s) with the maximum number of π (i.e. double)
bonds.
Notice that, since the spectrum of the Hamiltonian is determined by the system topology
the whole set of counting rules for midgap states can be derived entirely from graph theory.
In particular, midgap states appears as zeros of the characteristic polynomial of the adjacency
matrix A, that defines the connectivity of the graph (Bonchev & Rouvray, 1991; Randić, 2003)).
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(connected) to each other; for instance, two sites on the same sublattice are non-adjacent.
Clearly, there exists a maximal set of non-adjacent sites and we call α the sites in this set,
and β the remaining ones (Nα, Nβ = N − Nα in number, respectively). Each site α binds at
least to one site β, otherwise it would represent a completely isolated site. Arranging one
electron per site α, however, we can form at most Nβ bonds at a time, and therefore we are left
with η = Nα − Nβ = 2Nα − N unpaired electrons, i.e. midgap states. The case of a sublattice
imbalance discussed above is a special result of this rule: when NA > NB, since the A lattice
sites are always non-adjacent and Nα ≥ NA, we have η ≥ NA − NB. Fig.8 shows molecules
having η > 0 and no sublattice imbalance, with the indicated α sets. As it is evident from
its derivation, this result can be equivalently re-phrased by defining η to be the number of
unpaired electrons in the Lewis structure(s) with the maximum number of π (i.e. double)
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In this context, the above result is known as graph nullity theorem.
Having derived the exact conditions determining the appearance of midgap states, the
question arises of how spins couple when a number η of unpaired electrons are present.
The determination of the spin state cannot come, of course, from the simple tight-binding
Hamiltonian, since in these open-shell configurations energy ordering is mainly determined
by electron correlation. At first glance, it can be guessed that electrons occupying
quasi-degenerate midgap states tend to keep their spins parallel, in a sort of molecular
Hund’s rule, as this reduces Coulomb repulsion, i.e. system’s total spin should always be η/2
(Longuet-Higgins, 1950). This is actually the case only when midgap states originate from
a sublattice imbalance, since in such instance they are forced to stay on the same sublattice.
When midgap states (unpaired electrons) lie on different sublattice they best couple at low
spin. This result can be shown to be exact for the realistic model provided by the (repulsive)
Hubbard Hamiltonian: Lieb (1989) showed that for any bipartitic system at half-filling the
ground-state spin S is given by the sublattice imbalance S = 1

2 |NA − NB|. This is a subtle effect
of electron correlation, which would lead to an energetically unfavourable spin polarization
of the remaining occupied orbitals if the above Hund rule were followed in absence of
sublattice imbalance 13. From a different perspective, it has been associated with the most
“spin-alternant” structure (Ovchinnikov’s rule, Ovchinnikov (1978)).
According to the rules above it is now possible to predict the number of midgap states and the
spin state of a number of complex graphene structures without relevant exceptions. We only
note that the theorems stated above for bipartite lattices do not apply for topological defects
that destroy bipartitism. Nevertheless, it has been noticed that the Ovchinnikov’s rule can be
usually extended to non-bipartite systems (Shaik & Hiberty, 2007), although some care has to
be paid (López-Sancho et al., 2009). For instance, the ground-state multiplicity of Stone-Wales
defects is correctly predicted to be zero by this rule.

5.2 Preferential sticking
When adsorbing hydrogen atoms on graphite or graphene under kinetic control STM images
clearly show the formation of dimers and clusters (Hornekær et al., 2006b). Since H atoms are
immobile on the surface this must be due to a preferential sticking mechanism. This mechanism
was first suggested by (Hornekær et al., 2006b) who looked at the STM images formed
by exposing Highly Oriented Pyrrolitic Graphite (HOPG) samples to a H atom beam, and
observed formation of stable pairs, also confirmed by first-principles calculations (Hornekær
et al., 2006b; Rogeau et al., 2006). Later Casolo et al. (2009a) showed that the preference for
certain lattice sites comes from the spin density localized on one of the two sublattices (the
midgap state), as generated by the first adsorbate.
The overall picture (Casolo et al., 2009a) is consistent with the VB chemical model: when
a first H atom is on an A-type site, the unpaired electron localizes on the B sublattice
and bond formation easily occurs on its sites. An “AB dimer” (which has no sublattice
imbalance) is formed and a singlet ground-state is obtained where aromaticity is partially
restored. Conversely, if adsorbtion occurs on the same sublattice, i.e. to form “A2” dimers, the
incoming H atom does not make use of the available spin-density, and adsorption energies are
comparable to that of the first H atom. Furthermore, as another electron is set free on the same
B sublattice occupied by the unpaired electron, the ground state is a triplet (η = NB − NA = 2).

13 Notice that for two electrons in different zero energy state, first-order perturbation theory always gives
a triplet ground-state. The nature of the midgap states and the ensuing interactions with the doubly
occupied orbitals play a decisive role.
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Fig. 9. Left panel: Binding energies for secondary H adsorption as a function of the
site-integrated magnetization (MSI), for AB ( circles) and A2 (squares) dimers. Both singlet
(red) and triplet (blue) solutions are shown in red and blue respectively. Also shown the data
point for single H adsorption (black diamond) and a linear fit to the data set (solid line).
Right panel: corresponding barrier energies for secondary atom adsorption (ground-state
only). Data point at MSI=0 is for single H adsorption.

The results of DFT calculations (Casolo et al., 2009a) on a number of dimers are shown in Fig.9
as function of the site-integrated magnetization, i.e. the average number of unpaired electrons
in each site as results from the first adsorption event. It should be noted that substrate
relaxation effects, though substantial (∼ 0.8 eV), are site-independent for all but the ortho
dimer14; thus the curves in the graphs of Fig. 9 reflects purely electronic effects. Binding and
barrier energies both depend linearly on the local magnetization, thereby implying a linear
relationship between them; this is a common tendency in activated chemical reactions known
as Brønsted-Evans-Polayni rule. An exception is provided by the ortho dimer (rightmost
data point in the graphs of Fig. 9), whose formation requires further rearrangement in the
first C-H neighbourhood. This is shown in figure 10 where the equilibrium geometry of the
dimer is reported in the left panel. It is clear from the figure that the two H atoms point in
opposite directions (as in a H-C-C-H eclipsed conformation of an alkane), which suggests that,
despite their proximity, they would not easily desorb to form H2 upon heating the substrate.
This is indeed what has been found by a combined theoretical and experimental study by
Hornekær et al. (2006a): upon heating, the ortho dimer prefers to isomerize to the para dimer,
which dehydrogenates easier (i.e. at a lower temperature). The highest temperature peak
in the TPD spectra corresponds then to this isomerization process. The para dimer itself,
whose equilibrium geometry is shown in the right panel of Fig.10, forms abundantly when
exposing graphene to a H atom beam, since its formation is barrierless (see fig.9). This forms
the basis for the preferential sticking mechanism first suggested by Hornekær et al. (2006b),
which is here summarized with the results of fig.9, namely formation of AB dimers is both
thermodynamically and kinetically favoured over formation of A2 dimers and single atom
adsorption.

14 Surface puckering upon adsorption, to a good approximation, involves nearest neighbouring C atoms
only.
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Fig. 10. Equilibrium geometry for ortho (left) and para (right) dimer structures.

Unfortunately15, the preferential sticking mechanism above works only for dimers. Once
an AB dimer is formed (A2 is unfavoured) there are no further unpaired electrons available,
and no bias on the adsorption of additional H atoms. This is confirmed by DFT calculations
(Casolo et al., 2009a) on a number of larger A2B2, A2B, A3B1 and A3 clusters. As expected from
the VB model above, adsorption of a third hydrogen atom to a stable AB dimer parallels that of
the first H, with essentially no preference towards any specific sublattice position, and always
produce doublet structures (M = 1 μB) (see fig.11). Similar conclusions hold when adding a
third H atom to the (magnetic) meta dimer A2: adsorption on B lattice sites is strongly favoured
(Ebind = 1.2− 1.9 eV) and produces doublet structures (M = 1 μB), whereas H atoms bind to A
lattice sites with an energy ∼ 0.7− 0.8 eV and produce highly magnetic structures (M = 3 μB)
(see fig.11). Energy barriers to adsorption follow the same trend: calculations show that, with
few exceptions, barriers to sticking a third H atom compare rather well with that for single H
atom adsorption for the processes AB→A2B and A2 →A3, and may be considerably smaller
for A2 →A2B ones. These three-atom clusters, similarly to the single H atom, necessarily bias
the adsorption of a fourth atom. The computed binding and barrier energies for this process
have been found to compare rather well with the dimer values, actually they nicely fit to the
same linear trends shown in Fig.9. Finally, all the considered A2B2, A2B, A3B1 and A3 clusters
have been found to have 0, 1, 2 and 3 unpaired electrons in their ground-state, respectively, in
agreement with expectations (i.e. either the VB model or the Lieb theorem).
Few exceptions to this picture are for compact clusters where substrate relaxation does play
some role, see e.g. the structures on the right of fig. 11. Compared to other trimers, these
structures are favoured because of the substrate softening occurring after formation of the para
dimer, which is in a typical boat configuration (fig.10). Such softening is expected to reduce the
relaxation energy needed for the binding of the additional atom, with a gain of some tenths of
eV on the overall energetic balance16. This would explain why experiments at intense H atom
flux do not find a random distribution of dimers, as would be expected on basis of electronic
effects only, rather clusters made up of a number of atoms (Ferro et al., 2009; Hornekær et al.,
2007). Though a detailed analysis would require the knowledge of the adsorption barrier for
a rather large number of clusters, the linear relationship shown above may help in making
educated guesses on the basis of the binding energies only.

15 There is a long open search for efficient pathways leading to H2 formation on graphitic surfaces, because
of its importance in explaining the observed abundance of molecular hydrogen in the interstellar
medium.

16 Remember that the relaxation energy for the single H atom (∼ 0.8 eV) has the same magnitude as the
overall binding energy, i.e. about half of the bond formation energy is spent for relaxing the substrate.
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Fig. 11. Some of the possible hydrogen trimers structures obtainable from the AB para dimer
(left diagram) and from the A2 meta dimer (right). Binding energies are also shown.

5.3 A route to graphane?
Graphane is a novel two-dimensional material, namely the fully hydrogenated graphene sheet.
The structure is still bipartitic and each sublattice bears all hydrogens on the same side of the
lattice plane (in meta to each other), in such a way to have a chair-like configuration as in
cyclohexane. It is an insulating material with no π electrons (Lebègue et al., 2009; Sofo et al.,
2007), that might have been recently obtained by simply exposing graphene to cold hydrogen
plasma (Elias et al., 2009). This result is very interesting in light of what has been shown in the
previous sections. In order to produce graphane by simple hydrogen exposure it is necessary
that either H atoms adsorb selectively on one sublattice only for a given graphene face or
hydrogen diffuses (isomerize) to occupy the sites on the right face.
According to the discussion of previous section, formation of meta dimers is unlikely, ortho,
para positions being highly favoured for adsorption. According to DFT calculations on
free-standing graphene (Casolo, 2009), this is true both for the syn- (on the same face) and
the anti- (on opposite faces) dimers. However, even if hydrogen atoms were likely to form
anti-para dimers also in supported graphene (and they are required for graphane production)
an efficient syn- to anti- conversion mechanism would be needed to convert those dimers
already formed on the same graphene face. Unfortunately, as we have seen in the previous
section, even in this case, no true preferential sticking can occur after dimer formation and
it will be very unlikely that all the other hydrogens will chemisorbed in the correct sites
and face. Indeed, recent molecular dynamics simulations showed that disordered, frustrated
hydrogenated domains would rather form (Flores et al., 2009).
If graphane has been really formed by hydrogen exposure some other effect has to play a
role. Curved graphene areas might help this process. Graphene is a very elastic membrane
that naturally exhibit ripples that tend to lay down along steps and kinks of the supporting
substrate on which it was grown. Indeed recent experimental findings suggested that
hydrogen chemisorbs more efficiently on the ridges of the silicon carbide substrate surface
onto which graphene usually lays (Balog et al., 2009). Moreover, it has been also shown
that hydrogenation of single-layer graphene is easier than for many-layer graphene, likely
as a consequence of the higher corrugation displayed by the graphene surface (Jung et al.,
2009; Luo et al., 2009). This is reasonable, as for nanotubes the curvature reduces the pz-pz
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Fig. 10. Equilibrium geometry for ortho (left) and para (right) dimer structures.

Unfortunately15, the preferential sticking mechanism above works only for dimers. Once
an AB dimer is formed (A2 is unfavoured) there are no further unpaired electrons available,
and no bias on the adsorption of additional H atoms. This is confirmed by DFT calculations
(Casolo et al., 2009a) on a number of larger A2B2, A2B, A3B1 and A3 clusters. As expected from
the VB model above, adsorption of a third hydrogen atom to a stable AB dimer parallels that of
the first H, with essentially no preference towards any specific sublattice position, and always
produce doublet structures (M = 1 μB) (see fig.11). Similar conclusions hold when adding a
third H atom to the (magnetic) meta dimer A2: adsorption on B lattice sites is strongly favoured
(Ebind = 1.2− 1.9 eV) and produces doublet structures (M = 1 μB), whereas H atoms bind to A
lattice sites with an energy ∼ 0.7− 0.8 eV and produce highly magnetic structures (M = 3 μB)
(see fig.11). Energy barriers to adsorption follow the same trend: calculations show that, with
few exceptions, barriers to sticking a third H atom compare rather well with that for single H
atom adsorption for the processes AB→A2B and A2 →A3, and may be considerably smaller
for A2 →A2B ones. These three-atom clusters, similarly to the single H atom, necessarily bias
the adsorption of a fourth atom. The computed binding and barrier energies for this process
have been found to compare rather well with the dimer values, actually they nicely fit to the
same linear trends shown in Fig.9. Finally, all the considered A2B2, A2B, A3B1 and A3 clusters
have been found to have 0, 1, 2 and 3 unpaired electrons in their ground-state, respectively, in
agreement with expectations (i.e. either the VB model or the Lieb theorem).
Few exceptions to this picture are for compact clusters where substrate relaxation does play
some role, see e.g. the structures on the right of fig. 11. Compared to other trimers, these
structures are favoured because of the substrate softening occurring after formation of the para
dimer, which is in a typical boat configuration (fig.10). Such softening is expected to reduce the
relaxation energy needed for the binding of the additional atom, with a gain of some tenths of
eV on the overall energetic balance16. This would explain why experiments at intense H atom
flux do not find a random distribution of dimers, as would be expected on basis of electronic
effects only, rather clusters made up of a number of atoms (Ferro et al., 2009; Hornekær et al.,
2007). Though a detailed analysis would require the knowledge of the adsorption barrier for
a rather large number of clusters, the linear relationship shown above may help in making
educated guesses on the basis of the binding energies only.

15 There is a long open search for efficient pathways leading to H2 formation on graphitic surfaces, because
of its importance in explaining the observed abundance of molecular hydrogen in the interstellar
medium.

16 Remember that the relaxation energy for the single H atom (∼ 0.8 eV) has the same magnitude as the
overall binding energy, i.e. about half of the bond formation energy is spent for relaxing the substrate.
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5.3 A route to graphane?
Graphane is a novel two-dimensional material, namely the fully hydrogenated graphene sheet.
The structure is still bipartitic and each sublattice bears all hydrogens on the same side of the
lattice plane (in meta to each other), in such a way to have a chair-like configuration as in
cyclohexane. It is an insulating material with no π electrons (Lebègue et al., 2009; Sofo et al.,
2007), that might have been recently obtained by simply exposing graphene to cold hydrogen
plasma (Elias et al., 2009). This result is very interesting in light of what has been shown in the
previous sections. In order to produce graphane by simple hydrogen exposure it is necessary
that either H atoms adsorb selectively on one sublattice only for a given graphene face or
hydrogen diffuses (isomerize) to occupy the sites on the right face.
According to the discussion of previous section, formation of meta dimers is unlikely, ortho,
para positions being highly favoured for adsorption. According to DFT calculations on
free-standing graphene (Casolo, 2009), this is true both for the syn- (on the same face) and
the anti- (on opposite faces) dimers. However, even if hydrogen atoms were likely to form
anti-para dimers also in supported graphene (and they are required for graphane production)
an efficient syn- to anti- conversion mechanism would be needed to convert those dimers
already formed on the same graphene face. Unfortunately, as we have seen in the previous
section, even in this case, no true preferential sticking can occur after dimer formation and
it will be very unlikely that all the other hydrogens will chemisorbed in the correct sites
and face. Indeed, recent molecular dynamics simulations showed that disordered, frustrated
hydrogenated domains would rather form (Flores et al., 2009).
If graphane has been really formed by hydrogen exposure some other effect has to play a
role. Curved graphene areas might help this process. Graphene is a very elastic membrane
that naturally exhibit ripples that tend to lay down along steps and kinks of the supporting
substrate on which it was grown. Indeed recent experimental findings suggested that
hydrogen chemisorbs more efficiently on the ridges of the silicon carbide substrate surface
onto which graphene usually lays (Balog et al., 2009). Moreover, it has been also shown
that hydrogenation of single-layer graphene is easier than for many-layer graphene, likely
as a consequence of the higher corrugation displayed by the graphene surface (Jung et al.,
2009; Luo et al., 2009). This is reasonable, as for nanotubes the curvature reduces the pz-pz
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overlap, i.e. aromaticity, thereby lowering the barrier energies for H chemisorption (Ruffieux
et al., 2002a;b). Still, there is no clear evidence that local curvature plays a role in graphane
formation, and more investigations in this direction are needed.

6. Defect-based material design

When it comes to device fabrication only few of the many extraordinary properties of
graphene are relevant, at least for the chip-makers (Schwierz, 2010). Among them, its
thickness allows the thinnest possible gate-controlled regions in transistors and, according
to scaling theories, should reduce electrostatic problems if short channels have to be built.
Mobility is an important factor as it allows for instance high-performance interconnects
and fast response to external (gate) potentials. It becomes of secondary importance in
short channels, where high fields builds up and carrier velocity saturates, but also in this
respect graphene proved to have superior properties than conventional materials. Indeed,
high-performance transistors for frequency applications have been realized (Lin et al., 2010),
and record cut-off frequencies are being continuously scored. However, for its usage in logic
applications the absence of a band-gap is a major problem (Avouris et al., 2007; Schwierz,
2010): even when the Fermi level crosses the charge neutrality point a non-zero residual
conductivity avoids the complete current pinch-off 17. The absence of a band-gap, indeed,
prevents the achievement of the high current on-off ratios required for logic operations.
Graphene can be turned into a true semiconductor by properly engineering it. Electron
confinement, though in general not trivial for massless, pseudorelativistic carriers, can be
obtained by cutting large-area graphene to form narrow nanoribbons. Apart from related
fabrication issues, one main drawback of such an approach is the removal of the Dirac
cones and the resulting band-bending. This is expected to increase the effective mass of the
carriers, thereby reducing their mobility. Indeed, it has been generally found that mobility
is a decreasing function of the gap (Schwierz, 2010), and this is an undesirable by-side effect
worth considering with such a traditional approach. Alternatively, symmetry breaking is known
to turn the massless Dirac carriers into massive (yet pseudorelativistic) carriers. This can be
realized by depositing or growing graphene on a substrate that renders inequivalent the two
sublattice positions. For instance, boron nitride has the same honeycomb lattice as graphene
and a similar cell parameter, but presents two inequivalent sublattices. When graphene is
in contact with such a surface B and N interact differently with the carbon atoms of the
graphene sheet, breaking its sublattice equivalence and lifting the degeneracy of the two
bands. A similar situation is achieved for graphene grown on silicon carbide surfaces, where a
gap has been observed by angle-resolved photoemission spectroscopy though subtle electron
correlation effects may play a role in such case (Bostwick et al., 2007; Zhou et al., 2007).
In the following sections we describe alternative possibilities for opening a gap in graphene
band structure, namely those offered by superlattices of defects and dopants. One interesting
finding in this context is the proof that a band-gap can be opened in graphene without breaking
its symmetry, with the advantage the new Dirac cones (massless carriers) appear right close
to the gapped region (Martinazzo et al., 2010). For this reason we start introducing some
symmetry considerations, extending the arguments given in section 2.

17 The defects discussed in this chapter, along with charged scatterer, are ascending as the most likely
origin of the conductivity minimum (Peres, 2010). The counter-intuitive role of defects in increasing the
conductivity finds its origin in the modification of the graphene DOS close to the Dirac point.
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Fig. 12. Left: counting the number of irreps generated by the atomic basis in a 4x4 supercell:
indicated are the irreps generated by the atoms at the center of the half-cells (red balls) and by
green triangles. Right: a simple “supergraphene”, the simplest defective 14x14 honeycomb.

6.1 Symmetry considerations
As we have seen in section 2 graphene’s unconventional electronic properties are strictly
related to its D6h point symmetry. The k-group at the K-K’ high-symmetry points (D3h) allows
for doubly degenerate irreducible representations, and Bloch functions built with pz orbitals
of A and B sublattices span just one of its two-dimensional irreps. As e − h symmetry does
not mix one- (A) and two- (E) dimensional representation this level has to lie at zero energy,
where the Fermi level (εF) is located.
Were not there such degenerate level, graphene would be, as any other bipartitic system at
half-filling, semiconducting. Graphene can be forced to be so by either lowering the symmetry
(i.e. changing the k group at K(K’) to a simpler one), or changing the number of E irreps at the
special points while keeping the overall symmetry. In the latter, more intriguing case, since
the overall point symmetry is preserved, degeneracies may still occur at energies different
from εF, and new Dirac cones are to be expected. The “recipe” for doing that is very simple
(Martinazzo et al., 2010): nxn graphene superlattices have the same symmetry properties and
2n2 atoms per cell; by symmetrical removing a number of C atoms 18 is possible to change
the number of irreps and turn, in particular, the E ones to be even at every, highly symmetric
special point (Γ, K, K�). With few exceptions of residual accidental degeneracies, this opens a
gap in the band structure.
The approach is made effective by counting the number of irreps generated by 2n2 atoms in
a nxn unit supercell. The results of this calculation (Martinazzo et al., 2010) can be grouped
into three different sequences, n = 3m, 3m + 1, 3m + 2 (m integer), according to the BZ folding
properties. In two thirds of the cases, i.e. when n = 3m + 1, 3m + 2 , removal of the atoms at
the center of the two-half cells (red balls in the left panel of fig.12) is sufficient for opening a
gap. Figure 12 (right panel) shows one of the simplest resulting semiconducting superlattice,
namely with simple, atomic-scale defects arranged in a honeycomb lattice. Because of their
nature, they are best considered as supergraphenes.

6.2 Superlattices of vacancies or holes
Tight-binding and DFT calculations on the simple structures identified in the previous section
show indeed a sizable band-gap. The gap size approximately scales as vF/ln where vF is

18 As shown in the previous sections one can equivalently introduce either a vacancy or an adatom.
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overlap, i.e. aromaticity, thereby lowering the barrier energies for H chemisorption (Ruffieux
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formation, and more investigations in this direction are needed.
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When it comes to device fabrication only few of the many extraordinary properties of
graphene are relevant, at least for the chip-makers (Schwierz, 2010). Among them, its
thickness allows the thinnest possible gate-controlled regions in transistors and, according
to scaling theories, should reduce electrostatic problems if short channels have to be built.
Mobility is an important factor as it allows for instance high-performance interconnects
and fast response to external (gate) potentials. It becomes of secondary importance in
short channels, where high fields builds up and carrier velocity saturates, but also in this
respect graphene proved to have superior properties than conventional materials. Indeed,
high-performance transistors for frequency applications have been realized (Lin et al., 2010),
and record cut-off frequencies are being continuously scored. However, for its usage in logic
applications the absence of a band-gap is a major problem (Avouris et al., 2007; Schwierz,
2010): even when the Fermi level crosses the charge neutrality point a non-zero residual
conductivity avoids the complete current pinch-off 17. The absence of a band-gap, indeed,
prevents the achievement of the high current on-off ratios required for logic operations.
Graphene can be turned into a true semiconductor by properly engineering it. Electron
confinement, though in general not trivial for massless, pseudorelativistic carriers, can be
obtained by cutting large-area graphene to form narrow nanoribbons. Apart from related
fabrication issues, one main drawback of such an approach is the removal of the Dirac
cones and the resulting band-bending. This is expected to increase the effective mass of the
carriers, thereby reducing their mobility. Indeed, it has been generally found that mobility
is a decreasing function of the gap (Schwierz, 2010), and this is an undesirable by-side effect
worth considering with such a traditional approach. Alternatively, symmetry breaking is known
to turn the massless Dirac carriers into massive (yet pseudorelativistic) carriers. This can be
realized by depositing or growing graphene on a substrate that renders inequivalent the two
sublattice positions. For instance, boron nitride has the same honeycomb lattice as graphene
and a similar cell parameter, but presents two inequivalent sublattices. When graphene is
in contact with such a surface B and N interact differently with the carbon atoms of the
graphene sheet, breaking its sublattice equivalence and lifting the degeneracy of the two
bands. A similar situation is achieved for graphene grown on silicon carbide surfaces, where a
gap has been observed by angle-resolved photoemission spectroscopy though subtle electron
correlation effects may play a role in such case (Bostwick et al., 2007; Zhou et al., 2007).
In the following sections we describe alternative possibilities for opening a gap in graphene
band structure, namely those offered by superlattices of defects and dopants. One interesting
finding in this context is the proof that a band-gap can be opened in graphene without breaking
its symmetry, with the advantage the new Dirac cones (massless carriers) appear right close
to the gapped region (Martinazzo et al., 2010). For this reason we start introducing some
symmetry considerations, extending the arguments given in section 2.

17 The defects discussed in this chapter, along with charged scatterer, are ascending as the most likely
origin of the conductivity minimum (Peres, 2010). The counter-intuitive role of defects in increasing the
conductivity finds its origin in the modification of the graphene DOS close to the Dirac point.
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As we have seen in section 2 graphene’s unconventional electronic properties are strictly
related to its D6h point symmetry. The k-group at the K-K’ high-symmetry points (D3h) allows
for doubly degenerate irreducible representations, and Bloch functions built with pz orbitals
of A and B sublattices span just one of its two-dimensional irreps. As e − h symmetry does
not mix one- (A) and two- (E) dimensional representation this level has to lie at zero energy,
where the Fermi level (εF) is located.
Were not there such degenerate level, graphene would be, as any other bipartitic system at
half-filling, semiconducting. Graphene can be forced to be so by either lowering the symmetry
(i.e. changing the k group at K(K’) to a simpler one), or changing the number of E irreps at the
special points while keeping the overall symmetry. In the latter, more intriguing case, since
the overall point symmetry is preserved, degeneracies may still occur at energies different
from εF, and new Dirac cones are to be expected. The “recipe” for doing that is very simple
(Martinazzo et al., 2010): nxn graphene superlattices have the same symmetry properties and
2n2 atoms per cell; by symmetrical removing a number of C atoms 18 is possible to change
the number of irreps and turn, in particular, the E ones to be even at every, highly symmetric
special point (Γ, K, K�). With few exceptions of residual accidental degeneracies, this opens a
gap in the band structure.
The approach is made effective by counting the number of irreps generated by 2n2 atoms in
a nxn unit supercell. The results of this calculation (Martinazzo et al., 2010) can be grouped
into three different sequences, n = 3m, 3m + 1, 3m + 2 (m integer), according to the BZ folding
properties. In two thirds of the cases, i.e. when n = 3m + 1, 3m + 2 , removal of the atoms at
the center of the two-half cells (red balls in the left panel of fig.12) is sufficient for opening a
gap. Figure 12 (right panel) shows one of the simplest resulting semiconducting superlattice,
namely with simple, atomic-scale defects arranged in a honeycomb lattice. Because of their
nature, they are best considered as supergraphenes.

6.2 Superlattices of vacancies or holes
Tight-binding and DFT calculations on the simple structures identified in the previous section
show indeed a sizable band-gap. The gap size approximately scales as vF/ln where vF is

18 As shown in the previous sections one can equivalently introduce either a vacancy or an adatom.

63The Effect of Atomic-Scale Defects and Dopants on Graphene Electronic Structure



Fig. 13. Energy gaps in simple supergraphenes made with pz vacancies. Left: results of TB
calculations as functions of 1/n. The symbols are for different parameters of the TB
hamiltonian, and the solid line is the result of a perturbative calculation at the K point. See
Martinazzo et al. (2010) for details. Middle: tight-binding (red) vs. DFT (black) results. In the
latter case, defects have been modelled as H atoms. Stars represent the results for asymmetric
dimers placed in the same nxn supercells. Right: energy bands for the n = 13, 14
supergraphenes.

the Fermi velocity in pristine graphene and ln is the distance between defects (ln = na/
√

3),
as can be guessed from a dimensional analysis or obtained from a perturbative calculation
within the tight-binding approach (Martinazzo et al., 2010). Both the size and the scaling
compare favourably with the gap in armchair nanoribbons (Son et al., 2006). However, one
distinctive feature of such structures is the additional presence of new Dirac cones right close
to the gapped region (blue circle in fig.13). This might be important in charge transport, since
they can sustain massless carriers when the Fermi level, as tuned by a gate potential, is swept
across the gap.
In practice, it is still experimentally challenging to realize the atomic-scale patterned structures
introduced above. It is however sufficient to consider similar superlattices of holes analogously
to the graphene antidots superlattices investigated by Fürst et al. (2009); Liu et al. (2009);
Pedersen et al. (2008). The resulting structures are honeycombs antidots as the one shown in
fig.14 They are experimentally feasible, as Bai et al. (2010); Eroms & Weiss (2009); Fischbein
& Drndic (2008); Shen et al. (2008) have shown that is possible to create circular holes with
diameters as small as 2 − 3 nm and periodicity ∼ 5 nm. Analogous patterns of H adatoms
have also been realized thanks to the interaction between graphene and an underlying metal
surface that creates Moire patterns activating chemisorption in specific areas (Balog et al.,
2010).
Tight-binding calculations on the honeycomb antidots show that the band-gap is quite large
for reasonable values of the superlattice constant and of the hole diameter and, as before, new
Dirac cones appear at low energies, close to the gapped region (Martinazzo et al., 2010). The
gap size is even larger than for the simplest structures considered above, though the latter
remain optimal in this context: when the gap size is renormalized to the number of defects per
unit cell, honeycombs such as that reported in fig. 12 prove to be “magic”.
Notice that previously suggested antidot superlattices (Fürst et al., 2009; Pedersen et al., 2008)
show comparable gaps, and are therefore equally valid candidates for turning graphene into a
true semiconductor. The only difference is a subtle symmetry-related issue. These hexagonal
superlattices are all of

√
3nx

√
3n type, hence with the same D6h symmetry of the honeycomb

lattices considered here, and this would suggest that exactly the same results hold for them. A
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Fig. 14. A honeycomb antidot superlattice presenting a gap by the symmetry preserving
approach discussed in the text.

closer inspection, however, reveals that in the
√

3nx
√

3n case, the K, K’ points of pristine
graphene always fold to Γ. This is advantageous for the band-gap opening, since these
structures are generally semiconducting if sufficiently defective19. However, as in Γ the k
group has the inversion symmetry, residual degeneracies at � �= �F, is not lifted at first order,
and therefore no linear dispersion is present.

6.3 Superlattices of substitutional atoms
Symmetry arguments similar to the one given above apply as well to the case where C atoms
are replaced (rather than removed) by other species, in such a way to form superlattices
substitutional of dopants. The only difference is that now foreign species are present and point
symmetry can be altered. Here we focus on group IIIA and VA elements, mainly because of
the fast progresses in methods for the controlled synthesis of N- and B- doped graphenes.
For instance, Panchakarla et al. (2009) have recently shown how it is possible to insert B or
N dopants in graphene by adding the correct precursors in the arc discharge chamber, while
Ci et al. (2010) have reported the synthesis of large islands of boron nitride embedded in
graphene by atomic layer deposition techniques. Methods to selectively replace C atoms from
graphene lattice have also been proposed by Pontes et al. (2009).
Substitutional defects behave similarly to pz vacancies (to which they reduce when the
hoppings become zero) but introduce impurity bands which partially hybridize with those
of the substrate. In addition, the diagonal disorder they introduce breaks e − h symmetry
giving rise to a Fermi level shift, i.e. to p− and n− doping for group IIIA and VA elements,
respectively. If superstructures are only weakly defective, however, the Fermi level shift scales
as 1/n, since the linear-energy dispersion implies EF = vF

√
πne (here ne is the electron (hole)

excess density, ne ∝ 1/n2). Thus, analogously to the superlattices of the previous section,
the defect-induced perturbation affects the electronic structure close to the Fermi level, and
symmetry arguments may be used to establish whether degeneracy occurs at the special
points in the important low-energy region.
It has been shown that, depending on the overall symmetry, superlattices of N and B defects
(and mixture thereof) can either preserve the Dirac cones (D6h superlattices) or open a band
gap (D3h) (Casolo et al., 2011). For instance, honeycomb superlattices of B (or N) dopants only
(D6h symmetry) are found to preserve the Dirac cones, and to be only p− (n−) doped (the
cone-apex shift being ∝ 1/n). Indeed, the low-energy band structure in these superlattice is

19 The number of E irreps is always even because of the ‘coalescence’ of the two valleys. Thus, one only
needs to remove the accidental degeneracy created by such folding.
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Martinazzo et al. (2010) for details. Middle: tight-binding (red) vs. DFT (black) results. In the
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as can be guessed from a dimensional analysis or obtained from a perturbative calculation
within the tight-binding approach (Martinazzo et al., 2010). Both the size and the scaling
compare favourably with the gap in armchair nanoribbons (Son et al., 2006). However, one
distinctive feature of such structures is the additional presence of new Dirac cones right close
to the gapped region (blue circle in fig.13). This might be important in charge transport, since
they can sustain massless carriers when the Fermi level, as tuned by a gate potential, is swept
across the gap.
In practice, it is still experimentally challenging to realize the atomic-scale patterned structures
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& Drndic (2008); Shen et al. (2008) have shown that is possible to create circular holes with
diameters as small as 2 − 3 nm and periodicity ∼ 5 nm. Analogous patterns of H adatoms
have also been realized thanks to the interaction between graphene and an underlying metal
surface that creates Moire patterns activating chemisorption in specific areas (Balog et al.,
2010).
Tight-binding calculations on the honeycomb antidots show that the band-gap is quite large
for reasonable values of the superlattice constant and of the hole diameter and, as before, new
Dirac cones appear at low energies, close to the gapped region (Martinazzo et al., 2010). The
gap size is even larger than for the simplest structures considered above, though the latter
remain optimal in this context: when the gap size is renormalized to the number of defects per
unit cell, honeycombs such as that reported in fig. 12 prove to be “magic”.
Notice that previously suggested antidot superlattices (Fürst et al., 2009; Pedersen et al., 2008)
show comparable gaps, and are therefore equally valid candidates for turning graphene into a
true semiconductor. The only difference is a subtle symmetry-related issue. These hexagonal
superlattices are all of
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approach discussed in the text.

closer inspection, however, reveals that in the
√

3nx
√

3n case, the K, K’ points of pristine
graphene always fold to Γ. This is advantageous for the band-gap opening, since these
structures are generally semiconducting if sufficiently defective19. However, as in Γ the k
group has the inversion symmetry, residual degeneracies at � �= �F, is not lifted at first order,
and therefore no linear dispersion is present.

6.3 Superlattices of substitutional atoms
Symmetry arguments similar to the one given above apply as well to the case where C atoms
are replaced (rather than removed) by other species, in such a way to form superlattices
substitutional of dopants. The only difference is that now foreign species are present and point
symmetry can be altered. Here we focus on group IIIA and VA elements, mainly because of
the fast progresses in methods for the controlled synthesis of N- and B- doped graphenes.
For instance, Panchakarla et al. (2009) have recently shown how it is possible to insert B or
N dopants in graphene by adding the correct precursors in the arc discharge chamber, while
Ci et al. (2010) have reported the synthesis of large islands of boron nitride embedded in
graphene by atomic layer deposition techniques. Methods to selectively replace C atoms from
graphene lattice have also been proposed by Pontes et al. (2009).
Substitutional defects behave similarly to pz vacancies (to which they reduce when the
hoppings become zero) but introduce impurity bands which partially hybridize with those
of the substrate. In addition, the diagonal disorder they introduce breaks e − h symmetry
giving rise to a Fermi level shift, i.e. to p− and n− doping for group IIIA and VA elements,
respectively. If superstructures are only weakly defective, however, the Fermi level shift scales
as 1/n, since the linear-energy dispersion implies EF = vF

√
πne (here ne is the electron (hole)

excess density, ne ∝ 1/n2). Thus, analogously to the superlattices of the previous section,
the defect-induced perturbation affects the electronic structure close to the Fermi level, and
symmetry arguments may be used to establish whether degeneracy occurs at the special
points in the important low-energy region.
It has been shown that, depending on the overall symmetry, superlattices of N and B defects
(and mixture thereof) can either preserve the Dirac cones (D6h superlattices) or open a band
gap (D3h) (Casolo et al., 2011). For instance, honeycomb superlattices of B (or N) dopants only
(D6h symmetry) are found to preserve the Dirac cones, and to be only p− (n−) doped (the
cone-apex shift being ∝ 1/n). Indeed, the low-energy band structure in these superlattice is

19 The number of E irreps is always even because of the ‘coalescence’ of the two valleys. Thus, one only
needs to remove the accidental degeneracy created by such folding.
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very similar to that of graphene, with a group velocity at the shifted Dirac cones depending
linearly on 1/n too. As the Fermi level can be tuned by a gate potential, these systems offer
the possibility of investigating the role that the effective speed of light (the above velocity
at the Dirac cones) has on the transport and optical properties of graphene. Conversely,
BN-honeycomb superlattices (D3h symmetry), thanks to the balanced doping, are found to
develop a gap right at the Fermi level. The resulting dispersion relation is found to be
quasi-conical, corresponding to massive Dirac fermions. The resulting gaps are found sizable
and, furthermore, the effective rest masses are rather small, m∗ ∼ 0.01me or smaller. This
suggests that these structures might have good field-switching and transport properties.
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1. Introduction 
Graphene is the name given to a flat monolayer of carbon atoms tightly packed into a two-
dimensional honeycomb lattice (Novoselov et al., 2004), and is a rapidly rising star on the 
horizon of materials science and condensed matter physics. This two-dimensional material 
exhibits exceptionally high crystal and electronic quality and has already revealed a 
cornucopia of new physics and potential applications. Charge transport properties in 
graphene are greatly different from that of conventional two-dimensional electronic systems 
as a consequence of the linear energy dispersion relation near the charge neutrality point 
(Dirac point) in the electronic band structure (Geim & Novoselov, 2007; Novoselov et al., 
2005; Zhang et al., 2005).  
Theoretically, the energy band structure of a graphite monolayer had been investigated 
using the tight-binding approximation (Wallace, 1947). In the work of Wallace, the nearest- 
and next-nearest-neighbor interaction for the 2pz orbitals in graphene were considered, but 
the wave function overlap between carbon atoms was neglected. Since his aim is to show 
how the π-electron distribution is related to the electrical conductivity of graphite, he did 
not attempt to draw the band distribution. In 1952, Coulson & Taylor considered the overlap 
integrals between atomic orbitals in studying the band structure of the graphite monolayer. 
Their work suggested that the overlap was important for the electronic density of states and 
referred mainly to the π states, leading to a description of the conduction band (Coulson & 
Taylor, 1952). To study the valence bands in graphene, Lomer used the group-threoretical 
method to deal with the electronic energy bands based on the three atomic orbitals 2s, 2px, 
and 2py (Lomer, 1955). Because there are two atoms per unit cell, there are six basis functions 
to be considered, and in general the tight binding model must lead to a 6×6 determinantal 
secular equation for the energy. The method used group theory is able to solve it easily. 
Slonczewski and Weiss found that the Lomer’s work can be simplified greatly by a different 
choice of the location of the origin (Slonczewski & Weiss, 1958). A better tight-binding 
description of graphene was given by Saito et al. (Saito et al., 1998), which considers the 
nonfinite overlap between nearest neighbors, but includes only interactions between nearest 
neighbors. To understand the different levels of approximation, Reich et al. started from the 
most general form of the secular equation, the tight binding Hamiltonian, and the overlap 
matrix to calculate the band structure (Reich et al., 2002). But their work did not involve the 
effect of the non-nearest-neighbor interaction on the band structure. This work will be 
discussed in details in Section 2.  
Because there is no energy gap, perfect graphene sheets are metallic. How open the gap of 
graphene? According to the quantum size effect, graphene nanoribbons maybe achieve this 
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Because there is no energy gap, perfect graphene sheets are metallic. How open the gap of 
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goal. Early in 1996, Fujita et al. started to study the electronic structure of graphene ribbons 
(Fijita et al.,1996; Nakada et al., 1996) by the numerical method. For perfect graphene 
ribbons, the armchair shaped edge ribbons can be either semiconducting (n=3m and 
n=3m+1, where m is an integer) or metallic (n=3m+2) depending on their widths. First-
principles calculations show that the origin of the gaps for the armchair edge nanoribbons 
arises from both quantum confinement and the deformation caused by edge dangling bonds 
(Son et al., 2006; Rozhkov et al., 2009). In low-energy approximation, the analytical 
electronic states of the nanoribbons are studied based on the Dirac equation (Brey & Fertig, 
2006). In 2007, Zheng et al. got an analytical expression of the electronic structure, including 
the boundary relaxation, for the armchair nanoribbon by the tight-binding approximation 
and hard-wall boundary condition, which only involves the nearest-neighbor hopping 
integrals (Zheng et al., 2007). In this chapter, we focus on the effects of the non-nearest-
neighbor hopping integrals and atomic wave function overlap on the electronic structure, 
and on the competition between the non-neighbor interaction and edge deformation. The 
tight-binding energy dispersion relations of graphene nanoribbons, including up to third 
neighbors, are introduced in section 3. In Section 4, the competition of both is discussed. The 
stretching deformation of graphene ribbons based on the elastic theory is presented in last 
section.  

2. The non-nearest-neighbor effect in graphene sheets 
In this section the tight-binding method is used to study the band structure of the π 
electrons in graphene. Although this method is simple, it provides a lot of important 
information for understanding the π electronic band structure. The first tight-binding 
description for graphene was given by Wallace (Wallace, 1947). He considered nearest- and 
next-nearest-neighbor interaction for the graphene 2pz orbitals, but neglected the overlap 
between wave functions centred at different atoms. To compensate for the lack of this work, 
the non-finite overlap between the basis functions was considered (Saito et al., 1998), but the 
interaction between nearest neighbors was taken only into account. A better tight-binding 
description including up to third-nearest neighbors for graphene was given by Reich et al. 
(Reich et al., 2002).  
Let us now consider the band structure from the viewpoint of the tight-binding 
approximation. The structure of graphene is composed of two types of sublattices A and B 
as shown in Fig.1. If ( )ϕ r is the normalized orbital 2pz wave function for an isolated carbon 
atom, then the wave function of graphene has the form 

 A A B BC Cψ ψ ψ= + , (1) 

where  

1 ( )Ai
A A

A
e

N
ψ ϕ⋅= −∑ k R r R , 

and 

 1 ( )Bi
B B

B
e

N
ψ ϕ⋅= −∑ k R r R . (2) 
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The first sum is taken over A and all the lattice points generated from it by primitive lattice 
translation; the second sum is similarly over the points generated from B.  Here AC and BC  
are coefficients to be determined, AR and BR are the positions of atoms A and B, respectively, 
and N is the number of the unit cell in a graphene sheet. 
 

 
Fig. 1. Structure of a graphene sheet, consisting of sublattices A and B. a1 and a2 are the unit-
cell vectors of graphene with a lattice constant a = 0.246 nm. A carbon atom A0 has three 
nearest neighbors B1i, six next-nearest neighbors A2i, and three second-nearest neighbors 
B3i.(Reich et al., 2002) 

Under the tight-binding approximation, the Hamiltonian of the perfect system is 

 0 1 2
( , ) (( , )) ((( , )))i i j i j i j

H i i i j i j i jε γ γ γ= − − −∑ ∑ ∑ ∑ , (3) 

where ( , )i j , (( , ))i j , and ((( , )))i j  denote the nearest, next-nearest, and third neighbors, 
respectively, ε  is the self-energy of the site atom, and 0γ , 1γ , and 2γ are the nearest-, next-
nearest-, and third-neighbor hopping energies. Substituting Eq. (1) in 

 H Eψ ψ= , (4) 

and carrying out a simple derivation and finishing, we obtain the secular equation 

 * *

( ) ( ) ( ) ( ) ( ) ( )
0

( ) ( ) ( ) ( ) ( ) ( )
AA AA AB AB
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H E S H E S
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− −
=
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k k k k k k

, (5) 

where ( )E k  are the electronic energy eigenvalues and S is the overlap matrix. In Eq.(5), we 
have made use of the equivalence of the A and B carbon atoms in the graphene sheet. The 
solution to Eq.(5) is  
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with 
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0 ,  AA AAE H S= * *
1 ,AB AB AB ABE S H H S= +  

 2 *
2 ,AA AB ABE H H H= −  2 *

3 .AA AB ABE S S S= −  (7) 

The plus sign denotes the conduction band and the minus sign is the valence band. To 
calculate the Hamiltonian and overlap matrix elements, we derive the third-neighbor tight-
binding description. We see from Fig.1 that a carbon atom A has three nearest neighbors 1iB , 
six next-nearest neighbors 2iA , and three second-nearest neighbors 3iB , all of which belong 
to the other sublattice.  
For third-neighbor interaction the Hamiltonian matrix element AAH  can be written as 
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where AiR is the position vectors of six next-nearest neighbor atoms iA with respect to atom 
A. Here ε is called the 2 p orbital energy, or self-energy, of the site atom, which is given by 

 ( ) ( )A AHε ϕ ϕ= − −r R r R ,  (9) 

and 1γ is the next-nearest-neighbor hopping integral ofπ electrons and defined as follows 

 1 ( ) ( )A A AiHγ ϕ ϕ= − − −r R r R R , =( 1,2,3, 4,5,6)i . (10) 

In Eq.(8) the maximum contribution to the matrix element AAH  is the first term, which 
comes from the orbital energy of A A′ =R R . The next order contribution to AAH is the second 
term coming from terms of A A′ = + AiR R R . The other order contribution to this matrix 
element is very small compared to the first term, which can be neglected. If we define the 
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where 2i ik π= ⋅k a are the components of a wave vector k in units of the reciprocal lattice 
vectors 1k and 2k , and 1 2 0.246= = =a a a nm is the lattice constant of graphene, then Eq.(8) 
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Let us next calculate ABH . For this, we shall consider interactions between nearest, and third 
neighbors in the lattice, the nearest and third neighbors of atoms of type A being always 
atoms of type B. Therefore, the matrix element ABH is 
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where the hopping energies are given by 
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Here 1B iR and 3B iR are the vectors pointing from atom A to atoms 1iB and 3iB , respectively. 
Using the same treatment we can obtain the overlap matrix element 
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with 

 1 2( ) ( )A A A is ϕ ϕ= − − −r R r R R  ( 1,2,3,4,5,6)i = ,  (17) 

where 2A iR are the vectors pointing from atom A to atoms 2iA , and 1s is the overlap of atomic 
wave functions between next-nearest neighbors. Similarly, we have 
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where 0s and 2s are the overlap integrals between nearest, and third neighbors, which are 
given by 

 ϕ ϕ= − − −0 1( ) ( )A A B is r R r R R   =( 1,2,3)i , (19) 
and 

 ϕ ϕ= − − −2 3( ) ( )A A B is r R r R R   =( 1,2,3)i . (20) 

Substituting Eqs.(12), (13), (16), and (18) into Eq.(7) yields 
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The plus sign denotes the conduction band and the minus sign is the valence band. To 
calculate the Hamiltonian and overlap matrix elements, we derive the third-neighbor tight-
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where 0s and 2s are the overlap integrals between nearest, and third neighbors, which are 
given by 
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and 
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Substituting Eqs.(12), (13), (16), and (18) into Eq.(7) yields 
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 0 1 1[ ( )][1 ( )]E u s uε γ= + +k k , (21) 

 1 0 0 0 2 2 0 2 22 [3 ( )] ( ) ( ) 2 [3 (2 )]E s u s s g s uγ γ γ γ= + + + + +k k k , (22) 

 2 2 2
2 1 0 0 2 2[ ( )] [3 ( )] ( ) [3 (2 )]E u u g uε γ γ γ γ γ= + − + − − +k k k k , (23) 

 2 2 2
3 1 0 0 2 2[1 ( )] [3 ( )] ( ) [3 (2 )]E s u s u s s g s u= + − + − − +k k k k , (24) 

where 

1 2 1 2( ) 2 ( ) (2 , 2 )g u u k k k k= + − −k k . 

Inserting 0E to 3E into Eq.(6) we can obtain the tight-binding energy dispersion relation in the 
third-neighbor approximation.  
To give the numerical results of energy dispersion, we must know the values of the hopping 
energies and overlap integrals. We take the parameters 0.28ε = − eV, 0 2.97γ = − eV, 

1 0.073γ = − eV, 2 0.33γ = − eV, 0 0.073s = , 1 0.018s = , and 2s =0.026 (Reich et al., 2002). The 
computed results for some high-symmetry points (KΓM) are shown in Fig. 2, where the solid 
line denotes the nearest-neighbor result, the dashed line represents the next-nearest-
neighbor, and the dotted line is the third-neighbor. It is clear that the next-nearest-neighbor 
hopping integrals and overlap between atomic wave functions will play an important role 
on the band width at Γ point, which can largely reduce the bandwidth, and the third-
neighbor interaction can slightly enhance the bandwidth. But the role of both is just opposite 
for M point. It is worth pointing out that when we take only into account the nearest 
neighbor hopping integral and let both the overlap s0 and the site energy ε  be zero, the 
energy bands are symmetric with respect to the Fermi level. The nearest neighbor result in 
Fig. 2 is to include the overlap s0, so the energy bands become asymmetric, leading to the  
 

 
Fig. 2. Tight-binding energy bands of graphene for high-symmetry points. The solid line 
denotes the nearest neighbor, the dashed line represents the next-nearest neighbor, and the 
dotted line is the third neighbor. 
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Fermi level down slightly. This means that the overlap integral is important for the band 
structure. Hence, the non-nearest neighbor hopping and overlap integral need to be 
considered in calculations of the energy band. Since there is no energy gap at K point (Dirac 
point), the graphene sheet is metallic.  

3. The non-nearest-neighbor effect in graphene nanoribbons 
3.1 Armchair nanoribbons 
As mentioned in Section 2, for a graphene sheet there are no energy gaps at the Dirac points. 
How to open the energy gaps of graphene? One method is to deduce the size of graphene 
and let it become a narrow ribbon, compared to the length of the ribbon. From this, the band 
gaps will change with their widths (Son et al., 2006), and the more narrow the width is, the 
larger the gap.  Another effective approach is to change the bond length of graphene by 
exerting a strain force. Besides, we can also open the gap by using absorption atoms on 
graphene or doping impurity in. For an armchair ribbon, the analytical solution of electronic 
dispersion has been given based on the tight-binding approach, but the dispersion obtained 
is in the framework of the nearest-neighbor interaction (Zheng et al, 2007). In this section we 
only discuss the electronic dispersion of perfect graphene nanoribbons without any edge 
deformation within the tight-binding approximation and the third-neighbor interaction is 
taken into account.  
We choose the ribbon to be macroscopically large along the x direction but finite in the y 
direction, which leads to a graphene nanoribbon with armchair edges. Since the ribbon is 
very long compared to its width and has the translational symmetry along the x direction, 
we can choose the plane-wave basis along the x direction and take the stationary wave in 
the y direction because the electronic bahavior is limited to the space between two edges. 
The structure of armchair nanoribbons consists of two types of sublattices A and B, and the 
unit cell contains n A-type carbon atoms and n B-type atoms as illustrated in Fig.3.  
 

 
Fig. 3. Structure of an armchair graphene ribbon with sublattices A (empty) and B (solid). 
The ribbon width is denoted by numbers n. Every unit cell has n numbers of A and B 
sublattices. Assume that the edges of the ribbon are a hard wall. 
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Within the tight-binding approximation, the wave functions of A and B sublattices can be 
written as 
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1 ( ) ( )x Aj
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where AN and BN are the normalized coefficients, ( )A jφ and ( )B jφ are the components for A 
and B sublattices in the y direction and satisfy the following hard-wall boundary conditions 

(0) (0) 0A Bφ φ= = ,                                      

 ( 1) ( 1) 0A Bn nφ φ+ = + = . (27) 

Assume that the stationary wave has the form 

 1( ) ( ) sin 3
2A B yj j ak jφ φ ⎛ ⎞= = ⎜ ⎟

⎝ ⎠
, ( 1,2, , )j n= ⋅ ⋅ ⋅  (28) 

leading to a discretized wave vector in the y direction 

 2( )
3 ( 1)y

qk q
a n
π

=
+

, ( 1,2, , )q n= ⋅ ⋅ ⋅ . (29) 

To find out the normalized coefficients in Eqs.(25) and (26), we introduce the normalization 
condition 

 1A A B Bψ ψ ψ ψ= = , (30) 

from which, we get  

( 1) 2A B xN N N n= = + , 

where xN is the number of unit cells along the x direction. Therefore, the total wave function 
of the graphene ribbon can be written as 
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Substituting Eqs.(3) and (31) into the Schrodinger equation leads to an energy dispersion 
relation of the form 
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0 1 0 1 2 3
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where  

 0 1 1( , ) { [ ( , ) 3]}{[1 [ ( , ) 3]}x x xE k q f k q s f k qε γ= + − + − , (33) 

 1 0 0 0 2 2 0 2 2( , ) 2 ( , ) ( ) ( , ) 2 ( , )x x x xE k q s f k q s s g k q s h k qγ γ γ γ= + + + , (34) 

 2 2 2
2 1 0 0 2 2( , ) { [ ( , ) 3]} ( , ) ( , ) ( , )x x x x xE k q f k q f k q g k q h k qε γ γ γ γ γ= + − − − − , (35) 

 2 2 2
3 1 0 0 2 2( , ) {1 [ ( , ) 3]} ( , ) ( , ) ( , )x x x x xE k q s f k q s f k q s s g k q s h k q= + − − − − , (36) 

and 
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( ) 22 2( , ) 1 4cos cos 3 4cos
1 1x x

q qh k q k a
n n
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, 

3 3 3 3( , ) 2 ( , ) 2cos 2cos 2cos(3 ) 6
2 1 2 1

x x
x x x

k a q k a qg k q f k q k a
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. 

The electronic dispersion given by Eq. (32), in form, is exactly the same as that found for a 
graphene sheet, but both have the difference in nature (Jin et al., 2009). The 
region 3 3π π− ≤ ≤xk a is within the first Brillouin zone. These results are valid for various 
energy ranges. 
Since the electronic structure of perfect armchair graphene nanoribbons depends strongly 
on the width of the ribbon, the system, for instance, is metallic when n=3m+2 (m is an 
integer) and is insulating otherwise. To give a graph of energy bands, we still use the same 
parameter values as taken in a graphene sheet. The electronic energy bands of the armchair 
nanoribbons with three different widths are plotted in Fig.4, where (a) is n=3m=6, (b) 
n=3m+1=7, and (c) n=3m+2=8. Labels (1), (2), and (3) denote the nearest, next-nearest, and 
third neighbors, respectively. As 6=n and 7=n , the armchair ribbons appear insulating. 
Fig.4 shows that the next-nearest-neighbor hopping and overlap integral would give rise to 
change of the energy band width. This is because the energy levels of the conduction band 
top are squeezed, which correspond to the stationary waves with small q values. The third 
neighbors not only affect the energy gaps, such as n=6 and n=7, but also the band widths. 
The influence on the band width mainly is because the bands related to the standing waves 
with small q values in conduction and valence band produce a larger bend and this effect 
was particularly evident when n=7,8. However, the effect on the energy gaps is because the 
bands corresponding to larger q go down slightly. It is worth noting that when 7n = , there 
is a flat conduction or valence band, taking not into account the third neighbors, which 
corresponds to the quantum number q=(n+1)/2. Such a flat band is independent of wave 
vector kx and in general exists only when n is equal to odd. As for 8=n , the lowest 
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Substituting Eqs.(3) and (31) into the Schrodinger equation leads to an energy dispersion 
relation of the form 
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The electronic dispersion given by Eq. (32), in form, is exactly the same as that found for a 
graphene sheet, but both have the difference in nature (Jin et al., 2009). The 
region 3 3π π− ≤ ≤xk a is within the first Brillouin zone. These results are valid for various 
energy ranges. 
Since the electronic structure of perfect armchair graphene nanoribbons depends strongly 
on the width of the ribbon, the system, for instance, is metallic when n=3m+2 (m is an 
integer) and is insulating otherwise. To give a graph of energy bands, we still use the same 
parameter values as taken in a graphene sheet. The electronic energy bands of the armchair 
nanoribbons with three different widths are plotted in Fig.4, where (a) is n=3m=6, (b) 
n=3m+1=7, and (c) n=3m+2=8. Labels (1), (2), and (3) denote the nearest, next-nearest, and 
third neighbors, respectively. As 6=n and 7=n , the armchair ribbons appear insulating. 
Fig.4 shows that the next-nearest-neighbor hopping and overlap integral would give rise to 
change of the energy band width. This is because the energy levels of the conduction band 
top are squeezed, which correspond to the stationary waves with small q values. The third 
neighbors not only affect the energy gaps, such as n=6 and n=7, but also the band widths. 
The influence on the band width mainly is because the bands related to the standing waves 
with small q values in conduction and valence band produce a larger bend and this effect 
was particularly evident when n=7,8. However, the effect on the energy gaps is because the 
bands corresponding to larger q go down slightly. It is worth noting that when 7n = , there 
is a flat conduction or valence band, taking not into account the third neighbors, which 
corresponds to the quantum number q=(n+1)/2. Such a flat band is independent of wave 
vector kx and in general exists only when n is equal to odd. As for 8=n , the lowest 
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conduction band and the upmost valence band touch at Dirac point, which leads to the 
metallic behavior of the armchair ribbon. 
 

 

 

 
Fig. 4. Energy bands of perfect armchair graphene nanoribbons with widths (a) n=6, (b) n=7, 
and (c) n=8. Labels (1), (2), and (3) represent the nearest, next-nearest, and third neighbors, 
respectively. 

3.2 Zigzag nanoribbons 
The spectrum of graphene nanoribbons depends on the nature of their edges: zigzag or 
armchair. In Fig. 5, we show a honeycomb lattice having zigzag edges along the x direction 
and armchair edges along the y direction, where the solid cycles denote the sublattice A and 
the empty is B. If we choose the ribbon to be infinite in the x direction, we produce a 
graphene nanoribbon with zigzag edges. It is interesting to note that the atoms at each edge 
are of the same sublattice (B on the top edge of Fig. 5 and A on the bottom).  
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Fig. 5. The structure of a zigzag graphene nanoribbon, having the translational symmetry 
along the x direction. Atoms enclosed in the vertical rectangle represent the unit cell. n is the 
row number of atoms. The solid cycles denote the sublattice A and the empty is B. 

We now calculate the electronic energy bands of the zigzag ribbon as shown in Fig.5 by 
using the tight-binding approach including up to third-nearest neighbors. To do this, let us 
label the sublattices A and B with number, respectively, and let 1A , 2A ,…, nA correspond to 
odd labels 1,3,5,…,2n-1 and 1B , 2B ,…, nB to even labels 2,4,…,2n. From this, the Hamiltonian 
becomes a 2n×2n matrix, which is given by 
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H , (37) 

where 0f , 1f , 2f ,and 3f are the Hamiltonian matrix elements, which are given by 
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0γ , 1γ , and 2γ are the nearest-, next-nearest-, and third-neighbor electronic hopping 
amplitudes, respectively. Similarly, the overlap matrix S can be written as 

 

2 0 1 2

0 2 3 1
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2 1 0 2 3 1
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 ( )3 0 22 cos 3j i xg s s k aψ ψ= = +   ( 1)j i= + . (46) 

Here 0s , 1s , and 2s are the nearest-, next-nearest-, and third-neighbor overlap integrals 
between the 2 zp orbitals, respectively. Substituting Eqs.(36) and (37) into the following 
secular equation 

 [ ]det 0E− =H S ,   (47) 

we can obtain all n eigenvalues of Ei (kx) (i=1,…,2n) for a given wave vector kx. The electronic 
dispersion relations (or energy bands) of zigzag nanoribbons are shown in Fig. 6.  
In order to conveniently compare with the third-neighbor result, we also give the nearest- 
and next-nearest-neighbor electronic energy bands together with it. In Fig. 6(a) and (b), the 
left is the nearest-neighbor result, the middle is the next-nearest-neighbor, and the right is 
the third-neighbor for the ribbon widths n=4 and n=10. We see from Fig.6 that the zigzag 
graphene nanoribbons are metallic and the energy bands are wide (more than 10eV), and 
the spacing between the energy bands is decreased as increasing of the width n. When the 
nearest neighbor interaction is taken only into account, the energy band structure is 
symmetrical (see Fig.6 (1)). But the next-nearest-neighbor hopping and overlap can make the 
energy bands become nonsymmetrical, i.e. the conduction band becomes narrowed and the 
valence band is widened. It is obvious that the top of the conduction band is pressed 
downward and the bottom of the valence band is pulled downward. However, the effect of 
the third neighbors on the band structure is the same as that of the next-nearest neighbors, 
but the latter is stronger than the former. 
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Fig. 6. Energy bands of zigzag nanoribbons with widths (a) n=4 and (b) n=10. Labels (1), (2), 
and (3) refer to the nearest, next-nearest, and third neighbors, respectively. 
On the other hand, we see that the highest valence band state and the lowest conduction 
band state for the zigzag ribbons are always degenerate at kx = 1.277. A pair of almost flat 
bands appears within the region of 0.851≤|kx|≤ 1.277 where the bands sit in the very 
vicinity of the Fermi level. This phenomenon arises only in the nearest neighbor result and 
does not occur in the non-nearest neighbor case. The degeneracy of the center bands at kx = 
1.277 does not originate from the intrinsic band structure, and the corresponding wave 
functions are completely localized on the edge sites (Nakada et al., 1996). 
Based on the above discussion, we conclude that the effect of the third-neighbor terms on 
the energy band of the zigzag ribbon is large compared to that of the next-nearest-neighbor 
terms. Therefore, it is important to include the third neighbors when we calculate the bands. 
This is because the distance between the next-neighbor carbon atoms is very close to that 
between the third-neighbor atoms.  

4. Competition between the non-neighbor interaction and edge deformation 
4.1 Energy gaps in armchair nanoribbons 
We now discuss the change of the energy gaps in armchair graphene nanoribbons. The 
results of first-principles calculations (Son et al., 2006) show that the differences among three 
widths (n=3m, n=3m+1, and n=3m+2) are quite apparent.  
Our aim is to take into account the non-neighbor hopping integral and overlap and to 
understand their contribution to the band gap. To do this, we need to derive the formulas of 
the band gaps from Eq. (31). After a simple derivation, we easily obtain the following band 
gap formulas (Jin et al., 2009) 
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Fig. 7. The variation of band gaps of armchair graphene nanoribbons for n=3m as a function 
of width m. (a) Band gap curves for the nearest, next nearest, and third neighbors. (b) Band 
gap differences between the nearest and next nearest, and third neighbors. 
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2 11 ( 3)u s f= + − , 

2 2
3 0 0 2 2u s f s s g s h= + + , 

4 0 2 2 0( )u s s gγ γ= + , 

5 0 0 4 2 22 2u s f u s hγ γ= + + . 

Here 0Δ , 1Δ , and 2Δ represent the band gaps of the nearest-, next-nearest-, and third-
neighbor interaction, respectively. Quantities f, h, and g have been defined in Section 3. Since 
f, h, and g depend on the ribbon width n, the different width has the different band gap.  
In order to illustrate the problem, we take n=3m as an example to discuss the change of the 
gap with width. The results are summarized as function of width m, as shown in Fig.7, 
where the energy gap differences between the nearest and next-nearest neighbors and third 
neighbors are given together with. If we only consider the second-nearest-neighbor hopping 
and overlap, the difference between the nearest and next nearest neighbors is small for large 
m, but larger for small m. However, when we account to third neighbors, their contribution 
to the energy gap is large compared to that of the second neighbor, especially for small m. 

4.2 Effect of the edge deformation on the energy gap 
Because every carbon atom on the edge has one dangling bond unsaturated, the edge atoms of 
armchair nanoribbons are passivated by hydrogen atoms in general so that the σ bonds 
between hydrogen and carbon and the on-site energies of the carbons at the edges would be 
different from those in the middle of the ribbon. The bonding distances and angles between 
carbon atoms at the edges are also expected to change dramatically, which leads to 
considerable variations of electronic structure, especially within the low-energy range (Son et 
al., 2006). The bond lengths between carbon atoms at the edges are predicted to vary about 3-
4% when hydrogenerated. Correspondingly, the hopping integral increases about 12% 
extracted from the analytical tight-binding expression (Son et al., 2006; Porezag et al., 1995). 
To see the consequence of such effects more clearly, we introduce a simpler edge-deformed 
model, in which the Hamiltonian of the ribbon with deformation on the edge can be written as 

0 0 1 1 2 2
( , ) (( , )) ((( , )))

( ) ( ) ( )i ij ij ij
i i j i j i j

H i i i j i j i jε γ δγ γ δγ γ δγ= − + − + − +∑ ∑ ∑ ∑ .  (51) 

As mentioned above, the variation of the next-nearest and third neighbor hopping integrals 
can be neglected for smaller deformation, i.e., 1 2 0ij ijδγ δγ= = . Let the variation of the 
hopping integral and the on-site energy of the ith carbon atom be 0ijδγ and iε , respectively. 
Therefore, Eq.(51) cab be rewritten as 

 0i iH H H= + ,  (52) 

where 

 0 0 1 2
( , ) (( , )) ((( , )))

i i
i i j i j i j

H i i i j i j i jε γ γ γ= − − −∑ ∑ ∑ ∑ , (53) 
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hopping integral and the on-site energy of the ith carbon atom be 0ijδγ and iε , respectively. 
Therefore, Eq.(51) cab be rewritten as 
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The energy dispersion relation corresponding to the Hamiltonian 0iH still is the same as 
Eq.(32) in form, whereε is replaced by iε . For convenience, we rewrite Eq.(32) as follows 

 0 ( , )xE k q α λ± = ± , (55) 

whereα andλ are dependent of the parameters iε , 0γ , 0s , 1γ , 1s , and so on. Since iH is 
small compared to 0iH , we can solve Eq.(52) by using the perturbation approach. Thus, a 
new dispersion relation is  

 ( , )xE k q β λ δλ± = ± + ,  (56) 

where β is the energy shift originating from the variation of the on-site energy andδλ is the 
shift originating in the hopping integral variation. If the nearest neighbor interaction is 
involved only (Zheng et al., 2007), then β andδλ are given by 
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These results are valid for small edge deformations, atoms or molecules attached to edge 
carbon atoms. As long as given the deformation distribution function, we can obtain the 
energy dispersion relation of the edge deformation.  
Assume that the deformation is very small and localized along two edges (Son et al., 2006), 
from Eqs.(55) and (56), we can obtain the differences between the energy gaps to the first 
order in 0δγ  andε  for different width ribbons as follows(Son et al., 2006; Zheng et al., 2007) 
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Fig. 8. The energy gap differences before and after deformation for armchair graphene 
ribbons. Solid, dashed, and dotted lines are the results of n=3m+1, n=3m, and n=3m+2, 
respectively. 

Here the energy gap refers to the difference between the lowest conduction band and the 
highest valence band. 0

3mΔ , 0
3 1m+Δ , and 0

3 2m+Δ  are the energy gaps of non-deformed ribbons. 
This result shows that all armchair graphene ribbons with edge deformation have nonzero 
energy gaps.  
For smaller deformation, we set the hopping integral change 0 0 0.12δγ γ = (Son et al., 
2006). A graph of the gap difference vs. width m is shown in Fig.8. This implies that the 12% 
increase of the hopping integrals between carbon atoms at the edges opens the gaps of the 
(3m+2) armchair ribbons and decreases (increases) the gaps of 3m-armchair ribbons ((3m+1)- 
armchair ribbons). In order to facilitate comparison, we take n=3m as an example. By 
comparing Fig.8 with Fig.7 (b), we see that the next-nearest neighbor effect is able to make 
the gap increase slightly with respect to the nearest neighbor case and the third-neighbor 
interaction would lead to decrease of the gap, and the smaller edge deformation would 
reduce the gap. Therefore, the competition results of both are that the effect of the boundary 
relaxation opposes the change of the next-nearest-neighbor interaction and strengthens the 
change of the third-neighbor interaction. The n=3m+1 situation is just opposite to the n=3m. 
For n=3m+2, the non-neighbor interaction does not change the gap and keeps this zero gap 
unchanged. Hence, there is no competition between the both. In fact, the edge deformation 
would have a penetration depth (Zheng et al., 2007). Since the depth is very small, our 
conclusions obtained above still are valid for this case. 

5. Stretching deformation of graphene ribbons 
In this section, we discuss the deformation of graphene due to an external force and effect of 
the deformation on the band gap. Assume that the length L of a graphene sheet is long 
compared to its width W, i.e. L > W, a wider ribbon satisfying translational symmetry in the 
length and width directions, and the force between carbon atoms satisfies Hook’s law. We 
exert a tension force on the two edges of the graphene, as illustrated in Fig.9.  
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(3m+2) armchair ribbons and decreases (increases) the gaps of 3m-armchair ribbons ((3m+1)- 
armchair ribbons). In order to facilitate comparison, we take n=3m as an example. By 
comparing Fig.8 with Fig.7 (b), we see that the next-nearest neighbor effect is able to make 
the gap increase slightly with respect to the nearest neighbor case and the third-neighbor 
interaction would lead to decrease of the gap, and the smaller edge deformation would 
reduce the gap. Therefore, the competition results of both are that the effect of the boundary 
relaxation opposes the change of the next-nearest-neighbor interaction and strengthens the 
change of the third-neighbor interaction. The n=3m+1 situation is just opposite to the n=3m. 
For n=3m+2, the non-neighbor interaction does not change the gap and keeps this zero gap 
unchanged. Hence, there is no competition between the both. In fact, the edge deformation 
would have a penetration depth (Zheng et al., 2007). Since the depth is very small, our 
conclusions obtained above still are valid for this case. 

5. Stretching deformation of graphene ribbons 
In this section, we discuss the deformation of graphene due to an external force and effect of 
the deformation on the band gap. Assume that the length L of a graphene sheet is long 
compared to its width W, i.e. L > W, a wider ribbon satisfying translational symmetry in the 
length and width directions, and the force between carbon atoms satisfies Hook’s law. We 
exert a tension force on the two edges of the graphene, as illustrated in Fig.9.  
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Fig. 9. Force on wider graphene ribbons with (a) zigzag and (b) armchair edges. 

Let the force on each atom and lattice spring constant be f and k, respectively. The bond 
lengths and angles will change with the force and thereby lead to the change of hopping 
integrals, which causes the variation or opening of the energy gap. For zigzag edge ribbons, 
when an external force is much less than the stationary spring force between two neighbor 
atoms, the relation between the force f on each atom and bond half-angle α can be obtained 
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Here 0d is the original bond length, Nf is the dimensionless force on each atom. For small 
deformation, the bond half-angle is given by 
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Based on elastic mechanics, the deformed bond lengths are written as 
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Here 1d is the bond length parallel to the direction of force f. Similarly, for armchair edge 
ribbons, we have 
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Fig. 10. Energy gaps of wider graphene ribbons with (a) zigzag and (b) armchair edges at K 
points as function of the dimensionless tensile force fN. 

Here 1d ′ is the bond length perpendicular to the direction of force f. To calculate hopping 
integrals, we choose the hydrogen-like atom wave functions as 2pz orbitals, which is given 
by 

 
5

( )  cos  rr e λλϕ θ
π

−=r .   (66) 
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Fig. 10. Energy gaps of wider graphene ribbons with (a) zigzag and (b) armchair edges at K 
points as function of the dimensionless tensile force fN. 

Here 1d ′ is the bond length perpendicular to the direction of force f. To calculate hopping 
integrals, we choose the hydrogen-like atom wave functions as 2pz orbitals, which is given 
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Here λ is the Slater orbital index, taken to be 2.18 in calculations. Substituting Eq.(66) into 
Eqs. (10), (14), (15), (17), (18) and (19) and noting that the bond lengths between carbon 
atoms are different from the undeformed graphene, we can obtain the analytical expressions 
for the hopping and overlap integrals (Wei & Tong, 2009). Because the bond lengths are 
dependent of force f, the hopping and overlap integrals depend on the force. Fig.10 shows 
the change of the energy gap with tensile force fN at Dirac points K, where the third neighbor 
is included. The Dirac points will vary with the force, for zigzag ribbons given by  
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It is clear that a pulling force may make Dirac points opening an energy gap, and which 
varies nonlinearly as the force. When the force is small, the change of the gap nearly is 
linear. But as the force becomes large, this change appears nonlinear. By comparison, we see 
that the gap of zigzag edges is more than that of armchair edges under the same force. This 
means that the gap of wider graphene ribbons with zigzag shaped edges is easily opened by 
an external force with respect to the armchair edges. 

6. Conclusion 
In this chapter, we study in details the electronic energy dispersion relations of graphene 
and its nanoribbons within the tight binding model, including up to the third-neighbor 
interaction. For a graphene sheet, there are no energy gaps at high-symmetry points K. The 
next-nearest-neighbor hopping integrals and wave function overlap between carbon atoms 
impact strongly on the bandwidth, i.e., their effects make the bandwidth become narrow 
with respect to the nearest neighbor result. The third neighbors can increase the bandwidth 
slightly and decrease the energy difference between the lowest conduction and highest 
valence bands greatly. The electronic dispersion of armchair edge graphene nanoribbons is 
given analytically based on the tight binding approach and hard-wall boundary condition. 
For the armchair nanoribbon, different widths have different dispersion relations. When 
n=3m and n=3m+1, the second neighbor terms are able to reduce the bandwidth and slightly 
increase the band gap at Γ point. In general, smaller quantum number q impacts on the 
bandwidth and larger q affects the band gap. The effect of the third neighbor interaction is 
opposite to that of the second neighbor, but a flat band disappears when we involve the 
third neighbors. As for n=3m+2, the non-neighbor interaction can not open the gap at Dirac 
point. We also evaluate the influence of the edge deformation on this ribbon and compare 
the competition between both the non-neighbor interaction and edge deformation in energy 
gaps. For zigzag nanoribbons, there is no energy gap and the non-neighbor interaction 
impacts only on the bandwidth. In addition, the energy gaps of graphene ribbons with 
armchair or zigzag edges can be opened by an external force. Opening the gap of the zigzag 
edge ribbon is easier with respect to the armchair ribbon. 
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The problem we discussed above is the ideal graphene nanoribbons. If we consider the 
warping of the edges and the non-flat ribbon, the energy dispersion would how to change? 
These issues are worthy of further study. 
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1. Introduction 
Graphite, graphene, and compounds based on them are of great interest both as objects of 
fundamental research and as some of the most promising materials for modern 
technologies. The two-dimensional form of graphite – graphene - was prepared only very 
recently, immediately attracting a great deal of attention. Graphene can be deposited on 
solid substrates and has been shown to exhibit remarkable properties including large 
thermal conductivity, mechanical robustness and two-dimensional electronic properties. 
Note that electrons in graphene obey linear dispersion relation resulting in the observation 
of a number of very peculiar electronic properties. These properties are essentially changed 
when different defects are introduced into material.  Special interest is devoted to graphite 
intercalated by metals, since in such graphitic systems the temperature of superconducting 
transition essentially depends on the type of intercalating metal. Besides, the discovery 
 of superconductors as MgB2 and iron pnictides intensified the search for high-temperature 
superconductivity in materials other than copper oxides. It is known that in the formation of 
the superconducting state the electron-phonon interaction plays a crucial role (according to 
the Bardeen-Cooper-Schrieffer theory). Therefore it is necessary to analyze in detail the 
phonon spectra of pure graphite and to find out how these spectra are influenced by 
different defects and by intercalation. 
This chapter consists of three sections.  The first section is devoted to the calculation of the 
local electronic density of graphene containing a substitutional impurity, vacancy defects 
due to the substrate surface roughness and adsorbed atoms. The local densities of states for 
atoms of the sublattice which not contains the vacancy show sharp peaks at energy Fε ε=  
( Fε  is the energy of the Dirac singularity for ideal graphene). Local spectral densities of 
atoms of the sublattice which contains the vacancy conserve the same Dirac singularity as is 
observed in an ideal graphene.  
The second section will present our model, which allows to quantitatively describe the 
phonon spectrum of graphite and to determine the relaxation of force constants for the 
formation of the surface of the sample and the formation of thin films (bigraphene, 
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trigraphene, etc.). Bending stiffness is calculated at the microscopic level for graphene 
monolayers, the characteristic features of the phonon density of states are identified and 
atomic displacements along the graphene monolayers and perpendicularly to them are 
determined. The mean square amplitude of atomic vibrations will be calculated, allowing us 
to make conclusions on the stability of the bigraphene lattice up to room temperatures. Note 
that the phonon spectra of graphene monolayers deposited on the substrate are determined 
by the substrate and they bear very little information on the vibrational characteristics of the 
carbon atoms.  
Finally, the third section will deal with the changes introduced into phonon spectrum of 
graphite intercalated by different metals. In graphite the spectral density of phonons 
polarized along the c-axes shows a V-type singularity analogous to the so-called Dirac 
singularity typical for the graphene electron density states. We study the appearance of the 
quasilocalized states which increase the number of phonons near this singularity. Our 
investigations make it possible to predict the general properties of phonon and electron 
spectra for graphite intercalated with different metals. In addition, analyzing the changes in 
phonon spectra of graphite intercalated with various metals, using the BCS theory, we have 
proposed, taking into account dynamic properties of these layered systems, a possible way 
leading to the increase of Tc. 

2. Electronic spectra of graphene with defects 
It is well known (Kossevich, 1999) that in flat monoatomic layers the mean-square 
amplitudes of the atoms in the normal direction to the layer plane diverge even at T=0. 
Therefore, graphene monolayers can not exist as a flat formation in the free state. From the 
substrate only small scales can break off, which immediately become crimped (Meyer et al., 
2007). So we can study and practically apply only such a graphene, which is deposited on a 
certain substrate, which provides for the stability of the plane graphene monolayers 
(Novoselov et al., 2005; Castro et al., 2009; Peres et al., 2007). In the study of the electronic 
properties of graphene a dielectric (often silicon) substrate is used, since it does not change 
its electronic spectrum, but greatly increases the possibility of introducing different kind of 
defects into it. For example, in graphene spray-deposited on silicon, the vacancies can   
appear (Shangduan et al., 2008), whereas in graphite (a set of weakly interacting graphene 
monolayers) and carbon nanotubes vacancies are “healed”, forming a stacking fault with 
local fivefold symmetry axis (Chen et al., 2007). 
This section presents the results of the calculations of local electron densities of atoms of 
graphene containing a substitutional impurity, vacancy defects due to the irregularities of 
the substrate and adsorbed atoms.  
According to its electronic properties graphene is a two-dimensional semiconductor with 
zero gap. The fact that the charge carriers in graphene are formally described by the Dirac 
equation rather than the Schrödinger equation is caused by the symmetry of the crystal 
lattice of graphene, which consists of two equivalent carbon sublattices A and B (left part of 
Fig. 1). Electronic subbands formed by the combination of symmetric and antisymmetric 
wave functions for the two sublattices intersect at the edge of the Brillouin zone, which leads 
to a cone-shaped energy spectrum near the Dirac points K and K’ (right part of Fig. 1), so 
that the dynamics of electrons is described by the linear dependence of energy on the quasi-
momentum (in ordinary metals and semiconductors the dispersion dependence is 
parabolic). 
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Fig. 1. Structure of the crystal lattice of graphene (left) and its first Brillouin zone (right) 

The electronic spectrum of graphene can be described in the strong coupling approximation, 
taking into account only the interaction of nearest neighbours (Castro et al., 2009; Peres et 
al., 2007; Skrypnyk & Loktev, 2006; Skrypnyk & Loktev, 2008; Bena & Kivelson, 2005). The 
corresponding Hamiltonian has the form 

                                                  
,

i ij
i i j

H i i J i jε= −∑ ∑ ,                                                           (1) 

where the indices i  and j  denote the sites of a two-dimensional lattice, iε  is the energy of a 
particle at  the i  site, and ijJ  is the so-called overlap integral. Fig. 2a presents the density of 

electronic states of graphene (curve 1, red line) and the real part of the Green's function 
(curve 2, blue line). These calculations were made using the method of Jacobi matrices 
(Peresada et al., 1975). Note that in a perfect graphene, due to the physical equivalence of 

the atoms of both sublattices, the local Green's function ( ) ( ) 1ˆ ˆ,G i i I H iε ε
−

= −  coincides 

with the full function ( ) ( ) 1

1
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= −∑ . 

A feature on the density of states for ( )Kε ε=  (namely, that the value ( )Kε  corresponds to 

Fε  which is the Fermi energy in graphene) determines the behavior of the real part of the 
Green's function in the vicinity of Fε . For a wide class of perturbations caused by defects we 

can find quasilocalized states, using the Lifshits equation in the interval ( ) ( ),M Mε ε⎡− ⎤⎣ ⎦  (in 

this model ( )M Jε = ) (Lifshits, 1945). This equation, which determines their energy, can be 
written as (Kossevich, 1999; Peresada et al., 1975)  

 ( ) ( )Re , ikG Sε ε= Λ , (2) 

where the ( ), ikS ε Λ  function is determined by the operator of the perturbation Λ̂  ( ikΛ  are 
matrix elements of this operator on defined basis).  
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Fig. 2. (a) Density of states (curve 1) and real part of the Green's function (curve 2) in ideal 
graphene, curves 3 and 4 represent functions ( )S ε  for substitutional impurities of nitrogen 
and boron; (b) and (c) are spectral densities of nitrogen and boron impurities, respectively 
(curves 1), curves 2 in these figures are the densities of states for  ideal graphene 

Fig. 2a illustrates the graphic solutions of the Lifshits equation for graphene containing 
isolated substitutional impurities, namely the atoms of nitrogen and boron. Local spectral 

densities ( ) ( )i
0

1, lim Im ,i G i
γ

ρ ε ε γ
π ↓

≡ +  of impurity atoms are calculated in (Peres et al., 

2007). For an isolated substitutional impurity, different from the host lattice atom, the 
energy of the impurity site 0i =  ( 0ε ε= ) and the overlap integral ( )0 1iJ Jη= + , the function 

( ), ,S ε ε η  has the form  

 ( ) ( )
( )

21
, ,

2
S

η
ε ε η

ε εη η
+

=
+ +

. (3) 

For nitrogen impurity (according to (Peres et al., 2007) in such a case ( ) 0.525K Jε ε− ≈ − , and 
0.5η ≈ −  (the dependence ( )S ε  is shown in Fig. 2a, curve 3). For equation (2), as seen from 

the figure, the solution for interval ( ) ( ),M Kε ε⎡− ⎤⎣ ⎦  is point 1qε  and for interval 
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( ) ( ),K Mε ε⎡ ⎤⎣ ⎦  it is the point 2qε . Local densities of states ( ), iρ ε  of nitrogen impurities 
calculated in (Peres et al., 2007) have quasi-local maxima in both of these intervals (Fig. 2b). 
Although, because of differences in these intervals, the imaginary part of the Green's 
function is different from zero, the location of quasi-local maxima are different from 1qε  and 

2qε , and the presence or absence of solutions of the Lifshits equation in the interval under 
the given parameters of the defect determines the presence or absence of quasilocalized 
states in this interval. 
So, as discussed in (Peres et al., 2007), for the impurity boron ( ( ) 0.525K Jε ε− ≈ ; 0.5η ≈ ) the 
quasilocalized states are absent in the interval ( ) ( ),M Mε ε⎡− ⎤⎣ ⎦ , as seen in Fig. 2c. In this case 
equation (2) also has no solutions in the interval ( ) ( ),M Mε ε⎡− ⎤⎣ ⎦  (corresponding 
dependence ( )S ε  is shown in Fig. 2a as curve 4). Local Green's function of the boron 
impurity has a peculiarity outside the band of quasi-continuous spectrum, corresponding to 
a so-called local level in the energy spectrum. Therefore, the area under the curve 2 is 
smaller than the area under the curve 1, the difference being the residue at local level, what 
is clearly seen in Fig. 2c. 
The function ( )ReG ε  allows us to conclude that the solution of equation (2) in the interval 

( ) ( ),M Mε ε⎡− ⎤⎣ ⎦  exists for a wide class of perturbations. Fig. 3 shows the local density of 
states of an atom adsorbed on a graphene monolayer for different values ε  and η , 
characterizing  the interaction of this atom with carbon atoms. It is clear that the weakening 
of the adsorbed atom interaction with its nearest neighbors causes that on  the local density 
of states sharp resonance peaks are formed near the Fε ε= . 
 

 
Fig. 3. Local density of states of atoms adsorbed on graphene film: (a) 0.5 ,Jε = −  0.5;η = −  
(b) 0.5 , 0.9;Jε η= − = − dashed lines represent the density of states of ideal graphene  

Thus, the behaviour of the real part of  the Green's function in graphene for 
( ) ( )M Mε ε ε− ≤ ≤  shows  high sensitivity of the density of states at given energies to 

various perturbations caused by defects and other changes in the crystal structure, in 
particular, the possible formation of localized excitations with energies close to the Fermi 
energy. Generally speaking, it is not important whether this perturbation is degenerate  
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(function ( ), ikS ε Λ  can be written explicitly) or nondegenerate: then quasilocalized states 
will arise enriching the electronic spectrum near Fε ε= . As an example of the influence of 
such nondegenerate perturbation we consider the local spectral density of atoms of different 
coordination spheres at an isolated vacancy in the graphene monolayer. 
The calculation results are partially presented in Fig. 4, showing the local density ( ), iρ ε  of 
states for the nearest, second, seventh and tenth neighbours of vacancies (Feher et al., 2009). 
 

 
Fig. 4. Local density of electronic states of neighboring vacancies (curves 1); (a) the nearest, 
(b) the second, (c) the seventh, (d) the tenth; curve 2 (dashed lines) represent the density of 
electronic states of perfect graphene 

Odd neighbours of a vacancy belong to the sublattice which does not contain vacancies (let 
this be the sublattice B in Fig.1). In the local densities of atoms of this sublattice ( ),Bρ ε  a 
sharp peak occurs at ( ) FKε ε ε= = . Local density of states in the sublattice A retains, for 

( ) FKε ε ε= = , the same Dirac singularity as in the perfect graphene. This was proved in 
(Feher et al., 2009) by using the formula obtained in (Kotlyar & Feodosyev, 2006), which 
relates an arbitrary matrix element of the Green's function ( ),G iε  in the formalism of the 
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method of Jacobi matrices to the first diagonal element of this function, i.e. to the local 
Green's function ( ), Aρ ε . Interaction with second neighbours would change the local 
density of states ( ), Aρ ε  near Fε ε= , but the magnitude of this change is in the order of the 
interaction, which is small. 
The surface roughness of the substrate may cause the anisotropy of the interatomic 
interaction, since the overlap integrals ikJ  will be different for the interaction of the same 
atom with its various neighbours. Note that in models of "anisotropic graphene" (when the 
anisotropy of overlap integrals is retained over long-range order) a gap between the bands 
of the electronic spectrum as well as the formation of additional logarithmic singularities 
due to the displacement of the intersection of electronic branches inside the first Brillouin 
zone may appear. Here we consider the case when the atom with the anisotropy of the 
overlap integrals is an isolated defect. 
 

 
Fig. 5. Local density of states of an isolated defect in lattice of carbon atoms with an 
anisotropic interaction between nearest neighbours: (a) 0.5;η =  (b) 0.5;η = − dashed lines 
are density of states of a perfect isotropic graphene 

Let the interaction of the atom with one of the nearest neighborus be described by the 
overlap integrals J   and ( )1J Jη= + . Fig. 5 shows the corresponding local densities of states 
of the atom. Fig. 5a shows the density of states for 0.5η = , corresponding to the enhanced 
that is, the interaction increased. In this case the electronic spectrum contains, along with the 
quasi-continuous part, also two symmetric discrete levels ( ) 3.0698l Jε ± ≈ ±  (quasi-continuous 
band of spectrum in this case is 3 3J Jε− ≤ ≤ ). The values of ( )

lε
±  denote the local levels of 

spectra. Residues at these points (so-called intensities of discrete levels) are ( ) 0.139lμ
± ≈ . 

The area under the curve ( )ρ ε  is in this case less than unity, the rest being in the sum of the 
intensities of discrete levels. For 0.5η = −  the electronic states of an anisotropic defect lie in 
the band of a quasi-continuous spectrum and the interval ( ) ( )M Mε ε ε− ≤ ≤  contains 
essentially more electronic states as compared to the perfect isotropic graphene. Thus, 
controlling the roughness of the substrate could be a promising method for tuning the 
electronic spectrum of graphene. 
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(function ( ), ikS ε Λ  can be written explicitly) or nondegenerate: then quasilocalized states 
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Fig. 4. Local density of electronic states of neighboring vacancies (curves 1); (a) the nearest, 
(b) the second, (c) the seventh, (d) the tenth; curve 2 (dashed lines) represent the density of 
electronic states of perfect graphene 
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relates an arbitrary matrix element of the Green's function ( ),G iε  in the formalism of the 
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3. Phonon spectra and vibrational characteristics of carbon nanolayers 
The phonon spectra of graphene monolayers deposited on the substrate are determined by 
the substrate and have very little value for the determination of the vibrational 
characteristics of carbon atoms. At the same time, carbon nanofilms, consisting of several 
graphene monolayers (starting with two, i.e. bigraphene) are stable up to room temperature. 
This section describes the phonon spectra and vibrational characteristics of bulk samples of 
graphite and their transformation for decreasing number of layers, down to carbon 
nanofilms. It outlines our model which allows to quantitatively describe the phonon 
spectrum of graphite and to determine the relaxation of the force constants in the formation 
of the sample surface and the formation of ultrathin films (bigraphene, trigraphene, etc.). 
Flexural stiffness was calculated at the microscopic level for graphene monolayers, as well 
as the characteristic features of the phonon density of states and the contributions to the 
atomic displacements along the graphene monolayers and in the perpendicular direction to 
them were identified. We also calculated the mean square amplitudes of atomic vibrations, 
explaining the reason of the stability of the lattice bigraphene up to the room temperature. 
It is known that the crystal of graphite is a strongly anisotropic layered crystal. Strong 
anisotropy is, on the one hand, due to a significant difference in the interatomic distances 
between nearest neighbours in the layer plane and in adjacent layers, and, on the other 
hand, due to different types of force bonds (covalent, metallic and van der Waals bonds).  
Graphite consists of graphene monolayers, the atoms of which form a regular hexagon. The 
atoms of one of the sublattices are located in the centers of the triangles of the other 
sublattice. Bravais vectors, lying in the basal plane, can be selected as follows: 

1 0
3 1; ;0

2 2
R a

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 and 2 0

3 1; ;0
2 2

R a
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

, where 0 2.45a ≈ Å. The period of the graphite 

lattice along the axis c, in the direction perpendicular to the graphene layers, is equal to 
twice the interlayer distance, i.e. 3 0(0;0;1)R c= , the parameter 0 6.7c ≈ Å (Fig. 6). The atoms 
of different sublattices of the graphite basal plane are differently situated with respect to the 
atoms of neighboring planes, leading to the differences in the interaction between atoms 
belonging to different sublattices and to their physical inequivalence. Thus, there will be 
different local Green’s functions corresponding to these atoms and determining their 
vibrational characteristics, such as the mean-square displacements of atoms along different 
crystallographic directions. 
Strong anisotropy of interatomic interaction causes a number of typical distinguishing features 
in the behaviour of the phonon spectra and vibrational characteristics (Kosevich et al., 1994). 
For example, the elastic moduli C33 and C44 associated with displacements along the c axis and 
determining the speed of sound propagating or polarized along this direction, are from about 
30 for about 300 times smaller than the elastic moduli C11 and C66, determining the speed of 
sound propagating and polarized in the basal planes (Nicklow et al., 1972; Belen’kii, et al., 
1988). Therefore, if the propagation of the vibrations polarized along c in the basal ab plane 
would have the nature of a sound wave and not a quasi-flexural wave, the mean-square 
displacements of atoms in a given direction would attain, even at low temperatures, the values 
corresponding to the melting of the crystal. That is, the mere existence of solid graphite at 
room temperature indicates that the fluctuations are essentially determined by the restoring 
forces acting on the atom from other atoms, lying in the same layer. These restoring forces are 
due to the noncentral interatomic interaction and indicate the presence of elastic stresses in the 
graphene layers that form the crystal lattice of graphite.  
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Fig. 6. The structure of the crystal lattice of graphite 

In the long-wave region the dispersion law of the transverse phonon mode (TA) of a 
strongly anisotropic layered crystal, whose frequency vanishes at 0k =  and which 
corresponds to the waves propagating in the ab plane and polarized along c (i.e. quasi- 
flexural mode) has the form  

 
3

2 2 444( )T
Ck k k

m
κω

ρ
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Here ρ  is the density of graphite, m  is the mass of the carbon atom and the coefficient κ  
characterizes the bending stiffness of layers. The deviation described by the second term of 
(4), characterising quasi-flexural  wavelength of the (TA) dispersion curve is clearly seen on 
dispersion curves obtained from inelastic neutron scattering  data (Kosevich et al., 1994).  
The fact that we can examine each layer of graphite as plane means that in the crystal the 
condition 

                                                   0iz iznσ =  (5) 

is fulfilled, where  the coordinate z is chosen along the c axis and the coordinates x and y in 
the basal plane. 
Bending stiffness of flat graphene monolayers, which provides a characteristic distortion of 
the dispersion curve (Kosevich et al., 1994), does not depend on the interlayer interaction 
and can be determined from the consideration of only one isolated graphene monolayer. 
When the condition of equilibrium of a flat layer, which has for an isolated graphene 
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monolayer the form 1 2 36 4 0zβ β β+ + = , is fulfilled, the bending stiffness κ  can be written 
as (Syrkin et al., 2009)  

                                                   
2

0 3 1 3

1 3

6 6
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z

z

a
m
β β βκ

β β
+⎛ ⎞= ⎜ ⎟ +⎝ ⎠

. (6)                          

In (Syrkin et al., 2009) the expressions for the flexural rigidity in some other layered 
structures are also given.  For the layered hexagonal close-packed crystal  

                                                     ( )2
1 2

3 2
2 z zaκ β β= + .                                                               (7) 

In the layered tetragonal lattice the flexural rigidity is anisotropic (depending on the 
direction of propagation of flexural waves in the layer plane)  

                  
2

2
1 2 1 2( 2 ) 2( 4 )sin 2

2 z z z z
aκ β β β β φ⎛ ⎞= − + − +⎜ ⎟

⎝ ⎠
, (8) 

where φ is the polar angle in the basal plane, measured from the x-axis in the 
counterclockwise direction. 
Therefore, when describing the intralayer interaction in the graphite, the central and 
noncentral interactions between atom and its first, second and third neighbours must be 
considered. Accounting for more distant neighbours in the basal plane has no meaning as to 
the accuracy of the adiabatic approximation. In describing the weak interlayer interaction it 
is natural to limit of only to the interaction between atoms from neighbouring layers, being 
at distances 4r  or 5r , where the value 5r  is only slightly larger than 4r  (see Fig. 6). For the 
nearest neighbours in the basal plane ( 1rΔ = ), whose interaction is determined by the 
superposition of covalent and metallic bonds, the force matrix is characterized by all three 
parameters of interaction. The bond between more distant neighbours ( 2 3 4 5, , ,r r r rΔ = ) can 
be regarded as a van der Waals one and described by an isotropic pair potential. 
The proposed model involves eleven force constants. These constants can be found using 
follows data: four moduli of elasticity, the condition of symmetry of these moduli under the 
permutation of pairs of indices, the neutron diffraction data (Kosevich et al., 1994), the 
inelastic X-ray scattering data (Maultzsch et al., 2004) and the Raman scattering data 
(Dresselhaus et al., 2002). The values of force constants (see Table 1) that characterize the 
interaction between the atoms of graphite can be thus unambiguously obtained and 
checked. 
 

Δ  
 

1r  2r  3r  4r  5r  

.103 N/m 337.882 50.476 19.647 2,581 0.371 

βx = 170.864 
β.103 N/m βy = 96.375 10.149 8.661 0.0654 0.0353 

Table 1. The force constants of graphite 
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Interlayer van der Waals interaction can be described by the Lennard-Jones potential, which 
allows, together with the help of expressions for C33 and C44, to find constants responsible 
for the interaction between the nearest atoms of neighbouring layers. Moreover, from the 
values of force constants the parameters of this potential can be determined, which is 
important for the calculations of the surface relaxation in graphite ( 3.092σ ≈ Å, 152.3ε ≈ K).  
It is obvious that the flat form of a free graphene monolayer is not stable. Therefore, we 
analysed the phonon spectrum and the rms (root mean squares) amplitudes of 
displacements in the films consisting of two and three graphene monolayers. Results of the 
experimental studies of graphene bilayer films are given in (Morozov & Firsov, 2009). 
It was shown that in the graphite the interlayer interaction contains both central and 
noncentral forces, therefore the formation of the surface can not be described by the Lifshitz-
Rosenzweig model (as a solution of the stochastic boundary problem) and will be 
characterized by the reconstruction and relaxation processes. At the same time, it is natural 
to assume that the breakage of weak interlayer van der Waals bonds will change neither the 
distance between atoms in graphene layers nor the force constants that characterize the 
intralayer interaction.  
In fact, the surface reconstruction and relaxation will lead to changes in the interlayer 
distances and force constants 4α , 4β ,  5α  and 5β characterizing the interlayer interaction.  
Condition (5) leads to the same ratio between the force constants and lattice parameters as 
the condition C13 = C31. For thin films with N monolayers this condition takes the form 
(Gospodarev et al., 2010)  

                       ( )2 2 2
1 2 3 4 4 1 4 52

26 4 9 2
1 3

N r r r
N a

β β β β β⎡ ⎤+ + = − −⎣ ⎦−
. (9) 

From the parameters of the Lennard-Jones potential for the considered graphite thin films 
the interlayer distance and the force constants describing the interlayer interaction can be 
easily found:  
for two-layer film (bigraphene):  

4 3.636r ≈ Å; α4 ≈ 0.373 N/m; β4 ≈ 0.0035 N/m; 

5 3.902r ≈ Å; α4 ≈ - 0.009 N/m; β4 ≈ 0.004 N/m; 
for three-layer film (trigraphene):  

4 3.453r ≈ Å; α4 ≈ 1.585 N/m; β4 ≈ - 0.0015 N/m; 

5 3.713r ≈ Å; α4 ≈ 0.016 N/m; β4 ≈ 0.004 N/m. 
Fig. 7 presents the phonon densities of states of bigraphene (Fig. 7a) as well as the 
contributions to them from the atomic displacements along the layers (Fig. 7b) and 
perpendicular to them (Fig. 7c). 
In each figure the dashed line shows the corresponding characteristics of an infinite graphite 
sample (Gospodarev et al., 2009). Densities of states of the film and bulk samples are 
practically the same, significant differences were observed only in the frequency range in 
which the phonon spectrum of graphite resembles that of a three-dimensional system and 
the interaction between the vibrational modes polarized in the plane of the layers and 
perpendicularly to the layers is sufficiently large. 
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Fig. 7. The phonon density of states of a thin film of graphite, consisting of two graphene 
monolayers (a) ; the partial contributions to it from the atomic displacement along the basal 
plane and perpendicular to its direction (b,  c, respectively); (d) is low frequency part of (b). 

In bigraphene, the transverse phonon modes TA and TO, typical for graphite, degenerate 
into two discrete levels corresponding to the symmetrical and antisymmetrical 
displacements of layers. The frequencies of these levels are marked in Fig. 7d as ( )ω −  and 

( )ω + . The frequency ( )ω +  in bigraphene corresponds to the same atomic displacements as 
the frequency ( )TOω Γ  on bulk sample, a lower value of ( )ω + as compared with ( )TOω Γ  is 
caused by the surface relaxation. The bigraphene spectral density ( )abρ ω  (Fig. 7d) shows 
kinks at ( )ω ω −=  and ( )ω ω += . For ( )ω ω +>  the spectral density acquires the characteristic 
two-dimensional appearance ( ) ~abρ ω ω .  
Starting from very low frequencies, the spectral density ( )cρ ω  acquires the form 
characteristic of a two-dimensional scalar model, leading to very high values of the mean-
square displacements of atoms in the direction perpendicular to layers.  
Fig. 8 shows the temperature dependence of the rms amplitudes of atomic displacements of 
bigraphene (2c), trigraphene (3c for surface layers, 3c' for central layer) and bulk sample (∞ c) 
in the perpendicular direction to the layers, and it also shows that the amplitude of atomic 
displacements along the graphene layers is almost independent of sample thickness (ab). 
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The rms amplitude of atomic displacements along the c axis strongly increases with the 
decreasing film thickness. At room temperature the amplitude of transverse vibrations of an 
atom of the trigraphene central layer (curve 3c') is about twice the value for the bulk sample 
(curve ∞ c).  
 

 
Fig. 8. Temperature dependence of the mean amplitudes of atoms along different 
crystallographic directions in the films of graphite, consisting of two and three graphene 
monolayers 
The horizontal dashed line in Fig. 8 indicates the mean value of the amplitude of atomic 
vibrations along the c axis for bulk graphite at T ≈ 3000 K. This temperature is about 1000 K 
below the melting temperature of graphite ( 3800 50T ≈ ± K), therefore at T ≈ 3000 K the 
crystal lattice of graphite still has sufficient margin of stability. Bigraphene and trigraphene 
also have a sufficient margin of stability at room temperature, since the mean square 
amplitudes of their atomic vibrations are markedly below the dashed line.  

4. Phonon and electron spectra of metal intercalated graphite 

Special interest has been devoted to graphite intercalated by metals, since in such graphitic 
systems the superconducting transition temperature  cT  essentially depends on the type of 
intercalated metal. For example cT  for C6Yb is 6.5 K, while for C6Ca it is 11.5 K (Weller et al., 
2005; Emery et al., 2005). It is known that for the formation of the superconducting state the 
electron-phonon interaction plays crucial role. Since the electronic spectra of these 
compounds probably do not depend on the type of intercalated metal, cT  variations in such 
compounds are dominantly determined by the peculiarities of their phonon spectra. 
Therefore it is necessary to analyse in detail the phonon spectra of pure graphite (see section 
2) and to find out how these spectra vary due to the intercalation with various metals and to 
determine how these variations depend on the dynamic parameters of both carbon and 
intercalating metal. 
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Both structures mentioned above consist of graphite monolayers between which two 
dimensional triangle lattices of metals with period a 3  are placed. The lattice constant in 
the direction perpendicular to layers is, in both compounds, c4.5 = ׳ Å (Weller et al., 2005; 
Emery et al., 2005). The absence of data about acoustical, optical and other properties, which 
would enable to determine the parameters of interatomic interactions, prompted us to make 
some assumptions about the values of these interactions. We neglect the carbon-carbon and 
metal-metal interactions across layers. The interaction of metal atoms within one layer will 
be considered as a central force, i.e. matrices of force constants have form given in (Feher et 
al., 2009).  
The distance between nearest atoms of metal and carbon is equal to   

C Me

2 2
2.66

2 3
c ar A−
′⎛ ⎞≡ + ≈⎜ ⎟

⎝ ⎠
  

i.e. it is larger than the distance between second nearest carbon neighbours in graphene 

monolayer (a ≈  2.45 Å), but shorter than between third neighbours ( 2 2.83
3

a A≈  ). It can 

be therefore assumed that the potential describing this interaction may be considered as pair 
and isotropic, i.e. the force constants of interatomic interaction fulfill condition β z(r C-Me) = 
β x(r C-Me) = β (r C-Me). Since interatomic distances in graphene monolayer do not change 
due to intercalation, force constants also do not change. Therefore the value of β (rC-Me) may 
be found from the condition of the symmetry of the elastic modulus tensor with respect to a 
transposition of index pair. This condition has form 

 ( )
2

C-Me
2 16 4 2  (r )

2 33 3
a a ca

a
β β β β

⎡ ⎤′⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + = −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎣ ⎦

 .                                          

From this condition we get β (r C-Me) ≈   0.31 N/m, both for carbon-ytterbium and carbon-
calcium interactions. Unfortunately, we do not have any data from which force constant α  
(r C-Me), characterizing central interaction between metal and carbon atoms, may be directly 
determined. However, on the basis of the values of distances between carbon and metal 
atoms we estimated that the force constant value lies somewhere in the range from α  (r C-

Me) ≈  20 N/m   to α (r C-Me)  ≈  50 N/m  (Syrkin et al., 2009). We picked up four α (r C-Me) 
values: 20, 30, 40, and  50 N/m . 
Fig. 9 shows the frequency dependences of partial contributions to the density of phonon 
states from displacements of metal and carbon atoms in the direction perpendicular to 
layers. The areas below dependences corresponding to intercalating metal are hatched. In 
Fig. 9, the left set show dependences for C6Ca, the right one for C6Yb, the force constant α (r 
C-Me) increases from top to bottom. We see that for C6Ca sharp resonance peaks appear on 
partial contributions from both intercalating metal and carbon. These peaks are shifted, with 
the increase of α (r C-Me), towards the centre of the frequency range, leading to the increase 
of density of phonon states near the Brillouin zone’s K-point, through which the Fermi level 
of electrons in graphene passes. For the C6Yb compound (Yb has more than four times larger 
atomic mass than Ca) the resonance peaks appear at lower frequencies and an apparent 
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Fig. 9. The partial contributions to the phonon density of states of intercalated graphite (blue 
lines) from the displacements along the c axis of the carbon atoms and the metal (red lines 
with hatched area under the curves). Top to bottom ( )C-Merα =  20, 30, 40, 50 N/m. Green 
lines in all the fragments correspond to pure graphite. 
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Fig. 9. The partial contributions to the phonon density of states of intercalated graphite (blue 
lines) from the displacements along the c axis of the carbon atoms and the metal (red lines 
with hatched area under the curves). Top to bottom ( )C-Merα =  20, 30, 40, 50 N/m. Green 
lines in all the fragments correspond to pure graphite. 



 Physics and Applications of Graphene - Theory 

 

108 

increase of the phonon states density at frequencies near the Brillouin zone’s K-point is 
observed only for anomalously large values of α (r C-Me )≈ 40 ÷ 50 N/m (note that Tc for C6Ca 
is almost 1.8 times higher than that for C6Yb). Note that the sharp resonance peaks in the 
density of states, which are characteristic for states localized near the isolated impurity 
atom, appear for metal atoms which form periodic structure. Such a behavior of the spectral 
densities is due to the weakness of the interaction between remotely spaced atoms. The 
interatomic distances within the metal layers differ slightly from distances between the 
atoms of neighbouring layers. 
Fig. 10 presents the total phonon density of states for both C6Ca (left) and C6Yb (right) and 
partial contributions from intercalating metal (hatched area). 
 

 
Fig. 10. The phonon density of states of intercalated graphite (blue lines) and the contribution 
to them of metal atoms (red lines with hatched area under the curves) for α = 50 N/m. Green 
lines are the phonon density of states of pure graphite. 

Unconventional behavior of phonon subsystem in graphite containing metal intercalated 
layers may substantially influence its electronic properties and the electron-phonon 
interaction (EPI), including the superconducting transition temperature. At present time 
there is much convincing evidence that EPI is principal mechanism of the transition into the 
superconducting state and this interaction should be taken into account for developing a 
consistent theory for the description of superconductivity in different types of compounds, 
including high-Tc superconductors (Maksimov, 2008). It follows from the BCS theory 
(Bardeen et al., 1957) (see also (Maksimov & Dolgov, 2007)) that the value of Tc depends on 
the basic characteristics of electron and phonon spectra in the following way  

   1expc phT ω
λ

⎛ ⎞∝ −⎜ ⎟
⎝ ⎠

, (10) 

where phω  is the mean phonon frequency and λ  is the EPI constant, which is 
proportional to the density of electron states on the Fermi surface. 
Microscopic analysis of EPI was not performed within this work, but we note that a 
consistent many-particle theory of EPI already exists, describing both normal and 
superconducting states of metals (Rainer, 1986; Allen & Mitrovic, 1982; Maksimov & 

Quasi-Particle Spectra on Substrate and Embedded Graphene Monolayers 

 

109 

Dolgov, 2007). However, we can state that to increase Tc high phonon frequencies phω , 
large values of the constant of the interaction of electrons with these phonons λ and high 
density of electron states on the Fermi surface are needed. Such properties are manifested 
by, for example, compounds of metals with light elements, such as hydrides (Ashcroft, 2004; 
Tse et al., 2007), borides (Nagamutsi et al., 2001) carbides and nitrides (Maksimov et al., 
2007), since their phonon spectra show high-frequency modes corresponding to the 
vibrations of light atoms (H, B, C, N). For graphene doped by hydrogen Tc above the boiling 
point of liquid nitrogen was recently predicted using the BCS theory (Savini et al., 2010).  
Moreover, a detailed analysis has been carried out (see review Maksimov, 2008), showing 
that electrons in MgB2 exhibit very strong interaction with quasi-flexural modes. This is very 
interesting for describing the evolution of temperature of superconducting transition in the 
intercalating graphite.  
Indeed, the frequency phω  decreases at intercalating the graphite by metals which have 
atomic masses essentially larger than carbon. So, the temperature of superconducting 
transition for graphite intercalated by Li is 1.9 K, which is lower than for graphite 
intercalated by Ca or Yb. At the same time the intercalation by Yb and Ca increases the mean 
vibration frequency of quasi-flexural branch.  Besides, it is especially interesting that the 
intercalation by Ca and Yb leads to an essential increase of the quasi-flexural phonons 
number. The quasi-momentum of these phonons corresponds to the K point of the first 
Brillouin zone, in the vicinity of which the Fermi level is lying in the electron spectra.  
The role of defects is very important for the electron-phonon interaction formation, and 
consequently, for superconducting properties in three dimensional layered crystals. So, in a 
new type of high temperature layered superconductors ROFeAs (where R is rare-earth 
element) both the superconductive state and Tc are determined by defects (Hosono, 2008). 
These materials are characterized by layered structure consisting of alternating molecular 
layers R-O and Fe-As. The superconductivity in such compounds originates from electron 
doping by F or hole doping by introducing oxygen vacancies (Sadovskii, 2008; Izyumov 
&Kurmaev, 2008; Ivanovskii, 2008). 

5. Conclusion 
The results of this chapter allow us to draw following conclusions concerning the electronic 
spectrum of graphene with defects, the phonon quasi-particle spectra of graphene, 
bigraphene and metal-intercalated graphite: 
i.  It was shown that a vacancy in graphene conserves the Dirac singularity of the local 

density of electronic states in one of the sublattices. Moreover, a quasi-Dirac singularity 
was also observed in phonon spectra of graphene for atom displacements in the 
direction perpendicular to layers. 

ii.  Calculations and description of the phonon spectrum and vibrational characteristics of 
the bulk graphite and carbon nanofilms (bigraphene and trigraphene) lead to the 
explanation of the plane shape stability of bigraphene and trigraphene nanofilms at 
room temperatures. 

iii.  Analyzing the changes in phonon spectra of graphite intercalated with various metals, 
using the BCS theory, we have proposed, taking into account dynamic properties of 
these layered systems, a possible way leading to the increase of Tc. 
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Graphite and metallic compounds on its basis seem to be very attractive for complex 
investigations of electron and phonon spectra, the electron-phonon interaction, and for the 
study of superconductive transition conditions. The reasons for this attractiveness are, 
among other:  
i. well pronounced flexural  modes of graphite, practically coincident (in the same value 

of quasi-momentum)  with the Dirac peculiarities in phonon and electron spectra;  
ii. an  increased quantity of phonon and electron states near the Fermi level caused by 

intercalating metals, and 
iii. the existence of highly frequency phonon modes, pointing out to their attractiveness.  
It should be noted, that in the review (Maksimov, 2008) author argues that in the MgB2 

compound electrons most strongly interact with flexural modes. This seems to be very 
interesting for the description of the evolution of the superconducting transition 
temperature in intercalated graphite, since flexural modes play an essential role in graphite 
phonon spectra. 
Finally, for further analysis of the mechanism of superconducting transition in graphite 
intercalated with metals more complex investigations of the phonon and electron spectra 
and of the dependence of the electron-phonon interaction on intercalating metal are needed. 
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Graphite and metallic compounds on its basis seem to be very attractive for complex 
investigations of electron and phonon spectra, the electron-phonon interaction, and for the 
study of superconductive transition conditions. The reasons for this attractiveness are, 
among other:  
i. well pronounced flexural  modes of graphite, practically coincident (in the same value 

of quasi-momentum)  with the Dirac peculiarities in phonon and electron spectra;  
ii. an  increased quantity of phonon and electron states near the Fermi level caused by 

intercalating metals, and 
iii. the existence of highly frequency phonon modes, pointing out to their attractiveness.  
It should be noted, that in the review (Maksimov, 2008) author argues that in the MgB2 

compound electrons most strongly interact with flexural modes. This seems to be very 
interesting for the description of the evolution of the superconducting transition 
temperature in intercalated graphite, since flexural modes play an essential role in graphite 
phonon spectra. 
Finally, for further analysis of the mechanism of superconducting transition in graphite 
intercalated with metals more complex investigations of the phonon and electron spectra 
and of the dependence of the electron-phonon interaction on intercalating metal are needed. 
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1. Introduction

1.1 Overview
Graphane is a two-dimensional system consisting of a single planar layer of fully saturated
carbon atoms, which has recently been realized experimentally through hydrogenation
of graphene membranes. In this chapter, we categorize theoretical approaches using the
first-principles calculations, and we discuss in some detail our applications of calculation
approaches to graphane systems. Specifically, we have studied the stability of chair, boat, and
twist-boat graphane structures. Our results indicate that locally stable twist-boat membranes
significantly contribute to the experimentally observed lattice contraction. The band gaps of
graphane nanoribbons decrease monotonically with the increase of the ribbon width and are
insensitive to the edge structure. We have also studied the electronic structural characteristics
in a hydrogenated bilayer graphene under a perpendicular electric bias. The bias voltage
applied between the two hydrogenated graphene layers allows continuously tuning the band
gap and leads a transition from semiconducting to metallic state. Desorption of hydrogen
from one layer in the chair conformation yields a ferromagnetic semiconductor with tunable
band gap. Finally, we offer some views on the strength and weakness of the approaches that
are discussed, and touch upon some of the challenging problems that need to be addressed in
the future.

1.2 Graphene and graphane
Graphene, a single layer of all-carbon hexagonal network, is an emerging material for
applications in electronics and photonics Berger et al. (2006); Geim & Novoselov (2007);
Geim et al. (2007); Gilje et al. (2007); Novoselov et al. (2005); Wang et al. (2008); Zhang
et al. (2006). As a truly two-dimensional system and a zero-gap semiconductor where the
carriers behave as massless fermions, graphene possesses a number of outstanding electronic
properties such as tunable carrier type and density Berger et al. (2006), exceptionally high
carrier mobility Zhang et al. (2006), quantization of the conductivity Novoselov et al. (2005),
and fractional quantum Hall effect (QHE) even at room temperature Zhang et al. (2005).
These phenomena, particulary the QHE Zhang et al. (2005), have elucidated many important
aspects of quantum many-body systems Zhang et al. (2005). The corresponding electronic
states in graphene promote theoretical advances Ciftja & Fantoni (1996); Halperin et al. (1993);
Jain (1989); Laughlin (1983) in studying strongly correlated Dirac fermions. Functionalizing
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1.1 Overview
Graphane is a two-dimensional system consisting of a single planar layer of fully saturated
carbon atoms, which has recently been realized experimentally through hydrogenation
of graphene membranes. In this chapter, we categorize theoretical approaches using the
first-principles calculations, and we discuss in some detail our applications of calculation
approaches to graphane systems. Specifically, we have studied the stability of chair, boat, and
twist-boat graphane structures. Our results indicate that locally stable twist-boat membranes
significantly contribute to the experimentally observed lattice contraction. The band gaps of
graphane nanoribbons decrease monotonically with the increase of the ribbon width and are
insensitive to the edge structure. We have also studied the electronic structural characteristics
in a hydrogenated bilayer graphene under a perpendicular electric bias. The bias voltage
applied between the two hydrogenated graphene layers allows continuously tuning the band
gap and leads a transition from semiconducting to metallic state. Desorption of hydrogen
from one layer in the chair conformation yields a ferromagnetic semiconductor with tunable
band gap. Finally, we offer some views on the strength and weakness of the approaches that
are discussed, and touch upon some of the challenging problems that need to be addressed in
the future.

1.2 Graphene and graphane
Graphene, a single layer of all-carbon hexagonal network, is an emerging material for
applications in electronics and photonics Berger et al. (2006); Geim & Novoselov (2007);
Geim et al. (2007); Gilje et al. (2007); Novoselov et al. (2005); Wang et al. (2008); Zhang
et al. (2006). As a truly two-dimensional system and a zero-gap semiconductor where the
carriers behave as massless fermions, graphene possesses a number of outstanding electronic
properties such as tunable carrier type and density Berger et al. (2006), exceptionally high
carrier mobility Zhang et al. (2006), quantization of the conductivity Novoselov et al. (2005),
and fractional quantum Hall effect (QHE) even at room temperature Zhang et al. (2005).
These phenomena, particulary the QHE Zhang et al. (2005), have elucidated many important
aspects of quantum many-body systems Zhang et al. (2005). The corresponding electronic
states in graphene promote theoretical advances Ciftja & Fantoni (1996); Halperin et al. (1993);
Jain (1989); Laughlin (1983) in studying strongly correlated Dirac fermions. Functionalizing
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graphene by reversible hydrogenation can change the electronic properties from metallic
to semiconducting owing to the induced changes of functionalized carbon from sp2 to
sp3 hybridization Geim et al. (2007); Gilje et al. (2007); Wang et al. (2008). The resultant
hydrocarbon compound, graphane, can be modified into new materials, fine tuning its
electronic properties, and has opened up increasingly fertile possibilities in hydrogen storage
and two dimensional electronics Berger et al. (2006); Geim & Novoselov (2007); Geim et al.
(2007); Gilje et al. (2007); Novoselov et al. (2005); Wang et al. (2008); Zhang et al. (2006).

1.3 Energy gaps
To develop increasingly small and fast transistors, it is desirable to have an energy gap
Berger et al. (2006); Zhang et al. (2006). In contrast to complicated graphene-based structures
like quantum point contacts and quantum dots, chemical derivatives of graphene provide
a unique tool for controlling electronic properties Gilje et al. (2007). In order to utilize
their remarkable electronic characteristics, it would be highly desirable to understand the
associated electronic structures. Based on first-principles density-functional calculations, the
stability and semiconducting behavior of graphane, an extended two dimensional fully
saturated hydrocarbon derived from a single graphene sheet Boukhvalov et al. (2008); Sofo
et al. (2007), was predicted. Recent experiments Elias et al. (2009) demonstrated the graphane
formation by exposing pristine graphene to atomic hydrogen. There exist drastic changes
in the crystal structure of graphane such that the lattice spacing shrinks by as much as 5%
whereas the hexagonal symmetry remains intact.
The experimentally observed lattice spacing Elias et al. (2009) has a significantly broader
variation than theoretically studied conformations of graphane Boukhvalov et al. (2008); Sofo
et al. (2007). Theoretical work has considered two conformations: a chair like conformer in
which hydrogen atoms are alternating on both sides of the plane, and a boat like conformer in
which hydrogen atoms are alternating in pairs Boukhvalov et al. (2008); Sofo et al. (2007). In
the ground state chair conformation of graphane, hydrogen attaches to graphene sublattices
from two opposite sides and carbon atoms in the sublattices move out of the plane that yields
the shrinkage of the in-plane periodicity. However, the change in hybridization from sp2 to
sp3 leads to longer C-C bonds, which surpasses the lattice shrinkage by chair membrane
buckling. The experimental observation of more compressed areas implies the existence
of alternative membranes in the crystal structures of graphane, which results in stronger
membrane buckling and shorter in-plane lattice spacing Elias et al. (2009).
We have performed a comprehensive investigation of structural and electronic properties
of the graphane and graphane nanoribbons. We employ a combination of classical
molecular dynamics Tersoff (1988) and first-principles density-functional approach. Kresse
& Furthmuller (1996) Classical molecular dynamics was used to pre-screen molecular
geometries, and first-principles calculations were employed to determine the electronic
structure. Our results indicate that the locally stable twist-boat membranes lead to
pronounced lattice shrinkage, and thus contribute to the broader distribution of lattice spacing
observed experimentally Elias et al. (2009). The incorporation of twist-boat membranes into
the crystal structure of graphane is shown to preserve the semiconducting feature of graphane.
Furthermore, a systematic study of the graphane nanoribbons shows the band gaps of
graphane nanoribbons decrease monotonically with the increase of the ribbon width and are
insensitive to the edge structure.
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1.4 Bilayer graphane
Graphene is a one-layer sheet of carbon with a structure that resembles chicken wire.
Graphene has proven to possess unique electronic and physical properties, such as the
unconventional quantum Hall effect Zhang et al. (2006), and high carrier mobility at room
temperature Berger et al. (2006); Neto et al. (2009); Novoselov et al. (2004), thereby holding
potential for a wide range of applications including graphene transistors, integrated circuits,
and biosensors Berger et al. (2006); Neto et al. (2009); Novoselov et al. (2004); Zhang et
al. (2006). The quantum-Hall effect Tsui et al. (1982) and the associated strongly correlated
electron systems have generated a tremendous impetus on the development of novel ideas in
many-body physics like the existence of fractionally charged quasiparticles Laughlin (1983),
topological quantum numbers Thouless (1998), chiral Luttinger liquids Wen (1990; 1991),
composite fermion particles Ciftja (2000); Jain (1989), and Chern-Simmons effective-field
theories Ciftja & Wexler (2001); Halperin et al. (1993). Bringing graphene up to the level of
technologically relevant material, however, depends on improved understanding and control
of the structural and electronic properties. Specifically, an energy gap can be engineered by
introducing lateral confinement such as in graphene nanoribbons Li et al. (2008); Nduwimana
& Wang (2009), hydrogenated graphene Elias et al. (2009); Guisinger et al. (2009); Sofo et al.
(2007), or in biased bilayer graphene Castro et al. (2007; 2008); Mak et al. (2009); McCann
(2006); Min et al. (2007); Nilsson et al. (2008); Ohta et al. (2006); Oostinga et al. (2008); Zhang
et al. (2009). The engineering of band gaps generates a pathway for possible graphene-based
nanoelectronic and nanophotonic devices.
The extremely high carrier mobility makes graphene an ideal material for nanoelectronic
applications, especially in field effect transistors Berger et al. (2006); Neto et al. (2009);
Novoselov et al. (2004). Although graphene nanoribbon field effect transistors have been
shown to exhibit excellent properties Li et al. (2008), mass production of graphene
nanoribbon-based devices is beyond the capability of current lithography technology Nilsson
et al. (2008). An alternative route to induce the formation of a band gap is through the
hydrogenation of graphene Elias et al. (2009); Guisinger et al. (2009). The modification of the
carbon bonds associated with the hydrogenation preserves the crystalline order of the lattice,
but leads to re-hybridization of the carbon atoms from a planar sp2 to a distorted sp3 state
Sofo et al. (2007). Recent experimental studies have demonstrated reversible hydrogenation
through heating and proceeding with de-hydrogenation of the graphane to graphene Elias et
al. (2009). On the other hand, bilayer graphene has attracted a great deal of attention recently.
In bilayer graphene, the low energy excitations are one of the characteristics of massive
chiral fermions, unlike Dirac fermions in graphene Novoselov et al. (2005). Most importantly,
bilayer graphene can have a tunable gap via chemical doping or by applying an external gate
voltage. In lieu of the increasing amount of experimental and theoretical studies of the bilayer
graphene transistors Xia et al. (2010), the exploration of various modified bilayer systems
could play a crucial role in future nanoelectronics applications.
Experimental advances have motivated our study of what could emerge if bilayer graphene
were subjected to hydrogenation and electric bias. We have investigated the corresponding
bilayer systems based on first-principles density-functional calculations. Fully-hydrogenated
bilayer graphene is similar to the one-layer graphane in that the electronic properties change
from metallic to the semiconductive due to the induced changes of functionalized carbon from
sp2 to sp3 hybridization, and the interlayer chemical bonding that stabilizes the hydrogenated
structure Leenaerts et al. (2009). We show that with applied electric bias, the resultant energy
gap can be tuned. Of particular interest are the effects associated with symmetry breaking
due to the presence of an external electric field perpendicular to the hydrogenated bilayer

115Structural and Electronic Properties of Hydrogenated Graphene



graphene by reversible hydrogenation can change the electronic properties from metallic
to semiconducting owing to the induced changes of functionalized carbon from sp2 to
sp3 hybridization Geim et al. (2007); Gilje et al. (2007); Wang et al. (2008). The resultant
hydrocarbon compound, graphane, can be modified into new materials, fine tuning its
electronic properties, and has opened up increasingly fertile possibilities in hydrogen storage
and two dimensional electronics Berger et al. (2006); Geim & Novoselov (2007); Geim et al.
(2007); Gilje et al. (2007); Novoselov et al. (2005); Wang et al. (2008); Zhang et al. (2006).

1.3 Energy gaps
To develop increasingly small and fast transistors, it is desirable to have an energy gap
Berger et al. (2006); Zhang et al. (2006). In contrast to complicated graphene-based structures
like quantum point contacts and quantum dots, chemical derivatives of graphene provide
a unique tool for controlling electronic properties Gilje et al. (2007). In order to utilize
their remarkable electronic characteristics, it would be highly desirable to understand the
associated electronic structures. Based on first-principles density-functional calculations, the
stability and semiconducting behavior of graphane, an extended two dimensional fully
saturated hydrocarbon derived from a single graphene sheet Boukhvalov et al. (2008); Sofo
et al. (2007), was predicted. Recent experiments Elias et al. (2009) demonstrated the graphane
formation by exposing pristine graphene to atomic hydrogen. There exist drastic changes
in the crystal structure of graphane such that the lattice spacing shrinks by as much as 5%
whereas the hexagonal symmetry remains intact.
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1.4 Bilayer graphane
Graphene is a one-layer sheet of carbon with a structure that resembles chicken wire.
Graphene has proven to possess unique electronic and physical properties, such as the
unconventional quantum Hall effect Zhang et al. (2006), and high carrier mobility at room
temperature Berger et al. (2006); Neto et al. (2009); Novoselov et al. (2004), thereby holding
potential for a wide range of applications including graphene transistors, integrated circuits,
and biosensors Berger et al. (2006); Neto et al. (2009); Novoselov et al. (2004); Zhang et
al. (2006). The quantum-Hall effect Tsui et al. (1982) and the associated strongly correlated
electron systems have generated a tremendous impetus on the development of novel ideas in
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Novoselov et al. (2004). Although graphene nanoribbon field effect transistors have been
shown to exhibit excellent properties Li et al. (2008), mass production of graphene
nanoribbon-based devices is beyond the capability of current lithography technology Nilsson
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voltage. In lieu of the increasing amount of experimental and theoretical studies of the bilayer
graphene transistors Xia et al. (2010), the exploration of various modified bilayer systems
could play a crucial role in future nanoelectronics applications.
Experimental advances have motivated our study of what could emerge if bilayer graphene
were subjected to hydrogenation and electric bias. We have investigated the corresponding
bilayer systems based on first-principles density-functional calculations. Fully-hydrogenated
bilayer graphene is similar to the one-layer graphane in that the electronic properties change
from metallic to the semiconductive due to the induced changes of functionalized carbon from
sp2 to sp3 hybridization, and the interlayer chemical bonding that stabilizes the hydrogenated
structure Leenaerts et al. (2009). We show that with applied electric bias, the resultant energy
gap can be tuned. Of particular interest are the effects associated with symmetry breaking
due to the presence of an external electric field perpendicular to the hydrogenated bilayer
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graphene. Our theoretical study suggests a unique opportunity to tune the band gap of
a ferromagnetic semiconductor with desorption of hydrogen from one layer in the chair
conformation.
The chapter is organized as follows. In Section 2 we discuss the first-principles calculation
method employed. In Section 3, we describe in detail the study of lattice contraction observed
experimentally, through careful examinations of chair, boat, and twist-boat membranes. We
then investigate the effect of electric bias on the bilayer graphane. Finally, in Section 4 we
summarize our theoretical simulation work.

2. Method

2.1 First-principles calculations
Although first-principle methods are generally more reliable than the empirical methods, they
are currently limited to small systems (a few hundred atoms). Recently, several groups have
developed methods for performing first-principles electronic structure calculations that scale
linearly with system size (the O(N) methods). These methods are now applicable to systems
that could only be studied by means of empirical and semi-empirical methods a decade
ago. Moreover, the relative reduction in computational cost enables the molecular-dynamics
simulations and therefore the investigation of complicated physical and chemical systems.
Recent advances in ab initio methods have experienced a considerable amount of success in
predicting ground-state structural and cohesive properties of condensed-matter systems. The
pioneering work of Car and Parrinello based on dynamical simulated annealing promoted
a new type of approach applicable to density-functional theory within the local-density
approximation (LDA). Density-functional molecular dynamics (Car-Parrinello) and other
iterative methods based on plane-wave basis have made such calculations possible for
systems consisting of several hundred atoms.
Most of contemporary LDA calculations are based on the Kohn-Sham formulation. LDA
provides structural and elastic data in good agreement with experiment; lattice constants,
bulk modules, elastic constants and phonon frequencies are usually predicted within 5%
of experimental values. For binding energies, LDA consistently overestimates experimental
values by approximately 10-20%. This error is attributed to the incomplete cancelation of
errors within the LDA method. While these methods have been very successful, several
difficulties arise when they are extended to systems with large length scales or those
containing transition-metal atoms.
The first-principles methods based on plane-wave basis sets require many components in the
expansion to keep track of the locality of the electronic wave functions. In the plane-wave
basis, the kinetic energy operator is diagonal while the potential energy matrix is not
sparse. In contrast, both the kinetic energy and potential energy matrix are approximately
band-diagonal in the wavelet basis. Moreover, the wavelet transform, along with the
associated multiresolution analysis, does not involve long-range operations and is thus
particularly suitable for parallelization and wave-function-based O(N) algorithms, since
every operation can be partitioned into hierarchical real-space domains. In the following, we
briefly discuss the density functional theory, the first-principles molecular dynamics, code
developments, and the wavelet bases for electronic structure calculations.

2.2 Density functional theory
To properly handle a many-electron system so that one can derive its various properties from
fundamental quantum mechanics is a constant challenge in theoretical physics and chemistry.
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Although the interaction between electrons is well known, the facts that electrons, with a spin
quantum number of 1/2, have to obey specific statistical rules and that one normally has to
deal with quite a few of them at the same time make this problem immensely formidable. One
approach that has become the standard one for large-scale electronic simulations is the density
functional theory in the so-called Kohn-Sham framework. It is based on a theorem stating that
the ground-state energy of a many-electron system can be represented as a functional of the
electron density only. As a result, one can obtain the electronic energy without dealing with
the many-body wave function which is highly multidimensional with the notorious property
of being antisymmetric with respect to particle exchange. Being a scalar in the real space,
the electron density is a much simpler quantity to manage, making it possible to investigate
more complex systems. By minimizing the energy functional with respect to possible density
distributions one can then determine the ground-state electronic energy for a given atomic
arrangement.
The energy minimization procedure is most conveniently carried out by a mapping of the
truly interacting system to an auxiliary system of noninteracting particles with the same
density distribution. The resulting total-energy functional

E[n] = T0[n] + d3r vext(r) n(r) + Eh[n] + Exc[n] (1)

includes the kinetic energy functional of the noninteracting system T0[n], external potential
energy, Hartree energy Eh[n], and the so-called exchange-correlation energy functional Exc[n].
Exc[n] includes all the many-body effect as well as the difference in the kinetic energies of the
interacting and noninteracting systems.
The direct variation of energy with respect to the density is replaced by finding the
noninteracting orbitals self-consistently in the local Kohn-Sham equations

(
h̄2

2m
2 + Vext + Ve f f ) i = i i , (2)

where the effective one-particle potential Ve f f includes the Hartree potential and the
exchange-correlation potential derived from a functional derivative Vxc = Exc/ n. The
density is calculated from all occupied one-particle orbitals. The fact that the effective
potential is a simple local function makes a tremendous difference in practical calculations.
Other quantum-chemistry schemes such as the Hartree-Fock method commonly involves
nonlocal operators which require much more computational resources. It is ok that the
density-functional theory has become the prevailing approach in modern electronic-structure
calculations with wide applications in quantum chemistry and materials physics.
Inarguably one could not have solved the exact many-body problem by regrouping energy
terms. As a matter of fact, although the existence of the exchange-correlation energy functional
Exc is fully established, its exact form remains unknown and contains integrals of nonlocal
quantities. It is therefore a challenging many-body problem to investigate this important
quantity in real materials. In practical calculations, approximations to the energy functional
Exc are required. Commonly used ones include the local-density approximation (LDA), in
which the density is assumed to be locally uniform and the result for a homogeneous
electron gas is used point by point based on the local density, and the generalized gradient
approximation (GGA), in which the gradient correction to the LDA is added.
In order to study systems of hundreds of atoms, one focuses on the properties of the
valence electrons and employ norm-conserving pseudopotentials to model the effects of core
electrons. The one-particle orbitals will be expanded in terms of plane waves to eliminate
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sparse. In contrast, both the kinetic energy and potential energy matrix are approximately
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particularly suitable for parallelization and wave-function-based O(N) algorithms, since
every operation can be partitioned into hierarchical real-space domains. In the following, we
briefly discuss the density functional theory, the first-principles molecular dynamics, code
developments, and the wavelet bases for electronic structure calculations.

2.2 Density functional theory
To properly handle a many-electron system so that one can derive its various properties from
fundamental quantum mechanics is a constant challenge in theoretical physics and chemistry.
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any bias in the basis functions. The self-consistent solution of the corresponding Kohn-Sham
orbitals will be carried out by evaluating relevant quantities in either the real space or
momentum space.
We have performed first-principles calculations for various graphane structures. The structure
and electronic properties of all conformations were investigated using first-principles
density-functional calculations. Perdew-Burke-Ernzerhof parametrization Perdew et al. (1996)
of the generalized gradient approximation were used in all the calculations. A kinetic energy
cutoff of 280 eV in the plane-wave basis and appropriate Monchorst-Pack k-points (6 6 1
for graphane and 10 1 1 for graphane nanoribbons) were sufficient to converge the
grid integration of the charge density. Although the first-principles approach systematically
underestimates the band gaps Yang et al. (2008), we are interested primarily in the general
feature of the conformations or membranes. The initial search for stable structures was carried
out through classical molecular dynamics by means of Tersoff potential Tersoff (1988). The
obtained local energy-minimum structures were further optimized through first-principles
calculations with forces less than 0.01 eV/Å.
The structural and electronic properties were investigated using first-principles
density-functional calculations DMol3 (2010). Our first-principles calculations are based
on spin-polarized density functional theory with local density approximation (LDA) for
exchange-correlation potential Vosko et al. (1980). A supercell with a vacuum space of 16
Å normal to graphene plane was used. A kinetic energy change of 3 10 4 eV in the orbital
basis and appropriate Monchorst-Pack k-point grids of 6 6 1 were sufficient to converge
the integration of the charge density. The optimization of atomic positions proceeds until the
change in energy is less than 1 10 6 eV per cell. Although the LDA approach systematically
underestimates the band gaps, we are primarily interested in the relative stability of the
conformations and the electric field effects. While calculations based on hybrid functionals
or many-body GW approaches can rectify the gaps (the rectified gap is 5.2 5.4 eV vs. the
LDA result of 3.6 eV for graphane) Samarakoon & Wang (2009); Zhang et al. (2009), the
implementation of the corresponding electric-field effect is cumbersome. The LDA approach
is expected to provide qualitatively correct pictures and remains the popular choice for
investigations of electric-field effects Zhang et al. (2009). Another reason for choosing LDA is
attributed to the fact that generalized-gradient-approximation (GGA) leads to weak bonding
between graphene layers and yields excessively large values of bilayer distance. By contrast,
LDA calculation gives rise to a bilayer distance of 3.3 Å in good conformity with the results
of graphite Partoens & Peeters (2006).

3. Results and discussion

3.1 Cyclohexane membranes
In order to effectively search for stable crystal structures of graphane, it is instructive to
make reference to distinctive configurations of cyclohexane (see top panel of Figure 1)
referred to as chair, boat, twist-boat and chair-twist-boat, respectively. Due to the inherent
tendency of the sp3 hybridization on tetravalent carbons, cyclohexane does not form a
planar hexagonal arrangement. The chair isomer is the ground state configuration, while
twist-boat is the second lowest-energy isomer. The chair conformation changes in the
ring-flipping process, leading to the axial hydrogens becoming equatorial. Between the two
stable chair states (with D3d symmetry), the twist-boat (with D2 symmetry), boat (with C2v
symmetry), and chair-twist-boat isomers can be constructed. The boat and chair-twist-boat
forms are metastable states of the twist and chair forms, respectively. The twist-boat form
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Fig. 1. Top panel: top view of chair, boat, twist-boat, and chair-twist-boat conformations of
cyclohexane. Carbon atoms are shown as gold and hydrogen atoms are white. Middle and
bottom panels: top and side views of graphane conformations for (A) chair, (B) boat, (C)
twist-boat, and (D) twist-boat-chair, respectively. Reprinted with permission from Ref.
Samarakoon & Wang (2009), Copyright © 2009 American Chemistry Society.

may be isolable because like the chair form it stands for an energy minimum. The boat
conformation is free from angle strain, but has a higher energy than the chair form due to steric
strain in connection to the flagpole interaction. The torsional strain in the boat conformation
has a maximum value since two of the carbon bonds are fully eclipsed. This is to be contrasted
to the chair conformer in which all bonds are staggered and complete absence of torsional
strain, while the twist-boat has four partially eclipsed bonds.

3.2 Chair, boat, and twist-boat conformations in graphane
The counterparts of chair, boat, and twist-boat conformers of cyclohexane in two-dimensional
structures of graphane can be constructed accordingly. We illustrate in Figure 1 the structures
of chair, boat, and twist-boat conformations of graphane, along with a twist-boat-chair
structure. The chair and boat structures coincide with configurations previously obtained
using density functional calculations Boukhvalov et al. (2008); Sofo et al. (2007). The unit cell of
chair and boat conformation has P3̄m1 and Pmmn symmetry, respectively. Consistent with the
energy order of cyclohexane, the chair configuration is lower in energy and has less membrane
buckling than those of boat conformer.
The twist-boat configuration of graphane has more in-plane shrinkage than either chair or
boat conformation. However, the twist-boat structure becomes not stable against the boat
conformation in geometry optimization using first-principles calculations. Closer scrutiny
of the geometry optimization process from a twist-boat structure of graphane to the boat
configuration reveals that the additional energy cost is attributed to the fact that all carbon
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Fig. 2. The number of counts (collected from a sample with 42 lattice spacings) of in-plane
lattice spacing for chair (green), boat (yellow), and twist-boat-chair (red) conformations of
graphane, respectively. The vertical solid line corresponds to theoretical in-plane lattice
spacing of graphene. Reprinted with permission from Ref. Samarakoon & Wang (2009),
Copyright © 2009 American Chemistry Society.

Structure EB (eV) Eg (eV) a (Å) a0 (Å) d (Å)
Graphene -8.57 0 1.42 1.42 2.47

Chair -12.23 3.5 1.54 1.47 2.55
Boat -12.06 3.5 1.54, 1.58 1.40, 1.58 2.51, 2.54

TB-Chair -11.97 3.8 1.53-1.57 0.89-1.51 2.45-2.60

Table 1. Calculated binding energy per carbon atom EB, band gap Eg, the bond length a and
the associated planar projection a0, the in plane lattice spacing d for chair, boat,
twist-boat(TB)-chair conformations of graphane, respectively. Reprinted with permission
from Ref. Samarakoon & Wang (2009), Copyright © 2009 American Chemistry Society.

atoms in the unit cell participate in the bond twisting process. By contrast, in cyclohexane only
four out of six carbon atoms mimicking a pair of twist bonds are involved in the optimization
between boat and twist-boat forms.

3.3 Lattice contraction in graphane
It becomes clear that the experimentally observed graphane is unlikely to be in the single
crystal form of chair, boat, or twist-boat, since each of those structures has only one
or two distinctive in-plane lattice spacing, in contrast to a wide range of distribution
observed experimentally Elias et al. (2009). Moreover, the twist-boat configuration is no
longer stable against the boat structure. However, the instability of the twist-boat crystal
structure does not preclude the existence of locally stable twist-boat membranes. To pursue
this scenario, we show in Figure 1 a twist-boat-chair configuration, which consists of
adjacent twist-boat and chair membranes. Our first-principles calculation shows that the
twist-boat-chair configuration is a stable structure of graphane, although the energy is slightly
higher than the boat and chair conformations. Summarized in Table I are the structural
and electronic properties of the conformation as compared to those for graphene as well
as chair and boat conformations of graphane. It is worth noting that in the twist-boat-chair
configuration, locally stable twist-boat membranes are favored over boat ones since two
carbon atoms in the membrane serve as linkage atoms for the neighbor chair membranes. The
unit cell of twist-boat-chair structure has a P2/c symmetry with monoclinic angle = 138.5 .
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Fig. 3. Calculated band structure for (A) chair, (C) boat, and (E) twist-boat-chair
conformations of graphane, and their counterparts (B), (D), and (F) for one-side
half-hydrogenated graphene (graphone), respectively. The red and blue curves represent
spin-up and down components, respectively. For chair conformation, K=( /3a, 2 /3a),
M=(0, /2a), where a = 2.55 Å. For boat conformation, R=( /2b1, /2b2), T=( /2b1, 0),
where b1 = 2.55 Å and b2 = 4.33 Å. For twist-boat-chair conformation, Z=(0, /2c2),
A=( /2c1, 0), D=( /2c1, /2c2), where c1 = 6.63 Å and c2 = 4.92 Å. The valence band
maximum is set to 0 eV. Reprinted with permission from Ref. Samarakoon & Wang (2009),
Copyright © 2009 American Chemistry Society.
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Fig. 2. The number of counts (collected from a sample with 42 lattice spacings) of in-plane
lattice spacing for chair (green), boat (yellow), and twist-boat-chair (red) conformations of
graphane, respectively. The vertical solid line corresponds to theoretical in-plane lattice
spacing of graphene. Reprinted with permission from Ref. Samarakoon & Wang (2009),
Copyright © 2009 American Chemistry Society.

Structure EB (eV) Eg (eV) a (Å) a0 (Å) d (Å)
Graphene -8.57 0 1.42 1.42 2.47
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Table 1. Calculated binding energy per carbon atom EB, band gap Eg, the bond length a and
the associated planar projection a0, the in plane lattice spacing d for chair, boat,
twist-boat(TB)-chair conformations of graphane, respectively. Reprinted with permission
from Ref. Samarakoon & Wang (2009), Copyright © 2009 American Chemistry Society.
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It becomes clear that the experimentally observed graphane is unlikely to be in the single
crystal form of chair, boat, or twist-boat, since each of those structures has only one
or two distinctive in-plane lattice spacing, in contrast to a wide range of distribution
observed experimentally Elias et al. (2009). Moreover, the twist-boat configuration is no
longer stable against the boat structure. However, the instability of the twist-boat crystal
structure does not preclude the existence of locally stable twist-boat membranes. To pursue
this scenario, we show in Figure 1 a twist-boat-chair configuration, which consists of
adjacent twist-boat and chair membranes. Our first-principles calculation shows that the
twist-boat-chair configuration is a stable structure of graphane, although the energy is slightly
higher than the boat and chair conformations. Summarized in Table I are the structural
and electronic properties of the conformation as compared to those for graphene as well
as chair and boat conformations of graphane. It is worth noting that in the twist-boat-chair
configuration, locally stable twist-boat membranes are favored over boat ones since two
carbon atoms in the membrane serve as linkage atoms for the neighbor chair membranes. The
unit cell of twist-boat-chair structure has a P2/c symmetry with monoclinic angle = 138.5 .
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Fig. 3. Calculated band structure for (A) chair, (C) boat, and (E) twist-boat-chair
conformations of graphane, and their counterparts (B), (D), and (F) for one-side
half-hydrogenated graphene (graphone), respectively. The red and blue curves represent
spin-up and down components, respectively. For chair conformation, K=( /3a, 2 /3a),
M=(0, /2a), where a = 2.55 Å. For boat conformation, R=( /2b1, /2b2), T=( /2b1, 0),
where b1 = 2.55 Å and b2 = 4.33 Å. For twist-boat-chair conformation, Z=(0, /2c2),
A=( /2c1, 0), D=( /2c1, /2c2), where c1 = 6.63 Å and c2 = 4.92 Å. The valence band
maximum is set to 0 eV. Reprinted with permission from Ref. Samarakoon & Wang (2009),
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An important ramification of our investigation of various graphane crystal structures is that
the low energy conformations have no more than one parallel aligned nearest neighbor
hydrogens, as the hydrogen in chair and boat has zero and one parallel aligned neighbor,
respectively. On the other hand, the chair membranes in the twist-boat-chair structure may
have two neighboring hydrogens. This trend is also observable for various other stable
structures of graphane. We depict in Figure 2 the distribution of lattice spacing for various
crystal structures of graphane. For the chair conformation, there exists only one distinctive
lattice spacing. For the boat conformer, there are two distinctive in-plane lattice spacings. The
twist-boat-chair conformation has a broad range of in-plane lattice spacings from 2.45 2.60
Å. The lowest lattice spacing of 2.45 Å is about 1% of lattice contraction as compared with
the value obtained for graphene (2.47 Å), which is about 5% contraction of the value for chair
(2.55 Å). This contraction can be correlated to short in-plane bond lengths which can be as
small as 0.89 Å (see Table 1).
The transformation among various graphane structures amounts to flipping hydrogens from
one side of the plane to another, along with the associated strain relaxation for the carbon
atoms attached. The transition states are characterized with distortions of the hexagonal
network with elongated carbon bonds in order to accommodate hydrogens that are in
the network plane during the flipping process. This implies that once the hydrogens are
absorbed onto graphene with fully saturation, it becomes difficult for the system to adopt
the ground-state chair conformation. As a result, the sequence of alternating hydrogens on
both sides of the plane is broken, introducing other type of membranes into the crystal
structure of graphane. Consequently, this leads to out of plane distortions that induce in-plane
shrinkage and results in a decrease of the in-plane lattice spacing in relation to that of the chair
conformation.
We believe that the experimentally observed broad distribution of lattice spacings can be
attributed, to a large extent, to the existence of membranes other than the chair form. In
this regard, locally stable twist-boat membrane, as exemplified in twist-boat-chair, is the
prototype of low energy configurations with paralleled aligned nearest-neighbor hydrogens.
Furthermore, as exemplified in the twist-boat-chair structure, the twist-boat conformer serves
as effective link to neighboring chair conformers.

3.4 Electronic band structures
The band gap of the twist-boat-chair structure, together with that of the chair and boat
conformations can be extracted from the corresponding band structures illustrated in Figure
3. The band structure for twist-boat-chair resembles an interpolation of those of chair and
boat ones, and the corresponding band gap of 3.8 eV is very close to those obtained for chair
and boat structures Boukhvalov et al. (2008); Sofo et al. (2007). In all the cases, the graphane
structures have direct gaps at the band center ( point).

3.5 Graphone
Recently, structures with one-sided hydrogenation that are reminiscent of hydrogenation on
epitaxial graphene Guisinger et al. (2009) or graphene on a substrate have attracted a great
deal of attention Elias et al. (2009). Of particular interest is the recent theoretical prediction
that semi-hydrogenated graphene (graphone) becomes a ferromagnetic semiconductor with a
small indirect gap. Zhou et al. (2009) The half-hydrogenation in the chair conformation breaks
the delocalized bonding network of graphene, leaving the electrons in the unhydrogenated
carbon atoms localized and unpaired. While the idea of a ferromagnetic semiconducting
graphone is extremely provocative, a careful examination of various graphone configurations
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Fig. 4. Calculated band gaps of nanoribbons of graphane with zigzag (top panel) and
armchair (bottom panel) edges, respectively. Insets: extracted charge density distribution at
the band center ( point) of the corresponding CBM and VBM states, respectively. Reprinted
with permission from Ref. Samarakoon & Wang (2009), Copyright © 2009 American
Chemistry Society.

is necessary. Our calculation of the chair, boat, and twist-boat-chair conformations of graphone
reveals that the ferromagnetic state with an indirect gap of 0.51 eV (see Figure 3B) is very
fragile. An implication is that spin-polarized valence band maximum states show long-range
correlations and thus depend on the size of the unit cell studied. On the other hand, the
ground state of boat and twist-boat-chair conformations is nonmagnetic (Figures 3D and
3F). Moreover, in contrast to graphane in that the chair configuration is the lowest energy
configuration, the energy for boat-graphone of -9.88 eV is lower than that of -9.42 eV for
chair-graphone.

3.6 Graphane nanoribbons
The reason for a band gap opening up in hydrogenated graphene can be attributed to the
changes from sp2 bonded C atoms to sp3 bonded ones Sofo et al. (2007). We have found that
all the fully saturated graphane structures have a wide gap, including graphane nanoribbons.
Shown in Figure 4 is the dependence of band gaps on the width of the graphane nanoribbon
with armchair and zigzag edges. The naming of the armchair and zigzag nanoribbons follows
the edge structure nomenclature, such that an armchair (zigzag) tube unfolds into a zigzag
(armchair) ribbon Baron et al. (2006); Son et al. (2006). The ribbons involved in the present
study were constructed based on chair conformations and were neutral bond saturated with
hydrogen passivation at edges.
As is readily observable in Figure 4, the gaps of the ribbon decrease with increasing width w
in an approximate 1/w fashion. The extracted charge density distribution of the conduction
band minimum (CBM) and valence band maximum (VBM), as seen from insets of Figure 4,
indicates predominantly confined electrons and holes in the proximity of ribbon center. The
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reveals that the ferromagnetic state with an indirect gap of 0.51 eV (see Figure 3B) is very
fragile. An implication is that spin-polarized valence band maximum states show long-range
correlations and thus depend on the size of the unit cell studied. On the other hand, the
ground state of boat and twist-boat-chair conformations is nonmagnetic (Figures 3D and
3F). Moreover, in contrast to graphane in that the chair configuration is the lowest energy
configuration, the energy for boat-graphone of -9.88 eV is lower than that of -9.42 eV for
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(armchair) ribbon Baron et al. (2006); Son et al. (2006). The ribbons involved in the present
study were constructed based on chair conformations and were neutral bond saturated with
hydrogen passivation at edges.
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in an approximate 1/w fashion. The extracted charge density distribution of the conduction
band minimum (CBM) and valence band maximum (VBM), as seen from insets of Figure 4,
indicates predominantly confined electrons and holes in the proximity of ribbon center. The
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Fig. 5. Charge density distributions of near gap conduction and valence states for armchair
(left panels) and zigzag (right panels) edged graphane nanoribbons, respectively. The sign of
the wave function is indicated by light blue and yellow regions, respectively. The isovalue is
0.025 au. Reprinted with permission from Ref. Samarakoon & Wang (2009), Copyright © 2009
American Chemistry Society.

calculated gaps are insensitive to the details of the ribbon edge geometry and termination, in
sharp contrast to sp2 bonded graphene nanoribbons (GNRs). The band gap of ultra-thin GNR
with armchair edges generally opens up due to the quantum confinement and the edge bond
relaxation. The oscillatory band gap for GNR with armchair edges can be explained by the
Fermi wavelength in the direction normal to the ribbon direction Baron et al. (2006); Son et al.
(2006). Similar to zigzag SWNTs, the band gaps of AGNRs are divided into three groups, with
the 3p + 2, 3p + 1, and 3p group (p is a positive integer) having a small, medium, and large
gap, respectively Baron et al. (2006); Son et al. (2006). It is worth noting that the oscillatory
behavior of sp2 bonded GNRs completely disappears for sp3 bonded graphane nanoribbons
Li et al. (2009). Furthermore, our calculations based on spin-polarized calculations confirmed
that the ground state of graphane nanoribbons with zigzag edges is not magnetic, in contrast
to the staggered antiferromagnetic state for zigzag GNRs Son et al. (2006).
The extracted density distribution of holes and electrons for graphane nanoribbons with
zigzag and armchair edges is illustrated in Figure 5. For conduction bands, the near gap
states exhibit s, p, d, ... characters, in conformity with predictions from one-dimensional
particle-in-a-box model Nduwimana et al. (2008). The s, p, d, ... features are also observable for
valence states, but for a pair of nearly degenerate (at the band center) valence bands. The close
resemblance of the charge distributions for zigzag and armchair edged graphane nanoribbons
indicates that edge effect becomes dormant for sp3 bonded ribbons. These results suggest
that by tailoring the effective ribbon width it is feasible to design semiconductor graphane
nanoribbons with a tunable band gap, which is advantageous over GNRs in that one can
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Fig. 6. Top panel: top and side views of (a) fully hydrogenated and (b) semi-hydrogenated
chair conformations of bilayer graphene. Bottom panels: top and side views of (c) fully
hydrogenated and (d) semi-hydrogenated boat structures of bilayer graphene. Carbon atoms
on top and on bottom layers are colored with gold and blue, respectively. Hydrogen atoms
are colored with white. Reprinted with permission from Ref. Samarakoon & Wang (2009),
Copyright © 2009 American Chemistry Society.

avoid the daunting task of identifying the edge structures. Accordingly, the control of proper
nanostructures may offer avenues for the design of highly effective nanodevices.

3.7 Patterned hydrogenation
The approach described in the present work can be employed to investigate hydrogenated
graphene systems, such as patterned graphene nanoroads Singh & Yakobson (2009) that
are composed of GNRs with fully saturated hydrogenation at the edges and well-defined
sharp interfaces between sp2 and sp3 bonded membranes. Of particular interest is the
interplay between sp2 and sp3 hybridizations that can be systematically investigated via
band alignment analysis. The band alignment for patterned graphene nanoroads is based
on the lineup of charge neutrality levels Nduwimana & Wang (2009) for sp2 and sp3

bonded components. Since sp3 hybridization leads to wide gap semiconducting behavior, the
electronic properties of patterned nanoroads are primarily determined by the sp2 components.
For instance, for graphene nanoroads with armchair edges, the band gaps are in accordance
with results of GNRs with the effective sp2 width and show oscillatory behavior Singh &
Yakobson (2009).

3.8 Bilayer graphane
While the opening and external tuning of energy gap between valence and conduction bands
in Bernal stacking bilayer graphene McCann (2006); Ohta et al. (2006) hold great potential
for logic applications, switching off the conduction to a desirable level remains challenging
in epitaxial graphene Neto et al. (2009). In this regard, it is of interest to investigate bilayer
hydrogenated graphene that is semiconducting from the onset. Figure 6 depicts the fully
and half hydrogenated chair and boat conformations. As can be seen from Figure 6, for the
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American Chemistry Society.
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Fermi wavelength in the direction normal to the ribbon direction Baron et al. (2006); Son et al.
(2006). Similar to zigzag SWNTs, the band gaps of AGNRs are divided into three groups, with
the 3p + 2, 3p + 1, and 3p group (p is a positive integer) having a small, medium, and large
gap, respectively Baron et al. (2006); Son et al. (2006). It is worth noting that the oscillatory
behavior of sp2 bonded GNRs completely disappears for sp3 bonded graphane nanoribbons
Li et al. (2009). Furthermore, our calculations based on spin-polarized calculations confirmed
that the ground state of graphane nanoribbons with zigzag edges is not magnetic, in contrast
to the staggered antiferromagnetic state for zigzag GNRs Son et al. (2006).
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states exhibit s, p, d, ... characters, in conformity with predictions from one-dimensional
particle-in-a-box model Nduwimana et al. (2008). The s, p, d, ... features are also observable for
valence states, but for a pair of nearly degenerate (at the band center) valence bands. The close
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indicates that edge effect becomes dormant for sp3 bonded ribbons. These results suggest
that by tailoring the effective ribbon width it is feasible to design semiconductor graphane
nanoribbons with a tunable band gap, which is advantageous over GNRs in that one can
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Fig. 6. Top panel: top and side views of (a) fully hydrogenated and (b) semi-hydrogenated
chair conformations of bilayer graphene. Bottom panels: top and side views of (c) fully
hydrogenated and (d) semi-hydrogenated boat structures of bilayer graphene. Carbon atoms
on top and on bottom layers are colored with gold and blue, respectively. Hydrogen atoms
are colored with white. Reprinted with permission from Ref. Samarakoon & Wang (2009),
Copyright © 2009 American Chemistry Society.

avoid the daunting task of identifying the edge structures. Accordingly, the control of proper
nanostructures may offer avenues for the design of highly effective nanodevices.

3.7 Patterned hydrogenation
The approach described in the present work can be employed to investigate hydrogenated
graphene systems, such as patterned graphene nanoroads Singh & Yakobson (2009) that
are composed of GNRs with fully saturated hydrogenation at the edges and well-defined
sharp interfaces between sp2 and sp3 bonded membranes. Of particular interest is the
interplay between sp2 and sp3 hybridizations that can be systematically investigated via
band alignment analysis. The band alignment for patterned graphene nanoroads is based
on the lineup of charge neutrality levels Nduwimana & Wang (2009) for sp2 and sp3

bonded components. Since sp3 hybridization leads to wide gap semiconducting behavior, the
electronic properties of patterned nanoroads are primarily determined by the sp2 components.
For instance, for graphene nanoroads with armchair edges, the band gaps are in accordance
with results of GNRs with the effective sp2 width and show oscillatory behavior Singh &
Yakobson (2009).

3.8 Bilayer graphane
While the opening and external tuning of energy gap between valence and conduction bands
in Bernal stacking bilayer graphene McCann (2006); Ohta et al. (2006) hold great potential
for logic applications, switching off the conduction to a desirable level remains challenging
in epitaxial graphene Neto et al. (2009). In this regard, it is of interest to investigate bilayer
hydrogenated graphene that is semiconducting from the onset. Figure 6 depicts the fully
and half hydrogenated chair and boat conformations. As can be seen from Figure 6, for the
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Structure EB (eV) Eg (eV) l (Å)
Fully-hydrogenated Chair -12.00 3.24 1.54
Fully-hydrogenated Boat -11.93 2.92 1.54
Semi-hydrogenated Chair -10.55 0.54 1.65
Semi-hydrogenated Boat I -10.79 2.35 1.63
Semi-hydrogenated Boat II -10.85 0.50 3.26

Table 2. Calculated binding energy per carbon atom EB, band gap Eg, and the inter-layer
bond length l for chair and boat conformations of fully hydrogenated and
semi-hydrogenated graphene, respectively. Label I and II refers to boat conformations with
and without interlayer bonding, respectively. Reprinted with permission from Ref.
Samarakoon & Wang (2010), Copyright © 2009 American Chemistry Society.

fully-hydrogenated structures a chemical bonding between the A B sites stabilizes both
chair and boat conformations. In the latter case, the chemical bonding induces a structural
transformation that deviates from the pattern of Bernal stacking.

3.9 Structural properties of bilayer graphane
The geometry details are listed in Table 2 along with the calculated binding energy and
band gap. Analogous to graphane from the one-layer fully-hydrogenated graphene, the
chair conformation Flores et al. (2009); Samarakoon & Wang (2009) is the lowest energy
conformation for fully hydrogenated bilayer, in agreement with previous first-principles
density-functional predictions Sofo et al. (2007). Furthermore, the corresponding chemical
bonding between the bilayer remains stable with the desorption of hydrogen in one layer,
resulting in a slight increase of the inter-layer bonding distance from 1.54 Å to 1.65 Å (Table
2). It is important to remark that while the inter-layer chemical bonding remains intact
after desorption of hydrogens in one layer, the lowest energy configuration for one-sided
hydrogenation is a boat conformation without the chemical bonding (Table 2). The crucial
difference between the hydrogen desorption in one layer and the one-sided hydrogenation
should be of particular interest in the forthcoming discussions.

3.10 Electronic properties of bilayer graphane under electric bias
There have been a number of theoretical studies on opening up a band gap in the gapless
bilayer graphene if an electric field is applied perpendicularly Avetisyan et al. (2009); Grüneis
et al. (2008); Liu & Shen (2009). The effect of the electric field can be studied by adding a
potential via the nuclear charges. Our calculations show that the bilayer graphene opens
a gap of 0.23 eV by an electric bias of 0.51 V/Å. This is in agreement with other
theoretical predictions and experimental observations Avetisyan et al. (2009); Zhang et al.
(2009). However, when the electric bias is further increased, the gap in the bilayer system
collapses, and the system turns back to metallic with induced interlayer bonding A B
reminiscent of the hydrogenated bilayer graphene. We show in Figure 7 the calculated band
structures for bilayer graphane for chair conformation. As is readily observable from Figure
7, the band gap decreases monotonically from about 3.24 to 0 eV with increase of electric bias.
The critical bias for the semiconducting to metallic transition is estimated to be 1.05 V/Å.
Shown in Figure 8 are the corresponding charge densities. In the absence of bias, the
charge density distributions are symmetrical both in conduction and valence bands. With the
application of an electric bias, charges transfer in the conduction and valence bands acts in
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Fig. 7. Calculated band structure of fully-hydrogenated graphene in chair conformation with
(a) no electric bias, (b) 0.39 V/Å electric bias, and (c) 1.03 V/Å electric bias, respectively. K
=( /3a, 2 /3a), M =(0, /2a), where a = 2.50 Å. The valence band maximum is set to 0 eV.
Reprinted with permission from Ref. Samarakoon & Wang (2010), Copyright © 2009
American Chemistry Society.

Fig. 8. Calculated dependence of band gap on perpendicular applied electric bias for the
bilayer graphane in chair conformation: (a) no bias, (b) 0.39 V/Å electric bias, and (c) 1.03
V/Å electric bias, respectively. Insets: extracted charge density distribution at the band
center ( point) of the corresponding conduction and valence band states. The isovalue is
0.025 au. Reprinted with permission from Ref. Samarakoon & Wang (2010), Copyright © 2009
American Chemistry Society.

a concerted fashion, resulting in charge accumulation and depletion in the conduction and
valence bands, respectively.

3.11 Bilayer graphone
It is worth noting that there is no explicit magnetic states in fully-hydrogenated bilayer
graphene. This indicates that the chemical bonds and the electric-field induced dipole-dipole
interaction do not lead to unpaired spins. The unpaired spins can be generated through
desorption of the hydrogen in one layer or through one-sided absorption. The latter
scenario is particulary interesting in that one can take advantage of the electric field that
generates chemical bonding prior to the hydrogenation. However, the chemical bonding is
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Samarakoon & Wang (2010), Copyright © 2009 American Chemistry Society.
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difference between the hydrogen desorption in one layer and the one-sided hydrogenation
should be of particular interest in the forthcoming discussions.

3.10 Electronic properties of bilayer graphane under electric bias
There have been a number of theoretical studies on opening up a band gap in the gapless
bilayer graphene if an electric field is applied perpendicularly Avetisyan et al. (2009); Grüneis
et al. (2008); Liu & Shen (2009). The effect of the electric field can be studied by adding a
potential via the nuclear charges. Our calculations show that the bilayer graphene opens
a gap of 0.23 eV by an electric bias of 0.51 V/Å. This is in agreement with other
theoretical predictions and experimental observations Avetisyan et al. (2009); Zhang et al.
(2009). However, when the electric bias is further increased, the gap in the bilayer system
collapses, and the system turns back to metallic with induced interlayer bonding A B
reminiscent of the hydrogenated bilayer graphene. We show in Figure 7 the calculated band
structures for bilayer graphane for chair conformation. As is readily observable from Figure
7, the band gap decreases monotonically from about 3.24 to 0 eV with increase of electric bias.
The critical bias for the semiconducting to metallic transition is estimated to be 1.05 V/Å.
Shown in Figure 8 are the corresponding charge densities. In the absence of bias, the
charge density distributions are symmetrical both in conduction and valence bands. With the
application of an electric bias, charges transfer in the conduction and valence bands acts in
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Fig. 7. Calculated band structure of fully-hydrogenated graphene in chair conformation with
(a) no electric bias, (b) 0.39 V/Å electric bias, and (c) 1.03 V/Å electric bias, respectively. K
=( /3a, 2 /3a), M =(0, /2a), where a = 2.50 Å. The valence band maximum is set to 0 eV.
Reprinted with permission from Ref. Samarakoon & Wang (2010), Copyright © 2009
American Chemistry Society.

Fig. 8. Calculated dependence of band gap on perpendicular applied electric bias for the
bilayer graphane in chair conformation: (a) no bias, (b) 0.39 V/Å electric bias, and (c) 1.03
V/Å electric bias, respectively. Insets: extracted charge density distribution at the band
center ( point) of the corresponding conduction and valence band states. The isovalue is
0.025 au. Reprinted with permission from Ref. Samarakoon & Wang (2010), Copyright © 2009
American Chemistry Society.

a concerted fashion, resulting in charge accumulation and depletion in the conduction and
valence bands, respectively.

3.11 Bilayer graphone
It is worth noting that there is no explicit magnetic states in fully-hydrogenated bilayer
graphene. This indicates that the chemical bonds and the electric-field induced dipole-dipole
interaction do not lead to unpaired spins. The unpaired spins can be generated through
desorption of the hydrogen in one layer or through one-sided absorption. The latter
scenario is particulary interesting in that one can take advantage of the electric field that
generates chemical bonding prior to the hydrogenation. However, the chemical bonding is
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Fig. 9. Calculated band structure for semi-hydrogenated bilayer graphene in chair
conformation with (a) -0.26 V/Å electric bias, (b) no electric bias, and (c) 0.39 V/Å electric
bias, respectively. The red and blue curves represent spin-up and down components,
respectively. Reprinted with permission from Ref. Samarakoon & Wang (2010), Copyright
© 2009 American Chemistry Society.

simultaneously breaking when the electric bias is switched off. We have carefully studied
both scenarios. The desorption of the fully-hydrogenated chair conformation can be readily
confirmed. However, the one-sided hydrogenation is much more involved due to the crucial
dependence of the hydrogenation patterns, which favors a boat conformation at large
hydrogen coverage that is non-magnetic.
Hydrogenation of graphene is reversible, providing the flexibility to manipulate its coverage
Elias et al. (2009). The desorption of the hydrogen atoms from one side of graphane will
result in a semi-hydrogenated bilayer graphene which is the counterpart of the monolayer
“graphone” Zhou et al. (2009). Graphone is a ferromagnetic semiconductor with a small
indirect gap attributed to the breaking of the delocalized -bonding network of graphene
delocalization, which is associated with localized and unpaired electrons Boukhvalov et al.
(2008); Zhou et al. (2009). Shown in Figure 9 are the calculated band structures for one side
hydrogenated bilayer graphene under electric bias. For semi-hydrogenated bilayer graphene
there is an indirect band gap about 0.54 eV (Figure 9b). This changes to metallic for biased
voltages bellow -0.26 V/Å (Figure 9a) or above 0.39 V/Å (Figure 9c).
Our results show that the bilayer counterpart of graphone is ferromagnetic. Partial
saturation of carbon atoms in hydrogenated graphene breaks its -bonding network resulting
in localized and unpaired electrons Zhou et al. (2009). The magnetic moments couple
ferromagnetically with the semi-hydrogenated chair conformation. Electronic structure
changes by partial hydrogenation as well. The semi-hydrogenated graphene of chair
conformation is an indirect band gap semiconductor with a small band gap, very different
from the original graphene and graphane. We illustrate in Figure 10 the dependence of
the spin-polarized bands of semi-hydrogenated bilayer graphene with the positive and
negative bias. The energy gap decreases monotonically with the electric field by characterizing
the properties from magnetic semiconductor with a small gap, to a metal with a zero
gap. In contrast to fully-hydrogenated bilayer graphene, the changes in the gap are no
longer symmetrical with the negative and positive bias. Apart from the partial shifts of
the spin density to the bottom layer, closer scrutiny reveals a paucity of modifications of
the spin-density distribution, when the applied electric field goes from negative to positive
bias. In connection to the spin density shift, the band dispersion changes from nearly flat to
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Fig. 10. Calculated band gaps of semi-hydrogenated bilayer graphene in chair structure with
(a) -0.26 V/Å electric bias, (b) no bias, and (c) 0.39 V/Å electric bias, respectively. Insets:
extracted spin density distribution at the band center ( point) of the corresponding
conduction and valence states. The isovalue is 0.025 au. Reprinted with permission from Ref.
Samarakoon & Wang (2010), Copyright © 2009 American Chemistry Society.

pronounced dispersion near the band edge at K, which leads to the change of the indirect
gaps.

4. Conclusion

4.1 Chair, boat, and twist-boat membranes in graphane
We have studied various stable crystal structures of graphane and demonstrated that locally
stable twist-boat membranes significantly contribute to the experimentally observed lattice
contraction. The first-principles results shed considerable light on the electronic characteristics
associated with the sp3 hybridization. Moreover, the first-principles approach can be
employed to structural and electronic properties of hydrogenated graphene derivatives. The
understanding of structural and electronic stability thus provides a useful means for future
development of graphane-based nanodevices.

4.2 Bilayer graphane under electric bias
We have studied the electronic characteristics of biased bilayer graphane. The resultant
hydrocarbon compound, bilayer graphane, can be modified into new materials, fine-tuning its
electronic properties. These studies have revealed increasingly fertile possibilities in hydrogen
storage and two-dimensional electronics. These novel semiconducting behaviors result from a
peculiar, effective transformation of sp2 to sp3 carbon and allow a continuously tunable band
gap in biased bilayer graphane. A bilayer version can deliver yet another interesting feature
of tunable band gap. This discovery paves the way for new electronic devices, from lasers that
change color to electronic circuits that can rearrange themselves. The tunable band gap, which
generally determines transport and optical properties, will enable flexibility and optimization
of graphene-based nanodevices. Moreover, our proposed desorption of hydrogen from one
layer, coupled with controlled hydrogen-vacancy distribution and patterned hydrogenation,
could provide a promising route to realize a ferromagnetic semiconductor in view of the
crucial structural difference between monolayer graphone and the bilayer semi-hydrogenated
graphene.
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result in a semi-hydrogenated bilayer graphene which is the counterpart of the monolayer
“graphone” Zhou et al. (2009). Graphone is a ferromagnetic semiconductor with a small
indirect gap attributed to the breaking of the delocalized -bonding network of graphene
delocalization, which is associated with localized and unpaired electrons Boukhvalov et al.
(2008); Zhou et al. (2009). Shown in Figure 9 are the calculated band structures for one side
hydrogenated bilayer graphene under electric bias. For semi-hydrogenated bilayer graphene
there is an indirect band gap about 0.54 eV (Figure 9b). This changes to metallic for biased
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extracted spin density distribution at the band center ( point) of the corresponding
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pronounced dispersion near the band edge at K, which leads to the change of the indirect
gaps.

4. Conclusion

4.1 Chair, boat, and twist-boat membranes in graphane
We have studied various stable crystal structures of graphane and demonstrated that locally
stable twist-boat membranes significantly contribute to the experimentally observed lattice
contraction. The first-principles results shed considerable light on the electronic characteristics
associated with the sp3 hybridization. Moreover, the first-principles approach can be
employed to structural and electronic properties of hydrogenated graphene derivatives. The
understanding of structural and electronic stability thus provides a useful means for future
development of graphane-based nanodevices.

4.2 Bilayer graphane under electric bias
We have studied the electronic characteristics of biased bilayer graphane. The resultant
hydrocarbon compound, bilayer graphane, can be modified into new materials, fine-tuning its
electronic properties. These studies have revealed increasingly fertile possibilities in hydrogen
storage and two-dimensional electronics. These novel semiconducting behaviors result from a
peculiar, effective transformation of sp2 to sp3 carbon and allow a continuously tunable band
gap in biased bilayer graphane. A bilayer version can deliver yet another interesting feature
of tunable band gap. This discovery paves the way for new electronic devices, from lasers that
change color to electronic circuits that can rearrange themselves. The tunable band gap, which
generally determines transport and optical properties, will enable flexibility and optimization
of graphene-based nanodevices. Moreover, our proposed desorption of hydrogen from one
layer, coupled with controlled hydrogen-vacancy distribution and patterned hydrogenation,
could provide a promising route to realize a ferromagnetic semiconductor in view of the
crucial structural difference between monolayer graphone and the bilayer semi-hydrogenated
graphene.
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1. Introduction

Graphene is a single layer of graphite with a hexagonal structure, or an individual sheet of
sp2-hybridized carbon bound in two dimensions. It was experimentally fabricated for the first
time through mechanical exfoliation of small mesas from highly oriented pyrolytic graphite
(HOPG) in 2004 and subsequently was found with excellent electrical properties (Novoselov
et al., 2004). This discovery has triggered enormous amount of interest on graphene both
in fundamental and applied research. Graphene has shown promising applications as
ultra-sensitive gas sensors, transparent electrodes in liquid crystal display devices, and large
capacity electrodes in Li batteries (Rao et al., 2009).
Various methods have been reported for the synthesis of single-layer graphene: (1) Mechanical
exfoliation from HOPG (Novoselov et al., 2004; Zhang et al., 2005), which is deposited on to
a silicon substrate. This method is low cost, but the graphene produced is of poor quality
with the limited area. It is particularly difficult and time-consuming to synthesize single-layer
graphene in large scale with this method (Yuan et al., 2009). (2) Chemical exfoliation from
bulk graphite (Li et al., 2008a;b). In this case, oxidized graphite (by using strong acids) was
cleaved via rapid thermal expansion or ultrasonic dispersion, and subsequently the graphene
oxide sheets were reduced to graphene. A serious drawback of this method is that the
oxidation process induces a variety of defects which would degrade the electronic properties
of graphene. (3) Epitaxial growth on an insulator surface (such as SiC) (Zhou et al., 2007).
The graphene obtained showed poor uniformity and contained a multitude of domains. (4)
Chemical vapour deposition (CVD) on the surfaces of metals (e.g., Ni) (Reina et al., 2009).
Recently, N substitutionally doped graphene was first synthesized by a CVD method with the
presence of CH4 and NH3 (Wei et al., 2009). As doping accompanies with the recombination of
carbon atoms into graphene in the CVD process, dopant atoms can be substitutionally doped
into the graphene lattice, which is hard to realize by other synthetic methods.
Several unique electronic properties associated with these 2D crystals have been discovered
(Beenakker, 2008). In addition, it is known that carbon nanotubes have good sensor properties
(Geim & Novoselov, 2007). Recently, graphenes as highly sensitive gas sensors were also
reported (Ao et al., 2008; Bunch et al., 2005; Yang et al., 2010). It was shown that the increase in
graphene charge carrier concentration induced by adsorbed gas molecules could be utilized
to make highly sensitive sensors, even with the possibility of detecting individual molecules.
The sensing property is based on the changes in the resistivity due to molecules adsorbed on
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graphene sheet that act as donors or acceptors. The sensitivity of NH3, CO, and H2O up to
1 ppb (parts per 109) was demonstrated, and even the ultimate sensitivity of an individual
molecule was suggested for NO2. Furthermore, the preliminary works (Ao et al., 2009a)
indicated that graphene have promising physisorption properties for hydrogen.
With state-of-art computer simulations, it is believed that the properties of condensed matters
can be understood at the atomic level. In the simulation, the simulator builds a model of a real
system and explores its properties. In many ways, simulation studies share the same mentality
as experimental ones. However, simulations allow absolute control over the experimental
parameters and access to the outcomes in details. These strengths have been exploited for the
last fifty years since the introduction of computation algorithms that allows one to calculate
the properties of materials based on the first-principles in light of fundamental physics
outlined in Schrödinger equation without free parameters. In this chapter, the applications
of Al modified graphene as gas sensor and hydrogen storage materials are developed and
optimized with density functional theories (DFT).

2. Application for ultra-sensitive carbon oxide detection

2.1 Emerging ultra-high sensitive CO detection
It was reported that the detectable range and sensitivity of the single wall carbon nanotubes
(SWCNTs) can be widened and enhanced substantially through either doping technology
or surface engineering (Kong et al., 2001; Peng & Cho, 2003; Wei et al., 2004). For example,
SWCNT coated with Pb nanoparticles has high sensitivity to H2 (Kong et al., 2001),
SnO2/SWCNTs hybrid material shows an enhanced sensitivity to NO2 (Wei et al., 2004).
The high sensitivity of boron doped SWCNT to CO and H2O absorptions has been also
demonstrated (Peng & Cho, 2003). Most recently, Al-cluster and Al doped SWCNT assembly
were suggested to be promising systems for novel molecular sensors to NH3 (Zhao et al.,
2005) and CO (Wang et al., 2007), and the B doped SWCNTs are highly sensitive to the gaseous
cyanide and formaldehyde molecules (Zhang et al., 2006). However, the devices with higher
sensitivity to these toxic gases are apparently required for environmental safety issues both in
workplaces and residential areas, especially in some industrial and military fields.
Graphene based device may be a solution for ultra-high sensitivity gas sensor (Leenaerts
et al., 2008; Schedin et al., 2007; Wehling et al., 2008). Similar to CNT, the working principle
of graphene devices as gas sensors is based on the changes of their electrical conductivity
induced by surface adsorbates, which act as either donors or acceptors associated with their
chemical natures and preferential adsorption sites (Collins et al., 2000; Kong et al., 2000;
Moseley, 1997). Graphene is considered to be an excellent sensor material and the sensitivity
of Al doped graphene system to CO gas detection is investigated using DFT calculations.

2.2 Rationale for choosing Al as candidate dopant: a quantum field theoretical perspective
Since graphene is a stable 2D structure, gas molecules tend to be adsorbed onto pristine
graphene weakly through physisorption. This has brought a large disadvantage for using
pristine graphene to adsorb toxic gases such as CO. By introducing substituent impurities
into graphene through chemical doping, the local electronic structures around the dopants
could be modified. Typically, as confirmed by the first principle studies in the next section,
incorporating Al into graphene will cause a distortion to the electron density distribution
around the dopant. In this case, C-atoms surrounding the Al dopant will attract electrons due
to their high electron affinity, whereas on the Al dopant, a decrease in electron density can be
observed. The charge redistribution makes the Al to be an active site for CO adsorption. This
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Fig. 1. The honecomb graphene lattice with a substituting atom replacing a carbon atom. The
substituent changes the local hopping parameter from t to t t0. The honeycomb lattice is
can be considered as made up with two sublattices with atomic types A and B. In this case,
an A-type atom has been substituted with an impurity atom.

charge re-distribution effect can be confirmed with advanced field theoretical methods (Peres
et al., 2006; 2007; 2009).
Here, the electronic properties caused by a single dopant in graphene layer can also be studied
with the field theory.
Under the tight-binding model, the graphene honeycomb lattice can be considered as being
constructed from unit cells consisting two types of atoms A and B (Fig. 1). The unit cell vectors
in Cartesian coordinates are a1 = a0

2 (3, 3) and a2 = a0
2 (3, 3), with a0 to be the unit cell

parameter. n (n = 1, 2, 3) are vectors connecting a given atom to its three direct neighbours.
Introducing a phase factor (k) = 3

i=1 eik i , the tight-binding Hamiltonian for graphene, with
a single impurity substituting an A-type atom, can be expressed as

ˆ = t
k,

(k)â†
k, b̂k, + h.c. +

t0

Nc k,k ,
(k )â†

k, b̂k , + h.c. +
k

0

Nc
â†

k, âk, , (1)

in the reciprocal space. In the above Hamiltonian,â†
k, (b̂†

k, ) and âk, (b̂k, ) creates and destroys
an electron with wavevector k and spin on A(B) lattice site, respectively. Nc is the number
of atoms in a unit cell. The spin degree of freedom is summed over spin index . The
hopping parameter between two neighboring C atoms is t, where upon dopant substitution,
the hopping parameters between the dopant and its neighboring C atoms are changed to
t t0. The dopant atom also introduces a local potential 0. By changing the impurity hopping
parameters and local potential, different impurity types can be modeled, which will become
apparent later.
Our aim is to calculate the electronic density of states (DOS) on the impurity and its nearest
neighboring sites. This requires the knowledge of the system’s Green’s function. Under the
Matsubara formalism, it reads

G ( n, k, p) = Gaa( n, k, p) Gab( n, k, p)
Gba( n, k, p) Gbb( n, k, p) , (2)
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in which the matrix elements G ( n, k, p) are defined as the Fourier transforms of
G (k, p, ) = T ˆ †

k ( ) ˆ p(0) with a, = a, b. k and p denotes the electronic wavevectors
is the complex time variable and n are the fermionic Matsubara frequencies.

The system Green’s function (Eq. 2) can be solved from the equations-of-motion derived
based on Hamiltonian (Eq. 1). The rationale behind the solution procedure is to seek for the
relationship behind G ( n, k, p) and G0( n, k). the Matsubara Green’s function for pristine
graphene, where the later can be expressed analytically as (Peres et al., 2006):

G0( n, k) = G0
aa( n, k) G0

ab( n, k)
G0

ba( n, k) G0
bb( n, k)

=
j= 1

1/2
i n j (k)

1 jei (k)

je i (k) 1
, (3)

with ei (k) = (k)/ (k) .
Since we are interested in the electronic DOS on the impurity (A) site and its
nearest-neighboring (B) sites, therefore, it would be sufficient to solve for Gaa( n, k, p) and
Gbb( n, k, p) in Eq. 2. The electronic DOS can then be found from the imaginary parts of
the retarded Green’s functions Gr

aa( , k, p) and Gr
bb( , k, p) through analytical continuation of

the Matsubara Green’s functions. The presence of both diagonal and nondiagonal disorders
means that the solutions will be of a more complex form than the usual T-matrix for a single
Anderson impurity scattering problem, and the results are

Gaa( n, k, p) = k,pG0
aa( n, k) + g( n) + h( n) G0

aa( n, k) + G0
aa( , p)

+ Gaa( n, k)T( n)G0
aa( n, p), (4)

Gbb( n, k, p) = k,pG0
bb( n, k) +

t2 (k) (p)
(i )2 G0

bb( n, k)T( n)G0
bb( n, p), (5)

where
g( n) = t2

0Ḡ0
aa( n)/[NcD( n)], (6)

h( n) = t0(t t0)/[NcD( 0)], (7)

and
T( n) = [i nt0(2t t0) 0t2]/[NcD( n)], (8)

with
D( n) = (t t0)2 + i nt0(t t0) 0t2 Ḡ0

aa( n), (9)

and
Ḡ0

aa( n) =
1

Nc k
G0

aa( n, k). (10)

The important term is the g( n whose double Fourier transform gives Gaa( n, 0, 0) which is
the return (back-scattering) amplitude of the electron wave to the impurity site. Its magnitude,
which depends on D( n) , depicts the electronic DOS on the impurity sites.
In the case of Al doping, where the dopant has a larger atomic radius than carbon, we can let
t0 = t, with 0 0, as a limiting case. This gives,

g1( n) =
Ḡ0( n)

(4 4i nḠ0( n)) + (i n 0Ḡ0( n))
. (11)
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Fig. 2. Local density of states (LDOS) on the impurity atom at A site and surrounding carbon
atoms at B sites for the case where t0 = 1, t = 1, mimicking the situation of Al doping in
graphene. (Reproduced with permission from Ref. (Peres et al., 2009). Copyright 2009, APS)

On the other hand, for a dopant with smaller ionic radius, we would have 0 0 and t0 = t.
The most interesting case is for a physisorbed species on graphene layer, in which t0 = t ,
indicating that the molecule would have no interaction with the graphene layer. Under such
a condition, the Matsubrara Green’s function for a free particle can be reclaimed as,

g2( n) =
1

i n 0
. (12)

Fig. 2 shows the resulting electronic DOS on the impurity site and its neighboring carbon
atoms with t0 = t . In this case, the 0 is chosen to be zero, whereas a nonzero 0 will simply
modify the DOS diagram by destroying the particle-hole symmetry. It is hence evident from
Fig. 2 that effect of an Al–like dopant is to deplete electrons from the impurity and causing
electron accumulation in the surrounding atoms ( A B).

2.3 CO adsorption effects on atomic configuration, electronic energy and bond lengthes of
Al doped graphene

Above analysis established a solid theoretical framework for further investigation of the
Al doped graphene for application of CO sensor with DFT calculations. In this work, all
DFT calculations were performed in Dmol3 code (Delley, 1990). It is widely known that
calculations limited at the local density approximation (LDA) overestimate bond energy
Eb and underestimate equilibrium distances (Jeloaica & Sidis, 1999; Lugo-Solis & Vasiliev,
2007). Thus, a GGA with the RPBE method is used as the exchange correlation function
(Hammer et al., 1999). The DFT semicore pseudopotential (DSPP) core treatment (Delley, 2002)
was implemented for relativistic effects, which replaces core electrons by a single effective
potential. To ensure that the results of the calculations were comparable, identical conditions
had been employed for the isolated CO molecule, the original Al doped graphene and also
the adsorbed graphene system. The k-point was set to 6 6 2 for all slabs, which brought
out the convergence tolerance of energy of 1.0 10 5 hartree (1 hartree = 27.21 eV), and that
of maximum force of 0.002 hartree.
In the simulation, three-dimensional periodic boundary condition had been adopted and C-O
bond length was set to lC O = 1.13Å, which is consistent with experimental results (Lide,
2000). For the graphene, a single layer 2 2 supercell with a vacuum width of 12 Å above had
been constructed, which ensured that the interaction between repeated slabs in a direction
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t0 = t, with 0 0, as a limiting case. This gives,
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Ḡ0( n)
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modify the DOS diagram by destroying the particle-hole symmetry. It is hence evident from
Fig. 2 that effect of an Al–like dopant is to deplete electrons from the impurity and causing
electron accumulation in the surrounding atoms ( A B).

2.3 CO adsorption effects on atomic configuration, electronic energy and bond lengthes of
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Above analysis established a solid theoretical framework for further investigation of the
Al doped graphene for application of CO sensor with DFT calculations. In this work, all
DFT calculations were performed in Dmol3 code (Delley, 1990). It is widely known that
calculations limited at the local density approximation (LDA) overestimate bond energy
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2007). Thus, a GGA with the RPBE method is used as the exchange correlation function
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was implemented for relativistic effects, which replaces core electrons by a single effective
potential. To ensure that the results of the calculations were comparable, identical conditions
had been employed for the isolated CO molecule, the original Al doped graphene and also
the adsorbed graphene system. The k-point was set to 6 6 2 for all slabs, which brought
out the convergence tolerance of energy of 1.0 10 5 hartree (1 hartree = 27.21 eV), and that
of maximum force of 0.002 hartree.
In the simulation, three-dimensional periodic boundary condition had been adopted and C-O
bond length was set to lC O = 1.13Å, which is consistent with experimental results (Lide,
2000). For the graphene, a single layer 2 2 supercell with a vacuum width of 12 Å above had
been constructed, which ensured that the interaction between repeated slabs in a direction
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normal to the surface was small enough. All atoms were allowed to relax for all energy
calculations. The adsorption energy Eb between the CO gas molecule and graphene is defined
as,

Eb = ECO+graphene (Egraphene + ECO), (13)

where the subscripts CO+graphene, graphene, and CO denote the adsorbed system, isolated
graphene and CO molecules, respectively.

Fig. 3. Twelve available binding sites for CO adsorbed on intrinsic graphene (top and below
images show the top and side view, respectively). (a) T-B-T, (b) T-H-T, (c) H-T-H, (d) H-B-H,
(e) B(C atom)-T-H, (f) B(O atom)-T-H, (g) T-(O atom upward), (h) B (O atom upward), (i) H
(O atom upward), (j) T (C atom upward), (k) B (C atom upward), (l) H (C atom upward). T, B
and H denote top site of C atoms, bridge site of C-C bond and hollow site of carbon hexagon,
respectively. Gray, pink and red spheres are denoted as C, Al and O atoms, respectively.
(Reproduced with permission from Ref. (Ao et al., 2008). Copyright 2008, Elsevier)

To search for the most stable structure between a CO molecule and the intrinsic graphene, Eb
described in Eq. 13 and the binding distance, d, for all possible configurations were calculated.
Twelve possible binding sites for the CO adsorbed on graphene layer were considered as
initial structures as shown in Fig. 3(a)-(l). After full structural relaxation, no distinctive
structural change has been found. All of the results are displayed in Table 1. It is found
that adsorption configuration shown in Fig. 3(f) has the smallest d value and the largest Eb
value among all the possible configurations. This indicates that the configuration shown in
Fig. 3(f) is the most stable atomic arrangement with the strongest interaction between CO and
graphene with Eb = 0.016 eV and d = 3.768 Å, which are consistent with the other simulation
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results of Eb = 0.014 eV and d = 3.740 Å (Leenaerts et al., 2008). However, in this particular
adsorption configuration, the Eb value is still considered to be too small and d too large,
even though they are the most favorable one for adsorption, reflecting that CO undergoes
weak physisorption on the intrinsic graphene. This indicates that the intrinsic graphene is
insensitive to CO molecules.

Intrinsic graphene Al doped graphene

Initial binding configurations Eb(eV) d(Å) Eb(eV) l(Å)

CO graphene T-B-T -0.011 3.839 -4.978 1.964
T-H-T -0.012 3.805 -4.973 1.968
H-T-H -0.014 3.826 -4.613 3.755
H-B-H -0.009 3.857 -4.599 3.814

B(C atom)-T-H -0.011 3.855 -4.609 3.800
B(O atom)-T-H -0.016 3.768 -4.616 3.821

CO graphene T(O upwards) -0.007 3.938 -4.979 1.961
B(O upwards) -0.007 3.935 -4.978 1.964
H(O upwards) -0.003 3.982 -4.975 1.965
T(C upwards) -0.004 3.952 -4.629 3.781
B(C upwards) -0.003 3.981 -4.607 3.783
H(C upwards) -0.005 3.942 -4.609 3.457

Table 1. Summary of results for CO adsorption on intrinsic graphene and Al doped graphene
on different adsorption sites. The meaning of T, B and H are given in the caption of Fig. 3. In
the table headings, d represents the distance between CO gas molecule and graphene layer, l
represents the bond length of Al and C atom in CO gas molecule.

Upon substituting one carbon atoms by Al, the geometric structure of the doped graphene
changes dramatically, as shown in Fig. 4. Figs. 4(a) and 4(b) represent the geometries of
intrinsic and Al doped graphene after relaxation. As shown in Table 2 and Fig. 4(b), the Al
doping results in l elongation from lC C = 1.420 Å to lAl C=1.632 Å. This is associated with the
distortion of hexagonal structures adjacent to the larger Al atom, similar to the restructuring
in Al doped SWCNTs (Wang et al., 2007).
When a CO molecule is adsorbed on the Al-substituted graphene, there also exists twelve
possible adsorption sites similar to the CO absorption on intrinsic graphene shown in Fig. 3.
These are taken as initial configurations. After relaxation, the configuration in Fig. 3(d) has the
most stable relaxed structure. The adsorption of CO causes a structure change in the Al doped
graphene dramatically, resulting in an expansion of lAl1 C2 from 1.632 to 1.870 Å while lAl1 C4
elongates from 1.632 to 1.915 Å. The corresponding distance between the CO molecule and Al
atom in the Al doped graphene is 1.964 Å, being much shorter than 3.767 Å in the intrinsic
graphene system. Moreover, the Eb of CO in the Al doped graphene system is 4.979 eV, which
is over 60 times larger than that of CO in the intrinsic graphene system. Comparing with the
Eb in other systems, such as Eb = 1.280 eV for CO adsorbed in the Al doped SWCNT systems
(Wang et al., 2007), Eb = 0.986 eV in the B doped SWCNT systems (Wang et al., 2007) and Eb
= 0.201 eV for CO adsorbed in B doped graphene etc, the Al doped graphene is energetically
more favorable for CO adsorption. In other words, the Al doped graphene is much more
sensitive to the CO adsorption among the aforementioned systems.

139Applications of Al Modified Graphene on Gas Sensors and Hydrogen Storage



normal to the surface was small enough. All atoms were allowed to relax for all energy
calculations. The adsorption energy Eb between the CO gas molecule and graphene is defined
as,

Eb = ECO+graphene (Egraphene + ECO), (13)

where the subscripts CO+graphene, graphene, and CO denote the adsorbed system, isolated
graphene and CO molecules, respectively.

Fig. 3. Twelve available binding sites for CO adsorbed on intrinsic graphene (top and below
images show the top and side view, respectively). (a) T-B-T, (b) T-H-T, (c) H-T-H, (d) H-B-H,
(e) B(C atom)-T-H, (f) B(O atom)-T-H, (g) T-(O atom upward), (h) B (O atom upward), (i) H
(O atom upward), (j) T (C atom upward), (k) B (C atom upward), (l) H (C atom upward). T, B
and H denote top site of C atoms, bridge site of C-C bond and hollow site of carbon hexagon,
respectively. Gray, pink and red spheres are denoted as C, Al and O atoms, respectively.
(Reproduced with permission from Ref. (Ao et al., 2008). Copyright 2008, Elsevier)

To search for the most stable structure between a CO molecule and the intrinsic graphene, Eb
described in Eq. 13 and the binding distance, d, for all possible configurations were calculated.
Twelve possible binding sites for the CO adsorbed on graphene layer were considered as
initial structures as shown in Fig. 3(a)-(l). After full structural relaxation, no distinctive
structural change has been found. All of the results are displayed in Table 1. It is found
that adsorption configuration shown in Fig. 3(f) has the smallest d value and the largest Eb
value among all the possible configurations. This indicates that the configuration shown in
Fig. 3(f) is the most stable atomic arrangement with the strongest interaction between CO and
graphene with Eb = 0.016 eV and d = 3.768 Å, which are consistent with the other simulation

138 Physics and Applications of Graphene - Theory

results of Eb = 0.014 eV and d = 3.740 Å (Leenaerts et al., 2008). However, in this particular
adsorption configuration, the Eb value is still considered to be too small and d too large,
even though they are the most favorable one for adsorption, reflecting that CO undergoes
weak physisorption on the intrinsic graphene. This indicates that the intrinsic graphene is
insensitive to CO molecules.

Intrinsic graphene Al doped graphene

Initial binding configurations Eb(eV) d(Å) Eb(eV) l(Å)

CO graphene T-B-T -0.011 3.839 -4.978 1.964
T-H-T -0.012 3.805 -4.973 1.968
H-T-H -0.014 3.826 -4.613 3.755
H-B-H -0.009 3.857 -4.599 3.814

B(C atom)-T-H -0.011 3.855 -4.609 3.800
B(O atom)-T-H -0.016 3.768 -4.616 3.821

CO graphene T(O upwards) -0.007 3.938 -4.979 1.961
B(O upwards) -0.007 3.935 -4.978 1.964
H(O upwards) -0.003 3.982 -4.975 1.965
T(C upwards) -0.004 3.952 -4.629 3.781
B(C upwards) -0.003 3.981 -4.607 3.783
H(C upwards) -0.005 3.942 -4.609 3.457

Table 1. Summary of results for CO adsorption on intrinsic graphene and Al doped graphene
on different adsorption sites. The meaning of T, B and H are given in the caption of Fig. 3. In
the table headings, d represents the distance between CO gas molecule and graphene layer, l
represents the bond length of Al and C atom in CO gas molecule.

Upon substituting one carbon atoms by Al, the geometric structure of the doped graphene
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more favorable for CO adsorption. In other words, the Al doped graphene is much more
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Fig. 4. Atomic configurations of intrinsic graphene and Al doped graphene before and after
adsorption of CO gas molecule where one Al atom dopes in site 1, and sites 2, 3 and 4 are C
atoms near the doped Al atom. (a) and (b) are the relaxed configurations of intrinsic graphene
and Al doped graphene without adsorption. (c) and (d) are the preferred configurations after
CO adsorption for intrinsic graphene and Al doped graphene, respectively. (Reproduced
with permission from Ref. (Ao et al., 2008). Copyright 2008, Elsevier)

Fig. 5. Images of the electronic density difference for intrinsic graphene (a), Al doped
graphene (b), CO-graphene system with preferred configuration (c) and CO-Al doped
graphene system with preferred configuration (d). The red region shows the electron
accumulation, while the blue region shows the electron loss. (Reproduced with permission
from Ref. (Ao et al., 2008). Copyright 2008, Elsevier)

Furthermore, in order to investigate the changes of electronic structures in graphenes caused
by the physi- or chemisorption of CO molecule, the net electron transfer (Q) from either the
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System Configuration Bond Bond length l (Å) Q (e)

Intrinsic graphene Fig. 4(a) C1-C2 1.420
C1-C3 1.420
C1-C4 1.420

Fig. 4(c) C1-C2 1.420 0.003
C1-C3 1.421
C1-C4 1.421

Al doped graphene Fig. 4(b) Al1-C2 1.632
Al1-C3 1.632
Al1-C4 1.632

Fig. 4(d) Al1-C2 1.870 0.027
Al1-C3 1.910
Al1-C4 1.915

Table 2. Some structure parameters of intrinsic graphene and Al doped graphene before and
after adsorption of CO molecule. Q denotes electrons transferred from the graphene layer to
CO molecule, measured in the electronic charge e.

intrinsic or the Al doped graphene to the polar CO molecules had been calculated by Mulliken
analysis, where Q is defined as the charge variation caused by the CO absorption. As listed
in Table 2, Q = 0.027 e in the Al doped graphene is almost an order of magnitude larger
than 0.003 e in the intrinsic graphene. This supports the notion that the Al doping influences
the electronic properties of graphene substantially. This can also be verified by the difference
of electronic densities between the intrinsic and Al doped graphenes with and without the
CO adsorption as shown in Fig. 5. In the figure, the red and blue regions represent the areas
of electron accumulation and the electron loss, respectively. Fig. 5(a) indicates the bond in the
intrinsic graphene is of covalent nature because the preferential electron accumulation sites are
mainly located within the bond rather than heavily centered on a particular atom. However,
the electron density distribution along the covalent Al-C bonds has been significantly altered
due to the difference in electron affinity of Al and C atom [Fig. 5(b)]. Physisorption of
CO on the intrinsic graphene does not alter the electron distribution for both CO molecule
and graphene, implying the weak bonding characteristics. It is discernable that electronic
polarization is induced by the preferential accumulation of electrons on O in CO molecules
[Fig. 5(c)]. As distinct from the CO absorption on the intrinsic graphene, the chemisorption
of CO on Al doped graphene leads to significant electron transfer from the graphene to CO
molecule [Fig. 5(d)]. In this case, the electrons not only accumulate on the O atom but also
on the C atom of the molecule bond with the doped Al atom. The final position of Al atom
in the chemisorbed CO-Al-graphene complex is thus a direct consequence of the maximized
degree of sp3 orbital hybridization with neighboring C atoms from both the graphene layer
and CO molecule. This is evidential because the red lobes around C atoms in Fig. 5(d) are both
pointing towards Al atom.
To further determine the effects of CO absorption on electrical conductivity, DOS for the both
systems with and without the absorption were calculated. As shown in Figs. 6(a) and (b), the
Al doping in graphene enhances its electrical conductivity by shifting the highest DOS peak to
just below the Fermi level E f , which also leads to the reduction of band gap Eg. This indicates
that the doped Al atom induces shallow acceptor states in graphene like B atom in SWCNs,
thus enhancing its extrinsic conductivity (Peng & Cho, 2003). When the CO molecule adsorbed
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intrinsic graphene is of covalent nature because the preferential electron accumulation sites are
mainly located within the bond rather than heavily centered on a particular atom. However,
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molecule [Fig. 5(d)]. In this case, the electrons not only accumulate on the O atom but also
on the C atom of the molecule bond with the doped Al atom. The final position of Al atom
in the chemisorbed CO-Al-graphene complex is thus a direct consequence of the maximized
degree of sp3 orbital hybridization with neighboring C atoms from both the graphene layer
and CO molecule. This is evidential because the red lobes around C atoms in Fig. 5(d) are both
pointing towards Al atom.
To further determine the effects of CO absorption on electrical conductivity, DOS for the both
systems with and without the absorption were calculated. As shown in Figs. 6(a) and (b), the
Al doping in graphene enhances its electrical conductivity by shifting the highest DOS peak to
just below the Fermi level E f , which also leads to the reduction of band gap Eg. This indicates
that the doped Al atom induces shallow acceptor states in graphene like B atom in SWCNs,
thus enhancing its extrinsic conductivity (Peng & Cho, 2003). When the CO molecule adsorbed
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on the intrinsic and doped graphene surfaces, the total DOSs are shown in Figs. 6(c) and 6(d).
In the intrinsic graphene, the DOS of CO-graphene system near E f have no distinct change,
and the conductivity change is barely observable. It implies that the intrinsic graphene would
not be an ideal CO gas sensor. However, for the Al doped graphene with the most stable
chemisorbed CO configuration [Fig. 6(d)], not only the highest DOS peak shifts over the E f ,
but also the DOS value increases dramatically. This results in an Eg closure [Fig. 6(d)] where
Eg of the Al doped graphene is 0.18 eV without adsorption and the Eg becomes zero with
adsorption. It suggests that extra number of shallow acceptor states have been introduced
when the Al doped graphene interacts with the highly polar CO molecule. As a result, the
chemisorbed CO on the Al doped graphene gives rise to a large increase in the electrical
conductivity of the doped graphene layer. By detecting the conductivity change of the Al
doped graphene systems before and after the adsorption of CO, the presence of this toxic
molecule can be detected sensitively. Therefore, the Al doped graphene is a promising sensor
material for detecting CO molecules. However, desorption of CO molecule from the Al doped
graphene is difficult due to the strong bonding of Al-CO (Peng et al., 2004). This can be solved
by applying an electric field F to reactivate the sensor materials (Hyman & Medlin, 2005).

Fig. 6. Electronic density of state (DOS) of intrinsic graphene (a), Al doped graphene (b),
CO-graphene system with preferred configuration (c) and CO-Al doped graphene system
with preferred configuration (d).(Reproduced with permission from Ref. (Ao et al., 2008).
Copyright 2008, Elsevier)

2.4 The effect of electric field on the adsorption/desorption behaviours of CO molecules
The first theoretical work with quantum mechanical calculations on electric field F inducing
adsorption/desorption was studied for N2 molecule on Fe(111) surface (Tomanek et al., 1985).
Recent simulation works on the effects of F on: (1) the adsorption and dissociation of oxygen
on Pt(111) (Hyman & Medlin, 2005), (2) electronic structure of Au-XO(0,-1,+1) (X = C, N and
O) (Tielens et al., 2007), and (3) vibrational frequencies of CO on Pt(111) (Lozovoi & Alavi,
2007) showed that F could induce some new physical phenomena by changing their electronic
properties (McEwen et al., 2008).
Therefore, it is of interest to investigate how F influences the adsorption/desorption
behaviours of CO on Al-doped graphene. Here, the favorable adsorption configurations of
CO on Al-doped graphene under different F had been determined by DFT calculation, and
the effects of F on the corresponding interaction between CO and Al-doped graphene will
be further discussed. All DFT calculations were performed using Dmol3 code with the same
settings as above in the section 2.3 (Delley, 1990; 2000).
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Fig. 7. The favorite adsorption configurations under different F. Atomic structures when
F = 0.03 a.u. (a), F = 0.02 a.u. (b),F = 0.01 a.u. (c),F = 0 (d), F = 0.01 a.u. (e), F = 0.02
a.u. (f), (g) stable structure cannot be gotten when F = 0.03 a.u. and this structure is the
configuration after 200 geometry optimization steps. The direction of the positive F is
pointed out by the arrow. In the figure, gray, pink and red spheres are C, Al and O atoms,
respectively. One Al atom dopes in site 1 and sites 2, 3 and 4 are C atoms near the doped Al
atom, sites 5 and 6 are C and O atoms in the CO molecule. (Reproduced with permission
from Ref. (Ao et al., 2010a). Copyright 2010, Elsevier)

In the calculations, all atoms were allowed to relax. Al-doped graphene structures were
obtained through substituting one C atom in the graphene supercell by an Al atom as
shown in Fig. 7. In this case, the concentration of the doped Al in graphene is 12.5% atomic
ratio. For CO adsorption on Al-doped graphene, there are two highly symmetric adsorption
configurations: (1) CO molecule resides parallel to the graphene surface, and (2) CO molecule
resides perpendicular to the graphene surface. The detailed structures are similar as in the
literature [Fig. 1 in Ref. (Ao et al., 2008)]. The Eb(F) of CO molecule on Al-doped graphene
under F can be determined by (Acharya & Turner, 2007),

Eb(F) = ECO+graphene(F) [Eprot(F) + ECO(F)]. (14)

where the subscripts CO+graphene, prot, and CO denote the adsorbed system, the initial
isolated graphene with Al atom protruding from the graphene surface and the CO molecule,
respectively. In the simulation, F had been chosen in the range of -0.03 0.03 a.u. (1 a.u. = 51
V/Å) and its positive direction is pointed out by the arrow in Fig. 7. Note that the length of
the vacuum layer along the direction of normal to the graphene layer in the simulation system
is about 15 Å. Thus, the maximum voltage required to induce the electric field with intensity
of 0.03 a.u. is about 23 V, which can be easily realized in actual applications.
Eb of the CO/graphene systems with all possible adsorption configurations in the presence of
F is listed in Table 3. Based on the calculated Eb values, the corresponding favourite adsorption
configurations under different F are present in Fig. 7 where the CO molecule always takes
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Copyright 2008, Elsevier)
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Therefore, it is of interest to investigate how F influences the adsorption/desorption
behaviours of CO on Al-doped graphene. Here, the favorable adsorption configurations of
CO on Al-doped graphene under different F had been determined by DFT calculation, and
the effects of F on the corresponding interaction between CO and Al-doped graphene will
be further discussed. All DFT calculations were performed using Dmol3 code with the same
settings as above in the section 2.3 (Delley, 1990; 2000).
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shown in Fig. 7. In this case, the concentration of the doped Al in graphene is 12.5% atomic
ratio. For CO adsorption on Al-doped graphene, there are two highly symmetric adsorption
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where the subscripts CO+graphene, prot, and CO denote the adsorbed system, the initial
isolated graphene with Al atom protruding from the graphene surface and the CO molecule,
respectively. In the simulation, F had been chosen in the range of -0.03 0.03 a.u. (1 a.u. = 51
V/Å) and its positive direction is pointed out by the arrow in Fig. 7. Note that the length of
the vacuum layer along the direction of normal to the graphene layer in the simulation system
is about 15 Å. Thus, the maximum voltage required to induce the electric field with intensity
of 0.03 a.u. is about 23 V, which can be easily realized in actual applications.
Eb of the CO/graphene systems with all possible adsorption configurations in the presence of
F is listed in Table 3. Based on the calculated Eb values, the corresponding favourite adsorption
configurations under different F are present in Fig. 7 where the CO molecule always takes
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F (a.u.)

Initial configurations -0.03 -0.02 -0.01 0 0.01 0.02

CO graphene T-B-T -0.966 -0.740 -0.631 -0.654
T-H-T -0.906 -0.773 -0.664 -0.559 -0.370
H-T-H -0.977 -0.746 -0.566 -0.199 -0.354
H-B-H -0.952 -0.740 -0.618 -0.185 -0.356

B(C atom)-T-H -0.865 -0.719 -0.650 -0.195
B(O atom)-T-H -0.982 -0.692 -0.580 -0.202 -0.354

CO graphene T(O upwards) -0.895 -0.692 -0.593 -0.565 -0.379 -0.291
B(O upwards) -0.958 -0.776 -0.664 -0.564 -0.419 -0.280
H(O upwards) -0.968 -0.763 -0.648 -0.561 -0.372
T(C upwards) -0.171 0.066 0.212 -0.215 -0.389
B(C upwards) -0.242 0.068 0.253 -0.193
H(C upwards) -0.245 0.111 -0.208 -0.195 -0.416

Table 3. Summary of adsorption energy Eb of CO adsorption in eV on Al-doped graphene
with different adsorption sites under different F where an Al atom replaces one C atom of the
unit cell. There are twelve possible configurations for CO adsorption on Al-doped graphene,
similar as in Ref. (Ao et al., 2008). T, B and H denote top site of C atoms, bridge site of C-C
bond and hollow site of carbon hexagon, respectively. The blank space in the table denotes
that there is no equilibrium structure in this situation.

the top site of the doped Al atom. From Table 3, the most stable structures were obtained
from the initial arrangements of T-B-T, H-T-H, H-B-H, B(O atom)-T-H, B(O upwards) and
H(O upwards) when F = -0.03 a.u., T-B-T, T-H-T, H-T-H, H-B-H, B(C atom)-T-H, B(O upwards)
and H(O upwards) when F = -0.02 a.u., T-B-T, T-H-T, H-B-H, B(C atom)-T-H, B(O upwards)
and H(O upwards) when F = -0.01 a.u., T-B-T, T-H-T, T(O upwards), B(O upwards) and H(O
upwards) when F = 0, H-T-H, H-B-H, B(O atom)-T-H and B(O upwards) when F = 0.01 a.u.,
T(O upwards) and B(O upwards) when F = 0.02 a.u. where the letters T, B and H denote
the sites of atom and CO molecule center on the graphene ring, respectively. Note that in
Table 3, the error range of Eb for the favourite adsorption configurations from different initial
arrangements above under a given F is within 5%.

F = 0.03 F = 0.02 F = 0.01 F = 0 F = 0.01 F = 0.02

lAl1 C2 1.863 1.911 1.913 1.872 1.883 1.898
lAl1 C3 1.930 1.907 1.907 1.910 1.915 1.930
lAl1 C4 1.883 1.861 1.865 1.916 1.922 1.921
lAl1 C5 2.046 2.009 1.985 1.964 1.950 1.950
lO6 C5 1.136 1.145 1.153 1.164 1.174 1.188

Table 4. Structure parameters of the favorite adsorption configuration under different F
shown in Fig. 7. The unit of F and bond length l are respectively a.u. and Å, which is not
shown in the table for clarity.

The corresponding parameters of the stable atomic structures after adsorption in Fig. 7 are
listed in Table 4. The results show that the field induces slight atom structure deformation
and the top site of the doped Al atom is always the favourable adsorption site. However, the
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desorption of CO from the Al-doped graphene occurs when F = 0.03 a.u. due to the large
upward force on CO molecule induced by electrical field as shown in Fig. 7(g), while the Al
atom goes below the graphene layer due to the downward force on the positive charged Al
atom. The configuration in Fig. 7(g) was obtained after 200 geometry optimization steps to
demonstrate the desorption configuration.
Fig. 7 presents that the Al atom protrudes from the graphene surface after CO adsorption.
However, the Al-doped graphene was found as a planer configuration before the adsorption.
After the final adsorption configuration for CO on the Al-doped graphene was obtained, we
removed the adsorbed CO and optimized the geometry of the Al-doped graphene. The result
showed that the protruded Al-doped graphene layer could not return to the initial planar
state and has a lower energy. This means that the planar Al-doped graphene is metastable,
and there should be an energy barrier that prevents the Al-doped graphene transiting from
the planer state to the protruding configuration. A force in the vertical direction would induce
the transition. In this way, the adsorption energies of CO on Al-doped graphene layer in the
presence of different electrical field intensities are defined as Eq. 14 and are given in Fig. 8.

Fig. 8. Eb(F) function of CO molecule adsorbed on Al-doped graphene. The squares are DFT
results and the line is the fitted line to guide the eyes. (Reproduced with permission from
Ref. (Ao et al., 2010a). Copyright 2010, Elsevier)

In Fig. 8, Eb(F) increases nearly linearly as F increases. Therefore, the adsorption can be
significantly strengthened by the negative F, while be weakened by the positive F. As F further
increases, such as when F 0.03 a.u., desorption occurs due to the electrostatic interaction as
shown in Fig. 7(g). The approximate linear relationship between Eb and F can be explained by
the first-order Stark effect (Hyman & Medlin, 2005). Thus, the highly positive F can be used
to reactivate the sensor material for repetitious application.
On the other hand, in Table 4, as F increases, bond length lO6 C5 increases while lAl1 C5
reduces where the atom index is shown in Fig. 7. Such variations can be explained by
Blyholder model (Koper & van Santen, 1999). The isolated CO molecule is bonded through
spz hybrid orbital of a C atom and pz orbital of an O atom. Therefore, a bond is formed
while the interaction between px and py orbitals of the C and O atoms produces two bonds
(Blyholder, 1964). However, a lone pair of electrons on the O 2s orbital and a lone pair in the
C spz hybrid orbital are left, forming a coordinate bond in a complex with a suitable acceptor
orbital such as a p orbital on Al with a bond. It is believed that the back donation from a
metal p orbital to the antibonding molecular orbital of the CO ligand stabilizes the bond by
removing the excess electrons. Such a orbital can be considered to be a bonding orbital for
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desorption of CO from the Al-doped graphene occurs when F = 0.03 a.u. due to the large
upward force on CO molecule induced by electrical field as shown in Fig. 7(g), while the Al
atom goes below the graphene layer due to the downward force on the positive charged Al
atom. The configuration in Fig. 7(g) was obtained after 200 geometry optimization steps to
demonstrate the desorption configuration.
Fig. 7 presents that the Al atom protrudes from the graphene surface after CO adsorption.
However, the Al-doped graphene was found as a planer configuration before the adsorption.
After the final adsorption configuration for CO on the Al-doped graphene was obtained, we
removed the adsorbed CO and optimized the geometry of the Al-doped graphene. The result
showed that the protruded Al-doped graphene layer could not return to the initial planar
state and has a lower energy. This means that the planar Al-doped graphene is metastable,
and there should be an energy barrier that prevents the Al-doped graphene transiting from
the planer state to the protruding configuration. A force in the vertical direction would induce
the transition. In this way, the adsorption energies of CO on Al-doped graphene layer in the
presence of different electrical field intensities are defined as Eq. 14 and are given in Fig. 8.
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In Fig. 8, Eb(F) increases nearly linearly as F increases. Therefore, the adsorption can be
significantly strengthened by the negative F, while be weakened by the positive F. As F further
increases, such as when F 0.03 a.u., desorption occurs due to the electrostatic interaction as
shown in Fig. 7(g). The approximate linear relationship between Eb and F can be explained by
the first-order Stark effect (Hyman & Medlin, 2005). Thus, the highly positive F can be used
to reactivate the sensor material for repetitious application.
On the other hand, in Table 4, as F increases, bond length lO6 C5 increases while lAl1 C5
reduces where the atom index is shown in Fig. 7. Such variations can be explained by
Blyholder model (Koper & van Santen, 1999). The isolated CO molecule is bonded through
spz hybrid orbital of a C atom and pz orbital of an O atom. Therefore, a bond is formed
while the interaction between px and py orbitals of the C and O atoms produces two bonds
(Blyholder, 1964). However, a lone pair of electrons on the O 2s orbital and a lone pair in the
C spz hybrid orbital are left, forming a coordinate bond in a complex with a suitable acceptor
orbital such as a p orbital on Al with a bond. It is believed that the back donation from a
metal p orbital to the antibonding molecular orbital of the CO ligand stabilizes the bond by
removing the excess electrons. Such a orbital can be considered to be a bonding orbital for
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C-O, but as an antibonding orbital for the Al-CO bond. Therefore, depopulating this orbital
(donation) elongates lO6 C5 but shortens lAl1 C5. In general, Fermi level E f of a neutral Al lies
between and levels of CO (Wang et al., 2007). Applying a positive F lowers the energy
levels of CO comparing to those of the Al-doped graphene (Lozovoi & Alavi, 2007), resulting
in the energy level moving towards E f , whereas the level moves away. Thus, a positive
F suppresses donation but enhances back donation, leading to a smaller lAl1 C5 and a larger
lO6 C5.

F = 0.03 F = 0.02 F = 0.01 F = 0 F = 0.01 F = 0.02

Al1 0.968 0.957 0.927 0.896 0.866 0.829
C2 -0.341 -0.313 -0.286 -0.363 -0.358 -0.332
C3 -0.362 -0.317 -0.294 -0.275 -0.260 -0.229
C4 -0.323 -0.370 -0.370 -0.267 -0.249 -0.267
C5 -0.040 -0.056 -0.076 -0.101 -0.124 -0.147
O6 0.078 0.008 -0.058 -0.128 -0.197 -0.273
Q 0.038 -0.048 -0.144 -0.229 -0.312 -0.410

Table 5. Charges of atoms near the doped Al atom in CO/graphene system as well as charge
transfer Q between the graphene and the CO molecules under different F, obtained by
Mulliken analysis. The unit of the atom charge is one electron charge e and that of F is a.u.

Table 5 lists: (1) the charges of C and Al atoms as well as the CO molecule, and (2) the charge
transfer Q between the graphene and the CO molecule under different F obtained by Mulliken
analysis. As F increases, the electron numbers of Al1, C5, and O6 increase while those of atoms
C2, C3, and C4 decrease. This is because electrons flow from the C atoms in the graphene layer
to atoms of Al1, C5 and O6 above the graphene layer with increasing F. This agrees with the
reported phenomena where the negative F enhances adsorption while the positive F has a
counter effect (Hyman & Medlin, 2005). As F increases, the effects result in a shorter lAl1 C5,
and a longer lO6 C5 due to the reduction of the attraction between C5 and O6. The trends of
lAl1 C5 and lO6 C5 variations are consistent to the results shown in Table 4.
The electronic distribution under different F is displayed in Fig. 9. The bond between the
CO and the graphene system in the figure is covalent because the preferential electron
accumulation sites mainly localize in the bond rather than centralize on a particular atom.
However, due to the different electronegativity of C, Al and O atoms, electrons lean to the
C atom for Al1-C5 bond and O atom for C5-O6 bond. Furthermore, with increasing F, more
electrons transfer from the doped graphene to the CO where the lost electrons are all from Al
(Table 5). The images in Fig. 9, where the red regions around CO become larger and thicker,
also confirm that Q increases with increasing F.

2.5 The effect of temperature on the adsorption/desorption behaviours of CO molecules
The favourable CO adsorption site on the Al doped graphene was identified through DFT
calculations (Ao et al., 2008). But it was still far to be optimized for actual applications.
In particular, the effect of temperature T on the adsorption/desorption behaviours on the
CO/graphene system is still unclear. Based on the DFT results and thermodynamic analysis
at 0 K, the adsorption phase diagrams can be established. The Gibbs free energy of adsorption,

Gads can be expressed as:

Gads(T) = Gads(T) Gg(T) GCO(T), (15)
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Fig. 9. Images of electron density difference of CO/graphene system under different F, the
unit of F is a.u. The red region means electronic accumulation, while the blue region means
electronic loss. (Reproduced with permission from Ref. (Ao et al., 2010a). Copyright 2010,
Elsevier)

where Gads(T), Gg(T) and GCO(T) are the corresponding Gibbs free energies of the adsorbed
system, the Al doped graphene and the CO gas molecule at a particular T, respectively. Since
the Gibbs free energy of the system before and after adsorption can be obtained with the DFT
results, the adsorption-desorption transition could be determined with Eq. 15 theoretically.

Fig. 10. The temperature dependent Gibbs free energy G(T) functions where subscripts ads,
g, and CO denote the adsorbed system, the isolated graphene and the CO molecules,
respectively. And Gads(T) denotes Gibbs free adsorption energy, which is obtained in terms
of Eq. 14. The symbols are all DFT results. (Reproduced with permission from Ref. (Ao et al.,
2009b). Copyright 2009, RSC)

Subsequently, ab initio molecular dynamics (MD) calculations were performed under constant
volume and constant temperature conditions (NVT) adopting GGA with the revised PBE
method. The temperature effects on the atomic and electronic structures were calculated with
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C-O, but as an antibonding orbital for the Al-CO bond. Therefore, depopulating this orbital
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counter effect (Hyman & Medlin, 2005). As F increases, the effects result in a shorter lAl1 C5,
and a longer lO6 C5 due to the reduction of the attraction between C5 and O6. The trends of
lAl1 C5 and lO6 C5 variations are consistent to the results shown in Table 4.
The electronic distribution under different F is displayed in Fig. 9. The bond between the
CO and the graphene system in the figure is covalent because the preferential electron
accumulation sites mainly localize in the bond rather than centralize on a particular atom.
However, due to the different electronegativity of C, Al and O atoms, electrons lean to the
C atom for Al1-C5 bond and O atom for C5-O6 bond. Furthermore, with increasing F, more
electrons transfer from the doped graphene to the CO where the lost electrons are all from Al
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The favourable CO adsorption site on the Al doped graphene was identified through DFT
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system, the Al doped graphene and the CO gas molecule at a particular T, respectively. Since
the Gibbs free energy of the system before and after adsorption can be obtained with the DFT
results, the adsorption-desorption transition could be determined with Eq. 15 theoretically.

Fig. 10. The temperature dependent Gibbs free energy G(T) functions where subscripts ads,
g, and CO denote the adsorbed system, the isolated graphene and the CO molecules,
respectively. And Gads(T) denotes Gibbs free adsorption energy, which is obtained in terms
of Eq. 14. The symbols are all DFT results. (Reproduced with permission from Ref. (Ao et al.,
2009b). Copyright 2009, RSC)

Subsequently, ab initio molecular dynamics (MD) calculations were performed under constant
volume and constant temperature conditions (NVT) adopting GGA with the revised PBE
method. The temperature effects on the atomic and electronic structures were calculated with
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a time step of 1 fs at the temperatures from 300 to 450 K with an interval of 50 K. The
simulation time t at the particular temperature was 2.5 ps where the total energy fluctuated
in the range of 0.01%. MD calculation was based on the velocity Verlet algorithm (Verlet,
1967) for integration of the equation of motion. The implemented algorithm performs the
Yoshida-Suzuki multiple-step numerical integration of varying quantity, depending on the
choice of interpolation parameters (Suzuki, 1991; Yoshida, 1990). A key parameter in the
integration algorithms is the integration time step. A common rule-of-thumb used to set the
time step is that the highest frequency vibration should be sampled between 10 and 20 times
in one cycle. In this system, the frequency is in the order of 1013 Hz, the time step was thus
set as 1 fs within a reasonable range (Seitsonen et al., 2001). The temperature was controlled
by algorithm of Nose (Nose, 1984). The thermostate employs a feedback loop between the
instantaneous kinetic energy and the set temperatures. The rate of feedback is determined by
the mass parameter, Q (Q = 2) (Loffreda, 2006; Spencer & Yarovsky, 2007; Todorova et al.,
2007).
With the thermal desorption method, T dependent desorption time (T) function can be
expressed as (Peng et al., 2004; Raaen & Ramstad, 2005)

(T) = 1
0 exp[ Eb(T)/kBT] (16)

where kB is the Boltzmann’s constant (8.62 10 5 eV/K), and 0 is the attempt frequency
of 1013 Hz for CO (Seitsonen et al., 2001). This thermal desorption method is close to the
experimental conditions and it can be used to determine the thermodynamical properties of
the adsorption systems (Raaen & Ramstad, 2005).
With the adsorption structures determined by the DFT calculations at an ideal condition, the
phase diagram of adsorption/desorption for the CO adsorbed on the Al doped graphene as
a function of temperature can be established with the atomistic thermodynamics described in
Eq. 15. Such a simple approach allows the exploration of Gads(T) in an actual condition with
respect to experiments. Gads(T), Gads(T), Gg(T) and GCO(T) functions are plotted in Fig. 10.
The results show that Gads(T) increases as T increases, and eventually becomes positive at
Td = 120 K where Td is defined as the desorption temperature. In another word, the desorption
of CO from the Al doped graphene occurs when Td 120 K at the ideal state with .

T = 0 T = 300 K T = 400 K T = 450 K

lAl1 C2 1.872 1.880 1.946 1.973
lAl1 C3 1.910 1.961 1.972 1.993
lAl1 C4 1.916 1.923 1.929 1.989
lAl1 C5 1.964 1.982 2.097 4.590
lC5 O 1.164 1.161 1.159 1.157

Table 6. Some structure parameters of CO molecule adsorbed on Al doped graphene at
different temperature, where l is bond length in Å.

However, with ab initio MD calculation at T = 300, 350, 400 and 450 K for 2.5 ps to reach
the equilibrium at each temperature, it was found that the desorption occurred at 450 K.
The atomic configurations at the different temperatures are shown in Fig. 11 and their
corresponding atomic structural parameters are listed in Table 6. The results show that Td is
between 400 and 450 K. Since both the data for MD simulation and atomistic thermodynamics
come from the simulation, the difference of Td caused by the simulation methodologies is
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Fig. 11. Atomic structure of CO molecule adsorption in Al doped graphene at different
temperature. For T = 0, the images are the configurations at simulation time t = 2.5 ps. In
the figure, the uppermost atom is O atom, the third uppermost atom is Al atom, and the
others are all C atoms. One Al atom dopes in site 1 and sites 2, 3 and 4 are C atoms near the
doped Al atom, and site 5 is C atom in CO gas molecule.(Reproduced with permission from
Ref. (Ao et al., 2009b). Copyright 2009, RSC)

limited and it could be ignored. It is believed that the difference is mainly induced by the
short equilibrium time of t = 2.5 ps used in the MD simulation, which is much shorter than
the actual situation.
Eb(T) and (T) determined by Eqs. 13 and 16 are plotted in Figs. 12 and 13, respectively.
Fig. 12 shows that Eb(T) decreases linearly with T increasing. This is consistent with the
classic Readhead formula (Readhead, 1962). In Fig. 13, (T) decreases exponentially with
T increasing, showing Td 420 K at = 2.5 ps. This is in agreement with the results
obtained from MD simulation, in which the desorption occurs at 400 T 450 K. In the
experimental environment, the optimal is in an order of microsecond ( s) (Peng et al., 2004),
and (400K) 1 s from Fig. 13, indicating that the gas sensor can be reactivated for repetitious
applications by heating the materials up to 400 K. Note that the adsorption-desorption process
is dynamic. Once the CO molecule is adsorbed, the adsorption state would be remained for
a time of until the desorption occurs. During the adsorption period, electrical conductivity
changes of the Al doped graphene can be detected.
Except for Td, the temperature dependence of atomic structure and electrical properties are
also critical information for gas detection. Table 6 lists the structural parameters calculated by
ab inito MD at 300, 400 and 450 K, respectively. As T increases, Al-CO bond length lAl1 C5
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applications by heating the materials up to 400 K. Note that the adsorption-desorption process
is dynamic. Once the CO molecule is adsorbed, the adsorption state would be remained for
a time of until the desorption occurs. During the adsorption period, electrical conductivity
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ab inito MD at 300, 400 and 450 K, respectively. As T increases, Al-CO bond length lAl1 C5
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Fig. 12. Temperature dependent adsorption energy of CO molecule in Al doped graphene
Eb(T) function. The symbol is the MD simulation result at T =0, 300, 350, 400, 450 K. The
solid line is the fitted linear function with the calculated data. (Reproduced with permission
from Ref. (Ao et al., 2009b). Copyright 2009, RSC)

Fig. 13. Temperature dependent desorption time function (T) in terms of Eq. 16 where
Eb(T) function needed is from Fig. 12. The two temperatures 398 and 420 K are
corresponding desorption temperature in MD simulation and actual situation.(Reproduced
with permission from Ref. (Ao et al., 2009b). Copyright 2009, RSC)

increases, or the corresponding bond strength decreases. This is also evidenced by the Eb(T)
declination as shown in Fig. 12. When T further increases, the desorption of CO from the Al
doped graphene occurs [Fig. 11(d)] where bond length of lAl1 C5 changes sharply from 2.097
Å at 400 K to 4.590 Å at 450 K.
In order to better understand the results, Table 7 lists the charges of C atoms surrounding the
doped Al atom, the doped Al atom and the CO molecule as well as charge transformation
Q between the doped graphene and the CO molecule, which were obtained by Mulliken
analysis. It exhibits that Q decreases as T increases and the Al atom loses electrons. The
negative charges of the C atoms surrounding the doped Al also decrease. It results in the
charge difference between the C and Al atoms decreases and the Al-C bond length in the
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T = 0 T = 300 K T = 400 K T = 450 K

Al1 0.896 0.833 0.765 0.613
C2 -0.363 -0.303 -0.324 -0.274
C3 -0.275 -0.287 -0.245 -0.276
C4 -0.267 -0.239 -0.255 -0.216
C5 -0.101 -0.089 -0.029 0.111
O -0.128 -0.132 -0.127 -0.123
Q 0.229 0.221 0.156 0.012

Table 7. Charges of atoms surrounding doped Al atom and doped Al atom, and changes
transferred Q form graphene to CO gas molecule at different temperature.

graphene layer elongates as T increases. This is consistent with the structure parameters
change listed in Table 6. On the other hand, the electrons in C5 and O6 of the CO molecule also
decrease with T increasing, and even C5 is positive at T = 450 K. Due to the static interaction,
lC5 O6 decreases as T increases as shown in Table 6.

Fig. 14. Electronic density of state (DOS) of CO/graphene system at T = 0 (a), T = 300 K (b), T
= 400 K (c) and T = 450 K (d). The dash lines denote the Fermi energy location and the dash
curves are the DOS of the Al doped graphene. (Reproduced with permission from Ref. (Ao
et al., 2009b). Copyright 2009, RSC)

To understand the effect of T on conductivity changes with and without the adsorption, the
temperature dependence of DOS for the Al doped graphene and CO/graphene system are
shown in Fig. 14. From Laudauer formula (Tosatti et al., 2001), the number of bands crossing
E f determines the number of conduction channels or the conductivity of CO/graphene
system (He et al., 2008; Mares & Van Ruitenbeek, 2005). Therefore, the largest conductivity
change induced by the adsorption is found at T =400 K. The performance of CO detection
with this material is the best at T =400 K based on the (T) function and conductivity change.

3. Application for efficient hydrogen storage

3.1 Hydrogen storage in Al subtitutionally doped graphene
In recent years, hydrogen-based fuel systems have been considered to be a highly important
topic of research for future energy schemes as hydrogen is a more efficient fuel in comparison
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shown in Fig. 14. From Laudauer formula (Tosatti et al., 2001), the number of bands crossing
E f determines the number of conduction channels or the conductivity of CO/graphene
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change induced by the adsorption is found at T =400 K. The performance of CO detection
with this material is the best at T =400 K based on the (T) function and conductivity change.

3. Application for efficient hydrogen storage
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In recent years, hydrogen-based fuel systems have been considered to be a highly important
topic of research for future energy schemes as hydrogen is a more efficient fuel in comparison
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to the existing carbonaceous fossil fuels (Coontz & Hanson, 2004; Schlapbach & Züttel, 2001).
Despite many recent technological developments in the hydrogen-based fuel systems, it is
still an enormous challenge to have a safe and efficient reversible hydrogen storage system
at ambient conditions (Schlapbach & Züttel, 2001). One possible way for hydrogen storage is
an efficient and controllable adsorption/desorption system. Carbon based materials appear
promising for such a purpose. Although several mechanisms of hydrogen storage through
both physisorption and chemisorption have been proposed (Chandrakumar & Ghosh, 2008;
Deng et al., 2004; Klontzas et al., 2008; Mpourmpakis et al., 2007; Nikitin et al., 2008), most of
these efforts are far to reach the target of 6 wt% and binding strength of 0.2 0.4 eV/H2
at ambient temperature and modest pressure for commercial applications specified by U.S.
Department of Energy (DOE).
With DFT simulations, it was predicted that a single ethylene molecule can form a stable
complex with two transition metals, thus adsorbing ten H2 molecules and lead to a high
storage capacity of 14 wt% ((Durgun et al., 2006). In addition, the highest H2 storage capacity
of 13 wt% in a fullerene cage with twelve Li atoms capped onto the pentagonal faces was
calculated (Sun et al., 2006). This system has average adsorption energy Eb = 0.075 eV/H2.
However, all the DFT results are in the ideal condition at the temperature of T = 0 K, their
performances at the DOE specified operation conditions are unclear.
Since carbon nanostructures have high surface areas and thermal stability along with unique
mechanical properties, improvement of their adsorption capacity by suitable modification
would be of immense interest (Chandrakumar & Ghosh, 2008; Deng et al., 2004; Durgun
et al., 2006; Klontzas et al., 2008; Mpourmpakis et al., 2007; Nikitin et al., 2008; Sun et al.,
2006). Thus, hydrogen storage using carbon nanostructures is still an important research topic
and deserves more attention. In this section, the potential of graphene as hydrogen storage
materials through doping is investigated. The advantages of graphene are: (1) a large surface
for hydrogen adsorption, (2) economical and scalable production (Li et al., 2008a), and (3) the
strongest material ever measured (Lee et al., 2008).
AlH3 and related aluminum hydrides as hydrogen storage materials have recently become
the focus of renewed interest (Graetz et al., 2006; Li et al., 2007) due to their potentially large
hydrogen capacity of 10 wt%. These materials are thermodynamically unstable in ambient,
but it is kinetically stable without much lost of hydrogen for years. Despite these excellent
properties, extremely high pressure (exceeding 2.5 GPa) is required for hydrogen adsorption.
While these hydrides possess a small negative enthalpy of formation (Graetz et al., 2006), for
practical applications the large hydrogen desorption energy proves impractical. The origin of
this energy barrier lies in the rather strong mixed ionic and covalent bonds (Graetz et al., 2006)
formed between Al and H. Thus it is essential to significantly reduce the desorption energy.
There appears another way for Al atoms to store hydrogen i.e. to further decrease the
interaction between Al and H. In this way, the weak chemisorption can be changed into strong
physisorption. For hydrogen storage through physisorption, strong interaction between the
H2 molecule and the surfaces along with a large surface area for adsorption are required.
The unique characteristics of graphene and Al for hydrogen storage lead to an investigation
of the properties of Al doped graphene as a possible hydrogen storage candidate. It would
be intriguing to understand the interaction between graphene, Al and H. In this work,
the adsorption behaviour of H2 in Al doped graphene was studied by DFT calculation. In
addition, we processed the ab initio MD calculation to investigate the effects of temperature
and pressure on the corresponding adsorption and desorption behaviours of this system.
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All DFT calculations were performed with Dmol3 code (Delley, 1990). Previous studies
(Cabria et al., 2008; Okamoto & Miyamoto, 2001) had shown that the LDA prediction of
the physisorption energies of H2 on the surface of graphite and carbon nanotubes were in
good agreement with experiments. The reliability of LDA can be ascribed to the following
facts (Cabria et al., 2008): (1) When the electron densities of H2 and graphene overlap weakly,
the nonlinearity of the exchange-correlation energy density functional produces an attractive
interaction even in the absence of electron density redistribution; (2) The overestimated
binding energy by LDA (Leenaerts et al., 2008; Lugo-Solis & Vasiliev, 2007) may compensate
for the insufficient account of van der Waals interactions (Cabria et al., 2008). In contrast,
DFT calculation using GGA produced a purely repulsive interaction. Using a GGA-PW91
functional, a repulsive interaction between H2 and a graphene layer and also between H2 and
a (6, 6) carbon nanotube was obtained (Tada et al., 2001). This contradicts the experimental
findings (Sahaym & Norton, 2008). It was noted that LDA calculations well reproduce the
empirical interaction potentials between graphitic layers and also in the other graphitic
systems for distances near to the equilibrium separation although the LDA is not able to
reproduce the long-range dispersion interaction (Girifacol & Hodak, 2002). Therefore, LDA
had been selected in this work. To ensure that the calculated results were comparable, identical
conditions were employed for the isolated H2 molecules and the graphene, and also the
adsorbed graphene system. The k-point was set to 6 6 2 for all slabs, which brought out
the convergence tolerance of energy of 1.0 10 5 hartree (1 hartree = 27.21 eV), and that of
maximum force is 0.002 hartree/Å.

Fig. 15. Eight different adsorption sites on Al doped graphene. The gray and pink balls are
respectively C and Al atoms. (Reproduced with permission from Ref. (Ao et al., 2009a).
Copyright 2009, AIP)

In the simulation, three-dimensional periodic boundary condition was taken and H-H bond
length was set to lH H = 0.74 Å, which is consistent with the experimental results (Lide, 2000).
The graphene used in our simulation consist of a single layer of 2 2 supercell with a vacuum
width of 12 Å to minimize the interlayer interaction. All atoms were allowed to relax in all
energy calculations. The adsorption energy Eb between the H2 gas molecule and graphene is
defined as,

Eb = EH2+graphene (Egraphene + EH2) (17)

where the subscripts H2+graphene, graphene, and H2 denote the adsorbed system, isolated
graphene and H2 molecules, respectively.
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The graphene used in our simulation consist of a single layer of 2 2 supercell with a vacuum
width of 12 Å to minimize the interlayer interaction. All atoms were allowed to relax in all
energy calculations. The adsorption energy Eb between the H2 gas molecule and graphene is
defined as,

Eb = EH2+graphene (Egraphene + EH2) (17)

where the subscripts H2+graphene, graphene, and H2 denote the adsorbed system, isolated
graphene and H2 molecules, respectively.
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For the Al doped graphene, the concentration of Al is 12.5 at% with the additional constrain
that there is only one Al atom per graphene hexagonal ring (Fig. 15) to avoid Al atoms
clustering on graphene (Krasnov et al., 2007). For H2 adsorption on the Al doped graphene,
there are 4 top sites of T1, T2, T3 and T4, and 3 bridge sites of B1, B2 and B3, and 2 center sites of
C1 and C2, as shown in Fig. 15. (In this figure, a larger simulation cell is given in order to better
display the different adsorption sites on the Al doped graphene. Fig. 16 reflects the actual
simulation cell size.) At each adsorption site, there are two highly symmetrical adsorption
configurations, namely H2 molecule resides parallel or perpendicular to the graphene surface.
Therefore, a total of 18 adsorption configurations for H2 on the Al doped graphene are present.

Fig. 16. The favorite adsorption configurations with 1 H2 molecule adsorbed in intrinsic
graphene (a), and in Al doped graphene (b). The white balls are H atoms. (Reproduced with
permission from Ref. (Ao et al., 2009a). Copyright 2009, AIP)

Due to the periodicity of H2 adsorbed in intrinsic graphene or Al doped graphene systems,
we had selected the unit cell with the following conditions: eight C atoms and one H2, or
seven C atoms, one Al atom and one H2 (see Fig. 16). If we placed a H2 at any location of
the cell, the distance from this H2 to other H2 molecules in the nearest cells is 4.920 Å. This
large separation, compared to the bond length of H2 (0.740 Å), would ensure that there is no
interaction between H2 molecules in the different cells (Arellano et al., 2000).
To calculate the H2 adsorption capability of Al doped graphene at room temperature and
modest pressure, we performed ab initio MD calculation with CASTEP (Cambridge Sequential
Total Energy Package) code based on the structure obtained by DFT above, which utilizes
plane-wave pseudopotential to perform the first principle quantum mechanics calculations
(Degall et al., 2002). LDA with the Ceperley-Alder-Perdew-Zunger (CAPZ) function (Ceperley
& Alder, 1980; Perdew & Zunger, 1981) was employed as exchange-correlation functions,
cutoff energy Ec = 280 eV and k-points is 6 6 2. In this work, the k-points of 6 6 2 for
all slabs have the energy convergence tolerance of 1.0 10 6 eV/atom. Such energy tolerance
is small enough to ensure establishment of the actual equilibrium structure.
Each MD simulation was performed in NPT statistical ensemble, i.e. constant numbers of
atoms N, pressure P and T, with T = 300 K and P = 0.0001 1 GPa. Time step of 1
fs was selected and simulation time t at a particular T was 2.5 ps where the total energy
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fluctuation was in the range of 0.01%. The same t was selected for H2S dissociation on the
Fe(110) surface (Spencer & Yarovsky, 2007). A Verlet algorithm (Verlet, 1967) was used to
integrate the equations of motion, with T controlled by algorithm of Nose (Nose, 1991), and P
was controlled according to the Parrinello-Rahaman algorithm (Parrinello & Rahaman, 1981).

Intrinsic graphene Al doped graphene

Initial configurations Eb (eV) d (Å) Eb (eV) l (Å) d (Å)

T1 -0.136 2.845 -0.209 2.762
T2 -0.34 2.526 2.682
T3 -0.407 2.588 2.486
T4 -0.361 2.942 2.537

H2 graphene B1 -0.139 2.817 -0.21 2.757
B2 -0.411 2.527 2.575
B3 -0.411 2.506 2.563
C1 -0.159 2.635 -0.427 2.083 2.073
C2 -0.188 2.657

T1 -0.141 2.615 -0.153 2.622
T2 -0.284 2.427 2.749
T3 -0.406 2.367 2.524
T4 -0.33 2.976 2.179

H2 graphene B1 -0.142 2.620 -0.206 2.271 3.732
B2 -0.412 2.468 2.595
B3 -0.426 3.196 2.074
C1 -0.148 2.425 -0.426 2.092 2.104
C2 -0.24 3.117 2.468

Table 8. Summary of results for H2 adsorption on intrinsic graphene and Al doped graphene
on different adsorption sites. For H2 adsorption on intrinsic graphene, there are 6 different
adsorption sites as listed in the table. For H2 adsorption on Al doped graphene, there are 18
different adsorption configurations as shown in Fig. 15. l represents the distance between Al
and H2. d represents the distance between H2 molecule and graphene or Al-doped graphene.

After geometry relaxation, Eb values and the corresponding structural parameters of the 18
adsorption configurations for H2 adsorbed in the intrinsic graphene are listed in Table 8. It was
found that the most favorable configuration is H2 adsorbed on the center site of the carbon
ring with Eb = -0.159 eV as shown in Fig. 16(a) and the distance between H2 and the graphene
d = 2.635 Å. The results are consistent with other reported results of Eb = 0.133 eV and
d 2.8 Å (Okamoto & Miyamoto, 2001). The small magnitude of Eb ( 0.1 eV) shows that
the system is in the weak physisorption regime. It indicates that the intrinsic graphene is not
suitable for hydrogen storage.
For the adsorption of H2 on the Al doped graphene, the corresponding results are also
listed in Table 8. In light of Table 8, the most favourable position with Eb = 0.427 eV
for the H2 molecule is shown in Fig. 16(b). The distance between H2 and the doped Al,
l = 2.083Å while that between H2 and carbon layer, d = 2.073Å. As seen from Table
8, the interaction reaches the strongest when both l and d are minimized. The adsorption
of H2 in the Al doped graphene is much larger than that in other systems, such as Eb =
-0.41 eV/H2 in Ti-C2H4-graphene system (Durgun et al., 2006), and Eb = 0.08 eV/H2 in
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adsorption sites as listed in the table. For H2 adsorption on Al doped graphene, there are 18
different adsorption configurations as shown in Fig. 15. l represents the distance between Al
and H2. d represents the distance between H2 molecule and graphene or Al-doped graphene.

After geometry relaxation, Eb values and the corresponding structural parameters of the 18
adsorption configurations for H2 adsorbed in the intrinsic graphene are listed in Table 8. It was
found that the most favorable configuration is H2 adsorbed on the center site of the carbon
ring with Eb = -0.159 eV as shown in Fig. 16(a) and the distance between H2 and the graphene
d = 2.635 Å. The results are consistent with other reported results of Eb = 0.133 eV and
d 2.8 Å (Okamoto & Miyamoto, 2001). The small magnitude of Eb ( 0.1 eV) shows that
the system is in the weak physisorption regime. It indicates that the intrinsic graphene is not
suitable for hydrogen storage.
For the adsorption of H2 on the Al doped graphene, the corresponding results are also
listed in Table 8. In light of Table 8, the most favourable position with Eb = 0.427 eV
for the H2 molecule is shown in Fig. 16(b). The distance between H2 and the doped Al,
l = 2.083Å while that between H2 and carbon layer, d = 2.073Å. As seen from Table
8, the interaction reaches the strongest when both l and d are minimized. The adsorption
of H2 in the Al doped graphene is much larger than that in other systems, such as Eb =
-0.41 eV/H2 in Ti-C2H4-graphene system (Durgun et al., 2006), and Eb = 0.08 eV/H2 in
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12-Li-doped fullerene (Sun et al., 2006). However, it still falls into the physisorption regime
as the long distance between the doped graphene and the adsorbed H2. Therefore, this
strong physisorption interaction would be ideal for hydrogen storage, which adsorbs more
H2 molecules.

Fig. 17. Electronic density of states (DOSs) of adsorbed H2, doped Al and graphene for both
the H2/graphene and H2/Al-doped-graphene systems as shown in panel (a) and panel (b),
respectively.(Reproduced with permission from Ref. (Ao et al., 2009a). Copyright 2009, AIP)

To understand the enhancement effect of the doped Al on the H2 adsorption, the
DOSs of the adsorbed H2, the doped Al and the C atoms in both H2/graphene and
H2/Al-doped-graphene systems were plotted and shown in Fig. 17. Fig. 17 (a) shows the
DOSs of H2+graphene system. The main peaks of H2 are located at -4.37 eV and 6.92 eV.
However, the main peaks of intrinsic graphene are located between 9 and 13 eV. Therefore,
the interaction between H2 molecule and the intrinsic graphene is very weak because of
non-overlapping of electrons in these substances, where Eb is small. On the other hand, for the
H2/Al-doped-graphene system shown in Fig. 17(b), the main peaks of H2 are located at -8.15
eV, 5.74 eV, 6.52 eV, and 7.51 eV, respectively. The bands of H2 interact with both the doped Al
and the C atoms synchronously at the positions indicated by the dash lines, showing a strong
interaction between H2 and the Al doped graphene where Eb is the largest. In addition, the
doped Al changes the electronic structures of both H2 and the graphene, and both their DOSs
shift towards the lower energy. It exhibits that the H2/Al-doped-graphene configuration is a
much more stable system.
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Atom Intrinsic graphene Al doped graphene

Al1(C1) 0.001 0.292
C2 -0.002 -0.228
C3 0 -0.193
C4 0 -0.193
H5 -0.001 -0.001
H6 -0.001 0.021
Q -0.002 0.019

Table 9. Charges of atoms in H2 adsorbed in graphene system as well as charge transfer Q
between graphene and H2 molecule, obtained by Mulliken analyse. The unit of the atom
charge is one electron charge e, which is elided here for clarity.

Table 9 shows the charge distribution in both the H2/graphene and H2/Al-doped-graphene
systems using Mulliken analysis. Before and after H2 adsorption, the charge variation for the
former is little while it is significant for the latter. In addition, H6 has much more positive
charge than H5. Thus, the interaction between H2 and the Al doped graphene is mainly
achieved through H6. The interaction between the band at the location of the highest peak
of DOS plot of H2 and that of C atoms implies a strong interaction between the H2 and C
atoms, as shown in Fig. 17(b).

Fig. 18. Electron density distributions in the H2/graphene [panel (a)] and H2/Al-doped-
graphene [panel (b)] systems. (Reproduced with permission from Ref. (Ao et al., 2009a).
Copyright 2009, AIP)

The illustrations of electron density distribution for the H2/graphene and
H2/Al-doped-graphene systems are shown in Fig. 18. In the system of H2/graphene
[Fig. 18(a)], no electron exists in the region between H2 and C layer while some electrons
appear in the region among H2, Al atom and C layer in the system of H2/Al-doped-graphene
[Fig. 18(b)]. This supports the notion that the H2/Al-doped-graphene possesses a much
stronger H2 adsorption ability.
After understanding the mechanism of the enhancement for H2 adsorption in the Al doped
graphene, it is important to determine how much H2 molecules can be adsorbed on the 2 2
layer surface. We constructed an adsorption configuration with 3 H2 molecules adsorbed
in the three favourable C1 adsorption positions on the topside of the doped system. After
geometry relaxation, the atomic structure is shown in Fig. 19(a). It has Eb = 0.303 eV/H2,
which satisfies the requirement of Eb = 0.20 0.40 eV/H2 at room temperature
(Chandrakumar & Ghosh, 2008; Deng et al., 2004; Klontzas et al., 2008; Mpourmpakis et al.,
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[Fig. 18(a)], no electron exists in the region between H2 and C layer while some electrons
appear in the region among H2, Al atom and C layer in the system of H2/Al-doped-graphene
[Fig. 18(b)]. This supports the notion that the H2/Al-doped-graphene possesses a much
stronger H2 adsorption ability.
After understanding the mechanism of the enhancement for H2 adsorption in the Al doped
graphene, it is important to determine how much H2 molecules can be adsorbed on the 2 2
layer surface. We constructed an adsorption configuration with 3 H2 molecules adsorbed
in the three favourable C1 adsorption positions on the topside of the doped system. After
geometry relaxation, the atomic structure is shown in Fig. 19(a). It has Eb = 0.303 eV/H2,
which satisfies the requirement of Eb = 0.20 0.40 eV/H2 at room temperature
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Fig. 19. Atomic configurations H2/Al-doped-graphene system at different temperature and
pressure. (a) In the ideal condition with T = 0 K, (b) in the condition with T = 300 K and
P =0.1 GPa, (c) in the condition with T =300 K and P =0.0001 GPa, and (d) in the condition
with T =300 K and P =1 GPa. (Reproduced with permission from Ref. (Ao et al., 2009a).
Copyright 2009, AIP)

2007) set by DOE although the value of 5.1 wt% of H2 adsorbed is slightly below the DOE’s 6
wt% target.
In order to understand the effect of the adsorbed H2 molecule number on the Eb, the
configuration with 6 H2 molecules adsorbed in the Al doped graphene in the favorable C1
adsorption positions on both sides was calculated. It is found that Eb = 0.164 eV/H2, which
is almost half of the Eb for above the case where the Al doped graphene adsorbed 3 H2 on one
side of graphene. In addition, the adsorption with 8 H2 molecules in the Al doped graphene
was also calculated, and it is found 2 H2 molecules were released. In the other words, the
interaction between H2 molecules would weaken the adsorption on the doped graphene and
the saturated number of H2 molecules adsorption is 6. Note that Eb for the cases of 3 H2 and 6
H2 are respectively -0.303 eV/H2 and -0.164 eV/H2, which is about twice for the case of 3 H2
comparing with the case of 6 H2. This is because H2 molecules were very weakly adsorbed
below the graphene layer where the doped Al atom locates above the graphene layer.
It is well known that T and P have essential effects on hydrogen storage, where increasing
P and decreasing T enhance the capacity of hydrogen storage. Thus, most studied systems
are either under high P or at very low T (Sahaym & Norton, 2008), which may not be viable
for mobile applications. For example, a storage capacity of 8 wt% for purified single wall
carbon nanotubes (SWNTs) at 80 K with a hydrogen pressure of 13 Mpa (Ye et al., 1999) and
a lower hydrogen storage capacity of 2.3 wt% at 77 K were reported (Panella et al., 2005).
The hydrogen storage capacities in other carbon related materials, such as activated carbon
(AC), single walled carbon nanohorn, SWNTs, and graphite nanofibers (GNFs) were also
investigated (Xu et al., 2007). Although the AC had a capacity of 5.7 wt% at 77 K with P = 3
MPa, its capacity is 1% at 300 K (Xu et al., 2007). Recent experimental results demonstrated
that the intrinsic graphene has hydrogen storage capacity of 1.7 wt% under 1 atm at 77 K, and
3 wt% under 100 atm at 298 K (Ghosh et al., 2008). Thus, to meet the DOE target, it is necessary
to study the adsorption and desorption behaviours of H2 in the Al doped graphene at T = 300
K with different P. Therefore, the adsorption behaviours of 3H2/Al-doped-graphene and
6H2/Al-doped- graphene systems were calculated under 0.0001, 0.01, 0.1 and 1 GPa using
ab initio MD simulation. For both the 3H2/Al-doped-graphene and 6H2/Al-doped- graphene
systems, we found that all H2 molecules were released at 0.0001 GPa [Fig. 19(c)]. However,
there was only one H2 molecule adsorbed in both the systems at 0.01 GPa, while the structure
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of the doped graphene was completely destroyed with H and Al forming covalent bond at 1
GPa [Fig. 19(d)]. When P = 0.1 GPa, there are three H2 left on the top side of the two Al doped
systems [Fig. 19(b)]. Therefore, the Al doped graphene for hydrogen storage capacity at room
temperature and 0.1 GPa is 5.13 wt% with Eb = 0.260 eV/H2, satisfying the requirements of
actual application. In addition, all the adsorbed H2 molecules can be released when P = 0.0001
GPa.

3.2 Hydrogen storage in graphene with Al atom adsorption
Very recently, based on DFT calculations, Ca atoms adsorbed on graphene layers and
fullerenes were found to result in high-capacity hydrogen storage mediums, which could
be recycled at room temperature (Ataca et al., 2009; Yoon et al., 2008). In these systems, the
adsorbed Ca atoms become positively charged and the semimetallic graphene changes into
a metallic state, while the hydrogen storage capacity (HSC) can be up to 8.4 wt %. However,
a recent report claimed that DFT calculations overestimated significantly the binding energy
between the H2 molecules and the Ca+1 cation centers (Cha et al., 2009). On the other hand,
Al-doped graphene where one Al atom replaces one C atom of a graphene layer was reported
as a promising hydrogen storage material at room temperature with HSC of 5.13 wt % (Ao
et al., 2009a).
In this work, DFT was applied for studying the hydrogen adsorption on graphene with Al
atom adsorption. The favourite adsorption configuration of Al atoms on single side and on
both sides of a graphene layer have been determined. The obtained materials were studied
for adsorption of H2 molecules and we discuss its hydrogen storage properties.

Fig. 20. Three different sites for an Al atom adsorbed on graphene. H, B and T denote the
hollow of hexagon, bridge of C-C bond and top site of C atom, respectively. In addition, the
charges of atoms near the adsorbed Al atom are also given, where the unit of charge is one
electron charge e which is not given in the figure for clarity. The gray and pink balls in this
figure and figures below are C and Al atoms, respectively. (Reproduced with permission
from Ref. (Ao & Peeters, 2010b). Copyright 2010, APS)

LDA was used for all the calculations in this section. All DFT calculations were performed
using the Dmol3 code (Delley, 1990). Double Numerical Plus polarization (DNP) was taken
as the basis set. In this case, three-dimensional periodic boundary conditions were applied
and the H-H bond length was set to lH H = 0.74 Å identical to the experimental value (Lide,
2000). The computational unit cell consists of a 2 2 graphene supercell with a vacuum width
of 18 Å to minimize the interlayer interaction. As shown in Fig. 20, the supercell contains 8 C
atoms. All atoms were allowed to relax in all calculations.
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Fig. 19. Atomic configurations H2/Al-doped-graphene system at different temperature and
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Copyright 2009, AIP)
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is almost half of the Eb for above the case where the Al doped graphene adsorbed 3 H2 on one
side of graphene. In addition, the adsorption with 8 H2 molecules in the Al doped graphene
was also calculated, and it is found 2 H2 molecules were released. In the other words, the
interaction between H2 molecules would weaken the adsorption on the doped graphene and
the saturated number of H2 molecules adsorption is 6. Note that Eb for the cases of 3 H2 and 6
H2 are respectively -0.303 eV/H2 and -0.164 eV/H2, which is about twice for the case of 3 H2
comparing with the case of 6 H2. This is because H2 molecules were very weakly adsorbed
below the graphene layer where the doped Al atom locates above the graphene layer.
It is well known that T and P have essential effects on hydrogen storage, where increasing
P and decreasing T enhance the capacity of hydrogen storage. Thus, most studied systems
are either under high P or at very low T (Sahaym & Norton, 2008), which may not be viable
for mobile applications. For example, a storage capacity of 8 wt% for purified single wall
carbon nanotubes (SWNTs) at 80 K with a hydrogen pressure of 13 Mpa (Ye et al., 1999) and
a lower hydrogen storage capacity of 2.3 wt% at 77 K were reported (Panella et al., 2005).
The hydrogen storage capacities in other carbon related materials, such as activated carbon
(AC), single walled carbon nanohorn, SWNTs, and graphite nanofibers (GNFs) were also
investigated (Xu et al., 2007). Although the AC had a capacity of 5.7 wt% at 77 K with P = 3
MPa, its capacity is 1% at 300 K (Xu et al., 2007). Recent experimental results demonstrated
that the intrinsic graphene has hydrogen storage capacity of 1.7 wt% under 1 atm at 77 K, and
3 wt% under 100 atm at 298 K (Ghosh et al., 2008). Thus, to meet the DOE target, it is necessary
to study the adsorption and desorption behaviours of H2 in the Al doped graphene at T = 300
K with different P. Therefore, the adsorption behaviours of 3H2/Al-doped-graphene and
6H2/Al-doped- graphene systems were calculated under 0.0001, 0.01, 0.1 and 1 GPa using
ab initio MD simulation. For both the 3H2/Al-doped-graphene and 6H2/Al-doped- graphene
systems, we found that all H2 molecules were released at 0.0001 GPa [Fig. 19(c)]. However,
there was only one H2 molecule adsorbed in both the systems at 0.01 GPa, while the structure
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of the doped graphene was completely destroyed with H and Al forming covalent bond at 1
GPa [Fig. 19(d)]. When P = 0.1 GPa, there are three H2 left on the top side of the two Al doped
systems [Fig. 19(b)]. Therefore, the Al doped graphene for hydrogen storage capacity at room
temperature and 0.1 GPa is 5.13 wt% with Eb = 0.260 eV/H2, satisfying the requirements of
actual application. In addition, all the adsorbed H2 molecules can be released when P = 0.0001
GPa.

3.2 Hydrogen storage in graphene with Al atom adsorption
Very recently, based on DFT calculations, Ca atoms adsorbed on graphene layers and
fullerenes were found to result in high-capacity hydrogen storage mediums, which could
be recycled at room temperature (Ataca et al., 2009; Yoon et al., 2008). In these systems, the
adsorbed Ca atoms become positively charged and the semimetallic graphene changes into
a metallic state, while the hydrogen storage capacity (HSC) can be up to 8.4 wt %. However,
a recent report claimed that DFT calculations overestimated significantly the binding energy
between the H2 molecules and the Ca+1 cation centers (Cha et al., 2009). On the other hand,
Al-doped graphene where one Al atom replaces one C atom of a graphene layer was reported
as a promising hydrogen storage material at room temperature with HSC of 5.13 wt % (Ao
et al., 2009a).
In this work, DFT was applied for studying the hydrogen adsorption on graphene with Al
atom adsorption. The favourite adsorption configuration of Al atoms on single side and on
both sides of a graphene layer have been determined. The obtained materials were studied
for adsorption of H2 molecules and we discuss its hydrogen storage properties.

Fig. 20. Three different sites for an Al atom adsorbed on graphene. H, B and T denote the
hollow of hexagon, bridge of C-C bond and top site of C atom, respectively. In addition, the
charges of atoms near the adsorbed Al atom are also given, where the unit of charge is one
electron charge e which is not given in the figure for clarity. The gray and pink balls in this
figure and figures below are C and Al atoms, respectively. (Reproduced with permission
from Ref. (Ao & Peeters, 2010b). Copyright 2010, APS)

LDA was used for all the calculations in this section. All DFT calculations were performed
using the Dmol3 code (Delley, 1990). Double Numerical Plus polarization (DNP) was taken
as the basis set. In this case, three-dimensional periodic boundary conditions were applied
and the H-H bond length was set to lH H = 0.74 Å identical to the experimental value (Lide,
2000). The computational unit cell consists of a 2 2 graphene supercell with a vacuum width
of 18 Å to minimize the interlayer interaction. As shown in Fig. 20, the supercell contains 8 C
atoms. All atoms were allowed to relax in all calculations.
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The binding energy of Al atoms onto graphene Eb Al is defined as,

Eb Al = [EnAl graphene (Egraphene + nEAl)]/n (18)

where EnAl graphene, Egraphene and EAl are the energy of the system with n Al atoms adsorbed
on the graphene layer, the energy of the pristine graphene layer and the energy of one Al atom
in the same slab, respectively. The binding energy of H2 molecules onto Al-adsorbed graphene
layer Eb H2 is defined as,

Eb H2 = [EiH2+Al graphene (EAl graphene + iEH2)]/i (19)

where the subscripts iH2+Al-graphene, Al-graphene, and H2 denote the system with i H2
molecules adsorbed, isolated Al-adsorbed graphene and a H2 molecule, respectively.

Fig. 21. A cluster model for 2 H2 molecules adsorbed on graphene with an Al atom adsorbed
on its one side. The white balls are hydrogen atoms in this figure and figures below.
(Reproduced with permission from Ref. (Ao & Peeters, 2010b). Copyright 2010, APS)

To investigate the potential effects of different methodologies on our results, a calculation
using the cluster model was carried out with both LDA and wave function approaches with
the Møller-Plesset second order perturbation (MP2) within the Gaussian modules where the
6 331 + +G basis set was taken and maximum step size was set to 0.15 Å. Note that the
cluster configuration shown in Fig. 21 was used because of the requirement of Gaussian
modules, and the system was recalculated by LDA for purposes of comparison. In this
calculation, a cluster with 24 carbon atoms and with 1 Al atom and 2 H2 molecules adsorbed
over the carbon surface was simulated where the dangling bonds of the C atoms at the
boundary are terminated with H atoms.
On the basis of the published results, one may assume that the uptake capacity of hydrogen
would increase if more metal atoms were adsorbed on the surface of a graphene nanostructure
(Ataca et al., 2009; Liu et al., 2009). Furthermore, the binding between metal atoms and a
surface would be strengthened if more charge is transferred between the metal atoms and
the graphene nanostructure. Obviously, the binding can also be enhanced by adding more
metal atoms with concomitant additional charges available for electronic transfer. However,
metal atoms intend to aggregate into clusters when their concentration is large due to their
high cohesive energies compared with those of metal atoms adsorbed on graphene, which
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may significantly reduce the hydrogen uptake (Krasnov et al., 2007). For the Al, the cohesive
energy is 3.39 eV (Gaudoin et al., 2002). To examine the validity of this assumption, a unit
cell with eight C atoms and one Al atom was used in the present study, which is shown in Fig.
20. The ratio Al:C = 1:8 is quite moderate and moreover strictly obeys the doping rules for high
coverage metals (Froudakis, 2001; Gao et al., 1998), which makes it possible for us to achieve
a relatively high storage capacity. This rule ensures that the Al-Al distance is sufficiently large
avoiding clustering of Al on graphene.
The favourite adsorption position of this Al atom on graphene is then determined. There
are three different adsorption sites as shown in Fig. 20, which are the hollow of the carbon
hexagon (H), the bridge of C-C bond (B), and the top site of the C atom (T), respectively.
The Al-Al interaction is indeed negligible owing to the large distance of about 4.92 Å. It is
found that the Al adsorbed at the H site has the lowest energy and is therefore the favourite
adsorption configuration with a binding energy of -0.824 eV and the distance between Al and
the graphene layer d1 is about 2.079 Å. In Fig. 20, the charges of atoms near the adsorbed
Al atom are given, which were obtained by Mulliken analysis. The adsorbed Al atom has a
positive 0.266 e charge, while each C atom nearby has a negative charge 0.049 e. Note that
the other two C atoms in the simulation cell contribute the rest of the electron charge to the
negative C atoms. Therefore, the long distance of Al-Al, the relative strong bonding between
the Al atom and the graphene layer, and the Coulomb repulsion between the Al atoms prevent
metal aggregation on graphene.

Fig. 22. Six different adsorption sites for the second Al atom on the other side of the graphene
layer. The charges of atoms near the adsorbed Al atoms are also given, where the unit of
charge is one electron charge e. (Reproduced with permission from Ref. (Ao & Peeters,
2010b). Copyright 2010, APS)

Due to the positive charge on the Al atoms and the negative charge on the carbon atoms,
an electric field is induced between the Al atoms and the graphene layer, which in turn
leads to a back transfer of charge from the graphene layer to the Al atom. Hence, by
increasing Al coverage, adsorbed Al atoms would become less positively charged, which
would decrease the Coulomb repulsion between the Al atoms, and eventually this may lead
to metal aggregation. This also agrees with the doping rules (Froudakis, 2001; Gao et al., 1998).
To further confirm the stability of Al atoms on graphene, the diffusion behavior of an Al
atom on graphene was studied by the transition search (TS) method in order to obtain the
diffusion barrier. It has been shown above that the most stable configuration of an Al atom on
graphene corresponds to adsorption on the H site of graphene. Consequently, the diffusion
scenario of an Al atom on graphene between two H sites is considered in order to study
surface diffusion. Based on the TS calculation, it is found that the classical barrier for surface
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Due to the positive charge on the Al atoms and the negative charge on the carbon atoms,
an electric field is induced between the Al atoms and the graphene layer, which in turn
leads to a back transfer of charge from the graphene layer to the Al atom. Hence, by
increasing Al coverage, adsorbed Al atoms would become less positively charged, which
would decrease the Coulomb repulsion between the Al atoms, and eventually this may lead
to metal aggregation. This also agrees with the doping rules (Froudakis, 2001; Gao et al., 1998).
To further confirm the stability of Al atoms on graphene, the diffusion behavior of an Al
atom on graphene was studied by the transition search (TS) method in order to obtain the
diffusion barrier. It has been shown above that the most stable configuration of an Al atom on
graphene corresponds to adsorption on the H site of graphene. Consequently, the diffusion
scenario of an Al atom on graphene between two H sites is considered in order to study
surface diffusion. Based on the TS calculation, it is found that the classical barrier for surface
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diffusion is 0.104 eV. Notice that the calculated diffusion barrier corresponds only to a classical
hopping model of diffusion. In practical cases, quantum tunneling effects should also be
considered (Wu et al., 2009). In addition, because only a single Al atom is involved in the
simulation cell, the Al-Al distance is kept unchanged. While in actual diffusion, the Al-Al
distance would be shortened and repulsive Coulomb interaction among positively charged
Al atoms would increase, leading to a significant increase of the diffusion barrier, which will
prevent aggregation of adsorbed Al atoms on graphene.
Next the adsorption of Al atoms on both sides of the graphene layer is considered in order
to increase the available surface area for hydrogen storage, since the charged metal atoms
are the nucleation centres for hydrogen adsorption (Ataca et al., 2009; Liu et al., 2009; Yoon
et al., 2008). As shown in Fig. 22, there are six different sites for the second Al atom to be
positioned on the other side of the graphene layer. After geometry optimization of the six
configurations, we found that the lowest energy configuration is realized for the second Al
atom adsorbed on the H2 site with energy Eb Al = 1.096 eV and the average Eb Al for
the two Al atoms is 0.960 eV. As shown in Fig. 22, the two Al atoms are positioned on
two shoulder-by-shoulder carbon hexagons but on opposite sides of the graphene layer. The
repulsive Coulomb interaction between the positively charged Al atoms on the upper and
lower parts of the graphene plane is screened by the negative charge on the C-atoms. The
graphene layer is now more negatively charged as compared to the previous single Al atom
case, while the adsorbed Al atoms are more positively charged (the charges of the atoms on
the Al and C atoms are given in Fig. 22). It leads to a stronger binding energy for the Al atoms
on the graphene. In addition, d1 2.138 Å which is slightly larger as compared to the case of
single side adsorption which is counter intuitive. The reason is that the small increase of d1 is
a result of the Coulomb repulsion between the two positively charged Al atoms located above
and below the graphene layer, which is screened by the charged graphene layer.
For the case of one H2 molecule adsorbed on graphene with Al atoms adsorbed on a single
side of graphene, the configuration after relaxation is shown in Fig. 23(a) where a 4 4
supercell is taken in order to better display the atomic structure, especially the adsorption site
of the H2 molecule. It indicates that the H2 molecule would take the center site of equilateral
triangles formed by adsorbed Al atoms. The vertical distance between the H2 molecules and
the graphene layer is d2 = 2.830Å, while d1 decreases slightly to 2.060 Å, and the adsorption
energy for the first H2 molecule is Eb H2 = 0.182 eV/H2. In the figure, it shows that a
parallelogram formed by the adsorbed Al atoms has two centre sites of equilateral triangles.
However, due to the limitation of interaction among adsorbed H2 molecules, H2 would take
just one of the two centre sites. When more H2 molecules are adsorbed, the two centre sites
would be both occupied as shown in Fig. 23(b) where two H2 molecules are adsorbed. The
adsorption energy for the second H2 molecule is Eb H2 = 0.273 eV/H2, which gives an
average adsorption energy for the two H2 molecules of 0.227 eV/H2. Fig. 23(c) gives the
atomic structure of three adsorbed H2 molecules. Two H2 molecules take the two centre sites
as in Fig. 23(b), the other H2 molecule would take the top site of the Al atom. The distance
of the three H2 to the Al atom are respectively 2.786, 2.879 and 2.903 Å with average binding
energy of -0.176 eV/H2. If we further increase the number of H2 molecules, after relaxation,
the result shows that the fourth H2 molecule cannot be adsorbed. Therefore, it is concluded
that the maximum number of H2 molecules adsorbed on a single side of a 2 2 graphene unit
cell is three.
For the cases of one and two adsorbed H2 molecules, it was found that the H2 molecules are
parallel to the graphene layer and all H2 molecules are equidistant from the Al atoms. Once
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Fig. 23. Atomic structures of H2 molecules adsorbed on Al-adsorbed graphene. (a) One H2
molecule adsorbed on graphene with Al adsorbed on the single side, (b) two H2 molecules
adsorbed on graphene with Al adsorbed on a single side of graphene, (c) three H2 molecules
adsorbed on graphene with Al adsorbed on one side of graphene, (d) four H2 molecules
adsorbed on each side of graphene with Al adsorbed on its both sides, (e) six H2 molecules
adsorbed on each side of graphene with Al adsorbed on its both sides. In this figure, 4 4
supercells are plotted to better display the adsorption sites of the H2 molecules. In (d) and
(e), due to the Al atoms and H2 molecules adsorbed on both sides of graphene, Al atoms and
H2 molecules below the graphene layer are shown as orange and yellow, respectively.
Meanwhile, in order to show the two-layer adsorption arrangement of H2 molecules, initial
simulation cells of side view are also given in the nether part of (d) and (e). (Reproduced
with permission from Ref. (Ao & Peeters, 2010b). Copyright 2010, APS)

the number of H2 absorbed on each Al atom exceeded two, the absorbed H2 molecules tend
to tilt towards the Al atoms because of the increased positive charge of the Al atoms and the
symmetry of the bonding configuration of the H2 molecules. This phenomenon is similar to
the case of adsorption of H2 molecules on Ca-adsorbed graphene (Ataca et al., 2009).
In addition, it was noted that the Eb H2 of the second H2 molecule is much larger than that
of the first one, i.e. it is about 50% larger. In order to understand this enhancement, PDOS of
Al, C atoms and H2 molecules are plotted and shown in Fig. 24. It was reported that the band
broadening of the molecular level of H2 below the Fermi energy indicates a significant H2-H2
interaction that in turn increases its binding energy to the substrate (Ataca et al., 2009). In this
work, the same mechanism is found where the band broadening of about 6 eV appears in
Fig. 24. In fact, the binding energy of the first H2 molecule to the Al atom which prefers to be
parallel to the graphene layer is generally small (Ataca et al., 2009).
Figure 25 displays the electron density of the system with one and two adsorbed H2 molecules.
Notice that there is non-zero electron density in the region between the graphene layer and
the adsorbed Al atom. This is the reason why Al atoms are strongly adsorbed on the graphene
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Fig. 23. Atomic structures of H2 molecules adsorbed on Al-adsorbed graphene. (a) One H2
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with permission from Ref. (Ao & Peeters, 2010b). Copyright 2010, APS)

the number of H2 absorbed on each Al atom exceeded two, the absorbed H2 molecules tend
to tilt towards the Al atoms because of the increased positive charge of the Al atoms and the
symmetry of the bonding configuration of the H2 molecules. This phenomenon is similar to
the case of adsorption of H2 molecules on Ca-adsorbed graphene (Ataca et al., 2009).
In addition, it was noted that the Eb H2 of the second H2 molecule is much larger than that
of the first one, i.e. it is about 50% larger. In order to understand this enhancement, PDOS of
Al, C atoms and H2 molecules are plotted and shown in Fig. 24. It was reported that the band
broadening of the molecular level of H2 below the Fermi energy indicates a significant H2-H2
interaction that in turn increases its binding energy to the substrate (Ataca et al., 2009). In this
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Fig. 24. PDOS of Al, H2 and C in the systems of one and two H2 molecules adsorbed on
graphene with Al adsorbed on the single side. The Fermi level is at 0. (Reproduced with
permission from Ref. (Ao & Peeters, 2010b). Copyright 2010, APS)

Fig. 25. Electron density distribution in the systems of one and two H2 molecules adsorbed
on graphene with Al adsorbed on a single side of graphene. (Reproduced with permission
from Ref. (Ao & Peeters, 2010b). Copyright 2010, APS)

layer. In addition, some electronic distribution also appears among the H2 molecules, the
Al atom and the graphene layer. For H2 molecules adsorbed on pristine graphene, no
electron density was found between the H2 molecules and the graphene layer (Ao et al.,
2009a). Therefore, H2 adsorption is enhanced in the Al-adsorbed graphene system due to the
adsorbed Al atoms that act as bridges to link the electron clouds of the H2 molecules and
the graphene layer. Furthermore, Fig. 25(b) also shows that there is some electron distribution
between the two adsorbed H2 molecules. This means that the interaction between the H2
molecules will change the electron distribution and may induce an enhancement of the
adsorption energy as found in Fig. 24.
Very recently, the mechanism of H2 adsorption onto Ca cation centers was investigated using
both DFT and wave function approaches (Cha et al., 2009). It was found that DFT calculations
overestimated the binding energy between the H2 molecules and the Ca1+ cation centers
significantly. Similarly, a calculation was carried out on 2 H2 molecules adsorbed on an Al
coated graphene using the cluster model with both LDA and wave function approaches with
MP2 within the Gaussian modules. The average binding energies for H2 in this cluster system
were found to be 0.196 and 0.185 eV/H2 with LDA and MP2, respectively. Thus the two
values differ by less than 6% giving some credibility to our numerical obtained binding energy.
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In other words, the significant overestimation by DFT as found earlier for the binding of H2
molecules onto Ca1+ system does not occur for our system.
In addition, in order to investigate the effect of the simulation cell size on the results
calculations were also performed using a 4 4 supercell with H2 molecules adsorbed as
shown in Fig. 23(a). We found almost the same results as obtained with the 2 2 supercell. In
the 4 4 system, the H2 molecules are adsorbed on the center sites of the equilateral triangles
of Al atoms, as shown in Fig. 23(a). The distance between the H2 molecules and the graphene
surface are, respectively, 2.884 and 2.825 Å in 2 2 and 4 4 systems, while Eb H2 in 4 4
system is 0.190 eV/H2 and Eb H2 = 0.182 eV/H2 in 2 2 system.
For the case of hydrogen adsorption on Al that is adsorbed on both sides of graphene, the
situations of one, two and three H2 molecules adsorbed on each side of graphene are rather
similar to the above case of adsorption on a single side of graphene. In other words, two H2
molecules will take the center sites of equilateral triangles formed by the adsorbed Al atoms
as shown in Figs. 23(a) and 23(b), and the third H2 will take the top site of the Al atom as
in Fig. 23(c). Previously, it is shown that a maximum of three H2 molecules per 2 2 unit
cell can be adsorbed on one side of graphene. However, for the case of adsorption on both
sides of the graphene layer, each side can absorb more than 3 H2 molecules. In Fig. 23(d)
with 4 H2 molecules adsorbed on each side, we show a 4 4 supercell. Two of them take
the centre sites of equilateral triangles, and the other two are located on the bridge sites of
two Al atoms. However, the four H2 molecules are in two different planes with distances to
the graphene layer being 2.672 and 4.675 Å. The distances of the four H2 molecules to the Al
atom are respectively 2.444, 2.531, 2.918, and 2.947 Å. The average Eb H2 is -0.209 eV/H2. If
further increasing the number of H2 molecules, the two H2 molecules in the center sites of
the equilateral triangles will hop to the bridge sites of the two Al atoms while keeping the
two-layer structure. Therefore, each Al atom can absorb a maximum of six H2 molecules, due
to the two-layer adsorption structure and each Al atom has six nearest Al atoms with each
adsorbed H2 molecule shared by two Al atoms.
Fig. 23(e) gives the corresponding atomic structure with H2 molecules fully adsorbed. It shows
that all the H2 molecules are located at the bridge sites of Al-Al and are arranged into two
layers on each side of graphene. Note that the adsorption of H2 on both sides of graphene
will automatically change the sites of adsorbed Al atoms from the centre site of the carbon
hexagon to nearly the bridge site of the C-C bond as shown in Figs. 23(d) and 23(e). The
different location of the Al atoms in the presence of adsorbed H2 for single side and both
sides of graphene is a consequence of: (1) the different charges of Al atoms adsorbed on one
side of graphene and on both sides of graphene, and (2) the different number of adsorbed H2
molecules. Therefore, HSC is up to 13.79 wt% with an average Eb H2 = 0.193 eV/H2. Note
that the obtained HSC is in excess of 6 wt%, surpassing DOE’s target, and the obtained Eb H2
is almost within the required range of 0.2 to 0.4 eV/H2 (Li et al., 2003).
For the practical purpose, Eb H2 is required to be a weak function of the adsorption coverage
X of H2 molecules on graphene, so that the adsorbed H2 molecules can be desorbed to almost
zero X. In this work, Eb H2 is about -0.2 eV/H2 and it is found that the amount of coverage
has only a weak effect on Eb H2. The coverage dependence of Eb H2(X) is shown in Fig. 26
with Eb H2(X) varying within 15%. Note that Eb H2 is the lowest when 4 H2 molecules were
adsorbed. This is because adsorption is strongest when H2 molecules are located on the centre
sites of equilateral triangles formed by the adsorbed Al atoms. This was confirmed above
in Fig. 23(a) where one H2 molecule was first adsorbed at the centre sites of the equilateral
triangles. Due to the interaction between the H2 molecules as shown in the Figs. 24, 25 and
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Fig. 24. PDOS of Al, H2 and C in the systems of one and two H2 molecules adsorbed on
graphene with Al adsorbed on the single side. The Fermi level is at 0. (Reproduced with
permission from Ref. (Ao & Peeters, 2010b). Copyright 2010, APS)

Fig. 25. Electron density distribution in the systems of one and two H2 molecules adsorbed
on graphene with Al adsorbed on a single side of graphene. (Reproduced with permission
from Ref. (Ao & Peeters, 2010b). Copyright 2010, APS)

layer. In addition, some electronic distribution also appears among the H2 molecules, the
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164 Physics and Applications of Graphene - Theory

In other words, the significant overestimation by DFT as found earlier for the binding of H2
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with 4 H2 molecules adsorbed on each side, we show a 4 4 supercell. Two of them take
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that the obtained HSC is in excess of 6 wt%, surpassing DOE’s target, and the obtained Eb H2
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zero X. In this work, Eb H2 is about -0.2 eV/H2 and it is found that the amount of coverage
has only a weak effect on Eb H2. The coverage dependence of Eb H2(X) is shown in Fig. 26
with Eb H2(X) varying within 15%. Note that Eb H2 is the lowest when 4 H2 molecules were
adsorbed. This is because adsorption is strongest when H2 molecules are located on the centre
sites of equilateral triangles formed by the adsorbed Al atoms. This was confirmed above
in Fig. 23(a) where one H2 molecule was first adsorbed at the centre sites of the equilateral
triangles. Due to the interaction between the H2 molecules as shown in the Figs. 24, 25 and
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Fig. 26. X dependent average adsorption energy Eb H2(X) of H2 on graphene with Al
adsorbed on both sides of graphene. (Reproduced with permission from Ref. (Ao & Peeters,
2010b). Copyright 2010, APS)

discussed above, adsorption with 2 H2 molecules on each side on the centre sites of equilateral
triangles is strongest.
When 12 H2 molecules are adsorbed on both sides of a 2 2 supercell of graphene, the H2
molecules on each side of graphene will be arranged into two layers as shown in Fig. 23(e),
the distances of each layer to the graphene surface are respectively about 2.5 and 5.0 Å, while
d1 is about 2.2 Å. As discussed above, the adsorption energy Eb Al for adsorption on both
sides of graphene is larger than that for single side adsorption. At the same time, the Al atoms
are more positively charged, and the C atoms are more negatively charged when the Al atoms
are adsorbed on both sides of graphene. As found previously hydrogen adsorption is mainly
induced by charged metal atoms, and the strength of the adsorption depends on the amount
of the transferred charge (Liu et al., 2009; Sun et al., 2006). Thus, the graphene layer when Al
is adsorbed on both sides of graphene has a larger capacity for H2 storage. However, due to
the limited space between the Al atoms and the repulsive interaction between the adsorbed
H2 molecules, some adsorbed H2 molecules move upwards, over the Al atoms. This is also
the reason why H2 molecules can form a two-layer arrangement in the case of Al adsorbed
on both sides of graphene, only a single H2 layer is found for the corresponding single side
system.
To test the stability of the hydrogen storage system, ab initio MD simulations was performed
on a 12H2-Al-graphene system which is shown in Fig. 23(e). The MD simulation in the NVT
ensemble, i.e., constant number of atoms N, volume V, and temperature T, was performed
over a time of 1 ps with a massive GGM thermostat at 300 K and without external pressure.
We found that only the outer 2 H2 molecules are escaping from each side of the graphene layer,
because they are more weakly bound than the other H2 molecules. For example, the first H2
molecule that is released has a binding energy of 0.129 eV. In this case, the HSC becomes
9.64 wt%, which is still much higher than DOE’s target. While ab initio MD simulation is quite
computationally time consumption, 1 ps is not enough to get statistically meaningful values
for the desorption temperature. However, it does suggest that the system keeps a rather high
hydrogen storage capacity at room temperature. This is even the case in the absence of external
pressure, and it is thus possible to release H2 molecules without removing the Al atoms. Note
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that the system stability of hydrogen storage in Ti-decorated carbon nanotubes was tested
in similar conditions, where the MD calculations lasted 1.5 ps (Yildirim & Ciraci, 2005). In
addition, the release of H2 molecules can be further prevented by decreasing the temperature
or increasing the pressure of storage to increase its HSC.

Fig. 27. The configuration of H2 molecules adsorbed in a 4 supercell system. (Reproduced
with permission from Ref. (Ao & Peeters, 2010b). Copyright 2010, APS)

To investigate the effect of the concentration of adsorbed Al atoms on its hydrogen storage
capacity, a 4 4 graphene supercell was considered with one Al atom on the centre site of
the carbon hexagon above and below the graphene layer. It is found that each Al atom can
maximally adsorb 6 H2 molecules with average Eb H2 = 0.172 eV/H2 resulting in a HSC of
5.19 wt%. The adsorption configuration is shown in Fig. 27. Note that the HSC is much lower
than 13.79 wt% found for the 2 2 supercell system above. In the case of H2 adsorbed in the
2 2 system, the H2 molecules are adsorbed on the bridge sites of Al-Al and are arranged into
a two layer configuration. Thus, each adsorbed H2 molecule interacts with the nearest two Al
atoms. In the 4 4 system, which corresponds to a lower density of adsorbed Al, the distance
between two Al atoms is very long, up to 9.84 Å. Thus, each H2 interacts with one Al atom and
the graphene layer, and there is more space available for the adsorbed H2 molecules which are
located in a single layer. The corresponding adsorption energies Eb H2 also decrease slightly
as the Al-Al distance increases. For single H2 molecule and two H2 molecules adsorbed on a
4 4 supercell, Eb H2 are 0.169 and -0.178 eV/H2. In case of a 2 2 supercell we found that
Eb H2 are 0.182 and 0.227 eV/H2, respectively.
For the practical applications, it is desirable to know the exact charge status of the hydrogen
storage material. From it the information whether the hydrogen storage material is fully
charged or the adsorbed H2 molecules are completely released can be obtained. The charge
exchanged with the graphene layer can be determined by the conductivity of the graphene
layer, which is strongly determined by the DOS at the Fermi level (He et al., 2008; Schedin
et al., 2007). The X-dependence of the latter quantity is given in Fig. 28. The result shows that
the DOS at the Fermi level decreases as X increases and this dependence becomes weaker at
high X.

4. Conclusion

A principle of CO adsorption enhancement was developed theoretically by using density
functional theory through doping Al into graphene. The results show that the Al doped
graphene has strong chemisorption of CO molecule by forming Al-CO bond, where CO
onto intrinsic graphene remains weak physisorption. Furthermore, the enhancement of
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Fig. 26. X dependent average adsorption energy Eb H2(X) of H2 on graphene with Al
adsorbed on both sides of graphene. (Reproduced with permission from Ref. (Ao & Peeters,
2010b). Copyright 2010, APS)
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the reason why H2 molecules can form a two-layer arrangement in the case of Al adsorbed
on both sides of graphene, only a single H2 layer is found for the corresponding single side
system.
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on a 12H2-Al-graphene system which is shown in Fig. 23(e). The MD simulation in the NVT
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for the desorption temperature. However, it does suggest that the system keeps a rather high
hydrogen storage capacity at room temperature. This is even the case in the absence of external
pressure, and it is thus possible to release H2 molecules without removing the Al atoms. Note

166 Physics and Applications of Graphene - Theory

that the system stability of hydrogen storage in Ti-decorated carbon nanotubes was tested
in similar conditions, where the MD calculations lasted 1.5 ps (Yildirim & Ciraci, 2005). In
addition, the release of H2 molecules can be further prevented by decreasing the temperature
or increasing the pressure of storage to increase its HSC.
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To investigate the effect of the concentration of adsorbed Al atoms on its hydrogen storage
capacity, a 4 4 graphene supercell was considered with one Al atom on the centre site of
the carbon hexagon above and below the graphene layer. It is found that each Al atom can
maximally adsorb 6 H2 molecules with average Eb H2 = 0.172 eV/H2 resulting in a HSC of
5.19 wt%. The adsorption configuration is shown in Fig. 27. Note that the HSC is much lower
than 13.79 wt% found for the 2 2 supercell system above. In the case of H2 adsorbed in the
2 2 system, the H2 molecules are adsorbed on the bridge sites of Al-Al and are arranged into
a two layer configuration. Thus, each adsorbed H2 molecule interacts with the nearest two Al
atoms. In the 4 4 system, which corresponds to a lower density of adsorbed Al, the distance
between two Al atoms is very long, up to 9.84 Å. Thus, each H2 interacts with one Al atom and
the graphene layer, and there is more space available for the adsorbed H2 molecules which are
located in a single layer. The corresponding adsorption energies Eb H2 also decrease slightly
as the Al-Al distance increases. For single H2 molecule and two H2 molecules adsorbed on a
4 4 supercell, Eb H2 are 0.169 and -0.178 eV/H2. In case of a 2 2 supercell we found that
Eb H2 are 0.182 and 0.227 eV/H2, respectively.
For the practical applications, it is desirable to know the exact charge status of the hydrogen
storage material. From it the information whether the hydrogen storage material is fully
charged or the adsorbed H2 molecules are completely released can be obtained. The charge
exchanged with the graphene layer can be determined by the conductivity of the graphene
layer, which is strongly determined by the DOS at the Fermi level (He et al., 2008; Schedin
et al., 2007). The X-dependence of the latter quantity is given in Fig. 28. The result shows that
the DOS at the Fermi level decreases as X increases and this dependence becomes weaker at
high X.

4. Conclusion

A principle of CO adsorption enhancement was developed theoretically by using density
functional theory through doping Al into graphene. The results show that the Al doped
graphene has strong chemisorption of CO molecule by forming Al-CO bond, where CO
onto intrinsic graphene remains weak physisorption. Furthermore, the enhancement of
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Fig. 28. X dependent number of band states at the Fermi level. (Reproduced with permission
from Ref. (Ao & Peeters, 2010b). Copyright 2010, APS)

CO sensitivity in the Al doped graphene is determined by a large electrical conductivity
change after adsorption, where CO absorption leads to increase of electrical conductivity
via introducing large amount of shallow acceptor states. Therefore, this newly developed
Al doped graphene would be an excellent candidate for sensing CO gas. After that, the
correlation of the applied electric field F and adsorption/desorption behaviors of CO molecule
in the Al doped graphene was studied. The results indicate that the positive F reduces the
adsorption energies Eb of the CO adsorbed onto the doped graphene, while Eb increases
under the negative F. Furthermore, desorption commences when a large positive F (F 0.03
au) is applied. Finally, the thermal stability of interaction between the CO molecules and
the Al doped graphene is studied with ab initio molecular dynamics calculation to reveal the
adsorption/desorption behaviours of the system. Based on the results of the calculations, the
adsorption/desorption phase diagram was established by the atomic thermodynamics and
the temperature dependent desorption time (T) was determined with thermal desorption
method. The results show that the optimal desorption temperature is 400 K. Meanwhile, the
effect of T on atomic structure parameters and electrical properties were analyzed, and the
results show that the greatest conductivity change before and after adsorption is at T = 400
K. Therefore, this sensor material has the best sensing performance with appropriate and
the biggest conductivity change at 400 K.
Furthermore, the promising hydrogen storage mediums, Al-modified graphenes, are
proposed through density functional theory calculations. Hydrogen molecule is predicted
to be strongly physically adsorbed on Al substitutionally doped graphene with adsorption
energy -0.427 eV/H2 that is in a reasonable range, so that hydrogen storage can be recycled
at near ambient conditions, while a graphene layer with Al adsorbed on both sides can store
hydrogen up to 13.79 wt% with a two-layer arrangement of H2 molecules formed on each
side. Its hydrogen storage capacity is in much excess of 6 wt% of DOE’s target. In the Al
substitutionally doped graphene system, it is believed that the doped Al alters the electronic
structures of both C and H2, and the bands of H2 overlapping with those of Al and C
simultaneously are the underlying mechanism of the hydrogen adsorption enhancement from
-0.159 eV/H2 in pristine graphene. In the Al adsorbed on both sides of graphene system, this
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high-capacity hydrogen storage is due to the adsorbed Al atoms that act as bridges to link
the electron clouds of the H2 molecules and the graphene layer. In addition, we find that the
H2 concentration in the hydrogen storage medium can be measured by the change in the
conductivity of the graphene layer.
There has been an explosion of ideas that suggest graphene for potential applications.
This is often led by analogies with carbon nanotubes that continue to serve a guide in
searching for new applications. Except for its excellent electronic properties, graphene also
displays several unusual attributions. Graphene is a giant aromatic macromolecule that
conducts both electricity and heat well in two dimensions. Their mechanical strength of
graphene is comparable to that of CNTs, while CNTs can be considered as a rolled up
graphene. The shape, size, and chemical structure of graphene sheets can be further modified
by engineering. Nonetheless, research toward the application of graphene-based materials
has just begun. Many challenges and opportunities remain. For examples, applications for
batteries and supercapacitors, in separation technologies, as supports for catalysts, and filler
for composition materials, and so on, are widely expected in the recent future.
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Fig. 28. X dependent number of band states at the Fermi level. (Reproduced with permission
from Ref. (Ao & Peeters, 2010b). Copyright 2010, APS)

CO sensitivity in the Al doped graphene is determined by a large electrical conductivity
change after adsorption, where CO absorption leads to increase of electrical conductivity
via introducing large amount of shallow acceptor states. Therefore, this newly developed
Al doped graphene would be an excellent candidate for sensing CO gas. After that, the
correlation of the applied electric field F and adsorption/desorption behaviors of CO molecule
in the Al doped graphene was studied. The results indicate that the positive F reduces the
adsorption energies Eb of the CO adsorbed onto the doped graphene, while Eb increases
under the negative F. Furthermore, desorption commences when a large positive F (F 0.03
au) is applied. Finally, the thermal stability of interaction between the CO molecules and
the Al doped graphene is studied with ab initio molecular dynamics calculation to reveal the
adsorption/desorption behaviours of the system. Based on the results of the calculations, the
adsorption/desorption phase diagram was established by the atomic thermodynamics and
the temperature dependent desorption time (T) was determined with thermal desorption
method. The results show that the optimal desorption temperature is 400 K. Meanwhile, the
effect of T on atomic structure parameters and electrical properties were analyzed, and the
results show that the greatest conductivity change before and after adsorption is at T = 400
K. Therefore, this sensor material has the best sensing performance with appropriate and
the biggest conductivity change at 400 K.
Furthermore, the promising hydrogen storage mediums, Al-modified graphenes, are
proposed through density functional theory calculations. Hydrogen molecule is predicted
to be strongly physically adsorbed on Al substitutionally doped graphene with adsorption
energy -0.427 eV/H2 that is in a reasonable range, so that hydrogen storage can be recycled
at near ambient conditions, while a graphene layer with Al adsorbed on both sides can store
hydrogen up to 13.79 wt% with a two-layer arrangement of H2 molecules formed on each
side. Its hydrogen storage capacity is in much excess of 6 wt% of DOE’s target. In the Al
substitutionally doped graphene system, it is believed that the doped Al alters the electronic
structures of both C and H2, and the bands of H2 overlapping with those of Al and C
simultaneously are the underlying mechanism of the hydrogen adsorption enhancement from
-0.159 eV/H2 in pristine graphene. In the Al adsorbed on both sides of graphene system, this

168 Physics and Applications of Graphene - Theory

high-capacity hydrogen storage is due to the adsorbed Al atoms that act as bridges to link
the electron clouds of the H2 molecules and the graphene layer. In addition, we find that the
H2 concentration in the hydrogen storage medium can be measured by the change in the
conductivity of the graphene layer.
There has been an explosion of ideas that suggest graphene for potential applications.
This is often led by analogies with carbon nanotubes that continue to serve a guide in
searching for new applications. Except for its excellent electronic properties, graphene also
displays several unusual attributions. Graphene is a giant aromatic macromolecule that
conducts both electricity and heat well in two dimensions. Their mechanical strength of
graphene is comparable to that of CNTs, while CNTs can be considered as a rolled up
graphene. The shape, size, and chemical structure of graphene sheets can be further modified
by engineering. Nonetheless, research toward the application of graphene-based materials
has just begun. Many challenges and opportunities remain. For examples, applications for
batteries and supercapacitors, in separation technologies, as supports for catalysts, and filler
for composition materials, and so on, are widely expected in the recent future.

5. Acknowledgement

This work was financially supported by the Vice-Chancellor’s postdoctoral research
fellowship program of the University of New South Wales (SIR50/PS19184) and the
Australian Research Council Discovery Programs (DP1096769 and DP0988687).

6. References

Acharya, C. & Turner, C. (2007). Effect of an electric field on the adsorption of metal clusters
on boron-doped carbon surfaces, J. Phys. Chem. C 111: 14804–14812.

Ao, Z., Jiang, Q., Zhang, R., Tan, T. & Li, S. (2009a). Al doped graphene: A promising material
for hydrotgen storage at room temperature, J. Appl. Phys. 105: 074307–074312.

Ao, Z., Li, S. & Jiang, Q. (2009b). Thermal stability of interaction between the co molecules
and the al doped graphene, Phys. Chem. Chem. Phys. 11: 1683–1687.

Ao, Z., Li, S. & Jiang, Q. (2010a). Correlation of the applied electrical field and
CO adsorption/desorption behavior on al-doped graphene, Solid State Commun.
150: 680–683.

Ao, Z. & Peeters, F. (2010b). High-capacity hydrogen storage in Al-adsorbed graphene, Phys.
Rev. B 81: 205406–205412.

Ao, Z., Yang, J., Li, S. & Jiang, Q. (2008). Enhancement of CO detection in Al doped graphene,
Chem. Phys. Lett. 461: 276–279.

Arellano, J., Molina, L., Rubio, A. & Alonso, J. (2000). Density functional study of molecular
hydrogen on graphene layers, J. Chem. Phys. 112: 8114–8119.

Ataca, C., Aktürk, E. & Ciraci, S. (2009). Hydrogen storage of calcium atoms adsorbed on
graphene: First-principle plane wave calculations, Phys. Rev. B 79: 041406–041409.

Beenakker, C. (2008). Colloquium: Andreev reflection and Klein tunneling in graphene, Rev.
Mod. Phys. 80: 1337–1354.

Blyholder, G. (1964). Molecular orbital view of chemisorbed carbon monoxide, J. Phys. Chem.
68: 2772–2777.

169Applications of Al Modified Graphene on Gas Sensors and Hydrogen Storage



Bunch, J., Yaish, Y., Brink, M., Bolotin, K. & McEuen, P. (2005). Coulomb oscillations and hall
effect in quasi-2D graphite quantum dots, Nano Lett. 5: 287–290.

Cabria, I., LóPez, M. & Alonso, J. (2008). Hydrogen storage in pure and Li-doped
carbon nanopores: Combined effects of concavity and doping, J. Chem. Phys.
128: 144704–144711.

Ceperley, D. & Alder, B. (1980). Ground state of the electron gas by a stochastic method, Phys.
Rev. Lett. 45: 566–569.

Cha, J., Lim, S., C.H., C., Cha, M.-H. & Park, N. (2009). Inaccuracy of density functional theory
calculations for dihydrogen binding energetic onto Ca cation centers, Phys. Rev. Lett.
103: 216102–216105.

Chandrakumar, K. & Ghosh, S. (2008). Alkali-metal-induced enhancement of hydrogen
adsorption in C60 fullerence: An ab initio study, Nano Lett. 8: 13–19.

Collins, P., Bradley, K., Ishigami, M. & Zettl, A. (2000). Extreme oxygen sensitivity of electronic
properties of carbon nanotubes, Science 287: 1801–1804.

Coontz, R. & Hanson, B. (2004). Not so simple, Science 305: 957.
Degall, M., Lindan, P., Probert, M., Pickard, C., Hasnip, P., Clark, S. & Payne, M. (2002).

First-principles simulation: ideals, illustrations and the CASTEP code, J. Phys.:
Condens. Matter 14: 2717–2744.

Delley, B. (1990). An all-electron numerical method for solving the local density functional for
polyatomic molecules, J. Chem. Phys. 92: 508–517.

Delley, B. (2000). From molecules to solids with the DMol3 approach, J. Chem. Phys.
113: 7756–7764.

Delley, B. (2002). Hardness conserving semilocal pseudopotentials, Phys. Rev. B 66: 155125.
Deng, W., Xu, X. & Goddard, W. (2004). New alkali doped pillared carbon materials designed

to achieve practical reversible hydrogen storage for transportation, Phys. Rev. Lett.
92: 166103–166106.

Durgun, E., Ciraci, S., Zhou, W. & Yildirim, T. (2006). Transition-metal-ethylene complexes as
high-capacity hydrogen-storage media, Phys. Rev. Lett. 97: 226102–226105.

Froudakis, G. (2001). Why alkali-metal-doped carbon nanotubes possess high hydrogen
uptake, Nano Lett. 1: 531–533.

Gao, G., Gagin, T. & Goddard, I. W. (1998). Inaccuracy of density functional theory
calculations for dihydrogen binding energetic onto Ca cation centers, Phys. Rev. Lett.
80: 5556–5559.

Gaudoin, R., Foulkes, W. & Rajagopal, G. (2002). Ab initio calculations of the cohesive energy
and the bulk modulus of aluminium, J. Phys.: Condens. Matter 14: 8787–8793.

Geim, A. & Novoselov, K. (2007). The rise of graphene, Nat. Mater. 6: 183–191.
Ghosh, A., Subrahmanyam, K., Krishna, K., Datta, S., Govindaraj, A., Pati, S. & Rao, C. (2008).

Uptake of H2 and CO2 by graphene, J. Phys.Chem. C 112: 15704–15707.
Girifacol, L. & Hodak, M. (2002). Van der waales binding energies in graphitic structures,

Phys. Rev. B 65: 125404–125408.
Graetz, J., Chaudhuri, S., Lee, Y., Vogt, T., Muckerman, J. & Reilly, J. (2006). Pressure-induced

structural and electronic changes in -AlH3, Phys. Rev. B 74: 214114–214120.

170 Physics and Applications of Graphene - Theory

Hammer, B., Hansen, L. & Nørskov, J. (1999). Improved adsorption energetics within
density-functional theory using revised perdew-burke-ernzerhof functionals, Phys.
Rev. B 59: 7413–7421.

He, C., Zhang, P., Zhu, Y. & Jiang, Q. (2008). Structures and quantum conduction of copper
nanowires under electric field using first principles, J. Phys. Chem. C 112: 9045–9049.

Hyman, M. & Medlin, J. (2005). Theoretical study of the adsorption and dissociation of
oxygen on Pt(111) in the presence of homogeneous electric fields, J. Phys. Chem. B
109: 6304–6310.

Jeloaica, L. & Sidis, V. (1999). DFT investigation of the adsorption of atomic hydrogen on a
cluster-model graphite surface, Chem. Phys. Lett. 300: 157–162.

Klontzas, E., Mavrandonakis, A., Tylianakis, E. & Froudakis, G. (2008). Improving hudrogen
storage capacity of MOF by functionalization of the organic linker with lithium
atoms, Nano Lett. 8: 1572–1576.

Kong, J., Chapline, M. & Dai, H. (2001). Functionalized carbon nanotubes for molecular
hydrogen sensors, Adv. Mater. 13: 1384–1386.

Kong, J., Franklin, N., Zhou, C., Chapline, M., Peng, S., Cho, K. & Dai, H. (2000). Nanotube
molecular wires as chemical sensors, Science 287: 622–625.

Koper, M. & van Santen, R. (1999). Electric filed effects on CO and NO adsorption at the
Pt(111) surface, J. Electroanal. Chem. 476: 64–70.

Krasnov, P., Ding, F., Singh, A. & Yakobson, B. (2007). Clustering of Sc on SWNT and
reduction of hydrogen uptake: Ab-initio all electron calculations, J. Phys. Chem. C
111: 17977–17980.

Lee, C., Wei, X., Kysar, J. & Hone, J. (2008). Measurement of the elastic properties and intrinsic
strength of monolayer graphene, Science 321: 385–388.

Leenaerts, O., Partoens, B. & Peeters, F. (2008). Adsorption of H2O, NH3, CO, NO2, and NO
on graphene: A first-principles study, Phys. Rev. B 77: 125416–125422.

Li, D., Müller, M., Gilje, S. & Kaner, R. (2008a). Processable aqueous dispersions of graphene
nanosheets, Nat. Nanotechnol. 3: 101–105.

Li, J., Furuta, T., Goto, H., Ohashi, T., Fujiwara, Y. & Yip, S. (2003). Theoretical evaluation
of hydrogen storage capacity in pure carbon nanostructures, J. Chem. Phys.
119: 2376–2385.

Li, X., Grubisic, A., Stokes, S., Cordes, J., Ganteför, G., Bowen, K., Kiran, B., Willis, M., Burgert,
P. & Schnöckel, H. (2007). Unexpected stability of Al4H6: A borane analog?, Science
315: 356–358.

Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. (2008b). Chemically derived, ultrasmooth
graphene nanoribbon semiconductors, Science 319: 1229.

Lide, D. (2000). CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL.
Liu, W., Zhao, Y., Li, Y., Jiang, Q. & Lavernia, E. (2009). Enhanced hydrogen storage on

Li-dispersed carbon nanotubes, J. Phys. Chem. C 113: 2028–2033.
Loffreda, D. (2006). Theoretical insight of adsorption thermodynamics of multifunctional

molecules on metal surfaces, Surf. Sci. 600: 2103–2112.
Lozovoi, A. & Alavi, A. (2007). Vibrational frequencies of CO on Pt(111) in electric field: A

periodic DFT study, J. Electroanal. Chem. 607: 140–146.

171Applications of Al Modified Graphene on Gas Sensors and Hydrogen Storage



Bunch, J., Yaish, Y., Brink, M., Bolotin, K. & McEuen, P. (2005). Coulomb oscillations and hall
effect in quasi-2D graphite quantum dots, Nano Lett. 5: 287–290.

Cabria, I., LóPez, M. & Alonso, J. (2008). Hydrogen storage in pure and Li-doped
carbon nanopores: Combined effects of concavity and doping, J. Chem. Phys.
128: 144704–144711.

Ceperley, D. & Alder, B. (1980). Ground state of the electron gas by a stochastic method, Phys.
Rev. Lett. 45: 566–569.

Cha, J., Lim, S., C.H., C., Cha, M.-H. & Park, N. (2009). Inaccuracy of density functional theory
calculations for dihydrogen binding energetic onto Ca cation centers, Phys. Rev. Lett.
103: 216102–216105.

Chandrakumar, K. & Ghosh, S. (2008). Alkali-metal-induced enhancement of hydrogen
adsorption in C60 fullerence: An ab initio study, Nano Lett. 8: 13–19.

Collins, P., Bradley, K., Ishigami, M. & Zettl, A. (2000). Extreme oxygen sensitivity of electronic
properties of carbon nanotubes, Science 287: 1801–1804.

Coontz, R. & Hanson, B. (2004). Not so simple, Science 305: 957.
Degall, M., Lindan, P., Probert, M., Pickard, C., Hasnip, P., Clark, S. & Payne, M. (2002).

First-principles simulation: ideals, illustrations and the CASTEP code, J. Phys.:
Condens. Matter 14: 2717–2744.

Delley, B. (1990). An all-electron numerical method for solving the local density functional for
polyatomic molecules, J. Chem. Phys. 92: 508–517.

Delley, B. (2000). From molecules to solids with the DMol3 approach, J. Chem. Phys.
113: 7756–7764.

Delley, B. (2002). Hardness conserving semilocal pseudopotentials, Phys. Rev. B 66: 155125.
Deng, W., Xu, X. & Goddard, W. (2004). New alkali doped pillared carbon materials designed

to achieve practical reversible hydrogen storage for transportation, Phys. Rev. Lett.
92: 166103–166106.

Durgun, E., Ciraci, S., Zhou, W. & Yildirim, T. (2006). Transition-metal-ethylene complexes as
high-capacity hydrogen-storage media, Phys. Rev. Lett. 97: 226102–226105.

Froudakis, G. (2001). Why alkali-metal-doped carbon nanotubes possess high hydrogen
uptake, Nano Lett. 1: 531–533.

Gao, G., Gagin, T. & Goddard, I. W. (1998). Inaccuracy of density functional theory
calculations for dihydrogen binding energetic onto Ca cation centers, Phys. Rev. Lett.
80: 5556–5559.

Gaudoin, R., Foulkes, W. & Rajagopal, G. (2002). Ab initio calculations of the cohesive energy
and the bulk modulus of aluminium, J. Phys.: Condens. Matter 14: 8787–8793.

Geim, A. & Novoselov, K. (2007). The rise of graphene, Nat. Mater. 6: 183–191.
Ghosh, A., Subrahmanyam, K., Krishna, K., Datta, S., Govindaraj, A., Pati, S. & Rao, C. (2008).

Uptake of H2 and CO2 by graphene, J. Phys.Chem. C 112: 15704–15707.
Girifacol, L. & Hodak, M. (2002). Van der waales binding energies in graphitic structures,

Phys. Rev. B 65: 125404–125408.
Graetz, J., Chaudhuri, S., Lee, Y., Vogt, T., Muckerman, J. & Reilly, J. (2006). Pressure-induced

structural and electronic changes in -AlH3, Phys. Rev. B 74: 214114–214120.

170 Physics and Applications of Graphene - Theory

Hammer, B., Hansen, L. & Nørskov, J. (1999). Improved adsorption energetics within
density-functional theory using revised perdew-burke-ernzerhof functionals, Phys.
Rev. B 59: 7413–7421.

He, C., Zhang, P., Zhu, Y. & Jiang, Q. (2008). Structures and quantum conduction of copper
nanowires under electric field using first principles, J. Phys. Chem. C 112: 9045–9049.

Hyman, M. & Medlin, J. (2005). Theoretical study of the adsorption and dissociation of
oxygen on Pt(111) in the presence of homogeneous electric fields, J. Phys. Chem. B
109: 6304–6310.

Jeloaica, L. & Sidis, V. (1999). DFT investigation of the adsorption of atomic hydrogen on a
cluster-model graphite surface, Chem. Phys. Lett. 300: 157–162.

Klontzas, E., Mavrandonakis, A., Tylianakis, E. & Froudakis, G. (2008). Improving hudrogen
storage capacity of MOF by functionalization of the organic linker with lithium
atoms, Nano Lett. 8: 1572–1576.

Kong, J., Chapline, M. & Dai, H. (2001). Functionalized carbon nanotubes for molecular
hydrogen sensors, Adv. Mater. 13: 1384–1386.

Kong, J., Franklin, N., Zhou, C., Chapline, M., Peng, S., Cho, K. & Dai, H. (2000). Nanotube
molecular wires as chemical sensors, Science 287: 622–625.

Koper, M. & van Santen, R. (1999). Electric filed effects on CO and NO adsorption at the
Pt(111) surface, J. Electroanal. Chem. 476: 64–70.

Krasnov, P., Ding, F., Singh, A. & Yakobson, B. (2007). Clustering of Sc on SWNT and
reduction of hydrogen uptake: Ab-initio all electron calculations, J. Phys. Chem. C
111: 17977–17980.

Lee, C., Wei, X., Kysar, J. & Hone, J. (2008). Measurement of the elastic properties and intrinsic
strength of monolayer graphene, Science 321: 385–388.

Leenaerts, O., Partoens, B. & Peeters, F. (2008). Adsorption of H2O, NH3, CO, NO2, and NO
on graphene: A first-principles study, Phys. Rev. B 77: 125416–125422.

Li, D., Müller, M., Gilje, S. & Kaner, R. (2008a). Processable aqueous dispersions of graphene
nanosheets, Nat. Nanotechnol. 3: 101–105.

Li, J., Furuta, T., Goto, H., Ohashi, T., Fujiwara, Y. & Yip, S. (2003). Theoretical evaluation
of hydrogen storage capacity in pure carbon nanostructures, J. Chem. Phys.
119: 2376–2385.

Li, X., Grubisic, A., Stokes, S., Cordes, J., Ganteför, G., Bowen, K., Kiran, B., Willis, M., Burgert,
P. & Schnöckel, H. (2007). Unexpected stability of Al4H6: A borane analog?, Science
315: 356–358.

Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. (2008b). Chemically derived, ultrasmooth
graphene nanoribbon semiconductors, Science 319: 1229.

Lide, D. (2000). CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL.
Liu, W., Zhao, Y., Li, Y., Jiang, Q. & Lavernia, E. (2009). Enhanced hydrogen storage on

Li-dispersed carbon nanotubes, J. Phys. Chem. C 113: 2028–2033.
Loffreda, D. (2006). Theoretical insight of adsorption thermodynamics of multifunctional

molecules on metal surfaces, Surf. Sci. 600: 2103–2112.
Lozovoi, A. & Alavi, A. (2007). Vibrational frequencies of CO on Pt(111) in electric field: A

periodic DFT study, J. Electroanal. Chem. 607: 140–146.

171Applications of Al Modified Graphene on Gas Sensors and Hydrogen Storage



Lugo-Solis, A. & Vasiliev, I. (2007). Ab initio study of K adsorption on graphene and carbon
nanotubes: Role of long-range ionic forces., Phys. Rev. B 76: 235431–235438.

Mares, A. & Van Ruitenbeek, J. (2005). Observation of shell effects in nanowires for the noble
metals Cu, Ag, and Au, Phys. Rev. B 72: 205402–205408.

McEwen, J.-S., Gaspard, P., Mittendorfer, F., Visart de Bocarmé, T. & Kruse, N. (2008).
Field-assisted oxidation of rhodium, Chem. Phys. Lett. 452: 133–138.

Moseley, P. (1997). Solid state gas sensors, Meas. Sci. Technol. 8: 223–227.
Mpourmpakis, G., Tylianakis, E. & Froudakis, G. (2007). Carbon nanoscrolls: A promising

material for hydrogen storage, Nano Lett. 7: 1893–1897.
Nikitin, A., Li, X., Zhang, Z., Ogasawara, H., Dai, H. & Nilsson, A. (2008). Hydrogen storage in

carbon nanotubes through the formation of stable C-H bonds, Nano Lett. 8: 162–167.
Nose, S. (1984). A molecular dynamics method for simulations in the canonical ensemble,

Mol. Phys. 52: 255–268.
Nose, S. (1991). Constant temperature molecular dynamics methods, Prog. Theor. Phys.

Supplement 103: 1–46.
Novoselov, K., A.K., G., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I. & Firsov,

A. (2004). Electric field effect in atomically thin carbon films, Science 306: 666–669.
Okamoto, Y. & Miyamoto, Y. (2001). Ab initio investigation of physisorption of molecular

hydrogen on planar and curved graphenes, J. Phys. Chem. B 105: 3470–3474.
Panella, B., Hirscher, M. & Roth, S. (2005). Hydrogen adsorption in different carbon

nanostrcutures, Carbon 43: 2209–2214.
Parrinello, M. & Rahaman, A. (1981). Polymorphic transitions in single crystals: A new

molecular dynamics method., J. Appl. Phys. 52: 7182–7190.
Peng, S. & Cho, K. (2003). Ab initio study of doped carbon nanotubes sensors, Nano Lett.

3: 513–517.
Peng, S., Cho, K., Qi, P. & Dai, H. (2004). Ab initio study of CNT NO2 gas sensor, Chem. Phys.

Lett. 387: 271–276.
Perdew, J. & Zunger, A. (1981). Self-interaction correction to density-functional

approximations for many-electrons systems, Phys. Rev. B 23: 5048–5079.
Peres, N., Guinea, F. & Castro Neto, A. (2006). Electronic properties of disordered

two-dimensional carbon, Phys. Rev. B 73: 125411.
Peres, N., Klironomos, F., Tsai, S.-W., Santos, J., Lopes dos Santos, J. & Castro Neto, A. (2007).

Electron waves in chemically substituted graphene, Euro. Phys. Lett. 87: 67007.
Peres, N., Tsai, S.-W., Santos, J. & Ribeiro, R. (2009). Scanning tunneling microscopy currents

on locally disordered graphene, Phys. Rev. B. 7879: 155442.
Raaen, S. & Ramstad, A. (2005). Monte-Carlo simulations of thermal desorption of adsorbed

molecules from metal surface, Energy 30: 821–830.
Rao, C., Sood, A., Subrahmanyam, K. & Govindaraj, A. (2009). Graphene: The new

two-dimensional nanomaterial, Angew. Chem. Int. Ed. 48: 7752–7778.
Readhead, P. (1962). Thermal desorption of gases, Vacuum 12: 203–211.
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. & Kong, J. (2009).

Large area, few-layer graphene films on arbitrary substrates by chemical vapor
deposition, Nano Lett. 9: 30–35.

172 Physics and Applications of Graphene - Theory

Sahaym, U. & Norton, M. (2008). Advances in the application of nanotechnology in enabling
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1. Introduction 

Lately we have witnessed a resurgence of interest in some exotic but hitherto unobserved 
predictions of relativistic quantum mechanics, particularly in the phenomena of 
zitterbewegung (Schliemann et al., 2006) and the Klein paradox (Katsnelson et al., 2006).  In 
the former case this interest has been fueled by the realization that bound electrons in 
suitable semiconductor nanostructures are expected to display zitterbewegung at much 
lower frequencies and with much larger amplitudes than free electrons.  In the latter case, 
the recently established conducting properties of graphene, an atomic layer of graphite, 
point to charge carriers moving at speeds close to the Fermi speed ( 6 110 ms− ) which plays 
the role of light speed for this system (Kane, 2005).  In pursuit of these tantalizing 
developments one might also consider the possibility of harnessing the novel features of 
graphene for device applications.  In this article, we will introduce two concepts which are 
unique to graphene systems which we believe could be potentially useful for nanodevices.   
a. Topological Zero Modes 
b. Pseudospin Orbital Coupling 

1.1 Topological zero modes  
We conjecture that with present day technologies, one might be able to observe the 
interactions between particle and antiparticle in the low-energy context of bilayer graphene. 
To introduce the phenomenon we wish to describe let us think for a moment of the game of 
bowling.  One can enjoy it in two ways: a normal person can hurl the ball and be thrilled by 
strikes and spares, while a child can gently slide the ball on the sidetrack and watch it roll 
back from the return rack.  But another possibility occurs if the ball neither goes for the pins 
nor comes back but stays put somewhere.  Paradoxically this scenario can be more 
intriguing as one tries to analyze the resting position of the ball.  An analogous situation 
occurs in quantum mechanical tunneling, where electrons are either transmitted or reflected 
if their kinetic energies are greater or less than the strength of the step-potential barrier they 
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are incident upon [Landau & Lifshitz, 1968].  However in relativistic quantum mechanics, a 
third scenario can theoretically arise, namely, spatially-bound particles due to the 
interaction between particle and antiparticle. Such interplay is unknown in semi-classical or 
non-relativistic quantum mechanics, and is rarely observed even in relativistic quantum 
mechanics since the requisite electric fields far exceed available technologies. In this article   
we will show in Section 3 that this effect can be reproduced in bilayer graphene in the 
presence of an antisymmetric potential kink.   

1.2 Pseusospin orbital coupling 
It is well known that electron spin is coupled to its momentum due to the spin orbit 
coupling effect which can be understood via classical electrodynamics or relativistic 
quantum mechanics.  Dirac’s equation predicts that in the presence of electromagnetic 
fields, a single spin particle experiences the Zeeman and the spin orbit coupling effects.  In 
the latter, one can visualize that an electron traveling with a non-vanishing speed in the 
electric field, will in its rest frame “see” an effective magnetic field.  The magnetic field 
strength depends on the angle between the momentum and the electric field in the plane 
which contains both and the field direction is perpendicular to this plane.  It is only natural 
to envisage that the electron spin will precess about this effective magnetic field and that the 
spin precession would be tightly coupled to electron scattering, due to the dependence of 
the field strength on the electron motion.  What follows is the realization that this 
phenomenon has useful device properties; indeed, in the last twenty years, numerous 
transistor designs based upon the Rashba and Dresselhaus spin orbit coupling in 
semiconductors (Supriyo Datta & B. Das, 1988) have emerged.  Bilayer graphene has a 
Hamiltonian that resembles the massive Dirac system.  This led to the idea that an analogy 
of the above might lead to the design of devices similar to spintronics but in the context of 
graphene. However, in graphene our focus lies in the pseudospin rather than the real 
electron spin. A scientific imperative here is to theoretically ascertain the possible existence 
of such pseudospin orbit coupling and details of this would be presented in Section 4 of this 
article.  

2. Brief introduction to bilayer dynamics 
Much has been said about the novelty of graphene which promises new electronics with 
applications wild and aplenty.  The reduced Hamiltonian of bilayer graphene has been the 
center stage for trapping the “bowling ball” and generating a slew of topological dynamics, as 
described in Section 1.  We will begin with a brief introduction to the full bilayer graphene 
Hamiltonian leading to its reduced form.  As is well known, the bilayer graphene comprises 
two monolayer graphene stacked vertically and has a more complicated energy structure.  The 
bilayer graphene Hamiltonian (McCann & Fal’ko, 2006) has been expressed as: 
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where x yπ p ip= + and γεt = . In graphene it is known that interlayer coupling between A1 

and B2 is strong. Subscripts A, B refer to the sublattice index, while 1, 2 refer to the layer 
index.   Alternatively there are different versions of the Hamiltonian found in the literature. 
The differences arise mainly from symmetry as well as variations due to approximations. 
 

 
Table 1. Hamiltonian of the bilayer graphene resembles the massive Dirac Hamiltonian 
The spinor wavefunction of (1) in Table I above is different from those in (2) and (3). A 
transformation can be performed as follows  
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It is not hard to see that U defined above has the property of:  Hermicity, i.e. +=UU  and 
Unitarity, i.e. 1=+UU .  The Hamiltonian can then be transformed using +=UHUH t .  In 
summary we have 
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Hamiltonian fit the Dirac’s equation exactly, which in its standard form is given by 
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which seems to be a closer fit with
1

H . The above shows that bilayer graphene Hamiltonian 
mimics that of the massive Dirac systems to some extent.  Future nanofabrication 
technologies, which afford us greater control over the various interlayer and sublattice 
coupling strengths, might allow us to produce a graphene-like system with closer 
correspondence to the massive Dirac system. 
Reduction of the Bilayer Graphene Hamiltonian 

In bilayer graphene, the 4x4 Hamiltonian is cumbersome, and one often uses a 2x2 
simplified form.  We will in this section simplify the larger bilayer graphene Hamiltonian. 
We will use

3
H as an example 
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where u is the applied electrical voltage between the two layers;  t is the interlayer coupling. 
One assumes here that in the limit of strong interlayer coupling, i.e. t >> u,   occupancy at 
sites A2 and B1 become zero.  It thus follows from Eq. (6) that   
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resulting in the following set of equations: 1 1 22
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from which one could write in 2x2 form   
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The energy equation of the reduced bilayer graphene can now be written as  
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The approximation which has been adopted above is related to present-day fabrication 
technologies.  Future advances in technologies might allow us to engineer the various 
coupling parameters in graphene.  It is conceivable that we may be able to pre-design a 
useful Hamiltonian and employ the nanofabrication technologies to realize that desired 
form of Hamiltonian.  The Hamiltonian above has been used to understand the presence of 
topological objects like monopoles in graphene and their associated Berry’s phase which 
may have great implications to electron, or perhaps we may just call them (Dirac) particle 
dynamics or conductance (Novoselov, et al.,2006; Tan, et al, 2010). 
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which seems to be a closer fit with
1

H . The above shows that bilayer graphene Hamiltonian 
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where u is the applied electrical voltage between the two layers;  t is the interlayer coupling. 
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The energy equation of the reduced bilayer graphene can now be written as  
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The approximation which has been adopted above is related to present-day fabrication 
technologies.  Future advances in technologies might allow us to engineer the various 
coupling parameters in graphene.  It is conceivable that we may be able to pre-design a 
useful Hamiltonian and employ the nanofabrication technologies to realize that desired 
form of Hamiltonian.  The Hamiltonian above has been used to understand the presence of 
topological objects like monopoles in graphene and their associated Berry’s phase which 
may have great implications to electron, or perhaps we may just call them (Dirac) particle 
dynamics or conductance (Novoselov, et al.,2006; Tan, et al, 2010). 
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3. Topological zero mode device 

The phenomenon we briefly described in Section 1 requires a particle-antiparticle pair to be 
held apart by an external electrostatic field and yet be strongly correlated.  For Dirac 
electrons the typical energy is )( 2mcO and the corresponding correlation length is the 
Compton wavelength /mc (Itzykson & Zuber, 1980), implying a restraining electric field of 
the order of 1710 V 1m − , a field far beyond present-day capabilities.  But we may use bilayer 
graphene whose top speed is 300 times smaller than c and the excitation mass one-twentieth 
of the electron’s (Castro Neto et al. 2009).  (As we will explain below, here chiral pairs 
replace particle-antiparticle pairs.)  Then the electric field needed is 10 orders of magnitude 
smaller, or 710 V 1m − , which is accessible with present technology.  Monolayer graphene 
under these circumstances would generate a different mechanism, more akin to the Zener 
breakdown, and quite unrelated to our purpose (Martinez et al. 2010). 
We therefore study a gated bilayer graphene configuration with an impressed voltage kink 
V to provide a restraining potential for a particle and its chiral partner.  Such kinks can be 
produced for instance in a graphene p-n junction (Abanin & Levitov, 2007).   Recently it has 
been shown that such configurations can support zero modes and chiral states in the vicinity 
of the domain wall separating the insulating regions (Martin et al., 2008).  If the bias V(x) in 
the form of a kink is applied between the layers then the motion in the y-direction is that of a 
free particle and the dynamics in the x-direction will be the one of interest.  We will show 
that a charged particle with energy less than the bias will not undergo total reflection as 
expected quantum mechanically but will remain in the vicinity of the kink and can manifest 
itself as charge bound to the kink.  The system turns out to be able to support zero modes, 
occurring always at the same value of the particle’s y-momentum, and the Hall conductivity 
plateaus in its vicinity correspond to those of the graphene monolayer.  Moreover we find 
other bound states as well as scattering states as the energy of the particle is raised above the 
kink strength. All these imply that the kink introduces new and unexpected features into the 
bilayer dynamics which are externally adjustable.  Due to the relativistic and topological 
nature of our results, we expect them to be of general interest in other non-graphene areas of 
investigation, e.g., particle physics (Horava, 2005) and superconductivity (Lu & Yip, 2008).   
As we saw in Section 2 the low-energy Hamiltonian for the graphene bilayer is a 4 ×4 
matrix in the space spanned by the four-component wave function. It can be reduced further 
into a reasonably accurate effective 2 ×2 matrix if we are interested only in the lowest-
energy bands, i.e., when the interlayer hopping between nearest neighbors is much larger 
than the electron energy (measured from zero momentum).  If we model the kink potential 
as an anti-symmetric tanh profile imposed by the electrostatic bias and introduce 
appropriate scales, the effective 2 ×2 wave equation is (Martin et al., 2008; cf. Eq. (12))  
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where r ( 10 ≤≤ r ) denotes the bias and py the particle momentum in the y-direction, e a 
scaled energy (Fig. 1). In this section only e denotes energy. This effective Hamiltonian 
involves the atomic sites )B,(A 21 .  Thus the ‘spinor’ structure of Eq. (13) has nothing to do 
with spin; rather it refers to the electron occupancy at these atomic sites.  The qualification 
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‘chiral’ is thus applied to this case.  We will refer to the equations obtained from Eq. (13) as 
the first and second component equations, respectively.  Formally Eq. (13) can be reduced 
into a single equation because it is clear that one component converts to the other through 
the replacement xx −→ .  Thus, a possible set of solutions to Eq. (13) can be obtained, in 
which their two components are related by x)v(u(x) −±= . Equation (13) has been treated as 
two separate problems, one for Tx))u((u(x),Ψ −= and another for Tx))u((u(x),Φ −−= .  
However, we will not adopt this approach here, since the resulting solutions would appear 
to imply a nonlocal relation between u(x) and u(-x) for the entire range of x: in other words, 
we would obtain differential equations involving u(x) and u(-x) (and similarly for v(x)) 
simultaneously and for every x.  In this system, as defined by Eq. (13), there is no underlying 
symmetry to support such a relation. In the absence of bias (r = 0), the above system can 
easily be solved using local relations. In the presence of bias, which is local as well, there is 
no reason to introduce a nonlocality whereby the dynamics at +x (for given x) is directly 
related to that at –x, and for all x. Thus, we follow an alternative method below, in which 
local relations (i.e. occurring at the same spatial point) between u(x) and v(x) will suffice to 
obtain an exact solution: hence all dynamical relations will connect phenomena at the same 
spatial point.  This point will be reinforced at several places in this section. Hence, our result 
differs from those of Martin et al. (2006). 
 

 
 

Fig. 1. Views of the bilayer system top (left) and side (right) with kink potential V(x) = r tanh x. 

To solve Eq. (13) exactly we introduce the ansatz for 0≥x : 
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where ξ is a complex number and we replace x with the auxiliary variable xez 2−−= . Our 
focus is principally, though not exclusively, on the intragap solutions, re ≤ , and we give 
explicit expressions for r = 1.  We obtain for the first component of Eq. (13): 

            02
1111 =−+−−+− UV'ξ)p(z)('V'zz)( y , (15) 

where ‘ denotes d/dz. In arriving at Eq. (15) we had imposed the eigenvalue 
relation 0=+−− U)(eVξ)y(p 12 , whose consistency will be verified later. Plugging this 
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relation for U into Eq. (15) we obtain a hypergeometric equation for V(x) alone with the 
solution (Abramowitz & Stegun, 1964) 

              )(12 zc,b,a,FV(x) = , (16) 
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Gauss hypergeometric series and the parameters a, b, c depend only on the energy and yp . 

(Useful properties of the hypergeometric equation are listed in the Appendix.)  The second 
equation can be solved similarly: 
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eigenvalue relation 01 =−−+ V)(eUξ)y(p 2 . (A technical point is in order: when solving 

the second equation one finds the roles of U and V reversed.  This is a veiled signal that 
locality is crucial because any assumed nonlocal relation, except possibly for overall sign, 
invoked for the first equation would not generally be consistent for the second.) Together 
the two relations yield a consistency condition implying an independent equation 
relating ξ , e and yp : writing βiαξ += , we solve this equation to obtain α(β)  =  
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yy pep −+−+ .  This ensures the consistency of the ansatz (14) and the 

eigenvalue relations: any dependence on x, U, or V has now been eliminated in favor of an 
algebraic one involving e and yp alone.  Implicit in the above development is the locality of 

all the intervening relations, that is, all dynamical relations between u and v occur at the 
same spatial point x.  The complex conjugates of (16) and (17) are easily seen to be solutions 
of Eq. (15) also so we can form a linear combination of these to arrive at the complete 
( 0≥x ) solution.  Next the above procedure can be repeated for x < 0.  Replacing ξ  with - ξ  

in the ansatz (14) and employing a new auxiliary variable, xey 2−= , we discover that the 
solutions are exactly the same ones (15) and (17) above but with the order reversed and z 
replaced by y.  The numbers α and β are given by the same relation above. (Thus there are 
four solutions of which, for 0≥x  ( 0≤x ), we choose α positive (negative).  There is no such 
restriction on β ).  We summarize these results: corresponding to Eq. (16) 
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eigenvalue relations enforce a local connection between V(x) and U(x).  With these, we have 
evaluated the complete intragap solutions for e < 1.   
A glance at Eq. (17) suggests that it may not be valid for e = 1.  However, on writing the 
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2 − .  For this solution to remain 

bound for 0≥x we must have 0<yp , which can be verified later once the dispersion 

graphs have been obtained (see Fig. 1). 
There remains the problem of enforcing continuity between the 0≥x and 0≤x solutions. 
Restricting to the first equation, we form the linear combination (x)g>  

)ece(cz)c,b,(a,Fe xiβxiβxα −− += 2112 , for 0≥x and c1 and c2 complex constants; a similar 
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coefficients c3 and c4 instead.  As intragap solutions, these functions are normalizable, and 
the coefficients ci are determined by demanding that (x)g> , (x)g< and their first three 
derivatives be continuous at x = 0.  These yield four homogeneous simultaneous equations 
and we use the requirement that the determinant of the system must vanish to derive the 
dispersion relation, )(pee y= . Clearly, the only independent dynamical parameter is the 

energy, e.  The same procedure is repeated for the second equation (parameters a, b, c are 
exchanged with A, B, C and vice versa), in which case we use the label h(x) instead of g(x), 
and we obtain a pair of complete solutions for the two components of Eq. (13), respectively 
which we write in schematic form (for 0≥x ) 
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The procedure outlined above produced two pairs (18) but there is really only one pair of 
solutions.  Examining these solutions, we notice that one set can be obtained from the other 
by the formal substitution yy pp −→ and ee −→ and multiplying the spinors by yiσ− .   (We 
had also made use of the symmetry of the hypergeometric solutions given in the Appendix.)  
Hence the solutions (18) are really chiral conjugates of the each other.  This can be shown 
formally by transforming Eq. (13) into its chiral conjugate form, wherein the sign of the 
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where (x)ϕ denotes the kink potential and ypd/dxπ ±=± .  Now we multiply both sides by 
yσ  and cast the result in the form 
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This tells that Tvu ),(  is conjugate to yσ
Tvu ),( , in the sense that one is obtained from the 

other by the substitution yy pp −→ and ee −→ , consistent with the results above.  By virtue 

of the electron-hole symmetry of the graphene Hamiltonian, this results in the chiral 
symmetry between the solutions.   
Recall that the original graphene Hamiltonian was derived within the tight-binding model 
(Gonzalez et al., 1993).  One can view our system in terms of a set of coupled oscillators, so 

the states T)1,1( and TT )1,1()1,1( −− =yiσ represent the two distinct and independent normal 

modes, one being symmetric, the other antisymmetric.  These symmetries are global and 
affect the entire system.  The procedure outlined above to solve Eq. (13) assumes no global 
symmetry.  The conclusion from this comparison is not a relation between u(x) and u(-x) 
(implying nonlocality) but the chiral nature of these solutions (which is local).  This harks 
back at the local ‘spinor’ structure of Eq. (13). 

3.1 Discussion 
We have plotted the dispersion relations )e(pe y= in Fig. 2. Notice the 

yy ppe,e −→−→ symmetry of the curves.  In Fig. 2 (a) the two initial (r = 0) parabolic bands 

of the bilayer have the form 2
ype ±=  and these are separated as the biasing potential grows 

(Fig. 2 (b) and (c)) thus creating a gap between the bands.  The parabolic bands then take the 

form 24 rpe y +±= .  As we will see below these separated bands correspond to over-barrier 

scattering states which do not decay on account of the potential.   For the intragap states, 
two zero modes appear symmetrically about the origin.  A more detailed examination of the 
zero modes in Fig. 2(b) and (c) suggests that they occur at the same py value for any non-zero 
bias 0)≠(r .  This is indeed correct and can be shown explicitly by making use of the method 
presented in Section 3.  We can give for instance the zero-mode wave functions V obtained 
from the first equation for any value of r 
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where 0.1255±=yp ,  cc denotes the complex conjugate of the function to the left of it and 
ξ is defined in Section 2.  Although there is no r dependence in Eq. (21), we find that the 
expressions for U, namely, )()21 xVξp(x) )(y)( (rU <><> ±= ∓ , contain an r-dependence.   
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Fig. 2. Dispersion relations for (a) r = 0, (b) r = ½ and (c) r = 1.  Zero modes occur at e = 0, 

0.1255yp = ± . Note that the e = 1 solution has yp < 0. The brown curves correspond to over-

barrier scattering states.   

The zero modes of our system are not Dirac fermions but chiral modes specific to the 
bilayer.  The fact that these modes occur provided a bias of any strength is present is an 
indication of the topological character of the kink.  That a kink is dynamically necessary is 
clear because the decay of the wave functions as ±∞→x  requires the chiral pair to be close 
to each other near the origin. Each particle of the pair in turn is held in place by this 
electrostatic bias (with opposite signs on both sides of x = 0) along with the interaction with 
its conjugate.  We can check the consistency of the above from a computation of the 
topological charge of the Fermi point.  Writing the Hamiltonian (13) (without e) as σx),p( ⋅ϕ , 
this topological charge is given by (Volovik, 2003) 
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The zero modes of our system are not Dirac fermions but chiral modes specific to the 
bilayer.  The fact that these modes occur provided a bias of any strength is present is an 
indication of the topological character of the kink.  That a kink is dynamically necessary is 
clear because the decay of the wave functions as ±∞→x  requires the chiral pair to be close 
to each other near the origin. Each particle of the pair in turn is held in place by this 
electrostatic bias (with opposite signs on both sides of x = 0) along with the interaction with 
its conjugate.  We can check the consistency of the above from a computation of the 
topological charge of the Fermi point.  Writing the Hamiltonian (13) (without e) as σx),p( ⋅ϕ , 
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where Σ is a surface enclosing the origin of the p-plane and may be taken to be two infinite 
planes parallel to the yx pp −  plane, one to the right and the other to the left of the origin 
(the separation between the planes being infinitesimal).  See Fig. 3.  This charge gives the 
difference between the number of right-moving and left-moving zero modes.  Then, N3 = 2, 
since we must sum the contributions from the right side and left sides of Σ .  This is clearly 
consistent with our results.  The existence of the zero modes can be exploited in some 
applications, as we will point out below. 
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Fig. 3. Two views of the surface Σ with outward normals n̂ shown.  Note that the zp -
separation between planes is non-zero provided 0≠r . The contribution to the integrand 
(22) vanishes as ±∞→yx p,p . 
We can show that the Hamiltonian (13) reduces to the monolayer case in the vicinity of the 
zero mode, i.e., 1<<e .  Take for definiteness U = V and assume U = f g,   f  being the zero-
mode solution.  g is a slowly varying function of e which has the value of 1 at e = 0, and varies 
over a length scale which is much larger than the kink width.  If we substitute U into the Eq. 
(13) we obtain  fg)p(ip yx

2+  2)x yg(ip p f= + +  )gp)f(ipp(ip yxyx ++2  + g)ypxf(ip 2+ .  The 

first term, when combined with the kink potential gfV− , vanishes for the zero mode f. The 

second contains the factor =+ )fp(ip yx  .)( )ec,b,(a,Fe))fi(α(p 2x
dx
dxi

y
−±−+±− 12

βαβ  We can 

neglect the derivative because it will yield an additional factor xe 2− (which is small over the 
length scale of g), while the eigenvalue condition allows us to replace ))i(αpy β±−  with 

unity for a zero mode.  Thus the Hamiltonian for g is ⎟⎟
⎠

⎞
⎜⎜
⎝
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0

0

ypxip
ypxip

 correct to )O(e2 , 

which is of the form ⊥⋅ pσ , where ⊥p  is perpendicular to the zero-mode momentum.  Thus, at 
the vicinity of the zero mode (around e = 0), the Hamiltonian mimics that of monolayer 
graphene, with its energy spectrum having the characteristic N signature (Li & Andrei, 2007; 
Gusynin & Sharapov, 2005).  

Graphene-Based Devices Based on Topological Zero Modes and Pseudospin Degree of Freedom 

 

187 

 (a) 

4 2 0 2 4

0

0.3

0.6

Im
V

 
(b) 

6 3 0 3 6
0

0.3

0.6

R
eV

 
(c) 

4 2 0 2 4
0.5

1

x

Re
V

 
Fig. 4. Wave functions.  (a) Imaginary part of the intragap wave function (unnormalized) for 
r = 1: thick blue (e = 0, yp = 0.1255, i.e. the zero mode); dashed, blue (e = - 0.8, yp  = 1.03); red 
(e = 0.28, yp  = - 0.58).  The real parts are much smaller (about a tenth) than the imaginary 
parts.  (b) Real part of wave functions for the r = 1, e > 1, bound case: dashed blue (e = 1.1, yp  
=  -1.2); red (e = 2.1, yp  = - 1.69); thick blue (e = 2.2, yp  = 1.73). (c) Over-barrier scattering 
wave functions (unnormalized): black (e = 2.5, yp = 1.514); red (e = 2, yp  = 1.316), blue, 
dashed (e = 1.5, yp  = 1.057). The imaginary parts are very small. 
Graphs of the dominant (real or imaginary) part of the wave functions are shown in Fig. 4.  
These figures imply that both the real and imaginary parts of the wave function are 
important.  (By contrast, Martin et al. (2008) only find real wave functions.)  As displayed in 
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parts.  (b) Real part of wave functions for the r = 1, e > 1, bound case: dashed blue (e = 1.1, yp  
=  -1.2); red (e = 2.1, yp  = - 1.69); thick blue (e = 2.2, yp  = 1.73). (c) Over-barrier scattering 
wave functions (unnormalized): black (e = 2.5, yp = 1.514); red (e = 2, yp  = 1.316), blue, 
dashed (e = 1.5, yp  = 1.057). The imaginary parts are very small. 
Graphs of the dominant (real or imaginary) part of the wave functions are shown in Fig. 4.  
These figures imply that both the real and imaginary parts of the wave function are 
important.  (By contrast, Martin et al. (2008) only find real wave functions.)  As displayed in 
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Fig. 4, the intragrap states appear to always penetrate into the potential so their maxima are 
found inside it.  Although all the intragap states are always bound, they are not the only 
bound states.  In general, whenever the kinematic inequality 124 −≠ ep  holds, we have 

bound states because in this case what we really have is 124 −> ep : this is always the case 

for the intragap states, but it is also true of the blue and red 1>e spiral arms in Figs. 2(b) 
and (c), a consequence of the fact that not enough of the total energy has been allotted to the 
motion in the x-direction.   For these bound 1>e states we see in Fig. 4 that their maxima 
lie to the left of the origin: these states do not penetrate into the kink as deeply as the 
intragap states do. 
When 1>e  and 124 −= ep , the particles have sufficient energy to overcome the barrier 
and we have the overbarrier scattering case (the particles go ±∞→x ).  The same procedure 

for intragap states can be applied, with the factor xξe− in Eq. (14) excluded since we are 
looking for undamped solutions.  Some wave functions of this type are given in Fig. 4(c). 
One can calculate the transmission and reflection amplitudes for them.  These suggest 
greater transmission than reflection. 
Because any negative energy eigenstate is related to a positive energy eigenstate by a 
unitary transformation, the local density of states )e'δ(e(r)ψ(r)ψρ(r) e e'e −= ∑ +  is symmetric 
about e = 0 and the negative and positive energy eigenstates contribute equally.  Including 
the zero modes, the conservation of the total number of states implies that the difference in 
densities with and without the kink δρ  is  

  ∫ ⎟
⎠
⎞⎜

⎝
⎛ ∫ +=

−
∞−

0 2
0

2 20 (r)ψe)deδρ(r,rd  (23) 

The two zero modes are normalized, so the integral of δρ  over energy and space is – 1.   
Taking electron spin into account this means a charge of – 2e and total spin zero for the 
valence band.  If the zero modes are unoccupied, the charge and spin for the kink are, 
respectively, Q = -2e and S = 0; if the zero modes are singly (doubly) occupied, then Q = -e 
(0), S = ½ (0). These serve as the signature of the presence of charge and the confinement of 
the chiral pair in the vicinity of the kink.  Since the zero modes occur in pairs we do not see 
charge fractionalization here (Hou et al., 2007). Moreover, we need not be concerned here 
with a violation of Kramer’s theorem (Su et al., 1980). 

4. Pseudospin orbit coupling (pseudo-SOC) device 
By the Dirac equation, spin orbit coupling can be derived in the vacuum with applied 
electric fields; one thus visualizes that similar effects should arise for the pseudospin of 
graphene particles governed by the Dirac equations. Thus pseudo-spin orbit coupling (Tan 
et al, 2010) can be derived by applying external electric field to a system governed by the 
graphene Hamiltonian. We will start with H3 which is not a comparable form to standard 
Dirac Hamiltoninan.  But by transformation e. g. using a unitary matrix U, one can obtain a 
more compatible form (McCann, E et al, 2006) of H1 
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The transformation which has been performed by U determines the type of pseudo-spin to be 
investigated, e.g. by the above method which results in 1 2 )T(A Bχ =  pseudo-spin is defined by 
the linear superposition of wavefunction amplitude between site A1 and B2. In application to 
particles which mimic Dirac fermions due to material bandstructure, it would be instructive to 
replace the coupling mass term of mc2 for particles in vacuum with a coupling term Δ which 
arises due to material bandstructure but plays the same role as the mass term, as far as the 
Dirac matrix is concerned.  The coupling term Δ gives rise to the energy dispersion where the 
effective mass of particles in the materials can be derived; in other words, particle effective 
mass is a function of Δ but not vice versa.  For monolayer graphene, Δ  vanishes and it can be 
derived from the energy dispersion relation that particles behave like massless Dirac fermions. 
In graphene-like materials, χ can be described as a pseudo-spin which consists of a linear 
combination of waves due to different sub-lattice sites. The above is, however, merely one 
example of graphene-like materials which can also be written as 
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where in this specific case, 3
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one obtains the graphene Hamiltonian comparable in form to the general Dirac equation  
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where V is the external potential. 
The above can be written in terms of Dirac matrices as follows 
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Fig. 4, the intragrap states appear to always penetrate into the potential so their maxima are 
found inside it.  Although all the intragap states are always bound, they are not the only 
bound states.  In general, whenever the kinematic inequality 124 −≠ ep  holds, we have 

bound states because in this case what we really have is 124 −> ep : this is always the case 

for the intragap states, but it is also true of the blue and red 1>e spiral arms in Figs. 2(b) 
and (c), a consequence of the fact that not enough of the total energy has been allotted to the 
motion in the x-direction.   For these bound 1>e states we see in Fig. 4 that their maxima 
lie to the left of the origin: these states do not penetrate into the kink as deeply as the 
intragap states do. 
When 1>e  and 124 −= ep , the particles have sufficient energy to overcome the barrier 
and we have the overbarrier scattering case (the particles go ±∞→x ).  The same procedure 

for intragap states can be applied, with the factor xξe− in Eq. (14) excluded since we are 
looking for undamped solutions.  Some wave functions of this type are given in Fig. 4(c). 
One can calculate the transmission and reflection amplitudes for them.  These suggest 
greater transmission than reflection. 
Because any negative energy eigenstate is related to a positive energy eigenstate by a 
unitary transformation, the local density of states )e'δ(e(r)ψ(r)ψρ(r) e e'e −= ∑ +  is symmetric 
about e = 0 and the negative and positive energy eigenstates contribute equally.  Including 
the zero modes, the conservation of the total number of states implies that the difference in 
densities with and without the kink δρ  is  
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The two zero modes are normalized, so the integral of δρ  over energy and space is – 1.   
Taking electron spin into account this means a charge of – 2e and total spin zero for the 
valence band.  If the zero modes are unoccupied, the charge and spin for the kink are, 
respectively, Q = -2e and S = 0; if the zero modes are singly (doubly) occupied, then Q = -e 
(0), S = ½ (0). These serve as the signature of the presence of charge and the confinement of 
the chiral pair in the vicinity of the kink.  Since the zero modes occur in pairs we do not see 
charge fractionalization here (Hou et al., 2007). Moreover, we need not be concerned here 
with a violation of Kramer’s theorem (Su et al., 1980). 

4. Pseudospin orbit coupling (pseudo-SOC) device 
By the Dirac equation, spin orbit coupling can be derived in the vacuum with applied 
electric fields; one thus visualizes that similar effects should arise for the pseudospin of 
graphene particles governed by the Dirac equations. Thus pseudo-spin orbit coupling (Tan 
et al, 2010) can be derived by applying external electric field to a system governed by the 
graphene Hamiltonian. We will start with H3 which is not a comparable form to standard 
Dirac Hamiltoninan.  But by transformation e. g. using a unitary matrix U, one can obtain a 
more compatible form (McCann, E et al, 2006) of H1 
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The transformation which has been performed by U determines the type of pseudo-spin to be 
investigated, e.g. by the above method which results in 1 2 )T(A Bχ =  pseudo-spin is defined by 
the linear superposition of wavefunction amplitude between site A1 and B2. In application to 
particles which mimic Dirac fermions due to material bandstructure, it would be instructive to 
replace the coupling mass term of mc2 for particles in vacuum with a coupling term Δ which 
arises due to material bandstructure but plays the same role as the mass term, as far as the 
Dirac matrix is concerned.  The coupling term Δ gives rise to the energy dispersion where the 
effective mass of particles in the materials can be derived; in other words, particle effective 
mass is a function of Δ but not vice versa.  For monolayer graphene, Δ  vanishes and it can be 
derived from the energy dispersion relation that particles behave like massless Dirac fermions. 
In graphene-like materials, χ can be described as a pseudo-spin which consists of a linear 
combination of waves due to different sub-lattice sites. The above is, however, merely one 
example of graphene-like materials which can also be written as 
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where V is the external potential. 
The above can be written in terms of Dirac matrices as follows 
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where j
j A/c 0−∂=E is the electric field.  We provide the above to merely illustrate the close 

connection between the bilayer graphene and the vacuum Dirac Hamiltonian, such that 
useful analogies of pseudo-spin orbit coupling to the vacuum spin orbit coupling can be 
drawn. Thus, to simplify matter, we temporarily disregard the fact that 
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.   With this, Eq.(26) can be 

reduced to 
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where ΔΔΔ ab == ][][ 2 . The relativistic energy equation which could be used to describe 
the analogous effect of pseudo spin orbit coupling, i.e. the coupling of pseudo spin to 
particle momentum in the presence of electric fields, for Dirac fermions in graphene-like 
material systems is thus 
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To avoid excessive details into the material science and band structure of graphene, we will 

take the liberty of assuming that the relation II ΔΔΔΔ ba == ;22 is satisfied in bilayer 
graphene or, at least, can be realized by material engineering.   
We will now investigate the effects of pseudo SO coupling on the pseudo spin χ . As is well-
known, a particle in a SO coupling system experiences an effective magnetic field 

E×= pBΕ which couples directly to its momentum vector, thus preserving time-reversal 
symmetry. In the technology-relevant field of spintronics, such ΕB  can be used to control 
the precession of spin when coupled with appropriate momentum constraints (e.g. single 
mode one-dimensional ballistic transport), similar to gate bias-controlled spin precession via 
Rashba or Dresselhaus SO coupling in the so-called Datta-Das spin transistor (Supriyo, 
Datta et al, 1989).  On the other hand, spin relaxation is related to electron precession about 

ΕB (D’yakonov, M.I. et al, 1971), which suggests that pseudospin relaxation can be analyzed 
in analogy to spin relaxation under spin orbit coupling, but in the relativistic limit.  In 

typical graphene-like materials, ][][ 2
ba ΔΔΔ ==  is small (10-300 meV for massive 

fermion, 0 meV for massless fermion).  Since kinetic energy KE << Δ (5 order of magnitude 
smaller) for the non-relativistic approximation to apply, the corresponding number of non-
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relativistic particles is very small.  For particles confined to energy range 1-2 order of 
magnitude smaller than Δ , we consider these particles as relativistic; this prompts the need 
to analyze the pseudo SO effect in the relativistic limit. One could visualize the pseudo spin 
precessing about an effective magnetic field which could only be “seen” by the pseudo spin, 

at a precessional frequency which could be deduced from ])/(2
bΔEep [−= cEω .  With 

the average velocity given by
][ 2

a
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+
= , the precession angle over the Bloch 

sphere of the pseudospin, for a unit of particle travel length in the relativistic regime is given 
by: 
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A series of pseudospin relaxation has been predicted and analyzed for different energy 
regimes.  In summary, it has been studied that Dirac particles in the energy range 
of 1≈pc meV (which although is relatively small compared to the energy gap of ≈Δ  200 – 
300 meV, it is large enough to be within the relativistic regime), Eq. (31) reduces 

to 3cp
Ee

l
Ω Δ

= .  Increasing particle’s momentum reduces the precessional angle for a fixed 

travel length.  By contrast, in the ultra-relativistic limit (i.e. massless Dirac particle), Eq.(31) 

reduces to c/eE=Ω l/ , which predicts that massless Dirac particle has a constant l/Ω . 

This can be understood as typically, massless particle travels at the effective speed of light in 
the medium. In this limit, pseudo spin relaxation becomes independent of particle 
momentum. In the non-relativistic limit, where 

εχχ =⎟
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particle velocity can be approximated as p/mχvχ μ = , and in a similar manner, the 

precession angleΩ  per unit travelling distance is given by Δ=Ω 4/eEl/ , which is 

independent of particle momentum. Therefore in both non-relativistic and ultra-relativistic 
limits, l/Ω is independent of the particle momentum. But in the former, l/Ω depends 
inversely onΔ ; such a dependence obviously cannot exist in the ultra-relativistic limit 
where the coupling mass term vanishes.   
Based on the above understanding, we briefly propose that a nanoscale device which 
consists of a graphene ring and a charged nano-sized dot at the centre would be a suitable 
platform to utilize the pseudospin orbit coupling of the graphene Dirac particles. The 
pseudospin orbit strength can be calculated in the relativistic and low energy limits in 
analogy to spin orbit coupling in semiconductors.  Pseudospin orbit coupling strength can 
be enhanced by accelerating the Dirac particles around the ring, due to the small energy gap 
in graphene and the large radial electric field due to the charged quantum dot. 
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To avoid excessive details into the material science and band structure of graphene, we will 

take the liberty of assuming that the relation II ΔΔΔΔ ba == ;22 is satisfied in bilayer 
graphene or, at least, can be realized by material engineering.   
We will now investigate the effects of pseudo SO coupling on the pseudo spin χ . As is well-
known, a particle in a SO coupling system experiences an effective magnetic field 

E×= pBΕ which couples directly to its momentum vector, thus preserving time-reversal 
symmetry. In the technology-relevant field of spintronics, such ΕB  can be used to control 
the precession of spin when coupled with appropriate momentum constraints (e.g. single 
mode one-dimensional ballistic transport), similar to gate bias-controlled spin precession via 
Rashba or Dresselhaus SO coupling in the so-called Datta-Das spin transistor (Supriyo, 
Datta et al, 1989).  On the other hand, spin relaxation is related to electron precession about 

ΕB (D’yakonov, M.I. et al, 1971), which suggests that pseudospin relaxation can be analyzed 
in analogy to spin relaxation under spin orbit coupling, but in the relativistic limit.  In 

typical graphene-like materials, ][][ 2
ba ΔΔΔ ==  is small (10-300 meV for massive 

fermion, 0 meV for massless fermion).  Since kinetic energy KE << Δ (5 order of magnitude 
smaller) for the non-relativistic approximation to apply, the corresponding number of non-
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relativistic particles is very small.  For particles confined to energy range 1-2 order of 
magnitude smaller than Δ , we consider these particles as relativistic; this prompts the need 
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A series of pseudospin relaxation has been predicted and analyzed for different energy 
regimes.  In summary, it has been studied that Dirac particles in the energy range 
of 1≈pc meV (which although is relatively small compared to the energy gap of ≈Δ  200 – 
300 meV, it is large enough to be within the relativistic regime), Eq. (31) reduces 
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precession angleΩ  per unit travelling distance is given by Δ=Ω 4/eEl/ , which is 

independent of particle momentum. Therefore in both non-relativistic and ultra-relativistic 
limits, l/Ω is independent of the particle momentum. But in the former, l/Ω depends 
inversely onΔ ; such a dependence obviously cannot exist in the ultra-relativistic limit 
where the coupling mass term vanishes.   
Based on the above understanding, we briefly propose that a nanoscale device which 
consists of a graphene ring and a charged nano-sized dot at the centre would be a suitable 
platform to utilize the pseudospin orbit coupling of the graphene Dirac particles. The 
pseudospin orbit strength can be calculated in the relativistic and low energy limits in 
analogy to spin orbit coupling in semiconductors.  Pseudospin orbit coupling strength can 
be enhanced by accelerating the Dirac particles around the ring, due to the small energy gap 
in graphene and the large radial electric field due to the charged quantum dot. 
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5.   Conclusions 

The zero modes (21) may find possible application in two ways: (a) one can take advantage 
of the relation (18) applied to the zero modes as a switching indicator and (b) in so far as 
zero modes are of two types associated with the chiral functions T)1,1( and T)1,1(− , they 
might store information much as binary bits do.  The topological properties of the charge 
and spin of these zero modes confer a certain degree of robustness to these binary states. 
Even the presence of some disorder would not alter this conclusion provided the kink 
retains its topological character.  An indication of this is that the zero modes appear even for 
small r value.  Further application of the zero modes can be derived from utilizing the valley 
degree of freedom (or “valleytronics” (Rycerz et al., 2007), which can be modified along the 
kink direction.  Our results would also be of interest in brane theory (Horava, 2005) and 
superconductivity (Lu & Yip, 2008).  We also describe another relativistic effect in graphene, 
namely, pseudospin orbit coupling (pseudo-SOC) effect.  Potentially the pseudo-SOC effect 
can be used for pseudospin field effect transistor (FET) in much the same way that the 
physical spin orbit coupling is used for semiconductor spin-FET. The pseudospin orbit 
coupling strength has to be further enhanced for it to be comparable to the conventional 
semiconductor-based Rashba effect. Future work which focuses on modifying the graphene 
structure can potentially enhance this useful pseudo-SOC effect within experimentally 
accessible parameters.  
The support of NRF/NUS under Grants Nos. R-143-000-357-281 and R-263-000-482-112 are 
gratefully acknowledged. 

Appendix  
The hypergeometric differential equation is (in general z is complex) 

0]1[(1 2

2
=−++−+− wab

dz
dw)zb(ac

dz
wdz)z , 

whose solution is the Gauss series 

n!
zz)c;a,(b,Fz)c;b,(a,F

n

n n)Γ(c
n)n)Γ)ΓΓ(a

Γ(a)Γ(b)
Γ(c)

∑==
∞

= +

++

0
1212  

with circle of convergence on the unit circle 1=z .  The series is not defined when c = 0 or a 
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1. Introduction  
Adhesion and peeling phenomena play important roles for connecting two objects 
regardless of whether they are inorganic, organic or biological materials, which contributes 
to buliding up microscopic devices. The carbon nanostructures such as carbon nanotube 
(CNT) and graphene have recently attracted great interests as the components of the 
electronic, magnetic and optical devices. We have so far studied the peeling mechanics of 
the carbon nanotube (CNT) adsorbed onto the graphite surface both theoretically (Sasaki et 
al., 2006, 2008, 2009b) and experimentally (Ishikawa et al., 2008, 2009). It is clarified that the 
transition from the line- to the point-contact between the CNT and the graphite surface 
occurs during the peeling process. The CNT on the sub-microscale has the same size as the 
spatulae of the microscopic hairs aligned on the gecko foot (Autumn et al., 2000, 2002). 
Therefore the study of the peeling process of the nano-scale objects such as CNT is useful for 
not only developing the gecko-foot-mimic adhesives (Qu et al., 2008) but also understanding 
the elementary process of adhesion.  
On the other hand, since the success of its experimental isolation (Novoselov et al., 2004), the 
potential of various application of the graphene such as the components of the electronic 
devices (Novoselov et al., 2005, Geim et al., 2007), has been discussed by many researchers. 
There is also a possibility that its adhesion with the substrate is applied to the adhesive tape 
at nanoscale. Therefore the peeling mechanics of the graphene sheet is very important, 
which can be regarded as the elementary process of the macroscopic sticky tape such as the 
gecko-foot-mimic adhesives (Autumn et al., 2000, 2002, Qu et al., 2008), or that of the 
microscopic extension of the crack in the fracture process. In our preliminary experiments, 
we have already succeeded in peeling the multilayered graphene plate with a thickness of 
several μm by using atomic-force microscopy tip. Here the two-component epoxy resin 
adhesive is used to bond the graphene plate to the AFM tip. Here the standard Si3N4 tip for 
the contact AFM experiment is used. The junction formed between the AFM tip and the 
graphene should be mechanically rigid enough to measure the elasticity of the graphene 
                                                 
1Corresponding author: naru@st.seikei.ac.jp 



 Physics and Applications of Graphene - Theory 

 

194 

Martin, I, Blanter, Ya. M. & Morpurgo, A. F. (2008) Topological confinement in bilayer 
 graphene Phys. Rev. Lett. (for McCann Edward) 100, 3 (January, 2008) 036804, ISSN 
0031-9007 

Martinez, J. C., Jalil, M. B. A. & Tan, S. G. (2010) Klein tunneling and zitterbewegung and the 
 formation of a polarized p-n junction, Appl. Phys. Lett. 97, 6 (August, 2010) 062111, 
 ISSN 0003-6951 

McCann Edward, Fal’ko Vladimir  I., Landau-level degeneracy and quantum Hall effect in a 
 graphite bilayer,  Phys.  Rev. Lett. 96 (March 2005), 086805, ISSN 0031-9007.  

Novoselov, K. S., McCann, E., Morozov, S. V., Fal'ko, V. I., Katsnelson, M. I., Zeitler, U.,  
Jiang, D., Schedin, F. & Geim, A. K. (2006) Unconventional quantum Hall effect and 
Berry’s phase of 2π in bilayer graphene, Nature Phys. (for Noveselov) 2, 3 (March, 
2006) 177- 180, ISSN 1745-2473. 

Rycerz, A., Tworzydlo, J. & Beenaker, C. W. J. (2007) Valley filter and valley valve in 
 graphene, Nature Phys. (for Noveselov) 3, 3 (March, 2007) 172 – 175,  ISSN 1745-
2473 

Schliemann, J., Loss, D. & Westervelt, R. M. (2006) Zitterbewegung of electrons and holes in 
 III-V semiconductors quantum wells, Phys. Rev. (for Manes) B 73, 8 (February, 2006) 
085323,  ISSN 1098-0121 

Su, W. P., Schrieffer, J. R. & Heeger, A. J. (1980) Soliton excitations in polyacetylene, Phys. 
 Rev. B 22, 4 (August, 1980), 2099 – 2111, ISSN 1098-0121. 

Supriyo Datta & B. Das, Electronic analog of the electro-optic modulator (1989), Appl. Phys. 
 Lett. 56 (December, 1989) 665 – 667, ISSN 0003-6951. 

Tan S. G.  et al. (2010) Pseudospin-orbital coupling for pseudospntronic device in graphene, 
 Magnetism and Mag. Materials (August, 2010) 322, 2390 – 2394, ISSN 0304-8853.  

Tan. S. G., Jalil, M. B. A., & Fujita, T. (2010) Monopole and topological electron dynamics in 
adiabatic spintronic and graphene systems, Ann. Phys. (N.Y.) 325, 8 (August, 2010) 
1537-1549, ISSN 0003-4916 

Volovik, G. E. (2003). The Universe in a Helium Droplet, Oxford, ISBN 13: 978-0-19-956484-2, 
 Clarendon 

9 

Simulated Nanoscale Peeling Process of 
Monolayer Graphene Sheet 

- Effect of Edge Structure and Lifting Position    
Naruo Sasaki1, Hideaki Okamoto, Shingen Masuda, 

Kouji Miura* and Noriaki Itamura 
Seikei University,  

*Aichi University of Education,  
Japan 

1. Introduction  
Adhesion and peeling phenomena play important roles for connecting two objects 
regardless of whether they are inorganic, organic or biological materials, which contributes 
to buliding up microscopic devices. The carbon nanostructures such as carbon nanotube 
(CNT) and graphene have recently attracted great interests as the components of the 
electronic, magnetic and optical devices. We have so far studied the peeling mechanics of 
the carbon nanotube (CNT) adsorbed onto the graphite surface both theoretically (Sasaki et 
al., 2006, 2008, 2009b) and experimentally (Ishikawa et al., 2008, 2009). It is clarified that the 
transition from the line- to the point-contact between the CNT and the graphite surface 
occurs during the peeling process. The CNT on the sub-microscale has the same size as the 
spatulae of the microscopic hairs aligned on the gecko foot (Autumn et al., 2000, 2002). 
Therefore the study of the peeling process of the nano-scale objects such as CNT is useful for 
not only developing the gecko-foot-mimic adhesives (Qu et al., 2008) but also understanding 
the elementary process of adhesion.  
On the other hand, since the success of its experimental isolation (Novoselov et al., 2004), the 
potential of various application of the graphene such as the components of the electronic 
devices (Novoselov et al., 2005, Geim et al., 2007), has been discussed by many researchers. 
There is also a possibility that its adhesion with the substrate is applied to the adhesive tape 
at nanoscale. Therefore the peeling mechanics of the graphene sheet is very important, 
which can be regarded as the elementary process of the macroscopic sticky tape such as the 
gecko-foot-mimic adhesives (Autumn et al., 2000, 2002, Qu et al., 2008), or that of the 
microscopic extension of the crack in the fracture process. In our preliminary experiments, 
we have already succeeded in peeling the multilayered graphene plate with a thickness of 
several μm by using atomic-force microscopy tip. Here the two-component epoxy resin 
adhesive is used to bond the graphene plate to the AFM tip. Here the standard Si3N4 tip for 
the contact AFM experiment is used. The junction formed between the AFM tip and the 
graphene should be mechanically rigid enough to measure the elasticity of the graphene 
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sheet during the peeling process. The two-component epoxy resin adhesive satisfies the 
above condition. If the thickness of the peeled graphene plate is reduced, the comparison 
between the present simulation and the experiment will become possible.  
Therefore, in this chapter, ahead of experiment, we have theoretically reported the 
nanoscale peeling behaviors of the monolayer graphene sheet based on the molecular 
mechanics simulation (Sasaki et al., 2009a, 2010). The peeling force curve exhibits the 
nanoscale change of the graphene shape from the surface to the line contact. The center 
position and the left edge are chosen as the lifting position. In Section 3, the peeling of the 
monolayer graphene sheet with the armchair edge for lifting the center position is discussed. 
In Secs. 4 and 5, the peeling of the monolayer graphene sheet with the armchair- and zigzag-
edge for lifting the edge position is discussed, respectively.  

2. Model and method of simulation 
In the simulation, a rectangular-shaped monolayer graphene sheet with each side of 38 Å ×  
20 – 21 Å, comprised of 310 carbon atoms, is peeled from the rigid rectangular graphene 
sheet (which is called, the ’graphite surface,’ hereafter) with each side of 164-165 Å ×  58 Å, 
comprised of 3536 carbon atoms [Fig. 1(a)]. First, both the above graphene sheets are 
separately optimized by minimizing the covalent bonding energy described by the Tersoff 
potential energy (Tersoff, 1988), Vcov, using the Polak-Rebiere-type conjugate gradient (CG) 
method (Press et al., 1999). Here the convergence criterion is set so that the maximum of 
absolute value of all the forces acting on the movable atoms, becomes lower than 10-5 eV/Å. 
Next, the graphene sheet is put and adsorbed onto the graphite surface, so that the AB 
stacking registry between the graphene sheet and the graphite surface is satisfied as shown 
in Figs. 1(b) and 1(c). Here the green-colored six-membered ring at the center position or the 
outermost left edge of the graphene sheet is assumed to be attached to the AFM tip apex 
[Fig. 1(a)], and then it is gradually moved upward along the z direction, parallel to the 
[0001] axis, by 0.1 Å. For each lifting position of the graphene sheet, z, the total energy Vtotal   
=Vcov + VvdW, is minimized using the CG method, where VvdW is the nonbonding vdW 
interaction described by the modified Lennard-Jones (LJ) potential energy (Lu et al., 1988, 
Stoddard and Ford, 1973), acting between the graphene sheet and the graphite surface. Thus 
the optimized positions of the movable carbon atoms of the graphene sheet, (x, y, z), the 
vertical peeling force Fz, and the lateral sliding forces Fx and Fy, acting on the lifting center, 
are calculated during the peeling process. In this paper, the graphene sheets with armchair- 
[Fig. 1(b)] and zigzag-edges [Fig. 1(c)] are discussed.  

3. Center-lifting case of armchair-edge graphene 
When the six-membered ring located at the center position of the monolayer graphene sheet 
is lifted, the graphene sheet exhibits the characteristic transition of its shape during the 
peeling process within the x-z plane as illustrated in Figs. 2A-2J, corresponding to Figs. 3A-
3J, the vertical force acting on the lifting center position Fz plotted as a function of the 
displacement from the initial position along z-direction, z. At first the monolayer graphene 
sheet takes an initial planar structure parallel to the rigid graphite surface [Fig. 2A: z = 0 Å]. 
Here the surface contact is formed between the graphene sheet and the graphite surface. The 
vertical force Fz is zero [Fig. 3A]. Just after the beginning of the peeling [Fig. 2B: z = 2.0 Å], 
the attractive interaction force takes the minimum value, –3.1eV/Å [Fig. 3B].  
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Fig. 1. (a) The schematic illustration of the model of the monolayer graphene sheet 
physically adsorbed onto the rigid graphite surface used in the simulation. The green-
colored six-membered ring at the center position or left edge of the graphene sheet is 
assumed to be adsorbed onto the atomic force miroscopy tip apex indicated by broken lines, 
and it is moved upward along the z (or [0001]) direction, by z = 0.1 Å. Initial AB stacking 
registry of the red-colored graphene sheet with (b) armchair and (c) zigzag edge adsorbed 
onto the blue-colored graphite surface within the x - y plane. 
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sheet during the peeling process. The two-component epoxy resin adhesive satisfies the 
above condition. If the thickness of the peeled graphene plate is reduced, the comparison 
between the present simulation and the experiment will become possible.  
Therefore, in this chapter, ahead of experiment, we have theoretically reported the 
nanoscale peeling behaviors of the monolayer graphene sheet based on the molecular 
mechanics simulation (Sasaki et al., 2009a, 2010). The peeling force curve exhibits the 
nanoscale change of the graphene shape from the surface to the line contact. The center 
position and the left edge are chosen as the lifting position. In Section 3, the peeling of the 
monolayer graphene sheet with the armchair edge for lifting the center position is discussed. 
In Secs. 4 and 5, the peeling of the monolayer graphene sheet with the armchair- and zigzag-
edge for lifting the edge position is discussed, respectively.  

2. Model and method of simulation 
In the simulation, a rectangular-shaped monolayer graphene sheet with each side of 38 Å ×  
20 – 21 Å, comprised of 310 carbon atoms, is peeled from the rigid rectangular graphene 
sheet (which is called, the ’graphite surface,’ hereafter) with each side of 164-165 Å ×  58 Å, 
comprised of 3536 carbon atoms [Fig. 1(a)]. First, both the above graphene sheets are 
separately optimized by minimizing the covalent bonding energy described by the Tersoff 
potential energy (Tersoff, 1988), Vcov, using the Polak-Rebiere-type conjugate gradient (CG) 
method (Press et al., 1999). Here the convergence criterion is set so that the maximum of 
absolute value of all the forces acting on the movable atoms, becomes lower than 10-5 eV/Å. 
Next, the graphene sheet is put and adsorbed onto the graphite surface, so that the AB 
stacking registry between the graphene sheet and the graphite surface is satisfied as shown 
in Figs. 1(b) and 1(c). Here the green-colored six-membered ring at the center position or the 
outermost left edge of the graphene sheet is assumed to be attached to the AFM tip apex 
[Fig. 1(a)], and then it is gradually moved upward along the z direction, parallel to the 
[0001] axis, by 0.1 Å. For each lifting position of the graphene sheet, z, the total energy Vtotal   
=Vcov + VvdW, is minimized using the CG method, where VvdW is the nonbonding vdW 
interaction described by the modified Lennard-Jones (LJ) potential energy (Lu et al., 1988, 
Stoddard and Ford, 1973), acting between the graphene sheet and the graphite surface. Thus 
the optimized positions of the movable carbon atoms of the graphene sheet, (x, y, z), the 
vertical peeling force Fz, and the lateral sliding forces Fx and Fy, acting on the lifting center, 
are calculated during the peeling process. In this paper, the graphene sheets with armchair- 
[Fig. 1(b)] and zigzag-edges [Fig. 1(c)] are discussed.  

3. Center-lifting case of armchair-edge graphene 
When the six-membered ring located at the center position of the monolayer graphene sheet 
is lifted, the graphene sheet exhibits the characteristic transition of its shape during the 
peeling process within the x-z plane as illustrated in Figs. 2A-2J, corresponding to Figs. 3A-
3J, the vertical force acting on the lifting center position Fz plotted as a function of the 
displacement from the initial position along z-direction, z. At first the monolayer graphene 
sheet takes an initial planar structure parallel to the rigid graphite surface [Fig. 2A: z = 0 Å]. 
Here the surface contact is formed between the graphene sheet and the graphite surface. The 
vertical force Fz is zero [Fig. 3A]. Just after the beginning of the peeling [Fig. 2B: z = 2.0 Å], 
the attractive interaction force takes the minimum value, –3.1eV/Å [Fig. 3B].  

Simulated Nanoscale Peeling Process of Monolayer Graphene Sheet-  
Effect of Edge Structure and Lifting Position 

 

197 

164 Å

x

y

z x

y

x

y

z x

y

58 Å 21 Å

38 ÅRigid rectangular
graphite surface: 
3536 atoms 

Armchair edge

x

y

z x

y

x

y

z x

y

165 Å

58 Å

38 Å

20 Å
Rectangular monolayer
graphene sheet: 310 atoms

Rigid rectangular
graphite surface: 
3536 atoms 

Zigzag edge

Rectangular monolayer
graphene sheet: 310 atoms

(b)

(c)

free edge
(outermost array)

lifting edge

2nd arraylifting edge

free edge
(outermost array)2nd array

lifting center

164 -165 Å

58 Å

38 Å

20-21Å[0001]
z y

x

z y

x Graphite surface

Graphene sheet

Peeling

lifting 
center 

AFM tip apex
(a) z z 

lifting 
edge 

 

Fig. 1. (a) The schematic illustration of the model of the monolayer graphene sheet 
physically adsorbed onto the rigid graphite surface used in the simulation. The green-
colored six-membered ring at the center position or left edge of the graphene sheet is 
assumed to be adsorbed onto the atomic force miroscopy tip apex indicated by broken lines, 
and it is moved upward along the z (or [0001]) direction, by z = 0.1 Å. Initial AB stacking 
registry of the red-colored graphene sheet with (b) armchair and (c) zigzag edge adsorbed 
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Fig. 2. The transition of the shape of the monolayer graphene sheet during the peeling 
process from A to J within the x - z plane. The red-colored graphene sheet and blue-colored 
graphite surface are shown. The displacement of the lifting center position from the initial 
position, z [Å], is indicated on the upper-right positions of each picture. 
 

 
Fig. 3. The vertical force, Fz, acting on the center six-membered ring, plotted as a function of 
the lifting displacement z. The positions A-J correspond to those of Fig.2. 

Between z = 2.0 Å and 2.1 Å, the first discrete partial peeling of the graphene occurs [Figs. 
2B→ 2C], which produces the 1st discontinuous jump in the force curve [Figs. 3B→ 3C]. 
The partial peeled area around the lifting center of the graphene is shown in Figs. 4B→ 4C. 
Then, between z = 2.4 Å and 2.5 Å, the second discrete partial peeling of the graphene occurs 
[Figs. 2D→ 2E], which produces the 2nd discontinuous jump in the force curve [Figs. 
3D→ 3E]. The partial peeled area of the graphene is shown in Figs. 4D→ 4E. Which of 
these two areas is peeled first is expected to be actually the stochastic process under the 
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room temperature condition. Now the surface contact region is split into the left and right 
sections [Fig. 2E]. After the two discrete jumps, Fz increases as the peeling proceeds, since 
the attractive surface contact region gradually decreases [Fig. 2F: z = 5.0 Å]. Then the surface 
contact continuously turns into the line contact at z = 7.3 Å [Fig. 2G]. Here the ’line contact’ 
is defined by the following two criteria: 1) The carbon atoms on the left and right outermost 
arrays of the graphene sheet [Fig. 1(b)] receive the repulsive interaction force from the 
graphite surface. 2) The carbon atoms on the second arrays [Fig. 1(b)] next to the outermost 
arrays receive the attractive interaction force. As illustrated in Fig. 5, the average forces 
acting on one carbon atom on the outermost and the second arrays satisfy the above criteria 
at z = 7.3 Å, which corresponds to Fig. 2G.  
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Fig. 4. The atomic structures of the graphene sheet just before and after the discrete change, 
B→C, D→E, and I→ J. The regions surrounded by dotted ellipses show the partial 
peeled areas.  
 

 
Fig. 5. The averaged forces acting on one atom on the left and right outermost arrays (red-
colored) and those on the left and right second arrays (blue-colored), as a function of the 
displacement of the lifting center position from the initial position, z [Å]. 
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Once the line contacts are formed between the free edges (outermost arrays) of the peeled 
graphene sheet and the graphite surface, they clearly slide on the graphite surface as 
indicated by a circle in Figs. 2G→ 2H→ 2I with a rapid increase of the bending of the 
graphene sheet. Within x-y plane, the right outermost array of the graphene sheet slides 
nearly straightforward along -x direction, not so sensitive to the lattice structure of the 
surface as illustrated in Figs. 6(a) and 6(b), which show the trajectories of the two carbon 
atoms on the right outermost array illustrated in Fig. 1(b). The sliding of the outermost 
arrays during G and I appears much more clearly than that during A and G, During H and I, 
the decrease of Fz [Figs. 3H and 3I] can be explained by the decrease of the repulsive force 
acting on the carbon atoms on the left and right edges of the graphene sheet as shown in 
Fig. 5, that’s to say, the relative increase of the effect of the attractive interaction force.  
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Fig. 6. The trajectory of the two carbon atoms on the right free edge (outermost array) 
indicated by white circles in Fig. 1(b). (a) The whole trajectory A→ I, and (b) the part of the 
trajectory A→E, including the discrete jumps, B→C and D→E, are indicated. White 
circles mean carbon atoms of the graphite surface. The indices A – I correspond to those in 
Fig. 2. 

 
Fig. 7. The lateral force, Fy, acting on the center six-membered ring, plotted as a function of 
the displacement z. The positions A-J correspond to those of Fig. 2. 
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When the bending of the graphene sheet becomes larger than a certain range, both the left 
and right line contacts break and the graphene sheet is completely peeled from the surface 
[Figs. 2I→ 2J: z = 14.8 Å→ 14.9 Å], which produces the 3rd discontinuous jump in the force 
curve [Figs. 3I→ 3J]. As illustrated in Figs. 2I→ 2J, and Figs. 4I→ 4J, the graphene sheet 
exhibits the transition from the arched shape to the planer shape.  
Thus the vertical peeling force Fz exhibits the characteristic shape as shown in Fig. 3, which 
reflects the transition from the surface to the line contact between the graphene sheet and 
the graphite surface. On the other hand, the lateral sliding force Fx is zero due to the 
structural symmetry of the system. However, the lateral sliding force Fy shows a finite value 
with an oscillation whose period and amplitude decreases as z increases. This oscillation of 
Fig. 7 reflects the trajectory of the graphene edges illustrated in Fig. 6 at the graphene - 
substrate interface during the peeling process. The maximum lateral force Fy ≈ 0.1 eV/Å 
which is only about 3 % of the absolute value of the maximum adhesion force |Fz|= 3.1 
eV/Å.  

4. Edge-lifting case of armchair-edge graphene 
4.1 Nano-scale peeling along vertical direction 
When the left edge of the monolayer graphene sheet with armchair edge [Fig. 1(b)] is lifted, 
the shape of the graphene sheet markedly changes during the peeling process within the x-z 
plane as illustrated in Figs. 8A-8J, corresponding to Figs. 9(a)A-9(a)J, the vertical force acting 
on the lifting edge Fz plotted as a function of the edge height z.  
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Fig. 8. The transition of the shape of the monolayer graphene sheet with free edge of 
armchair-type during the peeling process from A to J within the x - z plane. The red-colored 
graphene sheet and blue-colored graphite surface are shown. The height of the lifting left 
edge z [Å] are indicated on the upper-right positions of each picture. 

Surface-contact region  At first the monolayer graphene sheet takes an initial planar structure 
parallel to the rigid graphite surface [Fig. 8A: z = 0 Å], and the vertical force Fz is zero 
[Fig. 9(a)A], which means the graphene sheet completely takes the surface contact with the 
graphite surface. Just after the start of the peeling [Fig. 8B: z = 1.1 Å], the attractive interaction 
force |Fz| becomes the maximum, 0.74 eV/Å [Fig. 9(a)B]. After that the surface contact area 
gradually decreases as the peeling proceeds [Figs. 8C-8E], where Fig. 9(a) exhibits the atomic-
scale zigzag structures [Figs. 9(a)C-E], which will be explained in Section 4.2. 
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Surface-contact region  At first the monolayer graphene sheet takes an initial planar structure 
parallel to the rigid graphite surface [Fig. 8A: z = 0 Å], and the vertical force Fz is zero 
[Fig. 9(a)A], which means the graphene sheet completely takes the surface contact with the 
graphite surface. Just after the start of the peeling [Fig. 8B: z = 1.1 Å], the attractive interaction 
force |Fz| becomes the maximum, 0.74 eV/Å [Fig. 9(a)B]. After that the surface contact area 
gradually decreases as the peeling proceeds [Figs. 8C-8E], where Fig. 9(a) exhibits the atomic-
scale zigzag structures [Figs. 9(a)C-E], which will be explained in Section 4.2. 
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Lifting edge height z [Å]  
Fig. 9. (a) The vertical force Fz acting on the lifting edge, plotted as a function of the lifting 
edge height z for the graphene with armchair-type free edge. The indices A-J correspond to 
those of Fig. 8. (b) The red-colored averaged force per one atom acting on the outermost 
array, and the blue-colored one acting on the second array, as a function of the lifting edge 
height z [Å]. The indices E, F, H and I correspond to those of Figs. 8 and 9(a). 

Line-contact region  After the surface contact vanishes, the line contact appears [Fig. 8F]. Here 
the ’line contact’ is defined by the following two criteria similar to the case of the center-
lifting peeling: 1) The outermost array of the free edge of the graphene sheet [Fig. 1(b)] 
receives the averaged repulsive interaction force per one carbon atom from the graphite 
surface. 2) The second array next to the outermost array [Fig. 1(b)] receives the averaged 
attractive interaction force per one carbon atom. As illustrated in Fig. 9(b), the edge height z 
= 31.3 Å satisfies the above criteria [Fig. 8F]. Here the free edge adsorbed onto the graphite 
surface is nearly fixed even if the left edge is lifted [Fig. 8F→ Fig. 8G: z = 33.9 Å]. As a result 
the in-plane bending of the graphene sheet markedly decreases, and|Fz| decreases to zero 
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[Figs. 9(a)F-G]. After that the free edge slides on the surface until the graphene sheet takes 
planar structure within the y-z plane [Fig. 8H: z = 37.9 Å], where |Fz| increases again 
[Fig. 9(a)H]. 
Toward complete peeling  Then the graphene sheet is continuously moved upward [Fig. 8I: z = 
38.0 Å →  Fig. 8J: z = 38.4 Å], and is completely peeled from the surface. It is noted the line 
contact clearly vanishes at z = 38.0 Å [Fig. 9(b)I]. The attractive interaction force |Fz| 
increases to take the maximum value [Figs. 9(a)I→ J], and then it gradually decreases to 
zero toward the complete peeling. 

4.2 Atomic-scale sliding within lateral plane 
Fig. 9(a) shows the atomic-scale zigzag structures within the surface- and line-contact 
regions, which can be explained by the following atomic-scale sliding motions of the 
graphene sheet within the x-y plane.  
Surface-contact region  During the surface contact region between C and E in Fig. 9(a), z-Fz 

curve takes the atomic-scale zigzag structures from I to VII. The zigzag behaviors exhibit the 
transition from the continuous [Figs. 10(a)I - II] to the sawtooth shapes [Figs. 10(a)III - VII]. 
First Figs. 10(a)1→ 2→ 3→ 4→ 5 correspond to Figs. 10(b) 1→ 2→ 3→ 4→ 5, which 
show that the graphene sheet continuously slides passing over the nearest neighboring AB 
stacking sites with the graphite surface. The trajectories of the graphene sheet exhibit the 
continuous zigzag paths as shown in Fig. 10(b)5. Next Figs. 10(a) 6→ 7→ 8→ 9→ 10 
correspond to Figs. 10(c) 6→ 7→ 8→ 9→ 10 which show that the graphene sheet takes 
the zigzag stick-slip motions between the nearest neighboring AB stacking sites. Just before 
the slip, the graphene sheet deviates quite a little from the AB-stacking site [Fig. 10(c)6: z = 
17.3 Å]. Then it discretely jumps or slips to the neighboring AB-stacking site [Fig. 10(c)7: z = 
17.4 Å]. As the peeling proceeds, the graphene sheet continuously slides quite a little 
[Fig. 10(c)8: z = 18.2 Å], then it discretely slips again to the neighboring AB stacking site 
[Fig. 10(c)9: z = 18.3 Å]. After that the graphene sheet continuously slides quite a little again 
[Fig. 10(c)10: z = 20.1 Å] until the next slip toward the neighboring AB stacking site occurs. 
As a result the trajectories of the graphene sheet exhibit the discrete zigzag paths connecting 
the nearest neighboring AB-stacking sites as shown in Fig. 10(c)10. The period of the zigzag 
behavior of the Fz curve decreases from 3.7Å to 2.5 Å as shown in Fig. 10(a) as the peeling 
proceeds. The lattice spacing of the graphite surface, 2.5 Å, appears in the peeling force 
curve particularly for the stick-slip region.  
Line-contact region   During the line contact region between G and H in Fig. 9(a), z-Fz curve 
takes another atomic-scale zigzag structures as shown in Fig. 11(a). One of the zigzag 
behaviors in the force curve [Figs. 11(a) 1→ 2→ 3] corresponds to the stick-slip sliding 
motions of the graphene sheet [Figs. 11(b) 1→ 2→ 3]. Here the free edge of the graphene 
sheet slides with nearly the straight stick-slip motions. One of the carbon atoms on the free 
edge passes over the carbon-carbon bonds as shown in Figs. 11(b)1 and 3.  

5. Edge-lifting case of zigzag-edge graphene 
Recently it has been reported that the edge structure of the graphene sheet plays quite an 
important role in electronic, magnetic and optical properties of graphene, which can be also 
expected to give influences on the mechanical properties such as the peeling process. 
Therefore, in this section, the peeling process of the graphene sheet with zigzag edge is 
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Fig. 9. (a) The vertical force Fz acting on the lifting edge, plotted as a function of the lifting 
edge height z for the graphene with armchair-type free edge. The indices A-J correspond to 
those of Fig. 8. (b) The red-colored averaged force per one atom acting on the outermost 
array, and the blue-colored one acting on the second array, as a function of the lifting edge 
height z [Å]. The indices E, F, H and I correspond to those of Figs. 8 and 9(a). 

Line-contact region  After the surface contact vanishes, the line contact appears [Fig. 8F]. Here 
the ’line contact’ is defined by the following two criteria similar to the case of the center-
lifting peeling: 1) The outermost array of the free edge of the graphene sheet [Fig. 1(b)] 
receives the averaged repulsive interaction force per one carbon atom from the graphite 
surface. 2) The second array next to the outermost array [Fig. 1(b)] receives the averaged 
attractive interaction force per one carbon atom. As illustrated in Fig. 9(b), the edge height z 
= 31.3 Å satisfies the above criteria [Fig. 8F]. Here the free edge adsorbed onto the graphite 
surface is nearly fixed even if the left edge is lifted [Fig. 8F→ Fig. 8G: z = 33.9 Å]. As a result 
the in-plane bending of the graphene sheet markedly decreases, and|Fz| decreases to zero 
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[Figs. 9(a)F-G]. After that the free edge slides on the surface until the graphene sheet takes 
planar structure within the y-z plane [Fig. 8H: z = 37.9 Å], where |Fz| increases again 
[Fig. 9(a)H]. 
Toward complete peeling  Then the graphene sheet is continuously moved upward [Fig. 8I: z = 
38.0 Å →  Fig. 8J: z = 38.4 Å], and is completely peeled from the surface. It is noted the line 
contact clearly vanishes at z = 38.0 Å [Fig. 9(b)I]. The attractive interaction force |Fz| 
increases to take the maximum value [Figs. 9(a)I→ J], and then it gradually decreases to 
zero toward the complete peeling. 

4.2 Atomic-scale sliding within lateral plane 
Fig. 9(a) shows the atomic-scale zigzag structures within the surface- and line-contact 
regions, which can be explained by the following atomic-scale sliding motions of the 
graphene sheet within the x-y plane.  
Surface-contact region  During the surface contact region between C and E in Fig. 9(a), z-Fz 

curve takes the atomic-scale zigzag structures from I to VII. The zigzag behaviors exhibit the 
transition from the continuous [Figs. 10(a)I - II] to the sawtooth shapes [Figs. 10(a)III - VII]. 
First Figs. 10(a)1→ 2→ 3→ 4→ 5 correspond to Figs. 10(b) 1→ 2→ 3→ 4→ 5, which 
show that the graphene sheet continuously slides passing over the nearest neighboring AB 
stacking sites with the graphite surface. The trajectories of the graphene sheet exhibit the 
continuous zigzag paths as shown in Fig. 10(b)5. Next Figs. 10(a) 6→ 7→ 8→ 9→ 10 
correspond to Figs. 10(c) 6→ 7→ 8→ 9→ 10 which show that the graphene sheet takes 
the zigzag stick-slip motions between the nearest neighboring AB stacking sites. Just before 
the slip, the graphene sheet deviates quite a little from the AB-stacking site [Fig. 10(c)6: z = 
17.3 Å]. Then it discretely jumps or slips to the neighboring AB-stacking site [Fig. 10(c)7: z = 
17.4 Å]. As the peeling proceeds, the graphene sheet continuously slides quite a little 
[Fig. 10(c)8: z = 18.2 Å], then it discretely slips again to the neighboring AB stacking site 
[Fig. 10(c)9: z = 18.3 Å]. After that the graphene sheet continuously slides quite a little again 
[Fig. 10(c)10: z = 20.1 Å] until the next slip toward the neighboring AB stacking site occurs. 
As a result the trajectories of the graphene sheet exhibit the discrete zigzag paths connecting 
the nearest neighboring AB-stacking sites as shown in Fig. 10(c)10. The period of the zigzag 
behavior of the Fz curve decreases from 3.7Å to 2.5 Å as shown in Fig. 10(a) as the peeling 
proceeds. The lattice spacing of the graphite surface, 2.5 Å, appears in the peeling force 
curve particularly for the stick-slip region.  
Line-contact region   During the line contact region between G and H in Fig. 9(a), z-Fz curve 
takes another atomic-scale zigzag structures as shown in Fig. 11(a). One of the zigzag 
behaviors in the force curve [Figs. 11(a) 1→ 2→ 3] corresponds to the stick-slip sliding 
motions of the graphene sheet [Figs. 11(b) 1→ 2→ 3]. Here the free edge of the graphene 
sheet slides with nearly the straight stick-slip motions. One of the carbon atoms on the free 
edge passes over the carbon-carbon bonds as shown in Figs. 11(b)1 and 3.  

5. Edge-lifting case of zigzag-edge graphene 
Recently it has been reported that the edge structure of the graphene sheet plays quite an 
important role in electronic, magnetic and optical properties of graphene, which can be also 
expected to give influences on the mechanical properties such as the peeling process. 
Therefore, in this section, the peeling process of the graphene sheet with zigzag edge is 
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Fig. 10. (a) Enlargement of part of the z - Fz curve (Fig. 9(a)) corresponding to the continuous 
and stick-slip process during the surface contact. (b) The trajectories of the two carbon atoms 
on the free edge from 1 to 5 indicated in (a). (c) The trajectories of the two carbon atoms on 
the free edge from 6 to 10 indicated in (a). 
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Fig. 11. (a) Enlargement of part of the z - Fz curve (Fig. 9(a)) corresponding to the nearly 
straight stick-slip region during the line contact. (b) The trajectories of the two carbon atoms 
on the free edge from 1 to 3 indicated in (a). 

discussed. In the simulation, the model obtained by rotating Fig. 1(b) by 30° is used 
[Fig. 1(c)], and the left zigzag edge is lifted to simulate the peeling process, while the right 
free edge is zigzag type. As a result, the nanoscale peeling process within the x-z plane and 
the global shape of the force curve [Fig. 12] is similar to Figs. 8 and 9, respectively. The 
qualitative tendency of the decrease of the period and amplitude of the force curve [Fig. 12I-
IV] is similar to that for Fig. 9(a)I-VII. However the details of the atomic-scale mechanics of 
the zigzag edge are clearly different from those of the armchair edge as follows:  
During the surface contact, the graphene sheet first takes zigzag [Figs. 13(b)1-6] and then 
straight stick-slip motions [Figs. 13(c)7-11], passing over the nearest neighboring AB-
stacking site along [1010]  direction. It is noted, to avoid AA-stacking registry, the graphene 
sheet takes zigzag slip toward the nearest neighboring AB-stacking site as shown in 
Fig. 13(b)1→ 2, although it then takes straight slip as shown in Fig. 13(c)7→ 8. The 
minimum period of the force curve of 4.4 Å [Fig. 13(a)IV] reflects the lattice period of the 
graphite surface along the [1010]  direction, while 2.5 Å for the armchair-type edge 
[Fig. 10(a)VII] reflects that along the [1230]  direction. Thus the edge structure gives the 
marked effects on the atomic-scale dynamics depending on the lattice orientation of the 
surface.  
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Fig. 10. (a) Enlargement of part of the z - Fz curve (Fig. 9(a)) corresponding to the continuous 
and stick-slip process during the surface contact. (b) The trajectories of the two carbon atoms 
on the free edge from 1 to 5 indicated in (a). (c) The trajectories of the two carbon atoms on 
the free edge from 6 to 10 indicated in (a). 
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straight stick-slip region during the line contact. (b) The trajectories of the two carbon atoms 
on the free edge from 1 to 3 indicated in (a). 

discussed. In the simulation, the model obtained by rotating Fig. 1(b) by 30° is used 
[Fig. 1(c)], and the left zigzag edge is lifted to simulate the peeling process, while the right 
free edge is zigzag type. As a result, the nanoscale peeling process within the x-z plane and 
the global shape of the force curve [Fig. 12] is similar to Figs. 8 and 9, respectively. The 
qualitative tendency of the decrease of the period and amplitude of the force curve [Fig. 12I-
IV] is similar to that for Fig. 9(a)I-VII. However the details of the atomic-scale mechanics of 
the zigzag edge are clearly different from those of the armchair edge as follows:  
During the surface contact, the graphene sheet first takes zigzag [Figs. 13(b)1-6] and then 
straight stick-slip motions [Figs. 13(c)7-11], passing over the nearest neighboring AB-
stacking site along [1010]  direction. It is noted, to avoid AA-stacking registry, the graphene 
sheet takes zigzag slip toward the nearest neighboring AB-stacking site as shown in 
Fig. 13(b)1→ 2, although it then takes straight slip as shown in Fig. 13(c)7→ 8. The 
minimum period of the force curve of 4.4 Å [Fig. 13(a)IV] reflects the lattice period of the 
graphite surface along the [1010]  direction, while 2.5 Å for the armchair-type edge 
[Fig. 10(a)VII] reflects that along the [1230]  direction. Thus the edge structure gives the 
marked effects on the atomic-scale dynamics depending on the lattice orientation of the 
surface.  
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Fig. 12. The vertical force Fz acting on the lifting edge, plotted as a function of the lifting 
edge height z for the graphene with zigzag-type free edge 

During the line contact, the difference between the armchair- and zigzag-type edge is 
enhanced. Fig. 14(a) reflects the zigzag stick-slip motion of the graphene sheet [Figs. 14(b)1-
9] unlike nearly the straight stick-slip motion [Figs. 10(b)1-3]. Important point of the line-
contact sliding is that each carbon atom on the free edge takes stick-slip motion between the 
nearest neighboring six-membered rings. When each atom is located on the hollow site of 
the six-membered ring, the graphene sheet does not deform along the y direction 
[Figs. 14(b)1, 4-5, and 8-9]. However, when each atom is located a little far from the hollow 
site or near the carbon bond, the graphene sheet bends toward the y direction to decrease 
the total interaction energy [Figs. 14(b)2-3 and 6-7]. Thus, in the case of the zigzag-type edge, 
collective motion of the single carbon ’atom’ on the free edge nearly dominates the graphene 
mechanics together with its deformation. On the other hand, for the armchair-type edge, 
collective motion of the single carbon ’bond’ is dominant.  

6. Discussions and conclusions 
In this chapter molecular mechanics study of the nanoscale peeling of the monolayer 
graphene sheet has been performed. The peeling force curve clearly exhibits the change of 
the graphene shape from the surface- to the line-contact. 
In Section 3, the peeling of the monolayer graphene sheet with the armchair edge for lifting 
the center position is discussed. It is noted that the maximum lateral sliding force Fx ≈ 
0.1 eV/Å is only about 3 % of the absolute value of the maximum adhesion force |Fz|≈ 
3.1 eV/Å. This small sliding force Fx is derived from the superlubricity at the interface 
between the graphene sheet and the graphite surface (Sasaki et al., 2007) and atomic-scale 
wear (Sasaki et al., 2009c). There is possibility that such anisotropy between the vertical 
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Fig. 13. (a) Enlargement of part of the z - Fz curve (Fig. 12(b)) corresponding to the zigzag 
and straight stick-slip process during the surface contact. (b) The trajectories of the two 
carbon atoms on the free edge from 1 to 6 indicated in (a). (c) The trajectories of the two 
carbon atoms on the free edge from 7 to 11 indicated in (a). 
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Fig. 12. The vertical force Fz acting on the lifting edge, plotted as a function of the lifting 
edge height z for the graphene with zigzag-type free edge 

During the line contact, the difference between the armchair- and zigzag-type edge is 
enhanced. Fig. 14(a) reflects the zigzag stick-slip motion of the graphene sheet [Figs. 14(b)1-
9] unlike nearly the straight stick-slip motion [Figs. 10(b)1-3]. Important point of the line-
contact sliding is that each carbon atom on the free edge takes stick-slip motion between the 
nearest neighboring six-membered rings. When each atom is located on the hollow site of 
the six-membered ring, the graphene sheet does not deform along the y direction 
[Figs. 14(b)1, 4-5, and 8-9]. However, when each atom is located a little far from the hollow 
site or near the carbon bond, the graphene sheet bends toward the y direction to decrease 
the total interaction energy [Figs. 14(b)2-3 and 6-7]. Thus, in the case of the zigzag-type edge, 
collective motion of the single carbon ’atom’ on the free edge nearly dominates the graphene 
mechanics together with its deformation. On the other hand, for the armchair-type edge, 
collective motion of the single carbon ’bond’ is dominant.  

6. Discussions and conclusions 
In this chapter molecular mechanics study of the nanoscale peeling of the monolayer 
graphene sheet has been performed. The peeling force curve clearly exhibits the change of 
the graphene shape from the surface- to the line-contact. 
In Section 3, the peeling of the monolayer graphene sheet with the armchair edge for lifting 
the center position is discussed. It is noted that the maximum lateral sliding force Fx ≈ 
0.1 eV/Å is only about 3 % of the absolute value of the maximum adhesion force |Fz|≈ 
3.1 eV/Å. This small sliding force Fx is derived from the superlubricity at the interface 
between the graphene sheet and the graphite surface (Sasaki et al., 2007) and atomic-scale 
wear (Sasaki et al., 2009c). There is possibility that such anisotropy between the vertical 
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Fig. 13. (a) Enlargement of part of the z - Fz curve (Fig. 12(b)) corresponding to the zigzag 
and straight stick-slip process during the surface contact. (b) The trajectories of the two 
carbon atoms on the free edge from 1 to 6 indicated in (a). (c) The trajectories of the two 
carbon atoms on the free edge from 7 to 11 indicated in (a). 
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Fig. 14. (a) Enlargement of part of the z - Fz curve (Fig. 12(b)) corresponding to the zigzag 
stick-slip process during the line contact. (b) The trajectories of the two carbon atoms on the 
free edge from 1 to 9 indicated in (a). 
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force Fz and the lateral sliding force Fx can be applied to the adhesives, which can be 
strongly adhered to the substrate but can easily slide on it. Our AFM measurement exhibits 
that the maximum pull-off force is about several hundreds of nN, which is clearly much 
larger than the binding force, 3 eV/Å≈ 4.8 nN, assumed in our simulation.  
In Secs. 4 and 5, the peeling of the monolayer graphene sheet with the armchair- and zigzag-
edge for lifting the edge position is discussed, respectively. The atomic-scale sliding motion 
of the monolayer graphene sheet during the peeling process is found. For the graphene 
sheet with armchair edge, the transition from the continuous to the stick-slip motion of the 
graphene sheet is found, which can be explained as follows: The peeling process induces the 
increase of the peeled area of the graphene sheet, and the decrease of the surface contact 
area. Considering the peeled area of the graphene sheet acts as an effective spring as shown 
in Fig. 15, the increase of the peeled area makes the effective spring softer, and the decrease 
of the surface contact area decreases the energy barrier to slide the graphene sheet. Finally 
the peeling process induces the transition from the continuous to the stick-slip sliding 
motion of the graphene sheet, together with the decrease of the period and amplitude of the 
z-Fz curve. Important point is that the period of the peeling force curve for the armchair-
edge graphene for the surface contact region corresponds to the lattice spacing of the 
graphite surface along [1230]  direction, 2.5 Å. On the other hand, for the zigzag-edge 
graphene, the period becomes the lattice spacing along [1010]  direction, 4.4 Å. This means 
the sliding length of the graphene sheet along x direction becomes nearly equal to the peeled 
length along z direction. The zigzag structures of the peeling force curve with the same 
period of about several Å have been also observed by our preliminary experiments using 
the multilayered graphene, which will be reported elsewhere. Of course, if the number of 
the peeled graphene sheets is reduced, the direct comparison between the present 
simulation and the experiment will become possible.  
As a result, the center-lifting case requires the largest attractive peeling force, -3.1 eV/ Å, in 
order to peel the graphene sheet as shown in Fig. 16(a). On the other hand, the edge-lifting 
case requires only -0.74 eV/Å, about 20 % of that for the center-lifting case as shown in 
Figs. 16(b) and 16(c). The edge structures give little influences on the basic features of the 
force curve. However, the sliding direction and the edge structure clearly gives marked 
influences on the surface- and line-contact regions, respectively.  
Another important point is that the behavior of the lateral force curve Fx(z) is qualitatively 
the same as that of the vertical force curve Fz(z) during the surface contact as shown in  
Fig. 9(b). Therefore it can be said that the peeling force curve, Fz(z), directly reflects the 
atomic-scale friction force, Fx(z), which decreases to 0.019 eV/Å≈ 30 pN for z = 27.8 Å  
[Fig. 9(b)]. This ultralow friction force Fx is derived from the superlubricity at the interface  
between the graphene sheet and the graphite surface (Sasaki et al., 2007, 2009c, Itamura 
2009a, 2009b) . Furthermore effect of the edge structure on the peeling process is clarified by 
comparison of the free edge between the armchair- and zigzag-types. As mentioned above, 
the atomic-scale structure of the force curve during the surface contact reflects the lattice 
spacing of the graphite surface. So the minimum period of the atomic-scale structure of the 
force curve can tell us the atomic-scale lattice orientation and structure of the free edge of 
graphene. Such information can be used for the control of the electronic properties of the 
graphene sheet adsorbed onto the substrate. Therefore this paper indicates the possibility of 
the identification of the lattice orientation and the edge structure of the graphene sheet. 
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Fig. 14. (a) Enlargement of part of the z - Fz curve (Fig. 12(b)) corresponding to the zigzag 
stick-slip process during the line contact. (b) The trajectories of the two carbon atoms on the 
free edge from 1 to 9 indicated in (a). 
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force Fz and the lateral sliding force Fx can be applied to the adhesives, which can be 
strongly adhered to the substrate but can easily slide on it. Our AFM measurement exhibits 
that the maximum pull-off force is about several hundreds of nN, which is clearly much 
larger than the binding force, 3 eV/Å≈ 4.8 nN, assumed in our simulation.  
In Secs. 4 and 5, the peeling of the monolayer graphene sheet with the armchair- and zigzag-
edge for lifting the edge position is discussed, respectively. The atomic-scale sliding motion 
of the monolayer graphene sheet during the peeling process is found. For the graphene 
sheet with armchair edge, the transition from the continuous to the stick-slip motion of the 
graphene sheet is found, which can be explained as follows: The peeling process induces the 
increase of the peeled area of the graphene sheet, and the decrease of the surface contact 
area. Considering the peeled area of the graphene sheet acts as an effective spring as shown 
in Fig. 15, the increase of the peeled area makes the effective spring softer, and the decrease 
of the surface contact area decreases the energy barrier to slide the graphene sheet. Finally 
the peeling process induces the transition from the continuous to the stick-slip sliding 
motion of the graphene sheet, together with the decrease of the period and amplitude of the 
z-Fz curve. Important point is that the period of the peeling force curve for the armchair-
edge graphene for the surface contact region corresponds to the lattice spacing of the 
graphite surface along [1230]  direction, 2.5 Å. On the other hand, for the zigzag-edge 
graphene, the period becomes the lattice spacing along [1010]  direction, 4.4 Å. This means 
the sliding length of the graphene sheet along x direction becomes nearly equal to the peeled 
length along z direction. The zigzag structures of the peeling force curve with the same 
period of about several Å have been also observed by our preliminary experiments using 
the multilayered graphene, which will be reported elsewhere. Of course, if the number of 
the peeled graphene sheets is reduced, the direct comparison between the present 
simulation and the experiment will become possible.  
As a result, the center-lifting case requires the largest attractive peeling force, -3.1 eV/ Å, in 
order to peel the graphene sheet as shown in Fig. 16(a). On the other hand, the edge-lifting 
case requires only -0.74 eV/Å, about 20 % of that for the center-lifting case as shown in 
Figs. 16(b) and 16(c). The edge structures give little influences on the basic features of the 
force curve. However, the sliding direction and the edge structure clearly gives marked 
influences on the surface- and line-contact regions, respectively.  
Another important point is that the behavior of the lateral force curve Fx(z) is qualitatively 
the same as that of the vertical force curve Fz(z) during the surface contact as shown in  
Fig. 9(b). Therefore it can be said that the peeling force curve, Fz(z), directly reflects the 
atomic-scale friction force, Fx(z), which decreases to 0.019 eV/Å≈ 30 pN for z = 27.8 Å  
[Fig. 9(b)]. This ultralow friction force Fx is derived from the superlubricity at the interface  
between the graphene sheet and the graphite surface (Sasaki et al., 2007, 2009c, Itamura 
2009a, 2009b) . Furthermore effect of the edge structure on the peeling process is clarified by 
comparison of the free edge between the armchair- and zigzag-types. As mentioned above, 
the atomic-scale structure of the force curve during the surface contact reflects the lattice 
spacing of the graphite surface. So the minimum period of the atomic-scale structure of the 
force curve can tell us the atomic-scale lattice orientation and structure of the free edge of 
graphene. Such information can be used for the control of the electronic properties of the 
graphene sheet adsorbed onto the substrate. Therefore this paper indicates the possibility of 
the identification of the lattice orientation and the edge structure of the graphene sheet. 
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Fig. 15. (a) Schematic illustration of the increase of the peeled area and the decrease of the 
surface contact area from C (z = 6.1 Å) to D (z = 18.3 Å) for the graphene sheet with 
armchair-type free edge. (b) – Fz and Fx plotted as a function of the edge height z, show 
qualitatively the same behavior to each other for the graphene sheet with armchair-type free 
edge. 

In this chapter, we discussed the importance of the dynamics of the free edge during the 
peeling process. On the other hand, we also found the importance of the shape of the graphene 
sheet. Additional simulated model and results are shown in Fig. 17. As shown in Fig. 17(a), 
rectangular graphene sheet whose aspect ratio is different from that of the graphene 
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Fig. 16. Comparison of the vertical forces, Fz, among (a) center-lifting case of the armchair-
edge graphene sheet, (b) edge-lifting case of the armchair-edge graphene sheet, and (c) 
edge-lifting case of the zigzag-edge graphene sheet. 

sheet of Fig. 1(b) is used. The basic shape of the vertical force curve, Fig. 17(b), is similar to 
that of Fig. 3. However the armchair type edge is peeled first for Fig. 17(a), although the 
zigzag type edge is peeled first for Fig. 1(b) as discussed in Section 3. This means that the 
shape of the graphene sheet plays an important role for deciding which edge is peeled first. 
Effect of the graphene shape on the peeling process will be discussed in detail somewhere in 
the near future. 
Lastly it should be noted that the peeling process discussed in this chapter is closely related 
to the atomic-scale wear of the graphite and the graphene tip formation in the friction force 
microscopy (Sasaki et al., 2009c). When the tip is pushed onto the surface for less than the 
critical tip height, the outermost graphene layer is attached to the FFM tip, which results in 
the formation of the graphene tip. In that case, the graphene sheet takes the surface contact 
with the second layer graphene, and it takes the two-dimensional stick-slip motion. 
However it is difficult to observe directly the stick-slip motion during the scan process, due 
to the very small gap between the FFM tip and the graphite surface. On the other hand, if 
the peeling process is used, it can be expected that the contact at the AFM tip/graphite 
interface has a wider space to be observed directly by ex. Transmission Electron Microscopy 
(TEM). This paper indicates the possibility of a direct observation of the stick-slip motion of 
the graphene sheet, that’s to say, the elementary process of the atomic-scale friction or 
superlubricity which occurs at the tip/graphite surface interface.  
This research was supported by a Grant-in-Aid for Scientific Research (B) (No. 20360022) 
and for Specially Promoted Research (No. 21000008) from the Japan Society for the 
Promotion of Science. This work was also supported by the Ministry of Education, Culture, 
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Lastly it should be noted that the peeling process discussed in this chapter is closely related 
to the atomic-scale wear of the graphite and the graphene tip formation in the friction force 
microscopy (Sasaki et al., 2009c). When the tip is pushed onto the surface for less than the 
critical tip height, the outermost graphene layer is attached to the FFM tip, which results in 
the formation of the graphene tip. In that case, the graphene sheet takes the surface contact 
with the second layer graphene, and it takes the two-dimensional stick-slip motion. 
However it is difficult to observe directly the stick-slip motion during the scan process, due 
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Fig. 17. (a) The model of the red-colored monolayer graphene sheet physically adsorbed 
onto the blue-colored rigid graphite surface within the x – y plane. The green-colored six-
membered ring at the center position is moved upward along the z (or [0001]) direction, by z 
= 0.1 Å. Initial AB stacking registry of the red-colored graphene sheet with the blue-colored 
graphite surface is assumed. (b) The vertical force Fz acting on the center six-membered ring, 
plotted as a function of the lifting displacement z. 
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plotted as a function of the lifting displacement z. 

7. References 
Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W. P., Kenny, T. W., Fearing, R., & 

Full, R. J. (2000). Adhesive force of a single gecko foot-seta. Nature, Vol. 405, No. 6 
(June, 2000) 681-685, ISSN 0028-0836 (print), 1476-4687 (online) 

Autumn, K., Sitti, M., Liang, Y. A., Peattie, A. M., Hansen, W. R.,  Sponberg, S., Kenny, T. 
W., Fearing, R., Israelachvili, J. N. & Full, R. J. (2002). Evidence for van der Waals 

Simulated Nanoscale Peeling Process of Monolayer Graphene Sheet-  
Effect of Edge Structure and Lifting Position 

 

213 

adhesion in gecko setae. Proc. Natl. Acad. Sci. U.S.A., Vol. 99, No. 19 (September, 
2002) 12252-12256 

Geim, A. K. and Novoselov, K. S. (2007). The rise of graphene.  Nature Mat., Vol. 6, No. 3 
(March, 2007) 183-191, ISSN 1476-1122 (print), 1476-4660 (online) 

Ishikawa, M., Kato, M., Harada, R., Sasaki, N. & Miura, K. (2008). Visualization of nanoscale 
peeling of carbon nanotube on graphite. Appl. Phys. Lett., Vol. 93, No. 8 (August, 
2008) 0831221-0831223, ISSN 0003-6951 (print), 1077-3118 (online) 

Ishikawa, M., Harada, R., Sasaki, N. & Miura, K. (2009). Adhesion and peeling forces of 
carbon nanotubes on a substrate.  Phys. Rev. B., Vol. 80, No. 19 (November, 2009) 
1934061-1934064, ISSN 1098-0121 (print), 1550-235x (online) 

Itamura, N., Miura, K., & Sasaki, N., (2009a). Analysis of Mechanism of Low Lateral 
Stiffness of Superlubric C60 Bearing System.  Jpn. J. of Appl. Phys., Vol. 48, (March, 
2009) 0302141-0302143, ISSN 0021-4922 (print), 1347-4065 (online) 

Itamura, N., Miura, K., & Sasaki, N., (2009b). Simulation of Scan-Directional Dependence of 
Superlubricity of C60 Molecular Bearings and Graphite.  Jpn. J. of Appl. Phys., Vol. 
48, (June, 2009) 0602071-0602073, ISSN 0021-4922 (print), 1347-4065 (online) 

Lu, J. P., Li, X. -P. & Martin, R. M. (1988). Ground state and phase transitions in solid C60.  
Phys. Rev. Lett., Vol. 68, No. 10 (March, 1992) 1551-1554, ISSN 0031-9007 (print), 
1079-7114 (online) 

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., 
Grigorieva, I. V.  & Firsov, A. A. (2004). Electric Field Effect in Atomically Thin 
Carbon Films. Science, Vol. 306, No. 5696 (October, 2004) 666-669, ISSN 0036-8075 
(print), 1095-9203 (online) 

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V.,  
Dubonos, S. V. & Firsov A. A. (2005). Two-dimensional gas of massless Dirac 
fermions in graphene. Nature, Vol. 438, No. 11 (November, 2005) 197-200, ISSN 
0028-0836 (print), 1476-4687 (online) 

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. (1999). Sec. 10.6 
Minimization or Maximization of Functions, In: Numerical Recipes in FORTRAN : 
The Art of Scientific Computing, 2nd ed., 413-418, Cambridge Univ. Press, ISBN 0-521-
43064-X, New York 

Qu, L., Dai, L., Stone, M., Xia, Z. & Wang, Z. L. (2008). Carbon Nanotube Arrays with Strong 
Shear Binding-On and Easy Normal Lifting-Off. Science, Vol. 322, No. 5899 
(October, 2008) 238-242, ISSN 0036-8075 (print), 1095-9203 (online) 

Sasaki, N., Toyoda, A., Saitoh, H., Itamura, N., Ohyama, M. & Miura, K., (2006). Theoretical 
Simulation of Atomic-Scale Peeling of Single-Walled Carbon Nanotube from 
Graphite Surface.  e-J. Surf. Sci. Nanotech., Vol. 4, (January, 2006) 133-137, ISSN 1348-
0391 

Sasaki, N., Itamura, N. & Miura, K. (2007). Simulation of Atomic-Scale Ultralow Friction of 
Graphite/C60/Graphite Interface along [1010] Direction. Jpn. J. of Appl. Phys., Vol. 
46, No. , (December, 2007) L1237-L1239, ISSN 0021-4922 (print), 1347-4065 (online) 

Sasaki, N., Toyoda, A., Itamura, N. & Miura, K., (2008). Simulation of Nanoscale Peeling and 
Adhesion of Single-Walled Carbon Nanotube on Graphite Surface.  e-J. Surf. Sci. 
Nanotech., Vol. 6, (February, 2008) 72-78, ISSN 1348-0391 



 Physics and Applications of Graphene - Theory 

 

214 

Sasaki, N., Okamoto, H., Itamura, N. & Miura, K., (2009a). Peeling of Graphene Sheet - 
Simulation Study.  e-J. Surf. Sci. Nanotech., Vol. 7, (July, 2009) 783-786, ISSN 1348-
0391 

Sasaki, N., Saitoh, H., Itamura, N. & Miura, K., (2009b). Analysis of Lateral Orientation of 
Single-Walled Carbon Nanotube on Graphite.  e-J. Surf. Sci. Nanotech., Vol. 7, 
(January, 2009) 48-52, ISSN 1348-0391 

Sasaki, N., Saitoh, H., Terada, K., Itamura, N. & Miura, K., (2009c). Simulation of Atomic-
Scale Wear of Graphite - Nanotip Induced Graphene Formation.  e-J. Surf. Sci. 
Nanotech., Vol. 7, (March, 2009) 173-180, ISSN 1348-0391 

Sasaki, N., Okamoto, H., Itamura, N. & Miura, K., (2010). Atomic-Scale Friction of 
Monolayer Graphenes with Armchair- and Zigzag-Type Edges During Peeling 
Process.  e-J. Surf. Sci. Nanotech., Vol. 8, (March, 2010) 105-111, ISSN 1348-0391 

Stoddard, S. D. and Ford, J. (1973). Numerical Experiments on the Stochastic Behavior of a 
Lennard-Jones Gas System. Phys. Rev. A, Vol. 8, No. 3 (September, 1973) 1504-1512, 
ISSN 1050-2947 (print), 1094-1622 (online) 

Tersoff, J., (1988). Empirical Interatomic Potential for Carbon, with Applications to 
Amorphous Carbon.  Phys. Rev. Lett., Vol. 61, No. 25 (December, 1988) 2879-2882, 
ISSN 0031-9007 (print), 1079-7114 (online) 

 

 

Zlatko Koinov
The University of Texas at San Antonio

San Antonio, Texas, USA

1. Introduction

A lot of experimental and theoretical studies in recent years are focusing on the unusual
relativistically, kinematic properties of the electronic states in graphene predicted theoretically
decades ago (Haldane, 1988; Semenoff, 1984). Later, it was confirmed that the graphitic
monolayer have anomalous relativistically properties (Novoselov et al., 2005; 2004). Because
electrons and holes in a graphene behave like massless Dirac particles, there is a number
of unusual properties, such as high charge carrier mobility (Novoselov et al., 2005), the
graphene’s conductivity never falls below a minimum value (Nomura & MacDonald, 2007;
Ziegler, 2006), and an anomalous quantum Hall effect.(Zhang et al., 2005)
Bilayer graphene systems, where carriers in one layer are electrons and carriers in the other
are holes, have been considered as ideal candidates for observing superfluid properties at
room temperatures (Lozovik & Sokolik, 2008; Min et al., 2008; Zhang & Jorlecar, 2008). It is
expected that the excitons will behave as neutral bosons at low densities, and therefore, they
can undergo Bose-Einstein condensation (BEC) when the interlayer distance is comparable to
the distance between the particles within each layer. However, when we separate electrons
and holes by introducing a dielectric between them we reduce the exciton binding energy, and
so the critical temperature for condensation decreases. A possible way to increase the binding
energy is to apply magnetic field perpendicular to the layers. As we shall see, the calculations
predict the existence of a condensate of magnetoexcitons with superfluid properties under the
Kosterlitz-Thouless critical temperature TKT which in graphene bilayers decreases in the limit
of large interlayer separation as TKT ∼ B−2 (as TKT ∼ B−1/2 in the limit of small interlayer
separation).
Magnetoexcitons are bound states between two charged fermions (an electron from the
conductive band and a hole from the valence band) in the presence of a magnetic field.
The calculations are much more complicated compare to the corresponding calculations in
the absence of a magnetic field because even a small transverse exciton velocity (or small
transverse wave vector Q) will induce an electric field in the rest frame of the exciton. This
electric field will push the electron and the hole apart, so the magnetoexciton binding energy
must decrease as the transverse velocity increases. In other words, the magnetic field induces
a coupling between the center-of-mass and the relative internal motions, and therefore, the
correct description of excitons in a strong magnetic field should take into account this coupling
effect.

Magnetoexciton Binding Energy
in Graphene Bilayers

10
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1. Introduction

A lot of experimental and theoretical studies in recent years are focusing on the unusual
relativistically, kinematic properties of the electronic states in graphene predicted theoretically
decades ago (Haldane, 1988; Semenoff, 1984). Later, it was confirmed that the graphitic
monolayer have anomalous relativistically properties (Novoselov et al., 2005; 2004). Because
electrons and holes in a graphene behave like massless Dirac particles, there is a number
of unusual properties, such as high charge carrier mobility (Novoselov et al., 2005), the
graphene’s conductivity never falls below a minimum value (Nomura & MacDonald, 2007;
Ziegler, 2006), and an anomalous quantum Hall effect.(Zhang et al., 2005)
Bilayer graphene systems, where carriers in one layer are electrons and carriers in the other
are holes, have been considered as ideal candidates for observing superfluid properties at
room temperatures (Lozovik & Sokolik, 2008; Min et al., 2008; Zhang & Jorlecar, 2008). It is
expected that the excitons will behave as neutral bosons at low densities, and therefore, they
can undergo Bose-Einstein condensation (BEC) when the interlayer distance is comparable to
the distance between the particles within each layer. However, when we separate electrons
and holes by introducing a dielectric between them we reduce the exciton binding energy, and
so the critical temperature for condensation decreases. A possible way to increase the binding
energy is to apply magnetic field perpendicular to the layers. As we shall see, the calculations
predict the existence of a condensate of magnetoexcitons with superfluid properties under the
Kosterlitz-Thouless critical temperature TKT which in graphene bilayers decreases in the limit
of large interlayer separation as TKT ∼ B−2 (as TKT ∼ B−1/2 in the limit of small interlayer
separation).
Magnetoexcitons are bound states between two charged fermions (an electron from the
conductive band and a hole from the valence band) in the presence of a magnetic field.
The calculations are much more complicated compare to the corresponding calculations in
the absence of a magnetic field because even a small transverse exciton velocity (or small
transverse wave vector Q) will induce an electric field in the rest frame of the exciton. This
electric field will push the electron and the hole apart, so the magnetoexciton binding energy
must decrease as the transverse velocity increases. In other words, the magnetic field induces
a coupling between the center-of-mass and the relative internal motions, and therefore, the
correct description of excitons in a strong magnetic field should take into account this coupling
effect.
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Turning our attention to magnetoexciton dispersion in non-relativistic systems, such as
coupled quantum wells (CQW’s) with parabolic dispersions (Ec,v = h̄2k2/2mc,v) we find that
the following Hamiltonian (Shevchenko, 1997)

Ĥ = − h̄2

2μ
∇2

r +
ıeγh̄
2μc

(B × r).∇r +
e2B2

8μc2 r2 − V(r + R0)

is used to obtain the magnetoexciton dispersion. Here μ is the exciton reduced mass, γ =
(mv − mc)/(mc + mv), R0 = R2Q0, where Q0 = (−Qy, Qx, 0), and R = (h̄c/eB)1/2 is the
magnetic length. V(r) = e2/(ε0

√|r|2 + d2) represents the electron-hole Coulomb attraction
screened by the dielectric constant �0. Since the Coulomb term in the Hamiltonian is the
only term which depends on the exciton momentum Q = (Qx, Qy, 0), the magnetoexciton
dispersion does not depend on the electron and hole masses and the magnetoexciton mass
is determined only by Coulomb interaction. In strong magnetic fields one can apply the
lowest Landau level (LLL) approximation. In the LLL approximation the magnetoexciton
mass MCQW and the binding energy ECQW are as follows:

MCQW

M2D
=

[
(1 +

d2

R2 )e
(

d2

2R2

)
Er f c

(
d√
2R

)
−

√
2
π

d
R

]−1

ECQW = Eb exp
(

d2

2R2

)
Er f c

(
d√
2R

)
.

Here Er f c(x) is the complementary error function, M2D = 23/2ε0 h̄2/(
√

πe2R) and
Eb =

√
πe2/(

√
2ε0R) are the magnetoexciton mass and the two-dimensional (d = 2)

magnetoexciton binding energy, respectively.
Strictly speaking, the excitons are bound states between two charged fermions, and therefore,
the appropriate framework for the description of the bound states is the Bethe-Salpeter (BS)
formalism (Salpeter & Bethe, 1951). In the case of parabolic band quantum-well structures we
find that beyond the LLL approximation, the BS equation contains an extra term (BS term)
(Koinov, 2008). This term takes into account the transitions to the Landau levels with indexes
n ≥ 1. The contributions to the magnetoexciton binding energy and mass can be obtained by
applying a variational procedure. In the non-relativistic case the results are as follows: in a
strong magnetic field, the ground-state energy is very close to that obtained by means of the
Schrödinger equation, but the magnetoexciton dispersion is determined by the BS term rather
than the electron-hole Coulomb term in the Schrödinger equation.
Since the unique electronic behaviors of graphene is a result of the unusual
quantum-relativistic characteristics of the so-called Dirac fermions, we shall study
magnetoexciton binding energy in graphene bilayers embedded in a dielectric by applying
the relativistic BS equation in the LLL approximation (Koinov, 2009). Several non-trivial
effects produced by magnetic fields have been recently predicted in quantum field theories.
For example, in the massless QED, the analysis based on the BS equation has predicted
that the external constant magnetic field generates an energy gap (dynamical mass) in the
spectrum of massless fermions for any arbitrary weak attractive interaction between fermions
(Gusynin et al., 1994; 1995). It is expected that the effect is model independent (universal),
because the physical reason of this effect lies in the dimensional reduction in the dynamics of
fermion pairing in the presence of a the constant magnetic field.
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In what follows we examine how both the magnetoexciton binding energy and
magnetoexciton mass in graphene bilayer systems vary with the magnetic field and the
separation d between the layers in the LLL approximation. The solution of this problem is
related to the continued activities to observe superfluid properties of excitons in a bilayer
graphene. It is expected that the excitons will behave as neutral bosons at low densities,
and therefore, they can undergo Bose-Einstein condensation when the interlayer distance
is comparable to the distance between the particles within each layer. The condensate of
neutral bosons (excitons) should have superfluid properties under the Kosterlitz-Thouless
critical temperature TKT. It is worth mentioning that the calculations done by treating the
Coulomb interaction as a perturbation (Berman et al., 2008) provide in the LLL approximation
a number of extra terms which do not exist in the case of CQW’s. From a general point of view,
we have to expect that the binding energy is exactly four times higher than ECQW, while
the magnetoexciton mass is exactly four times lower than MCQW. The physical reason for
the above statement lies in the fact that in the LLL approximation we have a dimensional
reduction in the dynamics of the electron-hole pairing from two space variables plus a time
variable to zero space variable and a time variable. Because of this 2 + 1 → 0 + 1 reduction
the results should be insensitive to the type of the band dispersion. The factor four is due to
the four-component-spinor description used in the relativistic case.

2. Bethe-Salpeter equation

The system under consideration is made from two graphene sheets embedded in a dielectric
and separated by distance d. Each of the two graphene layers has two Dirac-like linear
dispersion h̄vFk bands centered at two non-equivalent points K and K�, where vF is the Fermi
velocity of electrons in graphene. Since the layers are embedded in a dielectric, there is
no hopping of π-electrons between the layers. There is a potential difference ±Vg/2 (gate
voltage) applied to each of the two layers which allows us to adjust the charge density in the
layers. We assume that the potential difference is chosen in a manner that the electrons are in
the top layer (pseudospin index τ = 1) and the same number of holes in the bottom layer (
τ = 2).
The unit cell of graphene has two atoms, A and B, each belonging to the different sublattice.

The operator ψ
(τ)†
σ,A,α(r) (ψ(τ)†

σ,B,α(r)) creates an electron of spin σ =↑, ↓ on the atom A (atom B) of
the unit cell in layer τ defined by the position vector r. We introduce four component spinors:

Ψ(τ)
σ (r) =

⎛
⎜⎜⎜⎜⎜⎝

ψ
(τ)
σ,A,K(r)

ψ
(τ)
σ,B,K(r)

ψ
(τ)
σ,B,K� (r)

ψ
(τ)
σ,A,K� (r)

⎞
⎟⎟⎟⎟⎟⎠

, (1)

Ψ(τ)
σ (r) = Ψ(τ)†

σ (r)γ0,

where the following representation of the Dirac matrices is chosen:
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ψ
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ψ
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⎟⎟⎟⎟⎟⎠
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γ0 =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ , γ1 =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ ,

γ2 =

⎛
⎜⎜⎝

0 −ı 0 0
−ı 0 0 0
0 0 0 ı
0 0 ı 0

⎞
⎟⎟⎠ .

(2)

In continuum approximation the non-interacting quasiparticles in the layers are described by
the Hamiltonian:

H0 = ∑
σ,τ

�
d2rΨ(τ)

σ (r) �H(τ)Ψ(τ)
σ (r), (3)

where

�H(τ) = vF

�
γ1 �px + γ2 �py

�
,

�px = −ıh̄
∂

∂x
,

�py = −ıh̄
∂

∂y
.

The action that describes the non-interacting quasiparticles in a layer τ is:

S(τ)
0 =

�
d2rdtΨ(τ)

σ (r, t)
�

γ0ıh̄
∂

∂t
− vF

�
γ1 �px + γ2 �py

��
Ψ(τ)

σ (r, t) (4)

In the presence of a perpendicular magnetic field B = (0, 0, B) and a potential difference
±Vg/2 (gate voltage) applied to each of the two layers, the action (4) assumes the form:

S(τ)
0 =

�
d2rdtΨ(τ)

σ (r, t)
�

γ0
�

ıh̄
∂

∂t
− V(τ)

g

�
− vF

�
γ1 �πx + γ2 �πy

��
Ψ(τ)

σ (r, t), (5)

where �πx(y) = �px(y) ∓ (e/c)Ax(y)(r), and A(r) = (1/2)B × r is the vector potential in a
symmetric gauge.
In what follows we assume that the interaction between an electron with a position vector r1
from the top layer (τ = 1) and a hole with a position vector r2 from the bottom layer (τ = 2)
is described by the Coulomb potential V(r1 − r2) = e2/ε0

�|r1 − r2|2 + d2.
Instead of two position vectors r1 and r2, we introduce the center-of-mass R = α(r1 + r2) and
the relative r = r1 − r2 coordinates (α = 1/2).
The basic assumption in our BS formalism is that the electron-hole bound states are described
by the BS wave function (BS amplitude). This function determines the probability amplitude
to find the electron at the point r1 at the moment t1 and the hole at the point r2 at the moment
t2. The BS amplitude depends on the relative internal time t − t� and on the "center-of-mass"
time:

ΦQ(r, R; t, t�) = exp
�
− ıE(Q)α

h̄
(t + t�)

�
φQ(r, R; t − t�), (6)
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where E(Q) is the exciton dispersion. The BS equation for the equal-time BS amplitude in the
center-of-mass and reduced coordinates is (Kouzakov & Studenikin, 2005):

ΦQ(r, R; t, t) =
∫

d2r�d2R�dt�G(1)(R + αr, R� + αr�; t − t�)γ0×
G(2)(R� − αr�, R − αr; t� − t)γ0V(r�)ΦQ(r�, R�; t�, t�).

(7)

The Fourier transforms of the electron and hole propagators G(τ)(r, r�; t) are define in terms of
the Dirac four component spinors ψκ(r) and the corresponding eigenvalues En = h̄vF

√
2n/R

(Kouzakov & Studenikin, 2005):

G(τ)(r, r�; ω) = ∑
κ

ψκ(r)ψ
κ(r�)

h̄ω − En ± ı0+ (8)

Here we keep only the positive energy pole contributions, n = 0, 1, 2, ..., and κ = (n, jz, σ),
where jz is the z component of the total angular momentum.
When the translation symmetry is broken by the magnetic field, the Green’s functions can be
written as a product of phase factors and translation invariant parts. The phase factor depends
on the gauge. In the symmetric gauge the Green’s functions are:

G(τ)(r, r�; ω) = exp
[
ı

e
h̄c

r.A(r�)
]

G̃(τ)(r − r�; ω). (9)

The broken translation symmetry requires a phase factor for the BS amplitude:

φQ(r, R; Ω) = exp
[
ı

e
h̄c

r.A(R)
]

χQ(r, R; Ω). (10)

The BS equation (7) admits translation invariant solution of the form:

χQ(r, R; ω) = exp [−ı (Q.R)] χ̃Q(r; ω). (11)

The Fourier transform of the function χ̃Q(r; ω) satisfies the following BS equation:

χ̃Q(k; ω) =
∫ d2q

(2π)2
d2p

(2π)2 d2R
∫ ∞

−∞

dΩ
2π

e−ı(q+Q).R

G̃(1)
(

1
2

q + k − e
h̄c

A(R); h̄ω + α(E − Vg)
)

γ0×

G̃(2)
(
− 1

2
q + k − e

h̄c
A(R); h̄ω − α(E − Vg)

)
γ0V

(
p −

[
k − 2e

h̄c
A(R)

])
χ̃Q(p; Ω),

(12)

where G̃(τ) (k; h̄ω) are the Fourier transforms of G̃(τ) (r; h̄ω).
In the effective-mass approximation the exact fermion Green’s functions G(τ) are replaced by
the corresponding propagator of the free fermions. The translation invariant parts of the free
fermion propagators can be decomposed over the Landau level poles (Gorbar et al., 2002):
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the corresponding propagator of the free fermions. The translation invariant parts of the free
fermion propagators can be decomposed over the Landau level poles (Gorbar et al., 2002):
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The infinitesimal imaginary parts in our case reflect the fact that there are holes in layer
number 2 (in electron-hole representation poles of the holes are above the real axis) and
electrons in layer number 1.
The solution of the BS equation (12) in the LLL approximation can be written in the following
form:
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Thus, in the LLL approximation, the magnetoexciton dispersion is determined by
the Coulomb interaction term I(Q) =
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In graphene bilayer structures the magnetoexciton mass (binding energy) is four times lower
(higher) than the corresponding magnetoexciton mass (binding energy) in coupled quantum
wells with parabolic dispersion and the same d, ε0 and B. In the limit of very small interlayer
separation d << R the asymptotical values of the binding energy and the effective magnetic
mass of magnetoexciton in bilayer graphene are 4Eb and Msmall(B) = M2D/4 ∝ B1/2,
respectively. In the limit of large interlayer separation d >> R the asymptotical values of
the magnetic mass is Mlarge(B) = M2Dπ1/2d3/(27/2R3) ∝ B2. As we mentioned above,
under the certain critical temperature Tc a Bose-Einstein condensation might be expected
to occur. The condensate of magnetoexcitons should have superfluid properties under
the Kosterlitz-Thouless critical temperature TKT (Kosterlitz & Thouless, 1973). A possible
verification of our predictions could be based on the fact that at a fixed superfluid density
the phase stiffness and the KT critical temperature, both are inversely proportional to the
magnetoexciton mass, i.e. TKT ∝ M−1(B). Since the effective mass increases as a function
of the magnetic field, one should expect that at a fixed superfluid density the KT critical
temperature decreases in the limit of large interlayer separation as TKT ∝ B−2 (as TKT ∝ B−1/2

in the limit of small interlayer separation).

3. Conclusion

We have applied the relativistic BS formalism to the magnetoexcitons in a graphene structures.
In the regime of a strong magnetic field the electrons and holes are confined primarily to
the lowest Landau Level (LLL), and the Coulomb energy is much smaller than the exciton
cyclotron energy. The LLL approximation greatly simplify the calculations, but we may ask
whether the magnetoexciton dispersion will be significantly affected by the contributions from
the infinity number of Landau levels with indexes n ≥ 1 neglected in the LLL approximation.
Going beyond the LLL approximation is an ambitious task (see, e.g. (Shabad & Usov, 2006))
which will be left as a subject of our future research.
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1. Introduction

Carbon provides a fundamental material for all life and physical science. Carbon-based
systems reveal a variety of structures with a great deal of physical properties. These physical
properties result from the dimensionality of the structures among systems with carbon atoms.
For a long time, in material science, both experimentalists and theorists have sought for the
existence of a true two-dimensional (2D) material with the thickness of a single atom, or a
membrane of atomic thickness. This 2D material was theoretically first studied on a monolayer
of graphite by Wallace (1). Experimentally in the year 2004, a group led by A. K. Geim at the
University of Manchester, U. K., realized such a 2D material under the name of graphene (2; 3).
Graphene is composed of carbon atoms placed at the vertices of a two dimensional
honeycomb lattice. It is regarded as a large molecule of carbon atoms which become strongly
bound together on the sites of the honeycomb lattice. For each carbon atom on the lattice,
three of the four outer electrons get strongly bond with its neighboring atoms by σ orbitals.
The 2pz orbital of the fourth electron produces a π bond with a neighboring carbon atom. The
σ bonds form the covalent structure with a honeycomb geometry. The bond strength furnishes
the flexibility and robustness for the lattice geometry. On the other hand, the π bonds generate
the intrinsic electronic structure of graphene. Each π bond yields the half-filled electrons of
p orbital to tunnel from a carbon atom to the neighboring one. Thus graphene should be
regarded as a many body system on which electrons can get correlated from site to site,
resulting in a rich collective behavior. The correlated behavior can be represented by quantum
effects which can influence on graphene’s electronic properties (2).
The electronic structure can be described by 2D massless relativistic fermions(4–7) in
graphene. The massless fermions enable us to study topological effects on electronic
properties of graphene. Topological effects are represented by the global properties of
geometrical objects rather than their local ones. By varying the geometry, we can produce
topologically different configurations such as a sphere or a torus on which the effective
Dirac operators of massless fermions are well defined. Described by the Dirac fermions,
graphene can have extraordinary properties of stability obtained in terms of geometry and
topology of the underlined lattice. Apart from the robust structure of geometry, the topological
properties can emerge due to long range quantum coherence in graphene. It follows that we
can move electrons coherently through the whole graphene molecule, resulting in its detection
of geometry or topology. This allows us to study a great deal of physical properties revealed
by interplay between geometry and topology, and quantum effects(8; 9).

Topological Effects, Index Theorem
and Supersymmetry in Graphene

11
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As quantum effects, there exist unconventional quantum Hall effects (QHE) which form a
series of filling factors ν = ±2,±6,±10, · · · as the four-fold degeneracy combined by spin and
sublattice valley ones (6; 7). The energy dispersion shows a linear spectrum by the massless
Dirac fermions with a Fermi velocity vF ≈ 106m/s. The 4-fold degeneracy of the Landau
level (LL) is lifted into 4 sublevels in the presence of an external high magnetic field. In
the case of the tilted high magnetic field to the graphene plane, the spin degeneracy can be
lifted at the firsr LL, resulting in the filling factor ν = 4 QHE of monolayer graphene (10).
Furthermore for bilayer graphene, the LL spectrum is composed of eightfold degenerate states
at the zero energy and fourfold ones at finite energies under the high magnetic field. This can
allows us to observe the quantum Hall plateaus at a seris of ν = ±4,±8,±12, · · · (11–13).
The charge carriers are chiral massive fermions which produce a parabolic energy band. The
chiral fermions offer the unconventional integer QHE of the zero-LL anomaly which exhibits
metallic behavior under the condition of low carrier densities and high magnetic fields in
contrast to the conventional insulating phenomena (6; 7; 9–14).
Topological configurations can produce a crucial effect on the quantum states of a system.
In particular, they can provide the possible quantum ground states which a system can
have. This remarkable result is described in terms of the index theorem initiated by Atiyah
and Singer (15). It gives the relationship between the analytic properties of the operator
and the topological characteristic of the manifold upon which the operator is defined. The
Dirac operator can be related to topological effects which is elegantly illuminated by the
Atiyah-Singer index theorem in graphene (8). It leads to a topological invariant under
deformations on a Dirac operator and plays an essential role in formulating supersymmetric
quantum mechanics (SUSY QM) on the graphene sheet (9; 16).
In a theoretical sense, there has been at least the quantum mechanics (QM) of particles
described by both fermionic and bosonic degrees of freedom. The SUSY QM may be hidden
in the quantum mechanics of a particle acting on a group manifold which can be represented
by a high degree of symmetry (17). As an example, a spin precessing in a magnetic field can
have the hidden SUSY. In particular, under the uniform magnetic field the LL for an electron
can be expressed by the spectrum of the SUSY oscillator which is composed of fermionic and
bosonic ones. It is remarkable that this SUSY QM can possibly emerge in graphene with low
carrier concentration and high mobility. The supersymmetry is built up over the Dolbeault
complex due to the topological deformation on the lattice in a graphene system (9; 17; 18).
We exploit the G-index theorem and a high degree of symmetry to understand unusual
quantum Hall effects of the n = 0 Landau level in graphene. The Dirac fermion results in SU(4)
symmetry as a high degree of symmetry in the noninteracting Hamiltonian of the monolayer
graphene. The high symmetries in graphene sheets can not couple to an external magnetic
field. In the absence of the magnetic field the index theorem can provide a relation between
the zero-energy state of the graphene sheet and the topological deformation of the compact
lattice. Under the topological deformation the zero-energy states emerge naturally without the
Zeeman splitting at the Fermi points in the graphene sheet. In the case of nonzero energy, the
up-spin and down-spin states have the exact high symmetries of spin, forming the pseudospin
singlet pairing. We describe the peculiar and unconventional quantum Hall effects of the n = 0
Landau level in monolayer graphene on the basis of the index theorem and the high degree of
symmetry (9; 18).
This chapter is written as follows. We explain basic properties of graphene in section II. In
section III, we discuss a path integral of coherent states in brief. In section IV, supersymmetry
is introduced in graphene. In the following section, we investigate the Atiyah-Singer index
theorem and topological properties. The G index theorem and deformation is covered. In
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section VI, SUSY QM and higher spin symmetry are described. Next we illuminate the low
energy spectrum and unconventional quantum Hall effects in monolayer graphene. And
finally we come to summary and conclusion.

2. Basic properties of graphene

Graphene is a molecule that is composed of carbon atoms placed on a two dimensional
honeycomb lattice. The basic plaquette of the lattice has a hexagon and the atoms are located at
the sites of the lattice. Electronic properties of graphene can be described by the tight binding
model on which spinless electrons move from site to site along the links of the lattice without
interaction each other. Under the tight-binding approximation graphene can be expressed by a
simple Hamiltonian of coupled fermions on a hexagonal lattice (2; 19). The model Hamiltonian
is a form given by

H = −2vF
3 ∑

<i,j>
c†

i cj, (1)

where < i, j > indicates nearest neighbors on the lattice. c†
i and ci are the creation and

annihilation operators of the fermions located at site i with anticommuation relation {ci, c†
j } =

δij.
In order to calculate the spectrum of Hamiltonian (1), we account for a periodicity of
honeycomb lattice which leads to a Fourier transformation. The periodic structure provides
the energy eigenvalue problem for the Hamiltonian in a unit cell. The unit cell consists of
two neighboring carbon atoms called A and B. They can be expressed by the three vectors
�ui, ∀i = 1, 2, 3. Under the Fourier transformation of c(�p) = ∑i ei�p·�ui ci, the Hamiltonian is
rewritten in terms of

H = −2vF
3

∫ ∫
d2 p

(
c†

A(�p), c†
B(�p)

)(
0 ∑3

i=1 ei�p.�ui

∑3
i=1 e−i�p.�ui 0

)(
cA(�p)
cB(�p)

)
, (2)

where cA(�p) and cB(�p) denote the Fourier transformed operators corresponding to the carbon
atoms A and B, respectively.
Now it is easy to take the eigenvalue of the energy for electrons of graphene. The dispersion
energy is given by (8; 9; 19)

E(p) = ±2vF
3

√
1 + 3 cos2

√
3py

2
+ 4 cos

3px

2
cos

3py

2
(3)

where the lattice distance between atoms becomes normalized to the unity. From the
dispersion relation obtained above, graphene can have two independent Fermi points, �p =

K± = ± 2π
3 (1, 1√

3
). We can expand it and then linearize it near the conical singularities of

the Fermi points. Corresponding to the K+ and K− at the half-filling case, the Hamiltonian is
expressed by the Dirac operators

H± = ±vF ∑
μ=x,y

γμ pμ, (4)

where pμ = −ih̄∂μ is the covariant momentum and the Dirac matrices γμ indicate the Pauli
matrices γμ = σμ. Hence the low energy theory of graphene is described by means of free
fermions.
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section VI, SUSY QM and higher spin symmetry are described. Next we illuminate the low
energy spectrum and unconventional quantum Hall effects in monolayer graphene. And
finally we come to summary and conclusion.
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interaction each other. Under the tight-binding approximation graphene can be expressed by a
simple Hamiltonian of coupled fermions on a hexagonal lattice (2; 19). The model Hamiltonian
is a form given by

H = −2vF
3 ∑
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c†

i cj, (1)
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The Hamiltonian can be written in the matrix form (8; 9)

H± =

(
0 D±

D± 0

)
. (5)

Here D± is a Dirac operator given by

D± = ±vF(σ
x px + σy py),= ∓2ih̄vF

(
0 ∂z
∂z̄ 0

)
. (6)

Here we have expressed D± in terms of ∂z = 1
2 (∂x − i∂y) and ∂z̄ = 1

2 (∂x + i∂y). On the
complex coordinates we can write

∇2 = 4∂z∂z̄. (7)

So far, we have discussed the collective behavior of graphene electrons that can be governed
by the Dirac equation. In particular, the velocity of the electrons is effectively 300 times smaller
than the speed of light.
Next let us describe a curved graphene. On the curved surface of graphene the low energy
physics can be illuminated by the Dirac equation that is defined on the corresponding curved
manifold. The curvature generates an gauge field of magnetic flux going through the curved
graphene. This yields to a picture about how to interact gauge fields with Dirac fermions. In
order to have the way associated with the gauge fields, let us take into account a good method
to include curvature to graphene. The simplest way is that we cut a π

3 piece of triangle from a
graphene sheet and then glue the opposite ends of the lattice. This process results in a single
pentagon at the apex of the generated cone while all the other plaquette keep a hexagon.
Due to the minimal geometrical distortion, the honeycomb lattice has a positive curvature.
The curvature can be obtained by calculating a circular tangent vector, V, around the apex by∮

V · d�r = π
3 . The generation of a single pentagon gives rise to a dramatic effect on the spinor,

resulting in deformation of the lattice. If the spinor is parallel transported around the apex by
an angle 2π, it is forced at some point to make a jump from a site A to a site A while every
site A takes only B neighborhoods or vice versa. This motion enables us to have the effect
that the magnetic field gives on the wave function of a particle moving on a closed path. A
full circulation provides accumulation of all phase factors to the particle wave function, and
so generates the enclosed magnetic flux. This flux allows us to observe the Aharonov Bohm
effect. Quantum mechanically, it can provide a discontinuity. Thus we have simultaneously
to describe it through the wave function of the particle in the processes of being static or
moving along the closed trajectory. This produces a vector potential term in the Hamiltonian
that leaves the theory to be consistent.
By similar procedures made on the curved graphene that compensates the jump in the
components of the spinor, we should take into account a nonabelian vector potential A in
the effective Hamiltonian. Around the apex we can take the circulation of A along a path. It
is expressed by

∮
γ A · d�r = π

2 τ2, where τ2 denotes the second Pauli matrix which couples the
K+ to the K− components of the spinor. The effective gauge theory can be emerged due to
the geometric deformation on geometric variants of graphene as topological effects. In next
section we describe a path integral of the coherent states for geometrical and topological
properties.
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3. Path integral of coherent states

Let us construct a path integral of the coherent states on a group manifold. Following the
Stone’s approach (17), we discuss the coherent states on a general group G. Let us take D(g),
any g ∈ G, as an irreducible representation of the group. Assume that |0 > is some state in the
space of representation. Then one can define |g > by

|g >= D(g)|0 > . (8)

On the basis of the irreducible representation, Shur’s lemma holds that

1
V(G)

∫
d[g]|g >< g| = 1 (9)

where 1
V(G)

is the volume of the group manifold. In the expression of Eq. (9) d[g] is the Haar
measure on the group.
Let us compute a thermodynamic partition function

Z = Tr(e−βH) (10)

where β is the imaginary time. In the procedure of calculating the partition function, the
trace is constrained to the representation space on which D(g) acts. Dividing the Matsubara
time-interval β into n parts, and using the Shur’s lemma of Eq. (9), we can write down an
iterated integral

Tr(e−βH) = const.
∫
(d[g]d[g

�
] · · · ) < g|e−βH/n|g�

>< g
� |e−βH/n · · · |g > . (11)

where const. is the constant value taken on the representation space. When taking into account
short time intervals, one can express g

� � g + δg, and δg � O(δt), so that

< g|e−δtH|g�
>

≈ 1+ < g|δg > + < g|(−δtH)|g > +O(δt2).
(12)

On taking into consideration up to order O(δt), we can write down the formal path-integral
expression

Tr(e−βH)

= 1
V(G)

∫
d[g]exp(

∮
< g|δg > − ∫ β

0 dt < g|H|g >).
(13)

Here d[g] is regarded as the path-integral measure given by the Haar measure at each time
step.
The path-integral expression can be identified as a path integration over a quotient space of
the group. In particular it is noted that a set of the |g > can be different from only a phase so
that the integrand is not sensitive to the phase factor. Now suppose that H is the subgroup
of G, constructed from exponentiating a maximal commuting set of generator, i.e., a maximal
torus. Then |0 > is expressed by an eigenstate of the generators of H which means a state of
definite weight. The |g > are represented by all phase multiples of one another in any one
coset of G/H. And hence the coherent states can be described in terms of a bundle over G/H
with the maximal torus as the gauge group, and the integration is made over the path in G/H.
Let us express the integrand in the coherent-state path integral without any choice of
representatives. In order to make a natural procedure on the independent choice of the
representatives, we define the projection operators as

P(g) = |g >< g|. (14)
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They can be directly projected onto the physically distinct states since they do not have any
phase ambiguity. In the integrand, the first term

∮
< g|δg > can be taken to be a gauge

invariant form by using Stokes theorem
∮

Γ=∂Ω
< g|dg >=

∫

Ω
d < g|dg > . (15)

Making use of the identity form

d < g|dg >=< dg|dg >= −Tr(dPPdP), (16)

the first term yields ∮

Γ=∂Ω
< g|dg >= −

∫

Ω
Tr(dPPdP). (17)

The second term in the integrand can be rewritten by

< g|H|g >= Tr(P(g)H). (18)

Hence combination of Eqs. (17) and (18) leads us to the path integral given by (17)

Tr(e−βH) =
1

V(G/H)

∫
d[g]exp

(
−

∫

Ω
Tr(dPPdP)−

∫

Γ
Tr(P(g)H)

)
. (19)

It is noted that the elements of G/H can only contribute to the integrand, so that the volume
factor of the gauge group H gets out of the path integral.
There are certain subgroups corresponding to the Lie algebra G of a Lie group G. Let us
describe some basic facts about semisimple Lie algebra in brief. Then it is known that the
generators of the G can have a decomposition into a maximally commuting set H = {Hi}, i.e.,
the Cartan subalgebra, and a set of ladder operators, Eα, one for each root vector α ∈ R. The
ladder operators are needed for complexifing the algebra to Gc which results from the group
parameters to get the complex values. The Hi and the Eα hold that

[Hi, Eα] = αiEα. (20)

Assume that |λ > is an eigenvector of the Hi with eigenvalues λi such as

Hi|λ >= λi|λ > . (21)

Then
Eα|λ >= |λ + α > . (22)

The roots may be classified into two sets by an arbitrary hyperplane on a root space. On one
set the root objects are positive roots indicated by α ∈ R+ as increasing the weights while the
others are negative roots, by α ∈ R+ as decreasing the weights. And thus we can take the
greatest weight as a state which is annihilated by all Eα, α ∈ R+.
This decomposition of the Lie algebra is made on some kinds of special subgroup. The Borel
subgroups B± are constructed by exponentiating the algebras B± which are spanned by the
Eα, Hi; α ∈ R±, Hi ∈ Hc. Any g ∈ G can be decomposed into the gaussian factors

g = ζ−hζ+; ζ− ∈ Z−, ζ+ ∈ Z+, h ∈ Hc
+, (23)
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where the Z± are the groups obtained by exponentiating the Eα, α ∈ R±. As an example, the
gaussian factor ζ− can be written as

ζ− = exp( ∑
α∈R−

zαEα). (24)

When the representation matrix D(g) is applied to a greatest weight, the factor ζ+ is regarded
as the identity. The zα can be taken as complex coordinates for the coset space Gc/B+. It
follows that the set of physically distinct states can have an one-to-one correspondence to
the Gc/B+. For a complex manifold we can choose complex coordinates on the manifold
with holomorphic functions. And constructed on non-greatest weight states, coherent states
are described by nonholomorphic functions of z̄. In the next section, after introducing
supersymmetry on the complex manifold in brief, we will describe supersymmetric quantum
mechanics in graphene (9; 16).

4. Supersymmetry in graphene

Let us use the methods of Witten to introduce fermionic creation operators ψx† and ψy† which
correspond to the differential forms dx and dy (9; 16)

dx ↔ ψx†|0 >, dy ↔ ψy†|0 > . (25)

In more detail ψx† performs the operation of exterior multiplication by dx while the adjoint,
ψx, does that of interior multiplication by the vector dual to dx, say, ∂x

ı : ∂x → ψx, E : dx → ψx†, ı : ∂y → ψy, E : dy → ψy†. (26)

The fermionic operators satisfy the anticommutation relations

{ψμ, ψν†} = δν
μ, μ, ν = x, y. (27)

On the basis of these definitions let us set up

1
2
(ψx − iψy) = ψz =

1
2

ψz̄,
1
2
(ψx + iψy) = ψz̄ =

1
2

ψz. (28)

while holding the Hermitian conjugate relations.
Now let us describe a supersymmetry over the complex Kähler manifold. On the complex
manifold we take two supercharges

Q1 = ∂ = ψ†z∂z, Q†
1 = δ = −ψz̄∂z̄,

Q2 = ∂̄ = ψ†z̄∂z̄, Q†
2 = δ̄ = −ψz∂z. (29)

Making use of anticommutation relations for fermions, these supercharge operators allows us
to express

∂δ + δ∂ = Q1Q†
1 + Q†

1Q1 = −1
2
∇2,

∂̄δ̄ + δ̄∂̄ = Q2Q†
2 + Q†

2Q2 = −1
2
∇2. (30)

Here it is easy to check that the cross terms such as

∂δ̄ + δ̄∂ = Q1Q†
2 + Q†

2Q1 = 0, (31)
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∂δ̄ + δ̄∂ = Q1Q†
2 + Q†

2Q1 = 0, (31)
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do not have any contributions.
In terms of the two supercharge operators, the Dirac operators D± in graphene is given by

D± = ∓ih̄vF(Q1 + Q2),≡ Q±. (32)

The Dirac operators can be described by means of the sum of the two supercharges which is
the ordinary exterior derivative, d. And Q± become the supercharge of N = 1 supersymmetric
quantum mechanics. It is not hard to check up that D± = Q± + Q†± is given by

Q± + Q†± = ∓2ih̄vF

(
0 ∂z
∂z̄ 0

)
(33)

which are equivalent to Eq. (6). Furthermore the square of Eq. (33) can lead to

(Q± + Q†±)2 = −4(h̄vF)
2
(

∂z∂z̄ 0
0 ∂z̄∂z

)
= −h̄2v2

F∇2, (34)

where we have exploited Eq. (7). And hence in the sense of SUSY QM the Hamiltonian of
graphene may be recapped in terms of the following form

H ≡ 2(Q± + Q†±)2 = −2h̄2v2
F∇2,≡ − h̄2∇2

2m∗ , (35)

provided that the mass, m∗ were defined by m∗ = 1
4v2

F
in the last expression of the eq. (17).

The Witten index is given by

Index(d) = Tr
(
(−1)Fe−tH

)
(36)

which accounts for the Euler number of the manifold as the exterior calculus of the de-Rham
complex. In order to build up the supersymmety over the Dolbeault complex (22), we need
one of the supercharges, Q2 = ∂̄. On the manifold of real dimension 2n, the index of the
Dolbeault complex is given by

Index(∂̄) = Tr
(
(−1)Fe−t(Q2+Q†

2)
2
)

(37)

This index is more interested in the the SUSY QM over twisted Dolbeault complex which
is associated with deformation of the topology of the lattice on a graphene system . And
in the next section we build the Atiyah-Singer and G index theorem as well as the energy
eigenvalues on the deformation of the compact manifold.

5. Index theorem in graphene

Let us describe the index theorem which gives an insight on the spectrum structure of
certain operators such as the Dirac operators. In graphene this theorem enables us to have
physical properties associated with the topology and geometry of the space in which the
Dirac operators are defined. It provides the relationship between the analytic properties of
the operator and the topological characteristics of the manifold.

230 Physics and Applications of Graphene - Theory

5.1 The Atiyah-Singer index theorem in graphene
We illuminate the Atiyah-Singer index theorem by the method employed to the heat kernel
expansion. The theorem furnishes a relation between zero eigenvalues of the Dirac operator
of graphene and the total flux which goes through its surface. If the latter is connected to the
genus of the surface through the Euler characteristic, we can find a close relation between the
zero modes and the topology of the surface on a graphene system.
Let us start with a Dirac operator given by

K =

(
0 D†

D 0

)
. (38)

Here D means an operator that maps a space M+ onto a space M− while D† is a map from
M− to M+. If D is an n×m matrix, D† becomes a m× n matrix. M+ and M− are the space of n
and m dimensional vectors, respectively. Because we are focusing on the zero modes of K such
that the solutions of the equations KΨ = 0, let us define the number of different eigenstates
of D with zero eigenvalue as η+ and the ones of D† as η−. As a bookkeeping of chirality, the
chirality operator γ5 is defined as

γ5 =

(
1 0
0 −1

)
. (39)

Its eigenstates can have eigenvalue ± provided that they act on M±.
In order to calculate the number of zero eigenstates in which we are interested, we take into
account the operator K2 that has the same number of zero modes as K. The K2 can be given
by a diagonal form

K2 =

(
D†D 0

0 DD†

)
. (40)

It is claimed that the operators D†D and DD† get the same non-zero eigenvalues. To prove
this statement, assume that DD†ψ = λψ for eigenvalue λ �= 0. Then it follows that

DD†ψ = λψ −→ D†D(D†ψ) = λ(D†ψ). (41)

This means that the operator D†D gives the same eigenvalue, λ, which corresponds to the
eigenstate D†ψ. But it is not necessary to hold the case for λ = 0 when D†ψ might be zero by
itself.
Let us compute the trace of γ5e−tK2

as followings:

Tr(γ5e−tK2
) = Tr(e−tD† D)− Tr(e−tDD†

) = ∑
λ+

e−tλ+ − ∑
λ−

e−tλ− , (42)

where λ+ and λ− indicate the eigenvalues of the operators D†D and DD†, respectively, and t
is an arbitrary parameter. In the first step of the above procedures, γ5 acts on the exponential
so that it provides a +1 to the eigenvectors of D†D when they are placed in M+, and a −1
to the ones of DD† when they belong to M−. In the last step the trace is evaluated by a sum
over all the eigenvalues of the corresponding operators. Every non-zero eigenvalue of D†D is
a one-to-one correspondence to an eigenvalue of DD†. Therefore all paired terms of non-zero
eigenvalues cancel out each other. There are left over the zero eigenvalues of each operators,
resulting in

Tr(γ5e−tK2
) = η+ − η−. (43)
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In general we cannot determine difference between the number of zero modes. It is seen that
the above result is independent of t owing to the cancelation of the non-zero eigenvalue term.
Actually we should evaluate Index(K). In order to calculate it practically, we take an
alternative method of heat expansion for calculating Tr(γ5e−tK2

). It says that for general Γ̂
and D̂ on a two dimensional compact manifold we can expand

Tr(Γ̂e−tD̂) =
1

4πt ∑
l≥0

t
l
2 bl(Γ̂, D̂), (44)

where Tr indicates the trace of matrices and the integration over coordinates of space. bl denote
expansion coefficients. For Γ̂ = γ5 and D̂ = K2, we have to return to an expression that
is t-independent. For this t-independence, the expansion coefficients should vanish for all l
except for l = 2 under the condition that all the t contributions is canceled out each other.
This allows us to determine the coefficient b2 from the first order term in t in the series of
expansion. For the evaluation, let us take D as D = −ieμ

ν σν(∇μ − ieAμ). Here eμ
ν indicates the

zweibein of curved surface metric gμν that defines a local flat frame ηαβ = eμ
α eν

βgμν while σμ is
the Pauli matrix. Aμ denotes a gauge field. It follows that

K2 = −gμν∇μ∇ν +
1
4
[γμ, γν]Fμν − 1

4
R (45)

where R is curvature, and Fμν = ∂μ Aν − ∂ν Aμ means the field strength. ∇μ indicates a
covariant derivative with respect to gauge and reparametrization transformation.
It is easy to see that the non-zero expansion coefficient b2 is written by

b2 = Tr[γ5(
i
4
[γμ, γν]Fμν − 1

4
R)] = 2

∫ ∫
B · dS, (46)

where B is the magnetic field given by Bl =
1
2 �lμνFμν. The integration has been over the whole

surface. These two independent ways for calculating Tr(γ5e−tK2
) allows u to arrive at the final

formula of the index theorem (8)

Index(K) = ν+ − ν− =
1

2π

∫ ∫
B · dS. (47)

It states that the total flux which goes out of the surface is related to the number of zero
modes of the K operator. The curvature doesn’t contribute to the index formula because γ5 is
a traceless operator. Particularly no contribution of curvature is to show an intrinsic property
of two dimensional surfaces. The index theorem leads to an integer number on the compact
surfaces. Therefore

∫ ∫
B · dS produces the total magnetic monopole charge in discrete values

inside the surface under the Dirac quantization condition of magnetic monopoles.
Using the index theorem, we observe the topological characteristics of graphene. Let us apply
it to graphene and its geometric variants. In a certain configuration of graphene we have to
account for the effective magnetic field on the graphene surface. Some plaquette deformations
give rise to a specific circulation of the vector potential around a loop trajectory. Stokes’s
theorem helps us to have a relation between the circulation of the gauge potential around
a loop γi and the flux of the corresponding magnetic field

∮

γi

A · d�r =
∫ ∫

Si

B · dS, (48)
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where Si indicates the area. Hence going through the surface of graphene the total flux
can be obtained from the fact that we can know the total number of deformations. It is
necessary for us to have some information about the total number of plaguette deformations.
The information is related to the topological properties of the surface through the Euler
characteristics. Let us consider the Euler theorem in the following subsection.

5.2 Euler theorem
In general the Euler theorem gives rise to a relation between the structural information of a
polyhedral lattice and its topological properties. There are a lot of proofs on this theorem. The
most common methods are proofs on the basis of a reductions from the polyhedral lattice to
the simpler one without changing its topological properties.
Let us consider a lattice placing on a compact surface with a certain genus g. Then we can
compute the number of deformations in a lattice necessary to create such a surface by applying
the Euler characteristic. Let V, E and F be the number of vertices, edges and faces of the lattice,
respectively, and Nend, open ends. Then the Euler characteristic, χ is expressed by (8)

χ = V − E + F = 2(1 − g)− Nend. (49)

The second step of Eq. (49) is satisfied by the Euler theorem. It is easily to check that a single
cut in the surface can have a reduction of the genus by one and increase the number of open
ends by two, say, (g, Nend) → (g − 1, Nend + 2), leaving the Euler characteristic χ preserved.
Let us apply the Euler theorem to the case of graphene molecules. There are three links
on each vertex of graphene. Suppose that topological deformations such as pentagons or
heptagons are present. Let us indicate the total number of pentagons, hexagons and heptagons
by n5, n6 and n7, respectively in the molecule. Then the total number of vertices is written
by V = (5n5 + 6n6 + 7n7)/3 when each k-gon has k vertices and each vertex takes three
polygons. Similarly, the total number of edges is expressed by E = (5n5 + 6n6 + 7n7)/2
provided that each edge has two polygons. The total number of faces is equal to the sum
of different polygons, F = n5 + n6 + n7. Combining these into the Euler characteristic, we see
that

n5 − n7 = 6χ = 12(1 − g)− 6Nend. (50)

This result reflects many facts. When equal numbers of pentagons and heptagons are inserted,
they do not make any change about the topology of the surface in the case that they cancel
out. On a flat graphene sheet we can put two pentagons and two heptagons on it without
changing the curvature of the molecule away from these deformations. This is consistent
with the effective gauge flux approaches where pentagons and heptagons give opposite flux
contributions. On the other hand, it is known that nontrivial topologies necessarily provide
an imbalance between pentagons and heptagons. The genus zero configurations result in an
excess of pentagons while high genus surface has an excess of heptagons. Genus one surfaces
do not have any pentagons or heptagons at all provided that they are equivalent to a flat sheet.
It is seen that Eq. (50) recaps the known result of a sphere with g = 0 which leads to χ = 2.
This corresponds to a fact about n5 = 12 and n7 = 0 for the C60 fullerene. For a torus with
g = 1, we can have χ = 0 related to n5 = n7 = 0 in the case of the nanotubes. Thus no
pentagons or heptagons may be required. If we account for the genus g = 2 surfaces, then we
can obtain χ = −2 where n5 = 0 and n7 = 12. In this situation equal numbers of pentagons
and heptagons can be inserted without making any change of topology on the surface.
Suppose that K is a Dirac Hamiltonian H. Then we compute the Index(H). The Euler
characteristic term allows us to compute the gauge field term in the Index(H). It can be
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given by including additionally the contributions from the surplus of pentagons or heptagons.
Hence the total flux of the effective gauge field can lead to

Index(H) =
1

2π

∫ ∫

Si

B · dS =
1

2π ∑
n5−n7

∮

γi

A · d�r

=
1

2π

π

2
(n5 − n7) = 3(1 − g)− 3

2
Nend. (51)

The total number of zero modes is equivalent to the sum contributed from each subsector of
a Dirac operator. As a consequence, by adding the two contributions, we arrive at the index
of the Dirac Hamiltonian that describes the graphene molecule. The Index(H) is expressed by
(8)

Index(H) = ν+ − ν− = 6(1 − g)− 3Nend (52)

which is consistent with the exact number of the zero modes if ν+ = 0 or ν− = 0. Therefore
we have obtained the theorem which relates the number of zero modes existed in a certain
graphene molecule to the topological characteristics of its surface.
This result provides the number of zero modes for the familiar cases of graphene molecules.
For example, since a fullerene takes g = 0 and Nend = 0, it is expected that it has six zero
modes which correspond to the two triplets of C60 and of similar large molecules. For the
case of nanotubes, we have g = 0 and Nend = 0. This results in ν+ − ν− = 0 which is in
agreement with previous theoretical and experimental results (20; 21). The index theorem
gives rise to a surprising relation between the topology and the presence of magnetic flux
which is effectively inserted in graphene molecules by geometrical deformations. The number
of these deformations can be associated with the general topological characteristics of the
lattice surface. They are related to the zero modes of a general graphene molecule with the
genus and the number of open faces of its surface.

5.3 G index theorem
To build up supersymmetry over the Dolbeault complex which are associated with
deformation on topology of the lattice (22), we need one of the supercharges, Q2 = ∂̄.
The index theorem leads to a topological invariant under deformations on Q2 and plays an
essential role in formulating the SUSY QM over the twisted Dolbeault complex caused by the
deformation in a graphene system.
Let us describe the general statement of the G-index theorem. Suppose that Q and Q† are
supercharges which have a map from a space of bosonic states to a space of fermionic states
and vice versa. Further let us take a Lie group G generated by Gi. Gi satisfies the commutation
relations with Q and Q† such that (17) where

[Gi, Gj] = i f k
ijGk, [Q, Gi] = 0, [Q†, Gi] = 0, (53)

where f k
ij are structure constants. Gi has also a commutation relation with the Hamiltonian of

Eq. (5)

[Gi, H] = 0. (54)

A supercharacter can be expressed as a supertrace of the group elements

Ξ(eiθi Gi) = Tr
(
(−1)Feiθi Gie−tH

)
. (55)
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The ordinary trace requires us to take a limit of t → 0. But Eq. (55) does not have any
dependence on t because the non-zero energy levels can not make contributions due to
canceling in pairs between the bosonic and fermionic sectors. But the zero-energy levels can
only give contributions. And these are not dependent on t.
The character is topologically invariant under deformations of the operators Q and Q†. On
deformation let us consider the supersymmetry generator Q of the ordinary N = 1 SUSY QM
on a manifold. In locally geodesic coordinates Q is expressed by

Q = d = ψμ†∂μ. (56)

When deforming Q, it is changed into the new operator

Qs = d + sιK = ψμ†∂μ + sKμψμ, (57)

where K denotes a Killing vector field. And then the deformed Hamiltonian is given by

Hs ≡ 2(Qs + Q†
s )

2,

= −∂2 + s2|K|2 − 1
2

s[ψ†
μ, ψ†

ν ]∂μKν − 1
2

s[ψμ, ψν]∂νKμ. (58)

Now suppose that we decompose the deformed N = 1 SUSY operator into holomorphic and
antiholomorphic sectors because of d = ∂ + ∂̄. Then the G-index theorem can be associated
with a high degree of symmetry on a graphene molecule. Let us take a Lie group G generated
by Gi which satisfies the commutation relations with Q2 and Q†

2 such that

[Gi, Gj] = i f k
ijGk, [Q2, Gi] = 0, [Q†

2, Gi] = 0 (59)

where f k
ij mean structure constants. On graphene, there exists the Hamiltonian H such that

H ≡ −2h̄2v2
F(Q2 + Q†

2)
2, [Gi, H] = 0. (60)

On deforming Q2, this can be changed into a new operator

Q2s = ψ†z̄∂z̄ + sKz̄ψz̄, (61)

where s is a real parameter. K denotes a Killing vector field associated with the deformation.
In the complex coordinates z and z̄, the Killing vector field is given by K = −y∂x + x∂y =
i(z∂z − z̄∂z̄).
Under the deformation let us consider a graphene system corresponding to the K+. Then we
can obtain a deformed Hamiltonian H+,s on the Dolbeault complex. For convenience, after
replacing s by is, the deformed Hamiltonian is given by (9; 17)

H+,is = −2h̄2v2
F(Q+,2is + Q†

+,2is)
2

= −2h̄2v2
F

(
−2∂2

z̄z + |s|2|z|2
)
− 2h̄2v2

F

(
s[ψ†z̄, ψz̄] + s(z̄∂z̄ − z∂z)

)
. (62)

This operator gives rise to eigenvalues (9; 17)

E+,nml = −2h̄2v2
F

[
|s|

(
(n +

1
2
) + (m +

1
2

)
+ sl + s(±1)

]
. (63)
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given by including additionally the contributions from the surplus of pentagons or heptagons.
Hence the total flux of the effective gauge field can lead to

Index(H) =
1

2π

∫ ∫

Si

B · dS =
1

2π ∑
n5−n7

∮

γi

A · d�r

=
1

2π

π

2
(n5 − n7) = 3(1 − g)− 3

2
Nend. (51)

The total number of zero modes is equivalent to the sum contributed from each subsector of
a Dirac operator. As a consequence, by adding the two contributions, we arrive at the index
of the Dirac Hamiltonian that describes the graphene molecule. The Index(H) is expressed by
(8)

Index(H) = ν+ − ν− = 6(1 − g)− 3Nend (52)

which is consistent with the exact number of the zero modes if ν+ = 0 or ν− = 0. Therefore
we have obtained the theorem which relates the number of zero modes existed in a certain
graphene molecule to the topological characteristics of its surface.
This result provides the number of zero modes for the familiar cases of graphene molecules.
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5.3 G index theorem
To build up supersymmetry over the Dolbeault complex which are associated with
deformation on topology of the lattice (22), we need one of the supercharges, Q2 = ∂̄.
The index theorem leads to a topological invariant under deformations on Q2 and plays an
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Let us describe the general statement of the G-index theorem. Suppose that Q and Q† are
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and vice versa. Further let us take a Lie group G generated by Gi. Gi satisfies the commutation
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[Gi, Gj] = i f k
ijGk, [Q, Gi] = 0, [Q†, Gi] = 0, (53)

where f k
ij are structure constants. Gi has also a commutation relation with the Hamiltonian of

Eq. (5)

[Gi, H] = 0. (54)

A supercharacter can be expressed as a supertrace of the group elements

Ξ(eiθi Gi) = Tr
(
(−1)Feiθi Gie−tH

)
. (55)
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The ordinary trace requires us to take a limit of t → 0. But Eq. (55) does not have any
dependence on t because the non-zero energy levels can not make contributions due to
canceling in pairs between the bosonic and fermionic sectors. But the zero-energy levels can
only give contributions. And these are not dependent on t.
The character is topologically invariant under deformations of the operators Q and Q†. On
deformation let us consider the supersymmetry generator Q of the ordinary N = 1 SUSY QM
on a manifold. In locally geodesic coordinates Q is expressed by

Q = d = ψμ†∂μ. (56)

When deforming Q, it is changed into the new operator
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where K denotes a Killing vector field. And then the deformed Hamiltonian is given by

Hs ≡ 2(Qs + Q†
s )

2,

= −∂2 + s2|K|2 − 1
2

s[ψ†
μ, ψ†

ν ]∂μKν − 1
2

s[ψμ, ψν]∂νKμ. (58)

Now suppose that we decompose the deformed N = 1 SUSY operator into holomorphic and
antiholomorphic sectors because of d = ∂ + ∂̄. Then the G-index theorem can be associated
with a high degree of symmetry on a graphene molecule. Let us take a Lie group G generated
by Gi which satisfies the commutation relations with Q2 and Q†

2 such that

[Gi, Gj] = i f k
ijGk, [Q2, Gi] = 0, [Q†

2, Gi] = 0 (59)

where f k
ij mean structure constants. On graphene, there exists the Hamiltonian H such that

H ≡ −2h̄2v2
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2)
2, [Gi, H] = 0. (60)

On deforming Q2, this can be changed into a new operator

Q2s = ψ†z̄∂z̄ + sKz̄ψz̄, (61)

where s is a real parameter. K denotes a Killing vector field associated with the deformation.
In the complex coordinates z and z̄, the Killing vector field is given by K = −y∂x + x∂y =
i(z∂z − z̄∂z̄).
Under the deformation let us consider a graphene system corresponding to the K+. Then we
can obtain a deformed Hamiltonian H+,s on the Dolbeault complex. For convenience, after
replacing s by is, the deformed Hamiltonian is given by (9; 17)

H+,is = −2h̄2v2
F(Q+,2is + Q†

+,2is)
2

= −2h̄2v2
F

(
−2∂2

z̄z + |s|2|z|2
)
− 2h̄2v2

F

(
s[ψ†z̄, ψz̄] + s(z̄∂z̄ − z∂z)

)
. (62)

This operator gives rise to eigenvalues (9; 17)

E+,nml = −2h̄2v2
F

[
|s|

(
(n +

1
2
) + (m +

1
2

)
+ sl + s(±1)

]
. (63)
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Depending on the choice of s > 0 or s < 0, we can consider two cases for zero eigenvalues
satisfying the topological invariance imposed by the index theorem. First if s > 0, we should
take −1 for the [ψ†z̄, ψz̄]. Now we get in the bosonic sector. We can have zero eigenvalues in
the case of l = 0,−1,−2, · · · . Second if s < 0, we have to choose +1 for [ψ†z̄, ψz̄]. And then we
can get zero eigenvalues for l = 0, 1, 2, · · · .
According to the choice of s, let us take two Hamiltonians H↑

+,is = Q̂†
+,2isQ̂+,2is and H↓

+,is =

Q̂+,2isQ̂†
+,2is as two superpartners which imply the Z2 grading over the Hilbert space. Here we

have expressed Q̂+,2is = −i
√

2h̄vF(Q+,2is +Q†
+,2is). Then we want to calculate the eigenvalues

for the up-spin and down-spin components

H↑↓
+,is|ψ↑↓

+,nml >= E↑↓
+,nml |ψ↑↓

+,nml >, (64)

where E↑↓
+,n+1ml > E↑↓

+,nml ≥ E↑↓
+,000. Suppose that E↑

+,000 is zero. Then making use of the
relations

Q̂+,i2sH↑
+,is = Q̂+,2isQ̂†

+,2isQ̂+,2is = H↓
+,isQ̂+,2is, (65)

we can have

H↓
+,isQ̂+,2is|ψ↑

+,nml > = Q̂+,2isH↑
+,is|ψ↑

+,nml >

= E↑
+,nml Q̂+,2is|ψ↑

+,nml > . (66)

This means that if E↑
+,nml �= 0, Q̂+,2is|ψ↑

+,nml > is an eigenstate of H↓
+,is. And similarly

H↑
+,isQ̂†

+,2is|ψ↓
+,nml > = Q̂†

+,2isH↓
+,is|ψ↓

+,nml >

= E↓
+,nml Q̂

†
+,2is|ψ↓

+,nml > . (67)

If E↓
+,nml �= 0, Q̂†

+,2is|ψ↓
+,nml > is an eigenstate of H↑

+,is. Therefore, for non-zero eigenvalues
there exist the up-spin and down-spin eigenstates in pair. They form a supermultiplet
connected by the supercharge Q̂+,2is. The up-spin (down-spin) sector may be described as
the bosonic (fermionic) sector at the K+ point.
In the case of the zero eigenvalues for the down-spin sector, we should investigate both
E↓
+,000 = 0 and E↓

+,000 �= 0 separately. Let us assume that E↓
+,000 �= 0. Then the lowest

eigenstate of H↓
+,is is expressed as |ψ↓

+,000 > ∝ Q̂+,2is|ψ↑
+,1ml > . Hence, there exists a

supermultiplet between the states |ψ↑
+,n+1ml > and |ψ↓

+,nml >, which have the same energy

E↑
+,n+1ml = E↓

+,nml , and we obtain energy eigenstates (9)

|ψ↓
+,nml > =

1√
|E↑

+,n+1ml |
Q̂+,2is|ψ↑

+,n+1ml >,

|ψ↑
+,n+1ml > =

1√
|E↓

+,nml |
Q̂†
+,2is|ψ↓

+,nml > (68)
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for n ≥ 0. If E↓
+,000 = 0 and Q̂†

+,2is|ψ↑
+,000 >= 0, the relationships are written by (9)

|ψ↓
+,nml > =

1√
|E↑

+,nml |
Q̂+,2is|ψ↑

+,nml >,

|ψ↑
+,nml > =

1√
|E↓

+,nml |
Q̂†
+,2is|ψ↓

+,nml > (69)

for n ≥ 1. Similarly, one can repeat eigenvalue problem for H−,is, which corresponds to the K
�
−

point. As a relation between the up-spin and down-spin eigenstates, the bosonic (fermionic)
sector is regarded as the down-spin (up-spin) sector at the K

�
− point. And hence there exists

the 4-fold degenerate energy spectrum.

6. Deformed energy eigenvalues and unconventional quantum Hall effect

On a sheet of graphene, let us consider the problem of magnetic field concentrated on a thin

cylindrical shell of small, but finite radius lB =
√

ch̄
eB . The corresponding vector potential is

given by�a = (−y, x)/2l2
B on the two dimensional plane of graphene. The problem in question

is to compute the eigenvalues of the Dirac Hamiltonian in the field of a fractional magnetic
flux on the graphene sheet (23; 24). Now under the fractional magnetic flux, the eigenvalues
for n = 0, l = 0, m = 0 are given by

√
E↑
+,000 =

√
E↓
−,000 = 0, (70)

and
√

E↑
+,n+100 =

√
E↓
+,n00 =

√
E↓
−,n+100 =

√
E↑
−,n00 = ±h̄wlB

√
n + 1 (71)

for n ≥ 0, l = 0, m = 0. Here wlB ≡
√

2vF
lB

. Equation (70) tells us that there is one zero-energy
state only in the case of up-spin fermions but not in the case of down-spin fermions at the
K+ point. At K

�
− point we can have one zero-mode state for down-spin fermions but not for

up-spin fermions. The magnetic field direction at K+ is opposite to that at K
�
−. The zero-energy

state may have the four-fold degeneracy emerging from electrons and holes (8). Since the LL
of the zero-energy states becomes half-filled, no one would observe plateau at ν = 0. But by
index theorem, the flux quanta produce 4r (r = 0, 1, 2, · · · ) zero-energy states. The 2r states
of these are occupied. The flux quanta lift the 2r states to the Fermi energy. And then they
can be removed by doping. The degeneracy between electrons and holes would be removed.
We could observe the Hall plateau at ν = 0 because holes are occupied before electrons. And
hence we can describe an experimental observation of the Hall plateau emerging at ν = 0. (10)
On the basis of the index theorem, we compute the energy spectrum of the deformed
Hamiltonian, H+,is = −2h̄2v2

F(Q+,2is + Q†
+,2is)

2 at the K+ point. The up-spin states of zero

energy are |0 >, |1 >, |2 >, · · · , |j↑ − 1 >. They are degenerate in |ψ↑
+,0ml >. On the other

hand, for down-spin states, we have to describe two cases. As the first case, assume that j↓ = 0.
Then, there do not exist any zero-energy states. So we may construct the supermultiplet given
by Eq. (68). In the other case, if j↓ �= 0, the zero-energy states are given by |0 >, |1 >, |2 >

, · · · , |j↓ − 1 > as degenerate states of |ψ↓
+,0ml > . Therefore, these result in the (j↑ + j↓)−fold
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Depending on the choice of s > 0 or s < 0, we can consider two cases for zero eigenvalues
satisfying the topological invariance imposed by the index theorem. First if s > 0, we should
take −1 for the [ψ†z̄, ψz̄]. Now we get in the bosonic sector. We can have zero eigenvalues in
the case of l = 0,−1,−2, · · · . Second if s < 0, we have to choose +1 for [ψ†z̄, ψz̄]. And then we
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have expressed Q̂+,2is = −i
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2h̄vF(Q+,2is +Q†
+,2is). Then we want to calculate the eigenvalues
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+,nml |ψ↑↓
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where E↑↓
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+,000 is zero. Then making use of the
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we can have
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= E↑
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This means that if E↑
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If E↓
+,nml �= 0, Q̂†

+,2is|ψ↓
+,nml > is an eigenstate of H↑

+,is. Therefore, for non-zero eigenvalues
there exist the up-spin and down-spin eigenstates in pair. They form a supermultiplet
connected by the supercharge Q̂+,2is. The up-spin (down-spin) sector may be described as
the bosonic (fermionic) sector at the K+ point.
In the case of the zero eigenvalues for the down-spin sector, we should investigate both
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+,000 = 0 and E↓

+,000 �= 0 separately. Let us assume that E↓
+,000 �= 0. Then the lowest

eigenstate of H↓
+,is is expressed as |ψ↓

+,000 > ∝ Q̂+,2is|ψ↑
+,1ml > . Hence, there exists a

supermultiplet between the states |ψ↑
+,n+1ml > and |ψ↓

+,nml >, which have the same energy

E↑
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+,nml , and we obtain energy eigenstates (9)
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+,nml > =

1√
|E↑
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−
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sector is regarded as the down-spin (up-spin) sector at the K
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− point. And hence there exists
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cylindrical shell of small, but finite radius lB =
√

ch̄
eB . The corresponding vector potential is

given by�a = (−y, x)/2l2
B on the two dimensional plane of graphene. The problem in question
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K+ point. At K
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− point we can have one zero-mode state for down-spin fermions but not for

up-spin fermions. The magnetic field direction at K+ is opposite to that at K
�
−. The zero-energy

state may have the four-fold degeneracy emerging from electrons and holes (8). Since the LL
of the zero-energy states becomes half-filled, no one would observe plateau at ν = 0. But by
index theorem, the flux quanta produce 4r (r = 0, 1, 2, · · · ) zero-energy states. The 2r states
of these are occupied. The flux quanta lift the 2r states to the Fermi energy. And then they
can be removed by doping. The degeneracy between electrons and holes would be removed.
We could observe the Hall plateau at ν = 0 because holes are occupied before electrons. And
hence we can describe an experimental observation of the Hall plateau emerging at ν = 0. (10)
On the basis of the index theorem, we compute the energy spectrum of the deformed
Hamiltonian, H+,is = −2h̄2v2

F(Q+,2is + Q†
+,2is)

2 at the K+ point. The up-spin states of zero

energy are |0 >, |1 >, |2 >, · · · , |j↑ − 1 >. They are degenerate in |ψ↑
+,0ml >. On the other

hand, for down-spin states, we have to describe two cases. As the first case, assume that j↓ = 0.
Then, there do not exist any zero-energy states. So we may construct the supermultiplet given
by Eq. (68). In the other case, if j↓ �= 0, the zero-energy states are given by |0 >, |1 >, |2 >

, · · · , |j↓ − 1 > as degenerate states of |ψ↓
+,0ml > . Therefore, these result in the (j↑ + j↓)−fold
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degeneracy in the zero-energy state for fermions at the K+ point. This degeneracy implies the
exact correspondence between j↑ fermions and j↓ fermions under deformation. Similarly, we
can investigate the energy spectrum of the zero-energy states at the K

�
− point.

In order to generate the up-spin and down-spin states of zero energy the deformed
superoperators are written, in terms of the original supercharges, by

Q̂+,2is = Q̂†j↓
+,2isQ̂j↑

+,2is, Q̂†
+,2is = Q̂†j↑

+,2isQ̂j↓
+,2is, (72)

where j↑ and j↓ are integers such as j↑ > j↓. In terms of the Q̂†
+,2is the state |n > is given by

|n >=
1√
n!
(Q̂†

+,2is)
n|0 > . (73)

Now, let us calculate the deformed eigenvalues by using Eq. (73) and solving the eigenvalue
problems of Eq. (64) for the up-spin and down-spin components. In the bosonic sector, the
deformed energy eigenvalues are expressed by

√
E↑
+,000 =

√
E↓
−,000 = 0, (74)

for n = 0, l = 0, m = 0. And we can have

√
E↑
+,nml =

√
E↓
−,nml = ±h̄wlB

√
(n + j↑ − 1)!(n + j↓ − 1)!

[(n − 1)!]2
(75)

for n ≥ 1, l = −(j↑ − 1), m = 2(j↑ − 1). In the case of the fermionic sector, if j↓ = 0, the
deformed eigenvalues are

√
E↓
+,nml =

√
E↑
−,nml = ±h̄wlB

√
(n + j↓)!(n + j↑)!

[(n)!]2
(76)

for n ≥ 0, l = j↓, m = 2j↓. If j↓ �= 0, the eigenvalues are given by
√

E↓
+,000 =

√
E↑
−,000 = 0, (77)

for n = 0, l = 0, m = 0. And we obtain

√
E↑
+,n+1ml =

√
E↑
−,n+1ml = ±h̄wlB

√
(n + j↓ − 1)!(n + j↑ − 1)!

[(n − 1)!]2
(78)

for n ≥ 1, l = j↓ − 1, m = 2(j↓ − 1). We can check up that there exists 4(j↑ + j↓)-fold
degeneracy in the zero-energy states and 4-fold one in all other states.
Among the energy spectrum given above, let us account for the special cases of j↑ = 1, and
j↓ = 0 and j↑ = 2, and j↓ = 0. In the case of j↑ = 1, and j↓ = 0 it is not hard to check up
that the energy eigenvalues are given by Eqs. (77) and (78). These results correspond to the
spectrum of the monolayer graphene. For the case of j↑ = 2, and j↓ = 0, the energy spectra
are expressed in terms of

√
E↑
+,000 =

√
E↓
−,000 = 0, (79)
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for n = 0, l = 0, m = 0. And we can obtain (18)
√

E↑
+,nml =

√
E↓
−,nml = ±h̄wlB

√
n(n + 1) (80)

for n ≥ 1, l = −1, m = 2, while having
√

E↓
+,nml =

√
E↑
−,nml == ±h̄wlB

√
(n + 1)(n + 2) (81)

for n ≥ 0, l = 0, m = 0. These energy spectra are eigenvalues of the bilayer graphene affected
by the deformation, and are in agreement with the results in the literature (10; 12; 14). On the
basis of the index theorem we have shown that there exist the j↑-fold and j↓-degeneracy in the
zero-energy state at the K+ point and similarly at the K

�
−. And hence we can obtain the QHE

characterized by (9)

σxy = ν
e2

h
, ν = ±4(|n|+ j↑+j↓

2 ). (82)

7. Summary and conclusion

We presented the electronic properties of massless Dirac fermions characterized by geometry
and topology on a graphene sheet in this chapter. Topological effects can be elegantly
described by the Atiyah-Singer index theorem. It provides a topological invariant under
deformations on the Dirac operator and plays an essential role in formulating supersymmetric
quantum mechanics over twisted Dolbeault complex associated with the deformation on the
topology of the lattice in a graphene system. Exploiting the G-index theorem and a high degree
of symmetry, we explained deformed energy eigenvalues in graphene. The Dirac fermions
result in SU(4) symmetry emerging out of both the pseudospin and spin as a high degree of
symmetry in the noninteracting Hamiltonian of monolayer graphene. Under the topological
deformation the zero-energy states emerge naturally without the Zeeman splitting at the
Fermi points in the graphene sheet. Thus we observed an emergence of a higher degree of
hidden symmetry under the topological deformation in graphene while the pseudospin is a
good symmetry at the K and K

�
points in graphene. In the particular SU(2) of the pseudospin,

the SU(2) is the exact spin symmetry of each Landau level. In the case of nonzero energy, the
up-spin and down-spin states have the exact high symmetries of spin, forming the pseudospin
singlet pairing. The pseudospin can play a key role on the physics of the n = 0 LL in the
graphene sheet. The valley pseudospin degeneracy can lift only at the zeroth LL. The 4-fold
degeneracy can be removed in the zero-energy states of monolayer graphene. If the mass
terms were taken into account, the four-fold degeneracy can be removed in the zero-energy
state of monolayer graphene. We can exploit this to understand the emergence of a Hall
plateau at n = 0 in the experimental observations. But the four-fold degeneracy is not
removed in the higher LLs. Including the Coulomb interaction, we can lift the degeneracy.
The pseudospin symmetry SU(2) is broken to U(1)× Z2. Therefore the total symmetry gives
rise to SU(2)spin × (U(1) × Z)psuedospin while the spin symmetry SU(2) remains to be exact.
Hence we understood the peculiar and unconventional quantum Hall effects of the n = 0
Landau level in monolayer graphene on the basis of the index theorem and the high degree of
symmetry under the topological deformation without the Zeeman splitting. It would be very
interesting and quite possible to apply the present approach to investigation of the composite
Dirac fermions and fractional quantum Hall effects in graphene.
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�
− point.
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+,2isQ̂j↑

+,2is, Q̂†
+,2is = Q̂†j↑

+,2isQ̂j↓
+,2is, (72)
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|n >=
1√
n!
(Q̂†

+,2is)
n|0 > . (73)
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√
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+,000 =
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√
E↑
+,nml =
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[(n)!]2
(76)
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√
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√
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[(n − 1)!]2
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√
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√
n(n + 1) (80)
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√

E↓
+,nml =

√
E↑
−,nml == ±h̄wlB

√
(n + 1)(n + 2) (81)
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�
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σxy = ν
e2

h
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2 ). (82)
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We presented the electronic properties of massless Dirac fermions characterized by geometry
and topology on a graphene sheet in this chapter. Topological effects can be elegantly
described by the Atiyah-Singer index theorem. It provides a topological invariant under
deformations on the Dirac operator and plays an essential role in formulating supersymmetric
quantum mechanics over twisted Dolbeault complex associated with the deformation on the
topology of the lattice in a graphene system. Exploiting the G-index theorem and a high degree
of symmetry, we explained deformed energy eigenvalues in graphene. The Dirac fermions
result in SU(4) symmetry emerging out of both the pseudospin and spin as a high degree of
symmetry in the noninteracting Hamiltonian of monolayer graphene. Under the topological
deformation the zero-energy states emerge naturally without the Zeeman splitting at the
Fermi points in the graphene sheet. Thus we observed an emergence of a higher degree of
hidden symmetry under the topological deformation in graphene while the pseudospin is a
good symmetry at the K and K

�
points in graphene. In the particular SU(2) of the pseudospin,

the SU(2) is the exact spin symmetry of each Landau level. In the case of nonzero energy, the
up-spin and down-spin states have the exact high symmetries of spin, forming the pseudospin
singlet pairing. The pseudospin can play a key role on the physics of the n = 0 LL in the
graphene sheet. The valley pseudospin degeneracy can lift only at the zeroth LL. The 4-fold
degeneracy can be removed in the zero-energy states of monolayer graphene. If the mass
terms were taken into account, the four-fold degeneracy can be removed in the zero-energy
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[19] J. González et al., Nucl. Phys. B 406, 77 (1993).
[20] S. Reich, C. Thomsen and P. Ordejon, Phys. Rev. B 65, 155411 (2002).
[21] R. Saito, M. Fujita, G. Dresselhuas, and M. S. Dresselhaus, Phys. Rev. B 46, 1804 (1992).
[22] T. Eguchi et al., Phys. Rep. 66, 213 (1980).
[23] R. Jackiw and P. Rossi, Nucl. Phys. B 190, 681 (1981).
[24] S. Das Sarma and K. Yang, arXiv: 0906.2209v2 (2009).
[25] S. Kim, K.-S. Park, and K. S. Yi, J. Korean Phys. Soc. 49, S575 (2006).

240 Physics and Applications of Graphene - Theory

Part 2 

Graphene Nano-dots and Nanoribbons 



0

Physics of Triangular Graphene

Motohiko Ezawa
Department of Applied Physics, The University of Tokyo

Japan

1. Introduction

Carbon forms many allotropic forms with different dimensionality: three-dimensional
diamond, quasi-two-dimensional graphite(1; 2), one-dimensional nanotubes(3–10) and
zero-dimensional fullerenes(11). These materials are well known to exhibit remarkable
electronic properties depending on their geometry. There exists another form of carbon
material, graphene, which is a monolayer graphite. Graphene can theoretically be considered
the basic material for the other forms of carbon that can be obtained from it either by stacking
(graphite), wrapping (nanotubes), or creation of topological defects (fullerenes). Furthermore,
there are many derivatives in these graphene related materials. Their electrical properties,
such as carrier type (particle or hole), can be continuously controlled by the application of
external gate voltage(12).
Graphite is made out of stacks of graphene layers that are weakly coupled by van der
Waals forces. A pencil is a typical graphite. When we use it, we are actually producing
graphene stacks on a sheet of paper, which may well contain individual graphene layers.
Nevertheless, it was only in 2004 when graphene was experimentally isolated(12). They
produced high quality, large (up to 100 μm in size) graphene crystallites, which immediately
triggered enormous theoretical and experimental studies. Moreover, the quality of the samples
produced are so good that ballistic transport(12) and quantum Hall effects (QHE) have been
observed(13; 14). For a recent review on graphene, see ref. (15).
Edge states of graphene show a very remarkable feature. There are three type of edges; zigzag
edge, armchair edge and Klein edge(16). Graphene with a zigzag edge has the half-filled flat
band at the zero-energy level and exhibits edge ferromagnetism(17). These edge states can be
observed by STM(18; 19).
Among graphene derivatives, graphene nanoribbons(17; 20; 21) constitute a fascinating object
due to a rich variety of band gaps, from metals to wide-gap semiconductors. In particular, the
half-filled zero-energy states emerge in all zigzag nanoribbons and hence they are metallic.
Such a peculiar band structure, as recognized by the pioneering work(17) in 1996 and
revisited(21) in 2006, has motivated many researchers to investigate their electronic and
magnetic properties. Now there are a profusion of papers on them, among which we cite
some of early works(22–31). Important works on nanoribbons have been summarized into a
map(32) as Essential Science Indicators by Tomson-Reuter in late 2008. Nanoribbons can be
manufactured by patterning based on nanoelectronic lithography methods(26; 27; 33).
Another basic element of graphene derivatives is a graphene nanodisk(35; 36). It is
a nanometer-scale disk-like material which has a closed edge. It is also referred to
as nanoisland(37), nanoflake(38–40), nanofragment(41) or graphene quantum dot(42; 43).
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(a) (b) (c) (d) (e)

Fig. 1. Basic configurations of typical graphene nanodisks. (a) Benzene. (b) Trigonal zigzag
nanodisk (phenalene). (c) Trigonal armchair nanodisk (triphenylene). (d) Hexagonal zigzag
nanodisk (coronene). (e) Hexagonal armchair nanodisk (hexa benzocoronene)(34).

Nanoribbons and nanodisks correspond to quantum wires and quantum dots, respectively.
They are candidates of future carbon-based nanoelectronics and spintronics alternative to
silicon devices. A merit is that a nanoribbon-nanodisk complex can in principle be fabricated,
embodying various functions, only by etching a graphene sheet.
There are many types of nanodisks, as displayed in Fig.1. It is possible to manufacture them by
etching a graphene sheet by Ni nanoparticles(44). Among them, trigonal zigzag nanodisks are
prominent in their electronic property because there exist half-filled zero-energy states in the
non-interacting regime(36). This novel electric property was revealed first by the tight-binding
model(36) in 2007, and then by first-principle calculations by other groups(37; 38; 45). Various
remarkable properties of nanodisks have been investigated extensively in a series of works(36;
46–48).
Although there are yet only a few works on nanodisks, an experimental realization(44) must
accelerate both experimental and theoritical studies on them. In this sense, the study of
graphene nanodisk is very timely.
It has long been known(49–51) that the physics of electrons near the Fermi energy is
described by the massless two-component Dirac equation or the Weyl equation in graphene.
Graphene nanoribbons were successfully analyzed based on the Weyl equation in 2006(22).
It is straightforward to generalize the method to investigate the structure of the zero-energy
states in graphene nanodisks(48). Wave functions are explicitly constructed, which exhibits a
texture of magnetic vortices peculiar to the representation of the trigonal symmetry group C3v.
We show the emergence of a vortex carrying the winding number 2. Such a vortex is highly
unusual in all branches of physics. An analytic form of wave functions makes it possible to
explore deep physics of graphene nanodisks.
The inclusion of Coulomb interactions provides the ground state with a finite spin
proportional to the edge length according to the following argument. Hund’s rule is well
known in atomic physics, according to which the ground state of atoms has the maximum
spin. Thus, assuming N-fold degenerate zero-energy states, the spin of the ground state is
N/2. On the other hand, there exists Lieb’s theorem applicable to flat-band ferromagnetism,
according to which the sublattice imbalance N = |LA − LB| per unit cell leads to the polarized
ground state with spin N/2. Both theorems are relevant to graphene nanodisks, by assuring
the emergence of the polarized ground state with spin N/2.
The nanodisk-spin system undergoes a quasi-phase transition between the quasiferromagnet
and the parramagnet(47), which is a precursor of an actual phase transition. Graphene
nanodisks can be interpleted as quantum dots made of graphene, as already noticed. In
this point of view, it is natural to expect Coulomb blockades(46) and Kondo effects(47) by
connecting a nanodisk with leads.
On the other hand, the study of spin-dependent transport phenomena has recently attracted
much attention(52; 53). It has opened the way to the field of spintronics(54–57), literally spin
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electronics, where new device functionalities exploit both the charge and spin degrees of
freedom. There are various approaches in this sphere. For instance, the use of a quantum-dot
setup(58; 59) has been proposed, which can be operated either as a spin filter to produce
spin-polarized currents or as a device to detect and manipulate spin states. However, there
are difficulties of spintronics based on conventional materials, since spin directions are quickly
relaxed and coherence is easily lost due to spin-orbit interactions. In graphene, spin relaxation
length is as large as 2μm due to small spin-orbit interactions(60), as has been confirmed by
spin precession measurement. Long spin relaxation length has motivated spintronics based
on graphene(60–63) recently. Nevertheless, there exists a key issue how to generate and
manipulate spin currents. Localized spins are necessary for this purpose. It can be solved
by a new type of materials, graphene nanodisks. Some application to spintronics, such as a
spin filter, a spin valve and a spin switch has been proposed(64–66).
This work is organized as follows. In Section 3, we summarize the basic nature of trigonal
zigzag nanodisks. We introduce the size parameter N for trigonal zigzag nanodisks. There
exists N-fold degenerate zero-energy states, implying that the zero-energy sector has the
SU(N) symmetry. We classify them according to the representation of the trigonal symmetry
group C3v. In Section 4, we analyze these zero-energy states based on the Dirac theory of
graphene. They are shown to be edge modes indexed by the edge momentum and grouped
according to the representation of the trigonal symmetry group C3v. Wave functions are
explicitly constructed as analytic functions around the K point and as anti-analytic functions
around the K’ point. By evaluating the probability density flow we find a texture of magnetic
vortices perpendicular to the nanodisk plane. It is intriguing that a vortex with the winding
number 2 emerges in the state belonging to the E (doublet) representation. In Section 5,
we make an investigation of electron-electron interaction effects in the zero-energy sector.
We derive explicitly the direct and exchange interactions, which break the SU(N) symmetry
but not so strongly. We show that the spin stiffness is quite large due to large exchange
interactions, which means that a nanodisk is a rigid ferromagnet. The system is well described
by the infinite-range Heisenberg model within the SU(N) approximation, which is exactly
solvable. We explore thermodynamical properties. Constructing the partition function, we
calculate the specific heat, the entropy, the magnetization and the susceptibility. A sharp
peak emerges at a certain temperature (T = Tc) in the specific heat, which we interpret as a
quasi-phase transition between the quasiferromagnet and quasiparamagnet states. In Section
6, we argue that our analysis based on the zero-energy sector stands as it is even if the size
of the nanodisk is large. In Section 8.0.0.3, we make an investigation of the spin current, the
spin-filter effects. We first analyze how the spin of a nanodisk filters the spin of the current
by assuming that the nanodisk is a rigid ferromagnet. However, the nanodisk is actually not a
rigid ferromagnet but a quasiferromagnet. Hence an intriguing reaction phenomenon occurs:
Namely, the spin of the nanodisk can be controlled by the spin of the current. We analyze
the reaction to the spin of the nanodisk from the spin of electrons in the current. In Section
8, we propose a rich variety of spintronic devices made of nanodisks and leads, such as spin
memory, spin amplifier, spin valve, spin-field-effect transistor, spin diode and spin switch.
Graphene nanodisks could well be basic components of future nanoelectronic and spintronic
devices.

2. Sample

It is possible to manufacture graphene nanoribbon and nanodisk by etching a graphene
sheet. Here we review a method to produce crystallographically oriented cuts in single-layer
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Fig. 1. Basic configurations of typical graphene nanodisks. (a) Benzene. (b) Trigonal zigzag
nanodisk (phenalene). (c) Trigonal armchair nanodisk (triphenylene). (d) Hexagonal zigzag
nanodisk (coronene). (e) Hexagonal armchair nanodisk (hexa benzocoronene)(34).
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They are candidates of future carbon-based nanoelectronics and spintronics alternative to
silicon devices. A merit is that a nanoribbon-nanodisk complex can in principle be fabricated,
embodying various functions, only by etching a graphene sheet.
There are many types of nanodisks, as displayed in Fig.1. It is possible to manufacture them by
etching a graphene sheet by Ni nanoparticles(44). Among them, trigonal zigzag nanodisks are
prominent in their electronic property because there exist half-filled zero-energy states in the
non-interacting regime(36). This novel electric property was revealed first by the tight-binding
model(36) in 2007, and then by first-principle calculations by other groups(37; 38; 45). Various
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46–48).
Although there are yet only a few works on nanodisks, an experimental realization(44) must
accelerate both experimental and theoritical studies on them. In this sense, the study of
graphene nanodisk is very timely.
It has long been known(49–51) that the physics of electrons near the Fermi energy is
described by the massless two-component Dirac equation or the Weyl equation in graphene.
Graphene nanoribbons were successfully analyzed based on the Weyl equation in 2006(22).
It is straightforward to generalize the method to investigate the structure of the zero-energy
states in graphene nanodisks(48). Wave functions are explicitly constructed, which exhibits a
texture of magnetic vortices peculiar to the representation of the trigonal symmetry group C3v.
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known in atomic physics, according to which the ground state of atoms has the maximum
spin. Thus, assuming N-fold degenerate zero-energy states, the spin of the ground state is
N/2. On the other hand, there exists Lieb’s theorem applicable to flat-band ferromagnetism,
according to which the sublattice imbalance N = |LA − LB| per unit cell leads to the polarized
ground state with spin N/2. Both theorems are relevant to graphene nanodisks, by assuring
the emergence of the polarized ground state with spin N/2.
The nanodisk-spin system undergoes a quasi-phase transition between the quasiferromagnet
and the parramagnet(47), which is a precursor of an actual phase transition. Graphene
nanodisks can be interpleted as quantum dots made of graphene, as already noticed. In
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SU(N) symmetry. We classify them according to the representation of the trigonal symmetry
group C3v. In Section 4, we analyze these zero-energy states based on the Dirac theory of
graphene. They are shown to be edge modes indexed by the edge momentum and grouped
according to the representation of the trigonal symmetry group C3v. Wave functions are
explicitly constructed as analytic functions around the K point and as anti-analytic functions
around the K’ point. By evaluating the probability density flow we find a texture of magnetic
vortices perpendicular to the nanodisk plane. It is intriguing that a vortex with the winding
number 2 emerges in the state belonging to the E (doublet) representation. In Section 5,
we make an investigation of electron-electron interaction effects in the zero-energy sector.
We derive explicitly the direct and exchange interactions, which break the SU(N) symmetry
but not so strongly. We show that the spin stiffness is quite large due to large exchange
interactions, which means that a nanodisk is a rigid ferromagnet. The system is well described
by the infinite-range Heisenberg model within the SU(N) approximation, which is exactly
solvable. We explore thermodynamical properties. Constructing the partition function, we
calculate the specific heat, the entropy, the magnetization and the susceptibility. A sharp
peak emerges at a certain temperature (T = Tc) in the specific heat, which we interpret as a
quasi-phase transition between the quasiferromagnet and quasiparamagnet states. In Section
6, we argue that our analysis based on the zero-energy sector stands as it is even if the size
of the nanodisk is large. In Section 8.0.0.3, we make an investigation of the spin current, the
spin-filter effects. We first analyze how the spin of a nanodisk filters the spin of the current
by assuming that the nanodisk is a rigid ferromagnet. However, the nanodisk is actually not a
rigid ferromagnet but a quasiferromagnet. Hence an intriguing reaction phenomenon occurs:
Namely, the spin of the nanodisk can be controlled by the spin of the current. We analyze
the reaction to the spin of the nanodisk from the spin of electrons in the current. In Section
8, we propose a rich variety of spintronic devices made of nanodisks and leads, such as spin
memory, spin amplifier, spin valve, spin-field-effect transistor, spin diode and spin switch.
Graphene nanodisks could well be basic components of future nanoelectronic and spintronic
devices.

2. Sample

It is possible to manufacture graphene nanoribbon and nanodisk by etching a graphene
sheet. Here we review a method to produce crystallographically oriented cuts in single-layer
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Fig. 2. (a) Key features of etching in SLG are chirality-preserving angles of 60 and 120,
avoided crossing of trenches leaving ∼10 nm spacing between adjacent trenches and
producing connected nanostructures, and trenches and nanoparticles with uniform width <
10 nm. (b) AFM phase image of etched SLG with produced geometric nanostructures. The
phase image obscures small details, making adjacent trenches appear to merge together. (c)
AFM height image of equilateral triangle connected to three nanoribbons. (d) artoon of a Ni
particle etching a graphene sheet (not to scale). Ni nanoparticles absorb carbon from
graphene edges which then reacts with H2 to create methane. These figures are taken from
the work of Campos et al. (44)

graphene (SLG) which effectively has all cuts oriented with the same edge-chirality based
on the work of Campos et al. (44). By using this method nanoribbons, equilateral triangles
(trigonal nanodisks), and other graphene nanostructures are fabricated, which could feature
novel electronic behavior resulting from their specific edge orientations.
During the high-temperature etching stage, the Ni nanoparticles etch the graphene through
catalytic hydrogenation of carbon, where carbon atoms from exposed graphene edges
dissociate into the Ni nanoparticle, and then react with H2 at the Ni surface. This process
is summarized by the chemical reaction

Ni + Cgraphene + 2H2 → Ni + CH4, (1)

where carbon from the graphene is hydrogenated into methane by the Ni nanoparticle
catalyst. The same reaction can also be understood as the effective reverse of catalytic carbon
nanotube (CNT) growth, and indeed it is found that the growth of CNTs competes with the
desired etching results in graphene. This occurs because at high concentrations of carbon
the Ni nanoparticles become supersaturated with carbon and can begin to expel carbon
nanotubes. It is for this reason that extra precaution is necessary during preparation to avoid
organic contaminants which can act as carbon sources and saturate the Ni nanoparticles.
In addition, methane produced by the etching process itself can supersaturate the Ni
nanoparticles if the amount of Ni on the substrate is too low.
The etching process produces a mosaic of clearly defined cuts across the SLG surface, as
measured by atomic force microscopy [Fig.2(b,c)]. These continuous trenches left behind by
individual nanoparticles run along straight lines, intermittently deflecting from their path
or reflecting away from previously etched trenches. These deflections and reflections show
a surprising regularity, with measured angles between any pair of trenches of either 60◦ or
120◦ [Fig. 2(a)]. Trenches forming edges at angles of 60◦ and 120◦ preserve the chirality of the
edges, indicating that nearly all the cuts in our samples run along the same crystallographic
orientation.

3. Electronic properties of nanodisks

In this section we summarize the basic nature of trigonal zigzag nanodisks(36). There exists
N-fold degenerate zero-energy states, implying that the zero-energy sector has the SU(N)
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symmetry. All these states are classified into singlets (A representation) and doublets (E
representation) according to the representation of the trigonal symmetry group C3v. Wave
functions are constructed explicitly by diagonalizing the Hamiltonian.

3.1 Classification of nanodisks
We first explore the electronic and magnetic properties of graphene nanodisks. It is a
nanometer-scale disk-like graphene derivative which has a closed edge. There are many
type of nanodisks, where typical examples are displayed in Fig.1. Graphene nanodisks are
classified by the edge and shape. Typical edges are zigzag edge and armchair edge, while
typical shapes are trigonal shape and hexagonal shape.

3.2 Energy Spectrum of nanodisks
We calculate the energy spectra of graphene derivatives based on the nearest-neighbor
tight-binding model, which has been successfully applied to the studies of carbon nanotubes
and graphene nanoribbons. The Hamiltonian is given by

H = ∑
i

ε ic
†
i,σci,σ + ∑

�i,j�
tijc

†
i,σcj,σ, (2)

where ε i is the site energy, tij is the transfer energy, and c†
i,σ is the creation operator of the π

electron with spin σ at site i. The sum is taken over all nearest-neighboring sites �i, j�. Owing to
their homogeneous geometrical configuration, we may take constant values for these energies,
ε i = εF (Fermi energy) and tij = t ≈ 2.70eV. Then, the diagonal term in (2) yields just a
constant, εFNC, where NC is the number of carbon atoms in the system. The Hamiltonian (2)
yields the Weyl electrons for graphene(12; 13; 67), as we review in Section 4.1. There exists one
electron per one carbon and thus the band-filling factor is 1/2. It is customarily chosen as the
zero-energy level of the tight-binding Hamiltonian (2) at this point so that the energy spectrum
is symmetric between the positive and negative energy states. Therefore, the system is metallic
provided that there exists zero-energy states in the spectrum. It is understood that carbon
atoms at edges are terminated by hydrogen atoms. We carry out the calculation together with
this condition.
In analyzing a nanodisk containing NC carbon atoms, the Hamiltonian (2) is reduced to an
NC × NC matrix. It is possible to exactly diagonalize the Hamiltonian to determine the energy
spectrum Ei together with its degeneracy gi for each nanodisk. The density of state is given by

D (ε) =
NC

∑
i=1

giδ (ε − Ei) . (3)

We have explicitly diagonalized the Hamiltonian (2) for several nanodisks with trigonal
zigzag shape, trigonal armchair shape and hexagonal zigzag shape. It is remarkable that there
exist zero-energy states only in trigonal zigzag nanodisks. We have also checked explicitly
the absence of the zero-energy state in a series of nanodisks with hexagonal armchair type.
Actually there exist general arguments for the number of zero-energy states: See Section 3.4.2
with the use of the electron-hole symmetry and Section 3.4.4 with the use of the graph theory.
We comment on the validity of the tight-binding model. Although the model may be viewed
as too naive, it actually gives quite good results in the graphene system for the following
reasons. First, the graphene is composed of a single kind of atoms, namely, carbons. It is
a "super-clean material", as is the He liquid. Accuracy of the tight-binding model increases
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dissociate into the Ni nanoparticle, and then react with H2 at the Ni surface. This process
is summarized by the chemical reaction
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where carbon from the graphene is hydrogenated into methane by the Ni nanoparticle
catalyst. The same reaction can also be understood as the effective reverse of catalytic carbon
nanotube (CNT) growth, and indeed it is found that the growth of CNTs competes with the
desired etching results in graphene. This occurs because at high concentrations of carbon
the Ni nanoparticles become supersaturated with carbon and can begin to expel carbon
nanotubes. It is for this reason that extra precaution is necessary during preparation to avoid
organic contaminants which can act as carbon sources and saturate the Ni nanoparticles.
In addition, methane produced by the etching process itself can supersaturate the Ni
nanoparticles if the amount of Ni on the substrate is too low.
The etching process produces a mosaic of clearly defined cuts across the SLG surface, as
measured by atomic force microscopy [Fig.2(b,c)]. These continuous trenches left behind by
individual nanoparticles run along straight lines, intermittently deflecting from their path
or reflecting away from previously etched trenches. These deflections and reflections show
a surprising regularity, with measured angles between any pair of trenches of either 60◦ or
120◦ [Fig. 2(a)]. Trenches forming edges at angles of 60◦ and 120◦ preserve the chirality of the
edges, indicating that nearly all the cuts in our samples run along the same crystallographic
orientation.
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In this section we summarize the basic nature of trigonal zigzag nanodisks(36). There exists
N-fold degenerate zero-energy states, implying that the zero-energy sector has the SU(N)
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symmetry. All these states are classified into singlets (A representation) and doublets (E
representation) according to the representation of the trigonal symmetry group C3v. Wave
functions are constructed explicitly by diagonalizing the Hamiltonian.

3.1 Classification of nanodisks
We first explore the electronic and magnetic properties of graphene nanodisks. It is a
nanometer-scale disk-like graphene derivative which has a closed edge. There are many
type of nanodisks, where typical examples are displayed in Fig.1. Graphene nanodisks are
classified by the edge and shape. Typical edges are zigzag edge and armchair edge, while
typical shapes are trigonal shape and hexagonal shape.

3.2 Energy Spectrum of nanodisks
We calculate the energy spectra of graphene derivatives based on the nearest-neighbor
tight-binding model, which has been successfully applied to the studies of carbon nanotubes
and graphene nanoribbons. The Hamiltonian is given by

H = ∑
i

ε ic
†
i,σci,σ + ∑

�i,j�
tijc

†
i,σcj,σ, (2)

where ε i is the site energy, tij is the transfer energy, and c†
i,σ is the creation operator of the π

electron with spin σ at site i. The sum is taken over all nearest-neighboring sites �i, j�. Owing to
their homogeneous geometrical configuration, we may take constant values for these energies,
ε i = εF (Fermi energy) and tij = t ≈ 2.70eV. Then, the diagonal term in (2) yields just a
constant, εFNC, where NC is the number of carbon atoms in the system. The Hamiltonian (2)
yields the Weyl electrons for graphene(12; 13; 67), as we review in Section 4.1. There exists one
electron per one carbon and thus the band-filling factor is 1/2. It is customarily chosen as the
zero-energy level of the tight-binding Hamiltonian (2) at this point so that the energy spectrum
is symmetric between the positive and negative energy states. Therefore, the system is metallic
provided that there exists zero-energy states in the spectrum. It is understood that carbon
atoms at edges are terminated by hydrogen atoms. We carry out the calculation together with
this condition.
In analyzing a nanodisk containing NC carbon atoms, the Hamiltonian (2) is reduced to an
NC × NC matrix. It is possible to exactly diagonalize the Hamiltonian to determine the energy
spectrum Ei together with its degeneracy gi for each nanodisk. The density of state is given by

D (ε) =
NC

∑
i=1

giδ (ε − Ei) . (3)

We have explicitly diagonalized the Hamiltonian (2) for several nanodisks with trigonal
zigzag shape, trigonal armchair shape and hexagonal zigzag shape. It is remarkable that there
exist zero-energy states only in trigonal zigzag nanodisks. We have also checked explicitly
the absence of the zero-energy state in a series of nanodisks with hexagonal armchair type.
Actually there exist general arguments for the number of zero-energy states: See Section 3.4.2
with the use of the electron-hole symmetry and Section 3.4.4 with the use of the graph theory.
We comment on the validity of the tight-binding model. Although the model may be viewed
as too naive, it actually gives quite good results in the graphene system for the following
reasons. First, the graphene is composed of a single kind of atoms, namely, carbons. It is
a "super-clean material", as is the He liquid. Accuracy of the tight-binding model increases
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Fig. 3. (a) Geometric configuration of trigonal zigzag nanodisks. We define its size N by
N = Nben − 1 with Nben the number of benzenes on one side of the trigon. Here,
N = 1, 2, 3, 4, 5. The number of carbon atoms are related as NC = N2 + 6N + 6. (b) Density of
states of the N-trigonal nanodisk for N = 0, 1, 2, · · · , 7. The horizontal axis is the size N and
the vertical axis is the energy ε(N) in units of t = 2.7eV. Segments in each energy level
indicate the degeneracy of the level. (c) The excitation gap ε as a function of the size N. It is
approximately proportional to N−1.

as the number of involved elements becomes lower. For instance, it is hard to determine
the energy spectrum by the simple tight-binding model in transition metal oxides, since
it contains many elements. Second, carbon is a light element, and there are only a few
electrons in the shell. Especially in carbon there are only s and p orbitals. Furthermore, it
is possible to neglect spin-orbit couplings since they are very small. Third, the graphene
consists of the sp2 orbital and the π orbital, where sp2 orbitals contribute to make a rigid
skeleton of the graphene structure, while π orbitals spread out in graphene and behave as free
electrons. These two energy levels are well separated. Consequently, the simple tight-binding
Hamiltonian presents a very good description of the graphene system by treating π electrons
as free electrons.

3.3 Trigonal zigzag nanodisks
We shall investigate trigonal zigzag nanodisks in more details since they have zero-energy
states. We define the size N of a nanodisk by N = Nben − 1, where Nben is the number
of benzenes on one side of the trigon as in Fig.3(a). We show the density of state for N =
1, 2, · · · , 5 in Fig.3(b).
It can be shown that the determinant associated with the Hamiltonian (2) has such a factor as

det [εI − H (NC)] ∝ εN , (4)

implying N-fold degeneracy of the zero-energy states. Since there exist half-filled zero-energy
states for N ≥ 1, these nanodisks are "metallic". The gap energy between the first-excitation
and the ground states decreases as the size becomes larger [Fig.3(c)].

3.4 Zero-energy sector
The size-N nanodisk has N-fold degenerate zero-energy states, where the gap energy is
as large as a few eV. Hence it is a good approximation to investigate the electron-electron
interaction physics only in the zero-energy sector, by projecting the system to the subspace
made of those zero-energy states. The zero-energy sector consists of N orthonormal states
| fα�, α = 1, 2, · · · , N, together with the SU(N) symmetry. We can expand the wave function of
the state | fα� as

fα(x) = ∑
i

ωα
i ϕi(x), (5)
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Fig. 4. Zero-energy states split into several nonzero-energy states by edge modifications. The
horizontal axis is size N and the vertical axis is energy in units of t = 2.7eV. We take
ε i = ε + Δε for all edge carbons with Δε = 0.027eV. States are grouped according to the
representation of the trigonal symmetry C3V . Doublet states (red) obey the E representation.
Singlet states (blue) appear in pairs; the upper (lower) states obey the A1 (A2) representation.

where ϕi(x) is the Wannier function localized at the site i. The operator ci in the tight-binding
Hamiltonian (2) annihilates an electron in the state described by the Wannier function ϕi(x).

3.4.1 Trigonal symmetry
We are able to calculate the amplitude ωi for zero-energy states in the trigonal zigzag
nanodisk. In so doing it is necessary to select the N orthonormal states | fα� according to the
representation theory of group. The symmetry group of the trigonal nanodisk is C3v, which is
generated by the 2π/3 rotation c3 and the mirror reflection σv. It has the representation {A1,
A2, E}. The A1 representation is invariant under the rotation c3 and the mirror reflection σv.
The A2 representation is invariant under c3 and antisymmetric under σv. The E representation
acquires ±2π/3 phase shift under the 2π/3 rotation. The A1 and A2 are 1-dimensional
representations (singlets) and the E is a 2-dimensitional representation (doublet). These
properties are summarized in the following character table:

C3v e 2c3 3σv
A1 1 1 1
A2 1 1 −1
E 2 −1 0

(6)

The N orthonormal states | fα� together with the amplitude ωi are constructed as follows.
First, by requiring the mirror symmetry, we can explicitly construct the wave functions,
all of which are found to be real. Next, we make appropriate linear combinations of these
states to satisfy the trigonal symmetry C3v. For this purpose, we resolve the degeneracy by
applying C3v-invariant perturbation to the size-N trigonal nanodisk. We note that all their
wave functions are nonvanishing on edge sites and that they penetrate into the bulk with
different penetration depth. Hence, if we apply an identical bias voltage to all edge carbons,
we expect that the energy of the mode increases, as the penetration depth decreases. We
take ε i = ε + Δε for all edge carbons. We show how the zero-energy states split by taking
Δε = 0.01t = 0.027eV in Fig.4 for N = 1, 2, · · · , 20. All zero-energy states are found to
acquire positive energy and they become singlets or doublets. Singlet states obey the A1
or A2 representation, while appropriate linear combinatations of doublet states obey the E
representation. There exists a nondegenerate state which has the highest energy for a nanodisk
with N =odd, which is argued to belong A2 representation. There are no such wave functions
for nanodisks with N =even.
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Fig. 3. (a) Geometric configuration of trigonal zigzag nanodisks. We define its size N by
N = Nben − 1 with Nben the number of benzenes on one side of the trigon. Here,
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states of the N-trigonal nanodisk for N = 0, 1, 2, · · · , 7. The horizontal axis is the size N and
the vertical axis is the energy ε(N) in units of t = 2.7eV. Segments in each energy level
indicate the degeneracy of the level. (c) The excitation gap ε as a function of the size N. It is
approximately proportional to N−1.

as the number of involved elements becomes lower. For instance, it is hard to determine
the energy spectrum by the simple tight-binding model in transition metal oxides, since
it contains many elements. Second, carbon is a light element, and there are only a few
electrons in the shell. Especially in carbon there are only s and p orbitals. Furthermore, it
is possible to neglect spin-orbit couplings since they are very small. Third, the graphene
consists of the sp2 orbital and the π orbital, where sp2 orbitals contribute to make a rigid
skeleton of the graphene structure, while π orbitals spread out in graphene and behave as free
electrons. These two energy levels are well separated. Consequently, the simple tight-binding
Hamiltonian presents a very good description of the graphene system by treating π electrons
as free electrons.

3.3 Trigonal zigzag nanodisks
We shall investigate trigonal zigzag nanodisks in more details since they have zero-energy
states. We define the size N of a nanodisk by N = Nben − 1, where Nben is the number
of benzenes on one side of the trigon as in Fig.3(a). We show the density of state for N =
1, 2, · · · , 5 in Fig.3(b).
It can be shown that the determinant associated with the Hamiltonian (2) has such a factor as

det [εI − H (NC)] ∝ εN , (4)

implying N-fold degeneracy of the zero-energy states. Since there exist half-filled zero-energy
states for N ≥ 1, these nanodisks are "metallic". The gap energy between the first-excitation
and the ground states decreases as the size becomes larger [Fig.3(c)].

3.4 Zero-energy sector
The size-N nanodisk has N-fold degenerate zero-energy states, where the gap energy is
as large as a few eV. Hence it is a good approximation to investigate the electron-electron
interaction physics only in the zero-energy sector, by projecting the system to the subspace
made of those zero-energy states. The zero-energy sector consists of N orthonormal states
| fα�, α = 1, 2, · · · , N, together with the SU(N) symmetry. We can expand the wave function of
the state | fα� as

fα(x) = ∑
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i ϕi(x), (5)

248 Physics and Applications of Graphene - Theory

0

0.002

0.004

0.006

0.008

0.010

5 10 15 20

E representation (doublet)
A representation (singlet)

N

Fig. 4. Zero-energy states split into several nonzero-energy states by edge modifications. The
horizontal axis is size N and the vertical axis is energy in units of t = 2.7eV. We take
ε i = ε + Δε for all edge carbons with Δε = 0.027eV. States are grouped according to the
representation of the trigonal symmetry C3V . Doublet states (red) obey the E representation.
Singlet states (blue) appear in pairs; the upper (lower) states obey the A1 (A2) representation.

where ϕi(x) is the Wannier function localized at the site i. The operator ci in the tight-binding
Hamiltonian (2) annihilates an electron in the state described by the Wannier function ϕi(x).

3.4.1 Trigonal symmetry
We are able to calculate the amplitude ωi for zero-energy states in the trigonal zigzag
nanodisk. In so doing it is necessary to select the N orthonormal states | fα� according to the
representation theory of group. The symmetry group of the trigonal nanodisk is C3v, which is
generated by the 2π/3 rotation c3 and the mirror reflection σv. It has the representation {A1,
A2, E}. The A1 representation is invariant under the rotation c3 and the mirror reflection σv.
The A2 representation is invariant under c3 and antisymmetric under σv. The E representation
acquires ±2π/3 phase shift under the 2π/3 rotation. The A1 and A2 are 1-dimensional
representations (singlets) and the E is a 2-dimensitional representation (doublet). These
properties are summarized in the following character table:

C3v e 2c3 3σv
A1 1 1 1
A2 1 1 −1
E 2 −1 0

(6)

The N orthonormal states | fα� together with the amplitude ωi are constructed as follows.
First, by requiring the mirror symmetry, we can explicitly construct the wave functions,
all of which are found to be real. Next, we make appropriate linear combinations of these
states to satisfy the trigonal symmetry C3v. For this purpose, we resolve the degeneracy by
applying C3v-invariant perturbation to the size-N trigonal nanodisk. We note that all their
wave functions are nonvanishing on edge sites and that they penetrate into the bulk with
different penetration depth. Hence, if we apply an identical bias voltage to all edge carbons,
we expect that the energy of the mode increases, as the penetration depth decreases. We
take ε i = ε + Δε for all edge carbons. We show how the zero-energy states split by taking
Δε = 0.01t = 0.027eV in Fig.4 for N = 1, 2, · · · , 20. All zero-energy states are found to
acquire positive energy and they become singlets or doublets. Singlet states obey the A1
or A2 representation, while appropriate linear combinatations of doublet states obey the E
representation. There exists a nondegenerate state which has the highest energy for a nanodisk
with N =odd, which is argued to belong A2 representation. There are no such wave functions
for nanodisks with N =even.
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Fig. 5. (a)∼(e) The zero-energy states of the trigonal nanodisk with size N = 5. They are
symmetric under the mirror reflection with respect to the vertical axis. The solid (open) circle
denotes the positive (negative) amplitude ωi. The amplitude is proportional to the radius of
circle. Electrons are localized on edges in the state (a). When the site energy ε i is increased at
edges equally, the degeneracy is partially resolved, as illustrated in Fig.4. The state (a) has the
highest energy and is a singlet in the A2 representation of the symmetry group Cv3. The states
(b) and (c) are degenerate; the states (d) and (e) are degenerate and have the lowest energy.

Let us explain the above scheme by taking an example of the nanodisk with size N = 5.
First, we present 5 orthonormal states | fα� in Fig.5, where the solid (open) circle denotes
the positive (negative) amplitude ωi with |ωi| being proportional to the radius of the
circle. Second, the wave function | fa� is entirely localized on edge sites as in Fig.5(a). Since
it is invariant under the 2π/3 rotation c3 and antisymmetric under the mirror reflection
σv, it is a singlet state obeying the A2 representation. Third, we find two sets of states
(| fb�, | fc�) and (| fd�, | fe�) are degenerate under the C3v-invariant perturbation. Thus, we have
identified 5 states in the spectrum of Fig.4. From the mirror symmetric states we construct
the trigonal symmetric states by making a linear combination within each doublet, |g±� =

1√
2
(| fb� ± i| fc�), |h±� = 1√

2
(| fd� ± i| fe�). Each sets of complex wave functions, (|g+�, |g−�)

and (|h+�, |h−�), transform properly under the E representation. We shall present an analytic
approach to investigate these states based on the Dirac theory in Section 4.3. In the instance
of N = 5, (|g+�, |g−�) and (|h+�, |h−�) correspond to (|+ k+2 �, | − k+2 �) and (|+ k−2 �, | − k−2 �),
respectively, with k±n being defined in (38).

3.4.2 Electron-hole symmetry
We have shown that the zero-energy sector of the trigonal zigzag nanodisk has the N-fold
degeneracy by diagonalizing the Hamiltonian (2) explicitly. We wish to derive this fact from
a general point of view. First, we appeal to the electron-hole symmetry of the tight-binding
Hamiltonian (2). The Hamiltonian is invariant under the electron-hole transformation, cσ,A →
c†

σ,A, cσ,B → −c†
σ,B. As a result, the band structure is symmetric between the positive-energy

states and the negative-energy states, as is explicitly seen in Fig.3(b). The number of the
positive-energy state ν+ and the negative-energy state ν− are equal ν+ = ν−. On the other
hand, the number of the total states is equal to the number of carbon atoms, NC = N2 + 6N +
6. Hence, the number of the zero-enegy state η is given by η = NC − ν+− ν−. Now, the number
of the positive or negative-energy state is less than 2 min [NA, NB], ν± ≤ 2 min [NA, NB], where
NA and NB are the numbers of sites in sublattices A and B, respectively [see Fig.6]. We obtain
η ≥ |NA − NB|. It is easy to see NA = (N + 1)(N + 6)/2, NB = (N + 2)(N + 3)/2 for the
trigonal zigzag nanodisk, and hence η ≥ N for the size-N nanodisk.

3.4.3 Bipartite lattice
We have derived the lower limit for the dimension of the zero-energy sector, η ≥ N. It is a
characteristic feature of the tight-binding Hamiltonian on the bipartite lattice that it can be
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represented in the form of

H =

(
0 TAB

TBA 0

)
. (7)

The wave function is decomposed into two parts describing the A sites and B sites, | f � =

( fA, fB)
t. The rank of the matrix (7) is 2NB at the highest, but it is 2NB for connected lattices.

As a result the number of the zero-energy eigenvalues of the (NA + NB)-dimensional matrix
(7) is given by η = NA − NB = N, where the last equality holds for the zigzag trigonal
nanodisk with (??).
Furthermore, we are able to show that the wave function takes a nonzero value only on the
A-site. The matrix TBA is NB × NA dimensional. Let us choose NA-dimensional eigenvectors
satisfying TBA | fA� = 0. The number of such eigenvectors is N = NA − NB > 0, as we have
just shown. We now consider the (NA + NB)-dimensional vector, | fA� = ( fA, 0)t. It is trivial
to see that it is the eigenvector of H, H | fA� = (0, TBA fA)

t = 0. We have proved that there are
N zero-energy eigenvalues whose wave functions vanish on all B sites. See Fig.5 and Fig.6.

3.4.4 Graph theory
There is another way to see the dimension of the zero-energy sector. The spectrum of the
tight binding Hamiltonian of a honeycomb system can also be analyzed on the basis of a
mathematically rigorous approach of the benzenoid graph theory(68). According to this graph
theory, the number of zero-energy states is equal to the graph’s nullity, η = 2α − NC, where
NC is the total number of sites and α is the maximum number of non-adjacent sites. Here, we
have η = N, since α = NA for the trigonal zigzag nanodisk [Fig.6].

3.5 Robustness against randomness and lattice defects
In actual application, however, it is important to discuss how stable the previous results are
against lattice defects and randomness in transfer energy. We study three types of randomness:
randomness in transfer energy, randomness in site energy and lattice defects. The modified
Hamiltonian is

H0 = ∑
i
(ε i + δε i) c†

i,σci,σ + ∑
�i,j�

(
tij + δtij

)
c†

i,σcj,σ, (8)

where we take random values for δε i and δtij.
First of all the total spin of the ground state is determined by Lieb’s theorem although transfer
randomness and lattice defects are included. (See Section 5.5 for Lieb’s theorem.) The total
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Fig. 5. (a)∼(e) The zero-energy states of the trigonal nanodisk with size N = 5. They are
symmetric under the mirror reflection with respect to the vertical axis. The solid (open) circle
denotes the positive (negative) amplitude ωi. The amplitude is proportional to the radius of
circle. Electrons are localized on edges in the state (a). When the site energy ε i is increased at
edges equally, the degeneracy is partially resolved, as illustrated in Fig.4. The state (a) has the
highest energy and is a singlet in the A2 representation of the symmetry group Cv3. The states
(b) and (c) are degenerate; the states (d) and (e) are degenerate and have the lowest energy.
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σ,B. As a result, the band structure is symmetric between the positive-energy

states and the negative-energy states, as is explicitly seen in Fig.3(b). The number of the
positive-energy state ν+ and the negative-energy state ν− are equal ν+ = ν−. On the other
hand, the number of the total states is equal to the number of carbon atoms, NC = N2 + 6N +
6. Hence, the number of the zero-enegy state η is given by η = NC − ν+− ν−. Now, the number
of the positive or negative-energy state is less than 2 min [NA, NB], ν± ≤ 2 min [NA, NB], where
NA and NB are the numbers of sites in sublattices A and B, respectively [see Fig.6]. We obtain
η ≥ |NA − NB|. It is easy to see NA = (N + 1)(N + 6)/2, NB = (N + 2)(N + 3)/2 for the
trigonal zigzag nanodisk, and hence η ≥ N for the size-N nanodisk.

3.4.3 Bipartite lattice
We have derived the lower limit for the dimension of the zero-energy sector, η ≥ N. It is a
characteristic feature of the tight-binding Hamiltonian on the bipartite lattice that it can be
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0 TAB
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The wave function is decomposed into two parts describing the A sites and B sites, | f � =

( fA, fB)
t. The rank of the matrix (7) is 2NB at the highest, but it is 2NB for connected lattices.

As a result the number of the zero-energy eigenvalues of the (NA + NB)-dimensional matrix
(7) is given by η = NA − NB = N, where the last equality holds for the zigzag trigonal
nanodisk with (??).
Furthermore, we are able to show that the wave function takes a nonzero value only on the
A-site. The matrix TBA is NB × NA dimensional. Let us choose NA-dimensional eigenvectors
satisfying TBA | fA� = 0. The number of such eigenvectors is N = NA − NB > 0, as we have
just shown. We now consider the (NA + NB)-dimensional vector, | fA� = ( fA, 0)t. It is trivial
to see that it is the eigenvector of H, H | fA� = (0, TBA fA)

t = 0. We have proved that there are
N zero-energy eigenvalues whose wave functions vanish on all B sites. See Fig.5 and Fig.6.

3.4.4 Graph theory
There is another way to see the dimension of the zero-energy sector. The spectrum of the
tight binding Hamiltonian of a honeycomb system can also be analyzed on the basis of a
mathematically rigorous approach of the benzenoid graph theory(68). According to this graph
theory, the number of zero-energy states is equal to the graph’s nullity, η = 2α − NC, where
NC is the total number of sites and α is the maximum number of non-adjacent sites. Here, we
have η = N, since α = NA for the trigonal zigzag nanodisk [Fig.6].

3.5 Robustness against randomness and lattice defects
In actual application, however, it is important to discuss how stable the previous results are
against lattice defects and randomness in transfer energy. We study three types of randomness:
randomness in transfer energy, randomness in site energy and lattice defects. The modified
Hamiltonian is

H0 = ∑
i
(ε i + δε i) c†

i,σci,σ + ∑
�i,j�

(
tij + δtij

)
c†

i,σcj,σ, (8)

where we take random values for δε i and δtij.
First of all the total spin of the ground state is determined by Lieb’s theorem although transfer
randomness and lattice defects are included. (See Section 5.5 for Lieb’s theorem.) The total
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Fig. 7. Energy level with randomness. (a) Clean nanodisks. (b) Site energy randomness,
δε i/t ∼ ±0.1. (c) Transfer energy randomness, δtij/t ∼ ±0.1. (d) Lattice defects with thre site
at a corner. See Fig.8(a).

Fig. 8. Wave function with lattice defects. (a) Three atoms are absent at one corner. (b) One
atom is absent at one edge. For both case the probability density drastically reduces near the
lattice defects. The number of the zero-energy states reduces from N to N − 1 for both cases.

spin is given by the difference of the A site and the B site, S = 1
2 |NA − NB − δA + δB |, with the

number of lattice defects at A (B) site δA (δB), where NA and NB are number of A site and B site
without lattice defects. The total spin does not change by introducing randomness in transfer
energies. On the other hand, the number of the zero-energy states changes by the number
of lattice defects. When site randomness is included, we can not resort to Lieb’s theorem in
the strict sense because the lattice is no longer bipertite. However, when the split due to the
site randomness is smaller than that due to the Coulomb interaction, the total spin does not
change.
We show the energy spectrum with the randomness in Fig.7, where we have taken rather
large random values for δε i and δtij: We have generated uniform random numbers in the
region |δε i|/t ≤ ±0.1 and |δtij|/t ≤ ±0.1. The zero energy remains as it is even when we
introduce lattice defects. However the zero-energy states split by the randomness in transfer
energy. The wave functions also change by the lattice defect and the randomness in site and
transfer energies. The changes are proportional to the site (transfer) modification δε i (δtij), but
slight in site and transfer randomness.
On the other hand, the wave functions drastically change by introducing lattice defects, as
shown in Fig.8. We find the density reduces drastically near the lattice defects.

4. Dirac electrons in graphene

In this section we analyze the zero-energy states based on the Dirac theory of graphene(48).
We explicitly construct wave functions as analytic functions around the K point and as
anti-analytic functions around the K’ point. They are indexed by the edge momentum and
grouped according to the representation of the trigonal symmetry group C3v. By evaluating
the probability density flow we reveal a novel texture of magnetic vortices perpendicular to
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the nanodisk plane. It is intriguing that a vortex with the winding number 2 emerges in the
state belonging to the E (doublet) representation.

4.1 Weyl equations
Electrons obey the massless two-component Dirac equation, or the Weyl equation, in
graphene(49–51). We start with a review how Dirac electrons arise from the one-particle
electronic states in the honeycomb lattice [Fig.9]. We take the basis vectors a1 and a2 as

a1 = (1, 0) a, a2 =
(

1/2,
√

3/2
)

a, with a the lattice constant (a ≈ 2.46Å). The honeycomb
lattice has two different atoms per primitive cell, which we call the A and B sites. There
are three B sites adjacent to an A site, which are specified by the three vectors ri with

r1 =
(

0,−1/
√

3
)

a, r2 =
(

1/2, 1/
(

2
√

3
))

a, r3 =
(
−1/2, 1/

(
2
√

3
))

a. The basis vectors bi

of the reciprocal lattice are given by solving the relations bi · aj = 2πδij. The Brillouin zone is
a hexagon in the reciprocal lattice with opposite sides identified.
We rewrite the tight-binding Hamiltonian (2) as

H = t ∑
x,i

[
c†

A (x) cB (x+ ri) + c†
B (x+ ri) cA (x)

]
, (9)

where cS and c†
S are the annihilation and creation operators for electrons localized at the S site

(S =A,B). It describes a transfer of an electron between neighboring A and B sites without
changing its spin. We introduce the Fourier transform of the electron annihilation operator
cS (x),

cS (x) =
∫ d2k

2π
eik·xcS (k) . (10)

The Hamiltonian (9) reads

H = t
∫

d2k
(

c†
A, c†

B

)(
0 f (k)

f ∗ (k) 0

)(
cA
cB

)
(11)

in the momentum space, where

f (k) = e−ikya/
√

3 + 2eikya/2
√

3 cos
kxa
2

. (12)
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Fig. 9. (a) The two-dimensional honeycomb lattice is made of two triangular sublattices
generated by the two basis vectors a1 and a2 from the base points A and B in a primitive cell
(a dotted rectangle in yellow). (b) The reciplocal lattice is also a honeycomb lattice with the
basis vectors b1 and b2. We take the Brillouin zone as indicated by a dotted rectangle in
yellow. As two inequivalent points we take K and K’ as indicated.
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Fig. 7. Energy level with randomness. (a) Clean nanodisks. (b) Site energy randomness,
δε i/t ∼ ±0.1. (c) Transfer energy randomness, δtij/t ∼ ±0.1. (d) Lattice defects with thre site
at a corner. See Fig.8(a).

Fig. 8. Wave function with lattice defects. (a) Three atoms are absent at one corner. (b) One
atom is absent at one edge. For both case the probability density drastically reduces near the
lattice defects. The number of the zero-energy states reduces from N to N − 1 for both cases.

spin is given by the difference of the A site and the B site, S = 1
2 |NA − NB − δA + δB |, with the

number of lattice defects at A (B) site δA (δB), where NA and NB are number of A site and B site
without lattice defects. The total spin does not change by introducing randomness in transfer
energies. On the other hand, the number of the zero-energy states changes by the number
of lattice defects. When site randomness is included, we can not resort to Lieb’s theorem in
the strict sense because the lattice is no longer bipertite. However, when the split due to the
site randomness is smaller than that due to the Coulomb interaction, the total spin does not
change.
We show the energy spectrum with the randomness in Fig.7, where we have taken rather
large random values for δε i and δtij: We have generated uniform random numbers in the
region |δε i|/t ≤ ±0.1 and |δtij|/t ≤ ±0.1. The zero energy remains as it is even when we
introduce lattice defects. However the zero-energy states split by the randomness in transfer
energy. The wave functions also change by the lattice defect and the randomness in site and
transfer energies. The changes are proportional to the site (transfer) modification δε i (δtij), but
slight in site and transfer randomness.
On the other hand, the wave functions drastically change by introducing lattice defects, as
shown in Fig.8. We find the density reduces drastically near the lattice defects.

4. Dirac electrons in graphene

In this section we analyze the zero-energy states based on the Dirac theory of graphene(48).
We explicitly construct wave functions as analytic functions around the K point and as
anti-analytic functions around the K’ point. They are indexed by the edge momentum and
grouped according to the representation of the trigonal symmetry group C3v. By evaluating
the probability density flow we reveal a novel texture of magnetic vortices perpendicular to
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the nanodisk plane. It is intriguing that a vortex with the winding number 2 emerges in the
state belonging to the E (doublet) representation.

4.1 Weyl equations
Electrons obey the massless two-component Dirac equation, or the Weyl equation, in
graphene(49–51). We start with a review how Dirac electrons arise from the one-particle
electronic states in the honeycomb lattice [Fig.9]. We take the basis vectors a1 and a2 as

a1 = (1, 0) a, a2 =
(

1/2,
√

3/2
)

a, with a the lattice constant (a ≈ 2.46Å). The honeycomb
lattice has two different atoms per primitive cell, which we call the A and B sites. There
are three B sites adjacent to an A site, which are specified by the three vectors ri with

r1 =
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)
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a. The basis vectors bi

of the reciprocal lattice are given by solving the relations bi · aj = 2πδij. The Brillouin zone is
a hexagon in the reciprocal lattice with opposite sides identified.
We rewrite the tight-binding Hamiltonian (2) as

H = t ∑
x,i

[
c†

A (x) cB (x+ ri) + c†
B (x+ ri) cA (x)

]
, (9)

where cS and c†
S are the annihilation and creation operators for electrons localized at the S site

(S =A,B). It describes a transfer of an electron between neighboring A and B sites without
changing its spin. We introduce the Fourier transform of the electron annihilation operator
cS (x),

cS (x) =
∫ d2k

2π
eik·xcS (k) . (10)

The Hamiltonian (9) reads

H = t
∫

d2k
(

c†
A, c†

B

)(
0 f (k)

f ∗ (k) 0

)(
cA
cB

)
(11)

in the momentum space, where

f (k) = e−ikya/
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generated by the two basis vectors a1 and a2 from the base points A and B in a primitive cell
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Fig. 10. (a) The overall valley structure of the dispersion relation (13) is illustrated. (b) A
schematic diagram of the low-energy dispersion relation (13) near the Dirac points (K and K’
points) in the Brillouin zone. Only two Dirac cones are inequivalent to one another.
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Fig. 11. Linear dispersion near the Brillouin zone corner. The linear region of the band is
found to be dependent on the direction in the k space. In one of the direction (c) the linearity
is good more than 3 eV.

The eigenvalues are found to be ±E (k) with

E (k) = t

√
1 + 4 cos

√
3kya
2

cos
kxa
2

+ 4 cos2 kxa
2

. (13)

The dispersion relation (13) implies that the Fermi level at E (k) = 0 is reached by six corners
of the first Brillouin zone, among which there are only two inequivalent points due to the
periodicity of the reciprocal lattice. We take them as

K+ =
(

2π/3, 2π/
√

3
)

/a, K− =
(
−2π/3, 2π/

√
3
)

/a, (14)

and call them the K and K’ points [Fig.9(b) and Fig.10]. They endow graphene with a
two-component structure, corresponding to two independent Fermi points. It is notable that
the dispersion relation (13) has a valley structure around the K and K’ points.
The band dispersion (13) is linear in these Dirac valleys [Fig.10],

Eκ (k) = h̄vF|k−Kτ | for k � Kτ, (15)

where τ = ± is the valley index and vF =
√

3ta/ (2h̄) is the Fermi velocity. We show two
sections of the band in Fig.11, where the linear region of the band is found to be dependent
on the direction in the k space. In one of the section the linearity prevails more than 3 eV, as
in Fig.11(c). This linear behavior has been confirmed experimentally(69) up to 3eV.
We may expand f (x) as

f (x) � (−1)−1/3
√

3
2

[
τ (kx − Kτ)− i

(
ky − Kτ

)]
(16)
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for k � Kτ . It is convenient to introduce the reduced wave number k̂ by

k = Kτ + k̂, (17)

and rewrite the dispersion relation as

E(k̂x, k̂y) = h̄vF

√
k̂2

x + k̂2
y (18)

near the K and K’ points.
It is clear from the dispersion relation illustrated in Fig.10 that the contribution to low-energy
physics comes only from the regions around the two Fermi points, k � Kτ . We make the
change of variable as in (17), and express the wave function ψτ

S(x) near the Fermi point k �
Kτ as

ψτ
S(x) = eiKτ ·xφτ

S(x), (19)

where φτ
S(x) is called the envelope function.

The dispersion relation (18) is that of ‘relativistic’ Dirac fermions. Indeed, we rewrite the
Hamiltonian (11) as

H = h̄vF

∫
d2 k̂

(
cK†

A , cK†
B

)(
0 k̂x − ik̂y

k̂x + ik̂y 0

)(
cK

A
cK

B

)

+h̄vF

∫
d2k̂

(
cK’†

A , cK’†
B

)(
0 −k̂x − ik̂y

−k̂x + ik̂y 0

)(
cK’

A
cK’

B

)
, (20)

where cτ
S is the annihilation operator for an electron at site S in the Dirac valley τ (= K, K�).

The quantum-mechanical Hamiltonian consists of two parts, H = HK + HK’, where

Hτ = vF(τσx px + σy py) = vFσ · pτ , (21)

with pτ = (τpx , py) = −ih̄(τ∂x, ∂y). The Hamiltonian acts on the two-component envelope
function,

Φτ(x) = (φτ
A(x), φτ

B(x))
t . (22)

The Weyl equations read
ih̄∂tΦτ(x) = vFσ · pτΦτ(x). (23)

Each Hamiltonian describes the two-component massless Dirac fermion, or the Weyl fermion.
The symmetries of the system are as follows. First, we note that HK’ = σy HKσy, where σy
is the generator of the mirror symmetry. It transforms the K point into the K’ point. Next,
σz HKσz = −HK, and σz HK’σz = −HK’, where σz is the generator of the electron-hole
symmetry. It transforms the positive-energy state into the negative-energy state.
Eigenfunctions of the Hamiltonian (21) are readily obtained,

Φτ±(x) = eik̂·xuτ±(k̂) (24)

for the positive-energy state Φτ
+(x) and the negative-energy state Φτ−(x), where

uK±(k̂) =
1√
2

(
1 ± σ · k̂

|k|
)(

1
0

)
, uK’± (k̂) =

1√
2

(
1 ± σ · k̂�

|k�|
)(

0
1

)
, (25)
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The eigenvalues are found to be ±E (k) with
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The dispersion relation (13) implies that the Fermi level at E (k) = 0 is reached by six corners
of the first Brillouin zone, among which there are only two inequivalent points due to the
periodicity of the reciprocal lattice. We take them as

K+ =
(

2π/3, 2π/
√

3
)

/a, K− =
(
−2π/3, 2π/

√
3
)

/a, (14)

and call them the K and K’ points [Fig.9(b) and Fig.10]. They endow graphene with a
two-component structure, corresponding to two independent Fermi points. It is notable that
the dispersion relation (13) has a valley structure around the K and K’ points.
The band dispersion (13) is linear in these Dirac valleys [Fig.10],

Eκ (k) = h̄vF|k−Kτ | for k � Kτ, (15)

where τ = ± is the valley index and vF =
√

3ta/ (2h̄) is the Fermi velocity. We show two
sections of the band in Fig.11, where the linear region of the band is found to be dependent
on the direction in the k space. In one of the section the linearity prevails more than 3 eV, as
in Fig.11(c). This linear behavior has been confirmed experimentally(69) up to 3eV.
We may expand f (x) as

f (x) � (−1)−1/3
√

3
2

[
τ (kx − Kτ)− i

(
ky − Kτ

)]
(16)
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for k � Kτ . It is convenient to introduce the reduced wave number k̂ by

k = Kτ + k̂, (17)

and rewrite the dispersion relation as

E(k̂x, k̂y) = h̄vF

√
k̂2

x + k̂2
y (18)

near the K and K’ points.
It is clear from the dispersion relation illustrated in Fig.10 that the contribution to low-energy
physics comes only from the regions around the two Fermi points, k � Kτ . We make the
change of variable as in (17), and express the wave function ψτ

S(x) near the Fermi point k �
Kτ as

ψτ
S(x) = eiKτ ·xφτ

S(x), (19)

where φτ
S(x) is called the envelope function.

The dispersion relation (18) is that of ‘relativistic’ Dirac fermions. Indeed, we rewrite the
Hamiltonian (11) as

H = h̄vF

∫
d2 k̂

(
cK†

A , cK†
B

)(
0 k̂x − ik̂y

k̂x + ik̂y 0

)(
cK

A
cK

B

)

+h̄vF

∫
d2k̂

(
cK’†

A , cK’†
B

)(
0 −k̂x − ik̂y

−k̂x + ik̂y 0

)(
cK’

A
cK’

B

)
, (20)

where cτ
S is the annihilation operator for an electron at site S in the Dirac valley τ (= K, K�).

The quantum-mechanical Hamiltonian consists of two parts, H = HK + HK’, where

Hτ = vF(τσx px + σy py) = vFσ · pτ , (21)

with pτ = (τpx , py) = −ih̄(τ∂x, ∂y). The Hamiltonian acts on the two-component envelope
function,

Φτ(x) = (φτ
A(x), φτ

B(x))
t . (22)

The Weyl equations read
ih̄∂tΦτ(x) = vFσ · pτΦτ(x). (23)

Each Hamiltonian describes the two-component massless Dirac fermion, or the Weyl fermion.
The symmetries of the system are as follows. First, we note that HK’ = σy HKσy, where σy
is the generator of the mirror symmetry. It transforms the K point into the K’ point. Next,
σz HKσz = −HK, and σz HK’σz = −HK’, where σz is the generator of the electron-hole
symmetry. It transforms the positive-energy state into the negative-energy state.
Eigenfunctions of the Hamiltonian (21) are readily obtained,

Φτ±(x) = eik̂·xuτ±(k̂) (24)

for the positive-energy state Φτ
+(x) and the negative-energy state Φτ−(x), where

uK±(k̂) =
1√
2

(
1 ± σ · k̂

|k|
)(

1
0

)
, uK’± (k̂) =

1√
2

(
1 ± σ · k̂�

|k�|
)(

0
1

)
, (25)
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with k̂� = (−k̂x, k̂y). They transform as

σyuK±(k̂) = iuK’± (k̂), σyuK’± (k̂) = −iuK±(k̂), σzuK±(k̂) = uK∓(k̂), σzuK’± (k̂) = −uK’∓ (k̂),
(26)

under the mirror transformation and the electron-hole transformation.
The energy spectrum is symmetric between positive- and negative-energy states. There exists
one electron per one carbon and the band-filling factor is 1/2 in graphene. Namely, all
negative-energy states are filled up, as is a reminiscence of the Dirac sea.

4.2 Dirac electrons on zigzag edge
We analyze massless Dirac electrons on the zigzag edge based on the method due to Brey and
Fertig(22). The Weyl equation holds for envelope functions satsifying

vF

(
0 τpx − ipy

τpx + ipy 0

) (
φKτ

A (x)

φKτ

B (x)

)
= E

(
φKτ

A (x)

φKτ

B (x)

)
, (27a)

where px − ipy = −2ih̄∂z, px + ipy = −2ih̄∂z∗ with z = x + iy and z∗ = x − iy. The Weyl
equation is rewritten as

∂z∗φK
A(x) = i

E
2h̄vF

φK
B (x), ∂zφK

B (x) = i
E

2h̄vF
φK

A(x), (28a)

∂zφK’
A (x) = −i

E
2h̄vF

φK’
B (x), ∂z∗φK’

B (x) = −i
E

2h̄vF
φK’

A (x). (28b)

It is clear that, for the zero-energy state (E = 0), the envelope functions φK
A(x) and φK’

B (x) are
analytic, while φK

B (x) and φK’
A (x) are anti-analytic.

We place a graphene sheet in the upper half plane (y > 0) with the edge at y = 0.
Translational invariance in the x direction dictates the envelope functions are of the form
φτ

S(x, y) = eik̂xx f τ
S (y). Analyticity requirement allows us to write

φK
A(x) = CK

Aeik̂z, φK
B (x) = CK

B eik̂z∗ , φK’
A (x) = CK’

A eik̂z∗ , φK’
B (x) = CK’

B eik̂z, (29a)

with Cτ
S being integration constant.

According to the tight-binding-model result, there are no electrons in the B site on edges with
zero energy, and hence we require

φK
B (y = 0) = φK’

B (y = 0) = 0. (30)

By avoiding divergence at y → ∞, the resultant envelope functions are found to be

φK
A(x) =

√
k̂/Leik̂z =

√
k̂/Leik̂x−k̂y, for k̂ > 0, (31a)

φK’
A (x) =

√
k̂/Leik̂z∗ =

√
k̂/Leik̂x−|k̂|y, for k̂ < 0, (31b)

with all other components being zero, where 2L is the size of the edge.
The wave number is a continuous parameter for an infinitely long graphene edge. According
to the tight-binding-model result, as illustrated in Fig.13, the flat band emerges for

− π ≤ ak < − 2π

3
and

2π

3
< ak ≤ π, (32)
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in terms of the original wave number k, or

− π

3
≤ ak̂ < 0 and 0 < ak̂ ≤ π

3
, (33)

in terms of the reduced wave number k̂, around the K’ and K points, respectively. The
boundary point ak = −π of the K’ point is simultaneously the boundary point ak = π of
the K point in another Brillian zone, as illustrated in Fig.13: They are physically the same
point and to be identified.

4.3 Dirac electrons in triangular Graphene
Our main purpose is to apply the above result to the analysis of the zero-energy sector of
the trigonal zigzag nanodisk [Fig.12]. The envelope function of the trigonal zigzag nanodisk
can be constructed by making a linear combination of envelope functions for three trigonal
corners. We consider the trigonal region whose corners are located at z1 = (L, 0), z2 = (−L, 0),

z3 =
(

0,
√

3L
)

. As the boundary conditions we impose φ (z1) = φ (z2) = φ (z3) = 0. The

resultant envelope function is obtained around the K point (k̂ > 0) as

φ (z) = eik̂z − eik̂Leik̂(z−L) exp[−2πi/3] − e−ik̂Leik̂(z+L) exp[2πi/3] (34)

up to a normalization constant. The envelope function around the K’ point (k̂ < 0) is given by
φ (z∗). We display the density of the wave function |φ (z)|2 in Fig.12.
The wave number is quantized for a finite edge such as in the trigonal nanodisk. We can
determine it as follows. We focus on the wave function ψτ

A (x) at one of the A sites on an
edge. There are N links along one edge of the size-N trigonal nanodisk. We can show that
the correction terms are exactly cancelled out for these N links, and we obtain precisely
Θτ(a/2, N) = Nak. On the other hand, the phase shift is π at the corner. The total phase
shift is 3Nak + 3π, when we encircle the nanodisk once. For the single-valueness of the wave
function it is necessary that 3Nak + 3π = 2nπ, or

k̂n = ± (2n + 1) π

3Na
, 0 ≤ n ≤ N − 1

2
, (35)

with an integer n. The allowed region of the wave number is given by (32). The wave number
is quantized as

kn = ±
[

2n + 1
3N

+
2
3

]
π

a
, 0 ≤ n ≤ N − 1

2
. (36)

When N is even, there are N/2 states for kn > 0 and N/2 states for kn < 0. When N is odd,
there are (N − 1)/2 states for kn > 0 and (N − 1)/2 states for kn < 0. Additionally, there seem
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2h̄vF
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It is clear that, for the zero-energy state (E = 0), the envelope functions φK
A(x) and φK’

B (x) are
analytic, while φK

B (x) and φK’
A (x) are anti-analytic.

We place a graphene sheet in the upper half plane (y > 0) with the edge at y = 0.
Translational invariance in the x direction dictates the envelope functions are of the form
φτ

S(x, y) = eik̂xx f τ
S (y). Analyticity requirement allows us to write
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A(x) = CK

Aeik̂z, φK
B (x) = CK

B eik̂z∗ , φK’
A (x) = CK’

A eik̂z∗ , φK’
B (x) = CK’

B eik̂z, (29a)

with Cτ
S being integration constant.

According to the tight-binding-model result, there are no electrons in the B site on edges with
zero energy, and hence we require

φK
B (y = 0) = φK’

B (y = 0) = 0. (30)

By avoiding divergence at y → ∞, the resultant envelope functions are found to be

φK
A(x) =

√
k̂/Leik̂z =

√
k̂/Leik̂x−k̂y, for k̂ > 0, (31a)

φK’
A (x) =

√
k̂/Leik̂z∗ =

√
k̂/Leik̂x−|k̂|y, for k̂ < 0, (31b)

with all other components being zero, where 2L is the size of the edge.
The wave number is a continuous parameter for an infinitely long graphene edge. According
to the tight-binding-model result, as illustrated in Fig.13, the flat band emerges for

− π ≤ ak < − 2π

3
and

2π

3
< ak ≤ π, (32)
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in terms of the original wave number k, or
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3
, (33)

in terms of the reduced wave number k̂, around the K’ and K points, respectively. The
boundary point ak = −π of the K’ point is simultaneously the boundary point ak = π of
the K point in another Brillian zone, as illustrated in Fig.13: They are physically the same
point and to be identified.

4.3 Dirac electrons in triangular Graphene
Our main purpose is to apply the above result to the analysis of the zero-energy sector of
the trigonal zigzag nanodisk [Fig.12]. The envelope function of the trigonal zigzag nanodisk
can be constructed by making a linear combination of envelope functions for three trigonal
corners. We consider the trigonal region whose corners are located at z1 = (L, 0), z2 = (−L, 0),

z3 =
(

0,
√

3L
)

. As the boundary conditions we impose φ (z1) = φ (z2) = φ (z3) = 0. The

resultant envelope function is obtained around the K point (k̂ > 0) as

φ (z) = eik̂z − eik̂Leik̂(z−L) exp[−2πi/3] − e−ik̂Leik̂(z+L) exp[2πi/3] (34)

up to a normalization constant. The envelope function around the K’ point (k̂ < 0) is given by
φ (z∗). We display the density of the wave function |φ (z)|2 in Fig.12.
The wave number is quantized for a finite edge such as in the trigonal nanodisk. We can
determine it as follows. We focus on the wave function ψτ

A (x) at one of the A sites on an
edge. There are N links along one edge of the size-N trigonal nanodisk. We can show that
the correction terms are exactly cancelled out for these N links, and we obtain precisely
Θτ(a/2, N) = Nak. On the other hand, the phase shift is π at the corner. The total phase
shift is 3Nak + 3π, when we encircle the nanodisk once. For the single-valueness of the wave
function it is necessary that 3Nak + 3π = 2nπ, or

k̂n = ± (2n + 1) π

3Na
, 0 ≤ n ≤ N − 1

2
, (35)

with an integer n. The allowed region of the wave number is given by (32). The wave number
is quantized as

kn = ±
[

2n + 1
3N

+
2
3

]
π

a
, 0 ≤ n ≤ N − 1

2
. (36)

When N is even, there are N/2 states for kn > 0 and N/2 states for kn < 0. When N is odd,
there are (N − 1)/2 states for kn > 0 and (N − 1)/2 states for kn < 0. Additionally, there seem
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Fig. 13. (a) The energy spectrum in an infinitely long graphene edge. The flat band appears in
the region indicated in red. (b) We take the Brillouin zone as indicated in yellow. The flat
band appears in the region indicated in red. The boundary points at ±π are identified.

to appear two states with kn = ±π/a at n = (N − 1)/2. However, they are identified with
one another, since they are located at the boundary of the Brillouin zone [13].
As we have reviewed in Section 3.4, the symmetry group of the trigonal nanodisk is C3v,
whose properties are summarized in the table (6). The mirror symmetry is equivalent to the
exchange of the K and K’ points. With respect to the rotation there are three elements c0

3, c3,
c2
3, which correspond to 1, e2πi/3, e4πi/3. Accordingly, the phase shift of one edge is 0, 2π/3,

4π/3. They are determined by the conditions

Nakn + π = 2nπ, Nakn + π = 2nπ +
2π

3
, Nakn + π = 2nπ +

4π

3
, (37a)

with an integer n, respectively. It follows that the state, indexed by the edge momentum kn
as in (36), are grouped according to the representation of the trigonal symmetry group C3v as
follows,

A1 (singlet) : |k0
n�+ | − k0

n�,
A2 (singlet) : |k0

n� − | − k0
n�,

}
k0

n =
6n + 3
3Na

π,

E (doublet) : |k±n �, | − k±n �, k±n =
6n ± 1
3Na

π,
(38)

where the momentum kα
n is subject to the condition (32). It follows that

⌊
N + 1

3

⌋
≤ n ≤

⌊
N
2

⌋
, (39)

where �a� denotes the maximum integer equal to or smaller than a, and �a� denotes the
minimum integer equal to or larger than a. The numbers of doublets (E-mode) and singlets
(A1-mode or A2-mode) are given by

⌊
N + 1

3

⌋
, N − 2

⌊
N + 1

3

⌋
, (40)

respectively.
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N=7 N=7 N=7 N=7k2 (A) k3 (E) k3 (A)+k3 (E)-0 0

Fig. 14. Probability density flow for the state |k(0,±)
n � in the nanodisk with N = 7. The

representation is indicated in the parenthesis. A vortex appears at the center of mass for the
state belonging to the E (doublet) representation. It is interesting that the winding number is
2 in the state |k+n �. A circulating current along the closed edge confines flux and generates a
vortex texture respecting the trigonal symmetry.

4.3.1 Probability density flow (Berry connection)
To see the meaning of the wave number kα

n more in detail, we have calculated the probability
density flow

Ai(x, y) = −iφ∗(x, y)∂iφ(x, y) (41)

for various states, which we show for the case of N = 7 in Fig.14. We observe clearly a texture
of vortices: The number of vortices are 6, 7, 7, 9 for |k0

2�, |k−3 �, |k+3 �, |k0
3�, respectively. The vortex

at the center of mass must have the winding number 2 in |k+3 �. In general, the total winding
number Nvortex is calculated by

Nvortex =
−i
2π

�
dxi

φ∗(x, y)∂iφ(x, y)
|φ(x, y)|2 = N + m − 1, (42)

with m = 0, 1, 2, · · · , �(N − 1)/2� in the size-N nanodisk, where the integration is made
along the closed edge of a nanodisk. Nvortex = 3n for k0

n, Nvortex = 3n + 1 for k−n+1 and
Nvortex = 3n + 2 for k+n . The wave functions are classified in terms of modulo of the total
winding number: the wave function belongs to the E-representation and has chiral edge mode
for Nvortex ≡ 1, 2 (mod 3), and belongs to the A-representation and has non-chiral edge mode
for Nvortex ≡ 0 (mod 3). There are n vortices along the y-axis in the state |kα

n�. The state |k±n �,
being the E-mode, has a vortex at the center of mass, where the winding number is 2 in the
state |k+n �. On the other hand, the state |k0

n� does not have a vortex at the center of mass, and
the combinations |k0

n� ± | − k0
n� belong to the A1 and A2 representations, respectively.

To demonstrate the above statement, we search for zero points of the wave function, where
vortices appear. The probability density along the y-axis is given by

|ψ (y)|2 =

⎛
⎝−e−ky + 2ek(y−√

3Na/2)/2 cos

√
3k

�
y +

√
3Na/2

�

2

⎞
⎠

2

, (43)

which is found to have n zeros for k = k(±)
n . In particular we examine the emergence of a

vortex at the center of mass, where we may expand ψ (z) as

ψ (z) = C0 + C1k
�

z − i
Na

2
√

3

�
+ C2k2

�
z − i

Na

2
√

3

�2
+ · · · . (44)

The coefficient C0 vanishes at

k =
6n ± 1
3Na

π, (45)
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Fig. 13. (a) The energy spectrum in an infinitely long graphene edge. The flat band appears in
the region indicated in red. (b) We take the Brillouin zone as indicated in yellow. The flat
band appears in the region indicated in red. The boundary points at ±π are identified.

to appear two states with kn = ±π/a at n = (N − 1)/2. However, they are identified with
one another, since they are located at the boundary of the Brillouin zone [13].
As we have reviewed in Section 3.4, the symmetry group of the trigonal nanodisk is C3v,
whose properties are summarized in the table (6). The mirror symmetry is equivalent to the
exchange of the K and K’ points. With respect to the rotation there are three elements c0

3, c3,
c2
3, which correspond to 1, e2πi/3, e4πi/3. Accordingly, the phase shift of one edge is 0, 2π/3,

4π/3. They are determined by the conditions

Nakn + π = 2nπ, Nakn + π = 2nπ +
2π

3
, Nakn + π = 2nπ +

4π

3
, (37a)

with an integer n, respectively. It follows that the state, indexed by the edge momentum kn
as in (36), are grouped according to the representation of the trigonal symmetry group C3v as
follows,

A1 (singlet) : |k0
n�+ | − k0

n�,
A2 (singlet) : |k0

n� − | − k0
n�,

}
k0

n =
6n + 3
3Na

π,
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3Na

π,
(38)

where the momentum kα
n is subject to the condition (32). It follows that

⌊
N + 1

3

⌋
≤ n ≤

⌊
N
2

⌋
, (39)

where �a� denotes the maximum integer equal to or smaller than a, and �a� denotes the
minimum integer equal to or larger than a. The numbers of doublets (E-mode) and singlets
(A1-mode or A2-mode) are given by
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3

⌋
, N − 2

⌊
N + 1

3

⌋
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respectively.
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state belonging to the E (doublet) representation. It is interesting that the winding number is
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4.3.1 Probability density flow (Berry connection)
To see the meaning of the wave number kα

n more in detail, we have calculated the probability
density flow

Ai(x, y) = −iφ∗(x, y)∂iφ(x, y) (41)

for various states, which we show for the case of N = 7 in Fig.14. We observe clearly a texture
of vortices: The number of vortices are 6, 7, 7, 9 for |k0

2�, |k−3 �, |k+3 �, |k0
3�, respectively. The vortex

at the center of mass must have the winding number 2 in |k+3 �. In general, the total winding
number Nvortex is calculated by

Nvortex =
−i
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φ∗(x, y)∂iφ(x, y)
|φ(x, y)|2 = N + m − 1, (42)

with m = 0, 1, 2, · · · , �(N − 1)/2� in the size-N nanodisk, where the integration is made
along the closed edge of a nanodisk. Nvortex = 3n for k0

n, Nvortex = 3n + 1 for k−n+1 and
Nvortex = 3n + 2 for k+n . The wave functions are classified in terms of modulo of the total
winding number: the wave function belongs to the E-representation and has chiral edge mode
for Nvortex ≡ 1, 2 (mod 3), and belongs to the A-representation and has non-chiral edge mode
for Nvortex ≡ 0 (mod 3). There are n vortices along the y-axis in the state |kα

n�. The state |k±n �,
being the E-mode, has a vortex at the center of mass, where the winding number is 2 in the
state |k+n �. On the other hand, the state |k0

n� does not have a vortex at the center of mass, and
the combinations |k0
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n� belong to the A1 and A2 representations, respectively.

To demonstrate the above statement, we search for zero points of the wave function, where
vortices appear. The probability density along the y-axis is given by
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�
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which is found to have n zeros for k = k(±)
n . In particular we examine the emergence of a

vortex at the center of mass, where we may expand ψ (z) as

ψ (z) = C0 + C1k
�

z − i
Na

2
√

3

�
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�
z − i

Na

2
√

3

�2
+ · · · . (44)

The coefficient C0 vanishes at

k =
6n ± 1
3Na

π, (45)
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namely, for the state |k±n �. Furthermore, C1 vanishes at

k =
6n + 1
3Na

π. (46)

Hence we confirm that a vortex with the winding number 2 appears in the state |k+n �. We
can check that C2 does not vanish where C0 vanishes. Namely, there are no vortices with the
winding number 3.
These vortices are present inside the nanodisk where the electron density is almost zero. The
situation is similar to a flux confined within a solenoid or within a superconducting ring,
where no electrons are present in the domain where the magnetic flux exists. The electric
current confining the flux generates the Aharonov-Bohm phase (42) associated with vortices.
Vortices make a texture respecting the trigonal symmetry C3v within a nanodisk.

4.3.2 Magnetic vortices
Charged particles propagating along a closed edge generates magnetic field. The
electromagnetic interaction is described in terms of the electromagnetic potential A, which
is introduced to the system by way of the Peierls substitution ∂j → ∂j + ieAj/h̄. Here we
consider the lowest order approximation, where φK

A(x) is not modified from (34) in the
presence of the electromagnetic interaction. Then, from the Weyl equation (28), we derive

eAi(x) = −ih̄
φK∗

A (x)∂iφ
K
A(x)

|φK
A(x)|2

= h̄
Ai(x)

|φK
A(x)|2

. (47)

The potential Ai(x) exhibits the same texture of vortices as in Fig.14. The magnetic field is
given by

B(x, y) = ∇× A(x) =
2πh̄

e ∑
n

νnδ (z − zn) , (48)

where νn stands for winding number of the vortex at z = zn. Hence a texture of vortices in the
Berry connection leads to a texture of magnetic vortices. This δ-function type magnetic field
would be smoothed out in a rigorous analysis of the coupled system of the Maxwell equation
and the Weyl equation.
We have shown that the winding number of the vortex at the center of the nanodisk is 0, 1, 2
in the state |k0

n�, |k−n �, |k+n �, respectively. By tuning the chemical potential any of them is made
the ground state. As far as we are aware of, the vortex with the winding number 2 has never
been found in all branches of physics. This is because two vortices with the winding number 1
have lower energy than one vortex with the winding number 2 in general. In the present case
the disintegration of a vortex into two is prohibited by the trigonal symmetry.
As is well known, a single flux quantum has experimentally been observed in superconductor
by using an electron-holographic interferometry(70). Then, in principle it is possible to observe
a vortex texture in nanodisk as well. Furthermore, by attaching a superconductor film one may
observe a disintegration of a vortex into two when the flux enters into the superconductor
from the nanodisk. This would verify the winding number 2 of a vortex.

5. Electron-electron interactions

In this section we make an investigation of electron-electron interaction effects in the
zero-energy sector. The spin stiffness is quite large due to large exchange interactions,
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which means that a nanodisk is a rigid ferromagnet. The system is well described by
the infinite-range Heisenberg model, which is exactly solvable. Constructing the partition
function, we explore thermodynamical properties(47; 65). A sharp peak emerges at a certain
temperature in the specific heat, which we interpret as a quasi-phase transition between
quasiferromagnetic and paramagnetic states.

5.1 Exchange interactions
Let us include the Coulomb interaction between electrons in the zero-energy sector. We take
two states | fα� and | fβ�, α �= β, each of which can accommodate two electrons with up and
down spins at most. The two-state system is decomposed into the spin singlet χS and the spin
triplet χT with the normalized wave functions,

f SS
αβ(x,x�) = 1√

2

(
fα(x) fβ(x

�) + fα(x
�) fβ(x)

)
χS, (49a)

f ST
αβ (x,x�) = 1√

2

(
fα(x) fβ(x

�)− fα(x
�) fβ(x)

)
χT. (49b)

The Coulomb energies are summarized as

� f SS
αβ |HC| f SS

αβ� = Uαβ + Jαβ, � f ST
αβ |HC| f ST

αβ � = Uαβ − Jαβ, (50)

where Uαβ and Jαβ are the direct and exchange energies. In the many-state system the effective
Hamiltonian is derived as

HD = ∑
α≥β

Uαβn (α) n (β)− 1
2 ∑

α>β

Jαβ[4S(α) ·S(β) + n (α) n (β)], (51)

where n (α) = d†
σ(α)dσ(α) is the number operator and S(α) = 1

2 d†
σ(α)τσσ�dσ�(α) is the spin

operator, with dσ(α) the annihilation operator of electron with spin σ =↑, ↓ in the zero-energy
state | fα�: τ is the Pauli matrix. Note the existence of the on-state Coulomb term Uααn (α) n (α)
in the effective Hamiltonian (51).
We expand Uαβ and Jαβ in terms of the Wannier functions with the use of (5),

Uαβ =∑
s

ωα
i ωα

j ω
β
k ω

β
l

∫
d3xd3y ϕ∗

i (x)ϕj(x)V(x− y)ϕ∗
k (y)ϕl(y), (52a)

Jαβ =∑
s

ωα
i ωα

j ω
β
k ω

β
l

∫
d3xd3y ϕ∗

i (x)ϕj(y)V(x− y)ϕ∗
k (y)ϕl(x). (52b)

The dominant contributions come from the on-site Coulomb terms with i = j = k = l both for
the direct and exchange energies. We thus obtain

Uαβ � Jαβ � U ∑
i
(ωα

i ω
β
i )

2, (53)

with

U ≡ e2

4πε

∫
d3xd3y ϕ∗

i (x)ϕi(x)
1

|x− y| ϕ∗
i (y)ϕi(y). (54)

The Coulomb energy U is of the order of 1eV because the lattice spacing of the carbon atoms is
∼ 1Å in graphene. The nearest neighbor Coulomb interaction vanishes since no electrons exist
in B sites: See Fig.6. It is straightforward to take into account higher order corrections but the
effects are only to enhance the ferromagnetic order. The essential properties of the Coulomb
interactions are well described only by taking the on-site terms.
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Fig. 15. The nanodisk spin as a function of the chemical potential. The vertical axis is the spin,
where the highest value is N/2. The horizontal axis is the chemical potential μ. The nanodisk
spin is controlled by changing μ.

5.2 Zero-energy splitting due to coulomb interactions
We have shown that the N-fold degeneracy in the zero-energy sector is resolved by Coulomb
interactions. The Coulomb Hamiltonian has the trigonal symmetry C3v, and the energy
spectrum splits into different levels according to its representation. The energy split is
approximately scaled by Uαα.
There exists additionally the spin-degeneracy in the noninteracting Hamiltonian: The total
degeneracy is 2N. The spin degeneracy is broken spontaneously with the introduction of
Coulomb interactions. The splitting is symmetric with respect to the zero-energy level. At
half-filling, electrons with the identical spin fill all energy levels under the Fermi energy. Then,
the spin of the ground state is N/2, and it is a ferromagnet. We show the energy spectrum for
N = 5, 6 in Fig.15.
It is interesting that we can control the total spin by changing the chemical potential μ. Let
us assume that all spins are up polarized in the ground state. As μ increases from zero and
reaches the next energy level, down-spin electrons fill the level. As a result, the ground-state
spin is reduced by 1/2 or 1 when the energy level is singlet or doublet, respectively. When μ
increases higher than the highest energy level, the total spin becomes 0 and the ferromagnet
disappears. The same results apply to the case when μ decreases. We show the total spin as a
function of the chemical potential μ in Fig.15.
In our analysis the interaction effects are treated only within the subspace of zero-energy
states. It is desirable to derive an effective low-energy Hamiltonian by integrating out the
higher excitation levels in a renormalization procedure rather than just neglecting these
levels. This has actually been done by functional-renormalization-group analysis recently(71).
Our treatment neglecting the renormalizations by the higher levels are shown to be valid
by functional-renormalization-group analysis. Furthermore, first-principle calculations of
electronic structure of graphene nanodisk have been carried out, which are found to be
consistent with our results(37; 38; 42). Result are shown in Fig.16.

5.3 SU(N) Approximation
As we have shown numerically, all Jαβ are of the same order of magnitude for any pair of α
and β, implying that the SU(N) symmetry is broken but not so strongly in the Hamiltonian
(51). It is a good approximation to start with the exact SU(N) symmetry, where we set Jαβ =
Uαβ = J. (We set the average of Jαβ as J in the size-N nanodisk.) Then, the zero-energy sector
is described by the Hamiltonian HD = HS + HU, with

HS = −J ∑
α �=β

S(α) ·S(β), HU =
J
4 ∑

α �=β

n (α) n (β) + J ∑
α

n (α) . (55)
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Fig. 16. The first-principle calculation of graphene nanodisdks. Fig. (a) is taken from the work
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The term HS is known as the infinite-range Heisenberg model. We rewrite them as

HS = −JS2
tot +

3
4

Jntot, HU =
J
4
(n2

tot + 1), (56)

where ntot = ∑α n (α) is the total electron number.
The ground states of nanodisks are half filled. We restrict the Hilbert space to the half-filling
sector, where n (α) = n↑ (α) + n↓ (α) = 1. The Hamiltonian (56) is reduced to the Heisenberg
model,

HS = −JStot ·Stot, (57)

where we have neglected an irrelevant constant term, (3/4)JN. This is exactly diagonalizable,
HS|Ψ� = Es|Ψ�, with Es = −Js(s + 1), where s takes values from N/2 down to 1/2 or 0,
depending on whether N is odd or even, s = N

2 , N
2 − 1, N

2 − 2, · · · , s ≥ 0. The Hilbert
space is diagonalized, H = ⊗NH1/2 = ⊕gN(s)Hs, where Hs denotes the (2s + 1) dimensional
Hilbert space associate with an irreducible representation of SU(2). The multiplicities gN (s)
satisfies the recursion relation coming from the spin synthesizing rule, gN (s) = gN−1(s −
1
2 ) + gN−1(s + 1

2 ). We solve this as gN( 1
2 N − q) =N Cq −NCq−1. The total degeneracy of the

energy level Es is (2s + 1) gN(s). At half filling, the eigenstate of the Hamiltonian HD is labeled
as |Ψ� = |ntot, s, m�, where s is the total spin and m is its z-component.

5.4 Thermodynamical properties
We have a complete set of the eigenenergies together with their degeneracies. The partition
function of the nanodisk with size N is exactly calculable(47). According to the standard
procedure we can evaluate the specific heat C(T), the entropy S(T), the magnetization〈
S2

tot
〉

and the susceptibility χ =
(〈

S2
z,tot

〉 − �Sz,tot�2
)

/ (kBT)from this partition function.

The ground-state value of the total spin is Sg =
√
(N/2) (N/2 + 1). The entropy is given

by S (0) = kB log(N + 1) at zero temperature. We display them in Fig.17 for size N =
1, 2, 22, · · · 210.
There appear singularities in thermodynamical quantities as N → ∞, which represent a phase
transition at Tc between the ferromagnet and paramagnet states, Tc = JN/ (2kB). For finite
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Fig. 17. Thermodynamical properties of the nanodisk-spin system. (a) The specific heat C in
unit of kB N. (b) The entropy S in unit of kB N log 2. (c) The magnetization

〈
S2

tot
〉

in unit of S2
g.

(d) The susceptibility χ in unit of Sg. The size is N = 1, 2, 22, · · · 210. The horizontal axis
stands for the temperature T in unit of JN/kB. The arrow represents the phase transition
point Tc in the limit N → ∞.

N, there are steep changes around Tc, though they are not singularities. It is not a phase
transition. However, it would be reasonable to call it a quasi-phase transition between the
quasiferromagnet and paramagnet states. Such a quasi-phase transition is manifest even in
finite systems with N = 100 ∼ 1000.
The specific heat and the magnetization take nonzero-values for T > Tc [Fig.17(a),(c)], which
is zero in the limit N → ∞. The entropy for T > Tc is lower than that of the paramagnet
[Fig.17(b)]. These results indicate the existence of some correlations in the paramagnet state.
As shown in Fig.17(d), the susceptibility χ always shows the Curie-Weiss low χ ∝ 1/T near
T = 0, and exhibits also a behavior showing a quasi-phase transition at T = Tc. In the
finite system, the expectation value of Sz,tot is always zero because there is no spontaneous
symmetry breakdown in the finite system, and the behavior is that of paramagnet.

5.5 Lieb’s theorem
We make some remarkable observations on the spin of a nanodisk. Due to the exchange
interaction in the Hamiltonian (51), all spins are spontaneously polarized into a single
direction. Since the exchange energy is as large as the direct energy, which is the order of a
few hundred meV, the spin stiffness Jαβ is quite large, implying that nanodisks are almost
rigid ferromagnets. We refer to the total spin of a nanodisk, Stot = ∑α S (α), as the nanodisk
spin. The size-N nanodisk spin is 1

2 N in the ground state.
This is consistent with Lieb’s theorem(72) valid for the Hubbard model. As far as only
the on-site Coulomb interactions are taken into account, the electron-electron interaction is
approximated by the Hubbard model,

HU = U ∑
i

d†
i↑di↑d†

i↓di↓, (58)

where U is given by (54): It is estimated(73) that U ≈ t. Lieb’s theorem states that, in the case
of repulsive electron-electron interactions (U > 0), a bipartite system at half-filling has the
ground state whose total spin is Stot = 1

2 |NA − NB |, where NA and NB are the numbers of
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sites in sublattices A and B, respectively [Fig.6]. They are given by (??), and hence Stot =
1
2 N

for the size-N nanodisk.

6. Large size triangular graphene

In this appendix we argue that our analysis based on the zero-energy sector is essentially
correct, even if the size N of the nanodisk is large and the band gap becomes very narrow.
In this case, the DOS of the nanodisk is decomposed into the DOS due to the edge, which is
δ-function like, and the DOS due to the bulk, which is almost continuous. The correction to
the magnetization from the bulk part is shown to be of the order of 1/N with respect to the
one from the edge part in the zero-temperature limit.

6.1 Density of states
It is possible to derive an analytical expression for the density of states of graphene per unit
cell(74), which has the form

ρ (ε) =
4

π2
|ε|
t2

1√
Z0

K

(√
Z1
Z0

)
, (59)

with

Z0 =

{ (
1 +

∣∣ ε
t

∣∣)2 −
(
(ε/t)2 − 1

)2
/4; −t ≤ ε ≤ t

4 |ε/t| ; −3t ≤ ε ≤ −t ∨ t ≤ ε ≤ 3t

∣∣∣∣∣ , (60a)

Z1 =

{
4 |ε/t| ; −t ≤ ε ≤ t

(
1 +

∣∣ ε
t

∣∣)2 −
(
(ε/t)2 − 1

)2
/4; −3t ≤ ε ≤ −t ∨ t ≤ ε ≤ 3t

∣∣∣∣∣ , (60b)

where K (x) is the complete elliptic integral of the first kind. Thus, near the Dirac point we
find

ρ (ε) =
2Ac

πv2
F
|ε| , (61)

where Ac is the unit cell area, Ac = 3
√

3a2/2.
For large N nanodisks, the band gap decreases inversely proportional to the size. One may
wonder if our analysis based on only the zero-energy sector is relevant. Indeed, the size of
experimentally available nanodisks is as large as N = 100 ∼ 1000. We would like to argue
that our analysis of the zigzag trigonal nanodisk captures the basic nature of nanodisks even
for such a large size system.
It is important to remark that each energy level is at most two-fold degenerate except for the
states at ε = 0 and ε = t irrespective to its size N, as illustrated in Fig.18. The degeneracy is
governed by the representation (6) of the trigonal symmetry group C3v. Hence, in the limit
N → ∞, the density of state (DOS) of the zigzag trigonal nanodisk reflects the following two
aspects; one is that there appear van-Hove singularities at ε = 0 and ε = t. The other is
that the DOS shows a continuous and dense structure, which has the same structure of the
bulk graphene [Fig.18] except for the contributions from these singularities. Namely, near the
Fermi energy, the DOS consists of that of the bulk graphene and an additional peak at the
zero-energy states due to the edge states for N � 1, as illustrated in Fig.18. Hence, together
with spin degrees of freedom, it behaves as

D (ε) = 2cNc |ε|+ 2Nδ (ε) , (62)
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Fig. 17. Thermodynamical properties of the nanodisk-spin system. (a) The specific heat C in
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(d) The susceptibility χ in unit of Sg. The size is N = 1, 2, 22, · · · 210. The horizontal axis
stands for the temperature T in unit of JN/kB. The arrow represents the phase transition
point Tc in the limit N → ∞.

N, there are steep changes around Tc, though they are not singularities. It is not a phase
transition. However, it would be reasonable to call it a quasi-phase transition between the
quasiferromagnet and paramagnet states. Such a quasi-phase transition is manifest even in
finite systems with N = 100 ∼ 1000.
The specific heat and the magnetization take nonzero-values for T > Tc [Fig.17(a),(c)], which
is zero in the limit N → ∞. The entropy for T > Tc is lower than that of the paramagnet
[Fig.17(b)]. These results indicate the existence of some correlations in the paramagnet state.
As shown in Fig.17(d), the susceptibility χ always shows the Curie-Weiss low χ ∝ 1/T near
T = 0, and exhibits also a behavior showing a quasi-phase transition at T = Tc. In the
finite system, the expectation value of Sz,tot is always zero because there is no spontaneous
symmetry breakdown in the finite system, and the behavior is that of paramagnet.

5.5 Lieb’s theorem
We make some remarkable observations on the spin of a nanodisk. Due to the exchange
interaction in the Hamiltonian (51), all spins are spontaneously polarized into a single
direction. Since the exchange energy is as large as the direct energy, which is the order of a
few hundred meV, the spin stiffness Jαβ is quite large, implying that nanodisks are almost
rigid ferromagnets. We refer to the total spin of a nanodisk, Stot = ∑α S (α), as the nanodisk
spin. The size-N nanodisk spin is 1

2 N in the ground state.
This is consistent with Lieb’s theorem(72) valid for the Hubbard model. As far as only
the on-site Coulomb interactions are taken into account, the electron-electron interaction is
approximated by the Hubbard model,

HU = U ∑
i

d†
i↑di↑d†

i↓di↓, (58)

where U is given by (54): It is estimated(73) that U ≈ t. Lieb’s theorem states that, in the case
of repulsive electron-electron interactions (U > 0), a bipartite system at half-filling has the
ground state whose total spin is Stot = 1

2 |NA − NB |, where NA and NB are the numbers of
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sites in sublattices A and B, respectively [Fig.6]. They are given by (??), and hence Stot =
1
2 N

for the size-N nanodisk.

6. Large size triangular graphene

In this appendix we argue that our analysis based on the zero-energy sector is essentially
correct, even if the size N of the nanodisk is large and the band gap becomes very narrow.
In this case, the DOS of the nanodisk is decomposed into the DOS due to the edge, which is
δ-function like, and the DOS due to the bulk, which is almost continuous. The correction to
the magnetization from the bulk part is shown to be of the order of 1/N with respect to the
one from the edge part in the zero-temperature limit.

6.1 Density of states
It is possible to derive an analytical expression for the density of states of graphene per unit
cell(74), which has the form

ρ (ε) =
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where K (x) is the complete elliptic integral of the first kind. Thus, near the Dirac point we
find

ρ (ε) =
2Ac

πv2
F
|ε| , (61)

where Ac is the unit cell area, Ac = 3
√

3a2/2.
For large N nanodisks, the band gap decreases inversely proportional to the size. One may
wonder if our analysis based on only the zero-energy sector is relevant. Indeed, the size of
experimentally available nanodisks is as large as N = 100 ∼ 1000. We would like to argue
that our analysis of the zigzag trigonal nanodisk captures the basic nature of nanodisks even
for such a large size system.
It is important to remark that each energy level is at most two-fold degenerate except for the
states at ε = 0 and ε = t irrespective to its size N, as illustrated in Fig.18. The degeneracy is
governed by the representation (6) of the trigonal symmetry group C3v. Hence, in the limit
N → ∞, the density of state (DOS) of the zigzag trigonal nanodisk reflects the following two
aspects; one is that there appear van-Hove singularities at ε = 0 and ε = t. The other is
that the DOS shows a continuous and dense structure, which has the same structure of the
bulk graphene [Fig.18] except for the contributions from these singularities. Namely, near the
Fermi energy, the DOS consists of that of the bulk graphene and an additional peak at the
zero-energy states due to the edge states for N � 1, as illustrated in Fig.18. Hence, together
with spin degrees of freedom, it behaves as

D (ε) = 2cNc |ε|+ 2Nδ (ε) , (62)
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Fig. 18. The density of state of a (a) graphene, (b) graphene nanoribbon and (c) graphene
nanodisk. The horizontal axis is the energy ε.

with c = 2Ac/πv2
F. The linear term is due to the bulk states as given by (61), and the Dirac

delta function term is due to the edge states. The important point is that the edge-state peak
is clearly distinguished from the DOS due to the bulk part. It is enough to take into account
only the zero-energy sector to analyze physics near the Fermi energy, since the contribution
from the edge states is dominant.

6.2 Magnetism
For definiteness we explicitly calculate the magnetization of a nanodisk when its size is large.
We start with the Hubbard Hamiltonian,

H = ∑
ijσ

tijc
†
iσciσ + U ∑

i
c†

i↑ci↑c†
i↓ci↓ = ∑

kσ

ε (k) c†
kσckσ + U ∑

kk�q
c†

k+q↑c†
k�−q↓ck�↓ck↑. (63)

In the Hartree-Fock approximation the Hamiltonian is transformed into

HMF = ∑
(

εk +
U

2NC
�n�+ σΔ

)
c†

kσckσ − NCU
〈
n↑

〉 〈
n↓

〉
,

where NC = N2 + 6N + 6,

Δ =
U

2NC
�m�+ h

2
, (64)

with the external magnetic field h and �nσ� = 1
2 (�n�+ σ �m�), or �n� = 〈

n↑
〉
+

〈
n↓

〉
, �m� =〈

n↑
〉− 〈

n↓
〉
. The statistical mean values �n� and �m� are determined self-consistently as

�n� =
∫

dερ (ε) [ f (ε − Δ) + f (ε + Δ)] , (65)

�m� =
∫

dερ (ε) [ f (ε − Δ)− f (ε + Δ)] , (66)

with the Fermi distribution function f (x) = 1/ (exp [(x − μ) /kBT] + 1). We can rewrite (66)
into

�m� =
∫

dερ (ε)

[
tanh

β (ε + Δ)
2

− tanh
β (ε − Δ)

2

]
. (67)

Substituting the formula (62) of the DOS into the Storner equation (66), we obtain

�m� = N tanh
βΔ
2

+ cNc

[
Δ2 +

1
β2

{
π2

3
+ 4Li2

(
−e−βΔ

)}]
, (68)

with the dilogarithm function Li2 (x). It is difficult to solve this equation for �m�
self-consistently at general temperature T. We examine two limits, T → 0 and T → ∞.
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Fig. 19. (a) Clar goblet or bow-tie shaped graphene nanodisk. (b) Fractal sturucture of star of
David graphene nanodisk. Fig (a) is taken from the work of Wang et. al (39), and Fig. (b) is
taken from the work of Wang et al (38).

For the zero temperature (T → 0) we obtain

�m� = N + c
U2

4NC
�m�2 +

cUh
2

�m�+ O(h2). (69)

The magnetization �m� is determined by solving (69). Because |�m�| ≤ N, it follows that
�m� = N + O(1). The contribution from the bulk gives a negligible correction to the total
magnetization. Hence the magnetization is �m� = N, and the ground state is fully poralized
whenever U �= 0. Ferromagnetism occurs irrespective of the strength of the Coulomb
interaction.
The magnetization is propotional not to Nc but N. In this sence the ground state of nanodisk
is not bulk ferromagnet but surface ferromagnet, which is consistent with the previous result.
We next investigate the high temperatuer limit (T → ∞). Using the Taylor expansion of the
dilogarithm function,

Li2
(
−e−βΔ

)
= −π2

12
+ βΔ log 2 − β2Δ2

4
+

β3Δ3

24
+ · · · , (70)

we find

�m� = N tanh
βΔ
2

+ cNc

[
4Δ
β

log 2 +
βΔ3

6
+ · · ·

]
. (71)

The leading term is the second term, and hence the main contribution comes from the bulk.
The solution is only �m� = 0 for which Δ = 0. There is no magnetization at high temperature.

7. Complex structure of nanodisk

7.1 Bowtie-shaped graphene nanodisk
A bowtie-shaped graphene nanodisk is proposed by Wang et. al(39). A bowties-shaped
graphene nanodisk is composed of two trigonal graphene nanodisks sharing one hexagon:
See Fig.19. Lieb’s theorem predicts the ground state with S = 0. On the other hand, there are
degenerate zero-energy states predicted from the graph theory(68). To satisfy the spin-singlet
ground state, the ground electronic configuration exhibits antiferromagnetic ordering.
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Fig. 18. The density of state of a (a) graphene, (b) graphene nanoribbon and (c) graphene
nanodisk. The horizontal axis is the energy ε.
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F. The linear term is due to the bulk states as given by (61), and the Dirac

delta function term is due to the edge states. The important point is that the edge-state peak
is clearly distinguished from the DOS due to the bulk part. It is enough to take into account
only the zero-energy sector to analyze physics near the Fermi energy, since the contribution
from the edge states is dominant.
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into

�m� =
∫

dερ (ε)

[
tanh

β (ε + Δ)
2

− tanh
β (ε − Δ)

2

]
. (67)

Substituting the formula (62) of the DOS into the Storner equation (66), we obtain

�m� = N tanh
βΔ
2

+ cNc

[
Δ2 +

1
β2

{
π2

3
+ 4Li2

(
−e−βΔ

)}]
, (68)

with the dilogarithm function Li2 (x). It is difficult to solve this equation for �m�
self-consistently at general temperature T. We examine two limits, T → 0 and T → ∞.

266 Physics and Applications of Graphene - Theory

E
 (

eV
)

0.0

-0.1

-0.2

-0.3

0.3

0.2

0.1

1u
2u 2d

1d

d1u2u1 2d

(a) (b)

(c)

left right

(a) (b)
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2
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The magnetization �m� is determined by solving (69). Because |�m�| ≤ N, it follows that
�m� = N + O(1). The contribution from the bulk gives a negligible correction to the total
magnetization. Hence the magnetization is �m� = N, and the ground state is fully poralized
whenever U �= 0. Ferromagnetism occurs irrespective of the strength of the Coulomb
interaction.
The magnetization is propotional not to Nc but N. In this sence the ground state of nanodisk
is not bulk ferromagnet but surface ferromagnet, which is consistent with the previous result.
We next investigate the high temperatuer limit (T → ∞). Using the Taylor expansion of the
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The leading term is the second term, and hence the main contribution comes from the bulk.
The solution is only �m� = 0 for which Δ = 0. There is no magnetization at high temperature.

7. Complex structure of nanodisk

7.1 Bowtie-shaped graphene nanodisk
A bowtie-shaped graphene nanodisk is proposed by Wang et. al(39). A bowties-shaped
graphene nanodisk is composed of two trigonal graphene nanodisks sharing one hexagon:
See Fig.19. Lieb’s theorem predicts the ground state with S = 0. On the other hand, there are
degenerate zero-energy states predicted from the graph theory(68). To satisfy the spin-singlet
ground state, the ground electronic configuration exhibits antiferromagnetic ordering.
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Fig. 20. (a) Illustration of nanodisk array. (b) Band structure.

7.2 “Star of David” graphene nanodisk
A “Star of David” shape graphene nanodisk is proposed by Wang et. al(38). The structure
is fractal and generated by repeatedly overlapping two triangles in opposite directions and
removing the overlap portion: See Fig.19. The structure has a fractal dimension,

log 1/6
log 1/3

= 1.62. (72)

The total spin increases exponentially with the fractal level q as Sq = S02q, where S0 is the
spin of the initial graphene triangle(38). The increase of the total spin is due to the increase of
the boundary length, a hallmark of fractal structures.

7.3 Nanodisk array
We investigate nanodisk arrays, which are materials that nanodisks are connected in
one-dimention. We show an example of trigonal zigzag nanodisk array in Fig.20(a). We show
the corresponding band structure in Fig.20(b). It is intriguing that there are N-fold degenerate
perfect flat band in the nanodisk with size N. This fact is also confirmed by the Leib theorem.
Each nanodisk has spin N/2 and make ferromagnetic coupling between two nanodisks. In the
same way we can make two-dimensional nanodisk arrays.

7.4 Nanomechanical switching
We can construct a nanomechanical switching contacting two graphene trigonal corners. We
assume the angle between two corners is θ. The conductance is determined by the overlap
integral of pi electrons between two corners, which is given by

∣∣〈pz cos θ + py sin θ |pz�
∣∣ = cos2 θ. (73)

When the two planes are parallel (θ = 0), the overlap takes the maximum value and
pi-electrons can go through the contact. This is the on state. When the two planes are
orthogonal (θ = π/2), the overlap takes the minimum value and pi-electrons can not go
through the contact. This is the off state. The angle is changed by nanomechanically. In this
sence this system acts as a nanomechanical switch. This system could detect the angle very
sensitively and be useful for detect nanomechanical oscillations.

8. Spintronic devices

We anticipate graphene derivatives to be the key elements of future nanoelectronics and
spintronics. First of all, graphene is common material and ecological. In graphene, spin
relaxation length is as large as 2μm due to small spin-orbit interactions. Long spin relaxation
length has motivated spintronics based on graphene recently. Nevertheless, there exists a key
issue yet to be resolved, that is, how to generate and manipulate spin currents. Graphene
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On state Off state

Fig. 21. Nanomechanical switching. (a) On state. (b) Off state.

nanodisks with size N = 10 ∼ 100 would be ideal for this purpose, where localized spins are
stored. In the rest of this section we shall propose a rich variety of spintronic devices made of
nanodisks and leads, such as spin memory, spin valve, spin-field-effect transistor, spin diode
and spin switch.

8.0.0.1 Basic properties
We summarize the relation between the spin properties of a nanodisk and an incoming electric
current. First of all, being a quasiferromagnet, the nanodisk has a definite polarization. With
respect to the incoming electric current there are three cases. (1) The polarized current, where
all electrons have a definite polarization, rotates the nanodisk spin to that of the incoming
current. (2) The unpolarized current, where the polarization of each electron is completely
random, does not induce any effective magnetic field. Hence it is filtered so that the outgoing
current is polarized to that of the nanodisk. (3) The partially polarized current, where the
polarization of each electron is at random but the averaged polarization has a definite
direction, induces a net effective magnetic field. Hence it rotates the nanodisk spin to that of
the incoming current, and then is filtered so that the outgoing current is completely polarized
to the averaged polarization of the incoming current. Furthermore, it is possible to control the
nanodisk spin externally by applying magnetic field. Then the outgoing current has the same
polarization as that of the nanodisk, irrespective of the type of incoming current. Using these
properties we propose some applications of graphene nanodisks for spintronic devices.

8.0.0.2 Spin memory
The first example is a spin memory(58). For a good memory device three conditions are
necessary: (i) It keeps a long life time information; (ii) Information stored in the memory can be
read out without changing the information stored; (iii) It is possible to change the information
arbitrarily.
First, since the life time of the nanodisk quasiferromagnet is very long compared to its size,
we may use the nanodisk spin as an information. Next, we can read-out this information by
applying a spin-unpolarized current. The outgoing current from a nanodisk is spin-polarized
to the direction of the nanodisk spin. Thus we can obtain the information of the nanodisk
spin by observing the outgoing current. Finally, the direction of the nanodisk spin can be
controlled by applying a spin-polarized current into the nanodisk. Thus, the nanodisk spin
satisfies the conditions as a memory device. The important point is that the size is of the order
of nanometer, and it is suitable as a nanodevice.
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Fig. 20. (a) Illustration of nanodisk array. (b) Band structure.

7.2 “Star of David” graphene nanodisk
A “Star of David” shape graphene nanodisk is proposed by Wang et. al(38). The structure
is fractal and generated by repeatedly overlapping two triangles in opposite directions and
removing the overlap portion: See Fig.19. The structure has a fractal dimension,

log 1/6
log 1/3

= 1.62. (72)

The total spin increases exponentially with the fractal level q as Sq = S02q, where S0 is the
spin of the initial graphene triangle(38). The increase of the total spin is due to the increase of
the boundary length, a hallmark of fractal structures.

7.3 Nanodisk array
We investigate nanodisk arrays, which are materials that nanodisks are connected in
one-dimention. We show an example of trigonal zigzag nanodisk array in Fig.20(a). We show
the corresponding band structure in Fig.20(b). It is intriguing that there are N-fold degenerate
perfect flat band in the nanodisk with size N. This fact is also confirmed by the Leib theorem.
Each nanodisk has spin N/2 and make ferromagnetic coupling between two nanodisks. In the
same way we can make two-dimensional nanodisk arrays.

7.4 Nanomechanical switching
We can construct a nanomechanical switching contacting two graphene trigonal corners. We
assume the angle between two corners is θ. The conductance is determined by the overlap
integral of pi electrons between two corners, which is given by

∣∣〈pz cos θ + py sin θ |pz�
∣∣ = cos2 θ. (73)

When the two planes are parallel (θ = 0), the overlap takes the maximum value and
pi-electrons can go through the contact. This is the on state. When the two planes are
orthogonal (θ = π/2), the overlap takes the minimum value and pi-electrons can not go
through the contact. This is the off state. The angle is changed by nanomechanically. In this
sence this system acts as a nanomechanical switch. This system could detect the angle very
sensitively and be useful for detect nanomechanical oscillations.

8. Spintronic devices

We anticipate graphene derivatives to be the key elements of future nanoelectronics and
spintronics. First of all, graphene is common material and ecological. In graphene, spin
relaxation length is as large as 2μm due to small spin-orbit interactions. Long spin relaxation
length has motivated spintronics based on graphene recently. Nevertheless, there exists a key
issue yet to be resolved, that is, how to generate and manipulate spin currents. Graphene
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Fig. 21. Nanomechanical switching. (a) On state. (b) Off state.

nanodisks with size N = 10 ∼ 100 would be ideal for this purpose, where localized spins are
stored. In the rest of this section we shall propose a rich variety of spintronic devices made of
nanodisks and leads, such as spin memory, spin valve, spin-field-effect transistor, spin diode
and spin switch.

8.0.0.1 Basic properties
We summarize the relation between the spin properties of a nanodisk and an incoming electric
current. First of all, being a quasiferromagnet, the nanodisk has a definite polarization. With
respect to the incoming electric current there are three cases. (1) The polarized current, where
all electrons have a definite polarization, rotates the nanodisk spin to that of the incoming
current. (2) The unpolarized current, where the polarization of each electron is completely
random, does not induce any effective magnetic field. Hence it is filtered so that the outgoing
current is polarized to that of the nanodisk. (3) The partially polarized current, where the
polarization of each electron is at random but the averaged polarization has a definite
direction, induces a net effective magnetic field. Hence it rotates the nanodisk spin to that of
the incoming current, and then is filtered so that the outgoing current is completely polarized
to the averaged polarization of the incoming current. Furthermore, it is possible to control the
nanodisk spin externally by applying magnetic field. Then the outgoing current has the same
polarization as that of the nanodisk, irrespective of the type of incoming current. Using these
properties we propose some applications of graphene nanodisks for spintronic devices.

8.0.0.2 Spin memory
The first example is a spin memory(58). For a good memory device three conditions are
necessary: (i) It keeps a long life time information; (ii) Information stored in the memory can be
read out without changing the information stored; (iii) It is possible to change the information
arbitrarily.
First, since the life time of the nanodisk quasiferromagnet is very long compared to its size,
we may use the nanodisk spin as an information. Next, we can read-out this information by
applying a spin-unpolarized current. The outgoing current from a nanodisk is spin-polarized
to the direction of the nanodisk spin. Thus we can obtain the information of the nanodisk
spin by observing the outgoing current. Finally, the direction of the nanodisk spin can be
controlled by applying a spin-polarized current into the nanodisk. Thus, the nanodisk spin
satisfies the conditions as a memory device. The important point is that the size is of the order
of nanometer, and it is suitable as a nanodevice.
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Fig. 22. (a) An electron tunnels from the left lead to the nanodisk and then to the right lead.
Only electrons with the same spin direction as the nanodisk spin can pass through the
nanodisk freely. As a result, when we apply a spin-unpolarized current to the nanodisk, the
outgoing current is spin polarized to the direction of the nanodisk spin. Consequently, this
system acts as a spin filter. (b) The system is a reminiscence of a metal-ferromagnet-metal
junction.

8.0.0.3 Spin filter
We make an investigation of the spin-filter effects(64). We first analyze how spin of a nanodisk
filters spin of the current by assuming that the nanodisk is a rigid ferromagnet. However, since
the nanodisk is not a rigid ferromagnet but a quasiferromagnet, its spin can be controlled by
the spin of the current. We analyze the reaction to the spin of the nanodisk from the spin of
electrons in the current.
We go on to investigate applications of nanodisks to spintronics. The basic one is a spin
filter(75). We consider a lead-nanodisk-lead system, where an electron makes a tunnelling
from the left lead to the nanodisk and then to the right lead. This system is a reminiscence of a
metal-ferromagnet-metal junction (Fig.22). If electrons in the lead has the same spin direction
as the nanodisk spin, they can pass through the nanodisk freely. However, those with the
opposite direction feel a large Coulomb barrier and are blocked (Pauli blockade)(64). As a
result, when we apply a spin-unpolarized current to the nanodisk, the outgoing current is
spin polarized to the direction of the nanodisk spin. Consequently, this system acts as a spin
filter.

8.0.0.4 Spin valve
A nanodisk can be used as a spin valve, inducing the giant magnetoresistance effect(76–78).
We set up a system composed of two nanodisks sequentially connected with leads [Fig.23].
We apply external magnetic field, and control the spin direction of the first nanodisk to be
|θ� = cos θ

2 |↑� + sin θ
2 |↓�, and that of the second nanodisk to be |0� = |↑�. We inject an

unpolarized-spin current to the first nanodisk. The spin of the lead between the two nanodisks
is polarized into the direction of |θ�. Subsequently the current is filtered to the up-spin one by
the second nanodisk. The outgoing current from the second nanodisk is

Iout
↑ = I cos

θ

2
. (74)

We can control the magnitude of the up-polarized current from 0 to I by rotating the external
magnetic field. The system act as a spin valve.

8.0.0.5 Spin switch
We consider a chain of nanodisks and leads connected sequentially (Fig.22). Without external
magnetic field, nanodisk spins are oriented randomly due to thermal fluctuations, and a
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Fig. 23. Illustration of spin valve. (a) The spin valve is made of two nanodisks with the same
size, which are connected with leads. (b) The system is analogous to the one made of metals
and ferromagnets. (c) Applying external magnetic field, we control the spin direction of the
first nanodisk to be |θ�, and that of the second nanodisk to be |0� = |↑�. The incomming
current is unpolarized, but the outgoing current is polarized, Iout

↑ = I cos θ
2 , Iout

↓ = 0. Its
magnitude can be controlled continuously. This acts as a spin valve.

M M M

M M M M M

M M

RL

without magnetic field

spin switch

with magnetic field

Fig. 24. A chain of nonodisks and leads acts as a spin switch. Without external magnetic field,
nanodisk spins are oriented randomly due to thermal fluctuations, and a current cannot go
through the chain. However, as soon as a uniform magnetic field is applied to all nanodisks,
the direction of all nanodisk spins become identical and a current can go through.

current cannot go through the chain. However, when and only when a uniform magnetic field
is applied to all nanodisks, the direction of all nanodisk spins become identical and a current
can go through. Thus the system acts as a spin switch, showing a giant magnetoresistance
effect. The advantage of this system is that a detailed control of magnetic field is not necessary
in each nanodisk.

8.0.0.6 Spin-field-effect transistor
We again set up a system composed of two nanodisks sequentially connected with leads
[Fig.25]. We now apply the same external magnetic field to both these nanodisks, and fix
their spin direction to be up, |0� = |↑�. As an additional setting, we use a lead acting as a
spin rotator with the spin-rotation angle θ. The outgoing current from the second nanodisk
is Iout

↑ = I cos θ
2 . It is possible to tune the angle θ by applying an electric field. Hence we

can control the magnitude of the up-polarized current. The system acts as a spin-field-effect
transistor(79).
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Fig. 22. (a) An electron tunnels from the left lead to the nanodisk and then to the right lead.
Only electrons with the same spin direction as the nanodisk spin can pass through the
nanodisk freely. As a result, when we apply a spin-unpolarized current to the nanodisk, the
outgoing current is spin polarized to the direction of the nanodisk spin. Consequently, this
system acts as a spin filter. (b) The system is a reminiscence of a metal-ferromagnet-metal
junction.

8.0.0.3 Spin filter
We make an investigation of the spin-filter effects(64). We first analyze how spin of a nanodisk
filters spin of the current by assuming that the nanodisk is a rigid ferromagnet. However, since
the nanodisk is not a rigid ferromagnet but a quasiferromagnet, its spin can be controlled by
the spin of the current. We analyze the reaction to the spin of the nanodisk from the spin of
electrons in the current.
We go on to investigate applications of nanodisks to spintronics. The basic one is a spin
filter(75). We consider a lead-nanodisk-lead system, where an electron makes a tunnelling
from the left lead to the nanodisk and then to the right lead. This system is a reminiscence of a
metal-ferromagnet-metal junction (Fig.22). If electrons in the lead has the same spin direction
as the nanodisk spin, they can pass through the nanodisk freely. However, those with the
opposite direction feel a large Coulomb barrier and are blocked (Pauli blockade)(64). As a
result, when we apply a spin-unpolarized current to the nanodisk, the outgoing current is
spin polarized to the direction of the nanodisk spin. Consequently, this system acts as a spin
filter.

8.0.0.4 Spin valve
A nanodisk can be used as a spin valve, inducing the giant magnetoresistance effect(76–78).
We set up a system composed of two nanodisks sequentially connected with leads [Fig.23].
We apply external magnetic field, and control the spin direction of the first nanodisk to be
|θ� = cos θ

2 |↑� + sin θ
2 |↓�, and that of the second nanodisk to be |0� = |↑�. We inject an

unpolarized-spin current to the first nanodisk. The spin of the lead between the two nanodisks
is polarized into the direction of |θ�. Subsequently the current is filtered to the up-spin one by
the second nanodisk. The outgoing current from the second nanodisk is

Iout
↑ = I cos

θ

2
. (74)

We can control the magnitude of the up-polarized current from 0 to I by rotating the external
magnetic field. The system act as a spin valve.

8.0.0.5 Spin switch
We consider a chain of nanodisks and leads connected sequentially (Fig.22). Without external
magnetic field, nanodisk spins are oriented randomly due to thermal fluctuations, and a
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Fig. 23. Illustration of spin valve. (a) The spin valve is made of two nanodisks with the same
size, which are connected with leads. (b) The system is analogous to the one made of metals
and ferromagnets. (c) Applying external magnetic field, we control the spin direction of the
first nanodisk to be |θ�, and that of the second nanodisk to be |0� = |↑�. The incomming
current is unpolarized, but the outgoing current is polarized, Iout
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Fig. 24. A chain of nonodisks and leads acts as a spin switch. Without external magnetic field,
nanodisk spins are oriented randomly due to thermal fluctuations, and a current cannot go
through the chain. However, as soon as a uniform magnetic field is applied to all nanodisks,
the direction of all nanodisk spins become identical and a current can go through.

current cannot go through the chain. However, when and only when a uniform magnetic field
is applied to all nanodisks, the direction of all nanodisk spins become identical and a current
can go through. Thus the system acts as a spin switch, showing a giant magnetoresistance
effect. The advantage of this system is that a detailed control of magnetic field is not necessary
in each nanodisk.

8.0.0.6 Spin-field-effect transistor
We again set up a system composed of two nanodisks sequentially connected with leads
[Fig.25]. We now apply the same external magnetic field to both these nanodisks, and fix
their spin direction to be up, |0� = |↑�. As an additional setting, we use a lead acting as a
spin rotator with the spin-rotation angle θ. The outgoing current from the second nanodisk
is Iout

↑ = I cos θ
2 . It is possible to tune the angle θ by applying an electric field. Hence we

can control the magnitude of the up-polarized current. The system acts as a spin-field-effect
transistor(79).
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Fig. 25. (Left) Illustration of spin-field-effect transistor made of two nanodisks with the same
size. Two nanodisks are connected with a rotator. We set the spin direction of the two
nanodisks to be up by magnetic field. The incomming current is unpolarized, but the
outgoing current is polarized and given by Iout

↑ = I cos θ
2 , Iout

↓ = 0. The up-spin current is
rotated by the angle θ within the central lead ascting as a rotator. Illustration of spin diode
made of two nanodisks with different size. By controlling the bias voltage Δμ, the current
flows from the left lead to the right lead (Δμ > 0), or in the opposite way (Δμ < 0). The
incoming current is unpolarized, which is made polarized by the first nanodisk. The electron
spin in the central lead is rotated by the Rashba-type interaction. (Right) Illustration of spin
diode made of two nanodisks with different size. By controlling the bias voltage Δμ, the
current flows from the left lead to the right lead (Δμ > 0), or in the opposite way (Δμ < 0).
The incoming current is unpolarized, which is made polarized by the first nanodisk. The
electron spin in the central lead is rotated by the Rashba-type interaction.

8.0.0.7 Spin diode
The third example is a spin diode [Fig.25]. We set up a system composed of two nanodisks
sequentially connected with leads, where two nanodisks have different sizes. The left
nanodisk is assumed to be larger than the right nanodisk. Then the relaxation time of the left
nanodisk τL(≡ τL

filter) is larger than that of the right nanodisk τR(≡ τR
filter), τL > τR. Second,

the applied magnetic field is assumed to be so small that the nanodisk spin can be controlled
by a polarized current. For definiteness we take the direction of the magnetic field to be up.
Third, the lead is assumed to have the Rashba-type interaction(80),

HR =
λ

h̄
(

pxσy − pyσx)
. (75)

Spins make precession while they pass through the lead. The spin-rotation angle is given(55)
by

Δθ =
2λm∗L

h̄
, (76)

where m∗ is the electron effective mass in the lead and L is the length of the lead. We can
control Δθ by changing the coupling strength λ externally by applying electric field(81).
When no currents enter the nanodisk, the direction of two nanodisk spins is identical due to
the tiny external magnetic field, which is up. When we inject the current in this state, the net
outgoing current is very small,

Iout = cos Δθ � 0 for Δθ ≈ π. (77)
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This is the "off" state of the spin diode.
Let us inject an unpolarized pulse square current to the system, starting at t = ti and finishing
at t = t f ,

Iσ (t) = Iinθ(t − ti)θ(t f − t), (78)

where σ denotes the spin. The system become the "on" state by the pulse. When the bias
voltage is such that Δμ > 0, the current flows into the left nanodisk and then into the right
nanodisk. The left nanodisk acts as a spin filter. The current in the central lead is initially
up-polarized but is rotated by the angle Δθ due to the Rashba-type coupling effect. Then it
enters the right nanodisk. This rotation angle acts as the initial phase for the second nanodisk.
On the other hand, when Δμ < 0, the current enters the right nanodisk and goes out from the
left nanodisk. Since the relaxation time is τL, the total spin-dependent charge is given by the
above formulas but with the replacement of τR by τL. Because the sizes of two nanodisks are
different, these two currents behave in a different way.
The important result is that the system acts as a rectifier so that the up-spin current flows from
the left to the right, or the large nanodisk to the small nanodisk. We may call it "spin diode".

9. Discussions

The physics of graphene related materials is currently one of the most active and attractive
research areas in condensed matter physics. Among these graphene derivatives nanoribbons
and nanodisks are mainly focused. They correspond to wires and quantum dots, respectively.
There are a profusion of papers on nanoribbons, but there are yet only a few works on
nanodisks. This may be because nanodisks are difficult to manufacture. However, nanodisks
are experimentally isolated recently by the Ni etching techniques. An experimental realization
must accelerate both experimental and theoritical studies on nanodisks.
In this paper we have reported the results on the electronic and magnetic properties of
nanodisks. The trigonal zigzag nanodisk has N-fold degenerate zero-energy states when
its size is N. The low-energy physics near the Fermi energy is well described by this
zero-energy sector. Wave functions are explicitly constructed and classified according to the
symmetry group C3v. The emergence of a quasi-phase transition has been found between the
quasi-ferromagnet and the paramagnet as a function of temperature even for samples with
N ≈ 100. We have also studied nanodisk-lead systems. In the intermediate coupling regime,
as the chemical potential increases, a salient series of Coulomb blockade peaks develops in the
conductance, reflecting the energy spectrum of nanodisk with a broken SU(N) symmetry. An
appropriate size to observe Coulomb blockades is N = 2 ∼ 10. In the strong coupling regime,
by investigating the spin-spin correlation, we present some indications of many-spin Kondo
effects. An appropriate size to observe Kondo effects is N = 2 ∼ 4.
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Fig. 25. (Left) Illustration of spin-field-effect transistor made of two nanodisks with the same
size. Two nanodisks are connected with a rotator. We set the spin direction of the two
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outgoing current is polarized and given by Iout
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↓ = 0. The up-spin current is
rotated by the angle θ within the central lead ascting as a rotator. Illustration of spin diode
made of two nanodisks with different size. By controlling the bias voltage Δμ, the current
flows from the left lead to the right lead (Δμ > 0), or in the opposite way (Δμ < 0). The
incoming current is unpolarized, which is made polarized by the first nanodisk. The electron
spin in the central lead is rotated by the Rashba-type interaction. (Right) Illustration of spin
diode made of two nanodisks with different size. By controlling the bias voltage Δμ, the
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conductance, reflecting the energy spectrum of nanodisk with a broken SU(N) symmetry. An
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1. Introduction 
The experimental isolation of graphene (Novoselov et al., 2004) was one of the greatest 
discoveries in materials physics for many years. The time between the prediction of the 
electronic structure of graphene (Wallace, 1947) and its experimental isolation was nearly 60 
years (Novoselov et al., 2004) but, by contrast, since this experimental discovery 6 years ago 
there has been an enormous amount of theoretical and experimental interest in graphene 
membranes. This is because graphene has proved to have exceptional properties including 
very fast electron transport, room temperature quantum hall effect, the highest mechanical 
strength and greatest thermal conductivity yet measured (Castro Neto et al., 2009; Abergel 
et al., 2010). In particular its fascinating electrical properties have lead to the speculation that 
graphene may one day replace silicon as the material of choice for most electronic 
applications (van Norden, 2006). 
From a physical perspective graphene is a large 2-D sheet or membrane of sp2 bonded 
carbon atoms which we will term graphene membranes (GMBs), see figure 1. The basic 
structure of GMBs is that of fused heaxagonal rings of aromatic benzene so GMBs may be 
regarded as giant aromatic molecules. In chemistry they are often termed polycyclic 
aromatic hydrocarbons (PAH’s) if the edges are hydrogenated (Wu et al., 2007; Zhi and 
Mullen, 2008). It may also be thought of as honeycomb lattice since, at least ideally, GMBs 
are large, flat structures consisting of hexagonal rings of carbon atoms with a nearest 
neighbour distance of 1.42 Å and bond angles of 120o (as shown in figure 1) just like the 
structure of a layer of honeycomb. As we shall see in section 4 another useful way of looking 
at these structures for some purposes is as two interpenetrating trigonal lattices, labeled A- 
and B-.  But the important point here is that all of these descriptions and metaphors are 
referring to the same thing.  
Despite having many exceptional properties GMBs have one very severe limitation from the 
point of view of electronics applications; they have no band-gap and a vanishingly small 
density of states at the Fermi level i.e. it is a semi-metal (Castro Neto et al., 2009; Abergel et 
al., 2010), (see section 4). Several methods have been suggested to induce a band gap in 
graphene and thus overcome this fundamental limitation. One method is to cut a GMB into 
nanoribbons (GNRs, see figure 1b) which may produce a band-gap, depending on the width 
(Castro Neto et al., 2009; Abergel et al., 2010). This observation has subsequently generated 
enormous research activity on GNRs. The reason for the appearance of a gap is 
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enormous research activity on GNRs. The reason for the appearance of a gap is 
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(a) (b)  

(c) (d)  

Fig. 1. The three basic type of graphene, (a) an infinite graphene sheet or membrane, 2-D 
graphene (b) a graphene nanoribbon, 1-D graphene, (c) a graphene nanoflake or graphene 
nanodot, 0-D graphene and (d) shows a GNF with a zigzag edge labeled by Ezz, an armchair 
edge labeled by Eac.   
that along with the finite width edge states begin to play a significant role in modifying the 
electronic properties since a significant number of atoms reside at the edges.  Therefore, 
GNRs may be termed 1-D graphene and we may look at their production as adding one 
extra degree of engineering freedom to graphene as the fraction of edge atoms and hence 
edge states may be systematically controlled. There are two major types of idealized edge 
states, armchair and zigzag as can be seen on the sides and tops respectively of the structure 
represented in figure 1d. It has been shown that GNRs can be metals, semiconductors, half-
metals, feromomagnets and antiferomagnets depending on their edge structures, width, 
shape and chemical termination (Castro Neto et al., 2009; Abergel et al., 2010; Son, et al, 
2006a; Son et al., 2006b; Hod et al., 2007). 
However, this critical dependence of their properties on their edge states also leads to new 
limitations in terms of fabrication (for use in electronic devices) because it is difficult to 
consistently and reliably produce GNRs with edge states of a particular type. Another 
limitation is that the cutting of GMBs into GNRs leads to electron mobility degradation and 
loss of performance in devices. 
The zero-dimensional (0-D) form of graphene, which may be called graphene nano-flakes 
(GNFs) or graphene nano-dots (GNDs)  (see figure 1c) also exists but has been much less 
extensively studied than GMBs or GNRs. This is surprising given that preliminary studies 
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suggest they show some very interesting properties which differ from those of 2-D and 1-D 
graphene and have great potential for a variety of applications principally as electronic and 
magnetic devices. These potential applications arise because GNFs not only have edge 
states, but also corner states, and may also be cut into a much larger variety of different 
shapes (see figure 2). The addition of these structural features may be regarded as giving 
GNFs yet another degree of engineering freedom over GMRs and twice as many degrees of 
freedom than GMBs. Examples of corner states can be seen where edge states meet in figure 
1c and in figure 2 we see some examples of different shapes which are possible with GNFs, 
and the different types of corners that can be introduced. 
Furthermore, in contrast to GNRs, GNFs can potentially range in size from molecular to 
semi-infinite 2-D structures, and consequently their electronic structures will vary from 
having discrete molecular levels to being band-like as their dimensions are made larger. 
This leads to the potential of spanning the range of electronic and magnetic properties from 
molecular-like to 2-D like by using GNFs of different dimensions. Of course, just as we see 
in GMBs and GNRs, GNFs also have their own inherent limitations, as we shall see in later 
sections. 
 

 
Fig. 2. This shows a variety of possible GNF shapes which might be produced with different 
geometries and corners, but always terminated with either zigzag or armchair edges. 

In this chapter we give an outline of how GNF structures may be created, give a theoretical 
description of the structure and its stabilty, the electronic structure and basic characteristics. 
We then outline some of the potential applications of these nano-flakes in the areas of 
electronic and magnetic devices. Where there exists a large literature which is particularly 
the case for GMBs and GNRs but also in some areas on GNFs (particularly in the area of 
synthesis) we have attempted to reference comprehensive and up-to-date reviews in order 
to keep this chapter within reasonable limits. 

2. The production of GNFs 
As stated in the introduction graphenes consist of fused, combinations of sp2 bonded carbon 
hexagons referred to as rings. Thus, at the one end of the size spectrum of graphenes we 
have a benzene radical or if terminated by hydrogen atoms we have benzene and at the 
other extreme an infinite 2-D graphene membrane. These limiting cases are usually treated 
by chemists or materials engineers, respectively, with materials physics spanning the sizes 
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Fig. 1. The three basic type of graphene, (a) an infinite graphene sheet or membrane, 2-D 
graphene (b) a graphene nanoribbon, 1-D graphene, (c) a graphene nanoflake or graphene 
nanodot, 0-D graphene and (d) shows a GNF with a zigzag edge labeled by Ezz, an armchair 
edge labeled by Eac.   
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in between. Depending of the perspective, there are two distinct classes of methods that 
have been generally used to make GNFs, partly because of this wide range of sizes of GNFs, 
and these are usually classified as bottom-up and top-down. 

2.1 Bottom-up production of GNFs 
As suggested above, these are essentially chemical method of production based on the 
chemistry of aromatic molecules. Small molecular units are “fused” to form large aromatic 
hydrocarbons by a large variety of chemical reactions some of which are shown in figure 3 
below (Wu et al., 2007; Zhi and Mullen, 2008).  
 

 
Fig. 3. Examples of various chemical reactions used to produce GNFs (Wu, et al., 2007). 

The largest such structure produced by these methods reported to date is a 222 ring GNF. A 
variety of terminations of the benzene ring edges may be made by hydrogen, alkyl groups, 
etc (Wu et al., 2007; Zhi and Mullen, 2008). 
Chemical methods, as well as producing nanoflakes can also be combined with other 
techniques to assemble these units into films. This is most commonly done in solution by 
mechanical extrusion, zone casting/refining, aligned substrate, magnetic field alignment 
and thermal annealing (Wu et al., 2007; Zhi and Mullen, 2008) but this can also be in vacuum 
by the use of soft-landing mass spectroscopy (Rader et al., 2006) as illustrated in the 
schematic diagram in figure 4. 
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Fig. 4. Schematic diagram of the soft-landing set-up used with typical molecules shown as 
are the van der Waals dimensions of these molecule obtained by molecular modelling 
(Rader et al. , 2006). 

2.2 Top-down production of GNFs 
These methods start with a large piece of graphene sheet or graphene related material such 
as graphene oxide and cut GNFs directly from the sheets. These methods usually produce 
graphene islands in a membrane of graphene, which are effectively non-free standing GNFs 
that are often quite large. Such structures are then usually referred to as graphene quantum 
dots (GQDs).  
Naturally, this method requires that one first produce large sheets (GMBs) and this has been 
done by a variety of methods, micromechanical cleavable of a graphite single crystal 
(Novoselov et al., 2004) by chemical means e.g. by starting from graphite oxide (Park & 
Ruoff, 2006) or by chemically “unzipping” carbon nanotubes (CNTs)  (Terrones, 2009). 
Presumably some or all of these techniques could be adapted to produce graphene GNFs. A 
possible adaption of the “unzipping” methods may be to directly “unroll” small fullerenes 
such as bucky-balls, nanohorns or small pieces of CNTs to produce free-standing GNFs. 
This does not seem to have been reported at the time of writing, but if such methods prove 
to be feasible it would open-up the possibility of transferring GNFs to a variety of substrates 
rather than just making them on graphene. 
Graphene layers have also been produced on surfaces, either by removal of layers from a 
SiC crystal surface (Hass et al., 2008) or by chemical vapour deposition (Obraztov, 2009) 
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These methods might also be adaptable to the production of GNFs especially in light of 
recent work which showed that dome-shaped carbon nanoislands may be produced on the 
(111) surface of Ir (Lacovig et al., 2009).  
Once sheets of 2-D graphene are produced, GNFs have to be “cut” from them which has 
currently been done by a variety of methods; combined e-beam lithography and plasma 
etching (Berger et al., 2006; Schedin et al., 2007; Stampfer et al., 2008; Neubeck el al., 2010), 
chemical stripping (Li et al., 2008), scanning tunneling microscope lithography (Tapaszto et 
al., 2008) and atomic force microscope lithography (Neubecket al., 2010), hydrocarbon 
lithography (Meyer et al., 2008) and  catalytic cutting by atoms (Datta et al., 2008; Ci et al., 
2008; Ci et al. 2009; Campos et al., 2009). 
 

 
Fig. 5. An illustration of catalytic “cutting”of graphene. From Chi, L., Xu, Z., Wang, L., Gao, 
G., Ding, F.,  Kelly, F, Yakobso, I. & Ajayan, P (2008). Controlled nanocutting of graphene. 
Nano Research, Vol. 1 (2008) pp. 116-122 

Standard e-beam lithography methods seem to be limited to producing features of greater 
than 10’s of nanometers but scanning tunneling microscope lithography can produce much 
smaller features with pre-determined crystallographic orientations (Tapaszto et al., 2008).  
Catalytic cutting seems particularly well suited to the production of GNFs as it can produce 
a variety of “cuts” giving very clean edges with definite edge geometries. This method was 
first developed using Fe atoms for multi-layered structures (Datta et al., 2008) and later 
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adapted (Ci et al., 2008; Ci et al., 2009; Campos et al., 2009) to produce single layer 
nanostructures (see figure 5). Being able to produce definite edge geometries is very 
important in determining the properties of GNFs so these techniques look very promising. 

2.3 Functionalization  
Graphene is hydrophobic and is therefore difficult to solubilize or disperse in most liquids, 
which limits their easy processability by many traditional methods. Thus, chemists have 
spent considerable effort in functionalizing graphenes so that they may be more readily 
solubilized or dispersed, especially in water. The bottom-up approach outlined in section 2.1 
has the advantage that GNFs produced in this manner may be constructed from organic 
molecules which have solubilizing groups already attached before the GNF is synthesized. 
However, methods have been developed to make larger GNFs (as well as GMBs and GNRs) 
more soluble in a variety of solvents such as water and tetrahydrofurane (Loh et al., 2010). 
One study demonstrated that during the chemical production of graphenes one can avoid 
using graphene oxide (Salzmann et al., 2010). This is important as most chemical methods of 
producing GMBs are harsh, and often leave many defects and unwanted chemical groups 
attached. Groups such as carboxyl epoxy and hydroxyl are commonly used to solubilize in 
water and long alkyl chains make GNFs soluble in many organic solvents.  
Unfortunately, many of these methods produce heterogeneous, non-stoichiometric 
functionalized products which contain defects. As a consequence of this is that, of course, 
their properties are modified by the attached chemical groups themselves. All these effects 
usually lead to a degradation of the properties of the graphenes produced in this way, but in 
some cases they may lead to the new and interesting behavior. For example, the optical 
properties of GNFs may be tailored by use of different attached groups, and this may open 
up the possibility of using graphene in optical applications (Loh et al., 2010).  

2.4 Production of GNFs by confinement  
As an alternative to producing regions of a material with actual physical boundaries as 
discussed in section 2.2, one of the standard methods of producing semiconducting 
nanodots is to confine a region of a bulk material by using an electrostatic potential (a gate 
potential) to produce a confined structure. This has been used for such system as GaAs. The 
confinement of electrons in such regions of graphene by use of potentials is not 
straightforward as the relativistic nature of the electronic excitations leads to Klein tunneling 
where these electrons can tunnel unimpeded through such barriers (Castro Neto et al., 2009; 
Abergel et al., 2010). Methods other than the straightforward use of “cutting” have been 
suggested to overcome this problem. This includes, creating a confinement potential within 
the graphene layer to trap an electron for a finite time, the introduction of a finite gap by 
coupling with the substrate or by using a bilayer, or the use of a magnetic confinement 
potential, the review by Abergel et al. gives an excellent and comprehensive summary and 
explanation of such methods (Abergel et al., 2010). 

3. Structure and stability of GNFs in practice 
In the introduction we discussed the idealized structures of GNFs, however, in practice real 
structures may differ considerable from these idealizations. In this section we will discuss 
some more realistic features of the structure of GNFs. 
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Fig. 6. The initial (ideal) structures on the left and final relaxed structures on the right for all 
symmetric (SYM) and asymmetric (ASYM) structures obtained by DFT (Barnard & Snook, 
2008). 

3.1 Edge reconstructions 
The first factor one must consider when studying realistic GNFs is that, if the GNF is un-
terminated then reconstructions at edges will occur, in order to break aromaticity, and lower 
the total energy of the flake. This is evident on the right-most structures in figure 6 where 
the edges of the relaxed structures of the asymmetric GNFs obtained by density functional 
theory (DFT) calculations (Barnard & Snook, 2008) show several types of reconstructions.  
As we shall outline in section 4 the edges of GNFs (and of GNRs) play a very important role 
in determining their properties, and in particular their electronic and magnetic structure. As 
stated in the Introduction there are two basic types of edges in graphenes zigzag and 
armchair edges as illustrated in figures 1, 2 and 6. Note that the atoms on opposite zigzag 
edges belong to different A- and B- sub-lattices. However, other types of edge state are 
possible, if less numerous, such as reconstructed zigzags and armchairs (Gass et al., 2008; 
Koskinen et al., 2008; Koskinen et al., 2009) and those arising from unconventional 
“cuttings”(Wu & X.C. Zeng, 2008), as well as corner states which are formed where two 
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edges meet. Reconstructed corners can also be seen in the relaxed structure on the right 
hand side of figure 6. In fact as we mentioned in section 1, and shall see in section 4, GNFs 
offer the potential to tailor the edge states by cutting different shaped GNFs which is much 
more versatile than in GNRs and can lead to interesting advantages in using GNFs in 
electronic and magnetic applications. 

3.2 Defects, adsorption, impurities and doping 
In addition to edges and corners defects are another deviation from structural ideality. It 
was also recognized early on that defects can occur in GMBs, GNRs and GNFs and that they 
may have an important effect on the properties of these materials (Gass et al., 2008; 
Kraheninikov et al., 2009). In many cases the effect of defects may be detrimental as they 
often degrade the properties of graphene but in some cases may be useful, as they may 
introduce new properties such as magnetism, or may even increase the mechanical strength 
(Kraheninikov et al., 2009). Some of the earliest types of defects identified were point defects 
and Stone-Wales (SW) defects (Ma et al., 2009) consisting of two pentagons and two 
heptagons.  Several types of defects have been subsequently predicted and/or observed in 
graphenes some of which are shown schematically in figure 7 (Carr & Lusk, 2010). One of 
the most interesting recent developments is the suggestion that an extended one-
dimensional defect made of paired pentagons and octagons may function as a conducting 
nano-wire which would be of use in making graphene electronics (Carr & Lusk, 2010). 
Defects may also be of use in creating spintronic devices (see section 4), making microfluidic 
channels, forming porous membranes and offering active sites where controlled chemical 
reactions could take place. There is also theoretical and experimental evidence that SW-type 
represent preferred sites for atomic and molecular attachment and may be of benefit in 
modifying the properties of pure graphene structures. This may very well be a way of 
increasing the capacity of graphene to adsorb hydrogen and, thus, lead to a solution to the 
long standing question of providing a viable way of storing hydrogen to be used as a fuel. 
Defects may be deliberately produced by electron or ion beam irradiation as well as by their 
inadvertent introduction as a consequence of the fabrication processes, or through 
interaction with the substrate and with the environment.  
Other related “defects” are adsorbed atoms and molecules (which, as mentioned above, may 
“decorate” defect sites) and dopants. There is a growing literature on defects, doping and 
adsorption in graphene but most of this is concerned with GMBs and GNRs and not with 
GNFs so there is a need and an opportunity for new research in this area. In particular, since 
GNFs are of finite size, the properties of a defect can dominate the structure, depending on 
the size and defect density. If the GNF is small, a high fraction of atoms will either 
participate in (or be in the vicinity of) a defect, and this may have a consequence for the 
thermal/chemical stability and structural integrity. In addition to this, while the 
opportunities for traditional defect patterning of GNFs (as per example in figure 7) may be 
limited by the finite size, new opportunities are introduced when one considers 
combinations of defects, edges and corners. 
One may also regard the attachment of functional groups to the periphery (or to defect sites) 
of graphenes as an “impurity”, particularly when they are non-functional, as they have the 
potential to quell the properties of pure graphene structures as mentioned in section 2.3. It 
should also be highlighted that adsorbates, defects and the attachment of functional groups 
to graphenes may change their structure and/or lead to non-planarity of the system. This 
will be particularly severe for small GNFs as is illustrated in figure 7d.  
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Fig. 7. A representation of defects which may occur in graphenes calculated by means of 
DFT (Carr & Lusk, 2010)  

3.3 Vibrational states and ripples 
When researching the properties and applications of graphenes, one must also remember 
that the structures outlined above are static, or represent a statistical average,  and that 
vibrational states occur around these values. These states have been well studied in GMBs 
and in GNRs (Ferrari et al, 2006; Ni et al., 2008) but do not appear to have been extensively 
studied for GNFs. This is a problem that needs to be addressed as these vibrational states 
lead to Raman and/or infrared spectra which are very useful in identifying the structure of 
graphenes. The characteristic Raman G-band of graphene has been extensively used to 
differentiate single, double and multi-layer graphenes (Ferrari et al, 2006; Ni et al., 2008) as 
has the low frequency breathing modes of CNTs. These are considered signatures of these 
materials.  
Another importance feature of vibrational effects is their contribution to the thermal 
conductivity of graphene. This is, possible, more important for GMBs as, because of their 
large thermal conductivity, they have been suggested as being useful for use as heat sinks. 
Nevertheless, the importance for GNFs remains largely unexplored. 
Finally at finite temperature (T), not only do normal modes occur, but graphene structures 
develop ripples (Meyer et al., 2007; Castro Neto et al., 2009; Abergel et al., 2010). This was 
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first seen in GMBs, and is another departure from ideality. Now as has been shown 
theoretically (Mermin, 1968) that a truly 2-D crystal with harmonic forces is unstable for T > 
0K, so this rippling is presumably the mechanism by which this instability is overcome. 
Although these structures are still composed of a single layer of C atoms, planarity is no 
longer preserved, and the structures are no longer mathematically 2-D. It has also been 
shown by ab initio molecular dynamics calculations that similar large scale vibrational 
modes occur in GNFs (Snook et al., 2005; Barnard & Snook, 2008) as shown in figure 8. More 
recently similar modes have been predicted theoretically in boron nitride nanoflakes 
(Topsakal et al., 2009) and boron nitride nanoribbons (Kan et al., 2008). 
 

 
Fig. 8. Examples of the saddle-like distortions of the symmetric C24 flake, annealed at 900K. 
A dynamical rocking between these structures is observed following equilibration (Barnard 
& Snook, 2008) 

4. Electronic structure and magnetic behavior of GNFs 
One of the initial and, indeed, continuing interests with graphene membranes is in their 
fascinating electronic properties which we will only briefly outline here as there exists a 
large and growing literature on this topic  (Castro Neto et al., 2009; Abergel et al., 2010). In 
fact because this literature is so vast and growing we will only give a brief outline of some of 
the fundamental aspects of electronic structure and their consequences for the particular 
case of GNFs. 

4.1 The electronic structure of GMBs 
As mentioned in section 1 the 2-D hexagonal lattice structure of GMBs may be looked on as 
two triangular lattices A- and B- , the reason for this is shown in figure 9. Wallace used a 
tight binding (or Huckel) model (Wallace, 1947) to show that the highest electronic states 
could be described by occupied π and unoccupied π* bands which meet only at the K and 
K* points in reciprocal space on the Fermi surface as shown in figure 11. This is why no 
band gap exists and as there is also a vanishing density of states at these points this makes 2-
D graphene a semi-metal (or zero-bandgap semiconductor). The elementary excited 
electronic states show a linear dispersion relationship similar to massless, chiral, relativistic 
particles and are now termed “Dirac Fermions”. This leads to the electron intrinsic mobility 
being much higher than in silicon (Castro Neto et al., 2009), and suggests that faster 
electronics can be made from graphene  (than from Si). However, the zero-gap means that 
GMBs cannot be used for the construction of current types of Si-based electronic devices.  
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Fig. 9. (a) the graphene lattice (b) the π and π* bands and (c) the dispersion relation close to 
the K± points of the first Brillouin zone, a “Dirac cone” (from Cresti, A., Nemec, N., Biel, B., 
Neibler, G., Triozon, F.,  Cunerberti, G. & Roche, S. (2008).  Charge transport in disordered 
graphene-based low dimensional materials. Nano Research, Vol. 1 (2008) pp. 361-394) 

4.2 The effect of edges on the electronic structure of graphene 
As previously outlined the simplest way to modify the electronic structure of GMBs is the 
introduction of edges and corners which has been most extensively studied in GNRs (Son, et 
al, 2006a; Son et al., 2006b; Hod et al., 2007; Castro Neto et al., 2009; Abergel et al., 2010). 
Although the properties of GNRs may be tailored using their edge states, edge states are 
actually even more important in GNFs than in GNRs as the fraction of atoms in edges can be 
made very large. In contrast, although corner states are unique to GNFs, and are likely to be 
invaluable for a variety of purposes, far fewer atoms reside at or near corners, and even in 
complicated shapes the corner-to-edge ratio is very low. Therefore, it is important to 
understand the effect of edges on electronic states of graphene nanostructures if we are to 
engineer designer GNFs in the near future. 
As we know there are two basic types of edge structures, zigzag (ZZ) and armchair (AC) as 
displayed in figures 1 and 2, and that these edges contain dangling (“unsatisfied”) bonds. 
This introduces a mixture of sp2 and sp hybridization into the basic sp2 graphene lattice 
unless the edges are chemically bonded to non-carbon atoms or functional groups (see 
figure 1d). Therefore, both un-terminated and terminated edge structures can alter the basic 
electronic structure of graphene and play a crucial role in determining the electronic and 
magnetic properties of finite structures.  The effect of edge states on electronic and magnetic 
behaviour has been most extensively studied for GNRs, so at this stage we will selectively 
summarize some findings of relevance to GNFs (Son, et al, 2006a; Son et al., 2006b; Hod et 
al., 2007; Castro Neto et al., 2009; Abergel et al., 2010), 
• GNRs with either ZZ edges or AC edges have a finite band gap and are semiconducting 

although the origin of the gap is different in each case.  
• It has also been found theoretically that AC edged GNRs can be metallic but this has 

been suggested to be due to the limitations of the tight binding model used in these 
studies to describe their electronic structure. 

• ZZ edges introduce localized states as is illustrated in figure 12. As opposite edges of 
such a GNR belong to different sublattices so the spin ordering is different on each 
edge.  

• ZZ edges can create ferromagnetic (FM) or antiferromagnetic (AFM) phases. 
• There are no localized states at AC edges which is illustrated in figure 12. 
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• Large magnetic moments occur at ZZ edges but there are none for AC edges. 
• Functionalization (“passivation”) of edges can significantly change the properties of 

GNRs with either AC or ZZ edges and in the latter case this can generate a fully spin 
polarized state. 

• In an applied electric field ZZ terminated GNRs can produce a ½ metallic state. 
An interesting consequence of the effect of edges on the spin state of GNRs is that ZZ 
terminated GNRs may be useful in the field of spintronics, whereas AC edges may not. 
 

       
Fig. 10. The spatial distribution of populations of the HOMO level for GNFs having on the left 
zigzag edges and on the right having armchair edges (adapted from Stein & Brown, 1987). 

4.3 The transition from discrete to band-like electronic states in GNFs 
Small GNFs have discrete, molecular electronic energy levels, so the energy of the highest 
occupied molecular orbital (HOMO) takes the place of the Fermi Energy (Ef) and the 
difference in the energies of the HOMO and that of the lowest unoccupied molecular orbital 
(LUMO) corresponds to the energy gap (Eg). GNFs only have a continuous band structure 
when their dimensions are very large (see section 5) and a representation of this transition is 
shown in figure 11 (Chen & Tao, 2009). Along with this basic change in the nature of the 
electronic level, there is also a consequent change in electrical character from insulator to 
semiconductor, and then to a small or zero energy gap material (see figure 11). 
Furthermore, for small GNFs the details of this discrete electronic structure can vary 
strongly with their shape and dimensions as illustrated in figure 12 and can be heavily 
influenced by termination i.e. passivation or functionalization.  

4.4 Some general comments concerning the electronic states of GNFs 
There have been a small but growing number of studies of the electronic states of GNFs 
using a variety of techniques such as tight binding models (TBMs), Hubbard models (HM), 
density functional theory (DFT) and the Dirac equation (DE). In these studies a variety of 
different shapes have been investigated including squares, rectangles, circles, triangles, 
disks, hexagons, polygons and non-symmetric shapes. 
As outlined in section 4.2 it has been found that the electronic state and magnetic properties 
of GNFs are strongly influenced by the presence of edges and for small GNFs the effect is 
more pronounced than GMBs and GNRs.  
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Fig. 11. Molecular structures, energy diagrams, and electrochemical gate effects of 
benzenedithiol, PTCDI, and a graphene sheet: (a) Benzenedithiol (containing a single 
benzene ring) has a large LUMO-HOMO gap (5.1 eV) and is “insulating” with a weak gate 
effect (b). (c) The LUMO-HOMO gap of PTCDI (containing seven rings) is ~2.5 eV, and the 
molecule is “semiconducting” with a large gate effect (d). (e) Graphene (containing a large 
number of rings) has a zero energy gap between the conduction and valence bands and 
shows semimetallic behavior with a weak gate effect (f).” (Chen & Tao, 2009). 

4.5 Some interesting results for simple geometric shapes 
4.5.1 Squares and rectangles 
It has been shown for square and rectangular shaped GNFs (GNRs of finite length) that the 
band gap may be readily manipulated by altering the width of the GNF (Jing et al., 2007). 
The smallest rectangular GNFs consisting of a chain of n- fused single benzene rings 
(acenes) have been shown to have an AFM ground state for n > 7 (Jing  & Sheng, 2008). 
Interestingly a study GNFs with AC edges showed that unlike infinite GNRs they can be 
metallic (Shemella et al., 2007) and half-metallic states have also been predicted by DFT 
calculations with ZZ edges in the presence of an electric field ( Hod et al., 2008;  Zheng  & 
Duley,  2008b).  
The effect of functionalization and doping rectangular GNFs by the H, N, O, F, V atoms and 
by groups such as –OH, -CH3  has also been studied by means of DFT calculations which 
showed that the electronic and magnetic properties of GNFs may be readily manipulated by 
these means (Zheng & Duley, 2008a; Sahin & Senger, 2008; Berashevich & Chakraborty, 
2009; Olivi-Tran,  2010). This leads to the expectation that they may be extremely useful in 
areas such as spintropics, sensors and transistors. 
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4.5.2 Nanodisks 
 

 
Fig. 12. The electronic energy level diagrams for some GNFs whose shapes are shown beside 
the energy level diagram (Ezawa, 2008). 

The electronic structure of a variety of compact structures based on highly symmetrical shapes 
such as large PAHs, triangular, hexagonal and other polygonal shapes, which are often termed 
nanodisks, have been studied by several groups (Stein & Brown, 1987; Banerjee & 
Bhattacharyya, 2008;  Ezawa,  2007; Ezawa,  2008; Heiskanen et al., 2008; Kuc & Heine, 2010). 
The results show that their electronic and magnetic structure may be varied considerably by 
changing the shape and size of the nanodisk and also by functionalizing them, once again 
suggesting that they may be extremely useful in fields such as spintronics. An example of 
the change in the electronic energy levels of some small graphene nanodisks with size and 
shape changes are shown in figure 12.  

4.5.3 Some results for more complex shapes  
The interesting magnetic properties of graphene arise from the properties of edge states 
which suggests the possibility to engineer materials with very interesting magnetic 
properties by using shapes other than the simple geometric ones mentioned above. Some 
research has begun into investigating the properties of more complicated shapes (Wang et 
al., 2008; Yazyev et al. , 2008 ; Yu et al. 2008) and because of the variety of shapes that GNFs 
can exist in they are ideal candidates for such studies. 
A complication arises, however, as the relative energies of the various possible phases 
(AFM, FM, metal, semiconducting, ½ metal, non-magnetic) have to be worked out in order 
to find the most stable state. This is usually done by means of extensive and time consuming 
calculations so to try to circumvent this problem there have been various methods 
suggested to find simple rules to predict these stabilities (Yu et al. 2008; Dias, 2008;  Potasz 
et al. 2010;  Wang et al., 2009; Fernandez & Palacios, 2007). These methods are based on 
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considering the underlying geometry and topology of the graphene structures e.g. the fact 
that graphene may be pictured as two sublattices A- and B- as pointed out in the 
Introduction.  Such methods should prove of great value in helping design GNF structures 
with the optimum magnetic behavior for applications such as spintropics (Trauzettel et al., 
2007; Tombros, et al., 2007; Fal’ko, 2007; Rycerz et al, 2007). This prospect is enhanced by 
work that shows that the magnetic behavior of GNFs is very robust to disorder (Bhowmick 
& Shenoy, 2008; Wimmer et al., 2010). 

5. Graphene and graphane nanoflakes  
We have already introduced the simplest GNF; benzene, which is a planar six membered 
ring of C atoms each being terminated by a single H atom (monohydride). However, there is 
another stable six membered ring of C atoms; cyclohexane, which is a non-planar structure 
in which the C atoms are terminated by two H atoms (dihydride). If a GMB is completely 
hydrogenated on all carbon atoms on both sides of the sheet then the resulting structure, 
called graphane, is non-planar and consists entirely of sp3 bonded carbon atoms and two 
sigma bonded hydrogen atoms per C atom. This structure was predicted theoretically by 
means of DFT calculations (Sofo et al., 2007) and discovered experimentally (Ryu et al., 2008; 
Elias et al., 2009) only quite recently. As graphane is an insulator it may be an ideal material 
to use in combination with graphene to form hybrid graphene/graphane integrated 
electronic devices and detectors. However, there remains the problem of how to “connect” 
these two materials together in an integrated hybrid device. Two recent theoretical studies 
have suggested ways that this might be achieved.  
In one study (Barnard & Snook, 2010a), tight binding density functional theory (DFTB) was 
used to show that if a graphene nanoflake were anionically charged by adding excess 
electrons (for example by means of an electron beam) then beyond a certain level of added 
charge regions of the GNF would transform into hydrogen-less graphane. These results are 
shown in figure 13, where we can see that the graphene/graphane ratio, and the graphane 
distribution is dependent on the level of charge and the shape of the flake, but in each case 
this produces graphene/graphane boundaries and leaves the graphane regions ripe for 
functionalization by atoms or functional groups. Further work revealed that the charge- 
induced graphene to graphane can be predicted if the mass and the structure of the flake is 
known (or can be estimated) and identified by way of the shift in the Fermi level (Barnard & 
Snook, 2010 b). If this can be realized experimentally then it will enable structures consisting 
of co-existing regions of graphene and graphane to be produced spontaneously, and in the 
absence of volatile or expensive chemical environments.  
As a follow-up to simulating “nanoroads” of graphene in graphane sheets (long strips of 
graphene in a graphane sheet) as an alternative to GNRs Yakobson et al. used DFT and DFTB 
methods to  simulate graphene nanodots of various sizes embedded in a graphane sheet 
(Singh et al., 2010) as shown in figure 16 below. In this study it was found that the size n, shape 
and stability of the simulated dots were governed by the aromaticity of the dot and the 
interface between the two regions. Sizes corresponding to stable embedded aromatic 
molecules such as benzene and coronene were predicted to be stable and for larger dots 
hexagonal clusters are favoured i.e. structures congruent with the lattice hexagons which have 
armchair edges. Clusters had large band gaps of about 15/√n eV with the size dependence 
being characteristic of confined Dirac fermions (see figure 14). The largest dots have an 
electronic spectrum of GMBs (see section 4). The authors also simulated some arrays of dots 
and found that the band gaps of these structures are similar to that of isolated dots. 
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Fig. 13. Structure and distribution of charges in C90 C96 and C98 anionic graphene nanoflakes 
at different stages of electron injection (Barnard & Snook, 2009). 
 

       
Fig. 14. Hexagonal GNF formed by removing atoms from a graphane sheet and the energy 
gap Eg as a function of the size of the GNF as a function of the size n  (adapted from Singh et 
al, 2010). 

6. Potential uses of graphene/graphane nanoflakes  
Potential applications have been mentioned previously in this chapter particularly in section 
4 but here we will review how some of these ideas have resulted in real device prototypes 
being made. Since GNFs may range in size from molecular to mesoscopic they have the 
potential to bridge the gap between molecular electronics and nano-electronics, and to 
integrate with existing technologies. Here we will give just two examples which will 
illustrate the extreme limits. 
An example of the former class of devices is the use of coronenes to make a graphene field-
effect transistor (FET) a “circuit diagram” of which is shown in figure 15. This device 
consists of a coronene molecule with wires to the source and drain electrodes consisting of 
linker molecules which behaved electrically as a FET and thus this is a molecular graphene 
transistor.  
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Fig. 15. Single HBC molecule FET ( Diez-Perez et al., 2010). 

At the other end of the size scale there has been considerable interest in building devices 
such as single electron transistors (Ponomarenko et al. 2008 and Stampfer et al., 2008). 
Figure 16 shows an SEM image and an artistic view of just such a transistor which was cut 
from GNRs to create a GQD by use of a combination of electron beam lithography and 
reactive plasma etching. 
 

  
Fig. 16. An SEM image and an artistic impression of a single electron transistor (Novoselov 
& Geim,   http://www.condmat.physics.manchester.ac.uk/pictures/). 

Currently the features of devices such as these are around 10 nm and so the GQD is quite 
large but it has been projected that dimensions should be able to be reduced to 1 nm in the 
future (Ponenmarkenov et al., 2008). 
The work outlined above, and that of others (see for example Stampfer et al., 2008a and 
Stampfer et al., 2008b) shows that it is indeed possible to fabricate working electronic 
devices from graphene which contain GNFs and GQDs and this is set to become a growing 
area of research in the future.  

7. Some other areas of future interest   
Previous sections of this chapter have outlined what we belief have been the major areas of 
interest in GNFs up until the present and those that we believe will continue to be of major 
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interest in the future. However, there are several other areas which we feel deserve more 
attention in light of their potential for yielding new scientific discoveries and technological 
applications. 

7.1 The role of GNFs in the synthesis of CNTs   
CNTs continue to be of great importance particularly for many applications and occur in 
two forms (either semiconducting or metallic) which have quite different properties and 
uses. However, most syntheses produce a mixture of these different types of CNTs and it is 
very hard to separate them especially on the large scale needed for use in industrial 
applications. Recently it has been shown that GNFs may be directly converted to CNTs 
which involves GNFs containing between 60 and 100 atoms. This leads to the possibility of 
understanding at least one mechanism of formation of CNTs and it suggests that it may be 
possible to use this type of route to directly synthesis CNTs with specific chirality. This is 
potentially a very interesting area for increased activity combining scientific insight with 
practical applications.  

7.2 The possible production of other nano-carbon flakes  
The main thrust of research involving materials consisting of large aromatic carbon rings 
has been those where the rings are fused i.e. structures of the type shown in figures 1 and 2. 
However, the bottom-up methods which have been used to produce GNFs are also capable 
of producing nanoflakes of a different type.  
For example it is already possible to combine small pieces of GNFs with various chemical 
groups (Wu et al., 2007; Zhi and Mullen, 2008) to produce interesting properties both similar 
and dissimilar to GNFs depending upon the mixing and configurations. An example might 
be to “hard-wire” together several different GNFs in much the same way that the single 
coronene molecule shown in figure 17 is hard-wired into a transistor circuit. 
It may also be possible to make NFs of other aromatic molecules containing other atoms as 
well as carbon and from other planar systems containing no carbon atoms at all, such as 
boron nitride sheets. This could lead to even more interesting and versatile NF properties 
and applications.  

7.3 Multiple layers and stacks of GNFs  
In this review we have ignored few layered GNFs and large stacks of GNFs both of which 
have been the subject of theoretical and experimental interest. Such structures can have 
properties which differ from those of single GNFs, and of graphite nanocrystals, often in a 
beneficial way (Jackel et al., 2006; Abergel et al., 2010). An example of this is that bilayer 
GNDs have a different band gap than single layer GNDs and electrons in such structures 
may be confined with potential barriers in contrast to single layer GNFs (Abergel et al, 
2010). 

7.4 Optical properties  
It has been shown experimentally that GMBs, graphene oxide and GNFs (Gokus, et al., 2009; 
Luo et al., 2009; Sun eta al., 2008; Loh, et al., 2010) have interesting optical properties when 
functionalized. This leads to the interesting possibility of developing  graphenes with optical 
properties which may be tuned by changing the functional groups (Loh et al., 2010). Indeed 
it has been suggested that graphene composites may be used commercially for optical 
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applications such as saturable absorbers for laser applications before they are used for 
electronic ones. Thus it may well be a promising area to investigate the optical properties of 
GNFs both theoretically and experimentally. In fact it has already been shown theoretically 
that GNFs of different shapes can have a significant second hyperpolarizability which may 
be of use in non-linear optics applications (Nagai et al., 2010). 

8. Conclusions 
As we can see from the descriptions here, and throughout this book, graphene has already 
proved to be an extremely exciting new material which has many fascinating properties. 
Much of the research on graphene has been concerned with 2-D graphene (graphene 
membranes, GMBs) and 1-D graphene (graphene nanoribbons, GNRs), because of their 
interesting and potentially very useful properties have been relatively simple to isolate and 
address. Indeed it has already been shown that it is feasible to make working devices (albeit 
only at the laboratory level) using GMBs and GNRs for applications such as transistors, 
molecule detectors and flexible electrodes. 
Less well studied is the 0-D form of graphene (graphene nanoflakes, GNFs or graphene 
nanodots, GNDs) which presents a greater degree of complexity, but offers a greater 
potential for flexibility and selectivity (both literally and figuratively). In this chapter we 
have attempted to show that GNFs share many useful features in common with these 2-D 
and 1-D forms of graphene, but also have unique additional properties such as interesting 
electronic and magnetic states and also many potential applications in electronics and 
detectors.  Many of these additional features arise because GNFs may be engineered to form 
many more shapes than GMBs and GNRs and, as has been pointed out, GNFs can also span 
the dimensional scale from molecular to 2-D enabling potentially great versatility in many 
applications. A very promising area of future applications appears to lie in the area of 
spintronics and perhaps quantum computing as the magnetic properties of GNFs are not 
only comparable with those of GNRs which have previously been suggested for these 
applications but they may be manipulated and altered in a wide variety of ways. 
Aside from the currently known features of GNFs, readers will undoubtedly be left with a 
range of questions. Far from being a failure, this serves to highlight that there is obviously 
great potential to further explore and exploit many of their properties, and so much more to 
be learned. The most obvious of these is their functional and optical properties which hold 
much promise for making optical devices. 
Furthermore, GNFs also offer many challenges to refine existing scientific knowledge of 
their preparation and properties including, their improved synthesis and assembly by 
bottom-up and top-down methods, the refinement of confinement methods for GNDs and 
the exploration of their properties such as their vibrational spectra and magnetic behavior. 
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 1. Introduction

Since its characterization in 2004 [Novoselov et al. (2004; 2005)] graphene has emerged as a
material showing somehow rather unusual and particular characteristics [Castro Neto et al
(2009); Geim (2009); Katselnson et al. (2006)]. In October 2010 A. Geim and K. Novoselov
have been awarded the Physics Nobel Prize for the characterization of graphene. Much of
this particular behavior is due to its nature of a pure two dimensional (2-D) materials made
up of Carbon atoms in a honeycomb lattice. Moreover graphene, can be thought not only
as the constituting material of the well known graphite (made up of a series of graphene
stacks kept together by weak van der Waals bonds), but also as the constituent of other
carbon-based nanomaterial. For instance the well known carbon nanotubes [Charlier et al.
(2007)] can be considered as a rolled-up graphene sheet where edges have been joined.
Fullerene [Andreoni (2000)] on the other hand can be seen as graphene with the presence of
pentagonal defects responsible for the positive curvature that leads to the spherical geometry.
Despite its importance, and despite the fact that graphene sheets could be produced every
time someone uses a graphite-pencil, graphene was isolated and characterized only very
recently, due to the technically difficulties in evidencing its formation. Moreover, even if
theoretical considerations on the electronic structures of a single graphite sheets date back
to the work of Pauling in 1950s [Pauling (1972)], the existence of a purely 2-D systems
was considered as impossible until recently. However, soon afterwards its characterization
graphene has open the way to an impressive mole of experimental and theoretical studies
(see for instance Castro Neto et al (2009) and reference therein), in particular because of
its remarkable electronic properties that make graphene a very important material to be
exploited in the field of molecular and nano-electronics. Technical applications of graphene, or
graphene-based devices, can go from single molecule detection [Schedin et al. (2007)], to field
effect transistors [Novoselov et al. (2004)] and quantum information processing [Trauzettel et
al. (2007)]. One should also cite that the robustness of the σ skeleton of graphene makes it one
of the strongest materials ever tested [Lee et al. (2008)], and this fact obviously suggest the
possible use of carbon-fiber reinforcements in novel composite materials. Although our work
will not focus mainly on the properties of infinite graphene sheets, let us cite that graphene
also proved to be a zero gap semi-metal, characterized by a very high electron mobility.
Moreover, graphene is able to show unusual linearly dispersing electronic excitations: the
electronic excitations in the vicinity of the Fermi level remind those of massless Dirac
fermions. Graphene, therefore, allowed predictions of quantum electrodynamics to be tested
in a solid-state system. It is also noteworthy to cite that many of these findings have been
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anticipated in the framework of independent electrons band theory by Wallace back in 1947
[Wallace (1947)]. Since then, even if theoretical works have become much more accurate
and have benefit of the possibility to compare to experiments, the role of electron-electron
correlation in graphene has been still an object of intense debate [Castro Neto et al (2009)].
Another very interesting problems, strongly related to electronic properties and to the Dirac
fermions, concerns the influence and effects produced by disorder in the physics of electrons
in graphene as well as its transport properties. Some of the parameters developed in the
following of this Chapter, and in particular the localization tensor, could be of seminal
importance in elucidating these effects.
If, as we have briefly recalled, infinite graphene presents absolutely remarkable properties,
also finite-size systems (nano ribbons or nano islands) show a behavior that needs a careful
investigation [Berger et al. (2006)]. In particular the geometry of the islands, and especially
the form of edges, can module the properties of the system in a very impressive way
[Castro Neto et al (2009)]. We would like to stress that in the near past the control over the
nano-islands geometry was rather poor, due to the fact that graphene was produced by a
top-down approaches by stripping away sheets from graphite. Today, on the other hand,
with the emergence of bottom-up approaches, based on controlled deposition on metallic
surfaces (for instance Ruthenium), the control of the final system geometry has significantly
improved, and it is now possible to produce nano-islands of different size and forms with
atomically defined edges [Fernandéz-Rossier & Palacios (2007)], ranging from the quasi-one
dimensional ribbons to the zero-dimension dots. One of the first and better known and studied
finite-size effect on graphene is the emergence of edge-states in the case of nano-ribbons
[Son et al. (2004)]. From a physical points of view this means that the electrons close to
the Fermi level tend to preferentially occupy regions of space that are close to the borders
of the ribbon. This feature has been observed experimentally and has been predicted with
high level ab initio computations for instance by Hod et al. (2008; 2007). It is also known that
the behavior of the nano-ribbon strongly depends on the type of edges, giving rise to the
two well known classes of "zig-zag" and "armchair" edges. More complex structures, such as
hexagonal, rhomboidal and triangular ones, will show an even more complex behavior and
can also give rise to open shell, high multiplicity ground states [Fernandéz-Rossier & Palacios
(2007); Yu et al. (2008); Ezawa (2007)]. This could result in the possibility of rationally design
advanced nano-magnets, also exploiting the connection of different multiplicity sub-units (see
for instance the works of Yu et al. (2008); Trinquier et al. (2010)). In the same way, as suggest
by Fürst et al (2009) the possibility to create antidot graphene lattices, in which graphene
can be artificially periodically perforated to create a precise arrangement of holes, appears
very promising to further control and module electronic properties. All this attempts can be
seen as steps toward the production of metametarials [Pendry et al. (1996)], i.e. materials
that derive their properties from their artificial, man-made, periodic small-scale structure.
Anyway it is noteworthy to cite also all the attempts made to enhance physically properties
of graphene-like structures by their interaction with atoms or small molecules, for instance
following the procedure of the spin doping.

1.1 Magnetic properties of graphene nano-systems
An important feature to rationalize the relation between structure and electronic properties,
and more generally, to study finite size effects on graphene nano-structures, is to recognize
that the honeycomb graphene is composed by a bipartite lattice [Fernandéz-Rossier & Palacios
(2007)], with two compenetrating triangular sublattices A and B. Each atom constituting the
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graphene can be associated to one of the two sublattices, one can therefore speak of A and B
graphene atoms or centers. Moreover, each A atom will only have B nearest neighborings and
viceversa. So for instance, zig-zag edges are composed of atoms that all belong to the same
sublattices, while the same does not hold for armchair edges. Moreover in order to rationalize
the emergence of magnetic properties in graphene nanosystems one can recall the Lieb’s
theorem [Lieb (1989)]. This theorem, also known as the theorem of itinerant magnetism and
usually applied within the framework of the Hubbard one-orbital model, is indeed intended
to predict the total spin of the ground state in bipartite lattices. In particular one can see that
an imbalance on the number of atom in one sublattice will yeld a magnetic ground state with
spin

S =
|NA − NB|

2
(1)

where NA and NB are the numbers of atoms of A and B type respectively. Moreover, in a
Hückel type approximation, |NA − NB| will also be the number of eigenvalues equals to zero.
It is also important to note that the magnetization originating from localized edge-states give
also rise to a high density of states at the Fermi level which in turn can determine a spin
polarization instability. Moreover the relation between the unbalanced number of atoms and
the ground state spin implies that two centers will be ferromagnetically coupled if they belong
to the same sublattice and antiferromagnetically coupled if they do not [Yu et al. (2008)].
If now we will consider triangular type nanoislands (as will be evident in the following
sections) one can see that the two sublattices are unbalanced, i.e. NA �= NB. For this reason,
the fundamental ground state will be a magnetic one, as was confirmed for instance by
Fernandéz-Rossier & Palacios (2007). When, on the other hand, one deals with hexagonal
coronene-like structures NA = NB, the ground state will be a closed shell singlet. In particular,
in the latter case no eigenvalue of the Hückel Hamiltonian will be equal to zero. In reality,
since even if a gap still exist at the Fermi level, increasing the size of the hexagonal island will
diminish the difference between the highest occupied and the lowest unoccupied molecular
orbitals (HOMO, LUMO), thus favoring an open-shell solution. Indeed a quantum phase
transition has been predicted for hexagonal structures leading to a compensated ferrimagnet
[Yu et al. (2008)].
In the following, we will rationalize the relation between magnetic and electronic properties
of graphene nanostructures, presenting also a comparison between the simple Hückel,
tight-binding, Hamiltonian and more sophisticated multireference ab initio ones.

1.2 Modern theory of conductivity: Polarizability and localizability
Graphene and graphene nano-ribbons are known to exhibit a very particular and in some
cases exotic electronic properties [Castro Neto et al (2009)]. Graphene, for instance, is very
well known for being a zero-gap semiconductor, characterized by an infinite electron mobility.
Finite graphene nanoribbons, or Graphene Nano Islands (GNI), on the other hand show
electronic properties that can vary drastically with the geometrical structure and shape [Castro
Neto et al (2009); Fernandéz-Rossier & Palacios (2007); Yu et al. (2008)]. For these reasons, a
study of electronic properties of GNI in the framework of the modern theory of conductivity
[Resta (1998); Resta & Sorella (1999)] can be of valuable importance in order to elucidate the
characteristic of these systems, as well as their correlation with the shape, as was recently
pointed out by Evangelisti et al. (2010).
For readers’ convenience, we report here a brief review of the so called modern theory
of conductivity, explicitating the most relevant quantities appearing in this formalism to
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discriminate between a metal and an insulator.
Modern theory of conductivity first emerged in a well established way with the seminal
works of Kohn in 1964 [Kohn (1964)]. In this work, for the first time, the character of an
insulating state was related not only to the few electronic states close to the Fermi level, as
it was customary on the "classic" theory, but indeed to the ground state as a whole. To use
Kohn’s words, "insulator behavior does not appear to depend on the notion of a filled band, but rather
reflects a certain type of organization of the electrons". Going even further, Kohn affirms that in
the insulating state the electrons "so organize themselves as to satisfy a many electron localization
condition".
Therefore, one can understand that, in this framework, the emergence of a metallic or insulator
behavior is no more related to the opening or closing of a gap at Fermi level but indeed to the
emergence of electron localization or delocalization [Resta & Sorella (1999); Kohn (1964)].
Different authors contributed to the development of the theory in the last years, and in
particular the localization condition invoked by Kohn was given a quantitative indicator
by means of the localization tensor, as defined by Resta and Sorella [Resta (1998); Resta &
Sorella (1999); Aoki & Imamura (1995)]. Although this theory was first derived within Periodic
Boundary Condition, its extension to the case of finite systems is possible, and is clearly much
more appropriate for the systems we want to investigate here [Resta (2005; 2006)].
Suppose we consider an electronic wavefunction |Ψ >, and indicate by r̂i the position operator
of the i-th electron (the position operator being a vector quantity of Cartesian components x,
y, z). Then r̂β will be one Cartesian component of the total position operator

r̂ =
n

∑
i=1

ri (2)

It will be possible to define the localization tensor (or localizability) of the state associated to
|Ψ > as the cumulant of the second-order momentum with respect of the operator r̂ i.e. the
quadratic fluctuation of the position

< rβrγ >c =
1
n

(< Ψ|r̂β r̂γ|Ψ > − < Ψ|r̂β|Ψ >< Ψ|r̂γ|Ψ >) (3)

Notice that the 1
n factor has been introduced in order to eliminate the dependence on the

number of electrons n in the case of identical non interacting subsystems. In the following,
for the sake of simplicity of notation, the locality-tensor components < rβrγ >c will be simply
indicated as ρβγ and the definition of Localizability will be used in analogy with polarizability.
As shown by Resta [Resta & Sorella (1999)]in the case of a metallic system the locality ρ will
diverge, while for insulators it will converge to a finite value. We will also remind that the
locality has been directly related to the macroscopic conductivity σ(ω) by Souza et al. (2000)

ραβ = δαβ
V
n

h̄
πe2

∫ ∞

0

dω

ω
�σ(ω) (4)

An equivalent, in the case of a complete expansion space, and in some instances
more convenient expression of the localization tensor can be obtained by invoking the
sum-over-states or spectral resolution formalism as:

ραβ =< Ψ0|(rβ− < rβ >)|(rγ− < rγ >)|Ψ0 >= ∑
k>0

< Ψ0|rβ|Ψk >< Ψk|rγ|Ψ0 > (5)
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Here the vectors |Ψk > are the (excited) eigenvectors of the system while |Ψ0 > represents the
ground state. In this formalism the relation between polarizability and locality becomes much
more evident if one recall the spectral resolution form of the (static) polarizability:

αβγ = 2 ∑
k>0

(
< Ψ0|rβ|Ψk >< Ψk|rγ|Ψ0 >

Ek − E0

)
(6)

where Ek are the eigenvalues corresponding to the Ψk eigenvector, E0 being the ground state
energy. We will also recall that for conducting systems too the polarizability will diverge,
implying, from a more physical point of view, and infinite possibility of deformation of the
electronic cloud of the systems.
Hence, the metallic or insulator characteristic of a system can be investigated by three criteria:

1. Zero energy gap.

2. Infinite per-atom polarizability.

3. Infinite fluctuation of the position operator (Localizability).

Anyway, it has to be pointed out that while the energy gap relates the metallic behavior of
a system only to the states close to the Fermi level the polarizability and the Localizability
are able to-take into account the properties of the whole system as it is clear from the
spectral-resolution formalism.
We would also like to remind that, strictly speaking, since we are dealing with finite systems, it
is clearly impossible to obtain a true metallic behavior. However, the divergent or convergent
behavior of the Localizability (and of the per-atom - or Specific - Polarizability) can be clearly
evidenced. Therefore, one can reasonably speak of a sort of metalicity, or at least of the
presence of “precursors” of metallic characters.

Fig. 1. The (7|3, 2, 1) HGNI. Note that the triangles eliminated from the original
hypertriangulene structure have been represented with dots

The previous formalism has already been applied to the study of metal insulator transition in
different systems, both at ab initio [Vetere et al. (2008)] and tight binding level [Evangelisti et al.
(2010); Monari et al. (2008); Bendazzoli et al. (2010)] and it has been shown that the equivalence
of the previous cited criteria does not always hold. For instance, disordered [Bendazzoli et al.
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(2010)] systems are gapless while being insulator, and graphene nano-ribbons [Evangelisti et
al. (2010)] can show a divergent polarizability and a convergent localizability. For this reason,
modern theory of conductivity proves its uselfullness in giving the possibility of a deeper
characterization of the metallic and insulator states.

2. Hexagonal Graphene Nanoislands

In this section, a possible classification of GNI is proposed and illustrated. We will limit
ourselves to Hexagonal GNI (or HGNI), which are defined as the convex structures that have a
(a priori irregular) hexagonal shape. Because of the hexagonal structure of the building block of
graphene, the hexagonal motifs representing HGNI will have angles of 60, 120 or 180 degrees.
In order to establish a classification of HGNI, we will start from a hypertriangulene having
a side containing Λ hexagons. The most general HGNI that can be derived from it well be
obtained by deleting three triangular patterns out of the triangulene vertices (see Figure 1).
Each one of these three triangles will be uniquely identified by the number of elementary
hexagons of its side, λi, with i = 1, 2, 3. Notice that, in some cases, some of the λi can be zero.
The resulting HGNI will then be indicated by (Λ|λ1, λ2, λ3). In order to avoid any ambiguity,
we will assume

λ1 ≥ λ2 ≥ λ3

Fig. 2. The A "lateral" (dark blue) and B "apical" (dark red) sublattice sites of various HGNI.
Notice in light blue and light red the eliminated lateral and apical sites, respectively, when
λ �= 0. Left the (7|0, 0, 0) triangulene, with a lateral-apical sites difference equal to Λ − 1 = 6.
Center the (7|2, 0, 0) characterized by a lateral-apical sites difference of Λ − λ1 − 1 = 4. Right
the (7|2, 2, 2) coronene that exhibits a lateral-apical sites difference of Λ − ∑i λi − 1 = 0

Notice that, in our notation, the small triangles are not allowed to overlap. This implies that
the sum of two different λ’s must be smaller than (or at most equal to) Λ. Because of the
ordering we have assumed, this condition is automatically fulfilled if we have

λ1 + λ2 ≤ Λ

As we said in the Introduction, Graphene is a bipartite lattice. Therefore, HGNI also are
obviously bipartite lattices. This implies that, at the Hückel level, the number of zero-energy
orbitals is given by the difference between the two types of lattices.
Let us consider a triangulene structure. With our previous notation, it will be described as
(Λ| 0, 0, 0). The lattice sites will be called “lateral” (blue in Figure 2) or “apical” (red in Figure
2). In particular, lateral sites will be defined as the Carbon atoms on one of the three edges in
the (Λ| 0, 0, 0) triangulene, while the three terminal atoms will be apical.
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Fig. 3. HGNI obtained from the (7|0, 0, 0) triangulene. Left the (4|0, 0, 0) triangulene. Center
the (7|2, 2, 2) coronene. Right the (7|2, 2, 0) pyrene. Eliminated triangles represented with
dots

If one looks at Figure 2, it is straightforward to note that the difference between A and B sites
is equal to the difference between lateral and apical sites. On the other hand it is also evident
that the lateral sites outnumber the apical ones by Λ − 1.
When a triangular portion is cut at a triangulene vertex, the difference between the lateral
and apical sites is reduced by λ. As a general result, we obtain that the difference between the
lateral and apical sites (referred to the original triangulene structure) is given by

Λ −
3

∑
i=1

λi − 1

The modulus of this quantity gives the number of zero-energy orbitals of the system if treated
at the Hückel level, n0.
It is useful to consider some special cases (see Figure 3):

• Triangulenes: They are described by the pattern (Λ| 0, 0, 0), and have n0 = Λ− 1. They can
also be obtained by cutting three identical triangular portions having side λ out an original
triangulene having side equal to 2λ + 1: (2λ + 1|λ, λ, λ) = (λ + 1| 0, 0, 0).

• Coronenes: They are characterized by the pattern (3λ + 1|λ, λ, λ), which implies that n0 =
0.

• Pyrenes: The are characterized by the pattern (2λ + 1|λ, λ, 0), which also implies that n0 =
0.

Finally, we notice that HGNI having a D3h symmetry are obtained if and only if the three λi
are equal: (Λ|λ, λ, λ), which gives n0 = |Λ − 3λ − 1| It is possible to start from a triangular
structure and, by adding hexagons on the sides, to pass through a series of D3h shapes, finally
ending up with a larger triangulene:

(2λ + 1|λ, λ, λ)
(2λ + 1|λ − 1, λ − 1, λ − 1)
(2λ + 1|λ − 2, λ − 2, λ − 2)
...
(2λ + 1|0, 0, 0)

If λ is an integer multiple of 3, the series will pass from the coronene (2λ + 1| 2
3 λ, 2

3 λ, 2
3 λ).
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Center the (7|2, 0, 0) characterized by a lateral-apical sites difference of Λ − λ1 − 1 = 4. Right
the (7|2, 2, 2) coronene that exhibits a lateral-apical sites difference of Λ − ∑i λi − 1 = 0

Notice that, in our notation, the small triangles are not allowed to overlap. This implies that
the sum of two different λ’s must be smaller than (or at most equal to) Λ. Because of the
ordering we have assumed, this condition is automatically fulfilled if we have

λ1 + λ2 ≤ Λ

As we said in the Introduction, Graphene is a bipartite lattice. Therefore, HGNI also are
obviously bipartite lattices. This implies that, at the Hückel level, the number of zero-energy
orbitals is given by the difference between the two types of lattices.
Let us consider a triangulene structure. With our previous notation, it will be described as
(Λ| 0, 0, 0). The lattice sites will be called “lateral” (blue in Figure 2) or “apical” (red in Figure
2). In particular, lateral sites will be defined as the Carbon atoms on one of the three edges in
the (Λ| 0, 0, 0) triangulene, while the three terminal atoms will be apical.
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3. Computational details

In this Section, we will recall the computational details and strategies used in the present
work. In particular the details concerning both the ab initio and the tight binding approach will
be discussed.

3.1 Tight binding
All the computation at the tight binding (Hückel in the language of Chemists) level have been
performed by using a specific home-made code [Evangelisti et al. (2010)]. In particular, the
diagonalization of the Hückel Hamiltonian, in order to get the eigenvectors and eigenvalues,
have been performed by using high efficiency BLAS and Lapack [lapack (1999)] subroutines.
The Hückel Hamiltonian has been constructed starting from the connectivity of each carbon
atoms in each HGNI, defining

�i|Ĥ|i� = α = 0 (7)

and

�i|Ĥ|j� = βγij (8)

where γij is 1 if i and j are different sites connected in the HGNI skeleton, and 0 otherwise.
We remind that −β is sometimes called the hopping integral t in physical literature. In HGNI,
due to a more complex connectivity, the Hückel Hamiltonian matrix will not be a tridiagonal
one, as it is customary in model linear systems (polyacetilene).
As will be discussed in the next section for some systems by diagonalization of the
Hamiltonian we obtained some strictly zero eigenvalues, in that case we considered the
system as an open shell one, and each zero eigenvector was considered as a half filled orbital.
Polarizability and Localizability have been computed by direct application of equations 4 and
5, anyway we would like to stress that since we are dealing also with open shell systems it
was necessary to compute separately the contribution coming from spin up and spin down (α
and β) electrons.

3.2 Ab initio
All the ab initio calculations have been performed by using the MOLPRO [Knowles & Werner
(2002)] Quantum-Chemistry package. The nanostructures investigated at ab initio level have
at least a D3h symmetry. Coronene islands are more symmetric, having a D6h point-group
symmetry. However, most ab initio codes (and MOLPRO is one of these) are able to treat only
abelian subgroups. Because of this symmetry constraint, calculations have been performed in
C2v and D2h instead of D3h and D6h, respectively. All HGNI edges have been saturated with
Hydrogens atoms.
In ab initio calculations, all the angles concerning connected atoms have been fixed to the ideal
value of 120 degrees. The internuclear C-C distance between connected atoms was fixed at 1.4
Å, while the corresponding C-H distance was fixed at 1.0 Å.
The atomic basis set is the minimal STO-3G [Hehre et al. (1969)] contracted gaussian basis for
both Carbon and Hydrogen. Although this basis set is certainly too small to give quantitatively
reliable results, it is known to reproduce correctly the qualitative behavior of many organic
and inorganic systems. Its reduced size, on the other hand, permits to investigate at a
correlated ab initio level systems whose size is relatively large.
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Fig. 4. The tight binding energy spectrum of some triangulene (left panel) and coronene
(right panel) structures. In the boxes see a zoom of the Fermi level

The systems have been studied at Complete Active Space Self Consistent Field (CAS-SCF)
level [Roos et al. (1980)], and Multi-Reference Perturbation-Theory level by using the
n-electrons valence perturbation theory (NEVPT2) formalism [Angeli et al. (2001; 2002; 2007)].
In all the CAS-SCF calculations, the active space has been selected by choosing the orbitals
that are strictly degenerated at Hückel level. The orbitals have been optimized at RHF level
for the high-spin wavefunction. These same orbitals have been then frozen for the CAS-SCF
calculations on the other spin multiplicities. In this way, our calculations are actually of
CAS-CI type. The NEVPT2 formalism has then be applied to these CAS-CI wavefunctions
in order to recover the dynamic correlation.

4. Results and discussion

The different behavior of Coronenes and triangulene finite size graphene structure will be
illustrated in this Section. In particular we will first consider the tight binding approximation,
before switching to an ab initio approach that allows us to better analyze the magnetic behavior
of such systems.

4.1 Tight binding
Even if the tight-binding approach represents a crude approximation of a chemical systems,
it can be important to sketch out some general tendencies, and to elucidate the behavior of
different classes of compounds. This is particularly true since it allows the treatment of very
large systems due to its extremely reduced computational cost.
The tight binding (Hückel) calculations of the different HGNI show, first of all, a quite
different behavior between the triangulene and coronene classes. This difference is another
confirmation of the very important role played by the finite size effects in graphene
nano-islands. The energy spectra of some Triangulenes are shown in the left panel of Figure 4,
while Coronenes are shown in the right panel (Notice that the spectra have been normalized
with respect to the number of carbon atoms, and therefore with respect to the number of
eigenvalues for graphical reasons). If the tail of the spectra looks similar between the two
classes of compounds and between islands of different size, a remarkable difference can
be seen at the Fermi level. As expected, [Fernandéz-Rossier & Palacios (2007); Yu et al.
(2008)] Coronenes show a gap at the Fermi level, while Triangulenes shows the presence of
some degenerate energy eigenvalues at the Fermi level. As can be seen on Table 1, where
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Fig. 4. The tight binding energy spectrum of some triangulene (left panel) and coronene
(right panel) structures. In the boxes see a zoom of the Fermi level

The systems have been studied at Complete Active Space Self Consistent Field (CAS-SCF)
level [Roos et al. (1980)], and Multi-Reference Perturbation-Theory level by using the
n-electrons valence perturbation theory (NEVPT2) formalism [Angeli et al. (2001; 2002; 2007)].
In all the CAS-SCF calculations, the active space has been selected by choosing the orbitals
that are strictly degenerated at Hückel level. The orbitals have been optimized at RHF level
for the high-spin wavefunction. These same orbitals have been then frozen for the CAS-SCF
calculations on the other spin multiplicities. In this way, our calculations are actually of
CAS-CI type. The NEVPT2 formalism has then be applied to these CAS-CI wavefunctions
in order to recover the dynamic correlation.

4. Results and discussion

The different behavior of Coronenes and triangulene finite size graphene structure will be
illustrated in this Section. In particular we will first consider the tight binding approximation,
before switching to an ab initio approach that allows us to better analyze the magnetic behavior
of such systems.

4.1 Tight binding
Even if the tight-binding approach represents a crude approximation of a chemical systems,
it can be important to sketch out some general tendencies, and to elucidate the behavior of
different classes of compounds. This is particularly true since it allows the treatment of very
large systems due to its extremely reduced computational cost.
The tight binding (Hückel) calculations of the different HGNI show, first of all, a quite
different behavior between the triangulene and coronene classes. This difference is another
confirmation of the very important role played by the finite size effects in graphene
nano-islands. The energy spectra of some Triangulenes are shown in the left panel of Figure 4,
while Coronenes are shown in the right panel (Notice that the spectra have been normalized
with respect to the number of carbon atoms, and therefore with respect to the number of
eigenvalues for graphical reasons). If the tail of the spectra looks similar between the two
classes of compounds and between islands of different size, a remarkable difference can
be seen at the Fermi level. As expected, [Fernandéz-Rossier & Palacios (2007); Yu et al.
(2008)] Coronenes show a gap at the Fermi level, while Triangulenes shows the presence of
some degenerate energy eigenvalues at the Fermi level. As can be seen on Table 1, where
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system nC Nf αx ρx

(4|1,1,1) 24 0 0.37321 0.48330

(7|2,2,2) 54 0 0.62249 0.59056

(3|0,0,0) 22 2 0.40466 0.48802

(5|0,0,0) 46 4 0.53029 0.55306

(7|0,0,0) 78 6 0.64423 0.59801

(4|0,0,0) 33 3 0.46865 0.52370

(7|1,1,1) 69 3 0.71761 0.61768

Table 1. Localizability (ρ) and Specific Polarizability (α), in arbitrary units, for the
tight-binding approximation; nC indicates the number of Carbon atoms; n0 represents the
number of states at the Fermi level, i.e. having an eigenvalue exactly zero.

the number of zero level is reported, the Lieb theorem is exactly respected, as well as our
empirical formula. Moreover the Lieb theorem appears also to be respected for intermediate
structures like the (7|1,1,1) island, which present three zero-energy levels again as predicted
from our formula. The magnetic levels arise from orbitals concentrated at the edge of the
structure (edge states). This will induce a concentration of the spin density at the border of the
island, as can be seen in Figure 5, where the Hückel spin density for the (7|0,0,0) triangulene
has been shown. The spin density has been obtained by using Hückel eigenvectors and
considering an occupation equal to one of the degenerate zero-energy eigenvalues. For
graphical reasons, an arbitrary totally symmetric gaussian function has been placed on each
Carbon center.

Finally if one enlarges the island the effect imposed by the different edges, and by the
unbalancement of apical and lateral sites becomes less important. The HGNI energy spectrum
is expected to converge toward the infinite graphene structure. In Figure 6 we report the
spectra of the (121|40,40,40) coronene and of the (95|0,0,0) triangulene (both structures
having about 10,000 carbon atoms). The two spectra are nearly superposable, even if a slight
difference still remains in the close vicinity of the Fermi level. Indeed even if coronene will
present a gap, while triangulene will be gapless, the energy difference between occupied
and unoccupied orbitals in the first system will become smaller and smaller with the system
size, tending to the gapless spectrum of infinite graphene. This fact can be considered as
the origin of the spin instability of large coronene systems, for which the ground state will
be an open shell one instead of a closed shell. In Table 1 we also report the values of the
specific (i.e. per atom) polarizability and Localizability of the different classes of compounds.
We can see that for small size HGNI the two parameters behave in a similar way with the
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Fig. 5. The tight binding spin density of the (7|0,0,0) triangulene (septuplet state)

system size, and within the different classes of compounds although polarizability appears to
have a slightly higher value than Localizability. In Figure 7 we report the behavior of specific
polarizability and Localizability for triangulenes of different sizes up to the (100|0,0,0) HGNI.
If Localizability appears to converge to a value close to 1, specific polarizability diverges
linearly (implying an overall quadratic divergence of the polarizability). These results, which
shows a qualitatively different behavior of the two indicators, can be considered to be in
coherence with the observation that extended graphene is a semiconductor with infinite
electronic mobility.

4.2 Ab initio
In Table 2, we report CAS-SCF and NEVPT2 computations on different graphene nano-island.
In particular, as stated in Computational Details, we included in the active space the orbitals
that give rise to the degenerate zero-energy manifold at tight-binding level. This choice
assures to obtain a Multi-Configurational wavefunction that is able to correctly represent
the physics of the problem, without presenting an explosive size of the configuration space.
As it was already evident at Hückel level, the splitting of the different levels follows
quite remarkably the Lieb theorem for a Hubbard bipartite lattice. Indeed, in the case of
Triangulenes, the electronic state with multiplicity coherent with the Lieb theorem (n0 + 1,
where n0 is the difference between apical and lateral sites) is the ground state. The same is
true for the (7|1,1,1) intermediate system. In a similar way, Coronenes, at least for the size of
the ones investigated here, show always a singlet ground state.
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structure (edge states). This will induce a concentration of the spin density at the border of the
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has been shown. The spin density has been obtained by using Hückel eigenvectors and
considering an occupation equal to one of the degenerate zero-energy eigenvalues. For
graphical reasons, an arbitrary totally symmetric gaussian function has been placed on each
Carbon center.

Finally if one enlarges the island the effect imposed by the different edges, and by the
unbalancement of apical and lateral sites becomes less important. The HGNI energy spectrum
is expected to converge toward the infinite graphene structure. In Figure 6 we report the
spectra of the (121|40,40,40) coronene and of the (95|0,0,0) triangulene (both structures
having about 10,000 carbon atoms). The two spectra are nearly superposable, even if a slight
difference still remains in the close vicinity of the Fermi level. Indeed even if coronene will
present a gap, while triangulene will be gapless, the energy difference between occupied
and unoccupied orbitals in the first system will become smaller and smaller with the system
size, tending to the gapless spectrum of infinite graphene. This fact can be considered as
the origin of the spin instability of large coronene systems, for which the ground state will
be an open shell one instead of a closed shell. In Table 1 we also report the values of the
specific (i.e. per atom) polarizability and Localizability of the different classes of compounds.
We can see that for small size HGNI the two parameters behave in a similar way with the
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have a slightly higher value than Localizability. In Figure 7 we report the behavior of specific
polarizability and Localizability for triangulenes of different sizes up to the (100|0,0,0) HGNI.
If Localizability appears to converge to a value close to 1, specific polarizability diverges
linearly (implying an overall quadratic divergence of the polarizability). These results, which
shows a qualitatively different behavior of the two indicators, can be considered to be in
coherence with the observation that extended graphene is a semiconductor with infinite
electronic mobility.

4.2 Ab initio
In Table 2, we report CAS-SCF and NEVPT2 computations on different graphene nano-island.
In particular, as stated in Computational Details, we included in the active space the orbitals
that give rise to the degenerate zero-energy manifold at tight-binding level. This choice
assures to obtain a Multi-Configurational wavefunction that is able to correctly represent
the physics of the problem, without presenting an explosive size of the configuration space.
As it was already evident at Hückel level, the splitting of the different levels follows
quite remarkably the Lieb theorem for a Hubbard bipartite lattice. Indeed, in the case of
Triangulenes, the electronic state with multiplicity coherent with the Lieb theorem (n0 + 1,
where n0 is the difference between apical and lateral sites) is the ground state. The same is
true for the (7|1,1,1) intermediate system. In a similar way, Coronenes, at least for the size of
the ones investigated here, show always a singlet ground state.
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Fig. 6. The tight binding energy spectrum of (121|40,40,40) coronene and (95|0,0,0)
triangulene both tending to the infinite graphene spectrum

The same effects can be seen on the left and right panel of the Figure 8, where we report the
energy of the different multiplicity state, with respect to the highest multiplicity ground state,
of different odd Triangulenes at CAS-SCF and NEVPT2 level.
As far as the effect of the size of the island is concerned, one can easily see that the energy
splitting is large in larger structures. Therefore, one can assume that enlarging the structure
will tend to favor the ferromagnetic coupling of the unpaired electrons. Rather interestingly,
on the other hand, the inclusion of the dynamic correlation (at NEVPT2 level) determines a
very strong lowering of the ferromagnetic coupling, up to a factor of one half in the case of odd
Triangulenes. Probably this means that the relaxation of the other π double occupied orbitals
induce a rather important stabilization of the low spin states. We would like to stress that, to
such a magnitude, this phenomenon is quite uncommon in the magnetic spectrum of organic
and inorganic magnetic materials, thus suggesting a peculiar role played by the graphene-like
electronic structure.

5. Conclusion

We have reported a tight binding and ab initio study of graphene triangular and hexagonal
nano structures. In particular, we proposed a general classification of these structures based
on an index Λ and three indices λi. We showed how Coronene and Triangulene classes of
HGNI can be easily identified within this classification via an opportune choice of the indices.
By using the Lieb theorem and considering that graphene is actually a bipartite lattices, we
showed how it is possible to guess the magnetic properties of these nano-structures from the
values of Λ and λi. This heuristic findings have been confirmed also by high level ab initio
computations. We also showed how the magnetic properties of Triangulenes structures are
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given by edge states and orbitals, giving rise to a concentration of the spin density at the
border. However, we underlined how the particular nature of graphene induces a specific
behavior of the magnetic spectrum. In particular, the ferromagnetic coupling is very strongly
reduced by the inclusion of dynamical correlation.
The behavior of graphene nano-islands has also been studied in the framework of the modern
theory of conductivity, in particular by using the localization tensor (Localizability) and the
polarizability. We showed how, in the limit of an extended graphene sheet, the two indicators
of a metal-insulator transition behave in a qualitatively different way: while polarizability
diverges Localizability shows a convergence. This fact can be ascribed to the nature of
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of different odd Triangulenes at CAS-SCF and NEVPT2 level.
As far as the effect of the size of the island is concerned, one can easily see that the energy
splitting is large in larger structures. Therefore, one can assume that enlarging the structure
will tend to favor the ferromagnetic coupling of the unpaired electrons. Rather interestingly,
on the other hand, the inclusion of the dynamic correlation (at NEVPT2 level) determines a
very strong lowering of the ferromagnetic coupling, up to a factor of one half in the case of odd
Triangulenes. Probably this means that the relaxation of the other π double occupied orbitals
induce a rather important stabilization of the low spin states. We would like to stress that, to
such a magnitude, this phenomenon is quite uncommon in the magnetic spectrum of organic
and inorganic magnetic materials, thus suggesting a peculiar role played by the graphene-like
electronic structure.

5. Conclusion

We have reported a tight binding and ab initio study of graphene triangular and hexagonal
nano structures. In particular, we proposed a general classification of these structures based
on an index Λ and three indices λi. We showed how Coronene and Triangulene classes of
HGNI can be easily identified within this classification via an opportune choice of the indices.
By using the Lieb theorem and considering that graphene is actually a bipartite lattices, we
showed how it is possible to guess the magnetic properties of these nano-structures from the
values of Λ and λi. This heuristic findings have been confirmed also by high level ab initio
computations. We also showed how the magnetic properties of Triangulenes structures are
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given by edge states and orbitals, giving rise to a concentration of the spin density at the
border. However, we underlined how the particular nature of graphene induces a specific
behavior of the magnetic spectrum. In particular, the ferromagnetic coupling is very strongly
reduced by the inclusion of dynamical correlation.
The behavior of graphene nano-islands has also been studied in the framework of the modern
theory of conductivity, in particular by using the localization tensor (Localizability) and the
polarizability. We showed how, in the limit of an extended graphene sheet, the two indicators
of a metal-insulator transition behave in a qualitatively different way: while polarizability
diverges Localizability shows a convergence. This fact can be ascribed to the nature of
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system nC nH S ECAS−CI ENEVPT2

(4|1,1,1) 24 12 1 0.00000000 0.00000000

(7|2,2,2) 54 18 1 0.00000000 0.00000000

(3|0,0,0) 22 12 3 0.00000000 0.00000000
1 0.07504935 0.03331113

(5|0,0,0) 46 18 5 0.00000000 0.00000000
3 0.03924909 0.01935507
1 0.08033144 0.03242700

(7|0,0,0) 78 24 7 0.00000000 0.00000000
5 0.02271725 0.01135881
3 0.04009214 0.02078559
1 0.04647274 0.02467302

(4|0,0,0) 33 15 4 0.00000000 0.00000000
2 0.03632651 0.02469043

(7|1,1,1) 69 21 4 0.00000000 0.00000000
2 0.00466476 0.00624823

Table 2. Relative Energies (hartree) of nanoislands species, computed at ab initio level:

extended graphene, that is known to behave like a gapless semi conductor with infinite
electron mobility. These results also confirm how the use of modern theory of conductivity
can be of valuable importance in the study of exotic materials.
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1. Introduction

Quantum computers which can efficiently simulate complex quantum systems and solve
certain classes of hard mathematical problems are of great interest and importance. However,
practical implementation of a large-scale quantum computer represents a formidable
challenge. One significant obstacle is combining good access to the quantum system with
high degree isolation from the environment in a scalable system.
The spin qubit proposal is a promising approach to address the central issues (Loss et al.,
1998). The electron spin is a two-level system which is a natural candidate for realization
of a quantum bit. Spin qubits in semiconductor nanostructures can be accessed and scaled
easily. After the original spin-qubit proposal, there has been enormous research effort in
implementing the spin-based information processing and the major breakthroughs in basic
proof-of-principle experiments have been achieved in GaAs/AlGaAs quantum dots. First, the
single-shot measurement of an individual electron spin has been realized (Elzerman et al.,
2004). Second, the demonstrations of the

√
SWAP-gate on two-electron spin states (Petta et al.,

2005) and single spin rotations (Koppens et al., 2006; Nowack et al., 2007; Pioro-Ladrière et al.,
2008) suffice to universal quantum operations of spin qubits. By now all parts of the original
Loss-DiVincenzo proposal have been demonstrated in the proof-of-principle experiments. To
build a scalable quantum computer requires that the gate error should be smaller than the
threshold and the decoherence time should be 104 times longer than the operation time.
However because of interaction with the nuclei environment in the host GaAs/AlGaAs
material via both lattice-mediated spin-orbit interactions and hyperfine interactions, the
decoherence times are not long enough compared to the single qubit operations. Because
of the completely eliminated hyperfine interactions in graphene, there is great potential
for electron spin qubits in a nuclear-spin-free quantum world (Trauzettel et al., 2007). It is
highly desirable to propose an efficient architecture made with graphene nanostructures to
implement the quantum information processing (QIP) (Pedersen et al., 2008).
Owing to the special band structure of graphene (Castro Neto et al., 2009), its low-energy
quasi-particles behave as Dirac fermions, and the Klein tunneling and Chiral effect make it
non-trivial to form well controllable quantum dots in graphene. There are several ways in
which one could localize electrons (holes) in graphene; by using suitable transverse states
in Graphene nanoribbon (GNR) (Trauzettel et al., 2007; Silvestrov et al., 2007), by electrical
confinement in bilayer graphene (Peeters et al., 2007), or by using the topological structure
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1. Introduction
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certain classes of hard mathematical problems are of great interest and importance. However,
practical implementation of a large-scale quantum computer represents a formidable
challenge. One significant obstacle is combining good access to the quantum system with
high degree isolation from the environment in a scalable system.
The spin qubit proposal is a promising approach to address the central issues (Loss et al.,
1998). The electron spin is a two-level system which is a natural candidate for realization
of a quantum bit. Spin qubits in semiconductor nanostructures can be accessed and scaled
easily. After the original spin-qubit proposal, there has been enormous research effort in
implementing the spin-based information processing and the major breakthroughs in basic
proof-of-principle experiments have been achieved in GaAs/AlGaAs quantum dots. First, the
single-shot measurement of an individual electron spin has been realized (Elzerman et al.,
2004). Second, the demonstrations of the
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SWAP-gate on two-electron spin states (Petta et al.,
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2008) suffice to universal quantum operations of spin qubits. By now all parts of the original
Loss-DiVincenzo proposal have been demonstrated in the proof-of-principle experiments. To
build a scalable quantum computer requires that the gate error should be smaller than the
threshold and the decoherence time should be 104 times longer than the operation time.
However because of interaction with the nuclei environment in the host GaAs/AlGaAs
material via both lattice-mediated spin-orbit interactions and hyperfine interactions, the
decoherence times are not long enough compared to the single qubit operations. Because
of the completely eliminated hyperfine interactions in graphene, there is great potential
for electron spin qubits in a nuclear-spin-free quantum world (Trauzettel et al., 2007). It is
highly desirable to propose an efficient architecture made with graphene nanostructures to
implement the quantum information processing (QIP) (Pedersen et al., 2008).
Owing to the special band structure of graphene (Castro Neto et al., 2009), its low-energy
quasi-particles behave as Dirac fermions, and the Klein tunneling and Chiral effect make it
non-trivial to form well controllable quantum dots in graphene. There are several ways in
which one could localize electrons (holes) in graphene; by using suitable transverse states
in Graphene nanoribbon (GNR) (Trauzettel et al., 2007; Silvestrov et al., 2007), by electrical
confinement in bilayer graphene (Peeters et al., 2007), or by using the topological structure
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(Wang et al., 2007). In the chapter, we propose two alternative approaches that the localized
states can exist in the zigzag region of a GNR with a sequence of Z-shaped structures (Guo
et al., 2009) or substrate modulated graphene quantum dot (Ma et al., 2009). The localized
electron (hole) spin states can be used, as the physical qubit. For the GNR quantum dot chain,
the interaction between qubits is found to be of the always-on Heisenberg form. Moreover,
for a practical quantum computer to operate, it is essential to properly tailor the disturbing
environment. An important technique for doing this is the use of quantum bang-bang (BB)
control strategy and the decoherence-free subspaces (DFS) encoding method, both of which
are traditionally discussed in the context of atomic, molecular and optical setup (Morton et
al., 2006; Kwiat et al., 2000; Kielpinski et al., 2001; Viola et al., 2001; Zhang et al., 2004). In this
chapter, these ideas will be introduced to construct an effective quantum information circuit
in new graphene nanostructure below.

2. Electron localization in graphene quantum dots

2.1 Quantum dots on a graphene nanoribbon
It is difficult to form a conventional-type quantum dot inside an infinite graphene because
of Klein tunneling which wound induce charge transmission through the interface of p-n
junctions. Trauzettel, Bulaev, Loss and Burkard firstly introduced a method to overcome such
difficulties and form spin qubits in quantum dots based on GNR with armchair boundaries
in 2007 (Trauzettel et al., 2007). For the semiconducting armchair boundary conditions, both
sublattices of graphene’s hexagonal structure will be terminated equally on both side which
result in the emergence of a gap and destruction of the valley degeneracy. The charge carriers
can be confined on the quantum dot regions between two barrier regions in which electric
potential can be tuning by applying a appropriate local gate voltage. Since all the bound
states are non-degenerate in valley space, the spin qubits are proposed in this graphene
nanostructure. The two spin qubits are coupled via an exchange coupling and the exchange
coupling is controlled by the tunnel barrier between the dots. In combination with single
spin operations, universal quantum gates can be achieved. The interest idea of the proposal
is non-local electron spins in any two of dots can be coupled with the others being decoupled
by detuning. Therefore long-distance quantum gates in graphene quantum dots are feasible.

2.2 Substrate modulated graphene quantum dot
In this section, we concentrate on a new method to use gapped graphene as barrier to confine
electrons in gapless graphene and form a good quantum dot, which can be realized on an
oxygen-terminated SiO2 substrate partly H-passivated. Further, this method can be upgraded
to form two-dimensional quantum dot arrays. We systematically investigate two-dimensional
system and find that the coupling strength between neighboring dots can be uniquely
anisotropic. The ability to achieve more complex and scalable pattern in our proposal suffice
to design a large-scale quantum computer in principle.
Recently, it was discussed that the electronic energy spectrum of the monolayer graphene
depended strongly on the surface characteristic of the substrate (Zhou et al., 2007; Shemella
et al., 2009). For example, if a single layer graphene is deposited onto a SiO2 surface, a
finite energy gap will open between conduction and valence bands for an oxygen-terminated
surface, but close when the oxygen atoms on the substrate are passivated with hydrogen
atoms. The confinement can be achieved by a gapless nanoscale graphene regions connecting
with gapped regions, which serve as barriers, as shown in Fig 1. The devices are realizable
in experiment. In an oxygen terminated SiO2 substrate, we use protective stuff to cover the
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Fig. 1. (a) Schematic of a single quantum dot. A GNR is deposited on a SiO2 substrate. The
dark part is the dot region, which is fully hydrogen-passivated and gapless. The light part is
the barrier region, which is non hydrogen-passivated or slightly hydrogen-passivated and
gapped. (b) Energy bands of this system.

barrier regions and the dot region is fully exposed to hydrogen atoms atmosphere. Then
a single layer graphene is deposited on this substrate and the bound states exit in the
hydrogen-passivated regions. Compared to the approach of forming quantum dots on GNR
with semiconducting armchair boundary conditions (Trauzettel et al., 2007), the realization
of quantum dot will not depend much on the boundary conditions. Since ferromagnetic
insulators deposited on graphene can induce ferromagnetic correlations in graphene, we
consider adding ferromagnetic insulator such as EuO upon the two gapped graphene barriers.
The induced exchange interaction is estimated to achieve 5 meV by using EuO (Haugen et al.,
2008).
The electron waves in graphene system are usually described by four component spinor

envelop wavefunction Ψ = (ψ
(K)
A , ψ

(K)
B ,−ψ

(K
�
)

A ,−ψ
(K

�
)

B ). The behaviors of low energy electron
can be described by 4 × 4 Dirac equation for massless or massive particles, which can be
written as (Recher et al., 2009): in the dot region (where 0 ≤ y ≤ L),

− ih̄vF

(
σx∂x + σy∂y 0

0 −σx∂x + σy∂y

)
Ψ = EΨ, (1)

and in the barrier region (where y < 0 or y > L),

− ih̄vF

(
σx∂x + σy∂y 0

0 −σx∂x + σy∂y

)
Ψ + Δ

(
σz 0
0 σz

)
Ψ − ηVσΨ = EΨ, (2)

where h̄ is the Planck constant, vF ≈ 106 m/s is the Fermi velocity, σx, σy, σz are Pauli matrices
acting on two-spinor states related to the two triangular sublattices of graphene, η = ±1
stands for the two spin indexes (spin up and spin down). 2Δ is the gap induced by the
substrate, 2Vσ is the spin splitting energy due to the correlation with ferromagnetic contacts.
We consider metallic armchair shaped GNR with the quantized transverse momentum qn =
n π

W and the wave vectors in the y direction should satisfy different conditions as

E = ±
√

(h̄vFqn)2 + (h̄vFk)2, (3)
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(Wang et al., 2007). In the chapter, we propose two alternative approaches that the localized
states can exist in the zigzag region of a GNR with a sequence of Z-shaped structures (Guo
et al., 2009) or substrate modulated graphene quantum dot (Ma et al., 2009). The localized
electron (hole) spin states can be used, as the physical qubit. For the GNR quantum dot chain,
the interaction between qubits is found to be of the always-on Heisenberg form. Moreover,
for a practical quantum computer to operate, it is essential to properly tailor the disturbing
environment. An important technique for doing this is the use of quantum bang-bang (BB)
control strategy and the decoherence-free subspaces (DFS) encoding method, both of which
are traditionally discussed in the context of atomic, molecular and optical setup (Morton et
al., 2006; Kwiat et al., 2000; Kielpinski et al., 2001; Viola et al., 2001; Zhang et al., 2004). In this
chapter, these ideas will be introduced to construct an effective quantum information circuit
in new graphene nanostructure below.

2. Electron localization in graphene quantum dots

2.1 Quantum dots on a graphene nanoribbon
It is difficult to form a conventional-type quantum dot inside an infinite graphene because
of Klein tunneling which wound induce charge transmission through the interface of p-n
junctions. Trauzettel, Bulaev, Loss and Burkard firstly introduced a method to overcome such
difficulties and form spin qubits in quantum dots based on GNR with armchair boundaries
in 2007 (Trauzettel et al., 2007). For the semiconducting armchair boundary conditions, both
sublattices of graphene’s hexagonal structure will be terminated equally on both side which
result in the emergence of a gap and destruction of the valley degeneracy. The charge carriers
can be confined on the quantum dot regions between two barrier regions in which electric
potential can be tuning by applying a appropriate local gate voltage. Since all the bound
states are non-degenerate in valley space, the spin qubits are proposed in this graphene
nanostructure. The two spin qubits are coupled via an exchange coupling and the exchange
coupling is controlled by the tunnel barrier between the dots. In combination with single
spin operations, universal quantum gates can be achieved. The interest idea of the proposal
is non-local electron spins in any two of dots can be coupled with the others being decoupled
by detuning. Therefore long-distance quantum gates in graphene quantum dots are feasible.

2.2 Substrate modulated graphene quantum dot
In this section, we concentrate on a new method to use gapped graphene as barrier to confine
electrons in gapless graphene and form a good quantum dot, which can be realized on an
oxygen-terminated SiO2 substrate partly H-passivated. Further, this method can be upgraded
to form two-dimensional quantum dot arrays. We systematically investigate two-dimensional
system and find that the coupling strength between neighboring dots can be uniquely
anisotropic. The ability to achieve more complex and scalable pattern in our proposal suffice
to design a large-scale quantum computer in principle.
Recently, it was discussed that the electronic energy spectrum of the monolayer graphene
depended strongly on the surface characteristic of the substrate (Zhou et al., 2007; Shemella
et al., 2009). For example, if a single layer graphene is deposited onto a SiO2 surface, a
finite energy gap will open between conduction and valence bands for an oxygen-terminated
surface, but close when the oxygen atoms on the substrate are passivated with hydrogen
atoms. The confinement can be achieved by a gapless nanoscale graphene regions connecting
with gapped regions, which serve as barriers, as shown in Fig 1. The devices are realizable
in experiment. In an oxygen terminated SiO2 substrate, we use protective stuff to cover the
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Fig. 1. (a) Schematic of a single quantum dot. A GNR is deposited on a SiO2 substrate. The
dark part is the dot region, which is fully hydrogen-passivated and gapless. The light part is
the barrier region, which is non hydrogen-passivated or slightly hydrogen-passivated and
gapped. (b) Energy bands of this system.

barrier regions and the dot region is fully exposed to hydrogen atoms atmosphere. Then
a single layer graphene is deposited on this substrate and the bound states exit in the
hydrogen-passivated regions. Compared to the approach of forming quantum dots on GNR
with semiconducting armchair boundary conditions (Trauzettel et al., 2007), the realization
of quantum dot will not depend much on the boundary conditions. Since ferromagnetic
insulators deposited on graphene can induce ferromagnetic correlations in graphene, we
consider adding ferromagnetic insulator such as EuO upon the two gapped graphene barriers.
The induced exchange interaction is estimated to achieve 5 meV by using EuO (Haugen et al.,
2008).
The electron waves in graphene system are usually described by four component spinor
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written as (Recher et al., 2009): in the dot region (where 0 ≤ y ≤ L),
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where h̄ is the Planck constant, vF ≈ 106 m/s is the Fermi velocity, σx, σy, σz are Pauli matrices
acting on two-spinor states related to the two triangular sublattices of graphene, η = ±1
stands for the two spin indexes (spin up and spin down). 2Δ is the gap induced by the
substrate, 2Vσ is the spin splitting energy due to the correlation with ferromagnetic contacts.
We consider metallic armchair shaped GNR with the quantized transverse momentum qn =
n π

W and the wave vectors in the y direction should satisfy different conditions as

E = ±
√

(h̄vFqn)2 + (h̄vFk)2, (3)
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in the dot and
E = ±

√
(h̄vFqn)2 + (h̄vFk�)2 + Δ2 − ηVσ, (4)

in the barriers, where k is the wave vector in the dot and k
�

in the ferromagnetic barrier with
± signs referring to conduction band (+) and valence band (−) respectively. The bound state
requires that k

�
is a pure imaginary, which means the bound state energy should satisfy

|E| � h̄vF |qn|, |E + ηVσ| <
√

(h̄vFqn)2 + Δ2. (5)

The energy levels of the bound states can be obtained by matching the wavefunctions at y = 0
and y = L. We use 1/L as the unit of qn and the characteristic energy h̄vF/L as the energy
unit. In Fig. 2, we show the energy spectrum as a function of the substrate induced interaction
Δ for different transverse momentums (qn) where Vσ is assumed to be 5 meV (Haugen et al.,
2008). As shown in Fig. 2, when Δ increases, the number of bound states is increasing at the
same time, which can be deduced from Eq. 5.
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Fig. 2. Bound-state energy levels of a substrate modulated graphene quantum dot with
Vσ = 5meV for qn = 0, 1, 2, 3 and η = 1, black: qn = 0, green: qn = 1, blue: qn = 2, red: qn = 3.
Both axe labels are in the characteristic energy unit of h̄vF/L. The length L and width W of
dot are assumed to be 100 nm and 300 nm respectively.

Our approach can be easily developed to more complex and scalable pattern. Here we study a
two-dimensional quantum dot array as shown in Fig. 3a. Instead of forming transverse modes
of nanoribbon, the wavefunctions must match between dot and barrier along both x and y
directions. The energy spectrum of this system has been plotted in Fig. 3b. The neighboring
dots are coupled by the exchange coupling J. We obtain J by calculating the exchange coupling
J = 4t2/U according to Hubbard approximation. Here U is onsite Coulomb energy and
t = ε

∫
ϕ†

1(�r1)ϕ2(�r2) is tunnelling matrix element between two neighboring quantum dots,
where ε is the single-particle bound state energy and ϕ1(�r) and ϕ2(�r) are the wavefunctions
of two neighboring or next-nearest neighboring dots. We estimate U ≈ 10 meV for the dot
size L ≈ 30 nm and the characteristic energy unit of this system h̄vF/L is about 22 meV. Fig.
4 shows the nearest coupling strength (J1) and the next-nearest coupling strength (J2) of the
ground state versus the opened gap Δ in the barrier region (when d = 3L), from which we

322 Physics and Applications of Graphene - Theory

(a)

0 2 4 6 8 10
0

2

4

6

8

10

Δ

E
ne

rg
y

(b)

Fig. 3. (a) Schematic drawing of two-dimensional quantum dot arrays. The dot regions (dark
regions) are defined by the gapped barrier regions (light regions). (b) The bound-state energy
levels of this two-dimensional system with L = 30 nm and d = 3L. Both axe labels are in the
characteristic energy unit of h̄vF/L.

find that the nearest coupling strength decreases sharply when the opened gap increases. We
also find that the nearest coupling both along the x direction and y direction are the same for
the ground state, and coupling strengths between the nearest and next-nearest neighboring
dots are anisotropic for excited states.

Fig. 4. Coupling strength of the nearest (J1) and next-nearest (J2) dots as a function of the
opened gap Δ in the barrier region for the ground state.

2.3 Graphene nanoribbon quantum dot chain
In this section, we introduce a graphene quantum system in which the proposed GNR consists
of an array of Z-shaped structures and each Z-shaped structure includes a central region
with zigzag edge connecting to two regions with armchair edge, as presented in Fig. 5d.
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2008). As shown in Fig. 2, when Δ increases, the number of bound states is increasing at the
same time, which can be deduced from Eq. 5.
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Fig. 2. Bound-state energy levels of a substrate modulated graphene quantum dot with
Vσ = 5meV for qn = 0, 1, 2, 3 and η = 1, black: qn = 0, green: qn = 1, blue: qn = 2, red: qn = 3.
Both axe labels are in the characteristic energy unit of h̄vF/L. The length L and width W of
dot are assumed to be 100 nm and 300 nm respectively.

Our approach can be easily developed to more complex and scalable pattern. Here we study a
two-dimensional quantum dot array as shown in Fig. 3a. Instead of forming transverse modes
of nanoribbon, the wavefunctions must match between dot and barrier along both x and y
directions. The energy spectrum of this system has been plotted in Fig. 3b. The neighboring
dots are coupled by the exchange coupling J. We obtain J by calculating the exchange coupling
J = 4t2/U according to Hubbard approximation. Here U is onsite Coulomb energy and
t = ε

∫
ϕ†

1(�r1)ϕ2(�r2) is tunnelling matrix element between two neighboring quantum dots,
where ε is the single-particle bound state energy and ϕ1(�r) and ϕ2(�r) are the wavefunctions
of two neighboring or next-nearest neighboring dots. We estimate U ≈ 10 meV for the dot
size L ≈ 30 nm and the characteristic energy unit of this system h̄vF/L is about 22 meV. Fig.
4 shows the nearest coupling strength (J1) and the next-nearest coupling strength (J2) of the
ground state versus the opened gap Δ in the barrier region (when d = 3L), from which we
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Fig. 3. (a) Schematic drawing of two-dimensional quantum dot arrays. The dot regions (dark
regions) are defined by the gapped barrier regions (light regions). (b) The bound-state energy
levels of this two-dimensional system with L = 30 nm and d = 3L. Both axe labels are in the
characteristic energy unit of h̄vF/L.

find that the nearest coupling strength decreases sharply when the opened gap increases. We
also find that the nearest coupling both along the x direction and y direction are the same for
the ground state, and coupling strengths between the nearest and next-nearest neighboring
dots are anisotropic for excited states.

Fig. 4. Coupling strength of the nearest (J1) and next-nearest (J2) dots as a function of the
opened gap Δ in the barrier region for the ground state.

2.3 Graphene nanoribbon quantum dot chain
In this section, we introduce a graphene quantum system in which the proposed GNR consists
of an array of Z-shaped structures and each Z-shaped structure includes a central region
with zigzag edge connecting to two regions with armchair edge, as presented in Fig. 5d.

323Quantum Computation with Graphene Nanostructure



Using the π orbital tight-binding(TB) approximation, the density of states and the spectrum
of the zigzag region in this GNR system can be obtained by the direct diagonalization with
periodic boundary conditions. We find that there are several localized states with electron-hole
symmetry around the zero energy point, as shown in Fig.5a. Considering higher-order
hopping terms, we calculated the DOS and the spectrum using a third nearest-neighbor TB
model instead of nearest-neighbor TB model with the second and third neighbor interaction
energies γ1 = −0.12eV and γ2 = −0.068eV (Reich et al., 2002; Son et al., 2006). As shown in
Fig. 5a and Fig. 6, higher-order hopping terms destroy the electron-hole symmetry, but don’t
destroy the confined states in each zigzag region. Hence we can choose to get one localized
electron or hole in the zigzag region by adjusting the Fermi level through the individual top
gates. Furthermore, in the calculations we find that the spectrum of GNR depends very much
on the nature of their geometry. There are no localized states in the zigzag regions when the
width of this GNR N = 3m − 1 or N = 2m (unit cells), as shown in Fig. 6. Here m is an integer.
We now discuss two coupled Z-shaped quantum dots, which are connected with armchair
GNR. Fig. 5b shows the spatial distribution of local probability density of a typical GNR with
two Z-shaped structures, and N = 7, L = 4, D = 6 for E0 = ±0.3 eV discrete states. As shown
in Fig. 5c, each zigzag region (quantum dot) confines one electron and these two electrons
are coupled by the exchange interaction J1. J1 can be obtained by calculating the exchange
interaction J1 = 4t2/U. Obviously, the exchange coupling J1 is determined by the geometry
of the nanoribbon. For each N and L, J1 depends on the distance between two neighboring
dots D (unit cells), as shown in Fig. 7.
The spin of the localized charge carrier is used as the physical qubit and the GNR with a
sequence of Z-shaped structures forms an one-dimensional spin qubit chain as shown in
Fig. 5d. In this chapter, we neglect the magnetic effect of GNR edge (Son et al., 2009). The
neighboring qubits in this chain have an always-on Heisenberg interaction H = J1 �S1 · �S2. Here
�S1 and �S2 are the spin operators of the neighboring localized charge carrier. For a sequence of
Z-shaped structure GNR with parameters as N = 7, L = 4, D = 18, the Hamiltonian of the
system can be expressed as

HI = ∑
�i,j�

Ji,j(σx
i ⊗ σx

j + σ
y
i ⊗ σ

y
j + σz

i ⊗ σz
j ), (6)

where σ
x,y,z
i,j are the spin Pauli operators of the localized charge carrier in the quantum dots,

�i, j� represent two nearest neighboring dots.

3. Quantum-noise control in graphene nanoribbon quantum dot chain

The main challenges for solid-state QIP are achieving the high accuracy of gate operation
and tailoring the disturbing environment. In our one-dimensional spin qubit chain, the
quantum information is disturbed by the charge noise, the nuclear spins in substrate and
inherent spin-spin interaction. Therefore achieving noise control is indispensable. A variety
of strategies have been devised to meet this challenge, no single method can suppress the
complex noise and decoherence. Rather, constructing a reliable QIP scheme depends crucially
on the errors that happen. First, to avoid the spin qubits to entangle with the environment,
we can apply a BB operation Uz = exp(−iσzπ/2) to each quantum dot region. Such rotation
operations can be implemented through the electrically driven single-electron spin resonance
by localized a.c. electric field pulses if ferromagnetic strips are integrated on top of the
graphene quantum dots, which has been successfully realized in GaAs/AlGaAs quantum dot
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Fig. 5. Schematic illustration of the proposed architecture of GNR quantum dot chain. (a) The
density of states of the GNR are calculated by nearest neighbor TB approximation and third
nearest-neighbor TB approximation with the second and third neighbor interaction energies
γ1 = −0.12eV and γ2 = −0.068eV. (b) The spatial distribution of local probability density of
GNR with two coupled quantum dots, and N = 7, L = 4, D = 6 for ground states. (c) Two
coupled graphene quantum dots in which each dot is filled with a single electron. The
physical qubit is encoded into the spin of the confined electron. (d) The proposed periodic
architecture with three logical qubits as a unit for quantum computation. Physical qubits 1
and 2 form logical qubit L1; physical qubits 3 and 4 form logical qubit L2; physical qubits 5
and 6 form logical qubit L3. The Gz , Gx, Gy are the BB operation sets of L1, L2 and L3
respectively. The cyan ribbon indicates the micromagnet integrated on top of the GNR
structure to apply an slanting magnetic field. The GNR and micromagnet are isolated by an
insulating layer. Each zigzag region has a nearby gate. The nearby gates are not outlined for
clarity.
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i,j are the spin Pauli operators of the localized charge carrier in the quantum dots,

�i, j� represent two nearest neighboring dots.

3. Quantum-noise control in graphene nanoribbon quantum dot chain

The main challenges for solid-state QIP are achieving the high accuracy of gate operation
and tailoring the disturbing environment. In our one-dimensional spin qubit chain, the
quantum information is disturbed by the charge noise, the nuclear spins in substrate and
inherent spin-spin interaction. Therefore achieving noise control is indispensable. A variety
of strategies have been devised to meet this challenge, no single method can suppress the
complex noise and decoherence. Rather, constructing a reliable QIP scheme depends crucially
on the errors that happen. First, to avoid the spin qubits to entangle with the environment,
we can apply a BB operation Uz = exp(−iσzπ/2) to each quantum dot region. Such rotation
operations can be implemented through the electrically driven single-electron spin resonance
by localized a.c. electric field pulses if ferromagnetic strips are integrated on top of the
graphene quantum dots, which has been successfully realized in GaAs/AlGaAs quantum dot

324 Physics and Applications of Graphene - Theory

L LD

N

......

Phycia l qub its

Logica l qub its

(a)

(b)

(c)

(q)

0-1 1

2E 0

E 1

D
O
S(
a.
u.
)

Eyergy (eV )

O yO x

O z
L 1 L 2 L 3

1 2 3 4 5 6

yea rest yb . TB

th irq yb . TB

{ { {

Fig. 5. Schematic illustration of the proposed architecture of GNR quantum dot chain. (a) The
density of states of the GNR are calculated by nearest neighbor TB approximation and third
nearest-neighbor TB approximation with the second and third neighbor interaction energies
γ1 = −0.12eV and γ2 = −0.068eV. (b) The spatial distribution of local probability density of
GNR with two coupled quantum dots, and N = 7, L = 4, D = 6 for ground states. (c) Two
coupled graphene quantum dots in which each dot is filled with a single electron. The
physical qubit is encoded into the spin of the confined electron. (d) The proposed periodic
architecture with three logical qubits as a unit for quantum computation. Physical qubits 1
and 2 form logical qubit L1; physical qubits 3 and 4 form logical qubit L2; physical qubits 5
and 6 form logical qubit L3. The Gz , Gx, Gy are the BB operation sets of L1, L2 and L3
respectively. The cyan ribbon indicates the micromagnet integrated on top of the GNR
structure to apply an slanting magnetic field. The GNR and micromagnet are isolated by an
insulating layer. Each zigzag region has a nearby gate. The nearby gates are not outlined for
clarity.
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experiment recently (Pioro-Ladrière et al., 2008). Next, to counteract the phase decoherence,
we can use DFS encoding (Duan et al., 1997; Lidar et al., 1998; Benjamin et al., 2003). For a
simply DFS encoding, two physical qubits can encode a logical qubit:

|0�L = | ↑1↓2�, |1�L = | ↓1↑2�. (7)

As shown in Fig. 5c, localized electron spins in the two neighboring zigzag regions can be
used to form a logical qubit.
Furthermore, a special encoding method and a nonsynchronous BB pulse operations are
exploited to overcome the untunable spin-spin interactions between two neighboring physical
qubits (Zhang et al., 2004). We proposed a GNR quantum dot chain architecture, which forms
a periodic structure L1L2L3L1L2L3 · · · with three logical qubits as a unit, as shown in Fig. 5d.
L1 represents a logical qubit encoded as Eq. (7). L2 is a logical qubit encoded as

|0�L2 =
1
2
(| ↑�3 + | ↓�3)(| ↑�4 − | ↓�4), (8)

|1�L2 =
1
2
(| ↑�3 − | ↓�3)(| ↑�4 + | ↓�4). (9)

And L3 is a logical qubit encoded as

|0�L3 =
1
2
(| ↑�5 + i| ↓�5)(| ↑�6 − i| ↓�6), (10)

|1�L3 =
1
2
(| ↑�5 − i| ↓�5)(| ↑�6 + i| ↓�6). (11)

With this periodic architecture, we need to apply nonsynchronous BB pulse operations
respectively to L1, L2, L3 from the operation sets Gz = {I, Uz, Rz}, Gx = {I, Ux, Rx},
Gy = {I, Uy, Ry}, where Uz = −σz

1 ⊗ σz
2 , Rz = −i Iz

1 ⊗ σz
2 , Ux = −σx

1 ⊗ σx
2 , Rx = −i I1 ⊗ σx

2 ,
Uy = −σ

y
1 ⊗ σ

y
2 , and Ry = −i I1 ⊗ σ

y
2 . Thus we obtain a quantum computation system with

entirely decoupled logical qubits.

4. Universal quantum gates in GNR quantum dot chain

In this section, we discuss the scheme to perform universal set of quantum gates on encoded
qubits. Since arbitrary single-qubit rotations can be constructed from the two elementary logic
operations X̄ and Z̄, we show how to implement the two gate operations in the GNR quantum
dot chain. For logical qubit L1, X̄ = 1

2 (σx
1 ⊗ σx

2 + σ
y
1 ⊗ σ

y
2 ), Z̄ = 1

2 (σz
1 − σz

2). X̄ gate can be easily
achieved by adjusting the BB pulses of both qubits 1 and 2 to be synchronous. The operation
time is Δt = h̄π/4J = 0.2 ns, for N = 7, L = 4, D = 18. Z̄ gate can be achieved by localized
pluses on the two physical qubits respectively. The operation time of Z̄ gate can be nanosecond
scale when a slanting magnetic field with large field gradient is applied onto each quantum
dot region (Pioro-Ladrière et al., 2008). The fidelity of the X̄ gate is limited by fluctuations in
the qubit splitting J caused by charge noise, such as 1/ f noise. The accuracy of the Z̄ gate is
dominated by spin dephasing due to the nuclear field fluctuations. The fidelity of the Z̄ gate
can be very high due to the small nuclear field in graphene system.
Combined with the arbitrary single-qubit rotation, two-qubit CNOT gate on any two logical
qubits is required to complete our universal set of quantum gates. For example, we construct
CNOT gate between two neighboring logical qubits, L1 and L2. It is shown that CNOT gate
can be implemented by W gate W = eiθZ̄⊗Z̄ conjugating Hadamard operation. It has been
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experiment recently (Pioro-Ladrière et al., 2008). Next, to counteract the phase decoherence,
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As shown in Fig. 5c, localized electron spins in the two neighboring zigzag regions can be
used to form a logical qubit.
Furthermore, a special encoding method and a nonsynchronous BB pulse operations are
exploited to overcome the untunable spin-spin interactions between two neighboring physical
qubits (Zhang et al., 2004). We proposed a GNR quantum dot chain architecture, which forms
a periodic structure L1L2L3L1L2L3 · · · with three logical qubits as a unit, as shown in Fig. 5d.
L1 represents a logical qubit encoded as Eq. (7). L2 is a logical qubit encoded as
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|1�L3 =
1
2
(| ↑�5 − i| ↓�5)(| ↑�6 + i| ↓�6). (11)
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2 . Thus we obtain a quantum computation system with

entirely decoupled logical qubits.

4. Universal quantum gates in GNR quantum dot chain

In this section, we discuss the scheme to perform universal set of quantum gates on encoded
qubits. Since arbitrary single-qubit rotations can be constructed from the two elementary logic
operations X̄ and Z̄, we show how to implement the two gate operations in the GNR quantum
dot chain. For logical qubit L1, X̄ = 1
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2). X̄ gate can be easily
achieved by adjusting the BB pulses of both qubits 1 and 2 to be synchronous. The operation
time is Δt = h̄π/4J = 0.2 ns, for N = 7, L = 4, D = 18. Z̄ gate can be achieved by localized
pluses on the two physical qubits respectively. The operation time of Z̄ gate can be nanosecond
scale when a slanting magnetic field with large field gradient is applied onto each quantum
dot region (Pioro-Ladrière et al., 2008). The fidelity of the X̄ gate is limited by fluctuations in
the qubit splitting J caused by charge noise, such as 1/ f noise. The accuracy of the Z̄ gate is
dominated by spin dephasing due to the nuclear field fluctuations. The fidelity of the Z̄ gate
can be very high due to the small nuclear field in graphene system.
Combined with the arbitrary single-qubit rotation, two-qubit CNOT gate on any two logical
qubits is required to complete our universal set of quantum gates. For example, we construct
CNOT gate between two neighboring logical qubits, L1 and L2. It is shown that CNOT gate
can be implemented by W gate W = eiθZ̄⊗Z̄ conjugating Hadamard operation. It has been

327Quantum Computation with Graphene Nanostructure



known that W gate is equivalent to a controlled rotation about the z axis: W = eiθZ̄⊗Z̄ =
|0��0| ⊗ I + |1��1| ⊗ e2iθZ̄ (Bremner et al., 2002). By performing Hadamard transformation to
the two physical qubits of the second logical qubit L2 and changing the BB control pulse to be
the same with L1, we can recouple the two neighboring logical qubits and implement W gate
of logical qubits of L1 and L2.
The spin decoherence time of graphene quantum dot has been predicted to be more than 10
μs in the nature carbon material (Trauzettel et al., 2007; Fischer et al., 2009). This decoherence
time is 4 orders longer than the gate operation time of the present scheme and the gate error
might meet the required threshold in principle. This combined DFS and BB control method is
a useful approach to offer the possibility for coherent controlling spin qubits on graphene.

5. Conclusion

To conclude, we have discussed the potential to implement spin-based quantum computation
on graphene nanostructures. Several approaches have been introduced to achieved quantum
confinement of charge carriers. To overcome the dependence on the boundary conditions of
GNR, we proposed a method to form quantum dots in substrate modulated graphene. We
presented the theoretical proposals for forming logical qubit encoding in a DFS subspace and
achieving noise control by BB control strategy in a GNR quantum dot chain with always-on
Heisenberg interaction. Furthermore, universal set of quantum gates on encoded qubits has
been achieved by a sequence of pulse control. Recently, the experimental breakthroughs in
few electrons or holes graphene quantum dots (Neubeck et al., 2010) open an avenue for
realization of spin qubit in graphene nanostructure.
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known that W gate is equivalent to a controlled rotation about the z axis: W = eiθZ̄⊗Z̄ =
|0��0| ⊗ I + |1��1| ⊗ e2iθZ̄ (Bremner et al., 2002). By performing Hadamard transformation to
the two physical qubits of the second logical qubit L2 and changing the BB control pulse to be
the same with L1, we can recouple the two neighboring logical qubits and implement W gate
of logical qubits of L1 and L2.
The spin decoherence time of graphene quantum dot has been predicted to be more than 10
μs in the nature carbon material (Trauzettel et al., 2007; Fischer et al., 2009). This decoherence
time is 4 orders longer than the gate operation time of the present scheme and the gate error
might meet the required threshold in principle. This combined DFS and BB control method is
a useful approach to offer the possibility for coherent controlling spin qubits on graphene.

5. Conclusion

To conclude, we have discussed the potential to implement spin-based quantum computation
on graphene nanostructures. Several approaches have been introduced to achieved quantum
confinement of charge carriers. To overcome the dependence on the boundary conditions of
GNR, we proposed a method to form quantum dots in substrate modulated graphene. We
presented the theoretical proposals for forming logical qubit encoding in a DFS subspace and
achieving noise control by BB control strategy in a GNR quantum dot chain with always-on
Heisenberg interaction. Furthermore, universal set of quantum gates on encoded qubits has
been achieved by a sequence of pulse control. Recently, the experimental breakthroughs in
few electrons or holes graphene quantum dots (Neubeck et al., 2010) open an avenue for
realization of spin qubit in graphene nanostructure.
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1. Introduction    
Graphene nanoribbons (GNRs) have one-dimensional structures with hexagonal two-
dimensional carbon lattices, which are stripes of graphene. Their structures and their 
electronic and magnetic properties have been intensively studied both experimentally and 
theoretically. Due to their various edge structures, GNRs present different electronic 
properties ranging from normal semiconductors to spin-polarized half metals, which opens 
the possibility of GNRs as electric devices. 
In this chapter, the geometric, electronic, and magnetic properties of GNRs are discussed. 
First, the electronic and magnetic properties of pristine GNRs are understood with their 
special structures. We emphasize the importance of one-dimensional quantum confinement 
effect and edge states. Secondly, since GNRs have large surface-volume ratio and special 
edge states, their properties can be modified by many methods, such as doping and 
adsorption. The electronic property and its response to modulation are described in detail. 
Finally, the experimental realizations of GNRs are introduced, which provide substantial 
bases to theoretical prediction of GNRs’ electronic and magnetic properties. Possible future 
research directions are also discussed. 

2. Magnetic and electronic properties of pristine GNRs 
After the successful isolation of graphene, its amazing properties make it become a rising 
star of current materials research. However, as we know, graphene is a zero-gap 
semiconductor. To extend the real applications, an energy gap is needed, which enables the 
basic electric logic states: on and off. Besides, carbon-based magnetic materials are very 
important, which have small spin scattering and large potential to be immigrated into future 
electric devices. Due to the modern technology, etching or patterning graphene in some 
special direction has been realized. When graphene is etched or patterned along one specific 
direction, a novel quasi one-dimensional (1D) structure is obtained, which is a strip of 
graphene, referred as graphene nanoribbon (GNR). There are some critical questions about 
such GNRs: How do they organize the structures?  Do they have energy gaps? And is there 
any magnetic state in these GNRs? 

2.1 Geometric structures of pristine GNRs 
The typical width of GNR is of nanometers. Different with 2D graphene, the termination in 
one direction introduces important quantum confinement effect (QCE), which endows GNR 
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basic electric logic states: on and off. Besides, carbon-based magnetic materials are very 
important, which have small spin scattering and large potential to be immigrated into future 
electric devices. Due to the modern technology, etching or patterning graphene in some 
special direction has been realized. When graphene is etched or patterned along one specific 
direction, a novel quasi one-dimensional (1D) structure is obtained, which is a strip of 
graphene, referred as graphene nanoribbon (GNR). There are some critical questions about 
such GNRs: How do they organize the structures?  Do they have energy gaps? And is there 
any magnetic state in these GNRs? 

2.1 Geometric structures of pristine GNRs 
The typical width of GNR is of nanometers. Different with 2D graphene, the termination in 
one direction introduces important quantum confinement effect (QCE), which endows GNR 
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various attractive properties. Depends on the termination style, normally, nonchiral GNR 
can be divided into two kinds: Armchair and Zigzag (Fig. 1 shows the structures of 
Armchair and Zigzag GNRs). Adopting the standard convention, the width of armchair 
GNRs is classified by the number of dimer lines (Na) across the ribbons. Likewise, the one of 
zigzag GNRs is classified by the number of zigzag chains (Nz) across the ribbons. 
Perpendicular to the direction of defined width, GNRs repeat their geometric structures, 
and form one-dimensional periodic structures. 
 

 
Fig. 1. Structure of armchair and zigzag nanoribbons 

Since GNRs are stripes of graphene, edge atoms are not saturated. Active edge states  
become an important factor to determine the edge structures.  For armchair GNRs, there is 
no any edge rescontructions, and the planar patterns are kept. While for zigzag GNRs, it is 
unexpectedly found that the zigzag edge is metastable, and reconstructions spontaneously 
take place at high temperature. Some special structures have been proposed as possible 
reconstructed patterns (Koskinen et al., 2008), however the detailed reconstructions still 
need to be further studied. To keep the planar structures of zigzag GNRs, hydrogen atoms 
are introduced to saturate the edge atoms of GNRs. Besides, in most of the reported 
structures in experiments, GNRs are found no reconstructions. Thus, most theoretical 
research has taken the saturated GNRs as the starting point. In the following context, edge 
atoms of GNRs are saturated by hydrogen atoms without special notation.  

2.2 Electronic properties of Armchair GNRs 
Many theoretical studies have been devoted into investigating the electronic properties of 
Armchair GNRs, such as tight-binding calculations, density functional theory (DFT) 
calculations, and many-electron green’s function approach within GW approximation. 
Among those methods, DFT calculations adopt parameter-free self consistent field 
calculations, and their reliability has been broadly proved in solid state field and nano-scale 
systems. Thus, most of the theoretical investigations have been carried out with DFT 
calculations. However, it is well established that DFT calculations underestimate band gaps. 
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Other methods, such GW approximation, have been adopted to correct DFT calculations, 
and get the reliable band gaps. In the following discussions, both DFT and GW results are 
included.   
As shown in the Fig. 1, armchair GNRs are defined by the number of dimer lines (Na) across 
the ribbons. Their electronic structures have been carefully investigated by DFT calculations 
(Son et al. 2006a).  Their results show that all armchair GNRs are semiconductors with 
energy gaps, which decrease as a function of increasing ribbon widths. No magnetism has 
been found in armchair GNRs. As seen from Fig. 2., the energy gaps as a function of ribbon 
width are well separated into three different kinds: Na = 3p, 3p+1, 3p+2 (p is integer). 
Moreover, the gap size hierarchy is well separated.  Na = 3p+1 categories has the largest 
energy gap, while the Na = 3p+2 series is the smallest one. 

 

 
Fig. 2. The variation of band gaps of armchair GNRs with DFT calculations (Son et al. 
2006a).  

Armchair GNRs show semiconducting behaviours with a direct energy gap. The 
determining factor comes from the quantum confinement effect (QCE), which can be 
characterized by [energy gaps] versus [width]-1. Besides the QCE, son et al. has pointed that 
the edge effects play an important role to force the armchair GNRs to be semiconductors 
(Son et al. 2006a).  As discussed in the previous parts, the edge carbon atoms of armchair 
GNRs are passivated by hydrogen atoms, which leads to the bonding of carbon atoms at the 
edges different with other carbon atoms. As a consequence, the bond lengths of carbon 
atoms at the edges are shorter than that in the middle of ribbons, and open the energy gaps 
of armchair GNRs.  
Although armchair GNRs have three typical families (corresponding to Na = 3p, 3p+1, 3p+2, 
respectively) with distinguished energy gaps, they have similar band shapes. As an 
example, the band structure of armchair GNR with Na = 13 is shown in Fig. 3. (Sun et al. 
2008), there are four important subbands which dominate the electronic behaviors of 
armchair GNRs. These subbands are constituted by the π bonds of carbon atoms, and have 
different shapes, which provide the possibility of external modulations, such as strain. 
On the other hand, although DFT calculations can provide the correct qualitative pictures, 
the accurate energy gaps of armchair GNRs are needed. To solve the band-gap problems, Li 
et al. have performed first-principles calculations using many-electron Green’s function 
approach within the GW approximation, which is treated as one of the most accurate 
methods to predict the energy gaps. It is clear that GW calculations give the same hierarchy 
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different shapes, which provide the possibility of external modulations, such as strain. 
On the other hand, although DFT calculations can provide the correct qualitative pictures, 
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Fig. 3. Band structure and the space charge distribution of armchair GNRs (Na = 13) (Sun et 
al. 2008). 

as those obtained in DFT calculations. But the GW corrections to the band gaps of armchair 
GNRs are significant. The corrections are from 0.5 to 3 eV for the GNRs with width from 1.6 
to 0.4 nm (Li et al. 2007). Thus, GW calculations show that armchair GNRs can have large 
energy gaps with limited widths. 
 

 
Fig. 4. The variation of band gaps of armchair GNRs with GW calculations (Li et al. 2007). 

2.3 Electronic and magnetic properties of zigzag GNRs 
For nanoribbons with zigzag shaped edges, without considering spin states, DFT 
calculations have shown that a set of doubly degenerate flat edge-state bands at Fermi level 
(EF) (Son et al. 2006a; Wu et al. 2009), which give rise to a very large density of states (DOS) 
at EF.  This DOS peak at EF  is half filled,  which therefore provides Stoner instability leading 
to magnetic states.  
By inclusion of the spin degrees of freedom within DFT methods, the zigzag GNRs have 
been predicted to have a magnetic insulating ground state with ferromagnetic ordering at 
each zigzag edge, and antiparallel spin orientation between the two edges (Son et al. 2006a; 
Wu et al. 2009).  Different with armchair GNRs, the zigzag GNRs have the same hierarchy of   
band gap-width relationship.  
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In Fig. 5., the spin-density plot clearly shows that spin moments are mainly distributed at 
the edge carbon atoms. Compared with the nonspin-polarized solutions, spin-polarized 
edge states are more favoured, and the total energy difference between these states increases 
with the width of GNRs. For example, the energy difference is 20 meV per edge carbon 
atoms for Nz= 8, while becomes 24 meV for Nz = 16 (Son et al. 2006a; Wu et al. 2009).  
Moreover, the spin-polarized states are further stabilized by ferromagnetic coupling at the 
edge, while antiferromagnetic coupling between the two edges. However, the energy 
difference between ferromagnetic and antiferromagnetic coupling is very small, and 
decreases as width of ribbons increases.  When the width is significantly larger than the 
decay length of the spin-polarized edge states, antiferromagnetic and ferromagnetic states 
almost have the same stability(Son et al. 2006a; Wu et al. 2009).   
  

 
Fig. 5. (a) Spin density for zigzag GNRs with Nz = 12, red and blue mean different spin 
direction. (b) The band gaps of zigzag GNRs with Nz = 12, spin-up channel is degenerate 
with spin-down channel in all energy bands. (c) The variation of band gap and energy 
splitting as function of the width of zigzag GNRs. (Son et al. 2006a). 

GW approach has large effect on such localized states in zigzag GNRs. Li et al’s results show 
that the magnitudes of the corrections to the DFT energy gaps in zigzag GNRs are similar to 
those in AGNRs (Li et al., 2007). As plotted in Fig. 6., the corrections enlarge the band gap 
by roughly 1 eV for the studied ribbons. On the other hand, the spin-polarized edge states 
are kept.  
Based on the above results, it is clear that DFT method can correctly predict the qualitative 
properties of zigzag GNRs, namely, spin-polarized edge states and semiconducting with 
direct energy gaps. However, GW approach and similar methods can provide better 
quantitative results. In this sense, DFT calculations as a simple method will provide reliable 
physical pictures in most cases, and satisfy our requirements in studying GNRs. 

3. Magnetic and electronic properties of GNRs under external modulations 
As discussed above, both armchair and zigzag GNRs have direct band gaps. Compared with 
graphene, which is a zero-gap semiconductor, the insulating behaviour of GNRs is very 
important. It is well known that two distinguished states, metallic and insulating states, are 
necessary to develop reliable electric devices. Thus, for the potential applications based on 
graphene, GNRs greatly extend the functionality of graphene.  
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Fig. 3. Band structure and the space charge distribution of armchair GNRs (Na = 13) (Sun et 
al. 2008). 

as those obtained in DFT calculations. But the GW corrections to the band gaps of armchair 
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Fig. 4. The variation of band gaps of armchair GNRs with GW calculations (Li et al. 2007). 

2.3 Electronic and magnetic properties of zigzag GNRs 
For nanoribbons with zigzag shaped edges, without considering spin states, DFT 
calculations have shown that a set of doubly degenerate flat edge-state bands at Fermi level 
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Wu et al. 2009).  Different with armchair GNRs, the zigzag GNRs have the same hierarchy of   
band gap-width relationship.  
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Fig. 5. (a) Spin density for zigzag GNRs with Nz = 12, red and blue mean different spin 
direction. (b) The band gaps of zigzag GNRs with Nz = 12, spin-up channel is degenerate 
with spin-down channel in all energy bands. (c) The variation of band gap and energy 
splitting as function of the width of zigzag GNRs. (Son et al. 2006a). 

GW approach has large effect on such localized states in zigzag GNRs. Li et al’s results show 
that the magnitudes of the corrections to the DFT energy gaps in zigzag GNRs are similar to 
those in AGNRs (Li et al., 2007). As plotted in Fig. 6., the corrections enlarge the band gap 
by roughly 1 eV for the studied ribbons. On the other hand, the spin-polarized edge states 
are kept.  
Based on the above results, it is clear that DFT method can correctly predict the qualitative 
properties of zigzag GNRs, namely, spin-polarized edge states and semiconducting with 
direct energy gaps. However, GW approach and similar methods can provide better 
quantitative results. In this sense, DFT calculations as a simple method will provide reliable 
physical pictures in most cases, and satisfy our requirements in studying GNRs. 

3. Magnetic and electronic properties of GNRs under external modulations 
As discussed above, both armchair and zigzag GNRs have direct band gaps. Compared with 
graphene, which is a zero-gap semiconductor, the insulating behaviour of GNRs is very 
important. It is well known that two distinguished states, metallic and insulating states, are 
necessary to develop reliable electric devices. Thus, for the potential applications based on 
graphene, GNRs greatly extend the functionality of graphene.  
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Fig. 6. Calculated band structure of zigzag GNRs with Nz =12 for (a) DFT calculations and 
(b) GW calculations, respectively. (c) and (d) represent the variation of direct band gap and 
energy gap at the zone boundary with the width of zigzag GNRs (Li et al. 2007). 

On the other hand, because of the existence of edges in GNRs, there are many possibilities of 
external modulations to modify the electronic and magnetic properties of GNRs, such as 
applying electric field, strain, and edge modifications. Besides, the special geometric and 
electronic structures of GNRs provide the potential possibilities of producing graphene-
based spintronics. As we know, zigzag GNRs have the spontaneous spin-polarized edge 
states. Thus, how to manipulate the electronic and magnetic properties of GNRs becomes a 
very interesting topic.  
In the following part, we will discuss the reported external modulations on the armchair 
and zigzag GNRs. Since the pristine armchair GNRs are non spin-polarized materials, we 
discuss the reported results of armchair GNRs under external modulations first.  While for 
zigzag GNRs, the situations are more complicated and interesting because of the spin-
polarized solutions.  

3.1 Armchair GNRs  
3.1.1 Applying strain 
Armchair GNRs show semiconducting behaviours with a direct energy gap, and are well 
separated into three categories. To build future nano devices based on GNRs, the capability 
to control GNRs’ electronic properties is highly desirable. One of the possible and effective 
ways is to apply external strain. Thus, how are the geometric structures and the related 
electronic structures deformed under external strain becomes interesting problems.  
Sun et al. have carried out comprehensive DFT studies to investigate those problems (Sun et 
al. 2008). To clearly indicate such effect, the deformation of armchair GNRs can be 
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represented by the strain (ε), defined as ε= (r-r0)/r0, where r and r0 are the deformed and 
initial equilibrium lattice constants (r0= 4.287 Å) along the periodic direction of armchair 
GNRs. As we know, the structures of armchair GNRs are deformed to release the strain 
energy by applying external strain. In order to describe the vibration of C-C bonds in GNRs, 
four representative C-C bonds are selected in armchair GNRs with Na = 13 (sketched in Fig. 
7.). It is clear that the C-C separations change almost linearly with the strain, and the 
deformation leads to the largest change in the inner C-C bond length (a1). As reported in the 
pristine armchair GNRs, the C-C bonds (a3 and a4) are shorted because of the edge effect. 
Therefore, the stronger C-C bonds (a3 and a4) have smaller response under the same external 
strain tensor. Here we should note all armchair GNRs have the same tendency, which 
represents the general physical picture of armchair GNRs under external strain. 
 

 
Fig. 7. The top one is the schematic of armchair GNRs with Na = 13, four representative C-C 
bonds are shown, while the bottom one is the vibrations of C-C bong lengths under external 
strain (Sun et al. 2008). 

Next, let us turn to the energy gap modification. Because armchair GNRs have three 
different categories, Sun et al. have selected Na = 12, 13, 14 as the representative ones to 
investigate this issue.  As shown in Fig. 8., the calculated maximal energy gaps for the 
armchair GNRs with Na = 12, 13, 14 appear at ε= 5.0%, -0.8%, and 9.5%, respectively. While 
the minimal energy gaps occur at ε= -4.5%, 7.3%, and 1.3%, respectively. The shapes of the 
calculated curves display a zigzag feature for Na = 12, 13, 14, which indicate that the energy 
gap is sensitive to the external strain.  
To extend the studied widths, the variations of the energy gaps of three families of structures 
with different widths are plotted in Fig. 8. Sun et al. have summarized several features: (1) The 
minimal energy gaps of all deformed armchair GNRs are of the order of several meV. (2) The 
zigzag feature is observed in all deformed armchair GNRs (Sun et al. 2008).  
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Fig. 6. Calculated band structure of zigzag GNRs with Nz =12 for (a) DFT calculations and 
(b) GW calculations, respectively. (c) and (d) represent the variation of direct band gap and 
energy gap at the zone boundary with the width of zigzag GNRs (Li et al. 2007). 
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and zigzag GNRs. Since the pristine armchair GNRs are non spin-polarized materials, we 
discuss the reported results of armchair GNRs under external modulations first.  While for 
zigzag GNRs, the situations are more complicated and interesting because of the spin-
polarized solutions.  

3.1 Armchair GNRs  
3.1.1 Applying strain 
Armchair GNRs show semiconducting behaviours with a direct energy gap, and are well 
separated into three categories. To build future nano devices based on GNRs, the capability 
to control GNRs’ electronic properties is highly desirable. One of the possible and effective 
ways is to apply external strain. Thus, how are the geometric structures and the related 
electronic structures deformed under external strain becomes interesting problems.  
Sun et al. have carried out comprehensive DFT studies to investigate those problems (Sun et 
al. 2008). To clearly indicate such effect, the deformation of armchair GNRs can be 
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represented by the strain (ε), defined as ε= (r-r0)/r0, where r and r0 are the deformed and 
initial equilibrium lattice constants (r0= 4.287 Å) along the periodic direction of armchair 
GNRs. As we know, the structures of armchair GNRs are deformed to release the strain 
energy by applying external strain. In order to describe the vibration of C-C bonds in GNRs, 
four representative C-C bonds are selected in armchair GNRs with Na = 13 (sketched in Fig. 
7.). It is clear that the C-C separations change almost linearly with the strain, and the 
deformation leads to the largest change in the inner C-C bond length (a1). As reported in the 
pristine armchair GNRs, the C-C bonds (a3 and a4) are shorted because of the edge effect. 
Therefore, the stronger C-C bonds (a3 and a4) have smaller response under the same external 
strain tensor. Here we should note all armchair GNRs have the same tendency, which 
represents the general physical picture of armchair GNRs under external strain. 
 

 
Fig. 7. The top one is the schematic of armchair GNRs with Na = 13, four representative C-C 
bonds are shown, while the bottom one is the vibrations of C-C bong lengths under external 
strain (Sun et al. 2008). 

Next, let us turn to the energy gap modification. Because armchair GNRs have three 
different categories, Sun et al. have selected Na = 12, 13, 14 as the representative ones to 
investigate this issue.  As shown in Fig. 8., the calculated maximal energy gaps for the 
armchair GNRs with Na = 12, 13, 14 appear at ε= 5.0%, -0.8%, and 9.5%, respectively. While 
the minimal energy gaps occur at ε= -4.5%, 7.3%, and 1.3%, respectively. The shapes of the 
calculated curves display a zigzag feature for Na = 12, 13, 14, which indicate that the energy 
gap is sensitive to the external strain.  
To extend the studied widths, the variations of the energy gaps of three families of structures 
with different widths are plotted in Fig. 8. Sun et al. have summarized several features: (1) The 
minimal energy gaps of all deformed armchair GNRs are of the order of several meV. (2) The 
zigzag feature is observed in all deformed armchair GNRs (Sun et al. 2008).  
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Fig. 8. (a) Variation of the energy gaps as a function of strain for the armchair GNRs with Na 
= 12, 13, 14. (b), (c), and (d) are variation of energy gaps for three different categories (Sun et 
al. 2008). 

3.1.2 Chemical adsorption 
Armchair GNRs are non-spin-polarized semiconductors, therefore, how to produce 
armchair GNRs-based spintronics becomes an interesting question. Similar with carbon 
nanotubes, chemical adsorption of transition-metal (TM) atoms may be a possible solution.  
Kan et al. have proposed that armchair GNRs can be adsorbed by one-dimensional TM 
chains, leading to the desired magnetism (Kan et al. 2007a).  
During their studies, they selected Na= 10, 11, 12 to represent the three different categories, 
and titanium chains are taken as the source of magnetism.  To investigate the adsorptive 
behaviours, three different concentrations of adsorption have been considered, namely, one, 
two, and four Ti atoms per two unit cell.  As shown in Fig. 9, Ti atoms are found to prefer 
the hollow sites near the edges, and form zigzag atomic chain (Kan et al. 2007a). The same 
tendency is observed for all three categories of GNRs. Their results indicate that Ti atoms 
will spontaneously produce one-dimensional atomic chains on GNRs under thermal 
equilibrium.  
Since atomic Ti chains can form stable adsorption on GNRs, there are two natural questions:  
Do the hybrid structures have magnetic signals? And do they have special electronic 
structures?  To answer these questions, Kan et al. have performed comprehensive theoretical 
studies within the DFT framework. The following results show all the hybrid structures 
(three different concentrations) are spin polarized with ferromagnetic coupling. For 
example,  in the case of four Ti atoms per two unit cell,  ferromagnetic states are lower in 
energy than antiferromagnetic states by 0.16, 0.16, and 0.14 eV for Na = 10, 11, and 12, 
respectively. The large energy difference of different magnetic coupling ensures the survival 
of ferromagnetism under high temperature.  
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Fig. 9. (a) The geometric structures of armchair GNRs adsorbed by Ti chains under three 
concentrations, namely, (a) one Ti atom per two unit cell, (b) two Ti atoms per two unit cell, 
and (c) four Ti atoms per two unit cell. Black balls are C atoms, sapphire balls are H atoms, 
and white balls are Ti atoms (Kan et al. 2007a). 

In Fig. 10., the calculated band structures of the hybrid structures are plotted. It is clear that 
their electronic structures show spin-selective characters. Especially, for Na =10, and 11, the 
band structures show perfect half-metallic behaviours.  
 

 
Fig. 10. Band structures of Ti atoms adsorptive GNRs for (a) Na =10, (b) Na =11, and (c) Na 
=12, respectively. The adsorptive structures are sketched in Fig. 9c. Solid lines represent 
spin-up channel, while dot lines mean spin-down channel (Kan et al. 2007a). 

To find the tendency of electronic structures, Kan et al. have extended their research in 
hybrid GNRs with different widths. They concluded that all the adsorbed Ti chains are 
ferromagnetic, and the hybrid structures show metallic character. Moreover, they found that 
hybrid structures of GNRs and Ti chains present the half-metallic properties when the width 
of ribbons is smaller than 2.1 nm. Thus, this research paves a new way to explore spintronics 
at the nanometer scale based on GNRs. 

3.2 Zigzag GNRs  
3.2.1 Applying electric field 
It is now well known that zigzag GNRs are semiconductors with two localized electronic 
edge states. These two states are ferromagnetically ordered at each edge, and 
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Fig. 8. (a) Variation of the energy gaps as a function of strain for the armchair GNRs with Na 
= 12, 13, 14. (b), (c), and (d) are variation of energy gaps for three different categories (Sun et 
al. 2008). 
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Armchair GNRs are non-spin-polarized semiconductors, therefore, how to produce 
armchair GNRs-based spintronics becomes an interesting question. Similar with carbon 
nanotubes, chemical adsorption of transition-metal (TM) atoms may be a possible solution.  
Kan et al. have proposed that armchair GNRs can be adsorbed by one-dimensional TM 
chains, leading to the desired magnetism (Kan et al. 2007a).  
During their studies, they selected Na= 10, 11, 12 to represent the three different categories, 
and titanium chains are taken as the source of magnetism.  To investigate the adsorptive 
behaviours, three different concentrations of adsorption have been considered, namely, one, 
two, and four Ti atoms per two unit cell.  As shown in Fig. 9, Ti atoms are found to prefer 
the hollow sites near the edges, and form zigzag atomic chain (Kan et al. 2007a). The same 
tendency is observed for all three categories of GNRs. Their results indicate that Ti atoms 
will spontaneously produce one-dimensional atomic chains on GNRs under thermal 
equilibrium.  
Since atomic Ti chains can form stable adsorption on GNRs, there are two natural questions:  
Do the hybrid structures have magnetic signals? And do they have special electronic 
structures?  To answer these questions, Kan et al. have performed comprehensive theoretical 
studies within the DFT framework. The following results show all the hybrid structures 
(three different concentrations) are spin polarized with ferromagnetic coupling. For 
example,  in the case of four Ti atoms per two unit cell,  ferromagnetic states are lower in 
energy than antiferromagnetic states by 0.16, 0.16, and 0.14 eV for Na = 10, 11, and 12, 
respectively. The large energy difference of different magnetic coupling ensures the survival 
of ferromagnetism under high temperature.  
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Fig. 9. (a) The geometric structures of armchair GNRs adsorbed by Ti chains under three 
concentrations, namely, (a) one Ti atom per two unit cell, (b) two Ti atoms per two unit cell, 
and (c) four Ti atoms per two unit cell. Black balls are C atoms, sapphire balls are H atoms, 
and white balls are Ti atoms (Kan et al. 2007a). 

In Fig. 10., the calculated band structures of the hybrid structures are plotted. It is clear that 
their electronic structures show spin-selective characters. Especially, for Na =10, and 11, the 
band structures show perfect half-metallic behaviours.  
 

 
Fig. 10. Band structures of Ti atoms adsorptive GNRs for (a) Na =10, (b) Na =11, and (c) Na 
=12, respectively. The adsorptive structures are sketched in Fig. 9c. Solid lines represent 
spin-up channel, while dot lines mean spin-down channel (Kan et al. 2007a). 

To find the tendency of electronic structures, Kan et al. have extended their research in 
hybrid GNRs with different widths. They concluded that all the adsorbed Ti chains are 
ferromagnetic, and the hybrid structures show metallic character. Moreover, they found that 
hybrid structures of GNRs and Ti chains present the half-metallic properties when the width 
of ribbons is smaller than 2.1 nm. Thus, this research paves a new way to explore spintronics 
at the nanometer scale based on GNRs. 

3.2 Zigzag GNRs  
3.2.1 Applying electric field 
It is now well known that zigzag GNRs are semiconductors with two localized electronic 
edge states. These two states are ferromagnetically ordered at each edge, and 
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antiferromagnetically coupled each other, which means the total spin of zigzag GNRs is 
zero. Since these states are edge states, the effects of external transverse fields are expected 
to be significant.  
Son et al. have investigated the aforementioned problems by performing DFT calculations. 
In their research, the external transverse fields are simulated by a periodic saw-tooth-type 
potential, which is perpendicular to the direction of the ribbons edge.  Taking Nz =16 as a 
representative model, Son found that the valence and conduction bands associated with one 
spin orientation becomes closer, and eventually close their gap under strong enough 
external electric fields. Whereas band gaps of the other spin orientation are widen. As 
shown in Fig. 11, spin-degenerate band structures become spin-selective, and eventually 
changed into half metals by applying external electric fields (Son et al, 2006b).  
 

 
Fig. 11. From left to right, the spin-resolved band structures of zigzag GNRs with Nz = 16 
under electric fields 0.0, 0.05 and 0.1 V/Å, respectively. The red and blue lines denote bands 
of different spin channels (Son et al, 2006b).  
 

 
Fig. 12. (a) Schematic density-of-states diagram of the zigzag GNRs without external electric 
field. L-region (R-region) means the left (right) side of GNRs, and α and β are two spin 
channels. (b)  Density-of-states diagram under applied electric field (Son et al, 2006b). 

The half-metallic property originates from the fact that the applied electric fields induce 
energy-level shifts of edge states. Based on the analysis of density of states, Son et al. have 
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used a simple model to explain the appearance of half-metallic property.  As shown in Fig. 
12, the spin-polarized states localized at two edges (left and right edges) are well spatially 
separated and degenerate in energy without applying electric fields. Since both occupied 
and unoccupied states of one special spin channel are located at the opposite sides of the 
zigzag GNRs, the effect of external electric field on them is different, namely, raising the 
energy-level of occupied, while lowering the one of unoccupied.  Consequently, the energy 
gaps of one spin channel will be closed by external electric field, while leaving the other 
ones insulating.  Thus, the half-metallicity comes from the relative movement in energy of 
edge states under electrostatic potential (Son et al, 2006b). 
However, for any potential applications, the strength of critical electric field is very 
important. As we know, the semilocal DFT theory can only predict the qualitative band 
gaps. Thus, how strong does the electric field need to induce the half-metallicity becomes a 
mysterious. To solve the problems, Kan et al. have performed hybrid density functional 
calculations (B3LYP), which is viewed as one of the most accurate methods to get the 
quantitative results (Kan et al, 2007b). Their B3LYP calculations reproduce the half-
metallicity under electric fields, but the critical electric fields are much higher than those 
from normal DFT calculations.  
 

 
Fig. 12. Left: Band gaps of zigzag GNRs against external electric fields, n means the width of 
ribbons. The line with squares are spin-up channel, while filled circles are spin-down one. 
Right: The critical electric fields (Et) to achieve half-metallicity and the range of electric field 
strength to keep half-metallicity (Kan et al, 2007 b). 

As shown in Fig. 12, the critical electric fields decrease with the increasing of ribbon widths. 
However, it is still too high for applications. On the other hand, the electric field range at 
which zigzag GNRs remain half-metallic increases with the ribbon width. All these results 
indicate that the half-metallicity induced by electric fields is robust, and independent on the 
theoretical methods adopted. Thus, the only problem is how to overcome the obstacle of 
high critical electric field in applications.  

3.2.2 Edge modifications  
Since spin-polarized edge states dominate the electronic and magnetic properties of zigzag 
GNRs, the edge modifications play an important role. To achieve the amazing half-
metallicity, Kan et al. have proposed that edge modifications by chemical groups can 
overcome the obstacle of high electric field (Kan et al, 2008a). The designs are neat and 
simple as sketched in Fig. 13. 
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used a simple model to explain the appearance of half-metallic property.  As shown in Fig. 
12, the spin-polarized states localized at two edges (left and right edges) are well spatially 
separated and degenerate in energy without applying electric fields. Since both occupied 
and unoccupied states of one special spin channel are located at the opposite sides of the 
zigzag GNRs, the effect of external electric field on them is different, namely, raising the 
energy-level of occupied, while lowering the one of unoccupied.  Consequently, the energy 
gaps of one spin channel will be closed by external electric field, while leaving the other 
ones insulating.  Thus, the half-metallicity comes from the relative movement in energy of 
edge states under electrostatic potential (Son et al, 2006b). 
However, for any potential applications, the strength of critical electric field is very 
important. As we know, the semilocal DFT theory can only predict the qualitative band 
gaps. Thus, how strong does the electric field need to induce the half-metallicity becomes a 
mysterious. To solve the problems, Kan et al. have performed hybrid density functional 
calculations (B3LYP), which is viewed as one of the most accurate methods to get the 
quantitative results (Kan et al, 2007b). Their B3LYP calculations reproduce the half-
metallicity under electric fields, but the critical electric fields are much higher than those 
from normal DFT calculations.  
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ribbons. The line with squares are spin-up channel, while filled circles are spin-down one. 
Right: The critical electric fields (Et) to achieve half-metallicity and the range of electric field 
strength to keep half-metallicity (Kan et al, 2007 b). 

As shown in Fig. 12, the critical electric fields decrease with the increasing of ribbon widths. 
However, it is still too high for applications. On the other hand, the electric field range at 
which zigzag GNRs remain half-metallic increases with the ribbon width. All these results 
indicate that the half-metallicity induced by electric fields is robust, and independent on the 
theoretical methods adopted. Thus, the only problem is how to overcome the obstacle of 
high critical electric field in applications.  

3.2.2 Edge modifications  
Since spin-polarized edge states dominate the electronic and magnetic properties of zigzag 
GNRs, the edge modifications play an important role. To achieve the amazing half-
metallicity, Kan et al. have proposed that edge modifications by chemical groups can 
overcome the obstacle of high electric field (Kan et al, 2008a). The designs are neat and 
simple as sketched in Fig. 13. 
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Fig. 13. (a) Structures of the H-saturated zigzag GNRs and schematic energy diagram for the 
edge states. (b) Schematic edge-state energy diagram of zigzag GNRs with different 
chemical modifications at two edges. (Kan et al, 2008a). 

As we know, when zigzag GNRs are symmetrically saturated by hydrogen atoms at two 
edges, the spin-polarized edge states are degenerated in energy. One edge is occupied by 
spin-down electrons, while the other one is occupied by spin-up electrons. However, when 
the two edges are anti-symmetrically modified with different chemical groups, as shown in 
Fig. 13b, the induced potential shifts at two edges are different, which breaks the 
degenerancy of energy level of two edge states. Therefore, the modified ribbons become 
spin selective. Once the induced potential difference is large enough, the energy gap of one 
spin channel is closed, and zigzag GNRs are expected to become half metals.  
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two concentrations are considered, namely, fully and half modifications. As the definition, 
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the carbon atoms at the other edge are saturated by CH3. For half modifications, the selected 
chemical groups and hydrogen atoms alternatively saturate the carbon atoms at two edges.  
As plotted in Fig. 14, the calculated band gaps show perfect spin-selective behaviours.  For 
both fully and half modifications, half-metallicity can be achieved with enough width.   
Similar with Kan et al’s works, Wu et al. reported that half-metallicity can be obtained by 
other chemical groups, such as OH groups at one edge, while NO2 or SO2 at the other edge 
(Wu et al, 2010). They have studied many chemical groups, and given many possibilities to 
future research.  Thus, edge-modification has been viewed as a powerful tool to tail the 
electronic structures of GNRs.  
 

 
Fig. 15. The atomic structures of hybrid BCN nanoribbons. Green, pink, gray, and sapphire 
balls denote carbon, boron, nitrogen, and hydrogen atoms, respectively (Kan et al, 2008b). 

3.2.3 Chemical doping  
Since half-metallicity can be achieved with anti-symmetrical potential at two edges, doping 
boron and nitrogen atoms in zigzag GNRs becomes one possible way. Kan et al. has 
proposed one interesting model, as shown in Fig. 15 (Kan et al, 2008b). BN chains are 
integrated into zigzag GNRs, and each BN chain is well separated by n carbon chains (n = 1, 
2, 3). As we know, boron and nitrogen atoms provide holes and electrons when they are 
separately doped into zigzag GNRs. Therefore, the effect on the edge states of boron and 
nitrogen atoms definitely are different, which may induce half-metallicity. 
To confirm their proposal, Kan et al. carefully studied the electronic structures of such 
hybrid BCN nanoribbons with DFT methods (Kan et al, 2008b). As the direct index, spin-
resolved energy gaps are sketched in Fig. 16. There are three significant characters:  firstly, 
all studied hybrid BCN nanoribbons, namely, C1BN, C2BN, and C3BN, are spin-selective 
materials when Nz is larger than 8. Secondly, all the studied BCN nanoribbons become half 
metals with enough width of ribbons. Thirdly, the critical width realizing half-metallicity is 
different. For C1BN, the critical width is Nz = 12, while 10 and 8 for C2BN, and C3BN, 
respectively.  In another words, the critical width decreases with the increasing of 
intervened carbon chains. These results mean that half-metallicity in hybrid BCN ribbons 
can be easily realized by controlling the doping methods of BN chains.  
Similar with Kan et al’s results, Dutta et al. have proposed that doping boron and nitrogen 
atoms into zigzag GNRs can lead to half-metallicity (Dutta et al, 2009). Slightly different 
with Kan et al’s idea, Dutta et al. suggested that doped BN chains are perpendicular to the 
periodic direction. However, the electronic behaviours of doped BN chains are similar with 
the reported results of Kan et al.  
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Fig. 16. The spin-resolved band gaps of hybrid BCN nanoribbons (Kan et al, 2008b). 

3.2.4 Chemical adsorptions 
Although the half-metallicity can be obtained by many methods, such as the electric field, 
edge modifications, and doping, we should keep in mind that the whole nanoribbons have 
no net magnetic moments. In applications of nano devices and spintronics, large net 
magnetic moments are sometimes desirable. On the other hand, transition-metal free 
magnetism is also interesting because of the weak spin-orbit coupling. Thus, the next 
important question is how to get large magnetic moments in such nanoribbons without 
magnetic atoms. To handle this problem, Kan et al. have theoretically suggested that zigzag 
nanoribbons have a large magnetic moment by adsorbing main-group atoms. In their 
studies, they used boron, carbon, and nitrogen atoms as adatoms (Kan et al, 2010).    
 

 
Fig. 17. (a) The possible adsorptive sites of zigzag GNRs. (b) The edge structures of pristine 
zigzag GNRs. The adsorptive structures for (c) boron (carbon) and (d) nitrogen adatoms 
(Kan et al, 2010) 

As we know, zigzag GNRs are antiferromagnetic coupling between two edges, leading to 
net magnetic moments as zero. By adsorbing atoms, the bonding of pristine zigzag GNRs is 
broken, which may result in local states. Thus, the first question is how these adatoms bond 
with the zigzag GNRs. Using DFT calculations, Kan et al. found that the preferred 
adsorptive sites are near the edges. As shown in Fig. 17, they took zigzag GNRs with Nz = 6 
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as an example, and considered all possible adsorptive sites. For boron and carbon, the 
adatoms prefer the site labelled as “A” in the figures, and push the original carbon atoms 
out of the plane of ribbons, while for the nitrogen atom, it prefers the site 1, which gives the 
lowest energy. The different adsorptive behaviours can be due to the strong tendency of sp3 
hybridization in boron and carbon atoms.  
The next question is whether adatoms can induce large magnetic moments. Luckily, the 
following studies give a positive answer. As seen in Fig. 18, the plotted spin density clearly 
shows that antiferromagnetic distributions of pristine have been switched into 
ferromagnetic distributions after carbon adsorption, which leads to a net magnetic moment 
of 2 µB per carbon adatom. While for boron and nitrogen adatoms, they have the same 
tendency with carbon adatoms, but the inducing magnetic moments are 1 µB per adatom.  
 

 
Fig. 18. Spin density of zigzag GNRs before and after adsorption. Red means spin-up 
density, while the blue means spin-down density (Kan et al, 2010). 

Although they have answered the question whether adatoms can induce magnetic 
moments, there are still two critical questions:  Whether do the magnetic moments survive 
with multi-adatoms? And whether all the zigzag GNRs have the same situations?  To solve 
these questions, Kan et al. investigated the case with two adatoms. They found that two 
adatoms prefer the ferromagnetic coupling, and give a sum of induced magnetic moments 
of individual adatoms. By extending the studied model to other nanoribbons, they also 
found that all zigzag GNRs have the same results. Thus, their studies present an important 
way to manipulate the magnetism of zigzag GNRs.  

4. Experimental realizations of GNRs 
Although theoretical works have proposed and predicted many interesting properties of 
GNRs, the experimental realizations of GNRs are still not easy. According to the fabricated 
methods, we can divide them into chemical and physical realizations. Normally, chemical 
methods are assembling the small molecules into GNRs, while physical methods are tailing 
the large graphene or nanotube into GNRs.  
Many groups have reported the chemical fabrication of GNRs with small molecules. Yang et 
al. reported that the 1,4-diiodo-2,3,5,6-tetraphenylbenzene and 4-bro-mophenylboronic acid  
with other catalyst can produce GNRs with lengths of up to 12 nm (Yang et al, 2008). 
Recently, Cai et al. have reported atomically precise bottom-up fabrication of GNRs (Cai et 
al, 2010). In their research, they used surface-assisted coupling of molecular precursors into 



 Physics and Applications of Graphene - Theory 

 

344 

 
Fig. 16. The spin-resolved band gaps of hybrid BCN nanoribbons (Kan et al, 2008b). 
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linear polyphenylenes and their subsequent cyclodehydrogenation. Therefore, the topology, 
width and edge periphery of the GNRs products are defined by the structure of the 
precursor monomers, which can be designed to a wide range of different GNRs (Cai et al, 
2010). However, accurate controlling the edge structures, width, and lengths of produced 
GNRs is still not easy for chemists. 
 

 
Fig. 19. Representation of the gradual unzipping of one wall of a carbon nanotube to form a 
nanoribbon (Kosynkin et al, 2009) 

In this sense, cutting graphitic materials (Li et al, 2009) to form GNRs provides an 
alternative solution to partially overcome the obstacle. However, how to open the strong C-
C bonding is a big challenge. As shown in Fig. 19, Kosynkin et al. have creatively proposed 
that using solution-based oxidative process to break the C-C bonds of carbon nanotubes. 
Their experimental results show a nearly 100% yield of nanoribbon structures (Kosynkin et 
al, 2009). On the other hand, Jiao et al. have proposed an approach to making GNRs by 
unzipping multiwalled carbon nanotubes by plasma etching of nanotubes partly embedded 
in a polymer film (Jiao et al, 2009), which is a completely physical method.  

5. Summary 
In this chapter, the geometric, electronic, and magnetic properties of GNRs are carefully 
discussed in both experiment and theory. Theoretical studies have shown that there are 
energy gaps in GNRs, due to the edge effects and quantum confinement effect. These results 
have well confirmed by experimental observations. However, the amazing magnetic 
property predicted in zigzag GNRs has never been observed in experiment. Several factors, 
such as carriers concentrations, edge structures, and thermal dynamic under limited 
temperature, are responsible for this situation. Thus, one very imporant question is how to 
make the magnetism more robust.  
On the other hand, the experimantal realization of GNRs are far away from the satisfaction. 
Since both edge structures, width, and length of GNRs are difficult to control,  finding an 
effective way to overcome these problems becomes more and more important, both for 
acadamic research and industry applications.  
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1. Introduction 
Quite recently a new carbon nanostructure, called graphite nanoribbon (GNR), has 
emerged, taking the attention of the scientific community because of its promising use in 
spintronics. It is manly attributed to the work of Son et al. (Son et al. 2006 a; Son et al. 2006 
b), who predicted that in-plane electric field, perpendicular to the periodic axis, induces a 
half-metal state in zigzag nanoribbons (ZGNR). This state corresponds to a one spin flavour 
with metallic behaviour, while the opposite spin flavour experiences an increase in the 
energy gap. Apart from the interesting dependence of the electronic structure upon an 
electric field, this is a promising material for future spintronic devices, since it could work as 
a perfect spin filter. Very recently Campos-Delgado et al. (Campos-Delgado et al. 2008) 
reported a chemical vapour deposition route (CVD) for the bulk production of long, thin, 
and highly crystalline graphene ribbons (less than 20-30 μm in length), with widths from 20 
to 300 nm and small thicknesses (2 to 40 layers). In addition, the bottom up synthesis of 
these nanostructures may be feasible as noted by Hoheisel and collaborators (Hoheisel et al. 
2010). This experimental advance further increases the expectations for the use of these 
materials in high-tech devices. In parallel there is an increased interest in the physical 
properties of carbon nanostructures in general, due to their outstanding mechanical and 
electronic properties. Recently, Lee et al. (Lee et al. 2008) measured the mechanical 
properties of a single graphene layer, demonstrating that graphene is the hardest material 
known, since the elastic modulus reaches a value of 1.0 TPa. Besides, many efforts have been 
dedicated to study the electronic properties of graphene, because creating a gap could allow 
the use of graphene in field effect transistors. Many mechanisms have been proposed with 
that purpose: nano-pattering, creating quantum dots, using multilayer, doping with 
heteroatoms such as sulphur (Denis et al. 2009), covalent functionalization (Bekyarova et al. 
2009) and applying mechanical stress (Pereira et al. 2009; Gui et al. 2008). Recently Gui (Gui 
et al. 2008) proposed that graphene under a symmetrical strain distribution always leads to 
a zero band-gap semiconductor, and the pseudogap decreases linearly with the strain 
strength in the elastic linear regime. However, asymmetrical strain induces an opening of 
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band gaps at the Fermi level. The evidence presented above clearly points that it is 
important to know how the electronic properties of ZGNR depend on stress, in order to 
predict its performance in future devices (e.g. gates). The bibliography shows a few works 
related with the study of strain in graphene nanoribbons (Sun et al. 2008; Xu et al. 2009; Su 
et al. 2008), neither of them informing the Young’s modulus of GNR. The main conclusions 
from those works indicates that there is no important variation of the electronic properties 
of zigzag nanoribbons upon stress-strain effects (i.e. energy gaps and local magnetic 
moments), while there is no information regarding the mechanical properties of this 
nanostructure. Recently our group (Faccio et al. 2009) presented the first systematic 
determination of the Young’s modulus, Poisson’s ratio and calculated Shear modulus for 
graphene nanoribbons.  

1.1 Theoretical background 
The Young’s modulus can be considered a measure of the stiffness of a solid. It is widely 
used for isotropic and continuous media, in which, the elastic parameters together defines 
the mechanical properties of the material. These parameters are: the Young’s modulus E3D, 
the shear modulus G and the Poisson’s ratio υ. These three parameters are related by simple 
expressions that allows the calculation of one of them if two are known. For a three 
dimensional (3D) solid they can be defined as: 
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The Young’s modulus represents the ratio between the uniaxial stress σx and the uniaxial 
strain εx, and can be easily calculated in terms of the strain energy ES, the tensile strain εx, 
and the equilibrium volume V0. The shear modulus is also defined in terms of the shear 
components of the strain and stress tensors. Finally, the Poisson’s ratio υ relates the axial 
strain εx with the transversal strain εy or εz. 
In the case of graphene it has more sense to define the in-plane stiffness instead of the 
classical 3D Young’s modulus, because of the reduced dimensionality of this material. For 
this reason in graphite the elastic properties can be considered independent of the interlayer 
distance between graphene layers, c0=3.35 Å, and the constants can be described as follows: 
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Fig. 1. Lateral contraction produced by an axial stress 
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where A0 corresponds to the equilibrium reference area of the 2D material, with length l0 
and width w0. The in-plane stiffness of graphite is obtained considering an axial load 
applied over graphene. The value obtained in this case is E3D=1.02(3) TPa (Blakslee et al. 
1970). It allows us to obtain E2D= 3.41(9) TPaÅ. This value is almost the same as that the one 
obtained experimentally for graphene, E2D=3.42(30) TPaÅ (Lee et al. 2008) using nano 
indentation with atomic force microscope. This result is in agreement with those reported by 
Kudin et al. (Kudin et al. 2001) and Van Lier et al. (Lier et al. 2000). Using Ab initio methods 
they reported Young’s modulus of E3D= 1.02 TPaÅ (Kudin et al. 2001) and 1.11 TPaÅ (Lier et 
al. 2000). The Poisson’s ratio is unambiguously defined in terms of the transversal ratio over 
the longitudinal variation with a value of υ= 0.149.  
Some reports based on another theoretical approach; using Brenner potentials, show wide 
scattered results, with strong dependence on the equilibrium adjustment yield used in the 
calculation (Reddy et al. 2006). The results obtained by this method correspond to Young’s 
modulus of E3D=0.7 TPa and 1.11 TPa, with Poisson’s ratio of υ=0.40 and 0.25,with the use of 
modified and non-modified potential respectively. Many representative results, based on 
Reddy et al. (Reddy et al. 2006), are presented in Table 1. 
Single-walled carbon nanotubes (SWCNT) are an example of a one dimensional system 
described in terms of 2D property E2D, since two parameters must be informed, the tube 
length (L) and the tube radius (r), in order to gain independence of size effects. Several 
expressions have been published for their mechanical properties in terms of 
multidimensional Young’s modulus as: E3D, E2D, etc (Wu et al. 2008, Bogár et al. 2005). The 
values reported show a wide variation on experimental EnD’s values, up to an order of 
magnitude of difference. This is mainly due to the difficulty in determining the precise 
structure of nanotubes under study, the presence of defects, chirality, etc. Recently, Wu et al. 
(Wu et al. 2008) used a combined optical characterization of individual SWCNT, coupled 
with magnetic actuation technique, to measure the Young’s modulus of nanotubes with 
known chirality. The Young’s modulus obtained was E3D=0.97(16) TPa, assuming a wall 
thickness of c=3.4 Å corresponding to the interlayer spacing in graphite. No dependence on 
the nanotube’s chiral index within the experimental accuracy was found. This result agrees 
quite well with theory, in particular with the values reported by Bogár et al. (Bogár et al. 
2005). Employing an all electron DFT method, they reported E2D for different tubes radius,  
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The Young’s modulus represents the ratio between the uniaxial stress σx and the uniaxial 
strain εx, and can be easily calculated in terms of the strain energy ES, the tensile strain εx, 
and the equilibrium volume V0. The shear modulus is also defined in terms of the shear 
components of the strain and stress tensors. Finally, the Poisson’s ratio υ relates the axial 
strain εx with the transversal strain εy or εz. 
In the case of graphene it has more sense to define the in-plane stiffness instead of the 
classical 3D Young’s modulus, because of the reduced dimensionality of this material. For 
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where A0 corresponds to the equilibrium reference area of the 2D material, with length l0 
and width w0. The in-plane stiffness of graphite is obtained considering an axial load 
applied over graphene. The value obtained in this case is E3D=1.02(3) TPa (Blakslee et al. 
1970). It allows us to obtain E2D= 3.41(9) TPaÅ. This value is almost the same as that the one 
obtained experimentally for graphene, E2D=3.42(30) TPaÅ (Lee et al. 2008) using nano 
indentation with atomic force microscope. This result is in agreement with those reported by 
Kudin et al. (Kudin et al. 2001) and Van Lier et al. (Lier et al. 2000). Using Ab initio methods 
they reported Young’s modulus of E3D= 1.02 TPaÅ (Kudin et al. 2001) and 1.11 TPaÅ (Lier et 
al. 2000). The Poisson’s ratio is unambiguously defined in terms of the transversal ratio over 
the longitudinal variation with a value of υ= 0.149.  
Some reports based on another theoretical approach; using Brenner potentials, show wide 
scattered results, with strong dependence on the equilibrium adjustment yield used in the 
calculation (Reddy et al. 2006). The results obtained by this method correspond to Young’s 
modulus of E3D=0.7 TPa and 1.11 TPa, with Poisson’s ratio of υ=0.40 and 0.25,with the use of 
modified and non-modified potential respectively. Many representative results, based on 
Reddy et al. (Reddy et al. 2006), are presented in Table 1. 
Single-walled carbon nanotubes (SWCNT) are an example of a one dimensional system 
described in terms of 2D property E2D, since two parameters must be informed, the tube 
length (L) and the tube radius (r), in order to gain independence of size effects. Several 
expressions have been published for their mechanical properties in terms of 
multidimensional Young’s modulus as: E3D, E2D, etc (Wu et al. 2008, Bogár et al. 2005). The 
values reported show a wide variation on experimental EnD’s values, up to an order of 
magnitude of difference. This is mainly due to the difficulty in determining the precise 
structure of nanotubes under study, the presence of defects, chirality, etc. Recently, Wu et al. 
(Wu et al. 2008) used a combined optical characterization of individual SWCNT, coupled 
with magnetic actuation technique, to measure the Young’s modulus of nanotubes with 
known chirality. The Young’s modulus obtained was E3D=0.97(16) TPa, assuming a wall 
thickness of c=3.4 Å corresponding to the interlayer spacing in graphite. No dependence on 
the nanotube’s chiral index within the experimental accuracy was found. This result agrees 
quite well with theory, in particular with the values reported by Bogár et al. (Bogár et al. 
2005). Employing an all electron DFT method, they reported E2D for different tubes radius,  
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Reference   E3D (TPa)  υ   Remarks 
                                                                         Graphene 
Kudin et al. 2001  1.02   0.149   Graphene (Ab initio) 
Lier et al. 2000  1.11   -   Graphene (Ab initio) 
Reddy et al. 2006  1.012   0.245   Graphene (Brenner**) 
Reddy et al. 2006  0.669   0.416   Graphene (Brenner*) 
Arroyo et al. 2004  0.694   0.412   Graphene (Brenner) 
Reddy et al. 2005  1.11   0.45   Graphene (Truss model) 
Faccio et al. 2009  0.96  0.17  Graphene (Ab initio) 
                                                                  Carbon Nanotubes 
Zhang et al. 2002  0.694   -  SWNT (Brenner) 
Lu et al. 1997  0.97   0.28   SWNT (Empirical model) 
Shen et al. 2004    0.213–2.08  0.16   SWNT (MM) 
Yu et al. 2000      0.32–1.47  -  SWNT (Experiments) 
Sammalkorpi et al. 2004  0.7   -  SWNT (MD) 
Yoon et al. 2005  1.0   0.25   DWNT (Vibrations) 
Wu et al. 2008  0.81–1.13  -  SWNT (Experiments) 
Bogár et al. 2005(***) 0.8-1.05  -  SWNTS (Ab initio) 
Bogár et al. 2005  1.05  -  SWNT (5,5) - (Ab initio) 
Faccio et al. 2009  1.01  -  SWNT (5,5) - (Ab initio) 

(*) Minimized potential and (**) Non-minimized Potential 
(***) This result was converted to E3D for comparison purposes, using: E3D=E2Dc0. 

Table 1. Representative results for different carbon nanostructures. 

that ranges from r=1.32 Å to 4.11 Å. They concluded that there is no dependence between 
the Young’s modulus and the chirality of the nanotube.  

1.2 Electronic and geometrical structure of graphene nanoribbons 
In graphene nanoribbons, the presence of different types of boundary shapes, called edges, 
modifies the electronic structure of the material. The major effects are observed at the Fermi 
level, displaying unusual magnetic and transport features (Palacio et al. 2005). There are two 
typical shapes for graphite edges, with quite opposite consequences, zigzag and armchair. 
The zigzag edges present electronic localized states at the boundaries, corresponding to non-
bonding states that appear at the Fermi level as a large peak in the density of states. It gives 
rise to important effects on the magnetic and transport properties of nanographite. These 
localized states are totally absent in the case of armchair edges. For these reasons the more 
interesting case correspond to nanographite with zigzag edges. 
A graphite nanoribbon consists of strips of graphene; it is created by cutting the sheet along 
two parallel lines. The direction of these lines defines the type of edge, while the distance 
between them defines its width. This kind of structures was first introduced by Fujita et al. 
(Fujita et al. 1996; Nakada et al. 1996; Wakabayashi et al. 1999) who studied its electronic 
structure using tight-binding models over graphite. They found that the typical diamagnetic 
ordering of graphene is disrupted because of the presence of zigzag edges, as mentioned 
earlier, that breaks the delocalized π-bands creating an instability that is resolved via 
electronic spin polarization; see Figure 2(b). In order to study size and edge effects in carbon 
nanoribbons Fujita & Wakabayashi (Palacio et al. 2005) proposed a simple model that 
consists in N dimmers that establish the nanoribbon’s width; the edges are terminated with 
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Fig. 2. (a) Graphite nanoribbon with N=4, displaying its smallest unit cell; the arrow shows 
the periodic direction a . (b) Spin density map, showing the antiferromagnetic arrangement 
between opposite edges. 
hydrogen atoms, while the translational invariance of graphene is kept along the direction 
perpendicular to the width, see Figure 2(a). Regarding the electronic structure, the non-
magnetic solution has many states at the Fermi level, which produces a strong instability 
that can be resolved by spin polarization or geometrical distortion. Due to the non-bonding 
character of the zigzag localized edge states, the geometrical reconstruction is unlikely to 
happen (Miyamoto et al. 1999) and another mechanism should be explored for this purpose. 
The other alternative mechanism consists in a spin polarization of the electronic density, in 
particular with an antiparallel arrangement between near carbon atoms, with a zero total 
magnetization. The local magnetic moments increase at the edges; they couple oppositely 
with their near neighbours carbon atoms, and damp inwards the ribbons. Since opposite 
carbon atoms at the edges always belong to different sublattices the net magnetization is 
zero. Another important consequence of the spin polarization of the electronic density is the 
aperture of a gap in ZGNR, yielding a Slater insulator (Pisani et al. 2007). The opening of the 
gap is related with the ZGNR width, since it is a consequence of the interaction between 
edges. For this reason wider ribbons, with longer distances between opposite edges, 
recovers the graphene geometry with a gap equal to zero. The tendency observed 
corresponds to an exponential decay of the energy gaps when increasing the nanoribbon’s 
width (N). Table 2 shows the results for N=4, 5, 6, 7, 8, 9 and 10. 
 

Width (N) Energy Gap (eV) 
4 0.63 
5 0.59 
6 0.54 
7 0.50 
8 0.46 
9 0.43 

10 0.40 

Table 2. Energy gaps for different zigzag graphene nanoribbons 

The antiferromagnetic arrangement is always the ground state, having lower energy than 
the nonmagnetic and ferromagnetic solution. The ferromagnetic solution refers to a local 
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modifies the electronic structure of the material. The major effects are observed at the Fermi 
level, displaying unusual magnetic and transport features (Palacio et al. 2005). There are two 
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The zigzag edges present electronic localized states at the boundaries, corresponding to non-
bonding states that appear at the Fermi level as a large peak in the density of states. It gives 
rise to important effects on the magnetic and transport properties of nanographite. These 
localized states are totally absent in the case of armchair edges. For these reasons the more 
interesting case correspond to nanographite with zigzag edges. 
A graphite nanoribbon consists of strips of graphene; it is created by cutting the sheet along 
two parallel lines. The direction of these lines defines the type of edge, while the distance 
between them defines its width. This kind of structures was first introduced by Fujita et al. 
(Fujita et al. 1996; Nakada et al. 1996; Wakabayashi et al. 1999) who studied its electronic 
structure using tight-binding models over graphite. They found that the typical diamagnetic 
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Fig. 2. (a) Graphite nanoribbon with N=4, displaying its smallest unit cell; the arrow shows 
the periodic direction a . (b) Spin density map, showing the antiferromagnetic arrangement 
between opposite edges. 
hydrogen atoms, while the translational invariance of graphene is kept along the direction 
perpendicular to the width, see Figure 2(a). Regarding the electronic structure, the non-
magnetic solution has many states at the Fermi level, which produces a strong instability 
that can be resolved by spin polarization or geometrical distortion. Due to the non-bonding 
character of the zigzag localized edge states, the geometrical reconstruction is unlikely to 
happen (Miyamoto et al. 1999) and another mechanism should be explored for this purpose. 
The other alternative mechanism consists in a spin polarization of the electronic density, in 
particular with an antiparallel arrangement between near carbon atoms, with a zero total 
magnetization. The local magnetic moments increase at the edges; they couple oppositely 
with their near neighbours carbon atoms, and damp inwards the ribbons. Since opposite 
carbon atoms at the edges always belong to different sublattices the net magnetization is 
zero. Another important consequence of the spin polarization of the electronic density is the 
aperture of a gap in ZGNR, yielding a Slater insulator (Pisani et al. 2007). The opening of the 
gap is related with the ZGNR width, since it is a consequence of the interaction between 
edges. For this reason wider ribbons, with longer distances between opposite edges, 
recovers the graphene geometry with a gap equal to zero. The tendency observed 
corresponds to an exponential decay of the energy gaps when increasing the nanoribbon’s 
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Width (N) Energy Gap (eV) 
4 0.63 
5 0.59 
6 0.54 
7 0.50 
8 0.46 
9 0.43 

10 0.40 

Table 2. Energy gaps for different zigzag graphene nanoribbons 

The antiferromagnetic arrangement is always the ground state, having lower energy than 
the nonmagnetic and ferromagnetic solution. The ferromagnetic solution refers to a local 
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ferrimagnetic arrangement, but with equal polarization between opposite carbon atoms at 
the edges, with a non-zero magnetic moment. The electronic structure of N=4 ZGNR is 
shown in Figure 3, where the band structure is presented together with the corresponding 
density of states. 
   

 

Fig. 3. Band structure along the periodical path Γ-X, and the corresponding total density of 
states for the N=4 zigzag graphite nanoribbon. 

Recently the scientific community has revitalized the attention in GNR not only from the 
theoretical standpoint, but for the promising of its technological applications. It is manly 
attributed to the work of Son et al. (Son et al. 2006 a; Son et al. 2006 b) who predicted that in-
plane electric field, perpendicular to the periodical axis, induces a half-metal state in ZGNR. 
This state corresponds to a one spin flavour with metallic behaviour; while the opposite spin 
flavour experiences an increase in the energy gap. Apart of the interesting dependence of 
the electronic structure upon an electric field, this is a promising material for future 
spintronic devices, since it could work as a perfect spin filter.  Figure 4 shows the case of 
N=4 ZGNR where different electric fields were applied obtaining a half-metal state for an 
E=0.8 eV/Å.  

2. Methods 
2.1 Density functional theory 
There exist many methodologies for obtaining the electronic structure of many-particle 
systems. “Density Functional Theory (DFT)” (Hohenberg et al. 1964; Kohn et al. 1965) is a 
way to study the electronic structure of many-particle systems with a relative low 
computational cost, since the description of a quantum system is based in functionals that 
depends on the electronic density instead of the many-particle wave functions. It is the 
corner stone of the theory, since the complexity of solving the many-particle wavefunction 
decreases and we only must deal with a set of almost single-electron-wavefunctions instead. 
In this way the Hamiltonian of the many-particle system, called Kohn-Sham Hamiltonian, 
can be described as:  
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  [ ] [ ] [ ] [ ] [ ]0 ee xc extE T V V Vρ ρ ρ ρ ρ= + + +  (3.1) 

where T0 corresponds to the kinetic energy functional, Vee is the inter-electronic repulsion, 
Vext is the external potential coming from the nucleus arrangement, and finally Vxc is the 
exchange and correlation potential. While T0, VH and Vext can be easily incorporated in the 
Hamiltonian, since they are well know because of its universal expressions, the Vxc is not 
known in an exact form and must be estimated or approximated. 

  [ ] [ ] [ ] [ ] [ ]0 ee xc extE T V V Vρ ρ ρ ρ ρ= + + +  (3.2) 

The exchange and correlation effects must be incorporated in the equations because the 
universal functionals T0 and Vee do not take into account the fermionic behaviour of the 
electronic wavefunction, and fail to describe instantaneously electron-electron interactions, 
and it is attributed to the mean field form of the handled expressions. This justifies the 
incorporation of an additional term into the Hamiltonian, called the exchange-correlation 
potential Vxc, with the purpose to deal with the limitations early mentioned. 
The incorporation of the Vxc term represents an additional problem, since there is no 
knowledge about the exact form of the functional and approximations should be made in 
order to estimate its value.   
 

 

Fig. 4. Density of states for N=4 ZGNR under different applied electric fields (a) 0.2 V/Å, (b) 
0.4 V/Å and (c) 0.8 V/Å. 

2.2 Exchange-correlation functionals and dispersive interactions 
The last section described the philosophy behind DFT and the origin of the exchange-
correlation potential (xc-potential). The first and most widely used xc-potential is the so 
called “Local Density Approximation (LDA)” introduced by W. Kohn and L. J. Sham. The 
model assumes that the exchange-correlation energy of a particular density ρ(r) can be 
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obtained with the help of the results obtained for an interacting homogeneous electron gas. 
The total density of the material is divided in infinitesimal portions of constant density δρ(r) 
each. Then the exchange correlation energy is added by an amount equal to the one 
corresponding to a uniform interacting electron gas of density ρEG(r) = δρ(r) that occupies 
the same piece of volume (Perdew et al. 1981; Ceperley et al. 1980). This model clearly 
neglects the fact that true densities are not homogeneous, but the results obtained are 
surprisingly good either for slowly varying or strongly varying densities either. The next 
step points towards the description of non homogeneous electron density, building a Vxc 
that accounts for the density of the neighbour pieces of volume. This is the Generalized 
Gradient Approximation (GGA), and because there is no a unique way to incorporate the 
density gradient in it, there exist many versions of this functional. While GGA gives better 
description of geometrical and electronic issues than LDA under particular circumstances 
(Konahoff et al. 2002), both systematically underestimate electronic band gaps, and 
generally tends to delocalise the electronic density. A possible solution to these problems 
consist in building hybrid xc-potentials that allow us to join the advantages of DFT and 
Hartree-Fock formalism together in one functional. Probably, the most widely used hybrid 
functional is called B3LYP (Becke et al. 1993; Lee et al. 1988; Vosko et al. 1980; Stephens et al. 
1994). It is based on the original idea from Becke (Becke et al. 1993), where the functional is 
assembled with the correlation term suggested by Lee, Yang and Parr (LYP) (Lee et al. 1988), 
and the exchange term is a weighted sum of three terms that includes the Hartree-Fock 
term. The three empirical parameters were determined by fitting the predicted values to a 
set of atomization energies, ionization potentials, proton affinities, and total atomic energies 
(Stephens et al. 1994). Since B3LYP includes in some amount the Hartree-Fock exact-
exchange this functional can be considerer as a non-local, and its implementation at the 
moment is done for localized basis set codes. This is main the reason why LDA and GGA 
are still widely used, including for Van der Waals materials, and the selection depends on 
the particular interest over the system under study. 
While LDA, GGA and B3LYP functionals perform reasonably well describing metallic, 
covalent and ionic bonds; Van der Waals interaction is still a missing aspect within DFT 
implementations. This kind of binding is explained in terms of dynamical dipole-dipole 
correlations, which is inherently a non-local interaction and therefore neglected within 
LDA/GGA schemes. Recently there have been serious efforts to solve this problem with 
significant results (Khon et al. 1998; Rydberg et al. 2003; Dion et al. 2004). Román-Pérez 
(Román-Pérez et al. 2009) proposed an efficient implementation of the Van der Waals 
functional proposed by Dion (Dion et al. 2004) in the SIESTA code (Ordejón et al. 1996; Soler 
et al. 2002), with really promising results. They found an overhead in total computational 
cost, in comparison with semilocal functionals, very moderate for medium and large 
systems. For these reasons LDA and GGA exchange-correlation functionals are still used for 
describing Van der Waals solids such as graphite. The use of one over the other depends on 
the physical property to be assessed. LDA is widely used for graphite simulations since it 
gives good geometrical parameters and energy differences, in particular the calculated 
interlayer distance between graphene seems to be in good agreement with experiment 
(Tournus et al. 2005; Charlier et al. 1994). At first, would seem that LDA describes quite well 
the Van der Waals interactions in graphite, but what really happens is a fortuitous 
cancellation of errors (Tournus et al. 2005). A detailed analysis shows that the electron 
density determined by the LDA method is not adequate, offering a poor description of the 
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topology of the electron density in particular in the direction perpendicular to graphene 
(Strocov et al. 2000).  
Moreover GGA xc-potential offers better geometrical reconstruction in the graphene plane, 
with better C-C distances (Konstantinova et al. 2006; Zhang et al. 2007) and better in-plane 
phonon frequencies (Wirtz et al. 2004). Furthermore GGA reproduces qualitatively the 
corrugation of the crystal potential (Strocov et al. 2000), but the energy involved in the π···π 
interactions is totally underestimated, leading to an increase of the interlayer distance of 
cGGA=8.20 Å which is about 20% higher than the corresponding experimental value 
cGGA=6.70 Å (Trucano et al. 1975). This is the main reason why LDA is preferred over GGA, 
when π···π interactions are involved. Thus the results of these approximations can be 
interpreted as the upper and lower bound for the interaction strength. 

2.3 Basis Sets and DFT codes for Ab initio simulations 
Ab initio methods can be selected in terms of the basis set used to generate the KS orbitals. 
The more representative methods correspond to plane wave expansion and localized basis 
sets. Each method has its advantages and pitfalls. The plane-wave methods are the most 
accurate within DFT. They are asymptotically complete allowing for systematic convergence 
and offering for spatially unbiased wave-functions. The main disadvantage is the 
computational cost, since many wave-functions per atom are needed for a good accuracy. 
Additionally the methods led to very high total energies, thus energy differences are very 
small and thus sensitive to the converged basis set. On the other hand the localized basis 
sets are in general very efficient, since the number of basis functions per atom is very small, 
reducing the computational cost. The physical interpretation of many properties is 
straightforward, since the basis sets are based on atomic like functions. In difference to plane 
waves methods localized basis set shows systematic lack for convergence and previous 
knowledge is needed for an accurate treatment of the basis sets.  

2.4 Simulation of carbon nanoribbons 
The theoretical study of the uniaxial stress on different ZGNR is based on the First 
Principles – Density Functional Theory (Hohenberg et al. 1964, Kohn et al. 1965)  which we 
successfully used to study, bulk graphene, thioepoxidated SWCNTs and sulfur doped 
graphene (Denis et al. 2009; Faccio et al. 2008; Denis et al. 2008). The simulations are 
performed using the SIESTA code (Ordejón et al. 1996; Sánchez-Portal et al. 1997; Soler et al. 
2002) which adopts a linear combination of numerical localized atomic-orbital basis sets for 
the description of valence electrons and norm-conserving non-local pseudopotentials for the 
atomic core. The pseudopotentials were constructed using the Trouiller and Martins scheme 
(Troullier et al. 1991) which describes the interaction between the valence electrons and 
atomic core. We selected a split-valence double-ζ basis set with polarization orbitals for all 
the carbon atoms. The extension of the orbitals is determined by cutoff radii of 4.994 a.u. and 
6.254 a.u. for s and p channels respectively, as obtained from an energy shift of 50 meV due 
to the localization. The total energy was calculated within the Perdew–Burke–Ernzerhof 
(PBE) form of the generalized gradient approximation GGA xc-potential (Perdew et al. 1996 
(a), 1997 (b)). The real-space grid used to represent the charge density and wavefunctions 
was the equivalent of that obtained from a plane-wave cutoff of 230 Ry. The atomic 
positions were fully relaxed in all the cases using a conjugate-gradient algorithm (Press et al. 
1986) until all forces were smaller than 10 meV/Å was reached. A Monkhorst Pack grid  
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(Monkhorst et al. 1976) of 300x2x2 supercell, defined in terms of the actual supercell, was 
selected to obtain a mesh of 600 k-points in the full Brillouin Zone. All these parameters 
allow the convergence of the total energy. In order to validate our methodology we 
calculated the Young’s modulus of (5,5) SWCNT, for which the literature shows several 
results from Ab initio methods (see Table 1). The smallest unit cell contains a total of 20 
carbon atoms. With the purpose to study the dependence on the number of carbon atoms, 
we simulated the case 40 carbon atoms per unit cell. The Young’s modulus obtained are 
E3D=1.03(2) and E3D=1.01(3) TPa, for 20 and 40 carbon atoms in the unit cell respectively. The 
results are consistent within the uncertainty which was estimated from the variance 
obtained from the adjustment of the second order fitting of the energy upon unitary 
deformation. Therefore one can conclude that the results are not affected by the number of 
supercells used, in particular along the periodic direction. Additionally the results are in 
good agreement with the reported in the bibliography see Table 1, in particular with an 
excellent agreement with those from Bogár et al. (Bogár et al. 2005). Regarding geometry in 
graphene nanoribbons, we can distinguish two C-C bond orientations: the bond 
perpendicular to the crystalline periodic direction d(|) and the bond diagonal to the normal 
direction d(/). The bond distances differ from the inner part of the ribbon (bulk) respecting 
the atoms at the edge. In the case of bulk C-C distances we found d(|)bulk= 1.44 Å and 
d(/)bulk=1.44 Å, while at the edge of the ribbon we found d(|)edge= 1.46 Å, and 
d(/)edge=1.43 Å. This result agrees with the tendency observed by Pisani et al. (Pisani et al. 
2007), where the perpendicular bond elongates at the edge, contracting the corresponding 
diagonal bond at the edge. It promotes an increase of the zigzag C-C-C angle from 120° at 
the bulk to 121.9° at the edge. This trend is observed for the whole un-stressed studied 
ribbons. For all of these reasons, we can unequivocally conclude that our methodology is 
valid. 

3. Results and discussion 
The selected ZGNR for simulation correspond to N=4, 5, 6, 7, 8, 9 and 10. Since the code 
handled was designed for three dimensional materials, we designed special unit cells. All 
the cells were orthogonal, with the GNR placed in the ab plane, and oriented with the 
periodic direction along the a axis, see Figure 1 for the ZGNR N=4 sketch. In order to avoid 
interference between symmetry images, vacuum regions of 15 Å were added along b and c 
directions. In the case of the smallest unit cell, the a axis value for every cell is approximately 
a0= 2.495 Å, with a total number of atoms of 2N+2. With the purpose of increase the number 
of degrees of freedom in each case, the cells were expanded in four units along the a axis 
(a=4a0), it allows us to multiply by four the number of atoms inside the supercells according 
to 8N+8. The total number of atoms in each case is: 40, 48, 56, 64, 72, 80 and 88. The stress-
strain curves are obtained applying different stress to the GNR, allowing full atomic 
relaxation together with full unit cell parameters optimization, until the desired stress tensor 
is reached. Since we are considering uniaxial strain only, the Voigt tensor has only one non-
zero component: [σx, σy, σz, σxy, σxz, σyz]→[σx, 0, 0, 0, 0, 0]. The selected stress components of 
the Voigt tensor allow us to establish strains in the range of εx= ±0.020 for the whole series, 
which assures a linear stress regime (Liu et al. 2007, Khare et al. 2007). It corresponds to a 
quadratic dependence of the total energy upon the strain. The most important features of 
the data treatment are presented in Figure 5 for N=10 ZGNR. 
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Fig. 5. Normalized total energy versus strain, and the corresponding force versus strain for 
N=10 ZGNR (Faccio et al. 2009). 

While the second derivative of the total energy is easily obtained, the reference surface is 
ambiguously defined, with a dependence of the results upon the surface selection. In 
particular, the problem arises with the selection of the GNR’s width, since it is a surface of 
pruned edges. In our case we have selected two different ways of determine the reference 
width of GNR: the shortest C-C width (dA) and the longest C-C width (dB). A sketch of these 
distances is presented in Figure 6(a). It is clear that neither of them are the best selection, and 
it becomes a problem when we want to compare these results in the N-infinity limit, 
corresponding to graphene. For this reason all the results are presented, together with the 
results for graphene. Figure 6(b) shows the variation of the E2D upon the GNR’s width N. 
The same results are presented in Table 3. To check the reliability of the calculations, the 
case of N=∞ (graphene) was studied. In this case we take a rectangular supercell with 32 
carbon atoms. Each periodic crystalline axis were oriented along the zigzag and armchair 
directions, selecting a c value of 20 Å in order to avoid interference between images. The 
stress was applied along the zigzag axis. The obtained Young’s modulus E3D=E2D/c0= 
0.964(9) TPa agrees quite well with early reported values (see Table 1), as well as the 
Poisson’s ratio υ= 0.17, that matches with the one reported by Kudin et al. (Kudin et al. 2001) 
υ=0.149 and Liu et al. (Liu et al. 2007) υ=0.186. It is another point that helps us to validate 
our methodology. 
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Fig. 5. Normalized total energy versus strain, and the corresponding force versus strain for 
N=10 ZGNR (Faccio et al. 2009). 
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results for graphene. Figure 6(b) shows the variation of the E2D upon the GNR’s width N. 
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directions, selecting a c value of 20 Å in order to avoid interference between images. The 
stress was applied along the zigzag axis. The obtained Young’s modulus E3D=E2D/c0= 
0.964(9) TPa agrees quite well with early reported values (see Table 1), as well as the 
Poisson’s ratio υ= 0.17, that matches with the one reported by Kudin et al. (Kudin et al. 2001) 
υ=0.149 and Liu et al. (Liu et al. 2007) υ=0.186. It is another point that helps us to validate 
our methodology. 
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N dA dB E2DA E2DB 
 Å TPaÅ 

4 05.80 07.19 5.04 4.07 
5 08.66 09.35 4.21 3.90 
6 10.12 11.51 4.27 3.76 
7 12.98 13.68 3.88 3.68 
8 14.45 15.83 4.08 3.72 
9 17.30 18.00 3.84 3.69 
10 18.77 20.16 3.91 3.64 
∞ - 3.23 

Table 3. Final E2D’s Young modulus obtained from the different GNR width (di’s) 
 

 

Fig. 6. The N=5 ZGNR sketching the distances: dA(square-black) and dB (circle-red); and the 
E2D’s Young modulus according to the different distances considered in the model which are 
expressed in terms of the ribbon’s width (N). The horizontal blue line corresponds to the 
graphene results. 

The results show E2DA and E2DB decreases while N increases, always having a Young’s 
modulus higher than the graphene one. We can argue that ZGNR are harder than graphene. 
This tendency is the opposite of the case for carbon nanotubes, and the reason can be easily 
explained in terms of graphene bending. The curvature of CNTs softens the rolled-up 
graphene sheet because of the lost of overlapping between of the sp2 orbitals, with a 
pronounced effect for smaller tubes (Bogár et al. 2005). In the case of GNR the sheet is 
always plane, with a perfect sp2 overlapping and strong stiffness. At first, this result would 
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not be expected, but the response could be understood qualitatively in terms of two 
opposing effects: the curvature of graphene and geometrical edge reconstruction. The 
highest curvature corresponds with the lowest the orbital overlap, and hence with the 
lowest hardness. Furthermore our results indicate that the energy necessary to deform the 
ribbons (strain energy), expressed as energy per atom, is lower when more carbon atoms are 
involved, thus fewer atoms hardness of the material. The origin of this effect lies in the 
geometrical reconstruction of the C-C bonds positioned at the edge. As was mentioned in 
the introduction, the diagonal C-C distances of GNT at the edges contracts ~ 0.02 Å at the 
same time that the zigzag C-C-C angle increases ~2°, orientating the stronger C-C diagonal 
bonds more parallel to the periodic direction of the nanostructure and hardening the bonds. 
This effect is more evident in the case of thin GNR since there are few C-C bulk bonds, and 
as the GNR width increases, the bulk bonds prevails diluting the effect of the harder C-C 
bonds at the edge. In the case of nanotubes the relaxation effect on the edge does not exist, 
and therefore the curvature effect prevails. 
 

 

Fig. 7. The υ’s dependence upon the GNR’s width (N). The horizontal blue line corresponds 
to graphene results. 

The Poisson’s ratio presents a similar tendency to the one observed for the Young’s 
modulus. The results are shown in Figure 7 and Table 4, where the (i=A & B) values are 
presented together with the value for graphene. The tendency between υ and N corresponds 
to a damped oscillation in the case of υA, while the dependency is smoother for the case of 
υB. In an extrapolated limit the infinite widths the ratios υi are: υA= 0.18 and υB= 0.22. 
As was expressed in section 2, the shear modulus (G3D), can be obtained employing 
equation 1.4 and taken the calculated values for Young’s modulus and the Poisson’s ratio. 
For graphene we obtained G3D= 0.408 TPa. This value agrees with G3D=0.384 TPa reported 
by Reddy et al. (Reddy et al. 2006), but differs in almost two times with those reported for 
Sakhaee-Pour (Sakhaee-Pour et al. 2009). Employing a force field method for finite graphene 
sheets, with different edge terminations, he obtained G values that range from 0.21 to 0.23 
TPa. It is important to note that the corresponding Poisson’s ratio reported by Sakhaee-Pour 
was obtained using equation 1.4. However our results are more similar to those reported for 
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equation 1.4 and taken the calculated values for Young’s modulus and the Poisson’s ratio. 
For graphene we obtained G3D= 0.408 TPa. This value agrees with G3D=0.384 TPa reported 
by Reddy et al. (Reddy et al. 2006), but differs in almost two times with those reported for 
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N υA υB GA GB 
4 0.129 0.261 0.667 0.482 
5 0.204 0.250 0.522 0.466 
6 0.150 0.230 0.555 0.456 
7 0.207 0.223 0.480 0.449 
8 0.156 0.216 0.526 0.457 
9 0.200 0.226 0.478 0.450 
10 0.190 0.216 0.490 0.447 
∞ 0.179 0.408 

Table 4. Poisson’s ratio and estimated shear modulus for dA and dB models 

SWCNT (Li et al. 2003; Tserpes et al. 2005) for which there have been reported G3D values 
ranging from 0.250 to 0.485 TPa. This is a valid reference for our results, since in this case the 
mechanical load involves only a single graphene layer. This is the main reason why shear 
modulus of SWCNT are higher than MWCNT, since in this last case there exist sliding effect 
between nanotubes that reduces the shear modulus. In one hand, this discrepancy can be 
attributed to the different nature of the methods used for the simulation. On the other hand 
our results were estimated for two independent parameters, assuming equation 1.4 being 
valid. Regarding the dependence of shear modulus upon ribbon width, see Figure 8 and 
Table 4, what we found is a similar dependence to Young’s modulus vs. N. This is an 
expected result since equation 1.4 is dominated by its numerator, corresponding to the 
Young’s modulus, while the denominator remains almost constant, since the Poisson’s ratio 
remains almost constant. Further simulations, including shear deformation, should be done 
in order to shed more light on this subject. 
Regarding electronic structure features of GNR we found no significant dependence of   its 
properties upon strain. These results agree to those early reported (see Table 1.), whereas for 
the case of zigzag GNRs it has been found a small variation of energy gaps and local 
magnetic moments, with no variation in the ordering of the occupied-bands.  In our case the 
energy gaps increases in δEgap=0.02 eV for a positive strain of ε= 0.02, and reduces in δEgap= 
-0.02 eV for compressive strain ε= -0.02. These results are valid for all the studied GNR’s 
widths. Similar results are obtained for local magnetic moments at the carbon edges, in all 
the cases the variation are in the order of ± 3% for the same strain range studied. 

4. Conclusions 
In summary, the electronic and mechanical properties of stressed ZGNR were calculated 
using Ab initio Density Functional Theory. The proposed models allowed us to obtain the 
corresponding Young’s modulus, shear modulus and Poisson’s ratio for ZGNR with 
different width. In all the cases the GNR present higher constants than graphene, but they 
approximate to this value when the GNR’s width is increased. All of this indicates that the 
narrowest GNR could be one of the strongest materials. This effect could be explained in 
terms of the hardness of the C-C bonds positioned at the edges of the GNR, due to observed 
geometrical reconstruction. This property could lead to important consequences regarding 
the structure of the edge of this nanostructure because chemical substitution, the appearance 
of defects, and chemical doping could soft or stiff the edges. All these possibilities could 
lead to an important variation of the mechanical properties of GNR, in particular for the case 
of shorter GNR of low dimensional systems. It would be interesting to simulate the presence  
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Fig. 8. Shear modulus G3D for GNR indicating the estimated value for graphene. 

of strong donating and strong acceptor groups as functional groups substituting the 
presence of the single H atoms. Regarding the mechanical properties it has been observed a 
first order dependency of stress upon strain in the region from ε= -0.02 to ε= +0.02. A non-
linear dependence is found for higher strain. Electronic structure features are not sensitive 
to strain in this linear elastic regime, being an additional promise for the using of carbon 
nanostructures in nano-electronic devices in the near future.  
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1. Introduction 
Graphene sheet is a one-atom-thick planar sheet of sp2-bonded carbon atoms that are 
densely packed in a hexagonal crystal lattice. Graphene is the basic structural element of 
some carbon allotropes including graphite, carbon nanotubes and fullerenes. Carbon 
nanotubes (CNTs) (Iijima, 1991) exhibit exceptional physical properties: small size, low 
density, high stiffness, high strength and excellent electronic and thermal properties 
(Dresselhaus et al., 1996; Wong et al., 1997; Che et al., 2000; Yakobson and Avouris, 2001; 
Thostenson et al., 2001). These exceptional mechanical and physical properties along with 
low weight of CNTs and recent improvements in their synthesis and purification techniques 
make CNTs excellent candidates for use in tailoring properties of composites (Wagner et al., 
1998; Cadek et al., 2002; Dalton et al., 2003).  
Molecular mechanics/dynamics and ab initio methods are suitable for studying the 
mechanical properties and fracture behaviors of grapheme sheet and nanotubes but are 
limited in scale and are computationally expensive. Recently, continuum mechanics based 
models for CNTs have been developed using the harmonic energy potential (Li and Chou, 
2003; Chang and Gao, 2003). These models reduce computational cost significantly, but can 
only be used to investigate elastic properties, such as the Young’s modulus or Poisson’s 
ratio.  To fully predict the stress-strain relationship and failure mechanism of CNTs, these 
methods are not sufficient. The Brenner potential function (Brenner, 1990) is considered 
more accurate and versatile. It can handle changes in atom hybridization and bonds with 
atoms other than carbon. A continuum mechanics approach directly incorporating the 
Brenner potential function has been developed by Huang’s group (Zhang et al., 2002; Jiang 
et al., 2003) to model elastic properties and stress-strain relationships of carbon nanotubes 
based on a modified Cauchy-Born rule. Based on the modified Morse potential function 
(Belytschko et al., 2001), which is simpler than the Brenner potential, the authors have 
developed models for perfect and defective CNTs (Xiao et al., 2005; Xiao et al., 2009). The 
developments have the ability to predict the ultimate stress and other mechanical 
properties, including nanotube’s nonlinear stress-strain relationship. The analytical model 
(Xiao et al., 2005) has been extended to solve mechanical responses of defect-free single- and 



 Physics and Applications of Graphene - Theory 

 

366 

Shen, L. & Li, J. (2004). Equilibrium structure and strain energy of single-walled carbon 
nanotubes. Phys. Rev. B, 69, 045414. 

Soler, J. M.; Artacho, E.; Gale, J.; D. García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. 
(2002). The SIESTA method for Ab initio order-N materials simulation. J. Phys.: 
Condens. Matter, 14, 2745-. 

Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F. & Frisch, M. J.(1994). Ab initio Calculation of 
Vibrational Absorption and Circular Dichroism Spectra Using Density Functional 
Force Fields.  J. Phys. Chem., 98, 11623-11627. 

Strocov, V. N.; Blaha, P.; Starnberg, H. I.; Rohlfing, M.; Claessen, R.; Debever, J.-M. &  
Themlin, J.-M. (2000). Three-dimensional unoccupied band structure of graphite: 
Very-low-energy electron diffraction and band calculations. Phys. Rev. B, 61, 7, 
4994-5001. 

(a) Son, Y.-W.; Cohen, M. L. & Louie, S. G. (2006). Half-metallic graphene nanoribbons. 
Nature (London) 444, 347-349. 

(b) Son, Y.-W.; Cohen, M. L. & Louie, S. G. (2006). Energy Gaps in Graphene. Phys. Rev. Lett. 
97, 216803. 

Su, W. S.; Wu, B. R. & Leung, T. C. (2008). The Deformation Effect on the Electronic 
Structure of the Graphite Nanoribbon Arrays, cond-mat/0810.4582 

Sun, L.; Li, Q.; Ren, H.; Su, H.; Shi, Q. W. & Yang, J. (2008). Strain effect on electronic 
structures of graphene nanoribbons: A first-principles study. J. Chem. Phys., 129, 
074704. 

Tournus, F. ; Charlier, J. C. ; Mélinon, P. (2005). Mutual orientation of two C60 molecules : an 
Ab initio study. J. Chem. Phys., 122, 094315. 

Troullier, N.; Martins, J.L. (1991).Efficient pseudopotentials for plane-wave calculations. 
Phys. Rev. B, 43, 1993-2006. 

Trucano, P. & Chen, R. (1975). Structure of graphite by neutron diffraction. Nature (London), 
258, 136-137. 

Tserpes, K. I.; Papanikos, P. (2005). Composites Part B: Engineering, 36(5), 468-477. 
Vosko, S. H.; Wilk, L. & Nusair, M. (1980). Accurate spin-dependent electron liquid 

correlation energies for local spin density calculations: a critical analysis". Can. J. 
Phys., 58(8), 1200-1211. 

Wakabayashi, K.; Fujita, M.; Ajiki, H. & Sigrist, M. (1999). Electronic and magnetic 
properties of nanographite ribbons. Phys. Rev. B, 59, 8271. 

Wirtz, L. & Rubio, A. (2004). The phonon dispersion of graphite revisited. Solid State 
Communications, 131, 141-152. 

Wu, Y.; Huang, M.; Wang, F.; Henry Huang, X. M.; Rosenblatt, S.; Huang, L.; Yan, H.; 
O’Brien, S. P.; Hone, J. & Heinz, T. F. (2008). Determination of the Young’s Modulus 
of Structurally Defined Carbon Nanotubes. Nano Letters, 8(12), 4158–4161. 

Yoon, J.; Ru, C. Q. & Mioduchowski, A. (2005). Terahertz Vibration of Short Carbon 
Nanotubes Modeled as Timoshenko Beams. J. Appl. Mech., 72(1), 10-17. 

Yu, M. F.; Files, B. S.; Arepalli, S. & Ruoff, R. S. (2000). Tensile Loading of Ropes of Single 
Wall Carbon Nanotubes and their Mechanical Properties. Phys. Rev. Lett., 84, 5552-
5555. 

Zhang, P.; Jiang, H.; Huang, Y.; Geubelle, P. H. & Hwang, K. C. (2002). The elastic modulus 
of single-wall carbon nanotubes: a continuum analysis incorporating interatomic 
potentials. Int. J. Solids Struct. 39, 3893-3906. 

Zhang, Y.;  Talapatra, S.; Kar, S.; Vajtai, R.; Nayak; S. K.  and Ajayan, P. M. (2007). First-
Principles Study of Defect-Induced Magnetism in Carbon. Phys. Rev. Lett., 99, 
107201. 

18 

Fracture Behaviors of Graphene Sheets 
 and Carbon Nanotubes  
J. R. Xiao1* and J. W. Gillespie Jr.1,2,3**  

1Center for Composite Materials,  
2Department of Materials Science and Engineering, 

3Department of Civil and Structural Engineering, 
University of Delaware, 

 USA 

1. Introduction 
Graphene sheet is a one-atom-thick planar sheet of sp2-bonded carbon atoms that are 
densely packed in a hexagonal crystal lattice. Graphene is the basic structural element of 
some carbon allotropes including graphite, carbon nanotubes and fullerenes. Carbon 
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Molecular mechanics/dynamics and ab initio methods are suitable for studying the 
mechanical properties and fracture behaviors of grapheme sheet and nanotubes but are 
limited in scale and are computationally expensive. Recently, continuum mechanics based 
models for CNTs have been developed using the harmonic energy potential (Li and Chou, 
2003; Chang and Gao, 2003). These models reduce computational cost significantly, but can 
only be used to investigate elastic properties, such as the Young’s modulus or Poisson’s 
ratio.  To fully predict the stress-strain relationship and failure mechanism of CNTs, these 
methods are not sufficient. The Brenner potential function (Brenner, 1990) is considered 
more accurate and versatile. It can handle changes in atom hybridization and bonds with 
atoms other than carbon. A continuum mechanics approach directly incorporating the 
Brenner potential function has been developed by Huang’s group (Zhang et al., 2002; Jiang 
et al., 2003) to model elastic properties and stress-strain relationships of carbon nanotubes 
based on a modified Cauchy-Born rule. Based on the modified Morse potential function 
(Belytschko et al., 2001), which is simpler than the Brenner potential, the authors have 
developed models for perfect and defective CNTs (Xiao et al., 2005; Xiao et al., 2009). The 
developments have the ability to predict the ultimate stress and other mechanical 
properties, including nanotube’s nonlinear stress-strain relationship. The analytical model 
(Xiao et al., 2005) has been extended to solve mechanical responses of defect-free single- and 
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multi-walled CNTs under internal and external pressure loadings (Xiao et al., 2006; Xiao and 
Gillespie, 2006a) as well as aligned nanotube-composites (Xiao and Gillespie, 2006b). The 
analytical model not only provides simple closed-form solutions but also presents a better 
insight of the role of the atomic networks.  
The present work discusses the atomistic based finite bond element model and its 
application to study the effects of Stone-Wales (5-7-7-5) defects on mechanical properties 
and fracture behaviors of graphene sheets and carbon nanotubes.  The element formulation 
includes eight degrees of freedom reducing computational cost compared to the 12 degrees 
of freedom used in other FE type models. The coefficients of the elements are determined 
based on the analytical molecular structural mechanics model developed by the authors. 
The model uses the modified Morse potential to predict the Young’s modulus and stress-
strain relationship of perfect and defective nanotubes and graphene sheets.  Research 
involving the Stone-Wales defect preformed by Tserpes, and Papanikos (2007) using the 
Finite Element (FE) based model does not include the deformation of the original nanotube 
structure around the nucleation site, which may  not be true in general as atoms redistribute 
to minimize energy. The authors (Xiao et al., 2009) proposed a simple way to simulate the 
formation of a Stone-Wales (5-7-7-5) defect using an interaction mechanics method to 
calculate the deformations caused by the formation of a Stone-Wales. 
The variation of ultimate stress, strain at failure, and Young’s modulus values of carbon 
nanotubes and graphene sheets has been examined as a function of the distance between 
two defects aligned in the axial and hoop directions has been studied. The fracture failure 
patterns will be presented and discussed. The mechanical properties as a function of the 
number of defects in the hoop direction are also studied. It is found that the moduli are 
sensitive to the tube lengths when the total tube length is used to compute the overall 
effective axial strain. If one uses a characteristic length based on the size of the local 
perturbation in the deformation fieldcreated by the defect to define the strain, a size 
independent modulus can be obtained for the defective region. The diameter of the affected 
region (2nm) from a single defect is defined as the defective length and is used for all 
different tube lengths examined in the present study. The effects of defect density on 
mechanical properties of tubes of any lengths are also discussed.  Progressive failure in the 
post failure region is investigated and a few computational examples are discussed. The 
predictions compare favorably to the corresponding published results from experiments 
and numerical calculations (i.e tight binding or molecular dynamics) for armchair and 
zigzag carbon nanotubes. 

2. An atomistic based finite bond element model 
A single-walled carbon nanotube can be viewed as a hollow cylinder rolled from a graphene 
sheet, composed of carbon hexagons. The diameter of the nanotube can be calculated as 

2 2
1 2 1 23( ) /d n n n n π= + + , where a = 0.142 nm is the C-C bond length, and the pair of 

integers (n1, n2) are indices to represent its helicity such as armchair (n1 = n2) and zigzag (n2 
= 0) nanotubes. 
There are several different potential functions available (Brenner, 1990; Abell, 1985; Tersoff, 
1988) for describing C-C bond interaction other than simple harmonic functions. Among 
them, the modified Morse potential function (Belytschko et al., 2001) is simple and is used in 
the present study. The modified Morse potential function was correlated to the Brenner 
potential function for strains below 10%. In this paper, a new term Etorsion is added to 
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consider the bond energy due to angle variation of bond twisting Δφ which has been found 
to be negligible for defect-free tubes (Li and Chou, 2003) and was neglected in earlier studies 
(Chang and Gao, 2003; Xiao et al., 2005; Xiao et al., 2006; Xiao and Gillespie, 2006a; Xiao and 
Gillespie, 2006b). However, this term may play a more important role in defective tubes. The 
energy potential function is given as follow: 

 torsionanglestretch EEEE ++=  (1) 

where Estretch is the bond energy due to bond stretch Δr, and Eangle is the bond energy due to 
bond angle variation Δθ, and  

 2)(
2
1 φφ Δ= kEtorsion

 (2) 

The parameters associated with the terms Estretch and Eangle can be seen in Ref (Belytschko et 
al., 2001). The force constant associated with the term (2) is taken as (Li and Chou, 2003; 
Cornell et al., 1995; Jorgensen and Severance, 1990) kφ = 0.278   2/ radnmnN − .  
The stretch force, the angle-variation moment and the torsional moment can be obtained 
from differentiations of Eq. (1) as functions of bond stretch, bond angle variation and torsion 
angle variation, respectively: 

 ( ) rr
e eeDrF Δ−Δ−−=Δ βββ 12)(   (3a) 

 [ ]4)(31)( θθθ θ Δ+Δ=Δ sextickkM  (3b) 

 φφ φφ Δ=Δ kM )(  (3c) 

A constant bond torsional stiffness is implied by Eq. (3c). The stretch stiffness and the angle-
variation stiffness can be further obtained from differentiations of Eqs. (3a-3b) as functions 
of bond stretch and bond angle variation, respectively: 

 ( ) rr
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Analytical solutions for predicting nonlinear mechanical behaviors of defect-free SWCNTs 
have been investigated by using an effective “stick-spiral” model based on a unit cell 
approach (Xiao et al., 2005). The effective “stick-spiral” model uses a stick with Eq. (3a) to 
model the force-stretch relationship of the C-C bond and a spiral spring with Eq. (3b) to 
model the angle bending moment resulting from an angular variation of bond angle. The 
stick is assumed to have an infinite bending stiffness and finite torsional stiffness. One can 
include the torsional term by using the stick with Eq. (3c).  
For a defective nanotube with loss of local symmetry, the unit cell approach becomes 
inappropriate, and a generalized molecular mechanics (MM) model (Sears and Batra, 2004) 
or a finite element (FE) type model (Li and Chou, 2003) are needed to include the entire 
molecular structure system of the defective nanotube in order to consider the effect of 
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multi-walled CNTs under internal and external pressure loadings (Xiao et al., 2006; Xiao and 
Gillespie, 2006a) as well as aligned nanotube-composites (Xiao and Gillespie, 2006b). The 
analytical model not only provides simple closed-form solutions but also presents a better 
insight of the role of the atomic networks.  
The present work discusses the atomistic based finite bond element model and its 
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of freedom used in other FE type models. The coefficients of the elements are determined 
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number of defects in the hoop direction are also studied. It is found that the moduli are 
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2 2
1 2 1 23( ) /d n n n n π= + + , where a = 0.142 nm is the C-C bond length, and the pair of 
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1988) for describing C-C bond interaction other than simple harmonic functions. Among 
them, the modified Morse potential function (Belytschko et al., 2001) is simple and is used in 
the present study. The modified Morse potential function was correlated to the Brenner 
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have been investigated by using an effective “stick-spiral” model based on a unit cell 
approach (Xiao et al., 2005). The effective “stick-spiral” model uses a stick with Eq. (3a) to 
model the force-stretch relationship of the C-C bond and a spiral spring with Eq. (3b) to 
model the angle bending moment resulting from an angular variation of bond angle. The 
stick is assumed to have an infinite bending stiffness and finite torsional stiffness. One can 
include the torsional term by using the stick with Eq. (3c).  
For a defective nanotube with loss of local symmetry, the unit cell approach becomes 
inappropriate, and a generalized molecular mechanics (MM) model (Sears and Batra, 2004) 
or a finite element (FE) type model (Li and Chou, 2003) are needed to include the entire 
molecular structure system of the defective nanotube in order to consider the effect of 
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defects on its mechanical response. In this paper, we propose a new FE type model for 
nanotubes based on the effective “stick-spiral” model. Bond elements are developed for 
simulating deformation modes of the chemical bonds.  
Typically the FE type model (Li and Chou, 2003) uses a beam element (Kanchi 1993) with 
sectional stretch stiffness for the force-stretch relationship of the C-C bond, sectional flexural 
rigidity for the angle bending moment (Eq. 3b), and sectional torsional stiffness for the 
torsional moment (Eq. 3c). Each element has 12 degrees of freedom. The major differences 
between the FE type model and the effective “stick-spiral” model are the assumptions made 
with respect to the bending stiffness (flexible vs rigid). The bond element used in the present 
paper has infinite bending stiffness (the stick) with finite bending stiffness of the two end 
joints (the spirals) indicated by the square box shown in Fig. 1. Each of the three molecular 
deformation modes (stretching, angle variation, and angle torsion) are represented by 
tension, bending and torsion of a bond element with 8 degrees of freedom 

][ jzjyjxjiziyixie uuuuuuu φφ= . The element can be stretched (pure tension) and 

torqued (pure torsion) along its axial direction and bent by relative transverse displacement 
without angle changes at the two ends. The bond angle variation of the bond element can be 
associated with the relative transverse displacement (e) between the two ends as dθ = e/a 
(Fig. 1c). The present approach, designated the finite bond element model, is expected to 
give the same solution as the “stick-spiral” model (Xiao et al., 2005; Chang and Gao, 2003) 
for defect-free CNTs. The stick-spiral model with infinite bending stiffness represents the 
true physical deformation modes and is able to predict both in-plane stiffness (Young’ 
modulus) and Poisson’s ratio of CNTs accurately. 
For the bond element defined in Fig. 1 in a three-dimensional space, the elemental 
equilibrium equation can be established for every bond element. The final system of 
equations with appropriate boundary conditions imposed can be solved by the 
displacement-control Newton-Raphson method. A MATLAB program has been written 
based on finite bond element method for SWCNTs subjected to tensile loadings. 

3. Validation on defect-free SWCNTs 
The calculations based on our FE-based finite bond element model will be validated by 
comparing with the results obtained from the analytical model (Xiao et al., 2005) for defect-
free CNTs. The initial equilibrium state of the atomistic system of a CNT is created based on 
the ab initio calculations (Ye et al., 2001) where the approximate expressions of angle α and β 
of armchair nanotubes are taken as 3/2πα ≈  and β = π - arcos [0.5cos(π/2n1)], respectively. 
The angle α and β for zigzag nanotubes as 3/2πα ≈  and β = arcos [0.25-0.75cos(π/n1)]. The 
displacement boundary conditions for the simulations are shown in Figure 2. The atoms on 
the bottom edge of the tube are fixed in the axial (z) direction. One atom is fully fixed in all 
three (x-, y- and z) directions to prevent rigid body rotations. The other end of the CNT was 
axially displaced incrementally to introduce load into the tube.  
The interatomic force per atom (f) is calculated for all atoms along the end of the nanotube 
where the displacement is prescribed. For defect-free nanotubes, the force is identical for all 
atoms on the end. The axial strain of the CNT is computed as ε = ΔL/L0, where L0 is the 
initial length of the CNT. The force-strain relationship of nanotubes is predicted using the 
procedures outlined above. Fig. 3 shows the computed force-strain relationships for 
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and red bar indicates prescribed displacement) 
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defects on its mechanical response. In this paper, we propose a new FE type model for 
nanotubes based on the effective “stick-spiral” model. Bond elements are developed for 
simulating deformation modes of the chemical bonds.  
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sectional stretch stiffness for the force-stretch relationship of the C-C bond, sectional flexural 
rigidity for the angle bending moment (Eq. 3b), and sectional torsional stiffness for the 
torsional moment (Eq. 3c). Each element has 12 degrees of freedom. The major differences 
between the FE type model and the effective “stick-spiral” model are the assumptions made 
with respect to the bending stiffness (flexible vs rigid). The bond element used in the present 
paper has infinite bending stiffness (the stick) with finite bending stiffness of the two end 
joints (the spirals) indicated by the square box shown in Fig. 1. Each of the three molecular 
deformation modes (stretching, angle variation, and angle torsion) are represented by 
tension, bending and torsion of a bond element with 8 degrees of freedom 
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without angle changes at the two ends. The bond angle variation of the bond element can be 
associated with the relative transverse displacement (e) between the two ends as dθ = e/a 
(Fig. 1c). The present approach, designated the finite bond element model, is expected to 
give the same solution as the “stick-spiral” model (Xiao et al., 2005; Chang and Gao, 2003) 
for defect-free CNTs. The stick-spiral model with infinite bending stiffness represents the 
true physical deformation modes and is able to predict both in-plane stiffness (Young’ 
modulus) and Poisson’s ratio of CNTs accurately. 
For the bond element defined in Fig. 1 in a three-dimensional space, the elemental 
equilibrium equation can be established for every bond element. The final system of 
equations with appropriate boundary conditions imposed can be solved by the 
displacement-control Newton-Raphson method. A MATLAB program has been written 
based on finite bond element method for SWCNTs subjected to tensile loadings. 

3. Validation on defect-free SWCNTs 
The calculations based on our FE-based finite bond element model will be validated by 
comparing with the results obtained from the analytical model (Xiao et al., 2005) for defect-
free CNTs. The initial equilibrium state of the atomistic system of a CNT is created based on 
the ab initio calculations (Ye et al., 2001) where the approximate expressions of angle α and β 
of armchair nanotubes are taken as 3/2πα ≈  and β = π - arcos [0.5cos(π/2n1)], respectively. 
The angle α and β for zigzag nanotubes as 3/2πα ≈  and β = arcos [0.25-0.75cos(π/n1)]. The 
displacement boundary conditions for the simulations are shown in Figure 2. The atoms on 
the bottom edge of the tube are fixed in the axial (z) direction. One atom is fully fixed in all 
three (x-, y- and z) directions to prevent rigid body rotations. The other end of the CNT was 
axially displaced incrementally to introduce load into the tube.  
The interatomic force per atom (f) is calculated for all atoms along the end of the nanotube 
where the displacement is prescribed. For defect-free nanotubes, the force is identical for all 
atoms on the end. The axial strain of the CNT is computed as ε = ΔL/L0, where L0 is the 
initial length of the CNT. The force-strain relationship of nanotubes is predicted using the 
procedures outlined above. Fig. 3 shows the computed force-strain relationships for 
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armchair and zigzag nanotubes. Only two different types of nanotubes (i.e. a (12, 12) 
armchair and a (20, 0) zigzag) are presented for illustration purpose.   
The numerical procedure is able to give the post failure behavior (i.e. beyond the inflection 
point where the maximum of the interatomic force occurs) as shown in Fig. 3. Similar 
predictions have been reported in the study (Jiang et al., 2003). However, the accuracy of the 
predicted post failure response (dash lines) is limited to the strains shown in Fig. 3 (vertical 
solid line) since the simple interatomic potential function used is not capable of describing 
the behavior of the nanotube after the bonds are broken where the formation of new bonds, 
rehybridization and structural transformations may occur.  
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Fig. 3. Tensile force-strain curves for armchair and zigzag nanotubes 

From the experimental (Yu et al., 2000) and theoretical (Belytschko et al., 2001) studies on 
the tensile behavior of nanotubes, it was found that the stress exhibits a sudden drop to zero 
when stress reaches the tensile strength and the fracture is brittle. The predicted maximum 
load corresponding to the inflection point is taken as the tensile capacity of the defect free 
nanotube in the present study which is highlighted in Fig. 3.   
It should be noted that the present method does not require a tube thickness to be defined. 
However, in order to compare the results with published data, conventional moduli and 
strengths can be calculated using an assumed wall thickness for CNTs (e.g. t = 0.34 nm is 
used in the literature). The total force carried by the CNTs can be given as F = 2n1f, and then 

the stress can be computed as σ = F/πdt and the Young’s modulus as 
0LL

dtFE
Δ

π
= , 

respectively. It is not surprising that the predicted tensile behaviors are almost identical to 
those of the analytical molecular mechanics model (Xiao et al., 2005) because the coefficients 
used in the present atomistic based FE model are the same as those used in the analytical 
model. The negligible difference (less than 0.5%) is attributed partially to the effects of the 
torsional mode and numerical round-off error. Consequently, the present study also 
confirmed that the torsional term in the potential energy is negligible when the defect free 
tubes are subjected to tensile loading which justifies the assumptions made in other studies.  
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The size-dependent feature of in-plane stiffness and Poisson’s ratio can also be captured by 
the present model. The Young’s moduli for both armchair and zigzag nanotubes decrease 
with decreasing tube diameter and approach the predicted graphite value (383 J/m2, 
corresponding to a Young’s modulus of 1.13 TPa with thickness of 0.34nm) when the tube 
diameter is increased. The Poisson’s ratios for both armchair and zigzag tubes decrease with 
increasing tube diameter and approach the limit value of 0.20 for graphene sheet, which 
agrees with both molecular dynamics simulations and experimental values. It should be 
noted that the similar FE based model (Li and Chou 2003) predicted a very low value (<0.08) 
for the Poisson’s ratios of graphene sheets and nanotubes. Consequently, the present 
formulation overcomes this limitation in previous work. In the context of the present study, 
accurate modeling of Poisson interactions in the prediction of defect formation is important 
as shown in the next section.   
The predicted nonlinear behaviors of nanotubes are very similar to results calculated from 
molecular dynamics (Belytschko et al., 2001). The predicted strengths and failure strains are 
significantly higher than the experimental values (11 ~ 63 GPa for strength and 10% ~ 13% 
for failure strain) (Yu et al., 2000). This difference can be partially explained by the presence 
of defects that reduce stiffness and strength. The mechanical behavior of defective 
nanotubes is studied in the following section. 

4. Progressive failure of defective SWCNTs 
4.1 Stone-wales defect formation 
Various types of defects exist in CNTs, such as vacancies and topological defects (5-7-7-5). 
The Stone–Wales 5-7-7-5 defect involves the 90o rotation of a carbon bond with a new 
configuration as shown in Fig. 4. The effect of the SW defect on the configuration is believed 
to be local and limited to atoms in the neighborhood of the defect. Atoms far away from the 
defect undergo uniform deformation and their geometry configurations are the same as the 
defect-free tubes. For atoms near the defect, an interaction (similar to contact) mechanics 
concept is used to determine their initial equilibrium positions, which is possible by treating 
the defect formation as the result of interaction between two deformable ‘bodies’ as shown 
in Fig. 5. ‘Inserting’ the body b of a zigzag unit into the body a with an armchair hole as 
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Fig. 4. SW defect generated by rotating the C–C bond 
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Fig. 3. Tensile force-strain curves for armchair and zigzag nanotubes 

From the experimental (Yu et al., 2000) and theoretical (Belytschko et al., 2001) studies on 
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when stress reaches the tensile strength and the fracture is brittle. The predicted maximum 
load corresponding to the inflection point is taken as the tensile capacity of the defect free 
nanotube in the present study which is highlighted in Fig. 3.   
It should be noted that the present method does not require a tube thickness to be defined. 
However, in order to compare the results with published data, conventional moduli and 
strengths can be calculated using an assumed wall thickness for CNTs (e.g. t = 0.34 nm is 
used in the literature). The total force carried by the CNTs can be given as F = 2n1f, and then 

the stress can be computed as σ = F/πdt and the Young’s modulus as 
0LL

dtFE
Δ

π
= , 

respectively. It is not surprising that the predicted tensile behaviors are almost identical to 
those of the analytical molecular mechanics model (Xiao et al., 2005) because the coefficients 
used in the present atomistic based FE model are the same as those used in the analytical 
model. The negligible difference (less than 0.5%) is attributed partially to the effects of the 
torsional mode and numerical round-off error. Consequently, the present study also 
confirmed that the torsional term in the potential energy is negligible when the defect free 
tubes are subjected to tensile loading which justifies the assumptions made in other studies.  
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The size-dependent feature of in-plane stiffness and Poisson’s ratio can also be captured by 
the present model. The Young’s moduli for both armchair and zigzag nanotubes decrease 
with decreasing tube diameter and approach the predicted graphite value (383 J/m2, 
corresponding to a Young’s modulus of 1.13 TPa with thickness of 0.34nm) when the tube 
diameter is increased. The Poisson’s ratios for both armchair and zigzag tubes decrease with 
increasing tube diameter and approach the limit value of 0.20 for graphene sheet, which 
agrees with both molecular dynamics simulations and experimental values. It should be 
noted that the similar FE based model (Li and Chou 2003) predicted a very low value (<0.08) 
for the Poisson’s ratios of graphene sheets and nanotubes. Consequently, the present 
formulation overcomes this limitation in previous work. In the context of the present study, 
accurate modeling of Poisson interactions in the prediction of defect formation is important 
as shown in the next section.   
The predicted nonlinear behaviors of nanotubes are very similar to results calculated from 
molecular dynamics (Belytschko et al., 2001). The predicted strengths and failure strains are 
significantly higher than the experimental values (11 ~ 63 GPa for strength and 10% ~ 13% 
for failure strain) (Yu et al., 2000). This difference can be partially explained by the presence 
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configuration as shown in Fig. 4. The effect of the SW defect on the configuration is believed 
to be local and limited to atoms in the neighborhood of the defect. Atoms far away from the 
defect undergo uniform deformation and their geometry configurations are the same as the 
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Fig. 4. SW defect generated by rotating the C–C bond 
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defined in Fig. 5 and forcing them to be coincident at four specific locations will cause re-
configuration of the system within a localized region because of the geometrical distortions 
that exist at the four locations. Assuming the same in-plane properties for each body 
(governed by the same potential function), self-equilibrating ‘residual’ or internal forces will 
be generated between disturbed atoms if we assume that there is no net atomic force 
between atoms at equilibrium state of defect-free region (reference state). The resulting 
configuration corresponds to the minimized energy state of a defective graphene sheet and 
CNT. 
The finite bond element method is used for describing atomistic force-displacement 
interaction for both bodies to study how the two regions conform to each other. The two 
deformable bodies Ωe (e = a, b) are shown in Fig. 5. The interaction sites (contact ‘surface’) 
consists of four atoms (1, 2, 3 and 4) that exist in both bodies with prescribed displacements 
along e

uΓ  and tractions applied on e
tΓ (e = a, b). If the initial gap along the interaction 

surface of the two bodies is denoted by g (= (uxi uyi uzi), i = 1,2,3,4) the interaction condition 
can be described in the form of inequalities as: 

 Fc ≤ 0 g ≥ 0                                                     (8a) 

                                                       g Fc = 0 (8b)    

where Fc )( ziyixi FFF  is the interaction force vector of the four interfacial atoms. For each 

body, displacement and force fields are determined by the molecular mechanics and can be 
written in the following condensed matrix form: 
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in which ua and ub are components of the displacement vector (same size as the gap vector g) 
of the four atoms in the body a and b, respectively. Ft is the applied external force vector. Ka 
is the condensed stiffness matrix of the body a with the displacements ua as the basic 
unknowns and contents of stiffness contributions from all elements of the body a. Kb is the 
condensed stiffness matrix of the body b. By introducing the following transformation: 
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where [I] is the identity matrix. Eq. (9) can be easily transformed to: 

 cFFKg +=  (11) 
in which  

 [ ] abaaa KKKKKK 1 −+−=  (12a) 

 [ ] tbaat FKKKFF 1 −+−=  (12b) 

So that the force Fc, which is required to close the gap to achieve coincident atom locations, 
can be calculated from Eq. (11) for the initial ( 0=F ) and/or loaded states as: 

Fracture Behaviors of Graphene Sheets and Carbon Nanotubes 

 

375 

 FKgFc −−=  (13) 

The gap function is generated by aligning nodes 1 and 1′ of two bodies in Fig. 5. The 
boundary condition applied to the system matrix in Eqs. 11 and 12 is that node 1 is fixed. 
With the force cF  known one can determine the equilibrium positions of atoms in the 
defective system which corresponds to the minimized system energy. It should be noted 
that the proposed analysis involves a nonlinear procedure since the modified Morse 
potential energy function is used. The formation energy can be calculated as 

10.5 ( )i i i
c ciF dg F dg dg +≈ +∑∫  or simply calculated as 0.5 cF g without significant loss of 

accuracy.    
The formation energy of a single SW defect occurring at the center of nanotubes is slightly 
different for various tube diameters examined. A typical value of 2.86eV for a (12, 12) tube 
agrees with the range of published values (2.5~3.5eV) (Nardelli et al., 1998; Pan et al., 2000). 
Generally the larger diameter requires the higher formation energy with a plateau value of 
2.97eV for a graphene sheet based on the present model as shown in Fig. 6. The calculation of 
the defect formation energy is more complicated than the approximate method presented in 
this work. However, we have compared our simple approach to predict the defect formation 
energy and found reasonable accuracy with published molecular dynamic simulations. The 
formation of SW defect causes elongation of the local tube structure along the axial direction, 
but also shrinking along the hoop direction. Fig. 7 shows the affected area and configuration 
due to the formation of the SW defect in a graphene sheet and the (12, 12) CNT. The shrinking 
can be seen from the side view of the defective tube as shown in Fig. 7. 
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(a) Ideal armchair configuration with a hole                        (b) A zigzag unit 
Fig. 5. Modeling of atom position rearrangements due to SW defect formation 

Based on our simulations, the affected region in a tube/sheet is localized and covers four 
neighboring rings (hexagons) around the defect. The affected area is slightly sensitive to the 
tube diameter when the tube diameter is smaller than 2 nm and becomes insensitive for 
larger diameters. The molecular structure outside the region remains undisturbed. All 
chemical bonds within the affected region are preloaded by the presence of the SW defect. 
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With the application of external tensile force on the tube ends, the defect region becomes the 
weakest point and will serve as a damage nucleation site for progressive failure as given in 
the following section.  
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Fig. 6. Formation energy of SW defect vs nanotube diameter 
 

Graphene sheet Front view 
          Side view 

Fig. 7. Formation of SW defect in a graphene sheet and a (12, 12) SWCNT 

4.2 Progressive failure analysis 
After the defect formation in a graphene sheet or nanotube, one can apply further load 
(tension) onto the defective sheet and tube as shown in Fig. 7, where the load and boundary 
conditions are applied in the same fashion as described above. The tube length is taken as 6 
nm for all simulations. 
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The bond breaking criterion brings an important issue in simulating fracture of solids. Very 
often, a cut-off distance rcf is used in atomistic simulations. Such distance-based criterion is 
adopted in the present study. In our analytical study (Xiao et al., 2005), the inflection point 
(corresponding to a rcf = 0.168 nm) was used. In the present study the effect of the cut-off 
distances on the fracture and failure of defective graphene sheets and nanotubes will be 
investigated. 
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Fig. 8. Young’s moduli of carbon nanotubes vs tube diameter   

Different cut-off distances have been suggested (Xiao et al., 2005; Lu and Bhattacharya, 2005; 
Huhtala et al., 2004; Xia et al., 2002; Dumitrica et al., 2003). It has been found that there is no 
significant change in the critical bond-breaking force with values ranging from 0.17 nm to 0.19 
nm. Clearly, the cut-off distance used in our analytical study (Xiao et al., 2005) is close to this 
range. A value of rcf   = 0.175 nm is adopted in the present study unless otherwise stated. As 
shown in the study (Belytschko, et al., 2003),  the force field shape of the modified Morse 
potential function is essentially the same as that of the Brenner potential function before the 
inflection point (i.e. the maximum of the interatomic force) and totally different after the 
inflection point. Belytschko, et al. (2003) reported that the fracture is essentially independent of 
the separation energy and depends primarily on the inflection point of the interatomic 
potential, i.e. the shape of the potential function after the inflection point is not important to 
fracture behavior. Consequently, any cut-off distances beyond the inflection point will not 
affect the fracture response but will significantly increase the computational cost.  
Fig. 8 shows the calculated Young’s modulus of defective nanotubes (open points) 
compared with defect-free tubes (solid lines). It can be seen that the Young’s moduli are size 
dependent for both defective and defect-free tubes, and the Young’s moduli of defective 
tubes are reduced because of the presence of SW defect, particularly for small diameter 
tubes (10% reduction for diameters ranging from 0.4-0.6 nm). Such reduction becomes 
insignificant for larger diameter (> 2nm) tubes simply because the ratio of the affected 
region (almost constant) over the whole area along the hoop direction decreases as the tube 
diameter increases.  
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Different cut-off distances have been suggested (Xiao et al., 2005; Lu and Bhattacharya, 2005; 
Huhtala et al., 2004; Xia et al., 2002; Dumitrica et al., 2003). It has been found that there is no 
significant change in the critical bond-breaking force with values ranging from 0.17 nm to 0.19 
nm. Clearly, the cut-off distance used in our analytical study (Xiao et al., 2005) is close to this 
range. A value of rcf   = 0.175 nm is adopted in the present study unless otherwise stated. As 
shown in the study (Belytschko, et al., 2003),  the force field shape of the modified Morse 
potential function is essentially the same as that of the Brenner potential function before the 
inflection point (i.e. the maximum of the interatomic force) and totally different after the 
inflection point. Belytschko, et al. (2003) reported that the fracture is essentially independent of 
the separation energy and depends primarily on the inflection point of the interatomic 
potential, i.e. the shape of the potential function after the inflection point is not important to 
fracture behavior. Consequently, any cut-off distances beyond the inflection point will not 
affect the fracture response but will significantly increase the computational cost.  
Fig. 8 shows the calculated Young’s modulus of defective nanotubes (open points) 
compared with defect-free tubes (solid lines). It can be seen that the Young’s moduli are size 
dependent for both defective and defect-free tubes, and the Young’s moduli of defective 
tubes are reduced because of the presence of SW defect, particularly for small diameter 
tubes (10% reduction for diameters ranging from 0.4-0.6 nm). Such reduction becomes 
insignificant for larger diameter (> 2nm) tubes simply because the ratio of the affected 
region (almost constant) over the whole area along the hoop direction decreases as the tube 
diameter increases.  
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Fig. 9. Tensile force-strain curves of carbon nanotubes   

Fig. 9 shows the calculated stress-strain relationships for armchair and zigzag nanotubes 
with and without 5-7-7-5 (SW) defect at the center. Again, only two different types of 
nanotubes ((12, 12) armchair and (20, 0) zigzag with diameter around 1.6 nm) are presented. 
As can be seen from Fig. 9, the predicted tensile strength (85.9 GPa) of defective armchair 
nanotubes is much less than that (126.2 GPa) of defect-free armchair nanotubes (reduced 
32%). Whereas, the effect of the SW defect on the failure strength of zigzag tubes is less 
significant for armchair tubes because of nanotube chirality. The failure strength of defective 
(20, 0) zigzag tube is 83.3 GPa, which is 12% reduced from the pristine value of 94.5 GPa. 
The predicted failure strains in the present study are 9.8% for the defective (12, 12) armchair 
nanotube (23.1% for the defect-free), and 11.0% for the defective (20, 0) zigzag nanotube 
(15.6% for the defect-free). All these predictions agree well with the MD results (Belytschko, 
et al., 2003). It should be noted that the predicted strengths are still significantly higher than 
the experimental values (11 ~ 63 GPa) of Yu et al. (2000) though the predicted failure strains 
are comparable to the measured results (10% ~ 13%) (Yu et al., 2000). This issue can be 
partially explained by the present of multiple SW defects (Lu, B. Bhattacharya, 2005; 
Dumitrica et al., 2003) as well as other types of defects (Xiao and Hou, 2006).  
Tubes are found to exhibit brittle behavior at fracture. Once the tube deformation reaches a 
critical level (corresponding to the bond cutoff distance), atomic bonds break successively 
and lead to a complete fracture with little strain applied. The effect of the cutoff distance on 
the progressive failure has been examined with three different cutoff values (0.168, 0.175 
and 0.185 nm) used. It is found that the ultimate strengths and failure strains are almost 
identical (difference is less than 0.1%) for all three values examined and the failure is brittle 
no matter what value is used for the cutoff distance. However, the computing time with rcf   
= 0.185 nm is much longer than those with other two smaller values. The effect of the 
torsional term on the mechanical behaviors of defective tubes was also assessed. The present 
study shows that the torsional term in the potential energy still plays a minor role when the 
defective tubes are subjected to tensile loading. 
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     (a) a grahpene sheet                       (b) a (10, 10) armchair nanotube 
Fig. 10. Fractured profiles at different strains of a defective graphene sheet and a defective 
nanotube under tension 
Fig. 10 shows the crack evolution (elimination of failed bond elements based on the cutoff 
distance failure criterion) at different strain levels for a graphene sheet and an (10, 10) 
armchair CNT. Similar failure patterns can be seen between the graphene sheet and CNT 
which exhibits diagonal crack paths.  The failure pattern in the CNT wraps around the tube 
in the π/4 direction along its circumference, which is similar to MD simulations (Belytschko, 
et al., 2003; Lu and Bhattacharya, 2005).  

4.3 Effects of multiple stone-wales defects    
The present study also considers CNTs with multiple defects along its axial direction and 
hoop direction, respectively. The effect of the distance between adjacent defects and the 
number of defects on the mechanical behaviors of defective graphene sheets and CNTs will 
be examined. The developed MATLAB program of the finite bond element model has been 
further improved to be able to form several Stone-Wales defects randomly at multiple points 
in the CNT structure. The present method for creating multiple defects on a nanotube is 
similar to creating a single defect.  Once the first defect is created at a given location, any 
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deformations of the tube are taken into account for the next defect.  The defects are therefore 
created at specific locations sequentially, not simultaneously.  The effect of randomly 
distributed multiple defects on mechanical properties of nanotubes has been studied by Lu 
and Bhattacharya [17] using MD. Predictions on mechanical properties of CNTs with 
multiple defects based on continuum mechanics based models have not been well studied. 
The present study provides understanding of the effects of multiple defects on the Young’s 
modulus, ultimate strength, and strain at failure of the defective CNTs.  After defect 
formations in a graphene sheet or nanotube, one can apply further load (tension) onto the 
defective sheet and tube as shown in Fig. 11, where the load and boundary conditions are 
applied in the same fashion as described above. Different tube lengths are examined. 
 

 
(a) Graphene sheet  

 
(b) CNT 

Fig. 11. Fracture pattern of a graphene sheet and tube with two defects along its axial 
direction 

4.3.1 Effects on young’s modulus 
From our simulations, it has been found that graphene sheets and CNTs with multiple 
defects along its axial direction (with separation distance larger than 2nm) show similar 
moduli and strengths as those with single defect, because the determining factor is the 
weakest cross-section. It should be noted that there is no defect interactions when the 
separation distance is greater than 2nm. The present study focuses on the effects of two 
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4.3.1 Effects on young’s modulus 
From our simulations, it has been found that graphene sheets and CNTs with multiple 
defects along its axial direction (with separation distance larger than 2nm) show similar 
moduli and strengths as those with single defect, because the determining factor is the 
weakest cross-section. It should be noted that there is no defect interactions when the 
separation distance is greater than 2nm. The present study focuses on the effects of two 
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defects located at the same axial location but separated by a prescribed angle around the 
circumference. We look at a (20, 20) CNT with a diameter of 2.71 nm. Based on our previous 
study (Xiao et al., 2005), the Young’s moduli of nanotubes with a diameter larger than 2nm 
are insensitive to their diameters. Fig. 12 compares the calculated Young’s Moduli of the 
CNT with different angles (in degree) between the two defects for 4 different tube lengths. 
The effect that the difference in angle between defects has on the modulus is negligible for 
angles > 70 degree (around 2 nm separation). Similar studies carried out on (10,10), (17,0), 
and (35,0) tubes of varying lengths yield similar results. It is also noticed that the shorter the 
tube length is, the lower Young’s Modulus, because the ratio of the affected area over the 
total length is larger for a short tube length. This is a consequence of how axial strain of the 
tube is defined.  In our study we have adopted the definition commonly used in 
experimental studies. 
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Fig. 12. Young's modulus vs. angle between two defects for (20,20) CNTs with different 
lengths (Young's modulus calculated using total tube length) 

To better understand these local effects on modulus one can separate the defective tubes 
into two different regions, i.e. the affected region which is about 2nm long (correlates to the 
failure pattern of a single defect as shown in Xiao, et al., (2009), and unaffected region (total 
length minus 2nm). In the unaffected region the Young’s modulus is the same as the defect-
free tubes reported previously (Xiao et al., 2005). In the affected region, local strains are 
defined as ε = ΔLD /LD0, where LD0 is the initial length of the affected region (i.e. 2nm) and 
ΔLD is the change in length of the affected region. Consequently, two different moduli can be 
defined, i.e. (a) apparent modulus Etotal based on the total length as shown in Fig. 12, and (b) 
defective modulus Elocal based on the local affected length as shown in Fig. 13.  
In Fig. 12, a plateau modulus is reached for separation angles greater than 72 degrees for all 
tube lengths.  The magnitude of this plateau modulus increases as the tube length increases.  
For infinitely long tubes, the plateau modulus approaches the modulus of the defect free 
tube.   For angles less than 72 degrees, modulus decreases from the associated plateau level 
due to defect interactions (i.e. distance between defects is less than 2nm affected zone).   
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Fig. 13. Young's modulus vs. angle between two defects for (20,20) CNTs with different 
lengths (Young's modulus calculated using local length of 2nm) 

In Fig. 13, it can be seen that Elocal also exhibits a plateau modulus but is insensitive to the 
tube length. Results for all tube lengths collapse to a single curve.  For angles less than 72 
degrees, we see the same drop-off in modulus due to defect interaction. It should be noted 
that one can use different defective lengths other than 2nm to obtain different defective 
moduli Elocal. We chose 2nm as the size of the affected area based on the study on single 
defect formation (Xiao, et al., 2009) as the defective length.  
The relationship between Young’s modulus and defect angle in Figs. 12 and 13 indicates that 
two defects start to interact when their distance (hoop direction) is smaller than 2 nm (about 
72 degree defect angle). In Fig. 14, we study defect interactions by increasing the number of 
defects at a given axial location to look at the effects of defect number on the Young’s 
Modulus. In this case we have considered multiple defects that are spaced at uniform 
angular increments around the circumference (e.g. 4 defects correspond to a separation 
angle of 90 degrees).  Fig. 14 illustrated the difference between our two moduli definitions 
(Etotal  and Elocal) computed from original tube lengths and local defective length (2 nm) for 
the four- and eight-defect cases. The local modulus which is insensitive to overall tube 
length shows that the modulus drops from the defect-free value as the number of defects 
increases (4 and 8 defects reduce the modulus by 3 and 6%, respectively). For the case of 
apparent modulus (Etotal) at a given tube length, an increase in the number of defects in the 
hoop direction reduces the modulus. As the tube length increases, the modulus 
monontonically increases and approaches the defect-free level.  As explained above, this is a 
consequence of defining strain as change in axial length over initial length.  Local 
deformations around the defect are identical but contribute less to the overall deformation 
as length increases. One concludes from Fig. 14 that for a given defect pattern, one may take 
the local modulus (red lines) as the lower bound of the apparent modulus (blue lines) and 
the defect-free modulus (black line) as the upper bound as the tube length varies.  
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defects located at the same axial location but separated by a prescribed angle around the 
circumference. We look at a (20, 20) CNT with a diameter of 2.71 nm. Based on our previous 
study (Xiao et al., 2005), the Young’s moduli of nanotubes with a diameter larger than 2nm 
are insensitive to their diameters. Fig. 12 compares the calculated Young’s Moduli of the 
CNT with different angles (in degree) between the two defects for 4 different tube lengths. 
The effect that the difference in angle between defects has on the modulus is negligible for 
angles > 70 degree (around 2 nm separation). Similar studies carried out on (10,10), (17,0), 
and (35,0) tubes of varying lengths yield similar results. It is also noticed that the shorter the 
tube length is, the lower Young’s Modulus, because the ratio of the affected area over the 
total length is larger for a short tube length. This is a consequence of how axial strain of the 
tube is defined.  In our study we have adopted the definition commonly used in 
experimental studies. 
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Fig. 12. Young's modulus vs. angle between two defects for (20,20) CNTs with different 
lengths (Young's modulus calculated using total tube length) 

To better understand these local effects on modulus one can separate the defective tubes 
into two different regions, i.e. the affected region which is about 2nm long (correlates to the 
failure pattern of a single defect as shown in Xiao, et al., (2009), and unaffected region (total 
length minus 2nm). In the unaffected region the Young’s modulus is the same as the defect-
free tubes reported previously (Xiao et al., 2005). In the affected region, local strains are 
defined as ε = ΔLD /LD0, where LD0 is the initial length of the affected region (i.e. 2nm) and 
ΔLD is the change in length of the affected region. Consequently, two different moduli can be 
defined, i.e. (a) apparent modulus Etotal based on the total length as shown in Fig. 12, and (b) 
defective modulus Elocal based on the local affected length as shown in Fig. 13.  
In Fig. 12, a plateau modulus is reached for separation angles greater than 72 degrees for all 
tube lengths.  The magnitude of this plateau modulus increases as the tube length increases.  
For infinitely long tubes, the plateau modulus approaches the modulus of the defect free 
tube.   For angles less than 72 degrees, modulus decreases from the associated plateau level 
due to defect interactions (i.e. distance between defects is less than 2nm affected zone).   
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Fig. 13. Young's modulus vs. angle between two defects for (20,20) CNTs with different 
lengths (Young's modulus calculated using local length of 2nm) 

In Fig. 13, it can be seen that Elocal also exhibits a plateau modulus but is insensitive to the 
tube length. Results for all tube lengths collapse to a single curve.  For angles less than 72 
degrees, we see the same drop-off in modulus due to defect interaction. It should be noted 
that one can use different defective lengths other than 2nm to obtain different defective 
moduli Elocal. We chose 2nm as the size of the affected area based on the study on single 
defect formation (Xiao, et al., 2009) as the defective length.  
The relationship between Young’s modulus and defect angle in Figs. 12 and 13 indicates that 
two defects start to interact when their distance (hoop direction) is smaller than 2 nm (about 
72 degree defect angle). In Fig. 14, we study defect interactions by increasing the number of 
defects at a given axial location to look at the effects of defect number on the Young’s 
Modulus. In this case we have considered multiple defects that are spaced at uniform 
angular increments around the circumference (e.g. 4 defects correspond to a separation 
angle of 90 degrees).  Fig. 14 illustrated the difference between our two moduli definitions 
(Etotal  and Elocal) computed from original tube lengths and local defective length (2 nm) for 
the four- and eight-defect cases. The local modulus which is insensitive to overall tube 
length shows that the modulus drops from the defect-free value as the number of defects 
increases (4 and 8 defects reduce the modulus by 3 and 6%, respectively). For the case of 
apparent modulus (Etotal) at a given tube length, an increase in the number of defects in the 
hoop direction reduces the modulus. As the tube length increases, the modulus 
monontonically increases and approaches the defect-free level.  As explained above, this is a 
consequence of defining strain as change in axial length over initial length.  Local 
deformations around the defect are identical but contribute less to the overall deformation 
as length increases. One concludes from Fig. 14 that for a given defect pattern, one may take 
the local modulus (red lines) as the lower bound of the apparent modulus (blue lines) and 
the defect-free modulus (black line) as the upper bound as the tube length varies.  
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Fig. 14. Young's moduli of (20,20) CNTs with different lengths (4 or 8 defects uniformly 
distributed along the hoop direction) 

The computed moduli of tubes with higher number of defects ranging from 1 to 20 along its 
hoop direction are presented in Fig. 15.  Similar trends are observed where modulus 
reductions increase with increasing number of defects that are interacting.  The local 
modulus provides a lower bound and the apparent modulus increases with tube length.  
The results converge to the defect-free result as the number of defects approach zero and the 
tube length increases. At these higher levels of defects, modulus reductions are quite 
significant (e.g. local modulus decreases by 30% for the case of 20 circumferential defects). 
One may now generalize the present results to study nanotubes with defects uniformly 
distributed along both the hoop and axial directions of the tube. Consider each combination 
of defect number and tube length in Fig. 15 as a unit cell taken from a longer tube with a 
periodic defect pattern along the tube length. For instance, the calculated Young’s modulus 
of the 6mn long tube with 8 defects uniformly distributed along its hoop direction, as shown 
in Fig. 15, can be treated as that of any longer tubes with the 8 hoop defects distributed 
every 6nm along its axial direction.  Consequently, one can define defect density as the 
number of defects per unit surface area within the unit cell of interest.  This approach is, 
based on the assumption that defects exist with equal probability along the entire length of 
the tube. By following this approach, modulus as a function of defect density is calculated as 
shown in Fig. 16. Results are now independent of tube length (i.e. local and apparent moduli 
are equivalent for a given defect density). As the defect density approaches zero, the 
modulus approaches the defect-free value as expected.  Interestingly a linear relationship is 
observed with modulus decreasing with increasing defect density. A family of curves are 
presented in Fig. 16 that illustrate the effects of defect interaction for a given defect density.  
As the separation angle decreases (i.e. interaction increases), the negative slope of the 
modulus reduction versus defect density increases.  The modulus results presented in Fig. 
16 are expected to apply to nanotubes of larger diameter than considered in this study 
(>2.71 nm) including graphene sheets.  The effects of defects on nanotube strength are 
considered next. 
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Fig. 15. Young's modulus vs. number of defects for (20,20) CNTs with different lengths 
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Fig. 16. Young's modulus vs. defect density for a (20,20) CNT 

4.3.2 Effects on ultimate strength 
The effects of isolated defects (i.e. no interactions) on strength are first examined for a 4nm 
long (10,10) nanotube.  The ultimate strengths for a defect free tube, a tube with one defect 
and a tube with two defects along the axial direction at different hoop locations are 124 GPa, 
84.8 GPa, and 84.2 GPa respectively.  In contrast to the modulus results discussed above, 
single defects significantly reduce failure strength (approximately 30%). Despite having two 
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Fig. 14. Young's moduli of (20,20) CNTs with different lengths (4 or 8 defects uniformly 
distributed along the hoop direction) 

The computed moduli of tubes with higher number of defects ranging from 1 to 20 along its 
hoop direction are presented in Fig. 15.  Similar trends are observed where modulus 
reductions increase with increasing number of defects that are interacting.  The local 
modulus provides a lower bound and the apparent modulus increases with tube length.  
The results converge to the defect-free result as the number of defects approach zero and the 
tube length increases. At these higher levels of defects, modulus reductions are quite 
significant (e.g. local modulus decreases by 30% for the case of 20 circumferential defects). 
One may now generalize the present results to study nanotubes with defects uniformly 
distributed along both the hoop and axial directions of the tube. Consider each combination 
of defect number and tube length in Fig. 15 as a unit cell taken from a longer tube with a 
periodic defect pattern along the tube length. For instance, the calculated Young’s modulus 
of the 6mn long tube with 8 defects uniformly distributed along its hoop direction, as shown 
in Fig. 15, can be treated as that of any longer tubes with the 8 hoop defects distributed 
every 6nm along its axial direction.  Consequently, one can define defect density as the 
number of defects per unit surface area within the unit cell of interest.  This approach is, 
based on the assumption that defects exist with equal probability along the entire length of 
the tube. By following this approach, modulus as a function of defect density is calculated as 
shown in Fig. 16. Results are now independent of tube length (i.e. local and apparent moduli 
are equivalent for a given defect density). As the defect density approaches zero, the 
modulus approaches the defect-free value as expected.  Interestingly a linear relationship is 
observed with modulus decreasing with increasing defect density. A family of curves are 
presented in Fig. 16 that illustrate the effects of defect interaction for a given defect density.  
As the separation angle decreases (i.e. interaction increases), the negative slope of the 
modulus reduction versus defect density increases.  The modulus results presented in Fig. 
16 are expected to apply to nanotubes of larger diameter than considered in this study 
(>2.71 nm) including graphene sheets.  The effects of defects on nanotube strength are 
considered next. 
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Fig. 15. Young's modulus vs. number of defects for (20,20) CNTs with different lengths 
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Fig. 16. Young's modulus vs. defect density for a (20,20) CNT 

4.3.2 Effects on ultimate strength 
The effects of isolated defects (i.e. no interactions) on strength are first examined for a 4nm 
long (10,10) nanotube.  The ultimate strengths for a defect free tube, a tube with one defect 
and a tube with two defects along the axial direction at different hoop locations are 124 GPa, 
84.8 GPa, and 84.2 GPa respectively.  In contrast to the modulus results discussed above, 
single defects significantly reduce failure strength (approximately 30%). Despite having two 
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defects along the axial direction, failure strength is effectively the same as a single defective 
tube, because the determining factor for ultimate strength is the weakest cross-section. These 
results illustrate that multiple defects that are sufficiently separated such that there are no 
interactions between them have comparable strength.   
To study the effects of multiple interacting defects, let us focus on tubes with defects 
distributed around their hoop direction. Similar to the Young’s modulus study, simulations 
were conducting using (10,10), (20,20), (17,0), and (35,0) nanotubes with different lengths of 
4, and 6 nanometers.  It should be noted that a (10,10) tube has about the same diameter as a 
(17,0) tube, and the same is true for (20,20) and (35,0).  In each simulation, the tube was 
loaded quasi-statically in tension under prescribed displacement until failure.  For failure of 
a bond to occur, the individual strain of the bond had to reach 18.5%.  This value is 
consistent with published data as an inflection point for a C-C bond.  The simulations 
predict that once a single initial bond has broken, the stress would drop abruptly under 
displacement controlled loading. The basic nanotube structure will still be intact and have 
some post-failure properties. In our simulations, the ultimate strength is defined as the 
maximum stress the tube reaches.  Also, the strain at failure is the strain that corresponds to 
this ultimate stress. 
In Fig. 17, we consider the armchair cases with two defects at the same axial location as a 
function of separation angle.  At angles greater than approximately 70 degrees a strength 
plateau is established equal to the ultimate strength of a single defect mentioned above.  
When the angle drops below 70 degrees (0.83 nm distance for a (20, 20) CNT, which is about 
the same size of the defective area), the defects begin to interact and a dramatic reduction in 
strength is predicted.  For the case of 18 degree separation angle, the strength has dropped 
58% of the defect-free ultimate strength. Results from the (10, 10) CNT simulation follow the 
same trend.  In contrast to the modulus results, it should be noted that the computed 
strengths are not sensitive to tube length.   
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Fig. 17. Ultimate strength vs. angle between two defects for (20, 20) CNTs with different 
lengths 
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Fig. 18. Ultimate strength vs. Number of defects for (20,20) CNTs with different lengths 

The effect of multiple defects at the same axial location on the ultimate strength is 
considered next. In the armchair configuration, increasing the amount of defects present 
around the circumference decreases the ultimate strength as shown in Fig. 18 from the 
plateau strength corresponding to a single defect. At approximately 4-6 defects, the 
separation angle drops below 70 degrees and significant interactions between multiple 
defects develop. In the case of multiple defects, the strength drops to the same level as the 
results for 2 defects separated by the same angle.  For example, 20 defects have a separation 
angle of 18 degrees and one observes the same strength reduction as shown in Fig. 18 (i.e. 
58% of the defect-free tube). One concludes that the strength of a tube with multiple defects 
is determined by the degree of interaction indicated by the separation distance. 
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Fig. 19. Stress-strain curves of a 6nm (20, 20) CNT with multiple defects equally spaced 
around the circumference at the middle section 
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defects along the axial direction, failure strength is effectively the same as a single defective 
tube, because the determining factor for ultimate strength is the weakest cross-section. These 
results illustrate that multiple defects that are sufficiently separated such that there are no 
interactions between them have comparable strength.   
To study the effects of multiple interacting defects, let us focus on tubes with defects 
distributed around their hoop direction. Similar to the Young’s modulus study, simulations 
were conducting using (10,10), (20,20), (17,0), and (35,0) nanotubes with different lengths of 
4, and 6 nanometers.  It should be noted that a (10,10) tube has about the same diameter as a 
(17,0) tube, and the same is true for (20,20) and (35,0).  In each simulation, the tube was 
loaded quasi-statically in tension under prescribed displacement until failure.  For failure of 
a bond to occur, the individual strain of the bond had to reach 18.5%.  This value is 
consistent with published data as an inflection point for a C-C bond.  The simulations 
predict that once a single initial bond has broken, the stress would drop abruptly under 
displacement controlled loading. The basic nanotube structure will still be intact and have 
some post-failure properties. In our simulations, the ultimate strength is defined as the 
maximum stress the tube reaches.  Also, the strain at failure is the strain that corresponds to 
this ultimate stress. 
In Fig. 17, we consider the armchair cases with two defects at the same axial location as a 
function of separation angle.  At angles greater than approximately 70 degrees a strength 
plateau is established equal to the ultimate strength of a single defect mentioned above.  
When the angle drops below 70 degrees (0.83 nm distance for a (20, 20) CNT, which is about 
the same size of the defective area), the defects begin to interact and a dramatic reduction in 
strength is predicted.  For the case of 18 degree separation angle, the strength has dropped 
58% of the defect-free ultimate strength. Results from the (10, 10) CNT simulation follow the 
same trend.  In contrast to the modulus results, it should be noted that the computed 
strengths are not sensitive to tube length.   
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Fig. 17. Ultimate strength vs. angle between two defects for (20, 20) CNTs with different 
lengths 
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Fig. 18. Ultimate strength vs. Number of defects for (20,20) CNTs with different lengths 

The effect of multiple defects at the same axial location on the ultimate strength is 
considered next. In the armchair configuration, increasing the amount of defects present 
around the circumference decreases the ultimate strength as shown in Fig. 18 from the 
plateau strength corresponding to a single defect. At approximately 4-6 defects, the 
separation angle drops below 70 degrees and significant interactions between multiple 
defects develop. In the case of multiple defects, the strength drops to the same level as the 
results for 2 defects separated by the same angle.  For example, 20 defects have a separation 
angle of 18 degrees and one observes the same strength reduction as shown in Fig. 18 (i.e. 
58% of the defect-free tube). One concludes that the strength of a tube with multiple defects 
is determined by the degree of interaction indicated by the separation distance. 
 

0

20

40

60

80

100

0 2 4 6 8 10

20 defects
10 defects
 8 defects
 4 defects

Strain

S
tre

ss
 (G

P
a)

 
Fig. 19. Stress-strain curves of a 6nm (20, 20) CNT with multiple defects equally spaced 
around the circumference at the middle section 
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Fig. 19 gives the computed stress-strain relationships of a 6nm (20, 20) tube with different 
number of defects spaced uniformly around the circumference at the same axial location 
(about the middle section of the tube). Based on the discussion above, the initial modulus 
decreases as the number density of defects increases. In addition, the strength and strain to 
failure decreases as the separation angle between defects decreases.  In this figure, the 20 
defect curve has both the lowest modulus and lowest ultimate strength and strain to failure.  
The failure patterns of the 6nm (20, 20) tube with 4 and 8 defects equally spaced around the 
circumference direction under tension loading are shown in Fig. 20.  It can be seen that the 
failure of the tube with 8 defects (Fig. 20b) is extremely localized with no diagonal crack 
propagation as seen in the tube with less hoop defects (see Fig. 11 and Fig. 20a).  
 

  
(a) With 4 defects 

  
(b) With 8 defects 

Fig. 20. Failure patterns of a 6nm (20, 20) CNT with multiple defects equally spaced around 
the circumference at the middle section 

Fracture Behaviors of Graphene Sheets and Carbon Nanotubes 

 

389 

5. Conclusions 
By incorporating the modified Morse potential function into a novel atomistic finite bond 
element molecular structural mechanics model, the mechanical responses of graphene sheet 
and single-walled nanotubes under tension conditions are investigated. The finite bond 
element has 8 degrees of freedom (DOF) which is used to simulate the interatomic 
connections in CNTs. Compared to other similar finite element approaches (12DOFs) the 
computational cost of the present method is reduced. The coefficients in the finite bond 
element model are taken from the analytical molecular mechanics model (Xiao et al., 2005). 
The present approach is capable of predicting Young’s moduli, Poisson’s ratios, and stress-
strain relationships of graphene sheets and nanotubes with or without a SW defect. An 
interaction mechanics approach is introduced to model the formation of a 5-7-7-5 SW defect 
in CNTs which reasonably captures the physical phenomena in terms of reconfiguration, 
local deformation and formation energy. Consequently, effects of the SW defect on the 
Young’s moduli, fracture and progressive failure of defective CNTs have been investigated. 
Using the present approach, it is feasible to model multiple defects and their interaction in 
both SWCNT and MWCNT since the present approach is much simpler and 
computationally efficient than the classical molecular dynamics model.  
A methodology to create multiple defects in a CNT at given locations has been implemented 
into our MATLAB code.   Consequently, the effect and interaction of multiple defects on a 
SWCNT were studied. The resulting simulations were able to predict the Young’s modulus, 
ultimate strength, and strain at failure. The influence of single and multiple defects on 
mechanical properties were studied. In the case of Young’s modulus, increasing the number 
of defects along the hoop direction can change its properties dramatically, particularly when 
the defect distance is smaller than 2 nm (defect interaction). It is also found that moduli are 
sensitive to the tube lengths when the total tube length is used to compute the strain. This 
finding has major implications for comparing experimental data from tests on different tube 
lengths. A local defective length (2 nm) is introduced to separate the overall deformation 
into two different regions: defective and defect-free. By doing so, a size independent 
modulus has been obtained for the defective region, which can be treated as the minimum 
modulus for a given defective tube of any length larger than 2nm.  
In addition, results were generalized to consider defect density (number of defects per unit 
surface area). Stiffness reductions were found to be linearly related to defect density 
(number of defects per unit surface area) and to become independent of tube length. It was 
found that further reductions occur when the defects interact with each other (typically 
when the distance between defects is smaller than 2 nm). The effects of single and multiple 
defects on ultimate strength were considered.  Significant strength reductions are predicted 
to occur by the presence of single defects.  Further strength reductions are predicted for 
cases where adjacent defects are interacting. In this case the ultimate strength is governed 
more by the separation distance than the defect density. Finally the overall stress-strain 
response has been predicted as a function of number of defects.  Results including the effects 
of defects more closely match experimental data reported in the literature. It should be 
noted that this present model has a more simple approach than quantum or the classical 
molecular dynamics model and is less computationally expensive.   

6. References 
Abell GC. (1985). Empirical chemical pseudopotential theory of molecular and metallic 

bonding. Physical  Review B, Vol. 31, pp.6184-6196.  



 Physics and Applications of Graphene - Theory 

 

388 

Fig. 19 gives the computed stress-strain relationships of a 6nm (20, 20) tube with different 
number of defects spaced uniformly around the circumference at the same axial location 
(about the middle section of the tube). Based on the discussion above, the initial modulus 
decreases as the number density of defects increases. In addition, the strength and strain to 
failure decreases as the separation angle between defects decreases.  In this figure, the 20 
defect curve has both the lowest modulus and lowest ultimate strength and strain to failure.  
The failure patterns of the 6nm (20, 20) tube with 4 and 8 defects equally spaced around the 
circumference direction under tension loading are shown in Fig. 20.  It can be seen that the 
failure of the tube with 8 defects (Fig. 20b) is extremely localized with no diagonal crack 
propagation as seen in the tube with less hoop defects (see Fig. 11 and Fig. 20a).  
 

  
(a) With 4 defects 

  
(b) With 8 defects 

Fig. 20. Failure patterns of a 6nm (20, 20) CNT with multiple defects equally spaced around 
the circumference at the middle section 
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5. Conclusions 
By incorporating the modified Morse potential function into a novel atomistic finite bond 
element molecular structural mechanics model, the mechanical responses of graphene sheet 
and single-walled nanotubes under tension conditions are investigated. The finite bond 
element has 8 degrees of freedom (DOF) which is used to simulate the interatomic 
connections in CNTs. Compared to other similar finite element approaches (12DOFs) the 
computational cost of the present method is reduced. The coefficients in the finite bond 
element model are taken from the analytical molecular mechanics model (Xiao et al., 2005). 
The present approach is capable of predicting Young’s moduli, Poisson’s ratios, and stress-
strain relationships of graphene sheets and nanotubes with or without a SW defect. An 
interaction mechanics approach is introduced to model the formation of a 5-7-7-5 SW defect 
in CNTs which reasonably captures the physical phenomena in terms of reconfiguration, 
local deformation and formation energy. Consequently, effects of the SW defect on the 
Young’s moduli, fracture and progressive failure of defective CNTs have been investigated. 
Using the present approach, it is feasible to model multiple defects and their interaction in 
both SWCNT and MWCNT since the present approach is much simpler and 
computationally efficient than the classical molecular dynamics model.  
A methodology to create multiple defects in a CNT at given locations has been implemented 
into our MATLAB code.   Consequently, the effect and interaction of multiple defects on a 
SWCNT were studied. The resulting simulations were able to predict the Young’s modulus, 
ultimate strength, and strain at failure. The influence of single and multiple defects on 
mechanical properties were studied. In the case of Young’s modulus, increasing the number 
of defects along the hoop direction can change its properties dramatically, particularly when 
the defect distance is smaller than 2 nm (defect interaction). It is also found that moduli are 
sensitive to the tube lengths when the total tube length is used to compute the strain. This 
finding has major implications for comparing experimental data from tests on different tube 
lengths. A local defective length (2 nm) is introduced to separate the overall deformation 
into two different regions: defective and defect-free. By doing so, a size independent 
modulus has been obtained for the defective region, which can be treated as the minimum 
modulus for a given defective tube of any length larger than 2nm.  
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(number of defects per unit surface area) and to become independent of tube length. It was 
found that further reductions occur when the defects interact with each other (typically 
when the distance between defects is smaller than 2 nm). The effects of single and multiple 
defects on ultimate strength were considered.  Significant strength reductions are predicted 
to occur by the presence of single defects.  Further strength reductions are predicted for 
cases where adjacent defects are interacting. In this case the ultimate strength is governed 
more by the separation distance than the defect density. Finally the overall stress-strain 
response has been predicted as a function of number of defects.  Results including the effects 
of defects more closely match experimental data reported in the literature. It should be 
noted that this present model has a more simple approach than quantum or the classical 
molecular dynamics model and is less computationally expensive.   
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1. Introduction

The magnetism of conventional metal is composed of two different contributions, the Pauli
paramagnetism due to the spin magnetic moment, and the Landau diamagnetism due to the
orbital motion of electrons. In a free electron system, the magnitude of the spin component
is larger than the orbital component so that the system exhibits paramagnetism in total. In
a condensed matter system, on the other hand, the orbital magnetism sensitively depends
on the detail of the band structure, and sometimes largely deviates from the conventional
Landau diamagnetism. Particularly, narrow gap materials such as graphite(1–3) or bismuth
(4–6) possess a strong orbital diamagnetism which overcomes the spin paramagnetism.
Graphene monolayer (7–9) is an extreme case, in which the conduction and valance bands
stick together with zero gap and a linear dispersion analogous to massless Dirac fermions.
(1; 10–13) Accordingly, the orbital susceptibility has a strong singularity at band touching
point (Dirac point), which has a Fermi energy dependence at zero temperature as (1; 14–25)

χ(εF) ∝ δ(εF). (1)

This anomalous behavior can be understood as a zero-mass limit of conventional magnetism
for massive Dirac electron, in which the pseudo-spin magnetic moment associated valleys
(K and K′) gives an essential contribution (25). Monolayer graphene exhibits a non-trivial
response also to non-uniform magnetic fields. Owing its scale-less electronic structure,
graphene works as a magnetic mirror, where the response current creates a mirror magnetic
field which mimics any external field distributions. (24)
The orbital magnetism was also studied for graphene-based materials, such as graphite
intercalation compounds,(14–17) and multilayer graphenes. (26–28) Those systems have
strong diamagnetism as well, while the delta-function singularity is strongly modified by
the electronic coupling between different graphene layers. Bilayer graphene (29–32) has a
zero-gap structure with a finite mass in contrast to massless band in monolayer (33–41).
This leads to a less singular, logarithmic peak of the susceptibility.(15; 21) In graphene stacks
with more than three layers, the Hamiltonian and thus susceptibility can be decomposed into
contributions from sub-systems equivalent to monolayer or bilayer graphene.(21)
In this chapter, we review those anomalous properties of the orbital magnetism in graphene
and related materials. In Sec. 2, we discuss the susceptibility of the monolayer graphene. We
describe the origin of the delta function singularity at the Dirac point, and also a peculiar
response to non-uniform magnetic field. We argue the orbital magnetism of bilayer graphene
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in Sec. 3, and of general graphene stacks in Sec. 4. In Sec. 5, we extend the analysis to a
three-dimensional Dirac system, which is known to give an effective model for bismuth.

2. Monolayer graphene

2.1 Magnetic susceptibility of graphene
Electronic states of graphene in the vicinity of K and K� points in the Brillouin zone are
well described by the effective mass approximation. (1; 10–13) Let |A� and |B� be the Bloch
functions at the K point, corresponding to A and B sublattices, respectively. In a basis
(|A�, |B�), the Hamiltonian for the monolayer graphene around the K point becomes

HK =
(

Δ vπ−
vπ+ −Δ

)
, (2)

where v ≈ 1 × 106 m/s is the band velocity (8; 9), π± = πx ± iπy, and π = −ih̄∇ + (e/c)A
with vector potential A giving external magnetic field B = ∇ × A. In the following, we
neglect the spin Zeeman energy because the spin splitting is much smaller than Landau-level
separations. The Hamiltonian at the K� point is obtained by exchanging π± in Eq. (2).
The diagonal terms ±Δ represent the potential asymmetry between A and B sites, which
opens an energy gap at the Dirac point. Although A and B are intrinsically symmetric in
usual graphene, the asymmetry can arise in a sample placed on a certain substrate material,
where the interaction between the graphene and the substrate lattice produces different
potentials between A and B. (42; 43) Theoretically, the singular behavior in ideal graphene
with vanishing gap is intuitively understood by taking the limit Δ → 0, as will be shown
below. We can safely assume Δ ≥ 0 without loss of generality. The energy band at B = 0 is
given by

εs(p) = s
√

v2 p2 + Δ2, (s = ±1) (3)

with electron momentum p = (px, py) and p =
√

p2
x + p2

y. The density of states is

D(ε) =
gvgs|ε|
2πh̄2v2

θ(|ε| − Δ), (4)

where gs = 2 and gv = 2 represent the degrees of freedom associated with spin and valley,
respectively, and θ(t) is a step function, defined by

θ(t) =
{

1 (t > 0);
0 (t < 0). (5)

The Landau-level spectrum can be found using the relation π+ = (
√

2h̄/lB)a† and π− =
(
√

2h̄/lB)a, where lB =
√

ch̄/(eB) is magnetic length and a† and a are raising and lowering
operators for usual Landau-level wave functions, respectively. The eigenfunction of the
Hamiltonian at K point is written as (c1φn−1, c2φn) with integers n ≥ 0, where φn is the usual
Landau-level wave function and φn of n < 0 is regarded as 0. The Hamiltonian matrix for
(c1, c2) becomes

HK =
(

Δ h̄ωB
√

n
h̄ωB

√
n −Δ

)
. (6)
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For n = 0, the eigenvector (c1, c2) = (1, 0), corresponding to the eigenvalue Δ, is not
associated with any real eigenstates since the first component of wavefunction φ−1 is zero.
Similarly, the eigenfunction of K� point is written as (c1φn, c2φn−1), and the eigenvector (0, 1)
of n = 0, corresponding to the eigenvalue −Δ, is not a real state. From these arguments, we
obtain the eigen energies,

εK
n = sgn−(n)

�
(h̄ωB)2|n|+ Δ2,

εK�
n = sgn+(n)

�
(h̄ωB)2|n|+ Δ2 (7)

with n = 0,±1,±2, · · · , h̄ωB =
√

2h̄v/lB, lB =
√

h̄/eB, and

sgn±(n) =

⎧
⎨
⎩

+1 (n > 0);
±1 (n = 0);
−1 (n < 0).

(8)

The Landau levels of n �= 0 are doubly degenerate between the K and K� valleys, while those
of n = 0 are not. Figure 1(a) shows an example of energy levels at h̄ωB = 2Δ.
The thermodynamical potential at temperature T becomes

Ω = − 1
β

gvgs

2πl2
B

∑
s=±

∞

∑
n=0

ϕ
�
εs((h̄ωB)2n)

��
1 − δn0

2

�
, (9)

where β = 1/kBT, εs(x) = s
√

x + Δ2, ϕ(ε) = log
�
1 + e−β(ε−ζ)� with ζ being the chemical

potential, and gs = 2 and gv = 2 represent the degrees of freedom associated with spin and
valley, respectively. The magnetic susceptibility is defined by

χ = −
� ∂2Ω

∂B2

�
ζ

���
B=0

. (10)

In weak magnetic field, using the Euler-Maclaurin formula, the summation in n in Eq. (9) can
be written as an integral in continuous variable x and a residual term proportional to B2. At
zero temperature, we have (25)

χ(εF) = −gvgs
e2v2

6πc2
1

2Δ
θ(Δ − |εF |). (11)

In the limit of Δ → 0, this approaches

χ(εF) = −gvgs
e2v2

6πc2 δ(εF). (12)

The susceptibility of Eq. (11) and the density of states of Eq. (4) are shown in Fig. 1 (b).
The susceptibility is not zero in the gap, because the completely filled valence band gives
a constant diamagnetic susceptibility. When the Fermi energy enters the conduction band, the
susceptibility jumps downs to zero, resulting in zero total magnetism.
Because the Hamiltonian is equivalent to that of a Dirac electron with a nonzero mass, the
magnetic susceptibility around the band edge should correspond to that of a conventional
electron. This is clearly illustrated by the effective Hamiltonian expanded in the vicinity of
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in Sec. 3, and of general graphene stacks in Sec. 4. In Sec. 5, we extend the analysis to a
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√
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√

2h̄/lB)a† and π− =
(
√

2h̄/lB)a, where lB =
√

ch̄/(eB) is magnetic length and a† and a are raising and lowering
operators for usual Landau-level wave functions, respectively. The eigenfunction of the
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√

n
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√
n −Δ

)
. (6)

396 Physics and Applications of Graphene - Theory
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⎨
⎩
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1 + e−β(ε−ζ)� with ζ being the chemical
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valley, respectively. The magnetic susceptibility is defined by
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In weak magnetic field, using the Euler-Maclaurin formula, the summation in n in Eq. (9) can
be written as an integral in continuous variable x and a residual term proportional to B2. At
zero temperature, we have (25)
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θ(Δ − |εF |). (11)

In the limit of Δ → 0, this approaches

χ(εF) = −gvgs
e2v2

6πc2 δ(εF). (12)

The susceptibility of Eq. (11) and the density of states of Eq. (4) are shown in Fig. 1 (b).
The susceptibility is not zero in the gap, because the completely filled valence band gives
a constant diamagnetic susceptibility. When the Fermi energy enters the conduction band, the
susceptibility jumps downs to zero, resulting in zero total magnetism.
Because the Hamiltonian is equivalent to that of a Dirac electron with a nonzero mass, the
magnetic susceptibility around the band edge should correspond to that of a conventional
electron. This is clearly illustrated by the effective Hamiltonian expanded in the vicinity of
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Fig. 1. (a) Landau-level energies of gapped monolayer graphene for h̄ωB = 2Δ. (b) Orbital
susceptibility (solid) and density of states (dashed) of monolayer graphene with asymmetric
potential Δ. For susceptibility, the upward direction represents negative (i.e., diamagnetic).

k = 0.(25) For the conduction band, the effective Hamiltonian for the A site near the band
bottom (ε = Δ) is written apart from the constant energy as

HK ≈ v2

2Δ
π−π+ =

π2

2m∗ +
1
2

g∗μBB, (13)

HK� ≈ v2

2Δ
π+π− =

π2

2m∗ − 1
2

g∗μBB, (14)

where μB = eh̄/(2mc) is the Bohr magneton with m being the free electron mass, and we
defined m∗ = Δ/v2, g∗ = 2m/m∗. For instance, the g factor is estimated at g∗ ∼ 60 at
Δ = 0.1 eV, and diverges as ∝ Δ−1 as the gap decreases. The last term in each Hamiltonian
can be regarded as the pseudo-spin Zeeman term, where the different valleys K and K� serve
as pseudo-spin up (ξ = +1) and down (ξ = −1), respectively. This agrees with the Zeeman
energy expected for an intrinsic magnetic moment, that originates from the self-rotation of the
wave packet in Bloch electron. (44; 45)
Obviously, the pseudo-spin Zeeman term gives the Pauli paramagnetism and the first term
containing π2 gives the Landau diamagnetism in the usual form as

χP(ε) =
( g∗

2

)2
μ2

BD(ε), (15)

χL(ε) = − 1
3

( m
m∗

)2
μ2

BD(ε), (16)

with density of states D(ε) = gvgsm∗/(2πh̄2) θ(ε). The total susceptibility χP + χL actually
agrees with the amount of the jump at the conduction band bottom in χ of Eq. (11). Because
g = 2m/m∗ in the present case, we have χL = −χP/3 ∝ 1/m∗ as in the free electron, giving
the paramagnetic susceptibility in total. Therefore the susceptibility exhibits a discrete jump
toward the paramagnetic direction when the Fermi energy moves off the Dirac point.
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In the original Hamiltonian, the Landau-level energies in Eq. (7) can be rewritten as

εξ,s,n� = s

√
(h̄ωB)2

(
n� + 1

2
+

ξs
2

)
+ Δ2

(n� = 0, 1, 2, · · · ). (17)

Figure 1(a) shows energy levels for h̄ωB = 2Δ and the relationship between the different
labeling schemes of Eqs. (7) and (17). For the conduction band, the levels of the same n� with
opposite pseudo-spins ξ = ±1 share the same Landau level function labeled by n� on the A
site, on which the states near the conduction-band bottom (ε = Δ) have most of the amplitude.
For the valence band, similarly, n� describes the index of the Landau-level function at the B
site.

2.2 Response to non-uniform magnetic field
We extend the argument to spatially modulated magnetic fields. The graphene in a
non-uniform magnetic field was studied in the context of the electron confinement, (46–48)
the peculiar band structures in superlattice, (49; 50) transport,(51) and the quantum Hall
effect.(52; 53) In the following, we introduce a linear response theory to general field
distributions. (24) We consider an isotropic 2D system, under a magnetic field given by
B(r) = [∇× A(r)]z with vector potential A(r). Here r = (x, y) denotes 2D position on the
graphene. We define j(r) = (jx, jy) as the 2D electric current density induced in the system.
Within the linear response, the Fourier-transforms of j(r) and A(r) satisfy

jμ(q) = ∑
ν

Kμν(q)Aν(q), (18)

with response function Kμν. The gauge invariance for A requires ∑ν Kμν(q) qν = 0, and the
continuous equation, ∇ · j(r) = 0, imposes another constraint ∑μ qμ Kμν(q) = 0. To meet both
requirements, tensor Kμν needs to be in the form,

Kμν(q) = K(q)
(

δμν − qμqν

q2

)
. (19)

On the other hand, because ∇ · j(r) = 0, we can express j(r) as jx = c ∂m/∂y, jy = −c ∂m/∂x,
with m(r) being the local magnetic moment perpendicular to the layer. In the linear response,
its Fourier transform is written as

m(q) = χ(q)B(q), (20)

with the magnetic susceptibility χ(q). Equations (18) and (20) are complementary, and both
response functions χ(q) and K(q) are related by

χ(q) =
1

cq2 K(q). (21)

We apply the above formulation to graphene without gap, i.e., Δ = 0. The eigenstates at zero
magnetic field are labeled by (s, k) with s = +1 and −1 being the conduction and valence
bands, respectively, and wave vector k. The eigen energy is given by εsk = sh̄vk, and the

corresponding wavefunction is ψsk(r) = eik·r Fsk/
√

S with Fsk =
1√
2

(
eiθ

s

)
, where k and θ

are defined by (kx , ky) = k(cos θ, sin θ) and S is the system area.
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Fig. 1. (a) Landau-level energies of gapped monolayer graphene for h̄ωB = 2Δ. (b) Orbital
susceptibility (solid) and density of states (dashed) of monolayer graphene with asymmetric
potential Δ. For susceptibility, the upward direction represents negative (i.e., diamagnetic).

k = 0.(25) For the conduction band, the effective Hamiltonian for the A site near the band
bottom (ε = Δ) is written apart from the constant energy as

HK ≈ v2

2Δ
π−π+ =

π2

2m∗ +
1
2

g∗μBB, (13)

HK� ≈ v2

2Δ
π+π− =

π2

2m∗ − 1
2

g∗μBB, (14)

where μB = eh̄/(2mc) is the Bohr magneton with m being the free electron mass, and we
defined m∗ = Δ/v2, g∗ = 2m/m∗. For instance, the g factor is estimated at g∗ ∼ 60 at
Δ = 0.1 eV, and diverges as ∝ Δ−1 as the gap decreases. The last term in each Hamiltonian
can be regarded as the pseudo-spin Zeeman term, where the different valleys K and K� serve
as pseudo-spin up (ξ = +1) and down (ξ = −1), respectively. This agrees with the Zeeman
energy expected for an intrinsic magnetic moment, that originates from the self-rotation of the
wave packet in Bloch electron. (44; 45)
Obviously, the pseudo-spin Zeeman term gives the Pauli paramagnetism and the first term
containing π2 gives the Landau diamagnetism in the usual form as

χP(ε) =
( g∗

2

)2
μ2

BD(ε), (15)

χL(ε) = − 1
3

( m
m∗

)2
μ2

BD(ε), (16)

with density of states D(ε) = gvgsm∗/(2πh̄2) θ(ε). The total susceptibility χP + χL actually
agrees with the amount of the jump at the conduction band bottom in χ of Eq. (11). Because
g = 2m/m∗ in the present case, we have χL = −χP/3 ∝ 1/m∗ as in the free electron, giving
the paramagnetic susceptibility in total. Therefore the susceptibility exhibits a discrete jump
toward the paramagnetic direction when the Fermi energy moves off the Dirac point.
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In the original Hamiltonian, the Landau-level energies in Eq. (7) can be rewritten as

εξ,s,n� = s

√
(h̄ωB)2

(
n� + 1

2
+

ξs
2

)
+ Δ2

(n� = 0, 1, 2, · · · ). (17)

Figure 1(a) shows energy levels for h̄ωB = 2Δ and the relationship between the different
labeling schemes of Eqs. (7) and (17). For the conduction band, the levels of the same n� with
opposite pseudo-spins ξ = ±1 share the same Landau level function labeled by n� on the A
site, on which the states near the conduction-band bottom (ε = Δ) have most of the amplitude.
For the valence band, similarly, n� describes the index of the Landau-level function at the B
site.

2.2 Response to non-uniform magnetic field
We extend the argument to spatially modulated magnetic fields. The graphene in a
non-uniform magnetic field was studied in the context of the electron confinement, (46–48)
the peculiar band structures in superlattice, (49; 50) transport,(51) and the quantum Hall
effect.(52; 53) In the following, we introduce a linear response theory to general field
distributions. (24) We consider an isotropic 2D system, under a magnetic field given by
B(r) = [∇× A(r)]z with vector potential A(r). Here r = (x, y) denotes 2D position on the
graphene. We define j(r) = (jx, jy) as the 2D electric current density induced in the system.
Within the linear response, the Fourier-transforms of j(r) and A(r) satisfy

jμ(q) = ∑
ν

Kμν(q)Aν(q), (18)

with response function Kμν. The gauge invariance for A requires ∑ν Kμν(q) qν = 0, and the
continuous equation, ∇ · j(r) = 0, imposes another constraint ∑μ qμ Kμν(q) = 0. To meet both
requirements, tensor Kμν needs to be in the form,

Kμν(q) = K(q)
(

δμν − qμqν

q2

)
. (19)

On the other hand, because ∇ · j(r) = 0, we can express j(r) as jx = c ∂m/∂y, jy = −c ∂m/∂x,
with m(r) being the local magnetic moment perpendicular to the layer. In the linear response,
its Fourier transform is written as

m(q) = χ(q)B(q), (20)

with the magnetic susceptibility χ(q). Equations (18) and (20) are complementary, and both
response functions χ(q) and K(q) are related by

χ(q) =
1

cq2 K(q). (21)

We apply the above formulation to graphene without gap, i.e., Δ = 0. The eigenstates at zero
magnetic field are labeled by (s, k) with s = +1 and −1 being the conduction and valence
bands, respectively, and wave vector k. The eigen energy is given by εsk = sh̄vk, and the

corresponding wavefunction is ψsk(r) = eik·r Fsk/
√

S with Fsk =
1√
2

(
eiθ

s

)
, where k and θ

are defined by (kx , ky) = k(cos θ, sin θ) and S is the system area.
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Fig. 2. Magnetic susceptibility χ(q ; εF) in graphene plotted against (a) q with fixed εF , and (b)
εF with fixed q. Dotted line in (a) represents the undoped case, Eq. (24).

The local current density at r0 is calculated as the expectation value of current-density operator
ĵ(r0) = ev σ δ(r − r0) over the occupied states. In the first order perturbation in A, we have

Kμν(q) = − gvgse2

c
1
S ∑

ss�k

f (εsk)− f (εs�k+q)
εsk − εs�k+q

(F†
sk vν Fs�k+q) (F†

s�k+q vμ Fsk), (22)

where vμ = vσμ.
At the zero temperature, this can be explicitly calculated as

χ(q ; εF) = − gvgse2v
16h̄c2

1
q

θ(q − 2kF)

[
1 +

2
π

2kF

q

√
1 −

( 2kF

q

)2 − 2
π

sin−1 2kF

q

]
, (23)

where kF = |εF |/(h̄v) is the Fermi wave number. Significantly, χ vanishes in range q < 2kF ,
i.e., no current is induced when the external field is smooth enough compared to the Fermi
wavelength. At εF = 0, particularly, we have

χ(q; 0) = − gvgse2v
16h̄c2

1
q

. (24)

We plot χ(q ; εF) against (a) q and (b) εF in Fig. 2. As a function of q, the susceptibility suddenly
starts from zero at q = 2kF , and rapidly approaches the universal curve (24). As a function of
εF with fixed q, it is nonzero only in a finite region satisfying |εF | < h̄vq/2, and its integral
over εF becomes constant −gvgse2v2/(6πc2). Thus, in the limit of q → 0 it goes to the previous
result Eq. (12). The susceptibility of the carbon nanotube to a uniform field perpendicular
to the axis has the equivalent expression of Eq. (24) where q is replaced by 2π/L with tube
circumference L. (54; 55)
The undoped graphene (εF = 0) has a special property in which the counter magnetic field
induced by the response current has a spacial distribution similar to that of external magnetic
field, regardless of its length scale (24). Let us assume that a sinusoidal external field B(r) =
B cos qx is applied to undoped graphene. With the susceptibility Eq. (24), the response current
is calculated as jy(r) = −[gvgse2vB/(16h̄c)] sin qx. The current induces a counter magnetic
field which reduces the original field. The z component of the induced field on graphene
becomes

Bind(r) = −αgB(r), αg =
2πgvgse2v

16h̄c2 ≈ 4×10−5. (25)
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Because the ratio is independent of q, Eq. (25) is actually valid for any external field B(r), i.e.,
the magnetic field on the graphene is always reduced by the same factor 1 − αg. This property
holds whenever χ(q) is written as C/q with constant C.
The argument of the magnetic field screening can be extended in the three dimensional field
distribution. Let us suppose a situation when a certain magnetic object is placed above the
undoped graphene (z > 0), which produces an external magnetic field B(ρ) in 3D space
ρ = (x, y, z). Then, the followings are concluded: (i) On the other side of the graphene (z < 0),
the induced field becomes −αgB(ρ), i.e., the external field is screened by the factor 1 − αg. (ii)
On the same side (z > 0), the induced field is given by αgRz[B(x, y,−z)], where Rz is the
vector inversion with respect to z = 0. Namely, this is equivalent to a field of the mirror image
of the original object reflected with respect to z = 0, and reduced by αg .
Using the property of magnetic mirroring, we can easily estimate the magnetic repulsive
force which works between undoped graphene and magnetic objects. If we put on the top
of graphene the permanent magnet with surface magnetic flux σm, the repulsive force per unit
area is given by 2παgσ2

m, which is a force between a sheet with magnetic monopole density σm
and its mirror image with αgσm. At σm which amounts to the surface flux 1T (e.g., neodymium
magnet),(56) this is as large as 0.16 gram weight /cm2, which is surprisingly large as a force
generated by a thin film only one atom thick.
The 1/q dependence of χ(q), which is responsible for peculiar diamagnetic responses argued
above, is a characteristic property common to general k-linear Hamiltonian. This can be shown
using the scaling argument as follows. We consider an isotropic two-dimensional system, in
which Hamiltonian H contains only terms linear in πx and πy. The velocity operator vμ =
∂H/∂πμ is then a constant matrix independent of π. Similarly to graphene, the eigen energy
and the wavefunction are written as εn,k and ψn,k(r) = eik·r Fn,k/

√
S, respectively, with the

subband index n and the wavenumber k. The response function Kμν(q) can then be written
in the same form as Eq. (22), with index s replaced with n.
If we change the energy and wave number scales by an arbitrary factor α as

ε = αε̃, ki = αk̃i , (26)

then the Hamiltonian becomes formally identical under that transformation, since the
coefficients of k-linear terms in the Hamiltonian remain unchanged. The eigen energy and
eigen function obey εn,k̃ = εn,k/α and Fn,k̃ = Fn,k. Using them, we can show that the response
function Kμν(q) scales at zero temperature and at zero Fermi energy as

Kμν

( q
α

)
=

Kμν(q)
α

, (27)

which allows us to write as K(q) = Cq with certain number C. With Eq. (21), the susceptibility
χ becomes

χ(q) =
C
cq

. (28)

Similar scaling argument also applies to χ(εF) at q = 0, leading to χ(εF) ∝ δ(εF) in any
k-linear Hamiltonian.(26)

3. Bilayer graphene

Bilayer graphene is a pair of graphene layers arranged in AB (Bernal) stacking and includes A1
and B1 atoms on layer 1 and A2 and B2 on layer 2.(33–41) The schematics of the AB stacked
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The local current density at r0 is calculated as the expectation value of current-density operator
ĵ(r0) = ev σ δ(r − r0) over the occupied states. In the first order perturbation in A, we have

Kμν(q) = − gvgse2

c
1
S ∑

ss�k

f (εsk)− f (εs�k+q)
εsk − εs�k+q

(F†
sk vν Fs�k+q) (F†

s�k+q vμ Fsk), (22)

where vμ = vσμ.
At the zero temperature, this can be explicitly calculated as

χ(q ; εF) = − gvgse2v
16h̄c2

1
q

θ(q − 2kF)

[
1 +

2
π

2kF

q

√
1 −

( 2kF

q

)2 − 2
π

sin−1 2kF

q

]
, (23)

where kF = |εF |/(h̄v) is the Fermi wave number. Significantly, χ vanishes in range q < 2kF ,
i.e., no current is induced when the external field is smooth enough compared to the Fermi
wavelength. At εF = 0, particularly, we have

χ(q; 0) = − gvgse2v
16h̄c2

1
q

. (24)

We plot χ(q ; εF) against (a) q and (b) εF in Fig. 2. As a function of q, the susceptibility suddenly
starts from zero at q = 2kF , and rapidly approaches the universal curve (24). As a function of
εF with fixed q, it is nonzero only in a finite region satisfying |εF | < h̄vq/2, and its integral
over εF becomes constant −gvgse2v2/(6πc2). Thus, in the limit of q → 0 it goes to the previous
result Eq. (12). The susceptibility of the carbon nanotube to a uniform field perpendicular
to the axis has the equivalent expression of Eq. (24) where q is replaced by 2π/L with tube
circumference L. (54; 55)
The undoped graphene (εF = 0) has a special property in which the counter magnetic field
induced by the response current has a spacial distribution similar to that of external magnetic
field, regardless of its length scale (24). Let us assume that a sinusoidal external field B(r) =
B cos qx is applied to undoped graphene. With the susceptibility Eq. (24), the response current
is calculated as jy(r) = −[gvgse2vB/(16h̄c)] sin qx. The current induces a counter magnetic
field which reduces the original field. The z component of the induced field on graphene
becomes

Bind(r) = −αgB(r), αg =
2πgvgse2v

16h̄c2 ≈ 4×10−5. (25)
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Because the ratio is independent of q, Eq. (25) is actually valid for any external field B(r), i.e.,
the magnetic field on the graphene is always reduced by the same factor 1 − αg. This property
holds whenever χ(q) is written as C/q with constant C.
The argument of the magnetic field screening can be extended in the three dimensional field
distribution. Let us suppose a situation when a certain magnetic object is placed above the
undoped graphene (z > 0), which produces an external magnetic field B(ρ) in 3D space
ρ = (x, y, z). Then, the followings are concluded: (i) On the other side of the graphene (z < 0),
the induced field becomes −αgB(ρ), i.e., the external field is screened by the factor 1 − αg. (ii)
On the same side (z > 0), the induced field is given by αgRz[B(x, y,−z)], where Rz is the
vector inversion with respect to z = 0. Namely, this is equivalent to a field of the mirror image
of the original object reflected with respect to z = 0, and reduced by αg .
Using the property of magnetic mirroring, we can easily estimate the magnetic repulsive
force which works between undoped graphene and magnetic objects. If we put on the top
of graphene the permanent magnet with surface magnetic flux σm, the repulsive force per unit
area is given by 2παgσ2

m, which is a force between a sheet with magnetic monopole density σm
and its mirror image with αgσm. At σm which amounts to the surface flux 1T (e.g., neodymium
magnet),(56) this is as large as 0.16 gram weight /cm2, which is surprisingly large as a force
generated by a thin film only one atom thick.
The 1/q dependence of χ(q), which is responsible for peculiar diamagnetic responses argued
above, is a characteristic property common to general k-linear Hamiltonian. This can be shown
using the scaling argument as follows. We consider an isotropic two-dimensional system, in
which Hamiltonian H contains only terms linear in πx and πy. The velocity operator vμ =
∂H/∂πμ is then a constant matrix independent of π. Similarly to graphene, the eigen energy
and the wavefunction are written as εn,k and ψn,k(r) = eik·r Fn,k/

√
S, respectively, with the

subband index n and the wavenumber k. The response function Kμν(q) can then be written
in the same form as Eq. (22), with index s replaced with n.
If we change the energy and wave number scales by an arbitrary factor α as

ε = αε̃, ki = αk̃i , (26)

then the Hamiltonian becomes formally identical under that transformation, since the
coefficients of k-linear terms in the Hamiltonian remain unchanged. The eigen energy and
eigen function obey εn,k̃ = εn,k/α and Fn,k̃ = Fn,k. Using them, we can show that the response
function Kμν(q) scales at zero temperature and at zero Fermi energy as

Kμν

( q
α

)
=

Kμν(q)
α

, (27)

which allows us to write as K(q) = Cq with certain number C. With Eq. (21), the susceptibility
χ becomes

χ(q) =
C
cq

. (28)

Similar scaling argument also applies to χ(εF) at q = 0, leading to χ(εF) ∝ δ(εF) in any
k-linear Hamiltonian.(26)

3. Bilayer graphene

Bilayer graphene is a pair of graphene layers arranged in AB (Bernal) stacking and includes A1
and B1 atoms on layer 1 and A2 and B2 on layer 2.(33–41) The schematics of the AB stacked
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Fig. 3. Atomic structure of AB (Bernal)-stacked multilayer graphene

graphite is illustrated in Figure 3, and the only layer 1 and 2 exist in bilayer graphene. The
Hamiltonian at the K point for the basis (|A1�, |B1�, |A2�, |B2�) is given by

HK =

⎛
⎜⎜⎝

Δ vπ− 0 0
vπ+ Δ γ1 0

0 γ1 −Δ vπ−
0 0 vπ+ −Δ

⎞
⎟⎟⎠ , (29)

and that for K� point is obtained by exchanging π±. The parameter γ1 ≈ 0.39 eV (57)
represents vertical coupling between B1 and A2 (33; 34; 60), and Δ describes potential
asymmetry between layer 1 and 2 (not A and B sites), which gives rise to an energy gap.
(33–37; 39; 60; 61) Experimentally the potential asymmetry can be induced by applying an
electric field perpendicular to the layer, (30–32; 62; 63) and the energy gap as large as 0.2 eV
was actually observed in spectroscopic measurements. (30; 62; 63) Several interlayer coupling
parameters other than γ1 were introduced for the description of the band structure of bulk
graphite, (58; 59) while they do not change the qualitative feature of the low-energy spectrum
(59) and will be neglected in the following arguments.
The energy band at B = 0 is given by (37)

εsμ(p)=s
� γ2

1
2

+ v2 p2 + Δ2 + μ
� γ4

1
4

+ v2 p2(γ2
1 + 4Δ2)

�1/2�1/2
, (30)

with s = ±1 and μ = ±1. The index μ = +1 and −1 give a pair of bands further and closer
to zero energy, respectively, and s = +1 and −1 in each pair represent the electron and hole
branches, respectively. The band-edge energies corresponding to p = 0 are given by |ε| = ε±
for μ = ±1, where

ε+ =
�

γ2
1 + Δ2, ε− = |Δ|. (31)

For μ = −1, the band minimum becomes

ε0 =
γ1|Δ|�

γ2
1 + 4Δ2

, (32)

which corresponds to an off-center momentum.(34) The density of states diverges here as
D(ε) ∝ (ε − ε0)−1/2. The energy bands and the density of states with several Δ’s are plotted
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Fig. 4. (a) Band structure of bilayer graphenes with the asymmetry gap Δ/γ1 = 0, 0.2, and
0.5. Horizontal lines indicate the energies of ε0, ε− and ε+ for Δ/γ1 = 0.5. (b) Landau-level
energies of bilayer graphene given by Eq. (39) with Δ = 0.2γ1 and h̄ωB = 0.5γ1. At each
valley, an energy level indicated as broken bar represents the Landau level which originally
belongs to n = −1 at opposite valley. The quantum number (s, μ) is indicated below j.

in Figs. 5 (a) and (b), respectively. Vertical lines in (a) indicate the energies of ε0, ε−, and ε+ for
Δ = 0.5γ1.
In a magnetic field, the eigenfunction of the Hamiltonian at the K point is written as (c1φn−1,
c2φn, c3φn, c4φn+1) with integer n ≥ −1. For n ≥ 1, the Hamiltonian matrix for (c1, c2, c3, c4)
becomes(25; 34; 64)

HK
n≥1 =

⎛
⎜⎜⎝

Δ h̄ωB
√

n 0 0
h̄ωB

√
n Δ γ1 0

0 γ1 −Δ h̄ωB
√

n + 1
0 0 h̄ωB

√
n + 1 −Δ

⎞
⎟⎟⎠ , (33)

For n = 0, the first component does not actually exist because φ−1 = 0. The matrix for
(c2, c3, c4) becomes

HK
0 =

⎛
⎝

Δ γ1 0
γ1 −Δ h̄ωB
0 h̄ωB −Δ

⎞
⎠ . (34)

For n = −1, only the component c4 survives and the Hamiltonian is

HK
−1 = −Δ. (35)

For the K� point, the eigenfunction is written as (c1φn+1, c2φn, c3φn, c4φn−1). For n ≥ 1, the
Hamiltonian matrix for (c1, c2, c3, c4) is

HK�
n≥1 =

⎛
⎜⎜⎝

Δ h̄ωB
√

n + 1 0 0
h̄ωB

√
n + 1 Δ γ1 0

0 γ1 −Δ h̄ωB
√

n
0 0 h̄ωB

√
n −Δ

⎞
⎟⎟⎠ . (36)
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graphite is illustrated in Figure 3, and the only layer 1 and 2 exist in bilayer graphene. The
Hamiltonian at the K point for the basis (|A1�, |B1�, |A2�, |B2�) is given by

HK =

⎛
⎜⎜⎝

Δ vπ− 0 0
vπ+ Δ γ1 0

0 γ1 −Δ vπ−
0 0 vπ+ −Δ

⎞
⎟⎟⎠ , (29)

and that for K� point is obtained by exchanging π±. The parameter γ1 ≈ 0.39 eV (57)
represents vertical coupling between B1 and A2 (33; 34; 60), and Δ describes potential
asymmetry between layer 1 and 2 (not A and B sites), which gives rise to an energy gap.
(33–37; 39; 60; 61) Experimentally the potential asymmetry can be induced by applying an
electric field perpendicular to the layer, (30–32; 62; 63) and the energy gap as large as 0.2 eV
was actually observed in spectroscopic measurements. (30; 62; 63) Several interlayer coupling
parameters other than γ1 were introduced for the description of the band structure of bulk
graphite, (58; 59) while they do not change the qualitative feature of the low-energy spectrum
(59) and will be neglected in the following arguments.
The energy band at B = 0 is given by (37)

εsμ(p)=s
� γ2

1
2

+ v2 p2 + Δ2 + μ
� γ4

1
4

+ v2 p2(γ2
1 + 4Δ2)

�1/2�1/2
, (30)

with s = ±1 and μ = ±1. The index μ = +1 and −1 give a pair of bands further and closer
to zero energy, respectively, and s = +1 and −1 in each pair represent the electron and hole
branches, respectively. The band-edge energies corresponding to p = 0 are given by |ε| = ε±
for μ = ±1, where

ε+ =
�

γ2
1 + Δ2, ε− = |Δ|. (31)

For μ = −1, the band minimum becomes

ε0 =
γ1|Δ|�

γ2
1 + 4Δ2

, (32)

which corresponds to an off-center momentum.(34) The density of states diverges here as
D(ε) ∝ (ε − ε0)−1/2. The energy bands and the density of states with several Δ’s are plotted

402 Physics and Applications of Graphene - Theory

0
1
2

n

E
ne

rg
y 

(in
 u

ni
ts

 o
f γ

1)

K (ξ = +) K’ (ξ = −)

0
1
2

2
1
0

2
1
0

j = 4
(+,+)

j = 3
(+,−)

j = 2
(−,−)

j = 1
(−,+)

-1

0

1

-2 -1 0 1 2

(a) Band structure

Δ / γ1 

0.2
0.5

0

Momentum (units of γ1 /v)

ε+ 

ε− 

ε0 

(b) Landau level structure
E

ne
rg

y 
(in

 u
ni

ts
 o

f γ
1)

-1

0

1

Fig. 4. (a) Band structure of bilayer graphenes with the asymmetry gap Δ/γ1 = 0, 0.2, and
0.5. Horizontal lines indicate the energies of ε0, ε− and ε+ for Δ/γ1 = 0.5. (b) Landau-level
energies of bilayer graphene given by Eq. (39) with Δ = 0.2γ1 and h̄ωB = 0.5γ1. At each
valley, an energy level indicated as broken bar represents the Landau level which originally
belongs to n = −1 at opposite valley. The quantum number (s, μ) is indicated below j.

in Figs. 5 (a) and (b), respectively. Vertical lines in (a) indicate the energies of ε0, ε−, and ε+ for
Δ = 0.5γ1.
In a magnetic field, the eigenfunction of the Hamiltonian at the K point is written as (c1φn−1,
c2φn, c3φn, c4φn+1) with integer n ≥ −1. For n ≥ 1, the Hamiltonian matrix for (c1, c2, c3, c4)
becomes(25; 34; 64)

HK
n≥1 =

⎛
⎜⎜⎝

Δ h̄ωB
√

n 0 0
h̄ωB

√
n Δ γ1 0

0 γ1 −Δ h̄ωB
√

n + 1
0 0 h̄ωB

√
n + 1 −Δ

⎞
⎟⎟⎠ , (33)

For n = 0, the first component does not actually exist because φ−1 = 0. The matrix for
(c2, c3, c4) becomes

HK
0 =

⎛
⎝

Δ γ1 0
γ1 −Δ h̄ωB
0 h̄ωB −Δ

⎞
⎠ . (34)

For n = −1, only the component c4 survives and the Hamiltonian is

HK
−1 = −Δ. (35)

For the K� point, the eigenfunction is written as (c1φn+1, c2φn, c3φn, c4φn−1). For n ≥ 1, the
Hamiltonian matrix for (c1, c2, c3, c4) is

HK�
n≥1 =

⎛
⎜⎜⎝

Δ h̄ωB
√

n + 1 0 0
h̄ωB

√
n + 1 Δ γ1 0

0 γ1 −Δ h̄ωB
√

n
0 0 h̄ωB

√
n −Δ

⎞
⎟⎟⎠ . (36)
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For n = 0, the matrix for (c1, c2, c3) becomes

HK�
0 =

⎛
⎝

Δ h̄ωB 0
h̄ωB Δ γ1

0 γ1 −Δ

⎞
⎠ , (37)

and for n = −1, that for c1 is
HK�
−1 = Δ. (38)

If we extend the definition of the matrix of Eq. (33) to n = 0, its three eigenvalues agree with
those of HK

0 and the rest with that of HK�
−1. Similarly, the matrix of Eq. (36) with n = 0 gives

eigenvalues of HK�
0 and HK

−1. Thus we can use Eqs. (33) and (36) with n ≥ 0 to produce the
full spectrum. By introducing the pseudo-spin variable ξ = ±1, the Hamiltonian is combined
into a single expression,

Hξ
n =

⎛
⎜⎜⎝

Δ
√

xn− 0 0√
xn− Δ γ1 0
0 γ1 −Δ

√
xn+

0 0
√

xn+ −Δ

⎞
⎟⎟⎠ , (39)

with

xn± = xn ± 1
2

ξδ, (40)

and

xn =
�

n +
1
2

�
δ, δ = (h̄ωB)2. (41)

We write the eigenvalues of Hξ
n as

ε j(xn , ξδ) (j = 1, 2, 3, 4), (42)

in the ascending order in energy (j = 1 and 2 for valence bands and j = 3 and 4 for
the conduction bands). The second argument in ε j(xn, ξδ) represents the dependence on B
which are not included in xn. Figure 4 shows the example of the Landau-level spectrum at
Δ/γ1 = 0.2 and h̄ωB/γ1 = 0.5, where the thick dashed lines represent the Landau level which
originally belongs to n = −1 at opposite valleys. The correspondence between quantum
numbers j and (s, μ) are indicated in the figure.
The thermodynamic potential becomes

Ω = − 1
β

gs

2πl2
B

∑
ξ,j

∞

∑
n=0

ϕ
�
ε j(xn, ξδ)

�

= − 1
β

gs

4πh̄2v2 ∑
ξ,j

�� ∞

0
ϕ
�
ε j(x, ξδ)

�
dx +

δ2

24
∂ϕ[ε j(x, 0)]

∂x

���
x=0

�
+ O(δ3), (43)

where we used the Euler-Maclaurin formula in the second equation. The first term in the
bracket can be transformed by changing the integral variable from x to ε as

1
β

� ∞

0
ϕ
�
ε j(x, ξδ)

�
dx =

� ∞

−∞
f (ε) nj(ε, ξδ)dε, (44)
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where we used ϕ�(ε) = −β f (ε) with f (ε) being the Fermi distribution function, and defined

nj(ε, ξδ) ≡ sj(ε, ξδ)xj(ε, ξδ), (45)

where xj(ε, ξδ) is a real and positive solution of ε = ε j(x, ξδ) and

sj(ε, ξδ) ≡ sgn
( ∂xj(ε, ξδ)

∂ε

)
. (46)

If there are more than one solution of xj, we regard nj as their sum. The quantity
nj(ε, ξδ)/(4πh̄2v2) represents the electron density below ε for the conduction band and the
hole density above ε for the valence band. By expanding

nj(ε, ξδ) = n(0)
j (ε) + n(1)

j (ε) ξδ +
1
2

n(2)
j (ε) δ2 + · · · , (47)

we can further expand Ω of Eq. (43) in terms of δ ∝ B. We have (25)

χ(ε) = gsgv
e2v2

πc2 ∑
j

[∫ ε

−∞
n(2)

j (ε�)dε� − 1
12

θ
[
ε − ε j(0, 0)

] ∂ε j(x, 0)
∂x

∣∣∣
x=0

]
. (48)

For the Hamiltonian of Eq. (39), the eigenequation det(ε − Hξ
n) = 0 can be solved for x (≡ xn)

as
x± = ε2 + Δ2 ± 1

2

√
(4εΔ − ξδ)2 + 4γ2

1(ε2 − Δ2), (49)

which gives xj(ε, ξδ) when being real and positive. At symmetric bilayer, Δ = 0, the
susceptibility can be explicitly calculated as

χ(ε) = − gvgs

4πc2
e2γ2

h̄2
θ(γ1−|εF|)

γ1

(
−ln

|εF |
γ1

− 1
3

)
, (50)

agreeing with the previous results (15; 21). The susceptibility diverges logarithmically toward
εF = 0, becomes slightly positive for |εF |<∼ γ1, and vanishes for |εF | > γ1 where the
higher subband enters. The integration of χ in Eq. (50) over the Fermi energy becomes
−(gvgs/3π)(e2γ2/h̄2) independent of γ1, which is exactly twice as large as that of the
monolayer graphene Eq. (12).
For finite asymmetry Δ, we can analytically argue several important properties as follows. (25)
Let us first consider the case ε > ε+, where two conduction bands are occupied by electrons.
In this case x± are both real and positive and we have x1 = x2 = 0, x3 = x+, and x4 = x− .
Then, we have

∑
j

nj(ε, ξδ) = x+ + x− = 2(ε2 + Δ2), (51)

independent of ξδ. Therefore, ∑j n(2)
j (ε) identically vanishes, resulting in susceptibility

independent of energy in the region ε > ε+ regardless of the value of Δ. The same is true
for ε < −ε+. Because χ = 0 for ε = ±∞, i.e., in the case of empty or filled band, we can
conclude that the susceptibility vanishes for ε > ε+ and ε < −ε+ independent of interlayer
interaction γ1 and asymmetry Δ.
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For n = 0, the matrix for (c1, c2, c3) becomes

HK�
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and for n = −1, that for c1 is
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those of HK
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−1. Similarly, the matrix of Eq. (36) with n = 0 gives
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0 and HK

−1. Thus we can use Eqs. (33) and (36) with n ≥ 0 to produce the
full spectrum. By introducing the pseudo-spin variable ξ = ±1, the Hamiltonian is combined
into a single expression,

Hξ
n =
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⎜⎜⎝

Δ
√

xn− 0 0√
xn− Δ γ1 0
0 γ1 −Δ

√
xn+

0 0
√

xn+ −Δ

⎞
⎟⎟⎠ , (39)

with

xn± = xn ± 1
2

ξδ, (40)

and

xn =
�

n +
1
2

�
δ, δ = (h̄ωB)2. (41)

We write the eigenvalues of Hξ
n as

ε j(xn , ξδ) (j = 1, 2, 3, 4), (42)

in the ascending order in energy (j = 1 and 2 for valence bands and j = 3 and 4 for
the conduction bands). The second argument in ε j(xn, ξδ) represents the dependence on B
which are not included in xn. Figure 4 shows the example of the Landau-level spectrum at
Δ/γ1 = 0.2 and h̄ωB/γ1 = 0.5, where the thick dashed lines represent the Landau level which
originally belongs to n = −1 at opposite valleys. The correspondence between quantum
numbers j and (s, μ) are indicated in the figure.
The thermodynamic potential becomes

Ω = − 1
β

gs

2πl2
B

∑
ξ,j

∞

∑
n=0

ϕ
�
ε j(xn, ξδ)

�

= − 1
β

gs

4πh̄2v2 ∑
ξ,j

�� ∞

0
ϕ
�
ε j(x, ξδ)

�
dx +

δ2

24
∂ϕ[ε j(x, 0)]

∂x

���
x=0

�
+ O(δ3), (43)

where we used the Euler-Maclaurin formula in the second equation. The first term in the
bracket can be transformed by changing the integral variable from x to ε as

1
β

� ∞

0
ϕ
�
ε j(x, ξδ)

�
dx =

� ∞

−∞
f (ε) nj(ε, ξδ)dε, (44)
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where we used ϕ�(ε) = −β f (ε) with f (ε) being the Fermi distribution function, and defined

nj(ε, ξδ) ≡ sj(ε, ξδ)xj(ε, ξδ), (45)

where xj(ε, ξδ) is a real and positive solution of ε = ε j(x, ξδ) and

sj(ε, ξδ) ≡ sgn
( ∂xj(ε, ξδ)

∂ε

)
. (46)

If there are more than one solution of xj, we regard nj as their sum. The quantity
nj(ε, ξδ)/(4πh̄2v2) represents the electron density below ε for the conduction band and the
hole density above ε for the valence band. By expanding

nj(ε, ξδ) = n(0)
j (ε) + n(1)

j (ε) ξδ +
1
2

n(2)
j (ε) δ2 + · · · , (47)

we can further expand Ω of Eq. (43) in terms of δ ∝ B. We have (25)

χ(ε) = gsgv
e2v2

πc2 ∑
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[∫ ε

−∞
n(2)

j (ε�)dε� − 1
12

θ
[
ε − ε j(0, 0)

] ∂ε j(x, 0)
∂x

∣∣∣
x=0

]
. (48)

For the Hamiltonian of Eq. (39), the eigenequation det(ε − Hξ
n) = 0 can be solved for x (≡ xn)

as
x± = ε2 + Δ2 ± 1

2

√
(4εΔ − ξδ)2 + 4γ2

1(ε2 − Δ2), (49)

which gives xj(ε, ξδ) when being real and positive. At symmetric bilayer, Δ = 0, the
susceptibility can be explicitly calculated as

χ(ε) = − gvgs

4πc2
e2γ2

h̄2
θ(γ1−|εF|)

γ1

(
−ln

|εF |
γ1

− 1
3

)
, (50)

agreeing with the previous results (15; 21). The susceptibility diverges logarithmically toward
εF = 0, becomes slightly positive for |εF |<∼ γ1, and vanishes for |εF | > γ1 where the
higher subband enters. The integration of χ in Eq. (50) over the Fermi energy becomes
−(gvgs/3π)(e2γ2/h̄2) independent of γ1, which is exactly twice as large as that of the
monolayer graphene Eq. (12).
For finite asymmetry Δ, we can analytically argue several important properties as follows. (25)
Let us first consider the case ε > ε+, where two conduction bands are occupied by electrons.
In this case x± are both real and positive and we have x1 = x2 = 0, x3 = x+, and x4 = x− .
Then, we have

∑
j

nj(ε, ξδ) = x+ + x− = 2(ε2 + Δ2), (51)

independent of ξδ. Therefore, ∑j n(2)
j (ε) identically vanishes, resulting in susceptibility

independent of energy in the region ε > ε+ regardless of the value of Δ. The same is true
for ε < −ε+. Because χ = 0 for ε = ±∞, i.e., in the case of empty or filled band, we can
conclude that the susceptibility vanishes for ε > ε+ and ε < −ε+ independent of interlayer
interaction γ1 and asymmetry Δ.
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In the energy region −ε− < ε < −ε0 near the top of the valence band, both x+ and x− are
real and positive, giving the states at outer and inner equi-energy circle of the band j = 2,
respectively. Then we have

n(2)
2 (ε) =

∂2

∂δ2 (−x+ + x−)
∣∣∣
δ=0

=
γ2

1(Δ2 − ε2)
2[(4Δ2 + γ2

1)(ε2 − ε2
0)]

3/2 . (52)

When the energy approaches to −ε0 from the negative side, the integral of n(2)
2 (ε), thus the

susceptibility, diverges in positive direction as ∝ (ε + ε0)−1/2 in the same manner as the
density of states. The same divergence occurs at the bottom of the conduction band, +ε0,
because of the electron-hole symmetry.
In the vicinity of the bottom of the excited conduction band, ε = ε+, we have

n(2)
4 (ε) =

∂2

∂δ2 x−θ(x−)
∣∣∣
δ=0

=
[ ∂2x−

∂δ2 θ(x−) +
( ∂x−

∂δ

)2
δ(x−)

]
δ=0

, (53)

where we used x−δ(x−) = 0 and x−δ�(x−) = −δ(x−). Using Eq. (48), we find that the
susceptibility makes a discrete jump at ε+ as

χ(ε+ + 0) − χ(ε+ − 0) = gvgs
e2v2

πc2

( Δ2
√

Δ2 + γ2
1

γ2
1(2Δ2 + γ2

1)
− 2Δ2 + γ2

1

12γ2
1

√
Δ2 + γ2

1

)
, (54)

where the first term in the bracket comes from the integral of the delta function in Eq. (53) and
the second term from the step function in Eq. (48).
Near ε+, the eigenstates are given primarily by the dimer states composed of |B1� and |A2�.
The effective Hamiltonian is described by the second order in interband interaction with the
conduction-band bottom |A1� and the valence-band top |B2�, where each process gives a term
∝ π+π− or ∝ π−π+. In symmetric bilayer with Δ = 0, the terms π+π− and π−π+ have the
same coefficient and the pseudo-spin Zeeman term identically vanishes. When Δ becomes
nonzero, the two coefficients shift from each other linearly in Δ because of the band-gap
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opening, leading to a nonzero Zeeman term. The resulting effective Hamiltonian is given by
Eqs. (13) and (14) with

m∗ =
γ2

1

�
Δ2 + γ2

1

2v2(2Δ2 + γ2
1)

, g∗ =
4Δ

�
Δ2 + γ2

1

2Δ2 + γ2
1

m
m∗ . (55)

In the region Δ � γ1, the typical magnitude of the effective mass m∗ is of the order of ∼
γ1/(2v2) ≈ 0.035m.
The susceptibility is written as Pauli and Landau magnetism in Eqs. (15) and (16), respectively,
which together give a susceptibility jump of Eq. (54). The paramagnetic component χP is
zero at Δ = 0 and monotonically increases as Δ becomes larger. At g∗ = (2/

√
3)(m/m∗)

or Δ ≈ 0.34γ1, χP exceeds χL and the susceptibility step changes from diamagnetic to
paramagnetic. In the limit Δ → ∞, we have g∗ = 2m/m∗ as in the monolayer. This is to be
expected, because the bilayer graphene in this limit can be regarded as a pair of independent
monolayer graphenes, where interlayer coupling γ1 opens an energy gap at each Dirac point.
Similar argument also applies to the behavior around ε−.
Figure 5 (c) plots the susceptibility for Δ = 0, 0.2, and 0.5. In accordance with the above
analytic consideration, we actually observe that the susceptibility vanishes in the region ε >
ε+ and ε < −ε+ and that the susceptibility step at ε = ε+ changes from diamagnetic to
paramagnetic with increasing Δ. We also see that the susceptibility for Δ �= 0 diverges in the
paramagnetic direction at ε = ±ε0.

4. Multilayer graphenes

We consider a multilayer graphene composed of N layers of a carbon hexagonal network,
which are arranged in the AB (Bernal) stacking. A unit cell contains Aj and Bj atoms on
the layer j = 1, · · · , N. If the basis is taken as |A1�, |B1�; |A2�, |B2�; · · · ; |AN�, |BN�, the
Hamiltonian for the multilayer graphene around the K point becomes (26; 34–36; 40; 41)

H =

⎛
⎜⎜⎜⎝

H0 V
V† H0 V†

V H0 V
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ , (56)

with

H0 =
�

0 vπ−
vπ+ 0

�
, V =

�
0 0

γ1 0

�
, (57)

where π± = πx ± iπy with π = −ih̄∇ + eA and the vector potential A. Here we do not
consider the interlayer potential asymmetry. The effective Hamiltonian for K� is obtained by
exchanging π+ and π−.
Let us define functions

fm(j) =
2√

N + 1
sin

� π

2
j
�

cos
�

mπ

2(N + 1)
j
�

, (58)

gm(j) =
2√

N + 1
cos

� π

2
j
�

sin
�

mπ

2(N + 1)
j
�

. (59)
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In the energy region −ε− < ε < −ε0 near the top of the valence band, both x+ and x− are
real and positive, giving the states at outer and inner equi-energy circle of the band j = 2,
respectively. Then we have

n(2)
2 (ε) =

∂2

∂δ2 (−x+ + x−)
∣∣∣
δ=0

=
γ2

1(Δ2 − ε2)
2[(4Δ2 + γ2

1)(ε2 − ε2
0)]

3/2 . (52)

When the energy approaches to −ε0 from the negative side, the integral of n(2)
2 (ε), thus the

susceptibility, diverges in positive direction as ∝ (ε + ε0)−1/2 in the same manner as the
density of states. The same divergence occurs at the bottom of the conduction band, +ε0,
because of the electron-hole symmetry.
In the vicinity of the bottom of the excited conduction band, ε = ε+, we have

n(2)
4 (ε) =

∂2

∂δ2 x−θ(x−)
∣∣∣
δ=0

=
[ ∂2x−

∂δ2 θ(x−) +
( ∂x−

∂δ

)2
δ(x−)

]
δ=0

, (53)

where we used x−δ(x−) = 0 and x−δ�(x−) = −δ(x−). Using Eq. (48), we find that the
susceptibility makes a discrete jump at ε+ as

χ(ε+ + 0) − χ(ε+ − 0) = gvgs
e2v2

πc2

( Δ2
√

Δ2 + γ2
1

γ2
1(2Δ2 + γ2

1)
− 2Δ2 + γ2

1

12γ2
1

√
Δ2 + γ2

1

)
, (54)

where the first term in the bracket comes from the integral of the delta function in Eq. (53) and
the second term from the step function in Eq. (48).
Near ε+, the eigenstates are given primarily by the dimer states composed of |B1� and |A2�.
The effective Hamiltonian is described by the second order in interband interaction with the
conduction-band bottom |A1� and the valence-band top |B2�, where each process gives a term
∝ π+π− or ∝ π−π+. In symmetric bilayer with Δ = 0, the terms π+π− and π−π+ have the
same coefficient and the pseudo-spin Zeeman term identically vanishes. When Δ becomes
nonzero, the two coefficients shift from each other linearly in Δ because of the band-gap
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opening, leading to a nonzero Zeeman term. The resulting effective Hamiltonian is given by
Eqs. (13) and (14) with

m∗ =
γ2

1

�
Δ2 + γ2

1

2v2(2Δ2 + γ2
1)

, g∗ =
4Δ

�
Δ2 + γ2

1

2Δ2 + γ2
1

m
m∗ . (55)

In the region Δ � γ1, the typical magnitude of the effective mass m∗ is of the order of ∼
γ1/(2v2) ≈ 0.035m.
The susceptibility is written as Pauli and Landau magnetism in Eqs. (15) and (16), respectively,
which together give a susceptibility jump of Eq. (54). The paramagnetic component χP is
zero at Δ = 0 and monotonically increases as Δ becomes larger. At g∗ = (2/

√
3)(m/m∗)

or Δ ≈ 0.34γ1, χP exceeds χL and the susceptibility step changes from diamagnetic to
paramagnetic. In the limit Δ → ∞, we have g∗ = 2m/m∗ as in the monolayer. This is to be
expected, because the bilayer graphene in this limit can be regarded as a pair of independent
monolayer graphenes, where interlayer coupling γ1 opens an energy gap at each Dirac point.
Similar argument also applies to the behavior around ε−.
Figure 5 (c) plots the susceptibility for Δ = 0, 0.2, and 0.5. In accordance with the above
analytic consideration, we actually observe that the susceptibility vanishes in the region ε >
ε+ and ε < −ε+ and that the susceptibility step at ε = ε+ changes from diamagnetic to
paramagnetic with increasing Δ. We also see that the susceptibility for Δ �= 0 diverges in the
paramagnetic direction at ε = ±ε0.

4. Multilayer graphenes

We consider a multilayer graphene composed of N layers of a carbon hexagonal network,
which are arranged in the AB (Bernal) stacking. A unit cell contains Aj and Bj atoms on
the layer j = 1, · · · , N. If the basis is taken as |A1�, |B1�; |A2�, |B2�; · · · ; |AN�, |BN�, the
Hamiltonian for the multilayer graphene around the K point becomes (26; 34–36; 40; 41)

H =

⎛
⎜⎜⎜⎝

H0 V
V† H0 V†

V H0 V
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ , (56)

with

H0 =
�

0 vπ−
vπ+ 0

�
, V =

�
0 0

γ1 0

�
, (57)

where π± = πx ± iπy with π = −ih̄∇ + eA and the vector potential A. Here we do not
consider the interlayer potential asymmetry. The effective Hamiltonian for K� is obtained by
exchanging π+ and π−.
Let us define functions

fm(j) =
2√

N + 1
sin

� π

2
j
�

cos
�

mπ

2(N + 1)
j
�

, (58)

gm(j) =
2√

N + 1
cos

� π

2
j
�

sin
�

mπ

2(N + 1)
j
�

. (59)
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Here j = 1, 2, · · · , N is the layer index, and m is the subsystem index which ranges as

m =
�

1, 3, 5, · · · , N − 1, N = even
0, 2, 4, · · · , N − 1, N = odd (60)

Obviously fm(j) is zero at even j, while gm(j) is zero at odd j. We construct the basis by
assigning fm(j), gm(j) to each cite as

|φ(A,odd)
m �= fm(1)|A1� + fm(3)|A3�+ · · ·,

|φ(B,odd)
m �= fm(1)|B1� + fm(3)|B3�+ · · ·,

|φ(A,even)
m �=gm(2)|A2� + gm(4)|A4� + · · ·,

|φ(B,even)
m �=gm(2)|B2�+ gm(4)|B4�+ · · ·. (61)

The superscript such as (A, odd) indicates that the wavefunction has an amplitude only on
|Aj� with odd j’s.
In the basis of Eq. (61), the Hamiltonian (56) is decomposed into independent blocks labeled
by m. (26) The subspace of m = 0 is special in that gm(j) is identically zero, so that only two

bases {|φ(A,odd)
0 �, |φ(B,odd)

0 �} survives in Eq. (61). The Hamiltonian matrix projected on this
subspace is written as

H0 =
�

0 vπ−
vπ+ 0

�
, (62)

which is equivalent to the Hamiltonian of the monolayer graphene. Note that m = 0 only
exists when the total layer number N is odd as shown in Eq. (60). For m �= 0, the projected

matrix on {|φ(A,odd)
m �, |φ(B,odd)

m �, |φ(A,even)
m �, |φ(B,even)

m �} becomes

Hm =

⎛
⎜⎜⎝

0 vπ− 0 0
vπ+ 0 λγ1 0

0 λγ1 0 vπ−
0 0 vπ+ 0

⎞
⎟⎟⎠ , (63)

where λ ≡ λm, is defined by

λm = 2 cos κm, κm =
π

2
− mπ

2(N + 1)
. (64)

Eq. (63) is equivalent to the Hamiltonian of a bilayer graphene, except that interlayer-coupling
parameters γ1 are multiplied by λ. An odd-layered graphene with N = 2M + 1 is composed
of one monolayer-type and M bilayer-type subsystems, while even-layered graphene with
N = 2M is composed of M bilayers but no monolayer. Figure 6 shows the low-energy band
structures in the multilayer graphenes with N = 3, 4, and 5.
The eigenstate of a finite-layered graphene can be regarded as a part of a standing wave in 3D
limit, which is a superposition of opposite traveling waves with ±kz. The quantity κ(= κm)
in our representation corresponds to the 3D wave number via κ = |kz|d, with d being the
distance between adjacent layers. Thus the monolayer-type subsystem κ = π/2 is related to
H-point in the 3D Brillouin zone and κ = 0 is to K-point.
Using the decomposition of the Hamiltonian, the magnetization of the N-layered graphene
can be written as a summation over each sub-Hamiltonian.(26) The contribution from
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Fig. 6. Band structures of multilayer graphenes of N = 3, 4, and 5. The energy bands are
shown separately for each of subsystems with a horizontal shift. The number represents κ.

m = 0 is exactly equivalent to the susceptibility of a monolayer graphene, Eq. (12), which
is proportional to delta function of εF . Thus, the odd-layer graphene always has a large
diamagnetic peak at zero energy. The susceptibility of a bilayer-like graphene becomes Eq.
(50) with γ1 replaced with λγ1. Figure 7 shows χ(εF) of graphenes with layer number from
N = 1 to 5, where we include a constant energy broadening Γ as a phenomenological disorder
effect. We can see that odd-layered graphenes exhibit a particularly large peak, which mainly
comes from the monolayer-type band.

5. Three dimensional Dirac system

The results of graphene can be directly extended to three-dimensional Dirac Hamiltonian,
which approximately describes the electronic structure of bismuth. (4–6; 65) The Hamiltonian
is given by

H =

⎛
⎜⎜⎝

Δ 0 vπz vπ−
0 Δ vπ+ −vπz

vπz vπ− −Δ 0
vπ+ −vπz 0 −Δ

⎞
⎟⎟⎠ , (65)

where four bases correspond to two orbital and two spin degrees of freedom. The anisotropy
of the velocity present in bismuth is ignored for simplicity, as we focus on the parallel
argument to its 2D counterpart. The orbital susceptibility was previously calculated for
realistic Hamiltonian retaining the anisotropy and other factors. (6)
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limit, which is a superposition of opposite traveling waves with ±kz. The quantity κ(= κm)
in our representation corresponds to the 3D wave number via κ = |kz|d, with d being the
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m = 0 is exactly equivalent to the susceptibility of a monolayer graphene, Eq. (12), which
is proportional to delta function of εF . Thus, the odd-layer graphene always has a large
diamagnetic peak at zero energy. The susceptibility of a bilayer-like graphene becomes Eq.
(50) with γ1 replaced with λγ1. Figure 7 shows χ(εF) of graphenes with layer number from
N = 1 to 5, where we include a constant energy broadening Γ as a phenomenological disorder
effect. We can see that odd-layered graphenes exhibit a particularly large peak, which mainly
comes from the monolayer-type band.

5. Three dimensional Dirac system

The results of graphene can be directly extended to three-dimensional Dirac Hamiltonian,
which approximately describes the electronic structure of bismuth. (4–6; 65) The Hamiltonian
is given by

H =

⎛
⎜⎜⎝

Δ 0 vπz vπ−
0 Δ vπ+ −vπz

vπz vπ− −Δ 0
vπ+ −vπz 0 −Δ

⎞
⎟⎟⎠ , (65)

where four bases correspond to two orbital and two spin degrees of freedom. The anisotropy
of the velocity present in bismuth is ignored for simplicity, as we focus on the parallel
argument to its 2D counterpart. The orbital susceptibility was previously calculated for
realistic Hamiltonian retaining the anisotropy and other factors. (6)
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the Fermi energy. Results shown for several disorder strengths specified by constant
scattering rate Γ.

The density of states at zero magnetic field is

D(ε) =
gvgs

π2h̄3v3
|ε|

�
ε2 − Δ2 θ(ε2 − Δ2), (66)

where gv is the valley degeneracy allowing the presence of different k points described by the
above Hamiltonian in the first Brillouin zone. The Landau levels in a uniform magnetic field
in z direction are given by (25)

εs,n,σ = s

�
(h̄ωB)2

�
n +

1
2

+
σ

2

�
+ v2 p2

z + Δ2 (n = 0, 1, 2, · · · ), (67)

with h̄ωB =
√

2h̄v/lB, s = ±1, and σ = ±1. This is equivalent to the two-dimensional
Dirac system, Eq. (17), when the term Δ2 is replaced with Δ2 + v2 p2

z . The susceptibility χ(ε) is
calculated by integrating Eq. (11) in pz as

χ(ε)=− gvgse2v2

6πc2

� dpz

2πh̄
θ(Δ2 + v2 p2

z − ε2)

2
�

Δ2 + v2 p2
z

=− gvgse2v
12π2h̄c2

⎧⎪⎪⎨
⎪⎪⎩

log
2εc

|Δ| (|ε| < |Δ|);

log
2εc

|ε|+ √
ε2 − Δ2

(|ε| > |Δ|),
(68)

where εc is a cut-off energy. In the limit of Δ → 0, the susceptibility at zero energy
logarithmically diverges.
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At an energy ε just above the band bottom |Δ|, we obtain the paramagnetic contribution

χ(ε)− χ(0) ≈ 2
3

( m
m∗

)2
D(ε)μ2

B, (69)

where D(ε) = (gs gv/4π2)(2m∗/h̄2)3/2√ε with m∗ = Δ/v2. This is nothing but the magnetic
susceptibility, dominated by the Pauli paramagnetism, of a three-dimensional metal with mass
m∗ and g factor g∗ = 2m/m∗. Figure 8 shows the susceptibility and the density of states in the
present system. The singular decrease of the susceptibility at the band edges is understood in
terms of the appearance of the dominant spin paramagnetism inside the band.
We note that in bismuth the index σ in Eq. (67) represents real spin, while it was valley
pseudo-spin in Eq. (17) for graphene. The Pauli component included in Eq. (69) thus describes
the real spin paramagnetism enhanced by the strong spin-orbit coupling, apart from the bare
electron paramagnetism.

6. Conclusion

We have reviewed the orbital magnetism of graphene and related materials. Graphene
monolayer has a delta-function singularity at Dirac point, which can be understood in
zero-mass limit of massive Dirac electrons. There the Pauli paramagnetism associated with
valley degree of freedom gives an essential contribution in addition to the conventional
Landau diamagnetism. The graphene multilayers also exhibits strong diamagnetism, while
the interlayer coupling significantly modifies the magnetic singularity at the band touching
point. The argument can be extended for a three-dimensional Dirac system, which explains the
strong diamagnetism of bismuth in a parallel fashion to that for graphene. The susceptibility
in graphene related systems is expected to be observed by employing the experimental
techniques used for two-dimensional electron systems in semiconductor.(66–71)
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where εc is a cut-off energy. In the limit of Δ → 0, the susceptibility at zero energy
logarithmically diverges.

410 Physics and Applications of Graphene - Theory

D
O

S
 (

un
its

 o
f g

sΔ
2 /

π2 h
3 v

3 )

0

5

10

15

20

0

0.5

1

1.5

-4 -2 0 2 4
Energy (units of |Δ|) 

1 3-1-3

Susceptibility

Density of states

S
us

ce
pt

ib
ili

ty
 

(u
ni

ts
 o

f −
g se

2 v
/(

12
πh

c2 )
lo

g 
2ε

c/
|Δ

|)

Fig. 8. Orbital susceptibility and density of states of three-dimensional Dirac electron.

At an energy ε just above the band bottom |Δ|, we obtain the paramagnetic contribution

χ(ε)− χ(0) ≈ 2
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B, (69)

where D(ε) = (gs gv/4π2)(2m∗/h̄2)3/2√ε with m∗ = Δ/v2. This is nothing but the magnetic
susceptibility, dominated by the Pauli paramagnetism, of a three-dimensional metal with mass
m∗ and g factor g∗ = 2m/m∗. Figure 8 shows the susceptibility and the density of states in the
present system. The singular decrease of the susceptibility at the band edges is understood in
terms of the appearance of the dominant spin paramagnetism inside the band.
We note that in bismuth the index σ in Eq. (67) represents real spin, while it was valley
pseudo-spin in Eq. (17) for graphene. The Pauli component included in Eq. (69) thus describes
the real spin paramagnetism enhanced by the strong spin-orbit coupling, apart from the bare
electron paramagnetism.

6. Conclusion

We have reviewed the orbital magnetism of graphene and related materials. Graphene
monolayer has a delta-function singularity at Dirac point, which can be understood in
zero-mass limit of massive Dirac electrons. There the Pauli paramagnetism associated with
valley degree of freedom gives an essential contribution in addition to the conventional
Landau diamagnetism. The graphene multilayers also exhibits strong diamagnetism, while
the interlayer coupling significantly modifies the magnetic singularity at the band touching
point. The argument can be extended for a three-dimensional Dirac system, which explains the
strong diamagnetism of bismuth in a parallel fashion to that for graphene. The susceptibility
in graphene related systems is expected to be observed by employing the experimental
techniques used for two-dimensional electron systems in semiconductor.(66–71)
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1. Introduction  
Graphene nanoribbons, quasi-one-dimensional structures of carbon, are fascinating 
materials. These structures can be constructed as strips of graphene sheet, the two 
dimentional honeycomb lattice of carbon with sp2 hybridization. Geometrically two main 
types of slice can be cut from a graphene sheet, with zigzag edge and armchair edge 
(Niimi05; Kobayashi05). The edge geometry is the key parameter which determines the 
electronic properties of the nanoribbons. Although the two-dimensional graphene is a zero 
band-gap semi-metal, electronic structure of nanoribbons depend on their edge geomtery 
(Saito92; Klein94; Fujita96; Son06a). A simple tight-binding model with one orbital per atom 
predicts that zigzag nanoribbons are metallic. But density functional calculations shows that 
all graphene nanoribbons are semiconductors at their ground state with band gaps which 
depend on their width and edge geometry, closing at infinite width, i. e. infinite graphene. 
Moreover, the electronic structure of graphene nanoribbons can be modified by chemical 
functionalization, such as functionalization by various atomic sepcies or by functional 
groups (Maruyama04a; Gunlycke07; Hod07; Gorjizadeh08). A large variety of electronic and 
magnetic properties, such as semiconducting with a wide range of band gap, metallic, 
ferromagnetic, antiferromagnetic, half-metallic, half-semiconducting, can be obtained by 
chamical modifications of the nanoribbons. Modification of the edge or using an adsorbate 
or substitution of carbons of the nanoribbon with an appropriate host are different options 
of functionalizations of these materials. These properties, along with the ballistic electronic 
transport, and the quantum Hall effect (Novoselov05a; Zhang05) and high carrier mobility 
(Novoselov05a) cause these quasi-1D materials to be promising candidates for 
nanoelectronics applications (Novoselov04b; Son06b; Obradovic06; Li08; Hod09; Zhu10). 
Various junctions can be constructed by connecting nanoribbons of different widths and 
types with perfect atomic interface, and electronic device can be integrated on them by 
selective chemical funtionalization on a single nanoribbon sheet (Huang07; Yan07; 
Gorjizadeh08). 
In order to achieve their potential for these applications it is essential to have a better 
understanding of the electronic structure of graphene nanoribbons and have ability to 
control them. From a practical point of view, when nanoribbons are fabricated 
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experimentally, they will have some structural defects. Vacancy and adatom–vacancy 
defects are among the most probable ones (Hashimoto04). These defects should be taken 
into account in practical aspects of the electronic transport in nanodevices based on 
graphene nanoribbons. In this chapter we will discuss the effects of defects in quantum 
conductance of grahene nanoribbons. In next section we will review the geometry of 
armchair and zigzag nanoribbons. Dependence of their electronic properties on the width 
and edge shape will be discussed.  Then, an overview of nonequilibrium Green’s function 
formalism (NEGF) for calculation of quantum conductance will be presented. After that the 
results of conductance calculation of armchair and zigzag nanoribbons with some structural 
defects such as vacancies and adatom-vacancies will be discussed using NEGF techniques 
combined with a four-orbitals-per-atom tight-binding method. We will then show 
dependence of the conductance on the width of nanoribbons and the position of the defects 
and their distance from the edge of the nanoribbons. 

2. Geometry and electronic structure of graphene nanoribbons 
There are two types of nanoribbons, based on their edge shapes, called zigzag and armchair 
edges (Saito92). The width of the nanoribbons is labled by an integer, N, which stands for 
the number of carbon dimers counted from one edge toward the other edge of armchair 
nanoribbons and the number of zigzag lines for zigzag nanoribbons. Figure 1 shows the two 
types of nanoribbons with their width indices. The dotted rectangle in this figure represents 
the unit cell of the nanoribbons. Nanoribbon is like an unrolled carbon nanotube (CNTs). 
The difference between carbon nanotubes and nanoribbons is the periodic boundary 
condition. Instead of a seamless tube, nanoribbon has two open boundaries. Therefore, the 
periodic boundary condition of nanotube in circumferential direction changes to open 
boundary condition (Möbius boundary condition) (Wakabayashi03). The electronic 
properties of nanoribbons are affected by these open boundaries. In carbon nanotubes, the 
circumferential periodic boundary condition imposes its electronic properties, making it 
metallic or semiconducting (Saito92). The electronic properties of nanoribbons, on the other 
hand, are affected by their open boundaries, as well as their edge geometry. Intrinsically 
there are dangling bonds at the edges, whose linear combinations form some of the 
eigenstates near the Fermi energy, and determine the properties of nanoribbons. 
 The earliest theoretical studies of graphene nanoribbons, using a simple tight-binding 
method with one π-orbital per atom, predicts that 1/3 of the armchair nanoribbons, whose 
width index N satisfies N=3M-1 (M is an integer), are metallic (Fujita96), and the other 2/3 
are semiconductor with band gaps depending on their width, while all zigzag nanoribbons 
are metallic. This behaviour is similar to characteristics of carbon nanotubes. A characteristic 
peak is also predicted in the density of states (DOS) of zigzag nanoribbons near Fermi 
energy (Niimi06; Sasaki06). This peak is a nano-size effect and decreases by increasing the 
width of nanoribbon. By considering a four-orbitals-per atom tight-binding model, and 
optimizing the structure of nanoribbons, or simply consider a larger hopping energy for the 
C-C bonds of the edge in the one-orbital per atom model, the 1/3 rule for armchair 
nanoribbons does not apply any more, and all the armchair nanoribbons show an energy 
gap around the Fermi energy. This gap changes with the width of the nanoribbon, which is 
the effect of the open boundary. 
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Fig. 1. Graphene nanoribbons with zigzag (a) and armchair (b) edges. The black circles 
denote sublattice A, while the white circles refer to sublattice B. The dotted rectangle 
represents the unit cell of the nanoribbon. The width of the nanoribbon is specified by N. 

First principle studies based on spin polarized density functional theory (DFT) predicts that 
all graphene nanoribbons are semiconductors at their ground state with band gaps which 
depend on their width and edge geometry, closing at infinite width, i. e. infinite graphene 
(Pisani07). Meanwhile zigzag nanoribbons have localized edge states which are 
ferromagnetically ordered, but with opposite spin orientation at the two edges which makes 
them antiferromagnetically coupled. The magnetism in zigzag nanoribbon, a pure carbon 
system, which arises from π-orbitals of carbon localized at the edge is specially notable 
(Wakabayashi99). 
There are two types of basic site in primitive cell of graphene and the atomic sites of 
graphene are divided into two sublattices, called A and B. In zigzag nanoribbons the edge 
atoms belong to the same sublattice, while the two edges carry atoms of two different 
sublattices. In these nanoribbons, the A-type and B-type atoms are placed alternatively from 
one edge toward the other one, as shown in Fig. 1(a). The spin in the same sublattice atoms 
of zigzag nanoribbon is localized in one direction, and in the opposite of the other sublattice. 
Hence, the total spin of the zigzag nanoribbons is zero, and the edges of the nanoribbons are 
antiferromagnetically ordered in the ground state. In case of armchair nanoribbons, the edge 
of the nanoribbon contains both A- and B-type atoms, as dimers, which sit along the edge, as 
depicted in Fig. 1(b). The black circles in this figure illustrate sublattice A and the white 
circles refer to sublattice B. 
Another important matter in the structure of nanoribbons is the C-C bond lengths with 
respect to their distance from the edge. There are two types of C-C bonds in a graphene 
nanoribbon, those which are parallel to the axis of nanoribbon, where we call them type 1, 
and those which make an 30º or 60 º angle with the axis, and we call them type 2. The 
change of C-C bond length with the number of atomic layers distant from edge are shown in 
Fig 2 for armchair nanoribbons N = 8, and N = 14. The 0th layer implies the edge, as shown 
in the inset. In nanoribbon N=8 all C-C bonds are affected by the edge and distort from 1.42 
Å, which is the optimized bond length of graphene. But, for N=14, the effect of edge can be 
seen only till second atomic layer distant from the edge. From the third layer, the bonds are 
1.42 Å, the same as graphene. The bond length of the edge, which is the triple bond, is 1.26 
Å or 1.27 Å depending on the width of nanoribbon. Patterns of other structures with N > 14 
are the same as N = 14, with edge bond length of 1.26 Å and the bonds of the bulk are equal 
to 1.42 Å. 
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Fig. 2. C-C bond length for different layers of carbon counted as their distance from edge of 
armchair nanoribbons N=8 (a) and N=14 (b). 

3. Tight-binding and NEGF 
We use the nonequilibrium Green’s function (NEGF) technique to calculate quantum 
conductance of nanoribbons (Datta95). The electronic structure and forces are obtained 
through a four-orbitals-per-atom tight-binding model based on semiempirical parameters 
developed by Xu et al. for carbon (Xu92). This parameterization has been used in tight 
binding studies of carbon systems, such as fullerenes and nanotubes (Esfarjani98; Ozaki00; 
Farajian01). We divide the system under study to three parts, as sketched in Fig 3: left lead, 
conductor, and right lead. According to Landauer formula (Landauer70), the conductance 
through the conductor region is: 

 
22eC T

h
= , (1) 

where the coefficient 2e2/h is the conductance quantum in ballistic conductor, and T is the 
transmission function, and can be expressed in NEGF formalism as follows 
(Pastawski91,Tian98): 

 ( )r a
L RT Tr G G= Γ Γ . (2)              

Here, Tr indicates the transmission per energy channel between the leads, ΓL and ΓR are the 
coupling functions to the left and right leads, and Gr and Ga are the retarded and advanced 
Green's functions of the conductor (Torelli00), respectively, given by: 

 1( )r rG EI H −= − − Σ , (3)                 

 
†

[ ]a rG G= . (4) 

The advanced Green's function is the Hermitian conjugate of the retarded Green's function. 
The Green's function describes the dynamics of the electron inside the system. Here, H is the  
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Fig. 3. (a) Schematic picture of a conductor (C) sandwiched between left (L) and right (R) 
contacts. (b) An armchair nanoribbon N=11 including a vacancy defect as an example of the 
L-C-R system. 

Hamiltonian of conductor part, E is the (complex) energy of conducting electron (E= ε+i η), 
with η arbitrarily small, and I is the identity matrix. Σr is the retarded self-energy which 
contains the self-energy of the Left and Right leads, Σr=ΣrL+ ΣrR , where ΣrL and ΣrR are 
obtained from surface Green's functions of the leads as follows  (Munoz87): 

 
† 0r

L LC L LCH G HΣ =  (5)      

 
†0r

R CR R CRH G HΣ =  (6)      

where G0L and G0R are the surface Green's functions of the semi-infinite Left and Right leads, 
respectively; and HLC and HCR represent the coupling matrices to the leads. In fact, the semi-
infinite leads are mapped into complex self-energies. The imaginary part of the self-energy 
implies that the eigenstates are not confined leak from the boundaries. The surface Green’s 
function, which includes the effect of the semi-infinite lead projected at its surface layer, is 
calculated by López Sancho algorithm (Lopez Sancho84). 
The Hamiltonian of the whole system can be written in tight-binding block matrix as 
follows: 

 
†

†

0

0

L LC

LC C CR

RCR

H H

H H H H
HH

⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎠⎝

. (7)  

where HC is the Hamiltonian of the conductor part, which is used in the Green’ function in 
eq. 3. The coupling functions of the leads, ΓL and ΓR, are identified by 

 ( ) ( ) ( )[ ]r a
L R L R L RiΓ = Σ − Σ , (8)                  

where Σa is the Hermitian conjugate of Σr. 

In eq. 3, the Hamiltonian, the Green's function, and the self-energies are all represented by 
matrices, using the tight-binding basis. In the tight-binding expression for carbon used in 
this work, there are four orbitals representing the 2s and 2p orbitals of carbon. Hence, for a 
system with N carbon atoms, the basis set contains 4N elements, and the matrices are 4N× 
4N. In this formalism DOS is equal to to –Im[Tr(G)]/π, where Im inducates the maginary part. 
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Fig. 4. (a) Conductance and (b) DOS of a zigzag nanoribbon N=6. (c) Conductance and (d) 
DOS of an armchair nanoribbon N=8. The Fermi energy is set to zero. The sharp peak 
specified by an arrow in (a) refers to edge state of the zigzag nanoribbons. 

In order to calculate the conductance, the first step is to optimize the geometry of the 
structure, using the tight-binding description parameterized by Xu et al. (Xu92), to obtain 
the Hamiltonian description of the system. Then, we calculate the Green’s function of the 
conductor, which includes the effect of the leads through their self-energies. The 
conductance is then obtained through eq. 1, 2. We do not consider the spin of electrons in 
the calculations of this chapter, and take part the charge of the carriers in the transport 
properties. The edges in all structures are pure carbon and are not hydrogen saturated. 
Figure 4 illustrates the conductance and DOS of a zigzag N=6 and an armchair nanoribbon 
N=8, versus the energy of carrier. The Fermi energy of the structures is set to zero. Zigzag 
nanoribbons with width N=6 has metallic behaviour within tight-binding approximation. 
The sharp peak at the energy 0.18 eV in the DOS, specified by an arrow in Fig. 4(b), refers to 
localized edge states of zigzag nanoribbons. These edge states correspond to the non-
bonding π orbitals. The existence of these edge states has been confirmed by experimental 
observations also (Niimi06). The edge states are the characteristics of zigzag nanoribbons 
and do not appear in the armchair edges. The conductance and DOS of the armchair 
nanoribbons shows an energy gap around Fermi energy. This energy gap depends on the 
width of the nanoribbons and decreases by increasing the width. In graphene, the in-plane 
bonds are the σ bonds with sp2 hybridization, which does not contribute in conduction. 
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These are the π bonds, perpendicular to nanoribbon surface, which are responsible for the 
conduction. The change in bond length results in a change in overlap of Pz orbitals, i.e. the π 
bonds, and leads to changing the conduction property. For those nanoribbons whose π 
pattern is distorted more from the graphene sheet, the energy gap is larger. Regardless of 
appropriate boundary condition, it seems that the typical bond length of 1.42Å is the most 
suitable for π orbitals to contribute in conduction. It is worth mentioning that saturation of 
the edge by hydrogen reduces the gap, but does not remove it. The energy gap of armchair 
nanoribbons N=8, for instance, decreases from 0.45 eV to 0.27 eV by hydrogen saturation of 
the edge. 

4. Quantum conductance of nanoribbons with structural defects 
For calculating the conductance of nanoribbons with defects we consider five unit cells of 
the nanoribbon as the conductor part, which is sandwiched between two semi-infinite 
contacts, as sketched in Fig 3(b). The contacts are defectless graphene nanoribbons with the 
same width and edge geometry of the middle junction. 
 

 

Fig. 5. Zigzag nanoribbons N=8 with vacancies of type B (top) and type A (bottom) at 
different positions toward the edge.  

In order to obtain the Hamiltonian of the middle junction, i.e conductor, the nanoribbon is 
sandwiched between five unit cells of nanoribbons with the same width from left and right 
and the structure is optimized, such that the maximum force on each atom is less than 0.01 
eV/Å (Gorjizadeh09). After the optimization, the five extra unit cells on each of the two 
sides of the nanoribbons are eliminated, and the five unit cells of the nanoribbon left in the 
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Fig. 4. (a) Conductance and (b) DOS of a zigzag nanoribbon N=6. (c) Conductance and (d) 
DOS of an armchair nanoribbon N=8. The Fermi energy is set to zero. The sharp peak 
specified by an arrow in (a) refers to edge state of the zigzag nanoribbons. 
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middle are used as the junction part for calculations of conductance. Using this method, the 
extra unit cells which were eliminated, omit the effects of open boundary along the axis, 
such that the junction part represents a portion of an infinite nanoribbon. The geometries of 
the semi-infinite left and right contacts are also extracted from the relaxed structures, 
obtained the same way as the junction part. This way, we are able to simulate the effect of a 
single defect in the junction part, without having periodic boundary condition.  
The vacancy defect can appear in the site of an atom of type A or type B in the nanoribbon. 
The position and type of vacancy, A or B, versus the edge of the nanoribbon is the matter of 
considering in the calculations.  

4.1 Defects in zigzag nanoribbons 
We consider a zigzag nanorirbbon N=8 with five unit cells in the middle and calculate the 
conductance when there is a vacancy of type A and B at different positions versus edge, as 
illustrated in Fig. 5. First we consider the structure of Fig. 5(a), a vacancy of type B in the 
middle of the nanoribbon. Figure 6 depicts the calculated conductance of nanoribbon with 
this defect, compared with the conductance of a perfect (defectless) nanoribbon. It can be 
noticed from this figure that number of conducting channels decreases in the defected 
nanoribbon. By moving the position of this vacancy from center toward the edge which has 
the same type of atom, according to Fig. 5(a-d), the conductance near the Fermi energy is 
changed (Fig. 6(b)). The behaviour of the conductance clearly depends on the place of the 
vacancy versus the edge. When the vacancy is in the middle of the nanoribbon, the 
conductance at Fermi energy decreases to zero. By moving the vacancy from the center 
toward the edge, the conductance near the Fermi energy increases until it reaches the 
conductance of a perfect nanoribbon, when the vacancy is at the edge. The energy for which 
the decrease of conductance is the strongest is slightly below the Fermi energy, around -0.18 
eV. On the other hand, the vacancy of type A in the center of the nanoribbon, as in Fig. 5(e), 
even opens a gap around the energy -0.18 eV (Fig. 6(c)).  Moving the place of this vacancy 
toward the same edge, according to Fig. 5(e-g), will result in the same trend as vacancy B, as 
depicted in Fig. 6(d). As mentioned in section 2, all zigzag nanoribbons have a typical peak 
in their DOS near and slightly below the Fermi energy which is due the edge states. Our 
results show that a vacancy defect inside the nanoribbon affects the edge states of the 
nanoribbon. By removing one atom from the lattice of the nanoribbon, three sp2 bonds are 
broken, creating three dangling bonds in the neighboring carbon atoms. These dangling 
bonds tend to spread toward the neighboring carbon atoms of the nanoribbon in order to 
overlap with electronic orbitals of their neighbors and lower their energy. Hence, the 
electronic wave functions near the vacancy are affected. In other words, some localized 
states appear in the vicinity of the vacancy and affect the π bonds of the nanoribbon. 
Therefore, the effect of the vacancy on the π bands (from -1to 1 eV in Fig. 6(b)), which are 
responsible for conduction near the Fermi energy, is significant. If the localized vacancy 
states are in the middle of the nanoribbon, their effect on the whole electronic wave function 
will be maximum. As the width of the nanoribbon is small, on the order of a few Å, the 
effect of the localized states of the vacancy are spread until both nanoribbon edges. Once the 
vacancy is moved toward one edge, the effect of the localized vacancy states at and near the 
other edge will decrease, due to increase of the distance between the vacancy and the other 
edge of the nanoribbon. Therefore, the number of less affected conducting channels of the 
nanoribbon increases compared to when the vacancy is in the middle of nanoribbon. 
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Fig. 6. Conductance of a zigzag nanoribbon N=8 with (a) vacancy defect of Fig. 5(a) 
compared with the defectless nanoribbon sketched in gray, (b) vacancy defects of type B at 
different positions from the edge. The solid line is defect of Fig. 5(a), dashed line is defect of 
Fig. 5(b), dashed-dotted line is defect of Fig. 5(c), and dotted line is defect of Fig. 5(d). 
Conductance of the same zigzag nanoribbon N=8 with (c) vacancy defect of Fig. 5(e) 
compared with the defectless nanoribbon sketched in gray. (d) Vacancy defects of type A at 
different positions from the edge. The solid line is defect of Fig. 5(e), dashed line is defect of 
Fig. 5(f), dashed-dotted line is defect of Fig. 5(g), and dotted line is defect of Fig. 5(h). 

The same situation happens for zigzag nanoribbons with other widths, such as N=6 and 
N=4. However, the gap opening around the energy -0.18 eV when the vacancy is in the 
middle of the nanoribbon, is larger when the width of the nanoribbon is smaller. This gap is 
equal to 1.0 eV for the nanoribbon N=4, while it is 0.35 eV for the nanoribbon N=8. 
Therefore, by increasing the width of nanoribbon, this effect will diminish.  
Next, we place an adatom at a nearest neighbor position of vacancy. An adatom-vacancy 
defect of this kind is more stable than one adatom and one vacancy defect (Hashimoto04). A 
carbon adatom is not stable on graphene. It will diffuse on graphene with a diffusion barrier 
of 0.14 eV (Lehtinen03; Hashimoto04) It appears mostly in the vicinity of the vacancies, 
because this combination of vacancy and neighboring adatom has been predicted to be 
metastable and long lived (Hashimoto04; Krasheninnikov01; Lu04).  
An adatom can be attached on top of an A-type or a B-type site. Figure 7(a-b) shows 
schematic of the adatom-vacancy defect, when adatom is in site A or B at a nearest 
neighboring site of a vacancy type A in zigzag nanoribbon N=6. The C-C bond between the  
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middle are used as the junction part for calculations of conductance. Using this method, the 
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obtained the same way as the junction part. This way, we are able to simulate the effect of a 
single defect in the junction part, without having periodic boundary condition.  
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The position and type of vacancy, A or B, versus the edge of the nanoribbon is the matter of 
considering in the calculations.  
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illustrated in Fig. 5. First we consider the structure of Fig. 5(a), a vacancy of type B in the 
middle of the nanoribbon. Figure 6 depicts the calculated conductance of nanoribbon with 
this defect, compared with the conductance of a perfect (defectless) nanoribbon. It can be 
noticed from this figure that number of conducting channels decreases in the defected 
nanoribbon. By moving the position of this vacancy from center toward the edge which has 
the same type of atom, according to Fig. 5(a-d), the conductance near the Fermi energy is 
changed (Fig. 6(b)). The behaviour of the conductance clearly depends on the place of the 
vacancy versus the edge. When the vacancy is in the middle of the nanoribbon, the 
conductance at Fermi energy decreases to zero. By moving the vacancy from the center 
toward the edge, the conductance near the Fermi energy increases until it reaches the 
conductance of a perfect nanoribbon, when the vacancy is at the edge. The energy for which 
the decrease of conductance is the strongest is slightly below the Fermi energy, around -0.18 
eV. On the other hand, the vacancy of type A in the center of the nanoribbon, as in Fig. 5(e), 
even opens a gap around the energy -0.18 eV (Fig. 6(c)).  Moving the place of this vacancy 
toward the same edge, according to Fig. 5(e-g), will result in the same trend as vacancy B, as 
depicted in Fig. 6(d). As mentioned in section 2, all zigzag nanoribbons have a typical peak 
in their DOS near and slightly below the Fermi energy which is due the edge states. Our 
results show that a vacancy defect inside the nanoribbon affects the edge states of the 
nanoribbon. By removing one atom from the lattice of the nanoribbon, three sp2 bonds are 
broken, creating three dangling bonds in the neighboring carbon atoms. These dangling 
bonds tend to spread toward the neighboring carbon atoms of the nanoribbon in order to 
overlap with electronic orbitals of their neighbors and lower their energy. Hence, the 
electronic wave functions near the vacancy are affected. In other words, some localized 
states appear in the vicinity of the vacancy and affect the π bonds of the nanoribbon. 
Therefore, the effect of the vacancy on the π bands (from -1to 1 eV in Fig. 6(b)), which are 
responsible for conduction near the Fermi energy, is significant. If the localized vacancy 
states are in the middle of the nanoribbon, their effect on the whole electronic wave function 
will be maximum. As the width of the nanoribbon is small, on the order of a few Å, the 
effect of the localized states of the vacancy are spread until both nanoribbon edges. Once the 
vacancy is moved toward one edge, the effect of the localized vacancy states at and near the 
other edge will decrease, due to increase of the distance between the vacancy and the other 
edge of the nanoribbon. Therefore, the number of less affected conducting channels of the 
nanoribbon increases compared to when the vacancy is in the middle of nanoribbon. 
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Fig. 6. Conductance of a zigzag nanoribbon N=8 with (a) vacancy defect of Fig. 5(a) 
compared with the defectless nanoribbon sketched in gray, (b) vacancy defects of type B at 
different positions from the edge. The solid line is defect of Fig. 5(a), dashed line is defect of 
Fig. 5(b), dashed-dotted line is defect of Fig. 5(c), and dotted line is defect of Fig. 5(d). 
Conductance of the same zigzag nanoribbon N=8 with (c) vacancy defect of Fig. 5(e) 
compared with the defectless nanoribbon sketched in gray. (d) Vacancy defects of type A at 
different positions from the edge. The solid line is defect of Fig. 5(e), dashed line is defect of 
Fig. 5(f), dashed-dotted line is defect of Fig. 5(g), and dotted line is defect of Fig. 5(h). 

The same situation happens for zigzag nanoribbons with other widths, such as N=6 and 
N=4. However, the gap opening around the energy -0.18 eV when the vacancy is in the 
middle of the nanoribbon, is larger when the width of the nanoribbon is smaller. This gap is 
equal to 1.0 eV for the nanoribbon N=4, while it is 0.35 eV for the nanoribbon N=8. 
Therefore, by increasing the width of nanoribbon, this effect will diminish.  
Next, we place an adatom at a nearest neighbor position of vacancy. An adatom-vacancy 
defect of this kind is more stable than one adatom and one vacancy defect (Hashimoto04). A 
carbon adatom is not stable on graphene. It will diffuse on graphene with a diffusion barrier 
of 0.14 eV (Lehtinen03; Hashimoto04) It appears mostly in the vicinity of the vacancies, 
because this combination of vacancy and neighboring adatom has been predicted to be 
metastable and long lived (Hashimoto04; Krasheninnikov01; Lu04).  
An adatom can be attached on top of an A-type or a B-type site. Figure 7(a-b) shows 
schematic of the adatom-vacancy defect, when adatom is in site A or B at a nearest 
neighboring site of a vacancy type A in zigzag nanoribbon N=6. The C-C bond between the  
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Fig. 7. Schematic of a zigzag nanoribbon N=6 with adatom-vacancy defect, when adatom is in 
(a) site A or, (b) site B, in vicinity of a vacancy type A. (c) Conductance of the zigzag 
nanoribbon with vacancy type A. (d) Compariosn of the conductance of plot (c) with adatom-
vacancy defects of (a) and (b). The solid line is the conductance of vacancy type A, dahsed line 
is that of adatom-vacancy type A-A (Fig. 5(a)), and dotted line is that of adatom-vacancy type 
B-A. Two peaks appear near and at the two sides of the original peak of the nanoribbon, in 
case of adatom-vacancy type B-A, indicating that localized states appear at these energies. 

adatom and the carbon atom of the nanoribbon is 2.04 Åwhich indicates that the adatom is 
physisorbed on the nanoribbon. Conductance of the zigzag nanoribbon N=6 with the 
vacancy is sketched in Fig. 7.c, while the conductance of adatom-vacancy defects of type A-
A and B-A are shown in Fig. 7.d. The results of DOS in Fig. 7. e-f show that two peaks 
appear near and at the two sides of the original peak of the nanoribbon, in case of adatom-
vacancy type B-A, indicating that localized states appear at these energies which are located 
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at energy intervals -0.18 eV and +0.21 eV away from the original peak. These two energies 
show a drastic drop, instead of the drop at the energy of the original peak at -0.18 eV. 
However, the DOS and conductance of adatom of type A near vacancy of type A does not 
change compared to that of vacancy A defect. Therefore, the adatom does not change the 
transport property of the zigzag nanoribbon when it is attached to a site of the same type as 
vacancy, while it splits the original peak of the DOS at -0.18 eV and decreases the 
conductance when it is attached to a site of different type site compared to the vacancy. The 
same results were obtained for zigzag nanoribbons of other widths, i. e. N=4 and 8.  

4.2 Defects in armchair nanoribbons 
We consider the same defects of the vacancy and adatom-vacancy in the structures of 
armchair nanoribbons N=8, 12, and 16, and compare the conductance characteristics with 
those of perfect structures. Armchair nanoribbons are semiconducting. Figure 8(a-b) 
shows the conductance of an armchair nanoribbon N=8 with a vacancy type B in the 
middle of the nanoribbon, and its comparison with those of structures with one and two 
atom vacancy at the edge. Similar to the zigzag nanoribbons, in armchair nanoribbons 
also localized states appear when there is vacancy in their structures, and the conductance 
decreases due to defects compared with the perfect nanoribbon. But the energy gap is not 
affected by the defects. This could be expected as the gap arises owing to the lack of 
conducting channels (bands), for that particular energy interval, within the two semi-
infinite defectless contacts.The vacancy states are localized near the vacancy within the 
junction part, which attaches the two semi-infinite graphene contacts. These localized 
states cannot generate extra bands within the contacts, and therefore the gap remains 
upon introducing the vacancy. 
Figure 8(c-d) depicts the conductance and DOS of adatom-vacancy defects. The conductance 
of adatom-vacancy is the same as that of vacancy defect, indicating that adatom does not 
affect the transport properties of the armchair nanoribbon, both for the adatom and vacancy 
of the same type and different types. The same results are obtained for the nanoribbons 
N=12 and 16. This effect is attributed to the lack of edge state in armchair nanoribbon. The 
edge state in zigzag nanoribbon produces a peak in DOS at -0.18 eV. This peak is split into 
two by different sites of adatom-vacancy defects, as is shown in Fig. 7(f). With the absence of 
edge-state peak in armchair nanoribbons, the split does not occur and the conductance of 
adatom-vacancy defect is similar to that of vacancy. 

5. Conclusion 
We study the effect of defects such as vacancy and adatom-vacancy on the conductance of 
graphene nanoribbons. Our results show that localized states appear when there is vacancy 
inside the nanoribbon, which affects its conductance. The drop of conductance depends on the 
place of the vacancy. When the vacancy is at the middle of the nanoribbon, its effect on 
conductance at energies near Fermi energy is maximum. For zigzag nanoribbons, there is a 
drastic drop of conductance at the energy -0.18 eV which is the energy of the original peak in 
the density of states (DOS) of the nanoribbon. A gap opens around this energy, whose width 
depends on the width of the nanoribbon: The thinner the nanoribbon, the wider the gap. By 
moving the vacancy from the middle of the nanoribbon toward the edge, the decrease of  
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Fig. 7. Schematic of a zigzag nanoribbon N=6 with adatom-vacancy defect, when adatom is in 
(a) site A or, (b) site B, in vicinity of a vacancy type A. (c) Conductance of the zigzag 
nanoribbon with vacancy type A. (d) Compariosn of the conductance of plot (c) with adatom-
vacancy defects of (a) and (b). The solid line is the conductance of vacancy type A, dahsed line 
is that of adatom-vacancy type A-A (Fig. 5(a)), and dotted line is that of adatom-vacancy type 
B-A. Two peaks appear near and at the two sides of the original peak of the nanoribbon, in 
case of adatom-vacancy type B-A, indicating that localized states appear at these energies. 

adatom and the carbon atom of the nanoribbon is 2.04 Åwhich indicates that the adatom is 
physisorbed on the nanoribbon. Conductance of the zigzag nanoribbon N=6 with the 
vacancy is sketched in Fig. 7.c, while the conductance of adatom-vacancy defects of type A-
A and B-A are shown in Fig. 7.d. The results of DOS in Fig. 7. e-f show that two peaks 
appear near and at the two sides of the original peak of the nanoribbon, in case of adatom-
vacancy type B-A, indicating that localized states appear at these energies which are located 
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at energy intervals -0.18 eV and +0.21 eV away from the original peak. These two energies 
show a drastic drop, instead of the drop at the energy of the original peak at -0.18 eV. 
However, the DOS and conductance of adatom of type A near vacancy of type A does not 
change compared to that of vacancy A defect. Therefore, the adatom does not change the 
transport property of the zigzag nanoribbon when it is attached to a site of the same type as 
vacancy, while it splits the original peak of the DOS at -0.18 eV and decreases the 
conductance when it is attached to a site of different type site compared to the vacancy. The 
same results were obtained for zigzag nanoribbons of other widths, i. e. N=4 and 8.  

4.2 Defects in armchair nanoribbons 
We consider the same defects of the vacancy and adatom-vacancy in the structures of 
armchair nanoribbons N=8, 12, and 16, and compare the conductance characteristics with 
those of perfect structures. Armchair nanoribbons are semiconducting. Figure 8(a-b) 
shows the conductance of an armchair nanoribbon N=8 with a vacancy type B in the 
middle of the nanoribbon, and its comparison with those of structures with one and two 
atom vacancy at the edge. Similar to the zigzag nanoribbons, in armchair nanoribbons 
also localized states appear when there is vacancy in their structures, and the conductance 
decreases due to defects compared with the perfect nanoribbon. But the energy gap is not 
affected by the defects. This could be expected as the gap arises owing to the lack of 
conducting channels (bands), for that particular energy interval, within the two semi-
infinite defectless contacts.The vacancy states are localized near the vacancy within the 
junction part, which attaches the two semi-infinite graphene contacts. These localized 
states cannot generate extra bands within the contacts, and therefore the gap remains 
upon introducing the vacancy. 
Figure 8(c-d) depicts the conductance and DOS of adatom-vacancy defects. The conductance 
of adatom-vacancy is the same as that of vacancy defect, indicating that adatom does not 
affect the transport properties of the armchair nanoribbon, both for the adatom and vacancy 
of the same type and different types. The same results are obtained for the nanoribbons 
N=12 and 16. This effect is attributed to the lack of edge state in armchair nanoribbon. The 
edge state in zigzag nanoribbon produces a peak in DOS at -0.18 eV. This peak is split into 
two by different sites of adatom-vacancy defects, as is shown in Fig. 7(f). With the absence of 
edge-state peak in armchair nanoribbons, the split does not occur and the conductance of 
adatom-vacancy defect is similar to that of vacancy. 

5. Conclusion 
We study the effect of defects such as vacancy and adatom-vacancy on the conductance of 
graphene nanoribbons. Our results show that localized states appear when there is vacancy 
inside the nanoribbon, which affects its conductance. The drop of conductance depends on the 
place of the vacancy. When the vacancy is at the middle of the nanoribbon, its effect on 
conductance at energies near Fermi energy is maximum. For zigzag nanoribbons, there is a 
drastic drop of conductance at the energy -0.18 eV which is the energy of the original peak in 
the density of states (DOS) of the nanoribbon. A gap opens around this energy, whose width 
depends on the width of the nanoribbon: The thinner the nanoribbon, the wider the gap. By 
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Fig. 8. (a) Conductance of an armchair nanoribbon N=8 with the vacancy type B. (b) 
Comparison of the conductance of plot (a) with those of the nanoribbon with one and two 
atom vacancy at the edge (structures of (e)).  (c) Compariosn of the conductance of plot (a) 
with those of adatom-vacancy defects of type A-A and B-B (structures of (f)). 

conductance is lowered, and it reaches zero when the vacancy is at the edge, i. e. the 
conductance is the same as that of a perfect nanoribbon. Binding of a carbon adatom with a 
carbon atom near vacancy results in two extra peaks in the DOS near the Fermi energy of 
zigzag nanoribbons. This binding makes localized states at energies of the new peaks and 
results in the decrease of conductance at these energies. These effects are very sensitive to 
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1. Introduction

The analogies between phenomena occurring in two different physical systems open a route
to find new effects or to translate solution on techniques or devices, and quite often help
to understand both systems better (Dragoman & Dragoman, 2004). In particular, electronic
analogues of many optical behaviors such as reflection, refraction (Gaylord & Brennan,
1989), focusing (Sivan et al., 1990; Spector et al., 1990; van Houten et al., 1988), collimation
(Molenkamp et al., 1990), and interference (Ji et al., 2003; Yacoby et al., 1994) have been
achieved in two-dimensional electron gas (2DEG) enabling the systems as a basic platform
to study foundation problems in quantum mechanics as well as quantum information
processing. The close relation between optics and electronics results from the fact that the
electrons act as wave due to the ballistic transport properties of a highly mobility 2DEG
created in semiconductor heterostructures (Palevski et al., 1989). As a result, there is a growing
interest in the design and development of devices based on electron wave propagation, which
has given rise to a research field described as electron wave optics (Datta, 1996; Gaylord et al.,
1991).
Over the past six years, monolayer graphene has attracted much attention (Beenakker, 2008;
Castro Neto et al., 2009) since the graphitic sheet of one-atom thickness has been fabricated
experimentally by A. K. Geim et al. in 2004 (Novoselov et al., 2004). The valence electron
dynamics in such a truly two-dimensional (2D) material is governed by a massless Dirac
equation. Thus graphene has many unique electronic and transport properties (Beenakker,
2008; Castro Neto et al., 2009), including half-integer and unconventional quantum Hall effect
(Zhang et al., 2005), observation of minimum conductivity (Novoselov et al., 2005), and Klein
tunneling (Katsnelson et al., 2006).
The great progress on graphene has brought the analogy between ballistic electrons and light
propagations to a new level, and has lead to the Dirac electron wave optics. In the regard,
various electron optics phenomena, such as focusing (Cheianov et al., 2007), collimation
(Park et al., 2008), subwavelength optics (Darancet et al., 2009), Bragg reflection (Ghosh et
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1. Introduction

The analogies between phenomena occurring in two different physical systems open a route
to find new effects or to translate solution on techniques or devices, and quite often help
to understand both systems better (Dragoman & Dragoman, 2004). In particular, electronic
analogues of many optical behaviors such as reflection, refraction (Gaylord & Brennan,
1989), focusing (Sivan et al., 1990; Spector et al., 1990; van Houten et al., 1988), collimation
(Molenkamp et al., 1990), and interference (Ji et al., 2003; Yacoby et al., 1994) have been
achieved in two-dimensional electron gas (2DEG) enabling the systems as a basic platform
to study foundation problems in quantum mechanics as well as quantum information
processing. The close relation between optics and electronics results from the fact that the
electrons act as wave due to the ballistic transport properties of a highly mobility 2DEG
created in semiconductor heterostructures (Palevski et al., 1989). As a result, there is a growing
interest in the design and development of devices based on electron wave propagation, which
has given rise to a research field described as electron wave optics (Datta, 1996; Gaylord et al.,
1991).
Over the past six years, monolayer graphene has attracted much attention (Beenakker, 2008;
Castro Neto et al., 2009) since the graphitic sheet of one-atom thickness has been fabricated
experimentally by A. K. Geim et al. in 2004 (Novoselov et al., 2004). The valence electron
dynamics in such a truly two-dimensional (2D) material is governed by a massless Dirac
equation. Thus graphene has many unique electronic and transport properties (Beenakker,
2008; Castro Neto et al., 2009), including half-integer and unconventional quantum Hall effect
(Zhang et al., 2005), observation of minimum conductivity (Novoselov et al., 2005), and Klein
tunneling (Katsnelson et al., 2006).
The great progress on graphene has brought the analogy between ballistic electrons and light
propagations to a new level, and has lead to the Dirac electron wave optics. In the regard,
various electron optics phenomena, such as focusing (Cheianov et al., 2007), collimation
(Park et al., 2008), subwavelength optics (Darancet et al., 2009), Bragg reflection (Ghosh et
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al., 2009), and Goos-Hänchen effect (GH) (Beenakker et al., 2009; Zhao et al., 2010) provide
different ways to control the electronic wave propagations in different graphene-based
electron devices. One of the most important discoveries is that Cheianov et al. (Cheianov et al.,
2007) have recently demonstrated the negative refraction at the n-p graphene interface when
the incidence angle is less than the critical angle for total reflection and proposed the electron
focusing effect as a “perfect lens" in metamaterial. However, the propagations of electron
waves become quite different, when the evanescent waves are considered in total reflection.
Zhao and Yelin (Zhao et al., 2010) have once studied that the electron beam will experience
the so-called GH shift at the graphene interface, when the incidence angle is larger than the
critical angle. C. W. J. Beenakker et al. (Beenakker et al., 2009) have further found that the GH
effect at a n-p interface in graphene doubles the degeneracy of the lowest propagating mode.
In addition, following the seminal paper on the negative refraction and electron focusing,
Garcia-Pomar et al. (Pomar et al., 2008) have also proposed an n-p-n graphene transistor
to realize the valley beam splitter or collimation. So the manipulation of electron beam
propagation can benefit from all these optical-like phenomena by applying an external electric
or magnetic field to alter the flowing of electrons (Wang and Liu, 2010).
From a somewhat different but relevant perspective, a growing interest has appeared
regarding the simulations of Dirac equation and relativistic effects by many controllable
physical setups, for instance, cold atom in optical lattice (Zhu et al., 2007), spin-1/2 particles
in single trapped ion (Lamata et al., 2007), ultrarelativistic atom with internal energy levels
in a tripod configuration (Juzeliunas et al., 2008), and light in fiber Bragg gratings (Longhi,
2010). It is worthwhile to point out that R. Gerritsma et al. (Gerritsma et al., 2010) have
lately implemented for the first time a quantum optical simulation of a tunable relativistic
quantum mechanical system. In the optical field, the Dirac point (DP) in photonic crystals
for the Bloch states is also of significance and interest, based on the similarity of the
photonic bands of the two-dimensional photonic crystals (2DPCs) with the electronic bands
of solids. Consequently, the conical diffraction (Peleg et al., 2007), “pseudodiffusive" scaling
(Sepkhanov et al., 2007), and photon’s Zitterbewegung (Zhang, 2008) have been found near
the DP in photonic crystals. As we know that, compared to solids, atomic and quantum
optical systems, pure optical systems offer clean and easy controlled way to test theoretical
predictions. Stimulated by the realization of the DP with a double-cone structure for optical
field in the negative-zero-positive index metamaterial (NZPIM) (Wang et al., 2009 , a;b), the
pseudodiffusive property, Zitterbewegung effect, Bragg-like reflection, and the unique GH
effect (Chen et al., 2009 , b) inside the NZPIM slab are extensively investigated. Taking into
account the close relation between Klein paradox and negative refraction (Guney & Meyer,
2009), the novel phenomena in the NZPIM will definitely motivate the further work to
simulate many exotic phenomena in graphene with relatively simple optical system.
This chapter presents a review on the propagation of electron waves in monolayer graphene
and optical simulations with NZPIM. The chapter is organized as follow. In Sec. 2, the
transmission gap (corresponding to Bragg-like reflection) and GH effect are discussed in
single graphene barrier. Similar to the transmission gap, the zero-averaged wavenumber
gap associated with new DP in monlayer graphene superlattice is also studied in Sec. 3 by
the transfer matrix method. In Sec. 4, the optical simulations of the relevant phenomena
mentioned above are made by the NZPIM with the DP. Finally, we make brief conclusion
in Sec. 5.
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2. Transmission gap, Bragg-like reflection and Goos-Hänchen effect in monolayer
graphene barrier

As we know, one of the most interesting phenomena is the perfect transmission, in particular,
for normal incidence, through arbitrarily high and wide graphene barriers, referred to as Klein
tunneling (Katsnelson et al., 2006). Therefore, such important property may lead to the design
of various graphene-based device. Until recently, the transport properties of massless Dirac
fermions, including Klein tunneling and perfect transmission, have been extensively studied
in single graphene barriers (Katsnelson et al., 2006), n-p-n junctions (Cheianov et al., 2007),
graphene-based double barriers (Perira et al., 2007) and even graphene superlattice (Bai et al.,
2007; Barbier et al., 2008; 2010; Bliokh et al., 2009). In the meanwhile, inhomogeneous magnetic
fields on the nanometer scale have been suggested to circumvent the Klein tunneling and
produce confined graphene-based structures (Anna et al., 2009; Martino et al., 2007). It was
found that the angular range of the transmission through monolayer and bilayer graphene
with magnetic barrier structures can be efficiently controlled and gives the possibility to
construct a direction-dependent wave vector filter (Masir et al., 2008 , a;b).
In the following section, we shall firstly investigate the transmission properties of Dirac-like
electron waves in single monolayer graphene barrier, when the ballistic electrons are obliquely
incident on the monolayer graphene barrier. It is shown that the transmission at non-zero
incidence angle has a gap, which can be considered as Bragg-like phenomenon. This
controllable transmission gap is quite different from the perfectly transparent for the angles
close to the normal incidence (Katsnelson et al., 2006) and does result from the evanescent
waves in two cases of classical motion and Klein tunneling due to the effect of parallel wave
vector. Based on the tunable transmission gap (Chen & Tao, 2009), GH shifts for Dirac fermions
in transmission through a two-dimensional (2D) monolayer graphene barrier can be enhanced
by transmission resonances, and can also be negative as well as positive. So these lateral
shifts, associated with the transmission gap and Bragg-like reflection, lead to the significant
difference from the conventional GH shift in total reflection.

2.1 Transmission and reflection in the graphene barrier
We consider the incident electron wave propagates with Fermi energy E at angle φ with
respective to the x axis through a single 2D graphene barrier, as shown in Fig. 1, where V0
and d are the height and width of the potential barrier, respectively. From the view point of its
electronic properties, graphene is a two-dimensional zero-gap semiconductor with the linear
dispersion relation, E = h̄kFυF , thus the low-energy quasi-particles are formally described by
the Dirac-like Hamiltonian (Katsnelson et al., 2006), Ĥ0 = −ih̄υFσ∇, vF ≈ 106m · s−1 is the
Fermi velocity, kF is the Fermi wave vector, and σ = (σx, σy) are the Pauli matrices. So the
wave function of the incident electrons is assumed to be

Ψin(x, y) =
(

1
seiφ

)
ei(kxx+kyy), (1)

the wave function of the transmitted electrons can be expressed as follows,

Ψt(x, y) = t
(

1
seiφ

)
ei(kxx+kyy), (2)

where s = sgn(E), kx = kF cos φ and ky = kF sin φ are the perpendicular and parallel wave
vector components outside the barrier. According to the boundary conditions, transmission
coefficient is determined by
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and d are the height and width of the potential barrier, respectively. From the view point of its
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Fig. 1. Schematic diagram for a single monolayer graphene barrier with height V0
and width d.

t ≡ 1
f

eiϕ =
1

cos(qxd) − i(ss� sec φ sec θ − tan φ tan θ) sin(qxd)
, (3)

where s� = sgn(E − V0), qx = (k
�2
F − k2

y)1/2, k�F = |E − V0|/h̄vF , and θ = arctan(ky/qx). The
critical angle φc for total reflection can be defined by

φc = arcsin
( |V0 − E|

E

)
, (4)

so that when φ > φc, the wave function in the propagating case becomes evanescent wave by
replacing qx by iκ, where κ = (k2

y − k
�2
F )1/2. Next, we will discuss the transmission in two cases

of Klein tunneling (E < V0) and classical motion (E > V0) to show the unique transmission
properties of electron waves in monolayer graphene barrier.
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Fig. 2. (Color online) Transmission gap as the function of incident energy E, where d = 80
nm, V0 = 120 meV, solid and dashed curves correspond to φ = 25◦ and φ = 15◦ , respectively.

Case 1: Klein tunneling (ss� = −1). The transmission probability T can be given by Eq. (3),

T ≡ |t|2 =

[
cos2(qxd) +

(k2
y + kFk

�
F)2

k2
xq2

x
sin2(qxd)

]−1

. (5)

It is clear that the angular-dependent transmission probability T becomes equal to 1 under
the resonance condition, qxd = Nπ, (N = 0,±1, ...). However, when the angle of incidence
satisfies φ > φ�

c, where the critical angle (4) tends to φ�
c = sin−1 (V0/E − 1), with the
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necessary condition E < V0 < 2E, the tunneling of the Dirac-like electron through the
monolayer graphene barrier occurs, thus the transmission probability damps exponentially
in the following form: T ≈ 4k2

xκ2e−2κd/[k2
xκ2 + (k2

y + kFk
�
F)2].

Case 2: Classical motion (ss� = 1). The transmission probability can be rewritten as

T =

[
cos2(qxd) +

(k2
y − kFk

�
F)2

k2
xq2

x
sin2(qxd)

]−1

. (6)

Similarly, when the incidence angle φ is less than the critical angle, φ��
c = sin−1 (1 − V0/E)

given by the critital angle (4), the transmission probability T in this case depends periodically
on the width d of barrier. On the contrary, when φ > φ��

c , wave vector qx becomes imaginary
number, thus the transmission probability tends to T ≈ 4k2

xκ2e−2κd/[k2
xκ2 + (k2

y − kFk
�
F)2] .

Figure 2 shows that the transmission as the function of incidence energy E has a gap, where
d = 80nm, V0 = 120meV, solid and dashed curves correspond to φ = 25◦ and φ = 10◦. The
energy region of the transmission gap, V0 − h̄vFky < E < V0 + h̄vFky, since q2

x < 0. Thus the
width of transmission gap is given by

ΔE = 2h̄vFky, (7)

which depends strongly on the parallel wave vector ky, and can be controlled by the incidence
angle, as shown in Fig. 2, where the center of transmission gap is E = V0. It is clear that
the transmission gap becomes narrower with the decrease of the incidence angle, and even
vanishes at normal incidence. Since the transmission gap results from the evanescent wave in
two cases of Klein tunneling and classical motion, the incidence angle, the height and width
of potential barrier play important roles in the transmission gap. Especially, the transmission
gap will become deeper with increasing the barrier width, due to the decrease of the the decay
factor exp (−2κd) in the evanescent case. Here we shall point out that the transmission gap
can be tunable by changing the gate-voltage, which can realize the electron wave energy filter
by the shift of transmission gap.
The tunable transmission gap implies Bragg-like reflection, which usually happens only in
the single potential barrier, instead of multiple barriers. It turns out that Dirac-like electrons
can perfectly reflected by the graphene barrier in the region of energy. This perfect reflection
is similar to but different from the Bragg reflection in magnetic barrier in graphene (Ghosh et
al., 2009). Actually, this Bragg-like phenomenon discussed here can also be applied to select
electron energy by the reflection window.
Next, we will study the total conductance (G) and Fano factor (F) in the single graphene
barrier. Using the Büttiker formula (Datta, 1996), the total conductance of the system at zero
temperature is given by

G = G0

∫ π/2

−π/2
T(EF , EF sin φ) cos φdφ, (8)

with the Fermi energy EF and the units of conductance G0 = (2e2/h̄)(�/πh̄vF), where � is the
length of the structure along the y direction. Furthermore, we can also study the Fano factor
(F) (Tworzydlo et al., 2006), which is given by

F =

∫ π/2
−π/2 T(1 − T) cos φdφ

∫ π/2
−π/2 T cos φdφ

. (9)
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Fig. 1. Schematic diagram for a single monolayer graphene barrier with height V0
and width d.
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Fig. 2. (Color online) Transmission gap as the function of incident energy E, where d = 80
nm, V0 = 120 meV, solid and dashed curves correspond to φ = 25◦ and φ = 15◦ , respectively.
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It is clear that the angular-dependent transmission probability T becomes equal to 1 under
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Fig. 3. (Color online) Conductance G/G0 and Fano factor F as the function of incident energy,
where d = 80 nm (blue solid line), d = 50 nm (green dashed line), d = 30 nm (red dotted
line), and other parameters are the same as in Fig. 2.

Figure 3 illustrates the dependence of the conductance and Fano factor on the incidence
energy E, where the physical parameters are the same as in Fig. 2. Obviously, it is shown that
the visible kinks of the conductance due to transmission resonance are closely related to the
quasi-bound state. More importantly, all conductance curves indicate a pronounced forbidden
region, which is the region of almost zero conductance corresponding to the transmission gap.
In addition, the behavior of Fano factor resembles Bragg reflection. Also the interesting point
is that Fano factor will approach the maximum value 1/3 in the transmission gap. In a word,
the transmission gap has great effect on the electron transport in monolayer graphene, but
also provides a novel phenomenon to design various electron wave devices.

2.2 Quantum Goos-Hänchen shift
As mentioned above, Cheianov et al. (Cheianov et al., 2007) have found the negative refraction
and electron focusing in graphene p-n junction, when the incidence angle is less than the
critical angle for total reflection. However, when the incidence angle is larger than the critical
angle, the quantum GH effect in total reflection has been investigated (Beenakker et al., 2009;
Zhao et al., 2010) at a p-n interface in graphene, which is analogous to the lateral shift of the
light beam totally reflected from a dielectric interface (Goos & Hänchen, 1947; 1949). Here we
would like to discuss the negative and positive GH shifts for Dirac fermions in transmission
through a 2D monolayer graphene barrier, based on the tunable transmission gap.
To calculate the lateral shifts, we consider the incidence beam as

Ψin(x, y) =
∫ ∞

∞
dky A(ky)ei(kxx+kyy)

(
1

seiφ

)
, (10)

where the angular-spectrum distribution A(ky) is sharpen distribution around ky0, which can
be simply assumed to be Gaussian function A(ky) = wy exp[−(w2

y/2)(ky − ky0)2 with wy =
w sec φ0, and the half width of the incident beam at waist w. Accordingly, the transmitted
beam can also expressed as

Ψt(x, y) =
∫ ∞

∞
dkyt(ky)A(ky)ei(kxx+kyy)

(
1

seiφ

)
, (11)
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For the well-collimated beam, that is, δφ = λ f /(πw) � 1, the lateral shifts can be defined,
according to the stationary phase method (Beenakker et al., 2009; Zhao et al., 2010), as

st = − ∂ϕ

∂ky0
, (12)

where the subscript 0 denotes the values taken at ky = ky0 corresponding to the central
incidence angle φ = φ0. It is noted that the lateral shifts of up and down components are
both the same as st in transmission at the interface x = d, whereas on the total reflection the
shifts of up and down components are different due to the phase in the spinor wave function,
and the GH shift is thus defined as their average value in the literature (Beenakker et al., 2009).
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Fig. 4. (Color online) Dependence of the lateral shifts in the propagating case on the barrier’s
width d, where φ0 = 20◦, V0 = 120 meV, d is re-scaled to qx0d, E = 80 meV (solid line), and
E = 200 meV (dashed line).

Figure 4 shows the most impressive behavior that in the propagating case the lateral shift can
be negative for Klein tunneling, E < V0, and also be enhanced by the transmission resonances,
whereas for classical motion, E > V0, the shift is always large and positive. On the contrary,
when the incidence angle φ0 is larger than the critical angle φc, the lateral shifts become in
the order of Fermi wavelength due to the evanescent wave, which is similar to those in total
reflection at a single graphene interface (Beenakker et al., 2009; Zhao et al., 2010). Instead of the
enhancement by the transmission resonances shown in Fig. 4, Fig. 5 illustrates that the lateral
shifts for Klein tunneling and classical motion saturate respectively to negative and positive
constants with increasing the barrier’s width in the evanescent case, where (a) φ0 = 40◦ and
(b) 70◦ (which are both larger than the critical angle for total reflection).
Similarly, we shall discuss the properties of the lateral shifts in two cases of Klein tunneling
and classical motion.
Case 1: Klein tunneling (ss� = −1). When the incidence angle φ0 is less then the critical angle
φc, where φ�

c = sin−1 (V0/E − 1), the lateral shifts are given by
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d tan φ0
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where k0 = (kFk�F + k2
y0)

1/2. Obviously, lateral shifts obtained above can be positive as well as
negative because of | sin(2qx0d)/(2qx0d)| ≤ 1. So for the thin barrier d → 0, that is, the lateral
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Fig. 3. (Color online) Conductance G/G0 and Fano factor F as the function of incident energy,
where d = 80 nm (blue solid line), d = 50 nm (green dashed line), d = 30 nm (red dotted
line), and other parameters are the same as in Fig. 2.
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would like to discuss the negative and positive GH shifts for Dirac fermions in transmission
through a 2D monolayer graphene barrier, based on the tunable transmission gap.
To calculate the lateral shifts, we consider the incidence beam as

Ψin(x, y) =
∫ ∞

∞
dky A(ky)ei(kxx+kyy)

(
1

seiφ

)
, (10)

where the angular-spectrum distribution A(ky) is sharpen distribution around ky0, which can
be simply assumed to be Gaussian function A(ky) = wy exp[−(w2

y/2)(ky − ky0)2 with wy =
w sec φ0, and the half width of the incident beam at waist w. Accordingly, the transmitted
beam can also expressed as
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For the well-collimated beam, that is, δφ = λ f /(πw) � 1, the lateral shifts can be defined,
according to the stationary phase method (Beenakker et al., 2009; Zhao et al., 2010), as

st = − ∂ϕ

∂ky0
, (12)

where the subscript 0 denotes the values taken at ky = ky0 corresponding to the central
incidence angle φ = φ0. It is noted that the lateral shifts of up and down components are
both the same as st in transmission at the interface x = d, whereas on the total reflection the
shifts of up and down components are different due to the phase in the spinor wave function,
and the GH shift is thus defined as their average value in the literature (Beenakker et al., 2009).
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width d, where φ0 = 20◦, V0 = 120 meV, d is re-scaled to qx0d, E = 80 meV (solid line), and
E = 200 meV (dashed line).

Figure 4 shows the most impressive behavior that in the propagating case the lateral shift can
be negative for Klein tunneling, E < V0, and also be enhanced by the transmission resonances,
whereas for classical motion, E > V0, the shift is always large and positive. On the contrary,
when the incidence angle φ0 is larger than the critical angle φc, the lateral shifts become in
the order of Fermi wavelength due to the evanescent wave, which is similar to those in total
reflection at a single graphene interface (Beenakker et al., 2009; Zhao et al., 2010). Instead of the
enhancement by the transmission resonances shown in Fig. 4, Fig. 5 illustrates that the lateral
shifts for Klein tunneling and classical motion saturate respectively to negative and positive
constants with increasing the barrier’s width in the evanescent case, where (a) φ0 = 40◦ and
(b) 70◦ (which are both larger than the critical angle for total reflection).
Similarly, we shall discuss the properties of the lateral shifts in two cases of Klein tunneling
and classical motion.
Case 1: Klein tunneling (ss� = −1). When the incidence angle φ0 is less then the critical angle
φc, where φ�
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shifts can be positive, while the lateral shifts become negative for an enough thick barrier. It is
also interesting that the negative lateral shifts can be enhanced by the transmission resonances.
The exotic behaviors of negative and positive shifts are analogous to those of the transmitted
light beam though a left-handed metamaterial slab (Chen et al., 2009 , b).
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Fig. 5. (Color online) Dependence of the lateral shifts in the evanescent case on the barrier’s
width d, where (a) φ0 = 40◦ and (b) φ0 = 70◦, d is re-scaled to κ0d, E = 80 meV (solid line),
and E = 200 meV (dashed line).

On the contrary, when φ0 > φ�
c, the lateral shifts become
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In the limit of opaque barrier, κ0d → ∞, the lateral shifts tend to the constants as follows,

st =
tan φ0

κ0

2k2
x0κ2

0 − k2
0(k2

x0 − κ2
0)

k2
x0κ2

0 − k4
0

, (15)

which are proportional to 1/κ0, and imply that the shifts in the evanescent case are in the
same order of electron wavelength as GH shifts in a single graphene interface (Beenakker
et al., 2009; Zhao et al., 2010). More interestingly, the saturated lateral shifts are negative
when the incidence angle satisfies φ�

c < φ0 < φ∗, where the critical angle is defined by
φ∗ = arcsin

√
sin φ�

c. But the shifts in this case will become positive when φ0 > φ∗. The sign
change of the lateral shifts described by Fig. 5 (b) appears at the incidence angle φ0 = φ∗,
which is similar to the result of the quantum GH effect in graphene, taking the pseudospin
degree into account (Beenakker et al., 2009).
Case 2: classical motion (ss� = 1). When the incidence angle is less than the critical angle for
total reflection, φ0 < φ��

c , the lateral shifts can be written as

st =
d tan φ0

f 2
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k�20
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x0
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k�20
q2
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)]
sin(2qx0d)

2qx0d
+

k�20
q2

x0

}
, (16)

where k�0 = (kFk�F − k2
y0)

1/2. Similarly, the lateral shifts for classical motion also depend
periodically on the barrier’s width, and can be enhanced by the transmission resonances.
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However, these lateral shifts in classical motion are always positive. When φ0 > φ��
c , the shifts

in the evanescent case will become

st =
d tan φ0
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}
. (17)

Then the lateral shifts in the limit, κ0d → ∞, are given by

st =
tan φ0

κ0

2k2
x0κ2

0 + k�20 (k2
x0 − κ2

0)
k2

x0κ2
0 − k�40

, (18)

which are always positive constants.
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Fig. 6. (Color online) The lateral shifts as the function of incident energy E, where d = 80 nm,
and V0 = 120 meV, φ0 = 25◦ (red solid line), φ0 = 20◦ (blue dotted line), and 15◦ (orange
dot-dashed line).

Based on the properties in two cases of Klein tunneling and classical motion, the lateral shifts
as the function of incidence energy E are shown in Fig. 6. It is shown that the lateral shifts are
closely related to the transmission gap ΔE = 2h̄kyvF , as descried in last subsection. Figure 6
indicates that the lateral shifts change the sign near the DP E = V0, and can also be enhanced
by the transmission resonances near the boundaries of energy gap. Actually, the sign change
of the shifts does result from the fact that the DP E = V0 means the transition between Klein
tunneling (E < V0) and classical motion (E > V0), which correspond to the negative and
positive group velocities, respectively.
Obviously, the lateral shifts considered here are quite different from the GH shifts in total
reflection. The lateral shifts can be enhanced by the transmission resonances, thus can be easily
modulated by various parameters such as potential heights and incidence angles. Actually, the
periodical dependence of negative and positive lateral shifts on the gap provides an efficient
way to modulate the spatial position in a fixed graphene barrier, which is useful for the
manipulation of electron beam propagation in graphene (Wang and Liu, 2010).

3. Electronic Band gaps and transport properties inside graphene superlattices

Most recently, there have been a number of interesting theoretical investigations on the
graphene supperlatices with periodic potential structures, which can be generated by different
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shifts can be positive, while the lateral shifts become negative for an enough thick barrier. It is
also interesting that the negative lateral shifts can be enhanced by the transmission resonances.
The exotic behaviors of negative and positive shifts are analogous to those of the transmitted
light beam though a left-handed metamaterial slab (Chen et al., 2009 , b).
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width d, where (a) φ0 = 40◦ and (b) φ0 = 70◦, d is re-scaled to κ0d, E = 80 meV (solid line),
and E = 200 meV (dashed line).
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which are proportional to 1/κ0, and imply that the shifts in the evanescent case are in the
same order of electron wavelength as GH shifts in a single graphene interface (Beenakker
et al., 2009; Zhao et al., 2010). More interestingly, the saturated lateral shifts are negative
when the incidence angle satisfies φ�

c < φ0 < φ∗, where the critical angle is defined by
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c. But the shifts in this case will become positive when φ0 > φ∗. The sign
change of the lateral shifts described by Fig. 5 (b) appears at the incidence angle φ0 = φ∗,
which is similar to the result of the quantum GH effect in graphene, taking the pseudospin
degree into account (Beenakker et al., 2009).
Case 2: classical motion (ss� = 1). When the incidence angle is less than the critical angle for
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1/2. Similarly, the lateral shifts for classical motion also depend
periodically on the barrier’s width, and can be enhanced by the transmission resonances.

440 Physics and Applications of Graphene - Theory
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Fig. 6. (Color online) The lateral shifts as the function of incident energy E, where d = 80 nm,
and V0 = 120 meV, φ0 = 25◦ (red solid line), φ0 = 20◦ (blue dotted line), and 15◦ (orange
dot-dashed line).

Based on the properties in two cases of Klein tunneling and classical motion, the lateral shifts
as the function of incidence energy E are shown in Fig. 6. It is shown that the lateral shifts are
closely related to the transmission gap ΔE = 2h̄kyvF , as descried in last subsection. Figure 6
indicates that the lateral shifts change the sign near the DP E = V0, and can also be enhanced
by the transmission resonances near the boundaries of energy gap. Actually, the sign change
of the shifts does result from the fact that the DP E = V0 means the transition between Klein
tunneling (E < V0) and classical motion (E > V0), which correspond to the negative and
positive group velocities, respectively.
Obviously, the lateral shifts considered here are quite different from the GH shifts in total
reflection. The lateral shifts can be enhanced by the transmission resonances, thus can be easily
modulated by various parameters such as potential heights and incidence angles. Actually, the
periodical dependence of negative and positive lateral shifts on the gap provides an efficient
way to modulate the spatial position in a fixed graphene barrier, which is useful for the
manipulation of electron beam propagation in graphene (Wang and Liu, 2010).

3. Electronic Band gaps and transport properties inside graphene superlattices

Most recently, there have been a number of interesting theoretical investigations on the
graphene supperlatices with periodic potential structures, which can be generated by different
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methods. As a matter of fact, it is well known that the superlattice are very successful in
controlling the electronic structures of many convectional semiconductor material [For review,
see Ref. (Tsu, 2005)]. The peculiar properties of localized superlattice states including such
as the effect of the Bragg confinement of electron in coupled superlattice and the formation
of above-barrier quasi-bound states at the junction of superlattices are of significance for
both the fundamental research and various devices (Steslicka et al., 2002). In this section,
we will present the result on a new DP which is exactly located at the energy corresponds
to the zero-averaged wavenumber inside the one-dimensional (1D) periodic potentials. It
is emphasized here that the gap for the zero-averaged wavenumber is quite different from
the Bragg gap, which is analogous to the case of the 1DPCs containing left-handed and
right-handed materials (Bliokh et al., 2009; Wang & Zhu, 2010 , b).

3.1 Transfer Matrix method for mono-layer graphene superlattices
First of all, we will develop the transfer matrix method for such system in this subsection.
The Hamiltonian of a low-energy electron moving inside a mono-layer graphene in the
presence of the electrostatic potential V(x), which only depends on the coordinate x, is given
by

Ĥ = vFσ · p̂ + V(x) Î, (19)

where p̂ = (px , py) = (−ih̄ ∂
∂x ,−ih̄ ∂

∂y ) is the momentum operator with two components,

Î is a 2 × 2 unit matrix. This Hamiltonian acts on a state expressed by a two-component
pseudospinor Ψ = (ψ̃A, ψ̃B)T, where ψ̃A and ψ̃B are the smooth enveloping functions for
two triangular sublattices in graphene. Due to the translation invariance in the y direction,
the wave functions ψ̃A,B(x, y) can be written as ψ̃A,B(x, y) = ψA,B(x)eikyy. Therefore, from Eq.
(19), we obtain

dψA

dx
− kyψA = ikψB, (20)

dψB

dx
+ kyψB = ikψA, (21)

where k = [E − V(x)]/h̄vF is the wavevector inside the potential V(x). Obviously, when E <
V(x), the wavevector inside the barrier is opposite to the direction of the electron’s velocity,
which is relevant to the negative refraction in the graphene (Cheianov et al., 2007).
In what follows, we assume that the potential V(x) is comprised of periodic potentials of
square barriers as shown in Fig. 7. Inside the j th potential, Vj(x) is a constant, therefore, from
Eqs. (20) and (21), we can obtain

d2ψA

dx2 + (k2
j − k2

y)ψA = 0, (22)

d2ψB

dx2 + (k2
j − k2

y)ψB = 0. (23)

Here the subscript "j" denotes the quantities in the j th potential. The solutions of Eqs. (22)
and (23) are the following forms: ψA(x) = aeiqjx + be−iqjx and ψB(x) = ceiqjx + de−iqjx, where

qj =sign(kj)
√

k2
j − k2

y is the x component of the wavevector inside the j th potential Vj for

k2
j > k2

y, otherwise qj = i
√

k2
y − k2

j ; and a (c) and b (d) are the amplitudes of the forward and

backward propagating spinor components. Following the calculations in the literature (Wang
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Fig. 7. (Color online) (a) Schematic representation of the finite periodic potentials of square
barriers in x − y plane. Grey regions denote the electrodes to apply the periodic potentials on
the graphene, where θ0 (θe) denotes the incidence (exit) angles of the carriers passing through
the graphene superlattice. In the inset, θA (θB) denotes the angles of the carriers in the
barriers A and B for the cases with VB < E < VA. (b) The whole profiles of the periodic
potentials applied on the monolayer graphene.

& Zhu, 2010 , b), we obtain the relation between (ψA(xj−1)
ψB(xj−1)

) and (ψA(xj−1+Δx)
ψB(xj−1+Δx)) can be finally

written as: �
ψA(xj−1 + Δx)
ψB(xj−1 + Δx)

�
= Mj(Δx, E, ky)

�
ψA(xj−1)
ψB(xj−1)

�
, (24)

where the matrix Mj is given by

Mj(Δx, E, ky) =

⎛
⎝

cos(qjΔx−θj)
cos θj

i
sin(qjΔx)

cos θj

i sin(qjΔx)
cos θj

cos(qjΔx+θj)
cos θj

⎞
⎠ . (25)

It is easily to verify the equality: det[Mj] = 1. Here we would like to point out that in the case
of E = Vj, the transfer materix (25) should be recalculated with the similar method and it is
given by

Mj(Δx, E, ky) =
�

exp(kyΔx) 0
0 exp(−kyΔx)

�
. (26)

With help of the above equations (25) and (26), we manage to build up the boundary condition
in order to obtain the transmission and reflection coefficients. As shown in Fig. 7, we assume
that the Dirac fermions of E is incident from the region x ≤ 0 at any incidence angle θ0. In this
region, the wave function is the superposition of the incident and reflected waves, so we have
the following equation: �

ψA(xe)
ψB(xe)

�
= X

�
ψA(0)
ψB(0)

�
, (27)

with

X=
�

x11 x12
x21 x22

�
=

N

∑
j=1

Mj(wj, E, ky). (28)
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as the effect of the Bragg confinement of electron in coupled superlattice and the formation
of above-barrier quasi-bound states at the junction of superlattices are of significance for
both the fundamental research and various devices (Steslicka et al., 2002). In this section,
we will present the result on a new DP which is exactly located at the energy corresponds
to the zero-averaged wavenumber inside the one-dimensional (1D) periodic potentials. It
is emphasized here that the gap for the zero-averaged wavenumber is quite different from
the Bragg gap, which is analogous to the case of the 1DPCs containing left-handed and
right-handed materials (Bliokh et al., 2009; Wang & Zhu, 2010 , b).

3.1 Transfer Matrix method for mono-layer graphene superlattices
First of all, we will develop the transfer matrix method for such system in this subsection.
The Hamiltonian of a low-energy electron moving inside a mono-layer graphene in the
presence of the electrostatic potential V(x), which only depends on the coordinate x, is given
by
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Î is a 2 × 2 unit matrix. This Hamiltonian acts on a state expressed by a two-component
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backward propagating spinor components. Following the calculations in the literature (Wang
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Fig. 7. (Color online) (a) Schematic representation of the finite periodic potentials of square
barriers in x − y plane. Grey regions denote the electrodes to apply the periodic potentials on
the graphene, where θ0 (θe) denotes the incidence (exit) angles of the carriers passing through
the graphene superlattice. In the inset, θA (θB) denotes the angles of the carriers in the
barriers A and B for the cases with VB < E < VA. (b) The whole profiles of the periodic
potentials applied on the monolayer graphene.

& Zhu, 2010 , b), we obtain the relation between (ψA(xj−1)
ψB(xj−1)

) and (ψA(xj−1+Δx)
ψB(xj−1+Δx)) can be finally

written as: �
ψA(xj−1 + Δx)
ψB(xj−1 + Δx)

�
= Mj(Δx, E, ky)

�
ψA(xj−1)
ψB(xj−1)

�
, (24)

where the matrix Mj is given by

Mj(Δx, E, ky) =

⎛
⎝

cos(qjΔx−θj)
cos θj

i
sin(qjΔx)

cos θj

i sin(qjΔx)
cos θj

cos(qjΔx+θj)
cos θj

⎞
⎠ . (25)

It is easily to verify the equality: det[Mj] = 1. Here we would like to point out that in the case
of E = Vj, the transfer materix (25) should be recalculated with the similar method and it is
given by

Mj(Δx, E, ky) =
�

exp(kyΔx) 0
0 exp(−kyΔx)

�
. (26)

With help of the above equations (25) and (26), we manage to build up the boundary condition
in order to obtain the transmission and reflection coefficients. As shown in Fig. 7, we assume
that the Dirac fermions of E is incident from the region x ≤ 0 at any incidence angle θ0. In this
region, the wave function is the superposition of the incident and reflected waves, so we have
the following equation: �

ψA(xe)
ψB(xe)

�
= X

�
ψA(0)
ψB(0)

�
, (27)

with

X=
�

x11 x12
x21 x22

�
=

N

∑
j=1

Mj(wj, E, ky). (28)
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After some algebraic calculations, we find the reflection and transmission coefficients given
by (Wang et al., 2010; Wang & Chen, 2010)

r(E, ky) =
(x22eiθ0 − x11eiθe)− x12ei(θe+θ0) + x21

(x22e−iθ0 + x11eiθe) − x12ei(θe−θ0) − x21
, (29)

t(E, ky) =
2 cos θ0

(x22e−iθ0 + x11eiθe) − x12ei(θe−θ0) − x21
, (30)

where we have used the property of det[X] = 1. In the following subsection, we will discuss
the properties of the electronic band structure and transmission for the graphene-based
periodic potentials of square barriers.

3.2 New Dirac point and zero-averaged wavenumber gap
In this section, we would like to discuss some unique properties of the band structures in the
graphene-based periodic-potential systems by using the above transfer matrix method.

3.2.1 Infinite periodic structure
Firstly, let us investigate the electron’s bandgap for an infinite periodic structure (AB)N , where
the periodic number N tends to infinity. The magnitude and width of the potential A (B) are
with the electrostatic potential VA(B) and width wA(B), as shown in Fig. 7. According to the
Bloch’s theorem, the electronic dispersion at any incident angle follows the relation

2 cos[βxΛ] = 2 cos[qAwA + qBwB] +
[2 cos(θA − θB) − 2]

cos θA cos θB
sin(qAwA) sin(qBwB). (31)

Here Λ = wA + wB is the length of the unit cell. When the incident energy of the electron
satisfies VB < E < VA, we have θA < 0, qA < 0, θB > 0, and qB > 0 for the propagating
modes. The angles for θA and θB are schematically shown in the inset of Fig. 7 (a). Then if
qAwA = −qBwB, the above equation (31) becomes

cos[βxΛ] = 1 +
[1 − cos(2θA)]

cos2 θA
| sin(qAwA)|2. (32)

This equation indicates that, when qAwA = −qBwB �= mπ and θA �= 0, there is no real
solution for βx , i.e., existing a bandgap; Additionally, this bandgap will be close at normal
incident case (θA = 0) from Eq. (32). Therefore, the location of the touching point of the bands
is exactly given by qAwA = −qBwB at θA = 0, i. e., kAwA = −kBwB, or (VA − E)wA =
(E − VB)wB, which is consistent with the condition qAwA = ±ΩB at θA = 0 for the location
of the touch point of the band in the limiting case of a periodic δ-barrier structures, called as
the Kronig-Penney model (Barbier et al., 2009) or the Dirac comb (Arovas et al., 2010) with
wB → 0 with VBwB → ±h̄vFΩB finite (ΩB is a dimensionless positive quantity). Therefore the
above condition for the periodic δ-barrier structures with wB → 0 and VBwB → ±h̄vFΩB is
simplified into kAwA = ±ΩB.
Figure 8 shows clearly that a band gap opens exactly at energy E = 25meV under the inclined
incident angles (i.e., ky �= 0), where the condition qAwA = −qBwB �= mπ is satisfied. At the
case of normal incidence (θA = θB = 0), the upper and lower bands linearly touch together
and form a new double-cone DP. The location of the new DP is governed by the condition,
kAwA = −kBwB, or (VA − E)wA = (E − VB)wB. For the graphene-based periodic-barrier
structure with VA �= 0 and VB = 0, the distribution of the periodic potentials as an example is
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Fig. 8. (Color online) Electronic band structures for (a) wA = wB = 20nm, (b) wA = wB = 30
nm and (c) wA = wB = 40 nm, with VA = 50 meV and VB = 0. The dashed lines denote the
"light cones" of the incident electrons, and the dot line denotes the location of the new DP.

Fig. 9. (Color online) Electronic band structures for (a) wA/wB = 1, (b) wA/wB = 3/2, and (c)
wA/wB = 2, with VA = 50 meV, VB = 0 and wB = 20 nm in all cases. The dashed lines
denote the locations of the new DP.

shown in Fig. 7 (b), and in this case the new DP is exactly located at E = VA/(1 + wB/wA). It
turns out that the location of the new DP has nothing to do with the lattice constants; and the
position of the opened gap associated with the new DP is not only independent of the lattice
constants but also is weakly dependent on the incident angles. Figure 9 further illustrates that
the locations of both the new DP and the opened gap are determined by the ratio of wA/wB
for the cases with the fixed heights VA of the potentials. From the above discussions, we find
that the volume-averaged wavenumber at the energy of the new DP is zero, therefore such
an opened gap associated with the new DP may be called as the zero-averaged wavenumber
gap, which is very similar to that in the 1DPCs containing the left-handed metamaterials (Li
et al., 2003), where the so-called zero (volume) averaged index gap is independent of the
lattice constant but only dependent on the ratio of the thicknesses of the right- and left-handed
materials. For a special case of the graphene-based periodic-potential structures with VA =
−VB and wA = wB, the usual DP is located at the energy E = 0 with ky = 0. This result is
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above condition for the periodic δ-barrier structures with wB → 0 and VBwB → ±h̄vFΩB is
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incident angles (i.e., ky �= 0), where the condition qAwA = −qBwB �= mπ is satisfied. At the
case of normal incidence (θA = θB = 0), the upper and lower bands linearly touch together
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Fig. 8. (Color online) Electronic band structures for (a) wA = wB = 20nm, (b) wA = wB = 30
nm and (c) wA = wB = 40 nm, with VA = 50 meV and VB = 0. The dashed lines denote the
"light cones" of the incident electrons, and the dot line denotes the location of the new DP.

Fig. 9. (Color online) Electronic band structures for (a) wA/wB = 1, (b) wA/wB = 3/2, and (c)
wA/wB = 2, with VA = 50 meV, VB = 0 and wB = 20 nm in all cases. The dashed lines
denote the locations of the new DP.

shown in Fig. 7 (b), and in this case the new DP is exactly located at E = VA/(1 + wB/wA). It
turns out that the location of the new DP has nothing to do with the lattice constants; and the
position of the opened gap associated with the new DP is not only independent of the lattice
constants but also is weakly dependent on the incident angles. Figure 9 further illustrates that
the locations of both the new DP and the opened gap are determined by the ratio of wA/wB
for the cases with the fixed heights VA of the potentials. From the above discussions, we find
that the volume-averaged wavenumber at the energy of the new DP is zero, therefore such
an opened gap associated with the new DP may be called as the zero-averaged wavenumber
gap, which is very similar to that in the 1DPCs containing the left-handed metamaterials (Li
et al., 2003), where the so-called zero (volume) averaged index gap is independent of the
lattice constant but only dependent on the ratio of the thicknesses of the right- and left-handed
materials. For a special case of the graphene-based periodic-potential structures with VA =
−VB and wA = wB, the usual DP is located at the energy E = 0 with ky = 0. This result is
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the same as the discussion in Ref. (Barbier et al., 2010), and it is also similar to that for the
cos-type modulated electric-potential structure in Refs. (Brey & Fertig, 2009; Ho et al., 2009).
As a matter of fact, the properties of these novel zero-averaged wavenumber states are similar
to those of the zero-energy states in the previous work (Brey & Fertig, 2009), and semimetallic
properties are induced due to the effect of the modulated electric potential (Ho et al., 2009).

3.2.2 Finite periodic-barrier systems
Next, we turn to the study on the transmission, conductance and Fano factor in the finite
periodic-barrier system. To illustrate the robust transmission gap, we plot the transmission as
a function of incident energy in Fig. 9 for the finite structures, for example, (AB)25, where (a)
different lattice constants with a fixed ratio wA/wB = 1 and an incident angle θ0 = 10◦ and
(b) different incident angles with the fixed lattice parameters wA = wB = 30nm. Compared
to the novel zero-averaged wavenumber gap, the other bandgap structures, that is, Bragg
gap, are not only dependent on the lattice constants but also strongly dependent on different
angles. Further calculations can demonstrate that the higher opened gap is destroyed by
strong disorder, but the zero-averaged wavenumber gap survives. The robustness of the
zero-averaged wavenumber gap comes from the fact that the zero-averaged wavenumber
solution remains invariant under disorder. It should be emphasized again that the position
of the zero-averaged wavenumber gap near the new DP is insensitive to both the incidence
angles and the disorder. Moreover, we can also consider the effect of a defect barrier on
the property of the electron’s transport inside the zero-averaged wavenumber gap. One can
compare the two cases of the defect modes respectively occurring inside the zero-averaged
wavenumber gap and the higher bandgaps. As discussed in Ref. (Wang & Zhu, 2010 , b),
the location of the defect mode inside the zero-averaged wavenumber gap is very weakly
dependent on the incident angle but the defect mode in the higher bandgap is strongly
sensitive to the incident angle.
Accordingly, the zero-averaged wavenumber gap has great effect on the electronic properties
of graphene. Figure 10 shows the electronic conductance and its Fano factor as a function of
energy inside the finite graphene-based superlattices. It is clearly seen that the conductance
becomes minimal at the new DP of E = 25meV, and the corresponding Fano factor has a value
of 1/3. Near this new DP the conductance is almost decreasing linearly for the energy below
the DP and increasing for the energy above the DP. More interestingly, the Fano factor may
become larger than 1/3 for the higher gap (Bragg gap) due to the fact that the higher band gap
is highly shifted to the higher energy at the non-zero incidence angles. All the results can be
applicable to the gapped graphene superlattice, as we discussed in Ref. (Wang & Chen, 2010).
From all above discussions, we can draw the conclusion that the physical meaning of
the zero-averaged wavenumber gap in the graphene superlattice is very similar to the
transmission gap in the monolayer graphene, as mentioned in last section. The transmission
properties do result from the Klein tunneling in graphene, which is analogous to the negative
refraction in the left-handed metamaterials. These phenomena can be applied to predict novel
effect in electron wave optics, thus design various electron waves devices. Following the
optical analogy in 1DPCs containing left-handed metamaterials (Wang & Zhu, 2010 , a),
the one thing that we can do is to investigate the negative and positive GH shifts in the
graphene superlattice with the zero-averaged wavenumber gap, where the condition for the
extra Dirac points in the graphene-based superlattices is the same as that for the band-crossing
effect in 1DPCs consisted of left-handed material and right-handed material. More interesting
optical analogies or simulations of the phenomena in graphene will be discussed in the next
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Fig. 10. (Color online) Transmission probabilities of the finite periodic-potential structure
(AB)25 under (a) different lattice constants with a fixed ratio wA/wB = 1 and θ0 = 10◦ and
(b) different incidence angles with the fixed lattice parameters wA = wB = 30 nm.

Fig. 11. (Color online) The dependence of the electronic conductance and Fano factor on the
energy in the graphene superlattices with the periodic-barrier structures (AB)25, where the
parameters are wA = wB = 20 nm, VA = 50 meV and VB = 0 meV.

section, according to the link between Klein tunneling in graphene and negative refraction in
metamaterial.

4. Optical simulations with negative-zero-positive index metamaterial

Compare to solids, optical systems offer clean and easy controlled way to test theoretical
predictions. The experimental test in electronic systems is usually hindered by the difficulty
to maintain system homogeneity. Our central study is to emphasize that the DP with the
double-cone structure for the light field and its applications can be realized in a homogenous
negative-zero-positive index (NZPI) medium, instead of the 2DPCs (Zhang, 2008).
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4.1 Dirac point with double cones in optics
It is well known that that Maxwell’s equations for light field reduce to Helmholtz equation,
which could be written as ℘Ez(x, y, ω) + k2(ω)Ez(x, y, ω) = 0, with a wavenumber k and
℘ = (∂2/∂x2 + ∂2/∂y2) in two dimensional case for an homogenous material when the
polarization of the light field is in the z direction. In general, the Helmholtz equation is written
as the Dirac equation,

[
0 −i( ∂

∂x − i ∂
∂y )

−i( ∂
∂x + i ∂

∂y ) 0

]
Ψ = k(ω)Ψ, (33)

where Ψ =
(

Ez1(x, y, ω)
Ez2(x, y, ω)

)
are the eigenfunctions of the electric fields with the same k(ω).

It is amazing that when the index of the homogenous optical medium varies from negative
to zero and then to positive with frequency (Wang et al., 2009 , a), k(ωD) = 0 and the
higher-order terms in the series of k(ω) = k(ωD) + (ω − ωD)/vD + β(ω − ωD)2 can be
neglected, where ωD > 0 is the frequency of the DP (corresponding wavelength is λD =
2πc/ωD) and group velocity v = (dω/dk)|ω=ωD . In this case, the homogenous material with
linear dispersion

k(ω) = (ω − ωD)/vD , (34)

is called as NZPI media. In this case, it is seen from the transmission spectral at point L = 40λD
that two bands touch each other forming a double-cone structure, see Fig. 12. Thus, the light
transport near the DP obeys the massless Dirac equation as follows:

[
0 −i( ∂

∂x − i ∂
∂y )

−i( ∂
∂x + i ∂

∂y ) 0

]
Ψ =

(
ω − ωD

vD

)
Ψ, (35)

In fact, these two eigenfunctions near DP correspond to the two eigenvalues, ±|ω − ωD|/vD
of k(ω), which can be respectively realized by NZPIM in the cases of ω > ωD and ω < ωD. So
the combination of these eigenfunctions for the same k(ω) will result in the same properties
of transmission and reflection as those in 1DPCs, as discussed below. For example, we take
the Drude model as the parameters for both the relative permittivity and permeability of the
NZPIM (Wang et al., 2009 , a;b): ε1(ω) = 1 − ω2

ep/(ω2 + iγeω), μ1(ω) = 1 − ω2
mp/(ω2 +

iγmω), where ω2
ep and ω2

mp are the electronic and magnetic plasma frequencies, and γe and
γm are the damping rates relating to the absorption of the material. Here we can assume
γe = γe = γ � ω2

ep, ω2
mp. It is important that when ωep = ωmp = ωD and γ = 0 (no loss),

then both ε1(ωD) and μ1(ωD) may be zero simultaneously. In this case, we find k(wD) ≈ 0
and vD � c/2, where c is the light speed in vacuum (Wang et al., 2009 , b). So far, we find out
the condition to have the Dirac dispersion for light field in the homogenous media, and also
provide the candidate material to implement it. Clearly, the difference from the DP in 2DPCs
is that the eigenfunctions of the light fields in our system are not the Bloch states in periodic
structures but the electromagnetic fields itself in the homogenous NZPIM.

4.2 Pseudodiffusive property and Zitterbewegung effect
As discussed in the above subsection, for NZPI media, we have the DP with a double-cone
structure. When frequency ω is close to ωD, owing to k2 = k2

x + k2
y → 0, kx becomes an

imaginary number for real ky, so that the field along the x direction between the interval
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Fig. 12. (Color online) (a) Schematic of a NZPIM slab. (b) Distribution of spectral
transmittance for a slab with L = 40λD . Blue area denotes the high transmission and white
area denotes the prohibition of light. The parameters of the NZPIM are
ωep = ωmp = ωD = 10 × 2π GHz and γ = 10−5 GHz.

between 0 and L have the following relation: t(L, ky) = E(L)/E(0) = exp (−|ky|L). Then the
total energy transmittance is

Ttotal(L, ky) =
∫ ∞

−∞
|t(L, ky)|2dky =

1
L

, (36)

which implies that the propagation of light field at ωD has the 1/L scaling law a main
characteristic of diffusion phenomenon, which has been studied for electron transport in
graphene (Katsnelson, 2006) and light transport in photonic crystals (Sepkhanov et al., 2007).
Consider the 1/L scaling law in a semi-infinite NZPI media, as indicated in Fig. 12 (a). Such
a structure may reduce but cannot completely eliminate the non-ideal interface effect x = 0.
As a simple proof, ε1 and μ1 are assumed to be real. The transmission coefficient at x = L
is t(ky, ω) = α exp (ikx L), where α = 2(qqm)1/2/(q + qm) is determined by the boundary
condition, qm = kx1/(μ1k0), q0 = (k2

0 − k2
y)1/2/k0 for k0 > ky and otherwise q0 = i(k2

y −
k2

0)
1/2/k0, where k0 = ω/c, kx1 is the x-component wave number in the metamaterial. Near

the DP , we have t(ky, ω) = α exp (−|ky|L). Usually, α depends on ky. For the large distance
L, this function decreases quickly with increasing ky. In this sense we assume that α does’t
depend on ky (when an ideal interface is considered). Then the total transmittance is |α|2/L,
which is different from Eq. (36) only by a value α due to the interface. Therefore the light
transport near DP, namely ω = ωD, is proportional to 1/L inside the NZPIM.
Figure 12 (b) shows the transmission spectrum at L = 40λD insider the NZPIM, as shown in
Fig. 12 (a). We see that both the upper and lower passbands touch at ωD = 2π × 10 GHz and
nearby the dispersion is linear. With increasing the distance L, the touch at ωD is an ideal point.
Note that t(ky, ω) at the DP is close to one even if the metamaterial has a small absorption.
To demonstrate the 1/L scaling law near the DP, a characteristic quantity ξ = Sr L is defined
to describe the light propagation inside the medium, where Sr ≡ S(x, y = 0)/S0 is a relative
energy flow along the x axis, and S0 ≡ S(x = 0, y = 0) depends on the coupling strength.
Instead of the semi-infinite structure, we would like to discuss the propagation of light
through a homogenous slab system which is the realistic case. Figure 13 (a) shows the change
of the characteristic quantity ξ as a function of the distance inside different slabs with different
thicknesses d. It is clearly seen that as d increases, the change of ξ inside the slab approaches
to the limit of d → ∞ (i. e., the semi-infinite structure). For the finite thickness d, the value ξ
always initially increases and then gradually decays in order to match the second boundary
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4.1 Dirac point with double cones in optics
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]
Ψ = k(ω)Ψ, (33)

where Ψ =
(

Ez1(x, y, ω)
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)
are the eigenfunctions of the electric fields with the same k(ω).
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In fact, these two eigenfunctions near DP correspond to the two eigenvalues, ±|ω − ωD|/vD
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then both ε1(ωD) and μ1(ωD) may be zero simultaneously. In this case, we find k(wD) ≈ 0
and vD � c/2, where c is the light speed in vacuum (Wang et al., 2009 , b). So far, we find out
the condition to have the Dirac dispersion for light field in the homogenous media, and also
provide the candidate material to implement it. Clearly, the difference from the DP in 2DPCs
is that the eigenfunctions of the light fields in our system are not the Bloch states in periodic
structures but the electromagnetic fields itself in the homogenous NZPIM.

4.2 Pseudodiffusive property and Zitterbewegung effect
As discussed in the above subsection, for NZPI media, we have the DP with a double-cone
structure. When frequency ω is close to ωD, owing to k2 = k2
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ωep = ωmp = ωD = 10 × 2π GHz and γ = 10−5 GHz.
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a structure may reduce but cannot completely eliminate the non-ideal interface effect x = 0.
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depend on ky (when an ideal interface is considered). Then the total transmittance is |α|2/L,
which is different from Eq. (36) only by a value α due to the interface. Therefore the light
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Fig. 12 (a). We see that both the upper and lower passbands touch at ωD = 2π × 10 GHz and
nearby the dispersion is linear. With increasing the distance L, the touch at ωD is an ideal point.
Note that t(ky, ω) at the DP is close to one even if the metamaterial has a small absorption.
To demonstrate the 1/L scaling law near the DP, a characteristic quantity ξ = Sr L is defined
to describe the light propagation inside the medium, where Sr ≡ S(x, y = 0)/S0 is a relative
energy flow along the x axis, and S0 ≡ S(x = 0, y = 0) depends on the coupling strength.
Instead of the semi-infinite structure, we would like to discuss the propagation of light
through a homogenous slab system which is the realistic case. Figure 13 (a) shows the change
of the characteristic quantity ξ as a function of the distance inside different slabs with different
thicknesses d. It is clearly seen that as d increases, the change of ξ inside the slab approaches
to the limit of d → ∞ (i. e., the semi-infinite structure). For the finite thickness d, the value ξ
always initially increases and then gradually decays in order to match the second boundary
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Fig. 13. (Color online) Change of ξ as a function of the propagating position x inside the finite
slab systems with different thicknesses, with the light frequency ω = ωD = 10 GHz. The
crossed points denote the exit positions x = d for different slabs. (b) Dependence of the
energy flows S0 on the slab thickness d. The incident beam is with 10λD and other
parameters are the same as in Fig. 12 except for γ = 10−4 GHz.

condition at x = d [the crossed point in Fig. 13(a)]. From Fig. 13 (a), it is expected that for a
sufficient thick slab, the light energy transport obeys the 1/L scaling law. Meanwhile, from
Fig. 13 (b), it is found that for the small d, the coupling strength of the light field inside the
finite slab is strong (with large S0 ). With the increasing of the slab thickness d, the value S0
gradually decreases to the limit of d → 0 (the semi-infinite structure). It indicates that the
effect of the second interface on S0 becomes weaker and weaker, therefore the light energy
transport obeys the 1/L scaling law.
We emphasize here that although the light field doesn’t obey very well the 1/L scaling
law inside the finite homogenous slab with small d, the static property of the light field is
still clear demonstrated, as shown in Fig. 14. From Fig. 14, it turns out that the evolutions
of the total electric field and the Poynting vector for a narrow Gaussian beam E(ky, 0) =
W/

√
2 exp (−W2k2

y/4) with a half-width W inside the finite slab system possess the diffusive
property. The light fields near the DP have no phase delay and diffuse inside the medium.
In addition, we have also demonstrated the Zitterbewegung effect for optical pulses during
the propagation inside the a homogenous NZPIM slab. As we know, Zitterbewgung effect
refers to the interference between the positive- and negative-states in the relativistic electron’s
wave packet. The initial finite pulse is considered to be Gaussian shape both in the transverse
spatial domain and in the longitudinal temporal domain. The dynamics of the finite optical
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Fig. 14. (Color online) Evolutions of the total electric fields for a narrowed Gaussian beam
passing through the finite slab system at ωD = 10 GHz with W = 10λD , where γ = 0.05 GHz
other parameters are the same as in Fig. 12. The arrows denote the direction and relative
magnitude of the energy flow �S.

pulse through the slab shows that before reaching the slab, the pulse propagates in the free
space, and after entering the slab, it gradually diffuses and oscillates as the propagating
distance increases. Thus, the output pulse at the exit of the slab has the oscillation with
the characteristic frequency independent of the slab thickness. The physical origin of such
oscillation comes from the interference between the upper and lower high-transmission bands
near the DP of the NZPIM slab. Actually, the finite pulse can be divided into two parts: one
(ω > ωD) belongs to the upper band and the other one (ω < ωD) belongs to the lower
band (see Fig. 12), and each part undergoes the opposite phase change due to the opposite
properties of the two bands. For instance, in the upper band the wave number k is positive so
the phase shift is positive, while in the lower band the phase shift is negative due to negative
k. Therefore the two parts interfere with each other, which leads to the oscillatory property. At
the DP, the light field obeys the diffuse equation, thus the pulse behavior also has the diffusion
property. Moreover, for the pulse with a fixed transverse spatial width W, the oscillation
frequency is proportional to the pulse spectral width near the DP, and for the pulse with a
fixed time duration, the oscillation frequency decreases with the increasing of W. From the
experimental viewpoint, it is suggested that smaller transverse spatial width and/or shorter
pulse duration of the finite pulse make the optical Zitterbewegung effect easier to be observed
experimentally.

4.3 Optical Goos-Hänchen shift in Bragg-like reflection
In this subsection, we will take an example of the optical simulations in NZPIM with DP.
Similar to the Sec. 2.2, we start to investigate the GH shifts of the light beam reflected from
the slab of NZPI medium. Firstly, we assume that the incident plane wave is Ein

z (x, y) =
exp [i(kxx + kyy)], where kx = k0 cos θ0, ky = k0 sin θ0, k0 = (ε0μ0)1/2ω/c is the wave number
in the air, ε0 and μ0 are the relative permittivity and permeability of the air, the reflected

and transmitted plane waves can be expressed by Ere f
z (x, y) = r exp [i(−kxx + kyy)] and
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energy flows S0 on the slab thickness d. The incident beam is with 10λD and other
parameters are the same as in Fig. 12 except for γ = 10−4 GHz.
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finite slab is strong (with large S0 ). With the increasing of the slab thickness d, the value S0
gradually decreases to the limit of d → 0 (the semi-infinite structure). It indicates that the
effect of the second interface on S0 becomes weaker and weaker, therefore the light energy
transport obeys the 1/L scaling law.
We emphasize here that although the light field doesn’t obey very well the 1/L scaling
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the propagation inside the a homogenous NZPIM slab. As we know, Zitterbewgung effect
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wave packet. The initial finite pulse is considered to be Gaussian shape both in the transverse
spatial domain and in the longitudinal temporal domain. The dynamics of the finite optical

450 Physics and Applications of Graphene - Theory

Fig. 14. (Color online) Evolutions of the total electric fields for a narrowed Gaussian beam
passing through the finite slab system at ωD = 10 GHz with W = 10λD , where γ = 0.05 GHz
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pulse through the slab shows that before reaching the slab, the pulse propagates in the free
space, and after entering the slab, it gradually diffuses and oscillates as the propagating
distance increases. Thus, the output pulse at the exit of the slab has the oscillation with
the characteristic frequency independent of the slab thickness. The physical origin of such
oscillation comes from the interference between the upper and lower high-transmission bands
near the DP of the NZPIM slab. Actually, the finite pulse can be divided into two parts: one
(ω > ωD) belongs to the upper band and the other one (ω < ωD) belongs to the lower
band (see Fig. 12), and each part undergoes the opposite phase change due to the opposite
properties of the two bands. For instance, in the upper band the wave number k is positive so
the phase shift is positive, while in the lower band the phase shift is negative due to negative
k. Therefore the two parts interfere with each other, which leads to the oscillatory property. At
the DP, the light field obeys the diffuse equation, thus the pulse behavior also has the diffusion
property. Moreover, for the pulse with a fixed transverse spatial width W, the oscillation
frequency is proportional to the pulse spectral width near the DP, and for the pulse with a
fixed time duration, the oscillation frequency decreases with the increasing of W. From the
experimental viewpoint, it is suggested that smaller transverse spatial width and/or shorter
pulse duration of the finite pulse make the optical Zitterbewegung effect easier to be observed
experimentally.

4.3 Optical Goos-Hänchen shift in Bragg-like reflection
In this subsection, we will take an example of the optical simulations in NZPIM with DP.
Similar to the Sec. 2.2, we start to investigate the GH shifts of the light beam reflected from
the slab of NZPI medium. Firstly, we assume that the incident plane wave is Ein

z (x, y) =
exp [i(kxx + kyy)], where kx = k0 cos θ0, ky = k0 sin θ0, k0 = (ε0μ0)1/2ω/c is the wave number
in the air, ε0 and μ0 are the relative permittivity and permeability of the air, the reflected

and transmitted plane waves can be expressed by Ere f
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Etr
z (x, y) = t exp {i[−kx(x − d) + kyy]}, where the reflection coefficient r

r =
exp(iπ/2)
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) [
sin 2k1xd + i
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)
sin2 k1xd

]
, (37)

and the transmission coefficient is t = eiφ/g with geiφ = cos k1xd + i
2

(
μ1
μ0

kx
k1x

+ μ0
μ1

k1x
kx

)
sin k1xd,

k1x =
√

k2
1 − k2

y and k1 = (ω − ωD)/vD near the DP. As mentioned above, the upper
and lower bands have different properties. Thus, we will discuss the unique properties of
reflection and transmission in two cases of ω > ωD and ω < ωD. The details can be seen in
the literature (Chen et al., 2009 , b).
Similar to the transmission in graphene barrier, the transmission as the function of frequency
ω has a gap. The only difference is that the width of transmission gap has the following form:
Δω = 2kyvD . To avoid the repetition, we concentrate on the reflection case here. The reflection
behaves Bragg-like reflection. Figure 15 indicates the dependence of corresponding reflection
probability R on the wavelength λ = 2πω/c, where θ0 = 20◦ and ωD = 10 × 2π GHz.
Solid and dashed line correspond to a = 100 mm and a = 10 mm. It is interesting that
the light beam can be perfectly reflected by such single NZPIM slab at certain range of the
wavelength. As indicated in Fig. 15, the wavelength window for perfect reflection will become
narrower with the increase of the width of slab. These frequency or wavelength passing-bands
in reflection discussed here are similar to but different from the Bragg reflection in the 1D PCs.
This so-called Bragg-like reflection discussed here is exactly due to the linear Dirac dispersion,
which results in the evanescent waves in two cases of ω > ωD and ω < ωD, corresponding
to the two eigenfunctions of electric fields with the same k(ω).
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Fig. 15. (Color online) The reflection probability R as the function of the wavelength λ, where
θ0 = 20◦, ωD = 10 × 2π GHz, d = 100 mm (red solid line), and d = 10 mm (blue dashed line).

Next, we have a look at the optical GH shifts inside the optical NZPIM slab. It is noted that
the GH shift in transmission is the equal to that in reflection inside such symmetric slab
configuration, because the values of the derivation of the phase shifts with respect to ky are
the same. Here we just only consider the GH shift in reflection.
Figure 16 demonstrates that the GH shifts can be positive and negative. Due to the properties
of DP, it is reasonable that the GH shifts are negative in the case of ω < ωD, while they are
positive in the case of ω > ωD is positive. More interestingly, the GH shifts near the DP can
change from positive to negative with the increase (decrease) of the wavelength (frequency). In
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addition, it is also shown that the GH shifts near the DP have only the order of wavelength due
to the evanescent waves. The smallness of the GH shifts are similar to those in total reflection
or frustrate-total-internal-reflection structure (Chen et al., 2009 , a).
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Fig. 16. (Color online) The GH shifts as the function of the wavelength, ω, where d = 100
mm, and other parameters are the same as in Fig. 15. Solid, dashed and dotted curves
correspond to θ0 = 30◦ , θ0 = 20◦ , and θ0 = 10◦ .

However, these GH shifts don’t change sign with increasing the angle of incidence. This is
similar to the quantum GH effect in graphene on the total reflection (Zhao et al., 2010), but
it is quite different from the result given in the literature (Beenakker et al., 2009), where the
sublattice (or “pseudospin") degree of freedom is considered. Anyway, we have managed to
simulate the quantum GH in graphene barrier by the optical metamaterial with the DP.

4.4 Further work on optical Dirac point in metamaterials
Finally, we would like to point out other interesting work on the optical DP in metamaterials.
Motivated by the realization of the optical Dirac dispersion in the homogenous NZPIM, we
make a theoretical investigation on the properties of thermal emission in layered structures
containing the NZPI medium (Wang et al., 2010). When the thermal emission frequency is
close to the DP, the spectral hemisperical power of thermal emission in such a structure is
strongly suppressed and the emission can become a high directional source with large spatial
coherence.
In addition, the guided modes and nonlinear surface waves near the DP have been also
studied, respectively (Shen et al., 2010 , a;b). In the simple model of optical waveguide, our
theoretical results show that due to the linear Dirac dispersion, the fundamental mode is
absent when the angular frequency is smaller than the DP, while the behaviors of NZPIM
waveguide are similar to the conventional dielectric waveguide when the angular frequency
is larger than the DP. The unique properties of the guided modes are analogous to the
propagation of electron waves in graphene waveguide (Zhang et al., 2009), corresponding
to the classical motion and the Klein tunneling. It is amazing that electron guiding as the
analogue of an optical fiber has been experimentally demonstrated in graphene by tuning the
carrier type and density using local electrostatic fields (Williams et al., 2010). This timely work
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Next, we have a look at the optical GH shifts inside the optical NZPIM slab. It is noted that
the GH shift in transmission is the equal to that in reflection inside such symmetric slab
configuration, because the values of the derivation of the phase shifts with respect to ky are
the same. Here we just only consider the GH shift in reflection.
Figure 16 demonstrates that the GH shifts can be positive and negative. Due to the properties
of DP, it is reasonable that the GH shifts are negative in the case of ω < ωD, while they are
positive in the case of ω > ωD is positive. More interestingly, the GH shifts near the DP can
change from positive to negative with the increase (decrease) of the wavelength (frequency). In
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addition, it is also shown that the GH shifts near the DP have only the order of wavelength due
to the evanescent waves. The smallness of the GH shifts are similar to those in total reflection
or frustrate-total-internal-reflection structure (Chen et al., 2009 , a).
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Fig. 16. (Color online) The GH shifts as the function of the wavelength, ω, where d = 100
mm, and other parameters are the same as in Fig. 15. Solid, dashed and dotted curves
correspond to θ0 = 30◦ , θ0 = 20◦ , and θ0 = 10◦ .

However, these GH shifts don’t change sign with increasing the angle of incidence. This is
similar to the quantum GH effect in graphene on the total reflection (Zhao et al., 2010), but
it is quite different from the result given in the literature (Beenakker et al., 2009), where the
sublattice (or “pseudospin") degree of freedom is considered. Anyway, we have managed to
simulate the quantum GH in graphene barrier by the optical metamaterial with the DP.

4.4 Further work on optical Dirac point in metamaterials
Finally, we would like to point out other interesting work on the optical DP in metamaterials.
Motivated by the realization of the optical Dirac dispersion in the homogenous NZPIM, we
make a theoretical investigation on the properties of thermal emission in layered structures
containing the NZPI medium (Wang et al., 2010). When the thermal emission frequency is
close to the DP, the spectral hemisperical power of thermal emission in such a structure is
strongly suppressed and the emission can become a high directional source with large spatial
coherence.
In addition, the guided modes and nonlinear surface waves near the DP have been also
studied, respectively (Shen et al., 2010 , a;b). In the simple model of optical waveguide, our
theoretical results show that due to the linear Dirac dispersion, the fundamental mode is
absent when the angular frequency is smaller than the DP, while the behaviors of NZPIM
waveguide are similar to the conventional dielectric waveguide when the angular frequency
is larger than the DP. The unique properties of the guided modes are analogous to the
propagation of electron waves in graphene waveguide (Zhang et al., 2009), corresponding
to the classical motion and the Klein tunneling. It is amazing that electron guiding as the
analogue of an optical fiber has been experimentally demonstrated in graphene by tuning the
carrier type and density using local electrostatic fields (Williams et al., 2010). This timely work
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will definitely simulate us to design various novel optic-like devices in graphene according to
the Dirac-like properties of graphene.

5. Conclusion

In summary, there are a lot of optic-like phenomena of electron wave in graphene, which
leads to novel Dirac electron wave devices. The field covered here is vast, and we pay special
attention to work done by the authors, while making effort to to offer a global perspective.
In this chapter, we have presented the propagation of electron waves in monolayer graphene
and optical simulations with NZPIM. The specific electronic analogies of Bragg-like reflection
(transmission gap), zero-averaged wavenumber gap, and GH effect have been respectively
discussed in single and multiple monlayer graphene barriers. The key point is that the
transmission gap has great effect on the electronic transports including electric conductance
and Fano factor. More importantly, all these results suggest that the electron wave propagation
and their optical counterparts in NZPIM not only give the deeper understanding of several
exotic phenomena in graphene, but also predict richer phenomena in different physical
systems.
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1. Introduction

In the last years the dynamics of wave packets in 2D electron gas and other systems in solids
including the phenomenon of Zitterbewegung (ZB) or trembling motion has been the subject
of numerous studies. (Shmueli et al.,1995; Schliemann et al.,2005; Schliemann et al.,2006;
Schliemann,2008; Zawadzki,2005; Ferrari & Russo,1990; Zawadzki,2006; Katsnelson,2006;
Cserti & David,2006; Winkler et al.,2007; Trauzettel et al.,2007; Rusin & Zawadzki,2007;
Rusin & Zawadzki,2007; Rusin & Zawadzki,2008) Firstly the oscillatory motion
analogous to the relativistic Zitterbewegung in two-dimensional systems with the
structural and bulk inversion asymmetry was investigated by Schliemann et
al.(Schliemann et al.,2005; Schliemann et al.,2006) In the recent work by authors the detailed
studying of the electron wave packet dynamics in the semiconductor quantum well under
the influence of the Rashba spin-orbit coupling was performed. (Demikhovskii et al.,2008)
It was shown (analytically and numerically) that the initial wave packet splits into two
parts with different spin polarizations propagating with unequal group velocities. It was
demonstrated also that the splitting and overlapping of wave packets leads to the damping
of Zitterbewegung.
As well known, the electron Zitterbewegung in relativistic physics at first time was predicted
by Schrödinger (Schrödinger,1930) (see also (Barut & Bracken,1981)). This phenomenon is
caused by the interference between positive and negative energy states in the wave packet.
The frequency of ZB motion is determined by the gap between these two states and the
amplitude of oscillations in a particle position is of the order of the Compton wave length.
This phenomenon was discussed also in Refs.(Lock,1979; Thaller,2004; Braun et al.,1999).
The results of the first experimental observation of ZB phenomena were published recently in
the paper by Gerritsma et. al.(Gerritsma et al.,2010) For the ZB simulation the experimentalists
used a linear Paul trap where ion motion can be described by one-dimensional Dirac
equation.(Lamata et al.,2007) The authors of Ref. (Gerritsma et al.,2010) study the motion of
Ca+ ion and determined its position as a function of time for different initial conditions. As
was shown in Ref. (Lamata et al.,2007) the solution of the 3 + 1 Dirac equation can also be
simulated using a single trapped ion with four ionic internal states. In this case the ion position
and momentum are associated with respective characteristics of 3D Dirac particle.
In the papers by Rusin and Zawadzki (Rusin & Zawadzki,2007; Rusin & Zawadzki,2008) the
evolution of the wave packet in a monolayer and bilayer graphene as well as in carbon
nanotubes was analyzed. The exact analytical expressions for two components of wave
function and average value of position operator were found for bilayer graphene, which
allowed to obtain analytical results for the ZB of Gaussian wave packet. It was shown that
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The frequency of ZB motion is determined by the gap between these two states and the
amplitude of oscillations in a particle position is of the order of the Compton wave length.
This phenomenon was discussed also in Refs.(Lock,1979; Thaller,2004; Braun et al.,1999).
The results of the first experimental observation of ZB phenomena were published recently in
the paper by Gerritsma et. al.(Gerritsma et al.,2010) For the ZB simulation the experimentalists
used a linear Paul trap where ion motion can be described by one-dimensional Dirac
equation.(Lamata et al.,2007) The authors of Ref. (Gerritsma et al.,2010) study the motion of
Ca+ ion and determined its position as a function of time for different initial conditions. As
was shown in Ref. (Lamata et al.,2007) the solution of the 3 + 1 Dirac equation can also be
simulated using a single trapped ion with four ionic internal states. In this case the ion position
and momentum are associated with respective characteristics of 3D Dirac particle.
In the papers by Rusin and Zawadzki (Rusin & Zawadzki,2007; Rusin & Zawadzki,2008) the
evolution of the wave packet in a monolayer and bilayer graphene as well as in carbon
nanotubes was analyzed. The exact analytical expressions for two components of wave
function and average value of position operator were found for bilayer graphene, which
allowed to obtain analytical results for the ZB of Gaussian wave packet. It was shown that
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the transient character ZB in bilayer graphene is due to the fact that wave subpackets related
to positive and negative electron energies move in opposite directions, so their overlap
diminishes with time. At the same time the dynamics of the wave packets in a monolayer
graphene in Ref. (Rusin & Zawadzki,2007) was not investigated fully.
In this chapter we present the detailed description of wave packet evolution including
the phenomenon of ZB of the packet center in a monolayer graphene (see also Ref.
(Maksimova et al.,2008)). The analytical expressions for the components of wave function at
t > 0 are found in the form of two-dimensional integrals. Using these equations we obtain
the full electron probability density and such dynamical characteristics of the packet center as
the average components of coordinate and velocity. We investigate the influence of the initial
pseudospin polarization on the space-time evolution of the wave packet, in particular, on the
trajectory of its center. As a result, the direction of the packet motion is determined not only
by the orientation of the average momentum, but mainly by the phase difference between the
up- and low- components of the wave functions. Our analytically results are illustrated by
a graphic presentation. The obtained results can be useful for analysis of the functioning of
graphene’s electronic structures and devices.

2. Basic equations

Graphene is a single layer of carbon atom densely packed in a honeycomb lattice. The
two-dimensional Hamiltonian describing its band structure has the form (Wallace,1947;
Slonczewski & Weiss,1958; Novoselov et al.,2005; Novoselov et al.,2006; Zhang et al.,2005)

Ĥ = u�σ�̂p, (1)

where u ≈ 108 cm/s, �̂p = ( p̂x , p̂y) is the momentum operator defined with respect to the
centre of the valley centered at the corner of the Brillouin zone with wave vector �K. Pauli
matrices σi operate in the space of the electron amplitude on two sites (A and B) in the unit
cell of a hexagonal crystal. This internal degree of freedom plays a role of a pseudospin. The
Dirac-like Hamilton Ĥ determines the linear dispersion relation

Ep,s = sup. (2)

Here p =
√

p2
x + p2

y, s = 1 for the electron in the conduction band and s = −1 for the valence
band ("hole" branch of quasiparticles). The corresponding eigenfunctions are given by

ϕ�p,s(�r, t) =
1

2
√

2πh̄
exp(i

�p�r
h̄

− i
Ep,st

h̄
)
(

1
seiϕ

)
, (3)

with eiϕ = px+ipy
p .

The time-evolution of an arbitrary initial state ψ(�r, 0) in Shrödinger representation can be
found with the help of Green’s function Gμν(�r,�r�)

ψμ(�r, t) =
∫

Gμν(�r,�r�, t)ψν(�r�, 0)d�r�, (4)

where μ, ν = 1, 2 are matrix indices, corresponding to the upper and lower components of
ψ(�r, t). These components are related to the probability of finding electron at the sites of the
sublattices A and B correspondingly. The standard expression for Green’s function is
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Gμν(�r,�r�, t) = ∑
s=±1

∫
d�p ϕ�p,s;μ(�r, t)ϕ∗

�p,s;ν(�r�, 0). (5)

Using Eq.(3) for ϕ�p,s;μ(�r, t) we find

G11(�r,�r�, t) = G22(�r,�r�, t) =
1

(2πh̄)2

∫
exp(i

�p(�r −�r�)
h̄

) cos(
upt

h̄
)d�p, (6)

G21(�r,�r�, t) = G∗
12(�r,�r�, t) =

−i
(2πh̄)2

∫ px + ipy

p
exp(i

�p(�r −�r�)
h̄

) sin(
upt
h̄

)d�p, (7)

Let us represent the initial wave function by Gaussian wave packet having the width d and
nonvanishing average momentum p0y = h̄k0

ψ(�r, 0) =
f (�r)√|c1|2 + |c2|2

(
c1
c2

)
, (8a)

f (�r) =
1

d
√

π
exp(− r2

2d2 + ik0y), (8b)

where coefficients c1 and c2 determine the initial pseudospin polarization. We suppose
that the packet width d is much greater than the lattice period and consequently ψ(�r, 0) is
smooth enveloping function. We suppose also that the most of the states in valence band are
unfilled, that corresponds to negative Fermi level located far from Dirac point (see also Ref.
(Rusin & Zawadzki,2008)). Substituting Eqs.(8a, 8b) in Eq.(4) and using the expressions (6)
and (7) we obtain

ψ1(�r, t) =
1√|c1|2 + |c2|2

(c1φ1(�r, t) − c2φ2(−x, y, t)), (9)

ψ2(�r, t) =
1√|c1|2 + |c2|2

(c2φ1(�r, t) + c1φ2(�r, t)), (10)

where, for notational convenience, φ1,2(�r, t) denote the functions

φ1(�r, t) =
∫

G11(�r,�r�, t) f (�r�, 0)d�r� =
de−(k0d)2/2
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) cos(
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)d�p, (11)

φ2(�r, t) =
∫

G21(�r,�r�, t) f (�r�, 0)d�r� =
−ide−(k0d)2/2

2h̄2
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) sin(

upt
h̄

)d�p. (12)

Using the cylindrical coordinates in Eqs.(11), (12) and integrating over the angular variable,
we have
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Dirac-like Hamilton Ĥ determines the linear dispersion relation

Ep,s = sup. (2)

Here p =
√

p2
x + p2

y, s = 1 for the electron in the conduction band and s = −1 for the valence
band ("hole" branch of quasiparticles). The corresponding eigenfunctions are given by

ϕ�p,s(�r, t) =
1

2
√

2πh̄
exp(i

�p�r
h̄

− i
Ep,st

h̄
)
(

1
seiϕ

)
, (3)

with eiϕ = px+ipy
p .

The time-evolution of an arbitrary initial state ψ(�r, 0) in Shrödinger representation can be
found with the help of Green’s function Gμν(�r,�r�)

ψμ(�r, t) =
∫

Gμν(�r,�r�, t)ψν(�r�, 0)d�r�, (4)

where μ, ν = 1, 2 are matrix indices, corresponding to the upper and lower components of
ψ(�r, t). These components are related to the probability of finding electron at the sites of the
sublattices A and B correspondingly. The standard expression for Green’s function is
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Gμν(�r,�r�, t) = ∑
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Let us represent the initial wave function by Gaussian wave packet having the width d and
nonvanishing average momentum p0y = h̄k0
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where coefficients c1 and c2 determine the initial pseudospin polarization. We suppose
that the packet width d is much greater than the lattice period and consequently ψ(�r, 0) is
smooth enveloping function. We suppose also that the most of the states in valence band are
unfilled, that corresponds to negative Fermi level located far from Dirac point (see also Ref.
(Rusin & Zawadzki,2008)). Substituting Eqs.(8a, 8b) in Eq.(4) and using the expressions (6)
and (7) we obtain
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where, for notational convenience, φ1,2(�r, t) denote the functions
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Using the cylindrical coordinates in Eqs.(11), (12) and integrating over the angular variable,
we have
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2 sin(qt)J1(q
√

r2 − a2 − 2iay)qdq, (14)

where J0(z), J1(z) are Bessel functions. For the sake of convenience we introduce in Eqs.(13),
(14) and everywhere below the dimensionless variables, measuring the distance in the units
of initial width of wave packet d and time in d/u units. Besides, instead of the wave vector k0
we consider the parameter a = k0d.

3. Zitterbewegung of Gaussian wave packet with different pseudospin polarization

Now we describe the time dynamics of Gaussian wave packets, in particular, the ZB
phenomenon and the influence of the initial pseudospin polarization on the characteristics
of trembling motion.
i). Following Ref. (Rusin & Zawadzki,2007) let us firstly consider the model problem when the
lower component of initial wave function is equal to zero, i.e. the parameters c1 = 1, c2 = 0 in
Eq.(8a). That means that at the initial moment of time the electron probability is located at the
sites of the sublattice A. It is not difficult to show that this packet is formed by the states with
positive and negative energies. The relative weight of these states is equal to one. The wave
function for t > 0 can be found using Eqs.(9), (10):

ψ(�r, t) =
(

φ1(�r, t)
φ2(�r, t)

)
, (15)

where the functions φ1(�r, t), φ2(�r, t) are defined by Eqs.(13),(14).
In Fig.1 we represent the full electron density at the moment t = 7 for initial wave packet,
Eq.(8b) with width d = 2 nm and k0 = 0.6 nm−1. As one can see, at t > 0 this packet
splits in two parts moving along y axis with opposite velocities so that the electron probability
density is symmetrical with respect to y: ρ(x, y, t) = ρ(x,−y, t). Note that at the case k0 = 0
the electron probability density has a cylindrical symmetry at all time. Indeed it is easy to
see that the initial wave function is the eigenstate of total “angular momentum” operator
Îz = l̂z + h̄/2 σz (l̂z = −ih̄∂/∂α) ÎzΨ(�r, 0) = h̄/2 Ψ(�r, 0). Since Iz is a conserved quantity
the wave function Ψ(�r, t) = (Ψ1(�r, t), Ψ2(�r, t))T obeys this equation too. It follows that only
lower component depends on α: Ψ2(�r, t) ∼ eiα f2(�, t) (see Eqs.(13)-15) for k0 = 0). Thus the
probability density remains an axially symmetric at t > 0. For enough large time the width of
both parts of the packet with k0 �= 0 increases with time due to effect of dispersion. One can
check that in this situation the contributions of two components of wave functions ψ1(�r, t) and
ψ2(�r, t) in full electron density are equal. In other words the electron probability distributes
with the time on the sides of sublattice A and B. Note at the same time ρ(x, y, t) �= ρ(−x, y, t)
and the packet center oscillates along x direction (Zitterbewegung).
To analyze this motion we find the average value of position operator. To do it, we use the
momentum representation. The upper (C1(�p, t)) and lower (C2(�p, t)) components of wave
function (15) in this representation can be easily obtained from Eqs.(11), (12). After that the
usual definition
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Fig. 1. (Color on line). The electron probability density ρ(�r, t) = |ψ1|2 + |ψ2|2 for initial wave
packet determined by Eqs.(8a), (8b) with c1 = 1 and c2 = 0 for a = k0d = 1.2 at the time t = 7
(in the units of d/u).

Fig. 2. The average coordinate x̄(t) versus time (τ0 = d/u) for the wave packet with initial
pseudospin polarization along z axis for two values of a.

�̄r(t) =
2

∑
j=1

∫
d�p C∗

j (�p, t)ih̄
dCj(�p, t)

d�p
, (16)

readily yields
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Fig. 1. (Color on line). The electron probability density ρ(�r, t) = |ψ1|2 + |ψ2|2 for initial wave
packet determined by Eqs.(8a), (8b) with c1 = 1 and c2 = 0 for a = k0d = 1.2 at the time t = 7
(in the units of d/u).

Fig. 2. The average coordinate x̄(t) versus time (τ0 = d/u) for the wave packet with initial
pseudospin polarization along z axis for two values of a.
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ȳ(t) = 0, (17a)

x̄(t) =
1 − e−a2

2a
− e−a2

∞∫

0

e−q2
cos(2qt)I1(2aq)dq, (17b)

where I1(z) is a modified Bessel function of the first order. In Eq.(17b) the integral term
represents the Zitterbewegung. Note that average value x̄(t) depends on only one parameter
a (in the dimensionless variables). The obtained functions x̄(t) which describes the typical
transient Zitterbewegung are plotted in Fig.2. After the oscillation disappears the center of the
packet is displaced by amount which equals to the first term Eq.(15). In the case when the
wave packet width is large enough and the inequality a = dk0 � 1 takes place, Eq.(17b)
reduces to

x̄(t) =
1 − e−t2

cos(2at)
2a

. (18)

The details of the calculation of asymptotic formula similar to Eq. (18) are represented in Ref.
(Demikhovskii et al.,2008).
As it follows from Eqs.(17), (18) for given initial polarization of wave packet the ZB
occurs in the direction perpendicular to the initial momentum p0y = h̄k0, just as for
bilayer graphene (Rusin & Zawadzki,2007) and for the semiconductor quantum well in the
presence of the Rashba spin-orbit coupling (Schliemann et al.,2005; Schliemann et al.,2006;
Demikhovskii et al.,2008). One can see from Eq.(18) that the trembling motion has a transient
character as it was described in Refs. (Rusin & Zawadzki,2007; Demikhovskii et al.,2008) and
at t � 1 x(t) → 1/2a. We should notice that Eqs.(17b), (18) coincide with corresponding
formulas of Ref. (Demikhovskii et al.,2008). This is because the Hamiltonian for the system
with Rashba-coupling

HR =
�̂p2

2m
+ α( p̂yσ̂x − p̂x σ̂y), (19)

where α is a Rashba coupling constant, transforms into Hamiltonian for monolayer graphene,
Eq.(1), if we make the replacement in Eq.(19)

x → −y�, y → x�, α → u, m → ∞. (20)

ii). Let us consider now the case when c1 = c2 = 1, that is pseudospin is directed along x axis
at t = 0. Then from Eqs.(9), (10)

ψ(�r, t) =
1√
2

(
φ1(�r, t)− φ2(−x, y, t)

φ1(�r, t) + φ2(�r, t)

)
. (21)

Fig.3 illustrates the corespondent electron probability density at the time moment t = 7
for initial wave packet, Eq.(8b), for the same parameters as in Fig.1. One can see that the
initial wave packet at t > 0, as in previous case, splits into two parts propagating along y
in opposite directions so that the symmetry concerning this axis, i.e. ρ(x, y, t) = ρ(x,−y, t),
retain during the time (as the case i)). The distribution of the probability density along x axis
clearly demonstrates that its maximum is displaced in the positive direction that corresponds
to the motion of the packet centre along x axis. The velocity of such motion v̄x = dx̄

dt consists
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Fig. 3. (Color on line). The electron probability density ρ(�r, t) = |ψ1|2 + |ψ2|2 for initial wave
packet, Eqs.(8a), (8b) with c1 = 1 and c2 = 1 for a = k0d = 1.2 at the time t = 7 (in the units
of d/u).

of both constant as well as oscillatory parts. Really, a straightforward calculation yields the
average value of position operator x

x̄(t) =
1 − e−a2

2a2 t +
e−a2

2a

∞∫

0

e−q2
sin(2qt)

d
dq

I1(2aq)dq, (22)

and ȳ(t) = 0 like for the case i). In Fig.4 we demonstrate the dependence x̄(t) for various
values of parameter a. When the parameter a increases, the amplitude of ZB and the period of
oscillations decrease. At a � 1 we have from Eq.(22)

x̄(t) =
t

2a2 +
1
2a

e−t2
sin(2at). (23)

We see that the character of motion of wave packet is changed. Now the center of wave
packet moves along x direction with constant velocity, which is determined by the first term
in Eqs.(22), (23) and performs the damping oscillations. It is not difficult to find the constant
component �̄V0 (in the units of u) of wave packet velocity for arbitrary initial wave function
(8a) (see Appendix):

V̄0x =
2

|c1|2 + |c2|2
∫

d�p|F(�p)|2( p2
x

p2 Re(c∗1c2) +
px py

p2 Im(c∗1c2)), (24)

V̄0y =
2

|c1|2 + |c2|2
∫

d�p|F(�p)|2( px py

p2 Re(c∗1c2) +
p2

y

p2 Im(c∗1c2)). (25)

In particular for F(�p) = F(−�p) and c1 = c2 = 1 Eqs.(24),(25) give V̄x0 = 1/2, V̄y0 = 0. This
result also follows from Eq.(22) when k0 = 0 or for the narrow-width Gaussian wave packet
(a = k0d → 0). When the width of packet is increased the velocity of motion of its centre is
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Fig. 3. (Color on line). The electron probability density ρ(�r, t) = |ψ1|2 + |ψ2|2 for initial wave
packet, Eqs.(8a), (8b) with c1 = 1 and c2 = 1 for a = k0d = 1.2 at the time t = 7 (in the units
of d/u).
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values of parameter a. When the parameter a increases, the amplitude of ZB and the period of
oscillations decrease. At a � 1 we have from Eq.(22)

x̄(t) =
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We see that the character of motion of wave packet is changed. Now the center of wave
packet moves along x direction with constant velocity, which is determined by the first term
in Eqs.(22), (23) and performs the damping oscillations. It is not difficult to find the constant
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result also follows from Eq.(22) when k0 = 0 or for the narrow-width Gaussian wave packet
(a = k0d → 0). When the width of packet is increased the velocity of motion of its centre is
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Fig. 4. The average coordinate x̄(t) versus time (τ0 = d/u) for the wave packet with initial
pseudospin polarization along x axis for different values of a.

decreased. The frequency and amplitude of the Zitterbewegung for a � 1 are the same as in the
case i). However, the first term in Eq.(22) corresponding to the motion of wave packet with
constant velocity reduces the effect of ZB at least for a � 1 (Fig.4).
It is not difficult to show that as in the other two-band systems the phenomenon of ZB
in graphene is a result of an interference of states corresponding to positive and negative
eigenenergies of Hamiltonian, Eq.(1). For wide enough packet a = k0d � 1 and at time
t > 1 when the ZB disappears two split parts of initial wave packet (see Fig. 3) move along
y axis with opposite velocities u/2 and −u/2. In this situation the subpackets moving in
the positive and negative directions consist of the states with positive and negative energies
correspondingly.
iii). When the initial pseudospin is along y axis the wave function at t > 0 has the form

ψ(�r, t) =
1√
2

(
φ1(�r, t)− iφ2(−x, y, t)

iφ1(�r, t) + φ2(�r, t)

)
. (26)

In Fig.5 the full electron density for the same moment of time and for the same parameters
as in previous cases is shown. As one can see, the initial wave packet does not split into two
parts at t > 0 unlike in the cases i) and ii). This result is confirmed by the straightforward
calculations. Indeed, one can show that the eigenenergy states corresponding to propagation
in the positive direction along y axis give the dominant contribution in total wave function,
Eq.(26). For wide packets (a � 1) almost all of these states belong to the positive branch of
energy.
The results of calculations of average values of x and y for this polarization lead to

x̄(t) = 0, (27)

ȳ(t) = (1 − 1
2a2 +

e−a2

2a2 ) t +
e−a2

2a

∞∫

0

e−q2
sin(2qt)I1(2aq)

dq
q

. (28)
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Fig. 5. (Color online). The electron probability density ρ(�r, t) = |ψ1|2 + |ψ2|2 for initial wave
packet, Eqs.(8a), (8b) with c1 = 1 and c2 = i for a = k0d = 1.2 at time t = 7 (in the units of
d/u).

Fig. 6. The average coordinate ȳ(t) versus time (τ0 = d/u) for the wave packet with initial
pseudospin polarization along y axis for different values of a.

Thus in the considered case the wave packet propagates along y axis and the Zitterbewegung
has the "longitudinal" character. It is interesting to note that 1D wave packet

ψ(y, 0) = F(y)
(

1
i

)
,

467Wave Packet Dynamics in a Monolayer Graphene



Fig. 4. The average coordinate x̄(t) versus time (τ0 = d/u) for the wave packet with initial
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in the positive direction along y axis give the dominant contribution in total wave function,
Eq.(26). For wide packets (a � 1) almost all of these states belong to the positive branch of
energy.
The results of calculations of average values of x and y for this polarization lead to

x̄(t) = 0, (27)

ȳ(t) = (1 − 1
2a2 +

e−a2

2a2 ) t +
e−a2

2a

∞∫

0

e−q2
sin(2qt)I1(2aq)

dq
q

. (28)
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Fig. 5. (Color online). The electron probability density ρ(�r, t) = |ψ1|2 + |ψ2|2 for initial wave
packet, Eqs.(8a), (8b) with c1 = 1 and c2 = i for a = k0d = 1.2 at time t = 7 (in the units of
d/u).

Fig. 6. The average coordinate ȳ(t) versus time (τ0 = d/u) for the wave packet with initial
pseudospin polarization along y axis for different values of a.

Thus in the considered case the wave packet propagates along y axis and the Zitterbewegung
has the "longitudinal" character. It is interesting to note that 1D wave packet

ψ(y, 0) = F(y)
(

1
i

)
,
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where F(y) is arbitrary function, propagates along y direction without changing of its form

ψ(y, t) = F(y − ut)
(

1
i

)
.

Note that in a numerical work (Thaller,2004) the author has observed similar oscillatory
behavior of the expectation value of the position operator for one - dimensional relativistic
electron in vacuum. In Ref.(Thaller,2004) it was also shown that apart from the rapid
oscillation, the wave packet drifts slowly even when its average momentum is zero.
In Fig.6 we represent the dependence ȳ(t) for different values of parameter a. As one can see,
even at zero value of a the oscillations are absent. In this case, as it follows from Eqs.(25),(28)
the drift velocity is equal to 1/2 (in the units of u). As above, Eq.(28), takes more simple form
at a � 1

ȳ(t) = t +
1

4a3 e−t2
sin(2at). (29)

Comparing Eqs.(18), (23), (29), we see that the amplitude for the "longitudinal" Zitterbewegung
is much smaller than the amplitude of "transverse" Zitterbewegung. This fact can bee seen
as a consequence of special form of the initial wave function, which in the given case
consists of (at a � 1) the states with positive energy mostly. That makes the interference
between the positive and negative components difficult, i.e. decreases the ZB. Moreover, at
any values of the parameter a the integral term in Eq.(28), corresponding to the oscillating
motion, is negligible in comparison with the first term, and one may neglect the effect of the
"longitudinal" ZB.
As was demonstrated above, the direction of the average velocity depends not only on module
of the components ψ1(�r, 0) and ψ2(�r, 0), but also on their phases. Specifically for the initial
Gaussian packet

ψ(�r, 0) =
f (�r)√

2

(
1

eiϕ

)
, (30)

the probability density becomes asymmetric and the average position operator has two
components

r̄(t) = x̄(t) cos ϕ�ex + ȳ(t) sin ϕ�ey, (31)

where ϕ is an arbitrary phase difference between the up and low components of wave function
and x̄(t), ȳ(t) are determined by Eqs.(22), (28). For illustration we show in Fig.7 the electron
probability density obtained for the initial packet, Eq.(30), with ϕ = π/4.
It is clear that the phase ϕ determines the direction of the average velocity of the packet center.
Using the expression for velocity operator �̂v = u�σ and Eq.(30) we obtain (in the dimensionless
variables) at t = 0:

vx(0) = cos ϕ, vy(0) = sin ϕ. (32)

The components of the velocity for a large enough time, when the trembling motion stops, can
be found from Eqs.(22),(28) and (31) for arbitrary parameter a

vx =
1 − exp(−a2)

2a2 cos ϕ, vy =
(

1 − 1
2a2 +

exp(−a2)
2a2

)
sin ϕ. (33)
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Fig. 7. (Color online). The electron probability density ρ(�r, t) = |ψ1|2 + |ψ2|2 for initial wave
packet, Eq.(8a), (8b) with c1 = 1 and c2 = eiπ/4 for a = k0d = 1.2 at the time t = 7 (in the
units of d/u).

Fig. 8. The trajectories of the center of electron wave packet described by Eq.(30) for two
initial phases ϕ = π/4 and 3π/4. The parameter a = 6.

In particular, as it follows from Eq.(33) for a � 1, the direction of the motion of wave packet
center at large time coincides with the initial one, Eq(32). In other limiting case a � 1 (and
for not too small ϕ) asymptotic direction of the average velocity is along 0Y axis, i.e. along the
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where ϕ is an arbitrary phase difference between the up and low components of wave function
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Fig. 7. (Color online). The electron probability density ρ(�r, t) = |ψ1|2 + |ψ2|2 for initial wave
packet, Eq.(8a), (8b) with c1 = 1 and c2 = eiπ/4 for a = k0d = 1.2 at the time t = 7 (in the
units of d/u).

Fig. 8. The trajectories of the center of electron wave packet described by Eq.(30) for two
initial phases ϕ = π/4 and 3π/4. The parameter a = 6.

In particular, as it follows from Eq.(33) for a � 1, the direction of the motion of wave packet
center at large time coincides with the initial one, Eq(32). In other limiting case a � 1 (and
for not too small ϕ) asymptotic direction of the average velocity is along 0Y axis, i.e. along the
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average momentum of wave packet py = h̄k0. Thus, by changing the initial phase ϕ, one can
govern the packet motion and consequently the direction of dc current. To illustrate this, we
plot in Fig.8 the packet center trajectories for two initial phases: ϕ = π/4 and 3π/4. Note that
the packet motion with the constant velocity predicted above (see Eqs.(22), (28)) should lead
to the existence of the direct current in the corresponding direction.
To check our formalism let us consider the plane wave as the starting point. In this case it
is easy to obtain the expression for the average value of electron velocity �̄v(t). Really, in the
Heisenberg picture the kinetic velocity is (in the dimensional variables)

�̂v(t) =
1
ih̄

[�r, Ĥ] = u�σ(t), (34)

where

d�σ
dt

=
1
ih̄

[�σ, Ĥ] =
2u
h̄

[�̂p ×�σ]. (35)

In these equations �p(t) = �p(0). Let the initial momentum poy = h̄k0. Then, using the solutions
of Eqs.(34), (35) we find

v̄x(t) = uσ̄z(0) sin ωt + uσ̄x(0) cos ωt, (36a)

v̄y(t) = uσ̄y(0), (36b)

where ω = 2uk0 and σi(0) = σi - Pauli matrixes (i = 1, 2, 3). So, if in the initial state pseudospin
is along z direction, i.e. σ̄z(0) = 1 (case i)) we obtain from Eq.(34a) that v̄x(t) = u sin ωt which
leads to

x̄(t) = const − u
ω

cos ωt. (37)

Returning to the original variables in Eq.(18) and setting d = ∞ we see that this expression
coincides with Eq.(37). We get similar results also for other initial polarizations.

4. Concluding remarks

We have studied the quantum dynamics of charge particles represented by Gaussian
wave packets in two-dimensional single layer of carbon atoms (graphene). We investigated
numerically also the spatial evolution of the initial wave packet and demonstrated the effect of
the packet splitting for the pseudospin polarization perpendicular to the average momentum.
The analytical expressions for the average values of position operators were obtained. These
expressions clearly demonstrate that the evolution of wave function is accompanied by the
Zitterbewegung and strongly depends on the initial pseudospin polarization. In particular,
if the initial pseudospin polarization coincides with initial average momentum, the packet
center moves and exhibits the ZB along the same direction. In this case the second term in
Eq.(28) describing the longitudinal oscillations (the "longitudinal" ZB) is essentially smaller
than the first one connected with the motion with constant velocity. As for other systems with
two-band structure (Demikhovskii et al.,2008; Rusin & Zawadzki,2007; Thaller,2004), the ZB
in monolayer graphene has a transient character.
It was also predicted that apart from the packet center exhibits the trembling motion it can
move with constant velocity (for example, for the pseudospin polarization along x and y axis).
The direction of this velocity depends on not only the orientation of average momentum �p0,
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but also on the module of the components ψ1(�r, 0), ψ2(�r, 0) and the differences of their phases
(see Eqs.(30),(33)).
All above calculations have been done for the �K point of the Brillouin zone in graphene.
Similar results can be found for initial wave packet with wave vector�k in the valley centered
in inequivalent point �K�. The Dirac Hamiltonian around �K� point can be written as

HK� = u
(

0 − p̂x − i p̂y
− p̂x + i p̂y 0

)
, (38)

This expression can be obtained from Hamiltronian around �K point given by Eq.(1) by
replacement p̂x → − p̂x. Other representation of Eq.(38) are common in the literature as well.
In this connection see (Bena & Montambaux,2009; Gusynin et al.,2007). Thus values x̄(t) for
the wave packet of different polarizations (and corresponding components of velocity) change
sign while ȳ(t) remain unchanged (see also(Rusin & Zawadzki,2008)).
In conclusion we would like to stress that the packet motion with the constant velocity
(see Eqs.(22), (28)) leads to the appearance of the dc current. For the experimental detection
of this current one needs sensitive current meters. Experimental observation of trembling
motion is currently a more difficult task since it is necessary to use femtosecond techniques.
(Zawadzki,2006; Rusin & Zawadzki,2007) If new methods of formation of wave packets
with different pseudospin polarizations will be elaborated then their trajectories and spatial
separations can be observed probably with the help of devices with quantum point contacts
and gates (see for example (Castro et al.,2009)). The intresting experimental method allows an
observation of ZB of electron in graphene exited by femtosecond laser pulse in the presence
of magnetic field was proposed in Ref. (Rusin & Zawadzki,2009).

5. Appendix

Besides the rapid oscillations (ZB) the electron wave packet in graphene (as for other two-band
systems) can drift with constant velocity �̄V0 although its average momentum is zero. The
existence of constant component in the wave packet center velocity depends on the form and
symmetry of the initial wave function.
Let now find the drift velocity for the arbitrary initial state, Eq.(8a). At t > 0 the total wave
function in the momentum space can be decomposed into positive- (Ψ+(�p, t)) and negative-
energy (Ψ−(�p, t)) components.

Ψ(�p, t) = Ψ+(�p, t) + Ψ−(�p, t) = a+U+(�p)e−iE+t/h̄ + l + a−U−(�p)e−iE−t/h̄, (A.1)

Using the expression (3) for the eigenspinors U±(�p) we find the coefficients a±

a± =
F(�p)√

2(|c1|2 + |c2|2)
(c1 ±

(px − ipy)
p

c2), (A.2)

where F(�p) is to be determined from the Fourier expansion of coordinate wave function f (�r).
Obviously the time-independent part Vμ0 of the density of velocity in the momentum space is
defined as

Vμ0(�p) = Ψ+
+(�p, t)V̂μΨ+(�p, t) + Ψ+−(�p, t)V̂μΨ−(�p, t), (A.3)

where V̂μ = uσμ, μ = 1, 2 is velocity operator. The preceding expressions (A.1), (A.2), (A.3)
immediately lead to the constant velocity of the wave packet center given in Eqs.(24), (25).
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1. Introduction  
Recently discovered stable monoatomic carbon sheet (graphene) which is comprised of 
field-effect structures has remarkable physical properties promising nanoelectronic 
applications (Novoselov, 2004). Practical semiconductor device simulation is essentially 
based on diffusion-drift approximation (Sze & Ng, 2007). This approximation remains valid 
for graphene field-effect transistors (GFET) due to unavoidable presence of scattering 
centers in the gate or the substrate insulators and intrinsic phonon scattering (Ancona, 2010). 
Traditional approaches to field-effect transistors modeling suffer from neglect of the key and 
indispensible point of transport description – solution of the continuity equation for 
diffusion-drift current in the channels. This inevitably leads to multiple difficulties 
connected with the diffusion current component and, consequently, with continuous 
description of the I-V characteristics on borders of operation modes (linear and saturation, 
subthreshold and above threshold regions). Many subtle and/or fundamental details 
(difference of behaviour of electrostatic and chemical potentials, specific form of the Einstein 
relation in charge-confined channels, compressibility of 2D electron system, etc.) are also 
often omitted in device simulations. Graphene introduces new peculiar physical details 
(specific electrostatics, crucial role of quantum capacitance etc.) demanding new insights for 
correct modeling and simulation (Zebrev, 2007). The goal of this chapter is to develop a 
consequent diffusion-drift description for the carrier transport in the graphene FETs based 
on explicit solution of current continuity equation in the channels (Zebrev, 1990) which 
contains specific and new aspects of the problem. Role of unavoidable charged defects near 
or at the interface between graphene and insulated layers will be also discussed.  
Distinguishing features of approach to GFET operation modeling will be: 
- diffusion-drift approach; 
- explicit solution of current continuity equation in GFET channels; 
- key role of quantum capacitance in the diffusion to drift current ratio and transport in 

GFETs; 
- role of rechargeable near-interfacial defects and its influence on small-signal 

characteristics  of GFETs. 
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2. General background 
2.1 Carrier statistics in ideal graphene for nonzero temperature 
The density of states is the number of discrete eigenenergy levels within a unit energy width 
per unit area (states/eV cm2). Taking into account valley and spin as well as angular  
degeneracy we have for two-dimensional density of states ( )2Dg ε  in graphene  
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where  is the Plank constant, 0v  (≅ 108 cm/s) is the characteristic (Fermi) velocity in 
graphene. Using the equilibrium Fermi-Dirac function ( )FDf ε μ−  the electron density per 
unit area en  at a given chemical potential μ   for nonzero temperature T reads  
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where T is absolute temperature, Bk  is the Boltzmann constant, ( )nLi x  is the poly-logarithm 
function of n-th order (Wolfram, 2003) 
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Using electron-hole symmetry ( ) ( )g gε ε= −  we have similar relationship for the hole 
density hn  

 ( ) ( ) ( )( ) ( )
2

0
2 2

0

21 Bk TB
h D FD e

k Tn d g f Li e n
v

μ

μ ε ε ε μ μ
π

−

−∞

⎛ ⎞⎛ ⎞ ⎜ ⎟= − − = − − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∫ . (5) 

Full charge density per unit area or the charge imbalance reads as 
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Conductivity of graphene charged sheet is determined by the total carrier density  
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For ideal electrically neutral graphene without any doping (so called the charge neutrality 
point (NP) with the zero chemical potential μ  = 0) we have intrinsic density with equal 
densities of electrons and holes 
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Intrinsic carrier density at room temperature T = 300K is estimated to be of order in ≅ 8×1010 
cm-2 (slightly larger than in silicon). The Tailor series expansion in the vicinity of the  0μ =   
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yields a good approximation for only 5 Bk Tμ < . It is convenient to use a following   
asymptotics 
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This approximation yields both exact expression for electron charge concentration at the 
charge neutrality point and the correct asymptotics for Bk Tμ >>  aw well as good 
coincidence in the intermediate region ~ Bk Tμ . In spite of this fact this approximation is 
inappropriate for capacitance calculation at zero chemical potential point due to lack of 
linear terms in μ . In reality the region near the ~ 0μ  should not be considered to be ideal 
because of inevitable disorder presence (Martin & Akerman, 2008). 
The channel electron density per unit area for degenerate system ( Bk Tμ >> ) reads 
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2.2 Quantum capacitance in graphene 
Performing explicit differentiation of Eqs.(3,5) one reads 
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Exact expression for quantum capacitance (Luryi, 1988) of the graphene charge sheet may be 
defined as 
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Quantum capacitance for unbiased case ( μ  = 0) becomes formally exact ideal form 
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For a relatively high doping case ( Bk Tμ >> ) we have approximate relation for quantum 
capacitance 
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For total density of free carriers we have relationship, which is valid for any μ  
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In contrast to Eq. 17 the latter Eq.18  can be considered as an exact for ideal graphene for any 
chemical potential result connected to an exact form of the Einstein relation. 

2.3 Einstein relation in graphene 
Similar to the silicon MOSFETs, the transport properties of graphene are determined by 
scattering from the charged defects in the gate insulating oxide and from elastic (at least in 
low-field region) phonons (Das Sarma et al., 2010). The diffusion constant in 2D graphene 
sheet can be determined through the Fermi velocity 0v  and transport relaxation time trτ or 
mean free path 0 trv τ=  

 2
0 0

1 1
2 2trD v vτ= = . (19) 

Electron and hole mobility e hμ can be inferred from the Einstein relation in a following 
manner (e = |e|) 
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where a diffusion energy introduced (Ando et al. 1982) 

 ( )D e h e hn dn dε μ≡ . (21) 

It is easy to show from Eq. 13 that rather far from the graphene charge neutrality point we 
have 2D Fε ε= . Bipolar conductivity is expressed formally with Eq.(20) through the sum of 
electron and hole components 
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Using the exact Eq. 18 and the assumption of electron-hole symmetry ( 0e hD D D= = ), the 
total bipolar conductivity reads 
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where the Fermi wavevector is defined through the dispersion law in gapless graphene 
0 F Fv k μ ε= ≅ . The Einstein relation can be rewritten in an equivalent form via conductivity 

and quantum capacitance 

 0 0 0Q SD C e Nμ σ= =  (24) 

The Einstein relation allows to easily obtain a relation for mobility of graphene carriers in 
highly doped ( Bk Tμ >> ) graphene 
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Notice that in fact Fp∝  and 0μ weakly depends on Fermi energy in graphene. 

3. GFET electrostatics 
3.1 Near-interfacial rechargeable oxide traps 
It is widely known (particularly, from silicon-based CMOS practice) that the charged oxide 
defects inevitably occur nearby the interface between the insulated layers and the device 
channel. Near-interfacial traps (defects) are located exactly at the interface or in the oxide 
typically within 1-3 nm from the interface. These defects can have generally different charge 
states and capable to be recharged by exchanging carriers (electrons and holes) with device  
channel. Due to tunneling exchange possibility the near-interfacial traps sense the Fermi 
level position in graphene. These rechargeable traps tend to empty if their level εt are above 
the Fermi level and capture electrons if their level are lower the Fermi level. 
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Fig. 1. Illustration of carrier exchange between graphene and oxide defects (a) filling; (b) 
emptying 
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There are two types of traps – donors and acceptors. Acceptor-like traps are negatively 
charged in a filled state and neutral while empty ( - /0). Donor-like traps are positively 
charged in empty state and neutral in filled state (0/+). In any case, the Fermi level goes 
down with an increase VG and the traps begin filled up, i.e. traps become more negatively 
charged (see Fig. 1). Each gate voltage corresponds to the respective position of the Fermi 
level at the interface with own “equilibrium” filling and with the respective density of 
equilibrium trapped charge ( ) ( )t tQ eNμ μ=  which is assumed to be positive for definiteness. 
For traps with small recharging time the equilibrium with the substrate would establish  
fast. These traps rapidly exchanged with the substrate are often referred as to  the interface 
traps (Nit) (Emelianov et al. 1996); (Fleetwood et al., 2008). Defects which do not have time to 
exchange charge with the substrate during the measurement time are referred to as oxide-
trapped traps (Not). Difference between the interface and oxide traps is relative and depends, 
particularly, on the gate voltage sweep rate and the measurement’s temperature. Interface 
trap capacitance per unit area Cit may be defined in a following way 

 ( )( ) 0it t
dC eN

d
μ

μ
≡ − > . (26) 

Note that the Fermi level dependent ( )teN μ   contains the charge on all traps, but for a finite 
voltage sweep time st  only the “interface traps” with low recharging time constants  r stτ <  
contribute to the recharging process. Interface trap capacitance (F/cm2) with accuracy up to 
the dimensional factor represents the energy density of the defect levels itD ( cm-2eV-1). It is 
easy to see that these values are related as 

 ( )2
it itC e D μ= . (27) 

It is useful to note that 1 fF/μm2 ≅ 6.25 × 1011 cm-2 eV-1. The typical interface trap capacitance 
in modern silicon MOSFETs lies within the range Dit ~1011  -1012 cm-2 eV-1 and is rather 
sensitive (especially for thick (> 10 nm) insulated layers) to ionizing radiation impact 
(Fleetwood et al., 2008). 

3.2 Electrostatics of graphene gated structures 
Let us consider the simplest form of the gate-insulator-graphene (GIG) structure 
representing the two-plate capacitor capable to accumulate charges of the opposite signs. 
Without loss of generality we will reference the chemical potential in graphene from the 
level of charge neutrality ENP. Electron affinity (or work function for Dirac point) of 
graphene with the reference of the vacuum energy level Evac can be defined as 

 g vac NPE Eχ = − . (28) 

Note that the graphene work function is of order of ~gχ  4.5 eV (Giovannetti  et al., 2008). It 
is well known that voltage bias between any device’s nodes is equivalent to applying of 
electrochemical potential bias. There are generally at least two contributions to the 
electrochemical potential 

 U eμ ζ ζ ϕ= + = −  (29) 
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where ζ  is proper electric charge independent chemical potential, U  and ϕ  are the 
electrostatic energy and potential U eϕ= − . Neglecting voltage drop in the gate made 
routinely of good 3D conductors due to its extremely large quantum capacitance per unit 
area we get  

               gate gate gatee Wμ ϕ= − − , (30)    

 graphene g graphene NPe Eμ χ ζ ϕ ζ= − + − = + , (31) 

where grapheneϕ  is electrostatic potential of graphene sheet, gateW  is the work function of the 
gate material, and NP g grapheneE eχ ϕ= − −  is the energy position of the charge neutrality (or, 
Dirac) point. Applying the gate voltage (to say, positive) with reference of grounded 
graphene plate we increase the chemical potential and electrostatic potential of the graphene 
sheet so as they exactly compensate each other keeping the electrochemical potential of the 
graphene sample unchanged (see Fig. 2).  
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Fig. 2. Band diagram of gate–oxide- graphene structure at  0GV = (left) and 0GV > (right). 
Here, ggϕ =0,  for simplicity. 

Particularly, the electrical bias between the metallic (or almost metallic) gate and the 
graphene sample is equal to a difference between the electrochemical potentials in graphene 
( grapheneμ )and the gate ( gateμ ) 

 ( )G graphene gate gg gate grapheneeV e eμ μ ϕ ζ ϕ ϕ= − = + + − . (32) 

where gg gate ge Wϕ χ≡ −  is the work function difference between the gate and graphene. For 
zero oxide charge (or, for charged oxide defects located nearly the insulator-graphene 
interface) the electric field Eox is uniform across the gate thickness (dox) and one reads 

 
0

gate gate
gate graphene ox ox ox

ox ox

eN eN
E d d

C
ϕ ϕ

ε ε
− = = ≡ , (33) 

where ( )gate GN V  is the number of charge carriers on the metallic gate per unit area and the 
oxide (insulator) capacitance per unit area oxC  expressed through the dielectric constants of 
the insulator (εox) is defined as 

  0ox
ox

ox
C

d
ε ε

= .  (34) 
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Particularly, the electrical bias between the metallic (or almost metallic) gate and the 
graphene sample is equal to a difference between the electrochemical potentials in graphene 
( grapheneμ )and the gate ( gateμ ) 
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where gg gate ge Wϕ χ≡ −  is the work function difference between the gate and graphene. For 
zero oxide charge (or, for charged oxide defects located nearly the insulator-graphene 
interface) the electric field Eox is uniform across the gate thickness (dox) and one reads 
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where ( )gate GN V  is the number of charge carriers on the metallic gate per unit area and the 
oxide (insulator) capacitance per unit area oxC  expressed through the dielectric constants of 
the insulator (εox) is defined as 

  0ox
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3.3 Characteristic scales of gated graphene 
The planar electric charge neutrality condition for the total gated structure can be written 
down as follows 

 G t SN N n+ = , (35) 
where GN  is the number of positive charges per unit area on the gate; Sn  is the charge 
imbalance density per unit area ( Sn  may be positive or negative –), tN  is the defect density 
per unit area which is assumed to be positively charged (see Fig.3). Then total voltage drop 
(Eq.32) across the structure becomes modified as  

 ( ) ( )( )
2

G gg S t
ox

eeV e e n N
C

ϕ ϕ ζ ζ= + + − . (36) 
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Fig. 3. Band diagram of graphene FET. 

The voltage corresponding the electric charge neutrality point gate NPV  is defined in a 
natural way 

 ( ) ( )0
0 t

NP G gg
ox

eN
V V

C
ζ

ζ ϕ
=

≡ = = − . (37) 

Chemical potential is positive (negative) at G NPV V> ( G NPV V< ). Then we have 

 ( ) ( ) ( )( )22 0t tS
G NP

ox ox

e N Ne ne V V
C C

ζ ζ
ζ

= −
− = + + . (38) 

Taking for brevity without loss of generality VNP =0 and assuming zero interface trap charge 
at the NP point as well as  constant density of trap states  we have 

 ( ) ( )( )2 0t t ite N N Cζ ζ ζ= − ≅ . (39) 
Taking into account Eq.13 the basic equation of graphene planar electrostatics can be written 
down a in a form 
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where we have introduced for convenience a dimensionless “ideality factor” 
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 1 it

ox

Cm
C

≡ + , (41) 

and notation Fε  used instead of ζ . The specificity of the graphene-insulator-gate structure 
electrostatics is reflected in Eq.40  in appearance of the characteristic energy scale 
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where the graphene “fine structure constant” is defined as ( in SI units) 
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0 04G
e

v
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= . (43) 

Fig.4  shows dependencies of characteristic electrostatic energy of gated graphene aε  vs gate 
oxide thickness for typical dielectric constants 4 (SiO2) and 16 (HfO2). 
 

 
Fig. 4. The dependencies of the εa as functions of the insulator thickness oxd  for different 
dielectric permittivity equal to 4 (lower curve) and 16 (upper curve). 

Energy scale aε  bring in a natural spatial scale specific to the graphene gated structures 
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and corresponding characteristic density  

 ( )
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π π

≡ = = = . (45) 

Due to the fact that graphene “fine structure constant” 2.0 2.2Gα ≅ −  the characteristic 
length Qa  is occasionally of order of the oxide thickness for the insulators with oxε ~16 (i.e. 
for HfO2). Interestingly that the energy scale aε  can be as well represented as functions of 
the Fermi energy and wavevector Fk , quantum capacitance and charge density 
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3.4 Self-consistent solution of basic electrostatic equation 
Solving algebraic Eq. (40) one obtains  an explicit dependence (to  be specific for VG > 0) of 
the electron Fermi energy as function of the gate voltage 

 ( )1/22 2 2F a a G am eV mε ε ε ε= + −  (47) 

This allows to immediately write the explicit relation for graphene charge density 
dependence on gate voltage 
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Restoring omitted terms the latter equation can be rewritten as (Zebrev, 2007); (Fang et al. 
2007) 
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where the characteristic voltage 2
0 /aV m eε≡  is defined where interface trap capacitance is 

taken into account. Figs. 5-6 exhibit numerically the interrelation of 0V  with itC  and oxd . 
 

 
Fig. 5. Simulated dependencies of the characteristic voltage V0 as functions of the interface 
trap capacitance Cit  for different oxide parameters. 

View of charge density dependence versus gate voltage is determined by relations of 
characteristic values (see Fig.5,6). At relatively high gate voltage 0G NPV V V− >>  (or, the 
same, for “thick” oxide) we have close to linear dependence  

 ( )( )1 2
02S ox G NP G NPen C V V V V V≅ − − − . (50) 
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Most part of external gate voltage drops in this case on the oxide thickness. Such is the case 
of “standard” oxide thickness dox = 300 nm. Actually for not too small gate bias the charge 
density dependence on gate voltage is very close to linear (Novoselov et al., 2004). For 
future graphene FET the gate oxide thickness is assumed to be of order of few or ten of 
nanometers. For such case of much thinner oxides or under relatively small gate biases 

ox G NP QC V V en− <  we have quadratic law for density dependence (see Fig. 2b) 
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(a)                                                   (b) 

Fig. 7. Simulated charge density dependencies in reduced form e nS /Cox as functions of gate 
voltage for εox = 4 and different interface trap capacitance Cit = 0, 5, 10, 15 fF/μm2; 
(a) oxd  = 300 nm; (b) oxd  = 10 nm. Dashed curves correspond to enS/Cox = VG. 
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Fig. 7 show that ( )S Gn V  curves are strongly affected by interface trap recharging even for 
relatively thin oxides. 

3.5 Gate and channel capacitance 
 Capacitance-voltage measurements are very important in providing information about 
gated field-effect structures. Taking derivative of Eq. 36 with respect to chemical potential, 
we have 

 1 Q itG

ox

C CdV
d Cμ

+
= + . (52) 

Low-frequency gate capacitance can be defined as 
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−
⎛ ⎞+⎛ ⎞∂

= = = = +⎜ ⎟⎜ ⎟ ⎜ ⎟+∂ +⎝ ⎠ ⎝ ⎠+
 (53) 

This relation corresponds to the equivalent electric circuit which is shown in Fig.8.  
 

 
Fig. 8. Equivalent circuit of gated graphene. 

One might introduce another relation corresponding to the intrinsic channel capacitance  
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μ
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⎛ ⎞∂
= = = =⎜ ⎟ + +∂⎝ ⎠ ++

. (54) 

where all capacitances are non-zero and assumed to be positive values for any gate voltage. 
Note that CHC  is often referred to as “total gate capacitance totC ” in literature  wherein the 
interface trap capacitance is frequently ignored. The gate and the channel capacitances are 
connected in graphene gated structures through exact relation  

 1G it

CH Q

C C
C C

= +  (55) 
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and can be considered to be coincided only for ideal devices  without interface traps when 
Cit =0. All relationships for the differential capacitances remain valid for any form of 
interface trap energy spectrum. In an ideal case capacity-voltage characteristics ( )CH GC V  
should be symmetric with refer to the neutrality point implying approximately flat energy 
density spectrum of interface traps. For the latter case the channel capacity can be derived 
by direct differentiation of explicit dependence nS(VG)  in Eq.49 

 1/2
0

11
1 2

S
CH ox

G G NP

dnC e C
dV V V V

⎡ ⎤
⎢ ⎥= = −
⎢ ⎥⎡ ⎤+ −⎣ ⎦⎣ ⎦

. (56) 

As can be seen in Fig.9 the capacitance-voltage characteristics ( )G GC V  is strongly affected 
by the interface trap capacitance. 
 

 
Fig. 9. Simulated dependencies of the gate capacitance  ( )G GC V  for different Cit = 1, 5, 10 
fF/μm2; oxd = 10 nm, εox = 5.5 (Al2O3).  
For the case Cit = 0 (i.e. m = 1) capacitance-voltage dependencies can be considered as to be 
universal curves depending on only thickness and permittivity of the gate oxide through the 
parameter aε . In practice one should discriminate the quantum and the interface trap 
capacitances and this is a difficult task since they are in a parallel connection in equivalent 
circuit.  Comparison of “ideal” capacitance –voltage characteristics with real measured ones 
represents a standard method of interface trap spectra parameter extraction (Sze & Ng, 2007, 
Chap. 4,); (Nicollian & Brews, 1982). 

4. Diffusion-drift current in graphene channels 
4.1 Diffusion to drift current ratio 
It is well-known that the channel electron current per unit width SJ  can be expressed as a 
sum of drift and diffusion components 

 0 0
S

S DR DIFF S
dndJ J J e n eD

dy dy
ϕμ= + = + , (57) 
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and can be considered to be coincided only for ideal devices  without interface traps when 
Cit =0. All relationships for the differential capacitances remain valid for any form of 
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by direct differentiation of explicit dependence nS(VG)  in Eq.49 
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4. Diffusion-drift current in graphene channels 
4.1 Diffusion to drift current ratio 
It is well-known that the channel electron current per unit width SJ  can be expressed as a 
sum of drift and diffusion components 
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where 0μ  and 0D  are the electron mobility and diffusivity, y is a coordinate along the 
channel. This one can be rewritten in an equivalent form 

 0
0

0
1 S

D
S

D dn dJ E
n d d

ζσ
μ ζ ϕ

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

, (58) 

where /E d dyϕ= −  is electric field along the channel, 0 0 Se nσ μ=  is the graphene sheet 
conductivity, ( )yζ  and ( )yϕ  are the local chemical and electrostatic potential in the 
graphene channel , respectively. Using the Einstein relation for 2D system of non-interacting 
carrier as in Eq. 20  the diffusion-drift current reads (Zebrev & Useinov, 1990) 

 ( )0 01 1S S S
dJ e n E e n E
ed
ζμ μ κ
ϕ

⎛ ⎞
≡ − = +⎜ ⎟

⎝ ⎠
. (59) 

The ratio of the diffusion to the drift current is introduced in Eq.59 as the ratio of gradients 
of chemical (ζ ) and electrostatic (ϕ ) potentials along the channel, which are the 
components of electrochemical potential (or local Fermi energy for high doping case)  

 DIF
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d J
ed J
ζκ
ϕ

≡ − =  (60) 

Note that for equilibrium case the electrochemical potential is position independent 
( eμ ζ ϕ= − =const) and /d dζ ϕ  is identically equals to unity and diffusion-drift current 
components exactly compensate each other 
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On the contrary for non-equilibrium case both diffusion-drift components have the same 
direction ( / 0d dζ ϕ < ) and the parameter κ > 0. Unlike to the equilibrium case the 
electrostatic and chemical potential should considered as independent variables in non-
equilibrium systems; e.g., the chemical potential controls particle (electron) density and is 
generally irrelevant to properly electric charge density and electrostatic potential. Two-
dimensional electron density in the channel ( )Sn ζ  is a function exactly of the local chemical 
potential ζ rather than electrostatic (ϕ) or total electrochemical potential (μ). It is very 
important that the electrochemical potential distribution along the channel does not coincide 
in general with electrostatic potential distribution. 
To properly derive explicit expression for control parameter κ we have to use the electric 
neutrality condition along the channel length in gradual channel approximation which is 
assumed to be valid even under non-equilibrium condition VDS > 0. Differentiating Eq.36 
with respect to chemical potential ζ  (note that ( )GV const y= ) and taking into consideration 
that ( )yϕ  and ( )yζ  in the channel are generally non-equal and  independent  variables and 
nS depends on only chemical potential ζ one can get 
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This dimensionless parameter κ  is assumed to be constant along the channel for a given 
electric biases and expressed via the ratio of characteristic capacitances. For ideal graphene 
channel with low interface trap density the κ -parameter is a function of only aε  and the 
Fermi energy 

 ( )
2

1 10 ox a
it

Q F F Q S Q

CC
C k a n a

εκ
ε π

= = = = = . (63) 

For a high-doped regime (large QC ) and/or thick gate oxide (low oxC ) when Q oxC C>>  we 
have 1κ <<  by this is meant that the drift current component dominate the diffusion one 
and vice versa.  
 
 

 
(a)                                                                   (b) 

Fig. 10. Simulated κ  curves as functions of gate voltage (a) for different oxide thicknesses, 
Cit = 0, εox = 16; (b) for different  interface trap capacitances Cit = 1, 5, 10  fF/μm2 ,εox = 16, 

oxd = 10 nm. 

Fig. 10 shows simulated dependencies of the parameter κ  on gate voltage at variety of 
parameters. 

4.2 Current continuity equation 
The key point of this approach is an explicit analytical solution of continuity equation for 
channel current density. Total drain current S DR DIFFJ J J= +  should be conserved along the 
channel  

  0SdJ
dy

=  ⇔ ( ) 0S
d n E

dy
=  (64) 

that yields an equation for electric field distribution along the channel (Zebrev & Useinov, 
1990) 
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where κ  and εD are assumed to be functions of only the gate voltage  rather than the drain-
source bias and position along the channel. Direct solution of ordinary differential Eq. 65 
yields 
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κ
ε

=
−

, (66) 

 

where E(0) is electric field near the source, which should be determined from the condition 
imposed by a fixed electrochemical potential difference between drain and source DV , 
playing a role of boundary condition 

 ( ) ( )
0

1
L

DV E y dyκ= + ∫ , (67) 

where L is the channel length. Using Eqs. (66) and (67) one obtains an expressions for E(0) 
and electric field distribution along the channel 
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 (69) 

4.3 Distributions of chemical and electrostatic potential along the channels 
Integrating Eq. (69) we have obtained the explicit relationships for distributions of the 
chemical and electrostatic potentials along the channel length separately and 
electrochemical potential as a whole 
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where ( )0ζ , ( )0μ  and ( )0ϕ  are the potentials nearby the source controlled by the gate-
source bias GSV . For any gate voltage GSV  (and corresponding ( )GVκ ) the full drop of 
electrochemical potential μ on the channel length is fixed by the source-drain bias VD 

 ( ) ( ) ( )( ) (0) 0
1 1

DSDS
DS

e VeVe L L eVκ
ϕ ϕ ζ ζ

κ κ
− + − = + =

+ +
 (73) 

Expanding Eqs. 70 at low drain bias and high carrier density case (κ < 1) we have familiar 
linear dependence of electrostatic potential on coordinate (as in  any good conductor) 

 ( ) (0) D
yy V
L

ϕ ϕ− ≅ , (74) 

and negligible spatial change in chemical potential along the channel length 
ζ κ ϕ ϕΔ = Δ << . Thus the full drop of chemical potential is negligible under high-doped 

channel compared to electrostatic potential but it becomes very important in saturation 
mode. 

5. Channel current modeling 
5.1 Current-voltage characteristics 
The total drain current at constant temperature can be written as gradient of the 
electrochemical potential taken in the vicinity of the source 
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 (75) 

where W  is the channel width, and the Einstein relation 0 0 /DD eμ ε=  is employed. Notice 
that the total two-dimensional charge density S SeN en≅  practically equals to charge 
imbalance density excepting the vicinity of the charge neutrality point where diffusion-drift 
approximation is failed. 
Let us define the characteristic saturation source-drain voltage  DSATV  in a following 
manner 

 1 12 D F
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e e
κ ε κ ε

κ κ
+ +

= = , (76) 

where Fε  is the Fermi energy (the same chemical potential) nearby the source (recall that 
/ 2D Fε ε≅  for F Bk Tζ ε= >> ). Notice that employing this notation and Eq.71 one might 

write the chemical potential nearby the drain as  

 ( ) ( )1 D DSAT FL V Vζ ε= − . (77) 

This implies that the condition D DSATV V=  corresponds to zero of the chemical potential and 
current due to electrostatic blocking which is known as pinch-off for silicon MOSFETs (Sze 
& Ng, 2007). Actually, one might rewrite a general expression for the channel current as  
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where κ  and εD are assumed to be functions of only the gate voltage  rather than the drain-
source bias and position along the channel. Direct solution of ordinary differential Eq. 65 
yields 
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where E(0) is electric field near the source, which should be determined from the condition 
imposed by a fixed electrochemical potential difference between drain and source DV , 
playing a role of boundary condition 
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where L is the channel length. Using Eqs. (66) and (67) one obtains an expressions for E(0) 
and electric field distribution along the channel 
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4.3 Distributions of chemical and electrostatic potential along the channels 
Integrating Eq. (69) we have obtained the explicit relationships for distributions of the 
chemical and electrostatic potentials along the channel length separately and 
electrochemical potential as a whole 
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where ( )0ζ , ( )0μ  and ( )0ϕ  are the potentials nearby the source controlled by the gate-
source bias GSV . For any gate voltage GSV  (and corresponding ( )GVκ ) the full drop of 
electrochemical potential μ on the channel length is fixed by the source-drain bias VD 
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1 1
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 (73) 

Expanding Eqs. 70 at low drain bias and high carrier density case (κ < 1) we have familiar 
linear dependence of electrostatic potential on coordinate (as in  any good conductor) 
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and negligible spatial change in chemical potential along the channel length 
ζ κ ϕ ϕΔ = Δ << . Thus the full drop of chemical potential is negligible under high-doped 

channel compared to electrostatic potential but it becomes very important in saturation 
mode. 

5. Channel current modeling 
5.1 Current-voltage characteristics 
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where W  is the channel width, and the Einstein relation 0 0 /DD eμ ε=  is employed. Notice 
that the total two-dimensional charge density S SeN en≅  practically equals to charge 
imbalance density excepting the vicinity of the charge neutrality point where diffusion-drift 
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/ 2D Fε ε≅  for F Bk Tζ ε= >> ). Notice that employing this notation and Eq.71 one might 

write the chemical potential nearby the drain as  
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This implies that the condition D DSATV V=  corresponds to zero of the chemical potential and 
current due to electrostatic blocking which is known as pinch-off for silicon MOSFETs (Sze 
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where 0σ  is the low-field conductivity nearby the source. It is evident from Eq.78 that 
DSATV  corresponds to onset of drain current saturation. This expression describe I-V 

characteristics of graphene current in a continuous way in all operation modes (see Fig.11) 
 

 
Fig. 11. Current voltage characteristics of graphene FET as function of gate and drain 
voltage. 

5.2 Pinch-off (saturation) regime 
Taking into account Eqs. 76, 62 and 63 one obtains 
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Recall that  2 / 2G NP F F aV V mε ε ε− = +   one may derive an expression  
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which is specific for graphene field-effect transistors.  
Notice that for thick oxide GFET we have very large 2DSAT G NPV V V≅ − >> 1 V and pinch-
off saturation is never observed. As can be seen in Fig. 12 the saturation voltage 

DSATV depends parametrically on the aε  and on interface trap capacitance itC . Under 
condition of high source-drain bias D DSATV V>  the Eq.78 yields formal relationship for 
saturation current regime caused by electrostatic pinch-off.  
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Fig. 12. Simulated DSATV  curves as functions of gate voltage for aε = 0.6 meV ( oxd  = 300 nm, 
εox = 4); aε = 2.4 meV ( oxd  = 300 nm, εox = 16); aε = 73 meV ( oxd  = 10 nm, εox = 16); 

itC = 0 fF/μm2 (upper curve in the pairs) and  itC =1 fF/μm2 (lower  curve). 

5.3 Low-field linear regime 
Linear (triode) operation mode corresponds to condition 

 1
D DSAT FV V κε

κ
+

<< = . (82) 

For high doping regime when 1κ <<  one has predominance of drift component of the 
channel current as in any metal. In contrast for 1κ >>  the diffusion current prevails. 
Equality of the current components occurs in ideal structure ( 0itC = ) at F aε ε=  or, 
equivalently, at the characteristic channel density S Qn n= , defined in Eq.45.  
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(a)                                                              (b) 

Fig. 13. Simulated drain channel currents as functions of gate voltage for different interface 
trap capacitances Cit = 0, 5, 10, 15 fF/μm2; oxd = 5 nm, εox = 16; W  = 1 µm; L = 0.25 µm, 
µ0 = 800 cm2/(V s); (a) DV  = 0.1 V; (b) DV = 1 V. Dashed curves correspond to condition 1κ = . 



 Physics and Applications of Graphene - Theory 

 

492 

 ( )0 0 1 exp 2
2

DSAT D
D

DSAT

VW VI
L V
σ

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (78) 

where 0σ  is the low-field conductivity nearby the source. It is evident from Eq.78 that 
DSATV  corresponds to onset of drain current saturation. This expression describe I-V 

characteristics of graphene current in a continuous way in all operation modes (see Fig.11) 
 

 
Fig. 11. Current voltage characteristics of graphene FET as function of gate and drain 
voltage. 

5.2 Pinch-off (saturation) regime 
Taking into account Eqs. 76, 62 and 63 one obtains 

 
21 .F

DSAT F F
a

eV mκ εε ε
κ ε
+

= = +  (79) 

Recall that  2 / 2G NP F F aV V mε ε ε− = +   one may derive an expression  

 
2

2
SF

DSAT G NP G NP
a ox

enV V V V V
C

ε
ε

= − + = − + ,  (80) 

which is specific for graphene field-effect transistors.  
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off saturation is never observed. As can be seen in Fig. 12 the saturation voltage 

DSATV depends parametrically on the aε  and on interface trap capacitance itC . Under 
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(a)                                                              (b) 

Fig. 13. Simulated drain channel currents as functions of gate voltage for different interface 
trap capacitances Cit = 0, 5, 10, 15 fF/μm2; oxd = 5 nm, εox = 16; W  = 1 µm; L = 0.25 µm, 
µ0 = 800 cm2/(V s); (a) DV  = 0.1 V; (b) DV = 1 V. Dashed curves correspond to condition 1κ = . 
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Fig. 13 shows simulated transfer ( DI vs GV ) characteristics of graphene FET for different 
drain biases and interface trap capacitances.  Portions of curves below the dashed curves 
correspond to predominance of diffusion current with pronounced current saturation, and 
the above dashed curves correspond mainly to drift current with linear dependence on the 
drain bias. Notice that the diffusion current region is negligible for dirty structures with 
thick oxides. For rather small drain bias one can get a usual linear expression expanding 
Eq.78 in series on DV  

 0D S D
WI e n V
L
μ≅ . (83) 

Setting mobility 0μ  gate voltage independent the small-signal transconductance in the 
linear mode reads  

 0
D

D
m CH D

G V

I Wg C V
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⎛ ⎞∂

≡ =⎜ ⎟
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, (84) 

where the channel capacitance CHC  is defined in Eq.54. Field-effect mobility FEμ  can be 
defined from Eq.84  as 

 0m D CH FE D ox
W Wg V C V C
L L
μ μ= ≡ . (85) 

Eq.91 connects field-effect mobility μFE depending on charge exchange with extrinsic traps 
(defects in the gate oxides, chemical dopants etc.) and mobility μ0 depending on only 
“microscopic” scattering mechanisms 
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ε ε
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+ ++

. (86) 

Note that the field-effect mobility, determined often immediately as a slope of the 
experimental conductivity vs gate voltage curves, is always less than truly microscopic 
mobility and significantly decreases nearby the charge neutrality point. In fact, FEμ  is close 
to 0μ  only if Q oxC mC>>  (or, equivalently, F amε ε>> ),  i.e. for a high doping regime.  
Transconductance in field-effect transistors commonly degrades affected by electric stress, 
wear-out or ionizing radiation due to interface trap buildup. The field-effect mobility 
renormalization after externally induced interface trap capacitance alteration 

it it itC C C→ + Δ  can be expressed using Eq.86 via initial value ( )FE itCμ  
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+ +

. (87) 

Logarithmic swing which characterizes the ON OFFI I  ratio and equals numerically to the 
gate voltage alteration needed for current change by an order can be computed using Eq.83 
and Eq.54  as 
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This formula can be written down in a form more familiar from silicon MOSFET theory 
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Recall that the diffusion energy 2 / / 2D S Q Fe n Cε ε= ≅  plays here role of the thermal 
potential D Be k Tϕ =  for the subthreshold (non-degenerate) operation mode of the silicon 
FETs wherein QC  is negligible. Unlike the silicon FET case the subthreshold swing is a 
function of gate voltage. Excluding a small region nearby the Dirac point the latter 
expression yields an assessment of the logarithmic swing ln 10 S oxS en C≥ >>  1V/decade 
for “thick” oxides and “clean” interface ( Q oxC mC>> ) and ln 10 / 2FS m eε≅  for “thin” 
oxide  ( Q oxC mC<< ). 

5.4 Transit time through the channel length 
Using electric field distribution (Eq. 69) the transit time through the whole channel length 
can be computed in a following way 
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Performing direct integration one can explicitly get 
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This expression yields the drift flight time for the linear regime (when  D DSATV V<< ) 
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and the diffusion time for D DSATV V>  and low carrier density ( 1κ >> ) 
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6. Conclusion 

6.1 Applicability of diffusion-drift approximation 
The theory presented in this chapter relies significantly on macroscopic diffusion-drift 
approximation which is still the ground of practical device simulation. Diffusion-drift 
approximation is semi-classical by its nature and valid for only  small wave lengths  and  
high carrier density. Diffusion-drift and Boltzmann equation approach validity in graphene 
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where the channel capacitance CHC  is defined in Eq.54. Field-effect mobility FEμ  can be 
defined from Eq.84  as 
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“microscopic” scattering mechanisms 
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Note that the field-effect mobility, determined often immediately as a slope of the 
experimental conductivity vs gate voltage curves, is always less than truly microscopic 
mobility and significantly decreases nearby the charge neutrality point. In fact, FEμ  is close 
to 0μ  only if Q oxC mC>>  (or, equivalently, F amε ε>> ),  i.e. for a high doping regime.  
Transconductance in field-effect transistors commonly degrades affected by electric stress, 
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Logarithmic swing which characterizes the ON OFFI I  ratio and equals numerically to the 
gate voltage alteration needed for current change by an order can be computed using Eq.83 
and Eq.54  as 

Graphene Field Effect Transistors: Diffusion-Drift Theory 

 

495 

 ( )
( )

1 1
10log

ln 10 ln 10D S S

G S G CH G

d I dn enS
dV n dV C V

− −
⎛ ⎞ ⎛ ⎞

≡ = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
. (88) 

This formula can be written down in a form more familiar from silicon MOSFET theory 
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Recall that the diffusion energy 2 / / 2D S Q Fe n Cε ε= ≅  plays here role of the thermal 
potential D Be k Tϕ =  for the subthreshold (non-degenerate) operation mode of the silicon 
FETs wherein QC  is negligible. Unlike the silicon FET case the subthreshold swing is a 
function of gate voltage. Excluding a small region nearby the Dirac point the latter 
expression yields an assessment of the logarithmic swing ln 10 S oxS en C≥ >>  1V/decade 
for “thick” oxides and “clean” interface ( Q oxC mC>> ) and ln 10 / 2FS m eε≅  for “thin” 
oxide  ( Q oxC mC<< ). 

5.4 Transit time through the channel length 
Using electric field distribution (Eq. 69) the transit time through the whole channel length 
can be computed in a following way 
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This expression yields the drift flight time for the linear regime (when  D DSATV V<< ) 
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and the diffusion time for D DSATV V>  and low carrier density ( 1κ >> ) 
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6. Conclusion 

6.1 Applicability of diffusion-drift approximation 
The theory presented in this chapter relies significantly on macroscopic diffusion-drift 
approximation which is still the ground of practical device simulation. Diffusion-drift 
approximation is semi-classical by its nature and valid for only  small wave lengths  and  
high carrier density. Diffusion-drift and Boltzmann equation approach validity in graphene 
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depends on interrelation between basic spatial scales, namely, mean free path , the 
channel length L , carrier’s wavelength  at the Fermi energy 0 /F Fhvλ ε= . The condition 
L <   corresponds to ballistic transport. Inequalities F Lλ < <  represent  semi-classical case 
with weak scattering and well-defined dispersion law conditions.  Using independence of 
mobility on carrier density Sn in graphene and recalling Eq. 25 one might rewrite a 
wavelength smallness requirement as a condition for Sn  

Fλ <  ↔ 
3

12

0 0

2 103 10S
en
μ μ

⎛ ⎞
> ≅ × ⎜ ⎟⎜ ⎟

⎝ ⎠
cm-2 , 

where carrier’s mobility 0μ  is expressed in cm2 /(V s). Thusly at low electric field the 
diffusion-drift approximation is valid for not too small carrier densities. In fact semi-
classical description is rather suitable even for regions nearby the neutrality point due to 
presence of unavoidable disorder at the Dirac point with smooth potential relief. High 
transverse electric field near the drain leads to breaking of semi-classical approximation due 
to local lowering of  charge density. Strong electric field near the drain can separate e-h pairs 
shifting equilibrium between generation and recombination and increasing electric field-
induced non-equilibrium generation drain current. Quantum effects of inter-band 
interaction (so called “trembling” or “zitterbewegung”) (Katsnelson, 2006) become 
significant for low carrier densities. These effects are similar to generation and 
recombination of virtual electron-hole pairs. 

6.1 High-field effects 
As carriers are accelerated in an electric field their drift velocity tends to saturate at high 
enough electric fields. Current saturation due to velocity saturation has been discussed in 
recent electronic transport experiments on graphene transistors (Meric et al., 2008). The 
validity of the diffusion-drift equations can be empirically extended by introduction of a 
field-dependent mobility obtained from empirical models or detailed calculation to capture 
effects such as velocity saturation at high electric fields due to hot carrier effects 

 ( ) 0
0 1 / C

E
E E
μ

μ =
+

, (94) 

where 0μ  is the low field mobility, 0SATv v<  is saturation velocity, maintained  mainly due 
to optical phonon emission , 0~ / ...SAT SATE v μ  (1 – 5)×104 V/cm. Interrelation between 
electrostatic pinch-off discussed in the chapter and velocity saturation can be characterized 
with the dimensionless ratio (Zebrev, 1992) 
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There are thusly two distinctly different current saturation mechanisms. Electrostatically 
induced current pinch-off dominates in the devices with long channels and large oxC  
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Within the frame of diffusion-drift approximation validity the main qualitative difference 
between transport in graphene and in conventional silicon MOSFET is the specific form of   
dispersion law in graphene which lead to peculiarities in statistics and electrostatics of 
graphene field-effect transistor. All quantum and high electric field effects have remained 
beyond the scope of this chapter and should be subject of future works. 
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depends on interrelation between basic spatial scales, namely, mean free path , the 
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1. introduction

Since the experimental discovery of graphene in 2004 (Novoselov et al., 2004), the
investigation of graphene-based electronics and optoelectronics has quickly become one
of the most important research topics in condensed matter physics, nano-material science
and nano-electronics (Zhang et al., 2005; Berger et al., 2006). Due to its excellent electronic
transport, optical, and optoelectronic properties, such as high carrier density (up to 1013

cm−2) and high carrier mobility at room temperature (up to 20 m2/Vs) along with the
high optical transmittance in the air-graphene-wafer systems, graphene has been proposed
as an advanced material for new generation of electronic and optoelectronic devices.
Graphene-based electronic devices exhibit high carrier mobility and quasi ballistic transport
over sub-micron scales even at room temperature (Novoselov et al., 2005). It has already
been used to realize high-speed and high-frequency electronic devices such as field-effect
transistors (Castro et al., 2007), p-n junctions (González & Perfetto, 2008), high-frequency
devices (Lin et al., 2009), to mention but a few. Very recently, graphene has also been proposed
as an advanced transparent conducting material by utilizing its combined excellent transport
and optical properties (Eda et al., 2008). It has been shown that graphene can be used to
replace conventional indium tin oxide (ITO) transparent electrodes for making better and
cheaper optical displays such the LCDs and LEDs (Hogan, 2008). Presently, graphene-based
transparent electronics is a hot field of research for both fundamental studies and device
applications (Eda et al., 2008).
For the usage of graphene as optoelectronic and transparent electronic devices, the
investigation of its optical and optoelectronic properties is critical and essential. Recent
experimental and theoretical work has demonstrated and predicted some particular
and interesting optoelectronic properties in the infrared-to-visible spectral range for
air-graphene-wafer systems. In particular, the results obtained from optical transmission
(Kuzmenko et al., 2008) and infrared absorption (Li et al., 2008) measurements show the
following features. (i) The optical conductance per graphene layer is a universal value σ0 =
e2/(4h̄) in the visible frequency range (Kuzmenko et al., 2008; Li et al., 2008), which can be
viewed as an intrinsic property of two-dimensional massless fermions. (ii) The corresponding
light transmittance of monolayer and bilayer graphene on SiO2 or Si wafers are, respectively,
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about 0.98 and 0.96 in the visible bandwidth (Li et al., 2008; Nair et al., 2008). (iii) There is
an optical absorption window (Kuzmenko et al., 2008; Li et al., 2008; Choi et al., 2009) for
radiation photon energy smaller than 0.2 eV. The width and depth of this window depend
strongly on the temperature (Kuzmenko et al., 2008) and carrier density (or gate voltage) in
graphene samples (Li et al., 2008). This interesting finding implies that graphene can also be
used for infrared detection in ambient conditions. Further experimental investigation shows
that graphene can have strong intra- and inter-band transitions which can be substantially
modified through electrical gating, similar to the resistance tuning in graphene field-effect
transistors (Li et al., 2008; Wang et al., 2008). The optical and optoelectronic properties of
graphene-based electronic systems have also been studied theoretically (Vasko & Ryzhii,
2008; Falkovsky & Pershoguba, 2007; Satuber et al., 2008). Most of the theoretical results are
in line with the main experimental findings but are valid for low temperatures and only
electron scattering by acoustic phonons was considered (Vasko & Ryzhii, 2008). However,
most of the experimental studies of the optical properties of graphene systems have been
undertaken at relatively high temperatures and up to room temperature (Kuzmenko et al.,
2008; Li et al., 2008). In particular, the published theoretical work has not yet given a fully
satisfactory explanation of the optical absorption window, present in graphene in the infrared
bandwidth, that is observed experimentally by different kinds of measurements (Kuzmenko
et al., 2008; Li et al., 2008; Choi et al., 2009). Therefore, in this study we examine how carriers
in graphene respond to the applied radiation field in order to have a better understanding
of the optoelectronic features of graphene, especially in the infrared wavelength regime.
Here we would like to point out that graphene is a gapless electronic system in which
optical phonon energy is about 196 meV (Ando, 2007). Hence, in contrast to a conventional
semiconductor materials which normally have a band-gap much lager than the phonon
energy, phonon scattering is expected to play an important role in affecting the electronic
transitions accompanied by the emission and absorption of photons in graphene, especially in
the infrared bandwidth. For the gapless graphene, the electrons in the valence band can gain
the energy from the radiation field via optical absorption and be excited into the conduction
band, while the electrons in the conduction band can lose energy via emission of phonons
and be relaxed into the valence band. Together with the fact that the electrons interact more
strongly with phonons than with photons, carrier-phonon interaction is an important factor in
affecting the inter-band electronic transitions and, therefore, in determining the optoelectronic
properties of graphene at relatively high-temperatures. In this work we develop a systematic
approach to calculate the electronic and optical coefficients of graphene in the presence of a
radiation field. In such an approach, the electron-photon and electron-phonon couplings are
included in the calculation and their consequences are examined in a consistently theoretical
manner.

2. Theoretical approach

2.1 Electronic transition rate
We consider a configuration where the graphene sheet is placed on the (x, y) plane on
top of a dielectric wafer such as SiO2/Si substrate. A light field is applied perpendicular
to the graphene layer and is polarized linearly along the x direction of the system. In
the effective-mass approximation, a carrier (electron or hole) in a monolayer graphene can
be described by Weyl’s equation for a massless neutrino (McCann & Falko, 2006). The
single-particle Hamiltonian that describes a Dirac quasi-particle in the π bands near the K
point can be obtained from, e.g., the usual k · p approach. We assume that the system under
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study can be separated into the carriers of interest and the rest of the graphene crystal. Then
the Hamiltonian that describes a carrier-photon-phonon system in graphene is:

H(t) = H0 + Hco(t) + Hph + Hcp(t). (1)

Here,

H0 = γ

[
0 �kx − i�ky

�kx + i�ky 0

]
(2)

is the Hamiltonian for a Dirac quasi-particle and γ = h̄vF is the band parameter with
vF = 108 cm/s being the Fermi velocity for a carrier in graphene, and �kx = −i∂/∂x is the
momentum operator along the x direction. The Schrödinger equation regarding H0 can be
solved analytically. The corresponding eigenvalue and eigenfunction are respectively

Eλ(k) = λγ|k| = λγk (3)

and
ψλk(r) = |k, λ >= 2−1/2[1, λeiφ]eik·r (4)

in the form of a row matrix. Here, k = (kx , ky) is the wavevector for a carrier, k =
√

k2
x + k2

y,
r = (x, y), λ = +1 for an electron and λ = −1 for a hole, and φ is the angle between k
and the x direction. Using the usual coulomb gauge, the radiation field can be included by
taking kx → kx − eA(t)/h̄ in Eq. (2) with A(t) being the vector potential of the radiation field
which is polarized along the x-direction. Thus, we can obtain the carrier-photon interaction
Hamiltonian, which reads

Hco(t) =
γeA(t)

h̄

[
0 1
1 0

]
, (5)

where A(t) = (F0/ω)sin(ωt) with F0 and ω being, respectively, the electric field strength and
frequency of the radiation field. Furthermore, Hph is the phonon Hamiltonian and

Hcp(t) = Vqaqei(q·r−ωqt) + V∗
q a†

qe−i(q·r+ωqt) (6)

describes carrier interaction with 2D-like phonons, where q = (qx, qy) is the phonon wave
vector in the (x, y) plane, (a†

q, aq) are the canonical conjugate coordinates of the phonon
system, Vq is the carrier-phonon interaction coefficient, and ωq is the phonon frequency
in graphene. For the case of a relatively weak radiation field and weak carrier-phonon
interaction, Hco(t) and Hcp(t) can be treated as perturbations. Using Fermi’s golden rule
(Stroscio & Mitra, 2005), the first-order steady-state electronic transition rate is given by

Wλλ�(k, k�) = ∑
ν

Wν
λλ�(k, k�); (7)

it is the probability for scattering of a carrier from a state |k, λ > to a state |k�, λ� > due to
interaction with photons and phonons. Moreover, ν refers to different scattering mechanisms.
In Eq. (7) the rate

Wco,±
λλ� (k, k�) =

2π

h̄

( eF0γ

2h̄ω

)2 1 + λλ�cos(2φ)
2

δk�,kδ[Eλ(k)− Eλ� (k�)± h̄ω]
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ν

Wν
λλ�(k, k�); (7)
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In Eq. (7) the rate

Wco,±
λλ� (k, k�) =

2π

h̄

( eF0γ

2h̄ω

)2 1 + λλ�cos(2φ)
2

δk�,kδ[Eλ(k)− Eλ� (k�)± h̄ω]
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is induced by direct carrier-photon interaction via absorption (+ sign) and emission (− sign)
of a photon with an energy h̄ω, and φ is the angle between k and the x axis. The rate
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is induced by carrier-phonon interaction, where Nq = (eh̄ωq/kBT − 1)−1 is the phonon
occupation number, |Ucp

λλ�(q, θ)|2 = | < k�, λ� |Vq|k, λ > |2, θ is the angle between k� and
k, and the terms Nq and Nq + 1 correspond to the absorption and emission of a phonon,
respectively. The rate

Wcop
λλ� (k, k�) =
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Nq√

Nq + 1
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eF0γ

2h̄ω ∑
k1,λ1

|Ucp
λ1λ� (q, θ)|2
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describes the coupled carrier-photon-phonon scattering via absorption and emission of both
photons and phonons. This term also represents the indirect optical and electronic transition
channels.
Here we consider only carrier interaction with optical phonons. It is known that at relatively
high-temperatures carriers in graphene interact more strongly with optical phonons (Xu et al.,
2009). This coupling can result in a relatively large energy relaxation due to the inelastic nature
of the scattering. Moreover, the published experimental results (Kuzmenko et al., 2008; Li et
al., 2008; Choi et al., 2009) show that the optical absorption window in graphene occurs near
the photon energy regime h̄ω ∼ 0.1 eV. This energy is much larger than the acoustic phonon
energy in graphene. As a result, at relatively high-temperatures we can neglect the effect of the
quasi-elastic scattering by acoustic phonons. On the basis of the valence-force-field model, the
coupling coefficient for carrier interaction with long-wavelength optical phonons in graphene
is (Ando, 2007; Tse & Sarma, 2007)

Vμ
q = −gγMμ

q. (8)

Here g = (h̄B/b2)/
√

2ρh̄ω0, ρ � 6.5 × 10−8 g/cm2 is the areal density of the graphene sheet,
ω0 = 196 meV the optical phonon frequency at the Γ-point, B = −d(lnγ0)/d(lnb) ∼ 2 is
a dimensionless parameter that relates to the change of the resonance integral γ0 between
nearest neighbor carbon atoms (Ando, 2007), and b = a/

√
3 is the equilibrium bond length.

Furthermore,

Ml
q =

[
0 −e−iφq

eiφq 0

]
and Mt

q =
[

0 ie−iφq

ieiφq 0

]
, (9)

describe the coupling with, respectively, longitudinal (l) and transverse (t) phonon modes,
and φq is the angle between q and the x axis. The carrier-phonon scattering matrix elements
are

|Ul
λλ�(q, k)| = (gγ/

√
2)[1 − λ�λcos(φ + φ� − 2φq)]1/2

and
|Ut

λλ�(q, k)| = (gγ/
√

2)[1 + λ�λcos(φ + φ� − 2φq)]1/2.
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2.2 Balance equations
In this research work we employ the semi-classical Boltzmann equation (BE) to study
the response of the carriers in graphene to an applied radiation field. It is known that
the Boltzmann equation is a powerful tool to study theoretically the linear and nonlinear
responses of electrons in an electron gas system under the action of external driving ac and
dc fields. In contrast to the Kubo formula based quantum theory which handles essentially
the linear response, the BE can be used to study nonlinear transport and optical effects
(Xu et al., 1991). In particular, the balance equation approach based on the BE can be used
to study non-equilibrium electronic transport and to calculate corresponding coefficients
self-consistently such as the electron density and electron drift velocity in different states
(Xu, 2005). Hence, we would like to use a consistent and tractable theory to calculate both
photo-excited carrier density and photo-induced electron energy loss in graphene. The BE
based balance equation approach is therefore a good theoretical option. It should be noted that
although the momentum- and energy-balance equations proposed by Lei and Ting (Lei, 1998)
based on quantum approach can handle the nonlinear transport of electrons under strong dc
and/or intense ac fields, they can only be used to calculate the averaged electron drift velocity
and electron energy loss rate. This approach cannot be applied to evaluate the electron density
in different states. Furthermore, by employing the balance equation approach on the basis of
the BE to study graphene (Xu et al., 2009; Dong et al., 2008), we have already achieved a
good agreement between theoretical results and experimental findings both qualitatively and
quantitatively. The Boltzmann transport theory has also been applied to investigate graphenen
system by other authors (Vasko & Ryzhii, 2008). It was found (Vasko & Ryzhii, 2008) that for a
homogeneous graphene system with relatively high carrier density and long mean free path
(which is indeed the case for graphene), such a theory can lead to the same results as those
obtained from quantum transport theory (Falkovsky & Pershoguba, 2007; Satuber et al., 2008).
For non-degenerate statistics, the BE can be written as

∂ fλ(k)
∂t

= gs gv ∑
λ�,k�,ν

[Fν
λ�λ(k�, k)− Fν

λλ�(k, k�)], (10)

where gs = 2 and gv = 2 account, respectively, for spin and valley degeneracy, fλ(k)
is the momentum distribution function for a carrier in a state |k, λ >, and Fν

λ�λ(k�, k) =
fλ� (k�)[1 − fλ(k)]Wν

λ�λ(k�, k). Because the radiation field has been included in the electronic
transition rate, the force term induced by this field does not appear in the drift term on
the left-hand side of the BE to avoid double-counting. There is no simple and analytical
solution to Eq. (10) with Wλ�λ(k�, k) given by Eq. (7). In the present study we employ the
usual balance-equation approach to solve the problem. For the first moment, the mass-balance
equation (or rate equation) can be derived after operating with gsgv ∑k on both sides of the
BE. The obtained result is

∂ne

∂t
=

∂nh
∂t

=
nh

τν−+
− ne

τν
+−

, (11)

where 1/τν
λ�λ = (16/nλ� ) ∑ν Fν

λ�λ is the rate for scattering of a carrier from band λ� to band
λ due to the νth scattering center, Fν

λ�λ = ∑k�,k Fν
λ�λ(k�, k), and ne and nh are, respectively,

the electron and hole densities in different bands. This equation implies that only inter-band
scattering (i.e., λ� �= λ) can alter the number of carries in a band of the graphene system. It
also reflects the fact that the change of the electron number in the conduction band equals that
of the hole number in the valence band, namely this equation expresses the charge number
conservation in the system.
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system by other authors (Vasko & Ryzhii, 2008). It was found (Vasko & Ryzhii, 2008) that for a
homogeneous graphene system with relatively high carrier density and long mean free path
(which is indeed the case for graphene), such a theory can lead to the same results as those
obtained from quantum transport theory (Falkovsky & Pershoguba, 2007; Satuber et al., 2008).
For non-degenerate statistics, the BE can be written as

∂ fλ(k)
∂t

= gs gv ∑
λ�,k�,ν

[Fν
λ�λ(k�, k)− Fν

λλ�(k, k�)], (10)

where gs = 2 and gv = 2 account, respectively, for spin and valley degeneracy, fλ(k)
is the momentum distribution function for a carrier in a state |k, λ >, and Fν

λ�λ(k�, k) =
fλ� (k�)[1 − fλ(k)]Wν

λ�λ(k�, k). Because the radiation field has been included in the electronic
transition rate, the force term induced by this field does not appear in the drift term on
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For the second moment, the energy-balance equation can be derived by operating with
∑k,λ Eλ(k) on both sides of the BE. From the energy-balance equation we obtain the energy
transfer rate for a carrier, Pλ = ∑k Eλ(k)∂ fλ(k)/∂t, and the total energy transfer rate of the
system is P = P+ + P− = Pph − Pop, where

Pop = 4h̄ω ∑
λ�,λ

(Fco,+
λλ� − Fco,−

λλ� + Fcop
λλ� ) (12)

is the energy transfer rate induced by optical absorption and emission via direct and indirect
transition channels, and Fco,±

λλ� describes the absorption (+) and emission (-) of photons.
Further,

Pph = ±4 ∑
λ�,λ

h̄ωq(Fcp,±
λλ� + Fcop

λλ� ) (13)

is the energy transfer rate induced by emission or absorption of optical phonons. In the steady
state, P = 0 and Pop = Pph gives an energy conservation law, namely the carriers in the system
gain energy from the radiation field via absorption of photons and phonons and lose energy
via emission of optical phonons and photons.
For coupled carrier-photon-phonon scattering via absorption and emission of photons and
optical phonons, we have

Wcop
λλ� (k, k�) =

4π

h̄

[ √
N0√

N0 + 1

]
eF0gγ2

2h̄ω
(cosΦ + sinΦ)(cosφ + sinφ)

×δk�,k+qδ[Eλ(k)− Eλ�(k�) + h̄ω ± h̄ωq],

with Φ = (φ + φ� − 2φq)/2. As a result, we explicitly obtain

Fcop
+− = Fcop

−+ = 0. (14)

This result implies that in graphene the coupled carrier-photon-phonon interaction via
coupling with long wavelength optical phonons does not contribute to electronic transitions.
In the steady state, i.e., for dne/dt = dnh/dt = 0, the mass-balance equation becomes

Fco,+
−+ + Fcp,−

−+ = Fcp,+
+− + Fco,−

+− , (15)

which reflects the fact that electrons pumped from the valence band into the conduction band
are balanced by those relaxed from the conduction band into the valence band. Furthermore,
the energy transfer rate induced by optical absorption in the steady state is

Pop = 4h̄ω ∑
λ�,λ

[Fco,+
λλ� − Fco,−

λλ� ]. (16)

When a graphene sheet is subjected to a radiation field, electrons in the occupied states, e.g.,
in the lower energy λ = − band, are excited into the empty states, e.g., of the higher energy
λ = + band, so that an optical absorption occurs.
One of the advantages of the balance-equation approach is that we can avoid the difficulties
to solve the BE directly and instead use a certain form of the carrier distribution function
to calculate the physical quantities. Here we use the Fermi-Dirac type of statistical energy
distribution as approximately the momentum distribution for a carrier, i.e., fλ(k) � fλ(λγk),
with fλ(x) = [1 + e(x−μ∗

λ)/kBT]−1 where μ∗
λ is the quasi Fermi energy (or quasi chemical

potential) for electrons or holes in the presence of the radiation field. For carrier-photon
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interaction via inter- and intra-band transition channels we have Fco,+
+− = Fco,−

−+ = Fco,−
++ =

Fco,−
−− = 0,

Fco,+
−+ =

e2F2
0

32h̄2ω
f−(− h̄ω

2
)[1 − f+(

h̄ω

2
)] (17)

is for optical absorption from the valence band to the conduction band,

Fco,−
+− =

e2F2
0

32h̄2ω
f+(

h̄ω

2
)[1 − f−(− h̄ω

2
)] (18)

is for optical emission from the conduction band to the valence band, and

Fco,+
λλ =

e2F2
0

8πh̄4ω3

ωτλ

1 + (ωτλ)2

∫ ∞

0
dEE fλ(λE)[1 − fλ(λE)] (19)

is induced by intra-band optical absorption in the conduction band (λ = 1) and valence
band (λ = −1) with τλ being the energy relaxation time for an electron or a hole in different
bands. In fact, this term is caused by the usual free-carrier absorption channels. The energy
relaxation time is used to describe the broadening of the scattering states, which can result in a
spectrum structure for the intra-band optical absorption. It should be noted that for intra-band
free-carrier absorption, the momentum conservation law still holds (i.e., for optical transitions
the electron momentum at initial and final states must be the same during a scattering event, as
given by Eq. (4)). However, in the presence of the external driving fields such as the radiation
fields and of the scattering centers such as impurities and phonons, the scattering states are
damped and broadened. As a result, the δ-function in Eq. (7) for intra-band optical transition
can be replaced through Poisson Kernel: δ(E) → (Eλ/π)(E2 + E2

λ)−1 with Eλ = h̄/τλ being
the energy broadening of the states.
For carrier-phonon interaction via different transition channels, we have Fcp,−

+− = Fcp,+
−+ = 0,

Fcp,+
+− =

g2(N0 + 1)
2πh̄γ2

∫ h̄ω0

0
dxx(h̄ω0 − x) f+(x)[1 − f−(x − h̄ω0)] (20)

is for phonon emission and corresponding electronic transition from the conduction band to
the valence band, with N0 = [eh̄ω0/kBT − 1]−1 and ωq → ω0 a constant at the Γ-point for
long-wavelength optical phonons, and

Fcp,−
−+ =

g2N0

2πh̄γ2

∫ h̄ω0

0
dxx(h̄ω0 − x) f−(−x)[1 − f+(h̄ω0 − x)], (21)

is induced by the absorption of phonons and corresponding electronic transition from the
valence band to the conduction band.

2.3 Photo-induced carriers
We now consider a graphene layer in which the conducting carriers are electrons (or a positive
gate voltage is applied) in the absence of the radiation field (or in the dark). When a light field
is applied to the system, the electrons in the valence band are excited into the conduction band
so that photo-excited carriers can be induced. If n0 is the electron density in the absence of the
radiation field (or dark density) at F0 = 0, the electron density at F0 �= 0 is ne = n0 + Δne. On
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account of charge number conservation we have Δne = nh, the hole density in the presence of
radiation field. Thus, we get

ne = n0 + nh, (22)

with
ne = gs gv ∑

k
f+(k) =

2
πγ2

∫ ∞

0

dx x

e(x−μ∗
e )/kBT + 1

(23)

and

nh = ne − n0 = gsgv ∑
k

[1 − f−(k)] =
2

πγ2

∫ ∞

0

dx x

e(x+μ∗
h)/kBT + 1

. (24)

With the mass-balance equation given by Eq. (15) and the requirement of the charge number
conservation shown as Eq. (22) we can determine the quasi chemical potentials μ∗

λ for
electrons and holes. Then the electron density ne and hole density nh can be obtained in the
presence of the radiation field F0. We notice that this approach can also be applied to p-type
graphene samples, when a negative gate voltage is applied so that the conducting carriers are
holes in the valence band in the dark.

2.4 Optical conductance and transmission
With the obtained carrier chemical potential μ∗

λ we can calculate Fco,±
λλ� . From the carrier energy

transfer rate induced by optical absorption, described by Eq. (16), we can calculate the optical
conductance σ(ω) for graphene using the expression (Wei et al., 2007)

σ(ω) = 2Pop/F2
0 = 8h̄ω ∑

λ,λ�
(Fco,+

λ,λ� − Fco,−
λ,λ� )/F2

0 . (25)

Moreover, the transmission coefficient for a device with a graphene layer on top of a substrate,
namely for an air-graphene-wafer system, is given by (Satuber et al., 2008)

T(ω) =
√

�2

�1

4(�1�0)2

|(√�1�2 + �1)�0 +
√

�1σ(ω)/c|2 , (26)

where �1 � 1 for air, �2 is the effective high-frequency dielectric constant of the substrate,
and �0 and c are, respectively, the dielectric constant and the speed of light in vacuum.
It indicates that the light transmittance of the graphene layer in an air-graphene-substrate
system depends on the dielectric constant of the substrate material. Moreover, a substrate
with a larger dielectric constant can result in a smaller light transmittance for the graphene
layer.

3. Numerical results and discussions

In the numerical calculations we consider a typical air-graphene-SiO2/wafer system. Thus,
�1 � �0 = 1 and �2 � 2.0. The effect of the dielectric mismatch between the graphene layer
and the SiO2 substrate has been taken into account using the image charge method (Dong et
al., 2008). Furthermore, it has been obtained experimentally (Sun et al., 2008) that in graphene
the energy relaxation time is about τλ ∼ 1 ps for high-density samples. Thus, we take τλ ∼ 1
ps in the calculation for free-carrier absorption. A typical electric field strength of the radiation
field F0 = 500 V/cm is used in most of the calculations.
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Fig. 1. Photo-excited electron density Δne as a function of the radiation wavelength, at
temperature T = 150 K and a fixed dark electron density n0 = 5 × 1011 cm−2, for different
strengths of the radiation field F0. The inset shows Δne as a function of F0 at a fixed radiation
wavelength L = 6.0 μm. Note that Δne is equal to nh, the photo-induced hole density.

3.1 Photo-induced carrier densities
In Fig. 1 we show the dependence of the photon-excited electron density Δne on the radiation
wavelength (L) and radiation intensity for a fixed dark electron density n0 and a temperature
T = 150 K. Δne vs the strength of the radiation field F0 is also shown in the inset for
fixed radiation wavelength L = 6.0 μm. It should be noted that Δne = nh is also the
photo-induced hole density for a n-type graphene in the dark. As expected, the photo-induced
carrier densities increase with radiation intensity I ∼ F2

0 . For a typical radiation intensity
with F0 about 500 V/cm, several percents of photo-induced electron density can be achieved
in graphene, similar to photo-excited carriers in conventional semiconductors. We notice
that when the radiation wavelength is about L ∼ 6 μm Δne is maximum. Because the
optical phonon wavelength in graphene is about 6 μm, the peak of Δne appears at about this
wavelength. For L > 6 μm, Δne decreases sharply with increasing L. These results indicate
that in graphene the photo-induced carrier densities can be observed clearly in the infrared
bandwidth.
In Fig. 2 we show the photo-excited electron density Δne as a function of the radiation
wavelength, at fixed dark electron density and radiation intensity, for different temperatures.
We see that the photo-excited carrier densities are very sensitive to temperature. Δne decreases
quickly with increasing temperature. Such a feature is typical when scattering by optical
phonons is present. With increasing temperature, the phonon occupation number N0 =
[eh̄ω0/kBT − 1]−1 increases sharply so that a stronger phonon scattering occurs. The strong
phonon scattering can bring electrons from the conduction band to the valence band via
phonon emission. As a consequence, at relatively high temperatures less photo-excited
electrons remain in the conduction band. Accordingly, Δne decreases with increasing
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where �1 � 1 for air, �2 is the effective high-frequency dielectric constant of the substrate,
and �0 and c are, respectively, the dielectric constant and the speed of light in vacuum.
It indicates that the light transmittance of the graphene layer in an air-graphene-substrate
system depends on the dielectric constant of the substrate material. Moreover, a substrate
with a larger dielectric constant can result in a smaller light transmittance for the graphene
layer.

3. Numerical results and discussions

In the numerical calculations we consider a typical air-graphene-SiO2/wafer system. Thus,
�1 � �0 = 1 and �2 � 2.0. The effect of the dielectric mismatch between the graphene layer
and the SiO2 substrate has been taken into account using the image charge method (Dong et
al., 2008). Furthermore, it has been obtained experimentally (Sun et al., 2008) that in graphene
the energy relaxation time is about τλ ∼ 1 ps for high-density samples. Thus, we take τλ ∼ 1
ps in the calculation for free-carrier absorption. A typical electric field strength of the radiation
field F0 = 500 V/cm is used in most of the calculations.
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Fig. 1. Photo-excited electron density Δne as a function of the radiation wavelength, at
temperature T = 150 K and a fixed dark electron density n0 = 5 × 1011 cm−2, for different
strengths of the radiation field F0. The inset shows Δne as a function of F0 at a fixed radiation
wavelength L = 6.0 μm. Note that Δne is equal to nh, the photo-induced hole density.

3.1 Photo-induced carrier densities
In Fig. 1 we show the dependence of the photon-excited electron density Δne on the radiation
wavelength (L) and radiation intensity for a fixed dark electron density n0 and a temperature
T = 150 K. Δne vs the strength of the radiation field F0 is also shown in the inset for
fixed radiation wavelength L = 6.0 μm. It should be noted that Δne = nh is also the
photo-induced hole density for a n-type graphene in the dark. As expected, the photo-induced
carrier densities increase with radiation intensity I ∼ F2

0 . For a typical radiation intensity
with F0 about 500 V/cm, several percents of photo-induced electron density can be achieved
in graphene, similar to photo-excited carriers in conventional semiconductors. We notice
that when the radiation wavelength is about L ∼ 6 μm Δne is maximum. Because the
optical phonon wavelength in graphene is about 6 μm, the peak of Δne appears at about this
wavelength. For L > 6 μm, Δne decreases sharply with increasing L. These results indicate
that in graphene the photo-induced carrier densities can be observed clearly in the infrared
bandwidth.
In Fig. 2 we show the photo-excited electron density Δne as a function of the radiation
wavelength, at fixed dark electron density and radiation intensity, for different temperatures.
We see that the photo-excited carrier densities are very sensitive to temperature. Δne decreases
quickly with increasing temperature. Such a feature is typical when scattering by optical
phonons is present. With increasing temperature, the phonon occupation number N0 =
[eh̄ω0/kBT − 1]−1 increases sharply so that a stronger phonon scattering occurs. The strong
phonon scattering can bring electrons from the conduction band to the valence band via
phonon emission. As a consequence, at relatively high temperatures less photo-excited
electrons remain in the conduction band. Accordingly, Δne decreases with increasing
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Fig. 2. Photo-excited electron density Δne as a function of the radiation wavelength, for fixed
dark electron density n0 = 1 × 1012 cm−2 and radiation intensity F0 = 500 V/cm, at different
temperatures.

Fig. 3. Δne as a function of the radiation wavelength at a temperature T = 150 K and fixed
strength of the radiation field F0 = 500 V/cm, for different dark electron densities.
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temperature. These results suggest that phonon scattering is an important mechanism in
affecting the photo-excited carrier densities in graphene.
In Fig. 3 Δne is plotted as a function of the radiation wavelength, for T = 150 K and F0 = 500
V/cm, for different dark electron densities. The main feature in Fig. 3 is that the photo-induced
carrier density ratio Δne/n0 decreases with increasing dark electron density n0. At relatively
weak levels of light excitation Δne changes only by several percents ( see also Figs. 1 and 2).
This implies that the change of the quasi Fermi levels in the system due to a weak excitation
is not very significant. A larger n0 means a higher Fermi level in the conduction band in the
absence of the radiation field. As we know, the electrons make transitions mainly from the
occupied states to the empty states in an electron gas system. For larger n0 only the higher
energy states above the Fermi level are available for photo-induced electrons to be excited to.
Thus, larger photon energy (or shorter wavelength radiation) is required to excite electrons
from the valence band to the conduction band. On the other hand, because of the linear energy
spectrum for carriers in graphene, larger energy states correspond to larger momentum states
in the conduction band. Since the electron-phonon scattering alters both the energy and
momentum, as required by the corresponding energy and momentum conservation laws,
larger momentum states can result in stronger electron-phonon coupling. Again, the strong
phonon scattering can reduce the photo-induced electron density in the conduction band.
Therefore, the densities shown in Fig. 3 are, at least partly, the result of electron-phonon
interaction. Moreover, it should be noted that the dark carrier density in graphene can be
modulated effectively by applying a gate voltage (Li et al., 2008; Wang et al., 2008). Hence, the
densities of photo-induced carriers can be modulated electrically as well.
The main results from Figs. 1 - 3 are as follows. (i) The photo-induced electron density
increases with radiation wavelength forL < 6.0 μm. (ii) The peak of the photo-excited electron
density can be observed around L ∼ 6.0 μm, which corresponds to the optical phonon energy
h̄ω0 = 196 meV in graphene. (iii) The photo-induced electron density decreases rapidly with
increasing radiation wavelength for L > 6.0 μm. When a graphene sample is subjected to a
radiation field and the electron-phonon interaction is present, electrons in the valence band
can gain energy from the radiation field through optical absorption and be excited into the
conduction band, while electrons in the conduction band can lose energy via emission of
phonons and be relaxed into the valence band. The balance of these two competing processes
results in the photo-induced carriers in the system in the steady state. As we know, the optical
phonon emission occurs when the electron energy is larger than the optical phonon energy
(Xu et al., 1993). For L < 6.0 μm electrons located around the top of the valence band can
gain a photon energy h̄ω > h̄ω0 via optical absorption and be excited into the conduction
band. These electrons can lose energy h̄ω0 through emission of optical phonons and be relaxed
into the empty states of the valence band. This is why photo-excited carrier densities increase
with the radiation wavelength for L < 6.0 μm. At relatively long-wavelength radiations for
L > 6.0 μm, the electrons around the top of the valence band gain energy h̄ω < h̄ω0 and
are excited into the conduction band. However, when the electron energy is less than the
optical phonon energy electronic transitions via phonon emission are much less likely (Xu
et al., 1993). Thus, for h̄ω < h̄ω0 the electrons in the conduction band are less likely to be
relaxed into the valence band though electron-phonon coupling. This is the main reason why
the photo-excited carrier densities decrease sharply with increasing radiation wavelength
for h̄ω < h̄ω0. When the photon energy is close to the optical phonon energy h̄ω ∼ h̄ω0,
inter-band electronic transitions can occur through a process in which the electrons gain a
photon energy h̄ω from the radiation field and lose a phonon energy h̄ω0 via phonon emission.

511
Photo-Induced Carrier Density, Optical
Conductance and Transmittance in Graphene in the Presence of Optic-Phonon Scattering



Fig. 2. Photo-excited electron density Δne as a function of the radiation wavelength, for fixed
dark electron density n0 = 1 × 1012 cm−2 and radiation intensity F0 = 500 V/cm, at different
temperatures.

Fig. 3. Δne as a function of the radiation wavelength at a temperature T = 150 K and fixed
strength of the radiation field F0 = 500 V/cm, for different dark electron densities.
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temperature. These results suggest that phonon scattering is an important mechanism in
affecting the photo-excited carrier densities in graphene.
In Fig. 3 Δne is plotted as a function of the radiation wavelength, for T = 150 K and F0 = 500
V/cm, for different dark electron densities. The main feature in Fig. 3 is that the photo-induced
carrier density ratio Δne/n0 decreases with increasing dark electron density n0. At relatively
weak levels of light excitation Δne changes only by several percents ( see also Figs. 1 and 2).
This implies that the change of the quasi Fermi levels in the system due to a weak excitation
is not very significant. A larger n0 means a higher Fermi level in the conduction band in the
absence of the radiation field. As we know, the electrons make transitions mainly from the
occupied states to the empty states in an electron gas system. For larger n0 only the higher
energy states above the Fermi level are available for photo-induced electrons to be excited to.
Thus, larger photon energy (or shorter wavelength radiation) is required to excite electrons
from the valence band to the conduction band. On the other hand, because of the linear energy
spectrum for carriers in graphene, larger energy states correspond to larger momentum states
in the conduction band. Since the electron-phonon scattering alters both the energy and
momentum, as required by the corresponding energy and momentum conservation laws,
larger momentum states can result in stronger electron-phonon coupling. Again, the strong
phonon scattering can reduce the photo-induced electron density in the conduction band.
Therefore, the densities shown in Fig. 3 are, at least partly, the result of electron-phonon
interaction. Moreover, it should be noted that the dark carrier density in graphene can be
modulated effectively by applying a gate voltage (Li et al., 2008; Wang et al., 2008). Hence, the
densities of photo-induced carriers can be modulated electrically as well.
The main results from Figs. 1 - 3 are as follows. (i) The photo-induced electron density
increases with radiation wavelength forL < 6.0 μm. (ii) The peak of the photo-excited electron
density can be observed around L ∼ 6.0 μm, which corresponds to the optical phonon energy
h̄ω0 = 196 meV in graphene. (iii) The photo-induced electron density decreases rapidly with
increasing radiation wavelength for L > 6.0 μm. When a graphene sample is subjected to a
radiation field and the electron-phonon interaction is present, electrons in the valence band
can gain energy from the radiation field through optical absorption and be excited into the
conduction band, while electrons in the conduction band can lose energy via emission of
phonons and be relaxed into the valence band. The balance of these two competing processes
results in the photo-induced carriers in the system in the steady state. As we know, the optical
phonon emission occurs when the electron energy is larger than the optical phonon energy
(Xu et al., 1993). For L < 6.0 μm electrons located around the top of the valence band can
gain a photon energy h̄ω > h̄ω0 via optical absorption and be excited into the conduction
band. These electrons can lose energy h̄ω0 through emission of optical phonons and be relaxed
into the empty states of the valence band. This is why photo-excited carrier densities increase
with the radiation wavelength for L < 6.0 μm. At relatively long-wavelength radiations for
L > 6.0 μm, the electrons around the top of the valence band gain energy h̄ω < h̄ω0 and
are excited into the conduction band. However, when the electron energy is less than the
optical phonon energy electronic transitions via phonon emission are much less likely (Xu
et al., 1993). Thus, for h̄ω < h̄ω0 the electrons in the conduction band are less likely to be
relaxed into the valence band though electron-phonon coupling. This is the main reason why
the photo-excited carrier densities decrease sharply with increasing radiation wavelength
for h̄ω < h̄ω0. When the photon energy is close to the optical phonon energy h̄ω ∼ h̄ω0,
inter-band electronic transitions can occur through a process in which the electrons gain a
photon energy h̄ω from the radiation field and lose a phonon energy h̄ω0 via phonon emission.
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Fig. 4. Contribution to the total optical conductance (solid line) from different transition
channels at room temperature for a fixed dark electron density n0 = 1 × 1012 cm−2. Here
σ0 = e2/(4h̄) and σ−+ (dashed curve) is for transition from valence band (−) to conduction
band (+). The curves for intra-band transitions, σ++ and σ−−, coincide roughly.

Thus, a resonant transition occurs in graphene. Such a mechanism is electrically equivalent to
the electro-phonon resonance effect (Xu et al., 1993) proposed previously by us. As a result,
the strongest inter-band electronic transitions can occur for h̄ω ∼ h̄ω0. That is, a peak of
the photo-induced carrier density can be observed in graphene when the radiation frequency
is close to the optical phonon frequency. The theoretical results discussed here indicate that
in gapless graphene the scattering by optical phonons plays an important role in affecting
photo-excited carrier densities.

3.2 Optical conductance and transmission
In Fig. 4, we show the contributions from different transition channels to the optical
conductance σ(ω) or optical absorption for a fixed dark electron density n0 at room
temperature. We notice the following features. (i) Inter-band transitions contribute to the
optical absorption in the short-wavelength regime (L < 3 μm), whereas intra-band transitions
give rise to the long-wavelength optical absorption. (ii) The optical absorption varies very
little upon varying the radiation frequency in the short-wavelength regime (L < 3 μm),
whereas the optical conductance or absorption coefficient depends strongly on the radiation
wavelength in the long-wavelength regime (L > 3 μm). (iii) The optical conductance in
the short-wavelength regime is a universal value σ0 = e2/(4h̄) in monolayer graphene as
discovered experimentally (Kuzmenko et al., 2008; Li et al., 2008; Nair et al., 2008). (iv) More
interestingly, there is an infrared absorption window in the 4 ∼ 100 μm wavelength range. As
expected, inter-band transitions require larger photon energy. Intra-band transitions, which
are caused by the usual free-carrier absorption, occur under low photon energy radiation.
It is a common feature for free-carrier absorption that the strength of the optical absorption
increases rapidly with radiation wavelength (Li, 2006). We find that the optical absorption
window observed experimentally (Kuzmenko et al., 2008; Li et al., 2008; Choi et al., 2009) is
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Fig. 5. (a) A graphene system in the absence of the radiation field (F0 = 0). The conducting
carriers are electrons with a Fermi energy μ∗

e in the conduction band. The hatched area shows
the occupied states. (b) Optical absorption channels in the presence of a radiation field
(F0 �= 0). Here μ∗

e and μ∗
h are the quasi Fermi energies for, respectively, electrons and holes

and there are three optical absorption channels: α−+, α++, and α−−. h̄ω0 is the energy of an
emitted optical phonon.

induced by the competing absorption channels due to inter- and intra-band scattering events
in graphene. This can explain and reproduce recent experimental findings (Kuzmenko et al.,
2008; Li et al., 2008; Choi et al., 2009).
The interesting features of optical absorption in graphene can be understood with the help of
Fig. 5. When the radiation field is absent, there is a single Fermi level (or chemical potential)
in the conduction band in a n-type graphene sample (or in the presence of a positive gate
voltage). In this case all states below μ∗

e are occupied by electrons as shown in Fig. 5 (a).
When a radiation field is applied to the system (see Fig. 5 (b)), the electrons in the valence
band can gain energy from the radiation field and be excited into the conduction band via
absorption of photons. Thus, the electron density in the conduction band increases and so
does the quasi Fermi level μ∗

e for electrons. Meanwhile, the holes are left in the valence band
and a quasi Fermi level μ∗

h is established in this band for them. As shown in Fig. 5 (b),
in the presence of a radiation field the intra-band electronic transition accompanied by the
absorption of photons can occur not only in the conduction band via the α++ channel but also
in the valence band via the α−− channel. The intra-band transitions are a direct consequence
of the broadening of the scattering states in the conduction and valence bands. At the same
time, the electrons in the conduction band can lose energy via emission of optical phonons
and relax into the valence-band. The electrons in the valence band can also gain energy by
absorption of optical phonons and be excited into the conduction band due to the inelastic
character of the electron-phonon scattering, although such a process is much weaker than
that for phonon emission. Because graphene is a gapless semiconductor, the electrons in the
valence band can be more easily excited into the conduction band via optical absorption and
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Fig. 4. Contribution to the total optical conductance (solid line) from different transition
channels at room temperature for a fixed dark electron density n0 = 1 × 1012 cm−2. Here
σ0 = e2/(4h̄) and σ−+ (dashed curve) is for transition from valence band (−) to conduction
band (+). The curves for intra-band transitions, σ++ and σ−−, coincide roughly.

Thus, a resonant transition occurs in graphene. Such a mechanism is electrically equivalent to
the electro-phonon resonance effect (Xu et al., 1993) proposed previously by us. As a result,
the strongest inter-band electronic transitions can occur for h̄ω ∼ h̄ω0. That is, a peak of
the photo-induced carrier density can be observed in graphene when the radiation frequency
is close to the optical phonon frequency. The theoretical results discussed here indicate that
in gapless graphene the scattering by optical phonons plays an important role in affecting
photo-excited carrier densities.

3.2 Optical conductance and transmission
In Fig. 4, we show the contributions from different transition channels to the optical
conductance σ(ω) or optical absorption for a fixed dark electron density n0 at room
temperature. We notice the following features. (i) Inter-band transitions contribute to the
optical absorption in the short-wavelength regime (L < 3 μm), whereas intra-band transitions
give rise to the long-wavelength optical absorption. (ii) The optical absorption varies very
little upon varying the radiation frequency in the short-wavelength regime (L < 3 μm),
whereas the optical conductance or absorption coefficient depends strongly on the radiation
wavelength in the long-wavelength regime (L > 3 μm). (iii) The optical conductance in
the short-wavelength regime is a universal value σ0 = e2/(4h̄) in monolayer graphene as
discovered experimentally (Kuzmenko et al., 2008; Li et al., 2008; Nair et al., 2008). (iv) More
interestingly, there is an infrared absorption window in the 4 ∼ 100 μm wavelength range. As
expected, inter-band transitions require larger photon energy. Intra-band transitions, which
are caused by the usual free-carrier absorption, occur under low photon energy radiation.
It is a common feature for free-carrier absorption that the strength of the optical absorption
increases rapidly with radiation wavelength (Li, 2006). We find that the optical absorption
window observed experimentally (Kuzmenko et al., 2008; Li et al., 2008; Choi et al., 2009) is
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Fig. 5. (a) A graphene system in the absence of the radiation field (F0 = 0). The conducting
carriers are electrons with a Fermi energy μ∗

e in the conduction band. The hatched area shows
the occupied states. (b) Optical absorption channels in the presence of a radiation field
(F0 �= 0). Here μ∗

e and μ∗
h are the quasi Fermi energies for, respectively, electrons and holes

and there are three optical absorption channels: α−+, α++, and α−−. h̄ω0 is the energy of an
emitted optical phonon.

induced by the competing absorption channels due to inter- and intra-band scattering events
in graphene. This can explain and reproduce recent experimental findings (Kuzmenko et al.,
2008; Li et al., 2008; Choi et al., 2009).
The interesting features of optical absorption in graphene can be understood with the help of
Fig. 5. When the radiation field is absent, there is a single Fermi level (or chemical potential)
in the conduction band in a n-type graphene sample (or in the presence of a positive gate
voltage). In this case all states below μ∗

e are occupied by electrons as shown in Fig. 5 (a).
When a radiation field is applied to the system (see Fig. 5 (b)), the electrons in the valence
band can gain energy from the radiation field and be excited into the conduction band via
absorption of photons. Thus, the electron density in the conduction band increases and so
does the quasi Fermi level μ∗

e for electrons. Meanwhile, the holes are left in the valence band
and a quasi Fermi level μ∗

h is established in this band for them. As shown in Fig. 5 (b),
in the presence of a radiation field the intra-band electronic transition accompanied by the
absorption of photons can occur not only in the conduction band via the α++ channel but also
in the valence band via the α−− channel. The intra-band transitions are a direct consequence
of the broadening of the scattering states in the conduction and valence bands. At the same
time, the electrons in the conduction band can lose energy via emission of optical phonons
and relax into the valence-band. The electrons in the valence band can also gain energy by
absorption of optical phonons and be excited into the conduction band due to the inelastic
character of the electron-phonon scattering, although such a process is much weaker than
that for phonon emission. Because graphene is a gapless semiconductor, the electrons in the
valence band can be more easily excited into the conduction band via optical absorption and
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Fig. 6. Optical conductance and transmission coefficient (inset) as a function of the radiation
wavelength, at a fixed dark electron density n0 = 1 × 1012 cm−2, for different temperatures
T = 10 K (solid curve), 77 K (dashed curve), 150 K (dotted curve) and 300 K (dotted-dashed
curve).

those in the conduction band can be easily relaxed into the valence band via phonon emission,
in contrast to a conventional semiconductor. Thus, there is a strong inter-band optical and
electronic transition channel (i.e., α−+ in Fig. 5 (b)) in graphene. Since optical absorption
and phonon emission events describe transitions from occupied states to empty states, the
intra-band transitions require less photon energy whereas a relatively larger photon energy
is needed for inter-band transitions. Consequently, an optical absorption window can be
induced through different energy requirements for inter- and intra-transition channels.
In Fig. 6 we show the optical conductance σ and transmission coefficient T(ω) as a function
of the radiation wavelength, at fixed dark electron density n0, for different temperatures.
As can be seen, in the short-wavelength regime L < 3 μm, both σ and T(ω) depend very
little on the radiation wavelength. This confirms that σ does not depend on temperature
under short-wavelength radiation in graphene. The corresponding transmission coefficient
T(ω) is about 0.97 ∼ 0.98 in the short-wavelength regime and agrees quantitatively with
the experimental data (Nair et al., 2008). In the long-wavelength regime, in which the optical
absorption window can be observed, both the optical conductance and light transmittance
depend sensitively on the temperature, which is in line with the experimental findings
(Kuzmenko et al., 2008). It should be noted that for fixed electron and hole densities, the quasi
chemical potential for electrons/holes decreases/increases with increasing temperature. Thus,
due to the Pauli blockade effect (Krenner et al., 2006), a blue shift of the optical absorption
window with decreasing temperature can be observed as shown in Fig. 6. We note that the
strength of the optical absorption is proportional to the optical conductance. Therefore, the
height of the optical absorption window decreases with increasing temperature. We find that
a wider and deeper optical absorption window and a sharper cut-off of the optical absorption
at the window edges can be observed at lower temperatures. These theoretical results can
be used to explain the strong dependence of the optical conductance on temperature in the
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infrared bandwidth that was observed experimentally (Kuzmenko et al., 2008; Nair et al.,
2008).
The optical conductance σ and transmission coefficient T(ω) are shown in Fig. 7 as a function
of the radiation wavelength at room-temperature for different dark electron densities n0. We
note that the Fermi level for electrons becomes higher with increasing dark electron density.
A higher Fermi level for electrons implies that the empty states in the conduction band have
higher energies because of the linear shape of the energy spectrum for graphene. Since the
optical transitions occur mainly via exciting electrons from occupied states to the empty
states, a higher Fermi level corresponds to a higher transition energy. Thus, a blue shift of the
optical absorption window can be observed in graphene samples with larger dark electron
densities as shown in Fig. 7. This blue shift, with increasing gate voltage, has been observed
experimentally (Li et al., 2008). Because in graphene the dark electron density increases almost
linearly with increasing gate voltage (Novoselov et al., 2005), the theoretical results shown in
Fig. 7 are in agreement with these experimental findings obtained from optical absorption
measurements (Li et al., 2008). Furthermore, we find that the height of the absorption window
increases with dark electron density and a sharper cut-off of the optical absorption at the
window edges can be observed for larger electron densities. These theoretical results suggest
that the width and height of the infrared absorption window in graphene can be controlled
by applying a gate voltage. This feature can be utilized for making graphene-based and
frequency-tunable infrared optoelectronic devices.

4. Conclusions

In this study we have examined theoretically the effect of optical phonon scattering on the
optoelectronic properties of graphene. On the basis of the Boltzmann equation approach, we
have derived the mass-balance and energy-balance equations for graphene in the presence
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Fig. 6. Optical conductance and transmission coefficient (inset) as a function of the radiation
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of a linearly polarized radiation field and of the electron-photon-phonon coupling. By
solving these equations self-consistently, we have been able to determine the photo-excited
carrier densities and optoelectronic coefficients, such as the optical conductance and light
transmittance, for an air-graphene-wafer system. In particular, we have investigated the
dependence of the photo-induced carrier densities, optical conductance, and transmission
coefficient on intensity and wavelength of the radiation field, along with those on temperature
and dark electron density. The main conclusions we have obtained are summarized as follows.
Because graphene is a gapless electronic system, electron-phonon interaction is an important
mechanism in affecting the electronic transitions via both intra- and inter-band transition
channels. In graphene the electrons in the valence band can gain the energy from the radiation
field via optical absorption and be excited into the conduction band. At the same time, the
electrons in the conduction band can lose energy via emission of phonons and be relaxed
into the valence band. Thus, electron-phonon scattering can affect strongly the inter-band
transition in contrast to conventional semiconductors. As a result, the electron-photon-phonon
interaction is a major scattering mechanism to determine photo-induced carrier densities and
optoelectronic properties of graphene.
In the presence of a radiation field, the photo-excited carrier densities in graphene first
increase and then decrease with increasing radiation wavelength. The largest carrier densities
caused by light radiation can be observed when the radiation photon energy equals to the
optical phonon energy of graphene. Such resonant transitions are electrically equivalent to
the electro-phonon resonance effect observed in conventional two-dimensional electron gas
systems. The photo-excited carrier densities depend strongly on the radiation intensity and
frequency, temperature, and dark carrier density.
In the short-wavelength regime (L < 3 μm), the universal optical conductance σ0 = e2/(4h̄)
and light transmittance T0 ∼ 0.98 can be achieved for an air-graphene-SiO2/wafer system.
The optical conductance and transmission coefficient depend very little on temperature and
dark electron density. These results agree with other theoretical works and with experimental
findings.
We have found that there is an optical absorption window in the radiation wavelength
range 4 ∼ 100 μm. This infrared absorption window is induced by different transition
energies required for inter- and intra-band optical absorption in the presence of the Pauli
blockade effect. The depth and width of such an absorption window depend sensitively on
the temperature and dark electron density in the sample due to the presence of a free-carrier
absorption in this radiation wavelength regime. A prominent cut-off of the optical absorption
can be observed at the edges of the window at lower temperatures and/or larger dark electron
densities. These results can explain why experimentally the optical absorption window can
be measured under long-wavelength radiation and why experimentally a blue shift of such a
window can be observed when increasing the gate voltage.
The results obtained from this study indicate that in addition to the excellent optical properties
of graphene in the visible regime, i.e., universal optical conductance, high light transmittance,
etc., graphene can exhibit interesting and important features in the mid-infrared bandwidth,
such as the optical absorption window. The width and the depth of this window can be
tuned by varying the dark carrier density via, e.g., applying a gate voltage. This implies
that graphene can be used as a frequency-tunable optoelectronic device operating in the
mid-infrared bandwidth at room temperature for various applications. Together with the
relevant phenomena discovered by very recent experimental work (Kuzmenko et al., 2008;
Li et al., 2008; Choi et al., 2009), we hope that the present work sheds some light on the
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application of graphene not only as a visible optoelectronic device but also as an infrared
device in ambient conditions.
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1.Introduction

Graphene is a new nanomaterial which has been discovered a few years ago, Novoselov et al.
(2004); Novoselov et al. (2005); Zhang et al. (2005) and has demonstrated unique mechanical,
electrical, thermal and optical properties, see review articles Katsnelson (2007); Castro Neto
et al. (2009); Geim (2009). This is a one-atom-thick layer of carbon atoms arranged in a highly
symmetric two-dimensional honey-comb lattice, Figure 1. Graphene exhibits many interesting
fundamental physical properties such as the minimal electrical conductivity Novoselov et al.
(2005); Zhang et al. (2005); Katsnelson (2006); Nomura & MacDonald (2007); Tan et al. (2007),
unconventional quantum Hall effect Novoselov et al. (2005); Zhang et al. (2005) observable
up to room temperatures Novoselov et al. (2007), Klein tunneling Stander et al. (2009); Young
& Kim (2009), optical conductivity determined only by the fine structure constant Ando et al.
(2002); Kuzmenko et al. (2008); Nair et al. (2008) and many other. Graphene promises many
electronic applications like terahertz transistors, photodetectors, transparent electrodes for
displays, gas and strain sensors and so on, Geim (2009).
Microscopically, the most distinguished feature of graphene is that, in contrast to other
(semiconductor) materials with two-dimensional electron gases, electrons and holes in
graphene have not a parabolic, but a linear energy spectrum near the Fermi level Wallace
(1947); McClure (1956); Slonczewski & Weiss (1958). The Brillouin zone of graphene electrons
has a hexagonal shape, Figure 2, and near the corners Kj, j = 1, . . . 6, the electron and hole
energy bands Elp touch each other; here p is the quasi-momentum of an electron and l is the
band index (l = 1 for holes and l = 2 for electrons). The spectrum Elp near these, so called
Dirac points is linear,

Elp = (−1)lV|p − h̄Kj| = (−1)lV|p̃| = (−1)l h̄V|k − Kj|, (1)

where k is the quasi-wavevector, p̃ = p − h̄Kj and V is the Fermi velocity. In graphene V ≈
108 cm/s, so that electrons and holes behave like massless “relativistic” particles with the
effective “velocity of light” V ≈ c/300, where c is the real velocity of light. In the intrinsic
graphene the chemical potential μ (or the Fermi energy EF) goes through Dirac points, μ = 0.
If graphene is doped or if a dc (gate) voltage is applied between the graphene layer and a
semiconductor substrate (in a typical experiment the graphene sheet lies on a substrate, e.g.
on Si-SiO2) the chemical potential can be shifted to the upper or lower energy band, so that
the electron or hole density ns can be varied from zero up to ≈ 1013 cm−2. It is the unusual
“relativistic” energy dispersion of graphene electrons (1) that leads to the unique physical
properties of graphene.
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1.Introduction

Graphene is a new nanomaterial which has been discovered a few years ago, Novoselov et al.
(2004); Novoselov et al. (2005); Zhang et al. (2005) and has demonstrated unique mechanical,
electrical, thermal and optical properties, see review articles Katsnelson (2007); Castro Neto
et al. (2009); Geim (2009). This is a one-atom-thick layer of carbon atoms arranged in a highly
symmetric two-dimensional honey-comb lattice, Figure 1. Graphene exhibits many interesting
fundamental physical properties such as the minimal electrical conductivity Novoselov et al.
(2005); Zhang et al. (2005); Katsnelson (2006); Nomura & MacDonald (2007); Tan et al. (2007),
unconventional quantum Hall effect Novoselov et al. (2005); Zhang et al. (2005) observable
up to room temperatures Novoselov et al. (2007), Klein tunneling Stander et al. (2009); Young
& Kim (2009), optical conductivity determined only by the fine structure constant Ando et al.
(2002); Kuzmenko et al. (2008); Nair et al. (2008) and many other. Graphene promises many
electronic applications like terahertz transistors, photodetectors, transparent electrodes for
displays, gas and strain sensors and so on, Geim (2009).
Microscopically, the most distinguished feature of graphene is that, in contrast to other
(semiconductor) materials with two-dimensional electron gases, electrons and holes in
graphene have not a parabolic, but a linear energy spectrum near the Fermi level Wallace
(1947); McClure (1956); Slonczewski & Weiss (1958). The Brillouin zone of graphene electrons
has a hexagonal shape, Figure 2, and near the corners Kj, j = 1, . . . 6, the electron and hole
energy bands Elp touch each other; here p is the quasi-momentum of an electron and l is the
band index (l = 1 for holes and l = 2 for electrons). The spectrum Elp near these, so called
Dirac points is linear,

Elp = (−1)lV|p − h̄Kj| = (−1)lV|p̃| = (−1)l h̄V|k − Kj|, (1)

where k is the quasi-wavevector, p̃ = p − h̄Kj and V is the Fermi velocity. In graphene V ≈
108 cm/s, so that electrons and holes behave like massless “relativistic” particles with the
effective “velocity of light” V ≈ c/300, where c is the real velocity of light. In the intrinsic
graphene the chemical potential μ (or the Fermi energy EF) goes through Dirac points, μ = 0.
If graphene is doped or if a dc (gate) voltage is applied between the graphene layer and a
semiconductor substrate (in a typical experiment the graphene sheet lies on a substrate, e.g.
on Si-SiO2) the chemical potential can be shifted to the upper or lower energy band, so that
the electron or hole density ns can be varied from zero up to ≈ 1013 cm−2. It is the unusual
“relativistic” energy dispersion of graphene electrons (1) that leads to the unique physical
properties of graphene.
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Fig. 1. The honey-comb lattice of graphene. All points of the sublattice A (black circles) are
given by n1a1 + n2a2, of the sublattice B (open circles) by n1a1 + n2a2 + b. Dashed lines show
the boundaries of the elementary cell. a is the lattice constant.

G2

G1

K1

K2

K3K4

K5

K6

� 4 Π
3 � 2 Π

3
2 Π
3

4 Π
3

kxa

� 2 Π
3

2 Π
3

kya

Fig. 2. The Brillouin zone of graphene. The basis vectors of the reciprocal lattice are G1 and
G2. The vectors Kj, j = 1, . . . , 6, correspond to the corners of the Brillouin zone (the Dirac
points). Here K1 = −K4 = 2πa−1(1/3, 1/

√
3), K2 = −K5 = 2πa−1(2/3, 0),

K3 = −K6 = 2πa−1(1/3,−1/
√

3).

In 2007 it was predicted Mikhailov (2007) that the linear spectrum of graphene electrons (1)
should lead to a strongly nonlinear electromagnetic response of this material. The physical
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origin of this effect is very simple. As seen from (1) the graphene electrons cannot stop and can
move only with the velocity V. If such a particle is placed in the uniform oscillating electric
field E(t) = E0 cos ωt, its momentum will oscillate as p(t) ∝ sin ωt. The velocity of such
particles v = ∂Elp/∂p = Vp̃/|p̃| will then take the value of +V or −V dependent on the sign
of the momentum p̃, i.e. v(t) ∝ sgn(sin ωt). The electric current j(t) induced by the external
field is determined by the velocity, therefore one will have 1

j(t) ∝ sgn(sin ωt) =
4
π

(
sin ωt +

1
3

sin 3ωt +
1
5

sin 5ωt + . . .
)

. (2)

The induced current thus contains higher frequency harmonics nω, n = 3, 5, . . . and hence a
single graphene sheet should radiate electromagnetic waves not only at the frequency ω but
also at nω with n = 3, 5, 7, . . . Mikhailov (2007; 2008); Mikhailov & Ziegler (2008). Graphene
could thus serve as a simple and inexpensive frequency multiplier Mikhailov (2007; 2009). The
nonlinear electromagnetic response of graphene has been also discussed by López-Rodríguez
& Naumis (2008).
Apart from the frequency multiplication effect all other known nonlinear electromagnetic
phenomena should be also observable in this material. For example, irradiation of the
graphene layer by two electromagnetic waves E1(t) and E2(t) with the frequencies ω1 and ω2
should lead to the emission of radiation at the mixed frequencies n1ω1 + n2ω2 with integer
numbers n1 and n2. Since the graphene lattice (Figure 1) has a central symmetry, the even order
effects are forbidden in the infinite and uniform graphene layer, so that n1 + n2 must be an odd
integer. In the third order in the external field amplitudes E1 and E2, apart from the frequencies
ω1, ω2, 3ω1 and 3ω2, the radiation at the mixed frequencies ω1 ± 2ω2 and 2ω1 ±ω2 should be
observed. In a recent experiment Hendry et al. (2010) the coherent emission from graphene at
the frequency 2ω1 − ω2 has indeed been discovered in the near-infrared and visible frequency
range.
In this Chapter we develop a theory of the frequency mixing effect in graphene. We begin
with a discussion of the electronic spectrum and the wave functions of graphene obtained
in the tight-binding approximation (Section 2) and continue by a brief overview of the
linear response theory of graphene in Section 3. Then we study the frequency mixing effects
in graphene within the framework of the quasi-classical approach which works on low
(microwave, terahertz) frequencies (Section 4). In Section 5 we introduce a quantum theory
of the nonlinear electromagnetic response of graphene to high (infrared, optical) frequencies.
A summary of results and the prospects for future research are discussed in Section 6.

2. Energy spectrum and wave functions of graphene

We calculate the spectrum and the wave functions of graphene electrons within the framework
of the tight-binding approximation Wallace (1947); Reich et al. (2002) assuming that both the
overlap and the transfer integrals are nonzero only for the nearest-neighbor atoms. The lattice
of graphene, Figure 1, consists of two triangular sublattices A and B. For the basic vectors
of the A lattice we choose the vectors a1 = a(1/2,

√
3/2) and a2 = a(−1/2,

√
3/2), where

a is the lattice constant (a ≈ 2.46 Å in graphene). The vector b connecting the sublattices is

1 In conventional electron systems with the parabolic spectrum of charge carriers Ep = p2/2m� the
velocity v = ∂Ep/∂p = p/m� is proportional to the momentum, therefore j ∝ v ∝ sin ωt and the
higher frequency harmonics are not generated.
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single graphene sheet should radiate electromagnetic waves not only at the frequency ω but
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could thus serve as a simple and inexpensive frequency multiplier Mikhailov (2007; 2009). The
nonlinear electromagnetic response of graphene has been also discussed by López-Rodríguez
& Naumis (2008).
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phenomena should be also observable in this material. For example, irradiation of the
graphene layer by two electromagnetic waves E1(t) and E2(t) with the frequencies ω1 and ω2
should lead to the emission of radiation at the mixed frequencies n1ω1 + n2ω2 with integer
numbers n1 and n2. Since the graphene lattice (Figure 1) has a central symmetry, the even order
effects are forbidden in the infinite and uniform graphene layer, so that n1 + n2 must be an odd
integer. In the third order in the external field amplitudes E1 and E2, apart from the frequencies
ω1, ω2, 3ω1 and 3ω2, the radiation at the mixed frequencies ω1 ± 2ω2 and 2ω1 ±ω2 should be
observed. In a recent experiment Hendry et al. (2010) the coherent emission from graphene at
the frequency 2ω1 − ω2 has indeed been discovered in the near-infrared and visible frequency
range.
In this Chapter we develop a theory of the frequency mixing effect in graphene. We begin
with a discussion of the electronic spectrum and the wave functions of graphene obtained
in the tight-binding approximation (Section 2) and continue by a brief overview of the
linear response theory of graphene in Section 3. Then we study the frequency mixing effects
in graphene within the framework of the quasi-classical approach which works on low
(microwave, terahertz) frequencies (Section 4). In Section 5 we introduce a quantum theory
of the nonlinear electromagnetic response of graphene to high (infrared, optical) frequencies.
A summary of results and the prospects for future research are discussed in Section 6.

2. Energy spectrum and wave functions of graphene

We calculate the spectrum and the wave functions of graphene electrons within the framework
of the tight-binding approximation Wallace (1947); Reich et al. (2002) assuming that both the
overlap and the transfer integrals are nonzero only for the nearest-neighbor atoms. The lattice
of graphene, Figure 1, consists of two triangular sublattices A and B. For the basic vectors
of the A lattice we choose the vectors a1 = a(1/2,

√
3/2) and a2 = a(−1/2,

√
3/2), where

a is the lattice constant (a ≈ 2.46 Å in graphene). The vector b connecting the sublattices is

1 In conventional electron systems with the parabolic spectrum of charge carriers Ep = p2/2m� the
velocity v = ∂Ep/∂p = p/m� is proportional to the momentum, therefore j ∝ v ∝ sin ωt and the
higher frequency harmonics are not generated.
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b = a(0, 1/
√

3). The two-dimensional single-particle Hamiltonian Ĥ0 of graphene can then
be written as

Ĥ0 =
p̂2

2m
+ ∑

a
[Ua(r − a) + Ua(r − a − b)], (3)

where p̂ = −ih̄(∂x , ∂y) is the two-dimensional momentum operator, m is the free electron
mass and Ua is the atomic potential. Following the standard procedure of the tight binding
approximation we get the energy Elk and the wave functions |lk� of graphene electrons as

Elk = (−1)l t|Sk|, (4)

|lk� ≡ Ψlk(r) =
1√
S

eik·rulk(r), (5)

ulk(r) =

√
A
2 ∑

a
e−ik·(r−a)

[
(−1)lζkψa(r − a) + ψa(r − a − b)

]
, (6)

where l = 1, 2, k = (kx, ky) is the quasi-wavevector, t is the transfer integral (in graphene
t ≈ 3 eV), S and A are the areas of the sample and of the elementary cell, respectively, and ψa
is the atomic wave function. The functions Sk and ζk in (4) and (6) are defined as

Sk = 1 + eik·a1 + eik·a2 = 1 + 2 cos(kxa/2)ei
√

3kya/2, (7)

ζk = Sk/|Sk|. (8)

They are periodic in the k-space and satisfy the equalities

S−k = S�
k; Sk+G = Sk; ζ−k = ζ�

k; ζk+G = ζk; (9)

where G are the 2D reciprocal lattice vectors. Similar relations are valid for the energies Elk
and the wave functions Ψlk(r),

El,−k = Elk; Ψl,−k(r) = Ψ�
lk(r); El,k+G = Elk; Ψl,k+G(r) = Ψlk(r). (10)

The basic reciprocal lattice vectors G1 and G2 can be chosen as G1 = (2π/a)(1, 1/
√

3), G2 =
(2π/a)(1,−1/

√
3), see Figure 2.

The energy dispersion (4) is shown in Figure 3. At the corners of the Brillouin zone, in the
Dirac points k = Kj, the function Sk vanishes and at |k − Kj|a = |δkj|a � 1 one has

Sk ≈ −
√

3a
2

[
(−1)jδkj

x + iδkj
y

]
, (11)

ζk = − (−1)jδkj
x + iδkj

y√
(δkj

x)2 + (δkj
y)2

. (12)

The energy (4) then assumes the form (1) with the velocity V =
√

3ta/2h̄ ≈ 108 cm/s.
Using the wave functions (5)–(6) one can calculate the matrix elements of different physical
quantities. For example, for the function eiq·r we get

�l �k�|eiq·r|lk� =
1
2

δk�,k+q

[
1 + (−1)l �+lζ�

k+qζk

]
. (13)
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Fig. 3. The bandstructure of graphene electrons Elk calculated in the tight-binding
approximation, Eq. (4).

In the limit q → 0 we obtain from here the matrix elements of the coordinate

�l �k|x̂α|lk� =
i
2
(−1)l �+lζ�

k
∂ζk
∂kα

(14)

and of the velocity operator v̂ = p̂/m,

�lk|v̂α|lk� =
1
h̄

∂Elk
∂kα

, �lk|v̂α|l̄k� =
Elk − El̄k

2h̄
ζ�

k
∂ζk
∂kα

. (15)

Here l̄ means not l, i.e. l̄ = 2 if l = 1 and l̄ = 1 if l = 2.

3. Linear response

Before presenting our new results on the nonlinear frequency mixing effects we will briefly
overview the linear response theory of graphene. We will calculate the linear response
dynamic conductivity of graphene σ(1)(ω) ≡ σ(ω) which has been studied theoretically in
Refs. Gusynin & Sharapov (2006); Gusynin et al. (2006); Nilsson et al. (2006); Abergel & Fal’ko
(2007); Falkovsky & Pershoguba (2007); Falkovsky & Varlamov (2007); Mikhailov & Ziegler
(2007); Peres et al. (2008); Stauber, Peres & Castro Neto (2008) and experimentally in Refs.
Dawlaty et al. (2008); Li et al. (2008); Mak et al. (2008); Stauber, Peres & Geim (2008).

3.1 Quantum kinetic equation
The system response is described by the quantum kinetic (Liouville) equation

ih̄
∂ρ̂

∂t
= [Ĥ, ρ̂] (16)
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for the density matrix ρ̂, where

Ĥ = Ĥ0 + Ĥ1 = Ĥ0 − eφ(r, t), (17)

is the Hamiltonian of graphene in the presence of the external electric field E(r, t) = −∇φ(r, t)
and e > 0 is the electron charge. We will be interested in the response to the uniform electric
field but at this step will describe the electric field by the potential

φ(r, t) = φqωeiq·r−iωt+γt, γ → +0, (18)

and will take the limit q → 0 later on. The unperturbed Hamiltonian Ĥ0 is given by Eq. (3). It
has the eigenenergies and eigenfunctions,

Ĥ0|lkσ� = Elk|lkσ�, (19)

given by equations (4) and (5), respectively; we have also introduced the spin index σ here.
Expanding the density matrix up to the first order in the electric field,

ρ̂ = ρ̂0 + ρ̂1, (20)

where ρ̂0 satisfies the equation

ρ̂0|lkσ� = f0(Elk)|lkσ�, (21)

and f0 is the Fermi function, we get

�l �k�σ� |ρ̂1|lkσ� =
f0(El �k�) − f0(Elk)

El �k� − Elk − h̄(ω + i0)
�l �k�σ� |Ĥ1|lkσ�, (22)

�l �k�σ�|Ĥ1|lkσ� = −eφqωδσσ� �l �k�|eiq·r|lk�. (23)

Calculating the first order current j(r, z, t) = jqωeiq·r−iωt+γtδ(z) we obtain

jqω = − e
2S

Sp
(

ρ̂1[v̂, e−iq·r]+
)

=
e2gs

2S
φqω ∑

kk�ll �
�lk|[v̂, e−iq·r]+|l �k�� f0(El �k�) − f0(Elk)

El �k� − Elk − h̄(ω + iγ)
�l �k�|eiq·r|lk�, (24)

where j = (jx, jy) and [. . . ]+ denotes the anti-commutator. Taking the limit q → 0 gives the
frequency dependent conductivity σαβ(ω) which describes the linear response of graphene to
a uniform external electric field. The conductivity σαβ(ω) consists of two contributions, the
intra-band (l = l �) and the inter-band (l �= l �) conductivities.

3.2 Intra-band conductivity
The intra-band conductivity reads

σintra
αβ (ω) =

−ie2gs

h̄2(ω + iγ)S
∑
lk

∂Elk
∂kα

∂ f0(Elk)
∂E

∂Elk
∂kβ

, (25)

where gs = 2 is the spin degeneracy and the summation over k is performed over the whole
Brillouin zone. If the chemical potential μ lies within ∼ 1 eV from the Dirac points (which is
typically the case in the experiments) and if the photon energy h̄ω does not exceed 1 − 2 eV
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the main contribution to the integrals is given by the vicinity of Dirac points and one can use
the linear (Dirac) approximation (11), (1). Then one gets σintra

αβ (ω) = σintra(ω)δαβ and

σintra(ω) =
ie2gsgvT

2πh̄2(ω + iγ)
ln

[
2 cosh

( μ

2T

)]
, (26)

where T is the temperature and gv = 2 is the valley degeneracy factor. At low temperatures
T � |μ| the formula (26) gives

σintra(ω) =
e2gsgv|μ|

4πh̄2
i

ω + iγ
=

nse2V2

|μ|
i

ω + iγ
=

nse2

m�

i
ω + iγ

, (27)

where the last equalities are written in the Drude form with the phenomenological scattering
rate γ, the “effective mass” of graphene quasiparticles at the Fermi level m� = |μ|/V2 and the
charge carrier density

ns =
gsgv

4
μ2

πh̄2V2
=

gs gv

4
k2

F
π

. (28)

The value kF in (28) is the Fermi wavevector.
The intra-band conductivity has a standard Drude form. In the collisionless approximation
ω � γ it is an imaginary function which falls down with the growing frequency as 1/ω. In
the currently available graphene samples with the mobility μe � 200000 cm2/Vs Orlita et al.
(2008); Geim (2009) and the electron density ns � 1012 cm−2 the condition ω � γ is satisfied
at ω/2π � 0.1 THz.

3.3 Inter-band conductivity
For the inter-band conductivity σinter

αβ (ω) which is dominant at high (infrared, optical)
frequencies we get in the limit q → 0

σinter
αβ (ω) =

ie2h̄gs

S ∑
k,l �=l �

f (El �k)− f (Elk)
El �k − Elk − h̄(ω + iγ)

�lk|v̂α|l �k��l �k|v̂β|lk�
El �k − Elk

. (29)

Using the matrix elements (15), assuming that γ → 0 and considering again only the vicinity
of Dirac points one gets σinter

αβ (ω) = σinter(ω)δαβ, where

σinter(ω) =
ie2gsgv

16πh̄

∫ ∞

0
dk

sinh(h̄Vk/T)
cosh(μ/T) + cosh(h̄Vk/T)

(
1

k + ω/2V + i0
− 1

k − ω/2V − i0

)
.

(30)
The real part of the inter-band conductivity (30) is calculated analytically at all values of ω, μ
and T,

Re σinter(ω) =
e2gsgv

16h̄
sinh(h̄|ω|/2T)

cosh(μ/T) + cosh(h̄|ω|/2T)
. (31)

At high frequencies h̄ω � |μ|, T this gives the remarkable result of the universal optical
conductivity

σopt(ω) =
e2gs gv

16h̄
=

e2

4h̄
, h̄ω � |μ|, T, (32)
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for the density matrix ρ̂, where

Ĥ = Ĥ0 + Ĥ1 = Ĥ0 − eφ(r, t), (17)

is the Hamiltonian of graphene in the presence of the external electric field E(r, t) = −∇φ(r, t)
and e > 0 is the electron charge. We will be interested in the response to the uniform electric
field but at this step will describe the electric field by the potential

φ(r, t) = φqωeiq·r−iωt+γt, γ → +0, (18)

and will take the limit q → 0 later on. The unperturbed Hamiltonian Ĥ0 is given by Eq. (3). It
has the eigenenergies and eigenfunctions,

Ĥ0|lkσ� = Elk|lkσ�, (19)

given by equations (4) and (5), respectively; we have also introduced the spin index σ here.
Expanding the density matrix up to the first order in the electric field,

ρ̂ = ρ̂0 + ρ̂1, (20)

where ρ̂0 satisfies the equation

ρ̂0|lkσ� = f0(Elk)|lkσ�, (21)

and f0 is the Fermi function, we get

�l �k�σ� |ρ̂1|lkσ� =
f0(El �k�) − f0(Elk)

El �k� − Elk − h̄(ω + i0)
�l �k�σ� |Ĥ1|lkσ�, (22)

�l �k�σ�|Ĥ1|lkσ� = −eφqωδσσ� �l �k�|eiq·r|lk�. (23)

Calculating the first order current j(r, z, t) = jqωeiq·r−iωt+γtδ(z) we obtain

jqω = − e
2S

Sp
(

ρ̂1[v̂, e−iq·r]+
)

=
e2gs

2S
φqω ∑

kk�ll �
�lk|[v̂, e−iq·r]+|l �k�� f0(El �k�) − f0(Elk)

El �k� − Elk − h̄(ω + iγ)
�l �k�|eiq·r|lk�, (24)

where j = (jx, jy) and [. . . ]+ denotes the anti-commutator. Taking the limit q → 0 gives the
frequency dependent conductivity σαβ(ω) which describes the linear response of graphene to
a uniform external electric field. The conductivity σαβ(ω) consists of two contributions, the
intra-band (l = l �) and the inter-band (l �= l �) conductivities.

3.2 Intra-band conductivity
The intra-band conductivity reads

σintra
αβ (ω) =

−ie2gs

h̄2(ω + iγ)S
∑
lk

∂Elk
∂kα

∂ f0(Elk)
∂E

∂Elk
∂kβ

, (25)

where gs = 2 is the spin degeneracy and the summation over k is performed over the whole
Brillouin zone. If the chemical potential μ lies within ∼ 1 eV from the Dirac points (which is
typically the case in the experiments) and if the photon energy h̄ω does not exceed 1 − 2 eV
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the main contribution to the integrals is given by the vicinity of Dirac points and one can use
the linear (Dirac) approximation (11), (1). Then one gets σintra

αβ (ω) = σintra(ω)δαβ and

σintra(ω) =
ie2gsgvT

2πh̄2(ω + iγ)
ln

[
2 cosh

( μ

2T

)]
, (26)

where T is the temperature and gv = 2 is the valley degeneracy factor. At low temperatures
T � |μ| the formula (26) gives

σintra(ω) =
e2gsgv|μ|

4πh̄2
i

ω + iγ
=

nse2V2

|μ|
i

ω + iγ
=

nse2

m�

i
ω + iγ

, (27)

where the last equalities are written in the Drude form with the phenomenological scattering
rate γ, the “effective mass” of graphene quasiparticles at the Fermi level m� = |μ|/V2 and the
charge carrier density

ns =
gsgv

4
μ2

πh̄2V2
=

gs gv

4
k2

F
π

. (28)

The value kF in (28) is the Fermi wavevector.
The intra-band conductivity has a standard Drude form. In the collisionless approximation
ω � γ it is an imaginary function which falls down with the growing frequency as 1/ω. In
the currently available graphene samples with the mobility μe � 200000 cm2/Vs Orlita et al.
(2008); Geim (2009) and the electron density ns � 1012 cm−2 the condition ω � γ is satisfied
at ω/2π � 0.1 THz.

3.3 Inter-band conductivity
For the inter-band conductivity σinter

αβ (ω) which is dominant at high (infrared, optical)
frequencies we get in the limit q → 0

σinter
αβ (ω) =

ie2h̄gs

S ∑
k,l �=l �

f (El �k)− f (Elk)
El �k − Elk − h̄(ω + iγ)

�lk|v̂α|l �k��l �k|v̂β|lk�
El �k − Elk

. (29)

Using the matrix elements (15), assuming that γ → 0 and considering again only the vicinity
of Dirac points one gets σinter

αβ (ω) = σinter(ω)δαβ, where

σinter(ω) =
ie2gsgv

16πh̄

∫ ∞

0
dk

sinh(h̄Vk/T)
cosh(μ/T) + cosh(h̄Vk/T)

(
1

k + ω/2V + i0
− 1

k − ω/2V − i0

)
.

(30)
The real part of the inter-band conductivity (30) is calculated analytically at all values of ω, μ
and T,

Re σinter(ω) =
e2gsgv

16h̄
sinh(h̄|ω|/2T)

cosh(μ/T) + cosh(h̄|ω|/2T)
. (31)

At high frequencies h̄ω � |μ|, T this gives the remarkable result of the universal optical
conductivity

σopt(ω) =
e2gs gv

16h̄
=

e2

4h̄
, h̄ω � |μ|, T, (32)
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which depends only on the fundamental constants e and h̄, Ando et al. (2002); Kuzmenko et al.
(2008); Nair et al. (2008). The imaginary part is determined by the principal value integral

Im σinter(ω) =
e2gs gv

16πh̄
−
∫ ∞

0
dx

sinh x
cosh(|μ|/T) + cosh x

(
1

x + h̄ω/2T
− 1

x − h̄ω/2T

)
, (33)

which can be analytically calculated at low temperatures T � |μ|. Together with the real part
this gives

σinter(ω) =
e2gsgv

16h̄

(
θ(h̄ω − 2μ) +

i
π

ln
∣∣∣∣
1 − h̄ω/2|μ|
1 + h̄ω/2|μ|

∣∣∣∣
)

, (34)

see Figure 4. At high frequencies the inter-band conductivity tends to a (universal) constant
and exceeds the intra-band contribution if h̄ω � |μ|. Finally, the total conductivity σ(ω) =
σintra(ω) + σinter(ω) in the collisionless limit ω � γ has the form

σ(ω) =
e2gs gv

16h̄

(
4i|μ|
πh̄ω

+ θ(h̄ω − 2|μ|) +
i
π

ln
∣∣∣∣
1 − h̄ω/2|μ|
1 + h̄ω/2|μ|

∣∣∣∣
)

(35)

and is shown in Figure 5.
Summarizing the linear response results on the dynamic conductivity of graphene one sees
that at low frequencies h̄ω � |μ| the conductivity σ(ω) is imaginary and is described by
the classical Drude formula. It corresponds to the intra-band response of the system. At high
frequencies h̄ω � |μ| the real part of the quantum inter-band conductivity dominates. At
the typical charge carrier densities of ns � 1011 − 1013 cm−2 the transition between the
two regimes h̄ω � |μ| lies in graphene at the frequencies ω/2π � 10 − 100 THz. The
low-frequency limit h̄ω � |μ| thus corresponds to the radio, microwave and terahertz
frequencies, while the high-frequency limit – to the infrared and optical frequencies. The
collisions can be ignored, in the high quality samples, at ω/2π � 0.1 THz.

4. Frequency mixing: Quasi-classical theory

In this Section we consider the frequency mixing effect using the quasi-classical approach
based on the solution of the kinetic Boltzmann equation. The quasi-classical solution is simpler
and, within the collisionless approximation, can be obtained non-perturbatively, at arbitrary
values of the external electric field amplitudes Mikhailov (2007). The quasi-classical theory is
valid at h̄ω � |μ|, which corresponds to the very broad and technologically important range
of radio, microwave and terahertz frequencies.

4.1 Boltzmann kinetic equation
Consider the classical motion of massless particles (1) under the action of the external electric
field E(t). The evolution of the electron distribution function fp(t) is determined by the
Boltzmann kinetic equation which has the form

∂ fp

∂t
− eE(t)

∂ fp

∂p
= 0 (36)

in the collisionless approximation. Its exact solution is

f (p, t) =
[

1 + exp
(

V|p − p0(t)| − μ

T

)]−1

, (37)
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Fig. 4. The inter-band conductivity of graphene at γ/μ = 0.01 and three different
temperatures as shown in the Figure. The conductivity is measured in units e2gsgs/16h̄.
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Fig. 5. The total conductivity of graphene at γ/μ = 0.01 and three different temperatures as
shown in the Figure. The conductivity is measured in units e2gs gs/16h̄. At low frequencies
h̄ω � |μ| the conductivity is imaginary and corresponds to the intra-band classical
contribution. At high frequencies h̄ω � |μ| the quantum inter-band contribution dominates.

where p0(t) satisfies the classical equation of motion dp0(t)/dt = −eE(t). The current can
then be calculated as

j(t) = −e
gsgvV
(2πh̄)2

∫
dpxdpy

p√
p2

x + p2
y

1

1 + exp
(

V|p−p0(t)|−μ
T

) . (38)
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which depends only on the fundamental constants e and h̄, Ando et al. (2002); Kuzmenko et al.
(2008); Nair et al. (2008). The imaginary part is determined by the principal value integral

Im σinter(ω) =
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16πh̄
−
∫ ∞

0
dx

sinh x
cosh(|μ|/T) + cosh x

(
1

x + h̄ω/2T
− 1

x − h̄ω/2T

)
, (33)

which can be analytically calculated at low temperatures T � |μ|. Together with the real part
this gives

σinter(ω) =
e2gsgv
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π
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, (34)

see Figure 4. At high frequencies the inter-band conductivity tends to a (universal) constant
and exceeds the intra-band contribution if h̄ω � |μ|. Finally, the total conductivity σ(ω) =
σintra(ω) + σinter(ω) in the collisionless limit ω � γ has the form

σ(ω) =
e2gs gv

16h̄

(
4i|μ|
πh̄ω

+ θ(h̄ω − 2|μ|) +
i
π

ln
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1 − h̄ω/2|μ|
1 + h̄ω/2|μ|
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)

(35)

and is shown in Figure 5.
Summarizing the linear response results on the dynamic conductivity of graphene one sees
that at low frequencies h̄ω � |μ| the conductivity σ(ω) is imaginary and is described by
the classical Drude formula. It corresponds to the intra-band response of the system. At high
frequencies h̄ω � |μ| the real part of the quantum inter-band conductivity dominates. At
the typical charge carrier densities of ns � 1011 − 1013 cm−2 the transition between the
two regimes h̄ω � |μ| lies in graphene at the frequencies ω/2π � 10 − 100 THz. The
low-frequency limit h̄ω � |μ| thus corresponds to the radio, microwave and terahertz
frequencies, while the high-frequency limit – to the infrared and optical frequencies. The
collisions can be ignored, in the high quality samples, at ω/2π � 0.1 THz.

4. Frequency mixing: Quasi-classical theory

In this Section we consider the frequency mixing effect using the quasi-classical approach
based on the solution of the kinetic Boltzmann equation. The quasi-classical solution is simpler
and, within the collisionless approximation, can be obtained non-perturbatively, at arbitrary
values of the external electric field amplitudes Mikhailov (2007). The quasi-classical theory is
valid at h̄ω � |μ|, which corresponds to the very broad and technologically important range
of radio, microwave and terahertz frequencies.

4.1 Boltzmann kinetic equation
Consider the classical motion of massless particles (1) under the action of the external electric
field E(t). The evolution of the electron distribution function fp(t) is determined by the
Boltzmann kinetic equation which has the form

∂ fp

∂t
− eE(t)

∂ fp

∂p
= 0 (36)

in the collisionless approximation. Its exact solution is

f (p, t) =
[

1 + exp
(

V|p − p0(t)| − μ

T

)]−1

, (37)
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where p0(t) satisfies the classical equation of motion dp0(t)/dt = −eE(t). The current can
then be calculated as

j(t) = −e
gsgvV
(2πh̄)2

∫
dpxdpy

p√
p2

x + p2
y

1

1 + exp
(

V|p−p0(t)|−μ
T

) . (38)
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Assuming now that the temperature is low, T � μ, and expanding the right-hand side of Eq.
(38) we get

− j(t)
ensV

=
P(t)√

P2(t) + 1

[
1 +

3
8

P2(t)
[P2(t) + 1]2

]
, (39)

where

P(t) =
p0(t)

pF
. (40)

Notice that the expansion parameter in Eq. (39) is |P(t)/(P2(t) + 1)| � 1, i.e. the result (39) is
valid both at small and large |P(t)|. In the regime of low electric fields |P(t)| � 1 the current
is

− j(t)
ensV

≈ P(t)
(

1 − 1
8

P2(t)
)

. (41)

4.2 Frequency mixing response
If the graphene layer is irradiated by two waves with the frequencies ω1, ω2 and the both
waves are linearly polarized in the same direction,

E(t) = E1 cos ω1t + E2 cos ω2t, E1 � E2, (42)

then

p0(t) = −e
(

E1
ω1

sin ω1t +
E2

ω2
sin ω2t

)
, (43)

the current is parallel to the electric fields and equals

j(t)
ensV

= α1

(
1 − 3

32
α2

1 −
3

16
α2

2

)
sin ω1t

+
α3

1
32

sin 3ω1t +
3α2

1α2

32

[
sin(2ω1 + ω2)t − sin(2ω1 − ω2)t

]
+ . . . , (44)

where

αj =
eEj

pFωj
=

eEjV

|μ|ωj
, j = 1, 2. (45)

The omitted terms marked by the dots are obtained from the present ones by replacing ω1 ↔
ω2 and α1 ↔ α2. We will call αj the field parameters. The field parameter α = eEV/μω is the
work done by the electric field during one oscillation period (eEV/ω) divided by the average
energy of electrons μ, Mikhailov (2007).
If the field parameters are small, αj � 1, Eq. (44) describes the low-frequency linear response,
since ensVαj = σintra(ωj)Ej, see Eq. (27). If αj are not negligible, the first line in (44) represents
the second order corrections to the linear conductivity, the first term in the second line gives
the third harmonics generation effect, Mikhailov (2007), and the last terms in the second
line – the frequency mixing. The amplitudes of the third-order mixed frequency current

j(3)
(2ω1±ω2)

(t) = j(3)
(2ω1±ω2)

sin(ω2 ± 2ω1)t can be rewritten as

j(3)
(2ω1±ω2)

=
3

32
ensV

(
eE1

pFω1

)2 eE2

pFω2
=

3
32

σintra(ω2)E2α2
1, (46)
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i.e., up to a numerical factor, the third order current is the product of the low-frequency
Drude conductivity (27), the electric field E2 and the squared field parameter α2

1. One sees
that the amplitude of the third order mixed-frequency current will be comparable with the
linear response current if the field parameter α is of order unity (or larger). This means that
the required electric field is determined by the inequality

E � pFω

e
=

h̄ω
√

πns

e
. (47)

The lower the charge carrier density ns and the radiation frequency ω the smaller is the electric
field needed for the observation of the nonlinear effects. If, for example, the density is � 1011

cm−2 and the frequency is � 0.5 THz, Eq. (47) gives E � 1 kV/cm which corresponds to the
incident wave power � 2 kW/cm2.
If the linear polarizations of the two incident waves ω1 and ω2 are perpendicular to each other,
E1 · E2 = 0, the current at the mixed frequencies 2ω1 ± ω2 is three times smaller than for the
parallel polarization. This is a general result which is also valid in the quantum regime.

5. Frequency mixing: Quantum theory

The full quantum theory of the nonlinear frequency mixing effects in graphene is substantially
more complicated and is yet to be developed. In this paper we only consider the frequency
mixing response at the frequency ωe ≡ 2ω1 − ω2 and calculate it under the conditions

h̄ω1, h̄ω2, h̄ωe � |μ|, (48)

relevant for the experiment of Hendry et al. (2010).

5.1 Quantum kinetic (Liouville) equation
In order to investigate the nonlinear response problem in the quantum regime (48) we have
to solve the quantum kinetic equation (16) in, at least, the third order in the external field
amplitudes Ej, j = 1, 2. We do this using the perturbation theory. Expanding the density
matrix ρ̂ in powers of the electric fields, ρ̂ = ρ̂0 + ρ̂1 + ρ̂2 + ρ̂3 + . . . , we get from (16) a set of
recurrent equations

ih̄
∂ρ̂n

∂t
= [Ĥ0, ρ̂n] + [Ĥ1, ρ̂n−1], n = 2, 3, . . . (49)

for ρ̂n. At high frequencies (48) we can write the Hamiltonian Ĥ1 in the form

Ĥ1 = (eE1x cos ω1t + eE2x cos ω2t) eγt = hω1 ei(ω1−i0)t + hω2 ei(ω2−i0)t + {ωj → −ωj}, (50)

where hω1 = h−ω1 = eE1x/2, hω2 = h−ω2 = eE2x/2 and it is assumed that γ → 0. In the first
order in Ej we get

�λ|ρ̂1|λ�� = ∑
ω={±ω1,±ω2}

fλ� − fλ

Eλ� − Eλ − h̄ω + i0
�λ|hω |λ��eiωt ≡ ∑

ω{±ω1,±ω2}
ρ1ωeiωt, (51)

where we have used a short notation |λ� for the set of three quantum numbers |lkσ�. The right
hand side of Eq. (51) contains the oscillating exponents with the frequencies ±ω1 and ±ω2.
For the matrix elements of ρ̂2 we obtain, similarly,

�λ|ρ̂2|λ�� = ∑
ωa,ωb

�λ|[hωa , ρ1ωb
]|λ��

Eλ� − Eλ − h̄ωa − h̄ωb + i0
ei(ωa+ωb)t. (52)
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Assuming now that the temperature is low, T � μ, and expanding the right-hand side of Eq.
(38) we get
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where
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Notice that the expansion parameter in Eq. (39) is |P(t)/(P2(t) + 1)| � 1, i.e. the result (39) is
valid both at small and large |P(t)|. In the regime of low electric fields |P(t)| � 1 the current
is
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)

. (41)

4.2 Frequency mixing response
If the graphene layer is irradiated by two waves with the frequencies ω1, ω2 and the both
waves are linearly polarized in the same direction,

E(t) = E1 cos ω1t + E2 cos ω2t, E1 � E2, (42)

then

p0(t) = −e
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the current is parallel to the electric fields and equals
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where

αj =
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The omitted terms marked by the dots are obtained from the present ones by replacing ω1 ↔
ω2 and α1 ↔ α2. We will call αj the field parameters. The field parameter α = eEV/μω is the
work done by the electric field during one oscillation period (eEV/ω) divided by the average
energy of electrons μ, Mikhailov (2007).
If the field parameters are small, αj � 1, Eq. (44) describes the low-frequency linear response,
since ensVαj = σintra(ωj)Ej, see Eq. (27). If αj are not negligible, the first line in (44) represents
the second order corrections to the linear conductivity, the first term in the second line gives
the third harmonics generation effect, Mikhailov (2007), and the last terms in the second
line – the frequency mixing. The amplitudes of the third-order mixed frequency current

j(3)
(2ω1±ω2)

(t) = j(3)
(2ω1±ω2)

sin(ω2 ± 2ω1)t can be rewritten as

j(3)
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=
3
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ensV

(
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=
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i.e., up to a numerical factor, the third order current is the product of the low-frequency
Drude conductivity (27), the electric field E2 and the squared field parameter α2

1. One sees
that the amplitude of the third order mixed-frequency current will be comparable with the
linear response current if the field parameter α is of order unity (or larger). This means that
the required electric field is determined by the inequality

E � pFω

e
=

h̄ω
√

πns

e
. (47)

The lower the charge carrier density ns and the radiation frequency ω the smaller is the electric
field needed for the observation of the nonlinear effects. If, for example, the density is � 1011

cm−2 and the frequency is � 0.5 THz, Eq. (47) gives E � 1 kV/cm which corresponds to the
incident wave power � 2 kW/cm2.
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E1 · E2 = 0, the current at the mixed frequencies 2ω1 ± ω2 is three times smaller than for the
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5. Frequency mixing: Quantum theory
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more complicated and is yet to be developed. In this paper we only consider the frequency
mixing response at the frequency ωe ≡ 2ω1 − ω2 and calculate it under the conditions

h̄ω1, h̄ω2, h̄ωe � |μ|, (48)

relevant for the experiment of Hendry et al. (2010).

5.1 Quantum kinetic (Liouville) equation
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ih̄
∂ρ̂n

∂t
= [Ĥ0, ρ̂n] + [Ĥ1, ρ̂n−1], n = 2, 3, . . . (49)

for ρ̂n. At high frequencies (48) we can write the Hamiltonian Ĥ1 in the form

Ĥ1 = (eE1x cos ω1t + eE2x cos ω2t) eγt = hω1 ei(ω1−i0)t + hω2 ei(ω2−i0)t + {ωj → −ωj}, (50)

where hω1 = h−ω1 = eE1x/2, hω2 = h−ω2 = eE2x/2 and it is assumed that γ → 0. In the first
order in Ej we get

�λ|ρ̂1|λ�� = ∑
ω={±ω1,±ω2}

fλ� − fλ

Eλ� − Eλ − h̄ω + i0
�λ|hω |λ��eiωt ≡ ∑

ω{±ω1,±ω2}
ρ1ωeiωt, (51)

where we have used a short notation |λ� for the set of three quantum numbers |lkσ�. The right
hand side of Eq. (51) contains the oscillating exponents with the frequencies ±ω1 and ±ω2.
For the matrix elements of ρ̂2 we obtain, similarly,

�λ|ρ̂2|λ�� = ∑
ωa,ωb

�λ|[hωa , ρ1ωb
]|λ��

Eλ� − Eλ − h̄ωa − h̄ωb + i0
ei(ωa+ωb)t. (52)
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The summation here is performed over the sets of frequencies ωa = {±ω1,±ω2} and
ωb = {±ω1,±ω2}, i.e. the right hand side in (52) contains the oscillating terms with the
frequencies ±2ω1, ±2ω2, ±(ω1 + ω2), ±(ω1 − ω2) and a time independent term with ω = 0.
We will denote this set of frequencies as ωc = {±2ω1,±2ω2,±(ω1 + ω2),±(ω1 − ω2), 0}. The
commutator [hωa , ρ1ωb

] is calculated as
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)
,

where the matrix elements �λ|hω |λ�� and �λ|ρ1ω |λ�� are known from (14) and (51).
Then, for the matrix elements of ρ̂3 we get

�λ|ρ̂3|λ�� = ∑
ωa,ωc

�λ|[hωa , ρ2ωc ]|λ��
Eλ� − Eλ − h̄ωa − h̄ωc + i0

ei(ωa+ωc)t. (53)

Now the right hand side of Eq. (53) contains the terms with the frequencies ±ω1, ±ω2, ±3ω1,
±3ω2, ±(2ω1 ± ω2) and ±(2ω2 ± ω1).
The general formulas (51), (52) and (53) allows one, in principle, to calculate the time
dependence of the matrix elements of the density matrix in the third order in Ej. Then, using
the formula

jα(t) = − e
S ∑

λλ�
�λ�|v̂α|λ��λ|ρ̂1 + ρ̂2 + ρ̂3 + . . . |λ�� (54)

one can find the time dependence of the current in the same order of the perturbation theory.
This general expression for the current will contain the terms with the frequencies ω1, ω2, 3ω1,
3ω2, as well as (2ω1 ± ω2) and (2ω2 ± ω1).

5.2 Optical frequency mixing at ωe = 2ω1 − ω2
Being interested in this work only in the response at the frequency of the emitted light ωe ≡
2ω1 − ω2 (see Hendry et al. (2010)) we get, after quite lengthy calculations,

j(3)
(ωe)

(t) =
e4gs

8h̄2 E2
1E2

2ω1 − ω2

ω1(ω1 − ω2)2 eiωet 1
S ∑

k
( f2k − f1k)�1k|vx|2k��1k|x|2k�3

×
(
− 2

E2k − E1k + h̄ω1 − i0
+

2
E2k − E1k − h̄ω1 + i0

+
1

E2k − E1k + h̄ω2 − i0
− 1

E2k − E1k − h̄ω2 + i0

− 1
E2k − E1k − h̄ωe + i0

+
1

E2k − E1k + h̄ωe − i0

)
+ (ωj → −ωj). (55)

The current j(3)
(ωe)

(t) contains the resonant terms corresponding to the vertical optical
transitions at E2k − E1k = h̄ω1, h̄ω2 and h̄ωe. As it follows from the linear response theory
(Section 3), the largest contribution to the current at the optical frequencies h̄ω � |μ| is given
by the absorption terms proportional to δ(E2k − E1k − h̄ω). The same is valid in the nonlinear

530 Physics and Applications of Graphene - Theory

regime too. Taking into account in (55) only the terms ∝ δ(E2k − E1k − h̄ω1,2,e) we finally get

j(3)
(ωe)

(t) ≈ 3e4gs gvV2

256h̄3 E2
1E2

2ω1 − ω2

ω1(ω1 − ω2)2

[
2

ω2
1
− 1

ω2
2
− 1

(2ω1 − ω2)2

]
cos(2ω1 − ω2)t

= − 9
8

σopt(ω2)E2β2
1F

(
ω2

ω1

)
cos(2ω1 − ω2)t, (56)

where
β1 =

eE1V
h̄ω2

1
(57)

is the optical field parameter and

F(x) =
2 + 2x − x2

3x2(2 − x)
. (58)

Eq. (56) is the main result of this work. It represents the ac electric current induced in the
graphene layer at the frequency ωe = 2ω1 − ω2 by the two incident waves (42) polarized in
the same direction (the current direction coincides with that of the fields). If the two incident
waves are perpendicularly polarized, the numerical prefactor in (56) is reduced (9/8 → 3/8).
As seen from (56), at high frequencies the current depends neither on the chemical potential
μ nor on the temperature T as it should be under the conditions when the vertical inter-band
transitions play the main role. The second line of (56) is written in the form similar to (46):
at the optical frequencies the current is the product of the high-frequency, universal optical
conductivity (32), the electric field E2 and the squared field parameter β2

1. The optical field
parameter β = eEV/h̄ω2 is the work done by the electric field during one oscillation period
(eEV/ω) divided by the photon energy h̄ω (instead of the Fermi energy μ at low frequencies,
Eq. (45)). In addition to the mentioned parameters, the current (56) weakly depends on the
ratio of the two optical frequencies ω2/ω1 which is described by the function (58) shown in
Figure 6. The function F(x) is of order unity if the difference ω2 − ω1 is not very large. If ω1,
ω2 or ωe tend to zero the current (56) has a strong tendency to grow. These limits are very
interesting for future studies but have been excluded from the current consideration by the
conditions (48).
The formula (56) is in good quantitative agreement with the experimental results of Hendry
et al. (2010). The comparison with other materials made in that paper showed that graphene
has much stronger nonlinear properties than typical nonlinear insulators and some metals
(Au). Comparing the experimental results of Hendry et al. (2010) with those of Erokhin
et al. (1987) shows that graphene is also a stronger nonlinear material than a typical
nonlinear semiconductor InSb. Further theoretical and experimental studies of the nonlinear
electrodynamic and optical properties of graphene are therefore highly desirable.

6. Summary and conclusions

Due to the massless energy spectrum of the charge carriers graphene demonstrates strongly
nonlinear electromagnetic properties. In this work we have developed a theory of the
nonlinear frequency mixing effect in graphene. The two physically different regimes have
been considered. At low frequencies, corresponding to the radio, microwave and terahertz
range, the problem is solved within the quasi-classical approach which takes into account the
intra-band response of the material. At high frequencies, corresponding to the infrared and
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Fig. 6. The function F(x) from Eq. (58).

visible light, a quantum theory is developed which takes into account the inter-band optical
transitions.
At the optical frequencies our results quantitatively agree with the recent experimental
findings of Hendry et al. (2010) who have observed the nonlinear electromagnetic response
of graphene for the first time. The results of Hendry et al. (2010) show that in the visible
and near-infrared frequency range the nonlinear parameters of graphene are much stronger
than in many other nonlinear materials. Even more important conclusion is that, according to
our theoretical predictions, the nonlinear response of graphene substantially grows at lower
frequencies. One should expect therefore even stronger nonlinear properties of graphene
at the mid-infrared, terahertz and microwave frequencies which would be of extreme
importance for the future progress of the nonlinear terahertz- and optoelectronics.
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visible light, a quantum theory is developed which takes into account the inter-band optical
transitions.
At the optical frequencies our results quantitatively agree with the recent experimental
findings of Hendry et al. (2010) who have observed the nonlinear electromagnetic response
of graphene for the first time. The results of Hendry et al. (2010) show that in the visible
and near-infrared frequency range the nonlinear parameters of graphene are much stronger
than in many other nonlinear materials. Even more important conclusion is that, according to
our theoretical predictions, the nonlinear response of graphene substantially grows at lower
frequencies. One should expect therefore even stronger nonlinear properties of graphene
at the mid-infrared, terahertz and microwave frequencies which would be of extreme
importance for the future progress of the nonlinear terahertz- and optoelectronics.
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