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Preface 

Immediately after the first drafts of the human genome sequence were reported almost 
a decade ago, the importance of genomics and functional genomics studies became 
well recognized across the broad disciplines of biological sciences research. The 
initiatives of Leroy Hood and other pioneers on developing systems biology 
approaches for evaluating or addressing global and integrated biological activities, 
mechanisms, and network systems have motivated many of us, as bioscientists, to re-
examine or revisit a whole spectrum of our previous experimental findings or 
observations in a much broader, link-seeking and cross-talk context. Soon thereafter, 
these lines of research efforts generated interesting, fancy and sometimes misleading 
new names for the now well-accepted “omics” research areas, including functional 
genomics, (functional) proteomics, metabolomics, transcriptomics, glycomics, 
lipidomics, and cellomics. It may be interesting for us to try to relate these “omics” 
approaches to one of the oldest omics studies that we all may be quite familiar with, 
and that is “economics”, in a way that all “omics” indeed seemed to have meant to 
address the mechanisms/activities/constituents in a global, inter-connected and 
regulated way or manner. 

The advancement of a spectrum of technological methodologies and assay systems for 
various omics studies has been literally astonishing, including next-generation DNA 
sequencing platforms, whole transcriptome microarrays, micro-RNA arrays, various 
protein chips, polysaccharide or glycomics arrays, advanced LC-MS/MS, GC-MS/MS, 
MALDI-TOF, 2D-NMR, FT-IR, and other systems for proteome and metabolome 
research and investigations on related molecular signaling and networking 
bioactivities. Even more excitingly and encouragingly, many outstanding researchers 
previously trained as mathematicians, information or computation scientists have 
courageously re-educated themselves and turned into a new generation of 
bioinformatics scientists. The collective achievements and breakthroughs made by our 
colleagues have created a number of wonderful database systems which are now 
routinely and extensively used by not only young but also “old” researchers. It is very 
difficult to miss the overwhelming feeling and excitement of this new era in systems 
biology and computational biology research.   

It is now estimated, with good supporting evidence by omics information, that there 
are approximately 25,000 genes in the human genome, about 45,000 total proteins in 
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the human proteome, and around 3000 species of primary and between 3000 and 6000 
species of secondary metabolites, respectively, in the human body fluid/tissue 
metabolome. These numbers and their relative levels to each other are now helping us 
to construct a more comprehensive and realistic view of human biology systems. 
Likewise, but maybe to a lesser extent, various baseline omics databases on mouse, 
fruit fly, Arabidopsis plant, yeast, and E. coli systems are being built to serve as model 
systems for molecular, cellular and systems biology studies; these efforts are projected 
to result in very interesting and important research findings in the coming years. 

Good findings in a new research area may not necessarily translate quickly into good 
or high-impact benefits pertaining to socio-economic needs, as may be witnessed now 
by many of us with regard to research and development in omics science/technology. 
To some of us, the new genes, novel protein functions, unique metabolite profiles or 
PCA clusters, and their signaling systems that we have so far revealed seemed to have 
yielded less than what we have previously (only some 5 to 10 years ago) expected, in 
terms of new targets or strategies for drug or therapeutics development in medical 
sciences, or for improvement of crop plants in agricultural science. Nonetheless, some 
useful new tools for diagnosis and personalized medicine have been developed as a 
result of genomics research. Recent reviews on this subject have helped us more 
realistically and still optimistically to address such issues in a socially responsible 
academic exercise. Therefore, whereas some “microarray” or “bioinformatics” 
scientists among us may have been criticized as doing “cataloging research”, the 
majority of us believe that we are sincerely exploring new scientific and technological 
systems to benefit human health, human food and animal feed production, and 
environmental protections. Indeed, we are humbled by the complexity, extent and 
beauty of cross-talks in various biological systems; on the other hand, we are 
becoming more educated and are able to start addressing honestly and skillfully the 
various important issues concerning translational medicine, global agriculture, and the 
environment. 

I am very honored to serve as the editor of these two volumes on Systems and 
Computational Biology: (I) Molecular and Cellular Experimental Systems, and (II) 
Bioinformatics and Computational Modeling. I believe that we have collectively 
contributed a series of high-quality research or review articles in a timely fashion to 
this emerging research field of our scientific community.  

I sincerely hope that our colleagues and readers worldwide will help us in future 
similar efforts, by providing us feedback in the form of critical comments, 
interdisciplinary ideas and innovative suggestions on our book chapters, as a way to 
pay our high respect to the biological genomes on planet earth.    

Dr. Ning-Sun Yang 
Agricultural Biotechnology Research Center, Academia Sinica 

Taiwan, R.O.C 
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Parallel Processing of Complex  
Biomolecular Information: Combining 

Experimental and Computational Approaches 
Jestin Jean-Luc and Lafaye Pierre 

Institut Pasteur 
France 

1. Introduction 
While protein functions such as binding or catalysis remain very difficult to predict 
computationally from primary sequences, approaches which involve the parallel processing 
of diverse proteins are remarkably powerful for the isolation of rare proteins with functions 
of interest.  
Stated using a Darwinian vocabulary, a repertoire of proteins can be submitted to 
selection according to a function of interest for isolation of the rare fittest proteins. Parallel 
processing strategies rely mainly on the design of in vitro selections of proteins. To ensure 
that complex molecular information can be extracted after selection from protein 
populations, several types of links between the genotype and the phenotype have been 
designed for the parallel processing of proteins: they include the display of nascent 
proteins on the surface of the ribosome bound to mRNA, the display of proteins as fusions 
with bacteriophage coat proteins and the fusion of proteins to membrane proteins 
expressed on the surface of yeast cells. In the first two display strategies, covalent and non 
covalent bonds define chemical links between the genotype and the protein, while in the 
last case compartmentation by a membrane provides the link between the protein and the 
corresponding gene. 
While parallel processing strategies allow the analysis of up to 1014 proteins, serial 
processing is convenient for the analysis of tens to thousands of proteins, with the 
exceptions of millions of proteins in the specific case where fluorescent sorting can be 
adapted experimentally.  
In this review, the power of parallel processing strategies for the identification of proteins of 
interest will be underlined. It is useful to combine them with serial processing approaches 
such as activity screening and the computational alignment of multiple sequences. These 
molecular information processing (MIP) strategies yield sequence-activity relationships for 
proteins, whether they are binders or catalysts (Figure 1). 

2. Parallel processing strategies 
Display technologies in vitro are based on the same « idea »: the creation of large diverse 
libraries of proteins followed by their interrogation using display technologies in vitro. An 
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antibody fragment (single-chain Fv (scFv), camelids single domain antibodies (VHH) or Fab 
fragments) (Figure 2) or an enzyme can be presented on phage or yeast surfaces as well as 
on ribosomes, while the encoding nucleotide sequence is incorporated within or is 
physically attached.  
 
 

FROM TO
DIVERSITY FUNCTION

Proteins 107 - 1014 102 - 103 1 - 10

experimental computational
parallel serial
processing processing

Binder(s)
Catalyst(s)

 
Fig. 1. Parallel and experimental processing combined with serial and computational 
processing prior to thermodynamic and kinetic characterization allow protein engineering 
towards new functions. 

 
 
 

 
 

Fig. 2. Representation of mammalian antibodies and synthetic fragments: Fab, scFv and 
VHH. 

This link of phenotype to genotype enables selection and enrichment of molecules with high 
specific affinities or exquisite catalytic properties together with the co-selected gene (Figure 
3). Consequently, the need for serial screening is reduced to a minimum. 
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Fig. 3. Directed protein evolution cycles yield sequence-activity relationships for proteins. A 
cycle consists of the selection of proteins according to their function and of the amplification 
of their corresponding nucleic acids which are linked to the proteins. Iteration of the cycles 
diminishes the background of the selection and yields a selected population enriched in 
proteins with functions of interest. Characterization of these selected proteins and their 
genes establishes sequence-activity relationships. 

2.1 Phage display 
In 1985, M13 phage displaying a specific peptide antigen on its surface was isolated from a 
population of wild type phage, based on the affinity of a specific antibody for the peptide 
(Smith, 1985). Antibody variable domain were successfully displayed by McCafferty et al in 
1990, enabling the selection of antibodies themselves (McCafferty et al., 1990) (Figure 4).  
 
 

protein
p3capsid

phagemid

protein fusionphage particle

 
Fig. 4. Bacteriophage particle highlighting the link between a protein fused to a phage coat 
protein and its corresponding gene located on the phagemid. In the case of Inovirus, the 
filamentous phage particle is a cylinder with a diameter of three to five nanometers, which 
is about one micrometer long. 
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Phage display technology (Figure 4) enables the selection from repertoires of antibody 
fragments (scFv, Fab, VHH) displayed on the surface of filamentous bacteriophage (Smith, 
1985). VHH domains are displayed by fusion to the viral coat protein, allowing phage with 
antigen binding activities (and encoding the antibody fragments) to be selected by panning 
on antigen. The selected phage can be grown after each round of panning and selected 
again, and rare phage (< 1/106) isolated over several rounds of panning.  
The antibody fragments genes population is first isolated from lymphocytes then converted 
to phage-display format using PCR. The PCR products are digested and ligated into phage 
vector. Subsequent transformation usually yield libraries of 106 to 1011 clones, each clone 
corresponding to a specific antibody fragments (VHH, scFv, Fab). This library is panned 
against the antigen then expression of selected clones is performed. Their biochemical 
characteristics are analyzed (purity, affinity, specificity) as well as their biological 
characteristics. 
The major advantages of phage display compared with other display technologies are its 
robustness, simplicity, and the stability of the phage particles, which enables selection on 
cell surfaces (Ahmadvand et al., 2009), tissue sections (Tordsson et al., 1997) and even in vivo 
(Pasqualini & Ruoslahti, 1996). However, because the coupling of genotype and phenotype 
(i.e. protein synthesis and assembly of phage particles) takes place in bacteria, the encoding 
DNA needs to be imported artificially. Library size is therefore restricted by transformation 
efficiency. Despite great improvements in this area, the largest reported libraries still 
comprise no more than 1010 to 1011 different members. Moreover, the amplification of 
selected variants in vivo can lead to considerable biases. Antibody fragments that are toxic 
for the host, poorly expressed or folded, inefficiently incorporated into the phage particle or 
susceptible to proteolysis or aggregation slow down the bacterial growth and display less 
efficiently. This reduces the library diversity and enables a low potency but fast growing 
clone to dominate a whole population after just a few rounds of selection. 

2.2 Ribosome display 
Ribosome display was first developed by Dower et al (Mattheakis et al., 1994) where mRNA, 
ribosome and correctly folded functional peptide in a linked assembly could be used for 
screening and selection (Figure 5).  
 

protein

mRNA ribosome

 
Fig. 5. Ribosome providing the link between the nascent protein and the corresponding 
mRNA. Such complexes are stabilized in the absence of stop codons and at low 
temperatures. 
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In ribosome display, a DNA library coding for particular proteins, for instance scFv or VHH 
fragments of antibodies, is transcribed in vitro. The mRNA is purified and used for in vitro 
translation. Because the mRNA lacks a stop codon, the ribosome stalls at the end of the 
mRNA, giving rise to a ternary complex of mRNA, ribosome and functional protein. A 
library of these ternary complexes is tested against the potential ligand (in the case of the 
antibodies, against the antigen). The binding of the ternary complexes (ribosome, mRNA 
and protein) to the ligand allows the recovery of the encoding mRNA that is linked to it and 
that can be transcribed into cDNA by reverse transcriptase-PCR (RT-PCR). Cycles of 
selection and recovery can be iterated both to enrich rare ligand-binding molecules, and to 
select molecules with the best affinity. 
Ribosome display has been used for the selection of proteins, such as scFv antibody 
fragments and alternative binding scaffolds with specificity and affinity to peptides (Hanes 
& Pluckthun, 1997), proteins (Hanes et al., 2000; Knappik et al., 2000; Binz et al., 2004; Lee et 
al., 2004; Mouratou et al., 2007) and nucleic acids (Schaffitzel et al., 2001). Using transition-
state analogs or enzyme inhibitors that bind reversibly to their enzyme (suicide substrates), 
ribosome display can also be used for the selection for enzymatic activity. 
As it is entirely performed in vitro, there are two main advantages over other selection 
strategies. First, the diversity is not limited by the transformation efficiency of bacterial cells, 
but only by the number of ribosomes and different mRNA molecules present in the test 
tube. According to the fact that the functional diversity is given by the number of ribosomal 
complexes that display a functional protein, this number is limited by the number of 
functional ribosomes or different mRNA molecules, whichever is smaller. An estimate 
representing a lower limit, of the number of active complexes with folded protein was 
determined as 2.6 x 1011 per milliter of reaction (Zahnd et al., 2007) and probably is about 
1013. Second, random mutations can be introduced easily after each selection rounds, as no 
library must be transformed after any diversification steps. This allows facile directed 
evolution of binding proteins over several generations.  
However, ribosome display suffers some drawbacks because RNA is extremely labile to 
ubiquitous Rnases, because the ternary RNA-ribosome-protein complex is very sensitive to 
heat denaturation and to salt concentration and because large proteins such as DNA 
polymerases cannot necessarily be produced by in vitro translation.  

2.3 Yeast surface display 
Yeast surface display (YSD) was first demonstrated as a method to immobilize enzymes and 
pathogen-derived proteins for vaccine development. The -galactosidase gene from 
Cyamopsis tetragonoloba was fused to the C terminal half of -agglutinin, a cell wall anchored 
mating protein in S. cerevisiae (Schreuder et al., 1993).  
Increased stability was seen for the enzyme when linked to the cell wall, compared with 
direct secretion of the full -galactosidase enzyme into the media. Early work also used the 
flocculin Flo1p as an anchor to attach -galactosidase to the cell wall, with similar results 
(Schreuder et al., 1996). Both -agglutinin and flocculin, along with cell wall proteins such as 
Cwp1p, Cwp2p, Tip1p, and others, belong to the glycosylphosphatidylinositol (GPI) family 
of cell wall proteins that can be used directly for display (Kondo & Ueda, 2004). These 
proteins are directed to the plasma membrane via GPI anchors and subsequently are linked 
directly to the cell wall through a -1,6-glucan bridge for incorporation into the 
mannoprotein layer (Kondo & Ueda, 2004). These large intact proteins as well as their C-
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mRNA ribosome

 
Fig. 5. Ribosome providing the link between the nascent protein and the corresponding 
mRNA. Such complexes are stabilized in the absence of stop codons and at low 
temperatures. 
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In ribosome display, a DNA library coding for particular proteins, for instance scFv or VHH 
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2.3 Yeast surface display 
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Cyamopsis tetragonoloba was fused to the C terminal half of -agglutinin, a cell wall anchored 
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flocculin Flo1p as an anchor to attach -galactosidase to the cell wall, with similar results 
(Schreuder et al., 1996). Both -agglutinin and flocculin, along with cell wall proteins such as 
Cwp1p, Cwp2p, Tip1p, and others, belong to the glycosylphosphatidylinositol (GPI) family 
of cell wall proteins that can be used directly for display (Kondo & Ueda, 2004). These 
proteins are directed to the plasma membrane via GPI anchors and subsequently are linked 
directly to the cell wall through a -1,6-glucan bridge for incorporation into the 
mannoprotein layer (Kondo & Ueda, 2004). These large intact proteins as well as their C-
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terminal fragments have been demonstrated to mediate display of a range of heterologous 
proteins upon protein fusion.  
The -agglutinin system developped by Wittrup et al (Boder & Wittrup, 1997; Boder et al., 
2000; Boder & Wittrup, 2000) uses Aga2p as the display fusion partner. A disulfide linkage 
between Aga1p, a GPI/-1,6-glucan-anchored protein, and Aga2p anchors the protein to the 
cell wall. Thus, coexpression of Aga1p with an Aga2p fusion leads to cell wall-anchored 
protein on the surface of yeast via disulfide bonding. The majority of applications of YSD 
utilize now the Aga2p anchor system. 
In the yeast surface display system (Figure 6), the antibody fragment (scFv for example) is 
fused to the adhesion subunit of the yeast agglutinin protein Aga2p, which attaches to the 
yeast cell wall through disulfide bonds to Aga1p. Each yeast cell typically displays 1.104 to 
1.105 copies of the scFv, and variations in surface expression can be measured through 
immuno-fluorescence labeling of either the hemagglutinin or c-Myc epitope tag flanking the 
scFv. 
 

yeast cell

plasmid

protein fusion

 
Fig. 6. Yeast cell providing the link between a protein of interest fused to a membrane 
protein and its corresponding gene located on a plasmid. 

In the yeast surface display system (Figure 6), the antibody fragment (scFv for example) is 
fused to the adhesion subunit of the yeast agglutinin protein Aga2p, which attaches to the 
yeast cell wall through disulfide bonds to Aga1p. Each yeast cell typically displays 1.104 to 
1.105 copies of the scFv, and variations in surface expression can be measured through 
immuno-fluorescence labeling of either the hemagglutinin or c-Myc epitope tag flanking the 
scFv. Likewise, binding to a soluble antigen of interest can be determined by labeling of 
yeast with biotinylated antigen and a secondary reagent such as streptavidin conjugated to a 
fluorophore. The display of scFv antibody fragments on the surface of yeast is a powerful 
and robust technique for the selection of affinity reagents (van den Beucken et al., 2003). 
Using yeast display for probing immune libraries offers one major advantages over 
alternative systems. The main advantage is that the scFv displaying yeast can be isolated by 
FACS and characterized by flow cytometry. The use of FACS in the selection procedure 
allows the visualization of antigen binding in real-time and the enrichment of each step in 
the selection can be easily quantified using statistical analyses. Modern flow cytometers can 
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easily screen millions of binding events in only a few minutes, and the precision of sorting 
antigen-binding yeast while eliminating nonspecific interactions facilitates large 
enrichments in a relatively short period of time. In addition, following selection of scFv 
clones, YSD allows the determination of steady-state kinetic parameters by flow cytometry 
(KD value determination (VanAntwerp & Wittrup, 2000)).  
However, current yeast display technology is limited by the size of libraries that can be 
generated and, typically, only libraries of between 106 and 107 mutants are routinely 
possible using conventional in vitro cloning and transformation. 

3. Binders analyzed by parallel processing 
This chapter will focus on antibodies, the major class of known binding proteins. 

3.1 Introduction on the natural diversity of immunoglobulins 
One characteristic of the immune response in vertebrate is the possibility to raise 
immunoglobulin (Ig) against any type of antigen (Ag), known or unknown. An Ig contains 
two regions: the Variable domain involved in the binding with the Ag and the Constant 
domain with effector functions. Each Ig is unique and the variable domain, which is present 
in each heavy and light chain of every antibody, differ from one antibody to an other. 
Differences between the variable domains are located on three loops known as 
complementarity determining regions CDR1, CDR2 and CDR3. CDRs are supported within 
the variable domains by conserved framework regions. The variability of Ig is based on two 
phenomena: somatic recombination and somatic hypermutation (SHM).  
Somatic recombination of Ig, also known as V(D)J recombination, involves the generation of 
a unique Ig variable region. The variable region of each immunoglobulin heavy or light 
chain is encoded in several gene segments. These segments are called variable (V), diversity 
(D) and joining (J) segments. V, D and J segments are found in Ig heavy chains, but only V 
and J segments are found in Ig light chains. The IgH locus contains up to 65 VH genes, 27 D 
genes and 6 J genes while the IgL locus contains 40 V genes and 4-5 J genes, knowing that 
there are two light chains kappa and lambda. In the bone marrow, each developing B cell 
will assemble an immunoglobulin variable region by randomly selecting and combining one 
V, one D and one J gene segment (or one V and one J segment in the light chain). For heavy-
chains there are about 10530 potential recombinations (65x27x6) and for light chains 360 
potential recombinations (200+160). Moreover some mutations (referred as N-diversity 
somatic mutations) occur during recombination increasing the diversity by a factor 103. 
These two phenomena, recombination and somatic mutations, lead to about 106-107 
possibilities for heavy chains and 3.5 105 possibilities for light chains generating the 
formation of about 2.1012 different antibodies and thus different antigen specificities 
(Figure 7) (Jones & Gellert, 2004).  
Following activation with antigen, B cells begin to proliferate rapidly. In these rapidly 
dividing cells, the genes encoding the variable domains of the heavy and light chains 
undergo a high rate of point mutation, by a process called somatic hypermutation (SHM). 
The SHM mutation rate is about 10-3 per base pair and per cell division, that is 
approximately one million times above the replicative mutation rate. As a consequence, any 
daughter B cells will acquire slight amino acid differences in the variable domains of their 
antibody chains. 
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This serves to increase the diversity of the antibody pool and impacts the antibody’s 
antigen-binding affinity. Some point mutations will result in the production of antibodies 
that have a weaker interaction (low affinity) with their antigen than the original antibody, 
and some mutations will generate antibodies with a stronger interaction (high affinity). It 
has been estimated that the affinity of an immunoglobulin for an antigen is raised by a 
factor 10 to 100 (Kepler & Bartl, 1998). B cells that express high affinity antibodies on their 
surface will receive a strong survival signal during interactions with other cells, whereas 
those with low affinity antibodies will not, and will die by apoptosis. The process of 
generating antibodies with increased binding affinities is called affinity maturation 
(Neuberger, 2008).  
 
 

1                            65   1        27     1              6
V                              D                 J                 CH

                 V D J          CH

                     V                              J                Ck
1                                   40    1            5

V                             J               C
1                                 40      1       4

  V J          CL1st response:
V(D)J recombination
and somatic mutations

2nd response: 
somatic hypermutation 

 
Fig. 7. Recombination and hypermutation of immunoglobulins. A yellow rectangle 
represents a point mutation. Recombination and somatic hypermutation are shown for 
heavy chains (left) and for light chains (right). 

This quite complex process for generation of highly specific antibodies is a challenge for the 
obtention of recombinant antibodies. Many factors influence the quality of the recombinant 
antibodies: starting or not from an immunized animals or humans, the size and the quality 
of the libraries, the possibility to mutate the antibodies.  

3.2 Antibody libraries 
3.2.1 Recombinant antibody libraries 
Recombinant antibody libraries have been constructed by cloning antibody heavy- or light-
chain variable genes directly from lymphocytes of animals or human and then expressing as 
a single-chain fragment variable (scFv) single-domain antibodies (VHH) or as an antigen-
binding fragment (Fab) using various display technologies. The recombinant antibody 
technology, an alternative to traditional immunization of animals, facilitates to isolate target 
specific high affinity monoclonal antibodies without immunization by virtue of combination 
with high throughput screening techniques.  
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A strategy for creation of a combinatorial antibody library is very important to isolate high 
specificity and affinity antibodies against target antigens. To date, a variety of different 
antibody libraries have been generated, which range from immune to naive and even 
synthetic antibody libraries (Table 1). Immune libraries derived from IgG genes of 
immunized donors (Sanna et al., 1995) are useful if immunized patients are available but 
have the disadvantage that antibodies can only be made against the antigens used for 
immunization. In contrast, antibodies against virtually any antigen, including self-, non-
immunogenic, or toxic antigens, can be isolated from naive or synthetic libraries. Naive 
libraries from non-immunized donors have been generated by PCR-cloning Ig repertoires 
from various B-cell sources (Marks et al., 1991; Vaughan et al., 1996; Sheets et al., 1998; de 
Haard et al., 1999)) derived from human or camel germ line genes and randomized only in 
the CDR3 regions (Hoogenboom & Winter, 1992; Nissim et al., 1994; de Kruif et al., 1995). 
Synthetic libraries have been generated from a repertoire of 49 human germline VH genes 
segments rearranged in vitro to create a synthetic CDR3 region (Hoogenboom & Winter, 
1992) or derived from a single V-gene with complete randomization of all CDRs (Jirholt et 
al., 1998; Soderlind et al., 2000) (Table 1).  
 

 Synthetic Naive Immune 

V-gene source Unrearranged V-
gene segments 

Rearranged-V 
genes from Ig pool 

Rearranged V-genes from 
specific IgG pool 

Contents controlled uncontrolled uncontrolled 
Repertoire 

construction 
Once 

(single pot) 
New repertoire for every 

antigen 

Affinity of 
antibodies 

Depending on library size : 
µM from standard size repertoire (107) 

nM from very large repertoire (1010) 

Biased for high affinity 
(nM if antigen is 
immunogenic) 

specificity Any Originally biased 
against self 

Immunodominant 
epitopes, 

biased against self 

Table 1. Comparison between Synthetic, Naive and Immune libraries (according to 
(Hoogenboom, 1997)) 

3.2.2 Immune libraries 
Efficient isolation of specific high affinity binders from relatively small sized libraries was 
shown using immune antibody libraries constructed from B lymphocytes of immunized 
mice, camels or patients with a high antibody titer for particular antigens, in our laboratory 
and by others: a targeted immune library contained typically about 106 clones (Burton, 1991; 
Barbas et al., 1992; Barbas et al., 1992) (Table 1). However, the construction of an immune 
library is not always possible due to the difficulty in obtaining antigen-related B 
lymphocytes.  
The quality of the immune response will likely dictate the outcome of the library selections. 
It is generally accepted that early in the immune response the repertoire of 
immunoglobulins is diverse and of low affinity to the antigen. The process of SHM through 
successive rounds of selection ensures that the surviving B cells develop progressively 
higher affinities, but probably at the expense of diversity. The balance between diversity and 
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affinity is something that may be exploited by researchers depending on the goal of their 
study. 

3.2.3 Non-immune libraries 
The most important parameter in the non-immune antibody library is the library diversity, 
i.e., library size, in an aspect that, in general, the larger the library, the higher the likelihood 
is to isolate high affinity binders to a particular antigen. Typically, a 109 to 1011 library 
diversity has been reported to generate specific high affinity binders with dissociation 
constants in the 1–1000 nM range (Table 1). For example, scFvs against crotoxin, a highly 
toxic--neurotoxin isolated from the venom of the rattlesnake, Crotalus durrissus terrificus, 
have been selected from two non-immune scFv libraries which differ by their size; 
respectively 106 (Nissim et al., 1994) and 1010 diversity (Vaughan et al., 1996). The affinity of 
anti-crotoxin scFvs is in the micromolar range in the first case and in the nanomolar range in 
the second case. Moreover, these latter scFvs possessed an in vivo neutralizing activity 
against a venom toxin.  
However, creating a large antibody library is time consuming and does not always 
guarantee to isolate high affinity binders to any given antigen. Therefore, many attempts 
have been undertaken to make the library size as big as possible, and site-specific 
recombination systems have been created to overcome the library size limitations given by 
the conventional cloning strategies. Besides library generation, the panning process itself 
limits also the library size that can be handled conveniently.   
Therefore, it is important to generate libraries with a high quality of displayed antibodies, 
thus emphasizing the functional library size and not only the apparent library size. For 
instance, one limitation of phage display is that it requires prokaryotic expression of 
antibody fragments. It is well known that there is an unpredictable expression bias against 
some eukaryotic proteins expressed from Escherichia coli because the organism lacks foldases 
and chaperones present in the endoplasmic reticulum of eukaryotic cells that are necessary 
for efficient folding of secreted proteins such as antibody fragments. Even minor sequence 
changes such as single point mutations in the complementarity determining regions (CDRs) 
of Fab fragments can completely eliminate antibody expression in E. coli (Ulrich et al., 1995), 
and a random sampling of a scFv library showed that half of the library had no detectable 
level of scFv in the culture supernatant (Vaughan et al., 1996). Because the protein folding 
and secretory pathways of yeast more closely approximate those of mammalian cells, it has 
been shown that yeast display could provide access to more antibodies than phage display 
(Bowley et al., 2007). In this study, the two approaches were directly compared using the 
same HIV-1 immune scFv cDNA library expressed in phage and yeast display vectors and 
using the same selecting antigen (HIV-1 gp120). After 3 to 4 rounds of selection, sequence 
analysis of individual clones revealed many common antibodies isolated by both 
techniques, but also revealed many novel antibodies derived from the yeast display 
selection that had not previously been described by phage display. It appears that the level 
of expression of correctly folded scFv on the phage surface is one of the most important 
criteria for selection.  
VHH libraries may be an advantageous alternative because VHH are highly soluble, stable, 
easily expressed in E. coli and because they do not tend to aggregate (Muyldermans, 2001; 
Harmsen & de Haard, 2007). Moreover due to their small size (15 kDa compared to 25-30 
kDa for a scFv and 50 kDa for a Fab), VHH could diffuse easily in tissues, bind to poorly 
accessible epitopes for conventional antibody fragments (Desmyter et al., 1996; Stijlemans et 
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al., 2004) and bind non-conventional epitopes (Behar et al., 2009). Chen et al (Chen et al., 
2008) have prepared a phage displayed VH-only domain library by grafting naturally 
occurring CDR2 and CDR3 of heavy chains on a VHH-like scaffold. From this library (size 
2.5 1010) they have selected high quality binders against viral and cancer-related antigens. 
From a non-immune VHH library of 108 diversity, VHH have been selected against various 
viral protein by phage display. These VHH had an affinity in the nanomolar range but more 
interestingly the koff is very low (about 104 to 105 s-1) allowing them to be suitable for 
crystallographic studies (Lafaye –personnal communication).   

3.3 Affinity optimization 
With tools such as phage, yeast and ribosome display available to isolate rapidly specific 
high-potency antibodies from large variant protein populations, a major key to efficient and 
successful in vitro antibody optimization is the introduction of the appropriate sequence 
diversity into the starting antibody. Generally, two approaches can be taken: either amino 
acid residues in the antibody sequence are substituted in a targeted way or mutations are 
generated randomly.  

3.3.1 Affinity increase by targeted mutations 
Antibodies are ideal candidates for targeted sequence diversification because they share a high 
degree of sequence similarity and their conserved immunoglobulin protein fold is well 
studied. Many in vitro affinity maturation efforts using combinatorial libraries in conjunction 
with display technologies have targeted the CDRs harbouring the antigen-binding site. 
Normally, amino acid residues are fully randomized with degenerate oligonucleotides. If 
applied to all positions in a given CDR, however, this approach would create far more variants 
than can be displayed on phage, on yeast or even ribosomes – saturation mutagenesis of a 
CDR of 12 residues, for example, would result in 2012 different variants. In addition, the 
indiscriminate mutation of these residues creates many variants that no longer bind the 
antigen, reducing the functional library size. Scientists have therefore restricted the number of 
mutations by targeting only blocks of around six consecutive residues per library (Thom et al., 
2006) or by mutating four variants in all the CDRs (Laffly et al., 2008) or by mutating only the 
CDRs 1 and 2 (Hoet et al., 2005). Mutagenesis has also been focussed on natural hotspots of 
SHM (Ho et al., 2005). In other works, the residues to be targeted were chosen based on 
mutational or structural analyses as well as on molecular models (Yelton et al., 1995; Osbourn 
et al., 1996; Chen & Stollar, 1999). Further affinity improvements have been achieved by 
recombining mutations within the same or different CDRs of improved variants (Jackson et al., 
1995; Yelton et al., 1995; Chen & Stollar, 1999; Rajpal et al., 2005). Despite some substantial 
gains, such an approach is unpredictable. As an alternative, CDRs were sequentially mutated 
by iterative constructions and pannings of libraries, starting with CDR3, in a strategy named  
« CDR walking » (Yang et al., 1995; Schier et al., 1996). Although this results in greater 
improvements, it is time consuming and permits only one set of amino acid changes to 
recombine with new mutations.  

3.3.2 Affinity increase by random mutations 
In addition to the targeted strategies, several random mutagenesis methods can be used to 
improve antibody potency. One is the shuffling of gene segments, where VH and VL 
populations, for example, can be randomly recombined with each other (Figini et al., 1994; 
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affinity is something that may be exploited by researchers depending on the goal of their 
study. 
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accessible epitopes for conventional antibody fragments (Desmyter et al., 1996; Stijlemans et 

Parallel Processing of Complex  
Biomolecular Information: Combining Experimental and Computational Approaches 

 

13 

al., 2004) and bind non-conventional epitopes (Behar et al., 2009). Chen et al (Chen et al., 
2008) have prepared a phage displayed VH-only domain library by grafting naturally 
occurring CDR2 and CDR3 of heavy chains on a VHH-like scaffold. From this library (size 
2.5 1010) they have selected high quality binders against viral and cancer-related antigens. 
From a non-immune VHH library of 108 diversity, VHH have been selected against various 
viral protein by phage display. These VHH had an affinity in the nanomolar range but more 
interestingly the koff is very low (about 104 to 105 s-1) allowing them to be suitable for 
crystallographic studies (Lafaye –personnal communication).   

3.3 Affinity optimization 
With tools such as phage, yeast and ribosome display available to isolate rapidly specific 
high-potency antibodies from large variant protein populations, a major key to efficient and 
successful in vitro antibody optimization is the introduction of the appropriate sequence 
diversity into the starting antibody. Generally, two approaches can be taken: either amino 
acid residues in the antibody sequence are substituted in a targeted way or mutations are 
generated randomly.  

3.3.1 Affinity increase by targeted mutations 
Antibodies are ideal candidates for targeted sequence diversification because they share a high 
degree of sequence similarity and their conserved immunoglobulin protein fold is well 
studied. Many in vitro affinity maturation efforts using combinatorial libraries in conjunction 
with display technologies have targeted the CDRs harbouring the antigen-binding site. 
Normally, amino acid residues are fully randomized with degenerate oligonucleotides. If 
applied to all positions in a given CDR, however, this approach would create far more variants 
than can be displayed on phage, on yeast or even ribosomes – saturation mutagenesis of a 
CDR of 12 residues, for example, would result in 2012 different variants. In addition, the 
indiscriminate mutation of these residues creates many variants that no longer bind the 
antigen, reducing the functional library size. Scientists have therefore restricted the number of 
mutations by targeting only blocks of around six consecutive residues per library (Thom et al., 
2006) or by mutating four variants in all the CDRs (Laffly et al., 2008) or by mutating only the 
CDRs 1 and 2 (Hoet et al., 2005). Mutagenesis has also been focussed on natural hotspots of 
SHM (Ho et al., 2005). In other works, the residues to be targeted were chosen based on 
mutational or structural analyses as well as on molecular models (Yelton et al., 1995; Osbourn 
et al., 1996; Chen & Stollar, 1999). Further affinity improvements have been achieved by 
recombining mutations within the same or different CDRs of improved variants (Jackson et al., 
1995; Yelton et al., 1995; Chen & Stollar, 1999; Rajpal et al., 2005). Despite some substantial 
gains, such an approach is unpredictable. As an alternative, CDRs were sequentially mutated 
by iterative constructions and pannings of libraries, starting with CDR3, in a strategy named  
« CDR walking » (Yang et al., 1995; Schier et al., 1996). Although this results in greater 
improvements, it is time consuming and permits only one set of amino acid changes to 
recombine with new mutations.  

3.3.2 Affinity increase by random mutations 
In addition to the targeted strategies, several random mutagenesis methods can be used to 
improve antibody potency. One is the shuffling of gene segments, where VH and VL 
populations, for example, can be randomly recombined with each other (Figini et al., 1994; 



 
Systems and Computational Biology – Bioinformatics and Computational Modeling 

 

14

Schier et al., 1996) or be performed with CDRs (Jirholt et al., 1998; Knappik et al., 2000). An 
alternative approach is the possibility that independent repertoires of heavy chain (HC) and 
light chain (LC) can be constructed in haploid yeast strains of opposite mating type. These 
separate repertoires can then be combined by highly efficient yeast mating. Using this 
approach, Blaise et al (Blaise et al., 2004) have rapidly generated a human Fab yeast display 
library of over 109 clones, allowing the selection of high affinity Fab by YSD using a 
repeating process of mating- driven chain shuffling and flow cytometric sorting.  
Another approach is the indiscriminate mutation of nucleotides using the low-fidelity Taq 
DNA polymerase (Hanes et al., 2000), error-prone PCR (Hawkins et al., 1992; Daugherty et 
al., 2000; Jermutus et al., 2001; van den Beucken et al., 2003), the error-prone Qbeta RNA 
replicase (Irving et al., 2001) or E. coli mutator strains (Irving et al., 1996; Low et al., 1996; 
Coia et al., 2001) before and in-between rounds of selection. Shuffling and random point 
mutagenesis are particularly useful when used in conjunction with targeted approaches 
because they enable the simultaneous evolution of non-targeted regions (Thom et al., 2006); 
in addition, they are powerful when performed together because individual point mutations 
can recombine and cooperate, again leading to synergistic potency improvements. This has 
created some of the highest affinity antibodies produced so far, with dissociation constants 
in the low picomolar range (Zahnd et al., 2004) and in a study using yeast display, even in 
the femtomolar range (Boder et al., 2000). When performed separately, random mutagenesis 
can help identify mutation hotspots, defined as amino acid residues mutated frequently in a 
population. To this end, a variant library generated by error-prone PCR, for example, might 
be subjected to affinity selections followed by the sequencing of improved scFvs. In a 
manner similar to somatic hypermutation, this method leads to the accumulation of 
mutations responsible for potency gains mainly in CDRs, despite having been introduced 
randomly throughout the whole scFv coding sequence (Thom et al., 2006). 

3.3.3 Affinity increase by selection optimization 
Mutant libraries are often screened under conditions where the binding interaction has 
reached equilibrium with a limiting concentration of soluble antigen to select mutants 
having higher affinity. When labelled with biotin, for example, the antigen and the bound 
scFv–phage, scFv-yeast or scFv–ribosome–mRNA complexes can be pulled down with 
streptavidin-coated magnetic beads. The antigen concentration chosen should be below the 
KD of the antibody at the first round of selection and then reduced incrementally during 
subsequent cycles to enrich for variants with lower KD (Hawkins et al., 1992; Schier et al., 
1996). Selections have been performed in the presence of an excess of competitor antigen or 
antibody, resulting specifically in variants with lower off-rates (Hawkins et al., 1992; 
Jermutus et al., 2001; Zahnd et al., 2004; Laffly et al., 2008).  
Protein affinity maturation has been one of the most successful applications of YSD. Initial 
studies led by Wittrup et al. used an anti-fluorescein scFv to show the effectiveness of YSD 
in protein affinity maturation (Boder et al., 2000; Feldhaus & Siegel, 2004). Since each yeast 
cell is capable of displaying 104 to 105 copies of a single scFv (Boder & Wittrup, 1997), 
fluorescence from each cell can be readily detected and accurately quantified by flow 
cytometry. This feature of YSD allows not only precise and highly reproducible affinity 
measurement, but also rapid enrichment of high-affinity populations within mutant 
libraries (Boder et al., 2000). Moreover, on-rate selections have been realized only with yeast 
display, which profits from using flow cytometric cell sorting to finely discriminate variants 
with specified binding kinetics (Razai et al., 2005).  
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The selected antibodies can be tested for increased affinity but should preferentially be 
screened for improved potency in a relevant cell-based assay because the sequence 
diversification and selection process might also have enriched variants with increased 
folding efficiency and thermodynamic stability, both contributing to potency and, 
ultimately, efficacy. 

3.4 Conclusions on the parallel processing of binders 
Phage, yeast and ribosome display were proven to be powerful methods for screening 
libraries of antibodies. By means of selection from large antibody repertoires, a wide variety 
of antibodies have been generated in the form of scFv, VHH or Fab fragments. After a few 
rounds of panning or selection on soluble antigens and subsequent amplification in E. coli, 
large numbers of selected clones have to be analyzed with respect to antigen specificity, and 
binding affinity. Analysis of these selected binders is usually performed by ELISA. 
Hopefully, the introduction of automated screening methods to the display process 
provides the opportunity to evaluate hundreds of antibodies in downstream assays. 
Secondary assays should minimally provide a relative affinity ranking and, if possible, 
reliable estimates of kinetic or equilibrium affinity constants for each of the hits identified in 
the primary screen.  
Surface plasmon resonance (SPR) methods has been used to measure the thermodynamic 
and kinetic parameters of antigen-antibody interactions. An SPR secondary screening assay 
must be capable of rapidly analyzing all the unique antibodies discovered in the primary 
screen. The first generations of widely used commercial systems from Biacore process only 
one sample at a time and this limits the throughput for antibody fragments screening to 
approximately 100 samples per day. Recently however, several biosensors were introduced 
to increase the number of samples processed with different approaches for sample delivery 
(Wassaf et al., 2006) (Safsten et al., 2006; Nahshol et al., 2008). 
To reduce the number of antibodies tested and so far the amount of antigen used, it is 
crucial to analyze the diversity of the antibody fragments after the first screening performed 
by ELISA. Usually after few rounds of selection, a limited number of clones, found in 
several copies, are obtained. In that case, it is un-necessary to analyze such redundant 
clones. It is the reason why we have decided in our laboratory to sequence the clones after 
the first screening, then to analyze only the unique clones by SPR in a secondary screening. 
Despite the growing knowledge around antibody structures and protein–protein 
interactions, and the rapid development of in silico evolution, molecular modelling and 
protein–protein docking tools, it is still nearly impossible to predict the multitude of 
mutations resulting in improved antibody potency. Moreover, specific structural 
information – on the antibody to be optimized (paratope), its antigen (epitope) and their 
interaction – can lack the high resolution required to determine accurately important details 
such as side-chain conformations, hydrogen-bonding patterns and the position of water 
molecules. Therefore, the most effective way to improve antibody potencies remains the use 
of display technologies to interrogate large variant populations, using either targeted or 
random mutagenesis strategies. 

4. Catalysts analyzed by parallel processing 
4.1 Enzyme libraries 
To isolate rare catalysts of interest for specific chemical reactions, the parallel processing of 
millions of mutant enzymes turned out to be a successful strategy (Figures 3&8). Various 
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types of protein libraries can be constructed. Almost random protein sequences have been 
designed and submitted to selection for the isolation of nucleic acid ligases (Seelig & 
Szostak, 2007).  Given that most enzymes have more than 50 amino acids, and that each 
amino acid can be one out of twenty in the standard genetic code, 2050 distinct sequences can 
be considered. The parallel or serial processing of so many proteins cannot be conceived 
experimentally. A useful strategy then relies on the directed evolution of known enzymes, 
which catalyze chemical reactions that are similar to the reactions of interest (Figure 8). 
Enzyme libraries have been constructed by random mutagenesis of the corresponding 
genes. This can be achieved by introduction of manganese ions within PCR mixtures during 
amplification of the gene encoding the enzyme. Manganese ions alter the fidelity of the 
DNA-dependent DNA polymerase used for amplification and provided their concentration 
is precisely adjusted, the average number of base substitutions per gene can be accurately 
evaluated (Cadwell & Joyce, 1994). Concentrations of deoxynucleotides triphosphates can be 
further adapted so as to define the relative rates of different base substitutions (Fromant et 
al., 1995). 
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Fig. 8. Strategy for the isolation of a catalyst of interest E’ for the reaction from S to P by 
directed evolution of an enzyme E catalyzing a similar chemical reaction converting  
A into B. 

Other enzyme libraries have been constructed by directed mutagenesis at specific sites 
within proteins, for example in our laboratory. Known x-ray crystal structures of enzymes in 
complex with their substrates can be used as a basis to identify the specific amino acids 
known to bind the substrates at the active site (Figure 9).   
Oligonucleotides can be further synthesized with random mutations introduced specifically 
at the very few codons coding amino acids known to interact with the substrates. PCR 
assembly of such oligonucleotides can then be used to reconstitute full-length open reading 
frames coding for mutant proteins. Experience from our laboratory indicates that protein 
libraries designed by introduction of quasi-random mutations over an entire protein domain 
yield a higher number of catalysts of interest than protein libraries carefully designed by 
introduction of mutations at specific sites within the active site. This strategy requires 
nevertheless an efficient parallel processing strategy for analysis of millions of protein 
mutants. 
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Fig. 9. Comparison of Thermus aquaticus DNA polymerase I’s Stoffel fragment structures 
with (2ktq) and without a DNA duplex (1jxe) at the active site. 

4.2 Selections from enzyme libraries 
Design of selections for the isolation of catalysts from large protein repertoires has been far 
from obvious. The various parallel processing strategies to identify active enzymes rely 
generally on selections for binding. Selections for binding to suicide inhibitors were first 
tested (Soumillion et al., 1994). Selection of protein mutants for binding to transition state 
analogues yield in principle catalysts. This approach remains delicate, possibly because of 
the rough similarity between transition states and transition state analogues whose stability 
is required for the selections, and because of the time required to synthesize transition state 
analogues by organic synthesis. Successful parallel processing strategies for the isolation of 
catalysts relied on the selection of multiple products bound to the enzyme complex that 
catalyzed the chemical reaction. These in vitro selections are furthermore selections for the 
highest catalytic turnovers (Figure 10). Populations of enzymes with the highest catalytic 
efficiencies are thereby isolated.  
Sequencing of the genes encoding hundred variants of the selected population then allows 
multiple sequence alignments to be carried out for the identification of recurrent mutations 
which characterize the catalytic activity change or improvement. Further characterization of 
isolated catalysts consists of the measurement of the kinetic parameters for the chemical 
reactions studied. Improvements of the catalytic efficiencies by several orders of magnitude 
have been described in the literature for several enzymes. These results have important 
applications in the field of biocatalysis. 
Alternatively, for substrate-cleaving reaction, the concept of catalytic elution was reported 
(Pedersen et al., 1998): complexes between enzymes displayed on the surface of 
bacteriophages and their substrates bound to a solid phase are formed. Activation of the 
enzyme results in release of the phage-enzyme from the solid phase if the enzyme is 
active, while inactive enzymes remain bound to the solid phase (Soumillion & Fastrez, 
2001). 
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analogues by organic synthesis. Successful parallel processing strategies for the isolation of 
catalysts relied on the selection of multiple products bound to the enzyme complex that 
catalyzed the chemical reaction. These in vitro selections are furthermore selections for the 
highest catalytic turnovers (Figure 10). Populations of enzymes with the highest catalytic 
efficiencies are thereby isolated.  
Sequencing of the genes encoding hundred variants of the selected population then allows 
multiple sequence alignments to be carried out for the identification of recurrent mutations 
which characterize the catalytic activity change or improvement. Further characterization of 
isolated catalysts consists of the measurement of the kinetic parameters for the chemical 
reactions studied. Improvements of the catalytic efficiencies by several orders of magnitude 
have been described in the literature for several enzymes. These results have important 
applications in the field of biocatalysis. 
Alternatively, for substrate-cleaving reaction, the concept of catalytic elution was reported 
(Pedersen et al., 1998): complexes between enzymes displayed on the surface of 
bacteriophages and their substrates bound to a solid phase are formed. Activation of the 
enzyme results in release of the phage-enzyme from the solid phase if the enzyme is 
active, while inactive enzymes remain bound to the solid phase (Soumillion & Fastrez, 
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Fig. 10. Comparison of a highly active enzyme (white) efficiently captured by affinity 
chromatography for the product with a protein catalyzing a single substrate to product 
conversion (blue) unlikely to be isolated by affinity chromatography for the product. 

4.3 Conclusion for enzymes 
The parallel processing of molecular information on the catalytic activity of proteins (« Is the 
protein a catalyst or not ? ») is remarkably achieved by in vitro selection from large libraries 
of millions or billions of mutant proteins. Reduction of the large diversity into a small 
diversity of hundred(s) of variant proteins with the catalytic activity of interest allows 
characterization by serial processing to be accomplished. The sequencing of the 
corresponding genes for hundred(s) of variants allows computation of alignments for 
multiple sequences. The yield of protein production and the catalytic efficiencies for tens of 
selected variants allow the most promising variant protein to be identified. These results 
define sequence-activity relationships for enzymes. If enzyme-substrate complex structures 
are available, the sequence-structure-activity relationships that can be derived provide the 
central information for use in further biocatalytic applications. 

5. Conclusion 
Molecular biology, bioinformatics and protein engineering reached in the last decades a 
state allowing the isolation of proteins for desired functions of interest. Proteins can be 
isolated with a binding specificity for a given target, while enzymes can be isolated for given 
chemical reactions. Binding proteins and antibodies in particular found remarkable 
applications in the field of therapeutics. Enzymes turn out to be extremely useful in the field 
of biocatalysis for the production of chemicals at industrial scales within a sustainable 
environment. 
Over the last twenty years, the use of antibodies has increased greatly, both as tools for basic 
research and diagnostics, and as therapeutic agents. This has largely been driven by ongoing 
advances in recombinant antibody technology. Today, more than 20 recombinant antibodies 
are widely used in clinic such as the human anti-TNF antibody marketed as Humira® and 
many more antibodies are currently in clinical trials. 
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Satisfying industrial needs in the field of biocatalysis requires efficient enzymes to be 
isolated. While natural enzymes rarely fulfill industrial needs, and as long as computational 
approaches alone do not allow the sequences of protein catalysts to be designed, 
experimental methods such as the parallel processing strategies relying on in vitro selection 
combined with computational approaches for the characterization of catalysts may well be 
the most powerful strategies for the isolation of enzymes for given chemical reactions. Most 
notably, these new biocatalysts act in aqueous solutions without organic solvents at large 
scale and are ideally suited for green industrial processes. 
A highly efficient design of binders and catalysts according to function can make use of a 
unique strategy: selection from large repertoires of proteins according to a function yield 
secondary protein repertoires of high interest, which can then be processed in series for their 
characterization due to their reduced diversity. Characterization involves sequencing of the 
corresponding genes for alignment of numerous protein sequences so as to define consensus 
sequences. This is the major advantage of molecular information parallel processing 
(MIPP) strategies: defining conserved amino acids within protein scaffolds tightly linked to 
function.  
In conclusion, the parallel processing of biomolecular information (« Does the protein bind 
the target ? » or « Is the protein a catalyst for the chemical reaction ? ») is so far best achieved 
experimentally by using repertoires of millions or billions of proteins. Analysis of 
hundred(s) of protein variants is then best done computationally: use of multiple sequence 
alignment algorithms yields then sequence-activity relationships required for protein 
applications. Further biochemical and biophysical characterization of proteins (« Does the 
protein tend to form dimers or to aggregate ? », « Can the protein be produced at high 
level ? » , « What is the protein’s pI ? ») is essential for their final use which may require high 
level soluble expression or cell penetration properties. In this respect, the development of 
algorithms analyzing protein properties remains a major challenge. 
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1. Introduction 
Proteomics is a fundamental science in which many sciences in the world are directing their 
efforts. The proteins play a key role in the biological function and their studies make 
possible to understand the mechanisms that occur in many biological events (human or 
animal diseases, factor that influence plant and bacterial grown). Due to the complexity of 
the investigation approach that involve various technologies, a high amount of data are 
produced. In fact, proteomics has known a strong evolution and now we are in a phase of 
unparalleled growth that is reflected by the amount of data generated from each 
experiment. That approach has provided, for the first time, unprecedented opportunities to 
address biology of humans, animals, plants as well as micro-organisms at system level. 
Bioinformatics applied to proteomics offered the management, data elaboration and 
integration of these huge amount of data. It is with this philosophy that this chapter was 
born.  
Thus, the role of bioinformatics is fundamental in order to reduce the analysis time and to 
provide statistically significant results. To process data efficiently, new software packages 
and algorithms are continuously being developed to improve protein identification, 
characterization and quantification in terms of high-throughput and statistical accuracy. 
However, many limitations exist concerning bioinformatic spectral data elaboration. In 
particular, for the analysis of plant proteins extensive data elaboration is necessary due to 
the lack of structural information in the proteomic and genomic public databases. The main 
focus of this chapter is to describe in detail the status of bioinformatics applied to proteomic 
studies. Moreover, the elaboration strategies and algorithms that have been adopted to 
overcome the well known limitations of the protein analysis without database structural 
information are described and disclosed.   
This chapter will get rid of light on recent developments in bioinformatic and data-mining 
approaches, and their limitations when applied to proteomic data sets, in order to reinforce 
the interdependence between proteomic technologies and bioinformatics tools. Proteomic 
studies involve the identification as well as qualitative and quantitative comparison of 
proteins expressed under different conditions, together with description of their properties 
and functions, usually in a large-scale, high-throughput format. The high dimensionality of 
data generated from these studies will require the development of improved bioinformatics 
tools and data-mining approaches for efficient and accurate data analysis of various 



 
Systems and Computational Biology – Bioinformatics and Computational Modeling 

 

24

Soumillion, P., Jespers, L., Bouchet, M., Marchand-Brynaert, J., Winter, G. & Fastrez, J. 
(1994). Selection of beta-lactamase on filamentous bacteriophage by catalytic 
activity. Journal of Molecular Biology, Vol. 237, No. 4, pp. 415-422. 

Stijlemans, B., Conrath, K., Cortez-Retamozo, V., Van Xong, H., Wyns, L., Senter, P., Revets, 
H., De Baetselier, P., Muyldermans, S. & Magez, S. (2004). Efficient targeting of 
conserved cryptic epitopes of infectious agents by single domain antibodies. 
African trypanosomes as paradigm. Journal of Biological Chemistry, Vol. 279, No. 2, 
pp. 1256-1261. 

Thom, G., Cockroft, A. C., Buchanan, A. G., Candotti, C. J., Cohen, E. S., Lowne, D., Monk, 
P., Shorrock-Hart, C. P., Jermutus, L. & Minter, R. R. (2006). Probing a protein-
protein interaction by in vitro evolution. Proceedings of the National Academy of 
Sciences USA, Vol. 103, No. 20, pp. 7619-7624. 

Tordsson, J., Abrahmsen, L., Kalland, T., Ljung, C., Ingvar, C. & Brodin, T. (1997). Efficient 
selection of scFv antibody phage by adsorption to in situ expressed antigens in 
tissue sections. Journal of Immunological Methods, Vol. 210, No. 1, pp. 11-23. 

Ulrich, H. D., Patten, P. A., Yang, P. L., Romesberg, F. E. & Schultz, P. G. (1995). Expression 
studies of catalytic antibodies. Proceedings of the National Academy of Sciences USA, 
Vol. 92, No. 25, pp. 11907-11911. 

van den Beucken, T., Pieters, H., Steukers, M., van der Vaart, M., Ladner, R. C., 
Hoogenboom, H. R. & Hufton, S. E. (2003). Affinity maturation of Fab antibody 
fragments by fluorescent-activated cell sorting of yeast-displayed libraries. FEBS 
Letters, Vol. 546, No. 2-3, pp. 288-294. 

VanAntwerp, J. J. & Wittrup, K. D. (2000). Fine affinity discrimination by yeast surface 
display and flow cytometry. Biotechnology Prog, Vol. 16, No. 1, pp. 31-37. 

Vaughan, T. J., Williams, A. J., Pritchard, K., Osbourn, J. K., Pope, A. R., Earnshaw, J. C., 
McCafferty, J., Hodits, R. A., Wilton, J. & Johnson, K. S. (1996). Human Antibodies 
with sub-nanomolar affinities isolated from a large non-immunized phage display 
library. Nature Biotechnology, Vol. 14, No. 3, pp. 309-314. 

Wassaf, D., Kuang, G., Kopacz, K., Wu, Q. L., Nguyen, Q., Toews, M., Cosic, J., Jacques, J., 
Wiltshire, S., Lambert, J., Pazmany, C. C., Hogan, S., Ladner, R. C., Nixon, A. E. & 
Sexton, D. J. (2006). High-throughput affinity ranking of antibodies using surface 
plasmon resonance microarrays. Analytical Biochemistry, Vol. 351, No. 2, pp. 241-
253. 

Yang, W. P., Green, K., Pinz-Sweeney, S., Briones, A. T., Burton, D. R. & Barbas, C. F. r. 
(1995). CDR walking mutagenesis for the affinity maturation of a potent human 
anti-HIV-1 antibody into the picomolar range. Journal of Molecular Biology, Vol. 254, 
No. 3, pp. 392-403. 

Yelton, D. E., Rosok, M. J., Cruz, G., Cosand, W. L., Bajorath, J., Hellstrom, I., Hellstrom, K. 
E., Huse, W. D. & Glaser, S. M. (1995). Affinity maturation of the BR96 anti-
carcinoma antibody by codon-based mutagenesis. Journal of Immunology, Vol. 155, 
No. 4, pp. 1994-2004. 

Zahnd, C., Amstutz, P. & Pluckthun, A. (2007). Ribosome display: selecting and evolving 
proteins in vitro that specifically bind to a target. Nature Methods, Vol. 4, No. 3, pp. 
269-279. 

Zahnd, C., Spinelli, S., Luginbuhl, B., Amstutz, P., Cambillau, C. & Pluckthun, A. (2004). 
Directed in vitro evolution and crystallographic analysis of a peptide-binding 
single chain antibody fragment (scFv) with low picomolar affinity. Journal of 
Biological Chemistry, Vol. 279, No. 18, pp. 18870-18877. 

2 

Bioinformatics Applied to Proteomics 
Simone Cristoni1 and Silvia Mazzuca2 

1Ion Source Biotechnologies srl, Milano, 
2Plant Cell Physiology laboratory, Università della Calabria, Rende,  

Italy 

1. Introduction 
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biological systems (for reviews see, Li et al, 2009; Matthiesen & Jensen, 2008; Wright et al, 
2009). After a rapid moving on the wide theme of the genomic and proteomic sciences, in 
which bioinformatics find their wider applications for the studies of biological systems, the 
chapter will focus on mass spectrometry that has become the prominent analytical method for 
the study of proteins and proteomes in post-genome era. The high volumes of complex spectra 
and data generated from such experiments represent new challenges for the field of 
bioinformatics. The past decade has seen an explosion of informatics tools targeted towards 
the processing, analysis, storage, and integration of mass spectrometry based proteomic data. 
In this chapter, some of the more recent developments in proteome informatics will be 
discussed. This includes new tools for predicting the properties of proteins and peptides 
which can be exploited in experimental proteomic design, and tools for the identification of 
peptides and proteins from their mass spectra. Similarly, informatics approaches are required 
for the move towards quantitative proteomics which are also briefly discussed. Finally, the 
growing number of proteomic data repositories and emerging data standards developed for 
the field are highlighted. These tools and technologies point the way towards the next phase of 
experimental proteomic and informatics challenges that the proteomics community will face. 
The majority of the chapter is devoted to the description of bioinformatics technologies 
(hardware and data management and applications) with particular emphasis on the 
bioinformatics improvements that have made possible to obtain significant results in the 
study of proteomics. Particular attention is focused on the emerging statistic semantic, 
network learning technologies and data sharing that is the essential core of system biology 
data elaboration.  
Finally, many examples of bioinformatics applied to biological systems are distributed along 
the different section of the chapter so to lead the reader to completely fill and understand 
the benefits of bioinformatics applied to system biology. 

2. Genomics versus proteomics 
There have been two major diversification paths appeared in the development of 
bioinformatics in terms of project concepts and organization, the -omics and the bio-. These 
two historically reflect the general trend of modern biology. One is to go into molecular 
level resolution. As one of the -omics and bio- proponents,  the -omics trend is one of the 
most important  conceptual revolutions in science. Genetic, microbiology, mycology and 
agriculture became effectively molecular biology since 1970s. At the same time, these fields 
are now absorbing omics approach to understand their problems more as complex systems. 
Omics is a general term for a broad discipline of science and engineering for analyzing the 
interactions of biological information objects in various omes. These include genome, 
proteome, metabolome, expressome, and interactome. The main focus is on mapping 
information objects such as genes, proteins, and ligands finding interaction relationships 
among the objects,  engineering the networks and objects to understand and manipulate the 
regulatory mechanisms and integrating various omes and omics subfields. 
This was often done by researchers who have taken up the large scale data analysis and 
holistic way of solving bio-problems. However, the flood of such -omics trends did not 
occur until late 1990s. Until that time, it was by a relatively small number of informatics 
advanced people in Europe and the USA. They included Medical Research Council [MRC] 
Cambridge, Sanger centre, European Bioinformatics Institute [EBI], European Molecular 
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Biology Laboratory [EMBL], Harvard, Stanford and others. We could clearly see some 
people took up the underlying idea of -ome(s) and -omics quickly, as biology was heading 
for a more holistic approach in understanding the mechanism of life. Whether the suffix is 
linguistically correct or not, the -omics suffix changed in the way many biologists view their 
research activity. The most profound one is that biologists became freshly aware of the fact 
that biology is an information science more than they have thought before.  
In general terms, genomics is the -omics science that deals with the discovery and noting of 
all the sequences in the entire genome of a particular organism. The genome can be defined 
as the complete set of genes inside a cell. Genomics, is, therefore, the study of the genetic 
make-up of organisms. Determining the genomic sequence, however, is only the beginning 
of genomics. Once this is done, the genomic sequence is used to study the function of the 
numerous genes (functional genomics), to compare the genes in one organism with those of 
another (comparative genomics), or to generate the 3-D structure of one or more proteins 
from each protein family, thus offering clues to their function (structural genomics). At 
today a list of sequenced eukaryotic genomes contains all the eukaryotes known to have 
publicly available complete nuclear and organelle genome sequences that have been 
assembled, annotated and published. Starting from the first eukaryote organism 
Saccharomyces cerevisiae to have its genome completely sequenced at 1998, further genomes 
from 131 eukaryotic organisms were released at today. Among them 33 are Protists, 16 are 
Higher plants, 26 are Fungi, 17 are Mammals Humans included, 9 are non-mammal animals 
,10 are Insects, 4 Nematodes, remaining 11 genomes are from other animals and as we write 
this chapter, others are still to be sequenced and will be published during the editing of this 
book. A special note should be paid to the efforts of several research teams around the 
world for the sequencing of more than 284 different Eubacteria, whose numbers increased 
by 2-3% if we consider the sequencing of different strains for a single species; also a list of 
sequenced archaeal genomes contains 28 Archeobacteria known to have available complete 
genome sequences that have been assembled, annotated and deposited in public databases.  
A striking example of the power of this kind of -omics and knowledge that it reveals is that 
the full sequencing of the human genome has dramatically accelerated biomedical research 
and diagnosis forecast; very recently Eric S. Lander (2011) explored its impact, in the decade 
since its publication, on our understanding of the biological functions encoded in the human 
genome, on the biological basis of inherited diseases and cancer, and on the evolution and 
history of the human species; also he foresaw  the road ahead in fulfilling the promise of 
genomics for medicine.  
In the other side of living kingdoms, genomics and biotechnology are also the modern tools 
for understanding plant behavior at the various biological and environmental levels. In The 
Arabidopsis Information Resource [TAIR] a continuously updated database of genetic and 
molecular biology data for the model higher plant Arabidopsis thaliana is maintained (TAIR 
Database, 2009) 
This data available from TAIR include the complete genome sequence along with gene 
structure, gene product information, metabolism, gene expression, DNA and seed stocks, 
genome maps, genetic and physical markers, publications, and information about the 
Arabidopsis research community. Gene product function data is updated every two weeks 
from the latest published research literature and community data submissions. Gene 
structures are updated 1-2 times per year using computational and manual methods as well 
as community submissions of new and updated genes.  
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Genomics provides also boosting to classical plant breeding techniques, well summarized in 
the Plants for the Future technology platform (http://www.epsoweb.eu/ 
catalog/tp/tpcom_home.htm). A selection of novel technologies come out that are now 
permitting researchers to identify the genetic background of crop improvement, explicitly 
the genes that contribute to the improved productivity and quality of modern crop varieties. 
The genetic modification (GM) of plants is not the only technology in the toolbox of modern 
plant biotechnologies. Application of these technologies will substantially improve plant 
breeding, farming and food processing. In particular, the new technologies will enhance the 
ability to improve crops further and, not only will make them more traceable, but also will 
enable different varieties to exist side by side, enhancing the consumer’s freedom to choose 
between conventional, organic and GM food. In these contexts agronomical important genes 
may be identified and targeted to produce more nourishing and safe food; proteomics can 
provide information on the expression of transgenic proteins and their interactions within 
the cellular metabolism that affects the quality, healthy and safety of food. Taking 
advantage of the genetic diversity of plants will not only give consumers a wider choice of 
food, but it will also expand the range of plant derived products, including novel forms of 
pharmaceuticals, biodegradable plastics, bio-energy, paper, and more. In this view, plant 
genomics and biotechnology could potentially transform agriculture into a more 
knowledge-based business to address a number of socio-economic challenges. 
In systems biology (evolutionary and/or functionally) a central challenge of genomics is to 
identify genes underlying important traits and describe the fitness consequences of variation 
at these loci (Stinchcombe et al., 2008). We do not intend to give a comprehensive overview 
of all available methods and technical advances potentially useful for identifying functional 
DNA polymorphisms, but rather we explore briefly some of promising recent developments 
of genomic tools from which proteomics taken its rise during the last twenty years, 
applicable also to non model organisms.  
The genome scan, became one of the most promising molecular genetics (Oetjen et al., 2010). 
Genome scans use a large number of molecular markers coupled with statistical tests in 
order to identify genetic loci influenced by selection (Stinchombe & Hoekstra, 2008). This 
approach is based on the concept of ‘genetic hitch-hiking’ (Maynard Smith & Haigh, 1974) 
that predicts that when neutral molecular markers are physically linked to functionally 
important and polymorphic genes, divergent selection acting on such genes also affects the  
flanking neutral variation. By genotyping large numbers of markers in sets of individuals 
taken from one or more populations or species, it is possible to identify genomic regions or 
‘outlier loci’ that exhibit patterns of variation that deviate from the rest of the genome due to 
the effects of selection or treats (Vasemägi & Primmer 2005). An efficient way of increasing 
the reliability of genome scans, which does not depend on the information of the genomic 
location of the markers, is to exploit polymorphisms tightly linked to the coding sequences, 
such as expressed sequence tag (EST) linked microsatellites (Vigouroux et al., 2002; 
Vasemägi et al., 2005). Because simple repeat sequences can serve as promoter binding sites, 
some microsatellite polymorphisms directly upstream of genes may have a direct functional 
significance (Li et al., 2004).   
EST libraries represent sequence collections of all mRNA (converted into complementary or 
cDNA) that is transcribed at a given point in time in a specific tissue (Bouck & Vision, 2007). 
EST libraries have been constructed and are currently being analyzed for many species 
whose genomes are not completed. EST library also provide the sequence data for 
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expression analysis using Quantitative real-time PCR (QPCR), as well as for transcription 
profiling using microarrays and, finally, the EST database can be a valuable tool for 
identifying new candidate polymorphism in proteins of specific interest. QPCR is a method 
that can measure the abundance of mRNA (converted in cDNA) of specific genes (Heid et 
al., 1996).  The expression of a target gene can be related to the total RNA input, or it can be 
quantified in relation to the expression of a reference gene, the housekeeping gene (HKG, 
i.e. gene always expressed at the same level). Unfortunately, a universal reference gene that 
is expressed uniformly, in all biological conditions in all tissues, does not exist. For each 
experimental setup using QPCR, the choice of HKG must reflect the tissue used and the 
experimental treatment.  
While QPCR can only handle a few candidate genes, microrrays technology quantifies the 
expression level of hundreds to thousands of genes simultaneously, providing a powerful 
approach for the analysis of global transcriptional response (Yauk & Berndt, 2007). For 
example, the analysis of mRNA via genomic arrays is one approach to finding the genes 
differentially expressed across two kind of tissue or sample obtained under two 
experimental conditions or to finding the genes that matter to organisms  undergoing 
environmental stress. Additionally, microarray data can be used to distinguish between 
neutral and adaptive evolutionary processes affecting gene expression (e.g. Gibson, 2002;  
Feder & Walser, 2005; Whitehead & Crawford, 2006). Nevertheless, a sequencing revolution 
is currently driven by new  technologies, collectively referred to as either ‘next-generation’ 
sequencing, ‘highthroughput’ sequencing, ‘ultra-deep’ sequencing or ‘massively parallel’ 
sequencing. These technologies allow us the large scale generation of ESTs efficiently and 
cost-effectively available at the National Centre Biotechnology Information database [NCBI-
dbEST] (http://www.ncbi.nlm.nih.gov/dbEST); Shendure et al., 2005). There are increasing 
studies in which 454 technologies, combined or not with Solexa/Illumina, are used to 
characterize transcriptomes in several plant and animal species (Emrich et al., 2007; 
Metzker, 2010; Eveland et al., 2008; Bellin et al., 2009). To give an idea of the potential 
implications of these sequencing technologies it is enough to know that the pyrosequencing 
delivers the microbial genome sequence in 1 hour, thus upsetting perspectives in basic 
research, phylogenetic analysis, diagnostics as in industrial applications (Clarke, 2005; 
Hamady et al., 2010; Yang et al., 2010; Claesson et al., 2009). Even in full sequenced 
genomes, such as in Arabidopsis or humans, this deep sequencing is allowing to identify new 
transcripts not present in previous ESTs collections (Weber et al., 2007;  Sultan et al., 2010). 
Also specific transcriptomes are being generated in species for which previous genomic 
resources lacked because of the large size of their genomes (Alagna et al., 2009; Wang et al., 
2009; Craft et al., 2010) The new transcripts are also being used for microarrays design 
(Bellin et al.,2009), and also for high throughput SSRs or SNPs identification. SNP detection 
is performed by aligning raw reads from different genotypes to a reference genome or 
transcriptome previously available in plants (Barbazuk et al., 2006), as in plants, (Trick et al., 
2009; Guo et al., 2010), animals (Satkoski et al., 2008) and humans (Nilsson et al., 2004). 
De novo assembly of raw sequences coming from a set of genotypes, followed by pairwise 
comparison of the overlapping assembled reads has also successfully used in species lacking 
any significant genomic or transcriptomic resources (Novaes et al., 2008). The principle 
behind these applications (as termed sequence census methods) is simple: complex DNA or 
RNA samples are directly sequenced to determine their content, without the requirement 
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for DNA cloning. Thus, these novel technologies allow the direct and cost-effective 
sequencing of complex samples at unprecedented scale and speed, making feasible to 
sequence not only genomes, but also entire transcriptomes expressed under different 
conditions. Moreover, a unique feature of sequence census technologies is their ability to 
identify, without prior knowledge, spliced transcripts by detecting the presence of sequence 
reads spanning exon-exon junctions. Hence, next-generation sequencing delivers much 
more information at affordable costs, which will increasingly supersede microarray based 
approaches (Marguerat et al., 2008). 
It is noteworthy, however, that transcription profiling has been questioned as an effective 
tool for the discovery of genes that are functionally important and display variable 
expression (e.g. Feder & Walser, 2005). In fact, the vast majority of genes implicated by 
transcriptomics can be expected to have no phenotype. Furthermore, even if the synthesis of 
mature protein is closely linked to the abundance of its corresponding mRNA, the 
concentration of mature protein is the net of its synthesis and degradation. Degradation 
mechanisms and rates can vary substantially and lead to corresponding variation in protein 
abundance (Feder & Walser, 2005). The physiological measurements of protein abundance 
for selected gene candidate could be a valuable addition to pure transcriptomic studies 
(Jovanovic et al., 2010). 
It is reasonable that a method should measure the most relevant output of gene expression, 
namely dependent changes in protein amounts from potential target genes. Moreover, to be 
worthwhile, the method should be easy to use, fast, sensitive, reproducible, quantitative and 
scalable, as several hundred proteins have to be tested. A technique that promises to fulfill 
most of those criteria is proteomics which is experiencing considerable progress after the 
massive sequencing of many genomes from yeast to humans for both basic biology and 
clinical research (Tyers & Mann, 2003). For identifying and understanding the proteins and 
their functions from a cell to a whole organism, proteomics is a necessity in the assortment 
of –omics technologies.  
Historically, the term proteome was coined by Mark Wilkins first in 1994 as a blend of 
proteins and genome and Wilkins used it to describe the entire complement of proteins 
expressed by a genome, cell, tissue or organism. Subsequently this term has been specified 
to contain all the expressed proteins at a given time point under defined conditions and it 
has been applied to several different types of biological systems (Doyle, 2011; Ioannidis, 
2010; Heazlewood, 2011; Prokopi & Mayr, 2011; Wienkoop et al, 2010). 
In a basic view, a cellular proteome is the collection of proteins found in a particular cell 
type under a particular set of conditions such as differentiation stage, exposure to hormone 
stimulation inside tissues or changing of physical parameters in an environment. It can also 
be useful to consider an organism's complete proteome, which can be conceptualized as the 
complete set of proteins from all of the various cellular proteomes. This is very roughly the 
protein equivalent of the genome. The term "proteome" has also been used to refer to the 
collection of proteins in certain sub-cellular biological systems. For example, all of the 
proteins in a virus can be called a viral proteome. The proteome is larger than the genome, 
especially in eukaryotes, in the sense that there are more proteins than genes. This is due to 
alternative splicing of genes and post-translational modifications like glycosylation or 
phosphorylation. Moreover the proteome has at least two levels of complexity lacking in the 
genome. When the genome is defined by the sequence of nucleotides, the proteome cannot 
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be limited to the sum of the sequences of the proteins present. Knowledge of the proteome 
requires knowledge of  the structure of the proteins in the proteome and  the functional 
interaction between the proteins.  
The escalating sequencing of genomes and the development of large EST databases have 
provided genomic bases to explore the diversity, cellular evolution and adaption ability of 
organisms. However, by themselves, these data are of limited use when they try to fully 
understand processes such as development, physiology and environmental adaptation. 
Taking advances from genomic information the proteomics can assign function to proteins 
and elucidate the related metabolism in which the proteins act (Costenoble et al., 2011; Chen 
et al., 2010; Joyard et al., 2010, Tweedie-Cullen & Mansuy, 2010). 
In a wide-ranging functional view, proteomics is matching to genomics: through the use of 
pure genome sequences, open reading frames (ORFs) can be predicted, but they cannot be 
used to determine if or when transcription takes place. Proteomics,  indicating at what level 
a protein is expressed, can also provide information about the conditions under which a 
protein might be expressed, its cellular location (Agrawal et al., 2010; Jamet et al., 2006; 
Rossignol et al., 2006; Tyers & Mann, 2003), the relative quantities (Yao et al., 2001; Molloy et 
al., 2005), and what protein–protein interactions take place (Giot et al., 2003; Schweitzer et 
al., 2003). Genomics, in essence, demonstrates which genes are involved, whereas 
proteomics can show clearer relationships by illustrating functional similarities and 
phenotypic variances.  
Because the environments in which organisms live is dynamic, the success of a species 
depends on its ability to rapidly adapt to varying limiting factors such as light (for plants 
above all), temperature, diet or nutrient sources. Since the proteome of each living cell is 
dynamic, proteomics allows investigators to clarify if and to what extent various pathways 
are utilized under varying conditions, triggered by the action of the environment on the 
system, and relative protein-level response times. In other words how organisms are able to 
biochemically survive to conditions imposed by environment. 
Huge amount of data have been accumulated and organized in world-wide web sites served 
for proteomics as main proteomics-related web sites have been lunched (Tab 1).  
For example The Human Protein Reference Database represents a centralized platform to 
visually illustrate and integrate information pertaining to domain architecture, post-
translational modifications, interaction networks and disease association for each protein in 
the human proteome; on the ExPASy Proteomics site, tools are available locally to the server 
or are developed and hosted on other servers.  
As concerning plant proteomics, the research community is well served by a number of 
online proteomics resources that hold an abundance of functional information. Recently, 
members of the Arabidopsis proteomics community involved in developing many of these 
resources decided to develop a summary aggregation portal that is capable of retrieving 
proteomics data from a series of online resources (Joshi et al., 2010, http://gator.masc-
proteomics.org/ ). This means that information is always up to date and displays the latest 
datasets. The site also provides hyperlinks back to the source information hosted at each of 
the curated databases to facilitate analysis of the primary data. Deep analyses have also 
performed on organelle proteomics as in protists, animals and plants. A well-known 
database, launched in 2004, is devoted to proteomics of mitochondria in yeast (Ohlmeier et 
al., 2004; http://www.biochem.oulu.fi/proteomics/ymp.html), while the Nuclear Protein 
Database [NPD] is a curated database that contains information on more than 1300   
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for DNA cloning. Thus, these novel technologies allow the direct and cost-effective 
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mechanisms and rates can vary substantially and lead to corresponding variation in protein 
abundance (Feder & Walser, 2005). The physiological measurements of protein abundance 
for selected gene candidate could be a valuable addition to pure transcriptomic studies 
(Jovanovic et al., 2010). 
It is reasonable that a method should measure the most relevant output of gene expression, 
namely dependent changes in protein amounts from potential target genes. Moreover, to be 
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scalable, as several hundred proteins have to be tested. A technique that promises to fulfill 
most of those criteria is proteomics which is experiencing considerable progress after the 
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of –omics technologies.  
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proteins and genome and Wilkins used it to describe the entire complement of proteins 
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be useful to consider an organism's complete proteome, which can be conceptualized as the 
complete set of proteins from all of the various cellular proteomes. This is very roughly the 
protein equivalent of the genome. The term "proteome" has also been used to refer to the 
collection of proteins in certain sub-cellular biological systems. For example, all of the 
proteins in a virus can be called a viral proteome. The proteome is larger than the genome, 
especially in eukaryotes, in the sense that there are more proteins than genes. This is due to 
alternative splicing of genes and post-translational modifications like glycosylation or 
phosphorylation. Moreover the proteome has at least two levels of complexity lacking in the 
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be limited to the sum of the sequences of the proteins present. Knowledge of the proteome 
requires knowledge of  the structure of the proteins in the proteome and  the functional 
interaction between the proteins.  
The escalating sequencing of genomes and the development of large EST databases have 
provided genomic bases to explore the diversity, cellular evolution and adaption ability of 
organisms. However, by themselves, these data are of limited use when they try to fully 
understand processes such as development, physiology and environmental adaptation. 
Taking advances from genomic information the proteomics can assign function to proteins 
and elucidate the related metabolism in which the proteins act (Costenoble et al., 2011; Chen 
et al., 2010; Joyard et al., 2010, Tweedie-Cullen & Mansuy, 2010). 
In a wide-ranging functional view, proteomics is matching to genomics: through the use of 
pure genome sequences, open reading frames (ORFs) can be predicted, but they cannot be 
used to determine if or when transcription takes place. Proteomics,  indicating at what level 
a protein is expressed, can also provide information about the conditions under which a 
protein might be expressed, its cellular location (Agrawal et al., 2010; Jamet et al., 2006; 
Rossignol et al., 2006; Tyers & Mann, 2003), the relative quantities (Yao et al., 2001; Molloy et 
al., 2005), and what protein–protein interactions take place (Giot et al., 2003; Schweitzer et 
al., 2003). Genomics, in essence, demonstrates which genes are involved, whereas 
proteomics can show clearer relationships by illustrating functional similarities and 
phenotypic variances.  
Because the environments in which organisms live is dynamic, the success of a species 
depends on its ability to rapidly adapt to varying limiting factors such as light (for plants 
above all), temperature, diet or nutrient sources. Since the proteome of each living cell is 
dynamic, proteomics allows investigators to clarify if and to what extent various pathways 
are utilized under varying conditions, triggered by the action of the environment on the 
system, and relative protein-level response times. In other words how organisms are able to 
biochemically survive to conditions imposed by environment. 
Huge amount of data have been accumulated and organized in world-wide web sites served 
for proteomics as main proteomics-related web sites have been lunched (Tab 1).  
For example The Human Protein Reference Database represents a centralized platform to 
visually illustrate and integrate information pertaining to domain architecture, post-
translational modifications, interaction networks and disease association for each protein in 
the human proteome; on the ExPASy Proteomics site, tools are available locally to the server 
or are developed and hosted on other servers.  
As concerning plant proteomics, the research community is well served by a number of 
online proteomics resources that hold an abundance of functional information. Recently, 
members of the Arabidopsis proteomics community involved in developing many of these 
resources decided to develop a summary aggregation portal that is capable of retrieving 
proteomics data from a series of online resources (Joshi et al., 2010, http://gator.masc-
proteomics.org/ ). This means that information is always up to date and displays the latest 
datasets. The site also provides hyperlinks back to the source information hosted at each of 
the curated databases to facilitate analysis of the primary data. Deep analyses have also 
performed on organelle proteomics as in protists, animals and plants. A well-known 
database, launched in 2004, is devoted to proteomics of mitochondria in yeast (Ohlmeier et 
al., 2004; http://www.biochem.oulu.fi/proteomics/ymp.html), while the Nuclear Protein 
Database [NPD] is a curated database that contains information on more than 1300   
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vertebrate proteins that are thought, or are known, to localize to the cell nucleus. The database 
can be accessed at http://npd.hgu.mrc.ac.uk and is updated monthly. Very recently, plant 
organelle proteomics has experienced a rapid growth in the field of functional proteomics (see 
the review, Agrawal et al., 2010); from this efforts gave rise seven main websites of which two 
are devoted to the plastid (Plant Proteomic DataBase [PPDB] http://ppdb.tc.cornell.edu/), 
two are specific for mitochondria (Arabidopsis Mitochondrial Protein DataBase [AMPDB], 
http://plantenergy.uwa.edu.au/application/ampdb/; Arabidopsis Mitochondrial Protein 
Project [AMPP], http://gartenbau.unihannover.de/genetic/AMPP), one is  
an accurate database of comprehensive chloroplast proteome (AT_Chloro, 
http://www.grenoble.prabi.fr/protehome/grenoble-plant-proteomics/).  
An area of study within proteomics is ‘expression proteomics’, which is defined as the use of 
quantitative protein-level measurements of gene expression to characterize biological 
processes and deduce the mechanisms of gene expression control. Expression proteomics 
allows researchers to obtain a quantitative description of protein expression and its changes 
under the influence of biological perturbations, the occurrence of post-translational 
modifications and the distribution of specific proteins within cells (Baginsky et al., 2010; 
Roth et al., 2010). 
As an example of high technological potential of expression proteomics, in the last ten years 
plant proteomics research has been conducted in several land species achieving a high 
degree of knowledge of the dynamics of the proteome in many model plants (Agrawal & 
Rakwal, 2005; Baerenfaller et al., 2008; Grimplet et al., 2009; Komatsu, 2008; Plomion et al., 
2006) and thereafter translating this knowledge in other species whose genome sequence is 
still under construction. The most successful studies are those which use separation of 
subcellular compartments (Haynes & Roberts, 2007; Dunkley et al., 2006; Agrawal et al., 
2010) such as mitochondria (Heazlewood et al., 2005), chloroplast (Ferro et al., 2010), 
endoplasmic reticulum (Maltman et al., 2007), peroxisomes (Fukao et al., 2002), 
plastoglobules (Grennan, 2008), vacuoles (Jaquinod et al., 2007), nucleus (Repetto et al., 
2008) since they contain a limited number of proteins thus helping the protein identification.   
Since 30 years, the greater part of research into the plant proteome has utilized two-
dimensional sodium dodecyl sulphate–polyacrylamide gel electrophoresis (2D SDS–PAGE) 
for the protein separation step, which is usually followed by protein identification by mass 
spectrometry (MS). Proteomics, the study of the proteome, has largely been practiced 
through the separation of proteins by two dimensional gel electrophoresis. In the  first 
dimension, the proteins are separated by isoelectric focusing, which resolves proteins  on 
the basis of charge. In the second dimension, proteins are separated by molecular weight  
using SDS-PAGE. The gel is dyed to visualize the proteins and the spots on the gel are  
proteins that have migrated to specific locations.  
The number of spots resolved in plant proteomics 2D projects depends on the chosen tissue 
and plant species as well as the protein nature (i.g. basic or acid, soluble or membrane-
associated; Tsugita & Kamo, 1994; Porubleva et al., 2001). The gel plugs, containing the 
proteins of interest are collected to further analyses by mass MS approaches and database 
searches (Chevalier, 2010; Yates et al., 2009; Zhao &d Lin, 2010). This method where proteins 
are analyzed after enzymatic digestion is widely used for high complexity samples in large 
scale analyses and it is known as “bottom up approach” that was discussed in detail in the 
next paragraph. Attention must given to the importance of sound statistical treatment of the 
resultant quantifications in the search for differential expression. Despite wide availability of 
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quantitative protein-level measurements of gene expression to characterize biological 
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under the influence of biological perturbations, the occurrence of post-translational 
modifications and the distribution of specific proteins within cells (Baginsky et al., 2010; 
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2006) and thereafter translating this knowledge in other species whose genome sequence is 
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2008) since they contain a limited number of proteins thus helping the protein identification.   
Since 30 years, the greater part of research into the plant proteome has utilized two-
dimensional sodium dodecyl sulphate–polyacrylamide gel electrophoresis (2D SDS–PAGE) 
for the protein separation step, which is usually followed by protein identification by mass 
spectrometry (MS). Proteomics, the study of the proteome, has largely been practiced 
through the separation of proteins by two dimensional gel electrophoresis. In the  first 
dimension, the proteins are separated by isoelectric focusing, which resolves proteins  on 
the basis of charge. In the second dimension, proteins are separated by molecular weight  
using SDS-PAGE. The gel is dyed to visualize the proteins and the spots on the gel are  
proteins that have migrated to specific locations.  
The number of spots resolved in plant proteomics 2D projects depends on the chosen tissue 
and plant species as well as the protein nature (i.g. basic or acid, soluble or membrane-
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proteins of interest are collected to further analyses by mass MS approaches and database 
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resultant quantifications in the search for differential expression. Despite wide availability of 
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proteomics software, a number of challenges have yet to be overcome regarding algorithm 
accuracy, objectivity and automation, generally due to deterministic spot-centric approaches 
that discard information early in the pipeline, propagating errors. We review recent advances 
in signal and image analysis algorithms in 2-DE, MS, LC/MS and Imaging MS.  
 

 
Fig. 1. Proteome workflow I: after sample preparation and protein extraction, proteins are 
initially separated by isoelectric focusing (IEF) in which they migrate along an IEF strip 
which has a pH gradient between a cathode and an anode; the migration of each protein 
ends when it reaches its isoelectric point in the gradient. This strip is then applied to a SDS 
polyacrylamide gel in which the second dimension of the separation occurs according to 
molecular weights. After fixation, the gel is stained by different techniques and its digital 
image is acquired to be further analyzed by specific softwares, in order to found the 
significant differentially expressed proteins.  
With permission of Nova Science Publishers, Inc. 
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3. Bioinformatics in proteomics 
Mass spectrometry became a very important tool in proteomics: it has made rapid 
progresses as an analytical technique, particularly over the last decade, with many new 
types of hardware being introduced (Molloy et al, 2005; Matthiesen and Jensen, 2008, Yates 
et al, 2009). Moreover, constant improvements have increased the levels of MS sensitivity, 
selectivity as well as mass measurement accuracy. The principles of mass spectrometry can 
be envisaged by the following four functions of the mass spectrometer: i) peptide ionization; 
ii) peptide ions analyses according to their mass/charge ratio (m/z) values ; iii) acquisition of 
ion mass data ; iv) measurement of relative ion abundance. Ionization is fundamental as the 
physics of MS relies upon the molecule of interest being charged, resulting in the formation 
of positive ions, and, depending on the ionization method, fragment ions. These ion species 
are visualized according to their corresponding m/z ratio(s), and their masses assigned. 
Finally, the measurement of relative ion abundance, based on either peak height or peak 
area of sample(s) and internal standard(s), leads to a semi-quantitative request.  

3.1 Typical procedure for proteome analysis 
Proteome data elaboration procedure is different depending of the study target. In general 
the studies can be qualitative in order to characterize the organisms expressed proteome and 
quantitative to detect potential biomarker related to disease or other organism proprieties. 
The principal proteomics studies are: 
i. Full proteomics (qualitative); 
ii. Functional proteomics (relative quantitation studies); 
iii. Post translational modification functional proteomics (qualitative and relative 

quantitation studies) 

3.2 Data elaboration for full proteome analysis  
In full proteomics analysis (Armengaud et al. 2010) the proteins are usually extracted and 
qualitatively identified. These studies are usually performed in order to understand what 
proteins are expressed by the genome of the organism of interest. The general analytical 
scheme is reported in Figure 2.  
Basically, after protein separation, mainly through gel electrophoresis or other separation 
approaches (liquid chromatography etc.), proteins are identified by means of mass 
spectrometric technique. Two kind of data processing algorithms can be employed 
depending by the analytical technology used to analyze the proteins. The two approaches 
are: 
i. Bottom up approach. It is used to identify the protein of interest after enzymatic or 

chemical digestion; 
ii. Top down approach. In this case proteins are not digested but directly analyzed by 

mass spectrometric  approaches; 
In the former case (bottom up) the protein are digested by means of enzymatic or chemical 
reaction and the specific peptides produced are then analyzed to identify the protein of 
interest. This results can be obtained using mass spectrometric mass analyzer that can 
operate in two conditions: a) full scan peptide mass fingerprint (MS) and b) tandem mass 
spectrometry (MS/MS). In the case a) the mass/charge (m/z) ratio of the peptide is 
obtained using high resolution and mass accurate analyzer (time of flight, FTICR; see 
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Cristoni et al., 2004, 2003). The combination of the high accurate m/z ratio of the detected 
peptides is checked against the theoretical one generated by virtual digestion of the proteins 
present in the known database. A list of protein candidates is so obtained with relative 
statistical identification score, correlated to the number of peptides detected, per proteins 
and  peptide mass accuracy. The principal software package used for this kind of data 
elaboration are reported in table 2.  
 
 

 
Fig. 2. General analytical scheme of Full proteomic analysis. 
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Table 2. Summary of the most recognized softwares employed for protein analysis. 

For instance one of the most employed algorithm for PMF is Aldente (http://www.expasy.ch). 
This software allows the protein identification in multi-step way. In the first step the most 
statistically significant proteins are identified on the basis of accurate peptide m/z 
combination. In the second one the peptide m/z ion leading to the first identification are not 
considered and other spectra m/z signal combination are considered in order to identify other 
proteins. The step is reaped since the identification statistic is good enough in order to identify 
the protein candidates.  In the case b) (MS/MS) the peptides are fragmented using different 
kind of chemical physical reactions [collision induced dissociation (CID), electron transfer 
dissociation (ETD), ecc]. The m/z ratio of the peptide fragments is then analyzed in order to 
obtain peptide structural information. Two approaches are usually employed in order to 
elaborate the fragmentation spectra: database search and de novo sequence. In the case of 
database search, the peptide MS/MS fragmentation spectra are matched against the theoretical 
one extracted from public or private repositories. The peptide sequence identification is 
obtained on the basis of a similarity score among the experimental MS/MS and the theoretical 
MS/MS spectra. The main limitation of this approach is that only known proteins, reported in 
the database can be identified. For instance, Thegpm (The Global Proteome Machine; 
http://www.thegpm.org) is an open source project aims to provide a wide range of tools for 
proteome identification. In particular X!Tandem software (Muth et al., 2010) is widely 
employed for  database search protein identification. When the protein sequence is not 
perfectly known, denovo sequence method can be used. In this case, the sequence is obtained 
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Cristoni et al., 2004, 2003). The combination of the high accurate m/z ratio of the detected 
peptides is checked against the theoretical one generated by virtual digestion of the proteins 
present in the known database. A list of protein candidates is so obtained with relative 
statistical identification score, correlated to the number of peptides detected, per proteins 
and  peptide mass accuracy. The principal software package used for this kind of data 
elaboration are reported in table 2.  
 
 

 
Fig. 2. General analytical scheme of Full proteomic analysis. 
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Table 2. Summary of the most recognized softwares employed for protein analysis. 
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sequences are then compared with those contained in the database so to detect homologies. 
Even in this case a statistical protein identification score is calculated on the basis of the 
number of homologues fragments obtained for each protein candidate. The software usually 
employed in the case of database search approach are classified in table 2 together with those 
employed for de novo. An example of software used for de novo porpoises is PepNovo (Frank 
et al., 2005). It has been presented a novel scoring method for de novo interpretation of 
peptides from tandem mass spectrometry data. Our scoring method uses a probabilistic 
network whose structure reflects the chemical and physical rules that govern the peptide 
fragmentation. The algorithm was tested on ion trap data and achieved results were 
comparable and in some cases superior to classical database search algorithms. Moreover, 
different elaborative approaches have been developed in order to increase the sample 
throughput and statistical accuracy of the identification process (Jacob et al., 2010). Various 
statistical validation algorithms have been translated into binary programs and are freely 
distributed on the internet (table 1). Others are not freely available while some have been 
theoretically described but have not been translated into a freely available or commercial 
binary program (table 1). It must be stressed that open-source and freely available programs 
are capable of highly accurate statistical analysis. For example, an interesting free program 
referred to as ProbID (Zhang et al., 2002) is freely available for evaluation. This program is 
based on a new probabilistic model and score function that ranks the quality of the match 
between the peptide. ProbID software has been shown to reach performance levels 
comparable with industry standard software. A variety of other software, based on heuristic or 
similar to ProbID Bayesian approach have been developed (Jacob et al., 2010). Some of these 
software are reported in table 2. It must be stressed that many of these software packages 
require a web server to operate (e.g., ProbID). This fact introduces some problems related to 
the difficulty to administrate a server, especially from a security point of view in the case of 
cracker informatic attacks to a chemstation connected to the internet.  
The analysis of intact proteins (top down approach) can be an alternative to bottom up one 
(Cristoni et. al., 2004). In the first step of data elaboration, the molecular weight of the 
protein is obtained using dedicated deconvolution algorithm. For instance, Zheng and 
coworkers have proposed a new algorithm for the deconvolution of ESI mass spectra based 
on direct assignment of charge to the measured signal at each m/z value in order 
consequently indirectly to obtain the protein molecular weight (Zheng H, et al. 2003). 
Another interesting deconvolution approaches is based on the free software named MoWeD 
(Lu et al., 2011).  It can be used to rapidly process LC/ESI/MS data to assign a molecular 
weight to peptides and proteins. It must be stressed that, the list of found components can 
also be compared with a user defined list of target molecular weight values making it easy 
to identify the different proteins present in the analyzed samples. However, when the 
protein sample mixture is highly complicated, these software tools could fail. This occurs 
especially if the analysis is performed using low mass accuracy instruments (e.g., IT) and if 
the chromatographic separation performed before MS analysis is not optimal. Thus, the 
molecular weight data must be integrated with protein sequence information. In this case, 
intact proteins ions are analyzed and fragmented by means of high resolution and mass 
accuracy mass analyzer (e.g.: FTICR, orbitrap, QTOF etc;). The mass spectra obtained are 
matched directly with the theoretical one present in the database and a statistical score, 
based on the spectra similarity, is associated with the protein identification. The main 
advantage of this technology is the ability to investigate intact proteins sequence directly 
avoiding time consuming digestion steps. On the other hand the majority of algorithm are 
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usually developed for bottom up approach. In fact for different chemical physical reasons, 
that are not related to this chapter theme, the sensitivity in detecting high molecular weight 
proteins is definitely lower with respect to that obtained by detecting low molecular weight 
peptide after protein digestion. An example of algorithm for protein identification, by intact 
protein ion fragmentation, has been proposed by McLafferty and co-workers (Sze et al., 
2002). A free web interface to be used to analyze proteins MS data using the top-down 
algorithm is available free of charge for academic use. In the top-down MS approach, the 
multicharged ions of proteins are dissociated and the obtained fragment ions are matched 
against those predicted from the database protein sequence. This is also a very powerful tool 
to characterize proteins when complex mixtures are available. 

3.3 Data elaboration for functional proteome  
Functional proteome (May et al., 2011) is related to both identify differentially expressed 
proteins among different sample lines and obtain their relative quantitation. For instance, it 
is possible to compare differentially expressed proteins among control and unhealthy 
subjects affected by different diseases (Nair et al., 2004). The classical approach (Figure 3) is 
based on the protein separation by means of 2D-GEL electrophoresis.  
The protein are then colored by using specific reagent (e.g. blue coumassie, silver stain etc) 
and the gel images are obtained by means of a normal or laser fluorescence scanner. Specific 
software are then employed in order to overlap the images and detect the differentially 
expressed proteins on the basis of the color intensities. This approach, has strong limitations 
mainly in terms of elaboration time needed to obtain the match. Nowadays some apparatus 
have been developed in order to mark, with different label fluorescence reagents, the 
proteins extracted from different spots. Thus it is possible to run more samples at the same 
time and detect the proteins of more spots, separately, by means of different fluorescence 
laser. Distinctive images relative to different gradient of fluorescence are so simultaneously 
obtained, this results in differentially expressed proteins. 
High innovative shut-gun technology based on liquid chromatography coupled to high 
resolution mass spectrometry, have been recently developed and employed for functional 
proteomics purposes. In particular, to  compare a complex protein  mixture of different 
experimental lines, the obtained peptides after digestion have been analyzed by means of 
Surface Activated Chemical Ionization (SACI; Cristoni et al. 2007) technologies coupled to 
high relation and mass accuracy mass analyzer (e.g. Orbitrap, QTOF etc). Very recently 
SACI  technology has been applied in seagrass proteomics (Finiguerra et al., 2010). In fact, 
the increasing sensitivity of this ionization device improves peptides detection thus 
recovering the limited sea grass genome resources. SACI leads to benefits, in complex plant 
protein mixture analysis, in terms of quantitative accuracy, precision, and matrix effect 
reduction, that have been widely demonstrated (Cristoni et al., 2009). As regard peptide 
analysis, it was observed that, by changing in-source ionization conditions, one could 
selectively produce both in-source singly and doubly charged species (Cristoni et al., 2007), 
which are both of interest. This technologic approach yields maximum benefits when data 
are acquired using a high mass-accuracy and high-resolution mass analyzer that can operate 
in both full-scan and tandem mass spectrometry (MS/MS) acquisition conditions. The SACI 
technique strongly increased the number of detectable proteins and of assigned peptides for 
each protein. For example, with SACI technology application, it was possible to identify a 
previously identified protein (a heat shock cognate protein), 1000 fold over expressed in 
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deeper plants (-27 m) in comparison with the more shallow plants (-5m), detecting four 
peptides  respect to only two detected by micro-ESI (Finiguerra et al., 2010). 
 
 

 
Fig. 3. Classical approach for functional proteome analysis. 
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The differentially expressed peptides are compared using specific chromatographic 
alignment software (Sandin et al., 2011). One of the most effective software is named XCMS 
(Margaria et al., 2008; Kind et al., 2007). The peptide mass fingerprint of the differentially 
expressed peptides followed by database search and de novo sequencing approach lead to 
the rapid identifications of differentially expressed proteins.   

3.4 Data elaboration for the study of post translational modification  
Post translational modification (PTM) detection and quantization is one of the most difficult 
task in proteomics research. Usually, they are detected through bottom up approaches. For 
example, considering that phosphorylated peptides do not show a high quality signal 
intensity, consequently leading to lower sensitivity, dedicated informatics tools have been 
developed in order to characterize the phosforilation sites on the basis of peptides 
fragmentation spectra. Different tools developed for this purpose are reported in table 1. All 
tools detect the modified sites on the basis of fragmentation spectra. Basically, the MS/MS 
spectra of the theoretical modified peptides are calculated and matched with the 
experimental one. Even in this case the similarity score is used in order to identified the 
peptides and the corresponding phosphorylation site. 
In the case of PTM the classical PMF and database search approaches cannot be used due to 
the fact that the modifications and the mutations cause shifts in the MS/MS peaks. Several 
approaches use an exhaustive search method to identify and characterize the mutated 
peptides. A virtual database of all modified peptides for a small set of modifications is 
generated and the peptide MS/MS spectrum is matched against the theoretical spectra of 
the virtually modified peptides. However, the MS/MS peak shifts result in an increase in 
the search space and a long elaboration time could be required. To solve this problem some 
algorithms have been developed (Cristoni S, Bernardi LR. et al.  2004). A good method to 
detect the mutated peptides is based on the tags approach. For example, the GutenTag 
software developed by Yates and coworkers use this strategy to identify and characterize 
the mutated peptides (Tabb DL, et al. 2003). This software infers partial sequences (‘tags’) 
directly from the fragment ions present in each spectrum, examines a sequence database to 
assemble a list of candidate peptides and evaluates the returned peptide sequences against 
the spectrum to determine which is the best match. The software, written in the Java 
programming language, runs equally well under Microsoft Windows, Linux and other 
operating systems. GutenTag is specific to doubly charged peptides. Pevzner and coworkers 
have also developed some interesting algorithms for the analysis of peptide mutations 
(Pevzner PA, et al. 2001). In this case, two software packages (MS-CONVOLUTION and MS-
ALIGNMENT) that implement the spectra (table 2) convolution and spectral alignment 
approaches, to identify peptides obtained through enzymatic digestion, have been used to 
identify and characterize peptides differing by up to two mutations/modifications from the 
related peptide in the database. This is a two-stage approach to MS/MS database searching. 
At the first stage, the spectral alignment is used as a filter to identify t, top-scoring peptides 
in the database, where t is chosen in such a way that it is almost guaranteed that a correct hit 
is present among the top t list. These top t hits form a small database of candidate peptides 
subject to further analysis at the second stage. At the verification stage, each of these t 
peptides can be mutated (as suggested by spectral alignment) and compared against the 
experimental spectrum. However, the peptide mutation or modification can produce low 
informative fragmentation behavior (Cristoni et al., 2004), in which case the protein 
modification identification may fail. It is also possible to use the PMF approach to 



 
Systems and Computational Biology – Bioinformatics and Computational Modeling 

 

40

deeper plants (-27 m) in comparison with the more shallow plants (-5m), detecting four 
peptides  respect to only two detected by micro-ESI (Finiguerra et al., 2010). 
 
 

 
Fig. 3. Classical approach for functional proteome analysis. 

 
Bioinformatics Applied to Proteomics 

 

41 

The differentially expressed peptides are compared using specific chromatographic 
alignment software (Sandin et al., 2011). One of the most effective software is named XCMS 
(Margaria et al., 2008; Kind et al., 2007). The peptide mass fingerprint of the differentially 
expressed peptides followed by database search and de novo sequencing approach lead to 
the rapid identifications of differentially expressed proteins.   

3.4 Data elaboration for the study of post translational modification  
Post translational modification (PTM) detection and quantization is one of the most difficult 
task in proteomics research. Usually, they are detected through bottom up approaches. For 
example, considering that phosphorylated peptides do not show a high quality signal 
intensity, consequently leading to lower sensitivity, dedicated informatics tools have been 
developed in order to characterize the phosforilation sites on the basis of peptides 
fragmentation spectra. Different tools developed for this purpose are reported in table 1. All 
tools detect the modified sites on the basis of fragmentation spectra. Basically, the MS/MS 
spectra of the theoretical modified peptides are calculated and matched with the 
experimental one. Even in this case the similarity score is used in order to identified the 
peptides and the corresponding phosphorylation site. 
In the case of PTM the classical PMF and database search approaches cannot be used due to 
the fact that the modifications and the mutations cause shifts in the MS/MS peaks. Several 
approaches use an exhaustive search method to identify and characterize the mutated 
peptides. A virtual database of all modified peptides for a small set of modifications is 
generated and the peptide MS/MS spectrum is matched against the theoretical spectra of 
the virtually modified peptides. However, the MS/MS peak shifts result in an increase in 
the search space and a long elaboration time could be required. To solve this problem some 
algorithms have been developed (Cristoni S, Bernardi LR. et al.  2004). A good method to 
detect the mutated peptides is based on the tags approach. For example, the GutenTag 
software developed by Yates and coworkers use this strategy to identify and characterize 
the mutated peptides (Tabb DL, et al. 2003). This software infers partial sequences (‘tags’) 
directly from the fragment ions present in each spectrum, examines a sequence database to 
assemble a list of candidate peptides and evaluates the returned peptide sequences against 
the spectrum to determine which is the best match. The software, written in the Java 
programming language, runs equally well under Microsoft Windows, Linux and other 
operating systems. GutenTag is specific to doubly charged peptides. Pevzner and coworkers 
have also developed some interesting algorithms for the analysis of peptide mutations 
(Pevzner PA, et al. 2001). In this case, two software packages (MS-CONVOLUTION and MS-
ALIGNMENT) that implement the spectra (table 2) convolution and spectral alignment 
approaches, to identify peptides obtained through enzymatic digestion, have been used to 
identify and characterize peptides differing by up to two mutations/modifications from the 
related peptide in the database. This is a two-stage approach to MS/MS database searching. 
At the first stage, the spectral alignment is used as a filter to identify t, top-scoring peptides 
in the database, where t is chosen in such a way that it is almost guaranteed that a correct hit 
is present among the top t list. These top t hits form a small database of candidate peptides 
subject to further analysis at the second stage. At the verification stage, each of these t 
peptides can be mutated (as suggested by spectral alignment) and compared against the 
experimental spectrum. However, the peptide mutation or modification can produce low 
informative fragmentation behavior (Cristoni et al., 2004), in which case the protein 
modification identification may fail. It is also possible to use the PMF approach to 



 
Systems and Computational Biology – Bioinformatics and Computational Modeling 

 

42

characterize mutations and modifications (Cristoni et al., 2004). In this case, it is necessary to 
use a high mass accuracy mass spectrometer since the characterization of a mutation or 
modification is based on the identification of the accurate m/z ratios of digested peptide. 
Freeware software to identify protein modifications and mutations using database search 
and PMF are reported in the Information Resources section. For example, the software 
FindPept is capable of identifying peptides that result from nonspecific cleavage of proteins 
from their experimental masses, taking into account artifactual chemical modifications, PTM 
and protease autolytic cleavage. If autolysis is to be taken into account, an enzyme entry 
must be specified from the drop-down list of enzymes for which the sequence is known. 
Furthermore, this is a web application installed on the expasy website and therefore it is not 
necessary to install and administrate it on a local server. Another field in which different 
algorithms have been employed is the characterization of disulfide cross-link locations 
(Cristoni et al., 2004). For instance, some tools available on a public website 
http://www.expasy.ch were recently developed for this purpose. This software is referred 
to as Protein Disulfide Linkage Modeler and it permits the rapid analysis of mass spectromic 
disulfide cross-link mapping experiments. The tool can be used to determine disulfide 
linkages in proteins that have either been completely or partially digested with enzymes. 
The masses of all possible disulfide-linked multichain peptide combinations are calculated 
from the known protein sequence and compared with the experimentally determined 
masses of disulfide-linked multichain peptides. Thus, this software is based on the 
fragmentation behavior of the cross-linked peptides obtained by enzymatic digestion. 
However, several issues may occur despite the fact that this algorithm executes its work 
very well. The major issue is that proteins containing linker cysteines have domains that are 
very resistant to proteolysis. Furthermore, the fragmentation of the cross-linked peptide ions 
may lead to a spectra that is difficult to elaborate even if specific algorithms are used. This is 
due to the high chemical noise level that is present in the fragmentation spectra of their 
multicharged ions (Craig et al., 2003). 

4. Data management - The advent of semantic technologies and machine 
learning methods for proteomics 
For Systems Biology the integration of multi-level Omics profiles (also across species) is 
considered as central element. Due to the complexity of each specific Omics technique, 
specialization of experimental and bioinformatics research groups have become necessary, 
in turn demanding collaborative efforts for effectively implementing cross-Omics 
(Wiesinger M, et al. 2011). 
In recent years large amounts of information have been accumulated in proteomic, genetic 
and metabolic databases. Much effort has been dedicated to developing methods that 
successfully exploit, organize and structure this information. In fact semantic is the study of 
meaning. In the case of proteomics it can be used in order to find specific relations among 
proteins and metabolomics, genomics and ionomics networks. For instance the group of 
Masaneta-Villa and co-workers (Massanet-Vila et al., 2010) has developed a high-
throughput software package to retrieve information from publicly available databases, 
such as the Gene Ontology Annotation (GOA) database and the Human Proteome Resource 
Database (HPRD) and structure their information. This information is presented to the user 
as groups of semantically described dense interaction subnetworks that interact with a 
target protein. Another interesting technology in the semantic field has been proposed by 
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the group of Mewes HW. and co-workers  (Mewes et al., 2011). This group has many years 
of experience in providing annotated collections of biological data. Selected data sets of high 
relevance, such as model genomes, are subjected to careful manual curation, while the bulk 
of high-throughput data is annotated by automatic means. This is, in fact an important 
point, manual curation is essential for semantic technology purposes. The data mean must 
be carefully checked before of the insertion in the semantic database otherwise serious 
meaning error can occurs during the research phase. High-quality reference resources 
developed in the past and still actively maintained include Saccharomyces cerevisiae, 
Neurospora crassa and Arabidopsis thaliana genome databases as well as several protein 
interaction data sets (MPACT, MPPI and CORUM). More recent projects are PhenomiR, the 
database on microRNA-related phenotypes, and MIPS PlantsDB for integrative and 
comparative plant genome research. The interlinked resources SIMAP and PEDANT 
provide homology relationships as well as up-to-date and consistent annotation for 
38,000,000 protein sequences. PPLIPS and CCancer are versatile tools for proteomics and 
functional genomics interfacing to a database of compilations from gene lists extracted from 
literature. A novel literature-mining tool, EXCERBT, gives access to structured information 
on classified relations between genes, proteins, phenotypes and diseases extracted from 
Medline abstracts by semantic analysis.  
Another interesting semantic application has been shown by Handcock J. and co-workers 
(Handcock, et al.,  2010). This group has semantically correlate proteomics information to 
specific clinical diseases. They have produced a database mspecLINE. Given a disease, the 
tool will display proteins and peptides that may be associated with the disease. It will also 
display relevant literature from MEDLINE. Furthermore, mspecLINE allows researchers to 
select proteotypic peptides for specific protein targets in a mass spectrometry assay.  
Another interesting semantic technology is based on machine learning and is employed for 
biomarker discovery purposes (Barla et al., 2008).The search for predictive biomarkers of 
disease from high-throughput mass spectrometry (MS) data requires a complex analysis 
path. Preprocessing and machine-learning modules are pipelined, starting from raw spectra, 
to set up a predictive classifier based on a shortlist of candidate features. As a machine-
learning problem, proteomic profiling on MS data needs caution like the microarray case. 
The risk of over fitting and of selection bias effects is in fact, pervasive.  
Summarizing semantic technologies can be useful both to correlate the different omics 
sciences information and to correlate the single omics (e.g. proteomics) to specific 
information like clinical disease correlated to differentially expressed proteins between  
control and unhealthy groups (biomarker discovery). 

5. Conclusions 
Bioinformatics for proteomics has grown significantly in the recent years. The ability of 
process an high amount of data together with the high specificity and precision of the new 
algorithm in the protein identification, characterization and quantization make now possible 
to obtain an high amount of elaborated data.  
The main problem remain the data management of a so high amount of data. Find the 
correlation among different proteomic data and the other omics sciences (metabolomics, 
genomics, ionomics)  still remain a difficult task. However, database technology together 
with new semantic statistical algorithm are in evolution powerful tools useful to overcome 
this problem. 
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1. Introduction 
Modern scientific research depends on computer technology to organize and analyze large 
data sets. This is more true for evolutionary bioinformatics—a relatively new discipline that 
has been developing rapidly as a sub-discipline of bioinformatics. Evolutionary 
bioinformatics devotes to leveraging the power of nature’s experiment of evolution to 
extract key findings from sequence and experimental data. Recent advances in high-
throughput genotyping and sequencing technologies have changed the landscape of data 
collection. Acquisition of genomic data at the population scale has become increasingly cost-
efficient. Genomic data sets are accumulating at an exponential rate and new types of 
genetic data are emerging. These come with the inherent challenges of new methods of 
statistical analysis and modeling. Indeed new technologies are producing data at a rate that 
outpaces our ability to analyze its biological meanings. 
Researchers are addressing this challenge by adopting mathematical and statistical software, 
computer modeling, and other computational and engineering methods. As a result, 
bioinformatics has become the latest engineering discipline. As computers provide the 
ability to process the complex models, high-performance computer languages have become 
a necessity for implementing state-of-the-art algorithms and methods. 
This chapter introduces one of such emerging programming languages—Matlab. Examples 
are provided to demonstrate Matlab-based solutions for preliminary and advanced analyses 
that are commonly used in molecular evolution and population genetics. The examples 
relating to molecular evolution focus on the mathematical modeling of sequence evolution; 
the examples relating to population genetics focus on summary statistics and neutrality 
tests. Several examples use functions in toolboxes specifically developed for molecular 
evolution and population genetics—MBEToolbox (Cai, Smith et al. 2005; Cai, Smith et al. 
2006) and PGEToolbox (Cai 2008). The source code of some examples is simplified for the 
publication purpose. 

2. Starting Matlab 
Matlab is a high-level language and computing environment for high-performance numerical 
computation and visualization. Matlab integrates matrix computation, numerical analysis, 
signal processing, and graphics in an easy-to-use environment and simplifies the process of 
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Researchers are addressing this challenge by adopting mathematical and statistical software, 
computer modeling, and other computational and engineering methods. As a result, 
bioinformatics has become the latest engineering discipline. As computers provide the 
ability to process the complex models, high-performance computer languages have become 
a necessity for implementing state-of-the-art algorithms and methods. 
This chapter introduces one of such emerging programming languages—Matlab. Examples 
are provided to demonstrate Matlab-based solutions for preliminary and advanced analyses 
that are commonly used in molecular evolution and population genetics. The examples 
relating to molecular evolution focus on the mathematical modeling of sequence evolution; 
the examples relating to population genetics focus on summary statistics and neutrality 
tests. Several examples use functions in toolboxes specifically developed for molecular 
evolution and population genetics—MBEToolbox (Cai, Smith et al. 2005; Cai, Smith et al. 
2006) and PGEToolbox (Cai 2008). The source code of some examples is simplified for the 
publication purpose. 

2. Starting Matlab 
Matlab is a high-level language and computing environment for high-performance numerical 
computation and visualization. Matlab integrates matrix computation, numerical analysis, 
signal processing, and graphics in an easy-to-use environment and simplifies the process of 
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solving technical problems in a variety of disciplines. With Matlab, users access very extensive 
libraries (i.e., toolboxes) of predefined functions to perform computationally intensive tasks 
faster than with traditional programming languages such as C, C++, and Fortran. Over the 
years, Matlab has evolved as a premier program in industrial and educational settings for 
solving practical engineering and mathematical problems. Researchers in bioinformatics are 
increasingly relying on Matlab to accelerate scientific discovery and reduce development time. 

2.1 Creating & manipulating vectors and matrices 
Matlab was designed in the first instance for the purposes of numerical linear algebra. Since 
its conception, it has acquired many advanced features for the manipulation of vectors and 
matrices. These features make Matlab an ideal computing language for manipulating 
genomic data. The basic data type of Matlab is the matrix. Many commonly used genomic 
data, such as sequences, genotypes, and haplotypes, can be naturally represented as 
numeric matrices in the computer memory. Therefore, highly efficient basic functions of 
Matlab can be applied directly to handling many kinds of genomic data. Here is an example 
of aligned DNA sequences: 
 
Seq1 ATCAGGCATCGATGAATCGT 
Seq2 ATCGGGCATCGATCAAGCGT 
Seq3 ATCGGTCATCTATGAAGGCT 
Seq4 ATCGGTCATCGAAGAAGGCG 
Seq5 ATCGGTCATCGATCAAGGCG 
 
As these sequences are in the same length and are aligned, the alignment can be represented 
by a Matlab matrix of integers: 
 
seq=[1 4 2 1 3 3 2 1 4 2 3 1 4 3 1 1 4 2 3 4 
     1 4 2 3 3 3 2 1 4 2 3 1 4 2 1 1 3 2 3 4 
     1 4 2 3 3 4 2 1 4 2 4 1 4 3 1 1 3 3 2 4 
     1 4 2 3 3 4 2 1 4 2 3 1 1 3 1 1 3 3 2 3 
     1 4 2 3 3 4 2 1 4 2 3 1 4 2 1 1 3 3 2 3]; 
 
The simple mapping converts nucleotide sequences from letter representations (A, C, G, and 
T) to integer representations (1, 2, 3, and 4). Similarly, genotypic data can be converted into a 
matrix of integers. The genotypic data below contains nine markers (SNPs) sampled from 
eight diploid individuals. 
 
Idv1 CT GT AG AT AG AG CT AG AG 
Idv2 CT GT AG AT AG AG CT AG AG 
Idv3 CC GG GG AA AA AA TT GG GG 
Idv4 TT TT AA TT GG GG CC AA AA 
Idv5 CT GT AG AT AG AG CT AG AG 
Idv6 CT GT AG AT AG AG CT AG AG 
Idv7 CC GG GG AA AA AA TT GG GG 
Idv8 CT GT AG AT AG AG CT AG AG 
 
This genotypic data can be converted into the following matrix of integers: 

 
Evolutionary Bioinformatics with a Scientific Computing Environment 

 

53 

geno=[2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3 
      2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3 
      2 2 3 3 3 3 1 1 1 1 1 1 4 4 3 3 3 3 
      4 4 4 4 1 1 4 4 3 3 3 3 2 2 1 1 1 1 
      2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3 
      2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3 
      2 2 3 3 3 3 1 1 1 1 1 1 4 4 3 3 3 3 
      2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3]; 
 
Structures and cell arrays in Matlab provide a way to store dissimilar types of data in the 
same array. In this example, information about markers, such as the chromosomal position 
and SNP identification, can be represented in a structure called mark: 
 
mark.pos=[38449934,38450800,38455228,38456851,38457117,38457903,... 
          38465179,38467522,38469351]; 
 
mark.rsid={'rs12516','rs8176318','rs3092988','rs8176297',... 
           'rs8176296','rs4793191','rs8176273','rs8176265',... 
           'rs3092994'}; 
 
In the same way, you can represent haplotypes with an integer matrix, hap, and represent 
makers’ information of the haplotype with a mark structure. The difference between 
sequences of hap and seq is that hap usually contains only sites that are polymorphic and 
chromosomal positions of these sites are likely to be discontinuous; whereas, seq includes 
both monoallelic and polymorphic sites, which are continuous in their chromosomal 
position. 
Matlab supports many different data types, including integer and floating-point data, 
characters and strings, and logical true and false states. By default, all numeric values are 
stored as double-precision floating point. You can choose to build numeric matrices and 
arrays as integers or as single-precision. Integer and single-precision arrays offer more 
memory-efficient storage than double-precision. You can convert any number, or array of 
numbers, from one numeric data type to another. For example, a double-precision matrix 
geno can be converted into an unsigned 8-bit integer matrix by using command 
uint8(geno) without losing any information. The output matrix takes only one-eighth the 
memory of its double-precision version. The signed or unsigned 8-bit integer, like logical 
value, requires only 1 byte. They are the smallest data types. Sparse matrices with mostly 
zero-valued elements, such as adjacency matrices of most biological networks, occupy a 
fraction of the storage space required for an equivalent full matrix. 

2.2 Numerical analysis 
Matlab has many functions for numerical data analysis, which makes it a well suited 
language for numerical computations. Typical uses include problem solving with matrix 
formulations, general purpose numeric computation, and algorithm prototyping. Using 
Matlab in numerical computations, users can express the problems and solutions just as they 
are written mathematically—without traditional programming. As a high-level language, 
Matlab liberates users from implementing many complicated algorithms and commonly 
used numerical solutions, and allows users to focus on the “real” problems they want to 
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solving technical problems in a variety of disciplines. With Matlab, users access very extensive 
libraries (i.e., toolboxes) of predefined functions to perform computationally intensive tasks 
faster than with traditional programming languages such as C, C++, and Fortran. Over the 
years, Matlab has evolved as a premier program in industrial and educational settings for 
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2.1 Creating & manipulating vectors and matrices 
Matlab was designed in the first instance for the purposes of numerical linear algebra. Since 
its conception, it has acquired many advanced features for the manipulation of vectors and 
matrices. These features make Matlab an ideal computing language for manipulating 
genomic data. The basic data type of Matlab is the matrix. Many commonly used genomic 
data, such as sequences, genotypes, and haplotypes, can be naturally represented as 
numeric matrices in the computer memory. Therefore, highly efficient basic functions of 
Matlab can be applied directly to handling many kinds of genomic data. Here is an example 
of aligned DNA sequences: 
 
Seq1 ATCAGGCATCGATGAATCGT 
Seq2 ATCGGGCATCGATCAAGCGT 
Seq3 ATCGGTCATCTATGAAGGCT 
Seq4 ATCGGTCATCGAAGAAGGCG 
Seq5 ATCGGTCATCGATCAAGGCG 
 
As these sequences are in the same length and are aligned, the alignment can be represented 
by a Matlab matrix of integers: 
 
seq=[1 4 2 1 3 3 2 1 4 2 3 1 4 3 1 1 4 2 3 4 
     1 4 2 3 3 3 2 1 4 2 3 1 4 2 1 1 3 2 3 4 
     1 4 2 3 3 4 2 1 4 2 4 1 4 3 1 1 3 3 2 4 
     1 4 2 3 3 4 2 1 4 2 3 1 1 3 1 1 3 3 2 3 
     1 4 2 3 3 4 2 1 4 2 3 1 4 2 1 1 3 3 2 3]; 
 
The simple mapping converts nucleotide sequences from letter representations (A, C, G, and 
T) to integer representations (1, 2, 3, and 4). Similarly, genotypic data can be converted into a 
matrix of integers. The genotypic data below contains nine markers (SNPs) sampled from 
eight diploid individuals. 
 
Idv1 CT GT AG AT AG AG CT AG AG 
Idv2 CT GT AG AT AG AG CT AG AG 
Idv3 CC GG GG AA AA AA TT GG GG 
Idv4 TT TT AA TT GG GG CC AA AA 
Idv5 CT GT AG AT AG AG CT AG AG 
Idv6 CT GT AG AT AG AG CT AG AG 
Idv7 CC GG GG AA AA AA TT GG GG 
Idv8 CT GT AG AT AG AG CT AG AG 
 
This genotypic data can be converted into the following matrix of integers: 

 
Evolutionary Bioinformatics with a Scientific Computing Environment 

 

53 

geno=[2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3 
      2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3 
      2 2 3 3 3 3 1 1 1 1 1 1 4 4 3 3 3 3 
      4 4 4 4 1 1 4 4 3 3 3 3 2 2 1 1 1 1 
      2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3 
      2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3 
      2 2 3 3 3 3 1 1 1 1 1 1 4 4 3 3 3 3 
      2 4 3 4 1 3 1 4 1 3 1 3 2 4 1 3 1 3]; 
 
Structures and cell arrays in Matlab provide a way to store dissimilar types of data in the 
same array. In this example, information about markers, such as the chromosomal position 
and SNP identification, can be represented in a structure called mark: 
 
mark.pos=[38449934,38450800,38455228,38456851,38457117,38457903,... 
          38465179,38467522,38469351]; 
 
mark.rsid={'rs12516','rs8176318','rs3092988','rs8176297',... 
           'rs8176296','rs4793191','rs8176273','rs8176265',... 
           'rs3092994'}; 
 
In the same way, you can represent haplotypes with an integer matrix, hap, and represent 
makers’ information of the haplotype with a mark structure. The difference between 
sequences of hap and seq is that hap usually contains only sites that are polymorphic and 
chromosomal positions of these sites are likely to be discontinuous; whereas, seq includes 
both monoallelic and polymorphic sites, which are continuous in their chromosomal 
position. 
Matlab supports many different data types, including integer and floating-point data, 
characters and strings, and logical true and false states. By default, all numeric values are 
stored as double-precision floating point. You can choose to build numeric matrices and 
arrays as integers or as single-precision. Integer and single-precision arrays offer more 
memory-efficient storage than double-precision. You can convert any number, or array of 
numbers, from one numeric data type to another. For example, a double-precision matrix 
geno can be converted into an unsigned 8-bit integer matrix by using command 
uint8(geno) without losing any information. The output matrix takes only one-eighth the 
memory of its double-precision version. The signed or unsigned 8-bit integer, like logical 
value, requires only 1 byte. They are the smallest data types. Sparse matrices with mostly 
zero-valued elements, such as adjacency matrices of most biological networks, occupy a 
fraction of the storage space required for an equivalent full matrix. 

2.2 Numerical analysis 
Matlab has many functions for numerical data analysis, which makes it a well suited 
language for numerical computations. Typical uses include problem solving with matrix 
formulations, general purpose numeric computation, and algorithm prototyping. Using 
Matlab in numerical computations, users can express the problems and solutions just as they 
are written mathematically—without traditional programming. As a high-level language, 
Matlab liberates users from implementing many complicated algorithms and commonly 
used numerical solutions, and allows users to focus on the “real” problems they want to 



 
Systems and Computational Biology – Bioinformatics and Computational Modeling 

 

54

solve, without understanding the details of routine computational tasks. This section 
introduces three numerical routines: optimization, interpolation, and integration. 

2.2.1 Optimization 
Matlab built-in functions and specific toolboxes provide widely used algorithms for 
standard and large-scale optimization, solving constrained and unconstrained continuous 
and discrete problems. Users can use these algorithms to find optimal solutions, perform 
tradeoff analyses, balance multiple design alternatives, and incorporate optimization 
methods into algorithms and models. Here I use two functions fminbnd and fminsearch 
to illustrate the general solutions to the problems of constrained linear optimization and 
unconstrained nonlinear optimization, respectively. 
Function fminbnd finds the minimum of a single-variable function, min ( )

x
f x , within a 

fixed interval x1 < x < x2. In Matlab, 
 
[x,fval]=fminbnd(@fun,x1,x2); 
 
returns scalar x a local minimizer of the scalar valued function, which is described by a 
function handle @fun, in the interval between x1 and x2. The second returning variable 
fval is the value of the objective function computed in @fun at the solution x. Function 
fminsearch finds minimum of unconstrained multivariable function using a derivative-
free method. As above, the minimum of a problem is specified by min ( )

x
f x
 , where x  is a 

vector instead of a scalar, and f is a function of several variables. In Matlab this is written  
as: 
 
[x,fval]=fminsearch(@fun,x0); 
 
where x0 is a vector of initial values of x. Note that fminsearch can often handle 
discontinuities particularly if they do not occur near the solution. 
Depending on the nature of the problem, you can choose to use fminbnd, fminsearch, or 
other optimization functions to perform likelihood inference. When doing this, you first 
need to write a likelihood function that accepts initial parameters as inputs. The likelihood 
function typically returns a value of the negative log likelihood. Input parameters that 
produce the minimum of the function are those that give the maximum likelihood for the 
model. Here is an example showing how to use function fminbnd. 
 
options=optimset('fminbnd'); 
[x,fval]=fminbnd(@likefun,eps,20,options,tree,site,model); 
 
where @likefun is a function handle of the following negative log-likelihood function:  
 
function [L]=likefun(x,tree,site,model) 
rate=x(1); 
L=-log(treelike(tree,site,model,rate)); 
 
This function takes four parameters: the evolutionary rate, rate, (which is what we are 
going to optimize), a phylogenetic tree, a site of alignment of sequences, and a substitution 
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model. fminbnd returns estimate x(1), which is the optimized rate that gives maximum 
likelihood fval. The function treelike computes the likelihood of a tree for a given site 
under the substitution model (see Section 3.4 for details). 

2.2.2 Interpolation 
Interpolation is one of the classical problems in numerical analysis. Here I show how a one 
dimensional interpolation problem is formulated and how to use the interpolation technique 
to determine the recombination fraction between two chromosomal positions. The 
relationships between physical distance (Mb) and genetic distance (cM) vary considerably at 
different positions on the chromosome due to the heterogeneity in recombination rate. A 
recombination map correlates the increment of genetic distance with that of physical 
distance. The distances between two points in a recombination map are defined in terms of 
recombination fractions. The incremental step of the physical distance is fixed by the 
distance between each pair of consecutive makers. Given a set of n makers [xk, yk], 1 ≤ k ≤ n, 
with x1 < x2 < … < xn, the goal of interpolation is to find a function f(x) whose graph 
interpolates the data points, i.e., f(xk) = yk, for k = 1, 2,…, n. The general form of Matlab 
function interp1 is as follows: 
 
yi=interp1(x,y,xi,method) 
 
where x and y are the vectors holding x-coordinates (i.e., the chromosomal positions) and y-
coordinates (i.e., the cumulative recombination rate) of points to be interpolated, 
respectively. xi is a vector holding points of evaluation, i.e., yi=f(xi) and method is an 
optional string specifying an interpolation method. Default interpolation method 'linear' 
produces a piecewise linear interpolant. If xi contains two positions on the chromosome, 
xi=[pos1,pos2], yi computed will contain two values [rec1,rec2]. The local 
recombination rate (cM/Mb) can then be calculated as (rec2-rec1)/(pos2-pos1). 

2.2.3 Integration 
The basic problem considered by numerical integration is to compute an approximate 

solution to a definite integral ( )
b

a
f x dx . If f(x) is a smooth well-behaved function, integrated 

over a small number of dimensions and the limits of integration are bounded, there are 
many methods of approximating the integral with arbitrary precision. quad(@fun,a,b) 
approximates the integral of function @fun from a to b to within an error of 1e-6 using 
recursive adaptive Simpson quadrature. You can use function trapz to compute an 
approximation of the integral of Y via the trapezoidal method. To compute the integral with 
unit spacing, you can use Z=trapz(Y); for spacing other than one, multiply Z by the 
spacing increment. You can also use Z=trapz(X,Y) to compute the integral of Y with 
respect to X using trapezoidal integration.  

2.3 Data visualization & graphical user interfaces 

Matlab adopts powerful visualization techniques to provide excellent means for data 
visualization. The graphics system of Matlab includes high-level commands for two-
dimensional and three-dimensional data visualization, image processing, animation, and 
presentation graphics. The graphic system of Matlab is also highly flexible as it includes 
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solve, without understanding the details of routine computational tasks. This section 
introduces three numerical routines: optimization, interpolation, and integration. 

2.2.1 Optimization 
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x
f x , within a 

fixed interval x1 < x < x2. In Matlab, 
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free method. As above, the minimum of a problem is specified by min ( )

x
f x
 , where x  is a 

vector instead of a scalar, and f is a function of several variables. In Matlab this is written  
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function typically returns a value of the negative log likelihood. Input parameters that 
produce the minimum of the function are those that give the maximum likelihood for the 
model. Here is an example showing how to use function fminbnd. 
 
options=optimset('fminbnd'); 
[x,fval]=fminbnd(@likefun,eps,20,options,tree,site,model); 
 
where @likefun is a function handle of the following negative log-likelihood function:  
 
function [L]=likefun(x,tree,site,model) 
rate=x(1); 
L=-log(treelike(tree,site,model,rate)); 
 
This function takes four parameters: the evolutionary rate, rate, (which is what we are 
going to optimize), a phylogenetic tree, a site of alignment of sequences, and a substitution 
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model. fminbnd returns estimate x(1), which is the optimized rate that gives maximum 
likelihood fval. The function treelike computes the likelihood of a tree for a given site 
under the substitution model (see Section 3.4 for details). 
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Interpolation is one of the classical problems in numerical analysis. Here I show how a one 
dimensional interpolation problem is formulated and how to use the interpolation technique 
to determine the recombination fraction between two chromosomal positions. The 
relationships between physical distance (Mb) and genetic distance (cM) vary considerably at 
different positions on the chromosome due to the heterogeneity in recombination rate. A 
recombination map correlates the increment of genetic distance with that of physical 
distance. The distances between two points in a recombination map are defined in terms of 
recombination fractions. The incremental step of the physical distance is fixed by the 
distance between each pair of consecutive makers. Given a set of n makers [xk, yk], 1 ≤ k ≤ n, 
with x1 < x2 < … < xn, the goal of interpolation is to find a function f(x) whose graph 
interpolates the data points, i.e., f(xk) = yk, for k = 1, 2,…, n. The general form of Matlab 
function interp1 is as follows: 
 
yi=interp1(x,y,xi,method) 
 
where x and y are the vectors holding x-coordinates (i.e., the chromosomal positions) and y-
coordinates (i.e., the cumulative recombination rate) of points to be interpolated, 
respectively. xi is a vector holding points of evaluation, i.e., yi=f(xi) and method is an 
optional string specifying an interpolation method. Default interpolation method 'linear' 
produces a piecewise linear interpolant. If xi contains two positions on the chromosome, 
xi=[pos1,pos2], yi computed will contain two values [rec1,rec2]. The local 
recombination rate (cM/Mb) can then be calculated as (rec2-rec1)/(pos2-pos1). 

2.2.3 Integration 
The basic problem considered by numerical integration is to compute an approximate 

solution to a definite integral ( )
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f x dx . If f(x) is a smooth well-behaved function, integrated 

over a small number of dimensions and the limits of integration are bounded, there are 
many methods of approximating the integral with arbitrary precision. quad(@fun,a,b) 
approximates the integral of function @fun from a to b to within an error of 1e-6 using 
recursive adaptive Simpson quadrature. You can use function trapz to compute an 
approximation of the integral of Y via the trapezoidal method. To compute the integral with 
unit spacing, you can use Z=trapz(Y); for spacing other than one, multiply Z by the 
spacing increment. You can also use Z=trapz(X,Y) to compute the integral of Y with 
respect to X using trapezoidal integration.  

2.3 Data visualization & graphical user interfaces 

Matlab adopts powerful visualization techniques to provide excellent means for data 
visualization. The graphics system of Matlab includes high-level commands for two-
dimensional and three-dimensional data visualization, image processing, animation, and 
presentation graphics. The graphic system of Matlab is also highly flexible as it includes 
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low-level commands that allow users to fully customize the appearance of graphics. Fig. 1 
gives some examples of graphic outputs from data analyses in evolutionary bioinformatics. 
 

 
Fig. 1. Examples of graphic outputs and GUIs. 

Matlab is also a convenient environment for building graphical user interfaces (GUI). A 
good GUI can make programs easier to use by providing them with a consistent appearance 
and intuitive controls. Matlab provides many programmable controls including push 
buttons, toggle buttons, lists, menus, text boxes, and so forth. A tool called guide, the GUI 
Development Environment, allows a programmer to select, layout and align the GUI 
components, edit properties, and implement the behavior of the components. Together with 
guide, many GUI-related tools make Matlab suitable for application development. PGEGUI 
and MBEGUI are two menu-driven GUI applications in PGEToolbox and MBEToolbox, 
respectively. 

2.4 Extensibility & scalability 

Matlab has an open, component-based, and platform-independent architecture. Scientific 
applications are difficult to develop from scratch. Through a variety of toolboxes, Matlab 
offers infrastructure for data analyses, statistical tests, modeling and visualization, and other 
services. A richer set of general functions for statistics and mathematics allows scientists to 
manipulate and view data sets with significantly less coding effort. Many special-purpose 
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tool boxes that address specific areas are provided and developers choose only the tools and 
extensions needed. Thus extensibility is one of the most important features of the Matlab 
environment. Matlab functions have a high degree of portability, which stems from a 
complete lack of coupling with the underlying operating system and platform. Matlab 
application deployment tools enable automatic generation and royalty-free distribution of 
applications and components. You can distribute your code directly to others to use in their 
own Matlab sessions, or to people who do not have Matlab. 
You can run a Matlab program in parallel. The parallel computing toolbox allows users to 
offload work from one Matlab session (the client) to other Matlab sessions (the workers). It 
is possible to use multiple workers to take advantage of the parallel processing on a remote 
cluster of computers. This is called “remote” parallel processing. It is also possible to do 
parallel computing with Matlab on a single multicore or multiprocessor machine. This is 
called “local” parallel computing. Fig. 2 is a screenshot of the task manager showing the 
CPU usage on a single 8-core PC in local parallel computing with Matlab. 
 

 
Fig. 2. CPU usage of a single 8-core PC in local parallel computing with Matlab. 

With a copy of Matlab that has the parallel computing features, the simplest way of 
parallelizing a Matlab program is to use the for loops in the program. If a for loop is 
suitable for parallel execution, this can be indicated simply by replacing the word for by 
the word parfor. When the Matlab program is run, and if workers have been made 
available by the matlabpool command, then the work in each parfor loop will be 
distributed among the workers. Another way of parallelizing a Matlab program is to use a 
spmd (single program, multiple data) statement. Matlab executes the spmd body denoted 
by statements on several Matlab workers simultaneously. Inside the body of the spmd 
statement, each Matlab worker has a unique value of labindex, while numlabs denotes 
the total number of workers executing the block in parallel. Within the body of the spmd 
statement, communication functions for parallel jobs (such as labSend and 
labReceive) can transfer data between the workers. In addition, Matlab is developing 
new capabilities for the graphics processing unit (GPU) computing with CUDA-enabled 
NVIDIA devices. 
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tool boxes that address specific areas are provided and developers choose only the tools and 
extensions needed. Thus extensibility is one of the most important features of the Matlab 
environment. Matlab functions have a high degree of portability, which stems from a 
complete lack of coupling with the underlying operating system and platform. Matlab 
application deployment tools enable automatic generation and royalty-free distribution of 
applications and components. You can distribute your code directly to others to use in their 
own Matlab sessions, or to people who do not have Matlab. 
You can run a Matlab program in parallel. The parallel computing toolbox allows users to 
offload work from one Matlab session (the client) to other Matlab sessions (the workers). It 
is possible to use multiple workers to take advantage of the parallel processing on a remote 
cluster of computers. This is called “remote” parallel processing. It is also possible to do 
parallel computing with Matlab on a single multicore or multiprocessor machine. This is 
called “local” parallel computing. Fig. 2 is a screenshot of the task manager showing the 
CPU usage on a single 8-core PC in local parallel computing with Matlab. 
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3. Using Matlab in molecular evolution 
Molecular evolution focuses on the study of the process of evolution at the scale of DNA, 
RNA, and proteins. The process is reasonably well modeled by using finite state continuous 
time Markov chains. In Matlab we obtain compact and elegant solutions in modeling this 
process. 

3.1 Evolutionary distance by counting 
Before explicitly modeling the evolution of sequences, let’s start with simple counting 
methods for estimating evolutionary distance between DNA or protein sequences. If two 
DNA or protein sequences were derived from a common ancestral sequence, then the 
evolutionary distance refers to the cumulative amount of difference between the two 
sequences. The simplest measure of the distance between two DNA sequences is the number 
of nucleotide differences (N) between the two sequences, or the portion of nucleotide 
differences (p = N/L) between the two sequences. In Matlab, the p-distance between two 
aligned sequences can be computed like this: 
 
p=sum(seq(1,:)~=seq(2,:))/size(seq,1); 
 
To correct for the hidden changes that have occurred but cannot be directly observed from 
the comparison of two sequences, the formula for correcting multiple hits of nucleotide 
substitutions can be applied. The formulae used in these functions are analytical solutions of 
a variety of Markov substitution models. The simplest model is the JC model (Jukes and 
Cantor 1969). Analytic solution of the JC model corrects p-distance when p < 0.75: 
 
d=-(3/4)*log(1-4*p/3); 
 
Other commonly used models include Kimura-two-parameter (K2P)(Kimura 1980), 
Felsenstein (F84)(Felsenstein 1984), and Hasegawa-Kishono-Yano (HKY85)(Hasegawa, 
Kishino et al. 1985). When the numbers of parameters used to define a model increase with 
the complicity of the model, we reach a limit where there is no analytical solution for the 
expression of evolutionary distance. In these cases, we can use the maximum likelihood 
method, as described in Section 3.3, to estimate the evolutionary distance. 
For protein sequences, the simplest measure is the p-distance between two sequences. Assume 
that the number of amino acid substitutions at a site follows the Poisson distribution; a simple 
approximate formula for the number of substitutions per site is given by: 
 
d=-log(1-p); 
 
This is called Poisson correction distance. Given that different amino acid residues of a 
protein have different levels of functional constraints and the substitution rate varies among 
the sites, it is suggested that the rate variation can be fitted by the gamma distribution (Nei 
and Kumar 2000). The gamma distance between two sequences can be computed by: 
 
d=a*((1-p)^(-1/a)-1); 
 
where a is the shape parameter of the gamma distribution. Several methods have been 
proposed to estimate a (Yang 1994; Gu and Zhang 1997). The gamma distance with a=2.4 
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is an approximate of the JTT distance based on the 20×20 amino acid substitution matrix 
developed by Jones, Taylor et al. (1992). The maximum likelihood estimation of JTT distance 
is described in Section 3.3.2. 
Protein sequences are encoded by strings of codons, each of which is a triplet of nucleotides 
and specifies an amino acid according to the genetic code. Codon-based distance can be 
estimated by using the heuristic method developed by Nei and Gojobori (1986). The method 
has been implemented with an MBEToolbox function called dc_ng86. The function counts 
the numbers of synonymous and nonsynonymous sites (LS and LA) and the numbers of 
synonymous and nonsynonymous differences (SS and SA) by considering all possible 
evolutionary pathways. The codon-based distance is measured as KS = SS/LS and KA = SA/LA 
for synonymous and nonsynonymous sites, respectively. Comparison of KS and KA provide 
useful information about natural selection on protein-coding genes: KA/KS = 1 indicates 
neutral evolution, KA/KS < 1 negative selection, and KA/KS > 1 positive selection. 

3.2 Markov models of sequence evolution 
Markov models of sequence evolution have been widely used in molecular evolution. A 
Markov model defines a continuous-time Markov process to describe the change between 
nucleotides, amino acids, or codons over evolutionary time. Markov models are flexible and 
parametrically succinct. A typical Markov model is characterized by an instantaneous rate matrix 
R, which defines the instantaneous relative rates of interchange between sequence states. 
R has off-diagonal entries Rij equal to the rates of replacement of i by j: ( )ijR r i j  , i ≠ j. 
The diagonal entries, Rii, are defined by a mathematical requirement that the row sums are 
all zero, that is, ( )ii ijj i

R R


  . The dimension of R depends on the number of statuses of 
the substitution: 4×4 for nucleotides, 20×20 for amino acids, and 61×61 for codons. We 
denote Π the vector that contains equilibrium frequencies for 4 nucleotides, 20 amino acids, 
or 61 sense codons, depending on the model. By multiplying the diagonal matrix of Π, R is 
transformed into a “frequency-scaled” rate matrix Q=diag(Π)*R. Subsequently, we can 
compute the substitution probability matrix P according to the matrix exponential 

( ) QtP t e , where P(t) is the matrix of substitution probabilities over an arbitrary time (or 
branch length) t. 

3.3 Model-based evolutionary distance 
3.3.1 Nucleic acid substitutions 
For a nucleotide substitution probability matrix P(t), Pi→j(t) is the probability that nucleotide 
i becomes nucleotide j after time t. An example of divergence of two sequences (each 
contains only 1 base pair) from a common ancestral sequence is shown in Fig. 3. 
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Fig. 3. Divergence of two sequences. Sequences 1 (left) and 2 (right) were derived from a 
common ancestral sequence t years ago. PA→C(t) is the probability that nucleotide A becomes 
C after time t. PA→A(t) is the probability that no substitution occurs at the site during time t. 
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Fig. 3. Divergence of two sequences. Sequences 1 (left) and 2 (right) were derived from a 
common ancestral sequence t years ago. PA→C(t) is the probability that nucleotide A becomes 
C after time t. PA→A(t) is the probability that no substitution occurs at the site during time t. 
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In order to construct the substitution probability matrix P in Matlab, let’s first define an 
instantaneous rate matrix R: 
 
>> R=[0,.3,.4,.3;.3,0,.3,.4;.4,.3,0,.3;.3,.4,.3,0] 
 
R = 
 
         0    0.3000    0.4000    0.3000 
    0.3000         0    0.3000    0.4000 
    0.4000    0.3000         0    0.3000 
    0.3000    0.4000    0.3000         0 
 
We can use the following command to normalize the rate matrix so that the sum of each 
column is one:  
 
x=sum(R,2); for k=1:4, R(k,:)=R(k,:)./x(k); end 
 
This step is unnecessary in this particular example, as original R meets this requirement. 
Let’s assume the equilibrium frequencies of four nucleotides are known (that is, πA=0.1, 
πC=0.2, πG=0.3, and πT=0.4). 
 
freq=[.1 .2 .3 .4]; 
 
Here is how to compute and normalize matrix Q: 
 
function [Q]=composeQ(R,freq) 
PI=diag(freq); 
Q=R*PI; 
Q=Q+diag(-1*sum(Q,2)); 
Q=(Q./abs(trace(Q)))*size(Q,1); 
 
In Matlab, function EXPM computes the matrix exponential using the Padé approximation. 
Using this function we can compute substitution probability matrix P for a given time t.  
 
P=expm(Q*t); 
 
For one site in two aligned sequences, without knowing the ancestral status of the site, we 
assume one of them is in the ancestral state and the other is in the derived state. If two 
nucleotides are C and T, and we pick C as the ancestral state, that is, the substitution from C 
to T, then the probability of substitution PC→T(t) = P(2,4). In fact, P(2,4) equals to 
P(4,2), which means the process is reversible. So it does not matter which nucleotide we 
picked as ancestral one, the result is the same. The total likelihood of the substitution model 
for the two given sequences is simply the multiplication of substitution probabilities for all 
sites between the two sequences. In order to estimate the evolutionary distance between two 
sequences, we try different t-s and compute the likelihood each time until we find the t 
that gives the maximum value of the total likelihood. This process can be done with 
optimization functions in Matlab (see Section 2.2.1). The optimized value of t is a surrogate 
of evolutionary distance between two sequences. 
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The model of substitution can be specified with two variables R and freq. So we can define 
the model in a structure: 
 
model.R=R; 
model.freq=freq; 
 
The general time reversible (GTR) model has 8 parameters (5 for rate matrix and 3 for 
stationary frequency vector). There is no analytical formula to calculate the GTR distance 
directly. We can invoke the optimization machinery of Matlab to estimate the 
evolutionary distance and obtain the best-fit values of parameters that define the 
substitution model.  
A convenient method that does not depend on the optimization to compute GTR distance 
also exists (Rodriguez, Oliver et al. 1990). The first step of this method is to form a matrix 
F, where Fij denotes the number of sites for which sequence 1 has an i and sequence 2  
has a j. The GTR distance between the two sequences is then given by the following 
formula: 

1( log( ))d tr F    , 

where   is the diagonal matrix with values of nucleotide equilibrium frequencies on the 
diagonal, and tr(X) is the trace of matrix X. Here is an example: 
 
seq1=[2 3 4 2 3 3 1 4 3 3 3 4 1 3 3 2 4 2 3 2 2 2 1 3 1 3 1 3 3 3]; 
seq2=[4 2 2 2 3 3 2 4 3 3 2 4 1 2 3 2 4 4 1 4 2 2 1 3 1 2 4 3 1 3]; 
X=countntchange(seq1,seq2) 
 
X = 
 
     3     0     2     0 
     1     4     4     1 
     0     0     8     0 
     1     3     0     3 
 
The formula for computing GTR distance is expressed in Matlab as: 
 
F=((sum(sum(X))-trace(X))*R)./4; 
F=eye(4)*trace(X)./4+F; 
PI=diag(freq); 
d=-trace(PI*logm(inv(PI)*F)); 

3.3.2 Amino acid substitutions 
For an amino acid substitution probability matrix P(t), Pi→j(t) is the probability that amino 
acid i becomes amino acid j after time t. In order to compute P, we need to specify the 
substitution model. As in the case of nucleotides, we need an instantaneous rate matrix 
model.R and equilibrium frequency model.freq for amino acids. Commonly used R and 
freq are given by empirical models including Dayhoff, JTT (Jones, Taylor et al. 1992)(Fig. 
4), and WAG (Whelan 2008). 
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In order to construct the substitution probability matrix P in Matlab, let’s first define an 
instantaneous rate matrix R: 
 
>> R=[0,.3,.4,.3;.3,0,.3,.4;.4,.3,0,.3;.3,.4,.3,0] 
 
R = 
 
         0    0.3000    0.4000    0.3000 
    0.3000         0    0.3000    0.4000 
    0.4000    0.3000         0    0.3000 
    0.3000    0.4000    0.3000         0 
 
We can use the following command to normalize the rate matrix so that the sum of each 
column is one:  
 
x=sum(R,2); for k=1:4, R(k,:)=R(k,:)./x(k); end 
 
This step is unnecessary in this particular example, as original R meets this requirement. 
Let’s assume the equilibrium frequencies of four nucleotides are known (that is, πA=0.1, 
πC=0.2, πG=0.3, and πT=0.4). 
 
freq=[.1 .2 .3 .4]; 
 
Here is how to compute and normalize matrix Q: 
 
function [Q]=composeQ(R,freq) 
PI=diag(freq); 
Q=R*PI; 
Q=Q+diag(-1*sum(Q,2)); 
Q=(Q./abs(trace(Q)))*size(Q,1); 
 
In Matlab, function EXPM computes the matrix exponential using the Padé approximation. 
Using this function we can compute substitution probability matrix P for a given time t.  
 
P=expm(Q*t); 
 
For one site in two aligned sequences, without knowing the ancestral status of the site, we 
assume one of them is in the ancestral state and the other is in the derived state. If two 
nucleotides are C and T, and we pick C as the ancestral state, that is, the substitution from C 
to T, then the probability of substitution PC→T(t) = P(2,4). In fact, P(2,4) equals to 
P(4,2), which means the process is reversible. So it does not matter which nucleotide we 
picked as ancestral one, the result is the same. The total likelihood of the substitution model 
for the two given sequences is simply the multiplication of substitution probabilities for all 
sites between the two sequences. In order to estimate the evolutionary distance between two 
sequences, we try different t-s and compute the likelihood each time until we find the t 
that gives the maximum value of the total likelihood. This process can be done with 
optimization functions in Matlab (see Section 2.2.1). The optimized value of t is a surrogate 
of evolutionary distance between two sequences. 
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Fig. 4. Visual representations for instantaneous rate matrix R. The JTT model of amino acid 
substitutions (Jones, Taylor et al. 1992) is shown on the left, and the GY94 model of codon 
substitutions (Goldman and Yang 1994) on the right. The circle size is proportional to the 
value of the relative rate between pairs of substitutions. 

Here I present a function called seqpairlike that computes the log likelihood of distance 
t (i.e., branch length, or time) between two protein sequences seq1 and seq2 using the 
model defined with R and freq. The function countaachange is a countntchange 
counterpart for amino acid substitutions. 
 
function [lnL]=seqpairlike(t,model,seq1,seq2) 
Q=composeQ(model.R,model.freq); 
P=expm(Q*t); 
X=countaachange(seq1,seq2); 
lnL=sum(sum(log(P.^X))); 
 
Using the likelihood function, you can adopt an optimization technique to find the 
optimized t as the evolutionary distance between the two sequences. 

3.3.3 Codon substitutions 
Codon substitutions can be modeled using a Markov process similar to those that are used 
to describe nucleotide substitutions and amino acid substitutions. The difference is that 
there are 61 states in the Markov process for codon substitutions as the universal genetic 
code contains 61 sense codons or nonstop codons. Here I describe a simplified model of 
Goldman and Yang (1994)(gy94 model). The rate matrix of the model accounts for the 
transition-transversion rate difference by incorporating the factor κ if the nucleotide change 
between two codons is a transition, and for unequal synonymous and nonsynonymous 
substitution rates by incorporating ω if the change is a nonsynonymous substitution. Thus, 
the rate of relative substitution from codon i to codon j (i ≠ j) is: 
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if i and j differ at two or three codon positions, 

if i and j differ by a synonymous transversion, 

if i and j differ by a synonymous transition, 

if i and j differ by a nonsynonymous transversion, 

if i and j differ by a nonsynonymous transition, 

A schematic diagram representing the codon-based rate matrix R with ω = 0.5 and κ = 3.0 is 
given in Fig. 4. The function modelgy94 in MBEToolbox generates the matrix R from given 
ω and κ: 
 
model=modelgy94(omega,kappa); 
 
Now let πj indicate the equilibrium frequency of the codon j. In the GY94 model, πj = 1/61,  
j = 1, 2, …, 61.  
Here is how we can use GY94 model to estimate dN and dS for two protein-coding 
sequences. Two sequences are encoded with 61 integers—each represents a sense codon. For 
example, the following two protein-coding sequences: 
 
Seq1 AAA AAC AAG AAT ACA ACC 
Seq2 AAT AAC AAG TTA TCA CCC 
 
are represented in Matlab with seq1 and seq2 like this: 
 
seq1=[1 2 3 4 5 6]; 
seq2=[4 2 3 58 51 22]; 
 
The codons in original sequences are converted into corresponding indexes in the 61 sense 
codon list (when the universal codon table is used). This conversion can be done with the 
function codonise61 in MBEToolbox: seq1=codonise61('AATAACAAGTTATCACCC'); 
You also need a 61×61 mask matrix that contains 1 for every synonymous substitution 
between codons, and 0 otherwise. 
 
% Making a mask matrix, M 
T='KNKNTTTTRSRSIIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVVYYSSSSCWCLFLF'; 
M=zeros(61); 
for i=1:61 
for j=i:61 
 if i~=j 
 if T(i)==T(j) % synonymous change 
  M(i,j)=1; 
 end 
 end 
end 
end 
M=M+M'; 
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code contains 61 sense codons or nonstop codons. Here I describe a simplified model of 
Goldman and Yang (1994)(gy94 model). The rate matrix of the model accounts for the 
transition-transversion rate difference by incorporating the factor κ if the nucleotide change 
between two codons is a transition, and for unequal synonymous and nonsynonymous 
substitution rates by incorporating ω if the change is a nonsynonymous substitution. Thus, 
the rate of relative substitution from codon i to codon j (i ≠ j) is: 
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if i and j differ at two or three codon positions, 

if i and j differ by a synonymous transversion, 

if i and j differ by a synonymous transition, 

if i and j differ by a nonsynonymous transversion, 

if i and j differ by a nonsynonymous transition, 

A schematic diagram representing the codon-based rate matrix R with ω = 0.5 and κ = 3.0 is 
given in Fig. 4. The function modelgy94 in MBEToolbox generates the matrix R from given 
ω and κ: 
 
model=modelgy94(omega,kappa); 
 
Now let πj indicate the equilibrium frequency of the codon j. In the GY94 model, πj = 1/61,  
j = 1, 2, …, 61.  
Here is how we can use GY94 model to estimate dN and dS for two protein-coding 
sequences. Two sequences are encoded with 61 integers—each represents a sense codon. For 
example, the following two protein-coding sequences: 
 
Seq1 AAA AAC AAG AAT ACA ACC 
Seq2 AAT AAC AAG TTA TCA CCC 
 
are represented in Matlab with seq1 and seq2 like this: 
 
seq1=[1 2 3 4 5 6]; 
seq2=[4 2 3 58 51 22]; 
 
The codons in original sequences are converted into corresponding indexes in the 61 sense 
codon list (when the universal codon table is used). This conversion can be done with the 
function codonise61 in MBEToolbox: seq1=codonise61('AATAACAAGTTATCACCC'); 
You also need a 61×61 mask matrix that contains 1 for every synonymous substitution 
between codons, and 0 otherwise. 
 
% Making a mask matrix, M 
T='KNKNTTTTRSRSIIMIQHQHPPPPRRRRLLLLEDEDAAAAGGGGVVVVYYSSSSCWCLFLF'; 
M=zeros(61); 
for i=1:61 
for j=i:61 
 if i~=j 
 if T(i)==T(j) % synonymous change 
  M(i,j)=1; 
 end 
 end 
end 
end 
M=M+M'; 
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In the above code, T is the universal code translation table for 61 codons and the 
corresponding amino acids. Below is the likelihood function that will be used to obtain the 
three parameters (t, kappa and omega) for the given sequences seq1 and seq2. The input 
variable x is a vector of [t, kappa,omega]. 
 
function [lnL]=codonpairlike(x,seq1,seq2) 
lnL=inf; 
if (any(x<eps)||any(x>999)), return; end 
t=x(1); kappa=x(2); omega=x(3); 
if (t<eps||t>5), return; end 
if (kappa<eps||kappa>999), return; end 
if (omega<eps||omega>10), return; end 
md=modelgy94(omega,kappa); 
R=md.R; freq=md.freq; 
Q=composeQ(R,freq); 
P=expm(Q*t); 
lnL=0; 
for k=1:length(seq1) 
 s1=seq1(k); s2=seq2(k); 
 p=P(s1,s2); 
 lnL=lnL+log(p*freq(s1)); 
end 
lnL=-lnL; 
 
Given all these, you can now compute the synonymous and nonsynonymous substitution 
rates per site, dS and dN, using maximum likelihood approach: 
 
et=0.5; ek=1.5; eo=0.8; % initial values for t, kappa and omega 
options=optimset('fminsearch'); 
[para,fval]=fminsearch(@codonpairlike,[et,ek,eo],options,seq1,seq2); 
lnL=-fval; 
t=para(1); 
kappa=para(2); 
omega=para(3); 
 
% build model using optimized values 
md=modelgy94(omega,kappa);   
Q=composeQ(md.R,md.freq)./61; 
 
% Calculate pS and pN, assuming omega=optimized omega 
pS=sum(sum(Q.*M)); 
pN=1-pS; 
 
% Calculate pS and pN, assuming omega=1 
md0=modelgy94(1,kappa); 
Q0=composeQ(md0.R,md0.freq)./61; 
pS0=sum(sum(Q0.*M)); 
pN0=1-pS0; 
 
% Calculate dS and dN 
dS=t*pS/(pS0*3); 
dN=t*pN/(pN0*3); 
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3.4 Likelihood of a tree 
You have learned how to compute the likelihood of substitutions between pairs of 
sequences. Here I show how to calculate the likelihood of a phylogenic tree given nucleotide 
sequences. Same technique applies to protein and codon sequences. Imagine you have a tree 
like the one in Fig. 5. In this example, the four sequences are extremely short, each 
containing only one nucleotide (i.e., G, A, T, and T). For longer sequences, you can first 
compute the likelihood for each site independently, and then multiply them together to get 
the full likelihood for the sequences. The tree describes the evolutionary relationship of the 
four sequences. 
 

G

G T

t1

G A T T

t2

 
Fig. 5. One path of a tree with 4 external nodes and 3 internal nodes with known states. 

Suppose that all internal nodes of the tree are known, which means the ancestral or 
intermediate states of the site are known. In this case, the likelihood of the tree is: 

L = PG→G(t1)·PG→T(t1)·PG→G(t2)·PG→A(t2)·PT→T(t2)·PT→T(t2) 

Thus the likelihood of a phylogenetic tree with known internal nodes at one site can be 
calculated once the transition probability matrix P is computed as described in Section 3.3.1. 
In reality, the internal nodes of a tree are unlikely to be known, and the internal nodes can 
be any of nucleotides. In this case, we need to let every internal node be one of four possible 
nucleotides each time and compute the likelihood for all possible combinations of nodes. 
Each distinct combination of nucleotides on all nodes is called a path. Fig. 5 is an instance of 
one possible path. To get the likelihood of the tree, we multiply all likelihood values (or sum 
over log likelihood values) that are computed from all possible paths. 
Here I use an example to illustrate how to do it using Matlab. Suppose the tree is given in 
the Newick format: 
 
tree='((seq1:0.0586,seq2:0.0586):0.0264,(seq3:0.0586,seq4:0.0586):0.
0264):0.043;'; 
 
The function parsetree in MBEToolbox reads through the input tree and extracts the 
essential information including the topology of the tree, treetop, the total number of 
external nodes, numnode, and the branch lengths, brchlen. 
 
[treetop,numnode,brchlen]=parsetree(tree); 
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In the above code, T is the universal code translation table for 61 codons and the 
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The outputs of parsetree are equivalent to the following direct assignment for the three 
variables: 
 
treetop='((1,2),(3,4))'; 
numnode=4; 
brchlen=[0.0586 0.0586 0.0586 0.0586 0.0264 0.0264 0]'; 
 
Then we prepare an array of transition matrices P. Each transition matrix stacked in P is for 
one branch.  The total number of branches, including both external and internal branches, is 
2*numnode-2. 
 
n=4; % number of possible nucleotides 
numbrch=2*numnode-2; 
P=zeros(numbrch*n,n); 
for j=1:numbrch 
 P((j-1)*n+1:j*n,:)=expm(Q*brchlen(j)); 
end 
 
In the next step, we use a function called mbelfcreator, which is adapted from Phyllab 
(Morozov, Sitnikova et al. 2000), to construct an inline function LF. The function 
mbelfcreator takes two inputs, treetop and numnod, and “synthesizes” the function 
body of LF. The major operation encoded in the function body is the multiplication of all 
sub-matrices of the master P matrix. Each sub-matrix is 4×4 in dimension and is pre-
computed for the corresponding branch of the tree. The order of serial multiplications is 
determined by the topology of tree. 
 
>>LF=inline(mbelfcreator(treetop,numnode),'P','f','s','n') 
 
LF = 
 
     Inline function: 
     LF(P,f,s,n) =  
(f*(eye(n)*((P((4*n+1):(5*n),:)*(P((0*n+1):(1*n),s(1)).*P((1*n+1):(2
*n),s(2)))).*(P((5*n+1):(6*n),:)*(P((2*n+1):(3*n),s(3)).*P((3*n+1):(
4*n),s(4))))))) 
 
The constructed inline function LF takes four parameters as inputs: P is the stacked matrix, 
f is the stationary frequency, s is a site of the sequence alignment, and n equals 4 for 
nucleotide data. With the inline function, we can compute the log likelihood of a site as 
follows: 
 
siteL=log(LF(P,freq,site,n)); 
 
Finally, we sum over siteL for all sites in the alignment to get the total log likelihood of the 
tree for the given alignment. 
Computing the likelihood of a tree is an essential step from which many further analyses 
can be derived. These analyses may include branch length optimization, search for best tree, 
branch- or site-specific evolutionary rate estimation, tests between different substitution 
models, and so on. 
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4. Using Matlab in population genetics 
Population genetics studies allele frequency distribution and change under the influence of 
evolutionary processes, such as natural selection, genetic drift, mutation and gene flow. 
Traditionally, population genetics has been a theory-driven field with little empirical data. 
Today it has evolved into a data-driven discipline, in which large-scale genomic data sets 
test the limits of theoretical models and computational analysis methods. Analyses of 
whole-genome sequence polymorphism data from humans and many model organisms are 
yielding new insights concerning population history and the genomic prevalence of natural 
selection. 

4.1 Descriptive statistics 

Assessing genetic diversity within populations is vital for understanding the nature of 
evolutionary processes at the molecular level. In aligned sequences, a site that is 
polymorphic is called a “segregating site”. The number of segregating sites is usually denoted 
by S. The expected number of segregating sites E(S) in a sample of size n can be used to 
estimate population scaled mutation rate θ = 4Neμ, where Ne is the diploid effective 
population size and μ is the mutation rate per site: 

1

1
(1 / )n

W i
S i 


  . 

In Matlab, this can be written as: 
 
[n,L]=size(seq); 
S=countsegregatingsites(seq); 
theta_w=S/sum(1./[1:n-1]); 
 
In the above code, countsegregatingsites is a function in PGEToolbox. 
Nucleotide diversity, π, is the average number of pairwise nucleotide differences between 
sequences: 
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where dij is the number of nucleotide differences between the ith and jth DNA sequences 
and n is the sample size. The expected value of π is another estimator of θ, i.e.,   . 
 
n=size(seq,1); 
x=0; 
for i=1:n-1 

for j=i+1:n 
  d=sum(seq(i,:)~=seq(j,:)); 
  x=x+d; 

end 
end 
theta_pi=x/(n*(n-1)/2); 
 
Note that, instead of using the straightforward approach that examines all pairs of 
sequences and counts the nucleotide differences, it is often faster to start by counting the 
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4. Using Matlab in population genetics 
Population genetics studies allele frequency distribution and change under the influence of 
evolutionary processes, such as natural selection, genetic drift, mutation and gene flow. 
Traditionally, population genetics has been a theory-driven field with little empirical data. 
Today it has evolved into a data-driven discipline, in which large-scale genomic data sets 
test the limits of theoretical models and computational analysis methods. Analyses of 
whole-genome sequence polymorphism data from humans and many model organisms are 
yielding new insights concerning population history and the genomic prevalence of natural 
selection. 

4.1 Descriptive statistics 

Assessing genetic diversity within populations is vital for understanding the nature of 
evolutionary processes at the molecular level. In aligned sequences, a site that is 
polymorphic is called a “segregating site”. The number of segregating sites is usually denoted 
by S. The expected number of segregating sites E(S) in a sample of size n can be used to 
estimate population scaled mutation rate θ = 4Neμ, where Ne is the diploid effective 
population size and μ is the mutation rate per site: 
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In Matlab, this can be written as: 
 
[n,L]=size(seq); 
S=countsegregatingsites(seq); 
theta_w=S/sum(1./[1:n-1]); 
 
In the above code, countsegregatingsites is a function in PGEToolbox. 
Nucleotide diversity, π, is the average number of pairwise nucleotide differences between 
sequences: 
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where dij is the number of nucleotide differences between the ith and jth DNA sequences 
and n is the sample size. The expected value of π is another estimator of θ, i.e.,   . 
 
n=size(seq,1); 
x=0; 
for i=1:n-1 

for j=i+1:n 
  d=sum(seq(i,:)~=seq(j,:)); 
  x=x+d; 

end 
end 
theta_pi=x/(n*(n-1)/2); 
 
Note that, instead of using the straightforward approach that examines all pairs of 
sequences and counts the nucleotide differences, it is often faster to start by counting the 
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number of copies of each type in the sequence data. Let ni denote the number of copies of 
type i, and let hap in n . To count the number of copies of the type i, we use the function 
counthaplotype in PGEToolbox. The general form of the function call is like this: 
 
[numHap,sizHap,seqHap]=counthaplotype(hap); 
 
where numHap is the total number of distinct sequences or haplotypes, and sizHap is a 
vector of numbers of each haplotypes. Apparently, sum(sizHap) equals numHap. seqHap 
is a matrix that contains the distinct haplotype sequences. Using this function, we can 
calculate nucleotide diversity faster in some circumstances. 
 
[nh,ni,sh]=counthaplotype(seq); 
x=0; 
for i=1:nh-1 
for j=i+1:nh 

d=sum(sh(i,:)~=sh(j,:)); 
x=x+ni(i)*ni(j)*d; 

end 
end 
theta_pi=x/(n*(n-1)/2); 
 
If the sequences are L bases long, it is often useful to normalize θS and θπ by diving them by 
L. If the genotypic data (geno) is given, the corresponding θS and θπ can be calculated as 
follows: 
 
n=2*size(geno,1); % n is the sample size (number of chromosomes). 
p=snp_maf(geno); % p is a vector containing MAF of SNPs. 
S=numel(p); 
theta_w=S/sum(1./(1:n-1)); 
theta_pi=(n/(n-1))*sum(2.*p.*(1-p)); 
 
Haplotype diversity (or heterozygosity), H, is the probability that two random haplotypes are 
different. The straightforward approach to calculate H is to examine all pairs and count the 
fraction of the pairs in which the two haplotypes differ from each other. The faster approach 
starts by counting the number of copies of each haplotype, ni. Then the haplotype diversity 
is estimated by 
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Using the function counthaplotype, we can get the number of copies of each haplotype 
and then compute H as follows: 
 
[nh,ni]=counthaplotype(hap); 
h=(1-sum((ni./nh).^2))./(1-1./nh); 
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Site frequency spectrum (SFS) is a histogram whose ith entry is the number of polymorphic 
sites at which the mutant allele is present in i copies within the sample. Here, i ranges from 1 
to n-1. When it is impossible to tell which allele is the mutant and which is the ancestral one, 
we combine the entries for i and n-i to make a folded SFS. Mismatch distribution is a 
histogram whose ith entry is the number of pairs of sequences that differ by i sites. Here, i 
ranges from 0 through the maximal difference between pairs in the sample. Two functions 
in PGEToolbox, sfs and mismch, can be used to calculate SFS and mismatch distribution, 
respectively. 

4.2 Neutrality tests 
The standard models of population genetics, such as the Wright–Fisher model and related 
ones, constitute null models. Population geneticists have used these models to develop 
theory, and then applied the theory to test the goodness-of-fit of the standard model on a 
given data set. Using summary statistics, they can reject the standard model and take into 
account other factors, such as selection or demographic history, to build alternative 
hypotheses. These tests that compute the goodness-of-fit of the standard model have been 
referred to as “neutrality tests”, and have been widely used to detect genes, or genomic 
regions targeted by natural selection. An important family of neutrality tests is based on 
summary statistics derived from the SFS. The classical tests in this family include Tajima’s D 
test (Tajima 1989), Fu and Li’s tests (Fu and Li 1993), and Fay and Wu’s H test (Fay and Wu 
2000), which have been widely used to detect signatures of positive selection on genetic 
variation in a population. 
Under evolution by genetic drift (i.e., neutral evolution), different estimators of θ, such as, 
θW and θπ, are unbiased estimators of the true value of θ: ˆ ˆ( ) ( )WE E     . Therefore, the 
difference between θW and θπ can be used to infer non-neutral evolution. Using this 
assumption, Tajima’s D test examines the deviation from neutral expectation (Tajima 1989). 
The statistic D is defined by the equation: 

( ) ( )W WD V       , 

where V(d) is an estimator of the variance of d. The value of D is 0 for selectively neutral 
mutations in a constant population infinite sites model. A negative value of D indicates 
either purifying selection or population expansion (Tajima 1989). 
 
% n is the sample size; S is the number of segregating sites 
% theta_w and theta_pi have been calculated 
 
nx=1:(n-1); 
a1=sum(1./nx); 
a2=sum(1./nx.^2); 
b1=(n+1)/(3*(n-1)); 
b2=2*(n*n+n+3)/(9*n*(n-1)); 
c1=b1-1/a1; 
c2=b2-(n+2)/(a1*n)+a2/(a1^2); 
e1=c1/a1; 
e2=c2/(a1^2+a2); 
tajima_d=(theta_pi-theta_w)/sqrt(e1*S+e2*S*(S-1)); 
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The other SFS-based neutrality tests, like Fu and Li’s tests (Fu and Li 1993) and Fay and 
Wu’s H test (Fay and Wu 2000), share a common structure with Tajima’s D test. Many other 
neutrality tests exhibit important diversity. For example, R2 tests try to capture specific tree 
deformations (Ramos-Onsins and Rozas 2002), and the haplotype tests use the distribution 
of haplotypes (Fu 1997; Depaulis and Veuille 1998). 

4.3 Long-range haplotype tests 
When a beneficial mutation arises and rapidly increases in frequency in the process leading 
to fixation, chromosomes harbouring the beneficial mutation experience less recombination 
events. This results in conservation of the original haplotype. Several so called long-range 
haplotype (LRH) tests have been developed to detect long haplotypes at unusually high 
frequencies in genomic regions, which have undergone recent positive selection.  
The test based on the extended haplotype homozygosity (EHH) developed by Sabeti et al. 
(2002) is one of the earliest LRH tests. EHH is defined as the probability that two randomly 
chosen chromosomes carrying an allele (or a haplotype) at the core marker (or region) are 
identical at all the markers in the extended region. EHH between two markers, s and t, is 
defined as the probability that two randomly chosen chromosomes are homozygous at all 
markers between s and t, inclusively. Explicitly, if N chromosomes in a sample form G 
homozygous groups, with each group i having ni elements, EHH is defined as: 
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Equivalently, EHH can be calculated in a convenient form as the statistic haplotype 
homozygosity:  

2( 1 / ) (1 1 / )iHH p n n   , 

where pi is the frequency of haplotype i and n is the sample size. For a core marker, EHH is 
calculated as HH in a stepwise manner. The EHH is computed with respect to a distinct 
allele of a core maker or a distinct formation of a core region. In Fig. 6, for example, we focus 
on allele A of the core maker (a diallelic SNP) at the position x. Variable hap contains A-
carrying haplotypes of size n×m. 
 

◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ A ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ A ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ A ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ A ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ C ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌
◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌C ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌ ◌

1, 2,       ……         x-1, x, x+1,     ……    m-1, m

n

 
Fig. 6. Calculation of EHH for n haplotypes carrying allele A at the focal position x. 
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The EHH values, ehh1, around x in respect to the allele A, can be computed as follows: 
 
ehh1=ones(1,m); 
for i=1:x-1 
 [n,ni]=counthaplotype(hap(:, i:x-1)); 
 p=ni./n; 
 ehh1(i)=(sum(p.^2)-1/n)/(1-1/n); 
end 
for j=x+1:m 
 [n,ni]=counthaplotype(hap(:, x+1:end)); 
 p=ni./n; 
 ehh1(j)=(sum(p.^2)-1/n)/(1-1/n); 
end 
 
Similarly, the EHH around x with respect to the allele C, ehh2, can be computed using the 
same machinery. Both ehh1 and ehh2 are calculated for all markers around the core maker. 
Fig. 7 shows the EHH curves for two alleles C and T in the core SNP. The EHH values for 
the markers decrease as the distance from the core marker increases. 
 

 
Fig. 7. EHH decay as a function of the distance between a test marker and the core marker. 
Vertical dash line indicates the location of the core marker. Horizontal dash line indicates 
the cut-off=0.05 for computing EHH integral. 

The integrated EHH (iHH) is the integral of the observed decay of EHH away from the 
core marker. iHH is obtained by integrating the area under the EHH decay curve until 
EHH reaches a small value (such as 0.05). Once we obtain ehh1 and ehh2 values for the 
two alleles, we can integrate EHH values with respect to the genetic or physical distance 
between the core marker and other markers, with the result defined as iHH1 and iHH2. 
The statistic ln(iHH1/iHH2) is called the integrated haplotype score (iHS), which is a 
measure of the amount of EHH at a given maker along one allele relative to the other 
allele. The iHS can be standardized (mean 0, variance 1) empirically to the distribution of 
the observed iHS scores over a range of SNPs with similar allele frequencies. The measure 
has been used to detect partial selective sweeps in human populations (Voight, 
Kudaravalli et al. 2006). 
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In Matlab, we invoke the function trapz(pos,ehh) to compute the integral of EHH, ehh, 
with respect to markers’ position, pos, using trapezoidal integration. The position is in units 
of either physical distance (Mb) or genetic distance (cM). The unstandardized integrated 
haplotype score (iHS) can be computed as the log ratio between the two iHHs: 
 
ihh1=trapz(pos,ehh1); 
ihh2=trapz(pos,ehh2); 
ihs=log(ihh1/ihh2); 
 
The cross population EHH (XP-EHH) has been used to detect selected alleles that have risen 
to near fixation in one but not all populations (Sabeti, Varilly et al. 2007). The statistic XP-
EHH uses the same formula as iHS, that is, ln(iHH1/iHH2). The difference is that iHH1 and 
iHH2 are computed for the same allele in two different populations. An unusually positive 
value suggests positive selection in population 1, while a negative value suggests the 
positive selection in population 2. 

4.4 Population differentiation 
Genomic regions that show extraordinary levels of genetic population differentiation may 
be driven by selection (Lewontin 1974). When a genomic region shows unusually high or 
low levels of genetic population differentiation compared with other regions, this may then 
be interpreted as evidence for positive selection (Lewontin and Krakauer 1973; Akey, Zhang 
et al. 2002). The level of genetic differentiation is quantified with FST, which was introduced 
by Wright (Wright 1931) measuring the effect of structure on the genetics of a population. 
There are several definitions of FST in the literature; the simple concept is FST = (HT – HS)/HT, 
where HT is the heterozygosity of the total population and HS is the average heterozygosity 
across subpopulations. 
Suppose you know the frequencies, p1 and p2, of an allele in two populations. The sample 
sizes in two populations are n1 and n2. Wright’s FST can be computed as follows: 
 
pv=[p1 p2]; 
nv=[n1 n2]; 
x=(nv.*(nv-1)/2); 
Hs=sum(x.*2.*(nv./(nv-1)).*pv.*(1-pv))./sum(x); 
Ht=sum(2.*(n./(n-1)).*p_hat.*(1-p_hat)); 
Fst=1-Hs./Ht; 
 
Below is a function that calculates an unbiased estimator of FST, which corrects for the error 
associated with incomplete sampling of a population (Weir and Cockerham 1984; Weir 
1996). 
 
function [f]=fst_weir(n1,n2,p1,p2) 
n=n1+n2; 
nc=(1/(s-1))*((n1+n2)-(n1.^2+n2.^2)./(n1+n2)); 
p_hat=(n1./n).*p1+(n2./n).*p2; 
s=2; % number of subpopulations 
MSP=(1/(s-1))*((n1.*(p1-p_hat).^2 + n2.*(p2-p_hat).^2)); 
MSG=(1./sum([n1-1, n2-1])).*(n1.*p1.*(1-p1)+n2.*p2.*(1-p2)); 
Fst=(MSP-MSG)./(MSP+(nc-1).*MSG); 
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NC is the variance-corrected average sample size, p_hat is the weighted average allele 
frequency across subpopulations, MSG is the mean square error within populations, and 
MSP is the mean square error between populations. 

5. Conclusion 
Matlab, as a powerful scientific computing environment, should have many potential 
applications in evolutionary bioinformatics. An important goal of evolutionary 
bioinformatics is to understand how natural selection shapes patterns of genetic variation 
within and between species. Recent technology advances have transformed molecular 
evolution and population genetics into more data-driven disciplines. While the biological 
data sets are becoming increasingly large and complex, we hope that the programming 
undertakings that are necessary to deal with these data sets remain manageable. A high-
level programming language like Matlab guarantees that the code complexity only increases 
linearly with the complexity of the problem that is being solved.  
Matlab is an ideal language to develop novel software packages that are of immediate 
interest to quantitative researchers in evolutionary bioinformatics. Such a software system is 
needed to provide accurate and efficient statistical analyses with a higher degree of 
usability, which is more difficult to achieve using traditional programming languages. 
Limited functionality and inflexible architecture of existing software packages and 
applications often hinder their usability and extendibility. Matlab can facilitate the design 
and implementation of novel software systems, capable of conquering many limitations of 
the conventional ones, supporting new data types and large volumes of data from 
population-scale sequencing studies in the genomic era. 
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1. Introduction 
The development of multicellular organisms requires the coordinated accomplishment of 
many molecular and cellular processes, like cell division and differentiation, as well as 
metabolism. Regulation of those processes must be very reliable and capable of resisting 
fluctuations of the internal and external environments. Without such homeostatic capacity, 
the viability of the organism would be compromised. Cellular processes are finely 
controlled by a number of regulatory molecules. In particular, transcription factors are 
amongst the proteins that determine the transcription rate of genes, including those 
involved in development and morphogenesis. For this reason, the molecular mechanisms 
responsible for the homeostatic capacity and coordinated behavior of the transcriptional 
machinery have become the focus of several laboratories. 
Modern techniques of molecular genetics have greatly increased the rate at which genes are 
recognized and their primary sequences determined. High throughput methods for the 
identification of gene-gene and protein-protein interactions exist and continue to be refined, 
raising the prospect of high-throughput determination of networks of interactions in 
discrete cell types. Still, classic biochemical and physiological studies are necessary to 
identify the targets, and to understand the functions of the encoded proteins. For such 
reasons, the rate at which pathways are described is much slower than the rate of genome 
sequencing. The large quantity of available sequences creates the challenge for molecular 
geneticists of linking genes and proteins into functional pathways or networks. Biologists 
are often interested in particular subsets of these very extensive networks obtained with 
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high-throughput techniques, subsets that are involved in accomplishing some specific 
biological objective. Such a view often does not take into account the global dynamical 
properties of networks, which may be finally necessary to understand the behavior of the 
system, for instance to correlate genotype and phenotype. This is where computational 
models of some particular networks will support bench biologists by providing their 
descriptive and predictive capacity. 
With the constant development of faster and more reliable biotechnologies, the scientific 
community is presented with a growing collection of biological information, some qualitative, 
some quantitative. Formal databases include catalogs of genes (EnsEMBL (Hubbard et al. 
2007)), proteins (UniProt (The UniProt Consortium 2007)), enzymes and their substrates 
(BRENDA (Chang et al. 2009)) and molecular reactions (Reactome (Matthews et al. 2009)), 
many from multiple species. Quantitative data resulting from large-scale experiments are also 
collected in databases; some of them are public, including gene expression (ArrayExpress 
(Parkinson et al. 2007)), protein interactions (IntAct (Kerrien et al. 2007)), reaction kinetics 
(SABIO-RK (Rojas et al. 2007)), cellular phenotypes (MitoCheck (Erfle et al. 2007)) and whole 
organism phenotypes (e.g. EuroPhenome (Morgan et al. 2010)) amongst others. The 
combination of these biological data with mathematical probabilistic methods to produce 
models for selected domains of biological systems becomes essential to better understand and 
possibly predict the behavior of systems in conditions that cannot be experimentally assayed. 
However, the diversity of biological systems, the system-specific type of information and 
the limited availability of data, implies a requirement for the development of adapted 
modeling methods. Modeling methods must be tailored not only to make the best use of the 
information available but also to answer specific biological questions, which can span from 
the understanding of the function of a pathway and its evolution to the global molecular 
mechanisms underlying cellular events such as cell differentiation for example. 
Figure 1 illustrates the tradeoff between network size and the possibility to model different 
aspects – from topology to dynamics – of the network. We will give here an overview of the 
current progress of modeling methods illustrated by chosen examples of systems. 

2. Sources of data 
Data acquisition has been greatly improved by the application of high-throughput screening 
methods in molecular biology, enabling simultaneous measurement of thousands of 
molecular events (data points) in a single experiment. Besides, public repositories for high-
content biological data (ArrayExpress, IntAct, MitoCheck, amongst others) enable, with the 
increasing use of standardized annotations, data integration at the system level (Table 1).  
The choice of the type of data needed to reconstruct networks depends on the type and size 
of system under study and is driven by the scientific rationale. Although all sources of 
experimental data are potentially useful for modeling a system, modeling specifically a 
signaling pathway will have different requirements in terms of data types to be integrated 
than a metabolic pathway. Additionally, the granularity of models’ description can also be 
adjusted to incorporate the extent of experimental data available. 
The TGF-beta signaling pathway has been extensively studied by the authors using both 
kinetic and Boolean approaches. Modeling the TGF-beta signaling pathway requires 
information to build the topology of the network, from recognition of the signal to its 
transduction to the nucleus, including the down-stream effect on the transcriptome. This 
information will be obtained from methods of molecular biology and biochemistry. 
Studying protein interactions will be necessary for predicting the topology of the model, 
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while assessing protein amounts and phosphorylation states, genes’ expression levels, and 
reaction kinetics will be necessary for recording the dynamics of the model, thereby not only 
reducing the number of parameters to be predicted, but also defining constraints in the 
network. Modeling a metabolic pathway will have other data requirements, such as classical 
biochemistry and genetics to determine the network topology, metabolomics to inform flux 
parameters and, if the system allows it, phenotypes may also be integrated into the model.  
 

 
Fig. 1. The size of the network and the available amount of data determine the type of 
approach to tackle biological questions. For very large networks, exploration is often 
restricted to topological aspects. Metabolic networks, even of large size can be studied with 
flux balance analysis, given that stoichiometry is known. For medium size networks, 
application of Boolean logic allows to detect different qualitative modes of dynamics. 
Kinetic modeling is mainly restricted to small networks that are already well characterized. 
Advances in data acquisition and modeling techniques will extend the applicability of 
different analysis methods to various biological processes in the foreseeable future. 

3. Procedures of network reconstruction 
Determining the network topology defines the limits of the system under study and enables 
the incorporation of stoichiometric information and experimental parameters (see Table 1). 
Over the last decades, systems’ modeling has been successfully applied to formulate 
biological problems in a mathematically tractable form. A number of general approaches 
and specific models were developed to enable the understanding of biological phenomena: 
For example, the introduction of metabolic control analysis (Heinrich and Rapoport 1974; 
Kacser and Burns 1973) pinpointed the fact neglected earlier that metabolic regulation is a 
property of both the structure of the metabolic network and the kinetics of the individual 
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while assessing protein amounts and phosphorylation states, genes’ expression levels, and 
reaction kinetics will be necessary for recording the dynamics of the model, thereby not only 
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biochemistry and genetics to determine the network topology, metabolomics to inform flux 
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Fig. 1. The size of the network and the available amount of data determine the type of 
approach to tackle biological questions. For very large networks, exploration is often 
restricted to topological aspects. Metabolic networks, even of large size can be studied with 
flux balance analysis, given that stoichiometry is known. For medium size networks, 
application of Boolean logic allows to detect different qualitative modes of dynamics. 
Kinetic modeling is mainly restricted to small networks that are already well characterized. 
Advances in data acquisition and modeling techniques will extend the applicability of 
different analysis methods to various biological processes in the foreseeable future. 
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For example, the introduction of metabolic control analysis (Heinrich and Rapoport 1974; 
Kacser and Burns 1973) pinpointed the fact neglected earlier that metabolic regulation is a 
property of both the structure of the metabolic network and the kinetics of the individual 
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enzymes, instead of only the task of a single rate-limiting enzyme. Detailed metabolic 
modeling has highlighted among other aspects that knowledge of in vitro kinetics of isolated 
enzymes is often not sufficient to understand metabolism (Teusink et al. 2000). The study of 
signaling pathways showed how cells process information and has revealed many 
regulatory motifs including negative or positive feedback and bistability (for overviews see 
e.g. (Ferrell 2002; Tyson, Chen, and Novak 2003)). Integration of signaling with gene 
expression, metabolism and biophysical changes demonstrated the contribution of various 
components of the cellular networks to stress response (e.g. (Klipp et al. 2005)). A number of 
problems have been tackled with modelling: Among other examples, we find  
i. The question of explaining experimentally observed oscillations (e.g. in metabolism). This 

work resulted in various oscillator models such as the Higgins-Sel’kov oscillator (Higgins 
1964; Sel'kov 1968) and more complicated models (e.g. (Hynne, Dano, and Sorensen 2001)) 
or application to interacting yeast cells (Wolf and Heinrich 2000; Wolf et al. 2000); 

ii.  Can we understand cell cycle progression from protein interactions? The approaches 
vary from very simple models (Goldbeter 1991) to comprehensive studies (e.g. (Chen et 
al. 2004)); 

iii. What determines robustness of bacterial chemotaxis? Barkai and Leibler proposed a 
mechanism for robust adaptation in simple signal transduction networks (Barkai and 
Leibler 1997).  

Many of these examples seek to explain emergent properties whose origins are not obvious 
from a cursory examination of the underlying interactions. In addition, such models helped 
to establish an abstract language for describing biological observations and to introduce 
concepts such as equilibrium or steady state (early) or control, stability, robustness or signal 
amplification (later) into analysis of biological systems. 

3.1 Types of networks 
Biological networks reflect the regulatory and functional interactions between molecular 
components (genes, proteins, metabolites) but may also be extended to integrate 
information on cellular behavior and physiological impact.  
The type of information usually represented in networks can be heterogeneous. For 
instance, the transfer of information through regulatory interactions can be distinguished 
from the transfer of mass during metabolic reactions. 
Computational models are constrained by the amount of information available in the system 
of interest, which is itself limited to the fabrication of biotechnological tools enabling 
scientific explorations of various biological systems at the molecular scale. To date, 
knowledge on prokaryote metabolism is rather complete in comparison to eukaryotic 
organisms. Similarly, while biological data can be extracted using monocellular cultures in 
vitro, the transposition of knowledge to multicellular systems remains uncertain. 

3.2 Modeling methods 
3.2.1 ODE modeling  
Among the most frequently applied techniques for modeling dynamic processes in 
biological networks are systems of ordinary differential equations (ODE) (Klipp 2007). These 
systems are used to describe the temporal changes of molecular concentrations caused by 
production, degradation, transport, or modification of the modeled substances. Such 
changes of concentration are expressed as a function of rates of reaction and appropriate 
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stoichiometric coefficients. Reaction rates, in turn, can be of several types, such as the mass 
action law (Guldberg and Waage 1879), the Michaelis-Menten rate law (Briggs and Haldane 
1925; Michaelis and Menten 1913), or more complicated forms to attain some specific 
kinetics (Cornish-Bowden et al. 2004; Klipp et al. 2005; Koshland, Nemethy, and Filmer 1966; 
Liebermeister and Klipp 2006; Monod, Wyman, and Changeux 1965). 
The use of kinetic ODE modeling using rate laws has been the cornerstone of our traditional 
biochemical terminology and thinking. Such equations have proven quite successful 
providing a convenient language and conveying immediate meaning since the formulation 
of the mass action law (Waage and Guldberg 1864), and the modeling of enzyme kinetics 
(Michaelis and Menten 1913). As a consequence, there is a vast amount of research and huge 
numbers of publications that have been devoted to the modeling of biochemical reactions 
using ordinary differential equations (Heinrich and Rapoport 1974; Tyson, Chen, and Novak 
2003). A widely successful example of the use of the kinetic approach is the modeling of the 
cell-cycle control in yeast (Tyson, Csikasz-Nagy, and Novak 2002). 
A severe drawback of the ODE approach is the large number of parameters involved in the 
system of equations. This implies that for any given biological system, there is the need of 
large sets of experimental data to determine the parameter values of the equations. 
Moreover, although a number of kinetic parameters are already available in databases, these 
values are not always applicable for other organisms or other experimental scenarios than 
for those for which they were measured. For example, kinetic constants usually are 
developed for metabolic reactions catalyzed by enzymes acting in a test tube, so the 
appropriateness for modeling in vivo reactions remains to be proven. They may also have 
been measured in different species from the one under consideration. Alternatively, there is 
the possibility of parameters estimation (Ashyraliyev, Jaeger, and Blom 2008; Sorribas and 
Cascante 1994), but such methodology is computationally costly and there is no guarantee 
that the computational result is biologically correct. 
Most ODE models make use of continuous functions to describe the kinetic laws. 
Continuous functions, however, may not always be appropriate for describing biological 
processes. For example, given that molecules are discrete entities, the number of molecules 
as a function in time is in reality a discrete function. Hence, it is important to assess if the 
use of a continuous function in a given model is a reasonable approximation to reality. As a 
rule of thumb, if the experimental error at measuring the real value of a variable is larger 
than the jump in the discrete value, then it is usually harmless to replacement discrete 
functions by continuous ones. 
The representation of chemical species as a concentration with the use of continuous 
variables also assumes that the system is absolutely uniform. However, in reality 
biochemical systems frequently exhibit a large degree of spatial heterogeneity due to 
processes such as compartmentalization, molecular association, or restricted diffusion. It has 
been mathematically demonstrated that changes in the spatial distribution of molecules 
have a large impact on the dynamical behavior of a biochemical system (Zimmerman and 
Minton 1993). 
Often ODE models are deterministic, but under certain circumstances, a deterministic 
approach does not give an adequate representation of the biological system. At the 
molecular scale, individual molecules randomly collide with one another, allowing for a 
chemical reaction to occur only if the collision energy is strong enough. This effect is 
observed for small volumes; when using deterministic equations the smaller the volume the 
less accurate the model becomes (Ellis 2001; Erdi and Toth 1989). Therefore, it is important 
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to make sure that the system under study is large enough to avoid stochastic fluctuations 
(Fournier et al. 2007) which could be amplified and thus originate observable macroscopic 
effects. 

3.2.2 Discrete networks 
A network is a system formed by multiple nodes, each associated with a state of activation, 
which depends upon the state of a set of nodes. A common practice is to represent nodes 
with the use of continuous variables. However, usually there is only qualitative 
experimental data regarding the activity of most genes and/or proteins. For such reasons, a 
useful simplification is to suppose that genes can attain only a finite number of possible 
states, thus allowing their representation with discrete variables. In the simplest case, a gene 
might be “turned on” (or “active”, or “1”) or “turned off” (or “inactive”, or “0”) at a given 
time. In this case, we are dealing with binary networks, also known as Boolean networks. 
Boolean networks were first presented by Kauffman (Glass and Kauffman 1973; Kauffman 
1969) so as to give a qualitative description of the concerted action of a group of genes 
during cellular differentiation. Such models were originally developed as a suitable 
simplification for the analysis of genetic regulation, and were originally studied exclusively 
from a statistical point of view (Kauffman 1993) due to the lack of biological data on 
experimentally validated biological networks. More recently, Boolean network models have 
been developed for a series of biological systems showing the suitability of this 
methodology to capture key aspects of cellular development and differentiation (Albert and 
Othmer 2003; Davidich and Bornholdt 2008; Faure et al. 2006; Gupta et al. 2007; Huang and 
Ingber 2000; Kervizic and Corcos 2008; Li et al. 2004; Mendoza, Thieffry, and Alvarez-Buylla 
1999; Saez-Rodriguez et al. 2007; Samal and Jain 2008). 
The use of Boolean models has permitted the discovery of the influence of the network 
topology on its dynamical behavior. Specifically, most studied networks include feedback 
loops or circuits. It has been shown that their presence is necessary to ensure 
multistationarity and homeostasis, which are particularly important properties of biological 
systems. The logical analysis of feedback loops decomposes any network into a well-defined 
set of feedback loops. It was first developed by Thomas (Thomas 1973), and formally 
demonstrated by others (Gouzé 1998; Plahte, Mestl, and Omholt 1995; Snoussi 1998). 
Negative feedback loops generate homeostasis in the form of damped or sustained 
oscillations. The importance of homeostasis in maintaining the internal environment of an 
organism is well known and dates from the work of (Cannon 1929). Conversely, positive 
feedback loops generate multiple alternative steady states or multistationarity. The 
biological interpretation of multistationarity as cellular differentiation goes back to Delbrück 
(Delbrück 1949), and has been developed by the group of Thomas (Thieffry et al. 1995; 
Thomas 1973). 
Boolean networks are widely used for their computational tractability and their capability of 
providing qualitatively correct results; there is, however, an important issue to take into 
account. Boolean networks describe time as a discrete variable, hence there is the need to 
decide at each clock tick which nodes of the network are going to be updated. On the one 
hand, in the synchronous approach all nodes are updated at each time step. This 
methodology is the easiest to implement but also the less realistic, since it is highly unlikely 
that all molecules in the modeled network have the same time response. On the other hand, 
in the asynchronous approach only one node is updated at each time step. While this 
approach is closer to reality, there is usually no experimental information regarding the 
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correct order of response. Worse still, the group of stable states attained by the system using 
the synchronous and asynchronous approaches are not necessarily identical. It is therefore 
advisable to use both methodologies, with the aid of a modeling software (Garg, Banerjee, 
and De Micheli 2008; Gonzalez et al. 2006), and then use biological knowledge to decide 
among all possible outcomes. 

3.2.3 Qualitative modeling 
The use of continuous variables provides fine-granularity modeling, thus allowing for the 
description of a richer dynamical behavior. However, experimental data to support 
parameter fitting is very scarce; hence the development of quantitative models of regulatory 
networks is limited to a small set of experimental systems for which a large quantity of 
molecular data has been gathered (for an example see (Jaeger et al. 2004)). The alternative 
approach of modeling with the use of Boolean networks is not always possible, though, 
usually because of the lack of experimental information to infer the logical rules governing 
the response of nodes. There are, however, intermediate modeling methodologies lying 
between the coarse-grained binary approach and the fine-grained use of ordinary-
differential equations: among them it is possible to find the use of piecewise-linear 
differential equations, qualitative differential equations and standardized qualitative 
dynamical systems. 
Piecewise-linear models have been proposed for the modeling of regulatory networks. 
These equations, originally proposed in (Glass and Kauffman 1973) have been amply 
studied (Glass and Pasternack 1978; Gouzé and Sari 2002; Mestl, Plahte, and Omholt 1995; 
Plahte, Mestl, and Omholt 1994) from a theoretical point of view. Variables in the piecewise-
linear approach represent the concentrations of proteins, while the differential equations 
describe the regulatory interactions among genes encoding these proteins. Each differential 
equation contains two terms, namely the activation part consisting of a weighted sum of 
products of step functions and the decay rate. The mathematical form of these equations 
divides the state space into multidimensional boxes, and inside the volume of each box the 
equations are reduced to linear ODEs, making the behavior of the system inside a given 
volume straightforward to analyze. Nevertheless, the global behavior of these systems of 
equations can be very complex, with chaotic behavior being rather common (Lewis and 
Glass 1995; Mestl, Bagley, and Glass 1997). Despite this drawback piecewise-linear 
differential equations have been used to analyze several regulatory networks of biological 
interest (De Jong et al. 2004; Ropers et al. 2006; Viretta and Fussenegger 2004). 
In the case of the use of qualitative differential equations, the dependent variable takes a 
qualitative value composed of a qualitative magnitude and a direction. Here, the qualitative 
magnitude is a discretization of a continuous variable, while the qualitative direction is the 
sign of its derivative. Furthermore, each equation is actually a set of constraints that restrict 
the possible qualitative values of the variable. To solve the system, it is necessary to create a 
tree of possible sequences of transitions from the initial state. Now, this characteristic makes 
the methodology difficult to apply for large biological systems, since the trees describing the 
dynamical behavior rapidly grow out of bounds. This scalability problem has restricted the 
application of qualitative equations to a small number of models (Heidtke and Schulze-
Kremer 1998; Trelease, Henderson, and Park 1999). 
While Boolean models approximate a continuous sigmoid by a discontinuous step function, 
the standardized qualitative dynamical systems method goes the other way around. Within 
this methodology, the network is modeled as a continuous system using a set of ordinary 
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differential equations. These equations describe the rate of change of activation (or 
synthesis, or transcription) as a sigmoid function of the state of activation of the controlling 
input variables. The variables representing the state of activation are normalized, so that 
they are constrained in the range [0,1]. This feature enables a comparison of the dynamics 
against the results of a purely binary model. The characteristic that distinguishes this 
method from other approaches is that the equations are normalized and standardized, i.e. 
they are not network-specific. Moreover, models can be developed even in the total absence 
of information regarding the molecular mechanisms of a given network because no 
stoichiometric or rate constants are needed. Given that this qualitative method was recently 
developed, it has been used to model a small number of biological networks (Mendoza and 
Pardo 2010; Mendoza and Xenarios 2006; Sanchez-Corrales, Alvarez-Buylla, and Mendoza 
2010). The standardized qualitative dynamical systems methodology has been used for the 
development of a software package for the automated analysis of signaling networks 
(http://www.enfin.org/squad). 

3.2.4 Constraint-based modeling 
Analyzing the dynamics of large-scale metabolic networks using kinetic modeling 
techniques is hampered by the size of the biological system because of the large number of 
parameters that need to be fitted. Constraint-based modeling bridges the gap between the 
mere static representation of graph-based methods and the detailed dynamic pathway 
analyses of kinetic modeling techniques (Feist and Palsson 2008). This framework aims at 
simulating at the cellular level the global dynamics of metabolism, using a limited amount 
of information. To that end, the method is based on the description of all reaction fluxes that 
are compatible with constraints deriving from basic physical assumptions, specific 
biological information or experimental measures. The assumption of steady state dynamics, 
for example, simplifies the analysis by only requiring knowledge on the reaction 
stoichiometries, which can be easily obtained from metabolic databases (Kanehisa et al. 
2006; Karp, Paley, and Romero 2002; Matthews et al. 2009). Other information such as 
reaction reversibility (Joyce and Palsson 2006), flux measurements, gene expression (Shlomi 
et al. 2008) and metabolite concentration (Henry et al. 2006; Kummel, Panke, and 
Heinemann 2006) can be incorporated into the modeling if available (Durot, Bourguignon, 
and Schachter 2009). Compared to kinetic models, constraint-based models are therefore 
easily reconstructed at large scale (Feist et al. 2009) and online resources that provide 
automatically reconstructed models are currently being launched (Henry et al. 2010).  
A set of constraints narrows the total number of possible flux states, which represent the set 
of possible metabolic behaviors of the system. In order to explore this set of attainable flux 
distributions, a number of mathematical and computational methods have been designed 
(Durot, Bourguignon, and Schachter 2009). Some of them attempt to describe the overall set 
of possibilities either by enumerating all basic independent metabolic routes, known as 
elementary modes or extreme pathways (Papin et al. 2004), or by randomly sampling the 
space of flux distributions (Schellenberger and Palsson 2009). Other methods focus on 
specified metabolic objectives, e.g. the production of biomass components, and look for flux 
distributions that optimize it (Varma and Palsson 1994).  
The constraint-based modeling framework utilizes a set of equations describing metabolites, 
where each equation contains as many unknowns as there are fluxes for a given metabolite. 
Very often the number of unknowns is larger than the number of equations. This is the main 
drawback of the approach, since it means that the system of equations has an infinite 
number of solutions. This problem is usually solved by maximizing some functions, which 
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differential equations. These equations describe the rate of change of activation (or 
synthesis, or transcription) as a sigmoid function of the state of activation of the controlling 
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parameters that need to be fitted. Constraint-based modeling bridges the gap between the 
mere static representation of graph-based methods and the detailed dynamic pathway 
analyses of kinetic modeling techniques (Feist and Palsson 2008). This framework aims at 
simulating at the cellular level the global dynamics of metabolism, using a limited amount 
of information. To that end, the method is based on the description of all reaction fluxes that 
are compatible with constraints deriving from basic physical assumptions, specific 
biological information or experimental measures. The assumption of steady state dynamics, 
for example, simplifies the analysis by only requiring knowledge on the reaction 
stoichiometries, which can be easily obtained from metabolic databases (Kanehisa et al. 
2006; Karp, Paley, and Romero 2002; Matthews et al. 2009). Other information such as 
reaction reversibility (Joyce and Palsson 2006), flux measurements, gene expression (Shlomi 
et al. 2008) and metabolite concentration (Henry et al. 2006; Kummel, Panke, and 
Heinemann 2006) can be incorporated into the modeling if available (Durot, Bourguignon, 
and Schachter 2009). Compared to kinetic models, constraint-based models are therefore 
easily reconstructed at large scale (Feist et al. 2009) and online resources that provide 
automatically reconstructed models are currently being launched (Henry et al. 2010).  
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in turn assumes that the modeled organism has evolved optimal metabolic pathways, which 
is not necessarily true. Despite this limitation, the constraint-based modeling approach has 
been successfully applied for predicting growth phenotypes for knock-out mutants on 
varying environments, analyzing essentiality or dispensability, integrating genome-scale 
experimental data, and driving metabolic engineering designs (Durot, Bourguignon, and 
Schachter 2009; Feist and Palsson 2008). 

3.2.5 Probabilistic graphical models 
Probabilistic graphical models (Pearl 1988) represent another class of methods that have 
recently gained much popularity in studies of gene regulation. Such models always define a 
joint probability distribution over all the properties in the domain, where a property is 
represented by a random variable, which is either hidden (e.g., the functional module that a 
gene belongs to) or observed (e.g., the expression level of a gene). Random variables and the 
probabilistic dependencies among them define a probabilistic graphical model, which 
provides a statistical framework for representing complex interactions in biological domains 
in a compact and efficient manner. 
In contrast to procedural methods, such as data clustering followed by motif finding 
(Tavazoie et al. 1999), probabilistic graphical models are, as their name implies, declarative, 
model-based approaches, where by a model we mean a simplified description of the 
biological process that could have generated the observed data. An important property of 
these models is their ability to handle uncertainty in a principled way, which is particularly 
useful in the biological domain, due to the stochastic nature of the biological system and due 
to the noise in the technology for measuring its properties. The details of the models 
(dependency structure and parameters) are typically learned automatically from the data, 
where the goal is to find a model that maximizes the probability of the model given the 
observed data. The main difficulty with this approach is that the learning task is 
challenging, as it involves several steps, some of which are computationally intractable. 
Despite the computational difficulties of the probabilistic approach, it has been successfully 
used in several cases. One example is the reconstruction of the structure of regulatory 
networks (Friedman et al. 2000). The main idea is that if the expression of gene A is 
regulated by proteins B and C, then A’s expression level is a function of the joint activity 
levels of B and C; this can easily be extended to networks composed of modules of co-
regulated genes (Gasch et al. 2000; Segal et al. 2003). Another example is the case where 
probabilistic graphical models were applied to identify the cis-regulatory motifs through 
which transcriptional programs occur (Segal, Yelensky, and Koller 2003), with the aim of 
identifying modules of co-regulated genes and explain the observed expression patterns of 
each module via a motif profile that is common to genes in the same module. 

4. Strengths and weaknesses of modeling methods  
The methods chosen to model a given system depend mostly on the qualitative and 
quantitative features of biological data available to construct the model and on the biological 
question that is asked. To be accurate, an ODE model will require as much experimental 
information as possible since all parameters of the network are represented and missing 
parameters will be estimated to fit experimental values. Boolean modeling minimizes the 
network to the essential nodes that are subjected to decisional events and feedback loops. 
Although such a reductionist method does not involve kinetic parameters, it remains 
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capable of predicting the logical behavior of the network and identifying steady states. 
Although these two previous methods work with currently size-limited networks, global 
metabolic modeling using the constraint-based method allows the comparative analysis of 
thermodynamic fluxes between chosen states of a system.  Probabilistic graphical models 
integrate different types of biological information, such as gene expression data for example, 
in order to reconstruct the networks and predict their behaviors. 
The models studied by the authors are developed in synergy by wet and dry laboratories, 
which cycle between computational modeling and experimental testing. For example, the 
human TGF-beta signaling pathway has been modeled using ODE modeling by the group of 
E. Klipp (Zi and Klipp 2007) and using Boolean modeling by the group of I. Xenarios. The 
ODE modeling required a large amount of biochemical information, or used parameter 
estimation methods to predict missing values. However, since this method is based on real 
biological data, it allowed investigating precisely early time points of the TGF-beta signaling 
cascade. The Boolean method required obviously less biochemical information than the 
ODE, which allowed to compute accurately a large network articulated across several 
positive or negative feedback loops. However, qualitative models despite looking fairly 
simple to construct pose several issues when one wants to validate experimentally the 
proposed predictions. Each component (node) of a model is represented as an abstraction of 
a molecular entity. For example, the interferon gamma receptor complex will be represented 
in qualitative models as a single entity (node). However, from a biochemical point of view 
interferon gamma receptor is composed of three subunits (a,b,g). This raises the question 
whether all the subunits should be experimentally measured or only one of them. This 
situation was experienced by the authors who modelled the TGFb pathway: Several 
predictions were produced after reconstructing the Boolean network. One of them was that 
knocking-out one component introduced an oscillation of several components of the TGF-
beta pathway. However, upon experimental validation, the nodes that were suggested to 
oscillate did not show any changes at the mRNA/protein expression or phosphorylation 
states during a time-course experiment. The model did not indicate at what molecular level 
the predicted oscillation would be measurable. 
According to the experience acquired with the models developed by the authors as part of 
the ENFIN Consortium, we have assessed the relationship between modeling frameworks 
and the biological questions which could be answered in each case (Table 2). 
Besides the biological question and the subjective choice of the modeler, the ability to access 
experimental data can be critical for the choice of a modeling method. This is schematically 
represented in the decision tree (Figure 2). 
Testing entire model predictions with wet experiments is often impossible, because of 
simple limitations of available technologies. Experimental assays are therefore designed to 
target key components of models, a strategy often taken in industry to prioritize 
pharmaceutical targets. To our experience, the integration of several disciplines improves 
the coverage of computational analysis. Improving computational models can also require 
repetition of experiments potentially needing expensive settings, but which may not result 
in genuine scientific discovery. For instance, there is no point measuring some parameters 
that may be useful for the model if the accuracy of measurement is too poor to resolve 
between alternative model versions. Problems may also arise concerning the spatial 
resolution of experimental data. For example, how useful are whole animal metabolomics in 
metazoans for assessing the behavior of a particular cell type? 
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capable of predicting the logical behavior of the network and identifying steady states. 
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integrate different types of biological information, such as gene expression data for example, 
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The models studied by the authors are developed in synergy by wet and dry laboratories, 
which cycle between computational modeling and experimental testing. For example, the 
human TGF-beta signaling pathway has been modeled using ODE modeling by the group of 
E. Klipp (Zi and Klipp 2007) and using Boolean modeling by the group of I. Xenarios. The 
ODE modeling required a large amount of biochemical information, or used parameter 
estimation methods to predict missing values. However, since this method is based on real 
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ODE, which allowed to compute accurately a large network articulated across several 
positive or negative feedback loops. However, qualitative models despite looking fairly 
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the predicted oscillation would be measurable. 
According to the experience acquired with the models developed by the authors as part of 
the ENFIN Consortium, we have assessed the relationship between modeling frameworks 
and the biological questions which could be answered in each case (Table 2). 
Besides the biological question and the subjective choice of the modeler, the ability to access 
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Testing entire model predictions with wet experiments is often impossible, because of 
simple limitations of available technologies. Experimental assays are therefore designed to 
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Table 2. Relationships between modeling frameworks and biological questions. Each 
column represents a model type; each row represents a type of question. The cells contain 2 
types of information: 1) the degree of relevance of the modeling framework to the question 
(indicated by 1 to 3 stars; N/A stands for not applicable); 2) a short explanation on how the 
approach enables to answer the question (which method or data are used, for instance). 
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Fig. 2. Decision tree: which type of data is necessary to perform a certain type of analysis? 

Given the great development computational approaches in systems biology, it has become 
urgent to establish methods to assess the accuracy of these in specific contexts. Challenges 
have been organized for example in protein structure assessment (CASP (Moult et al. 2007)) 
or in network reconstruction (DREAM (Stolovitzky, Monroe, and Califano 2007)). In this 
context, one application of models can be to challenge the topology of computationally 
reconstructed networks in silico. Models can thus both be improved with new data but also 
be used to test the likelihood that these data make sense in the context of the already 
validated model’s components.  

5. Examples of reconstruction procedures 
5.1 T-helper model 
The vertebrate immune system encompasses diverse cell populations. One of these is made 
of CD4+ lymphocytes, or T-helper cells. While these cells have no cytotoxic or phagocytic 
activity, they coordinate several cellular and humoral immune responses via the release of 
cytokines, which influences the activity of several cell types. In vitro, T-helper cells can be 
further subdivided into precursor Th0 cells and effector Th1 and Th2 cells, depending on 
their pattern of secreted molecules. Various mathematical models have been proposed to 
describe the differentiation, activation and proliferation of T-helper cells. Early models 
aimed to describe the cellular interactions of these cells, mediated by the secretion of 
cytokines. More recent models have been developed to describe the molecular mechanism 
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that determine the differentiation process of these cells, as well as the determination of their 
molecular markers. There is currently a lack of quantitative data on the levels of expression 
of the molecules involved in the differentiation process of T-helper cells. There is, however, 
a vast amount of qualitative information regarding the regulatory interactions among many 
such molecules. As a result, it has been possible to reconstruct the basic signaling network 
that controls the differentiation of T-helper cells. Hence, despite the lack of quantitative 
data, it has been possible to model this network as a dynamical system at a qualitative level. 
Specifically, this network has been studied by modeling it as a discrete dynamical system 
(Mendoza 2006), a continuous dynamical system (Mendoza and Xenarios 2006), a Petri Net 
(Remy et al. 2006), and a binary decision diagram (Garg et al. 2007). Also the model has been 
recently updated to include the description of Th17 and Treg cell types (Mendoza and Pardo 
2010). Despite the very different approaches used to model the T-helper signaling network, 
they all reach comparable results. Specifically, they show that the network has fixed points 
that correspond to the patterns of activation or expression observed in the Th0, Th1 and Th2 
cell types. Furthermore, such models are capable of describing the effect of null-mutations, 
or over-expression of some molecules as reported by several experimental groups. The 
consistency among the results of several modeling approaches on the same signaling 
network shows that the qualitative dynamical behavior of the network is determined to a 
large extent by its topology. Moreover, these models show that it is possible to develop 
dynamical models at a qualitative level, and that such models are indeed useful to describe 
and predict relevant biological processes. 

5.2 Genome-scale metabolic model of Acinetobacter baylyi ADP1 
Acinetobacter baylyi ADP1, a strictly aerobic gamma-proteobacterium, is a good model 
organism for genetic and metabolic investigations (Metzgar et al. 2004; Young, Parke, and 
Ornston 2005) as well as for biotechnological applications (Abdel-El-Haleem 2003) thanks to 
its metabolic versatility and high competency for natural transformation. Following its 
sequencing and expert annotation (Barbe et al. 2004), a genome-wide collection of single-
knockout mutants was generated and mutant growth phenotypes were assayed in selected 
environmental conditions (de Berardinis et al. 2008). In order to interpret these phenotype 
results and assess their consistency with the previous biochemical knowledge, a genome-
scale constraint-based model of its metabolism was reconstructed (Durot et al. 2008). In a 
first step, an initial model was built using data from A. baylyi’s genome annotation, 
metabolic pathways databases (e.g. KEGG, BioCyc or Reactome) and physiological 
knowledge gathered from the literature. Such reconstruction of the overall set of 
biochemical reactions present in an organism has already been performed for more than 15 
species (Reed et al. 2006). While facilitated by metabolism-related tools such as Pathway 
Tools (Karp, Paley, and Romero 2002), the task is still labor intensive and requires extensive 
manual curation. This initial model of A. baylyi included 870 reactions, 692 metabolites and 
781 genes. In a second step, experimental mutant growth phenotypes were systematically 
compared to growth phenotypes predicted by the model. Inconsistencies between 
predictions and experimental results revealed potential gaps or errors in the current model: 
they were therefore examined to look for interpretations and possible corrections. Out of 127 
inconsistencies, 60 led to a model correction. Each correction involved a modification of the 
gene-reaction associations, the metabolic network or the biomass requirements. Explanation 
of the remaining inconsistent cases would require further experimental investigations. In 
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several cases, hypothetical interpretations involving biological processes lying outside the 
model scope (e.g. regulation) could be proposed. The result of that model refinement 
process was an increase in growth phenotype predictive accuracy from 88% to 94%. In 
addition, the improved version of the model integrated a significant fraction of the 
additional information resulting from large-scale mutant phenotyping experiments within 
the metabolic knowledge on A. baylyi derived from its genome annotation and the literature. 

5.3 Nicotinamide nucleotide transhydrogenase (Nnt) pathway 
Insulin secretion in mammals is carried out by pancreatic β-cells in response to the glucose 
concentration in the surrounding environment. The insulin secretion response is a complex 
one, incorporating many well-conserved biochemical reactions coupled to a cell-type-
specific insulin secretion process driven by intracellular ATP concentration. The kinetic core 
model of pancreatic β-cell glucose-stimulated insulin secretion (Jiang, Cox, and Hancock 
2007) simulates the relationship between incoming glucose concentration and resultant 
cytoplasmic ATP concentration using a set of ODEs representing 44 enzymatic reactions, 
some of which take place in more than one compartment and simulates the concentrations 
of 59 metabolites. The model is divided into three compartments: cytoplasm, mitochondrial 
matrix and mitochondrial inter-membrane space. Information on components of the model 
was collected from the literature and from SABIO-RK (http://www.sabio.villa-
bosch.de/SABIORK/). Initial validation of the model was based on its ability to replicate 
published properties of the system in vivo, such as response to changing glucose 
concentration and oscillation of the concentration of certain metabolites in the glycolysis 
pathway and elsewhere. Further characterization and optimization will require in vivo 
measurement of some of these concentrations in an appropriate cell type. 

6. Discussion 
We conclude along the lines of the famous quote of G.E.P. Box: “All Models Are Wrong But 
Some Models Are Useful” (Segal et al. 2003). Most models are often focused on particular 
scientific domains and integrate a limited set of information, considered being “good-
enough” to answer the scientific questions of a given project. Many uncertainties still remain 
in the interpretation of computational models. Those uncertainties emanate from different 
levels of variation: technology, laboratory-to-laboratory, human-to-human specific, among 
others. The true biological variation or stochasticity is harder to detect. For example, when 
there is significant variation between individual runs of an experiment, how should the data 
be integrated in the model? Should individual models be created for each case, and these 
compared, or should data be averaged to produce a consensus model? When is a model 
considered to contain most of the behaviors of the real system?  
The different examples represented in this review are not exhaustive by far and only reflect 
our limited knowledge of the interface between mechanistic modeling and “wet” 
experiments, based on the research performed within the ENFIN Consortium.  
Ultimately providing both models and experimental data to a wider community is a way to 
bridge the gap and transmit our knowledge to the next generation of scientists. An effort 
leading in that direction is the development of databases of models such as BioModels 
(www.biomodels.org) (Le Novere et al. 2006), which collects molecular models by using a 



 
Systems and Computational Biology – Bioinformatics and Computational Modeling 

 

90

that determine the differentiation process of these cells, as well as the determination of their 
molecular markers. There is currently a lack of quantitative data on the levels of expression 
of the molecules involved in the differentiation process of T-helper cells. There is, however, 
a vast amount of qualitative information regarding the regulatory interactions among many 
such molecules. As a result, it has been possible to reconstruct the basic signaling network 
that controls the differentiation of T-helper cells. Hence, despite the lack of quantitative 
data, it has been possible to model this network as a dynamical system at a qualitative level. 
Specifically, this network has been studied by modeling it as a discrete dynamical system 
(Mendoza 2006), a continuous dynamical system (Mendoza and Xenarios 2006), a Petri Net 
(Remy et al. 2006), and a binary decision diagram (Garg et al. 2007). Also the model has been 
recently updated to include the description of Th17 and Treg cell types (Mendoza and Pardo 
2010). Despite the very different approaches used to model the T-helper signaling network, 
they all reach comparable results. Specifically, they show that the network has fixed points 
that correspond to the patterns of activation or expression observed in the Th0, Th1 and Th2 
cell types. Furthermore, such models are capable of describing the effect of null-mutations, 
or over-expression of some molecules as reported by several experimental groups. The 
consistency among the results of several modeling approaches on the same signaling 
network shows that the qualitative dynamical behavior of the network is determined to a 
large extent by its topology. Moreover, these models show that it is possible to develop 
dynamical models at a qualitative level, and that such models are indeed useful to describe 
and predict relevant biological processes. 

5.2 Genome-scale metabolic model of Acinetobacter baylyi ADP1 
Acinetobacter baylyi ADP1, a strictly aerobic gamma-proteobacterium, is a good model 
organism for genetic and metabolic investigations (Metzgar et al. 2004; Young, Parke, and 
Ornston 2005) as well as for biotechnological applications (Abdel-El-Haleem 2003) thanks to 
its metabolic versatility and high competency for natural transformation. Following its 
sequencing and expert annotation (Barbe et al. 2004), a genome-wide collection of single-
knockout mutants was generated and mutant growth phenotypes were assayed in selected 
environmental conditions (de Berardinis et al. 2008). In order to interpret these phenotype 
results and assess their consistency with the previous biochemical knowledge, a genome-
scale constraint-based model of its metabolism was reconstructed (Durot et al. 2008). In a 
first step, an initial model was built using data from A. baylyi’s genome annotation, 
metabolic pathways databases (e.g. KEGG, BioCyc or Reactome) and physiological 
knowledge gathered from the literature. Such reconstruction of the overall set of 
biochemical reactions present in an organism has already been performed for more than 15 
species (Reed et al. 2006). While facilitated by metabolism-related tools such as Pathway 
Tools (Karp, Paley, and Romero 2002), the task is still labor intensive and requires extensive 
manual curation. This initial model of A. baylyi included 870 reactions, 692 metabolites and 
781 genes. In a second step, experimental mutant growth phenotypes were systematically 
compared to growth phenotypes predicted by the model. Inconsistencies between 
predictions and experimental results revealed potential gaps or errors in the current model: 
they were therefore examined to look for interpretations and possible corrections. Out of 127 
inconsistencies, 60 led to a model correction. Each correction involved a modification of the 
gene-reaction associations, the metabolic network or the biomass requirements. Explanation 
of the remaining inconsistent cases would require further experimental investigations. In 
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several cases, hypothetical interpretations involving biological processes lying outside the 
model scope (e.g. regulation) could be proposed. The result of that model refinement 
process was an increase in growth phenotype predictive accuracy from 88% to 94%. In 
addition, the improved version of the model integrated a significant fraction of the 
additional information resulting from large-scale mutant phenotyping experiments within 
the metabolic knowledge on A. baylyi derived from its genome annotation and the literature. 

5.3 Nicotinamide nucleotide transhydrogenase (Nnt) pathway 
Insulin secretion in mammals is carried out by pancreatic β-cells in response to the glucose 
concentration in the surrounding environment. The insulin secretion response is a complex 
one, incorporating many well-conserved biochemical reactions coupled to a cell-type-
specific insulin secretion process driven by intracellular ATP concentration. The kinetic core 
model of pancreatic β-cell glucose-stimulated insulin secretion (Jiang, Cox, and Hancock 
2007) simulates the relationship between incoming glucose concentration and resultant 
cytoplasmic ATP concentration using a set of ODEs representing 44 enzymatic reactions, 
some of which take place in more than one compartment and simulates the concentrations 
of 59 metabolites. The model is divided into three compartments: cytoplasm, mitochondrial 
matrix and mitochondrial inter-membrane space. Information on components of the model 
was collected from the literature and from SABIO-RK (http://www.sabio.villa-
bosch.de/SABIORK/). Initial validation of the model was based on its ability to replicate 
published properties of the system in vivo, such as response to changing glucose 
concentration and oscillation of the concentration of certain metabolites in the glycolysis 
pathway and elsewhere. Further characterization and optimization will require in vivo 
measurement of some of these concentrations in an appropriate cell type. 

6. Discussion 
We conclude along the lines of the famous quote of G.E.P. Box: “All Models Are Wrong But 
Some Models Are Useful” (Segal et al. 2003). Most models are often focused on particular 
scientific domains and integrate a limited set of information, considered being “good-
enough” to answer the scientific questions of a given project. Many uncertainties still remain 
in the interpretation of computational models. Those uncertainties emanate from different 
levels of variation: technology, laboratory-to-laboratory, human-to-human specific, among 
others. The true biological variation or stochasticity is harder to detect. For example, when 
there is significant variation between individual runs of an experiment, how should the data 
be integrated in the model? Should individual models be created for each case, and these 
compared, or should data be averaged to produce a consensus model? When is a model 
considered to contain most of the behaviors of the real system?  
The different examples represented in this review are not exhaustive by far and only reflect 
our limited knowledge of the interface between mechanistic modeling and “wet” 
experiments, based on the research performed within the ENFIN Consortium.  
Ultimately providing both models and experimental data to a wider community is a way to 
bridge the gap and transmit our knowledge to the next generation of scientists. An effort 
leading in that direction is the development of databases of models such as BioModels 
(www.biomodels.org) (Le Novere et al. 2006), which collects molecular models by using a 
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standardized format. Another important development is the formulation of standards for 
experiments and for model formulation (such as MIRIAM (Le Novere et al. 2005)). 
Standards and associated controlled vocabularies will certainly contribute to unifying 
experimental data models that are currently scattered across several databases.  
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1. Overview

Until relatively recently, the field of drug design and development was disconnected
from advances in computing and informatics. Without even considering the concept of
computing, previous generations of scientists and clinicians had great motivation to examine
the symptoms of ill or injured patients, infer from sufficient observation data about the causes
of their symptoms, and search for chemical remedies that could cure or somewhat allieviate a
person’s ailment. Today, remedies come from sources such as herbal medicines, a high-quality
nutritional diet, or human-designed medicines developed in research laboratories.
However, there are a great number of afflictions where existing natural remedies are
insufficient, and intervention using computation can be beneficial. Around the same time the
central dogma of molecular biology was proposed in the 1950s, computing technology was
being born in vacuum tubes. For the next 10 years, molecular biology and computing each
advanced in their own spectacular ways, yet applying computing to problems in molecular
biology was still a novelty.
By the end of the 1960s, computing had reached a stage mature enough to be applicable
to biochemical problems of limited scope, and the first generation of bioinformatics and
chemoinformatics was born. Continuing into the next decade, evolutionary trees were
one bioinformatics topic (Waterman et al., 1977), and chemoinformatics topics such as the
efficient representation of chemicals for searchable databases were explored (Wipke & Dyott,
1974). Computing technology was slowly becoming a useful tool to explore the theoretical
underpinnings of the information representing the mechanisms of life.
Both bioinformatics and chemoinformatics have emerged independently in parallel (Jacoby,
2011), much like computing and molecular biology did at first. Their synergy was largely
ignored, not for lack of interest, but rather because the computing power necessary to examine
and solve large chemical biology problems that impact drug design was still insufficient.
(Note the difference between biochemistry, which is biology-centric and focuses on molecule
function, versus chemical biology, which focuses on chemical compounds and their biological
effects.) Furthermore, from the perspective of pharmaceutical companies, why would they
need to consider changing the laboratory techniques which founded their industry in the
first place? Fast forward from the 1970s to the present. Over the past decade computing
technology has and continues to become cheaper, to the point where it is now possible to
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1. Overview

Until relatively recently, the field of drug design and development was disconnected
from advances in computing and informatics. Without even considering the concept of
computing, previous generations of scientists and clinicians had great motivation to examine
the symptoms of ill or injured patients, infer from sufficient observation data about the causes
of their symptoms, and search for chemical remedies that could cure or somewhat allieviate a
person’s ailment. Today, remedies come from sources such as herbal medicines, a high-quality
nutritional diet, or human-designed medicines developed in research laboratories.
However, there are a great number of afflictions where existing natural remedies are
insufficient, and intervention using computation can be beneficial. Around the same time the
central dogma of molecular biology was proposed in the 1950s, computing technology was
being born in vacuum tubes. For the next 10 years, molecular biology and computing each
advanced in their own spectacular ways, yet applying computing to problems in molecular
biology was still a novelty.
By the end of the 1960s, computing had reached a stage mature enough to be applicable
to biochemical problems of limited scope, and the first generation of bioinformatics and
chemoinformatics was born. Continuing into the next decade, evolutionary trees were
one bioinformatics topic (Waterman et al., 1977), and chemoinformatics topics such as the
efficient representation of chemicals for searchable databases were explored (Wipke & Dyott,
1974). Computing technology was slowly becoming a useful tool to explore the theoretical
underpinnings of the information representing the mechanisms of life.
Both bioinformatics and chemoinformatics have emerged independently in parallel (Jacoby,
2011), much like computing and molecular biology did at first. Their synergy was largely
ignored, not for lack of interest, but rather because the computing power necessary to examine
and solve large chemical biology problems that impact drug design was still insufficient.
(Note the difference between biochemistry, which is biology-centric and focuses on molecule
function, versus chemical biology, which focuses on chemical compounds and their biological
effects.) Furthermore, from the perspective of pharmaceutical companies, why would they
need to consider changing the laboratory techniques which founded their industry in the
first place? Fast forward from the 1970s to the present. Over the past decade computing
technology has and continues to become cheaper, to the point where it is now possible to
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equip individual researchers with multi-processor computing workstations that can compute
systems applicable to drug design and optimization in a realistic amount of time.
With the recent boost in computing power, the era has come where clinicians, wet-lab
scientists, and informaticians can collaborate in inter-disciplinary research for the
advancement of drug design to improve the quality of life. Clinicians provide tissue samples
of patients exhibiting particular symptoms, bench scientists observe tissue behavior and
identify critical molecules of interest, and informaticians provide ways to extract information
from the tissue sample that can be useful in retroactively understanding the mechanism which
brought about the symptoms. However, the power of informatics is not only in its retrospective
analysis capability. Depending on the illness or condition under investigation, the objective of
a collaborative research project will be for design of a new pharmaceutical, either a retro-active
drug (suppress a symptom after it has come about) or a pro-active drug (suppress a symptom
before it has come about). Such design is now appreciably impacted by informatics because
of the scale of data and precision required for proper understanding of a phenomenon.
In this chapter, we provide several examples of this collaborative drug design process that
incorporates informatics for chemical biology and their translational experimental impact.
To begin, we review some of the previous methods in which pharmaceuticals have been
developed and analyzed in-silico. Next, we focus on a recent public database that represents
one effort to unify the bioinformatic and chemoinformatic aspects needed for analysis of a
major class of proteins that are drug targets. Our attention then shifts to how to mine this
information in a useful way and uncover new knowledge that can be and is infact tested at
a lab bench. Finally, we provide a glimpse into ongoing research in algorithms that can be
incorporated into existing interaction analysis methods, with the end goal of boosting the
performance of virtual pharmaceutical design beyond what has been achieved thus far.

2. In-silico development of pharmaceuticals

2.1 Pharmacology basics
In pharmacology, two fundamental molecules in biochemical reactions are target proteins,
and chemical compounds that attach to proteins, often called ligands. When a ligand binds to
its target, it triggers a cascade of signals such as a transfer of small groups of atoms or physical
modification of receptor structure. The signal transduction affects how a cell, and ultimately a
living organism, functions. Therefore, the larger question in modern in-silico pharmacological
research is how to construct models which accurately correlate experimental observations
and protein-ligand information to activity, and therefore provide a way to prospectively
(computationally) evaluate the potential efficacy of a newly-designed drug molecule.

2.2 A brief survey of existing virtual screening methods
Virtual screening (VS) is the process of evaluating a library of compounds using a
computational model in order to rank, and thus screen for, molecules that exhibit desired
characteristics. For pharmaceuticals, the main characteristic is its bioactivity or efficacy, which
is the amount of a compound needed to trigger a desired physiological effect, typically in
at least half of the target. For drugs to be advanced beyond a laboratory experiment stage,
bioactivity with micromolar (μM) activity is minimally required, though nanomolar (nM)
activity is often a criterion used by pharmaceutical companies to be considered for advanced
clinical trials necessary for final product approval before manufacturing and distribution.
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The reason why VS is important is simple - the size of chemical space is estimated to be on
the order of 1060 (Dobson, 2004), and therefore it is economically and logistically unrealistic
to perform assays (bioactivity tests) for every chemical compound with every protein in a
biological system. Estimates for the current development costs of a single drug molecule to
reach the market are close to USD $500,000,000. How to explore the enormous chemical space
and reduce such development cost is an open topic addressed to some degree in this chapter.
To date, two major classes of VS methods have been created. The first is structure-based virtual
screening (SBVS). In SBVS, biophysical and phyisochemical models are applied to estimate
binding energies of ligands with a target protein, and the most energy-favorable compounds
can be interpreted as the ligands most likely to exhibit bioactivity. A key requirement of SBVS
methods is that they require knowledge of a target protein. As long as the three-dimensional
structure of the target is known, SBVS can be useful, since molecular shape complementarity
and physical properties important for specific binding can be utilized (Schneider & Fechner,
2005). SBVS was a contributor to the development of the first generation of cyclic urea HIV
protease inhibitor drugs (Lam et al., 1994). Most SBVS approaches include the use of force
fields, a topic that will be discussed later in the chapter.
The second major class of VS methods is ligand-based virtual screening (LBVS). In LBVS, a
set of ligands known to bind to a protein is used to construct a model that correlates ligand
to characteristics to observable properties. Note that for LBVS methods, knowledge about a
target protein is not required. An argument in favor of LBVS is that one can probe and build
hypotheses about an uncharacterized cellular system without knowing any of the proteins
that the cell line contains. LBVS contributed to ligands that effect human T-cell activation
(Schneider & Fechner, 2005).
More thorough surveys of the wealth of SBVS and LBVS methods created to date can be found
in the literature (Jacoby, 2011; Schneider & Fechner, 2005; Schneider et al., 2009).

2.3 Problems with heterogeneity
Above, we have given a sample of VS algorithms and their contributions to drug design.
However, in most situations, the targets being researched and the target properties used for
evaluation of the VS methodology are different from study to study. Therefore, it is often
difficult to directly compare the ability of different VS studies. It has been estimated that the
ratio of VS approaches to applications is close to one (Schneider, 2010).
The problem of heterogeneity arises from the fact that the goals of past experimental (wet)
researches, and consequently the data available for in-silico method development, were
dependent on the target organism and physiological effect being investigated. For example,
one study may seek the IC50 concentrations of a chemical library which can further vary
based on the assay equipment used, while another study evaluates results using the inhibition
constant Ki. The ICp metric is the concentration required for p% inhibition of a specific cellular
activity. For example, blood clotting drugs for people with hemophilia would be considered
more effective (at clotting) as the IC50 value (inhibition of bleeding activity) becomes smaller.
Being able to reduce IC50 values means having the ability for a drug candidate to be equally
effective at lower concentrations.
How can heterogeneity issues be overcome? One option is to reduce the range of values
possible for a particular metric being used. For a compound library primary screening stage,
one may not need the strength of interactions (change in free energy) or the IC50 concentration
beyond a μM level. Instead, one may simply need a “yes/no”-type of information in order
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computational model in order to rank, and thus screen for, molecules that exhibit desired
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to build a hypothesis. In the blood clotting example, we may only need to build a screening
model that predicts if a clotting drug has μM efficacy or better. In the process of drug lead
discovery, “yes/no” is often sufficient, with a numerical value for bioactivity or binding
affinity to be the criterion in the optimization phase.
Here, we provide a few examples of 2-class interaction data useful for drug design research.
The Database of Useful Decoys (DUD) provides over 2000 known ligand-receptor interactions
(Huang et al., 2006). For each interacting ligand, over 30 similar but non-interacting “decoy”
ligands are also provided. Another public database is the NCI anticancer activity dataset,
which logs the bioactivity of thousands of ligands against 60 types of cancer cell lines. For
each cell line, each ligand receives a {+1,−1} label indicating if it does or does not inhibit
the cell line’s growth. The NCI-60 dataset is available from the ChemDB (Chen et al., 2005).
2-class labels will be utilized in Sections 3 and 4, and bioactivity values will be the focus in
Section 5.

2.4 Machine learning
In-silico development of pharmaceuticals is greatly aided by the use of machine learning, an
active research field which develops algorithms to extract statistically meaningful information
from large datasets. The resulting information models can then be applied to clustering,
ranking, or inferfence about unseen data. For those unacquainted with machine learning,
it is easy to think of how a human child learns to distinguish colors or shapes, after which
they can cluster objects of “similar” color or shape together. The concept of similarity is
somewhat of a philosophical argument, and machine learning, much like human learning,
can be adjusted through the definition of “similar”. For drug lead discovery and optimization,
machine learning is the tool that helps us navigate chemical and interaction spaces.
Recently, major contributions to the machine learning field are being achieved through kernel
methods. Kernel methods can be thought of as being comprised of two separate parts
(Shawe-Taylor & Cristianini, 2004): data “recoding” to create patterns representable by linear
functions, and efficient linear pattern analysis algorithms applied to the recoded data. Along
with good theoretical properties, kernel methods have three special features which account
for their recent focus.
First, they can be applied to non-vectorial data that does not have a natural notion of similarity
defined, such as chemical graphs or receptor-ligand interactions. Second, for both vectorial
and non-vectorial data, the calculation of similarity is equivalent to having explicitly mapped
each original data point x ∈ X into a higher, possibly infinite-dimensional feature space F and
using the inner product in F to measure similarity, e.g. a kernel function K(x, y) = φ(x) · φ(y),
for some transformation φ : X → F. This second feature is critical because it represents the
“recoded” similarity value without actually performing the explicit transformation φ. Similarity of
feature vectors that grow exponentially or are infinitesimal in length, and hence are difficult
or otherwise impossible to compute, can still be analyzed via kernel methods as long as
an efficient algorithm to compute the kernel function K : X × X → � exists. Third and
finally, in light of the previous two reasons, kernel functions can replace the inner product
in pattern analysis algorithms. A simple (though uninteresting) kernel function is the basic
inner product K(x, y) = x · y; more interesting kernel functions, more of their properties, and
manipulations on them are abound in the references. The pattern analysis algorithm used in
this chapter is the Support Vector Machine (SVM) (Cristianini & Shawe-Taylor, 2000).
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Machine learning is now widely used in image analysis including facial, text, and license
plate recognition, vital data clustering for clinical applications, and weather and geological
condition prediction. In the remainder of this chapter, we will demonstrate how machine
learning that includes kernel methods is applied to receptor-ligand analyis, inference of novel
protein-ligand binding, and prediction of bioactivity using atomic partial charge information.

3. Bioinformatics and chemoinformatics for GPCR ligand analysis

3.1 GPCR ligands as drug targets
G protein-coupled receptors (GPCRs) are a type of transmembrane receptor found in
eucaryotes. Their physical structure consists of seven transmembrane helices connected
by six extracellular and intracellular loops (EL-{1,2,3}, IL-{1,2,3}). The N-terminus of a
GPCR is extracellular, while the C-terminus is intracellular. Once bonded to by peptide or
small organic ligands, they activate signal transduction pathways inside a cell, and thus,
extracellular ligands which bind to GPCRs affect a cell’s internal downstream signaling.
GPCR ligands may be broadly classified into agonists which increase the amount of signalling
that occurs after binding, or antagonists which nullify the effect of agonists and return a cell
to normal signalling levels.
GPCRs are involved in an amazing number of cellular processes, including vision, smell,
mood and behavioral regulation, immune system activity, and automatic nervous system
transmission. It suffices to say that loss of function in GPCRs or regain of function by agonistic
or antagonistic drugs directly affects the health of an organism. The number of GPCRs in the
human genome is more than 1000, with at least 400 of therapeutic interest. In contrast to such
a number of potential therapeutical GPCRs, drugs currently available on the market address
less than 10% of them (Okuno et al., 2008). For a number of GPCRs, the only ligand known
is its endogenous (natural) ligand, and for a considerable number of cases, some GPCRs
are orphaned, meaning that no ligand is known for which binding occurs. This is the entry
point to GPCR in-silico research, requiring a unification of bioinformatics (for GPCRs) and
chemoinformatics (for ligands). Successful design of agonists and antagonists aided by virtual
screening powered through machine learning holds considerable consequence on the future
of pharmaceuticals.

3.2 GPCR-ligand data
The GPCR LIgand DAtabase (GLIDA) represents a major effort in using protein and chemical
similarity informatics techniques independently as well as synergystically (Okuno et al.,
2008). As discussed above, the majority of drugs available on the market address only a small
fraction of GPCRs. The amount of GPCR-ligand interaction space explored is still minimal.
Therefore, exploration of new regions in the interaction space represents the potential for a
number of new GPCR ligands. GLIDA is a database to chart and further navigate such space.
GLIDA utilizes proteome data from the human, mouse, and rat genomes. Drug development
for humans is an obvious motivation, and mouse and rat genomes are selected because
they are frequently used in experimental trials. The interaction data for GLIDA has been
assembled from both public and commercial sources, including DrugBank (Wishart et al.,
2006), PubMed and PubChem (Wheeler et al., 2007), the Ki Database (Roth et al., 2004),
IUPHAR-RD (Foord et al., 2005), and MDL ISIS/Base 2.5.
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The total number of GPCRs in GLIDA is roughly 3700, which has remained stable over the
past five years. What has increased over the lifetime of the GLIDA database is the number of
ligand entries available for analysis and interaction. Since the database’s initial public release
containing 649 compounds, the ligand database has grown to contain over 24,000 agonists
and antagonists. In parallel to the explosion in the number of ligands available, the number
of GPCR-ligand interactions catalogued has also swelled from 2000 to 39,000.
In theory, a naive bioassay system could test the activity of all 3700∗ 24000 ∝ 107 GPCR-ligand
pairs. This has at least two disadvantages. First, the exorbitant costs associated with such
an approach are prohibitive. Second, machine learning methods which incrementally use
data from said theoretical assay will encounter problems with model construction in later
phases due to data points which are inconsistent with models of prior generations, and the
computational time cost and efficiency of machine learning when inputting ≥107 data points
is poor. Therefore, the importance of virtual screening is clear.

3.3 Making sense of such quantities of data
With mechanisms in place for storing all of the protein sequences, chemical structures, and
interaction data, the major informatics question is how to extract meaningful information
from the GLIDA database. GLIDA provides a number of analysis services for mining its
information.
First, consider the case when a GPCR has a set of known ligands, and one wishes to search
for other similar GPCRs to see if they share the same target ligands. GLIDA provides two
types of search services for this scenario. First, protein-protein similarity using primary
sequence analysis can be done. For this task, the standard BLAST algorithm is used. The
result of such a search is a collection of proteins which exhibit sequence similarity. GLIDA
also offers an alternative GPCR search strategy that uses gene expression patterns in tissue
origins. In addition to those two services, GPCRs registered in the database are organized
hierarchically using the organization scheme from the GPCRDB project (Horn et al., 2003).
These bioinformatics tools allow an investigator to look for similar GPCRs with increased
efficiency.
Next, consider the second case when a ligand has a target receptor, and one wishes to query
(assay) the same receptor for activity by using similar ligands. In this case, KEGG atom
type (Hattori et al., 2003) frequency profiles are used to represent molecules, and ligands with
similar frequency patterns are returned by a similarity search. The idea that similar frequency
patterns results in similar molecules is based on the concept in linear algebra that vectors
with minimum distance between them in a space have similar component vectors. For this
task, principal component analysis (PCA), a methodology used in bioinformatics as well, is
applied. The database search also provides links to external databases such as PubChem and
DrugBank, allowing users to investigate similarity in other chemical properties provided by
those sources. For example, an investigator may want to evaluate the molecular weight and
number of stereocenters of the 10 ligands most similar to the endogenous ligand of a particular
GPCR. GLIDA provides the links to each ligand’s external information, so the user need only
to follow the links provided. Linking multiple chemoinformatics resources makes GLIDA a
useful tool for exploring unknown areas in GPCR-ligand interaction space. Readers interested
in learning more about clustering of compound libraries can consult additional chapters in this
book.
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Above, we mentioned the idea of assaying a GPCR for similar ligands. A natural question to
ask next is: what about dissimilar ligands? A current and important topic in drug lead design
is scaffold hopping. Scaffold hopping is the occurrence of a pair of ligands which both exhibit
bioactivity for a target protein, but with completely different core structures (scaffolds). The
topic of how data in GLIDA can be used to prospectively evaluate dissimilar ligands for a
GPCR is addressed later in the chapter.
The next tool that GLIDA provides is a visual GPCR-ligand interaction matrix. This is
a graphical version of the GPCR-ligand assay data assembled through bioactivity assay
experiments. It allows one to get a quick visual inspection of the areas in interaction
space which have been explored and remain to be explored. Such interaction maps are
quickly becoming the cornerstone of how to explore interaction spaces in not only GPCRs
but also in many other types of protein classes which can be perturbed. At each cell in the
interaction matrix, three states are possible for a GPCR-ligand pair: (partial or full) known
agonist, (partial or full) known antagonist which in GLIDA includes inverse agonists, or an
unknown/non-interacting state.
The interaction matrix unifies each of the bioinformatics and chemoinformatics algorithms
that GLIDA employs. For a particular cell in the matrix, neighboring columns are the result
of protein similarity calculations. Neighboring rows indicate ligand similarity after applying
the ligand clustering algorithm described above. As a result, the algorithm unification and
resulting visualization gives drug designers key clues for planning future sets of bioactivity
assay experiments and refining drug lead scaffold design.

3.4 Applied examples of GLIDA
The utility of GLIDA can be demonstrated through the following two examples.
In Figure 1, an example interaction matrix is shown. Located between two human alpha
adrenoceptors ADA-1A and ADA-1B lies a similar GPCR named Q96RE8. However, the
ligation status of Q96RE8 is unknown. Looking at the interaction space of neighbors ADA-1A
and ADA-1B, we see that they share a number of common ligands with similar bioactivity.
Therefore, performing laboratory assays of Q96RE8 using the known ligands of similar
proteins would be expected to discover several novel ligand-receptor pairs. This demonstrates
the power of interactome visualization provided by GLIDA.
Second, let us make a small investigation of a GPCR critical to normal human function. The
dopamine receptor is a type of GPCR involved in a variety of functions, such as the control
of blood pressure and heart rate, certain aspects of visual function, and control of movement
(Strange, 2006). With such a wide variety of behaviors, it is of little surprise that the family of
dopamine receptors (modernly subdivided into five receptors D1-D5) are liganded by many
compounds. Using GLIDA, we first look at the ligands L110 (apomorphine) and L084 (7-OH
DPAT), and notice that they are both agonists. GLIDA provides structural images of the
two compounds as well, shown in Figure 2. Observing the pair, we see that both contain
a hydroxyl (-OH) moiety attached to an aromatic ring. They both also contain a nitrogen atom
with methyl chains attached that is located near or in the rigid ring system. These common
features may be of use in designing new ligands to attach to the dopamine D1 receptor. In
Section 5, we will further discuss atom charges and rigidity of these two ligands.
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Fig. 1. An example of using the GLIDA database to visually inspect the GPCR-ligand
interaction space. The GPCR Q96RE8 is similar to GPCRs ADA-1A and ADA-1B. The
interaction matrix suggests that ligands of ADA-1{AB} may also be ligands of Q96RE8.

4. Unified informatics for prospective drug discovery: chemical genomics

4.1 GLIDA in retrospect
The GLIDA database provides a considerable amount (39,000 pairs) of GPCR-ligand
interaction data. That data is provided by established research resources, such as the KEGG,
IUPHAR, PubChem, and Drugbank databases. The experimental interaction data has been
published in peer-reviewed journals.
The next big step in unifying bioinformatics and chemoinformatics for GPCR ligand discovery
and pharmaceutical development is how to incorporate the information in GLIDA in a
way that can not only analyse data of past trials, but also provide reliable inference of
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Fig. 2. A pair of agonists for the dopamine D1 receptor that contain overlapping
substructures.
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novel GPCR-ligand interaction pairs. We can generalize the situation further by stating the
following goal:

Given a protein-ligand interaction database, build a model which can accurately and
compactly express the patterns existing in interacting complexes (protein-ligand
molecule pairs), and which also has sufficient predictive performance on
experimentally-verifiable novel interactions.

The pharmaceutical motivation behind this next step is the understanding of the mechanisms
of polypharmacology and chemical genomics. Polypharmacology is the phenomenon that
a single ligand can interact with multiple target proteins. Chemical genomics is the other
direction: that a single protein can interact with multiple ligands. Since polypharmacology is
one of the underlying reasons for the side-effects of drugs, and since chemical genomics helps
explain the nature of signalling networks, it is critical to advance our understanding of the
two mechanisms.
In the early days of molecular biology, it was thought that a single protein could be influenced
by a single compound, much like a unique key for a specific lock. Of course, we know
that a series of locks can have a single master key (e.g., used by hotel cleaning staff), and
that a series of keys can all open a single specific lock (e.g., apartment complex entrance).
Polypharmacology and chemical genomics are the replacement of the 1-to-1 protein-ligand
concept with the analogous ideas of master keys or a generic lock that can be opened by many
keys. Both one ligand binding to multiple receptors (MacDonald et al., 2006) and multiple
ligands binding to the same receptor (Eckert & Bajorath, 2007) have been demonstrated
experimentally. Also, a quick look at Figure 1 demonstrates polypharmacology in rows and
chemical genomics in columns of the interaction matrix. The 1-to-1 concept of binding has had
to be replaced with a systems biology approach that considers interaction space as a network
of nodes and edges, where nodes are proteins and their ligands, and bonds are drawn between
nodes when two molecules interact (bond). What makes informatics special is the ability to
incorporate both polypharmacology and chemical genomics.
Recent advances in high-throughput screening have created an enormous amount of
interaction data. Facilities such as the NIH’s Chemical Genomics Center employ automation
technologies that let researchers test thousands of ligands at various concentrations on
multiple cell types. This non-linear explosion of interaction information requires new
methods for mining of the resulting data. Additionally, to become more economically efficient,
it is important to reduce the numbers of ligands being tested at facilities like the CGC to those
which are more likely to interact with the target proteins of a specific cell type. This new type
of virtual screening has been termed Chemical Genomics-Based Virtual Screening (CGBVS).

4.2 Reasoning behind Chemical Genomics-Based VS
The interaction matrix provided in the GLIDA database is precisely the motivation for
development of CGBVS techniques. Earlier in the chapter, some of the merits of LBVS and
SBVS were discussed. However, the two methodologies, which have been the principle VS
methods of drug lead design research to this point, have their own drawbacks as well, which
we discuss here.
Since the LBVS methods use no information about the target protein, the ability to investigate
the network of polypharmacology is hampered. For example, let us assume we have ligand
dataset L1 that uses IC50 values based on bioactivity assays with receptor R1, and dataset L2
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4.2 Reasoning behind Chemical Genomics-Based VS
The interaction matrix provided in the GLIDA database is precisely the motivation for
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SBVS were discussed. However, the two methodologies, which have been the principle VS
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the network of polypharmacology is hampered. For example, let us assume we have ligand
dataset L1 that uses IC50 values based on bioactivity assays with receptor R1, and dataset L2
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uses cell count values measured after ligation to R2 ( �= R1). LBVS models built using L1 cannot
be applied to screen L2, because the models have been constructed under the assumption
that R1 was the target. Evaluating L2 on the basis of the LBVS model contstructed using L1
is proverbially “comparing apples to oranges”. The same argument applies for testing L1
using a LBVS model built from L2. One of the other known issues, especially with graph
kernel-based LBVS (see Section 5.2), is that both cross-validated training performance and
prediction performance on unseen ligands containing scaffold hopping are poor. Graph kernel
QSARs (Brown et al., 2010), a type of LBVS methodology, have depended on the frequency of
common topology patterns in order to derive their models, which hence rank non-similar
scaffolds lower.
The SBVS methods require knowledge of the crystal structure of the target protein, which
means that the problem just mentioned for development via LBVS is not a concern.
Unfortunately, SBVS has its own set of limitations. First, the force fields used in SBVS
techniques are constantly undergoing revision. It has been argued that because force fields
and free energy methods are unreliable, they have contributed little to actual drug lead
development (Schneider et al., 2009). Second, the amount of free parameters present in force
fields and molecular dynamics simulations make them extremely difficult to comprehend and
accurately control. We experienced this firsthand when using these methods to investigate
HIV protease cyclic urea inhibitor drugs. Third, the amount of computation involved in
SBVS methods is enormous, even for small peptide ligands of 5-10 residues. Consequently,
SBVS cannot be applied to large libraries such as the 24,000 compounds stored in the GLIDA
database. Last but not least, SBVS is completely unapplicable when the target protein crystal
structure is unavailable, which is frequently the case when a new cold virus or influenza strain
emerges in a population.
Hence, we arrive at the need to create a new generation of informatics algorithms which
overcome the difficulties of LBVS and SBVS. In this section of the chapter, we consider the
development of a first generation CGBVS-style analysis for exploring target-ligand interaction
space. Additionally, the connection between computational chemogenomics (Jacoby, 2011)
and real experimental verification is critical for advancement of in-silico drug lead design.
Also, for the drug lead discovery phase, we wish to search for novel scaffold ligands of a target
protein, rather than explore the amount of lead optimization possible. A graphical depiction
of the various concepts and direction of research is shown in Figure 3. We will return to the
topic of LBVS and its role in drug lead optimization later in the chapter. Though several
research projects have investigated new receptors for existing drugs (polypharmacology),
the work below is the first to perform the opposite (chemical genomics): discovery of new
bioactive scaffold-hopping ligands for existing receptors (Yabuuchi et al., 2011).

4.3 Computational and wet experiments performed
As stated above, an objective of CGBVS is to obtain reliable prediction of ligands previously
unknown to bind to target proteins, and experimentally assay those predictions. In Table 1, a
complete set of dry and wet experiments performed is summarized.
As Table 1 shows, the connection between theory (dry) and reality (wet) is tested extensively.
Critics of informatics argue that its results often do not correlate well with field tests.
However, as Table 1 and Section 4.6 show, such a case study answers such criticisms.
Chemo- and bio-informatics are still in their infancies as established fields of study. One
obvious observation since their inception is the difficulty for informatics labs wishing to field
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Fig. 3. The concepts and objectives of Chemical Genomics-Based Virtual Screening (CGBVS).

test their models. It is hoped that studies such as this one will either encourage laboratories
to engage in both dry and wet research, or will foster increased collaborative efforts between
dry and wet research laboratories.

Type Test Purpose Target Compounds Method

Dry CPI prediction CGBVS vs. LBVS all GPCRs GLIDA cross-validation

Dry
β2AR binding

CGBVS vs. SBVS β2AR (GPCR)
GLIDA

hit rate
Wet CGBVS vs. LBVS/SBVS β2AR binding assay

Dry
β2AR binding

non-GPCR ligand test
β2AR

Bionet

prediction score
Wet cell-based assay
Dry

NPY1R binding NPY1R
prediction score

Wet cell-based assay

Dry CPI prediction CGBVS vs. LBVS/SBVS
EGFR GVK - training

prediction accuracy
CDK2 DUD - test

Wet
EGFR binding

Kinase inhibitor test
EGFR

Bionet - test cell-based assay
CDK2 binding CDK2

Table 1. Summary of dry and wet experiments performed to evaluate the effectiveness of
chemical genomics-based virtual screening (CGBVS). CPI: compound-protein interaction
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4.4 Informatic analysis - methods
In mining interaction data, there are three pieces of information per interaction sample:
the protein sequence, the ligand two-dimensional structure, and whether or not interaction
occurs. The CGBVS strategy employs the SVM pattern analysis algorithm with a kernel
function that uses explicit feature vectors. In this case study, the strength of interaction
is not considered, because the various databases providing the interaction information use
different metrics to indicate interaction, as noted in Section 2.3. Therefore, we must restrict
the interaction domain (the output value) to a binary value. The remaining input to the SVM
is the unification of biological and chemical data.
For proteins in interacting pairs, their sequence data is transformed into a vectorial
representation using the well-known mismatch kernel (see Shawe-Taylor & Cristianini
(2004)), which we will denote by φM(P) for protein sequence P. The mismatch kernel
outputs the frequency of subsequences of fixed length in an input sequence; in particular,
the mismatch kernel can be specified to allow a maximum number of mismatches in the
subsequence being counted. Details of the parameters of the (2,1)-mismatch kernel used for
CGBVS can be found elsewhere (Yabuuchi et al., 2011).
In chemoinformatics, many researches have produced various types of chemical descriptors.
Examples are the Extended Connectivity Fingerprint descriptors, the PubChem descriptors,
and the DragonX descriptors. Each type of descriptor takes a chemical structure as input
and produces a fixed length feature vector that represents characteristics of the molecule.
The characteristics may describe topology patterns, connectivity frequencies, electrostatic
properties, or other measureable types of information. For CGBVS studies, the DragonX
descriptors are employed, which we will denote by φD(L) for ligand L.
If protein-ligand interaction (binding, no binding) is represented by the value i ∈ {B, NB},
then each training data interaction in CGBVS can be represented using the feature vector

FV(P, L, i) = [ φM(P), φD(L), i ] . (1)

Test data simply has one less dimension, since the binding interaction value is unknown.
In experiments, φM(P) is a 400-dimensional vector, and the dimensionality of φD(L) is 929.
Therefore, the SVM builds predictive models using a total of 1330 dimensions.
One of the key differences between LBVS methods and CGBVS methods is the absence of
receptor information in LBVS. The feature vectors for LBVS simply do not have the φ(P)
element.

4.5 Computational experiments
The first computational test done is comparison of CGBVS to existing LBVS. The details of
the LBVS technique used can be found in Yabuuchi et al. (2011). Using the initial release of
interaction data in the GLIDA database (317 GPCRs - 866 ligands - 5207 interactions), 5-fold
cross-validation was repeated multiple times to assess the average predictive performance of
the three techniques. The CGBVS method outperformed LBVS by more than 5%, reaching
more than 90% accuracy in predicting GPCR-ligand interactions. Such results indicate the
extra performance gained by inclusion of the receptor protein in feature vector information.
Next, using the β2-adrenergic receptor (β2AR), a fairly well characterized GPCR with known
crystal structure, retrospective testing of SBVS and CGBVS was done. In this round of testing,
β2AR ligands were available in the GLIDA interaction set, so they were eliminated from the
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training set and used as positive control data. In this test as well, CGBVS provided a higher
enrichment rate than SBVS, meaning more of the highest ranking compounds predicted by
CGBVS were known β2AR ligands than those ranked by SBVS. As opposed to SBVS, CGBVS
considers other protein-ligand interaction, which improves its predictive power.
Having verified CGBVS performance using GLIDA’s data in a retrospective way, the next
test for validating the usefulness of CGBVS was to vary the ligand dataset while holding
the target receptor constant (β2AR). For this purpose, the Bionet chemical library consisting
of 11,500 compounds was used. As no type of cross-validation could be performed for this
library, an alternative measure of “goodness” was used: the aforementioned ability to scaffold
hop. For a number of top-ranking predictions (ligands) experimentally assayed for bioactivity,
scaffold hopping was observed. The same process that was used for testing the Bionet library
against the β2AR receptor was repeated using the neuropeptide Y-type 1 receptor (NPY1R),
with similar successful results.
The next aspect of testing performed was to remove the restriction on the target protein
domain. Instead of GPCRs, protein kinases, molecules whose transfer of phosphate groups
extensively impact cellular signalling, were used as the target protein. A kinase inhibitor
interaction dataset made available by GVK Biosciences was divided into training and test
sets, after which CGBVS, LBVS, and SBVS were trained in the same manner as before.
Kinase-inhibitor interaction prediction accuracy rates again showed that CGBVS was more
effective in mining the interaction space because of its ability to consider multiple interactions
as well as its ability to incorporate both bioinformatic and chemoinformatic aspects into its
interaction complex representation.

4.6 Laboratory assay experiments
For bioinformatics and chemoinformatics to live up to their promise in drug discovery, it
is critical that their predictions be verifiable at the laboratory bench. In this case study for
CGBVS, assay experiments were also performed in order to test computational predictions.
As the focus of this book is on informatics, details of the bioassays will be very brief.
Among the top 50 β2AR prediction scores, those commercially available and not already
identified in the literature as known β2AR ligands were tested in assays. It is also worth noting
that of those ligands that were commercially available, some were known only to be ligands
for different protein domains. This finding provided further evidence of polypharmacology.
Compounds such as granisetron were found to have effective concentration (EC50) values in
the mid-μM range.
For testing the Bionet chemical library with β2AR , 30 compounds were assayed. The power
of CGBVS and informatics to explore interaction space and contribute novel drug leads was
confirmed, as nine of 30 compounds had EC50 or IC50 values in the nM-μM range. Compared
to the hit rates of typical high-throughput screenings where thousands of compounds are
assayed, the hit rate of CGBVS is impressive. Finally, using similar assay techniques, novel
ligands were also found for the EGFR and CDK2 receptors. The structures of novel ligands
and their assay details are published in Yabuuchi et al. (2011).

4.7 Future directions for CGBVS
There are many interesting directions that CGBVS can be continued in.
First, as the amount of ligands available in a chemical library grows, so too does the interaction
space. However, the interaction space is so large that blindly inserting all interactions into a
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4.4 Informatic analysis - methods
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subsequence being counted. Details of the parameters of the (2,1)-mismatch kernel used for
CGBVS can be found elsewhere (Yabuuchi et al., 2011).
In chemoinformatics, many researches have produced various types of chemical descriptors.
Examples are the Extended Connectivity Fingerprint descriptors, the PubChem descriptors,
and the DragonX descriptors. Each type of descriptor takes a chemical structure as input
and produces a fixed length feature vector that represents characteristics of the molecule.
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properties, or other measureable types of information. For CGBVS studies, the DragonX
descriptors are employed, which we will denote by φD(L) for ligand L.
If protein-ligand interaction (binding, no binding) is represented by the value i ∈ {B, NB},
then each training data interaction in CGBVS can be represented using the feature vector

FV(P, L, i) = [ φM(P), φD(L), i ] . (1)

Test data simply has one less dimension, since the binding interaction value is unknown.
In experiments, φM(P) is a 400-dimensional vector, and the dimensionality of φD(L) is 929.
Therefore, the SVM builds predictive models using a total of 1330 dimensions.
One of the key differences between LBVS methods and CGBVS methods is the absence of
receptor information in LBVS. The feature vectors for LBVS simply do not have the φ(P)
element.

4.5 Computational experiments
The first computational test done is comparison of CGBVS to existing LBVS. The details of
the LBVS technique used can be found in Yabuuchi et al. (2011). Using the initial release of
interaction data in the GLIDA database (317 GPCRs - 866 ligands - 5207 interactions), 5-fold
cross-validation was repeated multiple times to assess the average predictive performance of
the three techniques. The CGBVS method outperformed LBVS by more than 5%, reaching
more than 90% accuracy in predicting GPCR-ligand interactions. Such results indicate the
extra performance gained by inclusion of the receptor protein in feature vector information.
Next, using the β2-adrenergic receptor (β2AR), a fairly well characterized GPCR with known
crystal structure, retrospective testing of SBVS and CGBVS was done. In this round of testing,
β2AR ligands were available in the GLIDA interaction set, so they were eliminated from the
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training set and used as positive control data. In this test as well, CGBVS provided a higher
enrichment rate than SBVS, meaning more of the highest ranking compounds predicted by
CGBVS were known β2AR ligands than those ranked by SBVS. As opposed to SBVS, CGBVS
considers other protein-ligand interaction, which improves its predictive power.
Having verified CGBVS performance using GLIDA’s data in a retrospective way, the next
test for validating the usefulness of CGBVS was to vary the ligand dataset while holding
the target receptor constant (β2AR). For this purpose, the Bionet chemical library consisting
of 11,500 compounds was used. As no type of cross-validation could be performed for this
library, an alternative measure of “goodness” was used: the aforementioned ability to scaffold
hop. For a number of top-ranking predictions (ligands) experimentally assayed for bioactivity,
scaffold hopping was observed. The same process that was used for testing the Bionet library
against the β2AR receptor was repeated using the neuropeptide Y-type 1 receptor (NPY1R),
with similar successful results.
The next aspect of testing performed was to remove the restriction on the target protein
domain. Instead of GPCRs, protein kinases, molecules whose transfer of phosphate groups
extensively impact cellular signalling, were used as the target protein. A kinase inhibitor
interaction dataset made available by GVK Biosciences was divided into training and test
sets, after which CGBVS, LBVS, and SBVS were trained in the same manner as before.
Kinase-inhibitor interaction prediction accuracy rates again showed that CGBVS was more
effective in mining the interaction space because of its ability to consider multiple interactions
as well as its ability to incorporate both bioinformatic and chemoinformatic aspects into its
interaction complex representation.

4.6 Laboratory assay experiments
For bioinformatics and chemoinformatics to live up to their promise in drug discovery, it
is critical that their predictions be verifiable at the laboratory bench. In this case study for
CGBVS, assay experiments were also performed in order to test computational predictions.
As the focus of this book is on informatics, details of the bioassays will be very brief.
Among the top 50 β2AR prediction scores, those commercially available and not already
identified in the literature as known β2AR ligands were tested in assays. It is also worth noting
that of those ligands that were commercially available, some were known only to be ligands
for different protein domains. This finding provided further evidence of polypharmacology.
Compounds such as granisetron were found to have effective concentration (EC50) values in
the mid-μM range.
For testing the Bionet chemical library with β2AR , 30 compounds were assayed. The power
of CGBVS and informatics to explore interaction space and contribute novel drug leads was
confirmed, as nine of 30 compounds had EC50 or IC50 values in the nM-μM range. Compared
to the hit rates of typical high-throughput screenings where thousands of compounds are
assayed, the hit rate of CGBVS is impressive. Finally, using similar assay techniques, novel
ligands were also found for the EGFR and CDK2 receptors. The structures of novel ligands
and their assay details are published in Yabuuchi et al. (2011).

4.7 Future directions for CGBVS
There are many interesting directions that CGBVS can be continued in.
First, as the amount of ligands available in a chemical library grows, so too does the interaction
space. However, the interaction space is so large that blindly inserting all interactions into a
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machine learning algorithm is inefficient. The development of new techniques to efficiently
sample the interaction space while maintaining the ability to discover novel drug leads
prospectively is a very open topic.
Second, CGBVS has shown that it is successful in identifying ligands that exhibit scaffold
hopping. It therefore reasons that CGBVS can be embedded as part of a ligand generation
algorithm. Development of ligand generation using the Particle Swarm Optimization class of
algorithms is another area of ongoing research (Schneider et al., 2009).
Third, one of the largest hurdles in evaluating protein-ligand interaction prediction techniques
is the availability of non-interacting data. Most scientific journal articles publish results
indicating successful ligand design and interaction strength. However, for the advancement
of in-silico screening techniques, the public availability of datasets of non-interacting pairs is equally
important. In the CGBVS study, non-interacting pairs were defined as randomly selected
protein-ligand pairs not existing in an interaction database. It is easily possible that such
data contains a fraction of false negatives.

5. Boosting CGBVS through improved LBVS methods

5.1 Why return to LBVS?
Earlier in the chapter, we showed how CGBVS outperformed LBVS in terms of target-ligand
interaction prediction performance. Even futher, the predicted interactions were tested in
wet laboratory experiments, and results showed that CGBVS was superior in prospective
interaction studies.
In this final section, we discuss new techniques for optimizing prediction of ligand properties,
such as binding affinity or bioactivity. The techniques fall under the framework of LBVS.
It may seem contradictory that, despite showing the superior performance of CGBVS over
LBVS, we return the discussion to recent advancements in LBVS methods. However, the
motivation for pushing the state of the art in LBVS is at least four-fold:

• There are many cell lines which are completely uncharacterized, and therefore, no
information about receptors and other proteins exists. In this situation, no specific
protein-ligand interaction information is available, but it is still possible to observe and
catalog perturbations to cell lines through the supply of various ligands, and build
predictive models for screening the next generation of ligands to test on the cell line. For
example, such perturbation modeling is useful for deciding on a subsequent selection of
chemical libraries to apply to chemical genomics assays.

• Even in cases where a few target proteins and resulting interactions are known, it may
be an insufficient amount of interaction data to build effective predictors. For example,
one amine receptor and one peptide receptor are hardly enough to characterize the entire
interactome of mice or rats.

• As the CGBVS method used a combination of a protein sequence kernel subsystem and a
chemical descriptor feature vector subsystem, any improvement in the chemical similarity
subsystem can contribute to enhanced CGBVS performance.

• An important distinction exists between the roles of CGBVS and LBVS. The CGBVS process
is responsible for the drug lead screening and discovery process. Once the set of potential
drug molecules to search through has been reduced via CGBVS to the neighborhood of a

112 Bioinformatics – Computational Biology and Modeling Unifying Bioinformatics and Chemoinformatics for Drug Design 15

newly discovered drug lead and a target protein, the optimization process can be handed
off to more focused LBVS methodologies.

Given these contexts, it is therefore worth continuing the investigation into new LBVS
methods.

5.2 Graph kernels for target property prediction
Kernel methods feature the convenient property that kernel functions can be designed as
compositions of other kernel functions. Therefore, the CGBVS method can also use any other
chemical kernel function, in combination with or as a replacement for the DragonX descriptors
used in the GPCR, polypharmacology, and chemical genomics studies.
Most LBVS approaches are used to describe Quantative Structure-Activity/Property
Relationships (QSAR/QSPR), which attempt to correlate quantities of ligand structural
features to properties, typically agonistic bioactivity. In recent years, chemical property
prediction via graph topology analysis, a type of QSAR, has received attention. Graph kernel
functions (hereafter “graph kernels”) transform a molecule’s atoms and bonds into respective
graph vertices and edges. Initial researches into graph kernels created a series of random
walks on a chemical graph, in order to explore the topology space of input molecules. The
resulting path frequencies were then used to assess the similarity of chemical structures.
The second generation of graph kernels expanded the type of subgraph being used for kernel
function calculation. Rather than walks on chemical graphs, Mahé and Vert expanded the
subgraph space to use subtrees existing in compound substructures (Mahé & Vert, 2009). For
subtree space T = {t1, t2, . . .}, a weight w(t) that evaluates the amount of subtree branching
and size complexity is assigned to each tree t, and the function ψt(G) counts the frequency of
occurrence of tree-pattern t in a molecular graph. The original subtree graph kernel for two
molecules M1 and M2 is:

K(M1, M2) = ∑
α1,α2∈M1,M2

Kt(tα1 , tα2) , (2)

where αi is an atom in a molecule, and tαi is the subtree rooted at αi. Based on the idea of
convolution kernels, the existing graph kernels have generally been designed for chemical
structures by computing a kernel for trees or paths. In other words, the graph kernels
are defined by incorporating a more fundamental kernel (similarity) KS(s1, s2) between
substructures s1, s2 ∈ S existing inside of graphs. Removing coefficients and constants,
and labelling the chemical graph of molecule Mi as Gi, the graph kernels are essentially
K(G1, G2) = ∑s1,s2∈G1,G2

KS(s1, s2). This (Ks) is precisely the meaning of Kt in the definition
above. The subtrees were found to improve the performance when predicting ligand
anti-cancer activity in multiple types of cell lines using the NCI-60 dataset described in Section
2.3.
A recent third generation of graph kernels next addressed the unresolved problem of chirality
(Brown et al., 2010). The constraints for matching subtrees were extended to enforce matching
atom and bond stereo configurations, meaning the calculation of Kt(t1, t2) was altered to check
for stereochemistry, and performance evaluation using a set of human vitamin D receptor
(hVDR) ligands with a large number of stereoisomers demonstrated a clear performance boost
in predicting bioactivity. hVDR ligands are being considered as therapeutic drugs because
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machine learning algorithm is inefficient. The development of new techniques to efficiently
sample the interaction space while maintaining the ability to discover novel drug leads
prospectively is a very open topic.
Second, CGBVS has shown that it is successful in identifying ligands that exhibit scaffold
hopping. It therefore reasons that CGBVS can be embedded as part of a ligand generation
algorithm. Development of ligand generation using the Particle Swarm Optimization class of
algorithms is another area of ongoing research (Schneider et al., 2009).
Third, one of the largest hurdles in evaluating protein-ligand interaction prediction techniques
is the availability of non-interacting data. Most scientific journal articles publish results
indicating successful ligand design and interaction strength. However, for the advancement
of in-silico screening techniques, the public availability of datasets of non-interacting pairs is equally
important. In the CGBVS study, non-interacting pairs were defined as randomly selected
protein-ligand pairs not existing in an interaction database. It is easily possible that such
data contains a fraction of false negatives.

5. Boosting CGBVS through improved LBVS methods

5.1 Why return to LBVS?
Earlier in the chapter, we showed how CGBVS outperformed LBVS in terms of target-ligand
interaction prediction performance. Even futher, the predicted interactions were tested in
wet laboratory experiments, and results showed that CGBVS was superior in prospective
interaction studies.
In this final section, we discuss new techniques for optimizing prediction of ligand properties,
such as binding affinity or bioactivity. The techniques fall under the framework of LBVS.
It may seem contradictory that, despite showing the superior performance of CGBVS over
LBVS, we return the discussion to recent advancements in LBVS methods. However, the
motivation for pushing the state of the art in LBVS is at least four-fold:

• There are many cell lines which are completely uncharacterized, and therefore, no
information about receptors and other proteins exists. In this situation, no specific
protein-ligand interaction information is available, but it is still possible to observe and
catalog perturbations to cell lines through the supply of various ligands, and build
predictive models for screening the next generation of ligands to test on the cell line. For
example, such perturbation modeling is useful for deciding on a subsequent selection of
chemical libraries to apply to chemical genomics assays.

• Even in cases where a few target proteins and resulting interactions are known, it may
be an insufficient amount of interaction data to build effective predictors. For example,
one amine receptor and one peptide receptor are hardly enough to characterize the entire
interactome of mice or rats.

• As the CGBVS method used a combination of a protein sequence kernel subsystem and a
chemical descriptor feature vector subsystem, any improvement in the chemical similarity
subsystem can contribute to enhanced CGBVS performance.

• An important distinction exists between the roles of CGBVS and LBVS. The CGBVS process
is responsible for the drug lead screening and discovery process. Once the set of potential
drug molecules to search through has been reduced via CGBVS to the neighborhood of a
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newly discovered drug lead and a target protein, the optimization process can be handed
off to more focused LBVS methodologies.

Given these contexts, it is therefore worth continuing the investigation into new LBVS
methods.

5.2 Graph kernels for target property prediction
Kernel methods feature the convenient property that kernel functions can be designed as
compositions of other kernel functions. Therefore, the CGBVS method can also use any other
chemical kernel function, in combination with or as a replacement for the DragonX descriptors
used in the GPCR, polypharmacology, and chemical genomics studies.
Most LBVS approaches are used to describe Quantative Structure-Activity/Property
Relationships (QSAR/QSPR), which attempt to correlate quantities of ligand structural
features to properties, typically agonistic bioactivity. In recent years, chemical property
prediction via graph topology analysis, a type of QSAR, has received attention. Graph kernel
functions (hereafter “graph kernels”) transform a molecule’s atoms and bonds into respective
graph vertices and edges. Initial researches into graph kernels created a series of random
walks on a chemical graph, in order to explore the topology space of input molecules. The
resulting path frequencies were then used to assess the similarity of chemical structures.
The second generation of graph kernels expanded the type of subgraph being used for kernel
function calculation. Rather than walks on chemical graphs, Mahé and Vert expanded the
subgraph space to use subtrees existing in compound substructures (Mahé & Vert, 2009). For
subtree space T = {t1, t2, . . .}, a weight w(t) that evaluates the amount of subtree branching
and size complexity is assigned to each tree t, and the function ψt(G) counts the frequency of
occurrence of tree-pattern t in a molecular graph. The original subtree graph kernel for two
molecules M1 and M2 is:

K(M1, M2) = ∑
α1,α2∈M1,M2

Kt(tα1 , tα2) , (2)

where αi is an atom in a molecule, and tαi is the subtree rooted at αi. Based on the idea of
convolution kernels, the existing graph kernels have generally been designed for chemical
structures by computing a kernel for trees or paths. In other words, the graph kernels
are defined by incorporating a more fundamental kernel (similarity) KS(s1, s2) between
substructures s1, s2 ∈ S existing inside of graphs. Removing coefficients and constants,
and labelling the chemical graph of molecule Mi as Gi, the graph kernels are essentially
K(G1, G2) = ∑s1,s2∈G1,G2

KS(s1, s2). This (Ks) is precisely the meaning of Kt in the definition
above. The subtrees were found to improve the performance when predicting ligand
anti-cancer activity in multiple types of cell lines using the NCI-60 dataset described in Section
2.3.
A recent third generation of graph kernels next addressed the unresolved problem of chirality
(Brown et al., 2010). The constraints for matching subtrees were extended to enforce matching
atom and bond stereo configurations, meaning the calculation of Kt(t1, t2) was altered to check
for stereochemistry, and performance evaluation using a set of human vitamin D receptor
(hVDR) ligands with a large number of stereoisomers demonstrated a clear performance boost
in predicting bioactivity. hVDR ligands are being considered as therapeutic drugs because
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of their ability to induce differentiation in leukemia cells and additional ability to suppress
transcription in cells of cancerous tumors.

5.3 State of the art: pushing graph kernels further
Here, we describe a new generation of graph kernels that are being actively researched by the
authors. One of the key drawbacks with existing graph kernels being applicable to large scale
drug optimization is that the graph information alone contains no electrostatic information
which is essential for optimizing protein-ligand binding. Molecular dynamics simulations
and docking programs often make large use of electrostatics in order to estimate binding
free energies and other properties; however, we have stated above that such programs are
unfeasible for scanning large chemical libraries. Another problem with existing graph kernel
QSAR methods is their inability to extract patterns from datasets that contain large amounts
of scaffold hopping. Therefore, a goal in the next generation of graph-based molecule kernel
methods is to incorporate electrostatic information in a two-dimensional graph kernel in
such a way that it can better describe the protein-ligand binding space and more accurately
correlate ligands to their properties.

5.4 The partial charge kernel
5.4.1 Motivations
The partial charge kernel is built using the following motivations:

• Substructures such as esters (-C(C=O)OC-) and thioesters (-C(C=O)SC-) contain the exact
same topology. Therefore, even if graph mismatching similar to the sequence mismatch
kernel used in Section 4 were introduced into existing graph kernel methods in order to
maximize subtree overlap, the distribution of atomic charge would still be different in the
two molecules. A mechanism for capturing this difference in atom charges is important.
For example, consider the figures of GPCR ligands clozapine and chlorpromazine in
Figure 4. They contain structural similarity, but their charge distribution is considerably
different. This difference in information is imporant for the effectiveness of machine
learning algorithms.

• The rigidity of molecules or their substructures directly impact their binding affinity
for a particular receptor. The existing graph kernels do not take rigidity into account.
For example, the structures of apomorphine and 7OH-DPAT shown in Figure 2 are
largely rigid structures, but there is a critical difference in the flexibility of the
methylenes (-CH2-) and methyls (-CH3) attached to the nitrogen atoms. Similarly, the
1,4-methyl-dinitrocyclohexane ring (-NCCN(C)CC) in clozapine (Figure 4) is more rigid
than the antenna (-CCCN(C)(C)) of chlorpromazine.

• Stereochemistry plays a critical role in the efficacy of drug molecules (Lam et al., 1994).
As with the chiral graph kernels recently developed, stereochemistry must be addressed.
Therefore, the partial charge kernel also contains a stereochemistry factor.

• Without sufficient path lengths in graph kernels, identical substituents in remote parts of
molecules anchored off of scaffolds are ignored. In previous studies, the walk and subtree
path lengths considered were typically no more than 6 bonds (7 atoms). However, this
is insufficient for molecules such as steroids typically composed of joined rings, in which
a path length of 6 bonds cannot “see” multiple distant substituents accurately. This is
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Fig. 4. The dopamine D1 and D5 ligands clozapine (left) and chlorpromazine (right), shown
with their structures on top and a distribution of their atomic charges on bottom. The ligands
are agonists for the D5 receptor, but antagonists for the D1 receptor.

also the case when considering a path of length six from the chloride atoms in Figure 4.
Therefore, a molecule partitioning algorithm is formulated into the charge kernels.

5.4.2 Design concepts
We will abbreviate many of the mathematical details of the partial charge kernels being
actively invesigated, and will instead provide descriptions of the concepts that they are meant
to address.
First, since the tree kernels were computationally difficult to apply for tree depths greater than
6 or 7, an initial idea is to apply maximum common substructure (MCS) algorithms to look at
the global maximum overlap and consider the atom-pairwise difference in charges over the
two molecules. This strategy suffers from the idea that core structure substituents in datasets
are highly varied, and the MCS will therefore erroneously discard these portions of molecules.
Therefore, let us define a componentization function CF(M) that divides a molecule. An
example of a well-known componentization function is the RECAP rule set for retrosynthetic
analysis (Lewell et al., 1998). For experiments in this chapter, CF breaks a molecule into its
ring systems and remaining components. Components consisting of a single hydrogen atom
are eliminated. Label the resulting set of components CF(M) = C = {c1, c2, ...cn}.
The partial charge kernel’s general idea is to evaluate the electrostatic differences in molecule
components. For input molecules M1 and M2, the similarity of components is summed:

KSUMCOMP(M1, M2) = ∑
c1∈CF(M1)

∑
c2∈CF(M2)

KMOL(c1, c2) (3)

Next, we proceed with the design of the molecule component similarity function KMOL(c1, c2).
The MCS is employed here in two ways. First, it provides the mapping of atoms in one
component to another, such that their difference in atomic charge can be evaluated. Second,
the ratio of the MCS and molecule sizes provides a quick measure of the significance of the
overlap computed. This ratio has a free parameter attached that lets one control how quickly
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of their ability to induce differentiation in leukemia cells and additional ability to suppress
transcription in cells of cancerous tumors.

5.3 State of the art: pushing graph kernels further
Here, we describe a new generation of graph kernels that are being actively researched by the
authors. One of the key drawbacks with existing graph kernels being applicable to large scale
drug optimization is that the graph information alone contains no electrostatic information
which is essential for optimizing protein-ligand binding. Molecular dynamics simulations
and docking programs often make large use of electrostatics in order to estimate binding
free energies and other properties; however, we have stated above that such programs are
unfeasible for scanning large chemical libraries. Another problem with existing graph kernel
QSAR methods is their inability to extract patterns from datasets that contain large amounts
of scaffold hopping. Therefore, a goal in the next generation of graph-based molecule kernel
methods is to incorporate electrostatic information in a two-dimensional graph kernel in
such a way that it can better describe the protein-ligand binding space and more accurately
correlate ligands to their properties.

5.4 The partial charge kernel
5.4.1 Motivations
The partial charge kernel is built using the following motivations:

• Substructures such as esters (-C(C=O)OC-) and thioesters (-C(C=O)SC-) contain the exact
same topology. Therefore, even if graph mismatching similar to the sequence mismatch
kernel used in Section 4 were introduced into existing graph kernel methods in order to
maximize subtree overlap, the distribution of atomic charge would still be different in the
two molecules. A mechanism for capturing this difference in atom charges is important.
For example, consider the figures of GPCR ligands clozapine and chlorpromazine in
Figure 4. They contain structural similarity, but their charge distribution is considerably
different. This difference in information is imporant for the effectiveness of machine
learning algorithms.

• The rigidity of molecules or their substructures directly impact their binding affinity
for a particular receptor. The existing graph kernels do not take rigidity into account.
For example, the structures of apomorphine and 7OH-DPAT shown in Figure 2 are
largely rigid structures, but there is a critical difference in the flexibility of the
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• Without sufficient path lengths in graph kernels, identical substituents in remote parts of
molecules anchored off of scaffolds are ignored. In previous studies, the walk and subtree
path lengths considered were typically no more than 6 bonds (7 atoms). However, this
is insufficient for molecules such as steroids typically composed of joined rings, in which
a path length of 6 bonds cannot “see” multiple distant substituents accurately. This is
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Fig. 4. The dopamine D1 and D5 ligands clozapine (left) and chlorpromazine (right), shown
with their structures on top and a distribution of their atomic charges on bottom. The ligands
are agonists for the D5 receptor, but antagonists for the D1 receptor.

also the case when considering a path of length six from the chloride atoms in Figure 4.
Therefore, a molecule partitioning algorithm is formulated into the charge kernels.

5.4.2 Design concepts
We will abbreviate many of the mathematical details of the partial charge kernels being
actively invesigated, and will instead provide descriptions of the concepts that they are meant
to address.
First, since the tree kernels were computationally difficult to apply for tree depths greater than
6 or 7, an initial idea is to apply maximum common substructure (MCS) algorithms to look at
the global maximum overlap and consider the atom-pairwise difference in charges over the
two molecules. This strategy suffers from the idea that core structure substituents in datasets
are highly varied, and the MCS will therefore erroneously discard these portions of molecules.
Therefore, let us define a componentization function CF(M) that divides a molecule. An
example of a well-known componentization function is the RECAP rule set for retrosynthetic
analysis (Lewell et al., 1998). For experiments in this chapter, CF breaks a molecule into its
ring systems and remaining components. Components consisting of a single hydrogen atom
are eliminated. Label the resulting set of components CF(M) = C = {c1, c2, ...cn}.
The partial charge kernel’s general idea is to evaluate the electrostatic differences in molecule
components. For input molecules M1 and M2, the similarity of components is summed:

KSUMCOMP(M1, M2) = ∑
c1∈CF(M1)

∑
c2∈CF(M2)

KMOL(c1, c2) (3)

Next, we proceed with the design of the molecule component similarity function KMOL(c1, c2).
The MCS is employed here in two ways. First, it provides the mapping of atoms in one
component to another, such that their difference in atomic charge can be evaluated. Second,
the ratio of the MCS and molecule sizes provides a quick measure of the significance of the
overlap computed. This ratio has a free parameter attached that lets one control how quickly
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to diminish the similarity of molecules based on the difference in their size and MCS. Such a
ratio is a modifying function, m fs(c1, c2), of a more fundamental similarity calculation using
the atom charges.

m fs(c1, c2) =
( 2 ∗ MCSA(c1, c2)

NA(c1) + NA(c2)

)φs
(4)

Finally, the molecule components and their charge distributions will be the information
used to build a fundamental kernel KFK(c1, c2). The partial charge kernel is designed
using convolution through its fundamental kernel KFK(c1, c2), much like the predecessor tree
kernels formulated in equation (2). Though only the size scaling modifier function has been
presented, any number of modifiers providing a multiplicative or additive effect could be
attached to the fundamental kernel. The molecule kernel is thus defined as

KMOL(c1, c2) = m f1 ◦ m f2 ◦ . . . ◦ m fm(KFK(c1, c2)) . (5)

We will abbreviate the further details of KFK(c1, c2) necessary to incorporate the various
motivations given above. In experimental results below, componentization, stereochemistry,
molecule size ratio, and rigidity are all formulated into KMOL.

5.5 Computational experiment performance
In computational experiments, we evaluate the ability of the partial charge kernels to calculate
the bioactivity of ligands of three different receptors in two different organisms. The first type,
ecdysteroids, are ligands that are necessary for shedding in arthropods. A set of 108 ligands
containing 11 stereoisomer groups was used. The second type of data used is human vitamin
D receptor ligands, whose benefits have been discussed above. Including the endogenous
hVDR ligand, a total of 69 ligands containing 18 stereoisomer groups were used. Finally,
a well known dataset of 31 human steroids which bind to corticosteroid binding globulin
(CBG) is evaluated. The dataset contains two pairs of stereoisomers. More details about all
three datasets can be found in Brown et al. (2010).
For each dataset, the training and testing dataset are randomly divided using a 70%/30% split,
and this randomized split process is repeated five times. First, internal cross-validation tests
are done on the training set. Then, using the entire training dataset (of a particular split), a
predictive model is built, and bioactivity is predicted for each ligand in the split’s test dataset.
To independently evaluate the training set cross-validation and test set prediction
performances, two correlation metrics are used. The training dataset uses the q2 metric:

q2 = 1 − ∑(yi − ŷi)
2

∑(yi − ȳ)2 , (6)

where yi is sample (compound) i’s known experimental value (activity level or target
property), ŷi is its value output by a predictor during cross-validation, and ȳ is the known
experimental average value. The test dataset uses the R metric:

R =
∑(yi − ȳ)(ŷi − ¯̂y)√

∑(yi − ȳ)2 ∑(ŷi − ¯̂y)2
, (7)
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where ¯̂y is the average of the predicted values. The maximum values of each of the two
correlation metrics are 1. The correlation metrics can take on negative values as well, which
suggests that a model has poor predictive ability.
To evaluate the partial charge kernels, we consider four criteria:

• q2 ≥ 0, R2 ≥ 0

• q2 ≥ 0.5, R2 ≥ 0

• q2 ≥ 0, R2 ≥ 0.6 (R ≥ 0.774)

• q2 ≥ 0.5, R2 ≥ 0.6

The first criterion is a very simple measure to ensure that a model has some reasonable ability
to correlate molecules to their bioactivities. The second and third criteria are more strict
measures that have been recommended in order for a QSAR model to be applicable to drug
development at an industrial scale. The fourth criterion enforces both the second and third
criteria.
Results of partial charge kernel bioactivity prediction experiments on the human CGB steroids
are highly impressive. Several thousand models satisfied the second requirement of training
data cross-validation performance, and a number of those had R values over 0.85, satisfying
the fourth set of requirements as well. Though the performance is impressive, optimistic
caution must be exercised because the amount of data available is rather small compared to
other datasets. Results on the ecdysteroid dataset, over three times as large as the CGB steroid
dataset, demonstrate the point. Experiments from the ecdysteroid dataset (using random
train-test splits) produce many models with performance that satisfy both the second and
third requirements, but the number of models which satisfy both requirements is limited.
Still, the prediction performances obtained are better than the graph kernels previously
reported. The use of atomic charge information and localized analysis (via componentization
functions) in the kernel function results in prediction improvement. Finally, experiments done
using the hVDR ligand dataset, which contains a rigid core structure, show that accounting
for differences in partial charges and rigidity in components is important for in-silico drug
optimization. For three different hVDR dataset train-test splits tested, partial charge kernel
QSARs built achieve q2 ≥ 0.7 performance. Some of those QSAR models come close to
meeting the fourth criterion, such as a QSAR we could derive with performance (q2 =
0.69, R = 0.745). This is considerably better performance than the chiral graph kernels we
previously developed, which achieved predictions in the range of (q2 = 0.5, R = 0.6).

5.6 Ongoing developments in partial charge kernels
The partial charge kernels have shown improvement in prediction performance over the
basic graph kernels. A number of designs and tests are being planned to bolster prediction
performance.
First is the idea of polarity distribution. If the variance of average component charge is
large, then there are more likely to be multiple sites in the ligand responsible for its activity
and polypharmacology. The distance between components and their average charge must
be correlated somehow. Second, a hybrid of the graph kernels and partial charge kernel
has been proposed. In this kernel function scheme, the graph kernels are employed as in
their original design (Brown et al., 2010), but instead of using a 0/1 value when calculating
the kernel function for a pair of atoms, their difference in charge is used. Finally, as most
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to diminish the similarity of molecules based on the difference in their size and MCS. Such a
ratio is a modifying function, m fs(c1, c2), of a more fundamental similarity calculation using
the atom charges.

m fs(c1, c2) =
( 2 ∗ MCSA(c1, c2)
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Finally, the molecule components and their charge distributions will be the information
used to build a fundamental kernel KFK(c1, c2). The partial charge kernel is designed
using convolution through its fundamental kernel KFK(c1, c2), much like the predecessor tree
kernels formulated in equation (2). Though only the size scaling modifier function has been
presented, any number of modifiers providing a multiplicative or additive effect could be
attached to the fundamental kernel. The molecule kernel is thus defined as

KMOL(c1, c2) = m f1 ◦ m f2 ◦ . . . ◦ m fm(KFK(c1, c2)) . (5)

We will abbreviate the further details of KFK(c1, c2) necessary to incorporate the various
motivations given above. In experimental results below, componentization, stereochemistry,
molecule size ratio, and rigidity are all formulated into KMOL.

5.5 Computational experiment performance
In computational experiments, we evaluate the ability of the partial charge kernels to calculate
the bioactivity of ligands of three different receptors in two different organisms. The first type,
ecdysteroids, are ligands that are necessary for shedding in arthropods. A set of 108 ligands
containing 11 stereoisomer groups was used. The second type of data used is human vitamin
D receptor ligands, whose benefits have been discussed above. Including the endogenous
hVDR ligand, a total of 69 ligands containing 18 stereoisomer groups were used. Finally,
a well known dataset of 31 human steroids which bind to corticosteroid binding globulin
(CBG) is evaluated. The dataset contains two pairs of stereoisomers. More details about all
three datasets can be found in Brown et al. (2010).
For each dataset, the training and testing dataset are randomly divided using a 70%/30% split,
and this randomized split process is repeated five times. First, internal cross-validation tests
are done on the training set. Then, using the entire training dataset (of a particular split), a
predictive model is built, and bioactivity is predicted for each ligand in the split’s test dataset.
To independently evaluate the training set cross-validation and test set prediction
performances, two correlation metrics are used. The training dataset uses the q2 metric:

q2 = 1 − ∑(yi − ŷi)
2

∑(yi − ȳ)2 , (6)

where yi is sample (compound) i’s known experimental value (activity level or target
property), ŷi is its value output by a predictor during cross-validation, and ȳ is the known
experimental average value. The test dataset uses the R metric:

R =
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where ¯̂y is the average of the predicted values. The maximum values of each of the two
correlation metrics are 1. The correlation metrics can take on negative values as well, which
suggests that a model has poor predictive ability.
To evaluate the partial charge kernels, we consider four criteria:

• q2 ≥ 0, R2 ≥ 0

• q2 ≥ 0.5, R2 ≥ 0

• q2 ≥ 0, R2 ≥ 0.6 (R ≥ 0.774)

• q2 ≥ 0.5, R2 ≥ 0.6

The first criterion is a very simple measure to ensure that a model has some reasonable ability
to correlate molecules to their bioactivities. The second and third criteria are more strict
measures that have been recommended in order for a QSAR model to be applicable to drug
development at an industrial scale. The fourth criterion enforces both the second and third
criteria.
Results of partial charge kernel bioactivity prediction experiments on the human CGB steroids
are highly impressive. Several thousand models satisfied the second requirement of training
data cross-validation performance, and a number of those had R values over 0.85, satisfying
the fourth set of requirements as well. Though the performance is impressive, optimistic
caution must be exercised because the amount of data available is rather small compared to
other datasets. Results on the ecdysteroid dataset, over three times as large as the CGB steroid
dataset, demonstrate the point. Experiments from the ecdysteroid dataset (using random
train-test splits) produce many models with performance that satisfy both the second and
third requirements, but the number of models which satisfy both requirements is limited.
Still, the prediction performances obtained are better than the graph kernels previously
reported. The use of atomic charge information and localized analysis (via componentization
functions) in the kernel function results in prediction improvement. Finally, experiments done
using the hVDR ligand dataset, which contains a rigid core structure, show that accounting
for differences in partial charges and rigidity in components is important for in-silico drug
optimization. For three different hVDR dataset train-test splits tested, partial charge kernel
QSARs built achieve q2 ≥ 0.7 performance. Some of those QSAR models come close to
meeting the fourth criterion, such as a QSAR we could derive with performance (q2 =
0.69, R = 0.745). This is considerably better performance than the chiral graph kernels we
previously developed, which achieved predictions in the range of (q2 = 0.5, R = 0.6).

5.6 Ongoing developments in partial charge kernels
The partial charge kernels have shown improvement in prediction performance over the
basic graph kernels. A number of designs and tests are being planned to bolster prediction
performance.
First is the idea of polarity distribution. If the variance of average component charge is
large, then there are more likely to be multiple sites in the ligand responsible for its activity
and polypharmacology. The distance between components and their average charge must
be correlated somehow. Second, a hybrid of the graph kernels and partial charge kernel
has been proposed. In this kernel function scheme, the graph kernels are employed as in
their original design (Brown et al., 2010), but instead of using a 0/1 value when calculating
the kernel function for a pair of atoms, their difference in charge is used. Finally, as most
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of the individual design concepts used in the partial charge kernel each contain one or
two parameters, investigation of optimal parameter sets which form the pareto optimal is
important in order to bound the number of parameter sets applied to new datasets for
predictive model construction.
In terms of datasets, the hVDR ligands and ecdysteroids provide a nice starting point of
investigating a single particular receptor. By using the known ligands for each GPCR in
the GLIDA database, we can construct a chemical genomics-type of predictive model which
could be applied for screening molecules with optimum bioactivity. Though the hVDR and
ecdysteroid ligands contain a wide variety of bioactivities and structures, the number of
compounds available is relatively small compared to some other databases. In this respect, it
is important to validate the partial charge kernel’s ability to show similarly good performance
on larger data sets.

6. Conclusion

In this chapter, we have considered a number of issues and developments centered
around in-silico design of drug molecules. We demonstrated how the unification of
bioinformatics and chemoinformatics can produce a synergistic effect necessary for the mining
of protein-ligand interaction space. Yet, development of algorithms in each of bioinformatics
and chemoinformatics must continue in order to address life science informatics problems of
larger scale. Chemoinformatic algorithm advancement through the partial charge kernels, in
planning for incorporation into the CGBVS framework demonstrated, is an example of such
algorithm advancement. We hope that the survey provided here has provided stimulation to
the reader to investigate and contribute to the complex yet extremely exciting field of in-silico
drug design.
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1. Introduction

In general, when a new DNA sequence is given, the first step taken by a biologist would be
to compare the new sequence with sequences that are already well studied and annotated.
Sequences that are similar would probably have the same function, or, if two sequences from
different organisms are similar, there may be a common ancestor sequence.
Traditionally, this is made by using a distance function between the DNA chains, which implies
in most cases that we apply it between two DNA sequences and try to interpret the obtained
score. The standard method for sequence comparison is by sequence alignment. Sequence
alignment is the procedure of comparing two sequences (pairwise alignment) or more
sequences (multiple alignment) by searching for a series of individual characters or characters
patterns that are in the same order in the sequences. Algorithmically, the standard pairwise
alignment method is based on dynamic programming; the method compares every pair of
characters of the two sequences and generates an alignment and a score, which is dependent
on the scoring scheme used, i.e. a scoring matrix for the different base-pair combinations,
match and mismatch scores, or a scheme for insertion or deletion (gap) penalties. The
underlying string distance is called edit distance or also Levenshtein distance.
Although dynamic programming for sequence alignment is mathematically optimal, it is far
too slow for comparing a large number of bases. Typical DNA database today contains billions
of bases, and the number is still increasing rapidly. To enable sequence search and comparison
to be performed in a reasonable time, fast heuristic local alignment algorithms have been
developed, e.g. BLAST, freely available at http://www.ncbi.nlm.nih.gov/BLAST.
With respect to the standard approach to the alignment and string matching problems as dealt
with in computer science, alternative approaches might be explored in biology, provided one
is able to give a positive answer to the following question: can one exhibit a sequence distance
which is at the same time easily computed and non-trivial? The ranking of this problem on
the first position in two lists of major open problems in bioinformatics (J.C. Wooley. Trends in
computational biology: a summary based on a RECOMB plenary lecture. J. Comput. Biology,
6, 459-474, 1999 and E.V. Koonin. The emerging paradigm and open problems in comparative

6



22 Bioinformatics

Yabuuchi, H., Niijima, S., Takematsu, H., Ida, T., Hirokawa, T., Hara, T., Ogawa, T., Minowa,
Y., Tsujimoto, G. & Okuno, Y. (2011). Analysis of multiple compound-protein
interactions reveals novel bioactive molecules., Molecular Systems Biology 7: 472.

120 Bioinformatics – Computational Biology and Modeling

0

Estimating Similarities in DNA Strings Using the
Efficacious Rank Distance Approach

Liviu P. Dinu1 and Andrea Sgarro2

1University of Bucharest, Faculty of Mathematics and Computer Science,
Academiei, Bucharest

2University of Trieste + CBM, Area Science Park,
Trieste

1Romania
2Italy

1. Introduction

In general, when a new DNA sequence is given, the first step taken by a biologist would be
to compare the new sequence with sequences that are already well studied and annotated.
Sequences that are similar would probably have the same function, or, if two sequences from
different organisms are similar, there may be a common ancestor sequence.
Traditionally, this is made by using a distance function between the DNA chains, which implies
in most cases that we apply it between two DNA sequences and try to interpret the obtained
score. The standard method for sequence comparison is by sequence alignment. Sequence
alignment is the procedure of comparing two sequences (pairwise alignment) or more
sequences (multiple alignment) by searching for a series of individual characters or characters
patterns that are in the same order in the sequences. Algorithmically, the standard pairwise
alignment method is based on dynamic programming; the method compares every pair of
characters of the two sequences and generates an alignment and a score, which is dependent
on the scoring scheme used, i.e. a scoring matrix for the different base-pair combinations,
match and mismatch scores, or a scheme for insertion or deletion (gap) penalties. The
underlying string distance is called edit distance or also Levenshtein distance.
Although dynamic programming for sequence alignment is mathematically optimal, it is far
too slow for comparing a large number of bases. Typical DNA database today contains billions
of bases, and the number is still increasing rapidly. To enable sequence search and comparison
to be performed in a reasonable time, fast heuristic local alignment algorithms have been
developed, e.g. BLAST, freely available at http://www.ncbi.nlm.nih.gov/BLAST.
With respect to the standard approach to the alignment and string matching problems as dealt
with in computer science, alternative approaches might be explored in biology, provided one
is able to give a positive answer to the following question: can one exhibit a sequence distance
which is at the same time easily computed and non-trivial? The ranking of this problem on
the first position in two lists of major open problems in bioinformatics (J.C. Wooley. Trends in
computational biology: a summary based on a RECOMB plenary lecture. J. Comput. Biology,
6, 459-474, 1999 and E.V. Koonin. The emerging paradigm and open problems in comparative

6



2 Will-be-set-by-IN-TECH

genomics. Bioinformatics, 15, 265-266, 1999) are reasons enough to say that the DNA sequence
comparison is actually an exciting problem which has been long waiting for new approaches.
We present in this chapter new alternatives: first, we introduce a low-complexity but
non-trivial distance for strings, called rank distance, and advocate its use in biology; we give
preliminary experimental validations on biological data. Our method is easy to implement,
does not use the standard alignment principle, and has an extremely good computational
behavior. Another advantage of our method is that it imposes minimal hardware demands:
it runs in optimal conditions on modest computers, reducing the costs and increasing the
number of possible users. So, for example, the time needed to compare a DNA string of 45.000
nucleotides length with other 150 DNA strings (with similar length), by using an laptop with
224 MB RAM and 1.4 GHz processor is no more than six seconds.
To measure the distance between two strings, we use the following strategy: we scan (from left
to right ) both strings and for each letter from the first string we count the number of elements
between its position in first string and the position of its first occurrence in the second string.
Finally, we sum all these scores and obtain the rank distance.
Clearly, the rank distance gives a score zero only to letters which are in the same position
in both strings, as Hamming distance does (we recall that Hamming distance is the number
of positions where two strings of the same length differ). On the other hand, an important
aspect is that the reduced sensitivity of the rank distance w.r. to deletions and insertions
is of paramount importance, since it allows us to make use of ad hoc extensions to arbitrary
strings, such as do not affect its low computational complexity, unlike what happens with
the extensions of the Hamming distance, mathematically optimal but computationally too
heavy, which lead to the edit-distance, or Levenshtein distance, and which are at the base of the
standard alignment principle. So, the rank distance sides with Hamming distance rather than
Levenshtein distance as far as computational complexity is concerned: the fact that in the
Hamming and in the rank case the median string problem is tractable, while in the edit case it
is is NP-hard, is a very significant indicator.
Rank distance, as most tools of this kind, provides an evaluation which is strictly limited to
the closeness of two objects in themselves, without looking at the relation of the respective
objects with the rest of universe. We take in this work also an alternative point of view, such
as not to neglect the relation which the two objects (the two DNA strings) bear with respect
to the universe of all string we are considering (even if the absolut distance is large, it may
relatively small, when the two objects are situated in a sparse area of the universe, with many
"holes" and with few "neighbour" strings. We make use of the notion of distinguishability
between two sequences (basically a Shannon-theoretic notion closely related to the problem of
the median) and we investigate it in the metric space of rank distances, thinking of application
in biology, first of all in DNA word design, a form of coding for biological computers where
the codewords are DNA strings. In a way, the rank distance is local, as most distances are,
while the rank distinguishability is a global non-local variant thereof. Actually, we think that
this is in line also with more traditional bioinformatics problems: when a new DNA sequence
is given, the first step taken by a biologist is to compare the new sequence with sequences that
are already well studied and annotated. Sequences that are similar would probably have the
same function, and the similarity of two sequences should be related to the sparseness of the
neighbouring space of strings.
The tractability of the median string via rank distances offers us the possibility to investigate a
well studied theme: to investigate the median and the centre of a given multiset of sequences
by using our "global" approach. At this stage, there appear to be still many open problems,
and the results we are able to exhibit are just preliminary. Also, we can use this approach to
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deal with a multi-combining categorization schema, in the sense of multi-agents. The research
is supported by new experimantal data.

2. Rank distance

To measure the distance between two strings, we use the following strategy: we scan (from left
to right ) both strings and for each letter from the first string we count the number of elements
between its position in first string and the position of its first occurrence in the second string.
Finally, we sum all these scores and obtain the rank distance.
Initially, rank distances between strings were used in computational linguistics, cf. (13), (14);
later their use was extended to such application domains as is bioinformatics, cf. (17), or
authorship identification, cf. (20). The reasons for the practical success of the rank distance
are basically two:
i) it is quite quick to compute
ii) it is robust with respect to small modifications of the sequences
As for the first point, the computational effort is only linear in the sequence length n, as
happens with the unsophisticated Hamming distance, but unlike what happens with the more
sophisticated edit distance, whose computational complexity is quadratic in n, cf. (8). As for the
second point, think e.g. of a sequence x and “by mistake" rotate it one position to the right to
get y: if, say, x is 01 repeated n/2 times the Hamming distance between x and y is as high as n,
and so the percentage “error" scaled to the maximal possible value for Hamming distances is
as high as 100%. Instead, while the rank distance is still linear in n, the percentage error goes
to zero with the sequence length n, and so is practically negligible for very long sequences as
are, say, DNA strings.
In other words, the rank distance measures the "gap" between the positions of a letter in the
two given strings, and then add these measures. In a way, we can say that the rank distance
gives us the total non-alignment score between two sequences.
Clearly, the rank distance gives a score zero only to letters which are in the same position
in both strings, as Hamming distance does (we recall that Hamming distance is the number
of positions where two strings of the same length differ). On the other hand, an important
aspect is that the reduced sensitivity of the rank distance w.r. to deletions and insertions
(cf. the paragraph at the end of this subsection) is of paramount importance, since it
allows us to make use of ad hoc extensions to arbitrary strings, such as do not affect its
low computational complexity, unlike what happens with the extensions of the Hamming
distance, mathematically optimal but computationally heavy, which lead to the edit-distance,
or Levenshtein distance, and which are at the base of the standard alignment principle. So,
rank distance sides with Hamming distance rather than Levenshtein distance as far as
computational complexity is concerned: the fact that in the Hamming and in the rank case
the median string problem is tractable (16), while in the edit case it is is NP-hard (23), is a very
significant indicator.

2.1 Preliminaries and formal definitions
The rank distance is an ordinal distance tightly related to the so-called Spearman’s footrule
1, which has long been used in non-parametric statistics. However, the latter evaluates
derangements between permutations of the integers 1, 2, . . . , n, rather than distances

1 Both Spearman’s footrules and binary Hamming distances are a special case of a well-known metric
distance called sometimes taxi distance, which is known to be equivalent to the usual Euclidian
distance. Computationally, taxi distance is obviously linear.
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(dissimilarities) between sequences on a fixed and known alphabet, as is the case with rank
distances 2. Unlike other ordinal distances, the Spearman’s footrule is linear in n, and so
very easy to compute. Its average value is at two-thirds of the way to the maximum value
(both are quadratice in n); this is because, in a way, the Spearman footrule becomes rather
"undiscriminating" for highly different orderings. Rank distance has the same drawbacks and
the same advantages of Spearman’s foootrule. As for "classical" ordinal distances for integers,
with averages values, maximal values, etc., the reader is referred to the basic work (11).
Let us go back to strings. Let us choose a finite alphabet, say {A, C, G, T} as relevant for
DNA strings, and two strings on that alphabet, which for the moment will be constrained
to be a permutation of each other (i.e. they have the same composition or the same Parikh
vector). E.g. take the two strings of length 6, AACGTT and CTGATA; number the occurrences
of repeated letters in increasing order to obtain A1 A2C1G1T1T2 and C1T1G1 A1T2 A2. Now,
proceed as follows: in the first sequence A1 is in position 1, while it is in position 4 in the
second sequence, and so the difference is 3; compute the difference in positions for all letters
and sum them. In this case the differences are 3, 4, 2, 1, 3, 1 and so the distance is 14. Even
if the computation of the rank distance as based directly on its definition may appear to be
quadratic, we shall exhibit below two algorithms which take it back to linear complexity.
In computational linguistics the rank distance for strings without repetitions had been enough.
In a way, indexing converts a sequence with repetitions into a sequence without repetitions, in
which the k occurrence of a letter a are replaced by single occurrences of the k indexed letters
a1, a2, . . . , ak. Let u = x1x2 . . . xn and v = y1y2 . . . ym be two strings of lengths n and m,
respectively. For an element xi ∈ u we define its order or rank by ord(xi|u) = i: we stress that
the rank of xi is its position in the string, counted from the left to the right, after indexing, so
that for example the second T in the string CTGATA has rank 5.
Note that some for arbitrary strings (indexed) occurrences appear in both strings, while some
other are unmatched, i.e. they appear only in one of the two strings. In definition (1) the last
two summations refer to these unmatched occurrences. More precisely, the first summation
on x ∈ u ∩ v refers to occurrences x which are common to both strings u and v, the second
summation on x ∈ u \ v refers to occurrences x which appear in u but not in v, while the third
summation on x ∈ v \ u refers to occurrences x which appear in v but not in u.

Definition 1. The rank distance between two strings u and v is given by:

Δ(u, v) = ∑
x∈u∩v

|ord(x|u)− ord(x|v)|+ ∑
x∈u\v

ord(x|u)

+ ∑
x∈v\u

ord(x|v). (1)

Example 1. Let w1 = abbab and w2 = abbbac be two strings. Their corresponding indexed strings
will be: w1 = a1b1b2a2b3 and w2 = a1b1b2b3a2c1, respectively. So, Δ(w1, w2) = Δ(w1, w2) = 8

Remark 1. The ad hoc nature of the rank distance resides in the last two summations in (4.3), where
one compensates for unmatched letters, i.e. indexed letters which appear only in one of the two strings.

Since (4.3) penalizes more heavily unmatched letters in the initial part of strings, and this is not
the case in biology, we shall add to this value the value given by applying the rank distance to
the reverse strings (mirror images). In Section 2.3, up to a trivial normalization, we shall use
the more “balanced” variant of the rank distance which follows:

2 Rank distance can be extended to (potentially) infinite alphabets, but then its computational complexity
increases. This generalization is not needed in biological applications, e.g. in the case of DNA strings.
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Definition 2. The average rank distance for strings u and v is defined as:

Δav(u, v) =
Δ(u, v) + Δ

(
mi(u), mi(v)

)

2
(2)

where mi(u) is the mirror image of the string u.

The modified rank distance keeps all the metric properties of the “unbalanced” rank distance
(1) as used in computational linguistics.
Deletions and insertions are less worrying in the rank case rather than in the Hamming case:
if one incorrectly moves a symbol by, say, one position, the Hamming distance loses any
track of it, but rank distance does not, and the mistake is quite light. So, generalizations
in the spirit of the edit distance are unavoidable in the Hamming case, even if they are
computationally very demanding, while in the rank case we may think of ad hoc ways-out,
which are computationally convenient.

2.2 The complexity of the rank distance
In the DNA sequence analysis, the strings may be huge (for example, for the human genome,
the number of nucleotide bases is around 3 × 109), so it is necessary to have good algorithms
(regarding time and space complexity) in order to calculate the rank distance between two
sequences.
Even if the computation of the rank distance as based directly on its definition may appear to
be quadratic, we shall exhibit below two algorithms which take it back to linear complexity.
In (Dinu and Sgarro, 2006) two time linear algorithms to compute (1)are introduced: the first
algorithm is a linear time algorithm and it works with a linear supplementary space; basically,
it takes back rank distances to the computation of taxi-distances (cf. footnote 1), which are
obviously linear. The second one, directly based on the definition of the rank distance, is a
little slower than the first, but its advantage is that it has no need of supplementary space.
Even if we refer to the quaternary alphabet as needed for DNA strings, the generalization to
arbitrary finite alphabets is straightforward.
We mention a convenient property of the rank distance, which allows one to get to get rid of
equal aligned bases, in the sense that equal bases are replaced by a new symbol, a dash say,
while unequal bases keep their original ranks:

1 2 3 4 5 6
u = a a g c c t
v = c a a c g t

⇒
1 2 3 4 5 6

ū = a − g − c −
v̄ = c − a − g −

If we denote by ū and v̄ the two modified strings, we have, as easily checked: Δ(u, v) =
Δ(ū, v̄). Clearly, to compute the second distance one can forget about dashes.

Algorithm 1 (linear in time and space)

• We use four arrays A[][],C[][],G[][],T[][] with 2 rows and max(|u|, |v|) columns (bars
denote length).

• In each array we shall memorize the following data: A[1][i] will contain the rank of i-th ’a’
in the first string and A[2][i] will contain the rank of i-th ’a’ in the second string (it will be
0 if there are no more ’a’-s). Analogously for C[][], G[][] and T[][].
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ord(x|u)

+ ∑
x∈v\u

ord(x|v). (1)

Example 1. Let w1 = abbab and w2 = abbbac be two strings. Their corresponding indexed strings
will be: w1 = a1b1b2a2b3 and w2 = a1b1b2b3a2c1, respectively. So, Δ(w1, w2) = Δ(w1, w2) = 8

Remark 1. The ad hoc nature of the rank distance resides in the last two summations in (4.3), where
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Since (4.3) penalizes more heavily unmatched letters in the initial part of strings, and this is not
the case in biology, we shall add to this value the value given by applying the rank distance to
the reverse strings (mirror images). In Section 2.3, up to a trivial normalization, we shall use
the more “balanced” variant of the rank distance which follows:

2 Rank distance can be extended to (potentially) infinite alphabets, but then its computational complexity
increases. This generalization is not needed in biological applications, e.g. in the case of DNA strings.
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Definition 2. The average rank distance for strings u and v is defined as:

Δav(u, v) =
Δ(u, v) + Δ

(
mi(u), mi(v)

)

2
(2)

where mi(u) is the mirror image of the string u.

The modified rank distance keeps all the metric properties of the “unbalanced” rank distance
(1) as used in computational linguistics.
Deletions and insertions are less worrying in the rank case rather than in the Hamming case:
if one incorrectly moves a symbol by, say, one position, the Hamming distance loses any
track of it, but rank distance does not, and the mistake is quite light. So, generalizations
in the spirit of the edit distance are unavoidable in the Hamming case, even if they are
computationally very demanding, while in the rank case we may think of ad hoc ways-out,
which are computationally convenient.

2.2 The complexity of the rank distance
In the DNA sequence analysis, the strings may be huge (for example, for the human genome,
the number of nucleotide bases is around 3 × 109), so it is necessary to have good algorithms
(regarding time and space complexity) in order to calculate the rank distance between two
sequences.
Even if the computation of the rank distance as based directly on its definition may appear to
be quadratic, we shall exhibit below two algorithms which take it back to linear complexity.
In (Dinu and Sgarro, 2006) two time linear algorithms to compute (1)are introduced: the first
algorithm is a linear time algorithm and it works with a linear supplementary space; basically,
it takes back rank distances to the computation of taxi-distances (cf. footnote 1), which are
obviously linear. The second one, directly based on the definition of the rank distance, is a
little slower than the first, but its advantage is that it has no need of supplementary space.
Even if we refer to the quaternary alphabet as needed for DNA strings, the generalization to
arbitrary finite alphabets is straightforward.
We mention a convenient property of the rank distance, which allows one to get to get rid of
equal aligned bases, in the sense that equal bases are replaced by a new symbol, a dash say,
while unequal bases keep their original ranks:

1 2 3 4 5 6
u = a a g c c t
v = c a a c g t

⇒
1 2 3 4 5 6

ū = a − g − c −
v̄ = c − a − g −

If we denote by ū and v̄ the two modified strings, we have, as easily checked: Δ(u, v) =
Δ(ū, v̄). Clearly, to compute the second distance one can forget about dashes.

Algorithm 1 (linear in time and space)

• We use four arrays A[][],C[][],G[][],T[][] with 2 rows and max(|u|, |v|) columns (bars
denote length).

• In each array we shall memorize the following data: A[1][i] will contain the rank of i-th ’a’
in the first string and A[2][i] will contain the rank of i-th ’a’ in the second string (it will be
0 if there are no more ’a’-s). Analogously for C[][], G[][] and T[][].
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• Finally we compute the sum:

∑
i
|A[1][i]− A[2][i]|+ ∑

i
|C[1][i]− C[2][i]|+

+∑
i
|G[1][i]− G[2][i]|+ ∑

i
|T[1][i]− T[2][i]|

Example 2.
1 2 3 4 5 6

ū = a − g − c −
v̄ = c − a − g −

A =
1
3 , C =

5
1 , G =

2
4 So, Δ(u, v) = 2 + 4 + 2 = 8

Remark 2. The time complexity3 of algorithm 1 is O(|u|+ |v|).
Remark 3. In this algorithm, the elements of the matrixes A, C, G and T are integers. The matrixes
have 2 rows and max(|u|a, |v|a), max(|u|c, |v|c), max(|u|g, |v|g) and max(|u|t, |v|t) columns,
respectively. The total number of columns of the 4 matrixes is at most equal to |u| + |v|. So, the
supplementary space is O(|u|+ |v|).
Algorithm 2: (without supplementary space )

• We’ll use eight positive variables ia, ic, ig, it and ja, jc, jg, jt which will point to the last a, c,
g or t read in the first (i) and second (j) string (initially all are 0)

• So, if we read in first string an ’a’, we search in the second string the next ’a’ starting from
the position ja; if it is found, we make the difference |ja − ia| and add it to the final sum.
Analogous with c, g and t.

2.3 Experimental data
To test our method in bioinformatics, we use a classical problem: the phylogenetic analysis of
the mammals.
We use whole mitochondrial DNA sequence genome of the following 22 mammals available
in the EMBL database: human (Homo sapiens, V00662), common chimpanzee (Pan
troglodytes, D38116), pigmy chimpanzee (Pan paniscus, D38113), gorilla (Gorilla gorilla,
D38114), orangutan (Pongo pygmaeus, D38115), sumatran orangutan (Pongo pygmaeus
abelii, X97707), gibbon (Hylobates lar, X99256), horse (Equus caballus, X79547), donkey
(Equus asinus, X97337), Indian rhinoceros (Rhinoceros unicornis, X97336), white rhinoceros
(Ceratotherium simum, Y07726), harbor seal (Phoca vitulina, X63726), gray seal (Halichoerus
grypus, X72004), cat (Felis catus, U20753), fin whale (Balenoptera physalus, X61145),
blue whale (Balenoptera musculus, X72204), cow (Bos taurus, V00654), sheep (Ovis aries,
AF010406), rat (Rattus norvegicus, X14848), mouse (Mus musculus, V00711), North American
opossum (Didelphis virginiana, Z29573), and platypus (Ornithorhyncus anatinus, X83427).
Our approach is the following: for any two mtDNA sequences used in this study, we compute
the normalized average rank distance. To normalize the average rank distance as in (2), we
divide Δav by the maximum possible value which can be reached by Δav. The maximum

3 The so-called bit complexity of algorithm 1 is n log n rather then n, due to the fact that we have to
write down longer and longer integer representations, e.g. decimal representations, for the indexes.
The algorithmic complexity referred to here is, however, the standard one, since in practice the extra
complexity due to integer indexing is neglected in current computational models.
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Fig. 1. The mammals phylogenies build from complete mammalian mtDNA sequences using
rank distance

value4 between two strings u and v is equal to |u|(|u|+1)+|v|(|v|+1)
2 , as soon checked. So, the

normalized average rank distance between two strings is:

Δav(u, v) =
Δ(u, v) + Δ(mi(u), mi(v))
|u|(|u|+ 1) + |v|(|v|+ 1)

(3)

In our experiment, the usual length of a mtDNA sequence is around 214 letters. Using the
normalized Δav, we computed the distance matrixes for all mammal mitochondrial DNAs

4 Actually, this is the maximum value when the alphabet size is n or more, else it is only an upper bound.
Even for “small alphabet sizes”, however, the maximum value is quadratic in n: think e.g. of two
quaternary sequences rarbrcrd and rbrarcrd, obtained by juxtaposition of four runs of the same letter
repeated n/4 times, at rank distance n2/2, as soon checked.
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ū = a − g − c −
v̄ = c − a − g −

A =
1
3 , C =

5
1 , G =

2
4 So, Δ(u, v) = 2 + 4 + 2 = 8

Remark 2. The time complexity3 of algorithm 1 is O(|u|+ |v|).
Remark 3. In this algorithm, the elements of the matrixes A, C, G and T are integers. The matrixes
have 2 rows and max(|u|a, |v|a), max(|u|c, |v|c), max(|u|g, |v|g) and max(|u|t, |v|t) columns,
respectively. The total number of columns of the 4 matrixes is at most equal to |u| + |v|. So, the
supplementary space is O(|u|+ |v|).
Algorithm 2: (without supplementary space )

• We’ll use eight positive variables ia, ic, ig, it and ja, jc, jg, jt which will point to the last a, c,
g or t read in the first (i) and second (j) string (initially all are 0)

• So, if we read in first string an ’a’, we search in the second string the next ’a’ starting from
the position ja; if it is found, we make the difference |ja − ia| and add it to the final sum.
Analogous with c, g and t.

2.3 Experimental data
To test our method in bioinformatics, we use a classical problem: the phylogenetic analysis of
the mammals.
We use whole mitochondrial DNA sequence genome of the following 22 mammals available
in the EMBL database: human (Homo sapiens, V00662), common chimpanzee (Pan
troglodytes, D38116), pigmy chimpanzee (Pan paniscus, D38113), gorilla (Gorilla gorilla,
D38114), orangutan (Pongo pygmaeus, D38115), sumatran orangutan (Pongo pygmaeus
abelii, X97707), gibbon (Hylobates lar, X99256), horse (Equus caballus, X79547), donkey
(Equus asinus, X97337), Indian rhinoceros (Rhinoceros unicornis, X97336), white rhinoceros
(Ceratotherium simum, Y07726), harbor seal (Phoca vitulina, X63726), gray seal (Halichoerus
grypus, X72004), cat (Felis catus, U20753), fin whale (Balenoptera physalus, X61145),
blue whale (Balenoptera musculus, X72204), cow (Bos taurus, V00654), sheep (Ovis aries,
AF010406), rat (Rattus norvegicus, X14848), mouse (Mus musculus, V00711), North American
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Our approach is the following: for any two mtDNA sequences used in this study, we compute
the normalized average rank distance. To normalize the average rank distance as in (2), we
divide Δav by the maximum possible value which can be reached by Δav. The maximum
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reported in the upper experiment5. Then we used Neighbor Joining method to construct the
phylogenies for the mammals.
In Fig. 1 we have drawn the phylogenetic tree of the mammals obtained with the third
extension of our distance.
The tree that we have obtained has a topological structure comparable to the structure of other
trees reported by other researches (27), (7), (26). Though, two differences can be observed: the
classifications of rat and cat in our research are not similar to its corresponding classifications
in the other papers. If we look at the distance matrix, we can observe that the grey seal and
harbor seal are the closest mammals to the cat, but the cat is not the closest mammal to the
grey seal and the harbor seal. The same with the mouse and the rat (the rat is the closest
mammal to the mouse, but the mouse is no the closest mammal to the rat).

3. Circular approaches

A limitation of Rank Distance with respect to genomic applications is more general and is
common to other more established distances (like Levenshtein, Hamming, and other): if two
sequences have multiple subsequences in common but these subsequences appear in widely
different orderings in the two sequences, then Rank Distance has trouble to distinguish the
two sequences as being closer than two essentially random sequences.
It is important to note that the limitation is rather prominent for genomic applications because
of the fact that the existence and extent of common parts is far more important than the
ordering or shifting between the common parts.
To overcome the identified limitation of the classical Rank Distance two basic strategy are
introduced in (Dinu and Ghetu, 2011): in computing the distance between two partial
rankings, we investigate the rank distances between the smaller sequence and all the circular
permutations of the larger sequence. We have two natural ways to do this: either sum all
distances, either take the minimum one between all the circular permutations.
One of the drawbacks of using the classical Rank Distance in genomic applications is that it
needs some additional balancing mechanism. The rank distance calculation heavily penalizes
unmatched elements at the end of the sequences and this has no biological significance or
rationale. Because of this, the rank distance is usually applied to genomic problems in its
balanced form where one calculates both the normal rank distance and the rank distance on
the reverse sequences. Circular rank distance does not suffer from this type of problem since it
is naturally balanced by the circular permutations involved. Calculating the distance between
the reverse strings brings no real benefit.

3.1 Total circular rank distance on strings
This approach promises to better reward similarity between the sequences because each
pair of similar subsequences will have the opportunity to be better aligned in some suitable
Rank Distance computations (between the smaller ranking and some circular permutations
of the larger one). These favorable alignments should serve to markedly decrease the overall
Circular Rank Distance score below the score of random rankings. We should expect the
distance decrease to be proportional to the extent of the similarity between subsequences of
the two rankings

5 Two more ad-hoc extensions of the rank distance (cf. remark 1) were tested in our experiments: in both
one prolonged the strings so as to take them to the same length, either by adding "tails" or by random
insertions. Results do not show any significant variation, which further validates the robustness of the
rank distance.
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Although it is clear that what we defined as the Circular Rank Distance is of no use for
measuring distances between rankings, the same idea can be adapted to measuring distances
between strings. With strings, there can be repeating elements/characters in each sequence
and with genomic strings in particular (nucleotides or amino-acids sequences) we are dealing
with very long strings over a very small alphabet (4 or 20 elements in size). This is particularly
advantageous to the Circular Rank Distance approach as it completely removes the problem
of irrelevance for the larger sequence and it brings back the advantages we initially sought: it
rewards commonality between the sequences, irrespective of the ordering of the similar parts
or their relative positions in the two sequences.

Definition 3. We define the Circular Rank Distance between two strings S1 and S2 of lengths N1 and
N2 as being the sum of the rank distances between S1 and each circular permutation of S2.

It is important to note that each circular permutation of S2 will have to have its characters
renumbered for calculating its rank distance to S1.

Example 3. CRD("AACGTT", "TTGCAA") = RD("AACGTT", "TTGCAA") + RD("AACGTT",
"TGCAAT") + RD("AACGTT", "GCAATT") + RD("AACGTT", "CAATTG") + RD("AACGTT",
"AATTGC") + RD("AACGTT", "ATTGCA") = 18 + 12 + 8 + 8 + 8 + 12 = 66.

In this example, if we average the Circular Rank Distance value to the number of rank
distances it summed, we obtain a value of 11 which is significantly lower than the value of 18
that would have been obtained with the classical Rank Distance. This is because the circular
rank distance rewards the fact that the two input sequences have common substrings "AA"
and "TT", while the classical Rank Distance cannot distinguish this situation.

3.2 Minumum circular rank distance
Another variation of the Circular Rank Distance on strings , that can be considered is to select
the minimum Rank Distance for all the circular permutations considered. We can define the
Minimum Circular Rank Distance to be:

Definition 4. Minimum Circular Rank Distance between two strings S1 and S2 of lengths N1 and
N2 (N1 ≤ N2) is:

MCRS(S1, S2) = min
1≤i≤N2

RD(S1, CP(S2, i))

, where CP(X, i) is the ith circular permutation of string X.

Using this variant of the circular Rank Distance we are choosing the distance to be the score
of the best alignment between the smaller string and a circular permutation of the larger one.
This approach has the advantage of aggressively rewarding similarity between the sequences
but has the drawback of potentially being overoptimistic. Furthermore, when evaluating
pair wise distances in a set of strings, a more conservative distance estimate, like the normal
Circular Rank Distance, could be preferable for offering more consistently correlated distance
estimates across all pairs.

3.3 Experiments
In order to compare distances between two pairs of strings it is necessary to judge them on
the same scale. It is of no use to directly compare the distance between two rankings of small
length with the distance between two rankings of sizeable length, as the two values will have
different orders of magnitude. It would be more useful to scale these values to some common
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Using this variant of the circular Rank Distance we are choosing the distance to be the score
of the best alignment between the smaller string and a circular permutation of the larger one.
This approach has the advantage of aggressively rewarding similarity between the sequences
but has the drawback of potentially being overoptimistic. Furthermore, when evaluating
pair wise distances in a set of strings, a more conservative distance estimate, like the normal
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interval first. This is achieved by normalizing each distance to the same interval. In order to
normalize the circular rank distance to interval [0, 1] we need to divide it by the maximum
rank distance that is possible. The maximum circular rank distance between two strings of
length N1 and N2 (with N1 < N2) is achieved when the two strings have no common element.
In order to test the effectiveness of the Circular Rank Distance with real data, we took to
construct a phylogenetic tree of some principal mammalian representatives by comparing
their mitochondrial DNA (mtDNA) downloaded from the EMBL database. We chose 21
mammals, with the average size of their mtDNA sequences being approximately 16500
nucleotides each. We first computed the circular rank distance between each pair of species,
normalized to [0, 1], then fed the distance matrix to a standard Neighbor Join algorithm. We
ran the most straightforward implementation of the Circular Rank Distance and the Minimum
Circular Rank Distance with no special optimizations and no parallelization. The most
intensive part of the process, computing the distance matrix, took approximately 27 minutes
for each distance type, on an Intel Core2 Duo 2.5GHz processor with plenty of memory.
The dendrograms are represented in figures 2 and 3.
As it can be seen from the phylogenetic trees that were produced, the Circular Rank Distance
and the Minimum Circular Rank Distance allowed a good and very similar representation of
the sample species. With the odd exception of the donkey and horse, all the other species have
fairly common-sense positions and are correctly grouped into primates, sea/water mammals
and rodents.

4. Distances and distinguishabilities

Intuitively, distance is a measure of how close or far apart two physical objects or concepts are.
In many situations the distance is given in terms of length, time delay, rank difference, etc. An
alternative measure, (di-)similarity, is sometimes used and in many cases the two measures
are related. In (10) the authors attempt to classify, based on specific areas of interest, the huge
number of distances currently defined and used in various studies.
Rank distance (including its circular approaches too), as most tools of this kind, provides
an evaluation which is strictly limited to the closeness of two objects in themselves, without
looking at the relation of the respective objects with the rest of universe. In a way, the rank
distance is local, as most distances are, while we looking a global non-local variant thereof.
From a mathematical point of view, a distance measure provides an evaluation mostly limited
to the two objects themselves, with the Triangle Inequality as the only influence of the rest of
the universe. For disimilarities, even that connection is removed.
However, there are a lot of situations where the closeness between two objects is significantly
influenced by the presence or absence of other objects in the universe.
While not neglecting the intrinsic quantitative measure between two objects, the main concept
discussed in this section, distinguishability, has the following motivation: two objects are as
close as the similarity of their behavior with respect to all the other objects of the universe
considered.
For example, when a new DNA sequence is given, the first step taken by a biologist is
to compare the new sequence with sequences that are already well studied and annotated.
Sequences that are similar would probably have the same function.
We emphasize this point of view in the present section: even though the absolute distance
may be large, it may look relatively small when the two objects are situated in a sparse
area of the universe, with many holes and few neighbours. We make use of the notion
of distinguishability between two sequences (basically a Shannon-theoretic notion closely
related to the problem of the median) and we investigate it in the metric space of rank
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Fig. 2. The mammals phylogenies build from complete mammalian mtDNA sequences using
CRD

distances, thinking of application in biology, first of all in DNA word design, a form of coding
for biological computers where the codewords are DNA strings.

4.1 Foreword
We consider a noisy channel where letters can be transposed but not replaced; we decode
by minimising the Spearman footrule distance between input and output. Footrule coding
serves to stress the difference between codeword distance and codeword distinguishability,
two notions confused to no harm in the case of standard codes based on Hamming
distances, and yet definitely apart from each other; we show that discriminating distance

131Estimating Similarities in DNA Strings Using the Efficacious Rank Distance Approach



10 Will-be-set-by-IN-TECH

interval first. This is achieved by normalizing each distance to the same interval. In order to
normalize the circular rank distance to interval [0, 1] we need to divide it by the maximum
rank distance that is possible. The maximum circular rank distance between two strings of
length N1 and N2 (with N1 < N2) is achieved when the two strings have no common element.
In order to test the effectiveness of the Circular Rank Distance with real data, we took to
construct a phylogenetic tree of some principal mammalian representatives by comparing
their mitochondrial DNA (mtDNA) downloaded from the EMBL database. We chose 21
mammals, with the average size of their mtDNA sequences being approximately 16500
nucleotides each. We first computed the circular rank distance between each pair of species,
normalized to [0, 1], then fed the distance matrix to a standard Neighbor Join algorithm. We
ran the most straightforward implementation of the Circular Rank Distance and the Minimum
Circular Rank Distance with no special optimizations and no parallelization. The most
intensive part of the process, computing the distance matrix, took approximately 27 minutes
for each distance type, on an Intel Core2 Duo 2.5GHz processor with plenty of memory.
The dendrograms are represented in figures 2 and 3.
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and rodents.
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Intuitively, distance is a measure of how close or far apart two physical objects or concepts are.
In many situations the distance is given in terms of length, time delay, rank difference, etc. An
alternative measure, (di-)similarity, is sometimes used and in many cases the two measures
are related. In (10) the authors attempt to classify, based on specific areas of interest, the huge
number of distances currently defined and used in various studies.
Rank distance (including its circular approaches too), as most tools of this kind, provides
an evaluation which is strictly limited to the closeness of two objects in themselves, without
looking at the relation of the respective objects with the rest of universe. In a way, the rank
distance is local, as most distances are, while we looking a global non-local variant thereof.
From a mathematical point of view, a distance measure provides an evaluation mostly limited
to the two objects themselves, with the Triangle Inequality as the only influence of the rest of
the universe. For disimilarities, even that connection is removed.
However, there are a lot of situations where the closeness between two objects is significantly
influenced by the presence or absence of other objects in the universe.
While not neglecting the intrinsic quantitative measure between two objects, the main concept
discussed in this section, distinguishability, has the following motivation: two objects are as
close as the similarity of their behavior with respect to all the other objects of the universe
considered.
For example, when a new DNA sequence is given, the first step taken by a biologist is
to compare the new sequence with sequences that are already well studied and annotated.
Sequences that are similar would probably have the same function.
We emphasize this point of view in the present section: even though the absolute distance
may be large, it may look relatively small when the two objects are situated in a sparse
area of the universe, with many holes and few neighbours. We make use of the notion
of distinguishability between two sequences (basically a Shannon-theoretic notion closely
related to the problem of the median) and we investigate it in the metric space of rank
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Fig. 2. The mammals phylogenies build from complete mammalian mtDNA sequences using
CRD

distances, thinking of application in biology, first of all in DNA word design, a form of coding
for biological computers where the codewords are DNA strings.

4.1 Foreword
We consider a noisy channel where letters can be transposed but not replaced; we decode
by minimising the Spearman footrule distance between input and output. Footrule coding
serves to stress the difference between codeword distance and codeword distinguishability,
two notions confused to no harm in the case of standard codes based on Hamming
distances, and yet definitely apart from each other; we show that discriminating distance
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Fig. 3. The mammals phylogenies build from complete mammalian mtDNA sequences using
MCRD

from distinguishability is essential when one moves to realistic codes which correct both
replacements and tranpositions.
Inadvertently transposing two letters is quite a common source of error when typing, but
standard error-correcting codes based on the Hamming-distance between strings envisage
only letter substitution (replacements) and so end up over-estimating letter transpositions:
e.g. a single twiddle (a single transposition between adjacent positions) counts as much as two
substitutions. One might make use of other string distances which assign a smaller “penalty”
to twiddles, e.g. suitable variants of the edit distance as in Section 4.5: in building these
and other unusual codes, however, special care should be taken to discriminate between two
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distinct notions which in standard coding are confused to no special harm, codeword distance
and codeword distinguishability. In this correspondence we consider a model of channel noise
which envisages only letter transpositions: one decodes by minimising the rank distance
(or Spearman footrule, when work with full rankings) distance between input and output.
Unrealistic as it is, the model serves as a warning not to be overlooked when constructing
error-correcting codes: in the final Section 4.5 we argue that the “odd” case of footrule
coding appears to be quite typical of realistic situations when channel noise includes both
replacements and transpositions.

4.2 Rank distinguishability
If d is a non-negative "distance" between the elements6 of a finite set X , the distinguishability
between any two such elements x and y is defined as:

δ(x, y) = min
z∈X

max
[
d(x, z), d(y, z)

]
(1)

and so it is achieved by any geometric (combinatorial) centre z of the set {x, y}.
If d happens to be an integer metric distance, as we shall always assume7 below, one soon

proves: ⌈ d(x, y)
2

⌉
≤ δ(x, y) ≤ d(x, y) (2)

The left-hand bound holds uniformly for Hamming distances, while the right-hand bound
holds uniformly iff d is a ultrametric; for an ultrametric string example take the distance
between strings of the same length equal to the first position i, left to right, where the
two strings differ. For “unruly" metric distances one may have "unruly" behaviors: e.g.
take the integers {0, 4, 7, 10} with Euclidean distance: 0 and 4 achieve the upper bound
δ(0, 4) = d(0, 4) = 4, while 4 and 10 achieve the lower bound δ(4, 10) = d(4, 10)/2 = 3.
As for 0 and 10 their distinguishability is 6, while the bounds are 5 and 10, respectively, and so
none of the two bounds is achieved. Observe that δ(4, 10) < δ(0, 4) even if d(4, 10) > d(0, 4).
Rather than this toy example, below we shall take into account the string geometry based on

a metric distance between strings of length n over a letter alphabet A of size q, namelly rank
distance. The idea of resorting to an ordinal distance, is that a string is received as such across
the channel, only the order in which its letters are output may have been scrambled by channel
noise. With respect to other ordinal distances, the rank distance is attractive because of its low
complexity, linear in the string length n as Hamming distances: fair to say, however, we chose
it because, at least for q ≥ 3, cf. Section 4.3 and the example in Section 4.4, it gives rise to
an “odd” string geometry which goves us the chance to stress the basic difference between
codeword distance and codeword distinguishability.

4.3 Footrule distinguishability
Say x = x1x2 . . . xn is a string of length n in the composition8 class K ⊂ An. We may index any
such string in the following way: if a letter a occurs m > 0 times, in the indexed version of x

6 The distance might as well be a distortion between elements of an input set X and those of a distinct
output set Z , where z as in (2) would be constrained to belong; the only requirement would be that
∀x ∃z : d(x, z) = 0. Even if X �= Z , however, the distinguishability, unlike the distance, involves two
input elements.

7 We shall further assume that the distances actually taken on are consecutive integers; for arbitrary
distances, the integer ceiling in (2) should be understood as the lowest distance ≥ d/2.

8 A composition class is made up of a string together with all of its permutations.
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Fig. 3. The mammals phylogenies build from complete mammalian mtDNA sequences using
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we write those m occurrences as a1, a2, . . . , am in the order as they appear; e.g. x = aabbca is
indexed to a1a2b1b2c1a3. If the j-th component in x is the (indexed) letter ai, we define the rank
π(ai|x) of ai in x to be its position j; e.g. in our example π(b2|x) = 4.

Definition 5. (Spearman footrule distance, or rank distance)

d(x, y) =
1
2 ∑

a
∑

1≤i≤na

|π(ai|x)− π(ai|y)| , x, y ∈ K

(A void summation contributes 0) Observe that the number of occurrences na is the same in
any string of the composition class K. Footrule distinguishabilities are bound to be integers,
as footrule distances are; footrule distance 1 corresponds to a single twiddle between adjacent
positions (a single twiddle is a good "unit" for ordinal distances: that is why we prefer to
divide by 2 in definition 1). We need the following result:

Theorem 1. (19) The string z lies on the closed segment [x, y] iff either π(ai|x) = π(ai|z) or
π(ai|z) = π(ai|y) or:

sign
(
π(ai|x)− π(ai|z)

)
= sign

(
π(ai|z)− π(ai|y)

) ∀ai

We are ready to prove a result which is quite obvious in a Euclidean or in a Hamming
geometry:

Theorem 2. (4) The minimum in (1) is achieved by at least a point z lying on the closed segment [x, y]

Proof. If three sequences x, z, y violate the collinearity condition in Theorem 1 there must
be an occurrence ai with max

[
π(ai|x), π(ai|y)

]
< π(ai|z), or an occurrence bj with

min
[
π(bj|x), π(bj|y)

]
> π(bj|z). We find it convenient to say that in these two cases there

is an “arrow" pointing forward, or an “arrow" pointing backward, respectively; if the arrow
points forward we shall say that its “depth" is π(ai|z), if it points backward its depth is
(n + 1) − π(bj|z). Assume that the set M of minimizing z’s has void intersection with the
segment [x, y]: then each z in M has at least an arrow. ... ��

As an example, take x =123 and y =321; distance and distinguishability are equal to 2 and
so the right-hand bound holds with equality: the closed segment is made up just of its two
extremes9 x and y, but also the string z =213 outside the segment, being at distance 2 from x
and y, achieves the minimum. To get an example where the open segment is not void, prolong
x and y to x� = x1212 and y� = y2121, respectively, and add the suffix 1221 to get the three
minimising strings x1221, y1221 on the segment and z1221 outside the segment (n = 7). In
this case, d(x�, y�) = 4, δ(x�, y�) = 3, and so none of the two bounds in (2) holds with equality.
The footrule distance is often compared to the twiddle distance, called also Kendall τ-distance
[], which simply counts the minimum number of exchanges between consecutive positions
needed to transform x into y; now, take x = 1234, y = 4321: as soon checked, 2341 is centre
for both Kendall and Spearman distance achieving the lower bound (2) in both cases, it lies
on the Kendall segment but does not lie on the Spearman segment; instead, 1324 is a footrule
centre which lies outside both segments, but it is not a Kendall centre (one soon proves that
Kendall centres lie all on the Kendall segment and uniformly achieve the lower bound (2)

)
.

9 The right-hand bound in (2) is achieved with equality iff the open segment ]x, y[ is void, i.e. when there
is no z other than x and y for which the triangle inequality d(x, z)+ d(z, y) ≥ d(x, y) holds with equality.
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Computer simulations have shown that "many" footrule centres lie outside the corresponding
footrule segment.

It is no coincidence that these "geometrically nasty" examples are ternary or quaternary.
Instead, binary strings on {0, 1}, are definitely more friendly and "Hamming-like" than in the
case q ≥ 3:

Theorem 3. (Binary footrule distinguishability) For two binary strings the lower bound in (2) is
always achieved.

Proof. It was shown in (18) that in the binary case the footrule distance is equal to the Kendall
τ-distance, cf. above (to show this equality, just use an induction on the twiddle distance).
Now, proving that, whatever the alphabet size q, the twiddle distinguishability achieves the
lower bound in (2) is straightforward (think of the suboptimal bubble algorithm for sorting,
which uses precisely twiddles). The expression on the right holds because 0’s and 1’s give the
same contribution to the binary footrule distance, as proved in (18) (clearly, one may use 0
instead of 1 in the formula above). ��
Algorithmically, the impact of Theorem 2 is limited, since there are over-populated segments10

already in the binary case; take e.g. x = 0m1m, y = 1m0m, n = 2m: all the exponentially many
strings of Hamming weight m lie on the segment [x, y].

4.4 Footrule codes
For footrule-distance codes one should not adopt the following procedure, misleadingly
suggested by what one may do with Hamming distances:

1. Fix a threshold τ; form the codebook C by taking as many input strings as possible at pairwise
distance ≥ τ
2. Decode the output string z to a codeword x which minimises the distance d(x, z)

All works, however, if the word distance in point 1, but not in point 2, is replaced by the word
distinguishability. This ensures the following:

Reliability criterion: If the codeword x is fed to the channel, and if the distance d(x, z) to the observed
output z is strictly less than τ decoding is successful; conversely, there is at least a couple x, z ... which
brings about a decoding error.

Note that what we are doing, in particular the reliability criterion, works whenever we have a
distance between inputs and outputs, and whenever we decode as in point 2, even when the
input and the output set are distinct. In the case of Hamming distances and binary footrule
distances, the distinguishabilty δ(x, y) achieves uniformly the lower bound, and so it turns out
to be "almost" the same as half the distance d(x, y)/2: one can get along quite well forgetting
entirely about distinguishabilities; actually, the fact that the monotone dependence of δ on d
is only weak can be put to good use in error detection, cf. below this Section. It can be shown
that, whenever the lower bound is uniformly achieved, everything, error correction and error
detection, works exactly as in the usual Hamming case, so trivialising the opposition distance

10 A software tool to compute (short) footrule segments is available at http://rankd.info; quicker
algorithms to compute directly a centre on the segment are badly needed. We recall that the problem of
finding footrule centres for an arbitrary number of permuted strings is NP-hard.
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vs. distinguishability. However, this is not so in general, as the case of footrule codes on
alphabet with size q ≥ 3 clearly shows.
We move to error detection. The basic notion is that of an even couple.

Definition 6. An even couple x, y is one for which any centre as in (2) is at equal distance from x and
y.

The following theorem holds in any integer metric space where at least a centre lies on
whatever segment, as is our case.

Theorem 4. The couple x, y is an even couple iff δ(x, y) = d(x, y)/2, which implies that the distance
d(x, y) must be an even integer; in general, the latter condition is not sufficient to have an even couple.

Proof. 1234 and 4321 are at even distance 4; their distinguishability is 3 and a centre is 1324
at distances 1 and 3 from the two extremes; a centre outside the segment is 2413, at equal
distance 3 from both extremes. ��
An open problems for footrule distances is finding a simple criterion to understand when a
couple is even.

4.5 History and perspectives
The notion of codeword distinguishability, or, symmetrically and equivalently, of codeword
confusability, goes back to Cl. Shannon, and more precisely to his zero-error information theory,
dated 1956, cf. (30). In Shannon’s case the distance between input and output is 0 when
the probability of the transition is positive even if "small", else it is 1; the distinguishability
function is 0 or 1, according whether there is, or there is not, at least one output which is
accessible from both codewords with positive probability. The second author has put forward
a multi-step generalisation of zero-error information theory, called possibilistic11 information
theory, in which the distance (dissimilarity) between input and output is no longer constrained
to have only two distinct values: distinguishability in the multi-step theory is exactly the
notion defined in Definition 1. The possibilistic framework can be shown to be ample enough
to accommodate not only Hamming-distance codes but also "odd" forms of coding as ours
here or those found in DNA word design, where codewords are DNA strings.

5. Conclusions and future works

In this chapter we have exhibited a low-complexity distance for DNA sequence comparison.
We showed that our distance can be computed in linear time. Another advantage of our
method is that it imposes minimal hardware demands: it runs in optimal conditions on
modest computers, reducing the costs and increasing the number of possible users. Our
experiments on the phylogenies of mammals produced results which are quite similar to those
reported in the literature, but whose computational costs in time and space were definitely
lower. This computational gain may turn out to be quite useful in situations where the use
of ŞexactŤ methods leads to computational stumbling blocks, as often happens in biological
applications.
We proposed two variants of rank distance: circular and minimum circular rank distance. As
it can be seen from the phylogenetic trees that were produced, the Circular Rank Distance and

11 The name derives from the fact that the multi-step theory can be obtained from probabilistic
information theory if one replaces probabilistic notions by the corresponding possibilistic ones,
possibiliy theory being a form of multi-valued logic, or also of interval-valued probability.
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the Minimum Circular Rank Distance allowed a good and very similar representation of the
sample species. With the odd exception of the donkey and horse, all the other species have
fairly common-sense positions and are correctly grouped into primates, sea/water mammals
and rodents.
The main advantage of using the circular rank distance is its ability to reward two strings
containing (any number of) similar subsequences with a lower distance irrespective of the
order or place in which the similar subsequences appear in the strings. The main disadvantage
is the quadratic time complexity it requires for being computed (in the direct, straightforward
manner).
This chapter is only introducing a new and promising Rank Distance variation for
bioinformatics applications. There is still much work to be done in exploring the subject,
with some of the most important directions for further research being:

• Exploration of the mathematical properties of the Circular Rank Distance. Is the new
distance a proper metric? Exploration of the analytical or statistical notions of medians
or centers for it.

• Finding a more efficient computation of the Circular Rank Distance. There are potent
particularities that can be exploited to achieve a sub-quadratic time complexity in either
asymptotic or amortized measuring
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1. Introduction  
DNA barcoding is a novel concept for the taxonomic identification, in that it uses a specific 
short genetic marker in an organism’s DNA to discriminate species. In 2003, professor Paul 
D. N. Hebert, “the father of DNA barcoding”, of the University of Guelph, Ontario, Canada 
first proposed the idea to identify biological species using DNA barcode, where the 
mitochondrial gene cytochrome c oxidase subunit I (COI) was supposed to be the first 
candidate for animals (Hebert et al. 2003a). Their studies of COI profiling in both higher 
taxonomic categories and species-level assignment demonstrated that COI gene has 
significant resolutions across the animal kingdom except the phylum Cnidaria (Hebert et al. 
2003b, Ward et al. 2005, Hajibabaei et al. 2006). From then on, a wide broad of taxonomic 
groups (i.e. birds, fish, butterflies, spiders, ants, etc) were examined by COI gene for its 
usability as the barcode (i.e. Hebert et al. 2004a, Hebert et al. 2004b, Greenstone et al. 2005, 
Smith et al. 2005, Barber and Boyce 2006, Meier et al. 2006, Kerr et al. 2007, Kumar et al. 2007, 
Pfenninger et al. 2007, Stahls and Savolainen 2008, Zhou et al. 2009). Meanwhile, other 
candidate genes, including Internal Transcribed Spacer (ITS), trnH-psbA intergenic spacer 
(trnH-psbA), Ribulose-bisphosphate carboxylase (rbcL) and Maturase K (matK) were 
analysed by different research groups (Jaklitsch et al. 2006, Evans et al. 2007, Ran et al. 2010, 
de Groot et al. 2011, Liu et al. 2011, Piredda et al. 2011, Yesson et al. 2011).  Till recently, 
there are about 30 DNA barcode candidates are tested, and 4 to 8 of them are widely used 
for the identification of diversified taxonomic groups with a relatively good resolution.  
It has been estimated that there are 10 to 100 million species of living creatures in the earth, 
while what we know is very limited. Knowing the biodiversity is one of the crucial 
biological issues of ecology, evolutionary biology, bio-security, agro-biotechnology, bio-
resources and many other areas. For very long period, taxonomists have provided a 
nomenclatural hierarchy and key prerequisites for the society. However, the needs for 
species identification requested by non-taxonomists require the knowledge held by 
taxonomists. Therefore, a standardized, rapid and inexpensive species identification 
approach is needed to establish for the non-specialists. There had some attempts on the 
molecular identification systems based on polymerase chain reaction (PCR), especially in 
bacterial studies (Woese 1996, Zhou et al. 1997, Maiden et al. 1998, Wirth et al. 2006), but no 
successful solutions for broader scopes of eukaryotes (reviewed in Frezal and Leblois 2008). 
The DNA Barcode of Life project is another attempt to create a universal eukaryotic 
identification system based on molecular approaches. Following studies by Hebert et al. 
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It has been estimated that there are 10 to 100 million species of living creatures in the earth, 
while what we know is very limited. Knowing the biodiversity is one of the crucial 
biological issues of ecology, evolutionary biology, bio-security, agro-biotechnology, bio-
resources and many other areas. For very long period, taxonomists have provided a 
nomenclatural hierarchy and key prerequisites for the society. However, the needs for 
species identification requested by non-taxonomists require the knowledge held by 
taxonomists. Therefore, a standardized, rapid and inexpensive species identification 
approach is needed to establish for the non-specialists. There had some attempts on the 
molecular identification systems based on polymerase chain reaction (PCR), especially in 
bacterial studies (Woese 1996, Zhou et al. 1997, Maiden et al. 1998, Wirth et al. 2006), but no 
successful solutions for broader scopes of eukaryotes (reviewed in Frezal and Leblois 2008). 
The DNA Barcode of Life project is another attempt to create a universal eukaryotic 
identification system based on molecular approaches. Following studies by Hebert et al. 
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(Hebert et al. 2003a, Hebert et al. 2003b), the Consortium for the Barcode of Life (CBOL) was 
initiated in 2004, and aimed to produce a DNA barcode reference library and diagnostic 
tools based on the taxonomic knowledge to serve taxonomists and non-taxonomists 
(Schindel and Miller 2005). It should note that the DNA Barcode of Life project is neither to 
build the tree of life nor molecular taxonomy (Ebach and Holdrege 2005, Gregory 2005).  
From the establishment of CBOL, more than 50 countries have been participated in and 
devoted themselves into this ultimate mission. One of the important projects is the 
International Barcode of Life project (iBOL) sponsored by Canada government (details will 
be described below). Till now, DNA barcoding is accepted by a great range of scientists and 
has achieved indisputable success (Teletchea 2010).  
One of the major aims of bioinformatics is to finely store and manage the huge amount of 
biological data. Apart from genome sequencing projects, DNA barcoding projects are going 
to establish another important biological data resource to the public. Until now, there are 
about half a million DNA barcodes are submitted to GenBank from the Barcode of Life Data 
System (BOLD) (Ratnasingham and Hebert 2007), the most essential data center for barcode 
of life projects. Besides, large amount of DNA barcode data are under producing and to be 
released worldwide. It has been estimated that more than 100 million barcode records will 
be generated for the animal kingdom(Ratnasingham and Hebert 2007), and that size is 
comparable to the current GenBank release (Benson et al. 2011). Unlike the traditional 
nucleotide sequences deposit in the international nucleotide sequence databases 
collaboration (INSDC), DNA barcode data comprises comprehensive data types, including 
photos, DNA chromatogram (trace files), geographic data and structured morphological 
information of each specimen. Therefore novel information systems are required to be 
developed to collect, store, manage, visualize, distribute, and utilize these data for species 
identification, clustering/classification as well as evolutionary studies. Moreover, applying 
the second-generation sequencing technology (e.g. Roche 454) for DNA barcoding, 
especially for those environmental samples (e.g. mud, water) is under developing, and this 
will generate a large amount of DNA barcodes a time, with the data files different from 
those from traditional DNA analyser implementing Sanger sequencing approach. Hence, 
methods to manage and utilize the output from 2nd-generation sequencers are also to be 
developed. Besides, it is still a great challenge to integrate the DNA barcode data into the 
studies of metagenomics (Venter et al. 2004, Rusch et al. 2007).   
In this chapter, we will first review the current progresses of DNA barcode of life projects, 
and then we will describe the data schema and the information systems of DNA barcode 
data. Particularly, three types of DNA barcode information systems are to be introduced: 
BOLD, by now the best information system for DNA barcoding with highly integration; 
Global Mirror System of DNA Barcode Data (GMS-DBD), the mirror system for the 
distribution of the publicly available DNA barcode data worldwide; and the management 
system for Chinese DNA barcode data, which is a manageable information system for DNA 
barcoding groups.  

2. DNA barcode and the international collaborations 
In order to make the concept that using DNA barcodes to identify species being reality, 
great efforts need to be contributed by the nations. After the launch in 2004, CBOL has 
gathered more than 150 organizations around the world, including natural history 
museums, zoos, herbaria, botanical gardens, university departments, governmental 
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organizations and private companies. The goals of CBOL include building up a DNA 
barcode library of the eukaryotic lives in 20 years. In July 2009, the Ontario Genomics 
Institute (OGI), Canada initiated the iBOL project, which was considered as the extension 
and expansion of the previous project, Canadian Barcode of Life Network 
(http://www.bolnet.ca) launched in 2005. Nowadays, there are 27 countries as partner 
nations participated in this international collaboration and nearly 20 established campaigns 
were co-working for iBOL on some specific creatures.  

2.1 The concept of DNA barcode and the commonly used ones  
DNA barcode is a segment of DNA that possesses the following features. a) DNA barcode is 
conserved in a broad range of species, so that a conserved pair (or several conserved pairs) 
of primers can be designed and applied for DNA amplification; b) it is orthologous; c) DNA 
barcode must evolve rapidly enough to represent the differences between species; d) DNA 
barcode needs to be short, so that a single DNA sequencing reaction is enough to obtain the 
sequence; and e) DNA barcode needs to be long to be capable of holding all substitutions 
within higher taxonomic groups (For example, a 500-base pair (bp)-long DNA barcode has 
the capability to hold 4500 possible differences to discriminate species.).  
The first DNA barcode is a 658-bp long region DNA segment of COI gene within 
mitochondria, with primers LCO1490 (5’-GGTCAACAAATCATAAAGATATTGG-3’) and 
HCO2198 (5’-TAAACTTCAGGGTGACCAAAAAATCA-3’) used for DNA amplification 
(Hebert et al. 2003a). COI gene as the primary DNA barcode has been proven to be useful in 
broad ranges of animal species, despite of the limitations in some taxa (Meyer and Paulay 
2005, Vences et al. 2005). In fungi, ITS was chosen as the main DNA barcode and was 
confirmed by the sequences within the international nucleotide sequence databases (Nilsson 
et al. 2006), though COI was examined applicable in Penicillium (Seifert et al. 2007). In 
plants, mitochondrial DNA shows intra-molecular recombination and COI gene has lower 
evolutionary rate (Mower et al. 2007), so that genes on the plasmid genome were examined, 
e.g. rpoB, rpoC1, rbcL and matK. Meanwhile, some intergenic spacers (e.g. trnH-psbA, atpF-
atpH and psbK-psbI (Fazekas et al. 2008)), and markers’ recombination (e.g. rbcL and trnH-
psbA (Kress and Erickson 2007)) were tested, too. Nevertheless, those choices either meet 
the amplification problems or standardization problems. Recently, CBOL Plant Working 
Group recommended the combination of rbcL and matK for plant DNA barcoding (CBOL 
Plant Working Group, 2009). 

2.2 The international Barcode of Life project 
The main mission of iBOL is “extending the geographic and taxonomic coverage of the 
barcode reference library -- Barcode of Life Data Systems (BOLD) -- storing the resulting 
barcode records, providing community access to the knowledge they represent and creating 
new devices to ensure global access to this information.” (http://ibol.org/about-us/what-
is-ibol/). To accomplish the mission step by step, iBOL announced the first 5-year plan that 
is to collect and process 5 million samples covering 500 thousand species with $150 million 
budget. Then six working groups were established to work on barcode library construction, 
methodology, informatics, technology, administration and social issues (Table 1). The first 
two working groups are mainly focusing on the collection and production of DNA barcodes 
in various living creatures, biotas and specimens in museums. The third working group is 
dedicated to the construction of the informatics, including the core functionality and mirror 
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(Hebert et al. 2003a, Hebert et al. 2003b), the Consortium for the Barcode of Life (CBOL) was 
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One of the major aims of bioinformatics is to finely store and manage the huge amount of 
biological data. Apart from genome sequencing projects, DNA barcoding projects are going 
to establish another important biological data resource to the public. Until now, there are 
about half a million DNA barcodes are submitted to GenBank from the Barcode of Life Data 
System (BOLD) (Ratnasingham and Hebert 2007), the most essential data center for barcode 
of life projects. Besides, large amount of DNA barcode data are under producing and to be 
released worldwide. It has been estimated that more than 100 million barcode records will 
be generated for the animal kingdom(Ratnasingham and Hebert 2007), and that size is 
comparable to the current GenBank release (Benson et al. 2011). Unlike the traditional 
nucleotide sequences deposit in the international nucleotide sequence databases 
collaboration (INSDC), DNA barcode data comprises comprehensive data types, including 
photos, DNA chromatogram (trace files), geographic data and structured morphological 
information of each specimen. Therefore novel information systems are required to be 
developed to collect, store, manage, visualize, distribute, and utilize these data for species 
identification, clustering/classification as well as evolutionary studies. Moreover, applying 
the second-generation sequencing technology (e.g. Roche 454) for DNA barcoding, 
especially for those environmental samples (e.g. mud, water) is under developing, and this 
will generate a large amount of DNA barcodes a time, with the data files different from 
those from traditional DNA analyser implementing Sanger sequencing approach. Hence, 
methods to manage and utilize the output from 2nd-generation sequencers are also to be 
developed. Besides, it is still a great challenge to integrate the DNA barcode data into the 
studies of metagenomics (Venter et al. 2004, Rusch et al. 2007).   
In this chapter, we will first review the current progresses of DNA barcode of life projects, 
and then we will describe the data schema and the information systems of DNA barcode 
data. Particularly, three types of DNA barcode information systems are to be introduced: 
BOLD, by now the best information system for DNA barcoding with highly integration; 
Global Mirror System of DNA Barcode Data (GMS-DBD), the mirror system for the 
distribution of the publicly available DNA barcode data worldwide; and the management 
system for Chinese DNA barcode data, which is a manageable information system for DNA 
barcoding groups.  

2. DNA barcode and the international collaborations 
In order to make the concept that using DNA barcodes to identify species being reality, 
great efforts need to be contributed by the nations. After the launch in 2004, CBOL has 
gathered more than 150 organizations around the world, including natural history 
museums, zoos, herbaria, botanical gardens, university departments, governmental 

 
The Information Systems for DNA Barcode Data 

 

141 

organizations and private companies. The goals of CBOL include building up a DNA 
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sites. Core functionality comprises at least a sophisticated bioinformatics platform with the 
integration of a robust IT infrastructure (computational note, storage and network), DNA 
barcode databases and analytical tools. Meanwhile, the mirror sites help to strengthen data 
security and accessibility. Working group 4 is focusing on future technologies, either 
applying the latest sequence techniques or developing the portable mobile devices. 
Although working groups 5 and 6 are not purely on the science and technology of DNA 
barcoding, the administration and dealing with social aspects are far more important to the 
success of the project.  
 
iBOL Working Group Sub-Working Group 
WG 1. Barcode Library: Building 
the digital library of life on Earth 

WG 1.1, Vertebrates 

 WG 1.2, Land plants 
 WG 1.3, Fungi 
 WG 1.4, Animal Parasites, Pathogens & Vectors 
 WG 1.5, Agriculatural and Forestry Pests and Their 

Parasitoids 
 WG 1.6, Pollinators 
 WG 1.7, Freshwater Bio-surveillance 
 WG 1.8, Marine Bio-surveillance 
 WG 1.9, Terrestrial Bio-surveillance 
 WG 1.10, Polar Life 
WG 2. Methods: Extending the 
horizons of barcoding 

WG 2.1, Barcoding Biotas 

 WG 2.2, Museum Life 
 WG 2.3, Methodological Innovation 
 WG 2.4, Paleobarcoding 
WG 3. Informatics: Storing and 
analyzing barcode data 

WG 3.1, Core Functionality 

 WG 3.2, Mirrors 
WG 4. Technologies WG 4.1, Environmental Barcoding 
 WG 4.2, Mobile Barcoding 
WG 5. Administration: 
Consolidating the matrix 

WG 5.1, Project Management 

 WG 5.2, Communications 
WG 6. GE3LS WG 6.1, Equitable Use of Genetic Resources 
 WG 6.2, Regulation and International Trade 
 WG 6.3, Intellectual Property and Knowledge 

Management 
 WG 6.4, Education Initiatives for Schools and Media 
 WG 6.5, Governance of Knowledge Mobilization 

Table 1. iBOL working groups.  
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By the end of the year 2010, iBOL reported the progresses of each working group in the 
iBOL Project Interim Review (http://ibol.org/interim-review/). During the first 18 months, 
iBOL has produced DNA barcodes for 153K species from 326K specimens collected 
worldwide, and obtained exciting results from barcoding biotas of the locales Moorea and 
Churchill, where a great number of additional species were revealed by DNA barcoding. 
BOLD as the core functionality of iBOL has increased the number of records to 1.1 million 
and the number of users to 6000. The power of storage and computing was also improved 
dramatically. Conclusively, all working groups have made substantial progresses towards 
the final goals.  
The achievements made by iBOL are with the help of the campaigns of barcode of life, 
which consists of researchers with similar interests on specific families and regions of life 
(e.g. birds, fish, etc.). Most of the campaigns are working closely with the relevant iBOL 
working groups and/or BOLD. Below lists some useful websites and campaigns of the 
international collaborations (Table 2). 
 
Short Name Description URL 
CBOL The consortium for the barcode of life http://www.barcoding.si.edu; 

http://www.barcodeoflife.org  
iBOL The international barcode of life project http://www.ibol.org  
CCDB Canadian centre for DNA barcoding http://www.danbarcoding.ca  
BOLD Barcode of life data systems http://www.boldsystems.org  
GMS-DBD Global mirror system of DNA barcode 

data 
http://www.boldmirror.net  

Fish-BOL Fish barcode of life initiative http://www.fishbol.org  
ABBI All birds barcoding initiative http://www.barcodingbirds.org  
PolarBOL Polar barcode of life http://www.polarbarcoding.org  
Bee-BOL Bee barcode of life initiative http://www.bee-bol.org  
MarBOL Marine barcode of life http://www.marinebarcoding.org  
 Lepidoptera barcode of life http://lepbarcoding.org  
 Trichoptera barcode of life http://trichopterabol.org  
 Formicidae barcode of life http://www.formicidaebol.org  
 Coral beef barcode of life http://www.reefbarcoding.org  
 Mammal barcode of life http://www.mammaliabol.org  
 Sponge barcoding project http://www.spongebarcoding.org  

Table 2. Websites of DNA barcode of life projects worldwide 

2.3 DNA barcode of life projects in China 
There are three categories of the participated nations of iBOL, the National Nodes, the 
Regional Nodes and the Central Nodes. The National Node is primarily to collect, identify 
and curate the specimens from their territory, and the Regional Node has additional duties 
to participate in DNA barcode acquisition. As for a Central Node, it has not only National 
Node and Regional Node’s missions, but also to maintain core sequencing facilities and the 
bioinformatics facilities, as well as to help share DNA barcode records with all nations. Of 
the current 27 nations participated in iBOL (27 nations are shown in iBOL website, where 
there are 33 nations in the iBOL Project Interim Review), China is acting as one of the four 
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Central Nodes, while the others are Canada, United States, and the European Union (France, 
Germany, Netherlands, etc.).  
To better support the international collaborations and to take great part in the iBOL project, 
China has established the China National Committee for iBOL project. Prof. Jiangyang Li, 
Vice President of Chinese Academy of Sciences (CAS), acts as President, and Prof. Zhibin 
Zhang of the Bureau of Life Sciences and Biotechnology, CAS and Prof. Yaping Zhang of the 
Kunming Institute of Zoology, CAS are taking the roles of Vice President. From then on, the 
constructions of the core sequencing facilities and bioinformatics facilities for DNA 
barcoding were initiated, and varied foundations of China, including CAS, the Ministry of 
Science and Technology (MOST) and the Natural Science Foundations of China (NSFC) 
have issued projects of DNA barcode of life (Table 3). The projects covered the studies on 
diversified creatures, including animal, plant and fungus, and the studies on specimen 
collection, data production, theory and methodology, database and information system, etc. 
To date, China has established three main research campaigns, working on animal, plant 
and fungal DNA barcoding respectively, and initiated the constructions of China DNA 
Barcoding Centre and China DNA Barcode of Life Information Centre by the institutes of 
CAS.  
 
Projects issued by Projects aims at 

Chinese Academy of Sciences (CAS) Specimen collection; DNA barcode data
production; Basic research of DNA barcoding;
Construction of information centre and central
database of China National Committee for iBOL
Project.  

Ministry of Science and Technology
(MOST) 

Studies on animal, plant and fungal barcoding;
Construction of DNA barcode databases and
information systems 

Natural Science Foundations of China
(NSFC) 

Basic research on DNA barcoding theories and
methodologies for animal, plant and fungal
barcoding 

Table 3. DNA barcode of life projects in China 

In terms of the construction of China DNA Barcoding Information Centre, we are now 
running projects from CAS and responsible for the initiation and implementation. With the 
help from the research campaigns of China and iBOL, we have designed the architecture of 
the Chinese DNA Barcode of Life Information Systems. Briefly, the entire systems consist of 
two essential components, the Mirror System of BOLD and the Management System for 
China DNA barcoding projects (Fig. 1). Each component is an independent system based on 
the data it contains, and serves as separated services. Nevertheless, the China DNA Barcode 
of Life Information Centre maintains a DNA barcode database that integrates the data of 
BOLD mirror and the Chinese DNA barcode data. In views of functions, the mirror system 
will mainly focus on data synchronization, data presentation, and statistical and analytical 
tools, while the data management system focuses on data submission, data verification, and 
data publishing. In sections below, we will describe these two kinds of systems in details. 
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Fig. 1. The architecture of the Chinese DNA Barcode of Life Information Systems. The left 
square represents the functions of the Mirror System of BOLD, and the right square shows 
the functions of Data Management System. The DNA barcode data of both systems are 
further integrated into a centralized DNA barcoding database. 

 
Fig. 2. Homepage of Barcode of Life Data System (BOLD). 
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3. DNA barcode data schema and the Barcode of Life Data systems 
The Barcode of Life Data System (BOLD) is by far the best information system for DNA 
barcode data, aiming at the collection, management, analysis and use of DNA barcodes 
(Ratnasingham and Hebert 2007). Started from 2004, BOLD has developed to not only the 
authorized DNA barcode data resource, but also a global workbench for the assembly, 
analysis and publication of DNA barcode records. By now, BOLD has become a major 
contributor to INSDC, with the contribution of about 500,000 records into GenBank during 
2010. Millions of DNA barcode records will be deposited into INSDC along with the 
proceedings of iBOL project. Each record submitted into GenBank has the keyword 
“BARCODE” and an ID back to BOLD.  
Since BOLD uses different ways to store and present DNA barcoding data to GenBank, in 
the following sections we will give a brief dissection of BOLD, from data schema to the 
functions. To some extent, this will also help to understand another information systems to 
be introduced in this chapter.  

3.1 Data schema of barcode of life data 
In order to collect and manage the DNA barcode data effectively, a data schema is required. 
BOLD has built up its data schema according the Darwin Core 1 standard, which is applied 
by the Global Biodiversity Information Facility (GBIF) and other biodiversity alliances, for 
the data fields related to specimen description. Meanwhile, the data schema describes the 
format for the sequence (barcode or marker) information as well as the primers and trace 
files. In brief, there are three categories of information, specimen related, sequence related 
and primer related (summarized in Table 4, and example in Fig. 3). Specimen related 
information includes the voucher info, collection info, taxonomic info and details, as well as 
some multi-media files (mostly photos in the current stage). Sequence related information 
consists of sequence file (in FASTA format), primer codes and trace files. Considered that 
primer pairs to the markers (DNA barcodes) are to be standardized and the dataset is 
relatively small and constant, the detailed info of the primer is separated from specimen and 
sequence.  
As far as a DNA barcode record is concerned, the Sample ID is one of the most important key 
fields. It is the identifier of the sample of specimen used for sequencing, so that it is unique 
in the whole system. Different Sample IDs may refer to one specimen. For example, two legs 
of butterfly are treated separated for experiments. Since there is not a single field like 
“Specimen ID” to uniquely mark specimens, BOLD schema uses Field ID, Museum ID and 
Collection Code instead. At least one of the Field ID and Museum ID must be appeared and 
must associate with Institution Storing to exclusively locate the specimen in the world. A 
Collection Code is required whenever it has to be combined with Museum ID to discriminate 
specimen. That is the basis to link a DNA barcode to a real specimen. The taxonomic info is 
for the link between DNA barcode and taxon assigned. Considered that some samples are 
difficult to identify (e.g. damaged organisms, immature specimen), a full taxonomic 
assignment is not mandatory, but the phylum level assignment is a prerequisite. Collection 
info is essential for knowing the global distribution of a specific taxon and the variations 
among different areas, so that detailed geographical information is encouraged to provide. 
Additionally, the Details describe the specimen in detail and the Images show the 
morphological natures. Another key field is Process ID, which is used to identify the 
experimental process that produces a DNA barcode. One Sample ID is uniquely referred to 
one Process ID, vice versa. This ensures the connection between sample and produced DNA. 
Process ID is also known as Barcode ID in the sequence record view. Finally, trace files are 
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essential to qualify the results of DNA sequencing, and primer info is required when a 
process needs to be repeated.  
 

1st Category 2nd category Data fields Description 
Specimen Voucher info Sample ID ID associated with the sample being 

sequenced. It is unique. 
  Field ID Field number from a collection event or 

specimen identifier from a private 
collection.

  Museum ID Catalog number in curated collection 
for a vouchered specimen. 

  Collection Code Code associated with given collection. 
  Institution Storing Full name of the institution where 

specimen is vouchered.
  Sample Donor Full name of individual responsible for 

providing specimen or tissue sample. 
  Donor Email E-mail of the sample donor. 
 Taxonomic 

info 
Taxonomy Full taxonomy. Phylum is mandatory. 

  Identifier Primary individual responsible for the 
taxonomic identification

  Identifier Email Email address of the primary identifier 
  Identifier Institution Institution of the primary identifier 
 Collection 

Info 
Collectors List of collectors

  Collection Date Data of collection
  Continent/Ocean Continent or ocean name
  Country Country name
  State/Province State and/or province
  Region & Sector & 

Exact site 
Detailed description of place 

  GPS GPS coordinates
  Elevation/Depth Elevation or depth
 Details Sex Male/female/hermaphrodite 
  Reproduction Sexual/asexual/cyclic pathogen 
  Life Stage Adult/immature
  Extra Info & Notes User specified, free text
 Images Image File Name of image
  Original Specimen If the image is from the original 

specimen 
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3. DNA barcode data schema and the Barcode of Life Data systems 
The Barcode of Life Data System (BOLD) is by far the best information system for DNA 
barcode data, aiming at the collection, management, analysis and use of DNA barcodes 
(Ratnasingham and Hebert 2007). Started from 2004, BOLD has developed to not only the 
authorized DNA barcode data resource, but also a global workbench for the assembly, 
analysis and publication of DNA barcode records. By now, BOLD has become a major 
contributor to INSDC, with the contribution of about 500,000 records into GenBank during 
2010. Millions of DNA barcode records will be deposited into INSDC along with the 
proceedings of iBOL project. Each record submitted into GenBank has the keyword 
“BARCODE” and an ID back to BOLD.  
Since BOLD uses different ways to store and present DNA barcoding data to GenBank, in 
the following sections we will give a brief dissection of BOLD, from data schema to the 
functions. To some extent, this will also help to understand another information systems to 
be introduced in this chapter.  

3.1 Data schema of barcode of life data 
In order to collect and manage the DNA barcode data effectively, a data schema is required. 
BOLD has built up its data schema according the Darwin Core 1 standard, which is applied 
by the Global Biodiversity Information Facility (GBIF) and other biodiversity alliances, for 
the data fields related to specimen description. Meanwhile, the data schema describes the 
format for the sequence (barcode or marker) information as well as the primers and trace 
files. In brief, there are three categories of information, specimen related, sequence related 
and primer related (summarized in Table 4, and example in Fig. 3). Specimen related 
information includes the voucher info, collection info, taxonomic info and details, as well as 
some multi-media files (mostly photos in the current stage). Sequence related information 
consists of sequence file (in FASTA format), primer codes and trace files. Considered that 
primer pairs to the markers (DNA barcodes) are to be standardized and the dataset is 
relatively small and constant, the detailed info of the primer is separated from specimen and 
sequence.  
As far as a DNA barcode record is concerned, the Sample ID is one of the most important key 
fields. It is the identifier of the sample of specimen used for sequencing, so that it is unique 
in the whole system. Different Sample IDs may refer to one specimen. For example, two legs 
of butterfly are treated separated for experiments. Since there is not a single field like 
“Specimen ID” to uniquely mark specimens, BOLD schema uses Field ID, Museum ID and 
Collection Code instead. At least one of the Field ID and Museum ID must be appeared and 
must associate with Institution Storing to exclusively locate the specimen in the world. A 
Collection Code is required whenever it has to be combined with Museum ID to discriminate 
specimen. That is the basis to link a DNA barcode to a real specimen. The taxonomic info is 
for the link between DNA barcode and taxon assigned. Considered that some samples are 
difficult to identify (e.g. damaged organisms, immature specimen), a full taxonomic 
assignment is not mandatory, but the phylum level assignment is a prerequisite. Collection 
info is essential for knowing the global distribution of a specific taxon and the variations 
among different areas, so that detailed geographical information is encouraged to provide. 
Additionally, the Details describe the specimen in detail and the Images show the 
morphological natures. Another key field is Process ID, which is used to identify the 
experimental process that produces a DNA barcode. One Sample ID is uniquely referred to 
one Process ID, vice versa. This ensures the connection between sample and produced DNA. 
Process ID is also known as Barcode ID in the sequence record view. Finally, trace files are 
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essential to qualify the results of DNA sequencing, and primer info is required when a 
process needs to be repeated.  
 

1st Category 2nd category Data fields Description 
Specimen Voucher info Sample ID ID associated with the sample being 

sequenced. It is unique. 
  Field ID Field number from a collection event or 

specimen identifier from a private 
collection.

  Museum ID Catalog number in curated collection 
for a vouchered specimen. 

  Collection Code Code associated with given collection. 
  Institution Storing Full name of the institution where 

specimen is vouchered.
  Sample Donor Full name of individual responsible for 

providing specimen or tissue sample. 
  Donor Email E-mail of the sample donor. 
 Taxonomic 

info 
Taxonomy Full taxonomy. Phylum is mandatory. 

  Identifier Primary individual responsible for the 
taxonomic identification

  Identifier Email Email address of the primary identifier 
  Identifier Institution Institution of the primary identifier 
 Collection 

Info 
Collectors List of collectors

  Collection Date Data of collection
  Continent/Ocean Continent or ocean name
  Country Country name
  State/Province State and/or province
  Region & Sector & 

Exact site 
Detailed description of place 

  GPS GPS coordinates
  Elevation/Depth Elevation or depth
 Details Sex Male/female/hermaphrodite 
  Reproduction Sexual/asexual/cyclic pathogen 
  Life Stage Adult/immature
  Extra Info & Notes User specified, free text
 Images Image File Name of image
  Original Specimen If the image is from the original 

specimen 
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1st Category 2nd category Data fields Description 
  View Metadata Dorsal/Lateral/Ventral/Frontal/etc. 
  Caption Short description of image 
  Measurement  Measurement that was taken 
  Measurement Type Body length, wing span, etc. 
  Copyright The copyright 
Sequence Sequence Process ID (Barcode 

ID) 
The ID of a process that produce a 
sequence 

  Sequence DNA sequence  
 Trace Files Trace File Complete name of trace file 
  Score File Complete name of score file 
  Read Direction Forward or reverse 
  Marker  COI-5P, ITS, rbcLa, matK, etc. 
  PCR Primer Codes PCR primers used 
  Sequence Primer 

Codes 
Sequence primers used 

Primers  Primer Code Unique code for a primer 
  Primer Description A description of what the primer is 

used for 
  Alias Codes Any other known codes 
  Target Marker COI-5P, ITS, etc. 
  Cocktail Primer If it is a cocktail primer 
  Primer Sequence Sequences  
  Direction The direction of the sequence 
  Reference/Citation References and/or citations 
  Notes Some notes 

Table 4. Summary of the main data fields in BOLD data schema.  

3.2 Barcode of Life Data system 
BOLD system consists of three main modules, the Management and Analysis System (MAS), 
Identification System (IDS)/identification engine, and External Connectivity System (ECS). 
MAS is responsible for data repository, data management, data uploads, downloads and 
searches and some integrated analytics (Ratnasingham and Hebert 2007). With no doubt, it 
comprises the most important functions. According to the data schema described above, it 
stores specimen related information, sequences, trace files and images. All data of records 
was uploaded and organized by project that is created by the user. Once a user creates a 
project for a set of DNA barcode records, at least two data fields, Sample ID and Phylum, for 
each record are to be filled. Then additional information including voucher data, collection 
info, taxonomic assignment, identifier of the specimen, >500-bp sequence of DNA barcode, 
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PCR primers, and trace files is needed for a full data record. Among all DNA barcode 
records stored in BOLD, not all are complete and in high quality. For example, there are 
sequences with more than 1% Ns or less then 500-bp. Hence the integrated analytic tools are 
useful to help find out those records with low quality. In brief, BOLD employs Hidden 
Markov Model (Eddy 1998) (on amino acids) to align sequences and then to verify if the 
correct gene sequence was uploaded; consequently, scripts are used to check for stop codon 
and to compare against possible contaminant sequence. For trace file, a mean Phred score 
(Ewing and Green 1998) for the full sequence is determined, and this is used for the quality 
categorization. After these processing, a record will be flagged if has missing fields, 
sequence error or low quality.  
 

 
 

Fig. 3. An example of an XML format DNA barcode records according to BOLD data 
schema. 
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The IDS is one of the most commonly used analytic tools of BOLD. It uses all sequences 
uploaded, both public and private ones, to locate the closest match. Note that the details of the 
private ones are not exposed. As for animal identification, COI gene set is used as database to 
compare against. The Basic Local Alignment Search Tool (BLAST) (Altschul et al. 1990) is 
employed to detect single base indels, and Hidden Markov Model for COI protein is used for 
sequence alignment. There are four databases are used for COI identification in BOLD, 
including All Barcode Records Database, Species Level Barcode Database, Public Record 
Barcode Database and Full Length Record Database. They are comprised of different quality 
levels of sequences (http://boldsystems.org/docs/handbook.php?page=idengine). Fungal 
identification is based on ITS, and plant identification is on rbcL and matK. The Fungal 
Database and Plant Database respectively are for the identification and only BLAST algorithm 
is employed. By now, the data records within fungal and plant databases are much fewer than 
those in COI databases.  
Besides IDS, there are other useful tools developed and integrated in BOLD. The Barcode 
Index Number system (BINs) is designed as an alternate method for species identification. 
In BINs, a set of operational taxonomic units (OTUs; putative species) was generated using a 
novel clustering algorithm based on graph methods, and a BIN ID is given for each OTU. 
BINs and OTUs help to solve the problem that many BOLD records have only interim 
species name or without fully taxonomic assignment. Another tool, the Taxon ID Tree 
employs varied distance metrics to build neighbour-joining tree with at most 5000 species a 
time. This is powerful toolbox for online phylogenetics analysis. More functions including 
distance summary, sequence composition, nearest neighbour summary, DNA degradation 
test, accumulation curve and alignment viewer are available in BOLD. These tools 
implemented the bioinformatics and statistic approaches for data analyses.  
ECS is served as the interface for other developers to access the barcode data via web 
services. Currently, BOLD opens two services e-Search and e-Fetch following the 
Representational State Transfer (REST) architecture. Programmes may use e-Search to get a 
list of records, and use e-Fetch to obtain the details. Below lists the parameters for e-Search 
and e-Fetch. Anther web service called eTrace is also developed for the retrieval of trace files 
for a given Sample ID. We have tested for the use of this service, and obtained thousands of 
trace files from BOLD. This service will be exposed to public in the near future.  
 
Service Name Parameters Description 
e-Search & e-Fetch id_type Sample_id, process_id, specimen_id, sequence_id, 

tax_id, record_id 
 ids Comma separated ids 
 Return_type Text, xml, json 
 File_type Zip 
e-Search Geo_inc Country/province to be included 
 Geo_exc Country/province to be excluded 
 Taxon_inc Taxonomy to be included 
 Taxon_exc Taxonomy to be excluded 
e-Fetch Record_type Specimen, sequence, full 

Table 5. Parameters of the web services of BOLD.  
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4. The Global Mirror System of DNA Barcode Data (GMS-DBD) 
One of the main tasks of iBOL project is to setup global mirror sites for DNA barcode data, 
and this is assigned as the mission of working group 3.2 (that is chaired by the author Juncai 
Ma). Mirror sites play roles not only for data security but also for the global access and use 
of DNA barcode data fast and stably. In addition to iBOL’s task, the Chinese DNA Barcode 
of Life Information Systems requires to mirror BOLD as well. For the current stage, the 
entire BOLD system is difficult to mirror, in both the storage and the analytical workbench. 
For this reason, we developed the mirror site of BOLD data (http://www.boldmirror.net) 
(Fig. 4) in China in 2010, and served it as one of the major components of the Chinese DNA 
Barcode of Life Information Systems. In late 2010, we started to encapsulate the mirror site 
into a distributable mirror system, namely the Global Mirror System of DNA Barcode Data 
(GMS-DBD). Different from BOLD systems, GMS-DBD is designed and currently served as 
a system for the presentation and analysis of DNA barcode data only, but not the 
management of DNA barcode projects. Moreover, GMS-DBD is designed to feature in the 
fast deployment and fast use of the DNA barcode data.  
 

 
Fig. 4. Homepage of the mirror of BOLD data. 
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Fig. 4. Homepage of the mirror of BOLD data. 
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4.1 Design and implementation of GMS-DBD 
For the purposes mentioned above, GMS-DBD was designed with three main components 
including data synchronization module, data presentation module, and statistics and 
analysis module. As for data synchronization, the module functions to obtain data from 
BOLD and then to distribute them to each mirror site deployed by GMS-DBD. Right after 
data transferred over Internet, all updated data are imported automatically into mirror site’s 
local database management system (DBMS). Data presentation module comprises the 
following functions, browsing by records, browsing by taxonomy and searching by 
keywords. These are the key functions for a DNA barcode data mirror. Data statistics 
module aims at the statistical presentation of the entire dataset, including the barcode data 
statistics by country, by taxon or by organization. (Fig. 5 Left) For the use of DNA barcode 
data, especially for sequence similarity based identification, we embedded a form to submit 
the sequences to be identified to a BLAST server in China mirror site. 
The whole system was implemented as a software package, in which the database, 
applications, web pages were encapsulated. This software package was for the Linux 
platform, and tested on some main distributes, like Fedora, Ubuntu. The installer was 
written in Perl, and will guide the administrator to setup and configure the mirror site step-
by-step. Particularly, Apache web server and PHP scripting language were employed for 
the Web layer, and MySQL DBMS was used for the management of database. The 
applications for database search, records presenting and sorting, and statistics calculation 
were written using PHP scripts. For better visualization, Java applet (viewing 
chromatogram files), Adobe FLEX (statistical presentation) and Google Maps (geographical 
view of locations) were employed and embedded into the web pages. In addition to 
presenting record by specimen information and by sequence information as BOLD does, we 
developed a full record view to browse all information in a single page (Fig. 5 right).  
In additional to the installer, data presentation module, and statistics and analysis module, 
data synchronization module was developed separately. From late 2009, BOLD and our 
centre were beginning to test the transfer of DNA barcode data between Canada and China, 
and finally defined a method. Every day, BOLD dumps the daily-updated data and daily-
completed data into XML format files and put them on a HTTP server, and for the mirror 
site, we run a daemon process to download the latest files. After data transfer finished, the 
daemon process will invoke consequently another processes to parse the XML format files 
and to import the parsed files into MySQL database. Perl is used for the parser and 
Structured Query Language (SQL) is used for data import. Specific for the data import 
process, it will execute the insertion and updating of the new entries and log every 
modification of the whole dataset. In parallel, another process will run to extract the DNA 
sequences of the new records and then to index them for BLAST search. All these 
procedures are scheduled and run automatically, and the updates and logs will be shown on 
the web pages immediately after the procedures finished.  

4.2 Distribution of GMS-DBD and DNA Barcode data 
GMS-DBD is freely distributed as the DNA barcode data. Nowadays, the University of 
Waikato, New Zealand has firstly built up their mirror site (http://nz.boldmirror.net) using 
the GMS-DBD distributes, and gave us great suggestions on the improvement and the 
further development of GMS-DBD. The Centro de Excelencia em Bioinformatica (CEBio) of 
Brazil has also contacted us and is setting up the mirror site using GMS-DBD.  
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Fig. 5. Functions of GMS-DBD. Top-left, logs of data updating. Middle-left, view by 
taxonomic tree. Bottom-left, statistics by phylum. Right, full DNA barcode record. 

To date, there are ~636,000 DNA barcode records available for the mirror sites, though more 
than 1.2 million records deposit in BOLD. One reason is that mirror sites stored the public 
available data records only, while BOLD has some private data to be released in the future. 
The second is that there are incomplete records held in BOLD that did not distribute to the 
mirror sites. Among all the records within the mirror sites, more than 200 thousand of them 
have trace files. The photos for each specimen are not available for mirror sites by now, 
because there are copyright problems to be solved.  
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5. Design and implementation of the DNA barcode management system in 
China 
As described in the previous sections, China has launched several projects to contribute the 
construction of the global DNA barcode library. An information system is thus needed to 
collect, manage and publish the produced data. Although BOLD is a good choice for the 
management of users’ DNA barcode projects and data records, many scientists are still willing 
to hold their data before their results published in scientific journals. Therefore, we designed 
and developed a DNA barcode management system for the Chinese scientists to manage their 
barcode data. First, the system is also designed as a distributable version, and could be 
downloaded and installed locally. Second, the user can hold the data for privacy for long time. 
Third, it supports modifications for the data schema. Fourth, for its simplicity, it lacks the 
connectivity to any LIMS, but using a unified data format to exchange data from LIMS. 
In views of function, this system has similar aspects to the BOLD system, i.e. user 
identification system, project based management, data input forms for different data types, 
data review and analyses platform. The entire system is developed with the LAMP 
(Linux+Apache+MySQL+PHP) architecture, and of no need to mount on very heavy 
computing infrastructures. The system manager has the privileges to choose the hardware 
ands scale the capability of the system. For data’s safety, only the registered users are 
allowed to use. The registered users have their data records organized by project, and only 
their own projects or authorized ones are allowed to visit (Fig. 6 left). The data input forms 
are like BOLD’s as well, in that there are forms for specimen info, taxonomy info, sequences, 
photo, trace files, etc., except that all the labels have Chinese translations.  
 

 
Fig. 6. Snapshots of DNA barcode management system in China. Left, user’s project page, 
summarizing the projects and records. Right, Quick Upload Page.  

BOLD has exemplified the management of DNA barcode data as a centralized data centre 
and shall be the reference for the development of core functionality of the Central Nodes. 
However, the development of such a comprehensive system needs a long period, and 
inapplicable for the immediate use. Moreover, things are to some extent different in China 
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each studies, especially for the specimen and collection information. Additionally, the DNA 
sequences produced by each campaign are either stored in their LIMS or simply stored in 
personal computers. In this situation, the tough work is becoming how to make the DNA 
barcode data management system suitable for every data structure, and how to easily collect 
those data already there. To meet this need, we designed different data schema for animal, 
plant and fungus. Note that all data schema are following the latest BOLD data schema, but 
with some data fields modified to fit each species groups. For example, we omitted the data 
fields “sex”, “reproduction” and “life stage” for fungi, but added on data fields “habitat” 
and “storing method”. This was the result after discussion with scientists doing fungus 
research. Additionally, we also added on some fields for Chinese, like “Chinese common 
name”, “taxon name in Chinese”, etc. Moreover, we encouraged the users to use the Chinese 
characters for “provider name” and “location names”, as they might be ambiguous in 
English.  
Another feature of this data management system is that we implemented a gateway for 
quick upload (Fig. 6 right). In terms of the data already produced, they are stored and 
organized either by a local DBMS or by Excel datasheet with files. The providers would like 
to upload them into the system in batch mode, but not form by form. Then we developed 
the quick upload gateway, according to the data schema and created different templates for 
batch upload. In brief, the template is in Excel format, and every data field is in one column 
while every record is in one row. What the user needs to do first is to fill in the template for 
their data or slightly modify the datasheet in use. Then three files are required to prepare, 
one is zipped photos, another is zipped trace files, and the other is FASTA format sequence 
file. Note that the file names of photos and trace files, and the sequence name (Process ID) of 
the sequence should be in the right place of the Excel template. Then these four files may be 
uploaded onto the system and records are imported into the database in batch mode. This 
mode is also suitable for those who are in charge of the whole procedures of the production 
of DNA barcode data, from specimen to barcode.  
Functions of the GMS-DBD were applied for this management system, in that we integrated 
Google Maps for geographical presentation, Java applet for viewing trace files, and BLAST 
for sequence identification. Besides, the management system has a data publishing function, 
which can generate XML format data following BOLD data schema. Within data 
transformation (from MySQL to XML), a language translation module will automatically 
invoked to translate those Chinese “city names”, “institution names” and “person names” 
into English.  
By now, this DNA barcode data management system is implemented using Chinese 
language, and has been developing for multi-language uses. To date, it is used for the 
collection and management of DNA barcodes of fungi, fish, birds, amphibian, and plants in 
China.  

6. Perspectives of DNA barcode information system and the underneath 
bioinformatics  
Along with the success of DNA barcode of life projects worldwide, huge amount of data 
will be produced on purpose. The traditional sequence database like GenBank seems not 
suitable for the storage of the DNA barcode records with multiple data types, so that novel 
systems are required to develop for the management and utilization of those data. Besides 
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the information systems described above, DNA Data Bank of Japan (DDBJ) (Kaminuma et 
al. 2011) maintains the Japanese repository for barcode data and employed the its BLAST 
server for identification, and the Korean BioInformation Center of Korea Research Institute 
of Bioscience and Biotechnology (KRIBB), Korea developed the BioBarcode platform for 
Asian biodiversity resources (Lim et al. 2009). The CBS culture collection of Netherlands is 
attempting to integrate the DNA barcode data into the BioloMICS software, which bundles 
comprehensive bioinformatics tools for data analyses. This will provide better experiences 
in some aspects for the bioinformatics researches applying barcode data, though the online 
workbench of BOLD provides sets of approaches for data analysis.  
When bioinformatics is mentioned, the algorithms and software are first recalled. The 
commonly used method for species discrimination is the Neighbour Joining (NJ) algorithm 
with Kimura 2 parameters (K2P) corrections. Though this approach was claimed as the best 
DNA substitution model for close genetic relations (Nei and Kuman 2000), the maximum 
likelihood methods and Bayesian Inference are more and more used for DNA barcoding 
analysis (e.g. Mueller 2006, deWaard et al. 2010, Kim et al. 2010). Coalescent-based methods 
for phylogenetics were also examined for DNA barcoding (Nielsen and Matz 2006, Abdo 
and Golding 2007). Casiraghi et al. (Casiraghi et al. 2010) summarized bioinformatics 
approaches for the analyses of barcode data and proposed the use of varied methods for 
different scenarios.  
Although DNA barcoding technology has been largely improved and the DNA barcode 
data has rapidly accumulated, there are still some concerns on the use of DNA barcode. 
First, varied paired of primers might be used to identify an unknown sample or a mixture. 
Although COI gene was proved to be efficient in almost all animals and some groups of 
fungi, the identification of unknown specimen may need several paired of primers and this 
will increase the complexity of the automation of DNA barcoding process. Prospectively, 
this would be one of the major issues on the development and implementation of the handy 
device for DNA barcoding, as planned in iBOL WG4.2. Secondly, every DNA barcode has 
the limitation of resolution in specific species groups, so that auxiliary markers need to be 
discovered. This problem exists mainly in plant and fungi, though some animal groups have 
met same one. Currently, plant and fungi data deposited in BOLD are still limited, and a lot 
of groups need to be examined. Additionally, the approaches for sharing and using barcode 
data need to be improved. A user-friendlier interface to access the barcode dataset is 
needed. For instance, the well-examined DNA barcodes and/or the consensus of barcodes 
of each taxon are organized and prepared, and user needs only to select the interested ones 
and download only a small dataset. This will be convenient for the users (i.e. identification 
of specimen using DNA barcoding) and some researchers on barcoding. As a matter of fact, 
that is one of the tasks what BOLD and our group are working on.  

7. Conclusions 
With no doubt, DNA barcoding is becoming a popular approach for knowing the 
biodiversity on the earth, by utilizing the accumulative knowledge of taxonomy, the modern 
techniques of molecular biology and bioinformatics. Bioinformatics played prominent role 
in the construction and the employment of the global barcode of life library, from the 
management of data to the development of novel methods. 
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1. Introduction

Multiple pattern matching is the computationally intensive kernel of many applications
including information retrieval and intrusion detection systems, web and spam filters and
virus scanners. The use of multiple pattern matching is very important in genomics
where the algorithms are frequently used to locate nucleotide or amino acid sequence
patterns in biological sequence databases. For example, when proteomics data is used for
genome annotation in a process called proteogenomic mapping (Jaffe et al., 2004), a set of
peptide identifications obtained using mass spectrometry is matched against a target genome
translated in all six reading frames.
Given a sequence database (or text) T = t1t2...tn of length n and a finite set of r patterns P =
p1, p2, ..., pr , where each pi is a string pi = pi

1 pi
2...pi

m of length m over a finite character set Σ,
the multiple pattern matching problem can be defined as the way to locate all the occurrences
of any of the patterns in the sequence database.
The naive solution to this problem is to perform r separate searches with one of the sequential
algorithms (Navarro & Raffinot, 2002). While frequently used in the past, this technique
is not efficient when a large pattern set is involved. The aim of all multiple pattern
matching algorithms is to locate the occurrences of all patterns with a single pass of the
sequence database. These algorithms are based of single-pattern matching algorithms, with
some of their functions generalized to process multiple patterns simultaneously during the
preprocessing phase, generally with the use of trie structures or hashing.
Multiple pattern matching is widely used in computational biology for a variety of pattern
matching tasks. Brundo and Morgenstern used a simplified version of the Aho-Corasick
algorithm to identify anchor points in their CHAOS algorithm for fast alignment of
large genomic sequences (Brudno & Morgenstern, 2002; Brudno et al., 2004). Hyyro et
al. demonstrated that Aho-Corasick outperforms other algorithms for locating unique
oligonucleotides in the yeast genome (Hyyro et al., 2005). The SITEBLAST algorithm
(Michael et al., 2005) employs the Aho-Corasick algorithm to retrieve all motif anchors for a
local alignment procedure for genomic sequences that makes use of prior knowledge. Buhler
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2 Will-be-set-by-IN-TECH

et al use Aho-Corasick to design simultaneous seeds for DNA similarity search (Buhler et al.,
2005). The AhoPro software package adapts the Aho-Corasick algorithm to compute the
probability of simultaneous motif occurrences (Boeva et al., 2007).
As biological databases are growing almost exponentially in time and the current
computational biology problems demand faster and more powerful searches, the performance
of the most widely used sequential multiple pattern matching algorithms is not fast enough
when used on conventional sequential computer systems. The recent advances in parallel
computing are mature enough and can provide powerful computing means convenient
to improve the performance of multiple pattern matching algorithms when used on large
biological databases.
The goals of this chapter are (a) To discuss intelligent methods for speeding up the
search phase of the presented algorithms on large biological sequence databases on both
concurrent and shared memory/distributed memory parallel systems. We also present a
hybrid parallelization technique that combines message passing between multicore nodes and
memory sharing inside each node. This technique could potentially have a better performance
than the traditional distributed and shared memory parallelization techniques, (b) to detail
the experimental results of the parallel implementation of some well known multiple pattern
matching algorithms for biological databases and (c) to identify a suitable and preferably fast
parallel multiple pattern matching algorithm for several problem parameters such as the size
and the alphabet of the sequence database, the amount of distributed processors and the
number of cores per processor. To the best of our knowledge, no attempt has been made
yet to implement the multiple pattern matching algorithms on multicore and multiprocessor
computing systems using OpenMP and MPI respectively.
The rest of this chapter is organized as follows: the next section presents a short
survey of multiple pattern matching algorithms and details the efficient and widely used
Commentz-Walter, Wu-Manber and the Salmela-Tarhio-Kytöjoki algorithms. The third
section discusses general aspects of parallel computing. The fourth section details methods
for the parallel implementation of multiple pattern matching algorithms on clusters and
multicore systems. Section five presents a hybrid parallel implementation of multiple pattern
matching algorithms that use the MPI/OpenMP APIs. Section six discusses the experimental
results of the proposed parallel implementations. Finally, the last section presents the
conclusions of this chapter.

2. Multiple pattern matching algorithms

Based on the way the patterns are stored and the search is performed, the multiple pattern
matching algorithms can generally be classified in to one of the four following approaches.

• Prefix algorithms: With prefix searching the patterns are stored in a trie, a data structure
where the root node represents the empty string and every node represents a prefix of
one of the patterns. At a given position i of the input string the algorithms traverse the
trie looking for the longest possible suffix of t1...ti that is a prefix of one of the patterns
(Navarro & Raffinot, 2002). One of the well known prefix multiple pattern matching
algorithms is Aho-Corasick (Aho & Corasick, 1975), an efficient algorithm based on the
Knuth-Morris-Pratt algorithm, that preprocesses the pattern list in time linear in |P|
and searches the input string in time linear in n in the worst case. Multiple Shift-And,
a bit-parallel algorithm generalization of the Shift-And algorithm for multiple pattern
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matching was introduced in (Navarro & Raffinot, 2002) but is only useful for a small size
of |P| since the pattern set must fit in a few computer words.

• Suffix algorithms: The suffix algorithms store the patterns backwards in a suffix
automaton, a rooted directed tree that represents the suffixes of all patterns. At each
position of the input string, the algorithms search for a suffix of any of the patterns from
right to left to skip some of the characters. Commentz-Walter (Commentz-Walter, 1979) is
an extension of the Boyer-Moore algorithm to multiple pattern matching that uses a suffix
trie. A simpler variant of Commentz-Walter is Set Horspool (Navarro & Raffinot, 2002), an
extension of the Horspool algorithm (Horspool, 1980) that can locate all the occurrences
of multiple patterns in O(n × m) time in the worst case. Suffix searching is generally
considered to be more efficient than prefix searching.

• Factor algorithms: The factor searching algorithms build a factor oracle, a trie with
additional transitions that can recognize any substring (or factor) of the patterns.
Dawg-Match (Crochemore et al., 1999) and MultiBDM (Crochemore & Rytter, 1994) were
the first two factor algorithms, algorithms complicated and with a poor performance
in practice (Navarro & Raffinot, 2002). The Set Backward Oracle Matching and the Set
Backward Dawg Matching algorithms (Navarro & Raffinot, 2002) are natural extensions of
the Backward Oracle Matching (Allauzen et al., 1999) and the Backward Dawg Matching
(Crochemore et al., 1994) algorithms respectively for multiple pattern matching.

• Hashing algorithms: The algorithms following this approach use hashing to reduce
their memory footprint usually in conjunction with other techniques. Wu-Manber
(Wu & Manber, 1994) is one such algorithm that is based on Horspool. It reads the input
string in blocks to effectively increase the size of the alphabet and then applies a hashing
technique to reduce the necessary memory space. Zhou et al. (Zhou et al., 2007) proposed
an algorithm called MDH, a variant of Wu-Manber for large-scale pattern sets. Kim and
Kim introduced in (Kim & Kim, 1999) a multiple pattern matching algorithm that also
takes the hashing approach. The Salmela-Tarhio-Kytöjoki (Salmela et al., 2006) variants
of the Horspool, Shift-Or (Baeza-Yates & Gonnet, 1992) and BNDM (Navarro & Raffinot,
1998) algorithms can locate candidate matches by excluding positions of the input string
that do not match to any of the patterns. They combine hashing and a technique called
q-grams to increase the alphabet size, similar to the method used by Wu-Manber.

2.1 Commentz-Walter
Commentz-Walter combines the filtering functions of the single pattern matching
Boyer-Moore algorithm and a suffix automaton to search for the occurrence of multiple
patterns in an input string. The trie used by Commentz-Walter is similar to that of
Aho-Corasick but is created from the reversed patterns. The original paper presented two
versions of the algorithm, B and B1. The B algorithm creates during the preprocessing phase
a trie structure from the reversed patterns of the patterns set where each node corresponds to a
single character, constructs the two shift functions of the Boyer-Moore algorithm extended to
multiple patterns and specifies the exit nodes that indicate that a complete match is found in
O(|P|) time. The trie is then positioned with its starting node aligned with the mth character of
the input string and is compared backwards to the text making state transitions as necessary,
until the end of the input string is reached in O(n × m) worst case time. When a mismatch is
encountered, the trie is shifted to the right using the shift functions based on the knowledge
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et al use Aho-Corasick to design simultaneous seeds for DNA similarity search (Buhler et al.,
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As biological databases are growing almost exponentially in time and the current
computational biology problems demand faster and more powerful searches, the performance
of the most widely used sequential multiple pattern matching algorithms is not fast enough
when used on conventional sequential computer systems. The recent advances in parallel
computing are mature enough and can provide powerful computing means convenient
to improve the performance of multiple pattern matching algorithms when used on large
biological databases.
The goals of this chapter are (a) To discuss intelligent methods for speeding up the
search phase of the presented algorithms on large biological sequence databases on both
concurrent and shared memory/distributed memory parallel systems. We also present a
hybrid parallelization technique that combines message passing between multicore nodes and
memory sharing inside each node. This technique could potentially have a better performance
than the traditional distributed and shared memory parallelization techniques, (b) to detail
the experimental results of the parallel implementation of some well known multiple pattern
matching algorithms for biological databases and (c) to identify a suitable and preferably fast
parallel multiple pattern matching algorithm for several problem parameters such as the size
and the alphabet of the sequence database, the amount of distributed processors and the
number of cores per processor. To the best of our knowledge, no attempt has been made
yet to implement the multiple pattern matching algorithms on multicore and multiprocessor
computing systems using OpenMP and MPI respectively.
The rest of this chapter is organized as follows: the next section presents a short
survey of multiple pattern matching algorithms and details the efficient and widely used
Commentz-Walter, Wu-Manber and the Salmela-Tarhio-Kytöjoki algorithms. The third
section discusses general aspects of parallel computing. The fourth section details methods
for the parallel implementation of multiple pattern matching algorithms on clusters and
multicore systems. Section five presents a hybrid parallel implementation of multiple pattern
matching algorithms that use the MPI/OpenMP APIs. Section six discusses the experimental
results of the proposed parallel implementations. Finally, the last section presents the
conclusions of this chapter.

2. Multiple pattern matching algorithms

Based on the way the patterns are stored and the search is performed, the multiple pattern
matching algorithms can generally be classified in to one of the four following approaches.

• Prefix algorithms: With prefix searching the patterns are stored in a trie, a data structure
where the root node represents the empty string and every node represents a prefix of
one of the patterns. At a given position i of the input string the algorithms traverse the
trie looking for the longest possible suffix of t1...ti that is a prefix of one of the patterns
(Navarro & Raffinot, 2002). One of the well known prefix multiple pattern matching
algorithms is Aho-Corasick (Aho & Corasick, 1975), an efficient algorithm based on the
Knuth-Morris-Pratt algorithm, that preprocesses the pattern list in time linear in |P|
and searches the input string in time linear in n in the worst case. Multiple Shift-And,
a bit-parallel algorithm generalization of the Shift-And algorithm for multiple pattern
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matching was introduced in (Navarro & Raffinot, 2002) but is only useful for a small size
of |P| since the pattern set must fit in a few computer words.

• Suffix algorithms: The suffix algorithms store the patterns backwards in a suffix
automaton, a rooted directed tree that represents the suffixes of all patterns. At each
position of the input string, the algorithms search for a suffix of any of the patterns from
right to left to skip some of the characters. Commentz-Walter (Commentz-Walter, 1979) is
an extension of the Boyer-Moore algorithm to multiple pattern matching that uses a suffix
trie. A simpler variant of Commentz-Walter is Set Horspool (Navarro & Raffinot, 2002), an
extension of the Horspool algorithm (Horspool, 1980) that can locate all the occurrences
of multiple patterns in O(n × m) time in the worst case. Suffix searching is generally
considered to be more efficient than prefix searching.

• Factor algorithms: The factor searching algorithms build a factor oracle, a trie with
additional transitions that can recognize any substring (or factor) of the patterns.
Dawg-Match (Crochemore et al., 1999) and MultiBDM (Crochemore & Rytter, 1994) were
the first two factor algorithms, algorithms complicated and with a poor performance
in practice (Navarro & Raffinot, 2002). The Set Backward Oracle Matching and the Set
Backward Dawg Matching algorithms (Navarro & Raffinot, 2002) are natural extensions of
the Backward Oracle Matching (Allauzen et al., 1999) and the Backward Dawg Matching
(Crochemore et al., 1994) algorithms respectively for multiple pattern matching.

• Hashing algorithms: The algorithms following this approach use hashing to reduce
their memory footprint usually in conjunction with other techniques. Wu-Manber
(Wu & Manber, 1994) is one such algorithm that is based on Horspool. It reads the input
string in blocks to effectively increase the size of the alphabet and then applies a hashing
technique to reduce the necessary memory space. Zhou et al. (Zhou et al., 2007) proposed
an algorithm called MDH, a variant of Wu-Manber for large-scale pattern sets. Kim and
Kim introduced in (Kim & Kim, 1999) a multiple pattern matching algorithm that also
takes the hashing approach. The Salmela-Tarhio-Kytöjoki (Salmela et al., 2006) variants
of the Horspool, Shift-Or (Baeza-Yates & Gonnet, 1992) and BNDM (Navarro & Raffinot,
1998) algorithms can locate candidate matches by excluding positions of the input string
that do not match to any of the patterns. They combine hashing and a technique called
q-grams to increase the alphabet size, similar to the method used by Wu-Manber.

2.1 Commentz-Walter
Commentz-Walter combines the filtering functions of the single pattern matching
Boyer-Moore algorithm and a suffix automaton to search for the occurrence of multiple
patterns in an input string. The trie used by Commentz-Walter is similar to that of
Aho-Corasick but is created from the reversed patterns. The original paper presented two
versions of the algorithm, B and B1. The B algorithm creates during the preprocessing phase
a trie structure from the reversed patterns of the patterns set where each node corresponds to a
single character, constructs the two shift functions of the Boyer-Moore algorithm extended to
multiple patterns and specifies the exit nodes that indicate that a complete match is found in
O(|P|) time. The trie is then positioned with its starting node aligned with the mth character of
the input string and is compared backwards to the text making state transitions as necessary,
until the end of the input string is reached in O(n × m) worst case time. When a mismatch is
encountered, the trie is shifted to the right using the shift functions based on the knowledge
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of the suffix of the text that matches to a suffix of one of the patterns. The B1 algorithm
is a modification of the B algorithm that has a linear search time in the worst case since it
stores in memory the input characters that were already scanned. Due to the complicated
preprocessing and the higher memory overhead, the original paper discourages its usage.

2.2 Wu-Manber
Wu-Manber is a generalization of the Horspool algorithm, a simple variant of the
Boyer-Moore algorithm that uses only the bad-character shift, for multiple pattern matching.
To achieve a better performance when |P| is increased, the algorithm essentially enlarges
the alphabet size by considering the text as blocks of size B instead of single characters.
As recommended in (Wu & Manber, 1994), a good value for B is logΣ2|P| although usually
B could be equal to 2 for a small pattern set size or to 3 otherwise. In the preprocessing
phase, three tables are built, the SHIFT table, the HASH table and the PREFIX table. SHIFT is
similar to the bad-character shift table of the Horspool algorithm and is used to determine the
number of characters that can be safely skipped based on the previous B characters on each
text position. Since the maximum amount of characters that can be skipped based on the value
of the SHIFT table is equal to m − B + 1, the Wu-Manber algorithm is not very efficient when
short patterns are used. The PREFIX table stores a hashed value of the B-characters prefix of
each pattern while the HASH table contains a list of all patterns with the same prefix. When
the value of SHIFT is greater than 0, the search window is shifted and a new substring B of the
input string is considered. When no shift is possible at a given position of the input string, a
candidate match is found and the hashed value of the previous B characters of the input string
is then compared with the hashed values stored at the PREFIX table to determine if an exact
match exists. As the experiments of this chapter involve large pattern set sizes, Wu-Manber
was implemented with a block size of B = 3.

2.3 Salmela-Tarhio-Kytöjoki
Salmela-Tarhio-Kytöjoki presented three algorithms called HG, SOG and BG, that extend
the single pattern Horspool, Shift-Or (Baeza-Yates & Gonnet, 1992) and BNDM algorithms
respectively for multiple pattern matching. The algorithms are character class filters; they
essentially construct a generalized pattern with a length of m characters in O(|P|) time for
BG and SOG and O(|P| × m) time for the HG algorithm that simultaneously matches all
the patterns. As |P| increases, the efficiency of the filters is expected to be reduced since a
candidate match would occur in almost every position (Salmela, 2009). To solve this problem,
the algorithms are using a similar technique to the Wu-Manber algorithm. They treat the input
string and the patterns in groups of q characters, effectively enlarging the alphabet size to Σq

characters. That way, the performance of the algorithms is improved but with an additional
memory space cost since an alphabet of 28 characters will grow to 216 characters with 2-grams
or 224 with 3-grams. When 3-grams are used, a hashing technique can be applied to reduce
the required memory space to 221 bytes. When a candidate match is found, it is verified
using a combination of the Karp-Rabin (Karp & Rabin, 1987) algorithm and binary search
in O(n(logr + m)) worst case complexity. To improve the efficiency of the verification, a
two-level hashing technique is used as detailed in (Muth & Manber, 1996). The combined
filtering and verification time is O(n) for SOG and O(nlogΣ(|P|)/m) for the BG and HG
algorithms on average. For the experiments of this chapter the HG, SOG and BG algorithms
were implemented using hashed 3-grams.
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For this chapter, the Commentz-Walter, Wu-Manber and the Salmela-Tarhio-Kytöjoki multiple
pattern algorithms were used. The Commentz-Walter algorithm is substantially faster in
practice than the Aho-Corasick algorithm, particularly when long patterns are involved (Wu
and Manber, 2004). Wu-Manber is considered to be a practical, simple and efficient algorithm
for multiple pattern matching (Navarro & Raffinot, 2002). Finally, Salmela-Tarhio-Kytöjoki is
a recently introduced family of algorithms that has a reportedly good performance on specific
types of data (Kouzinopoulos & Margaritis, 2010; 2011). For further details and pseudocode
of the above algorithms, the reader is referred to (Kouzinopoulos & Margaritis, 2010; 2011)
and the original references.

3. Parallel computing

Very often computational applications need more computing power than a sequential
computer can provide. One way of overcoming this limitation is to improve the operating
speed of processors and other components so that they can offer the power required
by computationally intensive applications. Even though this is currently possible to
certain extent, future improvements are constrained by the speed of light, thermodynamic
laws, and the high financial costs for processor fabrication. A viable and cost-effective
alternative solution is to coordinate the efforts of multiple interconnected processors and share
computational tasks among them.
Parallel computing can be classified into two basic techniques based on the way the
communication between the processing nodes occurs: distributed memory and shared
memory. In distributed memory parallel systems (most commonly clusters of computers)
the processing elements are loosely-coupled; each has its own local memory and the
communication between the elements takes place through an interconnected network, usually
with the use of message passing. Shared memory parallel systems (most commonly
multi-processors and multi-core processors) on the other hand are tightly-coupled; they have
a shared access to a common memory area that is also used for the communication between
the processing elements.

3.1 Multi-core system
A multi-core processor is a type of parallel system, which consists of a single component
with two or more independent actual processors (called "cores"). In other words, it is a single
integrated circuit chip or die that includes more than one processing unit. Each core may
independently implement optimizations such as superscalar execution (a CPU architecture
that allows more than one instruction to be executed in one clock cycle), pipelining (a standard
feature in RISC processors and Graphics Processor Units that is much like an assembly line:
the processor works on different steps of the instruction at the same time), and multithreading
(a specialized form of multitasking enabling concurrent execution of pieces of the same
program). Using multiple processors on a single piece of silicon enables increased parallelism,
saves space on a printed circuit board which enables smaller footprint boards and related cost
savings, reduces distance between processors which enables faster intercommunication with
less signal degradation than if signals had to travel off-chip between processors and reduces
the dependence on growth of processor speeds and the related increasing gap between
processor and memory speeds. Hyper-Threading is a technique used in Intel processors that
makes a single physical processor appear to the operating system as two logical processors
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Wu-Manber is a generalization of the Horspool algorithm, a simple variant of the
Boyer-Moore algorithm that uses only the bad-character shift, for multiple pattern matching.
To achieve a better performance when |P| is increased, the algorithm essentially enlarges
the alphabet size by considering the text as blocks of size B instead of single characters.
As recommended in (Wu & Manber, 1994), a good value for B is logΣ2|P| although usually
B could be equal to 2 for a small pattern set size or to 3 otherwise. In the preprocessing
phase, three tables are built, the SHIFT table, the HASH table and the PREFIX table. SHIFT is
similar to the bad-character shift table of the Horspool algorithm and is used to determine the
number of characters that can be safely skipped based on the previous B characters on each
text position. Since the maximum amount of characters that can be skipped based on the value
of the SHIFT table is equal to m − B + 1, the Wu-Manber algorithm is not very efficient when
short patterns are used. The PREFIX table stores a hashed value of the B-characters prefix of
each pattern while the HASH table contains a list of all patterns with the same prefix. When
the value of SHIFT is greater than 0, the search window is shifted and a new substring B of the
input string is considered. When no shift is possible at a given position of the input string, a
candidate match is found and the hashed value of the previous B characters of the input string
is then compared with the hashed values stored at the PREFIX table to determine if an exact
match exists. As the experiments of this chapter involve large pattern set sizes, Wu-Manber
was implemented with a block size of B = 3.

2.3 Salmela-Tarhio-Kytöjoki
Salmela-Tarhio-Kytöjoki presented three algorithms called HG, SOG and BG, that extend
the single pattern Horspool, Shift-Or (Baeza-Yates & Gonnet, 1992) and BNDM algorithms
respectively for multiple pattern matching. The algorithms are character class filters; they
essentially construct a generalized pattern with a length of m characters in O(|P|) time for
BG and SOG and O(|P| × m) time for the HG algorithm that simultaneously matches all
the patterns. As |P| increases, the efficiency of the filters is expected to be reduced since a
candidate match would occur in almost every position (Salmela, 2009). To solve this problem,
the algorithms are using a similar technique to the Wu-Manber algorithm. They treat the input
string and the patterns in groups of q characters, effectively enlarging the alphabet size to Σq

characters. That way, the performance of the algorithms is improved but with an additional
memory space cost since an alphabet of 28 characters will grow to 216 characters with 2-grams
or 224 with 3-grams. When 3-grams are used, a hashing technique can be applied to reduce
the required memory space to 221 bytes. When a candidate match is found, it is verified
using a combination of the Karp-Rabin (Karp & Rabin, 1987) algorithm and binary search
in O(n(logr + m)) worst case complexity. To improve the efficiency of the verification, a
two-level hashing technique is used as detailed in (Muth & Manber, 1996). The combined
filtering and verification time is O(n) for SOG and O(nlogΣ(|P|)/m) for the BG and HG
algorithms on average. For the experiments of this chapter the HG, SOG and BG algorithms
were implemented using hashed 3-grams.
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a recently introduced family of algorithms that has a reportedly good performance on specific
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of the above algorithms, the reader is referred to (Kouzinopoulos & Margaritis, 2010; 2011)
and the original references.

3. Parallel computing

Very often computational applications need more computing power than a sequential
computer can provide. One way of overcoming this limitation is to improve the operating
speed of processors and other components so that they can offer the power required
by computationally intensive applications. Even though this is currently possible to
certain extent, future improvements are constrained by the speed of light, thermodynamic
laws, and the high financial costs for processor fabrication. A viable and cost-effective
alternative solution is to coordinate the efforts of multiple interconnected processors and share
computational tasks among them.
Parallel computing can be classified into two basic techniques based on the way the
communication between the processing nodes occurs: distributed memory and shared
memory. In distributed memory parallel systems (most commonly clusters of computers)
the processing elements are loosely-coupled; each has its own local memory and the
communication between the elements takes place through an interconnected network, usually
with the use of message passing. Shared memory parallel systems (most commonly
multi-processors and multi-core processors) on the other hand are tightly-coupled; they have
a shared access to a common memory area that is also used for the communication between
the processing elements.

3.1 Multi-core system
A multi-core processor is a type of parallel system, which consists of a single component
with two or more independent actual processors (called "cores"). In other words, it is a single
integrated circuit chip or die that includes more than one processing unit. Each core may
independently implement optimizations such as superscalar execution (a CPU architecture
that allows more than one instruction to be executed in one clock cycle), pipelining (a standard
feature in RISC processors and Graphics Processor Units that is much like an assembly line:
the processor works on different steps of the instruction at the same time), and multithreading
(a specialized form of multitasking enabling concurrent execution of pieces of the same
program). Using multiple processors on a single piece of silicon enables increased parallelism,
saves space on a printed circuit board which enables smaller footprint boards and related cost
savings, reduces distance between processors which enables faster intercommunication with
less signal degradation than if signals had to travel off-chip between processors and reduces
the dependence on growth of processor speeds and the related increasing gap between
processor and memory speeds. Hyper-Threading is a technique used in Intel processors that
makes a single physical processor appear to the operating system as two logical processors
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by sharing the physical execution resources and duplicating the architecture state for the two
logical processors.
Threads are a popular paradigm for concurrent programming on uniprocessor as well as
on multiprocessor machines. On multiprocessor systems, threads are primarily used to
simultaneously utilize all the available processors while in uniprocessor systems, threads
are used to utilize the system resources effectively. This is achieved by exploiting the
asynchronous behaviour of an application for overlapping computation and communication.
Multithreaded applications offer quicker response to user input and run faster. Unlike
forked process, thread creation is cheaper and easier to manage. Threads communicate using
shared variables as they are created within their parent process address space. Threads are
potentially portable, as there exists an IEEE standard for POSIX threads interface, popularly
called pthreads (Nichols et al., 1996) that is available on PCs, workstations, SMPs and clusters.
Threads have been extensively used in developing both application and system software.
The most widely used API for shared memory parallel processing is OpenMP, a set of
directives, runtime library routines and environmental variables that is supported on a wide
range of multicore systems, shared memory processors, clusters and compilers (Leow et al.,
2006). The approach of OpenMP is to start with a normal sequential programming language
but create the parallel specifications by the judicious use of embedded compiler directives.
The API consists of a set of specifications for parallelizing programs on shared memory
parallel computer systems without the explicit need for threads management.

3.2 Cluster system
A cluster is a type of parallel or distributed processing system, which consists of a collection
of interconnected stand-alone computers working together as a single, integrated computing
resource.
A computer node can be a single or multiprocessor system (PCs, workstations, SMPs and
multi-core processors) with memory, I/O facilities, and an operating system. A cluster
generally refers to two or more computer nodes connected together. The nodes can exist
in a single cabinet or be physically separated and connected via a LAN. An interconnected
(LAN-based) cluster of computers can appear as a single system to users and applications.
Such a system can provide a cost-effective way to gain features and benefits (fast and
reliable services) that have historically been found only on more expensive proprietary shared
memory systems.
Message passing libraries allow efficient parallel programs to be written for distributed
memory systems. These libraries provide routines to initiate and configure the messaging
environment as well as sending and receiving packets of data. Currently, the two most
popular high-level message-passing systems for scientific and engineering application are the
PVM (Parallel Virtual Machine) (Geist et al., 1994) from Oak Ridge National Laboratory, and
MPI (Message Passing Interface) defined by MPI Forum (Snir et al., 1996).
MPI is the most popular message passing library that is used to develop portable message
passing programs using either C or Fortran. The MPI standard defines both the syntax
as well as the semantics of a core set of library functions that are very useful in writing
message passing programs. MPI was developed by a group of researchers from academia
and industry and has enjoyed wide support by almost all the hardware vendors. Vendor
implementations of MPI are available on almost all parallel systems. The MPI library contains
over 125 functions but the number of key concepts is much smaller. These functions provide
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support for starting and terminating the MPI library, getting information about the parallel
computing environment, point-to-point and collective communications.

3.3 Parallel programming models
Parallel applications can be classified into some well defined programming models. This
section presents a brief overview of two popular programming models, the data parallel and
master-worker models. For further details on parallel programming models, the reader is
referred to (Buyya, 1999; Grama et al., 2003).

3.3.1 The data-parallel model
Data-parallel (Grama et al., 2003) is a programming model where the tasks are statically or
semi-statically mapped onto processes and each task performs similar operations on different
data. This type of parallelism that is a result of identical operations being applied concurrently
on different data items is called data parallelism. The work may be done in phases and the
data operated upon in different phases may be different. Typically, data-parallel computation
phases are interspersed with interactions to synchronize the tasks or to get fresh data to the
tasks. Since all tasks perform similar computations, the decomposition of the problem into
tasks is usually based on data partitioning because a uniform partitioning of data followed by
a static mapping is sufficient to guarantee load balance.
Data-parallel algorithms can be implemented in both shared-memory and message-passing
paradigms. However, the partitioned address-space in a message-passing paradigm may
allow better control of placement, and thus may offer a better handle on locality. On the
other hand, shared-memory can ease the programming effort, especially if the distribution of
data is different in different phases of the algorithm.

3.3.2 The master-worker model
The master-worker model (Buyya, 1999) consists of two entities: the master and multiple
workers. The master is responsible for decomposing the problem into small tasks (and
distributes these tasks among a farm of worker processes), as well as for gathering the partial
results in order to produce the final result of the computation. The worker processes execute
in a very simple cycle: get a message with the task, process the task, and send the result to
the master. Usually, the communication takes place only between the master and the workers
while only rarely do the workers communicate with each other.
Master-worker may either use static load-balancing or dynamic load-balancing. In the first
case, the distribution of tasks is all performed at the beginning of the computation, which
allows the master to participate in the computation after each worker has been allocated a
fraction of the work. The allocation of tasks can be done once or in a cyclic way. The other
way is to use a dynamically load-balanced master/worker paradigm, which can be more
suitable when the number of tasks exceeds the number of available processors, or when the
number of tasks is unknown at the start of the application, or when the execution times are
not predictable, or when we are dealing with unbalanced problems.
The master-worker model can be generalized to the hierarchical or multi-level master - worker
model in which the top-level master feeds large chunks of tasks to second-level masters, who
further subdivide the tasks among their own workers and may perform part of the work
themselves. This model is generally equally suitable to shared memory or message- passing
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by sharing the physical execution resources and duplicating the architecture state for the two
logical processors.
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on multiprocessor machines. On multiprocessor systems, threads are primarily used to
simultaneously utilize all the available processors while in uniprocessor systems, threads
are used to utilize the system resources effectively. This is achieved by exploiting the
asynchronous behaviour of an application for overlapping computation and communication.
Multithreaded applications offer quicker response to user input and run faster. Unlike
forked process, thread creation is cheaper and easier to manage. Threads communicate using
shared variables as they are created within their parent process address space. Threads are
potentially portable, as there exists an IEEE standard for POSIX threads interface, popularly
called pthreads (Nichols et al., 1996) that is available on PCs, workstations, SMPs and clusters.
Threads have been extensively used in developing both application and system software.
The most widely used API for shared memory parallel processing is OpenMP, a set of
directives, runtime library routines and environmental variables that is supported on a wide
range of multicore systems, shared memory processors, clusters and compilers (Leow et al.,
2006). The approach of OpenMP is to start with a normal sequential programming language
but create the parallel specifications by the judicious use of embedded compiler directives.
The API consists of a set of specifications for parallelizing programs on shared memory
parallel computer systems without the explicit need for threads management.

3.2 Cluster system
A cluster is a type of parallel or distributed processing system, which consists of a collection
of interconnected stand-alone computers working together as a single, integrated computing
resource.
A computer node can be a single or multiprocessor system (PCs, workstations, SMPs and
multi-core processors) with memory, I/O facilities, and an operating system. A cluster
generally refers to two or more computer nodes connected together. The nodes can exist
in a single cabinet or be physically separated and connected via a LAN. An interconnected
(LAN-based) cluster of computers can appear as a single system to users and applications.
Such a system can provide a cost-effective way to gain features and benefits (fast and
reliable services) that have historically been found only on more expensive proprietary shared
memory systems.
Message passing libraries allow efficient parallel programs to be written for distributed
memory systems. These libraries provide routines to initiate and configure the messaging
environment as well as sending and receiving packets of data. Currently, the two most
popular high-level message-passing systems for scientific and engineering application are the
PVM (Parallel Virtual Machine) (Geist et al., 1994) from Oak Ridge National Laboratory, and
MPI (Message Passing Interface) defined by MPI Forum (Snir et al., 1996).
MPI is the most popular message passing library that is used to develop portable message
passing programs using either C or Fortran. The MPI standard defines both the syntax
as well as the semantics of a core set of library functions that are very useful in writing
message passing programs. MPI was developed by a group of researchers from academia
and industry and has enjoyed wide support by almost all the hardware vendors. Vendor
implementations of MPI are available on almost all parallel systems. The MPI library contains
over 125 functions but the number of key concepts is much smaller. These functions provide
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support for starting and terminating the MPI library, getting information about the parallel
computing environment, point-to-point and collective communications.

3.3 Parallel programming models
Parallel applications can be classified into some well defined programming models. This
section presents a brief overview of two popular programming models, the data parallel and
master-worker models. For further details on parallel programming models, the reader is
referred to (Buyya, 1999; Grama et al., 2003).

3.3.1 The data-parallel model
Data-parallel (Grama et al., 2003) is a programming model where the tasks are statically or
semi-statically mapped onto processes and each task performs similar operations on different
data. This type of parallelism that is a result of identical operations being applied concurrently
on different data items is called data parallelism. The work may be done in phases and the
data operated upon in different phases may be different. Typically, data-parallel computation
phases are interspersed with interactions to synchronize the tasks or to get fresh data to the
tasks. Since all tasks perform similar computations, the decomposition of the problem into
tasks is usually based on data partitioning because a uniform partitioning of data followed by
a static mapping is sufficient to guarantee load balance.
Data-parallel algorithms can be implemented in both shared-memory and message-passing
paradigms. However, the partitioned address-space in a message-passing paradigm may
allow better control of placement, and thus may offer a better handle on locality. On the
other hand, shared-memory can ease the programming effort, especially if the distribution of
data is different in different phases of the algorithm.

3.3.2 The master-worker model
The master-worker model (Buyya, 1999) consists of two entities: the master and multiple
workers. The master is responsible for decomposing the problem into small tasks (and
distributes these tasks among a farm of worker processes), as well as for gathering the partial
results in order to produce the final result of the computation. The worker processes execute
in a very simple cycle: get a message with the task, process the task, and send the result to
the master. Usually, the communication takes place only between the master and the workers
while only rarely do the workers communicate with each other.
Master-worker may either use static load-balancing or dynamic load-balancing. In the first
case, the distribution of tasks is all performed at the beginning of the computation, which
allows the master to participate in the computation after each worker has been allocated a
fraction of the work. The allocation of tasks can be done once or in a cyclic way. The other
way is to use a dynamically load-balanced master/worker paradigm, which can be more
suitable when the number of tasks exceeds the number of available processors, or when the
number of tasks is unknown at the start of the application, or when the execution times are
not predictable, or when we are dealing with unbalanced problems.
The master-worker model can be generalized to the hierarchical or multi-level master - worker
model in which the top-level master feeds large chunks of tasks to second-level masters, who
further subdivide the tasks among their own workers and may perform part of the work
themselves. This model is generally equally suitable to shared memory or message- passing
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paradigms since the interaction is naturally two-way; i.e., the master knows that it needs to
give out work and workers know that they need to get work from the master.
While using the master-worker model, care should be taken to ensure that the master does not
become a bottleneck, which may happen if the tasks are too small (or the workers are relatively
fast). The granularity of tasks should be chosen such that the cost of doing work dominates
the cost of transferring work and the cost of synchronization. Asynchronous interaction may
help overlap interaction and the computation associated with work generation by the master.
It may also reduce waiting times if the nature of requests from workers is non-deterministic.

4. Parallel implementations for distributed and shared memory systems

To implement the Commentz-Walter, Wu-Manber and the Salmela-Tarhio-Kytöjoki algorithms
on a cluster and multi–core environment we followed the process of two phases: dividing
a computation into smaller parts and assigning them to different processes for parallel
execution. A major source of overhead in parallel systems is the time the processes stay idle
due to uneven distribution of load. To decrease the execution time, the available data set must
be decomposed and mapped to the available processes in such a way that this overhead is
minimized.
There are two available mapping techniques, the static mapping technique and the dynamic
mapping technique. Static mapping is commonly used in a homogeneous environment where
all processes have the same characteristics while the dynamic mapping is best suited in
heterogeneous set-ups. A simple and efficient way to divide the data set into smaller parts,
especially when no interaction occurs between neighbour array elements, is by using a line
partitioning where the data is divided on a per line basis.
Let p be the number of available processes and w the number of parts that a text is decomposed
to. In the case of static mapping, each process receives a part consisting of � n

p � + m − 1 text
characters prior to the execution of the algorithms. When a dynamic mapping is used instead,
the data set is decomposed into more parts than the available processes (w > p) and each
process receives sb + m − 1 characters where sb is the chosen block size during the execution
of the algorithms. There is an overlap of m − 1 characters on each part to ensure that each
process has all the data needed, resulting in w(m − 1) additional characters to be processed
for the dynamic mapping and p(m − 1) for the static.
For the experiments of this chapter the Master-Worker model was used, as it was concluded
in (Cringean et al., 1988) that is the most appropriate model for pattern matching on either
message passing or shared memory systems. For the data distribution between the master
and the workers, both a dynamic and a static distribution of text pointers was considered
as detailed in (Michailidis & Margaritis, 2003). The biological databases and the patterns
resided locally on each node. The pattern set was preprocessed first by each worker and
the master then distributed a pointer offset to each worker to indicate the area of the text that
was assigned for scanning during the search phase.
As opposed to distributed memory parallelization, shared memory parallelization does not
actually involve a distribution of data since all threads have access to a common memory
area. OpenMP provides the programmer with a set of scheduling clauses to control the way
the iterations of a parallel loop are assigned to threads, the static, dynamic and guided clauses.
With the static schedule clause, the assignment of iterations is defined before the computation
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while with both the dynamic and guided clause, the assignment is performed dynamically at
computation time (Ayguade et al., 2003).
When a block size is not specified, OpenMP divides the data set into p blocks of equal size for
the static clause, where p is the number of processes, while for the dynamic and guided clause
the default block size is 1 iteration per thread, which provides the best level of workload
distribution but at the same the biggest overhead due to synchronization when scheduling
work (Bailey, 2006).

5. Hybrid parallel implementation

In this section we propose a hybrid parallelization approach that combines the advantages of
both shared and distributed memory parallelization on a cluster system consisting of multiple
interconnected multi-core computers using a hierarchical model. At the first level, parallelism
is implemented on the multi-core computers using MPI where each node is responsible for one
MPI process. In the next level, the MPI processes spread parallelism to the local processors
with the use of OpenMP directives; each OpenMP thread is assigned to a different processor
core. More specifically, a static or dynamic distribution of text pointers is used for the MPI
processes to parallelize the computation and distribute the corresponding data. Within each
MPI process, OpenMP is used to further parallelize the multiple pattern matching algorithms
by using a combined parallel work-sharing construct for each computation, namely a parallel
for directive with either the static, dynamic or guided scheduling clauses. Figure 1 presents a
pseudocode of the proposed hybrid technique.

6. Experimental methodology

To compare the performance of the parallel implementations of the multiple pattern matching
algorithms, the practical running time was used as a measure. Practical running time is the
total time in seconds an algorithm needs to find all occurrences of a pattern in an input string
including any preprocessing time and was measured using the MPI_Wtime function of the
Message Passing Interface since it has a better resolution than the standard clock() function.
The data set used consisted of the genome of Escherichia coli from the Large Canterbury
Corpus, the SWISS-PROT Amino Acid sequence database and the FASTA Amino Acid (FAA)
and FASTA Nucleidic Acid (FNA) sequences of the A-thaliana genome:

• The genome of Escherichia coli from the Large Canterbury Corpus with a size of n =
4.638.690 characters and the FASTA Nucleidic Acid (FNA) of the A-thaliana genome with a
size of n = 118.100.062 characters. The alphabet Σ = {a, c, g, t} of both genomes consisted
of the four nucleotides a, c, g and t used to encode DNA.

• The FASTA Amino Acid (FAA) of the A-thaliana genome with a size of n = 11.273.437
characters and the SWISS-PROT Amino Acid sequence database with a size of n =
182.116.687 characters. The alphabet Σ = {a, c, d, e, f , g, h, i, k, l, m, n, p, q, r, s, t, v, w, y} used
by the databases had a size of 20 different characters.

The pattern set used consisted of 100.000 patterns where each pattern had a length of m = 8
characters.
The experiments were executed on a homogeneous computer cluster consisting of 10 nodes
with an Intel Core i3 CPU with Hyper-Threading that had a 2.93GHz clock rate and 4 Gb of
memory, a shared 4MB L3 cache and two microprocessors cores, each with 64 KB L1 cache
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paradigms since the interaction is naturally two-way; i.e., the master knows that it needs to
give out work and workers know that they need to get work from the master.
While using the master-worker model, care should be taken to ensure that the master does not
become a bottleneck, which may happen if the tasks are too small (or the workers are relatively
fast). The granularity of tasks should be chosen such that the cost of doing work dominates
the cost of transferring work and the cost of synchronization. Asynchronous interaction may
help overlap interaction and the computation associated with work generation by the master.
It may also reduce waiting times if the nature of requests from workers is non-deterministic.

4. Parallel implementations for distributed and shared memory systems

To implement the Commentz-Walter, Wu-Manber and the Salmela-Tarhio-Kytöjoki algorithms
on a cluster and multi–core environment we followed the process of two phases: dividing
a computation into smaller parts and assigning them to different processes for parallel
execution. A major source of overhead in parallel systems is the time the processes stay idle
due to uneven distribution of load. To decrease the execution time, the available data set must
be decomposed and mapped to the available processes in such a way that this overhead is
minimized.
There are two available mapping techniques, the static mapping technique and the dynamic
mapping technique. Static mapping is commonly used in a homogeneous environment where
all processes have the same characteristics while the dynamic mapping is best suited in
heterogeneous set-ups. A simple and efficient way to divide the data set into smaller parts,
especially when no interaction occurs between neighbour array elements, is by using a line
partitioning where the data is divided on a per line basis.
Let p be the number of available processes and w the number of parts that a text is decomposed
to. In the case of static mapping, each process receives a part consisting of � n

p � + m − 1 text
characters prior to the execution of the algorithms. When a dynamic mapping is used instead,
the data set is decomposed into more parts than the available processes (w > p) and each
process receives sb + m − 1 characters where sb is the chosen block size during the execution
of the algorithms. There is an overlap of m − 1 characters on each part to ensure that each
process has all the data needed, resulting in w(m − 1) additional characters to be processed
for the dynamic mapping and p(m − 1) for the static.
For the experiments of this chapter the Master-Worker model was used, as it was concluded
in (Cringean et al., 1988) that is the most appropriate model for pattern matching on either
message passing or shared memory systems. For the data distribution between the master
and the workers, both a dynamic and a static distribution of text pointers was considered
as detailed in (Michailidis & Margaritis, 2003). The biological databases and the patterns
resided locally on each node. The pattern set was preprocessed first by each worker and
the master then distributed a pointer offset to each worker to indicate the area of the text that
was assigned for scanning during the search phase.
As opposed to distributed memory parallelization, shared memory parallelization does not
actually involve a distribution of data since all threads have access to a common memory
area. OpenMP provides the programmer with a set of scheduling clauses to control the way
the iterations of a parallel loop are assigned to threads, the static, dynamic and guided clauses.
With the static schedule clause, the assignment of iterations is defined before the computation
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while with both the dynamic and guided clause, the assignment is performed dynamically at
computation time (Ayguade et al., 2003).
When a block size is not specified, OpenMP divides the data set into p blocks of equal size for
the static clause, where p is the number of processes, while for the dynamic and guided clause
the default block size is 1 iteration per thread, which provides the best level of workload
distribution but at the same the biggest overhead due to synchronization when scheduling
work (Bailey, 2006).

5. Hybrid parallel implementation

In this section we propose a hybrid parallelization approach that combines the advantages of
both shared and distributed memory parallelization on a cluster system consisting of multiple
interconnected multi-core computers using a hierarchical model. At the first level, parallelism
is implemented on the multi-core computers using MPI where each node is responsible for one
MPI process. In the next level, the MPI processes spread parallelism to the local processors
with the use of OpenMP directives; each OpenMP thread is assigned to a different processor
core. More specifically, a static or dynamic distribution of text pointers is used for the MPI
processes to parallelize the computation and distribute the corresponding data. Within each
MPI process, OpenMP is used to further parallelize the multiple pattern matching algorithms
by using a combined parallel work-sharing construct for each computation, namely a parallel
for directive with either the static, dynamic or guided scheduling clauses. Figure 1 presents a
pseudocode of the proposed hybrid technique.

6. Experimental methodology

To compare the performance of the parallel implementations of the multiple pattern matching
algorithms, the practical running time was used as a measure. Practical running time is the
total time in seconds an algorithm needs to find all occurrences of a pattern in an input string
including any preprocessing time and was measured using the MPI_Wtime function of the
Message Passing Interface since it has a better resolution than the standard clock() function.
The data set used consisted of the genome of Escherichia coli from the Large Canterbury
Corpus, the SWISS-PROT Amino Acid sequence database and the FASTA Amino Acid (FAA)
and FASTA Nucleidic Acid (FNA) sequences of the A-thaliana genome:

• The genome of Escherichia coli from the Large Canterbury Corpus with a size of n =
4.638.690 characters and the FASTA Nucleidic Acid (FNA) of the A-thaliana genome with a
size of n = 118.100.062 characters. The alphabet Σ = {a, c, g, t} of both genomes consisted
of the four nucleotides a, c, g and t used to encode DNA.

• The FASTA Amino Acid (FAA) of the A-thaliana genome with a size of n = 11.273.437
characters and the SWISS-PROT Amino Acid sequence database with a size of n =
182.116.687 characters. The alphabet Σ = {a, c, d, e, f , g, h, i, k, l, m, n, p, q, r, s, t, v, w, y} used
by the databases had a size of 20 different characters.

The pattern set used consisted of 100.000 patterns where each pattern had a length of m = 8
characters.
The experiments were executed on a homogeneous computer cluster consisting of 10 nodes
with an Intel Core i3 CPU with Hyper-Threading that had a 2.93GHz clock rate and 4 Gb of
memory, a shared 4MB L3 cache and two microprocessors cores, each with 64 KB L1 cache
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Main procedure
main()
{

1. Initialize MPI and OpenMP routines;
2. If (process==master) then call master(); else call worker();
3. Exit message passing operations;

}

Master sub-procedure
master()
{

1. Broadcast the name of the pattern set and text to workers; (MPI_Bcast)
2. Broadcast the offset of the text, the blocksize and the number of

threads to workers; (MPI_Bcast)
3. Receive the results (i.e. matches) from all workers; (MPI_Reduce)
4. Print the total results;

}

Worker sub-procedure
worker()
{

1. Receive the name of the pattern set and text; (MPI_Bcast)
2. Preprocess the pattern set;
3. Receive the offset of the text, the blocksize and the

number of threads; (MPI_Bcast)
4. Open the pattern set and text files from the local disk and store the

local subtext (from text + offset to text + offset + blocksize) in memory;
5. Call the chosen multiple pattern matching algorithm passing

a pointer to the subtext in memory;
6. Divide the subtext among the available threads (#pragma omp parallel for);
7. Determine the number of matches from each thread (reduction(+: matches));
8. Send the results (i.e. matches) to master;

}

Fig. 1. Pseudocode of the hybrid implementation

and 256 KB L2 cache. The nodes were connected using Realtek Gigabit Ethernet controllers.
Additional experiments were executed on a Core 2 Quad CPU with 2.40GHz clock rate and
8 Gb of memory, 4 × 32 KB L1 instruction cache, 4 × 32 KB L1 data cache and 2 × 4 MB
L2 cache. The Ubuntu Linux operating system was used on all systems and during the
experiments only the typical background processes ran. To decrease random variation, the
time results were averages of 100 runs. All algorithms were implemented using the ANSI C
programming language and were compiled using the GCC 4.4.3 compiler with the “-O2” and
“-funroll-loops” optimization flags.

7. Experimental results

This section discusses the performance speedup achieved by the Commentz-Walter,
Wu-Manber and the Salmela-Tarhio-Kytöjoki family of multiple pattern matching algorithms
when executed in parallel using OpenMP, MPI and a hybrid OpenMP/MPI parallel technique.
The total execution time Ttot of a multiple pattern matching algorithm on a cluster of
distributed nodes generally equals to the summation of the average processing time Tp on
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Fig. 2. Speedup of all algorithms for different number of cores and all three scheduling
clauses on a Hyper-Threading CPU

a single node plus the total communication time Tc to send the text pointers from the master
to the workers and receive back the results.

Ttot = Tp + Tc (1)

As opposed to distributed memory parallelization, shared memory parallelization does not
actually involve a distribution of data since all threads have access to a common memory
area and thus the total execution time Ttot equals to the average processing time Tp per core.
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Main procedure
main()
{

1. Initialize MPI and OpenMP routines;
2. If (process==master) then call master(); else call worker();
3. Exit message passing operations;

}

Master sub-procedure
master()
{

1. Broadcast the name of the pattern set and text to workers; (MPI_Bcast)
2. Broadcast the offset of the text, the blocksize and the number of

threads to workers; (MPI_Bcast)
3. Receive the results (i.e. matches) from all workers; (MPI_Reduce)
4. Print the total results;

}

Worker sub-procedure
worker()
{

1. Receive the name of the pattern set and text; (MPI_Bcast)
2. Preprocess the pattern set;
3. Receive the offset of the text, the blocksize and the

number of threads; (MPI_Bcast)
4. Open the pattern set and text files from the local disk and store the

local subtext (from text + offset to text + offset + blocksize) in memory;
5. Call the chosen multiple pattern matching algorithm passing

a pointer to the subtext in memory;
6. Divide the subtext among the available threads (#pragma omp parallel for);
7. Determine the number of matches from each thread (reduction(+: matches));
8. Send the results (i.e. matches) to master;

}

Fig. 1. Pseudocode of the hybrid implementation

and 256 KB L2 cache. The nodes were connected using Realtek Gigabit Ethernet controllers.
Additional experiments were executed on a Core 2 Quad CPU with 2.40GHz clock rate and
8 Gb of memory, 4 × 32 KB L1 instruction cache, 4 × 32 KB L1 data cache and 2 × 4 MB
L2 cache. The Ubuntu Linux operating system was used on all systems and during the
experiments only the typical background processes ran. To decrease random variation, the
time results were averages of 100 runs. All algorithms were implemented using the ANSI C
programming language and were compiled using the GCC 4.4.3 compiler with the “-O2” and
“-funroll-loops” optimization flags.

7. Experimental results

This section discusses the performance speedup achieved by the Commentz-Walter,
Wu-Manber and the Salmela-Tarhio-Kytöjoki family of multiple pattern matching algorithms
when executed in parallel using OpenMP, MPI and a hybrid OpenMP/MPI parallel technique.
The total execution time Ttot of a multiple pattern matching algorithm on a cluster of
distributed nodes generally equals to the summation of the average processing time Tp on
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Fig. 2. Speedup of all algorithms for different number of cores and all three scheduling
clauses on a Hyper-Threading CPU

a single node plus the total communication time Tc to send the text pointers from the master
to the workers and receive back the results.

Ttot = Tp + Tc (1)

As opposed to distributed memory parallelization, shared memory parallelization does not
actually involve a distribution of data since all threads have access to a common memory
area and thus the total execution time Ttot equals to the average processing time Tp per core.
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Fig. 3. Speedup of all algorithms for different number of cores and all three scheduling
clauses on a Quad Core CPU

Speedup or parallelization rate Sp refers to the running time increase of a parallel algorithm
over a corresponding sequential when executed on a cluster of p processing elements.

Sp =
Tseq

Tp
(2)

An analytical performance prediction model for string matching algorithms when executed
in parallel on a cluster of distributed nodes can be found in (Michailidis & Margaritis, 2002).
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Fig. 4. Comparison of the speedup of the algorithms for a static and dynamic pointer
distribution

7.1 Shared memory parallelization
Figure 2 presents the speedup achieved with the use of the OpenMP API when parallel
executing the multiple pattern matching algorithms on a single Intel Core I3 processor with
2 and 4 threads as opposed to their execution on a single core. The biological data set used
included the genome of Escherichia coli, the SWISS-PROT Amino Acid sequence database and
the FASTA Amino Acid (FAA) and FASTA Nucleidic Acid (FNA) sequences of the A-thaliana
genome, a pattern set size of 100.000 patterns and a pattern length of m = 8. Since the
Core I3 processor consists of only two physical and two logical cores with the use of the
Hyper-Threading technology, Figure 3 depicts for comparison purposes the speedup of the
algorithms on the same data set when executed on an Intel Core 2 Quad processor, that has
four physical cores, with 2 and 4 threads.
As illustrated in Figures 2 and 3, the parallel speedup achieved by all algorithms on both
processors and for all biological sequence databases using the static clause of OpenMP was
similar when two threads were used. In that case, a parallelization rate close to 2 was achieved.
With the use of 4 threads though, the Core 2 Quad processor had a significant advantage
in terms of performance with a speedup between 3.5 and 4 times the running time of the
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Fig. 3. Speedup of all algorithms for different number of cores and all three scheduling
clauses on a Quad Core CPU

Speedup or parallelization rate Sp refers to the running time increase of a parallel algorithm
over a corresponding sequential when executed on a cluster of p processing elements.

Sp =
Tseq

Tp
(2)

An analytical performance prediction model for string matching algorithms when executed
in parallel on a cluster of distributed nodes can be found in (Michailidis & Margaritis, 2002).
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Fig. 4. Comparison of the speedup of the algorithms for a static and dynamic pointer
distribution

7.1 Shared memory parallelization
Figure 2 presents the speedup achieved with the use of the OpenMP API when parallel
executing the multiple pattern matching algorithms on a single Intel Core I3 processor with
2 and 4 threads as opposed to their execution on a single core. The biological data set used
included the genome of Escherichia coli, the SWISS-PROT Amino Acid sequence database and
the FASTA Amino Acid (FAA) and FASTA Nucleidic Acid (FNA) sequences of the A-thaliana
genome, a pattern set size of 100.000 patterns and a pattern length of m = 8. Since the
Core I3 processor consists of only two physical and two logical cores with the use of the
Hyper-Threading technology, Figure 3 depicts for comparison purposes the speedup of the
algorithms on the same data set when executed on an Intel Core 2 Quad processor, that has
four physical cores, with 2 and 4 threads.
As illustrated in Figures 2 and 3, the parallel speedup achieved by all algorithms on both
processors and for all biological sequence databases using the static clause of OpenMP was
similar when two threads were used. In that case, a parallelization rate close to 2 was achieved.
With the use of 4 threads though, the Core 2 Quad processor had a significant advantage
in terms of performance with a speedup between 3.5 and 4 times the running time of the
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Fig. 5. Speedup of all algorithms with MPI for different number of processors using a static
pointer distribution

sequential algorithms on all biological databases as opposed to a speedup between 2.5 and 3.5
of the Core I3 processor. More specifically, when 4 threads were used on the Core I3 processor,
the speedup achieved by the Commentz-Walter algorithm was close to 3 for the SWISS-PROT
sequence database and between 2.5 and 3 for the E.coli, FAA and FNA databases. Wu-Manber
had a parallelization rate of between 2.5 and 3 on all biological databases. Finally, the speedup
of the HG, SOG and BG algorithms was close to 3 for the E.coli database and between 2.5 and
3 for the SWISS-PROT, FAA and FNA databases. On the Core 2 Quad processor, the speedup
achieved by all algorithms was uniform; their parallelization rate for all biological databases
was close to 2 when executed on two processor cores and between 3.5 and 4 when executed
on all four physical cores of the CPU.
Since the percentage of hits and misses was generally balanced across the data set and
the use of dynamic scheduling usually incurs high overheads and tends to degrade data
locality (Ayguade et al., 2003), it was expected that the static scheduling clause of OpenMP
would be best suited for the experiments of this chapter. A similar conclusion was drawn
in (Kouzinopoulos & Margaritis, 2009) where the static scheduling clause with the default
chunk size had a better performance than the dynamic and guided scheduling clauses for two
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Fig. 6. Speedup of all algorithms with hybrid OpenMP/MPI for different number of
processors with two cores

dimensional pattern matching algorithms. The experimental results confirm this expectation
since a higher parallelization rate was achieved in most cases when the static scheduling
clause was used instead of the dynamic and guided clauses. The performance speedup of the
Commentz-Walter algorithm was roughly similar on all biological databases, independent
of the scheduling clause used. The speedup of the Wu-Manber algorithm was significantly
decreased when a dynamic scheduling clause with 4 threads on the Core I3 processor was
used. Finally, the parallelization rate of the Salmela-Tarhio-Kytöjoki algorithms was slightly
reduced when the dynamic and guided scheduling clauses were used instead of the static
clause.
The performance increase of a parallel task that is executed on a processor with four physical
cores over a processor with two physical cores and Hyper-Threading was expected, it is
interesting though that the parallel execution of a multiple pattern algorithm using 4 threads
on a CPU with two cores and Hyper-Threading exhibits a performance increase of 1.25 to
1.5. This performance boost is achieved by the increase in parallelization that helps hiding
a number of hardware and software issues including memory latency, branch misprediction
and data dependencies on the instruction stream (Marr et al., 2002) that often leave processor
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sequential algorithms on all biological databases as opposed to a speedup between 2.5 and 3.5
of the Core I3 processor. More specifically, when 4 threads were used on the Core I3 processor,
the speedup achieved by the Commentz-Walter algorithm was close to 3 for the SWISS-PROT
sequence database and between 2.5 and 3 for the E.coli, FAA and FNA databases. Wu-Manber
had a parallelization rate of between 2.5 and 3 on all biological databases. Finally, the speedup
of the HG, SOG and BG algorithms was close to 3 for the E.coli database and between 2.5 and
3 for the SWISS-PROT, FAA and FNA databases. On the Core 2 Quad processor, the speedup
achieved by all algorithms was uniform; their parallelization rate for all biological databases
was close to 2 when executed on two processor cores and between 3.5 and 4 when executed
on all four physical cores of the CPU.
Since the percentage of hits and misses was generally balanced across the data set and
the use of dynamic scheduling usually incurs high overheads and tends to degrade data
locality (Ayguade et al., 2003), it was expected that the static scheduling clause of OpenMP
would be best suited for the experiments of this chapter. A similar conclusion was drawn
in (Kouzinopoulos & Margaritis, 2009) where the static scheduling clause with the default
chunk size had a better performance than the dynamic and guided scheduling clauses for two
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dimensional pattern matching algorithms. The experimental results confirm this expectation
since a higher parallelization rate was achieved in most cases when the static scheduling
clause was used instead of the dynamic and guided clauses. The performance speedup of the
Commentz-Walter algorithm was roughly similar on all biological databases, independent
of the scheduling clause used. The speedup of the Wu-Manber algorithm was significantly
decreased when a dynamic scheduling clause with 4 threads on the Core I3 processor was
used. Finally, the parallelization rate of the Salmela-Tarhio-Kytöjoki algorithms was slightly
reduced when the dynamic and guided scheduling clauses were used instead of the static
clause.
The performance increase of a parallel task that is executed on a processor with four physical
cores over a processor with two physical cores and Hyper-Threading was expected, it is
interesting though that the parallel execution of a multiple pattern algorithm using 4 threads
on a CPU with two cores and Hyper-Threading exhibits a performance increase of 1.25 to
1.5. This performance boost is achieved by the increase in parallelization that helps hiding
a number of hardware and software issues including memory latency, branch misprediction
and data dependencies on the instruction stream (Marr et al., 2002) that often leave processor
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Fig. 7. Speedup of all algorithms with hybrid OpenMP/MPI for different number of
processors with four cores

resources unused. Similar performance gains were reported in (Tian et al., 2002) with an
average performance speedup of 1.2 to 1.4 on image processing and genetics experiments.

7.2 Distributed memory parallelization
Figure 4 presents a performance comparison in terms of parallel speedup of the
Commentz-Walter, Wu-Manber and the Salmela-Tarhio-Kytöjoki multiple pattern matching
algorithms using the MPI library for a static and dynamic distribution of pointers from the
master to the worker nodes on a homogeneous cluster of 10 nodes. For the static distribution
of pointers, each node received a block consisting of � n

p �+ m − 1 bytes as already discussed.
For the dynamic distribution, measurements showed that a block size of � n

1000 � + m − 1
bytes provided the nodes with enough blocks to equate any load unbalances caused by the
distribution of pattern match locations in the biological databases while at the same time
keeping low the communication cost. Due to the homogeneity of the cluster nodes and the
generally balanced data set used it was expected that the algorithms should have a better
performance in terms of the parallelization rate achieved when the static distribution of
pointers was used over the dynamic as confirmed by the experimental results.

176 Systems and Computational Biology – Bioinformatics and Computational Modeling Parallel Processing of Multiple Pattern Matching Algorithms for Biological Sequences: Methods and Performance Results 17

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

OpenMP MPI Hybrid

S
pe

ed
up

Parallelization technique (E.coli)

CW
WM
HG

SOG
BG

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

OpenMP MPI Hybrid

S
pe

ed
up

Parallelization technique (SWISS PROT)

CW
WM
HG

SOG
BG

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

OpenMP MPI Hybrid

S
pe

ed
up

Parallelization technique (FAA)

CW
WM
HG

SOG
BG

 0

 5

 10

 15

 20

 25

OpenMP MPI Hybrid

S
pe

ed
up

Parallelization technique (FNA)

CW
WM
HG

SOG
BG

Fig. 8. Speedup achieved with OpenMP, MPI and a hybrid OpenMP/MPI system

More specifically, the Commentz-Walter algorithm had a better performance on the E.coli
and the FNA sequence databases with the static distribution of pointers while HG and
SOG were consistently faster for all types of biological databases when a static pointer
distribution was used. The parallel implementation of the Wu-Manber algorithm also was
faster when a static distribution of pointers was chosen instead of the dynamic. Interestingly,
the Commentz-Walter algorithm had a better performance on the SWISS-PROT database
when a dynamic distribution of pointers was used. The advantage of the dynamic distribution
of pointers over the static for Commentz-Walter can be explained by the fact that the
sequential implementation of the algorithm is outperformed by the Wu-Manber and the
Salmela-Tarhio-Kytöjoki family of multiple pattern matching algorithms when used on data
sets with a big alphabet size, including the SWISS-PROT and the FAA databases as detailed
in (Kouzinopoulos & Margaritis, 2011). This fact can be also confirmed by the very low
parallelization rate that is achieved by the Commentz-Walter algorithm as presented in
Figures 4 and 5.
Figure 5 depicts the speedup of the multiple pattern matching algorithms as a factor of the
number of worker nodes utilized in the cluster. The static pointer distribution was chosen
as it was concluded that it was best suited to the specific biological databases and the cluster
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resources unused. Similar performance gains were reported in (Tian et al., 2002) with an
average performance speedup of 1.2 to 1.4 on image processing and genetics experiments.

7.2 Distributed memory parallelization
Figure 4 presents a performance comparison in terms of parallel speedup of the
Commentz-Walter, Wu-Manber and the Salmela-Tarhio-Kytöjoki multiple pattern matching
algorithms using the MPI library for a static and dynamic distribution of pointers from the
master to the worker nodes on a homogeneous cluster of 10 nodes. For the static distribution
of pointers, each node received a block consisting of � n

p �+ m − 1 bytes as already discussed.
For the dynamic distribution, measurements showed that a block size of � n

1000 � + m − 1
bytes provided the nodes with enough blocks to equate any load unbalances caused by the
distribution of pattern match locations in the biological databases while at the same time
keeping low the communication cost. Due to the homogeneity of the cluster nodes and the
generally balanced data set used it was expected that the algorithms should have a better
performance in terms of the parallelization rate achieved when the static distribution of
pointers was used over the dynamic as confirmed by the experimental results.
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More specifically, the Commentz-Walter algorithm had a better performance on the E.coli
and the FNA sequence databases with the static distribution of pointers while HG and
SOG were consistently faster for all types of biological databases when a static pointer
distribution was used. The parallel implementation of the Wu-Manber algorithm also was
faster when a static distribution of pointers was chosen instead of the dynamic. Interestingly,
the Commentz-Walter algorithm had a better performance on the SWISS-PROT database
when a dynamic distribution of pointers was used. The advantage of the dynamic distribution
of pointers over the static for Commentz-Walter can be explained by the fact that the
sequential implementation of the algorithm is outperformed by the Wu-Manber and the
Salmela-Tarhio-Kytöjoki family of multiple pattern matching algorithms when used on data
sets with a big alphabet size, including the SWISS-PROT and the FAA databases as detailed
in (Kouzinopoulos & Margaritis, 2011). This fact can be also confirmed by the very low
parallelization rate that is achieved by the Commentz-Walter algorithm as presented in
Figures 4 and 5.
Figure 5 depicts the speedup of the multiple pattern matching algorithms as a factor of the
number of worker nodes utilized in the cluster. The static pointer distribution was chosen
as it was concluded that it was best suited to the specific biological databases and the cluster
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topology used. As discussed in (Michailidis & Margaritis, 2003), there is an inverse relation
between the parallel execution time and the number of workstations on a distributed memory
system, since the total communication time is much lower than the processing time on each
node. It is clear from Figure 5 that by distributing a computation task over two worker
nodes resulted in approximately doubling its performance. On each subsequent workstation
introduced, the performance of the algorithms increased but in most cases with a decreasing
rate since the communication cost between the master and the worker nodes also increased.
This parallelization rate generally depended on the algorithm and varied with the type of the
sequence database used.
For the E.coli sequence database, the speedup of all multiple pattern matching algorithms
increased roughly linear in the number of distributed nodes in the cluster. The Wu-Manber
algorithm improved its performance by 9.7 times when parallel executed on a cluster with 10
nodes while the Commentz-Walter, HG, SOG and BG algorithms improved their performance
by 8.4 times. The parallelization rate of the algorithms was similar for the SWISS-PROT and
the FNA sequence databases. For both genomes, the speedup of the algorithms increased
with a linear rate; the maximum speedup achieved for SWISS-PROT and FNA was 9 and
8 respectively for the Salmela-Tarhio-Kytöjoki family of algorithms, 7.6 and 7.4 for the
Wu-Manber algorithm and 6.8 and 5.1 for the Commentz-Walter algorithm. It is interesting
that for the FAA sequence database, the parallelization of all algorithms increased with a
logarithmic rate in the number of worker nodes with the HG, SOG and BG achieving a
maximum speedup of 6.5 times, Wu-Manber a speedup of 6 times and Commentz-Walter
reaching a speedup of 3.4 times. Based on the experimental findings it can be concluded in
general that the hashing multiple pattern matching algorithms have a better parallelization
rate than the trie-based Commentz-Walter algorithm on all biological databases.

7.3 Hybrid parallelization
Figures 6 and 7 illustrate the performance increase of the Commentz-Walter, Wu-Manber
and the Salmela-Tarhio-Kytöjoki family of multiple pattern matching algorithms using the
proposed hybrid OpenMP/MPI technique on a homogeneous cluster of 10 nodes with a Core
I3 processor on each node for 2 and 4 threads. To distribute the data across the worker nodes
of the cluster and subsequently across the cores of each processor, the static distribution
of pointers was chosen for MPI and the static scheduling clause was used for OpenMP as
were the best suited options for the specific algorithms, biological databases and cluster
topology used. As can be seen in both Figures, the parallelization rate achieved by the
algorithms was significant better when using the hybrid OpenMP/MPI technique instead of
either shared memory or distributed memory parallelization. Additionally it can be seen that
the type of sequence database that is used can greatly affect the performance of the parallel
implementation of the algorithms.
When the two physical cores of the Core I3 processor where used and for the E.coli
sequence database, the parallelization rate of the algorithms increased linear in the number
of cluster nodes. The Wu-Manber algorithm was up to 19.2 times faster than its sequential
implementation while the Commentz-Walter, HG, SOG and BG algorithms had on average a
14.5 times better performance. As with the distributed memory parallelization, the speedup
of the multiple pattern matching algorithms was similar for the SWISS-PROT and the FNA
sequence databases; the speedup of the SOG algorithm was 15.3 and 13.5 respectively, of the
HG, BG and Wu-Manber algorithms was 12 on average while the maximum parallelization
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rate of the Commentz-Walter algorithm was 10.7 and 6.4. Finally for the FAA genome, the
Wu-Manber and the Salmela-Tarhio-Kytöjoki family of multiple pattern matching algorithms
had a similar speedup of 8.4 on average while Commentz-Walter had a parallelization rate of
3.7. When all four processing cores were utilized per processor (two physical and two logical)
with the use of the Hyper-Threading technique, the performance of all algorithms increased
by an additional 1.2 to 1.3 times on all biological sequence databases as can be seen on Figure
7.
Figure 8 presents a comparison of the speedup achieved by the Commentz-Walter,
Wu-Manber and the Salmela-Tarhio-Kytöjoki family of multiple pattern matching algorithms
using the three presented parallelization techniques; shared memory with 4 threads per
node, distributed memory with 10 homogeneous cluster nodes and a hybrid technique that
combines the advantages of both shared and distributed memory parallelization. As can be
seen by Figure 8, the proposed hybrid implementation of the algorithms was roughly 5 to 8
times faster than the shared memory implementation using two processor cores and 2 to 3
times faster than the distributed memory parallelization for all sequence databases.

8. Conclusions

This chapter presented implementations and experimental results of the Commentz-Walter,
Wu-Manber and the Salmela-Tarhio-Kytöjoki family of multiple pattern matching algorithms
when executed in parallel. The algorithms were used to locate all the appearances of any
pattern from a finite pattern set on four biological databases; the genome of Escherichia coli
from the Large Canterbury Corpus, the SWISS-PROT Amino Acid sequence database and
the FASTA Amino Acid (FAA) and FASTA Nucleidic Acid (FNA) sequences of the A-thaliana
genome. The pattern set used consisted of 100.000 patterns where each pattern had a length
of m = 8 characters.
To compare the speedup achieved on multicore processors, the parallel algorithms were
implemented using shared memory parallelization on processors with two and four physical
cores using 2 and 4 threads and with either the static, dynamic or guided scheduling clause
for the data distribution between each processor core. For the performance evaluation of
the parallel implementations on a homogeneous cluster of 10 worker nodes, the algorithms
were implemented using distributed memory parallelization with a static or dynamic pointer
distribution. Finally a hybrid OpenMP/MPI technique was proposed that combined the
advantages of both shared and distributed parallelization.
It was discussed that the parallel execution of multiple pattern matching algorithms on
a homogeneous cluster with multicore processors using the specific types of biological
databases is more efficient when the static scheduling clause and a static pointer allocation
are used for the OpenMP and MPI APIs respectively. Moreover it was concluded in general
that the hashing multiple pattern matching algorithms have a better parallelization rate than
the trie-based Commentz-Walter algorithm on all biological databases. Finally, it was shown
that the proposed hybrid implementation of the algorithms was roughly 5 to 8 times faster
than the shared memory implementation using two processor cores and 2 to 3 times faster
than the distributed memory parallelization for all sequence databases.
The work presented in this chapter could be extended with experiments that use additional
parameters like patterns of varying length and larger pattern sets. Since biological databases
and sets of multiple patterns are usually inherently parallel in nature, future research could
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topology used. As discussed in (Michailidis & Margaritis, 2003), there is an inverse relation
between the parallel execution time and the number of workstations on a distributed memory
system, since the total communication time is much lower than the processing time on each
node. It is clear from Figure 5 that by distributing a computation task over two worker
nodes resulted in approximately doubling its performance. On each subsequent workstation
introduced, the performance of the algorithms increased but in most cases with a decreasing
rate since the communication cost between the master and the worker nodes also increased.
This parallelization rate generally depended on the algorithm and varied with the type of the
sequence database used.
For the E.coli sequence database, the speedup of all multiple pattern matching algorithms
increased roughly linear in the number of distributed nodes in the cluster. The Wu-Manber
algorithm improved its performance by 9.7 times when parallel executed on a cluster with 10
nodes while the Commentz-Walter, HG, SOG and BG algorithms improved their performance
by 8.4 times. The parallelization rate of the algorithms was similar for the SWISS-PROT and
the FNA sequence databases. For both genomes, the speedup of the algorithms increased
with a linear rate; the maximum speedup achieved for SWISS-PROT and FNA was 9 and
8 respectively for the Salmela-Tarhio-Kytöjoki family of algorithms, 7.6 and 7.4 for the
Wu-Manber algorithm and 6.8 and 5.1 for the Commentz-Walter algorithm. It is interesting
that for the FAA sequence database, the parallelization of all algorithms increased with a
logarithmic rate in the number of worker nodes with the HG, SOG and BG achieving a
maximum speedup of 6.5 times, Wu-Manber a speedup of 6 times and Commentz-Walter
reaching a speedup of 3.4 times. Based on the experimental findings it can be concluded in
general that the hashing multiple pattern matching algorithms have a better parallelization
rate than the trie-based Commentz-Walter algorithm on all biological databases.

7.3 Hybrid parallelization
Figures 6 and 7 illustrate the performance increase of the Commentz-Walter, Wu-Manber
and the Salmela-Tarhio-Kytöjoki family of multiple pattern matching algorithms using the
proposed hybrid OpenMP/MPI technique on a homogeneous cluster of 10 nodes with a Core
I3 processor on each node for 2 and 4 threads. To distribute the data across the worker nodes
of the cluster and subsequently across the cores of each processor, the static distribution
of pointers was chosen for MPI and the static scheduling clause was used for OpenMP as
were the best suited options for the specific algorithms, biological databases and cluster
topology used. As can be seen in both Figures, the parallelization rate achieved by the
algorithms was significant better when using the hybrid OpenMP/MPI technique instead of
either shared memory or distributed memory parallelization. Additionally it can be seen that
the type of sequence database that is used can greatly affect the performance of the parallel
implementation of the algorithms.
When the two physical cores of the Core I3 processor where used and for the E.coli
sequence database, the parallelization rate of the algorithms increased linear in the number
of cluster nodes. The Wu-Manber algorithm was up to 19.2 times faster than its sequential
implementation while the Commentz-Walter, HG, SOG and BG algorithms had on average a
14.5 times better performance. As with the distributed memory parallelization, the speedup
of the multiple pattern matching algorithms was similar for the SWISS-PROT and the FNA
sequence databases; the speedup of the SOG algorithm was 15.3 and 13.5 respectively, of the
HG, BG and Wu-Manber algorithms was 12 on average while the maximum parallelization
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rate of the Commentz-Walter algorithm was 10.7 and 6.4. Finally for the FAA genome, the
Wu-Manber and the Salmela-Tarhio-Kytöjoki family of multiple pattern matching algorithms
had a similar speedup of 8.4 on average while Commentz-Walter had a parallelization rate of
3.7. When all four processing cores were utilized per processor (two physical and two logical)
with the use of the Hyper-Threading technique, the performance of all algorithms increased
by an additional 1.2 to 1.3 times on all biological sequence databases as can be seen on Figure
7.
Figure 8 presents a comparison of the speedup achieved by the Commentz-Walter,
Wu-Manber and the Salmela-Tarhio-Kytöjoki family of multiple pattern matching algorithms
using the three presented parallelization techniques; shared memory with 4 threads per
node, distributed memory with 10 homogeneous cluster nodes and a hybrid technique that
combines the advantages of both shared and distributed memory parallelization. As can be
seen by Figure 8, the proposed hybrid implementation of the algorithms was roughly 5 to 8
times faster than the shared memory implementation using two processor cores and 2 to 3
times faster than the distributed memory parallelization for all sequence databases.

8. Conclusions

This chapter presented implementations and experimental results of the Commentz-Walter,
Wu-Manber and the Salmela-Tarhio-Kytöjoki family of multiple pattern matching algorithms
when executed in parallel. The algorithms were used to locate all the appearances of any
pattern from a finite pattern set on four biological databases; the genome of Escherichia coli
from the Large Canterbury Corpus, the SWISS-PROT Amino Acid sequence database and
the FASTA Amino Acid (FAA) and FASTA Nucleidic Acid (FNA) sequences of the A-thaliana
genome. The pattern set used consisted of 100.000 patterns where each pattern had a length
of m = 8 characters.
To compare the speedup achieved on multicore processors, the parallel algorithms were
implemented using shared memory parallelization on processors with two and four physical
cores using 2 and 4 threads and with either the static, dynamic or guided scheduling clause
for the data distribution between each processor core. For the performance evaluation of
the parallel implementations on a homogeneous cluster of 10 worker nodes, the algorithms
were implemented using distributed memory parallelization with a static or dynamic pointer
distribution. Finally a hybrid OpenMP/MPI technique was proposed that combined the
advantages of both shared and distributed parallelization.
It was discussed that the parallel execution of multiple pattern matching algorithms on
a homogeneous cluster with multicore processors using the specific types of biological
databases is more efficient when the static scheduling clause and a static pointer allocation
are used for the OpenMP and MPI APIs respectively. Moreover it was concluded in general
that the hashing multiple pattern matching algorithms have a better parallelization rate than
the trie-based Commentz-Walter algorithm on all biological databases. Finally, it was shown
that the proposed hybrid implementation of the algorithms was roughly 5 to 8 times faster
than the shared memory implementation using two processor cores and 2 to 3 times faster
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The work presented in this chapter could be extended with experiments that use additional
parameters like patterns of varying length and larger pattern sets. Since biological databases
and sets of multiple patterns are usually inherently parallel in nature, future research could
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focus on the performance evaluation of the presented algorithms when parallel processed on
modern parallel architectures such as Graphics Processor Units.
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1. Introduction 
Protein structure prediction is an important area of protein science. Every protein has a 
primary structure, its sequence; a secondary structure, the helices and sheets; tertiary 
structure, the fold of the protein; and for some, the quaternary structure, multimeric 
formation of its polypeptide subunits. Protein structure has been experimented for the past 
several decades by physical and chemical methods. The dawn of protein sequencing began 
early in 1950s upon complete sequencing of insulin and then, ribonuclease. A key step 
towards the rapid increase in the number of sequenced proteins by 1980s was the 
development of automated sequencers followed by advances in mass spectrometry for 
structure identities. Structural knowledge is vital for complete understanding of life at the 
molecular level. An understanding of protein structure can lead to derivation of functions 
and mechanisms of their action. Bioinformatics is a novel approach in recent investigations 
on sequence analysis and structure prediction of proteins. With the advent of 
bioinformatics, it has been made possible to understand the relationship between amino 
acid sequence and three-dimensional structure in proteins. The central challenge of 
bioinformatics is the rationalization of the mass of sequence information not only to derive 
efficient means of storage and retrieval of sequence data, but also to design more analysis 
tools. Thus, there is a continual need to convert sequence information into biochemical and 
biophysical knowledge; to decipher the structural, functional and evolutionary clues 
encoded in the language of biological sequences (Attwood & Parry-Smith, 2003). Protein 
sequence information is stored in databases made available in the public domain to access, 
analyse and retrieve sequence and structural data. In general, protein databases may be 
classified as Primary and Secondary databases, composite protein pattern databases and 
structure classification databases. Primary and secondary databases address different 
aspects of protein analysis, because they store different levels of protein information. 
Primary databases are the central repositories of protein sequences, while secondary 
databases are based on the analysis of sequences of the primary ones. Composite protein 
pattern databases have emerged with a view to create a unified database of protein families. 
Protein structure classification databases have been established based on the structural 
similarities and common evolutionary origins of proteins. A number of tools are also 
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available for protein structure visualization and protein identification and characterization. 
Thus bioinformatics tools for protein analysis provide a wealth of information related to 
sequences and structures of proteins.  
Use of computational tools is an essential kit for the biologist in this rapid pace of 
information technology. Eventually, tools and techniques for protein sequence analysis and 
further, the structure prediction, has become an integral study for protein biochemists. 
Random identification of protein structures based only on homology of proteins is by and 
large an ambiguous approach. Hence, a systematic analysis of the protein under study from 
its sequence annotations to its three-dimensional structure alignment is a feasible approach 
for the investigations of protein structure aided by computational networking and 
repositories available in the public domain. Thus, sequence data can be transformed to 
structural data by a line of database analyses. The identification of protein structures can be 
organized as a flow of information from protein characterization, primary structure analysis 
and prediction by database search; sequence alignment; secondary structure prediction; 
motifs, profiles, patterns and fingerprint search; modeling; fold structure analysis and 
prediction; protein structure visualization and analysis of structure classification databases 
to deposition of protein structures in the public domain. An identity of sequence similarity 
of query sequences with that of database sequences indicating homology derives the 
phylogenetic maps of the protein under consideration and reveals information on conserved 
patterns thereby predicting repeat folds among the proteins that have arisen from 
divergence or of convergence. Pattern recognition methods convey information on the 
characteristics of unique features of the protein as well as the identification of similar traits 
in other proteins.  
However, it is noteworthy that identifying patterns and functions of proteins are still far 
from being perfect which are likely to result in false interpretations and assumptions. Hence, 
it is the expertise and the reasoning of the biologist to interpret protein and/or any sequence 
information in the light of physical and chemicals methods to determine structure 
predictions. The study of bioinformatics is an interdisciplinary approach which requires the 
skill sets of biologists, mathematicians, information analysts and software developers to 
design and develop computational methods for analysis of biological data. This is 
presumably the index of milestones in bioinformatics for a fruitful journey in the 
identification of protein structure. Hence, it can be correlated that bioinformatics is the hand 
tool in every biology laboratory for thorough investigations of proteins and their 
complements in establishing evolutionary hierarchy and in the identification of protein 
malfunctions by linking protein structure to its functions in health and disease, thereby 
opening possible avenues for genetic manipulations and undertake prophylactic measures. 

2. Protein structure-an overview 
Protein architecture is the fundamental basis of the living systems that coordinates the 
functional properties of cells to sustain life. Every metabolic action is dependent on a set (s) 
of proteins that function as chaperones, enzymes, cofactors, structural proteins etc. Hence, 
an understanding of protein structure is vital for implications in physiological and 
therapeutic investigations. Lesk (2001) and Whitford (2005) have provided much of the 
understanding on the structural aspects of proteins. Generally, proteins are made up of 
small units known as amino acids which form a polypeptide chain through formation of 
peptide bonds. Thus, amino acids are the building blocks of all proteins which are 
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characteristic for each type of the protein imparting specific functional attributes. There are 
20 amino acids in nature that are of L-configuration that make up all kinds of proteins and 
are classified as aliphatic, aromatic, acidic, basic, hydroxylic, sulphur-containing and amidic 
amino acids. The discussion on the structure and chemical properties of amino acids is out 
of scope of this chapter and detailed information can be referred in most books covering 
protein structure. At the outset, we describe here the Primary, Secondary, Tertiary and 
Quaternary structures of a protein to enable keen insights of the structure prediction of 
proteins through bioinformatics. We also provide here the basic concepts of peptide bond 
and the Ramachandran plot that influence protein structure and conformation. 

2.1 Primary structure 
The primary structure of a protein resides in the linear order of the amino acid sequence 
along the polypeptide chain. Amino acids have been named in a three-letter code and in 
recent years, by a single letter code (Table 1) which is in current practice. 
 

Amino acids Three-letter 
code 

Single letter 
code 

Amino acids Three-letter 
code 

Single letter 
code 

Alanine Ala A Leucine Leu L 
Arginine Arg R Lysine Lys K 

Asparagine Asn N Methionine Met M 
Aspartic acid Asp D Phenylalanine Phe F 

Cysteine Cys C Proline Pro P 
Glutamine Gln Q Serine Ser S 

Glutamic acid Glu E Threonine Thr T 
Glycine Gly G Tryptophan Trp W 

Histidine His H Tyrosine Tyr Y 
Isoleucine Ile I Valine Val V 

Table 1. Notations of amino acids in three-letter and single letter codes. 

The amino acids that form the sequence are termed residues to denote the composition of a 
polypeptide. The primary sequence of a protein can therefore be visualized as a single letter 
code running from left to right with the left end constituting the N-terminal  (amino group) 
of the first amino acid residue and the right end constituting the C-terminal (carboxylic acid 
group) of the last amino acid residue.  
A particular amino acid residue of the amino acid sequence can therefore be identified by its 
position in the numerical sequence order. For example, a lysine residue can be identified as 
K6 when it appears in it 6th position or a glycine residue as G3 when it appears in its 3rd 
position and so on. The order of amino acid sequences is characteristic of a particular 
protein and of species and among protein families forming a conserved set of sequence in a 
region of the polypeptide(s). This sequential order determines the fold of a protein in 
achieving its native conformation and assigns the specific protein function. The primary 
sequence determination is therefore a significant criterion which defines the subsequent 
levels of the protein organization. An important aspect of the primary structure is that any 
mismatch of the sequence in a functional protein is often lethal to the cellular function 
carried out by the protein. This leads to several hereditary and metabolic defects such as in 
sickle cell anemia where the glutamic acid is replaced by valine in the 6th position of the β-
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Amino acids Three-letter 
code 

Single letter 
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Amino acids Three-letter 
code 
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chain of hemoglobin by a point mutation. The amino acid sequence of a protein is specified 
by the gene sequence by the process of transcription and translation.  

2.2 Secondary structure 
The secondary structure of a protein is the local conformation of the polypeptide chain or 
the spatial relationship of the amino acid residues which are placed close together in the 
primary sequence. This organizational level is found in globular proteins where three basic 
units of secondary structure are present, namely, the α-helix, β-strand and turns. Other 
secondary structures are based on these elements (Augen, 2004). 

2.2.1 The α-helix 
The right-handed α-helix is the most identifiable unit of secondary structure and the most 
common structural motif found in proteins with over 30% helix structure in globular 
proteins. In an α-helix, four or more consecutive amino acid residues adopt the same 
conformation resulting in a regular helical shape in the polypeptide backbone. This helix is 
stabilized by H-bonds between the main chain C=O group of one amino acid and the H-N 
group of the amino acid four residues further along the helix, forming a helix with 3.6 amino 
acid residues per helical turn resulting in a regular stable arrangement. The α-helix repeats 
itself every 0.54 nm along the helix axis i.e., the α-helix has a pitch of 0.54 nm. The radius of 
the helix is 0.23 nm with a translation distance per residue of 0.15 nm. The peptide planes 
are almost parallel with the helix axis and the dipoles within the helix are aligned. The α-
helix arises from regular values adopted for φ (phi) and ψ (psi), the torsional or dihedral 
angles. The values of φ and ψ formed in the α-helix allow the backbone atoms to pack close 
together with few unfavorable contacts. This arrangement allows the H-bonding important 
for the stability of the helix structure. All the amino acids in the helix have negative φ and ψ 
angles, with ideal values of -57 and -47 respectively. It is important to note that proline does 
not form a helical structure due to the absence of an amide proton (NH) which is unable to 
form H-bond while the side chain covalently bonded to the N atom restricts backbone 
rotation. 

2.2.2 The β strand 
The second unit of protein secondary structure identified after the α-helix is the β strand 
which is an extended conformation when compared to the α-helix with 2 residues per turn 
and a translation distance of 0.34 nm leading to a pitch of nearly 0.7 nm in a regular β 
strand. A single β strand is not stable largely because of the limited number of local 
stabilizing interactions. When two or more β strands form additional H-bonding 
interactions, a stable sheet-like arrangement is created contributing to the overall stability of 
the β sheets. Adjacent strands can align in parallel or antiparallel arrangements and their 
orientations are established by the direction of the polypeptide chain from the N- to the C-
terminal. Amino acid residues in the beta-conformation have negative φ and positive ψ 
angles with -139 and +135 angles respectively for parallel β sheets and -119 and +113 φ and 
ψ angles respectively for antiparallel β sheets. Polyamino acids in solution do not form β 
sheets and this hinders the study of their structures. 

2.2.3 Turns 
A turn is a secondary structural element where the polypeptide chain reverses its overall 
direction. It is a structural motif where the Cα atoms of two residues are separated by 1 to 5 
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peptide bonds and the torsional angles are not constant for all the residues in a turn. Many 
different conformations exist on the basis of the number of residues making up the turn and 
the dihedral angles associated with the central residues. Turns are classified according to the 
number of residues they contain namely, the α-turn, where the end residues are separated 
by 4 residues, β-turn, by 3 residues, γ-turn, by 2 residues, δ-turn, by one residue and π-turn, 
by a factor of 5 residues. A β-hairpin turn occurs between two H-bonded antiparallel beta 
strands in which the direction of the protein backbone reverses.  

2.2.4 Loop 
A loop occurs between 6 and 16 residues to form a compact globular shape of the protein 
which contain polar residues and hence, predominantly occur at the protein surface which 
contribute to the formation of active sites for ligand binding or catalytic activity. The loops 
connect the secondary structure elements of the polypeptide chain. Loop structures that are 
random are less stable and referred as random coils.  

2.2.5 Coiled coil 
A coiled coil is a structural motif in proteins in which 2-7 alpha helices are coiled together to 
form a repeated pattern of hypdrophobic and charged amino acid residues referred as 
heptad repeat. The tight packing in a coiled coil interface is due to van der Waal interactions 
between side chain groups. The coiled coil element is responsible for the amphipathic 
structures.  

2.3 Tertiary structure 
Tertiary structure is the global three-dimensional folding that results from interactions 
between elements of secondary structure. Tertiary structure of a protein therefore represents 
the folded conformation of a polypeptide chain in three-dimensional space, i.e., the spatial 
arrangement of amino acid residues widely separated in its primary structure. Interaction 
between the side chain groups is the predominant driver of the fold of the protein chain. 
These interactions which stabilize the tertiary structure arise from the formation of disulfide 
bridges, hydrophobic effects, charge-charge interactions, H-bonding and van der Waal 
interactions. 
Disulfide bridges form between thiol (-SH) groups of two nearby cysteine residues. With 
reference to hydrophilic/hydrophobic interactions, water soluble proteins fold to expose 
hydrophilic side chains on the outer surface retaining the hydrophobic residues in the 
interior of the protein. Charge-charge interactions occur when a charged residue is paired 
with a neutralizing residue of opposite charge forming a salt bridge. H-bonding contributes 
to the overall stability of the tertiary structure or the folded state by stabilization of the 
secondary structure involving α-helices and parallel or antiparallel β sheets and of side 
chain groups of Tyr (Y), Thr (T), Ser (S), Gln (Q) and Asn (N). Van der Waal interactions are 
important in protein folding occurring between adjacent, uncharged and non-bonded 
atoms. A variety of post-translational modifications also contributes to the protein 
conformation such as conversion of proline to hydroxyproline that influences the tertiary 
structure of collagen molecule while glycosylation, carboxylation and methylation have little 
or no effects but which alter the chemical properties of the protein. Another important 
aspect in a protein fold is the activation of inactive proteins by small molecules such as 
cofactors, which are essential for native conformation formation. 
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the folded conformation of a polypeptide chain in three-dimensional space, i.e., the spatial 
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between the side chain groups is the predominant driver of the fold of the protein chain. 
These interactions which stabilize the tertiary structure arise from the formation of disulfide 
bridges, hydrophobic effects, charge-charge interactions, H-bonding and van der Waal 
interactions. 
Disulfide bridges form between thiol (-SH) groups of two nearby cysteine residues. With 
reference to hydrophilic/hydrophobic interactions, water soluble proteins fold to expose 
hydrophilic side chains on the outer surface retaining the hydrophobic residues in the 
interior of the protein. Charge-charge interactions occur when a charged residue is paired 
with a neutralizing residue of opposite charge forming a salt bridge. H-bonding contributes 
to the overall stability of the tertiary structure or the folded state by stabilization of the 
secondary structure involving α-helices and parallel or antiparallel β sheets and of side 
chain groups of Tyr (Y), Thr (T), Ser (S), Gln (Q) and Asn (N). Van der Waal interactions are 
important in protein folding occurring between adjacent, uncharged and non-bonded 
atoms. A variety of post-translational modifications also contributes to the protein 
conformation such as conversion of proline to hydroxyproline that influences the tertiary 
structure of collagen molecule while glycosylation, carboxylation and methylation have little 
or no effects but which alter the chemical properties of the protein. Another important 
aspect in a protein fold is the activation of inactive proteins by small molecules such as 
cofactors, which are essential for native conformation formation. 
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The tertiary structure may be organized around more than one structural unit, known as 
domains which are folded sections of the protein representing structurally distinct units and 
the same interactions govern its stability and folding. Most domain structures exhibit 
specific functions independent of the rest of the protein architecture. Domain regions may 
be α-helices or β strands or mixed elements of both α-helices and β strands. Motifs are 
smaller structures, usually composed of few secondary elements that recur in many proteins 
and are rarely structurally independent. This feature or structural significance is important 
when considering the prediction of folded structure of an individual motif in context of the 
rest of a protein unlikely of the domain structure. 

2.4 Quaternary structure 
Many proteins involved in structural or metabolic or enzymatic functions are oligomeric 
proteins because they consist of more than a single polypeptide chains referred as subunits. 
The quaternary conformation of a protein arises from the interactions similar to tertiary 
structures, but is a result of interactions between the subunits which may be identical or 
nonidentical. Therefore, the quaternary structure refers to the noncovalent, stable 
association of the multiple subunits. A classic example of a protein that exhibits quaternary 
conformation is hemoglobin which consists of 4 polypeptide chains or subunits. The 
quaternary conformation of a protein allows the formation of catalytic or binding sites at the 
interface between subunits, which is not possible for monomeric proteins. Ligand or 
substrate binding causes a conformational change affecting the protein assembly for 
regulation of its biological activity such as the allosteric regulation in enzymes. 
Thereby, the four conformations of a protein molecule define its architectural arrangement 
in a three-dimensional model which contribute to the functional attributes of the protein. 
This is represented in Figure 1 which is a common theme for most globular proteins. 

2.5 The peptide bond 
Amino acids are joined to each residue along the sequence by a linkage of the amino group 
of one residue with the carboxyl group of the next residue, known as the peptide bond 
(Figure 2).  
The physical characteristics of the peptide bond impart the specific folding properties of the 
protein and this folding pattern of the polypeptide chain is described in terms of the angles 
of internal rotation around the bonds in the main chain. The N-Cα and Cα-C are single 
bonds and the internal rotations around these bonds are not restricted by the electronic 
structure of the bond, but, only by possible steric collisions in the conformations produced. 
An important characteristic of the peptide bond is the rigidity of the bond caused by its 
relatively short length, which imparts a partial double bond character. Hence, peptide bonds 
are characterized by a lack of rotational freedom. The double bond character of the peptide 
bond (Table 2) was first recognized by Linus Pauling who suggested that the peptide bond 
is rigid planar (Table 3) and hence exists as cis or trans isomer, with the trans isomer stable. 
The entire conformation of the protein is described by these angles of internal rotation. 
Peptide bonds are invariably fixed at ω = 180o. The φ and ψ angles are limited by steric 
hindrance between amino acid side chains which reduce the number of allowed 
conformations for a polypeptide chain. The rigidity of the peptide bond limits the number of 
arrangements that could fit without distorting the bonds. Without this constraint, the 
peptide would be free to adopt many numbers of structures and no single consistent pattern 
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could exist. Therefore, by reducing the degrees of freedom, a well defined set of states of the 
protein could emerge. This is particularly significant because the proteins should indeed 
have a defined conformation to accomplish its physiological functions. 
 

 
Fig. 1. Hierarchy levels of protein structure. The figure represents the different levels of 
hemoglobin structure. 
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Fig. 2. The peptide bond structure. A. Ball and stick model, B. Torsional angles of the 
peptide structure 

 
Bond nature Length 

C-N 1.47 Å 
C=N 1.27 Å 

C=O to NH 1.33 Å 

Table 2. Bond character of the peptide bond. 

 
Bond Rotation Torsional angle 

NH to Cα Free Phi φ 
Cα to C=O Free Psi ψ 

C=O to NH (peptide bond) Rigid planar Omega ω 

Table 3. Conformational angles of folding of polypeptide chain. 

2.6 The Ramachandran plot 
The peptide bond is planar as a result of resonance and its bond angle, ω has a value of 0 or 
180. A peptide bond in the trans conformation (ω =180) is favoured over the cis 
arrangement (ω =0) by a factor of ~1000 because the preferential arrangement of non-
bonded atoms lead to fewer repulsive interactions that otherwise decrease stability. In the 
cis peptide bond these non-bonded interactions increase due to the close proximity of side 
chains and Cα atoms with the preceeding residue and hence results in decreased stability 
relative to the trans state. Peptide bonds preceeding Proline are an exemption to this trend 
with a trans/cis ratio of ~4. The peptide bond is relatively rigid, but far greater motion is 
possible about the remaining backbone torsion angles. In the polypeptide backbone C-N-
Cα-C defines the torsion angle φ whilst N-Cα-C-N defines ψ. In practice these angles are 
limited by unfavourable close contacts with neighbouring atoms and these steric constraints 
limit the conformational space that is sampled by the polypeptide chains. The allowed 
values for φ and ψ were first determined by G.N.Ramachandran using a ‘Hard sphere 
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model’ for the atoms and these values are indicated on a two-dimensional plot of φ against 
ψ that is called a Ramachandran plot. 
In the Ramachandran plot shown in Figure 3 the freely available conformational space is 
shaded in green. This represents ideal geometry and is exhibited by regular strands or 
helices. Analysis of crystal structures determined to a resolution of <2.5 Å showed that over 
80 percent of all residues are found in this region of the Ramachandran plot. The yellow 
region indicates areas that although less favourable can be formed with small deviations 
from the ideal angular values for φ and ψ. The yellow and green regions include 95 percent 
of all residues within a protein. Finally, the purple coloured region, although much less 
favourable will account for 98 percent of all residues in proteins. All other regions are 
effectively disallowed with the minor exception of a small region representing left handed 
helical structure. In total only 30 percent of the total conformational space is available 
suggesting that the polypeptide chain itself imposes severe restrictions. One exception to 
this rule is Glycine. Glycine lacks a Cβ atom and with just two hydrogen atoms attached to 
the Cα centre, this residue is able to sample a far greater proportion of the space represented 
in the Ramachandran plot. For glycine, this leads to a symmetric appearance for the allowed 
regions. As expected residues with large side chains are more likely to exhibit unfavourable, 
non-bonded interactions that limit the possible values of φ and ψ. In the Ramachandran plot 
the allowed regions are smaller for residues with large side chains such as phenylalanine, 
tryptophan, isoleucine and leucine when compared with the allowed regions for alanine.  
 

 
Fig. 3. Ramachandran plot showing allowed and disallowed conformations 
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3. The need for structural bioinformatics 
Proteins are manifested in every aspect of biological activity/function. Many metabolic, 
cellular and structural events require the proper functioning of proteins in a cell. Any 
rupture of cellular function stems from the distortion or misfolding of proteins that prevents 
its normal function. Hence, protein science augments the advancements in genomic sciences 
to understand health and disease at the molecular level. Years back, an understanding of the 
structure of proteins, their interactions with other biomolecules, their roles within different 
biological systems have been made possible through molecular genetics and chemical 
methods and through biochemical pathways. This has taken years of intensive efforts and 
with the advent of modern techniques. The recent surge in bioinformatics has created a 
landmark in deciphering and decoding the gene and protein characteristics and functions. 
During the past decade, sequence information has been on a tremendous rise in contrast to 
the three-dimensional structural elucidation of proteins. This has resulted in the 
sequence/structure deficit of protein sequence and structure information. This can be 
estimated by the number of sequences available in sequence databases in contrast to the 
number of structures available in structure databases. A search for a protein sequence 
would generate hundreds of thousands of sequences while it would generate a few possible 
structures in a structure repository such as the Protein Data Bank (PDB) for the same protein 
query. This has prompted several consortia of groups to identify and deposit new protein 
structures through bioinformatics from the largely available protein structure prediction 
tools in the WWW.  
Structure prediction has fascinated protein biochemists and the pioneering work of 
Margaret Dayhoff has contributed much to the understanding of protein structure through 
computational methods. She had developed the one-letter code for protein naming to 
reduce the complexity of the three-letter naming in the development of sequence 
information, storage and retrieval. She initiated the collection of protein sequences in the 
Atlas of Protein Sequence and Structure, a book collecting all known protein sequences that 
she published in 1965 which led to the development of Protein Information Resource 
database of protein sequences. In general, structure prediction is an attempt to predict the 
relative position of every protein atom in three-dimensional space using only its sequence 
information. Structural bioinformatics of the protein structure is based on a hierarchy of 
tools and techniques that identify the different levels of protein architecture (Figure 4). 
Many web tools for protein structure prediction have arisen to simplify the tasks of 
biochemists and bioinformaticians as well. Figure 5 provides a bird’s eye view of the 
sequential steps in the identification/prediction of the protein structure. 

4. Protein databases 
Protein sequence information has been effectively dealt in a concerted approach by 
establishing, maintaining and disseminating databases, providing user-friendly software 
tools and develop state-of-the-art analysis tools to interpret structural data. Databases are 
central, shareable resources made available in public domain and represent convenient and 
efficient means of storing vast amount of information. Depending on the nature of the 
different levels of information, databases are classified into different types for the end user. 
This section describes the various databases for each of the nature of protein information 
that range from primary, composite, secondary and pattern databases. The different 
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databases address different aspects of protein information which enable the analyst to 
perform an effective structure prediction strategy (Mala & Takeuchi, 2008).  

4.1 Primary protein databases 
4.1.1 PIR 
This is the Protein Information Resource developed as a Protein sequence database at the 
National Biomedical Research Foundation (NBRF) in the early 1960s and collaboratively by 
PIR-International since 1988. The consortia include the PIR at NBRF, JIPID the International 
Protein Information Database of Japan and MIPS the Martinsried Institute for Protein 
Sequences. 

4.1.2 MIPS 
The Martinsried Institute for Protein sequences collects and processes sequence data for PIR 
and can be accessed at its web server. 

4.1.3 SWISS-PROT 
This protein database was produced collaboratively by the Department of Medical 
Biochemistry at the University of Geneva and the EMBL (European Molecular Biology 
Laboratory). Since 1994, it moved to EMBL’s UK outstation, the EBI (European 
Bioinformatics Institute) and in April 1998, it moved to Swiss Institute of Bioinformatics 
(SIB) and is maintained collaboratively by SIB and EBI/EMBL. It provides the description of 
the function of proteins, structure of its domains, post-translational modifications etc., is 
minimally redundant and is interlinked to many other resources. 

4.1.4 TrEMBL 
This database has been designed to allow rapid access to protein sequence data. TrEMBL 
refers to Translated EMBL and was created as a supplement to SWISS-PROT in 1996 to 
include translations of all coding sequences in EMBL. 

4.1.5 NRL-3D 
This database is a valuable resource produced by PIR from sequences extracted from the 
Brookhaven Protein Data Bank (PDB). The significance of this database is that it makes 
available the protein sequence information in the PDB for keyword interrogation and for 
similarity searches. It includes bibliographic references, MEDLINE cross-references, active 
site, secondary structure and binding site annotations. 

4.2 Composite protein sequence databases 
Composite databases have been created to simplify the sequence search for a protein query 
in a single compilation in context of the many different primary database searches, by 
merging a variety of different primary resources. These databases are non-redundant and 
render sequence searching much more efficient.  

4.2.1 NRDB 
Non-Redundant DataBase (NRDB) is the default database of the NCBI (National Center for 
Biotechnology Information) BLAST (Basic Local Alignment Search Tool) service and is a 
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3. The need for structural bioinformatics 
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composite of GenPept, PDB sequences, SWISS-PROT, SPupdate (weekly update of SWISS-
PROT), PIR and GenPept update (daily updates of GenPept). It provides comprehensive up-
to-date information and is non-identical rather than non-redundant, that is, it reiterates only 
identical sequence copies and hence results in artifacts.  
 

 
Fig. 4. Protein databases addressing different levels of protein structural information. 
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Fig. 5. Flow chart for protein structure modeling 
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4.2.2 OWL 
This is a composite database of SWISS-PROT, PIR, GenBank and NRL-3D and is available 
from the UK EMBnet National Node and the UCL Specialist Node. It is a non-redundant 
database and is however not an updated resource but an efficient database for sequence 
comparisons. 

4.2.3 MIPSX 
This is a merged database produced at the Max-Planck Institute in Martinsried and 
reiterates unique copies of protein sequence search by removing identical sequences within 
or between them. 

4.2.4 SWISS-PROT + TrEMBL 
It is a combined resource of SWISS-PROT + TrEMBL at the EBI and is minimally redundant. 
It can be searched at the SRS sequence retrieval system on the EBI webserver. 

4.3 Secondary databases 
Secondary databases are a consequence of analyses of the sequences of the primary 
databases, mainly based from SWISS-PROT. Such databases augment the primary database 
searches, derived from multiple sequence information, by which an unknown query 
sequence can be searched against a library of patterns of conserved regions of sequence 
alignments which reflect some vital biological role, and based on these predefined 
characteristics of the patterns, the query protein can be assigned to a known family. 
However, secondary databases can never replace the primary sources but supplement the 
primary sequence search. 

4.3.1 Prosite 
It is the first secondary database and consists of entries describing the protein families, 
domains and functional sites as well as amino acid patterns, signatures, and profiles. This 
database was created in 1988 and is manually curated by a team of the Swiss Institute of 
Bioinformatics and tightly integrated into Swiss-Prot protein annotation.  

4.3.2 Prints 
This is a compendium of protein fingerprints. A fingerprint is a group of conserved motifs 
used to characterize a protein family by iterative scanning of a SWISS-PROT/TrEMBL 
composite. Usually the motifs do not overlap, but are separated along a sequence, though 
they may be contiguous in 3D-space. Fingerprints can encode protein folds and 
functionalities more flexibly and powerfully than can single motifs. PRINTS can be accessed 
by Accession number, PRINTS code, database code, text, sequence, title, number of motifs, 
author or query language. 

4.3.3 Blocks 
Blocks are multiply aligned ungapped segments corresponding to the most highly 
conserved regions of proteins. The blocks for the Blocks database are made automatically by 
looking for the most highly conserved regions in groups of proteins documented in 
InterPro. Results are reported in a multiple sequence alignment format without calibration 
and in the standard Block format for searching.  
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4.3.4 Profiles 
In the motif-based approach of protein family characterization, it is probable that variable 
regions between conserved motifs also contain valuable sequence information. Profiles 
indicate where the insertions and deletions are allowed in the complete sequence alignment 
and provide a sensitive means of detecting distant sequence relationships. 

4.3.5 Pfam 
The Pfam database contains information about protein domains and families. For each entry 
a protein sequence alignment and a hidden Markov model is stored. These hidden Markov 
models can be used to search sequence databases. For each family in Pfam it is possible to 
look at multiple alignments, view protein domain architectures, examine species 
distribution, follow links to other databases and view known protein structures. 

4.3.6 Identify 
This resource is derived from BLOCKS and PRINTS and its search software eMOTIF is 
based on the generation of consensus expressions from conserved regions of sequence 
alignments. It can be accessed via the protein function webserver from the Department of 
Biochemistry at Stanford University.  

4.4 Structure classification databases 
Many proteins share structural similarities, reflecting common evolutionary origins. It can 
therefore be presumed that when the functions of proteins are conserved, the structural 
elements of active site residues may also be conserved giving rise to different fold families. 
Thus structure classification databases have evolved to better understand 
sequence/structure relationships. Important protein structure classification schemes are the 
CATH (Class, Architecture, Topology, Homology), SCOP (Structural Classification of 
Proteins) databases which will be dealt in detail in Section 9 of this Chapter. 

4.5 Weblinks for protein databases 
PIR  http://pir.georgetown.edu/ 
SWISS-PROT http://expasy.org/sprot/ 
PROSITE http://expasy.org/prosite/ 
PRINTS  http://www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/index.php 
Pfam  http://pfam.sanger.ac.uk/ 
SCOP  http://scop.mrc-lmb.cam.ac.uk/scop/ 
CATH  http://www.cathdb.info/ 

5. Sequence alignment 
Two or more sequences share sequence similarities when they are homologous and share an 
ancestral sequence due to molecular evolution.  Homology arises when the sequences share 
a common ancestor although similarity does not necessarily reflect homology below a 
certain threshold. When sequences exhibit similarities, it is likely that they will exhibit 
similarity of structures as well as biological functions, which enable to make predictions. 
This is the ultimate aim of sequence databases which requires the use of search tools that 
searches the sequences in the entire database against the new sequence or the query that has 



 
Systems and Computational Biology – Bioinformatics and Computational Modeling 

 

198 

4.2.2 OWL 
This is a composite database of SWISS-PROT, PIR, GenBank and NRL-3D and is available 
from the UK EMBnet National Node and the UCL Specialist Node. It is a non-redundant 
database and is however not an updated resource but an efficient database for sequence 
comparisons. 

4.2.3 MIPSX 
This is a merged database produced at the Max-Planck Institute in Martinsried and 
reiterates unique copies of protein sequence search by removing identical sequences within 
or between them. 

4.2.4 SWISS-PROT + TrEMBL 
It is a combined resource of SWISS-PROT + TrEMBL at the EBI and is minimally redundant. 
It can be searched at the SRS sequence retrieval system on the EBI webserver. 

4.3 Secondary databases 
Secondary databases are a consequence of analyses of the sequences of the primary 
databases, mainly based from SWISS-PROT. Such databases augment the primary database 
searches, derived from multiple sequence information, by which an unknown query 
sequence can be searched against a library of patterns of conserved regions of sequence 
alignments which reflect some vital biological role, and based on these predefined 
characteristics of the patterns, the query protein can be assigned to a known family. 
However, secondary databases can never replace the primary sources but supplement the 
primary sequence search. 

4.3.1 Prosite 
It is the first secondary database and consists of entries describing the protein families, 
domains and functional sites as well as amino acid patterns, signatures, and profiles. This 
database was created in 1988 and is manually curated by a team of the Swiss Institute of 
Bioinformatics and tightly integrated into Swiss-Prot protein annotation.  

4.3.2 Prints 
This is a compendium of protein fingerprints. A fingerprint is a group of conserved motifs 
used to characterize a protein family by iterative scanning of a SWISS-PROT/TrEMBL 
composite. Usually the motifs do not overlap, but are separated along a sequence, though 
they may be contiguous in 3D-space. Fingerprints can encode protein folds and 
functionalities more flexibly and powerfully than can single motifs. PRINTS can be accessed 
by Accession number, PRINTS code, database code, text, sequence, title, number of motifs, 
author or query language. 

4.3.3 Blocks 
Blocks are multiply aligned ungapped segments corresponding to the most highly 
conserved regions of proteins. The blocks for the Blocks database are made automatically by 
looking for the most highly conserved regions in groups of proteins documented in 
InterPro. Results are reported in a multiple sequence alignment format without calibration 
and in the standard Block format for searching.  

 
Understanding Tools and Techniques in Protein Structure Prediction 

 

199 

4.3.4 Profiles 
In the motif-based approach of protein family characterization, it is probable that variable 
regions between conserved motifs also contain valuable sequence information. Profiles 
indicate where the insertions and deletions are allowed in the complete sequence alignment 
and provide a sensitive means of detecting distant sequence relationships. 

4.3.5 Pfam 
The Pfam database contains information about protein domains and families. For each entry 
a protein sequence alignment and a hidden Markov model is stored. These hidden Markov 
models can be used to search sequence databases. For each family in Pfam it is possible to 
look at multiple alignments, view protein domain architectures, examine species 
distribution, follow links to other databases and view known protein structures. 

4.3.6 Identify 
This resource is derived from BLOCKS and PRINTS and its search software eMOTIF is 
based on the generation of consensus expressions from conserved regions of sequence 
alignments. It can be accessed via the protein function webserver from the Department of 
Biochemistry at Stanford University.  

4.4 Structure classification databases 
Many proteins share structural similarities, reflecting common evolutionary origins. It can 
therefore be presumed that when the functions of proteins are conserved, the structural 
elements of active site residues may also be conserved giving rise to different fold families. 
Thus structure classification databases have evolved to better understand 
sequence/structure relationships. Important protein structure classification schemes are the 
CATH (Class, Architecture, Topology, Homology), SCOP (Structural Classification of 
Proteins) databases which will be dealt in detail in Section 9 of this Chapter. 

4.5 Weblinks for protein databases 
PIR  http://pir.georgetown.edu/ 
SWISS-PROT http://expasy.org/sprot/ 
PROSITE http://expasy.org/prosite/ 
PRINTS  http://www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/index.php 
Pfam  http://pfam.sanger.ac.uk/ 
SCOP  http://scop.mrc-lmb.cam.ac.uk/scop/ 
CATH  http://www.cathdb.info/ 

5. Sequence alignment 
Two or more sequences share sequence similarities when they are homologous and share an 
ancestral sequence due to molecular evolution.  Homology arises when the sequences share 
a common ancestor although similarity does not necessarily reflect homology below a 
certain threshold. When sequences exhibit similarities, it is likely that they will exhibit 
similarity of structures as well as biological functions, which enable to make predictions. 
This is the ultimate aim of sequence databases which requires the use of search tools that 
searches the sequences in the entire database against the new sequence or the query that has 



 
Systems and Computational Biology – Bioinformatics and Computational Modeling 

 

200 

been input by the user. Multiple alignments of protein sequences help to demonstrate 
homology which would otherwise have been considered non-significant in a pairwise 
alignment. In contrast to the homology of sequences over the entire length, it is also 
desirable to restrict homology to a limited region of the sequences. This is achieved by using 
a local alignment search tool, more commonly, the BLAST tool at NCBI. Multiple alignment 
tools are provided by EBI known as ClustalW program, most widely used with default and 
editable options in performing a multiple alignment (Figure 6).  
BLAST is a heuristic method to find the highest scoring locally optimal alignments between 
a query sequence and a database sequence. It has been designed for fast database searching 
with minimal sacrifice of sensitivity and finds patches of local similarity, rather than a global 
fit. This tool works on statistics of ungapped sequence alignments and uses a substitution 
matrix in all phases of sequence searches. The use of filters reduces the artifacts in the 
databases. The BLAST algorithm works in a three-step process- the preprocessing of the 
query, generation of hits and extension of the hits. For a protein query, one can perform the 
standard BLASTP (a protein query vs. a protein database), TBLASTN (a protein query vs. 
six-frame translation of nucleotide sequences in the database), pairwise BLAST (between the 
first protein query sequence vs. the second protein sequence), PHI-BLAST (Pattern hit 
initiated BLAST which locates other protein sequences that contain both the regular 
expression pattern and the homologous sequences to a protein query) and the PSI-BLAST 
(Position specific iterated BLAST for finding protein families to determine domain 
identification and fold assignment).  
 

 
Fig. 6. Multiple sequence alignment of P-loop NTPase domain of P. falciparum MutS 
proteins. Conserved residues are in solid red and characteristic motifs are boxed in black 
and shaded in yellow. The corresponding secondary structure is shown below the 
alignment. Red cylinder represents helices and green arrows represent β-strands. 
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Comparing each and every sequence to every other sequence is an impractical means to 
obtain sequence similarity data. Often it is desirable to compare sequence sets of a given 
protein among its species and this is accomplished by a multiple sequent alignment by 
comparing all similar sequences in a single compilation, where, the sequences are aligned on 
top of each other, so that a co-ordinate system is set up. Each row corresponds to the 
sequence of a protein and each column is the same position in each sequence. Gaps are 
shown by dash ‘-‘ or dot ‘.’ character. CLUSTALW is a standard program and W represents 
a specific version of the program. This program computes the pairwise alignments for all 
against for all sequences and the similarities are stored in a matrix. It converts the sequence 
similarity matrix values to distant measures, reflecting evolutionary distance between each 
pair of the sequences. It constructs a tree using neighbour-joining clustering algorithm and it 
progressively aligns the sequences/alignments together into each branch point of the tree. 
Clustal accepts alignments in several formats as: EMBL/SWISS-PROT, NBRF/PIR, 
GCG/MSF and its own format. There are 50 residues per line with one blank after 10 
residues. 

6. Protein data bank (PDB) 
The Protein Data Bank (PDB) is the collection of structures and structural data of proteins, 
nucleic acids and other biological macromolecules. It was established in 1971 as a repository 
for the 3-D structural data at the Brookhaven National Laboratory, New York, and is 
available freely in the public domain. It is a key resource in the area of structural biology 
and structural genomics. PDB structures are deposited by researchers worldwide derived 
typically from X-ray crystallography, NMR spectroscopy, cryoelectron microscopy and 
theoretical modeling. PDB therefore serves as a platform to collect, organize and distribute 
structural information. Since 1998, PDB is an International Organization, managed by the 
Research Collaboratory for Structural Bioinformatics (RCSB) which facilitates the use and 
analysis of structural data in biological research. The PDB is overseen by an organization 
called the Worldwide Protein Data Bank, wwPDB. The founding members are PDBe 
(Europe), RCSB (USA) and PDBj (Japan). The BMRB (Biological Magnetic Resonance 
DataBank) joined in 2006. Each of the four members can act as deposition, data processing 
and distribution centres for PDB data. The data processing refers to the fact that wwPDB 
staff review and annotate each submitted entry. The data are then automatically checked for 
plausibility. The PDB website and its ‘mirrors’ permit retrieval of entries in computer-
readable form (Kothekar, 2004). 

6.1 PDB search 
The PDB can be accessed at its homepage in the WWW ( http://www rcsb.org/pdb/ho 
me/home.do) and several ways are available for search analysis using PDB identification 
code (PDB ID), searching the text found in PDB files (SearchLite), searching against specific 
fields of information such as deposition date or author (SearchFields), by searching the 
status of an entry on hold or released (StatusSearch) and by iterating on a previous search. 

6.2 PDB structure 
The PDB archive contains atomic coordinates, bibliographic citations, primary and 
secondary structure information, crystallographic structure factors and NMR experimental 
data. There are various options to view, download and search for structural neighbours. A 
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set of coordinates deposited with the PDB is subjected to a set of standard stereochemical 
checks and translated into a standard entry format. Each PDB entry is assigned an identifier 
with the first character denoting its version number.  

7. Structure prediction methods 
Structure prediction is an important aspect in modern biology which helps in the 
understanding of the functions and mechanisms of the protein macromolecule in medicine, 
pharmacology and biotechnology. In view of the complexity of the elucidation of protein 
structure by experimental means, it is now possible to use bioinformatics approaches for 
predictions of the protein structure. A number of software programs are available for 
structure predictions and the reasoning of the biologist to assess the suitability of the tools 
for the nature of the protein whose structure is to be determined is critical. The present 
methods for protein structure prediction include homology or comparative modeling, fold 
recognition or threading and ab initio or the de novo structure predictions for the appropriate 
proteins (Westhead et al., 2003). The basic approaches of these methods are discussed.  

7.1 Homology or comparative modeling 
This method is based on the consideration that sequences that are homologous by at least 
25% over an alignment of 80 residues adopt the same structure while sequences falling 
below a 20% sequence identity can have very different structure. An important 
consideration is that tertiary structures of proteins are more conserved than their amino acid 
sequences. This is especially significant if a protein is similar but has been diverged; it could 
still possess the same overall structure. If a sequence of unknown structure (the target or 
query) can be aligned with one or more sequences of known structure (the template) that 
maps residues in the query sequence to residues in the template sequence, then, it produces 
a structural model of the target. Thus, homology modeling of a protein refers to constructing 
an atomic-resolution model of the target protein from its amino acid sequence and an 
experimental three-dimensional structure of the template. Homology models can be useful 
to derive qualitative conclusions about the biochemistry of the query sequence, about why 
certain residues are conserved. The spatial arrangement of conserved residues may suggest 
whether a particular residue is conserved to stabilize the folding, to participate in binding 
some small molecule, or to foster association with another protein or nucleic acid. 
Homology modeling can produce high-quality structural models when the target and 
template are closely related. The homology modeling procedure can be broken down into 
four sequential steps: template selection, target-template alignment, model construction, 
and model assessment. Figure 7 describes the sequence for homology modeling of a query 
protein. 
The first critical step is to locate possible template structures using standard sequence 
similarity search methods such as BLAST  for which the structures are experimentally 
known by experimental methods such as by X-ray crystallography or NMR spectroscopy 
and is available in the database. One of the limitations of homology modeling is the lack of a 
template structure for most proteins which is hoped to be available in the next 10-15 years 
with the advancements in structural genomics. When the template structure has been 
obtained, it is now essential to align the sequences with the target sequences by using a 
multiple alignment tool. When the target and template sequences closely match with high 
percentage identities, then, a good model is generated. The alignment should be generally 
checked for conserved key structural and functional residues to prevent obvious alignment 
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errors when there is a high percentage identity. Given a template and an alignment, the 
information contained therein must be used to generate a three-dimensional structural 
model of the target, represented as a set of Cartesian coordinates for each atom in the 
protein. Three major classes of model generation methods have been proposed-fragment 
assembly, segment matching and satisfaction of spatial restraints. Regions of the target 
sequence that are not aligned to a template are modeled by loop modeling. The coordinates 
of unmatched sections determined by loop modeling programs are generally much less 
accurate particularly if the loop is longer than 10 residues. Homology models without 
reference to the true target structure are assessed by statistical potentials or physics-based 
energy calculations which produce an estimate of the energy for the model being assessed. 
The assessment of homology models' accuracy when the experimental structure is known is 
direct, using the root-mean-square deviation (RMSD) metric to measure the mean distance 
between the corresponding atoms in the two structures after they have been superimposed. 
 

 
 

Fig. 7. Flow chart to derive protein structure by homology modeling 



 
Systems and Computational Biology – Bioinformatics and Computational Modeling 

 

202 

set of coordinates deposited with the PDB is subjected to a set of standard stereochemical 
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with the first character denoting its version number.  

7. Structure prediction methods 
Structure prediction is an important aspect in modern biology which helps in the 
understanding of the functions and mechanisms of the protein macromolecule in medicine, 
pharmacology and biotechnology. In view of the complexity of the elucidation of protein 
structure by experimental means, it is now possible to use bioinformatics approaches for 
predictions of the protein structure. A number of software programs are available for 
structure predictions and the reasoning of the biologist to assess the suitability of the tools 
for the nature of the protein whose structure is to be determined is critical. The present 
methods for protein structure prediction include homology or comparative modeling, fold 
recognition or threading and ab initio or the de novo structure predictions for the appropriate 
proteins (Westhead et al., 2003). The basic approaches of these methods are discussed.  

7.1 Homology or comparative modeling 
This method is based on the consideration that sequences that are homologous by at least 
25% over an alignment of 80 residues adopt the same structure while sequences falling 
below a 20% sequence identity can have very different structure. An important 
consideration is that tertiary structures of proteins are more conserved than their amino acid 
sequences. This is especially significant if a protein is similar but has been diverged; it could 
still possess the same overall structure. If a sequence of unknown structure (the target or 
query) can be aligned with one or more sequences of known structure (the template) that 
maps residues in the query sequence to residues in the template sequence, then, it produces 
a structural model of the target. Thus, homology modeling of a protein refers to constructing 
an atomic-resolution model of the target protein from its amino acid sequence and an 
experimental three-dimensional structure of the template. Homology models can be useful 
to derive qualitative conclusions about the biochemistry of the query sequence, about why 
certain residues are conserved. The spatial arrangement of conserved residues may suggest 
whether a particular residue is conserved to stabilize the folding, to participate in binding 
some small molecule, or to foster association with another protein or nucleic acid. 
Homology modeling can produce high-quality structural models when the target and 
template are closely related. The homology modeling procedure can be broken down into 
four sequential steps: template selection, target-template alignment, model construction, 
and model assessment. Figure 7 describes the sequence for homology modeling of a query 
protein. 
The first critical step is to locate possible template structures using standard sequence 
similarity search methods such as BLAST  for which the structures are experimentally 
known by experimental methods such as by X-ray crystallography or NMR spectroscopy 
and is available in the database. One of the limitations of homology modeling is the lack of a 
template structure for most proteins which is hoped to be available in the next 10-15 years 
with the advancements in structural genomics. When the template structure has been 
obtained, it is now essential to align the sequences with the target sequences by using a 
multiple alignment tool. When the target and template sequences closely match with high 
percentage identities, then, a good model is generated. The alignment should be generally 
checked for conserved key structural and functional residues to prevent obvious alignment 

 
Understanding Tools and Techniques in Protein Structure Prediction 

 

203 

errors when there is a high percentage identity. Given a template and an alignment, the 
information contained therein must be used to generate a three-dimensional structural 
model of the target, represented as a set of Cartesian coordinates for each atom in the 
protein. Three major classes of model generation methods have been proposed-fragment 
assembly, segment matching and satisfaction of spatial restraints. Regions of the target 
sequence that are not aligned to a template are modeled by loop modeling. The coordinates 
of unmatched sections determined by loop modeling programs are generally much less 
accurate particularly if the loop is longer than 10 residues. Homology models without 
reference to the true target structure are assessed by statistical potentials or physics-based 
energy calculations which produce an estimate of the energy for the model being assessed. 
The assessment of homology models' accuracy when the experimental structure is known is 
direct, using the root-mean-square deviation (RMSD) metric to measure the mean distance 
between the corresponding atoms in the two structures after they have been superimposed. 
 

 
 

Fig. 7. Flow chart to derive protein structure by homology modeling 



 
Systems and Computational Biology – Bioinformatics and Computational Modeling 

 

204 

A number of free and commercial softwares are available in the WWW.  SWISS-MODEL is a 
fully automated protein structure homology modeling server accessible via the ExPASy 
webserver or the SWISS-PDBVIEWER. It searches for suitable templates, checks sequence 
identity with targets, generates models and calculates energy minimization. MODELLER is 
another program for homology modeling. An alignment of the sequence to be modeled is to 
be provided and it automatically calculates a model with known related structures by 
satisfaction of spatial restraints. Table 4 lists some bioinformatics tools used for Homology 
modeling. 
 

Web tool Method 
CABS Reduced modeling tool 
MODELLER Satisfaction of spatial restraints 
ROSETTA Rosetta homology modeling 
SWISS-MODEL Local similarity / fragment assembly 
TIP-STRUCTFAST Automated comparative modeling 
WHATIF Position specific rotamers 

Table 4. Homology modeling tools 

7.2 Fold recognition or threading 
The basic concept of threading was a result of the observation that a large percentage of 
proteins adopt one of a limited number folds; 10 different folds account for 50% of the 
known structural similarities between protein superfamilies. Rather than finding the correct 
structure for a given protein for all possible conformations, the correct structure is likely to 
have already been observed and stored in a database. In cases where the target protein 
shares significant sequence similarity to a protein of known 3-D structure, the fold 
recognition is made simple just by sequence comparison to identify the correct fold. The 
method of threading is thus used to detect structural similarities that are not accompanied 
by sequence similarity. Therefore, when a protein displays less than 25% sequence similarity 
to that of a template, the threading method can be used to predict its structure. This is unlike 
the homology modeling where sequence similarity is sufficient to guarantee similarity in 
structure. It is also evident that structures are conserved than sequences during 
evolutionary processes.  Fold recognition method detects such distant relationships by 
searching through a library of known protein structures known as the fold library. 
Threading works by using statistical knowledge of the relationship between the structures 
deposited in the PDB and the sequence of the target protein. The prediction is made by 
"threading" or aligning each amino acid in the target sequence to a position in the template 
structure, and evaluating how well the target fits the template. After the best-fit template is 
selected, the structural model of the sequence is built based on the alignment with the 
chosen template. The flowchart of threading follows from the selection of protein structures 
from protein structure databases such as PDB and SCOP by eliminating structures with high 
sequence similarities, designing a good scoring function to measure the fitness between 
target sequences and templates based on the knowledge of the known relationships between 
the structures and the sequences, aligning the target sequence with each of the structure 
templates by optimizing the designed scoring function, selecting the threading alignment 
that is statistically most probable as the threading prediction and constructing a structure 
model for the target by placing the backbone atoms of the target sequence at their aligned 
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backbone positions of the selected structural template. Fold recognition methods can be 
broadly divided into those that derive a 1-D profile for each structure in the fold library and 
align the target sequence to these profiles, and those that consider the full 3-D structure of 
the protein template. Fold recognition methods are widely used and effective because there 
are a strictly limited number of different protein folds in nature, mostly as a result of 
evolution and also due to constraints imposed by the basic physics and chemistry of 
polypeptide chains, which authenticate the derived protein structure by this method. 
Homology modeling and threading are both template-based methods but the protein 
templates that they target are very much different. However, this method suffers from its 
limitations such as the weak fold recognition and domain problem in proteins with multiple 
domains. Table 5 lists a few of the bioinformatics tools used in Threading . 
 

Web tool Method 
PSI-BLAST Iterated sequence alignment for fold identification 
3D-PSSM 3D-1D sequence profiling 
SUPERFAMILY Hidden Markov model 
GenTHREADER Sequence profile and predicted secondary structure 
LOOPP Multiple methods 

Table 5. Tools for Threading method 

7.3 Ab initio or De novo structure prediction 
Proteins fold to attain a state of minimum thermodynamic free energy as in all 
physicochemical systems. This is exploited to predict the structure conformation of the 
protein by ab initio methods. Thus, this method does not require a template structure but 
attempts to predict tertiary structure from the sequences that govern protein folding. 
Therefore it uses the principles of theoretical calculations in statistical thermodynamics and 
quantum mechanics. The different ab initio methods are Molecular dynamics simulations, 
Monte Carlo simulations, Genetic algorithm simulations and lattice models. However, this 
method is not in practice when compared to homology modeling or fold recognition due to 
its complexity in its approach. 
Table 6 indicates some of the ab initio structure prediction methods. 
 
Web tool Method 
ROSETTA Rosetta homology modeling and ab initio fragment assembly 
Rosetta@ Home Distributed-computing implementation of Rosetta algorithm 
CABS Reduced modeling tool 

Table 6. Ab initio programs 

7.4 Strategies in protein structure prediction 
A set of guidelines can be followed to devise a protein structure prediction strategy. The 
first step in the structure prediction of the protein can be to identify the features that the 
protein can possess that can be examined by sequence alignment. The presence of coiled 
coils could be tested. A prior analysis of the target sequence with Interpro can reveal an 
overall domain structure. Comparative model is more suited in terms of accuracy; although 
it is possible only for a minority of the proteins. Fold recognition methods detect 
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evolutionary relationships inclusive of the consequence of divergence, however with lower 
accuracies. 

8. Secondary structure prediction 
The secondary structure of a protein refers to a consecutive fragment in its sequence that 
corresponds to a local region showing distinct geometrical features. These structural 
elements form during the early stages of the folding process. Knowledge of protein 
secondary structural regions along the protein sequence is a prerequisite to model the 
folding process or its kinetics. The ability to predict the secondary structure is a critical 
aspect in the structure prediction of a protein. Therefore, it is possible to recognize the three-
dimensional topology by comparing the successfully predicted secondary structural 
elements of a query protein with the database of known topologies. Recently, it has been 
reported that helices and strand structures are maintained by evolution and the formation of 
regular secondary structure is an intrinsic feature of random amino acid sequences (Schaefer 
et al., 2010). Many methods are based on secondary structure propensity which reflects the 
preference of a residue for a particular secondary structure. Early methods were the Chou-
Fasman method and the GOR method, while, predictions from multiple-aligned sequences 
are the Neural network methods which are based on statistical analysis. Other methods 
include Machine learning methods and Lim’s and Cohen’s methods. 

8.1 Chou-Fasman method 
It is a statistical prediction method based on calculation of statistical propensities of each 
residue forming either α-helix or β-strand. These propensities are used to classify the 
residues into six classes depending on their likelihood of forming an α-helix, and six classes 
depending on their likelihood of forming a β-strand. The class designations are used to find 
areas of probable α-helix and β-strands in the protein sequences to be predicted. The 
probable areas are then modified by a series of rules to produce the final prediction. This 
method is somewhat arbitrary and does not relate to chemical or physical theories. An 
improved version of this method for protein secondary structure prediction has been 
developed by Chen et al. (2006). 

8.2 GOR method 
The GOR (Garnier-Osguthorpe-Robson) method is based on statistical principles and is 
well-defined. It is based on the idea of treating the primary sequence and the sequence of 
secondary structure as two messages related by a translation process, which is then 
examined by using information theory. Structure prediction depends on measuring the 
amount of information the residues carry about their secondary structure and other residues 
secondary structure. Also theoretically complex, it is simple in practice.  

8.3 PHD 
This method uses a two-layered neural network method for sequence-to-structure 
prediction. The input of this network is a frame of 13 consecutive residues. Each residue is 
represented by the frequencies in the column of multiple sequence alignment which 
corresponds to that residue. The residues in the homologous proteins that correspond to the 
residue in the query protein are selected and frequencies of each type of residues are 

 
Understanding Tools and Techniques in Protein Structure Prediction 

 

207 

calculated and input to the network. This means each residue introduces 20 inputs to the 
neural network. Also, one more input is used for each residue in the frame for the cases that 
the frame extends over the N or C terminus of the protein. One final input is added for each 
residue called the conservation weight. This weight represents the quality of a multiple 
sequence alignment. So every residue is represented by 20+1+1=22 inputs, thus the 
sequence-to-structure network has 13x22 input modes. The output of this network is 3 
weights, one for each of the helix, strand and loop states. The structure-to-structure 
prediction part of the algorithm is also implemented as a two-layered feed-forward network 
(Singh et al., 2008). 

8.4 Machine learning methods 
The first full-scale application of machine learning to secondary structure prediction 
occurred with the development of a learning algorithm PROMIS. Since then, more powerful 
machine learning methods known as inductive logic programming (ILP) have been 
developed. ILP method is specifically designed to learn structural relationships between 
objects and is more advantageous for secondary structure prediction, using the database of 
known structures. 

8.5 
Lim’s method and Cohen’s method are based on physicochemical properties to encode 
structural knowledge of proteins. 

8.6 
Multiple sequence alignments significantly improve secondary structure prediction and 
reveal patterns of conservation as a result of evolution. A residue with a high propensity for 
a particular secondary structure in one sequence may have occurred by chance, but if it is 
part of a conserved column, in which all residues have high propensity for that type of 
secondary structure, then it provides predictive evidence. Multiple alignments can also 
reveal subtle patterns of conservation. Like, for example, a large proportion of α-helices in 
globular proteins are amphipathic, containing hydrophobic and hydrophilic residues 
associated with periodic patterns of sequences. The appearance of such conserved patterns 
is therefore predictive of α-helical structure. 

8.7 
Secondary structure prediction tools are the Jpred which is a neural network assignment 
method, PREDATOR which is a knowledge-based databse comparison method and Predict 
protein which is a profile-based neural network. 

9. Structural classification 
Protein structure is more conserved than its sequences. Hence, there is a need for 
classification of protein structures for management of protein structures deposited in 
databases to reflect both structural and evolutionary relatedness. Protein classification is 
based on a hierarchy of levels which assign the proteins to family, superfamily and fold 
depicting clear evolutionary relationship, probable common evolutionary origin and major 
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classification of protein structures for management of protein structures deposited in 
databases to reflect both structural and evolutionary relatedness. Protein classification is 
based on a hierarchy of levels which assign the proteins to family, superfamily and fold 
depicting clear evolutionary relationship, probable common evolutionary origin and major 



 
Systems and Computational Biology – Bioinformatics and Computational Modeling 

 

208 

structural similarity respectively. Methods of protein structure classification rely on the 
sequence comparison methods and the structure comparison methods.  
CATH and SCOP are the major hierarchical structure classification databases available at: 
http://www.cathdb.info/ and http://scop.mrc-lmb.cam.ac.uk/scop/ in the www. 

9.1 CATH 
This database classifies proteins based on its Class, Architecture, Topology and Homology. 
Class is determined by secondary structure and packing within the folded protein. Three 
major classes are recognized: all alpha, all beta and alphabeta, while the fourth class is 
composed of proteins with low secondary structure content. Architecture represents the 
overall shape of the domain as a function of the orientations of individual secondary 
structures. This level is assigned using a simple description of the secondary structure 
arrangement. The Topology level groups proteins into fold families depending on both the 
overall shape and connectivity of secondary structures. The Homologous superfamily level 
groups together protein domains that share a common ancestor. Structures within this level 
are further clustered according to their level of sequence identity.  

9.2 SCOP 
This database represents the Structural Classification of Proteins, a valuable resource for 
comparing and classifying new structures. It is designed to provide a comprehensive 
description of the structural and evolutionary relationships between all proteins whose 
structure is known, which includes all entries in the PDB. The database is available as a set 
of tightly linked hypertext documents for accessibility. This classification has been 
constructed manually by visual inspection and comparison of structures.  

10. Structure visualization 
Structure visualization enables identification and manipulation of structural features in the 
three-dimensional view of protein macromolecules. Several programs have been developed 
to view structural data. Rasmol is one of the most popular tools for protein structure 
visualization developed by Roger Sayle which reads molecular structure files from PDB. 
Chemscape Chime and Protein explorer work as plug-ins to allow structure visualization in 
the web browser. Cn3-D is a helper application that allows viewing of 3-D structures and 
sequence-structure or structure-structure alignments for NCBI database. Swiss-PdbViewer 
provides an interface to analyze several proteins at the same time, which can be 
superimposed in order to deduce structural alignments and compare their active sites. It is 
tightly linked to Swiss-Model. PDBsum is a database which provides a largely pictorial 
summary of the key information on each macromolecular structure from the PDB. Table 7 
lists some of the databases used for protein structure visualization. 

11. Web tools in protein structure prediction 
There exists unlimited information in the WWW for determination of protein structure 
prediction due to developments of webservers to analyse and interpret structural data. 
Webservers are developed and maintained by the Organizations for free availability or on 
commercial purposes. With the recent revolutions in bioinformatics, new software tools 
have been designed to meet updated protein information. This section is therefore intended 
to describe some of the webservers for obtaining structural information.  
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Program Function 

RasMol 3-dimensional visualization 

Cn3-D 3-dimensional visualization, linked to sequence alignments 

Chime 3-dimensional visualization 

TOPS Visualization of protein folding topologies 

DSSP Finds secondary structure elements in an input structure 

Surfnet Visualization of protein surface 

PROCHECK Checks stereochemical quality of protein structures 

PROMOTIF Analyses protein structural motifs 

Table 7. Protein visualization tools 

11.1 ExPASy 
The ExPASy (Expert Protein Analysis System) is a proteomics server of the Swiss Institute of 
Bioinformatics (SIB) which analyzes protein sequences and structures and functions in 
collaboration with the European Bioinformatics Institute. The ExPASy server is a repertoire 
of tools for the many different types of protein analysis. These tools can be accessed at: 
http://expasy.org/tools/ and retrieve information on protein identification and 
characterization using mass spectrometric data, primary structure analysis,  pattern and 
profile searches, secondary structure prediction, tertiary sequence analysis and tertiary 
structure prediction as well as quaternary structure analysis, molecular modeling and 
visualization. 
Table 8 lists some of the Protein identification and characterization programs (Mala & 
Takeuchi, 2008). 
Table 9 lists the protein structure prediction programs (Rastogi et al., 2004). 
 

Program Function 

AACompIdent Identification of amino acid composition 
TagIdent Identification of proteins using mass spectrometric data 
PeptIdent Identification of proteins using peptide mass fingerprint data 
MultiIdent Identification of proteins using pI, MW, amino acid composition 
Propsearch Find putative protein family 
PepSea Identification of protein by peptide mapping or peptide sequencing 
FindPept Identification of peptides resulting from unspecific cleavage of 

proteins 
TMAP; TMHMM Prediction of transmembrane helices 

 

Table 8. Tools in protein identification and characterization 
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structural similarity respectively. Methods of protein structure classification rely on the 
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lists some of the databases used for protein structure visualization. 
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Program Function 
ProtParam Physico-chemical parameters of a protein sequence 
HeliQuest A webserver to screen sequences with specific alpha-helical properties 
Rep Searches a protein sequence for repeats 
Paircoil Prediction of coiled coil in proteins 
PepDraw Peptide primary structure drawing 
Jpred A consensus method for protein secondary structure prediction 
PredictProtein A webserver from Columbia University for secondary structure 

prediction 
PSIpred Various protein structure prediction methods 
SWISS-MODEL An automated knowledge-based protein modeling server 
LOOPP Sequence to sequence, sequence to structure, and structure to 

structure alignment 
Rosetta  Prediction of protein structure from sequence 
MakeMultimer Reconstruction of multimeric molecules present in crystals 
Swiss-PdbViewer A program to display, analyse and superimpose protein 3D structures 

Table 9. Tools in Protein structure prediction 

11.2 Predict protein 
PredictProtein is a webserver available at http://www.predictprotein.org/ and works on 
the profile-based neural network method. It integrates feature prediction for secondary 
structure, solvent accessibility, transmembrane helices, globular regions, coiled-coil regions, 
structural switch regions, B-values, disorder regions, intra-residue contacts, protein-protein 
and protein-DNA binding sites, sub-cellular localization, domain boundaries, beta-barrels, 
cysteine bonds, metal binding sites and disulphide bridges. PredictProtein caches the 
prediction for each new query sequence it processes for quick and easy retrieval. Currently 
the PredictProtein cache contains 4,136,476 annotated proteins. 

11.3 Rasmol 
The software developed by Roger Sayle displays a three-dimensional image of a structure in 
the standard structural database. The image can be rotated by using a mouse to produce 
different views and displayed in various formats such as wireframe, space filling, ball and 
stick and cartoon formats, which give clear displays of secondary structure elements. The user 
can choose between various colour schemes and even use customized colours. There are 
flexible ways of selecting parts of structures to enable highlighting with a different display 
format. Figure 8 shows the different displays of a protein structure viewed in Rasmol. 

11.4 DOMO and PROF_PAT 
A new database of aligned protein domains known as DOMO has been developed by Gracy 
& Argos (1998). DOMO can be accessed through the sequence retrieval system (SRS). A 
form-based query manager allows retrieval of familial domain alignments by identifiers, 
sequence accession numbers or keywords. The DOMO sequence analysis provides a simple 
tool for determining domain arrangements, evolutionary relationships and key amino acid 
residues in a query protein sequence. PROF_PAT 1.3 is an updated database of patterns to 
detect local similarities, containing patterns of more than 13,000 groups of related proteins 
in a format similar to that of PROSITE.  
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Fig. 8. Ribbon (A) and Ball stick (B) models of myoglobin viewed in Rasmol  

12. CASP 
CASP refers to Critical Assessment of protein Structure Prediction experimental methods to 
establish the current state of the art in protein structure prediction with identification of the 
progress made so far and highlight future efforts to be focused. CASP1 was initiated in 1994 
and has been upgraded every two years. The recent method is CASP9 for the year 2010. 
CASP provides research groups with an opportunity to objectively test their structure 
prediction methods and delivers an independent assessment of the state of the art in protein 
structure modeling to the research community and software users. Prediction methods are 
assessed on the basis of the analysis of a large number of blind predictions of protein 
structure. The CASP results are published in special supplement issues of the scientific 
journal Proteins, all of which are accessible through the CASP website. The earlier version of 
CASP, CASP8 has been described byMoult et al. (2009) in Proteins. 

13. Conclusion 
Protein sequence information can be retrieved and analysed from databases that encompass 
much of the available sequence and structure data. On the other hand, it is of significant 
interest that a researcher be able to submit the sequence information for the protein 
investigated by him/her. Submission of sequences in any of the databases is transferred by 
FTP to the other databases for synchronized database management. The online submission 
tools provide a simple user interface and are maintained and curated on a daily basis. The 
vast sequence information available in the WWW requires potential search engines for data 
retrieval such as the Entrez from NCBI and SRS (sequence retrieval system) from EBI, which 
allow text-based searching of a number of linked databases. Thus, there is a continual need 
for sequence information and data retrieval in view of the sequence/structure deficit and 
also to provide links to the identification of protein biomarkers in health and disease which 
requires structural information. This Chapter therefore provides comprehensive information 
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to the reader on the application-based insights of protein structure prediction using 
bioinformatics approaches. 
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1. Introduction 
Multiple sequence alignment (MSA) is a very useful tool in designing experiments for 
testing and modifying the function of specific proteins, in predicting their functions and 
structures, and in identifying new members of protein families. MSA of deoxyribonucleic 
acid (DNA), ribonucleic acid (RNA) and protein remains one of the most common and 
important tasks in Bioinformatics. Textbooks on the algorithms dedicated to sequence 
alignment appeared more than a decade ago, e.g. (Durbin et al., 1998). Many critical 
overviews of the existing MSA have been investigated (Notredame, 2002; Kumar & Filipski, 
2007). Finding an optimal MSA of a given set of sequences has been identified as a 
nondeterministic polynomial-time (NP)-complete problem (Wang & Jiang, 1994). The MSA 
solution, based on dynamic programming, requires O((2m)n) time complexity; n being the 
number of sequences, and m the average sequence length. The memory complexity is O(mn) 
(Carrillo & Lipman, 1988;  Saitou & Nei, 1987). Therefore, carrying out MSA by dynamic 
programming becomes practically intractable as the number of sequences increases. The 
dynamic programming algorithm used for optimal alignment of pairs of sequences can 
easily be extended to global alignment of three sequences. But for more than three 
sequences, only a small number of relatively short sequences may be analyzed because of 
the “curse of dimensionality”. Despite the existence of many ready-made and operational 
systems such as MBEToolbox (Cai et al., 2006), Probalign (Roshan & Livesay, 2006), Mulan 
(Loots & Ovcharenko, 2007), MSA is always an active area of research (Yue et al., 2009). 
Approximate methods are constantly investigated for global MSA. One class of  these 
methods is the progressive global alignment. The method starts with an alignment of the 
most-alike sequences and then builds an alignment by adding more and more closely-alike 
sequences. Progressive alignment was first formulated in (Hogeweg & Hesper, 1984). 
Progressive alignment, as implemented in some packages such as ClustalW, for instance, 
represents one the most popular methodology for MSA. However, in ClustalW, alignment is 
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1. Introduction 
Multiple sequence alignment (MSA) is a very useful tool in designing experiments for 
testing and modifying the function of specific proteins, in predicting their functions and 
structures, and in identifying new members of protein families. MSA of deoxyribonucleic 
acid (DNA), ribonucleic acid (RNA) and protein remains one of the most common and 
important tasks in Bioinformatics. Textbooks on the algorithms dedicated to sequence 
alignment appeared more than a decade ago, e.g. (Durbin et al., 1998). Many critical 
overviews of the existing MSA have been investigated (Notredame, 2002; Kumar & Filipski, 
2007). Finding an optimal MSA of a given set of sequences has been identified as a 
nondeterministic polynomial-time (NP)-complete problem (Wang & Jiang, 1994). The MSA 
solution, based on dynamic programming, requires O((2m)n) time complexity; n being the 
number of sequences, and m the average sequence length. The memory complexity is O(mn) 
(Carrillo & Lipman, 1988;  Saitou & Nei, 1987). Therefore, carrying out MSA by dynamic 
programming becomes practically intractable as the number of sequences increases. The 
dynamic programming algorithm used for optimal alignment of pairs of sequences can 
easily be extended to global alignment of three sequences. But for more than three 
sequences, only a small number of relatively short sequences may be analyzed because of 
the “curse of dimensionality”. Despite the existence of many ready-made and operational 
systems such as MBEToolbox (Cai et al., 2006), Probalign (Roshan & Livesay, 2006), Mulan 
(Loots & Ovcharenko, 2007), MSA is always an active area of research (Yue et al., 2009). 
Approximate methods are constantly investigated for global MSA. One class of  these 
methods is the progressive global alignment. The method starts with an alignment of the 
most-alike sequences and then builds an alignment by adding more and more closely-alike 
sequences. Progressive alignment was first formulated in (Hogeweg & Hesper, 1984). 
Progressive alignment, as implemented in some packages such as ClustalW, for instance, 
represents one the most popular methodology for MSA. However, in ClustalW, alignment is 
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made by the explicit use of the sequences themselves, which certainly represents a heavy 
computational burden (Thompson et al., 1994). Building on previous works such as (Azim et 
al., 2010; 2011), and in order to reduce this computational effort, we represent the similarity 
between the sequences using a descriptor of the sequences instead of the sequences 
themselves. The main advantage of using the proposed descriptor resides in its short length, 
namely 20 for proteins and 4 for DNA, irrespective of the  sequence length. Based on this 
idea, a novel descriptor-based progressive MSA, called DescPA, is formulated, and further 
improved through a 2-opt method resulting in DescPA2. This novel approach positively 
impacts the computation time for the MSA, as shown in the results. The chapter is organized 
as follows. In the next section, the description of protein MSA problem is highlighted. 
Section 3 briefly presents the DescPA steps as a novel methodology using the Hellinger 
distance and the computation of the probability density functions (PDF) of sequences. 
Section 4 reports further enhancements through DescPA2 based on a local search method, 
namely 2-opt. Section 5 reports the results for both DescPA and DescPA2 performance with 
respect to ClustalW. Finally, concluding remarks and further research are presented.  

2. Proteins MSA problem formulation 
2.1 MSA at large 
2.1.1 The MSA difficulties 
MSA is an interdisciplinary problem. It spans three distinct fields, namely statistics, biology 
and computer science; each of which encompassing technical difficulties, summarized in the 
choices of : 
 the sequences, 
  an objective function (i.e., a comparison model), 
 the optimization method for that function. 
As a result, properly solving these three problems would require an understanding of all 
three fields mentioned above, which obviously lies far beyond our reach. 

2.1.2 Sequence choice issues 
The global of MSA methods assume that we are dealing with a set of homologous sequences 
i.e., sequences sharing a common ancestor. Furthermore, with the exception of some 
methods (e.g. Morgenstern et al., 1996), MSA solutions require the sequences to be related 
over their whole length (or at least most of it). When that condition is not met, one has to 
rely on the use of local MSA methods such as a sampler (Lawrence et al., 1993), among 
others. 

2.1.3 Objective or cost function issue 
The objective or cost function is the mathematical formulation of a purely biological 
problem that lies in the definition of biological correctness. A mathematical function is used 
for measuring the biological quality of an alignment. This function is referred to as an 
objective or cost function since it defines the mathematical objective or cost of the search. 
Given a perfect function, the mathematically optimal alignment will also be biologically 
optimal. Unfortunately, this is rarely the case, and while the function defines a mathematical 
optimum, we rarely have a sound argument that this optimum will also be biologically 
optimal. As a result, an ideal objective or cost function for all situations does not exist, and 
every available scheme suffers from major drawbacks. Ideally, a perfect objective or cost 
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function is to be available for every situation. In practice, this is not the case and the user is 
always left to make a decision when choosing the method that is most suitable to the 
problem (Durbin et al., 1998). 

2.1.4 Optimization issue 
The third main issue associated with MSAs is purely computational. If we assume that we 
have an adequate set of sequences and a biologically perfect objective function, there still 
remain the optimization of the objective or cost function. This task is far from being trivial. 
the computation of a mathematically optimal alignment is too complex a task for an exact 
method to be used (Wang & Jiang, 1994). Even if we consider a function that consists of the 
maximization of the number of perfect identities within each column, the problem would 
still remain intractable for more than three sequences. Consequently, all the current 
implementations of multiple alignment algorithms are heuristics and that none of them 
guarantee a full optimization.  

2.2 Existing MSA optimization algorithms 
Algorithms that construct MSA require a cost function as a criterion for constructing an 
optimal alignment. There exist three categories of MSA optimization; exact, iterative and 
progressive (Saitou & Nei, 1987). The exact method suffers from inexact sequence alignment 
(Wang & Li, 2004). Commonly-used techniques remain the iterative and progressive 
techniques. Most progressive MSA methods heavily rely on dynamic programming to 
perform multiple alignments starting with the most closely-related sequences and then 
progressively adding other related sequences to the initial alignment. These methods have 
the advantage of being fast, simple as well as reasonably sensitive. Their main drawback is 
that they can be trapped in local minima that stems from the greedy nature of the algorithm 
(Thompson et al. 2005). The other major drawback is that any progressive MSA solution 
cannot be globally optimal, since it is heavily influenced by the initial choice. As a result, 
any error made at any stage in building the MSA, is propagated and builds up through to 
the final result. Finally, the performance gets worse when all the sequences in the set are 
rather distantly-related. Despite these limitations, progressive alignment methods are still 
efficient enough to be implemented on a large scale for hundreds to thousands of sequences. 
Hence our contribution to their enhancement.  

2.3 Progressive strategy  
2.3.1 Basic steps 
The existence of several progressive programs and packages has broadened up the 
aligning techniques. The most popular progressive MSA implementation is represented in 
the ClustalW family (Higgins & Sharp, 1988; Thompson et al., 1994; 2005). The guide tree 
in the basic progressive strategy is determined by an efficient clustering method such as 
neighbor-joining (Saitou & Nei, 1987), or un-weighted average distance (Carrillo & 
Lipman, 1988). 
The progressive strategy, also known as tree method, is one of the most widely used 
heuristic search for MSA. It combines pairwise alignments beginning with the most similar 
pair and progressing to the most distantly-related, which finally builds up an MSA solution. 
The basic progressive alignment strategy follows three steps, depicted in Fig. 1, below.    
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The existence of several progressive programs and packages has broadened up the 
aligning techniques. The most popular progressive MSA implementation is represented in 
the ClustalW family (Higgins & Sharp, 1988; Thompson et al., 1994; 2005). The guide tree 
in the basic progressive strategy is determined by an efficient clustering method such as 
neighbor-joining (Saitou & Nei, 1987), or un-weighted average distance (Carrillo & 
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The progressive strategy, also known as tree method, is one of the most widely used 
heuristic search for MSA. It combines pairwise alignments beginning with the most similar 
pair and progressing to the most distantly-related, which finally builds up an MSA solution. 
The basic progressive alignment strategy follows three steps, depicted in Fig. 1, below.    
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// Basic progressive strategy // 

 
1. Compute D, a matrix of distances between all pairs of sequences. 
2. From D, construct a guide tree T. 
3. Process the progressive alignment: construct MSA by pairwise alignment 

of partial alignments (profiles) guided by T. 
Fig. 1. Basic progressive strategy  

2.3.2 Introductory example  
Let S = {S1, S2, . . ., Sn} be the input sequences and assume that n is at least 2. Let  be the 
input alphabet that form the sequences. We assume that  does not contain the gap 
character ‘–’. Any set S'= {S'1 , S'2 , . ., S'n } of sequences over the alphabet ' =  U {–}, is 
called an alignment of S if the following two properties satisfied :   
1. 1. The strings in S' have the same length.   
2. 2. Ignoring gaps, sequences Si’ and Si are identical.  
An alignment can be interpreted as a matrix with n rows and m columns; one row for each Si 
and one column for each character in '. Two letters of distinct strings are said to be aligned 
under S if they are placed into the same column.  
For example, Figure 2 shows an alignment for three proteins sequences.  
 

A  R  N  -   D  C  Q  E  G  H  I  L    M  F  -  W  T  W  Y  V
-    R   -  N  D  C  Q  E  G  H  I  L    M  F  S  -  T  W  Y  V
A  R  N  - D  C  Q  E  G  H  I  L    M  F  S  -  T  W  Y  V

AS
 
   
  

 

 

Fig. 2. MSA introductory example for three proteins sequences 

3. Descriptor-based progressive MSA (DescPA) 
3.1 Basic DescPA  
3.1.1 Outline 
Within the Clustal-like family, we propose a novel measurement method of the similarity 
between the sequences, which plays an important role in the building of the guide tree. 
This measurement is based on the calculation of the probability density function (PDF), 
also called descriptor or feature vector sequence. The descriptor reduces the dimension of 
the sequence and yields to a faster calculation of the distance matrix and also to the 
obtainment of a preliminary distance matrix without pairwise alignment in the first step. 
For achieving this goal, we use a guide tree based on Hellinger distance. This latter is 
defined between the descriptors and measures the degree of similarity between the 
sequences. 

3.1.2 DescPA steps 
We briefly describe the basic steps of the proposed method, referred to as the descriptor-
based progressive MSA  (DescPA), outlined in Fig. 3, below.  
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// DescPA Steps // 

 
1. Read set of proteins sequences.  
2. Estimate the distance matrix between all sequences.  
3. Construct the guide tree using distance matrix methods. 
4. Apply the progressive alignment methods with guide tree.  
5. Output the resulting sequences alignments.    
 

Fig. 3. Steps for DescPA  

3.1.3 Overall architecture of DescPA  
As shown in Figures 3 and 4, the proposed algorithm consists of 3 phases similar to 
ClustalW. The main difference with ClustalW resides in the way in which the distance 
matrix is built, here based on Hellinger distance. Each sequence descriptor is described by 
its probability density function (PDF). The guide tree defines the order in which the 
sequences are aligned in the next stage. There are several methods for building trees, 
including distance matrix methods and parsimony methods.  
 
 

 
Fig. 4. Overall architecture of DescPA as compared with ClustalW 
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3.2 Mathematical tools  
We need to define some of the basic mathematical tools, necessary for the development of 
our method. These methods include the Hellinger distance, the PDF calculation, and the 
scoring matrices. 

3.2.1 Hellinger distance 
The Hellinger distance is a metric quantity, meaning that it has the properties of non-
negativity, identity and symmetry in addition to obeying the triangle inequality. The 
properties of the Hellinger distance and several related distances are explored in (Donoho & 
Liu, 1988; Giet & Lubrano, 2008). This concept is used to provide a metric for the distance 
between two different discrete probability distributions P and Q, as follows: 

 2 2

1

1( , ) ( )
2

N

i i
i

D P Q p q


   (1) 

Note that P and Q are described as N-tuples (vectors) of probabilities 
1, 2( ,..., )Np p p and 1, 2( ,..., )Nq q q where ip and iq  are assumed to be non-negative real numbers 

with: 

 
1 1
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N N
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i i

p q
 

    (2) 

3.2.2 Computing the probability density functions (PDFs) 
We can compute the Hellinger distance between two variables provided we have explicit 
knowledge of the probability distributions. Unfortunately, these probabilities are not known 
in general. Various methods are used to estimate the probability density functions (PDFs) 
from the observed data. In this paper, we calculate exact probability densities for each 
proteins sequence. Consider a series xi and yi of n simultaneous observations of two random 
variables X and Y. Since Hellinger distance is computed using discrete probabilities, we 
proceed as follows:  
Let ( )Xf i denotes the number of observations  i  in X . The probabilities ip  are then 
estimated as:  

 ( )X
i

f ip
n

  (3) 

Similarly, let ( )Yf j  denote the number of observations of  j  in Y. The probabilities jq  are 

then estimated as:  

 ( )Y
j

f jq
n

  (4) 

Then the Hellinger distance between X and Y is estimated using Equation (1) above  
The descriptor is defined as follows:  

 : [0,1]nf prot   (5) 
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Where prot is the set of  proteins sequences. The  proteins alphabet is given by the 20-
character set { A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V }. The descriptor is 
calculated for each protein sequence as the PDF of the sequence, obtained as follows: 

 
( )

i
i

i

Np
len S

  (6) 

where: 
len(Si) is the length of the sequence,  
Ni is  the number of  times character i appears in the sequence.  
i  belongs to the proteins 20-character alphabet. 

3.2.3 Scoring matrices 
(i) PAM vs. BLOSUM 
Various scoring matrices exist. The main ones are the so-called PAM and BLOSUM 
(Wheeler, 2003). The most widely used PAM matrix is PAM 250. It has been chosen because 
it is capable of accurately detecting similarities in the 30% range, that is, when the two 
proteins are up to 70% different from each other. If the goal is to know the widest possible 
range of proteins similar to the protein of interest, PAM 250 has been shown to be the most 
effective. It is also the best to use when the protein is unknown or may be a fragment of a 
larger protein. Based on an information-theoretic measure called relative entropy it has been 
shown that the following matrices are equivalent (Henikoff and Henikoff, 1992): 
 PAM 250 is equivalent to BLOSUM45. 
 PAM 160 is equivalent to BLOSUM62. 
 PAM 120 is equivalent to BLOSUM80. 
Recall that PAM matrices are the result of computing the probability of one substitution per 
100 amino acids, called the PAM1 matrix. Higher PAM matrices are derived by multiplying 
the PAM1 matrix by itself a defined number of times. Thus, the PAM250 matrix is derived 
by multiplying the PAM1 matrix against itself 250 times. Biologically, the PAM250 matrix 
means there have been 2.5 amino acid replacements at each site (Wheeler, 2003).  
In the derivation of PAM matrices, sequences that were represented many times were not 
excluded from the calculation. During the construction of BLOSUM (Blocks Substitution 
Matrix) matrices, measures were taken to avoid biasing the matrices by removing frequently 
occurring and highly related sequences. Consequently, as the BLOSUM number decreases 
(i.e., BLOSUM80, BLOSUM60, BLOSUM50, BLOSUM30...), the ability to detect more 
distantly related sequences increases in a manner that parallels the effect of increasing the 
PAM distance (i.e., PAM 40, PAM160, PAM250...), (Altschul, 1991).  
(ii) Gonet matrix 
In addition to PAM250, we used Gonnet matrix. The Gonnet matrix is a scoring matrix 
based on alignment of the entire 1991 SwissProt database against itself (Gonnet et al., 1992). 
A total of 1.7 × 106 matches were used from sequences differing by 6.4 to 100.0 PAM units. 
This matrix has broad but selective coverage of protein sequences, because SwissProt covers 
only selected families. This matrix is very useful because of the excellent annotation of 
proteins included in SwissProt (Wheeler, 2003).  

3.2.4 Summarized calculations sub-steps 
Fig. 5 below describes the calculations sub-steps undertaken by DescPA. 
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// DescPA calculations sub-steps // 

 
1. Define the descriptor as PDF. 
2. Find the PDF for each of two sequences Si and Sj.  
3. Calculate the Hellinger distance between Si and Sj using Equation (1) 
  

Fig. 5. Calculations sub-steps for DescPA 

4. Hybridization with 2-opt method 
4.1 Local search as improvement methodology 
About 93% of the results obtained with basic DescPA compare well with those of ClustalW, 
as shown in Section 5.1 below, but they are not better. This motivates for the introduction of 
an enhancement method. A local search method is a good candidate for such an 
improvement. The resulting improved implementation is referred to as DescPA2. Iterative 
local search methods rely on algorithms that are able to produce a solution and to refine it,  
through a series of iterations until no improvement can be made (Wang & Li, 2004), e.g. 
genetic algorithms as local optimizers (Wang & Lefkowitz, 2005). In our study we propose a 
local search, that starts from initial solution (i.e. alignment) and repeatedly tries to improve 
the current solution by local change. If, in the neighborhood of the current alignment a 
better alignment is found, then it replaces the current one and local search continues. The 
critical issue in the design of a neighborhood search approach is the choice of the 
neighborhood structure. In this work, the neighborhood of a solution is depends on the 
neighborhood ( )N  of the permutation   that is defined by the set of all possible 
permutations, obtained by exchanging 2 elements. The neighborhood structure ( )N PS of 
the solution is defined as: 
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4.2 The 2-opt method 
4.2.1 Outline of the method 
The 2-opt method is a combinatorial optimization method originating in the late 1950’s in 
conjunction with the traveling salesman problem (Johnson & McGeoch, 1997). As an 
adaptation, we define the permutation solution’s space corresponding to alignment 
solution’s space. We define the function ( , )S S   for each sequence S and 
permutation  as follows: 
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 (7) 

where ' is the first sorted elements (sub-permutation) of  , 
m is the dimension of  and l is length of the sequence S. Then by using the definition 7, we 
can associate permutation solution PS for each alignment solution AS.  
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4.2.2 Example 
Figure 6 illustrates the use of definition 7 with permutation solution PS.  
 

Sequence Length Permutation Sub permutation Sorted permutation 
ATCAA 
CGTAGTG 
TGATCT 

5 
7 
6 

(3 5 8 9 1 7 2 4 6) 
(6 7 4  9 1 3 5 2 8) 
(7 6 3  2 1 5 8 9 4) 

(3 5 8 9 1) 
(6 7 4 9 1 3 5) 
(7 6 3 2 1 5) 

(1 3 5 8 9) 
(1 3 4 5 6 7 9) 
(1 2 3 5 6 7) 

Alignment solution  Permutation solution 
(structure ) 

A - T - C  - - A A
C - G T A G T - G
T G A -  T C T - -

AS
 
   
  

 
(3 5 8 9 1 7 2 4 6)
(6 7 4  9 1 3 5 2 8)
(7 6 3  2 1 5 8 9 4)

PS
 
   
  

 

Fig. 6. Illustration of the definition of permutation using 3 sequences. 

5. Results 
5.1 ClustalW vs. DescPA results 
We  compare DescPA with ClustalW using 2 examples.  Here, 4 and 9  proteins sequences 
are used with minimum lengths of 390, and 385 and maximum lengths of 456 and 457, 
respectively. For both examples, a comparison is made between the results obtained using 
pairwise (ClustalW) and Hellinger distances (DescPA). We implement the two guide trees 
using Matlab™ functions as described below. 

5.1.1 Guide trees construction 
1. TreePW = seqlinkage(DistancePW,'single',seqs), where seqlinkage is a 

Matlab™ function, that implements neighbor-joining algorithm. 
2. DistancePW = seqpdist(seqs,'ScoringMatrix', pam250), where seqs are the 

proteins sequences. 
3. TreeHD = seqlinkage (HD,'single',seqs), where HD is the proposed Hellinger 

distance matrix.   
Figures 7&8 give the comparison between ClustalW (TreePW) and DescPA (TreeHD) with 
solution alignment scoring values of the 2 proposed examples over the datasets of BAliBASE 
3.0 (Thompson, 2005).  

5.1.2 Data set used 
The information concerning the data set taken from the database is summarized as follows 
(Bahr et al., 2001).   
Reference 1: Equidistant sequences with 2 different levels of conservation. 
Reference 2: Families aligned with a highly divergent "orphan" sequence.  
RV11: Reference 1, very divergent sequences (20 identity) 
RV12: Reference 1, medium-divergent sequences (20-40 identity). 
RV20: Reference 2.  
The progressive algorithm is implemented as a Matlab™ function (Version 7.0) called 
multialign  which can be used with the following options: 
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4.2 The 2-opt method 
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 (7) 

where ' is the first sorted elements (sub-permutation) of  , 
m is the dimension of  and l is length of the sequence S. Then by using the definition 7, we 
can associate permutation solution PS for each alignment solution AS.  
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4.2.2 Example 
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multialign (S, 'terminalGapAdjust', true).  
(i) Example 1: Aligning 4 proteins 
 

ClustalW (TreePW) with pairwise distance 
Scoring value is 144.7000 

DescPA (TreeHD) with proposed 
Hellinger distance 
Scoring value is  148.4000 

 

Fig. 7. Tree of solutions for ClustalW (TreePW) and DescPA (TreeHD) for 4 proteins 
 

(ii) Example 2: Aligning 9 proteins 
 

 

ClustalW (TreePW) with pairwise distance. 
Scoring value = 2.2277e+003 

DescPA (TreeHD) with proposed 
Hellinger distance 
Scoring value =  1.6256e+003 

 
Fig. 8. Tree of solutions for ClustalW (TreePW) and DescPA (TreeHD) for 9 proteins 
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5.1.3 DescPA vs. ClustalW Results  
Alignments solutions given by the two options (pairwise for ClustalW and Hellinger 
distance) of the progressive algorithm are implemented in Matlab™ as follows: 
(i) Pairwise distance 
SolPW = multialign (seqs, TreePW , 'ScoringMatrix', { 'pam150 ',' pam200 ',' 
pam250'});  where TreePW  is a  guide tree built using pairwise distance. 
(ii) Hellinger distance 
SolHD = multialign (seqs, TreeHD, ' ScoringMatrix', {'pam150 ',' pam200 ',' 
pam250'});  where TreeHD is  a guide tree built using the proposed  Hellinger  distance 
matrix. 
(iii) Results comparison 
Figures 9 to 11 show that using the proposed guide tree based on a Hellinger distance gives 
performance as good as ClustalW in 93% of the cases. To further improve these results, we 
introduce one iterated local search technique, referred to as 2-opt implemented in Section 
5.2. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

Fig. 9. ClustalW (SPW) and DescPA (Spro)  performance from examples 1-38 (RV11) 
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Fig. 10. ClustalW (SPW) and DescPA (Spro) performance from examples 1-38 (RV12) 

 

 

 
 
 

Fig. 11. ClustalW (SPW) and DescPA (Spro)  performance from examples 1-40 (RV20) 
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5.2 DescPA2: Improved results through 2-opt 
Figures 12&13 show the improvement on the performance, over different examples of the 
datasets RV11. There is a clear improvement introduced by the 2-opt algorithm. In Figures 
12&13, SPW defines the scoring value got using ClustalW, Spro gives the scoring value for 
DescPA and 2-opti for DescPA2. Despite its simplicity of implementation, the 2-opt 
algorithm improves the solutions. The final alignments results of DescPA2 are better than 
those of DescPA and ClustalW.  
 

 
Fig. 12. ClustalW, DescPA and DescPA2 results with 6 examples max from dataset RV11  

 

 

 
Fig. 13. ClustalW, DescPA and DescPA2 results with 10 examples max from dataset RV11  
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6. Conclusion 
We proposed a modified and hybrid progressive alignment strategy for protein sequence 
alignment composed of two variants. The first, implemented in DescPA, consists of the 
modification of the progressive alignment strategy by building a new guide tree based  on a  
Hellinger distance definition. This distance is calculated over a sequences’ descriptors; a 
descriptor being defined for each sequence by its probability density function (PDF). The 
main feature of this descriptor is its fixed short length (20 for proteins and 4 for DNA) for 
any sequence length, which mainly impacts positively the computation time for the MSA. 
The DescPA results of our testing on all the dataset show that the modified progressive 
alignment strategy is as good as that of ClustalW in 93% of the cases. The second variant, 
incorporated in DescPA2, is an improvement of the obtained solution using the iterated 2-
opt local search. The improvement of the obtained solutions using DescPA2 implementation 
gives better solutions than DescPA and ClustalW alike - and in all studied cases. As shown, 
despite its simplicity of implementation, the 2-opt algorithm improves the solutions. 
However, further improvements are needed. We need, for instance to enhance the actual 
method to better search through the tree space. For example, we plan to compare DescPA2 
with other MSA tools such as hidden Markov models.   
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1. Introduction  
A small chemical compound, which specifically activates or inhibits a given biological 
system can become a lead candidate in a drug discovery perspective or a molecular tool for 
biological research (Stockwell, 2000; Mayer, 2003; Inglese et al., 2007; Maréchal, 2008). The 
identification and production of such compounds is thus a major issue for biological or 
therapeutic research. Strategies for small molecule discovery rely largely on high 
throughput screening (HTS) of chemical libraries, which has traditionally been the purview 
of industry for the past twenty years, and has become recently available in academic 
institutions (Stein, 2003; Fox et al., 2006). Such high throughput approaches use robotic 
handling of miniaturized biological assays and allow the screening of a large number of 
compounds to select those (called “hits”) that produce the wanted and reproducible effect 
on a given biological target (e.g. an enzyme or a whole cell). The size of available 
compounds collections to screen is rather large: for instance, the ChemNavigator's database, 
which proposes commercially available screening compounds from international chemical 
suppliers currently tracks over 46.7 million chemical samples. Among them over 24.9 
millions are claimed to be unique. However, such an amount is still small, relatively to the 
size of the chemical space: the number of synthesizable compounds is estimated to range 
from 1018 to 10200 compounds (Parker and Schreyer, 2004). Yet, the screening of a very large 
chemical library can be financially expensive, time consuming and the amount of biological 
material needed might be simply non realistic. Biologists must often lower their ambition 
and select a limited number of molecules to assay. The design of relevant chemical libraries, 
often called “core libraries” since they are supposed to accurately reflect the diversity of a 
very large collection (Dubois et al., 2008), is thus a central issue for screening. The automatic 
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clustering of chemical compounds can generate homogenous subsets based on a similarity 
measure, and allow a rationale definition for a core library (Willet, 1998). 
It has been demonstrated that structurally similar compounds are very likely to have a 
similar biological activity (Martin et al., 2002). Thus, not only the clustering should allow the 
identification of compound subsets, from which one representative molecule can be selected 
to be screened, but this method can also help to increase the diversity of in-house data sets 
by selecting additional compounds in other identified clusters of molecules. Moreover, it has 
been shown that it could be useful to select molecules which come from each cluster 
containing a “hit” compound; those “related” compounds should be tested through further 
validation screening stages (Engels et al., 2000).  
Clustering can also be used in a virtual screening approach, to select relevant virtual 
libraries (prior to a docking process for instance) or to select the more promising and diverse 
molecules (after a docking process) to be tested in vitro. 
Chemical compounds clustering, like any object clustering, implies four steps (Downs and 
Barnard, 2002): 
1. Identification of relevant descriptors for these objects; 
2. Selection and computation of a similarity (or a distance) measure; 
3. Use of a clustering algorithm to gather objects according to this distance or similarity; 
4. Analysis and qualification of the results. 
Molecules are structurally complex objects; it is therefore obvious that the clustering quality 
relies strongly on the capacity of the distance measure to embrace both the structural 
likeness and dissimilarities. In this chapter, we focus on the efficiency of an adaptation, for 
small molecular objects, of a similarity index initially proposed in Inductive Logic 
Programming (Wieczorek et al., 2006). We compare this novel method with some other 
structural distances that are customary in chemistry or which have been recently proposed 
for molecular graph comparisons.  

2. Methods for the computation of structural distances between molecules 
The computation of structural distances between molecules (represented by graphs) directly 
or indirectly implies the search for isomorphic partial graphs. Generally, methods use a 
linearization (SMILE language from Weininger, 1988) or a structure propositionalization of 
the compound. Thus, a molecule is represented by a vector of descriptors, each one 
corresponding to a molecular fragment (Leach and Gillet, 2003). Recently, kernel functions, 
comparable to distances between graphs (Gartner et al., 2003), have been proposed in the 
Support Vector Machines (SVM) context. They present good performances in supervised 
machine learning to predict molecular bio-activity (Mahé et al., 2005) or to solve 
bioinformatics problems (Menchetti et al., 2005). In these approaches, molecular 
representation is global: a set of paths (i.e. molecular fragments specifically chosen or drawn 
by chance) is built explicitly or implicitly. It is also possible to value structural distances by 
dynamically building molecular fragments according to the matching between two 
molecules. This approach is proposed by Fröhlich et al. (2005), in a so-called “global 
matching” kernel to predict bio-activity. We focus here on a similar strategy with a 
similarity index Ipi, based on the comparison of labeled trees or substructures that allows the 
classification of molecules in an unsupervised learning machine approach. A short 
description of the kernel functions used in this comparative study and a deeper explanation 
of the principle of the Ipi similarity index are exposed in the following part. 
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2.1 Kernel functions 
Kernels functions are at the basis of machine learning methods using Support Vector 
Machines (SVM) approaches. These functions allow working on initial data as if they were 
in a high-dimensional space without having to transform them explicitly; moreover, kernel 
methods handle non-linear complex tasks using linear methods in this new space. The main 
advantage is that the data may be more easily separable in that high-dimensional space (the 
so-called “feature space”) than in the original space. This trick is at the basis of kernel 
machines. SVM and kernel functions were detailed by Shawe-Taylor and Cristianini (2004) 
and Schölkopf and Smola (2002).  

2.1.1 Tanimoto kernel 
This kernel (Ralaivola et al., 2005) is the transformation of the classical Tanimoto distance 
(Willet, 1998; Flower, 1998) into a kernel function. Molecules are seen as vectors where each 
dimension is associated with a given molecular fragment and the coordinates indicate if this 
fragment exists or not in the molecule. To build these vectors, it is necessary to give the 
maximum length of the considered molecular fragment. This can be defined by allowing the 
selection of paths from length 1 to a maximum u or allowing the selection of paths of an 
exact length l. 

2.1.2 Weighted decomposition kernel (2D-WD kernel) 
In this kernel (Menchetti et al., 2005), molecules are represented by the set of all possible 
subgraphs which can be built for a given maximum depth. The kernel function between two 
molecules x and y weights the exact kernel between each pair of atoms (xi, yj) according to 
the structural information. This one corresponds to the subgraphs that contain all the paths 
of depth d, built from each atom xi and yj. 

2.1.3 Optimal assignment kernel (OA Kernel) 
The Optimal Assignment Kernel (Fröhlich et al., 2005) is based on a dynamical and local 
graph exploration. Unlike the Tanimoto Kernel, the relational structure of molecules is 
clearly conserved in this representation. The kernel computation is divided into two steps 
that are conceptually close to the ones proposed by Bisson (1995). The first step evaluates a 
distance between each atom pair (ai, bj) from two molecules A and B, thanks to the kernel 
function named Knei that takes into account the width w of each atom neighboring. The 
second step matches atoms ai (from A) with atoms bj (from B), in order to maximize the 
Knei (ai, bj) sum, which amounts to doing a maximum weight matching in a bipartite graph. 

2.2 Structural similarity Ipi Index 
This similarity index is an adaptation of the index proposed by Bisson (1995) and Wieczorek 
et al. (2006) to chemical structures. 

2.2.1 General principles 
Each molecule M is described as a non-oriented graph defined by a pair (A, L) where: 
 A corresponds to the atoms {a1, …, an} of molecule M; 
 L corresponds to the covalent bonds between these atoms {l1, …, lp}. 
 Many similarity coefficients usually used in computational chemistry are based on the size 
(in number of atoms) of the Maximum Common Substructure (MCS) between two 
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comparable to distances between graphs (Gartner et al., 2003), have been proposed in the 
Support Vector Machines (SVM) context. They present good performances in supervised 
machine learning to predict molecular bio-activity (Mahé et al., 2005) or to solve 
bioinformatics problems (Menchetti et al., 2005). In these approaches, molecular 
representation is global: a set of paths (i.e. molecular fragments specifically chosen or drawn 
by chance) is built explicitly or implicitly. It is also possible to value structural distances by 
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molecules. This approach is proposed by Fröhlich et al. (2005), in a so-called “global 
matching” kernel to predict bio-activity. We focus here on a similar strategy with a 
similarity index Ipi, based on the comparison of labeled trees or substructures that allows the 
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of the principle of the Ipi similarity index are exposed in the following part. 
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molecules M and M’ (Bunke and Shearer, 1998). As for example, the similarity S1 which is 
defined as the relative size of the MCS compared to the size of the biggest molecule : 
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The similarity coefficient S proposed here is also based on the MCS but is defined as the 
mean of two dual asymmetric values INC (M, M’) and INC (M’, M) : 
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where the value INC (M, M’) is the relative similarity of M towards M’, i.e. the degree of 
inclusion of M into M’. It is defined as the relative size of the MCS between M and M’ 
compared to the size of molecule M’: 
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This trick allows comparing molecules having big differences in size. For instance, if M is 
smaller than M’ and M is nearly included in M’, from the point of view of M, the molecule 
M’ is very similar since it contains the same information and we have INC (M, M’)  1, 
whereas a classical symmetric similarity would reflect this difference in size. The use of the 
mean of both inclusion values (INC (M, M’) and INC (M’, M)) leads to a more realistic 
similarity measure that allows breaking the size bias and focusing deeper on the existence of 
common substructures as shown on Figure 1. 
 

 
Fig. 1. Difference between a classical similarity measure and an asymmetric-based one. 

In this graph, S1 (plain line) is a classical similarity measure and S (dashed line) a non-
symmetric-based one. This graph shows the behaviour of both S (equation 2) and S1  
(equation 1) between a molecule M of size 15 and another molecule m of increasing size: 
S= 0.5*(9/15+9/|m|) and S1(M, m) = 9/max(15, |m|). The size of the MCS is 9. One can 
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observe that S1 remains constant for all molecules which size is lower than |M|. In other 
words, the similarity S1 confounds those molecules that seem all similar, with respect to 
their size; which is not the case for S because there is no plateau. 
The degree of inclusion INC (M, M’) is computed in two steps, a local one and a global one. 
The first local step aims at computing a local similarity between each pair of atoms (ai, a’p) 
belonging respectively to molecules M and M’. The values are stored in a matrix called SUB; 

SUB[ai, a’p] is in [0,1]. The same processing is followed for M’ towards M and the results are 
stored in a matrix named SUB’. The key idea is to consider that two atoms ai and a’p are most 
similar if they share common physicochemical properties but also if the neighboring atoms 
to which they are connected by covalent bonds are themselves similar to each other. This 
recursive definition allows expressing the problem in the form of a non-linear equations 
system; the resolution of this system consists in the search of a fixed point. 
The goal of the second step is to compute a global inclusion between both molecules M and 
M’, i.e. the value of INC (M, M’). Having local similarities values for each atom pair (ai, a’p) 
and according to the structural connectivity of M, we search the matching that maximizes 
the global inclusion which can be approximate by the biggest common tree or substructure 
between the two molecules. Once both INC (M, M’) and INC (M’, M) are computed, the total 
similarity between both molecules is the mean of both values. This mean is then used by the 
clustering algorithm. 

2.2.2 Computation of local similarity (between atoms)  
The aim is to compute the value of each element of the matrix SUB which corresponds to the 
local similarity between one atom ai of M = (A, L) and one atom a’p of M’ = (A’, L’) (see 
example in figure 2). It quantifies the inclusion degree of the environment of the atom ai  in 
the environment of the atom a’j. The following functions are defined: 
Sa: A×A’[0,1], the similarity between two atoms according to their respective 
physicochemical properties; 
Sl : L×L’[0,1], the similarity between two covalent bonds according to their respective 
physicochemical properties; 
S: A×L×A’×L’[0,1], the similarity between two pairs (atom, bound);  
NbLink (ai ), the number of covalent bonds of a given atom ai; 
Link-of : A  L, a function returning, for a given atom ai, the list {l1, …,  lm} of the covalent 
bonds of ai; 
Ngbr : A×L  A, a function which gives for a given atom ai and a given bound lm, the 
neighbouring atom aj which is connected to ai by lm. 
The inclusion degree is stored in SUB[ai , a’p ]. Its computation comes down to build a system 
of non-linear equations, where SUB[ai , a’p ] is one of the variables to compute. The resolution 
of this system is obtained by using the Jacobi’s iterative method. After each iteration, we 
have the following equations: 
 

S (ai ,lm , a’p , l’t) = 1/2(SUB[Nghbr (ai , lm), Nghbr (a’p , l’t)] + Sl (lm  , l’t )) (4)
SUB[ai , a’p] = 1/2 (Sa (ai , a’p ) + MaxMatchScore / NbLink (ai )) (5)

 

MaxMatchScore is computed according to the following processing. Let us define the 
function Find_Max_Mapping (FMM). For two given atoms ai and a’p, FMM searches the 
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The inclusion degree is stored in SUB[ai , a’p ]. Its computation comes down to build a system 
of non-linear equations, where SUB[ai , a’p ] is one of the variables to compute. The resolution 
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MaxMatchScore is computed according to the following processing. Let us define the 
function Find_Max_Mapping (FMM). For two given atoms ai and a’p, FMM searches the 
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optimal mapping between the neighbours of ai and a’p and so between the corresponding 
covalent bonds. FMM returns the score of this optimal mapping that is MaxMatchScore.  
This function is a classic problem of matching. Indeed, let L (resp. L’) be the list of the 
covalent bonds in which appears the atom ai (resp.  a’p ). Bonds, which are elements of L and 
L’, can be considered as a bipartite graph elements; thanks to S, the similarity of each 
quadruplet (ai ,lm , a’p , l’t), is known. Thus, finding the best matching between these elements 
boils down to maximize the sum of the S values, i.e. to solve a maximum weight matching in 
a bipartite graph. MaxMatchScore, the corresponding matching score, is equal to the sum of 
the S values. 
To find this optimal matching, we use the Hungarian algorithm also called the Kuhn-
Munkres algorithm (Kuhn, 1955; Munkres, 1957) whose complexity is O(n3). This is not a 
problem since lists L and L’ are rather small: their size corresponds to the considered atom 
valence (for instance, 4 for the carbon atom).  Thus, the local similarity between two atoms is 
defined recursively and the originality of this approach lies in the fact that S is computed 
according to SUB[Nghbr (ai , lm), Nghbr (a’p , l’t)]. Lastly, the local similarity between two 
atoms corresponds to the average of their physicochemical similarity Sa and the normalized 
average of the similarity of their neighbouring (see Figure 2). 
 

 
Fig. 2. Summary of the information used to compare two given atoms in a molecule. 

In equation (2), MaxMatchScore is normalized by NbLink(ai). This gives its asymmetric nature 
to SUB[ai , a’p], whereas a division by Max (NbLink (ai) , NbLink (a’p)) would have kept a 
symmetric nature for this similarity measure. From a practical point of view, we use the 
Jacobi’s iterative method in a synchronous way, i.e. we use two instances of the matrix SUB, 
one for the iteration i and one for the iteration i+1: all the values of the matrix SUBi+1 are 
computed using the terms of the matrix SUBi, so the values for all atoms are simultaneously 
changed, when SUBi+1 is copied in SUBi. The number of iterations characterizes the depth of 
the information propagation, i.e. the neighbouring size taken into account to compare two 
atoms. Figure 3 shows an example of this propagation. 
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Fig. 3. Computation and evolution of the matrix SUB. Example with the molecule M being 
formamide (CONH3) and the molecule M’ being glycol-aldehyde (C2H4O2). 

It can be proved that the system always has a solution and that this is found after few 
iterations (from 3 to 8 according to the complexity of the molecules). The information 
propagation decreases as  21 1n  where n is the distance between neighbours.  
When using the Hungarian algorithm, the overall complexity for the computation of the 
SUB is in O(K.V2.D3) where: 
 D is the mean number of neighbours for each atom in the molecules; 
 K is the number of iterations of the iterative procedure; 
 V is the mean number of atoms in the molecules. 
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This complexity may be reduced in O(K.V2.D2) if D is low, by pre-computing all the possible 
matching between them. 
In this work, to have homogeneity with the other compared methods (see Experimental 
materials and tests methodology), the molecular representation is kept minimal: 
 Sa depends only on the type of atoms (C, O, N etc.): 
Sa (ai, a’j ) = 1 if atom types are equal,  Sa (ai, a’j ) = 0 otherwise. 
Sl depends only on the type of bonds (simple, double, triple, aromatic):  
Sl (li, l’j ) = 1 if bound types are equal, Sl (li, l’j ) = 0 otherwise. 
Note that Sa and Sl are generic functions. It would then be very easy to integrate more 
complex properties for atoms and bonds, such as charge index, pharmacophore points, etc. 
Modifying Sa and Sl would be sufficient without any change in the global algorithm. 

2.2.3 Global similarity (between molecules) computation 
In order to compute the global similarity between two molecules M and M’, INC(M,M’) , we 
search for the best matching between atoms from M and M’. This matching relies on the 
local similarities stored in matrix SUB and it maximizes the global inclusion. This can be 
achieved by using the Hungarian algorithm, as in OA Kernel (Fröelich et al., 2005), 
considering that we have a bipartite graph, built with atoms of molecules M and M’. Since 
local similarities can correspond to different matching, they do not guarantee that the 
maximum common structure found by the algorithm would be a connected one. However, 
this is not a real problem in chemistry since applications such as lead discovery or synthesis 
design might put a premium on unconnected structural solutions.  
The matching is therefore searched according to the following heuristic. The best score of 
local similarities between atoms that we can find in the matrix SUB, is taken as a seed. The 
matching is then propagated according to the structure connectivity of M and according to 
the SUB values. In the example shown in Figure 4, M and M’ are two molecules, atoms « 1 » 
and « a » are taken as seeds. Atoms « 2 » and « 5 » (neighbours of « 1 ») are processed to be 
matched with « b » and « e » (neighbours of « a »). Their matching can be processed 
according to a greedy algorithm (pairing according to a decreasing ranking of similarity 
values) or according to a Kuhn algorithm. In the following experiments, we have chosen a 
greedy algorithm for this matching. When « 2 » and « 5 » are paired, « 3 » (neighbour of 
« 2 ») and « f » and « g » (neighbours of « e ») are processed and so on. This matching stops 
when there are no more atoms to match in M or as soon as an atom of M cannot be matched 
with an atom of M’. Let us note down that : 
1. atom « 3 » (neighbour of « 2 ») is processed before « 4 » (neighbour of « 5 ») because 

« 2 » has been stored before « 5 » in our implementation structure : there is no special 
criteria for this choice;  

2. atom « 4 » (neighbour of « 5 ») has been, for instance, matched with « c ». It is not 
processed again as a neighbour of « 3 », but our algorithm implementation keeps in 
mind that there is also a connection between « 3 » and  « 4 ». So, if there was also a 
connection between « c » and « f », in molecule M’, it would be able to find that the best 
match is a cyclic substructure. 

 Since B is only a possible start point, the procedure is repeated (ten trials1), each time taking 
a different pair of atoms not already matched in a previous trial. 
                                                 
1 This number was established experimentally: indeed, for all data sets, the best matching appeared in 
the 10th first iterations in more than 99% of cases.  
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Fig. 4. Example for general principles of the incremental matching. 

The complexity for the search of the best match between the two compounds with the use of 
SUB is in O(V3) where V is the mean number of atoms in the molecules. As for the local 
similarity computation, this complexity may be reduced in O(1) when pre-computing all the 
possible matching for low values of V, which is frequent in chemistry. The best matching 
between atoms from two molecules M and M’ is then used to compute the global inclusion 
of M in M’, INC(M,M’). This is obtained by the sum of all SUB matrix elements relating to 
matched atoms of M and M’, divided by the number of atoms in M. This division by the size 
of M brings additional asymmetry to this measure. Thus, the overall complexity of this 
approach is in O(K.V2.D2). 

3. Experimental material and tests methodology 
In this paragraph we present the material and methodology for the comparison of the 
capacity of each similarity measure to return, by classification of simple molecular 2D 
structures, chemical families defined by experts. 

3.1 Chemical libraries 
3.1.1 Data sets 
Four public chemical datasets published by Sutherland et al. (2003) have been used. These 
authors gathered compounds which had been tested against four different biological targets; 
these datasets present the advantage of being already divided into well defined and 
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precisely described chemical families. The Cox2 library contains a set of 467 molecules tested 
as inhibitors of the cyclooxygenase-2 and divided into 13 families; the Bzr library is a set of 
405 ligands for the benzodiazepine receptor, divided into 14 families; the Dhfr library 
contains a set of 756 inhibitors of the dihydrofolate reductase, divided into 18 families, with 
32 compounds belonging to singleton families. In this study, these singletons were 
discarded and only 724 compounds divided into 17 families were considered. The Er library 
is a set of 1,009 estrogen receptor ligands: 393 (extracted from the literature) are gathered 
into 3 structural families and 616 form a miscellaneous group: for our study, we considered 
only the 3 families extracted from the literature. 
Molecular bi-dimensional (2D) structures were provided in SDF files. For standardization 
purposes, all the molecules were normalized according to a set of normalization rules that 
was built in accordance with usual chemical usage. This task was achieved using the 
ChemAxon software Application Programmatic Interface (www.chemaxon.com) and 
standardization rules were formally defined as chemical reactions in an XML configuration 
file read by the ChemAxon Standardizer object. The setup file is available upon request. 
In order to compare methods within the same description context, independently of the 
studied distance, we reduced the set of descriptors associated with each molecular graph to 
the minimum set, which existed in all the compared methods, or which was easily 
integrated in each distance implementation. In this minimal representation, a molecule is an 
attributed undirected graph x=(V, E). Each vertex v in V represents an atom and is labeled 
by the atom type (C, O, N, etc.). Each edge (v,w) in E represents a chemical bound; it is 
characterized by a type that can be single, double, triple or aromatic. 

3.3 Kernel functions implementation and clustering algorithm 
Mahé et al, (2005) provided the implementation of the Tanimoto Kernel. For each of the two 
other kernels (2D-WD Kernel and OA Kernel), their respective author’s implementation was 
used. Once distance matrices had been computed, molecules were categorized into families 
using the well-known ascendant hierarchical classification (Johnson, 1967); the chosen 
implementation was hcluster from R software (www.r-project.org/) and the Ward index was 
the interclass aggregation distance. 

3.4 Parameters setting 
In the following experimentations, for each of the selected methods, the parameters' values 
were optimized for best classification capacities.  
For the Tanimoto Kernel, all values (from 5 to 20) were tested for the parameters u (all paths 
of length from 1 until u) and l (all paths of exact length l). For each database, the parameter 
(either u or l) was unchanged and the associated values that gave the best results (details can 
be given upon request). For the 2D-WD, OA Kernels and Ipi, the main parameter is the width 
of the neighbourhood, which is taken into account to evaluate the similarity between two 
atoms. In Ipi, this parameter corresponds to the number of iterations used to compute the 
matrix of similarities between all pairs of atoms. A value of 5 was sufficient in Ipi to see the 
convergence of the SUB matrix. Thus, this value was selected for the corresponding 
parameters in OA Kernel and 2D-WD Kernel. 

3.5 Classification evaluation 
As emphasized by Candellier et al. (2006), classification evaluation is difficult without any 
validation criteria. It is not the case here since we know, for each dataset, the number and 

Clustering Libraries of Compounds into Families:  
Asymmetry-Based Similarity Measure to Categorize Small Molecules 

 

239 

precise content (in terms of molecules) of the families (or classes) that the system must 
retrieve. To evaluate the difference between the original classification and the learnt one, a 
confusion matrix was used (Kohavi and Provost, 1998), called M(O,B). Its lines (Oi with i 
varying from 1 to p) represent the original classes and its columns (Bj with j varying from 1 
to q) represent the classes built by the classification system. Each matrix element ni,j 
represents the number of molecules which are present in both classes Oi and Bj. The built 
classification is optimal when there is only one value ni,j different from 0 for each line and 
each column. So a simple way to qualify the classification is to measure the average 
entropies associated to lines and columns. Two indices based on conditional entropies were 
considered, the Confusion Index (CI) that quantifies the number of merged classes and the 
Segmentation Index (SI) that quantifies the number of split classes. 
Given  
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The most important index is CI since it indicates if the initial classification has been well 
retrieved by the algorithm. The lower its value is, the better is the matching between both 
classifications. 

4. Comparative analysis of similarity measures 
Figure 5 shows the CI index evolution for the four chemical libraries. Excepted for Cox2 
library, ranking of the four methods is always the same: Ipi, Tanimoto Kernel, OA Kernel and  
2D-WD Kernel. Considering the results for each base, it can be observed that molecules from 
the Cox2 library belong to close scaffolds (i.e. core graph structures). However, families are 
easily recognizable because of few discriminating atoms or chemical functions, whose 
positions vary in aromatic cycles. Ipi index recognizes nearly all the expected families 
because it is able to detect each atom local environment using its local similarity 
measurement. Ipi categories that do not comply with expertised chemical families 
correspond to very small families which have been merged by the classification system. 
Tanimoto Kernel, also, produces a good score whereas 2D-WD Kernel and OA Kernel results 
were less efficient in returning chemical families. 
Molecules from the Dhfr library have several similar substructures which are differently 
connected together from one family to another. Results are the same as for the Cox2 database 
but with a greater dispersion between the methods. Ipi index shows its capacity to globally 
recognize molecular structures.  
Structures of molecules from the Bzr library are very diverse and this variability is 
sometimes rather great within the original families. In this case, all the methods failed to 
accurately recover the original classification given by chemists. 
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The most important index is CI since it indicates if the initial classification has been well 
retrieved by the algorithm. The lower its value is, the better is the matching between both 
classifications. 

4. Comparative analysis of similarity measures 
Figure 5 shows the CI index evolution for the four chemical libraries. Excepted for Cox2 
library, ranking of the four methods is always the same: Ipi, Tanimoto Kernel, OA Kernel and  
2D-WD Kernel. Considering the results for each base, it can be observed that molecules from 
the Cox2 library belong to close scaffolds (i.e. core graph structures). However, families are 
easily recognizable because of few discriminating atoms or chemical functions, whose 
positions vary in aromatic cycles. Ipi index recognizes nearly all the expected families 
because it is able to detect each atom local environment using its local similarity 
measurement. Ipi categories that do not comply with expertised chemical families 
correspond to very small families which have been merged by the classification system. 
Tanimoto Kernel, also, produces a good score whereas 2D-WD Kernel and OA Kernel results 
were less efficient in returning chemical families. 
Molecules from the Dhfr library have several similar substructures which are differently 
connected together from one family to another. Results are the same as for the Cox2 database 
but with a greater dispersion between the methods. Ipi index shows its capacity to globally 
recognize molecular structures.  
Structures of molecules from the Bzr library are very diverse and this variability is 
sometimes rather great within the original families. In this case, all the methods failed to 
accurately recover the original classification given by chemists. 
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Finally, the Er library contains only three families. Each one is characterized by a specific 
scaffold which should be easily recognized. Indeed, Ipi and Tanimoto Kernel found again the 
three expected families (their CI curves are superimposed). On the other hand, again, 2D-
WD Kernel and OA Kernel performance was lower. 
 

Cox2 library Dhfr library 

  

Bzr library Er library 

  

Fig. 5. Comparison of similiarity measures. CI index for the four distances used with HAC 
clustering method on the four datasets: Cox2, Dhfr, Bzr and Er. The vertical line marks the 
original number of chemical families and the point where a ranking between the four 
methods can be done.  

The tested approaches correspond to two different strategies. TanimotoK and 2D-WD Kernel 
represent the molecules by means of paths in the graphs contrary to OA Kernel and Ipi that 
take into account the whole structure of the graphs. It is therefore interesting to understand 
why for each library, the Ipi and Tanimoto Kernel methods performed better. In the case of OA 
Kernel and Ipi, which use close algorithms, we searched the main modifications that would 
explain the differences. To this purpose, Ipi algorithm was changed to erase its two major 
differences with OA Kernel:  
 The asymmetrical calculation of the similarity: in equation (5), NbLink (ai) was replaced 

by Max (NbLink (ai), NbLink (a’p)), and in the global similarity calculation (see 2.2.4), the 
size of M was replaced by the maximum value between the sizes of M and M’. The 
measure became thus purely symmetrical; 

 The incremental matching taking account of the molecular connectivity: we replaced 
our matching algorithm (see 2.2.3) by a Kuhn algorithm looking for a maximum weight 
matching in a bipartite graph built with atoms of M and M’. 
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The influence of these modifications and their combination was studied on the classification 
of the four chemical databases. The results do not depend on the database; taking into 
account the molecules connectivity brings the main improvement while asymmetry slightly 
improves the overall classification. Figure 6 details these results on Dhfr database.  
 

 
Fig. 6. CI indexes for 5 distances used with HAC clustering method on the Dhfr dataset, OA 
Kernel, Ipi and 3 distances obtained by modification of Ipi: Symmetric calculation of similarity 
index (curve “Ipi + Sym”), or Kuhn algorithm replacing incremental matching algorithm (“Ipi 
+ Kuhn”), or both modifications (“Ipi + Kuhn + Sym”). Replacing Kuhn’s algorithm by an 
incremental one taking account the connectivity gives a strong improvement but whatever 
the matching algorithm is, the asymmetric nature of the index slightly improves the 
efficiency of the classification. 

In the case of Tanimoto Kernel and 2D-WD Kernel, it is the path selection which is important 
to get an accurate representation of molecules. 
This study has been focused on the comparison of several graph kernels applied to chemical 
compounds in a supervised classification task; that is to say the families of molecules are 
known. In this case, one remaining question is the choice of the optimal value for the 
Confusion Index in order to define the clustering level. In particular, il may be difficult to 
conclude in areas where CI is quite constant (e.g. for “Original Ipi” and “Ipi + Sym” 
methods between 15 and 30 clusters). However, in a real case, the classification is not known 
and the Confusion Index could not be computed. 

5. Conclusion 
The evaluation of molecular libraries and, more specifically, molecule categorization into 
families is important for biologists and chemists before and after in silico or in vitro 
molecular screening. In this chapter, we have described some of the important similarity 
measures currently used, and a new similarity index we recently developed for chemical 
molecule comparison. It is very difficult to choose a similarity measure for a 
chemoinformatic purpose, besides empirical considerations like the availability in the 
software suite used in the laboratory, the familiar utilization of a given similarity measure in 
ateam or the demonstrated efficiency in an experimental context leading to the selection of 
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the used index for subsequent analyses. Here, we compared methods on four well-known 
chemical datasets, in order to evaluate the capacity of the algorithms to retrieve the families 
defined by chemists. 
The relatively disappointing results obtained with 2D-WD Kernel and OAKernel seem to 
indicate that “distances” having good performances in a supervised learning context 
(activity prediction) are not always adapted to classical clustering algorithms. By comparing 
Ipi and OA Kernel, we observed that taking into account the molecular connectivity was 
important but also that the distance measures based on asymmetrical comparisons could 
lead to better results than the ones based on a plain symmetric definition.  
To complete this study, it should be interesting to integrate SVM clustering (among others, 
Ben-Hur et al., 2001; Finley and Joachims, 2005) and SVM classification (Rupp et al., 2007) 
instead of the Hierarchical Ascendant Classification or by testing the MG Kernel extension 
of Mahé et al. (2004). In the case of the asymmetrical measure we introduced here and 
compared to classical indexes, it is important to further investigate the three steps of Ipi to 
understand clearly which one(s) is (are) the most important for the Ipi efficiency in 
comparison with the Tanimoto Kernel or the 2D-WD Kernel. Indeed, in this overview, one 
should be surprised by the good results of the Tanimoto Kernel, which is clearly less complex 
to compute than the Ipi index. However, this latter presents two advantages (independently 
of being ranked first for all the tested libraries): on the one hand, it takes into account all the 
knowledge about the molecules without needing a linearization, so it is not necessary to 
manually choose the size of the structural keys to use and there is no loss of structural 
information; on the other hand, by modifying Sa and Sl functions, it is possible to integrate in 
the measure all the physical and chemical information that the expert would judge useful. 
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1. Introduction  
Pollen allergens are specific substances able to cause IgE-mediated hypersensitivity (allergy) 
after contact with the immune system [D’Amato et al. 1998]. To date, about 50 plant species 
have been registered in the official allergen list of the International Union of Immunological 
Societies (IUIS) Allergen Nomenclature Subcommittee http://www.allergen.org as capable 
of inducing pollen allergy in atopic individuals [Mothes et al. 2004]. These plants are usually 
grouped as (1) trees (members of the orders: Fagales, Pinales, Rosales, Arecales, Scrophulariales, 
Junglandales, Salicales, and Myrtales), (2) grasses (members of the families: Bambusioideae, 
Arundinoideae, Chloridoideae, Panicoideae, and Poideae), and (3) weeds (components of families 
Asteraceae, Chenopodiaceae and Urticaceae) [Hauser et al. 2010].   
Allergens are proteins with a broad range of molecular weights (~5 to 50 kDa), which 
exhibit different features of solubility and stability. More than 10 groups of pollen allergens 
have been reported. Among all groups of pollen allergens, Pollen Ole e I (Ole) domain-
containing proteins are the major allergens, included like-members of the "pollen proteins of 
the Ole e 1 family" (Accession number: PF01190) within the Pfam protein families database 
[Finn et al. 2010]. 
Ole e 1 was the first allergen purified from Olea europaea L. [Lauzurica et al. 1998] and 
named as such according to the IUIS nomenclature [King et al. 1994]. This protein is 
considered the major olive pollen allergen on the basis of its high prevalence among atopic 
patients and the high proportion it represents within the total pollen protein content, in 
comparison with other olive pollen allergens. These include at present another 10 allergens 
already identified and classified like Ole e 2 to Ole e 11 [Rodríguez et al. 2002, Barral et al. 
2004, Salamanca et al. 2010]. Ole e 1 consists of a single polypeptide chain of 145 amino acid 
residues with a MW of 18–22 kDa, displaying acidic pI and different forms of N-
glycosylation [Villalba et al. 1990, Batanero et al. 1994]. Heterologous proteins with a 
relevant homology have been described in other members of the Oleaceae family, such a 
fraxinus, lilac, jasmine and privet. The polypeptides encoded by the LAT52 gene from 
tomato and the Zmc13 gene from maize pollens also exhibit a high similarity to Ole e 1 
[Twell et al. 1989, Hanson et al. 1989]. These plant pollen proteins are structurally related 
but their biological function is not yet known; though they have been suggested to be 
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residues with a MW of 18–22 kDa, displaying acidic pI and different forms of N-
glycosylation [Villalba et al. 1990, Batanero et al. 1994]. Heterologous proteins with a 
relevant homology have been described in other members of the Oleaceae family, such a 
fraxinus, lilac, jasmine and privet. The polypeptides encoded by the LAT52 gene from 
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involved in important events of pollen physiology, such as hydration, germination and/or 
pollen tube growth, and other reproductive functions [Alché et al. 1999, 2004, Tang et al. 
2000, Stratford et al. 2001].  
Structurally, the Ole domain contains six conserved cysteines which may be involved in 
disulfide bonds, since no free sulfhydryl groups have been detected in the native protein 
[Villalba et al. 1993]. Olive Ole e 1 exhibits a high degree of microheterogeneity, mainly 
concentrated in the third of the molecule closer to the N- terminus. The Ole e I (Ole) domain 
defining the pollen proteins Ole e I family signature or consensus pattern sequences PS00925 
[Sigrist et al. 2010], is characterized by the amino acid sequence [EQT]-G-x-V-Y-C-D-[TNP]-
C-R, where “x” could be any residue.  
There is a high diversity of proteins sharing the Ole domain among plant species. To date, 
eleven Ole domain-containing genes have been isolated and characterized from olive 
pollens [Rodríguez et al. 2002]. Ole-containing proteins include proline-rich proteins, 
proteins encoding extensin-like domains, phosphoglycerate mutase, tyrosine-rich 
hydroxyproline-rich glycoprotein, and hydroxyproline-rich glycoprotein. These Ole- 
containing proteins can exhibit: (1) the pollen Ole signature exclusively, e.g. the 
ALL1_OLEEU P19963 protein from Olea europaea L., (2) both the pollen Ole signature and 
the replication factor A protein 3 motive pattern (PF08661), e.g. the O49527 pollen-specific 
protein-like from Arabidopsis thaliana (842 residues), (3) both the pollen Ole domain and the 
phosphoglycerate mutase (PGAM) motif, e.g. the Q9SGZ6 protein from Arabidopsis thaliana., 
and finally (4) both the pollen Ole signature and the reverse transcriptase 2 (RVT2) motif, 
e.g. the  A5AJL0 protein from Vitis vinifera.  
Several efforts have been made to develop an understandable and reliable systematic 
classification of the diverse and increasing number of different allergen protein structures. 
As mentioned above, the classification system widely established for proteins that cause 
IgE-mediated atopic allergies in humans (allergens) was defined by Chapman et al. (2007). 
This system uses the first three letters of the genus; a space; the first letter of the species 
name; a space and an Arabic number. Despite this classification system, protein databases 
are full of allergen proteins lacking this systematic and comprehensive nomenclature. In 
other cases, many of the proteins described here have not been described as allergens, or 
their naming makes no reference to the Ole e 1 family that facilitates their identification. 
Otherwise, naming in databases is frequently given randomly, on the basis of chromosome 
location, addressing structural features and functional characterizations or simply using the 
name of the entire family. In this study, we used a combination of functional genomics and 
computational biology to name and classify the entire Ole e 1 family, as well as to 
characterize structurally and functionally the proteins of this superfamily. Our data indicate 
that the Ole e 1 protein family consists of at least 109 divergent families, which will likely 
expand as more genomic studies are undertaken, and fully sequenced plant genomes 
become available.  

2. Material and methods 
2.1 Database search for Ole e 1 family genes 
Sequences of Ole e 1 and Ole e 1-like genes were retrieved from the US National Center for 
Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/ ), the Uniprot database 
(http://www.uniprot.org/), and the non-redundant expressed sequence tag (EST) 
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databases using BLASTX, BLASTN and BLAST (low complexity filter, Blosum62 
substitution matrix) [Altschul et al. 1997]. Searches were conducted using previously 
characterized Olea europaea L. Ole e 1 (GenBank Accession number P19963), Solanum 
lycopersicum LAT52 (GenBank Accession number P13447), Zea mays Zmc13 (GenBank 
Accession number B6T1A9), Arabidopsis thaliana pollen-specific protein-like (GenBank 
Accession number O49527), Arabidopsis thaliana PGAM containing domain protein (GenBank 
Accession number Q9SGZ6), and Vitis vinifera RVT2 containing domain protein (GenBank 
Accession number A5AJL0). Full-length amino acid sequences for Ole e 1 proteins were 
compiled and aligned using ClustalW [Thompson et al. 1994]. Genetic distances between 
pairs of amino acid sequences were calculated with Bioedit V7.0.5.3 [Hall 1999]. Consensus 
protein sequences were derived from these original alignment, and further analyzed for the 
presence of putative functional motifs using the PROSITE database [Sigrist  et al. 2010], of 
biologically meaningful motif descriptors derived from multiple alignments and the 
ScanProsite program [de Castro et al. 2006], from the Expert Protein Analysis System 
(ExPASy) proteomics server of the Swiss Institute of Bioinformatics [Gasteiger et al. 2003]. 
Finally, the consensus protein sequences were submitted to BLASTP analysis to identify 
homologous proteins from other plant species. 

2.2 Revised/unified nomenclature 
In order to provide a revised and unified nomenclature for Ole e 1-like gene superfamily, 
we developed a sequence-based similarity approach to classify all the retrieved sequences 
using a previously developed gene nomenclature model [Kotchoni et al. 2010]. For this new 
nomenclature, Ole e 1 protein sequences that are more than 40% identical to previously 
identified Ole e 1 sequences compose a family, and sequences more than 60% identical 
within a family, compose a gene subfamily. Protein sequences that are less than 40% 
identical would describe a new Ole e 1 gene family. Taking olive protein Ole e 1_57A9 
(previous name Ole e 1, major olive pollen allergen) as an example for the revised 
nomenclature (Table 1), Ole e 1 indicates the root; the digits (57) indicates a family and the 
first letter (A) a subfamily, while the final number (9) identifies an individual gene within a 
subfamily. The revised nomenclature is therefore composed of an assigned gene symbol 
(Ole e 1) (abbreviated gene name) for the whole gene superfamily. The gene symbol must be 
(i) unique and representative of the gene superfamily; (ii) contain only Latin letters and/or 
Arabic numerals, (iii) not contain punctuation, and (iv) without any reference to species. 
These newly developed criteria have been applied to database curators to generate the 
unified Ole e 1 gene families/classes regardless of the source of the cloned gene(s). 

2.3 Sequence alignments and phylogenetic analyses 
The retrieved Ole e 1 protein families were used to generate a phylogenetic tree using 
ClustalW [Thompson et al. 1994]. The alignment was created using the Gonnet protein 
weight matrix, multiple alignment gap opening/extension penalties of 10/0.5 and pairwise 
gap opening/extension penalties of 10/0.1. These alignments were adjusted using Bioedit 
V7.0.5.3 [Hall 1999]. Portions of sequences that could not be reliably aligned were 
eliminated. Phylogenetic tree was generated by the neighbourjoining method (NJ), and the 
branches were tested with 1,000 bootstrap replicates. The three was visualized using 
Treedyn program [Chevenet et al. 2006]. 
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2.4 Ole e 1 superfamily: Protein modeling and structural characterization 
In order to study the structural and conformational variability between the Ole e 1 protein 
families, selected members of the Ole e 1 superfamily were modelled using SWISS-MODEL 
server, via the ExPASy web server [Gasteiger et al. 2003]. The initial modelled Ole e 1 
structures were subjected to energy minimization with GROMOS96 force field energy [van 
Gunsteren et al. 1996] implemented in DeepView/Swiss-PDBViewer v3.7 [Guex and Peitsch 
1997] to improve the van der Waals contacts and to correct the stereochemistry of the 
improved models. The quality of the models was assessed by checking the protein 
stereology with PROCHECK [Laskowski et al. 1993] and the protein energy with ANOLEA 
[Melo et al. 1997, 1998]. Ramachandran plot statistics for the models were calculated to show 
the number of protein residues in the favoured regions. 

3. Results 
3.1 The Ole e 1 protein families: Revised and unified nomenclature 
In order to provide a revised/international consensus and unified nomenclature for the 
Ole e 1 gene superfamily, we first retrieved all the Ole e 1 and Ole e 1-like gene sequences 
using PS00925 as the major molecular consensus defining the entire superfamily of Ole e 1 
proteins. We next verified all annotated plant Ole e 1 open reading frames (ORFs) using 
Ole e 1 sequence domains. A complementary and comparative study was developed by 
using Uniprot database to validate the molecular function and previous denomination of 
each Ole e 1 protein. Our searches resulted in the identification of 571 sequences encoding 
Ole e 1 and Ole e 1 like proteins from a wide variety of plant species, with the diagnostic 
motif PS00925 (Table 1). According to the established criteria (see Material and Methods), 
these sequences integrated 109 Ole e 1 gene families which have been attributed to 
different functional categories including extensins and extensin-like proteins, proline-rich 
proteins, hydroxyproline-rich glycoproteins, tyrosine-rich/hydroxyproline-rich 
glycoproteins, hydrolases, phosphoglycerate mutases, arabinogalactan proteins, etc. 
(Table 1). 
Among the sequences retrieved, Ole e 1_48 is the most extensive family with 63 gene 
members encoding for different pollen-specific protein C13 homologues, followed by Ole e 
1_57 family with 42 gene homologues encoding Ole e 1 (the olive major pollen allergen),  
Ole e 1_16 with 26 gene members encoding proline-rich proteins, and Ole e 1_52 with 22 
members encoding LAT52 homologues (Table 1). The number of Ole e 1 genes greatly 
varied from one plant species to another. The genus Oryza included the highest number of 
Ole e 1 genes (143), followed by Arabidopsis with 95 genes (Table 1). At present, more than 
half of the catalogued Ole e 1 families encoded a single Ole e 1/Ole e 1-like gene, which was 
in most cases “uncharacterized” (Table 1). 
The total number of genes in the Ole e 1 superfamily is expected to increase steadily with 
time, mainly due to the genomic sequencing of additional species like Olea europaea L. 
(http://www.gen-es.org/11_proyectos/PROYECTOS.CFM?pg=0106&n=1 ). Regardless of 
the plethora of Ole e 1 genes yet to be identified/characterized, their classification and 
relationship to the entire extended Ole e 1 gene superfamily will be easy owing to this 
nomenclature building block that catalogues newly identified/characterized Ole e 1 gene 
products only on the basis of sequence similarity to previously characterized Ole e 1 gene 
products. 
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Table 1. The Ole e 1 protein superfamily: new and unified nomenclature. ARATH: 
Arabidopsis thaliana; ARALY: Arabidopsis lyrata; BETPN: Betula pendula; BRAOL: Brassica 
oleracea; BRARP: Brassica rapa; CAPAN: Capsicum annuum; CARAS: Cardaminopsis arenosa; 
CHE1: Chenopodium album; CROSA: Crocus sativus; DAUCA: Daucus carota; EUPPU: 
Euphorbia pulcherrima; FRAEX: Fraxinus excelsior; GOSBA: Gossypium barbadense; GOSHE: 
Gossypium herbaceum; GOSHI: Gossypium hirsutum; GOSKI: Gossypioides kirkii; HYAOR: 
Hyacinthus orientalis; LigVu: Ligustrum vulgare; LILLO: Lilium longiflorum; LOLPE : Lolium 
perenne; MAIZE: Zea mays; MEDTR: Medicago truncatula; NICAL: Nicotiana alata; NICGL: 
Nicotiana glauca; NicLa: Vitis pseudoreticulata; OleEu: Olea europaea; ORYSI: Oryza sativa; 
PETCR: Petroselinum crispum; PETHY: Petunia hybrida; PHAVU: Phaseolus vulgaris; PHEPR : 
Phleum pratense; PHYPA: Physcomitrella patens; PICSI:  Picea sitchensis; PLALA: Platanus 
lanceolata; POPTR: Populus trichocarpa; RICCO: Ricinus communis; SALKA: Salsola kali; 
SAMNI: Sambucus nigra; SELML: Selaginella moellendorffii; SOLLI: Solanum lycopersicum; 
SOLTU: Solanum tuberosum; SORBI: Sorgum bicolor; SOYBN: Glycine max; TOBAC: Nicotiana 
tabacum; TRISU: Trifolium subterraneum; VITVI: Vitis vinifera; 9ROSI: Cleome spinosa; (-): 
uncharacterized. 
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3.2 Phylogenetic analysis of the extended Ole e 1 protein families 
A member of each retrieved full-length Ole e 1 sequences family was aligned to determine 
phylogenetic relationships within the Ole e 1 extended family. A phylogenetic tree of the 
Ole e 1 extended sequences is depicted in Figure 1.  
 

 
Fig. 1. Phylogenetic analysis of plant Ole e 1 proteins. Neighbour-Joining (NJ) method was 
used to perform a phylogenetic analysis of Ole e 1 proteins from 109 families. One 
representative sequence of each family was used, based in its higher consensus ability. Plant 
species analyzed included Arabidopsis, poplar, rice, spikemoss, tobacco, maize, potato, grape, 
Sorghum, kidney bean, barrel medic, Pinus, poinsettia, perennial ryegrass, soybean, white 
birch, ash, Platanus, Physcomitrella, cotton, subterranean clover, Persian tobacco and castor 
bean. 

The phylogenetic tree shows that the 109 Ole e 1 extended families, although highly 
divergent, are split into two clades. The smaller clade was integrated by a few species like 
Selaginella moellendorffii, Arabidopsis and maize among others. The second clade included the 
majority of the Ole e 1 family proteins, clustering together almost all the biological functions 
(Figure 1). Numerous branches aroused from this clade.  

3.3 Ole e 1 protein superfamilies: Structural and conformational variability 
The crystallographic structural coordinates of relatively few proteins of the Ole e 1 family 
have been deposited in the Protein Database (PDB) up to date. To our knowledge, detailed 
comparative studies of the structural and conformational features of members of the Ole e 1 
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extended protein families have not been performed in higher plants. Using computational 
modelling analysis, we have determined and modelled the molecular-structural features of 
selected members of the Ole e 1 extended families. A first overview of the generated models 
(Figure 2) indicated a relatively high level of similitude.  
 

 
Fig. 2. Three-dimensional structure analysis of selected members of Ole e 1 family proteins. 
The model proteins are depicted as cartoon diagrams. The secondary elements of the 
crystallographic structures are rainbow coloured, with N-terminus in blue, and C-terminus 
in red. 

However, a more detailed analysis allowed identifying certain differences in the generated 
models, particularly consisting in 2D structural features. These differences can be 
distinguished even between very close proteins like P19963, AF532754 and AF532760 (Ole e 
1_57A9, Ole e 1_57A25 and Ole e 1_57A23 with the new nomenclature), corresponding to 
the olive pollen major allergen cloned from different varietal sources or even to different 
clones of the same cultivar (Figure 2). The differences become higher when models of the 
same protein obtained from different plant species are compared. This is the case of P13447 
and B9SBK9 (Ole e 1_52L1 and Ole e 1_52J1), which correspond to the LAT52 gene product 
in tomato and Ricinus, respectively (Figure 2). Divergences are even more obvious between 
the models indicated above and that of a P33050 (Ole e 1_48H6), a different member of the 
Ole e 1 superfamily corresponding to a pollen protein from maize (C13 protein) (Figure 2).  
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4. Discussion 
Research as regard to the proteins of the Ole e 1 family has been carried out steadily since its 
definition. At present, many genes from the allergen Ole e 1 family of proteins have been 
characterized, and data are available concerning the sequence, structure, expression and 
biological function (e.g. extensin-like proteins constituting part of the cell wall). However, 
and as depicted in this chapter, the precise identification of more than half members of this 
family remains uncompleted. Up to now, Ole e 1 and Ole e 1-like genes are deposited into 
the databases, many of them with repetitive or arbitrary naming system by authors. This 
nomenclature includes a variety of generic names, such as Ole e 1 major olive pollen 
allergen, putative Ole e 1-like protein, anther-specific Ole e 1-like protein, and others 
depending of the protein location in the chromosome, e.g. At3g26960, Os09g0508200, or 
simply giving a random name e.g. P1 clone: MOJ10. For those members of the Ole e 1 family 
which have been recognized like allergens, a more sustainable and precise nomenclature has 
been built, by following the recommendations of the International Union of Immunological 
Societies (IUIS) (http://www.allergen.org/ ). However, these allergenic proteins only 
represent a part of the members of the Ole e 1 family, and this nomenclature still does not 
display the relationships among these proteins. In several cases, it is still common for 
researchers to use different names for the same allergen. Allergen biochemistry is now 
entering a new time of structural biology and proteomics that will require sophisticated 
tools for data processing and bioinformatics, and might require further definition of the 
nomenclature. Increasingly, the wealth of structural information is enabling the biologic 
function of allergens to be established and the assignment of allergen function to diverse 
protein families. Therefore, the arbitrary nomenclature currently in use is not sustainable for 
adequate comparative mega-functional genomics studies, especially as the number of Ole e 
1 genes has increased steadily and will continue with this upward trend with the 
completion of the sequencing projects corresponding to more plant genomes.  
The implementation of modifications in the nomenclature as proposed here may assist 
further developments of allergy understanding and new clinical approaches. As an example, 
nomenclature and structural biology have been proposed to play a crucial role in defining 
allergens for research studies and for the development of new clinical products [Chapman et 
al. 2007]. Sequence comparisons and assignments to protein families provide a molecular 
basis for clinical cross-reactions between food, pollen, and latex allergens that give rise to 
oral allergy syndromes [Wagner et al. 2002, Scheiner et al. 2004, van Ree 2004]. For food and 
pollen allergens, intrinsic protein structure probably plays an important role in determining 
allergenicity by conferring, for example, heat stability or resistance to digestion in the 
digestive tract, e.g. storage proteins from seed/nuts or legumes [Orruño and Morgan 2011]. 
Interestingly, analysis of databases, e.g. pFAM shows that there are currently more than 120 
molecular architectures that are responsible for eliciting IgE responses. It will be important 
to link nomenclature with classification of allergens into protein families and subfamilies to 
provide complete definition of allergens and their structure-functional relationships as part 
of a comprehensive bioinformatics database. The practical consequences of this approach 
are seen most clearly with genetically modified foods, in which sequence comparisons can 
be used for safety assessment of genetically modified organisms [Goodman and Tetteh 
2011]. 
The success of our new and unified nomenclature lies in its simplicity, with genetic basis 
and structural-functional characterizations of the proteins, regardless of the species origin, 
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with the possibility to further nomenclature expansion, to include as-yet-unidentified 
protein allergens from different sources or species: mites, insects, pollens, molds and foods.  
It might be also possible to include in the system engineered protein molecules, such as 
hypoallergens, or others being described as non-protein allergens. Allergens entered into the 
nomenclature could be used to develop allergen-specific diagnostics and to formulate 
recombinant allergen vaccines that will benefit patients [Chapman et al. 2000, Ferreira et al. 
2004, Jutel et al. 2005, Sastre 2010]. 
The proposed system may also assist to clarify the importance of allergen polymorphism. 
Allergens often display numerous variants. These are proteins with typically greater than 
90% sequence identity, but with enough differences in their amino acid sequences to make 
worth individual structural and or functional characterization and identification. This 
polymorphism has been deeply analyzed in mites, as their allergens present an extensive 
number of isoforms: 23 for Der p 1 and 13 for Der p 2 [Smith et al. 2001, Smith et al. 2001]. 
Furthermore, these polymorphisms might affect T-cell responses or alter antibody-binding 
sites. These differences can be structurally characterized to distinguish isoforms in a well-
defined nomenclature system, by mean of structural-functional differentiation, helping to 
design allergen formulations for immunotherapy [Jutel et al. 2005, Piboonpocanun et al. 
2006]. In the case of pollen allergens, Ole e 1 from olive pollen is a clear example of extreme 
polymorphism, both in its peptide and in its carbohydrate moieties, as demonstrated by 
peptide mapping and N-glycopeptide analysis [Castro et al. 2010]. Olive cultivar origin is a 
major cause of polymorphism for Ole e 1 pollen allergen [Hamman-Khalifa et al. 2008, 
Castro et al. 2010]. The olive tree has an extremely wide germplasm, with over 1200 varieties 
cultivated over the world [Bartolini et al. 1994]. Therefore, the number of Ole e 1 isoforms 
yet to be characterized in olive pollen is expected to be enormous. A similar situation is also 
likely to occur in many other plant species.   
Overall, our developed unified nomenclature system is helpful in a quick functional 
prediction of any newly cloned Ole e 1 gene(s), because from the nomenclature point of 
view, the newly sequenced gene(s) will always be characterized/named with sequence 
similarity with previously characterized Ole e 1 genes/proteins, as well as a protein 
structure-functional characterization and comparison. The changes that have been 
introduced reflect into which extended family or subfamily a certain Ole e 1 protein belongs. 
Accordingly, the new nomenclature will have no significant impact on already published 
data with old/arbitrary naming system. However, we urge scientists working on Ole e 1’s to 
adopt this new and easy nomenclature system. In this regard, we have made an effort to 
preserve the user friendly linkage between the old and the new designations, which we 
hope will help researchers to adapt the new names. As the revised nomenclature should 
facilitate communication and understanding within the community interested in Ole e 1 
allergen proteins, we advocate that this new naming system be used in all future studies.  
The classification model used here has been developed under the basis of a previously 
designed gene nomenclature model for male fertility restorer (RF) proteins in higher plants 
[Kotchoni et al. 2010]. The increasing numbers of RF genes described in the literature 
represented an ongoing challenge in their clear identification and logical classification which 
was solved using the proposed nomenclature. Undoubtedly, similar approaches could be 
applied to numerous protein families involving relevant levels of nomenclature 
heterogeneity, many of them registered in specialized databases like pFam. In the case of 
allergens, other numerous protein families like profilins (Ole e 2 in the case of olive pollen) 

Systematic and Phylogenetic Analysis 
of the Ole e 1 Pollen Protein Family Members in Plants 

 

257 

prolamins, cupins, Bet v 1-related proteins etc., which are currently included in the AllFam 
database [Radauer et al. 2008] (http://www.meduniwien.ac.at/allergens/allfam/ ) could 
benefit of the use of similar approaches.   

5. Conclusion  
We propose for first time a unified naming system for Ole e 1-like genes and pseudogenes 
across all plant species, which accommodates the numerous sequences already deposited in 
several databases, offering the needed flexibility to incorporate additional Ole e 1-like 
proteins as they become available.  Additionally, we provide an analysis of the phylogenetic 
relationships displayed by the members of the Ole e 1-like family and use computational 
protein modelling to determine structural features of selected members of this family. These 
data are of particular relevance for the understanding of their biological activity and 
allergenic cross-reactivity.   
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1. Introduction 
In this age of Systems and Integrative Biology, development of high throughput genome 
sequencing techniques and other large-scale experimental methods, are generating large 
amount of biological data. Bioinformatics enables us to generate added value to these 
datasets in the form of annotation, classification and pattern extraction. These developments 
demand adequate storage and organization for further analysis. 
In order to unravel the trends and patterns present in such diverse data sets, computational 
platforms with capability for carrying out integrative analysis are required for rapid 
analysis. R language platform is an example of one such platform allowing integrated rapid 
analysis process. The R is a High-level interpreted language suitable for developing new 
computational methods (R Development Core Team. 2010). Computational Biologists use R 
extensively because of the availability of numerous functions and packages including the 
well-known Bioconductor package (Gentleman et al., 2004). The rich inbuilt functions and 
the facility to write functions as well as object oriented programming facilities enable 
development of new packages for rapid analysis. 

2. R platform 
R is a programming language integrated with an R environment, facilitating easy and rapid 
data analysis with the help of its integrated suite of software facilities. Several 
computational biology packages have been developed in R language. Developing 
computational packages in R provides advantage as to carry out the analysis locally and 
also build further tools and scripts. Thus both new applications and extension of existing 
applications can be achieved. R helps accomplishment of complex tasks using simple scripts 
with the help of inbuilt suit of operators aiding in calculations. Also R environment provides 
graphical facilities for data analysis and display. Another major advantage of preparing 
datasets and computational biology tools in R is that a large set of statistical and 
mathematical tools can be applied on the datasets for analysis. R being an open source 
controlled by GNU General Public License allows future developments and customizations 
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more widely. R is maintained by a core group of experts, thus ensuring its availability for 
long life. R in its repository also has a number of packages useful in various fields of 
biology. These packages help solve biological problems in well-structured manner saving 
time and money. 

3. Data modeling for R 
Data modeling for R involves identification of the datasets required for the corresponding 
problem undertaken. The data in the datasets needs to be structured into relevant rows and 
columns. For each field or column only one data type is allowed either character or numeric 
data type. Thereafter standardization or pre-processing of the data in datasets needs to be 
done.  This involves checking the data for any inconsistencies- e.g., removal of blank cells by 
replacing with “Not known” or “None”, checking header names for unwanted symbols like 
?@$%*^ #/, checking columns for single data-type etc. The datasets may be then made into 
R object. Thus data modeling for R plays an important role to make data easily and properly 
read and operated with scripts in R platform. The data type in each column must conform to 
same format for all cells in that column. 

4. S4 object oriented programming 
S4 is the 4th version of S. The major development of S4 over S3 is the integration of functions, 
which allows considering S as an object oriented language. The object system in S4 provides 
a rich way of dening classes, handling inheritance, setting generic methods, validity 
checking and multiple dispatches. This allows development of easy to operate packages for 
rapid data handling and organized structured framework. 

4.1 Setting class and reading data into S4 objects 
Classes with specific representations are created in S4. Thereafter new object belonging to 
the set class may be created. Generic functions may also be made using object of the class: 
1. setClass() is used to set the class of a data 
2. new()is used to create objects of the class set 
3. setGeneric() helps define generics 
4. setMethods() is used to set methods 

5. Decision tree 
A decision tree (Maimon et al., 2005) is a tree like graph that a decision maker can create to 
help select the best amongst several alternative courses of action. Biological problems can be 
solved with help of well-structured and optimized algorithms. These algorithms can be 
represented in the form of decision trees to get better and clear understanding of the 
algorithm process followed to solve the biological problem. 

6. Bioinformatics tools to retrieve biological data 
Bioinformatics in its repository has a large number of tools developed to address diverse 
biological questions. These include investigating relationship between protein structure and 
function, immune response, development of potential vaccine candidates, modeling 
pathways, discovery of drug targets and drugs. 
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6.1 Immunoinformatics data 
The immunoinformatics branch of bioinformatics deals with applying bioinformatics 
principles and tools to the molecular activities of the immune system. Immunoinformatics 
provides databases and predictive tools, useful to fetch data on cells of immune system. This 
data is termed immunological data and can be broadly split into epitope data and allergen 
data. This data is useful for aiding in vaccine discovery, referred to as computer aided vaccine 
design. An important aim here is antigen identification or identification of epitopes capable of 
eliciting immune response. There are various immunoinformatics databases available for 
aiding this process (Chaudhuri et al., 2008; Chaudhuri et al., 2011; Vivona et al., 2008). 
An epitope, also known, as ‘antigenic determinant’ is a surface localized part of antigen 
capable of eliciting an immune response. A B-cell epitope is region of the antigen recognized 
by soluble or membrane bound antibodies. B-cell epitopes are further classified as either 
linear or discontinuous epitopes. Linear epitope is a single continuous stretch of amino acids 
within a protein sequence, whereas epitopes whose residues are distantly placed in the 
sequence but are brought together by physico-chemical folding are termed as discontinuous 
epitopes. 
T cell epitope is a short region presented on the surface of an antigen-presenting cell, where 
they are bound to MHC molecules. These epitopes can be characterized into two types 
based on their recognition by either MHC Class I molecule or Class II molecule. 
Epitope prediction tools form the backbone of immunoinformatics. The main aim of these 
tools is to aid in reliable epitope identification. Various sophisticated T cell epitope 
prediction tools have been developed which help successful epitope prediction.  Some of 
these algorithms are based on artificial neural networks and weight matrices such as 
NetMHC (Lundegaard et al., 2008), predictive IC(50) values IEDB-ARB method (Bui et al., 
2005; Zhang et al., 2008), predicted half-time of dissociation Bimas (Parker et al., 1994), 
quantitative matrices ProPred (Singh et al., 2001). Reliable and accurate B-cell epitope 
prediction is still in development although we have some tools such as ABCpred (Saha et 
al., 2006) and BcePred (Saha et al., 2007). These tools help build the epitope data from 
protein sequences. 
Allergen identification holds major importance in vaccine discovery problem, as it is 
desirable that a candidate vaccine is non-allergic. Allergens are substances (proteins, 
carbohydrates, particles, pollengrains etc.) to which the body mounts a hypersensitive 
immune response typically of Type I. 
Various tools of immunoinformatics have been developed with aim to predict allergenic 
proteins. AlgPred (Saha et al., 2006) allows prediction of allergens through either singly or 
in combination of support vector machine, motif-based method, and searching the database 
of known IgE epitopes. Allermatch (Fiers et al., 2004) performs BLAST search against 
allergen representative peptides using a sliding window approach. The data fetched 
constitute allergen data. The building of Dataclasses with their representations is described 
in Figures 1-4. 

6.1.1 Identification of potential immunogens useful as vaccine candidates 
Immunogen is a substance capable of eliciting an immune response. It possesses epitopes, 
which binds to the B cells or T cells to elicit the response. To identify protein immunogens 
useful as vaccine candidates, bioinformatics approach may be undertaken. There are various 
B-cell and T-cell epitope prediction tools available as mentioned in the previous section. 
These algorithms provide prediction of the epitopes present in the submitted protein 
sequence. Each prediction comes with associated score representing the confidence of 
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more widely. R is maintained by a core group of experts, thus ensuring its availability for 
long life. R in its repository also has a number of packages useful in various fields of 
biology. These packages help solve biological problems in well-structured manner saving 
time and money. 

3. Data modeling for R 
Data modeling for R involves identification of the datasets required for the corresponding 
problem undertaken. The data in the datasets needs to be structured into relevant rows and 
columns. For each field or column only one data type is allowed either character or numeric 
data type. Thereafter standardization or pre-processing of the data in datasets needs to be 
done.  This involves checking the data for any inconsistencies- e.g., removal of blank cells by 
replacing with “Not known” or “None”, checking header names for unwanted symbols like 
?@$%*^ #/, checking columns for single data-type etc. The datasets may be then made into 
R object. Thus data modeling for R plays an important role to make data easily and properly 
read and operated with scripts in R platform. The data type in each column must conform to 
same format for all cells in that column. 

4. S4 object oriented programming 
S4 is the 4th version of S. The major development of S4 over S3 is the integration of functions, 
which allows considering S as an object oriented language. The object system in S4 provides 
a rich way of dening classes, handling inheritance, setting generic methods, validity 
checking and multiple dispatches. This allows development of easy to operate packages for 
rapid data handling and organized structured framework. 

4.1 Setting class and reading data into S4 objects 
Classes with specific representations are created in S4. Thereafter new object belonging to 
the set class may be created. Generic functions may also be made using object of the class: 
1. setClass() is used to set the class of a data 
2. new()is used to create objects of the class set 
3. setGeneric() helps define generics 
4. setMethods() is used to set methods 

5. Decision tree 
A decision tree (Maimon et al., 2005) is a tree like graph that a decision maker can create to 
help select the best amongst several alternative courses of action. Biological problems can be 
solved with help of well-structured and optimized algorithms. These algorithms can be 
represented in the form of decision trees to get better and clear understanding of the 
algorithm process followed to solve the biological problem. 

6. Bioinformatics tools to retrieve biological data 
Bioinformatics in its repository has a large number of tools developed to address diverse 
biological questions. These include investigating relationship between protein structure and 
function, immune response, development of potential vaccine candidates, modeling 
pathways, discovery of drug targets and drugs. 
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6.1 Immunoinformatics data 
The immunoinformatics branch of bioinformatics deals with applying bioinformatics 
principles and tools to the molecular activities of the immune system. Immunoinformatics 
provides databases and predictive tools, useful to fetch data on cells of immune system. This 
data is termed immunological data and can be broadly split into epitope data and allergen 
data. This data is useful for aiding in vaccine discovery, referred to as computer aided vaccine 
design. An important aim here is antigen identification or identification of epitopes capable of 
eliciting immune response. There are various immunoinformatics databases available for 
aiding this process (Chaudhuri et al., 2008; Chaudhuri et al., 2011; Vivona et al., 2008). 
An epitope, also known, as ‘antigenic determinant’ is a surface localized part of antigen 
capable of eliciting an immune response. A B-cell epitope is region of the antigen recognized 
by soluble or membrane bound antibodies. B-cell epitopes are further classified as either 
linear or discontinuous epitopes. Linear epitope is a single continuous stretch of amino acids 
within a protein sequence, whereas epitopes whose residues are distantly placed in the 
sequence but are brought together by physico-chemical folding are termed as discontinuous 
epitopes. 
T cell epitope is a short region presented on the surface of an antigen-presenting cell, where 
they are bound to MHC molecules. These epitopes can be characterized into two types 
based on their recognition by either MHC Class I molecule or Class II molecule. 
Epitope prediction tools form the backbone of immunoinformatics. The main aim of these 
tools is to aid in reliable epitope identification. Various sophisticated T cell epitope 
prediction tools have been developed which help successful epitope prediction.  Some of 
these algorithms are based on artificial neural networks and weight matrices such as 
NetMHC (Lundegaard et al., 2008), predictive IC(50) values IEDB-ARB method (Bui et al., 
2005; Zhang et al., 2008), predicted half-time of dissociation Bimas (Parker et al., 1994), 
quantitative matrices ProPred (Singh et al., 2001). Reliable and accurate B-cell epitope 
prediction is still in development although we have some tools such as ABCpred (Saha et 
al., 2006) and BcePred (Saha et al., 2007). These tools help build the epitope data from 
protein sequences. 
Allergen identification holds major importance in vaccine discovery problem, as it is 
desirable that a candidate vaccine is non-allergic. Allergens are substances (proteins, 
carbohydrates, particles, pollengrains etc.) to which the body mounts a hypersensitive 
immune response typically of Type I. 
Various tools of immunoinformatics have been developed with aim to predict allergenic 
proteins. AlgPred (Saha et al., 2006) allows prediction of allergens through either singly or 
in combination of support vector machine, motif-based method, and searching the database 
of known IgE epitopes. Allermatch (Fiers et al., 2004) performs BLAST search against 
allergen representative peptides using a sliding window approach. The data fetched 
constitute allergen data. The building of Dataclasses with their representations is described 
in Figures 1-4. 

6.1.1 Identification of potential immunogens useful as vaccine candidates 
Immunogen is a substance capable of eliciting an immune response. It possesses epitopes, 
which binds to the B cells or T cells to elicit the response. To identify protein immunogens 
useful as vaccine candidates, bioinformatics approach may be undertaken. There are various 
B-cell and T-cell epitope prediction tools available as mentioned in the previous section. 
These algorithms provide prediction of the epitopes present in the submitted protein 
sequence. Each prediction comes with associated score representing the confidence of 
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prediction. A cutoff score can be set to select the high scoring epitopes and subsequently 
proteins can be identified with high scoring epitopes. Thus the filtered orfids of proteins with 
high scoring B-cell and T-cell epitopes can be selected. The individual results of orfids may be 
analyzed by using the ‘intersect’ operator of R to get the final list of orfids representing the 
proteins meeting conditions of multiple features. It is desirable for the candidate vaccine to be 
non-allergic. Allergen data for the proteins may be fetched using allergen prediction 
immunoinformatics tools to obtain list of non-allergic proteins. Thus list of non-allergen 
proteins with high scoring B-cell and T-cell epitopes may be obtained. B-cell and T-cell data 
have been captured as Secondlayer data. As an example from the Firstlayer data certain sub 
problems to target a potential adhesin vaccine candidate can be stated as- the protein should 
be an adhesin, the protein should not be intracellularly located, it should not have similarity to 
human reference proteins, it should not have more than one transmembrane helix thereby 
facilitating proper cloning and expression. The set of proteins fulfilling all the Firstlayer 
conditions can be intersected with the set of non-allergen proteins. This whole process is 
depicted as decision tree (Figure 5). Similarly the decision tree describing the steps for 
obtaining proteins with high scoring B-cell and T-cell epitopes is shown in Figure 6. 
 

setClass("FirstLayer", representation(ginumber = "numeric", annot = 
"character", length = "numeric", spaanscore = "numeric", paralogs = 
"character", omcl = "character", signalp = "numeric", is_signalp = 
"character", psortbscore = "numeric", subcelllocal = "character", 
tmhelices = "numeric", topotmhelix = "character", betawrap = 
"character", Hrefhits = "character", cddhits = "character")) 

readdata.firstlayer<- 
function(xz){xa<- 
readLines(con = xz); 
tempy<- NULL;for (i in 
seq ( along = 
xa)){tempx<- 
unlist(strsplit(xa[i],"\t"))
;tempy<- c(tempy, 
new("FirstLayer", 
ginumber = 
as.numeric(tempx[1]), 
annot = tempx[2], length 
= as.numeric(tempx[3]), 
spaanscore = 
as.numeric(tempx[4]), 
paralogs = tempx[5], 
omcl = tempx[6], 
signalp = 
as.numeric(tempx[7]), 
is_signalp = tempx[8], 
psortbscore = 
as.numeric(tempx[9]), 
subcelllocal = 
tempx[10],  tmhelices = 
as.numeric(tempx[11]), 
topotmhelix = 
tempx[12], betawrap = 
tempx[13], Hrefhits = 
tempx[14], cddhits = 
tempx[15]  )) }; 
return(tempy)} 

Fig. 1. Representation of S4 Class “FirstLayer” and the R scripts to accomplish the  
construction. 
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setClass("Algpred", representation(ginumber = 
"numeric" , organism="character", ovpr= 
"character",IGEPred="character",IgEepitope="cha
racter",Seqmatched="character",position="numer
ic",PID="numeric", MASTRESULT="character", 
SVMPRED="character",SVMScore="numeric",SV
MThold="numeric" 
,SVMPPV="character",SVMNPV="character",SV
MDipepPRED="character", 
SVMDipepScore="numeric",SVMDipepThold="n
umeric",SVMDipepPPV="character",SVMDipep
NPV="character",BLASTPred="character",HitAR
Ps="character")); setClass("Allermatch", 
representation(ginumber = "numeric" , 
organism="character", prediction 
="character",hit_no= "numeric", db ="character", 
allermatch_id ="character",best_nit_index 
="numeric",no_hits_ident_gt35 
="numeric",perc_hits_gt35 ="numeric", 
perc_ident ="numeric", seq_len_fasta_aligned= 
"numeric",external_link ="character", link_db 
="character",genus_name ="character", 
spc_name="character")) 

readdata.algpred<- function(xz){xa<- 
readLines(con = xz); tempy<- NULL;for (i in seq 
( along = xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- c(tempy, 
new("Algpred", ginumber = 
as.numeric(tempx[1]), organism = tempx[2], 
ovpr= tempx[3] ,IGEPred=tempx[4] 
,IgEepitope=tempx[5] ,Seqmatched= 
tempx[6],position= as.numeric(tempx[7]) ,PID= 
as.numeric(tempx[8]), MASTRESULT=tempx[9], 
SVMPRED=tempx[10], SVMScore= 
as.numeric(tempx[11]),SVMThold= 
as.numeric(tempx[12]) ,SVMPPV= 
tempx[13],SVMNPV= 
tempx[14],SVMDipepPRED= tempx[15], 
SVMDipepScore= 
as.numeric(tempx[16]),SVMDipepThold= 
as.numeric(tempx[17]),SVMDipepPPV= 
tempx[18],SVMDipepNPV= 
tempx[19],BLASTPred= tempx[20],HitARPs= 
tempx[21]))};return(tempy)} 
readdata.allermatch<- function(xz){xa<- 
readLines(con = xz); tempy<- NULL;for (i in seq 
( along = xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- c(tempy, 
new("Allermatch",ginumber = 
as.numeric(tempx[1]), organism = tempx[2], 
prediction= tempx[3], hit_no = 
as.numeric(tempx[4]),db= tempx[5], 
allermatch_id= tempx[6], best_nit_index= 
as.numeric(tempx[7]), no_hits_ident_gt35= 
as.numeric(tempx[8]),perc_hits_gt35= 
as.numeric(tempx[9]),perc_ident= 
as.numeric(tempx[10]), seq_len_fasta_aligned= 
as.numeric(tempx[11]), external_link= 
tempx[12], link_db= tempx[13], genus_name= 
tempx[14], spc_name= 
tempx[15]))};return(tempy)}

 
 
 
 
Fig. 2. General representation of S4 Class for Allergen data. The script for reading the data in 
is given for AlgPred. Similarly the data can be read for Allermatch class with appropriate 
data representation. 
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prediction. A cutoff score can be set to select the high scoring epitopes and subsequently 
proteins can be identified with high scoring epitopes. Thus the filtered orfids of proteins with 
high scoring B-cell and T-cell epitopes can be selected. The individual results of orfids may be 
analyzed by using the ‘intersect’ operator of R to get the final list of orfids representing the 
proteins meeting conditions of multiple features. It is desirable for the candidate vaccine to be 
non-allergic. Allergen data for the proteins may be fetched using allergen prediction 
immunoinformatics tools to obtain list of non-allergic proteins. Thus list of non-allergen 
proteins with high scoring B-cell and T-cell epitopes may be obtained. B-cell and T-cell data 
have been captured as Secondlayer data. As an example from the Firstlayer data certain sub 
problems to target a potential adhesin vaccine candidate can be stated as- the protein should 
be an adhesin, the protein should not be intracellularly located, it should not have similarity to 
human reference proteins, it should not have more than one transmembrane helix thereby 
facilitating proper cloning and expression. The set of proteins fulfilling all the Firstlayer 
conditions can be intersected with the set of non-allergen proteins. This whole process is 
depicted as decision tree (Figure 5). Similarly the decision tree describing the steps for 
obtaining proteins with high scoring B-cell and T-cell epitopes is shown in Figure 6. 
 

setClass("FirstLayer", representation(ginumber = "numeric", annot = 
"character", length = "numeric", spaanscore = "numeric", paralogs = 
"character", omcl = "character", signalp = "numeric", is_signalp = 
"character", psortbscore = "numeric", subcelllocal = "character", 
tmhelices = "numeric", topotmhelix = "character", betawrap = 
"character", Hrefhits = "character", cddhits = "character")) 

readdata.firstlayer<- 
function(xz){xa<- 
readLines(con = xz); 
tempy<- NULL;for (i in 
seq ( along = 
xa)){tempx<- 
unlist(strsplit(xa[i],"\t"))
;tempy<- c(tempy, 
new("FirstLayer", 
ginumber = 
as.numeric(tempx[1]), 
annot = tempx[2], length 
= as.numeric(tempx[3]), 
spaanscore = 
as.numeric(tempx[4]), 
paralogs = tempx[5], 
omcl = tempx[6], 
signalp = 
as.numeric(tempx[7]), 
is_signalp = tempx[8], 
psortbscore = 
as.numeric(tempx[9]), 
subcelllocal = 
tempx[10],  tmhelices = 
as.numeric(tempx[11]), 
topotmhelix = 
tempx[12], betawrap = 
tempx[13], Hrefhits = 
tempx[14], cddhits = 
tempx[15]  )) }; 
return(tempy)} 

Fig. 1. Representation of S4 Class “FirstLayer” and the R scripts to accomplish the  
construction. 
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setClass("Algpred", representation(ginumber = 
"numeric" , organism="character", ovpr= 
"character",IGEPred="character",IgEepitope="cha
racter",Seqmatched="character",position="numer
ic",PID="numeric", MASTRESULT="character", 
SVMPRED="character",SVMScore="numeric",SV
MThold="numeric" 
,SVMPPV="character",SVMNPV="character",SV
MDipepPRED="character", 
SVMDipepScore="numeric",SVMDipepThold="n
umeric",SVMDipepPPV="character",SVMDipep
NPV="character",BLASTPred="character",HitAR
Ps="character")); setClass("Allermatch", 
representation(ginumber = "numeric" , 
organism="character", prediction 
="character",hit_no= "numeric", db ="character", 
allermatch_id ="character",best_nit_index 
="numeric",no_hits_ident_gt35 
="numeric",perc_hits_gt35 ="numeric", 
perc_ident ="numeric", seq_len_fasta_aligned= 
"numeric",external_link ="character", link_db 
="character",genus_name ="character", 
spc_name="character")) 

readdata.algpred<- function(xz){xa<- 
readLines(con = xz); tempy<- NULL;for (i in seq 
( along = xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- c(tempy, 
new("Algpred", ginumber = 
as.numeric(tempx[1]), organism = tempx[2], 
ovpr= tempx[3] ,IGEPred=tempx[4] 
,IgEepitope=tempx[5] ,Seqmatched= 
tempx[6],position= as.numeric(tempx[7]) ,PID= 
as.numeric(tempx[8]), MASTRESULT=tempx[9], 
SVMPRED=tempx[10], SVMScore= 
as.numeric(tempx[11]),SVMThold= 
as.numeric(tempx[12]) ,SVMPPV= 
tempx[13],SVMNPV= 
tempx[14],SVMDipepPRED= tempx[15], 
SVMDipepScore= 
as.numeric(tempx[16]),SVMDipepThold= 
as.numeric(tempx[17]),SVMDipepPPV= 
tempx[18],SVMDipepNPV= 
tempx[19],BLASTPred= tempx[20],HitARPs= 
tempx[21]))};return(tempy)} 
readdata.allermatch<- function(xz){xa<- 
readLines(con = xz); tempy<- NULL;for (i in seq 
( along = xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- c(tempy, 
new("Allermatch",ginumber = 
as.numeric(tempx[1]), organism = tempx[2], 
prediction= tempx[3], hit_no = 
as.numeric(tempx[4]),db= tempx[5], 
allermatch_id= tempx[6], best_nit_index= 
as.numeric(tempx[7]), no_hits_ident_gt35= 
as.numeric(tempx[8]),perc_hits_gt35= 
as.numeric(tempx[9]),perc_ident= 
as.numeric(tempx[10]), seq_len_fasta_aligned= 
as.numeric(tempx[11]), external_link= 
tempx[12], link_db= tempx[13], genus_name= 
tempx[14], spc_name= 
tempx[15]))};return(tempy)}

 
 
 
 
Fig. 2. General representation of S4 Class for Allergen data. The script for reading the data in 
is given for AlgPred. Similarly the data can be read for Allermatch class with appropriate 
data representation. 
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setClass("Bcepred", representation(ginumber = 
"numeric",organism= "character", property= "character", 
sequence= "character", length= 
"numeric"));setClass("ABCpred", representation(ginumber 
= "numeric" , organism="character", rank="numeric" , 
sequence="character", position="numeric", 
score="numeric")) 

readdata.bcepred<- function(xz){xa<- 
readLines(con = xz); tempy<- NULL;for (i 
in seq ( along = xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- 
c(tempy, new("Bcepred", ginumber = 
as.numeric(tempx[1]), organism = 
tempx[2], property = tempx[3], sequence = 
tempx[4], length = 
as.numeric(tempx[5])))}; return(tempy)} 
readdata.abcpred<- function(xz){xa<- 
readLines(con = xz); tempy<- NULL;for 
(i in seq ( along = xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- 
c(tempy, new("ABCpred", ginumber = 
as.numeric(tempx[1]), organism = 
tempx[2], rank = as.numeric(tempx[3]), 
sequence = tempx[4], position = 
as.numeric(tempx[5]), score= 
as.numeric(tempx[6])))};return(tempy)} 

 

Fig. 3. General representation of S4 Class for B Cell epitope data along with R scripts. 

 
 
 
 
 

setClass("Propred", representation(ginumber = 
"numeric",organism= "character", Allele= 
"character", Rank= "numeric", Sequence= 
"character", Position= "numeric", Score= "numeric"))

readdata.propred <-function(xz){xa<- 
readLines(con = xz); tempy<- NULL;for (i in 
seq ( along = xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- c(tempy, 
new("Propred", ginumber = 
as.numeric(tempx[1]), organism = 
tempx[2],Allele= tempx[3], Rank= 
as.numeric(tempx[4]), Sequence= tempx[5], 
Position= as.numeric(tempx[6]), Score= 
as.numeric(tempx[7])))};return(tempy)} 
 

 

Fig. 4. General representation of S4 Class for T Cell epitope data. 
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Fig. 5. Decision tree to identify non-allergen proteins fulfilling all first layer conditions. The 
R scripts are shown in the following two boxes. 

 

 

S4 Methods 
setGeneric("getfl_filtered",function(object) 
standardGeneric("getfl_filtered"));setMethod("getfl_filtered","FirstLayer",function(obj
ect){if ((object@tmhelices < 2) && (object@Hrefhits== "No Hits found") && 
((object@subcelllocal == "Extracellular") || (object@subcelllocal == 
"OuterMembrane"))) {return (object@ginumber)}else{return(FALSE)}}) 
setGeneric("nonallergen_algpred",function(object) 
standardGeneric("nonallergen_algpred"));setMethod("nonallergen_algpred","Algpre
d",function(object){if  
( object@ovpr == "Non Allergen") {return (object@ginumber)}else{return(FALSE)}}) 
setGeneric("nonallergen_allermatch",function(object) 
standardGeneric("nonallergen_allermatch"));setMethod("nonallergen_allermatch","Al
lermatch",function(object){if  
( object@prediction == "Non Allergen") {return 
(object@ginumber)}else{return(FALSE)}}) 
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setClass("Bcepred", representation(ginumber = 
"numeric",organism= "character", property= "character", 
sequence= "character", length= 
"numeric"));setClass("ABCpred", representation(ginumber 
= "numeric" , organism="character", rank="numeric" , 
sequence="character", position="numeric", 
score="numeric")) 

readdata.bcepred<- function(xz){xa<- 
readLines(con = xz); tempy<- NULL;for (i 
in seq ( along = xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- 
c(tempy, new("Bcepred", ginumber = 
as.numeric(tempx[1]), organism = 
tempx[2], property = tempx[3], sequence = 
tempx[4], length = 
as.numeric(tempx[5])))}; return(tempy)} 
readdata.abcpred<- function(xz){xa<- 
readLines(con = xz); tempy<- NULL;for 
(i in seq ( along = xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- 
c(tempy, new("ABCpred", ginumber = 
as.numeric(tempx[1]), organism = 
tempx[2], rank = as.numeric(tempx[3]), 
sequence = tempx[4], position = 
as.numeric(tempx[5]), score= 
as.numeric(tempx[6])))};return(tempy)} 

 

Fig. 3. General representation of S4 Class for B Cell epitope data along with R scripts. 

 
 
 
 
 

setClass("Propred", representation(ginumber = 
"numeric",organism= "character", Allele= 
"character", Rank= "numeric", Sequence= 
"character", Position= "numeric", Score= "numeric"))

readdata.propred <-function(xz){xa<- 
readLines(con = xz); tempy<- NULL;for (i in 
seq ( along = xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- c(tempy, 
new("Propred", ginumber = 
as.numeric(tempx[1]), organism = 
tempx[2],Allele= tempx[3], Rank= 
as.numeric(tempx[4]), Sequence= tempx[5], 
Position= as.numeric(tempx[6]), Score= 
as.numeric(tempx[7])))};return(tempy)} 
 

 

Fig. 4. General representation of S4 Class for T Cell epitope data. 
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Fig. 5. Decision tree to identify non-allergen proteins fulfilling all first layer conditions. The 
R scripts are shown in the following two boxes. 

 

 

S4 Methods 
setGeneric("getfl_filtered",function(object) 
standardGeneric("getfl_filtered"));setMethod("getfl_filtered","FirstLayer",function(obj
ect){if ((object@tmhelices < 2) && (object@Hrefhits== "No Hits found") && 
((object@subcelllocal == "Extracellular") || (object@subcelllocal == 
"OuterMembrane"))) {return (object@ginumber)}else{return(FALSE)}}) 
setGeneric("nonallergen_algpred",function(object) 
standardGeneric("nonallergen_algpred"));setMethod("nonallergen_algpred","Algpre
d",function(object){if  
( object@ovpr == "Non Allergen") {return (object@ginumber)}else{return(FALSE)}}) 
setGeneric("nonallergen_allermatch",function(object) 
standardGeneric("nonallergen_allermatch"));setMethod("nonallergen_allermatch","Al
lermatch",function(object){if  
( object@prediction == "Non Allergen") {return 
(object@ginumber)}else{return(FALSE)}}) 
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Fig. 6. Decision tree to identify high scoring B cell and T cell epitopes. The R scripts follow in 
the next two boxes. 

R Scripts 
res1<- sapply(ecalgpred,nonallergen_algpred); res2<- 
sapply(ecallermatch,nonallergen_allermatch) 
resA<- union(res1,res2); resB <- sapply(ecflnew,getfl_filtered); resC<- 
intersect(resA,resB) 
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S4 Methods 
setGeneric("getgibce", function(object) 
standardGeneric("getgibce"));setMethod("getgibce","Bcepred",function(object){
object@ginumber}) 
setGeneric("getgi_abcepitopes", function(object,x) 
standardGeneric("get_abc_epi_gi"));setMethod("get_abc_epi_gi","ABCpred",fu
nction(object,x){if ( object@score >= x) {return 
(object@ginumber)}else{return(FALSE)}}) 
setGeneric("getgipropred", function(object) 
standardGeneric("getgipropred"));setMethod("getgipropred","Propred",functio
n(object){object@ginumber}) 
setGeneric("getgi_bimasepitopes",function(object,x) 
standardGeneric("getgi_bimasepitopes"));setMethod("getgi_bimasepitopes","Bi
mas",function(object,x){if ( object@Score >= x) {return 
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Fig. 6. Decision tree to identify high scoring B cell and T cell epitopes. The R scripts follow in 
the next two boxes. 

R Scripts 
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sapply(ecallermatch,nonallergen_allermatch) 
resA<- union(res1,res2); resB <- sapply(ecflnew,getfl_filtered); resC<- 
intersect(resA,resB) 
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6.2 Systems biology data 
Systems biology deals with a system-level understanding of biological systems.  A system 
can be defined by a set of interacting entities, which are linked to each other by direct and 
indirect interactions. A biological system is a very complex network, which cannot be 
described by reductionist’s approach because it gives us a limited knowledge of a particular 
gene or protein that is insufficient to understand the complex behavior of a biological 
network. There is a need to integrate all the knowledge and comprehend new networks, 
which provide the overall picture of a system. These inferred networks can be used for 
further computational analysis and if found promising, can be validated through 
experiments. System level understanding requires the integration of experimental and 
computational biology. Modeling is the best method to represent a pathway and is the 
easiest way to understand a complex network. A network is modeled as a graph, which is 
the formal mathematical representation of the network and consists of nodes and edges. The 
network can be shown diagrammatically by using classical graph theory. All type of pathways 
(e.g. Gene regulatory network, signal transduction and metabolic pathways) can be modeled 
using various modeling techniques. A modeler uses two types of approaches- Data driven 
pathway modeling and Knowledge based pathway modeling, depending on the 
presence/absence of sufficient literature (Viswanathan et al., 2008).  If the knowledge is 
limited, data driven pathway modeling becomes the best choice. These modeling techniques 
are also known as qualitative (Data driven) and quantitative (Knowledge driven) modeling 
approaches.  Data driven pathway modeling requires the DNA microarray data set. For 
example, the Gene Regulatory network (GRN) can be inferred by using logical networks like 
Boolean networks, probabilistic Boolean network and dynamic Bayesian networks (Li et al., 
2007). 

R Scripts 
resabc<- sapply(eclabc,getgi_abcepitopes,0.9); nrresABC<- union(resabc,resabc); 
resbce<- sapply(eclbce,getgibce); nrresBCE <- union(resbce,resbce); resfl1<- 
intersect(nrresABC,nrresBCE); resbimas <- 
sapply(ecbimas,getgi_bimasepitopes,100); nrresBIMAS <- 
union(resbimas,resbimas); resiedb<- 
sapply(ec_iedb_mhci,getgi_iedbmhciepitopes,50); resiedbmhc1 <- 
sapply(ec_iedb_mhcii, getgi_iedbmhciiepitopes, 50); nrresIEDBMHC2 <- 
union(resiedbmhc1,resiedbmhc1); resnetmhcnn<- 
sapply(ecNetMHCneuralnet,getgi_NetMHCNNepitopes); nrresNETMHCNN <- 
union(resnetmhcnn,resnetmhcnn); resnetmhcwtmat <- 
sapply(ecNetMHCwtmatrix,getgi_NetMHCwtepitopes); nrresNETMHCWTMAT 
<- union(resnetmhcwtmat,resnetmhcwtmat); respropred<- 
sapply(ecpropred,getgipropred); nrresPROPRED<- 
union(respropred,respropred); nr1<- intersect(nrresBIMAS,nrresIEDB); nr2<- 
intersect(nr1,nrresIEDBMHC2); nr3<- intersect(nr2,nrresNETMHCNN); nr4<- 
intersect(nr3,nrresNETMHCWTMAT); nr5<- intersect(nr4,nrresPROPRED); 
selectedgis<- intersect(resfl1,nr5) 
finalgis<- intersect(selectedgis,resC) 
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A quantitative model describes a system with a set of mathematical equations.  Recently, 
many software tools have been developed for quantitative modeling of biological systems. 
We know that all physiochemical reactions follow a physical or chemical principle. For 
example a given enzyme catalysis reaction may follow the Michaelis Menten kinetics 
(Nelson et al, 2000). Thus, every reaction in kinetic model is represented in kinetic equation, 
which is then solved by the ordinary differential equation. In other words, a model is 
represented as a system of ODEs (Ordinary Differential Equations) for each of the reactions 
involved in the pathway (Tyson et al., 2001). If kinetic parameters are available, ODE based 
modeling becomes the best tool to understand dynamics of network. 
There are variety of bioinformatics tools available for modeling systems in many platforms. 
(Table 1 and Table 2) 
 
Task Tools Web address 
Model construction  
 

CellDesigner 
Jarnac 
Jdesigner 
Gepasi 

http://www.celldesigner.org/ 
http://sys-bio.org/ 
http://sys-bio.org/ 
http://www.gepasi.org/ 

Simulation 
 

CellDesigner  
COPASI 
Gepasi 
SBaddon (MatLab tool) 

http://www.celldesigner.org/ 
http://www.copasi.org/ 
http://www.gepasi.org/ 
http://www.mathworks.com/ 

Model Analysis MatLab, 
R- environment 

http://www.mathworks.com/ 
http://www.r-project.org/ 

Table 1. Bioinformatics tools for systems modeling in different platforms. 

 
Package Name Application 
BoolNet Generation, reconstruction, simulation and analysis of synchronous,

asynchronous, and probabilistic Boolean networks 
odesolve Solver for ordinary differential equations 
lpSolve Interface to solve linear/integer programs 
nlme Linear and non-linear mixed effect model 
SBML-R SBML are R interface analysis tool 

Table 2. Tools for systems modeling in R platform 

6.2.1 Examining the expression pattern of genes in clinical strains, an example 
This process is initiated by first collecting the microarray data from public repository. Next 
data normalization needs to be done. Log (base=10) transformed data can be used to 
normalize by using classical Z-score transformation method (Cheadle et al., 2003). Z-score 
reflects the relative expression condition of the genes. On the basis of z-score values we can 
categorize genes in many categories like highly expressed, moderately expressed and genes 
with low expression. We can also filter those genes having the z-score values higher than 
given cutoff in all samples or strains. The consistency of expression across the different 
samples or strains can be explained using Heatmap. R scripts may be used to obtain genes 
having z-score above 1 which would provide genes which are highly expressed. Heatmap 
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can be generated by using the R scripts. These heatmaps are false color image and very 
helpfull for visual comparison of different datasets. Dendrogram can be added on rows and 
columns by defining the heatmap arguments. The function Heatmap is provided by 
Bioconductor (Gentleman et al, 2004). 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 7. Heat map of all probesets with z-score greater than 1.0 in all 12 samples. Red – Lower 
limit, Yellow - Upper limit gene expression Zscores. The sample ids are labelled below. 
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Fig. 8. Decision tree to identify highly expressed genes in clinical strains. 

 

setClass("ZscoreEcoli",representation(pro
be_id = "character", expressionmat = 
"matrix")) 

readdata.ZscoreEcoliExp<- function(xz){xa<- 
readLines(con = xz); tempy<- NULL;for (i in seq ( along 
= xa)){tempx<- unlist(strsplit(xa[i],"\t"));tempy<- 
c(tempy, new("ZscoreEcoli", probe_id = tempx[1], 
expressionmat = 
matrix(c(as.numeric(tempx[2]),as.numeric(tempx[3]),as.
numeric(tempx[4]),as.numeric(tempx[5]),as.numeric(te
mpx[6]),as.numeric(tempx[7]),as.numeric(tempx[8]),as.
numeric(tempx[9]),as.numeric(tempx[10]),as.numeric(t
empx[11]),as.numeric(tempx[12]),as.numeric(tempx[13]
)), nrow=1,ncol=12) )) }; return(tempy)} 
[11]),as.numeric(tempx[12]),as.numeric(tempx[13])), 
nrow=1,ncol=12) )) }; return(tempy)} 

Fig. 9. Representation of S4 Class “ZscoreEcoli”. 
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6.2.2 Identifications of the attractors in a simple Boolean network using BoolNet 
package 
Biological entities can have 2 possible logical states ON or OFF i.e. transcription of gene 
being either ON or OFF, protein is either Present or Absent etc. A system is more intuitively 
understandable by logical assumptions.  Mainly Boolean logical network is used for the 
gene regulatory networks. Here we have implemented it on a more simple metabolic 
reactions network. Here we have chosen 3 reactions of genes involved in metabolic 
pathways of Mycobacterium tuberculosis, which are consistently highly expressed in 12 
different strains (Gao et al., 2005). This Boolean network consists of 8 genes. Simple rules are 
written for reaction by using AND and OR Boolean operators. Attractors are the points in a 
network towards which the system is evolved. Attractors can be steady states or cycles. 
These are the states where system resides most of the time (Müssel et al., 2010). 
########### 
Boolean network with 8 genes 
Involved genes: 
nad coa oaa pyr sdhlam accoa succoa cit 
Transition functions: 
nad = nad 
coa = coa 
oaa = oaa 
pyr = pyr 
sdhlam = sdhlam 
accoa = (coa & nad & pyr) | (cit & coa) 

S4 Methods 
setGeneric("getmatrix", function(object,x) 
standardGeneric("getmatrix"));setMethod("getmatrix","ZscoreEcoli",function(object,x
){tempmat<- object@expressionmat; tempnew<- NULL; if ( ( tempmat[1,1] > x) && 
(tempmat[1,2] > x) && (tempmat[1,3] > x) && (tempmat[1,4] > x) && (tempmat[1,5] 
> x)&& (tempmat[1,6] > x)&& (tempmat[1,7] > x)&& (tempmat[1,8] > x)&& 
(tempmat[1,9] > x)&& (tempmat[1,10] > x)&& (tempmat[1,11] > x)&& 
(tempmat[1,12] > x)) {tempnew <- new("ZscoreEcoli", probe_id = object@probe_id, 
expressionmat = tempmat);return(tempnew)} else return(0)}) 

R Scripts 
eczscore<- readdata.ZscoreEcoliExp("zscoreEcoli") 
EcoliMat <- sapply(eczscore,getmatrix,1); EcoliMatFinal <- setdiff(EcoliMat,0) 
mymat <- NULL; for (j in seq(along = EcoliMatFinal)){tempomat<- 
EcoliMatFinal[[j]]@expressionmat; rownames(tempomat) <- 
EcoliMatFinal[[j]]@probe_id; mymat<- rbind(mymat,tempomat)} 
heatmap(mymat) 
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succoa = (coa & sdhlam) 
cit = (accoa & oaa) 
########## 
Abbreviations 
NAD = NAD, COA = Coenzyme-A, OAA = oxaloacetate, PYR = pyruvate, SDHLAM= S-
adenosyl-L-methionine, ACCOA= acetyl-CoA, CIT = citrate, SUCCOA = succinyl-coA 
Description of network: - 
1. AcetylCoA   is formed by 2 reactions: Coenzyme A and NAD and Pyruvate OR Citrate 

and Coenzyme A 
2. SuccinylCoA is formed by Coenzyme A and S-adenosyl-L-methionine 
3. Citrate is formed by Acetyl-CoA and Oxaloacetate 
4. Species considered as constant (whose rules are not defined) e.g. NAD, OAA, PYR,  

SDHLAM and COA 
 
 

 
 

Fig. 10. Dependency among species in the example network of 8 genes 



 
Systems and Computational Biology – Bioinformatics and Computational Modeling 

 

274 

 
 

 

6.2.2 Identifications of the attractors in a simple Boolean network using BoolNet 
package 
Biological entities can have 2 possible logical states ON or OFF i.e. transcription of gene 
being either ON or OFF, protein is either Present or Absent etc. A system is more intuitively 
understandable by logical assumptions.  Mainly Boolean logical network is used for the 
gene regulatory networks. Here we have implemented it on a more simple metabolic 
reactions network. Here we have chosen 3 reactions of genes involved in metabolic 
pathways of Mycobacterium tuberculosis, which are consistently highly expressed in 12 
different strains (Gao et al., 2005). This Boolean network consists of 8 genes. Simple rules are 
written for reaction by using AND and OR Boolean operators. Attractors are the points in a 
network towards which the system is evolved. Attractors can be steady states or cycles. 
These are the states where system resides most of the time (Müssel et al., 2010). 
########### 
Boolean network with 8 genes 
Involved genes: 
nad coa oaa pyr sdhlam accoa succoa cit 
Transition functions: 
nad = nad 
coa = coa 
oaa = oaa 
pyr = pyr 
sdhlam = sdhlam 
accoa = (coa & nad & pyr) | (cit & coa) 

S4 Methods 
setGeneric("getmatrix", function(object,x) 
standardGeneric("getmatrix"));setMethod("getmatrix","ZscoreEcoli",function(object,x
){tempmat<- object@expressionmat; tempnew<- NULL; if ( ( tempmat[1,1] > x) && 
(tempmat[1,2] > x) && (tempmat[1,3] > x) && (tempmat[1,4] > x) && (tempmat[1,5] 
> x)&& (tempmat[1,6] > x)&& (tempmat[1,7] > x)&& (tempmat[1,8] > x)&& 
(tempmat[1,9] > x)&& (tempmat[1,10] > x)&& (tempmat[1,11] > x)&& 
(tempmat[1,12] > x)) {tempnew <- new("ZscoreEcoli", probe_id = object@probe_id, 
expressionmat = tempmat);return(tempnew)} else return(0)}) 

R Scripts 
eczscore<- readdata.ZscoreEcoliExp("zscoreEcoli") 
EcoliMat <- sapply(eczscore,getmatrix,1); EcoliMatFinal <- setdiff(EcoliMat,0) 
mymat <- NULL; for (j in seq(along = EcoliMatFinal)){tempomat<- 
EcoliMatFinal[[j]]@expressionmat; rownames(tempomat) <- 
EcoliMatFinal[[j]]@probe_id; mymat<- rbind(mymat,tempomat)} 
heatmap(mymat) 

 
Biological Data Modelling and Scripting in R 

 

275 
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Fig. 10. Dependency among species in the example network of 8 genes 
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Fig. 11. Plot of different attractors in the network. Node is representing state and line 
representing state transition.  Colour in plot is corresponding to different basin of attraction. 
We obtained total of 44 attractors for the network of which 39 have single state and 5 
attractors have 2 states.  

 

 
Fig. 12. Plot of Attractors with 2 states (from subsets 39 to 44). Red colour given for inactive 
genes and green colour is given for active genes. Each attractor given in plot is contributing 
1.56% in the network.  
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Even though this is simple reaction network, yet it is giving the view about the states where 
system can reside most of the time i.e. attractors in the network.  We can study the knockout 
and over expression in a complex network. Robustness study of the network is also possible 
by studying network behavior through knocking out genes.  

6.3 Chemoinformatics data 
The Chemoinformatics branch is the interface between Computer applications and 
Chemistry and deals with problems of the field of the chemistry.  Chemoinformatics 
concentrates on molecular modelling, chemical structure coding and searching, data 
visualization etc.  
Molecular modelling involves the use of theoretical methods and computational techniques 
to model or mimic the behavior of molecules. It helps reduce the complexity of the system, 
allowing many more particles (atoms) to be considered during simulations. Data 
visualization is the study of the visual representation of data by graphical means.  
Chemoinformatics is useful specially to solve drug discovery related problems. Drug-like or 
Lead identifications are done through various in-silico methods in chemoinformatics. Drug-
like compounds refer to the compounds, which follow the lipinski’s rule and have structural 
similarities with the known drugs and bind to the active site of the target but have not been 
tested in laboratory. There are also various databases available helping in this direction.  
 

Functions Tools Links 

Databases for 
searching Known 
Inhibitors 

Pubchem 
Pubmed 
Drug Bank 

http://pubchem.ncbi.nlm.nih.gov/search/search.
cgi 
http://www.ncbi.nlm.nih.gov/pubmed 
http://www.drugbank.ca/ 

Molecular 
Visualization  
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Rasmol 
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Structres drawn 
StructuresViewed 
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Fig. 11. Plot of different attractors in the network. Node is representing state and line 
representing state transition.  Colour in plot is corresponding to different basin of attraction. 
We obtained total of 44 attractors for the network of which 39 have single state and 5 
attractors have 2 states.  

 

 
Fig. 12. Plot of Attractors with 2 states (from subsets 39 to 44). Red colour given for inactive 
genes and green colour is given for active genes. Each attractor given in plot is contributing 
1.56% in the network.  
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Package Name Principle Application
ChemmineR Uses Tanimoto 

coefficient as the 
similarity measure 

Atom-pair descriptors calculation with the help 
of functions included within it, 2D structural 
similarity searching, clustering of compound 
libraries, visualization of clustering results and 
chemical structures. 

Rcdk Allow an user to access 
functions of CDK (JAVA 
library for 
Chemiinformatics) on R 
platform 

Reading molecular file formats, performing ring 
perception, aromaticity detection to fingerprint 
generation and determining molecular 
descriptors of various properties of Drug-Like 
compounds 

Rpubcem Uses various functions 
for data retrieval 

Helps access the datas and assays of 
compounds from pubchem 

ic50 Helps determine the 
efficiency of a newly 
found drug like molecule

Calculates IC50 

Bio3D Analysis of protein 
structure and sequence 
data 

Protein structure analysis, comparative analysis 
with different proteins, aligns protein 
sequences. 

Table 4. Tools useful in Chemoinformatics in R 

6.3.1 Identification of drug-like compounds 
In this era, with the rise in number of infectious life threatening diseases due to clever 
change at sequence level of the pathogenic organism, discovery of new potential drugs 
holds immense importance. In this direction various in-silico chemoinformatics tools 
mentioned in Table 3 are helpful. In the problem regarding identification of Drug-like 
compounds the initial step would include literature search for known inhibitors of the 
disease target. Similarly a database of publicly available drug like molecules is obtained 
from various databases like ZINC (Irwin et al., 2005), NCI (Voigt et al., 2001) database etc. 
Thereafter Marvin sketch (MarvinSketch 5.3.8, 2010) may be used to draw the known 
inhibitors and their analogs, which need to be saved in file formats: Structure Data Format 
(SDF) and Simplified Molecular Input Line Entry Specification (SMILES). Using 
ChemmineR package (Cao et al, 2008) on R platform similarity search of Known inhibitor 
with the database of publicly available drug-like molecules is done using Tanimoto 
Coefficient where a desirable cutoff score e.g. 0.6 may be used as cutoff score to obtain a list 
of similar lead compounds. This list corresponds to a number of compounds similar to the 
known inhibitors. The properties of these similar compounds are calculated with another 
package of R called rcdk (Guha et al, 2007). The Lipinski’s rule of five can be applied to 
further shortlist. The solubility of these compounds can be analysed by pHSol 1.0 Server 
(Hansen et al, 2006). For analyzing protein-ligand binding, docking is done using AutoDock 
software (Goodsell et al, 1996). If the ligand binds to the active site, only then it may have 
pontential to interfere with protein function thereby eligible for further testing. Thereafter to 
test its potential further, energy minimization and simulation are done with various 
softwares eg. GROMACS (Hess et al., 2008). The ligand fulfilling all the desirable drug like 
quality and showing good stability over a reasonable time period of simulations (5-10 
nanoseconds) may be selected as a candidate for testing. This process is represented as 
decision tree (Figure 13). 
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Fig. 13. Decision tree to identify Drug like compounds. 

 

setClass(Class="MolDescriptors",representation=representation
(Mol_id="numeric",TPSA="numeric",nHBAcc="numeric",nHB
Don="numeric",nRotB="numeric",LipinskiFailures="numeric",
MW="numeric",XLogP="numeric",SMILE="character")) 

readdata.MolDescriptors= 
function(filename){x=readLines(
con=filename);temp=NULL;obj=
NULL;for(i in 
2:length(x)){temp=unlist(strsplit(
x[i],"\t"));print 
(temp);obj=c(obj,new("MolDescri
ptors",Mol_id=as.numeric(temp[
1]),TPSA=as.numeric(temp[2]),n
HBAcc=as.numeric(temp[3]),nH
BDon=as.numeric(temp[4]),nRot
B=as.numeric(temp[5]),LipinskiF
ailures=as.numeric(temp[6]),MW
=as.numeric(temp[7]),XLogP=as.
numeric(temp[8]),SMILE=temp[
9]));}return(obj);} 

Fig. 14. Representation of S4 Class “MolDescriptors” with R scripts to accomplish the 
construction. 
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6.4 Text mining 
During last few decades there has been enormous increase in the size of research data in the 
form of scientific articles, abstracts and books, online databases and many more. This text 
data may be structured or unstructured and need of hour is to mine for useful information 
from text data. 
Thus text mining has evolved widely as an interdisciplinary discipline using methods from 
computer sciences, linguistics and statistics. R provides intelligent ways in accessing and 
integrating the treasure of information hidden in the scientific journals, papers and other 
electronic media. It is most often used to perform statistical and data mining analyses and is 
best known for its ability to analyze structured data. Majority of people read only abstracts 
of papers so as to save time and avoid in going into details of irrelevant articles. The tm R-
package provides complete platform that efficiently processes various text documents to 
extract useful information (Feinerer et al, 2008). The database backend support also 
minimizes the memory demands to handle very large data sets in R. It accepts text data 
either from local database or directly from online database. 

6.4.1 An example of text mining PubMed abstracts  to get frequently appearing gene 
symbols and drug names 
We downloaded abstracts for PubMed query “Glioma” from PubMed. We formatted these 
abstracts in R so as to get a file containing PMIDs, Titles, Abstract Text and Journal Name in 
separate columns. We create the S4 class object of this Abstract file. Now if we have to 
search for any abstract containing a pattern or word of our interest we use regexpr function 
in R to get all those abstracts e.g. pathway. 
From these filtered Glioma pathway abstracts a Corpus (collection of large text) is generated 
using tm package function. This Corpus is subjected to Stemming, Stop word removal, 
common English word removal using R libraries rJava, RWeka (Hornik et al, 2009), 
RWekajars, slam, Snowball (Hornik, 2009), Corpora. We can set other controls as well. Now 
we can create term document matrix from this Corpus, containing all terms as rows and 
abstracts as columns. From this term document matrix we can extract the terms within 
different frequency ranges i.e., their number of occurrences in each abstract indicating 
their importance. Thus we can predict that terms which have higher frequency of 
occurrence in the matrix are more important and are related in some sense. We have filtered 
all the terms with frequency of their occurrence greater than 5.   

S4 method to get filtered molecular Descriptor Data 
setGeneric("FilterMols",function(obj,x)standardGeneric("FilterMols")); 
setMethod("FilterMols", 
"MolDescriptors",function(obj,x){if(obj@LipinskiFailures==x){return(obj);}else{return(
0);}}) 

Example R Scripts to get filtered molecular Descriptor Data 
result=sapply(mol,FilterMols,1); result_final=setdiff(result,"0") 
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These terms were ‘intersect’ with HUGO Gene Nomenclature Committee data set (HGNC) 
(Bruford et al, 2008) and drug names from DrugBank (Knox, et al 2011). We thus get the list 
of all the gene symbols, gene names, gene aliases  and drug names in the said frequency 
range from term document matrix. We now determine the total count of their occurrence in 
matrix so as to rank these extracted genes and drugs. We can make clusters from these data 
and can find gene-drug, gene-gene, and drug-gene interactions in different ranges of 
correlation. The decision tree is shown in Figure 15. The dataclasses with their 
representations is described in Figure 16. 
 

 
Fig. 15. Decision tree to identify Glioma that include pathway in the text. 
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setClass("TextMining", representation(PMID = "numeric", 
Title ="character",Abstract = "character", Journal_Name = 
"character")) 

readdata.textmining<- 
function(xz){xa<- readLines(con = 
xz);tempy<- NULL;for (i in seq ( along 
= xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- 
c(tempy, new("TextMining", PMID = 
as.numeric(tempx[1]), Title = temp[2], 
Abstract = tempx[3], Journal_Name = 
tempx[4]))};return(tempy)} 

 
 
 
 

Fig. 16. Representation of S4 Class “TextMining” with R scripts to accomplish the 
construction. 

 
 
 
 
 

 
 
 
 

6.5 Getting data from Pfam and PRINTS for a specified domain or pattern name. 
Pfam data for a specified domain name or PRINTS data for specified pattern name may be 
extracted using S4 scripts. The process is summarized below in form of decision tree (Figure 
17). The dataclasses with their representations is described in Figure 18 and Figure 19. 

S4 Methods 
setGeneric("getAbstract", function(object) standardGeneric("getAbstract")); 
setMethod("getAbstract","TextMining",function(object){if 
(regexpr(pattern="pathway",object@Abstract,fixed=TRUE)!=-1){return 
(object@Abstract)}}); 
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Fig. 17. Decision tree to identify data from Pfam and PRINTS for a specified domain or 
pattern name. 

R Scripts 
filtered<- sapply(textfile,getAbstract) 
doc1 <- filtered[!sapply(filtered,is.null)] 
library(tm);library(rJava);library(RWekajars);library(RWeka);library(slam);library(
Snowball);library(corpora); 
doc2<-Corpus(VectorSource(doc1)) 
setcontrol<-list(minDocFreq = 6, removeNumbers = FALSE, stemming = TRUE, 
stopwords = TRUE) 
TDM<-TermDocumentMatrix(doc2,control=setcontrol) 
Terms<-inspect(TDM[1:17,1]) 
Terms1<-as.data.frame(Terms) 
write.table(Terms1,file="Terms1.txt",sep="\t") 
write.table(Terms1,file="Terms1.txt",col.names=FALSE,sep="\t") 
Terms2<-read.table("Terms1.txt",header=FALSE,sep="\t") 
FilteredTerms<-as.character(Terms2[1:17,1]) 
load("HGNC_GENE_IDS.RData") 
load("DrugNamesDrugBank.RData") 
AllGeneSymbols<-c(as.character(HGNC_GENE_IDS[1:19363,2])); AllGeneNames<-
c(as.character(HGNC_GENE_IDS[1:19363,3])); AllGeneAliases<-
c(as.character(HGNC_GENE_IDS[1:19363,6])); AllDrugNames<-
c(as.character(DrugNamesDrugBank[1:6824,1])) 
getGeneSymbols<-intersect(AllGeneSymbols,FilteredTerms); getGeneNames<-
intersect(AllGeneNames,FilteredTerms); getGeneAliases<-
intersect(AllGeneAliases,FilteredTerms); getDrugNames<-
intersect(AllDrugNames,FilteredTerms) 
z1<- charmatch(getGeneSymbols,FilteredTerms) 
for(i in 1:4){b<-NULL;b<-z1[i];sumFreqOccurence<-NULL;sumFreqOccurence<-
sum(inspect(TDM[b,1:22]));write(sumFreqOccurence,file="SumFreqOccurence.txt",
append=TRUE,sep=",")} 
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intersect(AllGeneAliases,FilteredTerms); getDrugNames<-
intersect(AllDrugNames,FilteredTerms) 
z1<- charmatch(getGeneSymbols,FilteredTerms) 
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setClass("Prints",representation(ginumber = 
"numeric",organism 
="character",FingerPrint="character",E_value= 
"numeric")) 

readdata.prints<- function(xz){xa<- 
readLines(con = xz); tempy<- NULL;for (i 
in seq ( along = xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- c(tempy, 
new("Prints", ginumber = 
as.numeric(tempx[1]), organism = 
tempx[2],FingerPrint=tempx[3], E_value= 
as.numeric(tempx[4])))};return(tempy)} 

 

Fig. 18. Representation of S4 Class “Prints” with R scripts to accomplish the  construction. 

 

setClass("Pfam",representation(ginumber = 
"numeric",organism ="character",alignment_start = 
"numeric",alignment_end = "numeric",envelope_start= 
"numeric",envelope_end= 
"numeric",hmm_acc="character",hmm_name="character",
type="character",hmm_start= "numeric",hmm_end= 
"numeric",hmm_length= "numeric",bit_score= 
"numeric",E_value= "numeric",significance= 
"numeric",clan="character")) 

readdata.pfam<- function(xz){xa<- 
readLines(con = xz); tempy<- 
NULL;for (i in seq ( along = 
xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- 
c(tempy, new("Pfam", ginumber = 
as.numeric(tempx[1]), organism = 
tempx[2],alignment_start= 
as.numeric(tempx[3]),alignment_end= 
as.numeric(tempx[4]),envelope_start= 
as.numeric(tempx[5]), envelope_end= 
as.numeric(tempx[6]),hmm_acc= 
tempx[7],hmm_name= tempx[8],type= 
tempx[9],hmm_start= 
as.numeric(tempx[10]),hmm_end= 
as.numeric(tempx[11]),hmm_length= 
as.numeric(tempx[12]),bit_score= 
as.numeric(tempx[13]),E_value= 
as.numeric(tempx[14]), significance= 
as.numeric(tempx[15]),clan= 
tempx[16]))};return(tempy)} 

 

Fig. 19. Representation of S4 Class “Pfam”along with R scripts to accomplish the 
construction. 
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7. Parallel computing 
When the data size is large (example in millions) and fast information calculation and 
retrieval is needed, a single modern computational processor fails to fulfill the purpose. In 
that case, a number of processors are needed to work simultaneously, each carrying out 
same set of operations on different data objects. This type of approach is called Parallelization 
on data level; the processing time for a single object is not being reduced but a number of data 
objects are being processed during the same time-interval by separate processors. 
The Rmpi package (Yu, 2010) is helpful in this direction. We used ChemmineR (Cao et al 
2008) using Rmpi, an interface to MPI (Message Passing Interface). In MPI, processes 
communicate with each other by sending and receiving messages. We made a library of 
small molecules of size around 26 millions in SDF file format from various publicly and 
commercially available sources; these molecules were distributed over 1792 files. We have 
used ChemmineR's cmp.parse() function to get corresponding atom-pair descriptors and 
these were stored in .rda files. These .rda files constitute our database. Our aim was to find 
molecules similar to a given query molecule. 
On a typical workstation of 1GB RAM and Intel(R) Pentium(R) 4 CPU 3.40GHz, it takes 
about 5 hrs to complete a similarity search. In order to increase the speed we have used 
Rmpi (version: 0.5-8) along with Open MPI (version 1.3.2) – A High Performance Message 
Passing Library and implemented the Data Level Parallelization on ROCKS (release 4.3) 
cluster- an open-source Linux cluster distribution with eight nodes having Intel(R) 
Xeon(TM) CPU 3.60GHz processors. The result was a significant increase in performance 
and the job was done within 30 minutes. This approach has been shown in Figure 20 as a 
flowchart. 

S4 Methods 
setGeneric("get_prints",function(object,x) 
standardGeneric("get_prints"));setMethod("get_prints","Prints",function(object,x){if 
( object@FingerPrint == x) {tempo<- 
paste(object@ginumber,object@organism,object@FingerPrint,object@E_value, sep=" 
"); return (tempo)}else {return(0)} }) 
setGeneric("get_pfam",function(object,x) 
standardGeneric("get_pfam"));setMethod("get_pfam","Pfam",function(object,x){if ( 
object@hmm_name == x) {tempo<- paste(object@ginumber,object@organism, 
object@alignment_start, object@alignment_end, object@envelope_start, 
object@envelope_end, object@hmm_acc, object@hmm_name, object@type, 
object@hmm_start, object@hmm_end, object@hmm_length, object@bit_score, 
object@E_value, object@significance, object@clan, sep=" "); return (tempo)}else 
{return(0)} }) 

R Scripts 
result1<- sapply(eclprints,get_prints,"HOMSERKINASE");result1<- setdiff(result1,"0") 
result1<- sapply(eclpfam,get_pfam,"DnaJ");result1<- setdiff(result1,"0") 
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setClass("Prints",representation(ginumber = 
"numeric",organism 
="character",FingerPrint="character",E_value= 
"numeric")) 

readdata.prints<- function(xz){xa<- 
readLines(con = xz); tempy<- NULL;for (i 
in seq ( along = xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- c(tempy, 
new("Prints", ginumber = 
as.numeric(tempx[1]), organism = 
tempx[2],FingerPrint=tempx[3], E_value= 
as.numeric(tempx[4])))};return(tempy)} 

 

Fig. 18. Representation of S4 Class “Prints” with R scripts to accomplish the  construction. 

 

setClass("Pfam",representation(ginumber = 
"numeric",organism ="character",alignment_start = 
"numeric",alignment_end = "numeric",envelope_start= 
"numeric",envelope_end= 
"numeric",hmm_acc="character",hmm_name="character",
type="character",hmm_start= "numeric",hmm_end= 
"numeric",hmm_length= "numeric",bit_score= 
"numeric",E_value= "numeric",significance= 
"numeric",clan="character")) 

readdata.pfam<- function(xz){xa<- 
readLines(con = xz); tempy<- 
NULL;for (i in seq ( along = 
xa)){tempx<- 
unlist(strsplit(xa[i],"\t"));tempy<- 
c(tempy, new("Pfam", ginumber = 
as.numeric(tempx[1]), organism = 
tempx[2],alignment_start= 
as.numeric(tempx[3]),alignment_end= 
as.numeric(tempx[4]),envelope_start= 
as.numeric(tempx[5]), envelope_end= 
as.numeric(tempx[6]),hmm_acc= 
tempx[7],hmm_name= tempx[8],type= 
tempx[9],hmm_start= 
as.numeric(tempx[10]),hmm_end= 
as.numeric(tempx[11]),hmm_length= 
as.numeric(tempx[12]),bit_score= 
as.numeric(tempx[13]),E_value= 
as.numeric(tempx[14]), significance= 
as.numeric(tempx[15]),clan= 
tempx[16]))};return(tempy)} 

 

Fig. 19. Representation of S4 Class “Pfam”along with R scripts to accomplish the 
construction. 
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Xeon(TM) CPU 3.60GHz processors. The result was a significant increase in performance 
and the job was done within 30 minutes. This approach has been shown in Figure 20 as a 
flowchart. 

S4 Methods 
setGeneric("get_prints",function(object,x) 
standardGeneric("get_prints"));setMethod("get_prints","Prints",function(object,x){if 
( object@FingerPrint == x) {tempo<- 
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"); return (tempo)}else {return(0)} }) 
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standardGeneric("get_pfam"));setMethod("get_pfam","Pfam",function(object,x){if ( 
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Fig. 20. Figure describing the parallel computing process, parallelization on data level. 

8. Building your own package 
The various R objects and S4 methods can be encapsulated into .RData named according to 
the selected problem. All these packages can be sourced from the link 
http://sourceforge.net/projects/sysbior/. 

9. Conclusion 
Various packages to handle biological data of diverse type of problems have been 
developed with the help of S4 object oriented programming. The S4 objects can be handled 
with ease applying S4 methods to fetch useful data. The process described here may also be 
modified with novel thought process to create S4 methods to fetch useful analysis data 
accomplishing other conditions.  
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Avinash Shankaranarayanan* and Christine Amaldas
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1. Introduction

Biology is the science of origin and evolution of life. Computational biology helps
biologists to understand evolution using computer applications. Bioinformatics is a subset
of computational biology centered at applying information and information processing tools
to enable the development of biology for deciphering the human genome, biotechnologies,
new legal and forensic techniques and futuristic medicines (Claverie et. al., 2003). More
importantly, Bioinformatics can be defined as a science for solving complex biological
problems using high performance computational tools. Sir Alfred Sanger won his Nobel
Prize for sequencing insulin which triggered the modern era of molecular and dynamic
biology that laid the foundation for molecular sequences (Claverie et. al., 2003). During
the pre-computer era, time consuming and error prone methods of sequence analysis and
storage were manually done. As the computing age took over, these sequences were input as
computer data and stored in flat files or databases. Programs were written to enable error free
comparison of existing sequences using preliminary pattern matching algorithms. Sequence
comparison is one of the most commonly used computer applications in Bioinformatics
research. The development of DNA sequencing tools and databases using information
processing technologies has lead to the birth of Bioinformatics. The importance of biological
sequences (DNA or proteins) is to provide a blueprint or map of the biological species
(function). When the sequence is reduced to its respective letters (A, T, G, C) it becomes
a unique identifier. This is a vital mechanism for computer scientists to store and retrieve
data using a unique identifier (ID). A user can search and exactly pinpoint a particular
gene in a database or flat file using the ID. The importance of applying identification or
classification to sequences led to the annotation of genes. Biologists can retrieve meaningful
information about the history of the genes using the unique ID (Shankaranarayanan, 2011).
An organism’s primary functional and hereditary information is stored as Deoxyribonucleic
Acid (DNA), Ribonucleic Acid (RNA) and Proteins. All of them are linear chains composed
of small molecules called macromolecules. These macromolecules are made up of a fixed set
of alphabets varying in characteristics. The DNA is made up of four de-oxyribonucleotides
namely, adenine (A), thymine (T), cytosine (C), and guanine (G). Similarly the RNA is made

*The Authors would like to take this opportunity to thank Professors Francisco P. Fellizar, Jr. and A
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comments and support.
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1. Introduction

Biology is the science of origin and evolution of life. Computational biology helps
biologists to understand evolution using computer applications. Bioinformatics is a subset
of computational biology centered at applying information and information processing tools
to enable the development of biology for deciphering the human genome, biotechnologies,
new legal and forensic techniques and futuristic medicines (Claverie et. al., 2003). More
importantly, Bioinformatics can be defined as a science for solving complex biological
problems using high performance computational tools. Sir Alfred Sanger won his Nobel
Prize for sequencing insulin which triggered the modern era of molecular and dynamic
biology that laid the foundation for molecular sequences (Claverie et. al., 2003). During
the pre-computer era, time consuming and error prone methods of sequence analysis and
storage were manually done. As the computing age took over, these sequences were input as
computer data and stored in flat files or databases. Programs were written to enable error free
comparison of existing sequences using preliminary pattern matching algorithms. Sequence
comparison is one of the most commonly used computer applications in Bioinformatics
research. The development of DNA sequencing tools and databases using information
processing technologies has lead to the birth of Bioinformatics. The importance of biological
sequences (DNA or proteins) is to provide a blueprint or map of the biological species
(function). When the sequence is reduced to its respective letters (A, T, G, C) it becomes
a unique identifier. This is a vital mechanism for computer scientists to store and retrieve
data using a unique identifier (ID). A user can search and exactly pinpoint a particular
gene in a database or flat file using the ID. The importance of applying identification or
classification to sequences led to the annotation of genes. Biologists can retrieve meaningful
information about the history of the genes using the unique ID (Shankaranarayanan, 2011).
An organism’s primary functional and hereditary information is stored as Deoxyribonucleic
Acid (DNA), Ribonucleic Acid (RNA) and Proteins. All of them are linear chains composed
of small molecules called macromolecules. These macromolecules are made up of a fixed set
of alphabets varying in characteristics. The DNA is made up of four de-oxyribonucleotides
namely, adenine (A), thymine (T), cytosine (C), and guanine (G). Similarly the RNA is made
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up of four ribonucleotides namely, adenine (A), uracil (U), cytosine(C) and guanine (G) and
the proteins are made up of 20 amino acids (Gibas & Jambeck, 2001).

Fig. 1. DNA the fundamental building block of living Organisms.

Amino acids are the building blocks of proteins. An amino acid consists of a central
carbon atom, linked to an amino acid group, a carboxylic acid group, a hydrogen atom,
and a distinctive R group. The R group is often referred to as the side chain. With four
different groups connected to the tetrahedral -carbon atom, -amino acids are chiral; the two
mirror-image forms are called the l - isomer and the d - isomer. To build a simple tool for
converting DNA to RNA, we can write a substitution algorithm to replace all the T’s with
the U’s. This process of converting DNA to RNA or vice-versa is called transcribing. These
macromolecules are defined as side-chains of defined components and are represented as a
string of alphabets called sequences. The central dogma of molecular biology states that a
DNA acts as a template to replicate itself; a DNA can transcribe itself into RNA and RNA into
protein. Hence, the DNA contains the blue print of all living organisms where the DNA is
used to replicate or reproduce similar organisms. The importance of applying identification
or classification using sequence labels led to annotation of the genes where biologists could
get meaningful information and history of the gene using the label information. Hence, an
entire DNA sequence that codes the living organism is termed as a genome. Vast amounts
of sequence data are stored in various remote database sites and are queried for sequence
matching. This chapter is divided into two research phases. In Phase 1 we conduct an in
situ experimentation of which the DNA of the input feed obtained from the Andaman and
Nicobar Islands is analyzed and sequenced using Bioinformatics tools and computational
techniques. In Phase 2, we setup a small scale bio-digester unit in a laboratory to test and
verify the calorific content of the input feed (Biomass). We then go about improving the Biogas
output using extraneous input feed materials and additives.

2. Understanding the importance of biotechnology

For centuries exploring and improving Biotechnology processes has been primarily a
self-instigating approach by human beings simply because of something called the food-chain.
Through the process of photosynthesis and transpiration plants convert sunlight and carbon
dioxide (CO2) into rich energy units to form the primary storage (namely food) devices
of energy in the food chain. The primary, secondary and other types of food chains
exist because of these mechanisms. Due to the decomposition of plants and animal dead
matter, abundant sources of fossil fuels were discovered as the primary sources of energy.
Economies around the world have come to depend upon fossil fuel resources so much that it is
considered as a major bottleneck for many developing economies. Due to the vast exploitation
and in-consideration towards preserving the Bio-diversity and Natural resources amongst
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Nations, we have embarked upon a new journey where climate change and environmental
de-gradation is threatening to put an end to our way of life. Energy is and will be the future
blood line of modern economies. Food security and changes in life style has also been a major
concern in the ever expanding human population. A part of the bio-technology industry’s
point of view: genetics will help alleviate world hunger. According to Nobel Prize winning
economist Amartya Sen, people are hungry because they cannot afford to buy food owing to
failing market economics. Hence, one part of the population is obese due to the substantial
amount of food intake, while the other is under-nourished due to non-affordability of food
as a commodity. International trade and economic policies have led to immense poverty,
inequality and lack of access to food due to over population and poor governance. A majority
of the islands in the Asia-Pacific region suffer from imported energy dependence. Island
development problems are mostly related to imported fossil fuel dependence, fresh water
availability and municipal solid waste management, associated with transportation and other
issues. Most developed countries such as Japan and Singapore and developing countries such
as India, China and the Philippines deal with hosts of Islands in the Asia-Pacific relying on rice
and other Biomass as the primary sources of staple food for consumption. One such example
is the Andaman and Nicobar islands of the Indian Sub-continent where Biomass samples from
a digester unit have been analyzed using Bio-technology processes. Agricultural produce
today is mainly dependent on a fossil based economy. Economic growth is conventionally
measured as the percentage rate of increase in real Gross Domestic Product (GDP). Power
production is the key to economic development in most countries. The power sector has
been receiving inadequate priority in agricultural production in most developing countries.
Energy production and supply in most islands depend mainly on expensive fossil fuels
imported. These land masses are usually linked by a weak electricity grid connection like
undersea submarine cables from the main-land. Prohibitive cost escalation due to distance
and other geographic/demographic conditions have been met with increasing energy costs
on the islands. The most promising resource that can abundantly store energy are that of
available Biomass. Biomass based Bio-energy is capable of storing finite sources of energy that
is replenishable in the form of aforestation and sustainable agriculture. The stored Biomass
can later be used for electricity production and for transportation in the form of Bio-fuels such
as compressed Biogas, hydrogen and other fuels. Bioenergy refers to the utilization of living
plants as an energy source and Bioinformatics acts as a platform for utilizing computational
tools and genetic blueprints to increase the yield of harvests. Bioenergy is extensively utilized
worldwide; 13% of the worlds energy is utilized in the form of fuel firewood and woody
biomass; 0.3% in the form of Bio-fuels (Keefe et. al., 2010). The United States for example,
is utilizing 5% of its primary energy production from bio-energy (IEA, 2007). Bio-energy
comprises of a range of material resources as distinguished below:

Woody Biomass - Wood and plant based materials utilized for heating or lighting purposes
by rural population. For example, Small Islands of the Asia Pacific are affected by energy
poverty.

Biomass - all forms of plant materials and organic waste sources that are also dried or
fermented for gas (Biogas) or energy generation through co-firing.

Bio-fuels - also termed as Bio-diesel and ethanol / alcohols that are extracted from oil rich
plants (energy crops) such as rapeseed and Jatropha used in transportation and liquid fuel
appliances.
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Renewable energy production have come more into public focus because of problems caused
by the expected shortage of fossil fuels in the next few decades. Global warming due to
CO2 release from the burning of fossil fuels and woody biomass is causing climate change
leading to a warmer planet and rising sea levels. These research challenges can be alleviated
by the production of biogas from biomass sources (plant or organic waste materials) through
biological processes (Angelidaki & Ellegaard, 2003). Anaerobic digestion (exposure to oxygen
less environment) of plant biomass can be carried out in biogas plants though a series of
metabolic processes (Daniels, 1992; Weiland, 2003; Yadvika et. al., 2004). Biogas is a high
calorific mixture of gases having a high content of methane (CH4). Anaerobic digestion is
a biological process that produces gas mainly composed of CH4 and CO2 otherwise known
as biogas in an oxygen free environment. It is produced from the decomposition of organic
wastes (i.e. from biomass sources such as manure, food waste, wood waste, etc.).

Methane (CH4): 40-70 vol. %.

Carbon dioxide (CO2): 30-60 vol. %.

Other gases: 1-5 vol.% (including hydrogen (H2): 0-1 vol% and hydrogen
sulfide (H2S): 0-3 vol.%).

Fig. 2. Biogas Compostion

Biogas producing microbial community (biogas microbes) consist of a large group of complex
and differently acting microbe species, most notable the methane-producing bacteria (for
example Eubacteria). The whole biogas production process can be divided into three
stages: Hydrolysis, Acidification (Acidogenesis and Acetogenesis), and methane formation
(Methanogenesis). The first stage is to take the organic ruminants of plant compounds
including cell wall components such as cellulose and xylan which are hydrolyzed and
converted into mono-, di- and oligosaccharides (Bayer et. al., 1992; Cirne et. al., 2007;
Lynd et. al., 2002). During hydrolysis, the organic substances are divided into molecular
components such as amino acids, glycerin, sugars and fatty acids. The hydrolysis process
is conducted mainly by cellulolytic Bacilli and Clostridia, often utilized as a first step under
anaerobic conditions. In the second stage, sugar intermediates are fermented to organic acids
(acidogenesis) which in turn are converted to CO2, Acetate, and H2 by bacteria performing
secondary fermentations (Drake et. al., 1997; Myint, 2007). In the acidification phase,
microorganisms convert these intermediate products into H2 and CO2. The final stage is the
methanogenesis stage that is conducted by Archaea which is constrained by a selection of few
input substrates such as Acetate, CO2 and H2 and several C1 compounds like alcohols and
formates that are transformed into methane and water (Deppenmeier, 1996) according to the
equation:

CO2 + 4H2− > CH4 + 2H2O (1)

Numerous thermodynamic biochemical reactions are enabled based on closed interactions of
two or more bacterial strands (for example H2 feeding from algae). Methanogenic pathways
have been analyzed by many models using enzymology (Schink, 1997; Schink et. al, 2006). The
actual composition and interactions of biogas-producing microbial community is undefined
as specific bacterium’s could not be confirmed in the actual processes (Ferry, 1999; Reeve
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et. al., 1997). It could be speculated that the origin of the input feed acquired from the
digester unit might have been exposed to several dynamic environments and climates during
acquisition stage. (Karakashev et. al., 2005; Shigematsu, 2004) state that the influence of
physio-chemical parameters on population structure and efficiency of biogas formation still
needs to be extensively investigated (Schlüter et. al., 2008). The calorific value is the most
important factor that determines how much energy content is available in the biomass. It is
used to estimate the energy potential of the input feed (Biomass fed into a fermenter unit).
The calorific value of biogas is estimated to be about 6 kWh/m3 of gas produced which
roughly corresponds to around half a liter of diesel oil. The net calorific value depends on
the efficiency of the burners or appliances. Methane gas is the valuable component under
the aspect of using biogas as a fuel. Although the calorific value here is a general value
assumed, the actual value varies based on the biomass used as feed. The energy potential
is determined by the calorific value which has the capacity to produce energy (electricity or
gas). An experimental setup was created to understand and verify the calorific values of
the biomass taken from a small scale digester unit in the Andaman Islands. In this section
we have discussed how Bioinformatics as a science could help us identify and improve our
energy dependent economies using bio-energy sources. In the next section we will explore the
various tools used by biologists and computational scientists.

3. Bioinformatics tools

Bioinformatics heavily relies upon statistical and analytical methods of processing biological
data. Some of the important biological research aims at studying the evolutionary effects
of gene mutation and similarities between gene sequences using computer technology. This
aids biologists to find and cure disease causing viruses by applying new and faster methods
of drug discovery in the laboratory. When looking for ways to improve agricultural yield
either for food production or for the production of Bio-fuels(bio-energy production), biologists
need to explore the realms of genetic blueprints of the plant biota to improve growing
conditions and provide for favorable yield. Biologists often require sequence comparison
and alignment applications such as Basic Local Alignment Search Tools (BLAST)(Altschul
et. al., 1992), ClustalW (Higgins et. al., 1996) and Tandem Repeats(Benson, 1999) which
are effectively utilized for processing large sets of gene sequences (plant and animal) for
similarity matching. BLAST and Tandem Repeats are used for finding the similarities and
mutational history between sequences, while ClustalW (Higgins et. al., 1996) is used for
studying evolutionary relationships. Biologists often need to detect similarities between
different genomic sequences. Therefore, BLAST was introduced in 1990. It was used for
searching databases such as the NCBI databases that stores sequences of different species
used for optimal local alignment (similarity) for a given input query of sequences. The BLAST
algorithm has similarities with the approximation of Smith-Waterman Algorithm which uses
a heuristic approach. (Waterman, 1981) algorithm is slow but guarantees to achieve the
best possible alignment based on optimal input parameters. It sacrifices some accuracy to
substantially increase the speed of the search. BLAST uses a heuristic search method to
make assumptions about the data based on previous experiences. It does not guarantee
to find the best alignment in all possible circumstances. Global alignments need to use
gaps (representing insertions/deletions) while local alignments can avoid them by aligning
regions between gaps. ClustalW (Thompson et. al., 1994) can be classified as a bioinformatics
application having semi-regular computational patterns, which means the algorithms are
composed of both synchronous and asynchronous steps. The basic idea behind the ClustalW
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algorithm has similarities with the approximation of Smith-Waterman Algorithm which uses
a heuristic approach. (Waterman, 1981) algorithm is slow but guarantees to achieve the
best possible alignment based on optimal input parameters. It sacrifices some accuracy to
substantially increase the speed of the search. BLAST uses a heuristic search method to
make assumptions about the data based on previous experiences. It does not guarantee
to find the best alignment in all possible circumstances. Global alignments need to use
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algorithm for building multiple alignments is centred on aligning the most related sequences
first. The exponential rise in the size of datasets increases the problems related to the
scalability of existing bioinformatics programs and tools. One approach to solving this
problem is to break the problems into a number of sub-problems which could be done either
in the algorithmic level (re-programming for parallel processing such as MPI) or dataset
parallelism where the data is broken down depending on the number of available processors.
Bioinformatics applications along with well defined outputs heavily rely on various methods
of pattern recognition and statistical methods of information processing (on sequences).
Bioinformatics tools had previously been extensively investigated (Shankaranarayanan, 2011),
most of the existing tools were either too low level (complicated); too expensive for most
laboratories to afford; and inflexible towards customizing requirements for heterogeneous
networks and computational environments without significant technical expertise. Hence,
high performance computational resources, such as Cluster and Grids enable faster results
when parallelized as discussed in the next section.

4. High performance computational challenges in bioinformatics

Substantial discoveries of new life forms and drugs takes place on a daily basis leading to
biological data being stored into remote databases (resources). The exponential increase in
the size of datasets makes it mandatory for biologists to opt for better methods of crunching
genomic data. Throughput is a form of measure by which the performance of an application
is quantified. There are many methods by which an application or algorithm can be optimized
as enumerated below (Shankaranarayanan, 2011):

I Algorithmic Optimization

II Heuristics Approach

III Statistical approach

IV High performance approaches

Optimization is the process of modifying a system to improve its efficiency (Optimization
definition, 2010). Algorithmic optimization generally focuses on the Quality of Service (QoS)
characteristics of a system namely execution time, memory usage, disk space, bandwidth or
other resources. This will usually require a tradeoff among the different available resources.
For example, increasing the size of cache improves runtime performance, but also increases
the consumption of memory. Another mechanism is to optimize the loops in the program
code which is termed as loop optimization. Heuristics is a technique designed to solve a
problem that ignores whether the solution can be proven to be correct (as used by BLAST),
but which usually produces a good solution or solves a simpler problem that contains or
intersects with the solution of the more complex problems. Heuristics are intended to gain
computational performance or conceptual simplicity potentially at the cost of accuracy
or precision (Heuristics definition, 2010). BLAST gene sequencing application is a good
example of applying heuristics to improve the performance of its search algorithms. The
statistical approach deals with utilizing probabilistic methods of approaching a problem
algorithmically. Mechanisms such as Marcov models of computing are applied to obtain
better results at the expense of processing time. Benson’s method of finding approximate
tandem repeats applies both heuristic and statistical methods for computing tandem repeats
(recently termed as micro satellites). Another approach to improving the throughput was
to apply distributed computing techniques to biology problems and applications. Recently,
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biologists have started to conduct in silico experiments. The term ’in silico’ refers to
conducting biological experiments using computational techniques. Biologists have started
to realize and utilize high performance distributed mechanisms to improve the running
time of bioinformatics applications by dividing the datasets into subunits to be processed
individually in parallel (simultaneous execution of processes on number of machines) by
available processors (Compute Nodes). The World Wide Web (WWW) technology enables
biologists and computer scientists to collaborate and conduct remote scientific experiments
using computational tools over the Internet. The exponential rise in the size of the datasets
acts as a bottleneck to scalability of existing bioinformatics applications and tools causing
system crashes, malfunctions (Data loss, etc) and sometimes even closure of research projects
due to the level of complexity involved. This sudden increase in data, leads to resource
allocation problems that cause poor performance and failure of applications. Therefore,
high-end computational tools and optimal resource allocation strategies becomes vital to
coping with such problems. Typical Bioinformatics applications face problems of application
and resource scalability when exposed to exponential increases in the input side (data set
sizes). This type of computational problems (usually NP-complete) requiring high end
compute resources are usually solved using high performance distributed systems such
as Clusters / Grids or supercomputers. Cluster computing is a ’task farming’ system of
computing that breaks the given problem into numerous sub-problems; and individual nodes
work on each of the sub-problems in parallel. The cluster utilizes a centralized head node
that ’farms out’ sub-tasks to a static set of loosely coupled nodes. Grid computing is a more
complicated infrastructure that provides better efficiency than cluster computing as it tries to
improve upon scalability through the dynamic addition of new nodes and efficient allocation
of resources. Although distributed approaches tend to inhibit application performance due
to external factors such as latency, bandwidth and scalability issues, when properly applied
can boost application performance manifolds.

Examples of a computationally expensive biological study

Dr Stanley Burt’s group (Shankaranarayanan, 2011) studied the enzyme mechanism of
many enzymes involved in cancer. For an enzyme named Ras, which is mutated in over
30% of known cancers, they modeled 1,622 atoms of the protein by molecular mechanics
and only 43 atoms by quantum chemistry. These studies took several years and were bound
by limited computational power. To calculate reaction surfaces normally takes several
months of time on High Performance Computers (HPC’s). Luthey Schulten’s group at
Illinois(Shankaranarayanan, 2011) did molecular dynamics simulations of Imidazole Glycerol
Phosphate Synthase, an enzyme involved in making DNA and RNA. It took 10 hours, 12
hours, and 40 hours respectively to animate one nanosecond on three cluster machines
(with different processor speeds). It took many nanoseconds of simulation to just relax the
systems to prepare for further simulations. It has been estimated that to go from nanoseconds
to milliseconds will require an increase in computer capacity of approximately 1,000,000.
This can only be achieved by applying optimal high performance hardware and software
techniques to improve the overall throughput of these tools.

Experiences by David Baker’s group at Illinois

Drug design using computational tools has become the defacto standard in applying
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example of applying heuristics to improve the performance of its search algorithms. The
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high performance tools using distributed techniques for drug discovery. A great recent
example is the discovery of Gleevec, an inhibitor of protein kinase activity, which brings
about complete and sustained remission in nearly all patients in the early stages of chronic
myeloid leukemia. If the structure of the protein is known, docking calculations can be
performed. This usually involves docking thousands of molecules into an active site and
scoring the resultant interaction. If the docking is done with rigid molecules, the calculations
are fairly trivial. If, however, flexibility is allowed, and most proteins and ligands do flex,
then the problem becomes enormously computationally expensive (Shankaranarayanan,
2011). If the protein structure is not known, and the protein is not similar to another one,
then one must perform ab initio structure determination. David Baker’s group at Illinois took
approximately 150 CPU days to determine the structure of the CASP6 target T0281. Also to
do a docking interaction between two proteins took 15 CPU days. He makes particular note
that his group is limited by computational power. A computational Grid test bed would have
ideally satisfied the computational requirements of the research group. In order to process
large sets of genomic data, high performance computational tools are available on distributed
computing platforms such as Clusters and Grids.

5. Methodology

The sources of evidence for this study were practical documentation, interviews, direct
observation, participatory-observation, field trips to the Islands of Andaman and Nicobar
in India, Marinduque, the Philippines and a post survey of the events on a one-one basis
with various Island authorities. The first purpose was to collect data using these sources and
second, to convey three essential data collection principles namely: using multiple sources
of evidence instead of a single source; creating a study database; and maintaining the chain
of evidence. The chapter is divided into two research phases. In Phase 1 we conduct an
in situ experimentation of which the DNA of the input feed is analyzed and sequenced
using Bioinformatics tools and computational techniques. In Phase 2, we setup a small
scale bio-digester unit in a laboratory to test and verify the calorific content of the input
feed (Biomass). We then go about improving the Biogas output using extraneous input feed
materials and additives. The data will then be analyzed at three levels. These will be at the
Biogas generation (Creation mechanism) level, Capture or detection (Monitoring) level, and
Gas Cleaning (Membrane and other technologies utilized).

6. Phase 1: Experimentation (in situ) using our input feed

The enzymology of methanogenic pathways has been evaluated in detail using biological
modeling and systems approaches (Blaut, 1994; Deppenmeier, 2002; Ferry, 1992; 1999; Reeve,
1992). But, the composition and interactions within a biogas-producing microbial community
namely the breakdown of specific bacterium to the overall process, is mainly unknown
during mesophilic or thermophilic stages of Biogas production. Moreover, the influence of
physio-chemical parameters on population structure and efficiency of biogas formation is still
under investigation (Karakashev et. al., 2005; Shigematsu, 2004). Hence, improvements to the
production of biogas are next to impossible without knowing the calorific value of the input
feed. The composition of biogas-producing microbial communities is determined through
the construction of 16S-rDNA clone libraries and subsequent sequencing of 16S-rDNA
amplicons as done by (Huang et. al., 2002; Klocke, 2007; Mladenovska, 2003). Moreover,
Polymerase Chain Reaction Single Strand Conformation Polymorphism (PCR-SSCP) followed
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by sequencing of obtained DNA-molecules will help understand the community structures
in a biogas reactor (Chachkhiani et. al., 2004). Many methanogenic communities were
analysed by using themcrA gene as a phylogeneticmarker (Lueders, 2001). Development
of third-generation ultrafast sequencing technologies such as pyrosequencing and related
computational tools have led to the realization of cost-effective large-scale environmental
shotgun sequencing projects (Schluter et al., 2008). Bioinformatics for the interpretation of
metagenomic data has constantly evolved and improved (Raes, 2007) wherein recently, a
novel gene finding algorithm allows the exploitation of the limited information contained
in the 250 nucleotides reads generated by 454-pyrosequencing for the prediction of coding
sequences has been developed (Krause, 2007). Here, the insight is into the metagenome
of a biogas-producing microbial community residing in the main fermenter of a small
production-scale bio-digester unit (Batch fed rural Andaman Islands) where in the obtained
nucleotide sequence data has been analyzed at the single read and contig level for their genetic
information content by applying different bioinformatics mechanisms.

6.1 DNA preparation from the fermenter unit
A fermentation sample was taken from a small scale bio-digester unit at an Agricultural site in
the Andaman and Nicobar Islands in October 2010. The sample was stored in entirely filled,
screw capped bottles and transferred to a laboratory. The analyzed sample was then fed into
a custom build bio-digester unit consisting of a fermenter and a storage reservoir that was
continuously fed with a mix of Corn/Maize silage (33%), Rice Husk (30%) and low amounts
of chicken manure (approx. 2%). The substrate was fermented at approximately 41 ◦C at a
pH-value of 7.3. The retention period of the substrate was 30 - 55 days. First microscopic
analysis of the fermentation sample was carried out within 2 hours upon sampling. Samples
were diluted with two parts of sterile tap-water. The diluted fermentation sludge was
strained for 30 min by the addition of 2 mg/ml 4, 6-diamidino- 2-phenylindole hydrochloride
(DAPI). Bacteria were visualized through the use of a fluorescence microscope. A 20 g
aliquot of the fermentation sample was used for total community DNA preparation by
applying a CTAB (cetyltrimethy - ammonium bromide) containing DNA extraction buffer
as described by (Entcheva, 2001; Henne, 1999). The obtained DNA pellet was re-suspended
in 8ml TE buffer. The final purification step included ten DNA-eluates which were pooled
and subjected to precipitation using 40ml NaCl (5M) and 2ml ethanol −20 ◦C. After
centrifugation (15,500 rpm, 6 min) the DNA-pellet was re-suspended in 100 ml TE buffer.
DNA concentration was analyzed by gel-electrophoresis. The applied method yielded a
highly pure genomic DNA. Sequencing of the genomic DNA derived from the biogas reactor
sample was done by applying the whole-genome-shotgun sequencing approach using a
third party vendor. Approximately 7 μg of DNA-preparation were used to generate a
whole-genome-shotgun library according to the protocol supplied by the manufacturer. After
titration, 4.5 DNA-copies per bead were used for the main sequencing run. After emulsion
PCR and subsequent bead recovery, 1,100,000 DNA-beads were subjected to sequencing.

6.2 Identifying cellulosome genes on assembled contigs
To search for contigs encoded cellulosome proteins, all protein sequences associated with the
annotation term ’Cellulosome’ were collected from the NCBI sequence database and imported
into a BLAST database. The obtained gene sequences were subjected to BLAST searches which
proved to be computationally expensive. The exponential rise in the size of the datasets
acted as a bottleneck to scalability of our existing bioinformatics applications and tools
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Obtained Sequence Assembly
No of reads 525,042
No of bases 121,554,183 bases
Avg read length 239.9 bases
No of large contigs 6,752
No of bases in large contigs 11,797,906 bases
Avg large contig size 1,348 bases
Largest contig 31,533 bases
No of all contigs 57,108
No of bases in all contigs 22,724,756 bases
Percentage of assembled bases (%) 16.04%

Fig. 3. Initial Results from the Andaman Islands DNA Sample prepared.

causing system crashes, malfunctions (for example data loss) due to the level of complexity
involved. This sudden increase in data, led to resource allocation problems that caused
poor performance and failure of applications. Typical Bioinformatics applications face such
problems of application and resource scalability when exposed to exponential increases in the
input side. To tackle this kind of computational complexities (usually NP-complete problems),
we required high end compute resources that utilized high performance distributed systems
such as computational Grids. Hence a previously researched computational platform
namely A3pviGrid (Shankaranarayanan, 2011) was utilized for the sequencing process using
Multi-Agents.

Fig. 4. The Block Diagram of the A3pviGrid System

A3pviGrid works on the principle of the power server model of computing. Each of the clients
ran the A3pviGrid server, a simplistic http web server running services in the form of CGI/Perl
wrapper Scripts. The client side coding model enables the developer to develop services using
the common gateway interface (CGI) which can use any of the languages that support CGI
scripting. For the sake of simplicity and rapid development of services we have used Perl as
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the language of choice due to its availability and portability for most platforms. The A3pviGrid
uses a decentralized directory structure (APM) to enable peers to register and de-register peers
and their respective services (Shankaranarayanan, 2011). A set of 128 nodes were used for job
processing. All the nodes ran A3pviGrid web servers. The Blast.apm file, a directory structure
file that is local to all nodes was downloaded by all the peers as part of the initialization
phase. This file contains information such as location information of nearby agents, domain
and IP address and other important data. Each of the nodes compute the ideal set of nodes
using a basic ping test based on the Blast grid service list. As all the nodes are capable of
receiving jobs, one of them was randomly chosen for job execution (Originator). Our Fasta
formatted Sequence database (DNA sequence Cellulosome from Biogas Digester Unit) was
used to evaluate the Blast searches. The input query file was obtained, and a set of jobs for job
processing was prepared using the optimal coalition list. Based on QoS characteristics namely
Latency, Load and CPU time, the Originator of the job computed the most optimal coalition.
Once the coalition list was computed the data files were migrated using the POST method
to all the members of the coalition. Each of the coalition members started to search using
the input query files and outputted the results to an output file. The output of the Search
Phase was then appended to a file using POST back to Originator where the results were
formatted using the Blast format perl script and stored as a file at the originator. Each of the
agents ran on a virtual machine (VM) test bed having their own execution environments. For
the sake of true heterogeneous functionality and testing, four operating environments were
deployed namely: Fedora Linux Core, Windows Vista Ultimate, Mac OS Leopard and Sun’s
Open Solaris 10. Each of the agents were given a resource limit which shared the following
specifications: 10 GB disk space; 4 GB RAM and Dual 2 GHZ CPU Cores. All VM’s were
equally created as disk images and were run on 10 networked computers each hosting the
four agents (on four core operating environments). Gigabyte iRAM modules were installed
towards testing the improvements in I/O access to the data file where all VM’s were equally
loaded using the Virtual Box open source virtualization software.

6.3 Initial results and discussion
The turnaround and compute time were recorded as follows: we assume N data distributed
over P = 2d tasks, with N an integer multiple of the computation costs which comprise of
the initial comparisons performed during the communication phase where d = log P. The
former involves a total of P = 2d comparisons, while the latter requires at most (Nd (d+1)
/ 2) comparisons. Because the algorithm is perfectly balanced, we assume that idle time is
negligible. Our results were obtained by running Gridblast code on Linux Clusters (Fedora
Core) with 2.0 GHz Duo core CPU’s and 4GB RAM. A heterogeneous set of peers having
different configurations were used for running the algorithm as a Grid service using the
A3pviGrid agents running on their VM’s or individual user space. In this project, our custom
created DNA sequence Cellulosome obtained from the Biogas Digester Unit has been used as
the database. The size of this sequence is 121,554,183 base pairs (bp). A BLAST search for
all contigs of the metagenome data set from the biogas digester unit were searched against
the cellulosome protein database, which was carried out and the best matching contigs were
identified.
To improve application and agent specific performance, customized Virtual execution
environments (Virtual Machines) were created for each of the agents running the A3pviGrid
service. An increase in performance after initialization and execution of agents on the VM’s
was observed. The initial data set was stored and written to scratch disks created in RAM
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Fig. 3. Initial Results from the Andaman Islands DNA Sample prepared.
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Fig. 5. Graph Showing the Performance of the Sequencing using A3pviGrid platform

along with accessing and storing results on the iRAM installed on the head node (where the
initial job was submitted). From the data recorded, we estimated that the initial turnaround
time was affected due to an increase in latency posed by the VM’s during initialization and
data retrieval. The overall turnaround time almost increases two fold during initial execution
as resources are allocated dynamically by the agents during execution. The researchers
observed that once the data was made available, the execution time was decreased more than
half after the agent and its environment were initialized. A two-fold speedup can be observed
based on running agents in virtual machines as the input/output data access time is cut by
half as resources and data were made available locally to the agents using virtual machines. A
coalition based approach to solving a known problem in bioinformatics was undertaken. The
use of RAM based scratch disks proved useful in improving the execution times of the BLAST
searches on the small scale Grid test bed.

7. Phase 2: Experimentally evaluating the calorific value and energy content of
input feed

The calorific value is the most important factor that determines how much energy content is
available in the biomass. This in turn is used to estimate the energy potential of the input
feed (Biomass fed into a fermenter unit). The calorific value of biogas is ideally estimated
to be about 6 kWh/m3 of gas produced which roughly corresponds to around half a liter
of diesel oil. The net calorific value depends on the efficiency of the burners or appliances.
Methane gas is the valuable component under the aspect of using biogas as a fuel. Although
the calorific value here is a general value assumed, the actual value varies based on the
biomass used as feed. The energy potential is determined by the calorific value which has
the capacity to produce energy (electricity or gas). An experimental setup (Bio-digester Unit)
was created to understand and verify the calorific values of the biomass taken from a small
scale bio-digester unit in the Andaman Islands. Gas-liquid chromatography (GLC), or simply
gas chromatography (GC), is a common type of chromatography used in analytic chemistry
for separating and analyzing compounds that can be vaporized without decomposition. In
the initial phase the organic fractions were obtained from a small scale Bio-digester unit
in the Andaman Islands. Typical uses of GC include testing the purity of a particular
substance, or separating the different components of a mixture (the relative amounts of such

300 Systems and Computational Biology – Bioinformatics and Computational Modeling Improving Bio-technology Processes Using Computational Techniques 13

components can also be determined). In some situations, GC may help in identifying a
compound. In preparative chromatography, GC can be used to prepare pure compounds
from a mixture. In our experiments as discussed below, there is a need for finding out
the percentage of pure gas components from our biogas mixture obtained in the laboratory.
In gas chromatography, the moving phase (or "mobile phase") is a carrier gas, usually an
inert gas such as helium or an un-reactive gas such as nitrogen. The stationary phase is
a microscopic layer of liquid or polymer on an inert solid support, inside a piece of glass
or metal tubing called a column. The instrument used to perform gas chromatography is
called a gas chromatograph (or "aerograph", "gas separator") . The gaseous compounds being
analyzed interact with the walls of the column, which is coated with different stationary
phases. This causes each compound to elute at a different time, known as the retention time of
the compound. The comparison of retention times is what gives GC its analytical usefulness.
A gas sample was also obtained to do a comparative study. An initial laboratory setup of
the a mini scale Bio-digester unit was setup for the purpose of obtaining sample gas and
comparing the measurements with the gas sample obtained from the commercial setup. The
Thermal conductivity Detector (TCD) and The Pulsed Flame Photometric Detector (PFPD)
were used to detect the gas mixtures with varying temperature ranges in the column. The
signal samples were monitored in a work station and graphs were generated accordingly. The
phase 2 of our research does a comparative analysis of the differences of creating biogas from
commercial bio-digester setup like that of our test case plant at Andaman Islands with that of
the experimental verification done using laboratory equipment with similar conditions. The
results and inferences are discussed in this chapter later on. In the following sections we
will discuss the Laboratory preparation of Biogas creation, capture, monitoring and cleaning;
inference of our experimental analysis; and the graphs obtained from the GC detectors that
detected the different gas mixtures obtained from the experimental setup.

7.1 Biogas generation
The Initial Setup:
In the initial phase the organic fractions were obtained from a small scale rural Biogas digester
unit in the Andaman Islands. A gas sample was also obtained for further comparative study.
As shown in Figure 4 an initial Laboratory setup of the a mini scale Bio-digester unit was
setup for the purpose of obtaining sample gas and comparing the measurements with the gas
sample obtained from a commercial setup. The Thermal conductivity Detector (TCD) and The
Pulsed Flame Photometric Detector (PFPD) were used to detect the gas mixtures with varying
temperature ranges in the column. A minimum sample of 1 ml gas is constantly required
for running the gas chromatography equipment. Flow controllers control the percentage of
gas mixtures needed for measuring the signals correctly. Extremely efficient filters remove
moisture and oxygen content to extend column life and improve system performance.
The steel vessel shown in Figure 4 holds the Organic fractions obtained from the small scale
digester unit. The mixture is sealed in a closed flash with a rubber cork to have anaerobic
conditions similar to the bio-digester unit. After all the connections and necessary equipments
are installed the water in the bath (steel vessel) is heated to 40 degrees centigrade and run for
several weeks. Initially the experiment failed due to too much input fed in. In order to increase
the calorific content and give the bacteria a better environment, a 10% quantity of high grain
fibre was introduced into the mixture. The experiment was rerun and successful biogas was
obtained in about a week’s time. The gas bubbles can be seen as shown Figure 6.
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Fig. 5. Graph Showing the Performance of the Sequencing using A3pviGrid platform
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or metal tubing called a column. The instrument used to perform gas chromatography is
called a gas chromatograph (or "aerograph", "gas separator") . The gaseous compounds being
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were used to detect the gas mixtures with varying temperature ranges in the column. The
signal samples were monitored in a work station and graphs were generated accordingly. The
phase 2 of our research does a comparative analysis of the differences of creating biogas from
commercial bio-digester setup like that of our test case plant at Andaman Islands with that of
the experimental verification done using laboratory equipment with similar conditions. The
results and inferences are discussed in this chapter later on. In the following sections we
will discuss the Laboratory preparation of Biogas creation, capture, monitoring and cleaning;
inference of our experimental analysis; and the graphs obtained from the GC detectors that
detected the different gas mixtures obtained from the experimental setup.

7.1 Biogas generation
The Initial Setup:
In the initial phase the organic fractions were obtained from a small scale rural Biogas digester
unit in the Andaman Islands. A gas sample was also obtained for further comparative study.
As shown in Figure 4 an initial Laboratory setup of the a mini scale Bio-digester unit was
setup for the purpose of obtaining sample gas and comparing the measurements with the gas
sample obtained from a commercial setup. The Thermal conductivity Detector (TCD) and The
Pulsed Flame Photometric Detector (PFPD) were used to detect the gas mixtures with varying
temperature ranges in the column. A minimum sample of 1 ml gas is constantly required
for running the gas chromatography equipment. Flow controllers control the percentage of
gas mixtures needed for measuring the signals correctly. Extremely efficient filters remove
moisture and oxygen content to extend column life and improve system performance.
The steel vessel shown in Figure 4 holds the Organic fractions obtained from the small scale
digester unit. The mixture is sealed in a closed flash with a rubber cork to have anaerobic
conditions similar to the bio-digester unit. After all the connections and necessary equipments
are installed the water in the bath (steel vessel) is heated to 40 degrees centigrade and run for
several weeks. Initially the experiment failed due to too much input fed in. In order to increase
the calorific content and give the bacteria a better environment, a 10% quantity of high grain
fibre was introduced into the mixture. The experiment was rerun and successful biogas was
obtained in about a week’s time. The gas bubbles can be seen as shown Figure 6.
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Fig. 6. Our Laboratory Assembled Bio-Digester Unit

Fig. 7. Biogas Generated

7.2 Capture, detection and monitoring
TCD is most commonly used for the detection of inorganic gases wherein the dual channel
TCD can automatically shut off filament current to prevent detector damage in the event of an
air leak or loss of carrier gas. Individual control of detector and filament temperature allows
optimization of detector performance and decreases maintenance costs.

Fig. 8. Capture, Detection and Monitoring
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The Pulsed Flame Photometric Detector (PFPD)

The Pulsed Flame Photometric Detector (PFPD) was developed in the early 1990’s by
Dr. Aviv Amirav (Varian, 2011). Unlike the traditional flame photometric detector which
has a continuous flame, the PFPD is based on a pulsed flame for the generation of flame
chemiluminescence’s. The detector operates with a fuel rich mixture of hydrogen and air.
This mixture is ignited and then propagates into a combustion chamber three to four times
per second where the flame front extinguishes. Carbon light emissions and the emissions
from the hydrogen/oxygen combustion flame are completed in two to three milliseconds,
after which a number of heteroatomic species give delayed emissions which can last from 4
to 20 milliseconds. These delayed emissions are filtered with a wide band pass filter, detected
by an appropriate photomultiplier tube, and electronically gated to eliminate background
carbon emission. In a conventional flame photometric detector (FPD), a sample containing
heteroatoms of interest is burned in a hydrogen-rich flame to produce molecular products
that emit light (i.e., chemiluminescent chemical reactions). The emitted light is isolated
from background emissions by narrow bandpass wavelength-selective filters and is detected
by a photomultiplier and then amplified. The detectivity of the FPD is limited by light
emissions of the continuous flame combustion products including CH∗, CO∗

2 , and OH∗.
Narrow bandpass filters limit the fraction of the element-specific light which reaches the
PMT and are not completely effective in eliminating flame background and hydrocarbon
interferences. The solution to this problem, conceived by Professor Amirav of Tel Aviv
University was to set the fuel gas (H2) flow into the FPD so low that a continuous flame
could not be sustained. But by inserting a constant ignition source into the gas flow, the fuel
gas would ignite, propagate back through a quartz combustor tube to a constriction in the
flow path, extinguish, then refill the detector, ignite and repeat the cycle (Varian 2010). The
result was a pulsed flame photometric detector (PFPD). The background emissions from the
hydrogen-rich air: hydrogen flame (approximately 10 mL/min H2 and 40 mL/min Air) is
a broad band chemiluminescence. The combustion of hydrocarbons is highly exothermic,
rapid and irreversible, producing a light emission by the hydrocarbon products equal to the
time for the flame to propagate through the combustor lasting 2 to 3 milliseconds. Many of
the chemiluminescent reactions of the heteroatoms such as S, P, N , etc., are less energetic
and more reversible, and proceed after the temperature behind the propagating flame has
dropped. These heteroatom emissions are therefore delayed from the background emissions
(Varian, 2011). By using the leading edge of the flame, the background emission triggers a
gated amplifier with an adjustable delay time. Heteroatomic emissions can be amplified to
the virtual exclusion of the hydrocarbon background emission through selective amplification
of the element-specific emissions which are the basis of the PFPD’s unique sensitivity and
selectivity.

7.3 Gas cleaning (membrane)
The biogas obtained contains other gases such as H2S and CO2 which requires cleaning.
Hence a cleaning apparatus was setup. It consists of a trickle water bath that is used in reusing
the water used for gas cleaning. A couple of air compressors is used to generate 4 - 10 Bars of
pressure over the gas used for compression. A set of two membranes were used for separating
the CO2 and CH4 from the compressed gas column.
Tiny droplets of water are used for washing down the mixture which is then taken into the
absorption chamber at 10 Bar pressure.
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Fig. 6. Our Laboratory Assembled Bio-Digester Unit

Fig. 7. Biogas Generated
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Fig. 9. Gas Detection and Cleaning under Laboratory Conditions

CO2 + H2O− > CO2Gas (2)

The desorption column on the other hand uses the gas compressor to reduce the pressure to
< 1 Bar. The glass cylinder is used to see the water level and how much fresh water might
be needed to be added on. Membranes utilize steel wool or other materials to create water
droplets into a mild flow. The output from the desorption device is the then sent to the two
membrane columns and the gas stream is again raised from 2 Bar to 10 Bar of pressure and
is sent back to the absorption column. The membranes have no holes and gas diffusion takes
place to separate the CO2 from the CH4. The calorimeter also called as the Wobber Index is
used to measure the CH4 content at 10 Bar pressure. The Wobber index is an indicator of
the calorific value of the gas mixture. The detector on the left of the calorimeter as shown
is the paramagnetic and infrared radiation detector used in detecting gas mixtures of upto
10 PPM. Gas from the scrubbing column has a level of moisture content (H2O) in it with
very low specific heat value. The detector is also used to find out the moisture content in
the gas obtained after cleaning. The process could be repeated a number of times to obtain
high quality CH4 Gas. In the next section we will discuss the results obtained from the Gas
Chromatography.

7.4 Results and Conclusion
As shown in the figures below, we can note major differences in the signal measurements due
to the following:

• The experiments have slight variations to the conditions in the bio-digester unit. Eg.
Temperature variations, Human handling and gas capture.

• The initial results are for different gas mixtures having slight feed variations.

• Channel 1 indicates signals for CO2, H2S, CH4 and Nitrogen.

• The TPD used is a universal detector of all gas mixtures.

• The PFPD measures the sulphur content alone as observed in the graphs generated.

• Significant changes in signal levels can be observed.

• We understand that very similar conditions of a commercial bio-digester unit are
impossible to mimic given the quantity of the organic fractions and the conditions
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simulated. Hence, we went in for DNA extraction, sequencing and calorific content testing
and verification.

• It can be observed from the graphs that the signals obtained for P, CH4, CO2, Sulphur, etc
are comparable to the commercial setup as the input organic fractions were obtained from
the Andaman Bio-digester unit.

Fig. 10. TCD results from Laboratory Gas Sample

Index Name Time[Min] Qty [Vol − %] Height [μV] Area [μV Min] Area %
2 CO2 2.66 3.56 4261.3 518.8 2778
5 H2S 7.02 0.01 6.1 2.3 0.012
8 O2 8.09 17.67 70192.8 3841.9 20.568
8 N 8.15 66.31 122241.7 12344.1 66.085
10 CH4 8.99 3.31 13595.6 1600.1 8.566

Total 90.85 234571.5 18679.1 100.00

Table 1. TCD results from Laboratory Gas Sample

Index Name Time[Min] Qty [Vol − %] Height [μV] Area [μV Min] Area %
2 CO2 2.36 42.12 25278.1 6140.0 18.551
5 H2S 7.02 0.02 16.1 5.6 0.017
8 O2 8.07 0.56 2312.4 121.7 0.368
8 N 8.20 3.94 10676.1 732.6 2.214
10 CH4 8.73 53.22 140050.2 25707.3 77.670

Total 99.85 202506.2 33098.2 100.000

Table 2. TCD results from Andaman Islands Gas Sample
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the Andaman Bio-digester unit.

Fig. 10. TCD results from Laboratory Gas Sample

Index Name Time[Min] Qty [Vol − %] Height [μV] Area [μV Min] Area %
2 CO2 2.66 3.56 4261.3 518.8 2778
5 H2S 7.02 0.01 6.1 2.3 0.012
8 O2 8.09 17.67 70192.8 3841.9 20.568
8 N 8.15 66.31 122241.7 12344.1 66.085
10 CH4 8.99 3.31 13595.6 1600.1 8.566

Total 90.85 234571.5 18679.1 100.00

Table 1. TCD results from Laboratory Gas Sample

Index Name Time[Min] Qty [Vol − %] Height [μV] Area [μV Min] Area %
2 CO2 2.36 42.12 25278.1 6140.0 18.551
5 H2S 7.02 0.02 16.1 5.6 0.017
8 O2 8.07 0.56 2312.4 121.7 0.368
8 N 8.20 3.94 10676.1 732.6 2.214
10 CH4 8.73 53.22 140050.2 25707.3 77.670

Total 99.85 202506.2 33098.2 100.000

Table 2. TCD results from Andaman Islands Gas Sample
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Fig. 11. TCD results from Laboratory Gas Sample

Fig. 12. TCD results from Laboratory Gas Sample

Index Name Time[Min] Qty [Vol − %] Height [μV] Area [μV Min] Area %
1 H2S 6.85 49.97 4250.2 190.8 100.000

Total 49.97 4250.2 190.8 100.000

Table 3. PFPD results from Andaman Islands Gas Sample
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Fig. 13. PFPD results from Laboratory Gas Sample

Index Name Time[Min] Qty [Vol − %] Height [μV] Area [μV Min] Area %
1 H2S 6.85 210.90 48439.5 2117.4 100.000

Total 210.90 48439.5 2117.4 100.000

Table 4. PFPD results from Andaman Islands Gas Sample

In this chapter we discussed the importance of Bioenergy; the role played by Bioinformatics
and associated Computational tools. More importantly we identified the various tools
used by biologists in everyday drug discovery and genetic engineering; the various
bottlenecks incurring due to the exponential increase in datasets due to new discoveries
and publication of data regularly using the world wide web; finally we can understand and
utilize high performance computational approaches, tools and platforms (such as Grids and
Supercomputers) to solve these problems on a day to day basis.
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1. Introduction 

Capillary electrophoresis (CE) is a separation technique that can be used as a sample pre-
treatment step in the analysis of ionic analytes (Grossman and Colburn 1992; Stewart et al. 
2008). Compared with other separation technologies it can offer advantages such as higher 
speed and sensitivity, smaller injection volumes and reduced consumption of solvent and 
samples, the possibility of miniaturisation, and reduced cost (Issaq 2001; Jarméus and 
Emmer 2008; Polesello and Valsecchi 1999; Wang 2005; Wee et al. 2008). 
CE is based on the difference of the electrical mobilities of molecules within a capillary tube 
filled with electrolyte solution. When an electrical field is applied between the two ends of a 
capillary and a sample is introduced at one end, analytes are separated as they migrate 
towards the other end under the influence of the electrical field. These separated analytes 
are detected near the outlet by methods such as optical or electrochemical techniques 
(Polesello and Valsecchi 1999; Guijt et al. 2004; Kappes and Hauser 1999; Kubáň and Hauser 
2004, 2009; Kuhn and Hoffstetter-Kuhn 1993; Marzilli et al. 1997; Tanyanyiwa et al. 2002; 
Zemann et al. 1998). The signal from a detector is digitised and typically presented in the 
form of voltage versus time, i.e. an electropherogram. Peaks evident in an electropherogram 
typically correspond to analytes in the sample, and with optimisation of the system 
parameters, the peaks can usually be resolved sufficiently. Fig. 1 shows an example 
electropherogram of data obtained from a practical trial reported earlier (Petkovic-Duran et 
al. 2008) 
For analytical chemistry purposes, the operator's aim is to determine from the 
electropherogram what analytes are present and the corresponding concentrations. In this 
paper we assume that this is done by separating the task into two stages: Signal Processing, 
i.e., obtaining peak information from the electropherogram, and Pattern Matching, using 
this peaks' summary information to compare with established peak library of known 
chemicals. Whilst the process of identifying the peaks, removing the noise present and 
fitting curves for peak quantification is, to a large extent, done to-date manually by 
professionals, the operator would be greatly aided through fully automated techniques with 
little or no human input. This is particularly crucial for the development of field-deployable 
devices which could be operated by non-technical staff. Furthermore, automated signal 
processing techniques can allow results to be reproducible or consistent and can remove the 
subjectivity of a human evaluation. In addition, they can also detect features that may not 
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al. 2008) 
For analytical chemistry purposes, the operator's aim is to determine from the 
electropherogram what analytes are present and the corresponding concentrations. In this 
paper we assume that this is done by separating the task into two stages: Signal Processing, 
i.e., obtaining peak information from the electropherogram, and Pattern Matching, using 
this peaks' summary information to compare with established peak library of known 
chemicals. Whilst the process of identifying the peaks, removing the noise present and 
fitting curves for peak quantification is, to a large extent, done to-date manually by 
professionals, the operator would be greatly aided through fully automated techniques with 
little or no human input. This is particularly crucial for the development of field-deployable 
devices which could be operated by non-technical staff. Furthermore, automated signal 
processing techniques can allow results to be reproducible or consistent and can remove the 
subjectivity of a human evaluation. In addition, they can also detect features that may not 
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otherwise be obvious to the human eye, and enable the operation of detection devices by 
non-experts. 

 
Fig. 1. An example electropherogram for separating a mixture of chemical warfare agent 
degradation products MPA, EMPA, IMPA and PMPA. Reproduced from Petkovic-Duran 
(2008). Conditions: 10mM MES/His (pH 6.1) buffer; separation field strength 340V/cm; 
injection field strength 625V/cm; Injection time 20s; frequency 360kH; peak-to-peak-voltage 
8V; sinus ac waveform. The first spike corresponds to the start of sample injection into the 
CE channel. 

The task of automating the extraction of peaks, i.e. obtaining peak information such as peak 
shape, peak height, peak area and arrival time, from an electropherogram is, however, not 
an easy one. Not only must signal processing techniques be developed that can find the 
location of peaks, but they must do so in the presence of low and high frequency baseline 
noise that corrupts the signal. Furthermore, analytes may co-elute resulting in poorly 
resolved peaks that overlap. Even once the peak locations have been identified, the peaks 
need to be extracted and/or accurately quantified in the presence of interfering signal 
components. 
The purpose of this paper is to review the current progress in signal processing relevant for 
capillary electrophoresis that are directed towards the quantification of peaks in 
electropherograms. We provide an overview of a signal processing strategy for a complete 
system, and then detail each signal processing step through examples cited from the 
literature. We are then able to draw some conclusions about the work needed to develop 
well defined and completely automated signal processing systems for CE. In the next section 
(Section 3) we detail a model for the electropherogram signal and the signal components to 
be analysed. Section 4 provides an overview of the steps in the signal processing strategy for 
CE signals. Pertinent examples from the literature are cited for each step (baseline noise 
removal, peak finding and peak extraction and quantification) to illustrate the different 
approaches adopted. Section 5 addresses how the performance of signal processing 
strategies/algorithms should be assessed, and on the need for benchmark testing and for the 
provision of system specifications. Section 6 discuss briefly some difficulties and 
requirements for the future Pattern Matching work needed for practically extracting 
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chemical identity information from the electropherogram's peak data. A concluding 
summary is provided in Section 7.  

2. Modelling an electropherogram signal 
An electropherogram is typically modelled as the superposition of a number of components 
under the assumption of system linearity (as are chromatograms (Dyson 1998) and mass 
spectrograms (Coombes et al. 2005)). These include the peaks corresponding to the analytes, 
system peaks and noise components. Mathematically, the model for an unfiltered/raw 
electropherogram signal can be expressed, e.g., in the form of voltage v(t) (Kubáň and 
Hauser 2009), as follows,  
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where pi(t) is a peak that corresponds to the ith analyte eluted, N is the number of analyte 
peaks, sj(t) is the jth system peak, M is the number of system peaks, B is a constant baseline, 
and n(t) is unwanted baseline noise. Here we consider a constant baseline, and any 
deviation from this is due to baseline noise, n(t), which may itself contain a number of 
components. Eq. (1) is useful, not only for modelling electropherograms obtained from 
physical systems, but also for devising synthetic signals to test peak finding or peak 
extraction algorithms.  
The aim of a peak extraction algorithm is to apply signal processing means to extract the 
separate peak components, pi(t), from an electropherogram. Each peak component can then 
be quantitatively analysed to provide information pertaining to the concentration of its 
corresponding analyte. When the sample being tested is unknown, the information obtained 
for the peaks can then be used in conjunction with prior knowledge or a database to identify 
the chemical compounds present in the sample (Reichenbach et al. 2009). In order to 
complete these tasks successfully, it is important to model or understand the characteristics 
of all the signal components in Eq. (1) and this will be discussed in detail in the following 
sections. 

2.1 Peak models 
Before discussing peak models, it is important to clarify the terminologies associated with a 
peak. On the basis of the peak definitions of The International Union of Pure and Applied 
Chemistry (IUPAC) and the Differential Thermal Analysis (DTA) (Inczédy et al. 1998), we 
propose a general definition for a peak with a view to it being widely applicable in different 
situations within a CE context, i.e. a peak is a portion of a signal or waveform with the 
characteristic of a rising and then a falling of the dependent variable with time. In particular, 
an analyte peak is a peak that is a signal component of an electropherogram (viz. pi(t) in Eq. 
(1)) resulting directly from the presence of an analyte and distinct from noise and other 
peaks [e.g. see (Vivó-Truyols et al. 2005a)] while a system peak is a peak directly resulting 
from the background electrolyte (viz. sj(t) in Eq. (1)) (Beckers and Everaerts 1997; Gaš et al. 
2007; Gebauer and Boček 1997; Macka et al. 1997; Sellmeyer and Poppe 2002). 
Fig. 2 provides an illustrative example of the qualitative definitions above. It can be seen 
how system and analyte peaks contribute to the electropherogram signal which also 
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chemical identity information from the electropherogram's peak data. A concluding 
summary is provided in Section 7.  
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contains low and high frequency baseline noise. It should be noted that we are only 
considering peaks that are at a coarser scale than the high frequency noise that is present. In 
this figure it is clear that if the low and high frequency baseline noise were removed, then 
the electropherogram peaks would approximate the analytes or system peaks provided they 
are fully resolved (don't overlap) and have the same constant baseline. It should also be 
mentioned that a peak can be either ‘positive’ or ‘negative’. Negatives peaks correspond to 
changes to below baseline and appear as valleys in an electropherogram. The profile of an 
analyte peak is dependent ``on the physical-chemical processes inside the capillary, the 
heterogeneity of the capillary surface, capillary overload, solute mobility, and instrumental 
effects''( García-Alvarez-Coque et al. 2005).  
 

  
 
 

  
Fig. 2. A synthetic electropherogram composed from the superposition of peaks and 
baseline noise. Each interval in the electropherogram shown in bold corresponds to a 
successful or unsuccessful peak candidate. 

A number of different peak models have been proposed in the literature. The triangle is 
likely to be the earliest peak model used (Dyson 1998) and is perhaps the simplest. It has 
been used as a peak model in a number of studies (Barclay and Bonner 1997; Stewart et al. 
2008). One definition for a triangle function is (Couch 1990), 
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where t is time, and T is half the width of the triangle which has unity height and is centred 
about the y-axis with an apex at (0,1). This function can be scaled, translated and sampled to 
give a suitable digital signal representation of a peak.  
A more common approach, however, has been to model a peak as a Gaussian curve or 
variant thereof (Bocaz-Beneventi et al. 2002; Oda and Landers 19970. Such curves are likely 
to be more realistic given the underlying physical-chemical process. For example, Solis et al. 
(Solis et al. 2007) define a peak to be of the form (Graves-Morris et al. 2006): 
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where Ai is the peak's amplitude, Toi is the migration time, Wi the width of the peak and TS 
the sampling interval. This model could be applied to both pi(t) and sj(t) in Eq. (1). More 
complex peak models have also been introduced for CE. For example, to account for skewed 
peaks, a ``Combination of Square Roots (CSR)'' model has been proposed (García-Alvarez-
Coque et al. 2005) and compared to other models. Another example is the resonance model 
for peaks described in (Graves-Morris et al. 2006). 
As with CE, there is a need for peak models in other analytical chemistry techniques 
including chromatography, spectroscopy and gel and zone electrophoresis. The signals 
obtained in these techniques are generally alike, often owing to the similarity between the 
underlying physical-chemical processes (the mechanisms in chromatography and 
electrophoresis are particularly similar (Johansson et al. 2003; Poppe 1999). Gaussian based 
peak models are a popular choice for various techniques in analytical chemistry. For 
example, in chromatography the peaks in chromatograms are expected in theory to be close 
to Gaussian as they result from the dispersion of sample bands (Dyson 1998; Parris 1984). 
However, in practice, as with CE, Gaussian models must be modified or replaced to capture 
other effects that impact on peak shape (including asymmetry). Examples of modified 
Gaussian peak models include Exponentially Modified Gaussian (EMG) (Grushka 1972; 
Naish and Hartwell 1988; Poole 2003) and Exponential-Gaussian Hybrid (EGH) functions 
(Lan and Jorgenson 2001; Poole 2003). Numerous other peak models for chromatography 
have also been proposed (see the references cited in (García-Alvarez-Coque et al. 2005) for 
some further examples). 

2.2 Baseline noise 
Noise is usually the result of “spontaneous fluctuations which occur within matter at the 
microscopic level” (e.g. thermal noise and shot noise). In a CE system, noise components in 
a baseline signal may be due to electrical noise, chemical noise originating in the underlying 
physical-chemical processes of separation and so on. In general, baseline noise could contain 
both low frequency and high frequency components. The high frequency noise is from the 
instrument/detector which results from ``incomplete grounding or from the signal 
amplification system'' (Kuhn and Hoffstetter-Kuhn 1993) or from other sources such as 
electronic components including the Analogue to Digital Converter (ADC) (Jacobsen 2007; 
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Solis et al. 2007; Xu et al. 1997). The low frequency noise is mainly generated from 
temperature variations, impurities of the background electrolyte (`chemical noise') and air 
bubbles (Kuhn and Hoffstetter-Kuhn 1993; Xu et al. 1997). The unsatisfactory sample 
injection could also contribute to the low frequency noise due to the background buffer 
solution variations. The term baseline drift can refer to very low frequencies (Kuhn and 
Hoffstetter-Kuhn 1993) or to low frequencies in general (Solis et al. 2007). It should be 
mentioned that the detector type could also affect the baseline signal characteristics. For 
example, there are a range of detectors which can be used for CE or other techniques such as 
UV/Visible, fluorescence, electrochemical, conductivity, light scattering, mass spectral 
techniques. Some of the detectors measure bulk property of samples (e.g. conductivity and 
refractive index techniques) while some are for measuring solute properties (e.g. UV/Vis, 
fluorescence, electrochemical techniques). Bulk property detectors tend to have higher 
background signal which could vary due to background condition change. Solute detectors, 
on the other hand, usually have less background signal.  
Since understanding the nature of the noise present in a system is important for an appropriate 
denoising of a signal (Perrin et al. 2001; Szymańska et al. 2007), numerous quantitative noise 
characterisation studies have been carried (Katsumine et al. 1999; Smith 2000; Smith 2007; 
Vaseghi 2008) to understand the spectral characteristics of the noise present in practical 
systems. The outcome of such studies may indicate the need for a unified noise model that 
does not partition the noise into low and high frequencies. For example, a brown noise model 
may be appropriate (Vaseghi 2008) or other models, e.g. a 1/f noise model (Katsumine et al. 
1999; Smit and Walg 1975), or a correlated noise model (Perrin et al. 2001). The simplest 
method for noise modelling is to estimate the noise statistics from the signal-inactive periods 
(Vaseghi 2008). For instance, the noise in a system may be characterised by its power spectral 
density which can be estimated using a variety of methods (Cruz-Marcelo et al. 2008; Smith 
2007). Of course, a noise process should really also be checked for stationarity by confirming 
its statistical parameters are constant over a sufficient interval of time. If a noise process is non-
stationary, for example, the heteroscedastic noise (Li et al. 2006; Mittermayr et al. 1999; 
Mittermayr et al. 1997), then modelling techniques for time-varying stochastic processes will 
need to be employed (Vaseghi 2008). Where noise characterisation is impractical, adaptive 
filters or filters whose parameters can be adjusted or tuned manually in-situ may need to be 
employed for effective removal of noise.  
It is worth mentioning that, while various models have been proposed for the low and high 
frequency noise, a unified approach is also required to handle the noise as a whole to 
simplify the signal processing process. The baseline drift and noise contributions could be 
modelled as interferences from different ends of frequency spectrum domain. Approaches 
may include Fourier and wavelet transforms. Some of these techniques will be reviewed in 
the next section  

3. Signal processing techniques for peak extraction 
3.1 Processing approaches 
The aim of a peak extraction algorithm is to extract the separate peak components, pi(t), from 
an electropherogram. In general, when trying to identify the peaks in an unknown sample 
we aren't privy to information about when and where the different signal components will 
occur and in what measure. Only a measured signal is available and we have to solve an 
inverse problem (Mammone et al. 2007; Tarantola 2005) to identify the parameters in our 
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model. Approaches to solving single-channel source separation problems must rely on 
additional information, with filtering, decomposition and grouping, and source modelling 
approaches having been used (Schmidt 2008). A typical signal processing strategy might 
consist of a number of steps including: (i) the removal/suppressing of the baseline noise, (ii) 
finding the peaks, and (iii) extracting and/or quantifying the peaks. Some approaches 
combine some of these steps into a single step. In the following sections we detail each of 
these steps in further detail. 

3.2 Baseline noise removal 
To remove the baseline noise from an electropherogram, it is often convenient to assume the 
noise components are confined within certain spectral ranges. Linear filters can then be used 
to suppress the content in those ranges (Horlick 1972; Rabiner et al. 1975). There are many 
standard filters that can be used to do this, some of which have been listed (Yang et al. 
2009). In their review on peak detection algorithms for mass spectrometry, various open 
source software packages were compared and the filters employed were identified.  

3.2.1 High frequency noise removal 
For removing the high frequency baseline noise in analytical chemistry data, the moving 
average filter is a popular choice. Perhaps the most intuitive filter to understand, this Finite 
Impulse Response (FIR) filter (non-recursive filter) performs local averaging to attenuate the 
rapidly fluctuating components of a signal (Lyons 2004; Oppenheim et al. 2007). It is used 
for smoothing in the software PROcess (Li et al. 2005; Yang et al. 2009) for smoothing. 
However, with this filter, peaks tend to be flattened out. A widely cited seminal paper by 
Savitzky and Golay (Savitzky and Golay 1964) provides the details for a popular alternative 
for filtering out high frequency baseline noise. The filter, known as the Savitzky-Golay (SG) 
filter, has filter coefficients that implement least squares polynomial smoothing and can 
denoise signals and calculate derivatives with reduced peak degradation (Leptos et al. 2006; 
Peters et al. 2007; Vivó-Truyols and Schoenmakers 2006; Vivó-Truyols et al. 2005a). The filter 
has been extended and improved in many different ways (Browne et al. 2007). Other digital 
filters have also been used including the Kaiser filter (Mantini et al. 2007) and Gaussian 
related filters (Leptos et al. 2006; Yang et al. 2009). In general, digital filters have different 
time and frequency domain characteristics that are appropriate for different situations and 
often have parameters that must be optimized so that peak distortion is minimised 
(Hamming 1983) and the maximal amount of noise removed. It is possible to custom design 
a digital filter based on an ideal transfer function which, for low-pass (high-frequency 
attenuating) filter designs, can entail choosing an appropriate cut-off frequency (Lam and 
Isenhour 1981).  

3.2.2 Low frequency noise removal 
Digital linear filters can also be used for removing low frequency baseline noise (drift). 
However, the standard linear filtering approaches can have problems when the baseline 
noise is not confined to specific frequency bands or overlaps with the frequency bands of 
peaks. Similar problems arise in the processing of ECG signals, and are of principal concern 
since filtering can cause significant distortion to important key features (Mozaffary and 
Tinati 2005). Whilst non-linear filters may be one alternative strategy (Kiryu et al. 1994), the 
most common approach for filtering out the low frequency baseline noise in CE signals (and 
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employed for effective removal of noise.  
It is worth mentioning that, while various models have been proposed for the low and high 
frequency noise, a unified approach is also required to handle the noise as a whole to 
simplify the signal processing process. The baseline drift and noise contributions could be 
modelled as interferences from different ends of frequency spectrum domain. Approaches 
may include Fourier and wavelet transforms. Some of these techniques will be reviewed in 
the next section  

3. Signal processing techniques for peak extraction 
3.1 Processing approaches 
The aim of a peak extraction algorithm is to extract the separate peak components, pi(t), from 
an electropherogram. In general, when trying to identify the peaks in an unknown sample 
we aren't privy to information about when and where the different signal components will 
occur and in what measure. Only a measured signal is available and we have to solve an 
inverse problem (Mammone et al. 2007; Tarantola 2005) to identify the parameters in our 
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model. Approaches to solving single-channel source separation problems must rely on 
additional information, with filtering, decomposition and grouping, and source modelling 
approaches having been used (Schmidt 2008). A typical signal processing strategy might 
consist of a number of steps including: (i) the removal/suppressing of the baseline noise, (ii) 
finding the peaks, and (iii) extracting and/or quantifying the peaks. Some approaches 
combine some of these steps into a single step. In the following sections we detail each of 
these steps in further detail. 

3.2 Baseline noise removal 
To remove the baseline noise from an electropherogram, it is often convenient to assume the 
noise components are confined within certain spectral ranges. Linear filters can then be used 
to suppress the content in those ranges (Horlick 1972; Rabiner et al. 1975). There are many 
standard filters that can be used to do this, some of which have been listed (Yang et al. 
2009). In their review on peak detection algorithms for mass spectrometry, various open 
source software packages were compared and the filters employed were identified.  

3.2.1 High frequency noise removal 
For removing the high frequency baseline noise in analytical chemistry data, the moving 
average filter is a popular choice. Perhaps the most intuitive filter to understand, this Finite 
Impulse Response (FIR) filter (non-recursive filter) performs local averaging to attenuate the 
rapidly fluctuating components of a signal (Lyons 2004; Oppenheim et al. 2007). It is used 
for smoothing in the software PROcess (Li et al. 2005; Yang et al. 2009) for smoothing. 
However, with this filter, peaks tend to be flattened out. A widely cited seminal paper by 
Savitzky and Golay (Savitzky and Golay 1964) provides the details for a popular alternative 
for filtering out high frequency baseline noise. The filter, known as the Savitzky-Golay (SG) 
filter, has filter coefficients that implement least squares polynomial smoothing and can 
denoise signals and calculate derivatives with reduced peak degradation (Leptos et al. 2006; 
Peters et al. 2007; Vivó-Truyols and Schoenmakers 2006; Vivó-Truyols et al. 2005a). The filter 
has been extended and improved in many different ways (Browne et al. 2007). Other digital 
filters have also been used including the Kaiser filter (Mantini et al. 2007) and Gaussian 
related filters (Leptos et al. 2006; Yang et al. 2009). In general, digital filters have different 
time and frequency domain characteristics that are appropriate for different situations and 
often have parameters that must be optimized so that peak distortion is minimised 
(Hamming 1983) and the maximal amount of noise removed. It is possible to custom design 
a digital filter based on an ideal transfer function which, for low-pass (high-frequency 
attenuating) filter designs, can entail choosing an appropriate cut-off frequency (Lam and 
Isenhour 1981).  

3.2.2 Low frequency noise removal 
Digital linear filters can also be used for removing low frequency baseline noise (drift). 
However, the standard linear filtering approaches can have problems when the baseline 
noise is not confined to specific frequency bands or overlaps with the frequency bands of 
peaks. Similar problems arise in the processing of ECG signals, and are of principal concern 
since filtering can cause significant distortion to important key features (Mozaffary and 
Tinati 2005). Whilst non-linear filters may be one alternative strategy (Kiryu et al. 1994), the 
most common approach for filtering out the low frequency baseline noise in CE signals (and 
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signals in related areas) is to estimate the low-frequency baseline and then subtract the 
estimate from the signal. Windowing and interpolation based methods are commonly used. 
For example, a moving window method, retaining minimums, was used to estimate the low 
frequency baseline noise component in chromatograms (Quéméner et al. 2007). The 
estimated component was then subtracted from the original signal to give a corrected 
chromatogram. The method appeared successful but required the width of the moving 
window to be set experimentally. A similar strategy was employed for baseline correction of 
CE data (Coombes et al. 2005; Szymańska et al. 2007). In another published work (Gras et al. 
1999), selected values from windows were interpolated using cubic splines to estimate the 
low frequency baseline noise in MALDI-TOF mass spectra. A different strategy was 
employed with the signal trend being estimated by removing the peaks from a mass 
spectrum signal (Mantini et al. 2007). Other researchers have also applied curve fitting 
techniques (Coombes et al. 2005; Bernabé-Zafón et al. 2005; Gillies et al. 2006; Mazet et al. 
2005). 

3.2.3 Wavelet transformation for noise removal 
Despite some successful demonstrations of (low and high frequency) baseline noise removal 
techniques, no single approach has proved so undeniably successful across various 
conditions that it has been universally adopted. Recently, however, there has been some 
interest in the use of relatively new signal processing techniques such as wavelets.  
Wavelets (Burrus et al. 1998; Daubechies 1988; Grossmann and Morlet 1984; Mallat 1989, 
1999) allow the simultaneous analysis of a signal's time and frequency (or scale) properties, 
which is particularly useful for the processing of transient signals. The continuous wavelet 
transform (CWT) of a signal, 2( )f t L R , at a scale, s, and time u, is given by (Mallat 1999), 
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The “mother wavelet”, 2( )t L R , is a function with zero average and ``is well localised in 
both time and frequency'' (Cohen and Kovačević 1996). Under certain conditions an inverse 
continuous wavelet transform also exists that allows the reconstruction of f(t) (e.g. Burrus et 
al. 1998; Cohen and Kovačević 1996). The coefficients from the wavelet transformation 
provide an indication of the signal energy contained at various scales over time. It is 
therefore possible to calculate the energy density (scalogram) of a signal which can be used 
in signal analysis and/or graphically depicted in a time-frequency heat map. 
For a discrete wavelet transform (DWT), the wavelet coefficients can be computed for a 
discrete grid of points ( , )ns u Z  (Cohen and Kovačević 1996). Practically though, a 
multiresolution analysis (MRA) (Mallat 1989) is most often used to give a series expansion 
for 2( )f t L R , in terms of a scaling function, φ(t), and wavelets, ψj,k (Burrus et al. 1998), 
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where orthogonality constraints are placed on the expansion functions which form a basis. 
The first summation in Eq. (5) provides a low resolution approximation to f(t), and each 
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successive index, j, in the second summation adds additional detail to the signal. A fast 
DWT algorithm that employs the use of filter banks has been developed by Mallat for the 
calculation of the approximation coefficients c(k) and detail coefficients d(j,k) (Mallat 1989), 
and is frequently used in practice. Once the coefficients have been obtained for a signal, they 
are thresholded or processed in various ways, before the reconstruction part of Mallat's 
algorithm can be used to reconstruct the signal.  
One of the most widely used applications of wavelets is in denoising. Donoho and 
Johnstone developed a wavelet denoising technique based on the thresholding of 
coefficients (Donoho 1995; Donoho and Johnstone 1994). The denoising works on the 
premise that the underlying signal can have a sparse representation where it is 
approximated by a small number of relatively large-amplitude coefficients, whereas noise 
will have its energy spread across a large number of small-amplitude coefficients (Burrus et 
al. 1998; Mallat 1999). Hence, thresholding can remove noise whilst keeping the underlying 
signal largely intact. Different thresholding strategies such as hard thresholding and soft 
thresholding can be applied (Burrus et al. 1998; Donoho 1995).  
A comprehensive study on wavelet denoising in CE using thresholding based methods was 
recently performed (Perrin et al. 2001). In the study, a number of wavelets from different 
wavelet families were tested, with the Haar wavelet found to perform the best. High 
frequency noise was removed by filtering the detail coefficients using hard thresholding and 
the low frequency baseline noise was removed by filtering the approximation coefficients 
using soft thresholding. Soft thresholding was used so as to reduce peak distortion. After 
thresholding, the inverse wavelet transform was calculated to reconstruct the signal with 
impressive results. The strategy was developed to accommodate larger baseline drifts (Liu 
et al. 2003). Fig. 3 shows an example of signal denoising using wavelet transform. This line 
of work was further developed by implementing spatially adaptive thresholding for the 
denoising of DNA capillary electrophoresis signals (Wang and Gao 2008). Wavelet 
denoising strategies were also used (Ceballos et al. 2008) on pattern recognition in CE. 
Similar wavelet based denoising strategies to those cited above have also been applied to 
liquid chromatography data (Barclay and Bonner 1997; Shao et al. 2004), Raman 
spectroscopy (Hu et al. 2007), mass spectrometry data (Barclay and Bonner 1997; Coombes 
et al. 2005), as well as numerous other areas of research (Jagtiani et al. 2008; Komsta 2009).  
The DWT is sufficient in many scenarios when removing high and low frequency noise from 
signals. However, in some situations it may be appropriate to use the continuous wavelet 
transform so that finer grained control over the scales used can be gained. In particular, 
Jakubowska has done some interesting work using the CWT for removing high and low 
frequency noise in voltammetry signals (Jakubowska 2008). After finding the CWT, certain 
scale bands were identified as containing noise, and these were excluded in the 
reconstruction of a signal using the inverse CWT. The method was also suitable for 
resolving overlapping peaks which will be discussed in the next sections. 

3.3 Peak detection 
Once the noise has been filtered, the next task is to find the peaks from the filtered 
electropherogram vf(t) = v(t) - n(t). Many different criteria can be used to determine whether 
a point corresponds to the apex of a peak (Yang et al. 2009). One simple strategy for finding 
the location of peaks in vf(t) might be to find those points that are above a threshold and/or 
correspond to a local maximum found by looking for positive to negative zero crossings in 
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signals in related areas) is to estimate the low-frequency baseline and then subtract the 
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estimated component was then subtracted from the original signal to give a corrected 
chromatogram. The method appeared successful but required the width of the moving 
window to be set experimentally. A similar strategy was employed for baseline correction of 
CE data (Coombes et al. 2005; Szymańska et al. 2007). In another published work (Gras et al. 
1999), selected values from windows were interpolated using cubic splines to estimate the 
low frequency baseline noise in MALDI-TOF mass spectra. A different strategy was 
employed with the signal trend being estimated by removing the peaks from a mass 
spectrum signal (Mantini et al. 2007). Other researchers have also applied curve fitting 
techniques (Coombes et al. 2005; Bernabé-Zafón et al. 2005; Gillies et al. 2006; Mazet et al. 
2005). 
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Despite some successful demonstrations of (low and high frequency) baseline noise removal 
techniques, no single approach has proved so undeniably successful across various 
conditions that it has been universally adopted. Recently, however, there has been some 
interest in the use of relatively new signal processing techniques such as wavelets.  
Wavelets (Burrus et al. 1998; Daubechies 1988; Grossmann and Morlet 1984; Mallat 1989, 
1999) allow the simultaneous analysis of a signal's time and frequency (or scale) properties, 
which is particularly useful for the processing of transient signals. The continuous wavelet 
transform (CWT) of a signal, 2( )f t L R , at a scale, s, and time u, is given by (Mallat 1999), 
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therefore possible to calculate the energy density (scalogram) of a signal which can be used 
in signal analysis and/or graphically depicted in a time-frequency heat map. 
For a discrete wavelet transform (DWT), the wavelet coefficients can be computed for a 
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successive index, j, in the second summation adds additional detail to the signal. A fast 
DWT algorithm that employs the use of filter banks has been developed by Mallat for the 
calculation of the approximation coefficients c(k) and detail coefficients d(j,k) (Mallat 1989), 
and is frequently used in practice. Once the coefficients have been obtained for a signal, they 
are thresholded or processed in various ways, before the reconstruction part of Mallat's 
algorithm can be used to reconstruct the signal.  
One of the most widely used applications of wavelets is in denoising. Donoho and 
Johnstone developed a wavelet denoising technique based on the thresholding of 
coefficients (Donoho 1995; Donoho and Johnstone 1994). The denoising works on the 
premise that the underlying signal can have a sparse representation where it is 
approximated by a small number of relatively large-amplitude coefficients, whereas noise 
will have its energy spread across a large number of small-amplitude coefficients (Burrus et 
al. 1998; Mallat 1999). Hence, thresholding can remove noise whilst keeping the underlying 
signal largely intact. Different thresholding strategies such as hard thresholding and soft 
thresholding can be applied (Burrus et al. 1998; Donoho 1995).  
A comprehensive study on wavelet denoising in CE using thresholding based methods was 
recently performed (Perrin et al. 2001). In the study, a number of wavelets from different 
wavelet families were tested, with the Haar wavelet found to perform the best. High 
frequency noise was removed by filtering the detail coefficients using hard thresholding and 
the low frequency baseline noise was removed by filtering the approximation coefficients 
using soft thresholding. Soft thresholding was used so as to reduce peak distortion. After 
thresholding, the inverse wavelet transform was calculated to reconstruct the signal with 
impressive results. The strategy was developed to accommodate larger baseline drifts (Liu 
et al. 2003). Fig. 3 shows an example of signal denoising using wavelet transform. This line 
of work was further developed by implementing spatially adaptive thresholding for the 
denoising of DNA capillary electrophoresis signals (Wang and Gao 2008). Wavelet 
denoising strategies were also used (Ceballos et al. 2008) on pattern recognition in CE. 
Similar wavelet based denoising strategies to those cited above have also been applied to 
liquid chromatography data (Barclay and Bonner 1997; Shao et al. 2004), Raman 
spectroscopy (Hu et al. 2007), mass spectrometry data (Barclay and Bonner 1997; Coombes 
et al. 2005), as well as numerous other areas of research (Jagtiani et al. 2008; Komsta 2009).  
The DWT is sufficient in many scenarios when removing high and low frequency noise from 
signals. However, in some situations it may be appropriate to use the continuous wavelet 
transform so that finer grained control over the scales used can be gained. In particular, 
Jakubowska has done some interesting work using the CWT for removing high and low 
frequency noise in voltammetry signals (Jakubowska 2008). After finding the CWT, certain 
scale bands were identified as containing noise, and these were excluded in the 
reconstruction of a signal using the inverse CWT. The method was also suitable for 
resolving overlapping peaks which will be discussed in the next sections. 

3.3 Peak detection 
Once the noise has been filtered, the next task is to find the peaks from the filtered 
electropherogram vf(t) = v(t) - n(t). Many different criteria can be used to determine whether 
a point corresponds to the apex of a peak (Yang et al. 2009). One simple strategy for finding 
the location of peaks in vf(t) might be to find those points that are above a threshold and/or 
correspond to a local maximum found by looking for positive to negative zero crossings in 
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Fig. 3. An example of signal denoising by a discrete wavelet transform technique. 
(A)Original signal; (B) Denoised signal by db5 at decomposition level; (C) Removed noise. 
Reproduced from Liu et al. (2003) with permission from Wiley-VCH Verlag GmbH & Co. 
KGaA. 
the signal derivative (or looking at just the second derivative). Thresholding and derivative 
based peak detection strategies are popular in various areas outside of CE. For example, an 
auto-threshold based peak detection algorithm for analyzing electrocardiograms was 
developed (Jacobson 2001); peaks in mass spectrometry data were found by selecting local 
maximum points with a signal-to-noise ratio above a certain value (Coombes et al. 2005; 
Mantini et al. 2007), and points of local maximum with an intensity sufficiently greater than 
neighbouring points were classified as peaks (Yasui et al. 2003). Zero-crossings of the 
derivative of signal were used to find the peaks in the analysis of partial discharge 
amplitude distributions (Carrato and Contin 1994). Derivatives of a smoothed signal are 
often used for peak detection in chromatography (Poole 2003). Signal peaks were detected in 
chromatograms after the Savitzky-Golay (SG) method was used to calculate derivatives 
(Peters et al. 2007). For CE, it was detailed how peaks can be identified through the location 
of inflection points (calculated using the second forward difference) (Graves-Morris et al. 
2006). 
Whilst derivative and threshold based techniques may be appropriate for some signals, low 
frequency baseline noise remaining in an electropherogram signal can disrupt threshold 
based peak detection (Wee et al. 2008), and high frequency noise can also cause problems 
especially for derivative based techniques, as discussed in (Lu et al. 2006). Recently, other 
approaches have been developed that are less susceptible to the inevitable unsuppressed 
noise that remains in the filtered electropherogram signal.  
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It is well established that wavelets can be used to detect singularities (points not 
differentiable) and edges (Mallat 1999; Struzik 2000). Singularities are detected by following 
across scales the local maxima of the wavelet transform. Using related multiscale zooming 
procedures, it is possible to detect discrete-time peaks even though the corresponding peaks 
may be continuous and differentiable. This idea has been applied to mass spectrometry data 
(Du et al. 2006). The CWT was firstly evaluated at different scales using the Mexican Hat 
wavelet to give a matrix of coefficients. Patterns evident in the matrix of coefficients were 
then analysed, with local maxima at each scale being linked across scales to give “ridges”. 
Ridges meeting certain conditions were then used to indicate the location of peaks. The 
algorithm was later extended to peak detection in CE (Petkovic-Duran et al. 2008; Stewart et 
al. 2008). An example of peak detection using the technique is shown in Fig. 4, with 
comparison with three other techniques (Du et al. 2006; Mantini et al. 2007; Morris et al. 
2005). Similar peak detection approaches have also been adopted in other areas, such as 
detecting evoked potentials (EPs) of the brain in electroencephalograms (EEGs) using the 
DWT (McCooey et al. 2005; McCooey and Kumar 2007).  
A potential benefit of these wavelet approaches is that the pre-processing step of removing 
low and high frequency baseline noise is unnecessary, as the process of selecting ridge lines 
can account for the presence of noise. Reconstruction of signals based on the local maxima of 
the wavelet-transform modulus is also possible (Mallat and Hwang 1992), so it would be 
interesting to investigate whether reconstruction of peaks in CE could be performed in this 
way. Such a technique has already been applied for extracting EPs of the brain from EEGs 
(Zhang and Zhen 1997) in addition to detection of EPs (mentioned earlier). 
 

 
Fig. 4. An example of peak detection using a continuous wavelet transform technique and 
its comparison with other techniques. The techniques shown are, from top to bottom, 
CROMWELL (Morris et al. 2005), MassSpecWavelet Script (Du et al. 2006), LIMPIC (Mantini 
et al. 2007) and Ridger (Wee et al. 2008), respectively. Reproduced from (Wee et al. 2008) 
with permission from Wiley-VCH Verlag GmbH & Co. KGaA. 
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especially for derivative based techniques, as discussed in (Lu et al. 2006). Recently, other 
approaches have been developed that are less susceptible to the inevitable unsuppressed 
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procedures, it is possible to detect discrete-time peaks even though the corresponding peaks 
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comparison with three other techniques (Du et al. 2006; Mantini et al. 2007; Morris et al. 
2005). Similar peak detection approaches have also been adopted in other areas, such as 
detecting evoked potentials (EPs) of the brain in electroencephalograms (EEGs) using the 
DWT (McCooey et al. 2005; McCooey and Kumar 2007).  
A potential benefit of these wavelet approaches is that the pre-processing step of removing 
low and high frequency baseline noise is unnecessary, as the process of selecting ridge lines 
can account for the presence of noise. Reconstruction of signals based on the local maxima of 
the wavelet-transform modulus is also possible (Mallat and Hwang 1992), so it would be 
interesting to investigate whether reconstruction of peaks in CE could be performed in this 
way. Such a technique has already been applied for extracting EPs of the brain from EEGs 
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Whilst it is beyond the scope of this paper, it should be noted that when multiple data sets 
are available (i.e. data from multiple trials) statistical peak alignment or finding techniques 
can be applied (Ceballos et al. 2008; Coombes et al. 2005; Cruz-Marcelo et al. 2008; Dixon et 
al. 2006; Liu et al. 2008; Morris et al. 2005; Yu et al. 2008). 

3.4 Peak resolution, peak extraction and quantification 
After the baseline noise in the signal is suppressed and the peak locations are identified, 
peak components can be readily extracted by taking the portion of the signal above the 
constant baseline (B in Eq. 1), or B + δ where δ can account for a threshold that is above 
residual noise or tailing peaks) around the identified peak locations. A peak model can be 
fitted to the extracted peaks and measure important peak parameters such as area, height, 
skewness and so on. However, a single model may be insufficient and the curve fitting 
process is complicated when there are overlapping peaks that are not baseline resolved 
(Dyson 1998).  
Usually in developing a CE method, the experimental conditions are optimised so as to 
ensure that all sample components are separated (Hanrahan et al. 2008; Vera-Candioti et al. 
2008). However, such optimisation may not always be practicable and/or complete 
separation may be difficult, if not impossible, to achieve (Mammone et al. 2007; Sentellas et 
al. 2001; Zhang et al. 2007). As a result, unresolved peaks may be present in an 
electropherogram and this means quantitative measurements made directly on the peaks 
may be inaccurate (Dyson 1998). There is thus great need for signal processing techniques 
that are able to separate overlapping peaks especially in situations where conducting 
additional trials would be undesirable, infeasible or ineffectual. 
Were the data acquired multi-dimensional (e.g. from multiple identical or dissimilar 
detectors or resulting from multiple trials under similar or dissimilar conditions), numerous 
statistical techniques would be at the researchers disposal to try and resolve overlapping 
peaks (Bocaz-Beneventi et al. 2002; Li et al. 2006; Sentellas et al. 2001; Zhang et al. 2007; 
Zhang and Li 2006). However, different approaches are necessary when the data from only a 
one-dimensional data vector (that results in a single electropherogram trace) is available. 
There are two main signal processing approaches that can be followed to analyse 
overlapping peaks. 
The first approach is to try and extract the peak components from the signal using curve 
fitting. An accurate peak model is required and, if the number of peaks is known, the model 
can then be fitted to the peaks that are overlapping using non-linear least squares curve 
fitting techniques. Such techniques have been applied to CE (Jarméus and Emmer 2008; 
Vera-Candioti et al. 2008), as well as chromatography (Dasgupta 2008; Jin et al. 2008; Vivó-
Truyols et al. 2005a, b), voltammetry (Huang et al. 1995) and gel electrophoresis (Kitazoe et 
al. 1983; Shadle et al. 1997) to name but a few. Fig. 5 shows an example of deconvolution 
technique (Vivó-Truyols et al. 2005b) for extracting overlapping peaks from a 
chromatographic signal. Such technique is also applicable for CE and other similar signals. 
However, the above-mentioned methods require a good peak model and initial parameter 
estimates must be sufficiently accurate for convergence of the curve fitting routines (Jarméus 
and Emmer 2008; Olazábal et al. 2004). In addition, in some cases the methods may be 
sensitive to noise and it may be difficult to automate the whole process (Jarméus and 
Emmer 2008; Vivó-Truyols et al. 2005a; Zhang et al. 2000). If there is poor separation, 
quantitative measurements made on the peaks may be inaccurate (Du et al. 2006).  
The second approach to analysing overlapping peaks is to apply signal processing to 
increase the resolution of the peaks by decreasing their width but preserving their height or 
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area. For example, voltammetric or polarographic peaks were resolved using a 
deconvolution method (Engblom 1990). In the technique, signals were transformed to the 
Fourier domain where the width of the peak (in the time domain) could be modified by 
dividing/multiplying the Fourier transform by a suitable function (note: multiplication in 
the Fourier domain corresponds to convolution in the time domain). By an appropriate 
function choice, peaks can be resolved in the time domain by having their widths reduced 
but their height or area preserved. A deconvolution approach was also detailed in 
Kauppinen et al. 1981 and more recently deconvolution/convolution approaches have been 
used in combination with wavelets (Wang et al. 2004; Zhang et al. 2000; Zhang et al. 2001; 
Zheng et al. 2000). 
 

 
Fig. 5. An example of deconvolution of multi-overlapped chromatographic signal peaks. The 
five runs correspond to five mixtures eluted with 80% (m/m) methanol. The compounds are 
toluene (Tol), ethylbenzene (Eth), butylbenzene (But), o-terphenyl (Tph), amylbenzene 
(Amy), and triphenylene (Trp), respectively. Reprinted from Vivó-Truyols et al. (2005b) with 
permission from Elservier. 
Perhaps the most popular approaches for dealing with overlapping peaks involve the use of 
wavelet transforms. These can be used to transform a signal with overlapping peaks into a 
new waveform with resolved peaks, where, in so doing, some peak parameters (e.g. area 
and location) can be preserved. Such approaches are suitable where quantification of certain 
peak parameters is of interest but the complete peak waveform is not required. For example, 
the discrete wavelet transform (DWT) was used (Shao et al. 1997) to process chromatograms 
by decomposing them into detail coefficients at different decomposition levels. The 
overlapping peaks for the chromatograms analysed had peaks in the detail coefficients that 
were well resolved at a specific level of decomposition. After baseline correction (which was 
needed as a secondary step) the areas under the peaks were used to provide an accurate 
quantitative measure of the concentration. 
The continuous wavelet transform (CWT) has also been used to resolve overlapping peaks 
in CE. Unlike the dyadic levels of decomposition typically used with the DWT's orthogonal 
wavelets, in non-orthogonal wavelet analysis the choice of scales is arbitrary (Torrence and 
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Whilst it is beyond the scope of this paper, it should be noted that when multiple data sets 
are available (i.e. data from multiple trials) statistical peak alignment or finding techniques 
can be applied (Ceballos et al. 2008; Coombes et al. 2005; Cruz-Marcelo et al. 2008; Dixon et 
al. 2006; Liu et al. 2008; Morris et al. 2005; Yu et al. 2008). 
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area. For example, voltammetric or polarographic peaks were resolved using a 
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Fourier domain where the width of the peak (in the time domain) could be modified by 
dividing/multiplying the Fourier transform by a suitable function (note: multiplication in 
the Fourier domain corresponds to convolution in the time domain). By an appropriate 
function choice, peaks can be resolved in the time domain by having their widths reduced 
but their height or area preserved. A deconvolution approach was also detailed in 
Kauppinen et al. 1981 and more recently deconvolution/convolution approaches have been 
used in combination with wavelets (Wang et al. 2004; Zhang et al. 2000; Zhang et al. 2001; 
Zheng et al. 2000). 
 

 
Fig. 5. An example of deconvolution of multi-overlapped chromatographic signal peaks. The 
five runs correspond to five mixtures eluted with 80% (m/m) methanol. The compounds are 
toluene (Tol), ethylbenzene (Eth), butylbenzene (But), o-terphenyl (Tph), amylbenzene 
(Amy), and triphenylene (Trp), respectively. Reprinted from Vivó-Truyols et al. (2005b) with 
permission from Elservier. 
Perhaps the most popular approaches for dealing with overlapping peaks involve the use of 
wavelet transforms. These can be used to transform a signal with overlapping peaks into a 
new waveform with resolved peaks, where, in so doing, some peak parameters (e.g. area 
and location) can be preserved. Such approaches are suitable where quantification of certain 
peak parameters is of interest but the complete peak waveform is not required. For example, 
the discrete wavelet transform (DWT) was used (Shao et al. 1997) to process chromatograms 
by decomposing them into detail coefficients at different decomposition levels. The 
overlapping peaks for the chromatograms analysed had peaks in the detail coefficients that 
were well resolved at a specific level of decomposition. After baseline correction (which was 
needed as a secondary step) the areas under the peaks were used to provide an accurate 
quantitative measure of the concentration. 
The continuous wavelet transform (CWT) has also been used to resolve overlapping peaks 
in CE. Unlike the dyadic levels of decomposition typically used with the DWT's orthogonal 
wavelets, in non-orthogonal wavelet analysis the choice of scales is arbitrary (Torrence and 
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Compo 1998). For example, the maximum wavelet scale was chosen to resolve coefficient 
peaks Jiao et al. 2008. At the selected scale, the resolved coefficient peaks could then be 
quantitatively analysed. Other researchers have applied similar approaches using the CWT 
(Jakubowska and Kubiak 2008; Shao et al. 1997; Shao and Sun 2001; Wang et al. 2004). In 
choosing the scale, the aim is to minimise the noise but ensure peaks are baseline resolved, 
and the mother wavelet chosen as well as the signals being analysed impact upon the 
results. Where resolution at specific scales in the wavelet coefficients is not evident, 
information across scales can also been utilised (Xiao-Quan et al. 1999) as it is for peak 
finding (see Section 4.3). 
In difficult problems, peaks may still not be resolved by the CWT coefficients. In such cases 
it may be useful or necessary to select a range of scales and reconstruct a time-domain signal 
using the inverse CWT (Jakubowska 2008). An appropriate choice for the scale band used 
can then lead to resolution of peaks in the reconstructed signal (Torrence and Compo 1998).  
Whilst it is clear that a range of techniques exist for extracting quantitative information 
about overlapping peaks, there is still a need for techniques that are able to extract the peak 
components in their entirety. The process of resolving peaks with wavelet transforms does 
not generally permit the peak components to be extracted directly, as usually some of the 
peak parameters are modified during transformation. Even though this isn't a problem for 
obtaining some quantitative information, it may be useful to have a complete representation 
for the peaks. In addition, most of the techniques demonstrated are for particular problems 
or setups. Generalised approaches to resolving overlapping peaks are needed that make 
minimal assumptions about the peak components and baseline noise.  

4. Assessing algorithm and system performance 
As this review has revealed, there are numerous approaches available for processing signals 
in capillary electrophoresis, each with a different signal processing strategy and 
demonstration on synthetic and/or real test data. However, little effort has been devoted to 
the comparison of performance from these different methods in spite of the few published 
work (Barclay and Bonner 1997; Cruz-Marcelo et al. 2008; Wee et al. 2008; Yang et al. 2009). 
In order to select or develop most efficient method, comparative studies are needed to test 
the methods on the same data (Leptos et al. 2006). One way to enable this happening is to 
make the software algorithms free and publically available so that other researchers can use 
and compare. One good example is that of Mantini and co-workers who provide both the 
algorithm source code and test data as additional material accompanying their paper 
(Mantini et al. 2007). Perhaps the more practical way is to standardise the test data sets so 
that different algorithms can be compared using the same data for their performance in key 
parameters such as noise removal, peak detection, peak resolution, peak extraction and 
quantification, and computing efficient, speed and power requirements. This can be viewed 
as a step towards reproducible research (Arora and Barak 2009; Deb 2001; Zheng et al. 1998). 
This type of approach is common in other areas of research. For example, in the area of 
multi-objective evolutionary optimisation (MOEA), there are standard test problems that 
algorithms are compared against (Deb 2001). Since that algorithm performance is likely to be 
dataset dependent, there should be a range of standardised benchmark datasets which 
could be obtained from real experimental setups or generated synthetically, and made 
publically available. 
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Standard performance indicators are needed in addition to standardised test data, so that 
algorithms can be quantitatively assessed and compared. For example, peak detection 
algorithms could be assessed by their false discovery rate (FDR) and sensitivity (Cruz-
Marcelo et al. 2008; Wee et al. 2008; Yang et al. 2009) or receiver operating characteristic 
(ROC) curve (Mantini et al. 2007). For assessing noise removal efficiency or for evaluating 
the preservation of peak properties after peak resolution, different measures that might be 
used include: root square error (RSE) or integrated square error (ISE) (Jagtiani et al. 2008), 
root mean square (RMS) (Barclay and Bonner 1997), relative error (RE) (Zhang et al. 2001; 
Zheng et al. 1998), individual sum of squared residuals (Vivó-Truyols et al. 2005b), signal-to-
noise ratio (SNR) and correlation coefficient (Jakubowska and Kubiak 2008). In addition to 
these performance indicators, an analysis of an algorithm's computational complexity 
(Arora and Barak 2009) would also be worth reporting. If this approach were widely 
adopted, then the performance of algorithms could be readily compared. 
Assessing algorithm performance is one step towards complete system characterisation and 
performance assurances. With appropriate quantification of the noise processes present in a 
system and bounded variation in the peak model, in conjunction with knowledge regarding 
the performance of the signal processing algorithms used, a researcher should be able to 
specify the quantitative properties of peaks along with a determined uncertainty measure. 
This would also allow systems to be compared with other (including commercial) systems 
and would ensure objective assessment of results could be made.  

5. Pattern matching - inferring chemical identity 
Given the successful extraction of peaks from an electropherogram, the next step is to use 
this summary information to identify the present chemicals. Substantial effort has been 
devoted to the algorithm development for such a purpose (Fruetel et al. 2006; García-Péreza 
et al. 2008; Liu et al. 2008; Stein and Scott 1994). As this process requires reference to a 
library of peak information, extracted from known chemicals measured in similar 
environment, we will refer to it as Pattern Matching. 
Due to uncertain inputs, the pattern matching is an inference process, resulting in 
probabilities. Inferring about the general composition of a sample, without reference to 
particular list of chemicals, is beyond what we consider possible from electrophoresis, as the 
solution for this question, based on electrophoresis results, is materially under-constraint. In 
general, we attempt to answer the following question: 
What are the odds that a particular chemical (i) is present in the sample, given the peaks 
expected from chemical i and other chemicals in the same environment?  

 ( / ) ?
( / )

i

i

P Chemical DI
P Chemical DI


 

, (6) 

where D is the extracted peaks data, and I is the background library information.  
The pattern matching is encumbered by several real life constrains: the accuracy of peaks 
extraction is not assured; It is not certain that the peaks extracted from two measurements, 
performed on same sample and in the same environment, will be the same. The list of 
known chemicals may not be exhaustive; chemicals for which we do not have peaks 
information (library) may be present in the sample. It is possible that the measurement 
environment is not identical to the environment in which the library was created, leading to 
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choosing the scale, the aim is to minimise the noise but ensure peaks are baseline resolved, 
and the mother wavelet chosen as well as the signals being analysed impact upon the 
results. Where resolution at specific scales in the wavelet coefficients is not evident, 
information across scales can also been utilised (Xiao-Quan et al. 1999) as it is for peak 
finding (see Section 4.3). 
In difficult problems, peaks may still not be resolved by the CWT coefficients. In such cases 
it may be useful or necessary to select a range of scales and reconstruct a time-domain signal 
using the inverse CWT (Jakubowska 2008). An appropriate choice for the scale band used 
can then lead to resolution of peaks in the reconstructed signal (Torrence and Compo 1998).  
Whilst it is clear that a range of techniques exist for extracting quantitative information 
about overlapping peaks, there is still a need for techniques that are able to extract the peak 
components in their entirety. The process of resolving peaks with wavelet transforms does 
not generally permit the peak components to be extracted directly, as usually some of the 
peak parameters are modified during transformation. Even though this isn't a problem for 
obtaining some quantitative information, it may be useful to have a complete representation 
for the peaks. In addition, most of the techniques demonstrated are for particular problems 
or setups. Generalised approaches to resolving overlapping peaks are needed that make 
minimal assumptions about the peak components and baseline noise.  

4. Assessing algorithm and system performance 
As this review has revealed, there are numerous approaches available for processing signals 
in capillary electrophoresis, each with a different signal processing strategy and 
demonstration on synthetic and/or real test data. However, little effort has been devoted to 
the comparison of performance from these different methods in spite of the few published 
work (Barclay and Bonner 1997; Cruz-Marcelo et al. 2008; Wee et al. 2008; Yang et al. 2009). 
In order to select or develop most efficient method, comparative studies are needed to test 
the methods on the same data (Leptos et al. 2006). One way to enable this happening is to 
make the software algorithms free and publically available so that other researchers can use 
and compare. One good example is that of Mantini and co-workers who provide both the 
algorithm source code and test data as additional material accompanying their paper 
(Mantini et al. 2007). Perhaps the more practical way is to standardise the test data sets so 
that different algorithms can be compared using the same data for their performance in key 
parameters such as noise removal, peak detection, peak resolution, peak extraction and 
quantification, and computing efficient, speed and power requirements. This can be viewed 
as a step towards reproducible research (Arora and Barak 2009; Deb 2001; Zheng et al. 1998). 
This type of approach is common in other areas of research. For example, in the area of 
multi-objective evolutionary optimisation (MOEA), there are standard test problems that 
algorithms are compared against (Deb 2001). Since that algorithm performance is likely to be 
dataset dependent, there should be a range of standardised benchmark datasets which 
could be obtained from real experimental setups or generated synthetically, and made 
publically available. 
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Standard performance indicators are needed in addition to standardised test data, so that 
algorithms can be quantitatively assessed and compared. For example, peak detection 
algorithms could be assessed by their false discovery rate (FDR) and sensitivity (Cruz-
Marcelo et al. 2008; Wee et al. 2008; Yang et al. 2009) or receiver operating characteristic 
(ROC) curve (Mantini et al. 2007). For assessing noise removal efficiency or for evaluating 
the preservation of peak properties after peak resolution, different measures that might be 
used include: root square error (RSE) or integrated square error (ISE) (Jagtiani et al. 2008), 
root mean square (RMS) (Barclay and Bonner 1997), relative error (RE) (Zhang et al. 2001; 
Zheng et al. 1998), individual sum of squared residuals (Vivó-Truyols et al. 2005b), signal-to-
noise ratio (SNR) and correlation coefficient (Jakubowska and Kubiak 2008). In addition to 
these performance indicators, an analysis of an algorithm's computational complexity 
(Arora and Barak 2009) would also be worth reporting. If this approach were widely 
adopted, then the performance of algorithms could be readily compared. 
Assessing algorithm performance is one step towards complete system characterisation and 
performance assurances. With appropriate quantification of the noise processes present in a 
system and bounded variation in the peak model, in conjunction with knowledge regarding 
the performance of the signal processing algorithms used, a researcher should be able to 
specify the quantitative properties of peaks along with a determined uncertainty measure. 
This would also allow systems to be compared with other (including commercial) systems 
and would ensure objective assessment of results could be made.  

5. Pattern matching - inferring chemical identity 
Given the successful extraction of peaks from an electropherogram, the next step is to use 
this summary information to identify the present chemicals. Substantial effort has been 
devoted to the algorithm development for such a purpose (Fruetel et al. 2006; García-Péreza 
et al. 2008; Liu et al. 2008; Stein and Scott 1994). As this process requires reference to a 
library of peak information, extracted from known chemicals measured in similar 
environment, we will refer to it as Pattern Matching. 
Due to uncertain inputs, the pattern matching is an inference process, resulting in 
probabilities. Inferring about the general composition of a sample, without reference to 
particular list of chemicals, is beyond what we consider possible from electrophoresis, as the 
solution for this question, based on electrophoresis results, is materially under-constraint. In 
general, we attempt to answer the following question: 
What are the odds that a particular chemical (i) is present in the sample, given the peaks 
expected from chemical i and other chemicals in the same environment?  
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where D is the extracted peaks data, and I is the background library information.  
The pattern matching is encumbered by several real life constrains: the accuracy of peaks 
extraction is not assured; It is not certain that the peaks extracted from two measurements, 
performed on same sample and in the same environment, will be the same. The list of 
known chemicals may not be exhaustive; chemicals for which we do not have peaks 
information (library) may be present in the sample. It is possible that the measurement 
environment is not identical to the environment in which the library was created, leading to 
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different peaks extracted for same sample. It is also possible that several other chemicals will 
be present in the sample, influencing peaks extracted and attributed to the chemical of 
interest.  
An effective pattern matching will need to reliably account for these uncertainties, and 
consistently indicate the probabilities of chemicals presence, using our understanding that 
several other known and unknown chemicals may be present in the sample. This, in general, 
cannot be solely done using naive matching of the extracted peaks to the library peaks of the 
chemical of interest, as it ignores the possible presence of other chemicals. And, comparison 
of separate calculation of likelihoods of the peaks measured for each of the known chemicals 
ignores other information in hand, such as the possibility of presence of unknown chemicals 
and concurrent presence of chemicals. The pattern matching process will also benefit from 
ability to mount the evidence, or in other words, to learn: given peaks measured in one 
environment, the adequate process should combine this information with information 
extracted from measurement of the same sample in a different environment. Such a pattern 
matching process for electrophoresis is, to the best of our knowledge, not defined yet, and is 
the subject of future work. 

6. Concluding remarks 
In this paper we have provided an overview of the signal processing methods that have 
been used in capillary electrophoresis and other related areas. We firstly discuss the various 
models proposed in the literature for modelling peak shapes and baseline noise. Signal 
processing techniques for extracting peaks from the signal are then reviewed. This covers 
noise removal such as digital filters and wavelet transforms, peak detection, peak extraction 
and quantification. We also discuss possible approaches for assessing algorithm 
development and system performance. 
The problem of identifying peaks could be regarded as feature extraction, and problems of 
such a nature are not confined to analytical chemistry. There exists significant opportunity 
to apply ideas and adapt techniques from other disciplines (such as pattern recognition, 
adaptive control, particle swarm optimisation, evolutionary multi-objective optimisation, 
machine learning, artificial neural networks (ANN) and artificial intelligence generally), to 
the processing of signals in CE. Indeed, for real systems that may have drifting parameters 
or characteristics, techniques from other disciplines may be necessary to produce adaptable 
signal processing algorithms. 
With benchmark testing and performance assessment, we should be able to develop 
algorithms to realise effective and efficient automatic signal analysis and quantification. 
Peaks quantified could then be used as the input to an inference pattern matching stage to 
determine the analyte components present in a sample. These steps will help facilitate the 
development of CE systems that reliably perform to specification and allow users to focus 
on the experimental results of separation. 
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different peaks extracted for same sample. It is also possible that several other chemicals will 
be present in the sample, influencing peaks extracted and attributed to the chemical of 
interest.  
An effective pattern matching will need to reliably account for these uncertainties, and 
consistently indicate the probabilities of chemicals presence, using our understanding that 
several other known and unknown chemicals may be present in the sample. This, in general, 
cannot be solely done using naive matching of the extracted peaks to the library peaks of the 
chemical of interest, as it ignores the possible presence of other chemicals. And, comparison 
of separate calculation of likelihoods of the peaks measured for each of the known chemicals 
ignores other information in hand, such as the possibility of presence of unknown chemicals 
and concurrent presence of chemicals. The pattern matching process will also benefit from 
ability to mount the evidence, or in other words, to learn: given peaks measured in one 
environment, the adequate process should combine this information with information 
extracted from measurement of the same sample in a different environment. Such a pattern 
matching process for electrophoresis is, to the best of our knowledge, not defined yet, and is 
the subject of future work. 

6. Concluding remarks 
In this paper we have provided an overview of the signal processing methods that have 
been used in capillary electrophoresis and other related areas. We firstly discuss the various 
models proposed in the literature for modelling peak shapes and baseline noise. Signal 
processing techniques for extracting peaks from the signal are then reviewed. This covers 
noise removal such as digital filters and wavelet transforms, peak detection, peak extraction 
and quantification. We also discuss possible approaches for assessing algorithm 
development and system performance. 
The problem of identifying peaks could be regarded as feature extraction, and problems of 
such a nature are not confined to analytical chemistry. There exists significant opportunity 
to apply ideas and adapt techniques from other disciplines (such as pattern recognition, 
adaptive control, particle swarm optimisation, evolutionary multi-objective optimisation, 
machine learning, artificial neural networks (ANN) and artificial intelligence generally), to 
the processing of signals in CE. Indeed, for real systems that may have drifting parameters 
or characteristics, techniques from other disciplines may be necessary to produce adaptable 
signal processing algorithms. 
With benchmark testing and performance assessment, we should be able to develop 
algorithms to realise effective and efficient automatic signal analysis and quantification. 
Peaks quantified could then be used as the input to an inference pattern matching stage to 
determine the analyte components present in a sample. These steps will help facilitate the 
development of CE systems that reliably perform to specification and allow users to focus 
on the experimental results of separation. 
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