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Preface

Computational complexity theory is a core branch of study in theoretical computing
science and mathematics, which is generally concerned with classifying computational
problems with their inherent difficulties. One of the core open problems is the resolu-
tion of P and NP problems. These are problems which are very important, however, for
which no efficient algorithm is known. The Traveling Salesman Problem (TSP) is one of
these problems, which is generally regarded as the most intensively studied problem
in computational mathematics.

Assuming a traveling salesman has to visit a number of given cities, starting and end-
ing at the same city. This tour, which represents the length of the travelled path, is the
TSP formulation. As the number of cities increases, the determination of the optimal
tour (in this case a Hamiltonian tour), becomes inexorably complex. A TSP decision
problem is generally classified as NP-Complete problem.

One of the current and best-known approaches to solving TSP problems is with the
application of Evolutionary algorithms. These algorithms are generally based on natu-
rally occurring phenomena in nature, which are used to model computer algorithms.
A number of such algorithms exists; namely, Artificial Inmune System, Genetic Algo-
rithm, Ant Colony Optimization, Particle Swarm Optimization and Self Organising
Migrating Algorithm. Algorithms based on mathematical formulations such as Dif-
ferential Evolution, Tabu Search and Scatter Search have also been proven to be very
robust.

Evolutionary Algorithms generally work on a pool of solutions, where the underlying
paradigm attempts to obtain the optimal solution. These problems are hence classified
as optimization problems. TSP, when resolved as an optimization problem, is classified
as a NP-Hard problem.

This book is a collection of current research in the application of evolutionary algo-
rithms and other optimal algorithms to solving the TSP problem. It brings together
researchers with applications in Artificial Inmune Systems, Genetic Algorithms, Neu-
ral Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps,
Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book
presents both theoretical as well as practical applications of TSP, which will be a vital
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tool for researchers and graduate entry students in the field of applied Mathematics,
Computing Science and Engineering.

Donald Davendra

Faculty of Electrical Engineering and Computing Science
Technical University of Ostrava

Tr. 17. Listopadu 15, Ostrava

Czech Republic

donald.davendra@vsb.cz
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1. Introduction

1.1 Origin

The traveling salesman problem (TSP) were studied in the 18th century by a mathematician
from Ireland named Sir William Rowam Hamilton and by the British mathematician named
Thomas Penyngton Kirkman. Detailed discussion about the work of Hamilton & Kirkman
can be seen from the book titled Graph Theory (Biggs et al. 1976). It is believed that the
general form of the TSP have been first studied by Kalr Menger in Vienna and Harvard. The
problem was later promoted by Hassler, Whitney & Merrill at Princeton. A detailed
dscription about the connection between Menger & Whitney, and the development of the
TSP can be found in (Schrijver, 1960).

1.2 Definition

Given a set of cities and the cost of travel (or distance) between each possible pairs, the TSP,
is to find the best possible way of visiting all the cities and returning to the starting point
that minimize the travel cost (or travel distance).

1.3 Complexity
Given n is the number of cities to be visited, the total number of possible routes covering all
cities can be given as a set of feasible solutions of the TSP and is given as (1-1)!/2.

1.4 Classification

Broadly, the TSP is classified as symmetric travelling salesman problem (sTSP), asymmetric
travelling salesman problem (aTSP), and multi travelling salesman problem (mTSP). This
section presents description about these three widely studied TSP.

sTSP: Let V={vy,....,v,}be a set of cities, A= {(r,s) r,se V} be the edge set, and
d,, = d,, be a cost measure associated with edge(r,s)e A.

The sTSP is the problem of finding a minimal length closed tour that visits each city once. In
this case cities v; €V are given by their coordinates (x;,y;) and d,, is the Euclidean
distance between r and s then we have an Euclidean TSP.
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aTSP:If d,, #d,, for at least one (r,s) then the TSP becomes an aTSP.

mTSP: The mTSP is defined as: In a given set of nodes, let there are m salesmen located at a
single depot node. The remaining nodes (cities) that are to be visited are intermediate nodes.
Then, the mTSP consists of finding tours for all m salesmen, who all start and end at the
depot, such that each intermediate node is visited exactly once and the total cost of visiting
all nodes is minimized. The cost metric can be defined in terms of distance, time, etc.
Possible variations of the problem are as follows: Single vs. multiple depots: In the single
depot, all salesmen finish their tours at a single point while in multiple depots the salesmen
can either return to their initial depot or can return to any depot keeping the initial number
of salesmen at each depot remains the same after the travel. Number of salesmen: The number
of salesman in the problem can be fixed or a bounded variable. Cost: When the number of
salesmen is not fixed, then each salesman usually has an associated fixed cost incurring
whenever this salesman is used. In this case, the minimizing the requirements of salesman
also becomes an objective. Timeframe: Here, some nodes need to be visited in a particular
time periods that are called time windows which is an extension of the mTSP, and referred
as multiple traveling salesman problem with specified timeframe (mTSPTW). The
application of mTSPTW can be very well seen in the aircraft scheduling problems. Other
constraints: Constraints can be on the number of nodes each salesman can visits, maximum
or minimum distance a salesman travels or any other constraints. The mTSP is generally
treated as a relaxed vehicle routing problems (VRP) where there is no restrictions on
capacity. Hence, the formulations and solution methods for the VRP are also equally valid
and true for the mTSP if a large capacity is assigned to the salesmen (or vehicles). However,
when there is a single salesman, then the mTSP reduces to the TSP (Bektas, 2006).

2. Applications and linkages

2.1 Application of TSP and linkages with other problems

i.  Drilling of printed circuit boards

A direct application of the TSP is in the drilling problem of printed circuit boards (PCBs)
(Grotschel et al., 1991). To connect a conductor on one layer with a conductor on another
layer, or to position the pins of integrated circuits, holes have to be drilled through the
board. The holes may be of different sizes. To drill two holes of different diameters
consecutively, the head of the machine has to move to a tool box and change the drilling
equipment. This is quite time consuming. Thus it is clear that one has to choose some
diameter, drill all holes of the same diameter, change the drill, drill the holes of the next
diameter, etc. Thus, this drilling problem can be viewed as a series of TSPs, one for each hole
diameter, where the 'cities' are the initial position and the set of all holes that can be drilled
with one and the same drill. The 'distance' between two cities is given by the time it takes to
move the drilling head from one position to the other. The aim is to minimize the travel time
for the machine head.

ii. Overhauling gas turbine engines

(Plante et al., 1987) reported this application and it occurs when gas turbine engines of
aircraft have to be overhauled. To guarantee a uniform gas flow through the turbines there
are nozzle-guide vane assemblies located at each turbine stage. Such an assembly basically
consists of a number of nozzle guide vanes affixed about its circumference. All these vanes
have individual characteristics and the correct placement of the vanes can result in
substantial benefits (reducing vibration, increasing uniformity of flow, reducing fuel
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consumption). The problem of placing the vanes in the best possible way can be modeled as
a TSP with a special objective function.

iii. X-Ray crystallography

Analysis of the structure of crystals (Bland & Shallcross, 1989; Dreissig & Uebach, 1990) is an
important application of the TSP. Here an X-ray diffractometer is used to obtain information
about the structure of crystalline material. To this end a detector measures the intensity of X-
ray reflections of the crystal from various positions. Whereas the measurement itself can be
accomplished quite fast, there is a considerable overhead in positioning time since up to
hundreds of thousands positions have to be realized for some experiments. In the two
examples that we refer to, the positioning involves moving four motors. The time needed to
move from one position to the other can be computed very accurately. The result of the
experiment does not depend on the sequence in which the measurements at the various
positions are taken. However, the total time needed for the experiment depends on the
sequence. Therefore, the problem consists of finding a sequence that minimizes the total
positioning time. This leads to a traveling salesman problem.

iv. Computer wiring

(Lenstra & Rinnooy Kan, 1974) reported a special case of connecting components on a
computer board. Modules are located on a computer board and a given subset of pins has to
be connected. In contrast to the usual case where a Steiner tree connection is desired, here
the requirement is that no more than two wires are attached to each pin. Hence we have the
problem of finding a shortest Hamiltonian path with unspecified starting and terminating
points. A similar situation occurs for the so-called testbus wiring. To test the manufactured
board one has to realize a connection which enters the board at some specified point, runs
through all the modules, and terminates at some specified point. For each module we also
have a specified entering and leaving point for this test wiring. This problem also amounts
to solving a Hamiltonian path problem with the difference that the distances are not
symmetric and that starting and terminating point are specified.

v. The order-picking problem in warehouses

This problem is associated with material handling in a warehouse (Ratliff & Rosenthal,
1983). Assume that at a warehouse an order arrives for a certain subset of the items stored in
the warehouse. Some vehicle has to collect all items of this order to ship them to the
customer. The relation to the TSP is immediately seen. The storage locations of the items
correspond to the nodes of the graph. The distance between two nodes is given by the time
needed to move the vehicle from one location to the other. The problem of finding a shortest
route for the vehicle with minimum pickup time can now be solved as a TSP. In special
cases this problem can be solved easily, see (van Dal, 1992) for an extensive discussion and
for references.

vi. Vehicle routing

Suppose that in a city n mail boxes have to be emptied every day within a certain period of
time, say 1 hour. The problem is to find the minimum number of trucks to do this and the
shortest time to do the collections using this number of trucks. As another example, suppose
that n customers require certain amounts of some commodities and a supplier has to satisfy
all demands with a fleet of trucks. The problem is to find an assignment of customers to the
trucks and a delivery schedule for each truck so that the capacity of each truck is not
exceeded and the total travel distance is minimized. Several variations of these two
problems, where time and capacity constraints are combined, are common in many real-
world applications. This problem is solvable as a TSP if there are no time and capacity



4 Traveling Salesman Problem, Theory and Applications

constraints and if the number of trucks is fixed (saym ). In this case we obtain an m -
salesmen problem. Nevertheless, one may apply methods for the TSP to find good feasible
solutions for this problem (see Lenstra & Rinnooy Kan, 1974).

vii. Mask plotting in PCB production

For the production of each layer of a printed circuit board, as well as for layers of integrated
semiconductor devices, a photographic mask has to be produced. In our case for printed
circuit boards this is done by a mechanical plotting device. The plotter moves a lens over a
photosensitive coated glass plate. The shutter may be opened or closed to expose specific
parts of the plate. There are different apertures available to be able to generate different
structures on the board. Two types of structures have to be considered. A line is exposed on
the plate by moving the closed shutter to one endpoint of the line, then opening the shutter
and moving it to the other endpoint of the line. Then the shutter is closed. A point type
structure is generated by moving (with the appropriate aperture) to the position of that
point then opening the shutter just to make a short flash, and then closing it again. Exact
modeling of the plotter control problem leads to a problem more complicated than the TSP
and also more complicated than the rural postman problem. A real-world application in the
actual production environment is reported in (Grétschel et al., 1991).

2.2 Applications of mTSP and connections with other problems

This section is further divided into three. In the first section, the main application of the
mTSP is given. The second part relates TSP with other problems. The third part deals with
the similarities between the mTSP with other problems (the focus is with the VRP).

2.2.1 Main applications

The main apllication of mTSP arises in real scenario as it is capacble to handle multiple

salesman. These situations arise mostly in various routing and scheduling problems. Some

reported applications in literature are presented below.

i.  Printing press scheduling problem: One of the major and primary applications of the
mTSP arises in scheduling a printing press for a periodical with multi-editions. Here,
there exist five pairs of cylinders between which the paper rolls and both sides of a page
are printed simultaneously. There exist three kind of forms, namely 4-, 6- and 8-page
forms, which are used to print the editions. The scheduling problem consists of
deciding which form will be on which run and the length of each run. In the mTSP
vocabulary, the plate change costs are the inter-city costs. For more details papers by
Gorenstein (1970) and Carter & Ragsdale (2002) can be referred.

ii. School bus routing problem: (Angel et al, 1972) investigated the problem of
scheduling buses as a variation of the mTSP with some side constraints. The objective of
the scheduling is to obtain a bus loading pattern such that the number of routes is
minimized, the total distance travelled by all buses is kept at minimum, no bus is
overloaded and the time required to traverse any route does not exceed a maximum
allowed policy.

iii. Crew scheduling problem: An application for deposit carrying between different
branch banks is reported by (Svestka & Huckfeldt, 1973). Here, deposits need to be
picked up at branch banks and returned to the central office by a crew of messengers.
The problem is to determine the routes having a total minimum cost. Two similar
applications are described by (Lenstra & Rinnooy Kan , 1975 and Zhang et al., 1999).
Papers can be referred for delaited analysis.
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iv. Interview scheduling problem: (Gilbert & Hofstra, 1992) found the application of
mTSP, having multiperiod variations, in scheduling interviews between tour brokers
and vendors of the tourism industry. Each broker corresponds to a salesman who must
visit a specified set of vendor booths, which are represented by a set of T cities.

v. Hot rolling scheduling problem: In the iron and steel industry, orders are scheduled
on the hot rolling mill in such a way that the total set-up cost during the production can
be minimized. The details of a recent application of modeling such problem can be read
from (Tang et al., 2000). Here, the orders are treated as cities and the distance between
two cities is taken as penalty cost for production changeover between two orders. The
solution of the model will yield a complete schedule for the hot strip rolling mill.

vi. Mission planning problem: The mission planning problem consists of determining an
optimal path for each army men (or planner) to accomplish the goals of the mission in
the minimum possible time. The mission planner uses a variation of the mTSP where
there are n planners, m goals which must be visited by some planners, and a base city to
which all planners must eventually return. The application of the mTSP in mission
planning is reported by (Brummit & Stentz, 1996; Brummit & Stentz, 1998; and Yu et al.,
2002). Similarly, the routing problems arising in the planning of unmanned aerial
vehicle applications, investigated by (Ryan et al., 1998), can also be modelled as mTSP.

vii. Design of global navigation satellite system surveying networks: A very recent and an
interesting application of the mTSP, as investigated by (Saleh & Chelouah, 2004) arises in
the design of global navigation satellite system (GNSS) surveying networks. A GNSS is a
space-based satellite system which provides coverage for all locations worldwide and is
quite crucial in real-life applications such as early warning and management for disasters,
environment and agriculture monitoring, etc. The goal of surveying is to determine the
geographical positions of unknown points on and above the earth using satellite
equipment. These points, on which receivers are placed, are co-ordinated by a series of
observation sessions. When there are multiple receivers or multiple working periods, the
problem of finding the best order of sessions for the receivers can be formulated as an
mTSP. For technical details refer (Saleh & Chelouah, 2004).

2.2.2 Connections with other problems

The above-mentioned problems can be modeled as an mTSP. Apart from these above
metioned problmes, mTSP can be also related to other problems. One such example is
balancing the workload among the salesmen and is described by (Okonjo-Adigwe, 1988).
Here, an mTSP-based modelling and solution approach is presented to solve a workload
scheduling problem with few additional restrictions. Paper can be referred for detailed
description and analysis. Similalry, (Calvo & Cordone, 2003; Kim & Park, 2004) investigated
overnight security service problem. This problem consists of assigning duties to guards to
perform inspection duties on a given set of locations with subject to constraint such as
capacity and timeframe. For more comprehensive review on various application of mTSP
authors advise to refer papers by (Macharis & Bontekoning, 2004; Wang & Regan, 2002;
Basu et al., 2000).

2.2.3 Connections with the VRP
mTSP can be utilized in solving several types of VRPs. (Mole et al., 1983) discuss several
algorithms for VRP, and present a heuristic method which searches over a solution space



6 Traveling Salesman Problem, Theory and Applications

formed by the mTSP. In a similar context, the mTSP can be used to calculate the minimum
number of vehicles required to serve a set of customers in a distance-constrained VRP
(Laptore et al., 1985; Toth & Vigo, 2002). The mTSP also appears to be a first stage problem
in a two-stage solution procedure of a VRP with probabilistic service times. This is discussed
further by (Hadjiconstantinou & Roberts, 2002). (Ralphs, 2003) mentions that the VRP
instances arising in practice are very hard to solve, since the mTSP is also very complex. This
raises the need to efficiently solve the mTSP in order to attack large-scale VRPs. The mTSP is
also related to the pickup and delivery problem (PDP). The PDP consists of determining the
optimal routes for a set of vehicles to fulfill the customer requests (Ruland & Rodin, 1997). If
the customers are to be served within specific time intervals, then the problem becomes the
PDP with time windows (PDPTW). The PDPTW reduces to the mTSPTW if the origin and
destination points of each request coincide (Mitrovié-Mini¢ et al., 2004).

3. Mathematical formulations of TSP and mTSP

The TSP can be defined on a complete undirected graph G=(V,E) if it is symmetric or on a
directed graph G=(V,A) if it is asymmetric. The set V ={1, . . ., n} is the vertex set,
E={(i,j):i,jeV,i<j} isanedgesetand A={(i,j):i,jeV,i=j} isanarcset. A cost matrix
C= (ci]») is defined on E or on A. The cost matrix satisfies the triangle inequality whenever

¢ Scy+cy, forall i,j,k . In particular, this is the case of planar problems for which the

2 2
vertices are points P; =(X;,Y;) in the plane, and ¢; = \/ (Xi -X j) + (Yi - Yj) is the Euclidean
distance. The triangle inequality is also satisfied if c; is the length of a shortest path from i

tojonG.

3.1 Integer programming formulation of sSTSP

Many TSP formulations are available in literature. Recent surveys by (Orman & Williams,
2006; O ncan et al., 2009) can be referred for detailed analysis. Among these, the (Dantzig et
al., 1954) formulation is one of the most cited mathematical formulation for TSP.
Incidentally, an early description of Concorde, which is recognized as the most performing
exact algorithm currently available, was published under the title ‘Implementing the
Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems’ (Applegate et
al., 2003). This formulation associates a binary variable x;; with each edge (i, j), equal to 1 if
and only if the edge appears in the optimal tour. The formulation of TSP is as follows.
Minimize

2 G Q)

i<j

Subject to

ink+2xkj=2 (kEV) (2)

i<k >k
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i,]Ze:Sxij <S|-1 (ScV,3£|S|gn_3) o
xj=0or1 (i,j)eE “

In this formulation, constraints (2), (3) and (4) are referred to as degree constraints, subtour
elimination constraints and integrality constraints, respectively. In the presence of (2),
constraints (3) are algebraically equivalent to the connectivity constraints

x;22  (ScV,3<S|<n-3) ®)
ieS,jeV\S,jeS

3.2 Integer programming formulation of aTSP
The (Dantzig et al., 1954) formulation extends easily to the asymmetric case. Here x; is a

binary variable, associated with arc (i,j) and equal to 1 if and only if the arc appears in the
optimal tour. The formulation is as follows.

Minimize
i#]
Subject to
n
dxi=1  (ieV,izj) ?)
j=1

dx=1  (jeV,j=i) (8)
i=1
_stlj <S|-1 (ScV,2<Slkn-2) 9)
1,j€
x;=0or1 (i,j)e A (10)

3.3 Integer programming formulations of mTSP

Different types of integer programming formulations are proposed for the mTSP. Before
presenting them, some technical definitions are as follows. The mTSP is defined on a graph
G=(V,A), where V is the set of n nodes (vertices) and A is the set of arcs (edges).
Let C :(cij) be a cost (distance) matrix associated with A. The matrix C is said to be
symmetric when Ci =Cji s V(i, ]) € A and asymmetric otherwise. If Cij +Cjk ¢y, Vi, j,keV,C
is said to satisfy the triangle inequality. Various integer programming formulations for the
mTSP have been proposed earlier in the literature, among which there exist assignment-
based formulations, a tree-based formulation and a three-index flow-based formulation.
Assignment based formulations are presented in following subsections. For tree based
formulation and three-index based formulations refer (Christofides et al., 1981).
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3.3.1 Assignment-based integer programming formulations
The mTSP is usually formulated using an assignment based double-index integer linear
programming formulation. We first define the following binary variable:

1
x; =4 . If arc (i, j) is used in the tour,
1 0

Otherwise.
Then, a general scheme of the assignment-based directed integer linear programming
formulation of the mTSP can be given as follows:

Minimize
n n
2 i
i=1j=1
Subject to
n
D x=m (11)
j=2
n
Z X =m (12)
=2
n
$05=1, =2 (13)
i=1
n
Sy =1, =2, (14)
j=1
+ subtour elimination constraints, (15)
xije{O,l}, V(i/j)EAr (16)

where (13), (14) and (16) are the usual assignment constraints, (11) and (12) ensure that exactly
m salesmen depart from and return back to node 1 (the depot). Although constraints (12) are
already implied by (11), (13) and (14), we present them here for the sake of completeness.
Constraints (15) are used to prevent subtours, which are degenerate tours that are formed
between intermediate nodes and not connected to the origin. These constraints are named as
subtour elimination constraints (SECs). Several SECs have been proposed for the mTSP in the
literature. The first group of SECs is based on that of (Dantzig et al., 1954) originally proposed
for the TSP, but also valid for the mTSP. These constraints can be shown as follows:

D> x<|8-1,  vScV\{1}, S5z0 (17)

ieS jeS

or alternatively in the following form
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2221, VScVA\{l}, SO (18)
ig$S jeS

Constraints (17) or (18) impose connectivity requirements for the solution, i.e. prevent the
formation of subtours of cardinality S not including the depot. Unfortunately, both families
of these constraints increase exponentially with increasing number of nodes, hence are not
practical for neither solving the problem nor its linear programming relaxation directly.
Miller et al. (1960) overcame this problem by introducing O(n?) additional continuous
variables, namely node potentials, resulting in a polynomial number of SECs. Their SECs are
given as follows (denoted by MTZ-SECs):

uj—u;+px; <p-1for 2<i=j<n (19)

Here, p denotes the maximum number of nodes that can be visited by any salesman. The
node potential of each node indicates the order of the corresponding node in the tour.
(Svestka & Huckfeldt, 1973) propose another group of SECs for the mTSP which require
augmenting the original cost matrix with new rows and columns. However, (Gavish, 1976)
showed that their constraints are not correct for m>2 and provided the correct constraints as
follows:

up—uj+(n—m)x; <n-m-1 for 2<i=j<n (20)

Other MTZ-based SECs for the mTSP have also been proposed. The following constraints
are due to Kulkarni & Bhave (1985) (denoted by KB-SECs):

w;—u;+Lx; <L-1 for 2<i#j<n (21)

In these constraints, the L is same as p in (19). It is clear that MTZ-SECs and KB-SECs are
equivalent.

3.3.2 Laporte & Nobert’s formulations

(Laporte & Nobert, 1980) presented two formulations for the mTSP, for asymmetrical and
symmetrical cost structures, respectively, and consider a common fixed cost f for each
salesman used in the solution. These formulations are based on the two-index variable x;
defined previously.

3.3.2.1 Laporte & Nobert's formulation for the asymmetric mTSP

Minimize
zcijxij + f
i#]
Subject to
n
Z(x1j+xj1):2m 22)
=2
ink =1 k=2,....n (23)

i#k
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;xikzl k=2,sm 4)
Y % <[s-1|

i#jii, jeS

2<|S|<n-2, ScV\{1} (25)

X € {0,1}, Viz#j (26)

m>1 and integer (27)

This formulation is a pure binary integer where the objective is to minimize the total cost
of the travel as well as the total number of salesmen. Note that constraints (23) and (24)
are the standard assignment constraints, and constraints (25) are the SECs of (Dantzig et
al., 1954). The only different constraints are (22), which impose degree constraints on the
depot node.

3.3.2.2 Laporte & Nobert’s formulation for the symmetric mTSP

Minimize
Zcifxij + fu
i<j
Subject to
n
D% =2m (28)
=2
ink + Zxkj =2
i<k >k (29)
k=2,... N
Y x<[s-1
i<j;i,jeS
3£|5|§n—2, ScV\{1} (30)
x;€{0,1},  1<i<j (31)
Xy €{0,1,2}, j=2,0m (32)
m>1 and integer (32)

The interesting issue about this formulation is that it is not a pure binary integer formulation
due to the variable x1;, which can either be 0, 1 or 2. Note here that the variable xj; is only
defined for i <j, since the problem is symmetric and only a single variable is sufficient to
represent each edge used in the solution. Constraints (28) and (29) are the degree constraints
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on the depot node and intermediate nodes, respectively. Other constraints are as previously
defined.

4. Exact solution approaches

4.1 Exact algorithms for the sTSP

When (Dantzig et al., 1954) formulation was first introduced, the simplex method was in its
infancy and no algorithms were available to solve integer linear programs. The practitioners
therefore used a strategy consisting of initially relaxing constraints (3) and the integrality
requirements, which were gradually reintroduced after visually examining the solution to
the relaxed problem. (Martin, 1966) used a similar approach. Initially he did not impose
upper bounds on the x;; variables and imposed subtour elimination constraints on all sets 5=
{i, j } for which j is the closest neighbour of i . Integrality was reached by applying the
‘Accelerated Euclidean algorithm’, an extension of the ‘Method of integer forms” (Gomory,
1963). (Miliotis, 1976, 1978) was the first to devise a fully automated algorithm based on
constraint relaxation and using either branch-and-bound or Gomory cuts to reach
integrality. (Land, 1979) later puts forward a cut-and-price algorithm combining subtour
elimination constraints, Gomory cuts and column generation, but no branching. This
algorithm was capable of solving nine Euclidean 100-vertex instances out of 10. It has long
been recognized that the linear relaxation of sTSP can be strengthened through the
introduction of valid inequalities. Thus, (Edmonds, 1965) introduced the 2-matching
inequalities, which were then generalized to comb inequalities (Chv’atal, 1973). Some
generalizations of comb inequalities, such as clique tree inequalities (Grotschel &
Pulleyblank, 1986) and path inequalities (Cornu’ejols et al., 1985) turn out to be quite
effective. Several other less powerful valid inequalities are described in (Naddef, 2002). In
the 1980s a number of researchers have integrated these cuts within relaxation mechanisms
and have devised algorithms for their separation. This work, which has fostered the growth
of polyhedral theory and of branch-and-cut, was mainly conducted by (Padberg and Hong,
1980; Crowder & Padberg, 1980; Grotschel & Padberg, 1985; Padberg & Grotschel, 1985;
Padberg & Rinaldi, 1987, 1991; Grotschel & Holland, 1991). The largest instance solved by
the latter authors was a drilling problem of size n =2392. The culmination of this line of
research is the development of Concorde by (Applegate et al., 2003, 2006), which is today the
best available solver for the symmetric TSP. It is freely available at www.tsp.gatech.edu.
This computer program is based on branch-and-cut-and-price, meaning that both some
constraints and variables are initially relaxed and dynamically generated during the
solution process. The algorithm uses 2-matching constraints, comb inequalities and certain
path inequalities. It makes use of sophisticated separation algorithms to identify violated
inequalities. A detailed description of Concorde can be found in the book by (Applegate et
al., 2006). Table 1 summarizes some of the results reported by (Applegate et al., 2006) for
randomly generated instances in the plane. All tests were run on a cluster of compute nodes,
each equipped with a 2.66 GHz IntelXeon processor and 2 Gbyte of memory. The linear
programming solver used was CPLEX 6.5. It can be seen that Concorde is quite reliable for
this type of instances. All small TSPLIB instances (n < 1000) were solved within 1 min on a
2.4 GHz ADM Opteron processor. On 21 medium-size TSPLIB instances (1000 < n < 2392),
the algorithm converged 19 times to the optimum within a computing time varying between
5.7 and 3345.3 s. The two exceptions required 13999.9 s and 18226404.4 s. The largest
instance now solved optimally by Concorde arises from a VLSI application and contains
85900 vertices (Applegate et al., 2009).
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N | Type |[Sample size|Mean CPU seconds
100 |random| 10000 0.7

500 |random| 10000 50.2

1000 | random 1000 601.6

2000 | random 1000 14065.6

2500 | random 1000 53737.9

Table 1. Computation times for Concorde

4.2 Exact algorithms for the aTSP

An interesting feature of aTSP is that relaxing the subtour elimination constraints yields a
Modified Assignment Problem (MAP), which is an assignment problem. The linear
relaxation of this problem always has an integer solution and is easy to solve by means of a
specialized assignment algorithm, (Carpaneto & Toth, 1987; Dell’Amico & Toth, 2000 and
Burkard et al., 2009). Many algorithms based on the AP relaxation have been devised. Some
of the best known are those of (Eastman,1958; Little et al., 1963; Carpaneto & Toth, 1980;
Carpaneto et al., 1995 and Fischetti & Toth, 1992). Surveys of these algorithms and others
have been presented in (Balas & Toth, 1985; Laporte, 1992 and Fischetti et al., 2002). It is
interesting to note that (Eastman, 1958) described what is probably the first ever branch-
and-bound algorithm, 2 years before this method was suggested as a generic solution
methodology for integer linear programming (Land & Doig, 1960), and 5 years before the
term ‘branch-and-bound’ was coined by (Little et al., 1963). The (Carpaneto et al., 1995)
algorithm has the dual advantage of being fast and simple. The (Fischetti & Toth, 1992)
algorithm improves slightly on that of (Carpaneto et al., 1995) by computing better lower
bounds at the nodes of the search tree. The Carpanteo, Dell’Amico & Toth algorithm works
rather well on randomly generated instances but it often fails on some rather small
structured instances with as few as 100 vertices (Fischetti et al., 2002). A branch- and bound
based algorithm for the asymmetric TSP is proposed by (Ali & Kennington, 1986). The
algorithm uses a Lagrangean relaxation of the degree constraints and a subgradient
algorithm to solve the Lagrangean dual.

4.3 Exact algorithms for mTSP

The first approach to solve the mTSP directly, without any transformation to the TSP is due
to (Laporte & Nobert, 1980), who propose an algorithm based on the relaxation of some
constraints of the mTSP. The problem they consider is an mTSP with a fixed cost f associated
with each salesman. The algorithm consists of solving the problem by initially relaxing the
SECs and performing a check as to whether any of the SECs are violated, after an integer
solution is obtained. The first attempt to solve large-scale symmetric mTSPs to optimality is
due to (Gavish & Srikanth, 1986). The proposed algorithm is a branch-and-bound method,
where lower bounds are obtained from the following Lagrangean problem constructed by
relaxing the degree constraints. The Lagrangean problem is solved using a degree-
constrained minimal spanning tree which spans over all the nodes. The results indicate that
the integer gap obtained by the Lagrangean relaxation decreases as the problem size
increases and turns out to be zero for all problems with n>400. (Gromicho et al., 1992)
proposed another exact solution method for mTSP. The algorithm is based on a quasi-
assignment (QA) relaxation obtained by relaxing the SECs, since the QA-problem is solvable
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in polynomial time. An additive bounding procedure is applied to strengthen the lower
bounds obtained via different r-arborescence and r-anti-arborescence relaxations and this
procedure is embedded in a branch-and-bound framework. It is observed that the additive
bounding procedure has a significant effect in improving the lower bounds, for which the
QA-relaxation yields poor bounds. The proposed branch-and-bound algorithm is superior
to the standard branch-and-bound approach with a QA-relaxation in terms of number of
nodes, ranging from 10% less to 10 times less. Symmetric instances are observed to yield
larger improvements. Using an IBM PS/70 computer with an 80386 CPU running at 25
MHz, the biggest instance solved via this approach has 120 nodes with the number of
salesman ranging from 2 to 12 in steps of one (Gromicho, 2003).

5. Approximate approaches

There are mainly two ways of solving any TSP instance optimally. The first is to apply an
exact approach such as Branch and Bound method to find the length. The other is to
calculate the Held-Karp lower bound, which produces a lower bound to the optimal
solution. This lower bound is used to judge the performance of any new heuristic proposed
for the TSP. The heuristics reviewed here mainly concern with the sTSP, however some of
these heuristics can be modified appropriatley to solve the aTSP.

5.1 Approximation

Solving even moderate size of the TSP optimally takes huge computtaional time, therefore
there is a room for the development and application of approximate algorithms, or
heuristics. The approximate approach never guarantee an optimal solution but gives near
optimal solution in a reasonable computational effort. So far, the best known approximate
algorithm available is due to (Arora, 1998). The complexity of the approximate algorithm is

O(n(log2 n)o(c)) where n is problem size of TSP.

5.2 Tour construction approaches

All tour construction algorithms stops when a solution is found and never tries to improve it.
It is believed that tour construction algorithms find solution within 10-15% of optimality. Few
of the tour construction algorithms available in published literature are described below.

5.2.1 Closest neighbor heuristic

This is the simplest and the most straightforward TSP heuristic. The key to this approach is
to always visit the closest city. The polynomial complexity associated with this heuristic
approach is O(n?). The closest approach is very similar to minimum spanning tree
algorithm. The steps of the closest neighbor are given as:

1. Select a random city.

2. Find the nearest unvisited city and go there.

3. Are there any unvisitied cities left? If yes, repeat step 2.

4. Return to the first city.

The Closest Neighbor heuristic approach generally keeps its tour within 25% of the Held-
Karp lower bound (Johnson & McGeoch, 1995).
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5.2.2 Greedy heuristic

The Greedy heuristic gradually constructs a tour by repeatedly selecting the shortest edge

and adding it to the tour as long as it doesn’t create a cycle with less than N edges, or

increases the degree of any node to more than 2. We must not add the same edge twice of

course. Complexity of the greedy heuristic is O(n2 log, (n)) . Steps of Greedy approach are:

1. Sortall edges.

2. Select the shortest edge and add it to our tour if it doesn’t violate any of the above
constraints.

3. Do we have N edges in our tour? If no, repeat step 2.

The Greedy algorithm normally keeps solution within 15- 20% of the Held-Karp lower

bound (Johnson & McGeoch, 1995).

5.2.3 Insertion heuristic

Insertion heuristics are quite straight forward, and there are many variants to choose from.

The basics of insertion heuristics is to start with a tour of a subset of all cities, and then

inserting the rest by some heuristic. The initial subtour is often a triangle. One can also start

with a single edge as subtour. The complexity with this type of heuristic approach is given

as O(n2). Steps of an Insertion heuristic are:

Select the shortest edge, and make a subtour of it.

1. Select a city not in the subtour, having the shortest distance to any one of the cities in
the subtour.

2. Find an edge in the subtour such that the cost of inserting the selected city between the
edge’s cities will be minimal.

3. Repeat step 2 until no more cities remain.

5.2.4 Christofide heuristic

Most heuristics can only guarantee a feasible soluiton or a fair near optimal solution.

Christofides extended one of these heuristic approaches which is known as Christofides

heuristic. Complexity of this approach is O(n3). The steps are gievn below:

1. Build a minimal spanning tree from the set of all cities.

2. Create a minimum-weight matching (MWM) on the set of nodes having an odd degree.
Add the MST together with the MWM.

3. Create an Euler cycle from the combined graph, and traverse it taking shortcuts to
avoid visited nodes.

Tests have shown that Christofides” algorithm tends to place itself around 10% above the

Held-Karp lower bound. More information on tour construction heuristics can be found in

(Johnson & McGeoch, 2002).

5.3 Tour improvement

After generating the tour using any tour construction heuristic, an improvment heuristic can
be further applied to improve the quality of the tour generated. Popularly, 2-opt and 3-opt
exchange heuristic is applied for improving the solution. The performance of 2-opt or 3-opt
heuristic basically depends on the tour generated by the tour construction heuristic. Other
ways of improving the solution is to apply meta-heuristic approaches such as tabu search or
simulated annealing using 2-opt and 3-opt.
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©
Fig. 1. A 2- opt move and 3-opt move

5.3.1 2-opt and 3-opt

The 2-opt algorithm removes randomly two edges from the already generated tour, and
reconnects the new two paths created. This is refered as a 2-opt move. The reconnecting is
done such a way to keep the tour valid (see figure 1 (a)). This is done only if the new tour is
shorter than older. This is continued till no further improvement is possible. The resulting
tour is now 2 optimal. The 3-opt algorithm works in a similar fashion, but instead of
removing the two edges it removes three edges. This means there are two ways of
reconnecting the three paths into a valid tour (see figure 1(b) and figure 1(c)). Search is
completed when no more 3-opt moves can improve the tour quality. If a tour is 3 optimal it
is also 2 optimal (Helsgaun). Running the 2-opt move often results in a tour with a length
less than 5% above the Held-Karp bound. The improvements of a 3-opt move usually
generates a tour about 3% above the Held-Karp bound (Johnson & McGeoch, 1995).

5.3.2 k-opt

In order to improve the already generated tour from tour construction heuristic, k-opt move
can be applied (2-opt and 3-opt are special cases of k-opt exchange heuristic) but exchange
heuristic having k>3 will take more computational time. Mainly one 4-opt move is used,
called “the crossing bridges” (see Figure 2). This particular move cannot be sequentially
constructed using 2-opt moves. For this to be possible two of these moves would have to be
illegal (Helsgaun).

Fig. 2. Double bridge move
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5.3.3 Lin-Kernighan

Lin & Kernighan constructed an algorithm making it possible to get within 2% of the Held-
Karp lower bound. The Lin-Kernighan heuristic (LK) is a variable k-way exchange heuristic.
It decides the value of suitable k at each iteration. This makes the an improvement heuristic
quite complex, and few have been able to make improvements to it. The time complexity of
LK is approximately O(n2'2) (Helsgaun), making it slower than a simple 2-opt
implementation.

5.3.4 Tabu search

It is a neighborhood-search algorithm which seacrh the better solution in the neighbourhood
of the existing solution. In general, tabu search (TS) uses 2-opt exchange mechanism for
searching better solution. A problem with simple neighborhood search approach i.e. only 2-
opt or 3-opt exchange heuristic is that these can easily get stuck in a local optimum. This can
be avoided easily in TS approach. To avoid this TS keeps a tabu list containing bad solution
with bad exchange. There are several ways of implementing the tabu list. For more detail
paper by (Johnson & McGeoch, 1995) can be referred. The biggest problem with the TS is its
running time. Most implementations for the TSP generally takes O(n3) (Johnson & McGeoch,
1995), making it far slower than a 2-opt local search.

5.3.5 Simulated annealing

Simulated Annealing (SA) has been successfully applied and adapted to give an
approximate solutions for the TSP. SA is basically a randomized local search algorithm
similar to TS but do not allow path exchange that deteriorates the solution. (Johnson &
McGeoch, 1995) presented a baseline implementation of SA for the TSP. Authors used 2-opt
moves to find neighboring solutions. In SA, Better results can be obtained by increasing the
running time of the SA algorithm, and it is found that the results are comparable to the LK
algorithm. Due to the 2-opt neighborhood, this particular implementation takes O(nz) with
a large constant of proportionality (Johnson & McGeoch, 1995).

5.3.6 Genetic algorithm

Genetic Algorithm (GA) works in a way similar to the nature. A basic GA starts with a
randomly generated population of candidate solutions. Some (or all) candidates are then
mated to produce offspring and some go through a mutating process. Each candidate has a
fitness value telling us how good they are. By selecting the most fit candidates for mating
and mutation the overall fitness of the population will increase. Applying GA to the TSP
involves implementing a crossover routine, a measure of fitness, and also a mutation
routine. A good measure of fitness is the actual length of the solution. Different approaches
to the crossover and mutation routines are discussed in (Johnson & McGeoch, 1995).

5.4 Ant colony optimization

Researchers are often trying to mimic nature to solve complex problems, and one such
example is the successful use of GA. Another interesting idea is to mimic the movements of
ants. This idea has been quite successful when applied to the TSP, giving optimal solutions
to small problems quickly (Dorigo & Gambardella, 1996). However, as small as an ant’s
brain might be, it is still far too complex to simulate completely. But we only need a small
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part of their behaviour for solving the problem. Ants leave a trail of pheromones when they
explore new areas. This trail is meant to guide other ants to possible food sources. The key
to the success of ants is strength in numbers, and the same goes for ant colony optimization.
We start with a group of ants, typically 20 or so. They are placed in random cities, and are
then asked to move to another city. They are not allowed to enter a city already visited by
themselves, unless they are heading for the completion of our tour. The ant who picked the
shortest tour will be leaving a trail of pheromones inversely proportional to the length of the
tour. This pheromone trail will be taken in account when an ant is choosing a city to move
to, making it more prone to walk the path with the strongest pheromone trail. This process
is repeated until a tour being short enough is found. Consult (Dorigo & Gambardella, 1996)
for more detailed information on ant colony optimization for the TSP.

5.5 The Held-Karp lower bound

This lower bound if the common way of testing the performance of any new TSP heuristic.
Held-Karp (HK) bound is actually a solution to the linear programming relaxation of the
integer formulation of TSP (Johnson et al. 1996). A HK lower bound averages about 0.8%
below the optimal tour length (Johnson et al., 1996). For more details regarding the HK
lower bound, paper by (Johnson et al., 1996) can be referred.

5.6 Heuristic solution approaches for mTSP

One of the first heuristics addressing TSP is due to (Russell, 1977). The algorithm is an
extended version of the Lin & Kernighan (1973) heuristic. (Potvin et al., 1989) have given
another heuristic based on an exchange procedure for the mTSP. (Fogel, 1990) proposed a
parallel processing approach to solve the mTSP using evolutionary programming. Problems
with 25 and 50 cities were solved and it is noted that the evolutionary approach obtained
very good near-optimal solutions. (Wacholder et al., 1989) extended the Hopfield-Tank
ANN model to the mTSP but their model found to be too complex to find even feasible
soultions. Hsu et al. (1991) presented a neural network (NN) approach to solve the mTSP.
The authors stated that their results are better than (Wacholder et al., 1989). (Goldstein,
1990) and (Vakhutinsky & Golden, 1994) presented a self-organizing NN approach for the
mTSP. A self-organizing NN for the VRP based on an enhanced mTSP NN model is due to
(Torki et al., 1997). Recently, (Modares et al., 1999 and Somhom et al., 1999) have developed
a self-organizing NN approach for the mTSP with a minmax objective function, which
minimizes the cost of the most expensive route. Utilizing GA for the solution of mTSP seems
to be first due to (Zhang et al., 1999). A recent application by (Tang et al., 2000) used GA to
solve the mTSP model developed for hot rolling scheduling. (Yu et al., 2002) also used GA to
solve the mTSP in path planning. (Ryan et al., 1998) used TS in solving a mTSP with time
windows. (Song et al., 2003) proposed an extended SA approach for the mTSP with fixed
costs associated with each salesman. (Gomes & Von Zuben, 2002) presented a neuro-fuzzy
system based on competitive learning to solve the mTSP along with the capacitated VRP.
Sofge et al. (2002) implemented and compared a variety of evolutionary computation
algorithms to solve the mTSP, including the use of a neighborhood attractor schema, the
shrink-wrap algorithm for local neighborhood optimization, particle swarm optimization,
Monte-Carlo optimization, genetic algorithms and evolutionary strategies. For more
detailed description, papers mentioned above can be referred.
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The Advantage of Intelligent Algorithms for TSP
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China

1. Introduction

Traveling salesman problem (TSP) means that a travelling salesman needs to promote
products in n cities (including the city where he lives). After visiting each city (each city can
be visited once), he returns to the departure city. Let’s suppose that there is one road to
connect each two cities. What is the best route to follow in order to minimize the distance of
the journey?

TSP has been proven to be a NP-hard problem, i.e. failure of finding a polynomial time
algorithm to get a optimal solution. TSP is easy to interpret, yet hard to solve. This problem
has aroused many scholars’ interests since it was put forward in 1932. However, until now,
no effective solution has been found.

Though TSP only represents a problem of the shortest ring road, in actual life, many
physical problems are found to be the TSP. Example 1, postal route. Postal route problem is
a TSP. Suppose that a mail car needs to collect mails in n places. Under such circumstances,
you can show the route through a drawing containing n+1 crunodes. One crunode means a
post office which this mail car departures from and returns to. The remaining n crunodes
mean the crunodes at which the mails need to be collected. The route that the mail car
passes through is a travelling route. We hope to find a travelling route with the shortest
length. Example 2, mechanical arm. When a mechanical arm is used to fasten the nuts for
the ready-to-assembling parts on the assembly line, this mechanical arm will move from the
initial position (position where the first nut needs to be fastened) to each nut in proper order
and then return to the initial position. The route which the mechanical arm follows is a
travelling route in the drawing which contains crunodes as nuts; the most economical
travelling route will enable the mechanical arm to finish its work within the shortest time.
Example 3, integrated circuit. In the course of manufacturing the integrated circuit, we often
need to insert thousands of electrical elements. It will consume certain energy when moving
from one electrical element to the other during manufacturing. How can we do to arrange
the manufacturing order to minimum the energy consumption? This is obviously a solution
for TSP. Except for the above examples, problems like route distribution of transportation
network, choice of tourist route, laying of pipelines needed for city planning and
engineering construction are interlinked with the problems of finding the shortest route. So,
it is of significance to make a study on the problem of the shortest route. This renders us a
use value.

As finding a solution for TSP plays an important role in the real life, since the TSP appeared,
it has attracted many scholars to make a study on it.
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2. Mathematical description for the TSP and its general solving method

2.1 Mathematical description for the TSP
According to the definition of the TSP, its mathematical description is as follows:

minZdijxij (2.1.1)
n
st Y x=1  i=12,-n (2.1.2)
j=1
n
Dx;=1 j=12,n (2.1.3)
i=1
> x;<|8|-1 2<|S[<n-2,5<(1,2,n} (2.1.4)
i,jes
x;e{01}) ij=1,2,m i#]j (2.1.5)

Where d; means the distance between the city i and city j; decision variable x;; =1 means
the route the salesman passes through (including the route from city i and city j); x; =0
means the route which isn’t chosen by the salesman. Objective function (2.1.1) means the
minimum total distance; (2.1.2) means that a salesman only can departure from the city i for
one time; (2.1.3) means that a salesman only can enter the city j for one time; (2.1.2) and
(2.1.3) only give an assurance that the salesman visits each city once, but it doesn’t rule out
the possibility of any loop; (2.1.4) requires that no loop in any city subset should be formed

by the salesman ; S| means the number of elements included in the set S .

2.2 Traditional solving method for TSP

At present, the solving methods for TSP are mainly divided into two parts: traditional
method and evolution method. In terms of traditional method, there are precise algorithm
and approximate algorithm.

2.2.1 Precise algorithm for solving the TSP
Linear programming
This is a TSP solving method that is put forward at the earliest stage. It mainly applies to the
cutting plane method in the integer programming, i.e. solving the LP formed by two
constraints in the model and then seeking the cutting plane by adding inequality constraint
to gradually converge at an optimal solution.
When people apply this method to find a cutting plane, they often depend on experience. So
this method is seldom deemed as a general method.
Dynamic programming

S is the subset of the set {2,3,---n}. ke S and C(S,k) means the optimal travelling route
(setting out from 1, passing through the points in S and ending to k). When [S|=1,
C{{k},k}=dy;, and (k=2,3,---n). When [S|>1, according to the optimality principle, the
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dynamic programming equation of TSP can be written as C(S,k) = min [C(S —{j,k}, j) +d]
and the solution can be obtained by the iterative method based or/ ﬁ}_f{lﬁlamic programming.
As the time resource (i.e. time complexity) needed for dynamic programming is O(1* -2"),
and its needed space resource (i.e. space complexity) is O(n-2"), when n is added to a
certain point, these complexities will increase sharply. As a result, except for the minor
problem, this is seldom used.

Branch-bound algorithm

Branch-bound algorithm is a search algorithm widely used by people. It controls the
searching process through effective restrictive boundary so that it can search for the optimal
solution branch from the space state tree to find an optimal solution as soon as possible. The
key point of this algorithm is the choice of the restrictive boundary. Different restrictive
boundaries may form different branch-bound algorithms.

Branch-bound algorithm is not good for solving the large-scale problem.

2.2.2 Approximate algorithm for solving the TSP

As the application of precise algorithm to solve problem is very limited, we often use

approximate algorithm or heuristic algorithm. The result of the algorithm can be assessed by

C/C <& . Cis the total travelling distance generated from approximate algorithm; C" is

the optimal travelling distance; ¢ is the upper limit for the ratio of the total travelling

distance of approximate solution to optimal solution under the worst condition. The value

of & >1.0. The more it closes to 1.0, the better the algorithm is. These algorithms include:

Interpolation algorithm

Interpolation algorithm can be divided into several parts according to different interpolation

criteria. Generally it includes following steps:

Step 1. Choose the insertion edge (i and j) and insertion point k through a certain way.
Insert k into i and j to form {---,i,k,j,~-};

Step 2. Follow the process in an orderly manner to form a loop solution.

Interpolation algorithm mainly includes:

Latest interpolation effect & =2 . Time complexity: O(n?).

Minimum interpolation effect & =2 . Time complexity: O(n?1gn).
Arbitrary interpolation effect & =21gn +0.16 . Time complexity: O(1).
Farthest interpolation effect & =21gn +0.16 . Time complexity: O(1n?).

A

Convex interpolation effect & (unknown). Time complexity: O(n*1gn) .

Nearest-neighbour algorithm

Step 1. Choose one departure point randomly;

Step 2. Choose the nearest point in an orderly manner to add to the current solution until
the loop solution is formed.

Effect: &= (Ign+1)/2. Time complexity: O(n*)

Clark & Wright algorithm

Step 1. Choose one departure point P randomly to calculate s; =d,; +d,,; +d;; ;

Step 2. Array s; inascending order;

Step 3. Connect each (i,j) in an orderly manner upon arrangement to form a loop

solution.
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Effect: &=2lgn/7+2/21. Time complexity: O(n*)

Double spanning tree algorithm

Step 1. First determine the minimum spanning tree.

Step 2. Determine the Euler loop by adding a repetitive edge to each edge of the tree;

Step 3. Eliminate the repetitive point in the sequence of Euler loop point to form a loop
solution.

Effect: & =2 . Time complexity: O(n?)

Christofides algorithm

Step 1. First determine the minimum spanning tree;

Step 2. Solve the minimum weight matching problem to all the singular vertexes of the tree;

Step 3. Add the matching edge to the spanning tree to determine its Euler loop;

Step 4. Eliminate the repetitive point in the sequence of Euler loop point to form a loop
solution.

Effect: & =2/3 . Time complexity: O(1°)

r—opt algorithm

This algorithm is a locally improved search algorithm and is put forward by Lin and other

people (1965). Its thought is to improve the current solution by exchanging r edges each

time according to the given initial loop. As for different r, we find from massive calculation
that 3—opt is better than 2 —-opt, and 4—opt and 5-opt are not better than 3 —opt . The

higher the r is, the more time the calculation will take. So we often use 3 —opt .

Effect: ¢=2 (n28,r <n/4).Time complexity: O(n")

Hybrid algorithm

Use a certain approximate algorithm to find an initial solution and then improve the

solution by using one or several algorithms of r —opt .Usually, Hybrid algorithm will help

you to get better solution, but it takes a long time.

Probabilistic algorithm

Based on the given & >0, this algorithm is often used to solve the TSP within the range of

1+ ¢ .Suppose that G is in the unit square and function t(n) is mapped to the positive ration

number and satisfies the following two conditions: (1) t —log,log,n; (2) to all n, n/t is
the perfect square, so the steps are as follows:

Step 1. Form the network by using [t(n)/n]l/ 2 as size. Divide the unit square into /()
and G into several n/t(n) subgraphs;

Step 2. Use dynamic programming to find the optimal loop for each subgraph;

Step 3. Contract n/t(n) subgraph into one point. The distance definition is the shortest
distance of the optimal sub-loop of the original subgraph. In addition, determine
the minimum generation number T of the new graph;

Step 4. See T U {the optimal sub-loop of each optimal sub-loop of } as the close loop with
repetitive point and edge. According to the condition of the triangle inequality,
reduce the repetitive points and edges to find a TSP loop.

Effect: £ =1+ (give the positive number randomly). Time complexity: O(nlgn).

As these traditional algorithms are local search algorithms, they only help to find a local

optimal solution when used for solving the TSP. It is hard to reach a global optimal solution

and solve large-scale problem. So, people started to look for an evolution algorithm to solve
the TSP.
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3. Evolution algorithm for solving the TSP

As stated above, the traditional algorithms used to solve the TSP have some limitation. With
the development of evolution algorithm, many numerical optimization algorithms appear.
They are ACA, GA, SA, TS, PSO and IA, etc. These algorithms are, to some extent, random
search algorithms. ACA and PSO are typical parallel algorithms. Though they cannot
guarantee to help you to obtain an optimal solution within the limited time, they can give
you a satisfactory solution within the affordable time range. To figure out the effect of the
solution for TSP obtained by using optimization algorithm, we should consider the
algorithm’s search ability. Algorithm with strong optimization will produce better effect.
Algorithm which is easy to trap in local extremum often helps you to obtain the local
optimal solution for TSP.

3.1 Ant colony algorithm for solving the TSP

Ant colony algorithm (ACA) is a relatively new analogy evolution algorithm, which was put
forward by scholars such as Italian scholar Dorigo. They called it ant colony system and
used this ant colony to solve the TSP, achieving fairly good experimental result. As for ACA,
n represents the number of cities for the TSP; m represents the number of ant in the ant
colony; d; (i,j=1,2,---,n) represents the distance between city i and city j; 7;(f)
represents the concentration of pheromone on the line of city i and city j at the time of
t .At the initial time, the concentration of pheromone on each route is similar to one another.
When 7;(0)=C, C is a constant. During the moving process, ant (k=1,2,---,m) will
determine which direction it will change according to the concentration of pheromone on
each route. Plf(t) represents the probability for ant to move from city i to city j at the time
of t.Its formula is

I 0AG
l]()?()ﬁ j ¢ tabu,
Pi(t) = qea%ved 72 (D (1) (3.1.1)
0 other

Wherein: tabu, (k=1,2,---,m) means that ant k has passed through the set of the city. From
the beginning, tabu, has only one element, i.e. the departure city of ant k. With the process
of evolution, the elements for tabu, increase continuously; allowed; ={1,2,:--,n} —tabu,

means the next city that ant k is allowed to choose. 7; represents the visibility, and is taken
from the reciprocal of the length of the route (i,j); a,f regulates the relatively important
degree of pheromone concentration r and visibility 7 .

As time goes by, the pheromone on each route gradually disappears. Parameter 1- p is
used to represent the volatility of pheromone. After @ time, the ants complete one circle.
Pheromone concentration on each route can be adjusted according to the following formula:

i(t+ @)= p-7;(t) + Ay p€(0,1) (3.1.2)

Ary =Y Ack (3.1.3)
k=1
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Wherein: Ar{} means the pheromone concentration left on the route (i,j) by the k ants
during the process of this circle; Az; means the total pheromone concentration released on
the route (i,]) by all the ants during the process of this circle.

ACA not only uses the positive feedback principle which may, to some extent, quicken the

evolution process, but also is a parallel algorithm in nature. The ongoing process of
information exchange and communication between individuals helps to find a better
solution. It is easy to converge at a local extremum when there is only one individual.
However, through cooperation, multiple individuals will help us to get a certain subset of
the solution space, which provide a better environment for us to carry out a further
exploration on solution space. The movement of multiple individuals in the ant colony is
random. Actually, the measures taken to avoid the possibility of appearance of local
extremum slow down the velocity of convergence. When the scale of ant colony expands, it
will take a longer time to look for a better route.
In the light of the above problems, many scholars at home and abroad make an
improvement of the basic ACA. Though some achievements have been made, they are not
enough as a whole. Some principles are still needed to found to make a proof and test in
practice.

3.2 Solve the TSP through particle swarm optimization

Ant colony algorithm is a discrete random number algorithm, which is suitable for solving
the discrete optimization problem. TSP is a typical discrete optimization problem, so, since
the appearance of ant colony algorithm, many scholars have used this algorithm to solve the
TSP. However, as the travelling salesman problem is a NP, and the pheromone needs to be
updated when ant colony algorithm is iterated each time, so, when solving the large-scale
TSP, it will meet some problems such as slow searching speed. Though scholars at home
and abroad have made some efforts to accelerate the searching speed, but what they’ve
done is not enough as a whole. Some principles are still needed to found to make a proof
and test in practice. Particle swarm optimization is a continuous algorithm. Its iteration
formula is simple and easy to achieve. A slight improvement of this algorithm will help you
to solve the discrete optimization problem of the travelling salesman. As its iteration
formula is very simple, a use of this algorithm may help you to solve the slow searching
speed problem found from the ant colony algorithm.

At present, different improvement algorithms for PSO have been provided to solve the TSP.
In particular, great result has been made by Maurice who used discrete PSO algorithm to
solve the TSP.A hybrid PSO algorithm which is used to solve the TSP is provided on the
basis of GA, AC and SA. Application of PSO algorithm to solve the travelling salesman
problem is a fresh attempt. However, as the traditional PSO will easily trap in the local
optimal solution, we provide two improve strategies for the standard PSO and use them to
solve the TSP.

4. Solve the TSP through improved PSO algorithm

4.1 Solve the TSP through DPSO algorithm

4.1.1 DPSO principle

Dynamic programming is a typical deterministic algorithm for solving the optimization
problem. It is provided on the basis of the optimality principle and non-aftereffect and used
for the algorithm of multistage decision process. Optimality principle: any truncation of the



The Advantage of Intelligent Algorithms for TSP 31

optimal decision still remains the optimal state; non-aftereffect: after truncation in any stage,
the decision made in the later stage is only connected to the initial state of this stage and has
no connection to others. Dynamic programming, through optimality principle and non-
aftereffect, analyze the optimization problem in stages to simplify the problem, which
greatly reduce the calculation steps.

PSO algorithm is an interactive parallel searching algorithm as well as a good attempt to
look for global extremum. However, when solving the optimization problem of high
dimensional function, as the mutual restraint exists between each dimensional variable,
disadvantage has been found when the PSO algorithm is used to solve this problem.
According to the numerical value test result, this algorithm is proven to be very effective
when the dimension is low. The solving process of dynamic programming is to simplify the
complex problem to obtain the solution. A combination of this with the property of PSO
algorithm will surely improve the optimal performance of the PSO algorithm.

As for the solution of the problem min f(x)= f(x,xy,+,%,), st a;<x;<b;, i=1,2,---n.
(4.1.1.1), a strategy should be provided to fix some variables and change the remaining
variables; i.e. partition the variable and approximate the optimal solution of the majorized
function through partitioning to convert the high dimensional optimization problem into
low dimensional optimization problem to get the condition optimal solution. Then fix the
other part to get the other group of condition optimal solution. Use this information to carry
out a comprehensive optimization process. Be aware that this strategy is different from the
principle of dynamic programming, because aftereffect exists when partition optimization is
applied. So, a strategy method concerning reasonable approximation of global extremum
should be provided for the partition optimization of aftereffect.

It is hard to decide the order of fixed variable in the process of calculation. Different
strategies can be used during the process of practical operation; after the algorithm traps in
the local extremum, it may pick some components to be fixed randomly from the local
optimal solution, or choose some components alternately; at the same time, transform the
original problem into two problems after some components are picked randomly. If the
dimension is too high, this problem can also be transformed into multiple problems to find a
solution. See the following problem

min f(x1,%,,X3,%4,X5,Xg) , (4.11.2)

If PSO algorithm gives a local optimal solution x' =(xi ,x; ,---x¢ ), the following two
strategies can transform the high dimension optimization into low dimension optimization:
(1) pick several components randomly, e.g. pick 3 components x{ ,x} ,x; , then the result is

min f(x] x5 ,%3,%5 X5, %) (4.1.1.3)

A local optimal solution (x; x5 ,x3 ,x} ,x2 ,x2) is given by using the PSO algorithm

again. Then pick some components randomly or alternately (for example, if you pick
components 1, 2 and 4 last time, you can pick components 3, 5 and 6 this time); in this way, a
new optimal problem is found. Continue the run until you find a satisfactory result. (2) Pick
some components randomly and divide the original problem into several problems,
including:  min f(x] ,x} ,X3,X5 ,X5,%) and min f(x,,%,,X3 ,X,, X5 ,x¢ ). It may write
down all the possible forms (i.e.C3 =20) of the three variables to divide the original
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problem into 20 optimization problems. If you think the dimension is too high, pick p (p
is relatively high in number) components randomly and transform the original problem into
several optimization problems. You can also list all the C/ optimization problems and use
PSO algorithm to solve several optimization problems you get. Then compare the results of
these optimization problems and pick the best one to use as the local optimal solution next
step, and further analyze this solution until you find the satisfactory result.

4.1.2 Computational steps of the DPSO

As for the optimization problem of the formula (4.1.1.1), the key algorithm steps are as

follows:

Step 1. Randomly generate the initial population m . Under normal circumstances, m >10 .

Step 2. After figure up certain algebras through PSO or after use PSO and find that the
target values within several successive algebras remain the same, set the optimal

solution as x™ = (x],x3,--x0) .

Step 3. Pick [g] component randomly from the optimal solution x  and set it as

0 .0 0
xi1’x1'2’”.xi[£

2!

Step 4. Use PSO to solve the following two optimization problems

minf(x):f(xl,xz,"',xg,"'xo /"'xjo /"'/xn)/ (4:121)

L
and

min f(x) = f(x],9, X, Xy X e X) (4.1.2.2)

In these two optimization problems, one is the function of n— [E] dimension and the other

is the function of [g] dimension.

Step 5. Choose the best result from these two optimization problems to use as the current
optimal solution x~ to see if it can reach a satisfactory result. If not, iterate the steps
by starting from step 3; if a satisfactory result is obtained, terminate the
computational process and get the optimal solution.

Note: Other strategies may be applied to Step 3, and here is only one of them. In order to

ensure the rapid convergence of the algorithm, pick the optimal solution after each

calculation to use it as a particle for the calculation next time.

4.1.3 Solve the TSP through DPSO

For the TSP with n cities (ay,4,,:--a,), use (a;1,8;5,"+*,4;,,4;1) to represent the route (i.e.
Ay > Ay —> 4y,). Aq,05,++,4;, is an array of a;,a,,---,a, and is called solution sequence.
As stated above, DPSO algorithm is applicable to the continuous problem. As TSP is a
typical discrete problem, its solution is a sequence or loop rather than a point within the
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solution space. In order to apply DPSO to TSP, we introduce to you some definitions and
algorithms of the solution sequence.

Definition 1 Exchange and exchange sequence Exchange the j point and k point of the
solution sequence to form a new solution sequence. This is called exchange and is
indicated with ~ E(j,k).Exchange a; and a; in the solution sequence of
T=(ail,ai2,~'-,al--,m,aik,m,ain). The new solution after exchange is T +E(j, k). The
ordered sequence Q=(E;,E,,--,E,) after m times of exchanges is called exchange
sequence. Exchange T through the exchange sequence in an orderly manner to generate a
new solution. i.e.

T+Q=T+(E,E,,E,)=[(T+E)+E)]+-+E, (4.1.3.1)

When m=0, Q is equivalent to empty sequence. This means that formula (6.4.1.3.1) doesn’t
do any exchange for the solution sequence. Under such circumstances, you can add an
exchange result to the exchange sequence and place this exchange result to the end of the
sequence to form a new sequence.
Definition 2 Solution sequence difference As for any two solution sequences T; and T,
of the same TSP, the exchange sequence Q always exists. As a result, T,=T,+Q is
formed. Q is the difference of the solution sequences T, and T, i.e. the result of
T, -T, .When T, =(ay,a,,---a,) and T, =(b;,b,,---b,) are found, you can use the following
procedure 1 to calculate Q=T, - T;.
Procedure 1 Q = empty sequence

for j=1ton

fori=1ton
if 4, =b; and i# j thenadd E(i,j) to Q
end
end

In respect of T} and T, , there are many Qs to be used in the formula T, =T; +Q.
Definition 3 Product of decimal and exchange sequence 7 €(0,1) and exchange sequence is

Q which has an exchange of n. If T n< 1y +1

1o Ly
n7-Q is the sequence formed by m,, exchange before Q .

(my is an integer from 0 to n,-1),

Through this operation, the above algorithm can be used to solve the discrete optimization
problem like TSP.

4.1.4 Test and discussion of the performance of the algorithm
Use 14 points of the TSP provided by Huang Lan and other people to test the effectiveness
of the algorithm. Description of the 14 points of the TSP is listed in table 1.

Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14
X 16.47 16.47 20.09 22.39 25.23 22.00 20.47 17.20 16.30 14.05 16.53 21.52 19.41 20.09
Y  96.10 94.44 92.54 93.37 97.24 96.05 97.02 96.29 97.38 98.12 97.38 95.59 97.13 94.55

Table 1. Position data for 14 points
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Use DPSO to carry out 8 times of tests and set the parameters as @, =0.53, 7, =0.35 and
17, = 0.45. The number of the initial population is 600. Set the maximum iterative number as
300. The result as follows:

Test serial number 1 2 3 4 5 6 7 8
Get the algebra of
the optimum value 58 30 58 58 58 58 93 196
30.8785
et the best route 6-12:7-13-811-9-10-1-2-14-3-4-5
each time
Tabela 2.
Algorithm analysis table
Number of the solution space (14-1)!/2=3 113 510 400
Average iterative number (58 x 5+30+93+196)/8=76.125
Average search space for each test 600+76.125 x 200=15825
Proportion of the search space to 15825/3113510400=0.000508 %
solution space
Tabela 3.

From the above test, we can see that DPSO may go beyond the local extremum to gen the
final optimal solution for the problem. To achieve this, we should transform the high
dimension optimization into low dimension optimization. We should optimize the
remaining components while maintain some components unchanged; by doing this
alternately, the ability for algorithm to optimize the high dimension problem will be
strengthened. This improved algorithm only represents an improvement on the calculative
strategy front. It does not add additional calculation and step to the algorithm, hence,
maintaining the simplification of the PSO algorithm. At the same time, it helps to transform
a high dimension optimization problem into several low dimension optimization problems,
which will not complicate the calculation procedure.

4.2 Solve the TSP through MCPSO
When use MCPSO to solve the TSP, you also need to go through the relevant procedure
which is used by continuous optimization algorithm to solve the discrete optimization
problem; except for the above methods, MCPSO also has midpoint problem, so we
introduce you the following definition:

Definition Midpoint solution sequence Set two solution sequences T, =(ay,4,,:--4,) and
T, =(by,by,-+-b,) for n cities of TSP and make the solution sequence as
T=(ay,ay, 8, /by 11,0y 12,0, b,) (1 =[n/2]).f repetitive point appears in the solution,
adjustment can be made according to the procedure 2 to make it become a feasible
solution sequence and call it a midpoint solution sequence of T} and T, .

Procedure 2

Step 1. Search for the repetitive point of a;,a,,---,a

with 0;

n, from b, .4,b, .5, and replace it
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Step 2. Search for the points which are different from the points of b, ,1,b, ,»,++,b, from

a a --,a, and replace the 0 point in an orderly manner.

ny+17%n, 427"

4.2.1 Steps for MCPSO to solve the TSP

The steps for MCPSO algorithms to solve the TSP are as follows:

Step 1. Set relevant parameters [, 5, f, and ¢, and begin to conduct initialization
complex. Each point is the solution sequence generated randomly and is indicated
with x;

Step 2. Pick [ solution sequences, good and bad, for x, and x o and calculate the

midpoint sequence x,, and ratio 4. Then determine the best solution sequence x; ;

Step 3. Based on certain probability,
Pick formula x,, =x; + ¢ (x, —=x )+ ¢,(x; —xy) through probability £

Pick formula x,, =x, +¢(x, —x;)+ ¢, (x; —x;) through probability f,
Pick formula x, =x; + ¢ (x; —x,) + ¢, (x; —x;) through probability 1- 4, -,
to get m new solution sequences x, to replace the bad solution sequence x; to form a new

complex;
Step 4. If the satisfactory result is reached, go to Step 5; otherwise, go back to Step 2;
Step 5. Show the optimal solution.

4.2.2 Test and discussion of the performance of the algorithm

Test the algorithm based on the 14 points of the TSP provided by Huang Lan and other
people. The optimum value is 30.8785.We use this problem to test the optimal performance
of MCPSO algorithm. Its parameters are =085, 3, =0.675, £, =0.175 and [=50. The
pop-size is 600 and the upper limit of iterative number is 200. In order to facilitate
comparison, we also use SGA and ACO to solve this problem. These two have the same
pop-size and iteration upper limit as MCPSO. Each algorithm is run for 10 times. The
parameter setting for these two algorithms are: SGA: multiplying probability
P, =0.2 crossing probability P, =0.6 and mutation probability P, =0.05; ACO: constant
C =20, pheromone factor o =1, heuristic factor f=1, and information keeping factor
p=0.8. The results of these algorithms are shown in the table 4.2.2.1 and the change curve
of average mean fitness is shown in the figure 4.2.2.1.

ACO and integer-coded SGA can be directly used to solve the discrete optimization
problems such as TSP. These algorithms have the ability to search for the global optimal
solution, but the efficiency is relatively low as they can only make a change based on the
probability. MCPSO is a continuous algorithm which introduces the group searching
mechanism of PSO into the complex method. It considers the global property between
solutions through geometry point, optimization and other principles so as to shorten the
distance between the solution with poor adaptability and the solution with good
adaptability. In order to avoid being trapped in the local extremum, certain probability will
be considered. Shortening the distance between bad solution and good solution will help
you to get the optimal solution in a more precise way within a short time, and greatly
enhance the searching ability. The appearance of the algorithm targeted to TSP solution
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sequence not only helps to keep the above characteristics of MCPSO, but also guarantees the
effective application of MCPSO to discrete problems. As for the 14 points of TSP, the
running of MCPSO algorithm (7 out of 10 times) will help you to find the optimal solution
with relatively low iterative number. However, after 10 times of running of ACO and SGA,
no optimal solution is found. From this, we can see the advantage of MCPSO.

Number of Minimum
times of  algebra for Average algebra

Algorithm reaching the reaching the for reaching the Best value Average  Standard

optimum optimum optimum value value deviation
value value
ACO 0 N/A N/A 31.8791 33.6888 3.7000
SGA 0 N/A N/A 34.4509 35.9578 3.4209
MCPSO 7 35 143.57 30.8785 31.0262 0.7137

Table 4. Comparison of the results from three algorithms
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5. Application of the improved PSO algorithm for the TSP

PCB'’s digital control drilling problem can be described as follows: Process all the holes by
starting from the tool changing point (repetition and omission are not allowed). After the
processing, return to this point to do tool changing and processing for other aperture. In
terms of digital control programming, we should consider the order of drill hole processing
to minimize the time idle running, i.e. the best route problem of tool changing or the TSP
problem in nature. With regard to the processing problem for a series of holes, the
coordinate for these 20 holes has been listed in the figure 5.1. We use PCB-CAD software
and PSO, SGA, ACO, DPSO and MCPSO to solve this problem. The parameter setting for
PSO is: =025, ¢; =03 and ¢, =0.45. The speed will be indicated through exchange
sequence. The parameters of the other three algorithms are the same as above. The tool
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changing routes generated are shown in figures 5.1 to 5.6. The latter five algorithms are run
individually for 10 times with the upper limit of iterative number each time of 200 and pop-
size of 600. The figures presented are their optimal structures. The path lengths for the tool

changing routes generated from 6 algorithms are given in table 5.2.

No. X Y No. X Y No. X Y
1 1 1 8 25 7.5 15 7 155
2 1 3 25 1 16 7 135
3 1 7 10 35 2 17 7 121
4 1 8 11 35 82 18 7 12
5 25 14 12 35 129 19 7 10
6 25 135 13 35 13.2 20 7 4
7 25 13 14 35 13.9
Table 5. Position for 20 holes
Algorithm PCB-CAD ACO SGA PSO MCPSO  DPSO
Average 61.5555 605610  58.6334  59.4244  43.4923 44.4978
length
Minimum 615555  56.7481 522687 532687  40.1203 40.1203
length
Table 6. Calculation result comparison
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Fig. 5.1 Tool changing route chart generated from PCB-CAD
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Fig. 5.2 Tool changing route chart generated from PSO
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-

Fig. 5.3 Tool changing route chart generated from SGA

2

Fig. 5.4 Tool changing route chart generated from ACO

-

Fig. 5.5 Tool changing route chart generated from MCPSO

o

Fig. 5.6 Tool changing route chart generated from DPSO
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From above, see can see that the lengths of tool changing routes generated from
optimization algorithms are shorter than that generated from PCB-CAD software, of which
the MCPCO enjoy the shortest length (about 29% shorter than others). Determination of the
best route for PCB digital control drilling can effectively solve the optimization problem of
the digital control programming in the course of PCB processing and develop a PCB
automatic programming system.

6. Summary

This article consists of the definition of TSP, mathematical description methods, traditional
solving methods for the TSP and problems existing in the traditional solving methods. At
the same time, it introduces the evolution algorithms for solving the TSP. Based on this, two
algorithms (MCPSO and DPSO) are provided. Finally, it shows us the best tool changing
route for the digital control drilling by using the algorithms given.
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1. Introduction

In this chapter, we specifically examine distributed traveling salesman problems in which the
cost function is defined by information distributed among two or more parties. Moreover, the
information is desired to be kept private from others.

As intuitive situations in which distributed private information appears in combinatorial
optimization problems, we take problems in supply chain management (SCM) as examples.
In SCM, the delivery route decision, the production scheduling and the procurement
planning are fundamental problems. Solving these problems contributes to improvement
of the correspondence speed to the customer and shortening the cycle time(Vollmann, 2005;
Handfield & Nichols, 1999). In the process of forming the delivery route decision and
production schedule decision, the combinatorial optimization plays an important role.

When the SCM is developed between two or more enterprises, information related to the
stock, the production schedule, and the demand forecast must be shared among enterprises.
Electronic Data Interchange (EDI), the standardized data exchange format over the network,
is often used to support convenient and prompt information sharing!. Information sharing
apparently enhances the SCM availability; however, all information related to the problem
resolution must be disclosed to all participants to lay the basis for global optimization. Such
information is often highly confidential and its disclosure would be impossible in many cases.
As more concrete examples, two scenarios are presented. These scenarios pose situations that
appear to be unsolvable unless private information is shared.

Scenario 1: Let there be a server E4 that manages a route-optimization service and a user Ep
who tries to use this service. The user’s objective is to find the optimal route that visits points
F1,...,Fn chosen by himself. The user, however, does not like to reveal the list of visiting points
to the server. The server manages a matrix of cost for traveling between any two points. The
server does not like to reveal the cost matrix to the user, either. How can the user learn the
optimal route without mutually revelation of private information?

Note that this problem is obviously solved as the Traveling Salesman Problem (TSP) if either
of traveling cost or visiting points is shared. As more complicated examples, a multi-party
situation is described next.

Scenario 2: Let there be two shipping companies E4 and Ep in two regions A and B. Client Ec
requests that E4 deliver freight to point F‘l“, ...,F4 in region A and also requests Ej to deliver

1United Nations Economic Commission for Europe, http://www.unece.org/trade/untdid/welcome.htm
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freight to point F?,...,FE in region B, separately. Now E4,Ep and Ec are involved in the
business cooperation and try to unify the delivery route to reduce the overall delivery cost. To
search for the optimum unified route and to estimate the reduced cost, E4 and Eg must reveal
their costs between any two points, but they would not reveal their delivery cost because they
seek mutual confidentiality. How can these companies search for the optimal unified delivery
route without revealing their confidential information?

In these scenarios, costs and visiting points are confidential information and participants
would not reveal them. As shown, the difficulty of private information sharing sometimes
thwarts problem resolution.

In our study, we specifically investigate a privacy-preserving local search to solve the traveling
salesman problem. The easiest way to converting existing metaheuristics to privacy-preserving
metaheuristics is to introduce an entity called a trusted third party (TTP). A TTP is an entity
that facilitates interactions between two parties who both trust the TTP. If a TTP exists, then all
parties can send their private information to the TTP; the TTP can find a local optimum using
the existing metaheuristics and can return the optimized solution.

This idea works perfectly. However, preparation of a TTP is often quite difficult mainly in
terms of cost. Needless to say, a protocol that works only between participants in the standard
network environment (e.g. TCP/IP network) is preferred.

Secure function evaluation (SFE) (Yao, 1986; Goldreich, 2004) is a general and well studied
methodology for evaluating any function privately, which allows us to convert any existing
metaheuristics into privacy-preserving metaheuristics. However, the computational cost of
SFE is usually quite large. The time complexity of SFE is asymptotically bounded by the
polynomial of the size of the Boolean circuit of the computation. If the computation is primitive,
SFE works practically; however, it can be too inefficient for practical use, particular when the
large-scale computation is performed or large amount of datasets are taken as inputs and
outputs.

In solving the traveling salesman problem by means of metaheuristics, not only the input
size but the number of iterations can be quite large. Therefore, in our protocol, in order to
solve TSP in a privacy-preserving manner, we make use of a public-key cryptosystem with
homomorphic property, which allows us to compute addition of encrypted integers without
decryption. Existing SFE solutions are used only for small portions of our computation as a
part of a more efficient overall solution.

2. Problem definition

In this section, we introduce distributed situations of the traveling salesman problem (TSP).
Then the privacy in the distributed traveling salesman problem is defined.

Let G = (V,E) be an undirected graph and |V| = n be the number of cities. For each edge
eij € E, a cost connecting node i and node j, a; js is prescribed. Tours are constrained to be a
Hamilton cycle. Then the objective of TSP is to find a tour such that the sum of the cost of
included edges is as low as possible.

The permutation representation or the edge representation is often used to describe tours. In
this chapter, we introduce the scalar product representation with indicator variables for our
solution. Let x = (x1,2,...,X1,1,%2,3, ., X2,n, .., Xn—1,4) be a tour vector where x;,; are indicator
variables such that

)1 ¢jisincluded in the tour,
“77710 otherwise.
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The cost can be written as an instance vector a = (a2, ...,a,-1 ) similarly. The number of
elements of the tour vector x and the cost vector o are d = n(n —1)/2. For simplicity, we
respectively describe the i-th element of x and « as x; and «;. Then, using this representation,
the objective function of TSP is written in the form of the scalar product:

d
flx,a) = Zaixi =a-x. 1)
i=1
The constraint function of the TSP is defined as

1 If x is a Hamilton cycle of V,

g V)= {

Next, we consider distributed situations of the TSP. The instance of the TSP consists of city set
V and cost vector a.

First, the simplest and typical two-party distributed situation is explained. Let there be two
parties P(1) and P(2). Assume that city set V is publicly shared by P(1) and P(2). In such a
case, P(1) (referred to as searcher) arbitrarily chooses a city subset V/ C V and privately holds
it. Here, V’ represents the searcher’s private list of visiting cities. The searcher can generate
tour x that includes all cities in V’ and aims to minimize the total cost of the tour.

In addition, P(2) (referred to as server) privately holds cost vector « for all cities in V. The
server works to support the optimization of the searcher.

We call this problem (1,1)-TSP or one-server one-searcher TSP. Here, (1,1)-TSP corresponds to
the formal description of scenario 1 described in section 1.

Multi-party cases are explained as the extension of (1,1)-TSP. Assume a situation in which
the cost vector a is distributed among k servers. Let a(i) be a vector that is owned by the i-th
server such that a = Z;‘:l a(i). As in the case of (1,1)-TSP, V’ is chosen by the searcher. We
designate this distributed TSP as (k,1)-TSP, which corresponds to the formal description of
scenario 2 presented in section 1.

Next we explain (1,k)-TSP. Let {V’(1),..., V' (k)} be city subsets that are chosen independently
by k searchers independently. Let V' = U?:l V’(i). The server privately manages a.

See Fig. 1 for the partitioning patterns of these distributed TSPs. Apparently, (1,1)-TSP is
a special case of these cases. The cost function is represented as the scalar product of two
vectors in all situations. The constraint function is written as ¢(x; V), which is evaluable by
the searcher in (1,1) or (k,1)-TSP . However, ¢(x; V) cannot be evaluated by any single party
in (1,k)-TSP.

In our protocol presented in latter sections, we require that constraint function g is evaluable
by a single party. For this reason, we specifically investigate (1,1)-TSP and (k,1)-TSP in what
follows.

0 otherwise.

3. Our approach

In this section, we explain our approach for solving distributed TPSs with private information
by means of the local search. For the convenience of description, we specifically examine
(1,1)-TSP in the following sections. The extension to (k,1)-TSP is mentioned in Section 6.

Let N(x) be a set of neighborhoods of solution x. Let €, denote an operation which chooses
an element form a given set uniformly at random. Then, the algorithm of local search without
privacy preservation is described as follows:
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Fig. 1. Privacy model of the distributed TSP

[Local search]

1. Generate an initial tour xj
2. x&€ N(xp), N(xg) < N(xp) \ {x}.

3. If f(x) < f(xg),x0 < x
4. If some termination conditions are satisfied, output x¢ as x*. Else, go to step 2.

In the process of local search, cost values are evaluated many times. From the perspective of
privacy preservation, if cost values are shared at each iteration, information leakage is likely
to arise. For example, in (1,1)-TSP, the searcher might infer some elements of the server’s
private distance vector from a series of tours and cost values.

Fortunately, for many rank-based metaheuristics algorithms, including local search, cost values
need not always be evaluated; the evaluation of a paired comparison of two cost values is
sometimes sufficient. This fact is convenient for privacy preservation in optimization because
the risk of information leakage from the result of paired comparison would be much smaller
than the cost value itself.

Considering the matters described above, we consider a protocol that solves
privacy-preserving optimization through a combination of local search and a cryptographic
protocol that privately compares a pair of scalar products.

First, we define the private paired comparison of the scalar product. Let x1,xp,a € Z4,(=
[0,...,m —1]4). Also assume the the following inequalities.

- a-xp—a-x;20bel;
—a-xp—a-x1<0bel-

Then, the problem can be stated as follows:

Statement 1 (Private scalar product comparison) Let there be two parties: Alice and Bob. Alice has
two private vectors x1,xo and Bob has a private vector a. At the end of the protocol, Alice learns one
correct inequality in {I_,1} and nothing else. Bob learns nothing.

We call this problem private scalar product comparison. Assuming that there exist protocols that
solve this private scalar product comparison, private scalar product comparison allows us to
perform local search in a privacy-preserving manner as shown below:

In step one, the searcher generates an initial tour xp. In step two, the searcher chooses a tour
in neighborhood of xy, N(xp), uniformly at random. These two steps can be executed by the
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searcher solely. At step three, we make use of private scalar product comparison. Recall that
f(x)=a-xand f(xg) = a-x9. What we need here is to learn whether ornot @ - xy — - x < 0. This
problem is readily solved by means of private scalar product comparison without sharing the
searcher’s x, xp and the server’s a. In step four, the searcher can terminate the computations
after generating a prescribed number of individuals, or can terminate the serarch when he
finds N(x) = 0. In both cases, step four can be executed by the searcher solely.

As shown, assuming the existence of a protocol for private scalar product comparison,
TSPs including private information can be securely solved. In next section, we introduce
cryptographic building blocks required for solving private scalar product comparison. Then
in Section 5, a protocol for solving the private scalar product comparison is presented.

4. Cryptographic building blocks

In this section, three cryptographic building blocks are introduced.

4.1 Homomorphic public-key cryptosystem

For our protocol, we use a public-key cryptosystem with a homomorphic property. A
public-key cryptosystemis a triple (Gen, Enc, Dec) of probabilistic polynomial-time algorithm
for key-generation, encryption, and decryption, respectively. The key generation algorithm
generates a valid pair (sg,py) of secret and public keys. The secret key and public key are
used only for decryption and encryption. Then Z, = {0,1,...,p — 1} denotes the plain text space.
The encryption of a plain text t € Z, is denoted as Ency, (t;7), where r is a random integer.
The decryption of a cipher text is denoted as t = Dec, (c). Given a valid key pair (py,si),
Decs, (Ency, (t;7)) =t for any t and r is required.

A public key cryptosystem with additive homomorphic property satisfies the following
identities.

Enc(ty;r) -Enc(tp;rp) = Enc(ty +t modp;ry +17)
Enc(t;;r1)? = Enc(tit, modp;r1)

In those equations, t1,t; € Z, are plain texts and rq,7; are random numbers. These random
numbers are used to introduce redundancy into ciphers for security reasons; encrypted values
of an integer with taking difference random numbers are represented differently. These
properties enable the addition of any two encrypted integers and the multiplication of an
encrypted integer by an integer. A public-key cryptosystem is semantically secure when a
probabilistic polynomial-time adversary cannot distinguish between random encryptions of
two elements chosen by herself. Paillier cryptosystem is known as a semantically secure
cryptosystem with homomorphic property(Pailler, 1999). We use the Paillier cryptosystem in
experiments in section 6.

4.2 Secure function evaluation

As mentioned in the introductory section, secure function evaluation (SFE) is a general
and well studied cryptographic primitive which allows two or more parties to evaluate a
specified function of their inputs without revealing (anything else about) their inputs to each
other (Goldreich, 2004; Yao, 1986).

In principle, any private distributed computation can be securely evaluated by means of SFE.
However, although polynomoially bounded, naive implementation of local search using SFE
can be too inefficient. Therefore, in order to achieve privacy-preserving local search efficiently,
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we make use of existing SFE solutions for small portions of our computation as a part of a
more efficient overall solution.

4.3 Random shares

Letx = (x1,...,%4) € Z}’l\[. When we say A and B have random shares of x, A has x** = (x‘f‘,...,x:;‘)
and B has xP = (Jcﬁ3 ,...,xg) in which x? and xf are uniform randomly distributed in Zy with
satisfying x; = (x{‘ + xf) mod N for all . Random shares allow us to keep a private value
between two parties without knowing the value itself. Note that if one of the party pass the

share to the other, the private value is readily recovered.

5. Scalar product comparison

Before describing the protocol for scalar product comparison, we introduce a protocol
which privately computes scalar products from privately distributed vectors. Goethals et
al. proposed a protocol to compute scalar products of two distributed private vectors without
revealing them by means of the homomorphic public-key cryptosystem (Goethals et al., 2004).
For preserving the protocol generality, parties are described as Alice and Bob in this section.
The problem of private scalar product is stated as follows:

Statement 2 (Private scalar product) Let there be two parties: Alice and Bob. Alice has a private
vector x € Z%; Bob also has a private vector o € Z‘f, At the end of the protocol, both Alice and Bob learn
random shares of scalar product x - a and nothing else.

Let Z, be the message space for some large p. Set u = | /p/d]. In what follows, the random
number used in encryption function Enc is omitted for simplicity. Then, the protocol is
described as follows.

[Private scalar product protocol]

Private Input of Alice: a € Zﬁ

Private Input of Bob: x € Z‘fl
— Output of Alice and Bob: r4 +rp =x-a modp
(Alice and Bob output r4 and rp, respectively)
1. Alice: Generate a public and secret key pair (py,si)-
2. Alice: For i = 1,...,d, compute ¢; = Ency, (a;) and send them to Bob.
3. Bob: Compute w « (H?:1 ci‘) -Ency, (—rg) where rp €, Z, and send w to Alice.
4. Alice: Compute Dec(w) =rp(=x-a—rp)
In step two, Alice sends the ciphertext of her private vector (cy,...,¢4) to Bob. Bob does not

possess the secret key. Therefore, he cannot learn Alice’s vector from received ciphertexts.
However, in step three, he can compute the encrypted scalar product based on homomorphic
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properties without knowing Alice’s x:

d d
w = (H ci') - Ency (-rp) = (HEncpk(ai)x") -Ency, (-rg)
i=1 i=1
Ency, (a1x1) - - - Ency, (a4xz) - Ency, (—7p)
d
= Encpk(z a;x;—rg) = Ency (a-x—rp)
i=1

Then, in step four, Alice correctly obtains a random share of a - x by decrypting w using
her secret key: Bob’s rp is a random share of « - x, too. Assuming that Alice and Bob behave
semi-honestly?, it can be proved that the scalar product protocol is secure (Goethals et al., 2004).
In the discussions of subsequent sections, we assume that all parties behave as semi-honest
parties.

A protocol for the private scalar product comparison appears to be obtained readily using
the private scalar product protocol. The difference of two scalar products « - x, — a - x1 can be
computed as

d d

H cfz'i . H cl._xl'i =Ency, (a-x —a-xq). )

By sending this to Alice, Alice learns & - x — a - x1. Equation 2 appears to compare two scalar
products successfully and privately. However, it is not secure based on statement 1 because
not only the comparison result but also the value of & - x; — a - x5 is known to Alice. In the case
of the TSP, tour vectors are x1,x; € {0,1}9. Therefore, Bob’s x1 and x, are readily enumerated
from the value of a - xo — @ - x1 by Alice. To block Alice’s enumeration, Bob can multiply some
positive random value rp to the difference of two scalar products,

U

C;’BXZ,i . Hci—mxl,x‘ — EnCpk (7’B (a “Xp—a- xl))'
i=1 i=1

—

By sending this to Alice, Alice learns rg(a - xp —a - x1). Since rg >0, Alice can know whether or
not & - x > & - x1 from this randomized value; however, this is not secure, either. rp is a divider
of rg(a-xp —a-x1) and is readily enumerated again. Alice can also enumerate the candidate
of Bob’s x1 and x; for each rp in polynomial time.

As shown, multiplying a random number does not contribute to hinder Alice’s guess, either.
In our protocol, we use the SFE for private comparison with scalar product protocol. Private
comparison is stated as follows:

Statement 3 (Private comparison of random shares) Let Alice’s input be x* and Bob’s input be x5,
where x? and xf are random shares of x; for all i. Then, private comparison of random shares
computes the index i* such that

it = argmax(x? + x?). (3)
1

2 A semi-honest party is one who follows the protocol properly with the exception that the party retains
a record of all its intermediate observations. From such accumulated records, semi-honest parties attempt
to learn other party’s privte information (Goldreich, 2004).
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After the protocol execution, Alice knows i* and nothing else: Bob learns nothing.

When Alice has a cost vector a and Bob has two tour vectors x1,xp, the protocol for private
scalar product comparison is obtained using SFE as follows:
[Private scalar product comparison]

Private Input of Alice : a € Z¢,

— Private Input of Bob : x1,x; € Z¢,

Output of Bob : An inequation I € {I_,I;} (Alice has no output)

Alice: Generate a private and public key pair(py,sx) and send py to Bob.
Alice: Fori=1,...,d, Alice computes ¢; = Enc, (a;). Send them to Bob.

d CXz,i

1€ H‘l-i:l Cl._x“ -Ency, (=rP) and send w to Alice where r €, Zy

B).

Bob: Compute w « []

Alice: Compute ! = Decy, (w)(=x2-a—x1 -a—r

AR

Alice and Bob: Jointly run a SFE for private comparison. If ((+* + ) mod N) >0, I is
returned to Bob. Else, I_ is returned to Bob.

First, Alice encrypts her cost vector and send all elements to Bob. Then, Bob computes the
encrypted difference of two scalar products with randomization as follows:

d d
X2,i —X1,i B
w = ¢ | |, Ency (=17) (4)
i=1 i=1
d d
= El’lek X — Z X1, — }’B (5)
i=1 i=1
= Encpk(oz-xz—oz-xl—rB). (6)
At step four, Alice obtains

M =xya—x-a-1P, (7)

where 4 and 78 are random shares of x, - @ — x1 - & over Zy; both do not learn any from random
shares. Then at the last step, Both jointly run SFE for private comparison to evaluate whether
ornot (r4 +18) mod N is greater than zero, which is the desired output.

In what follows, we describe the execution of this protocol as (a, (x1,%2)) —gpc (0,1).

Note that the input size for SFE is p regardless of the vector size m and dimension d. In
principle, the computational load of SFE is large particularly when the input size is large.
Although the computation complexity of this protocol in step two and step three is still O(d),
we can reduce the entire computational cost of private scalar product comparison by limiting
computation of SFE only to comparison of random shares.

Theorem 1 (Security of private scalar product comparison) Assume Alice and Bob behave
semi-honestly. Then, private scalar product comparison protocol is secure in the sense of Statement 1.

The security proof should follow the standardized proof methodology called simulation
paradigm (Goldreich, 2004). However, due to the limitation of the space, we explain the
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security of this protocol by showing that parties cannot learn nothing but the output from
messages exchanged between parties.

The messages Bob receives from Alice before step five is Ency, (a1),...,Ency, (a). Because Bob
does not have Alice’s secret key, Bob learns nothing about Alice’s vector. The information
Alice receives from Bob before step five is only a random share ! = a - x, —a - x; — 1, from
which she cannot learn anything, either. At step five, it is guaranteed that SFE reveals only
the comparison result (Yao, 1986). Consequently, the overall protocol is secure in the sense of
Statement 1.

6. Local search of TSP using scalar product comparison

Using the protocol for private scalar product comparison, local search is convertible to a
privacy-preserving protocol. As an example, we introduce a Privacy Preserving Local Search
(PPLS) for TSP using 2-opt neighborhood.

Because the local search described in Section 3 is rank-based, it is readily extended to a
privacy-preserving protocol. Using the protocol for private scalar product comparison, PPLS
is designed as follows:

[Privacy-Preserving Local Search]

— Private Input of Server: instance vector a € Z¢,

Private Input of Searcher: subset of instance V' C V

Private Output of Searcher: local optimal solution x*

Server: Generate a pair of a public and a secret key (py,sx) and send py, to the searcher.
Server: Fori=1,...,d, compute ¢; = Ency, (a;) and send them to the searcher.

Searcher: Generate an initial solution xy using V’

Searcher: x €, N(xp),N(xg) < N(xp) \ {x}

Searcher:

R .

a) Compute (a,(x,x0)) —gpc (0,I) with probability 0.5. Otherwise, compute
(a, (x0,x)) —gpc (0,1).
b) If I corresponds to a-x —a-xp <0, then xp < x

6. Searcher: If N(xp) = 0 or satisfies some termination condition, x* « xy and output x*.
Otherwise, go to step 4.

Step one and step two can be executed solely by the server. In step three, an solution is
initialized. Step three and step four are also executed solely by the searcher.

Step five can be executed privately by means of private scalar product comparison. Note that
the order of the inputs of private scalar product comparison is shuffled randomly in step 5(a).
The reason is explained in detail in Section 6.2.

Readers can find multi-party expansion of private scalar product protocol in (Goethals et al.,
2004). Multi-party expansion of private scalar product comparison is straightforward with a
similar manner in the literature. This expansion readily allows us to obtain protocols of PPLS
for (k,1)-TSP.
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6.1 Communication and computation complexity

Communication between the server and the searcher occurs in steps one, two, and five. In
(1,1)-TSP, we can naturally assume that the cost vector « is not changed during optimization.
Therefore, transfer of (cy,...,c;) occurs only once in steps one and two. The communication
complexity of step 5(a) is O(1). As shown, the communication complexity is not time
consuming in this protocol.

The time consuming steps of PPLS are private comparison by SFE (step five of private scalar
product comparison) and exponentiation computed by the searcher (step three of private scalar
product comparison). The computation time of the SFE is constant for any 4 and cannot be
reduced anymore. On the other hand, there is still room for improvement in the exponentiation
step.

Using naive implementation, step three of private scalar product comparison costs O(d) (=
O(n?)). To reduce this computation, we exploit the fact that the number of changed edges by
2-opt is much smaller than 4.

In vector x — xg, only 2 elements are changed from 1 to 0 and the other 2 elements are changed
from 0 to —1 when 2-opt is used as the neighborhood. The remaining elements are all 0
irrespective of the problem size. Since the exponentiation of 0 can be skipped in step three of
private scalar product comparison, the time complexity is saved at most O(1) by computing
only in changing edges.

6.2 Security
Given a TTP, the ideally executed privacy-preserving optimization is the following.

Statement 4 (Privacy-preserving local search for (1,1)-TSP (ideal)) Let the searcher’s input be V' C V.
Let the server’s input be o € Z%,. After the execution of the protocol, the searcher learns the (local)
optimal solution x*, but nothing else. The server learns nothing at the end of the protocol, either.

Unfortunately, the security of the PPLS is not equivalent to this statement. We briefly verify
what is protected and leaked after the protocol execution.

Messages sent from the searcher to the server are all random shares. Thus, it is obvious that
the server does not learn anything from the searcher.

There remains room for discussion about what the searcher can guess from what it learns
because this point is dependent on the problem domain. The searcher learns a series of the
outcome of private scalar product comparison protocol in the middle of PPLS execution. Let
the outcome of the t-th private scalar product comparison be I(f).

In the case of TSP, I () corresponds to an inequality, @ - x —a - xg <0 ora - x —a - xo > 0. Although
the elements of the private cost vector « are not leaked from this, the searcher learns whether
@ - (x —xp) > 0 or not from this comparison. This indicates that orders of cost values might be
partially implied by the searcher because the searcher knows what edges are included in these
solutions.

Aslong as the server and the searcher mutually interact only through the private scalar product
comparison, the server never learns the searcher’s V” and the searcher never learns the server’s
a. However, the security of PPLS is not perfect as a protocol with a TTP. A method to block
the guess of the searcher from intermediate messages remains as a challenge for future study.
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7. Experimental analysis and discussion

In this section, we show experimental results of PPLS for (1,1)-TSP in order to evaluate the
computation time and investigate its scalability.

7.1 Setting

Five problem instances were chosen from TSPLIB(Reinelt, 1991). The city size is 195 — 1173.
In the distributed TSP, the searcher can choose a subset of cities V’ arbitrarily as the input.
For our experiments, V’ is set to V for all problems because the computation time becomes
greatest when V = V’. PPLS was terminated when x reaches a local optimum.

As a homomorphic cryptosystem, the Paillier cryptosystem(Pailler, 1999) with 512-bit and
1024-bit key was used. The server and the searcher program were implemented using java.
Both programs were run separately on a Xeon 2.8 GHz (CPU) with 1 GB (RAM) PCs with a 100
Mbps Ethernet connection. For SFE, Fairplay (Malkhi et al., 2004), a framework for generic
secure function evaluation, was used.

PPLS was repeated for 50, 100, and 300 times with changing initial tours (depicted as 50-itr,
100-itr and 300-itr).

Both the first and the second step of PPLS can be executed preliminarily before choosing city
subset V’. Therefore, we measured the execution time from the third step to the termination
of the protocol.

7.2 Results

Fig. 2 shows the estimated computation time required for optimization. With a 512-bit key,
PPLS (1-itr) spent 19 (min) and 79 (min) to reach the local optimum of rat195 and rat575. Using
a 1024-bit key, PPLS (1-itr) spent 21 (min) and 89 (min) for the same problems.

Table 1 shows the error index (=100x obtained best tour length / known best tour length) of
PPLS (average of 20 trials). Note that privacy preservation does not affect the quality of the
obtained solution in any way because the protocol does not change the behavior of local search
if the same random seed is used.

Earlier, we set V/ =V for all problems. Even when the number of cities |V| is very large, the
computation time is related directly to the number of chosen cities |V’| because the number of
evaluations is usually dependent on the number of chosen cities.

Although the computation time is not yet sufficiently small in large-scale problems, results
show that the protocol completes in a practical time in privacy-preserving setting when the
number of cities are not very numerous.

8. Related works

A few studies have been made of the Privacy-Preserving Optimization (PPO). Silaghi
et al. proposed algorithms for distributed constraint satisfaction and optimization
with privacy enforcement (MPC-DisCSP)(Silaghi, 2003)(Silaghi & Mitra, 2004). Actually,
MPC-DisCSP is based on a SFE technique (Ben-Or etal., 1988). Yokoo et al. proposed
a privacy-preserving protocol to solve dynamic programming securely for the multi-agent
system (Yokoo & Suzuki, 2002; Suzuki & Yokoo, 2003). (Brickell & Shmatikov, 2005) proposed
a privacy-preserving protocol for single source shortest distance (SSSD) which is a
privacy-preserving transformation of the standard Dijkstra’s algorithm to find the shortest
path on a graph. These studies are all based on cryptographic guarantees of security.
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PPLS (2-opt)
I-itr. | 50-itr. [ 100-itr. | 300-itr.
rat195 13.3 | 9.16 8.73 8.65
pcb442 16.4 | 8.88 8.88 8.88
rat575 11.6 | 9.96 9.96 9.90
rat783 122 | 10.8 10.8 10.3
pcb1173 | 154 | 129 129 12.3

Table 1. The error index of PPLS (2-opt).

To the best of authors” knowledge, this study is the first attempt for privacy-preserving
optimization by means of meta-heuristics. As discussed earlier, private scalar product
comparison allows us to compare two scalar products. It follows that our PPLS is available for
any privacy-preserving optimization problems provided that the cost function is represented in
the form of scalar products. In addition, private scalar product comparison can be incorporated
into not only local search but more sophisticated meta-heuristics, such as genetic algorithms
or tabu search, as long as the target algorithm uses only paired comparison for selection.

9. Summary

We proposed and explained a protocol for privacy-preserving distributed combinatorial
optimization using local search. As a connector that combines local search and privacy
preservation, we designed a protocol to solve a problem called private scalar product
comparison. The security of this protocol is theoretically proved. Then, we designed a
protocol for privacy-preserving optimization using a combination of local search and private
scalar product comparison. Our protocol is guaranteed to behave identically to algorithms
that do not include features for privacy preservation.

As an example of distributed combinatorial optimization problems, we specifically examined
the distributed TSP and designed a privacy-preserving local search that adopts 2-opt as a
neighborhood operator. The result show that privacy-preserving local search with 2-opt solves
a 512-city problem within a few hours with about 10 % error. Although the computation time is
not yet sufficiently small in a large-scale problem, it is confirmed that the protocol is completed
in a practical time, even in privacy-preserving setting. Both the searcher’s and the server’s
computation can be readily paralleled. The implementation of parallel computation is a subject
for future work. Application of PPLS to distributed combinatorial optimization problems such
as the distributed QAP, VRP, and Knapsack problem is also a subject for future work.
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1. Introduction

One of the most studied problem in operations research and management science during the
past few decades has been the Traveling Salesman Problem (TSP). The TSP is rather a simple
problem formulation, but what has garnered it much attention is the fact that it belongs to a
specific class of problems which has been labelled as “non-deterministic polynomial” or NP.
What this implies is that no algorithm currently exists which can find the exact solution in
“polynomial time”. A number of current engineering applications are formed around this
premise; such as cryptography.

TSP manages to capture the imagination of theoretical computer scientists and
mathematicians as it simply describes the complexity of NP Completeness. A number
of resources exists on the internet such as the TSPLIB , which allow any novice user to
understand and incorporate the TSP problem.

Since no concrete mathematical algorithm exists to solve the TSP problem, a specific branch of
research, namely evolutionary science, has been applied rather effectively to find solutions.
Evolutionary science itself is divided into many scopes, but the most effective ones have
been the deterministic approaches and random approaches. Deterministic approaches like
Branch and Bound (Land & Doig, 1960) and Lin-Kernighan local searches (Lin & Kernighan,
1973) have proven very effective over the years. Random based approaches, incorporated
in heuristics have generally provided a guided search pattern. Therefore the most effective
algorithms have been a hybrid of the two approaches.

This research introduces another approach, which is based on a chaotic map (Davendra &
Zelinka, 2010). A chaotic system is one which displays a chaotic behavior and it based on
a function which in itself is a dynamical system. What is of interest is that the map iterates
across the functional space in discrete steps, each one in a unique footprint. What this implies
is that the same position in not iterated again. This provides a great advantage as the number

*donald.davendra@vsb.cz
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generated in unique and when input into an evolutionary algorithm, it provides a unique
mapping schema. The question that remains to be answered is that whether this system
improves on a generic random number generator or not.

This chapter is divided into the following sections. Section 2 introduces the TSP problem
formulation. Section 3 describes the algorithm used in this research; Differential Evolution
(DE) and Section 4outlines its permutative varient EDE. The chaotic maps used in this research
are described in Section 5 whereas the experimentation is given in Section 6. The chapter is
concluded in Section 7.

2 Travelling salesman problem

A TSP is a classical combinatorial optimization problem. Simply stated, the objective of a
traveling salesman is to move from city to city, visiting each city only once and returning back
to the starting city. This is called a four of the salesman. In mathematical formulation, there is

a group of distinct cities {Cy,Cp,C3,...,Cn} , and there is given for each pair of city {Ci,Cj}

a distance d {Ci,C]- } The objective then is to find an ordering 7 of cities such that the total

time for the salesman is minimized. The lowest possible time is termed the optimal time. The
objective function is given as:

ild (Cn(i)rcn(i+l)) +d (CH(N)/Cn(l)) 1
=

This quality is known as the tour length. Two branches of this problem exist, symmetric and
asymmetric. A symmetric problem is one where the distance between two cities is identical,

given as: d {C,», Cj} =d {Cj, Ci} for 1 <i,j < N and the asymmetric is where the distances are

not equal. An asymmetric problem is generally more difficult to solve.

The TSP has many real world applications; VSLA fabrication (Korte, 1988) to X-ray
crystallography (Bland & Shallcross, 1989). Another consideration is that TSP is NP-Hard as
shown by Garey (1979), and so any algorithm for finding optimal tours must have a worst-case
running time that grows faster than any polynomial (assuming the widely believed conjecture
that P # NP).

TSP has been solved to such an extent that traditional heuristics are able to find good solutions
to merely a small percentage error. It is normal for the simple 3-Opt heuristic typically getting
with 3-4% to the optimal and the variable-opt algorithm of Lin & Kernighan (1973) typically
getting around 1-2%.

The objective for new emerging evolutionary systems is to find a guided approach to TSP and
leave simple local search heuristics to find better local regions, as is the case for this chapter.

3. Differential evolution algorithm

Differential evolution (DE) is one of the evolutionary optimization methods proposed by Price
(1999) to solve the Chebychev polynomial fitting problem. DE is a population-based and
stochastic global optimizer, and has proven to be a robust technique for global optimization.
In order to describe DE, a schematic is given in Figure 1.

There are essentially five sections to the code. Section 1 describes the input to the heuristic.
D is the size of the problem, Gmax is the maximum number of generations, NP is the total
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Canonical Differential Evolution Algorithm

1.Input:D,Gmax, NP > 4,F € (0,14),CR € [0,1],and initial bounds ix(l0) x(hi),
Vi < NPAVj<D:xijgog =" +rand;[0,1] o (") - x))
i={12,..,NP},j={12,..,D},G = 0,rand;[0,1] € [0,1]
3.While G < Gpax
4. Mutate and recombine :
41 rq,rpr3€{1,2,..,NP},

randomly selected,except :rq # 1y # 13 # i
42 jana € {1,2,...,D},randomly selected once each i

Xjrs,G +F (X6 = Xjn,G)

2 Initialize : {

VISNPY 45 vi<Dugn =4 if (randi[0,1] < CRV= jpong)
xjic otherwise
5. Select
v = e it fluigi) < flxig)
iG+1 xjc otherwise
G=G+1

Fig. 1. Canonical Differential Evolution Algorithm

number of solutions, F is the scaling factor of the solution and CR is the factor for crossover. F
and CR together make the internal tuning parameters for the heuristic.
Section 2 outlines the initialization of the heuristic. Each solution x; ; — is created randomly

between the two bounds x(") and x(*) . The parameter j represents the index to the values
within the solution and i indexes the solutions within the population. So, to illustrate, x47
represents the second value of the fourth solution at the initial generation.

After initialization, the population is subjected to repeated iterations in section 3.

Section 4 describes the conversion routines of DE. Initially, three random numbers rq,7;,73
are selected, unique to each other and to the current indexed solution i in the population in
4.1. Henceforth, a new index j,,4 is selected in the solution. j,,,; points to the value being
modified in the solution as given in 4.2. In 4.3, two solutions, x;,, ¢ and x;,, c are selected
through the index rq and r; and their values subtracted. This value is then multiplied by F,
the predefined scaling factor. This is added to the value indexed by 73 .

However, this solution is not arbitrarily accepted in the solution. A new random number
is generated, and if this random number is less than the value of CR, then the new value
replaces the old value in the current solution. Once all the values in the solution are obtained,
the new solution is vetted for its fitness or value and if this improves on the value of the
previous solution, the new solution replaces the previous solution in the population. Hence
the competition is only between the new child solution and its parent solution.

Price (1999) has suggested ten different working strategies. It mainly depends on the problem
on hand for which strategy to choose. The strategies vary on the solutions to be perturbed,
number of differing solutions considered for perturbation, and finally the type of crossover
used. The following are the different strategies being applied.

Strategy 1: DE/best/1/exp: Ui G41 = Xpest,c + F @ (X4,6 — Xp,0)
Strategy 2: DE/rand/1/exp: Ui G11=%p,G + F (X6 — Xp,.G)
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Strategy 3: DE/rand—best/1/exp: u;g+1 =xjg +Ae (xbest,G — x,er)
+P b (xr],G - xrz,G)

Strategy 4: DE/best/2/exp: Ui G+1 = Xpest. G + F @ (X,6 — XppG — X6 — X1,,G)
Strategy 5: DE/rand /2/exp: Ui G+1=X5G+ F e (X6 — X6 — XryG — X1,.G)
Strategy 6: DE/best/1/bin: Ui G+1 = Xpest,G + F  (X4,6 — X1,,G)

Strategy 7: DE/rand/1/bin: Ui G+1=Xp G+ F o (Xp6 — X1,.6)

Strategy 8: DE/rand—best/1/bin: u;gi1 =g +Ae (xbest,G —Xr .G

+Fe (xrl,G - x?‘z,G)
Strategy 9: DE /best/2/bin: Ui G+1 = Xpest.G + F @ (X,6 — XppG — X6 — X1,,G)
Strategy 10: DE/rand /2 /bin: UiG+1=X5G+ F e (X6 — X6 — XryG — X1,.G)

The convention shown is DE/x/y/z. DE stands for Differential Evolution, x represents a
string denoting the solution to be perturbed, y is the number of difference solutions considered
for perturbation of x, and z is the type of crossover being used (exp: exponential; bin:
binomial).

DE has two main phases of crossover: binomial and exponential. Generally, a child solution
u; G11 is either taken from the parent solution x; ¢ or from a mutated donor solution v; 1 as

shown : UjiG+1 = UjiG+1 = XjrsG + Fe (xm,G — xj,72,G>.

The frequency with which the donor solution v; ;1 is chosen over the parent solution
x; G as the source of the child solution is controlled by both phases of crossover. This is
achieved through a user defined constant, crossover CR which is held constant throughout
the execution of the heuristic.

The binomial scheme takes parameters from the donor solution every time that the generated
random number is less than the CR as given by rand; [0,1] < CR, else all parameters come
from the parent solution x; ;.

The exponential scheme takes the child solutions from x; ¢ until the first time that the random
number is greater than CR, as given by rand, [0,1] < CR, otherwise the parameters comes from
the parent solution x; ;.

To ensure that each child solution differs from the parent solution, both the exponential and
binomial schemes take at least one value from the mutated donor solution v; 1.

3.1 Tuning parameters

Outlining an absolute value for CRis difficult. It is largely problem dependent. However a few
guidelines have been laid down by Price (1999). When using binomial scheme, intermediate
values of CR produce good results. If the objective function is known to be separable, then
CR =0 in conjunction with binomial scheme is recommended. The recommended value of CR
should be close to or equal to 1, since the possibility or crossover occurring is high. The higher
the value of CR, the greater the possibility of the random number generated being less than
the value of CR, and thus initiating the crossover.

The general description of F is that it should be at least above 0.5, in order to provide sufficient
scaling of the produced value.

The tuning parameters and their guidelines are given in Table 1.

4. Enhanced differential evolution algorithm

Enhanced Differential Evolution (EDE) (Davendra, 2001; Davendra & Onwubolu, 2007a;
Onwubolu & Davendra, 2006; 2009), heuristic is an extension of the Discrete Differential
Evolution (DDE) variant of DE (Davendra & Onwubolu, 2007b). One of the major drawbacks
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Control Variables Lo Hi Best? Comments
F: Scaling Factor 0 1.0+ 03-09 F>05
CR: Crossover probability 0 1 0.8 —-1.0 CR =0, seperable

CR =1, epistatic

Table 1. Guide to choosing best initial control variables

of the DDE algorithm was the high frequency of in-feasible solutions, which were created after
evaluation. However, since DDE showed much promise, the next logical step was to devise a
method, which would repair the in-feasible solutions and hence add viability to the heuristic.
To this effect, three different repairment strategies were developed, each of which used a
different index to repair the solution. After repairment, three different enhancement features
were added. This was done to add more depth to the DDE problem in order to solve
permutative problems. The enhancement routines were standard mutation, insertion and
local search. The basic outline is given in Figure 2.

4.1 Permutative population
The first part of the heuristic generates the permutative population. A permutative solution
is one, where each value within the solution is unique and systematic. A basic description is

1. Initial Phase

(a) Population Generation: An initial number of discrete trial solutions are generated
for the initial population.

2. Conversion

(a) Discrete to Floating Conversion: This conversion schema transforms the parent
solution into the required continuous solution.

(b) DE Strategy: The DE strategy transforms the parent solution into the child solution
using its inbuilt crossover and mutation schemas.

(c) Floating to Discrete Conversion: This conversion schema transforms the continuous
child solution into a discrete solution.

3. Mutation

(a) Relative Mutation Schema: Formulates the child solution into the discrete solution
of unique values.

4. Improvement Strategy

(a) Mutation: Standard mutation is applied to obtain a better solution.

(b) Insertion: Uses a two-point cascade to obtain a better solution.
5. Local Search

(@) Local Search: 2 Opt local search is used to explore the neighborhood of the solution.

Fig. 2. EDE outline
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given in Equation 2.

Pg = {x1,6,%2,6,-+XNP,G}, XiG = XjiG
: hi I I
X;iG—0 = (int) (mndj [0,1] e (x]( Dy1- x](. 0)) + (x]( 0))>

if xj; ¢ {xO,z‘/xl,i/-wxjfl,i}
i=1{1,2,3,..,NP},j={1,2,3,.,D} )

where Pg represents the population, x;; c—o represents each solution within the population

(lo) (i)

and x; 7 and x; ' represents the bounds. The index i references the solution from 1 to NP,
and j which references the values in the solution.

4.2 Forward transformation

The transformation schema represents the most integral part of the DDE problem. Onwubolu
(Onwubolu, 2005) developed an effective routine for the conversion.

Let a set of integer numbers be represented as in Equation 3:

Xi € X 3)

which belong to solution x; ; G- . The equivalent continuous value for x; is givenas 1 e 10% <
5107 <107

The domain of the variable x; has length of 5 as shown in 5 e 10?. The precision of the value
to be generated is set to two decimal places (2 d.p.) as given by the superscript two (2) in 102
. The range of the variable x; is between 1 and 10°. The lower bound is 1 whereas the upper
bound of 10% was obtained after extensive experimentation. The upper bound 10% provides
optimal filtering of values which are generated close together (Davendra & Onwubolu, 2007b).
The formulation of the forward transformation is given as:

xjefe5
103 -1 @)
Equation 4 when broken down, shows the value x; multiplied by the length 5 and a scaling
factor f. This is then divided by the upper bound minus one (1). The value computed is
then decrement by one (1). The value for the scaling factor f was established after extensive
experimentation. It was found that when f was set to 100, there was a tight grouping of the
value, with the retention of optimal filtration’s of values. The subsequent formulation is given
as:

xi=—1+

xjefe5 1+xiofo5

/
I 1 —_
Yi T 1 10° -1

()

4.3 Backward transformation

The reverse operation to forward transformation, backward transformation converts the real
value back into integer as given in Equation 6 assuming x; to be the real value obtained from
Equation 5.

el = L2 EED () S00) ©
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The value x; is rounded to the nearest integer.

4.4 Recursive mutation
Once the solution is obtained after transformation, it is checked for feasibility. Feasibility
refers to whether the solutions are within the bounds and unique in the solution.

£ ) WiiGH 7 {ul,i,G—H/ oW 1i,G 41 }
XYoo= MGl (lo) (lo0) )
1,G+1 X < uj,i,c+1 <x
Xi,G
Recursive mutation refers to the fact that if a solution is deemed in-feasible, it is discarded and
the parent solution is retained in the population as given in Equation 7.

4.5 Repairment

In order to repair the solutions, each solution is initially vetted. Vetting requires the resolution
of two parameters: firstly to check for any bound offending values, and secondly for repeating
values in the solution. If a solution is detected to have violated a bound, it is dragged to the
offending boundary.

x(0) if y; < x(lo)
. _ 7i,G+1
UjiG+1 = { 0 i 1y g > 20D (8)

Each value, which is replicated, is tagged for its value and index. Only those values, which
are deemed replicated, are repaired, and the rest of the values are not manipulated. A second
sequence is now calculated for values, which are not present in the solution. It stands to reason
that if there are replicated values, then some feasible values are missing. The pseudocode is
given in Figure 3

Three unique repairment strategies were developed to repair the replicated values: front
mutation, back mutation and random mutation, named after the indexing used for each particular
one.

Algorithm for Replication Detection

Assume a problem of size 1, and a schedule given as X = {xy,..,x, }. Create a random solution
schedule 3!x; : R(X) := {x1,..,X;..,xn };i € ZT, where each value is unique and between the

bounds x(/?) and x ("),
1. Create a partial empty schedule P (X) := {}
2. Fork=1,2,....,n do the following:
(@) Checkif x; € P(X).

(b) TF 2 ¢ P(X)
Insert x; — P (Xj)
ELSE
P(X) =0

3. Generate a missing subset M (X) := R (X) \P (X).

Fig. 3. Pseudocode for replication detection
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Algorithm for Random Mutation

Assume a problem of size 1, and a schedule given as X = {x1,..,x,}. Assume the missing
subset M(X) and partial subset P(X) from Figure 3.

1. Fork =1,2,...,n do the following:
(@) IFP(Xy) =@

Randomly select a value from the M (X) and insert it in P(X;) given as
M (XRnud) = P (Xg)

(b) Remove the used value from the M (X).
2. Output P(X) as the obtained complete schedule.

Fig. 4. Pseudocode for random mutation

4.5.1 Random mutation

The most complex repairment schema is the random mutation routine. Each value is selected
randomly from the replicated array and replaced randomly from the missing value array as
given in Figure 4.

Since each value is randomly selected, the value has to be removed from the array after
selection in order to avoid duplication. Through experimentation it was shown that random
mutation was the most effective in solution repairment.

4.6 Improvement strategies

Improvement strategies were included in order to improve the quality of the solutions.
Three improvement strategies were embedded into the heuristic. All of these are one time
application based. What this entails is that, once a solution is created each strategy is applied
only once to that solution. If improvement is shown, then it is accepted as the new solution,
else the original solution is accepted in the next population.

4.6.1 Standard mutation

Standard mutation is used as an improvement technique, to explore random regions of space
in the hopes of finding a better solution. Standard mutation is simply the exchange of two
values in the single solution.

Two unique random values are selected 11,7, € rand[1,D], where as r; # rp . The values

exchange
indexed by these values are exchanged: Solution, < g Solution,, and the solution is

evaluated. If the fitness improves, then the new solution is accepted in the population. The
routine is shown in Figure 5.

4.6.2 Insertion

Insertion is a more complicated form of mutation. However, insertion is seen as providing
greater diversity to the solution than standard mutation.

As with standard mutation, two unique random numbers are selected r1,r, € rand[1,D]. The
value indexed by the lower random number Solution,, is removed and the solution from that
value to the value indexed by the other random number is shifted one index down. The
removed value is then inserted in the vacant slot of the higher indexed value Solution,, as
given in Figure 6.
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Algorithm for Standard Mutation

Assume a schedule given as X = {x1,..,x,, }.
1. Obtain two random numbers r; and rp, where r; = rnd (x(lo),x(hi)) and rp, =
rnd (x(l"),x(hi)), the constraint being rq # 1
(a) Swap the two indexed values in the solution
i Xy =y, and xp, = x4,

(b) Evaluate the new schedule X’ for its objective given as f (X').

() IF £ (X) < f(X)
i. Set the old schedule X to the new improved schedule X" as X = X'.

2. Output X as the new schedule.

Fig. 5. Pseudocode for standard mutation

4.7 Local search

There is always a possibility of stagnation in evolutionary algorithms. DE is no exemption to
this phenomenon.

Stagnation is the state where there is no improvement in the populations over a period of
generations. The solution is unable to find new search space in order to find global optimal
solutions. The length of stagnation is not usually defined. Sometimes a period of twenty
generation does not constitute stagnation. Also care has to be taken as not be confuse the local
optimal solution with stagnation. Sometimes, better search space simply does not exist. In
EDE, a period of five generations of non-improving optimal solution is classified as stagnation.
Five generations is taken in light of the fact that EDE usually operates on an average of a
hundred generations. This yields to the maximum of twenty stagnations within one run of
the heuristic.

Algorithm for Insertion

Assume a schedule given as X = {x1,..,x5 }
1. Obtain two random numbers r; and rp, where r; = rnd (x(lo),x(hi)) and rp, =
rnd (x(l”),x(hi)>, the constraints being r1 # rp and 1 < rp.
(a) Remove the value indexed by r; in the schedule X.
(b) For k=rq,.....,rp — 1, do the following:

i Xk = Xf41-

(c) Insert the higher indexed value r; by the lower indexed value 7y as: X;, = X;,.

2. Output X as the new schedule.

Fig. 6. Pseudocode for Insertion
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To move away from the point of stagnation, a feasible operation is a neighborhood or
local search, which can be applied to a solution to find better feasible solution in the local
neighborhood. Local search in an improvement strategy. It is usually independent of the
search heuristic, and considered as a plug-in to the main heuristic. The point of note is that
local search is very expensive in terms of time and memory. Local search can sometimes be
considered as a brute force method of exploring the search space. These constraints make
the insertion and the operation of local search very delicate to implement. The route that
EDE has adapted is to check the optimal solution in the population for stagnation, instead
of the whole population. As mentioned earlier five (5) non-improving generations constitute
stagnation. The point of insertion of local search is very critical. The local search is inserted at
the termination of the improvement module in the EDE heuristic.

Local search is an approximation algorithm or heuristic. Local search works on a neighborhood.
A complete neighborhood of a solution is defined as the set of all solutions that can be arrived at
by a move. The word solution should be explicitly defined to reflect the problem being solved.
This variant of the local search routine is described in Onwubolu (2002) and is generally
known as a 2-opt local search.

The basic outline of a local search technique is given in Figure 7. A number « is chosen equal
to zero (0) (x = ©). This number iterates through the entire population, by choosing each
progressive value from the solution. On each iteration of «, a random number i is chosen
which is between the lower (1) and upper (1) bound. A second number B starts at the position
i, and iterates till the end of the solution. In this second iteration another random number j is
chosen, which is between the lower and upper bound and not equal to value of . The values
in the solution indexed by i and j are swapped. The objective function of the new solution is
calculated and only if there is an improvement given as A (x,i,j) < 0, then the new solution is
accepted.

The complete template of EDE is given in Figure 8.

Algorithm for Local Search

Assume a schedule given as X = {xy,..,x, }, and two indexes « and . The size of the schedule
is given as n. Set & = 0.

1. Whilea <n
(a) Obtain a random number i = rand[1,n] between the bounds and under constraint
i¢a.
(b) Set = {i}
i. While B <n
A. Obtain another random number j = rand[1,n] under constraint j ¢ p.
.. . X; = Xj
B. IFA(x,i,j) < O,{ -
C g=puij}
i. a=aU{j}

Fig. 7. Pseudocode for 2 Opt Local Search



Chaos Driven Evolutionary Algorithm for the Traveling Salesman Problem

65

Enhanced Differential Evolution Template

Input :D, Gmax, NP > 4,F € (0,1+),CR € [0,1],and bounds :x("), x ("),

(lo) (hi) (lo)
G=0 = X; +rand;[0,1] e

Initialige:d YIS NPAYi<D i 1] ( )
nitialize : if x]lg{x(Jllxll/ xj_ 11}

i=1{1,2,.,NP},j={12,.,D},G =0,rand;[0,1]
Cost: Vi <NP: f (xj6=0)
While G < Gmax
Mutate and recombine :
r1,12,73 € {1,2,..., NP}, randomly selected, except:ri #ry #r3 #i
Jrand € {1,2,...,D}, randomly selected once each i
Yirs,G) < \Xjrs,G) (“Yj,rl,c> « (xj,rl,G> :
Yjra,G ) < | Xjmc) Forward Transformation
Vi<Dujic1= 9\ Yimc+F- (Vi = Vinmc)

if (rand;[0,1] <CRV j = jrzna)

(yj,i,G> — (xj,i,G) otherwise
Vi< NP (pj,i,GH — (q)j,i,G+1> Backward Transformation

tat
(”f,cﬂ) = (u]- ; G+1> e (Pj,i,G+1> Mutate Schema

if (”]zGH) ¢ {(”0,1‘,G+1) (u1iGe1) (Mj—1,i,c+1)}

wj;iG+1) (U} ) Standard Mutation

€]

!/ .
UjiG+1) < | U; gy ) Insertion
Select :

v e i fluigi) < f(xig)
LG+l x;c otherwise

G=G+1
Local Search  Xpes; = A (Xpest,i,j)  if stagnation

Fig. 8. EDE Template

5. Chaotic systems

Chaos theory has its manifestation in the study of dynamical systems that exhibit certain
behavior due to the perturbation of the initial conditions of the systems. A number of such
systems have been discovered and this branch of mathematics has been vigorously researched

for the last few decades.

The area of interest for this chapter is the embedding of chaotic systems in the form of chaos

number generator for an evolutionary algorithm.

The systems of interest are discrete dissipative systems. The two common systems of Lozi map

and Delayed Logistic (DL) were selected as mutation generators for the DE heuristic.
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5.1 Lozi map

The Lozi map is a two-dimensional piecewise linear map whose dynamics are similar to those
of the better known Henon map (Hennon, 1979) and it admits strange attractors.

The advantage of the Lozi map is that one can compute every relevant parameter exactly, due
to the linearity of the map, and the successful control can be demonstrated rigorously.

The Lozi map equations are given in Equations 9 and 10.

yi(t+1)=1—aly; (t)[ +y2(t) )

Y2 (t+1) = by (1) (10)
The parameters used in this work are 2 = 1.7 and b = 0.5 as suggested in Caponetto et al.
(2003). The Lozi map is given in Figure 9.

5.2 Delayed logistic map
The Delayed Logistic (DL) map equations are given in Equations 11 and 12.

yi(t+1) =y (11)

ya(t+1) =ay2(1-y1) (12)
The parameters used in this work is a = 2.27. The DL map is given in Figure 10.

6. Experimentation

The experimentation has been done on a few representative instances of both symmetric
and asymmetric TSP problems. The chaotic maps are embedded in the place of the random

Lozi Map

Lo 0.3 0o 035 10

Fig. 9. Lozi map
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Delayed Logistic Map

10 J— S

—

-

0.8

Fig. 10. Delayed Logistic

number generator in the EDE algorithm and the new algorithm is termed EDE(. Five repeated
experimentation of each instance is done by the two different chaotic embedded algorithms.
The average results of all the ten experimentation is compared with EDE and published results
in literature.

6.1 Symmetric TSP

Symmetric TSP problem is one, where the distance between two cities is the same fo and fro.
This is considered the easiest branch of TSP problem.

The operational parameters for TSP is given in Table 2.

Experimentation was conducted on the City problem instances. These instances are of 50
cities and the results are presented in Table 3. Comparison was done with Ant Colony
(ACS) (Dorigo & Gambardella, 1997), Simulated Annealing (SA) (Lin et al., 1993), Elastic Net
(EN) (Durbin & Willshaw, 1987), Self Organising Map (SOM) (Kara et al., 2003) and EDE of
Davendra & Onwubolu (2007a). The time values are presented alongside.

In comparison, ACS is the best performing heuristic for TSP, and EDE¢ is second best
performing heuristic. On average EDE( is only 0.02 above the values obtained by ACS. It

Parameter  Value

Strategy 5
CR 0.8
F 0.5
NP 100

Generation 50

Table 2. EDE TSP operational values
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Instant ‘ ACS SA EN SOM EDE EDEc
City set 1 5.88 5.88 598 6.06 598 5.89
City set 2 6.05 6.01 6.03 6.25 6.04 6.02
City set 3 5.58 5.65 57 5.83 5.69 5.61
City set 4 5.74 5.81 5.86 5.87 5.81 5.78
City set 5 6.18 6.33 6.49 6.7 6.48 6.21
Average ‘ 5.88 5.93 6.01 6.14 6 59

Table 3. Symmetric TSP comparison

must be noted that all execution time for EDE- was under 10 seconds. Extended simulation
would possibly lead to better results.

6.2 Asymmetric TSP

Asymmetric TSP is the problem where the distance between the different cities is different,
depending on the direction of travel. Five different instances were evaluated and compared
with Ant Colony (ACS) with local search (Dorigo & Gambardella, 1997) and EDE of Davendra
& Onwubolu (2007a). The results are given in Table 4.

Instant Optimal ACS3-OPT ACS3-OPT  EDE EDEc
best average average average
p43 5620 5620 5620 5639 5620
ry48p 14422 14422 14422 15074 14525
ft70 38673 38673 38679.8 40285 39841
kro124p 36230 36230 36230 41180 39574
ftv170 2755 2755 2755 6902 4578

Table 4. Asymmetric TSP comparison

ACS heuristic performs very well, obtaining the optimal value, whereas EDE has an average
performance. EDE( significantly improves the performance of EDE. One of the core difference
is that ACS employs 3—Opt local search on each generation of its best solution, where as EDE,
has a 2—Opt routine valid only in local optima stagnation.

7. Conclusion

The chaotic maps used in this research are of dissipative systems, and through
experimentation have proven very effective. The results clearly validate that the chaotic maps
provide a better alternative to random number generators in the task of sampling of the fitness
landscape.

This chapter has just introduced the concept of chaotic driven evolutionary algorithms.
Much work remains, as the correct mapping structure has to be investigated as well as the
effectiveness of this approach to other combinatorial optimization problems.
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1. Introduction

The traveling salesman problem (TSP)[1] is one of the most widely studied NP-hard
combinatorial optimization problems. Its statement is deceptively simple, and yet it remains
one of the most challenging problems in Operational Research. The simple description of
TSP is: Give a shortest path that covers all cities along. Let G = (V; E) be a graph where Vis a
set of vertices and E is a set of edges. Let C = (cij) be a distance (or cost) matrix associated
with E. The TSP requires determination of a minimum distance circuit (Hamiltonian circuit
or cycle) passing through each vertex once and only once. C is said to satisfy the triangle
inequality if and only if cij + cjk = cik forall i,j, k V.

Due to its simple description and wide application in real practice such as Path Problem,
Routing Problem and Distribution Problem, it has attracted researchers of various domains
to work for its better solutions. Those traditional algorithms such as Cupidity Algorithm,
Dynamic Programming Algorithm, are all facing the same obstacle, which is when the
problem scale N reaches to a certain degree, the so-called “Combination Explosion” will
occur. For example, if N=50, then it will take 5x10% years under a super mainframe
executing 100 million instructions per second to reach its approximate best solution.

A lot of algorithms have been proposed to solve TSP[2-7]. Some of them (based on dynamic
programming or branch and bound methods) provide the global optimum solution. Other
algorithms are heuristic ones, which are much faster, but they do not guarantee the optimal
solutions. There are well known algorithms based on 2-opt or 3-opt change operators, Lin-
Kerninghan algorithm (variable change) as well algorithms based on greedy principles
(nearest neighbor, spanning tree, etc). The TSP was also approached by various modern
heuristic methods, like simulated annealing, evolutionary algorithms and tabu search, even
neural networks.

In this paper, we proposed a new algorithm based on Inver-over operator, for combinatorial
optimization problems. In the new algorithm we use some new strategies including
selection operator, replace operator and some new control strategy, which have been proved
to be very efficient to accelerate the converge speed. At the same time, we also use this
approach to solve dynamic TSP. The algorithm to solve the dynamic TSP problem, which is
the hybrid of EN and Inver-Over algorithm.
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2. Tradition approaches for travel salesman problems

2.1 Genetic algorithm (GA)

Genetic Algorithm is based on the idea of Darwin evolutionism and Mendel genetics that
simulates the process of nature to solve complex searching problems. It adopts the strategy
of encoding the population and the genetic operations, so as to direct the individuals’
heuristic study and searching direction. Since GA owns the traits of self-organization, self-
adaptation, self-study etc, it breaks away from the restriction of the searching space and
some other auxiliary information. However, when facing different concrete problems (e.g.
TSP), it’s always necessary for us to seek better genetic operators and more efficient control
strategy due to the gigantic solution space and limitation of computation capacity.

Use GA solve the TSP, including the following steps:

Chromosome Coding: In this paper, we will use the most direct way to denote TSP-path
presentation. For example, path 4-2-1-3-4 can be denoted as (4, 2, 1, 3) or (2, 3, 1, 4) and it is
referred as a chromosome. Every chromosome is regarded as a validate path. (In this paper,
all paths should be considered as a ring, or closed path).

Fitness value: The only standard of judging whether an individual is “good” or not. We take
the reciprocal of the length of each path as the fitness function. Length the shorter, fitness
values the better. The fitness function is defined as following formula:

fs= Vv,

D dICo> Cristymoay ] M)
i=1

Evolutionary Operator or Evolutionary Strategy: they are including selection operator,
crossover operator and mutation operator.

Selection Strategy: After crossover or mutation, new generations are produced. In order to
keep the total number consistent, those individuals who are not adjust to the environment
must be deleted, whereas the more adaptive ones are kept.

Probability of mutation: In order to keep the population sample various, and prevent from
trapping into local minimum, mutation is quite necessary. But to seek higher executing
speed, the probability of mutation must be selected properly.

Terminal conditions: The stop condition of the algorithm.

2.2 A fast evolutionary algorithm based on inver-over operator

Inver-over operator has proved to be a high efficient Genetic Algorithm[2]. The creativity of
this operator is that it adopts the operation of inversion in genetic operators, which can
effectively broaden the variety of population and prevent from local minimum and lead to
find the best solutions quickly and accurately. GT algorithm[2] is be perceived as a set of
parallel hill-climbing procedures.

In this section, we introduce some new genetic operators based on GT. And there are also
some modifications on some details, which aim to quicken the convergence speed.
Numerical experiments show the algorithm can effectively keep the variety of population,
and avoid prematurely in traditional algorithms. It has proved to be very efficient to solve
small and moderate scale TSP; particularly, larger-scale problem can also get a fast
convergence speed if we choose a small population that involves the evolution.
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Selection Operator: Randomly select two chromosomes S1,52 from population {P}, let f
(S2)>f (S1); randomly select a gene segment Asl from S1, then judge if there is gene
segment As2 in S2 that meets the conditions below: it has the same length (number of
cities) and the starting city with Asl.If As2 exists, replace Asl by As2 in chromosome S1,
then the rest genes are adjusted follow the partly mapping rules.

Replace Operator: Randomly select two chromosomes 51,52 from population {P}, let f
(S2)>f (S1), let S1 be the parent, then randomly select a gene segment Asl in S1, then
judge if there is a gene segment As2 exists in 52 that meets the conditions below: it has the
same length (number of cities) and cities with Asl, only the sequence of cities varies. If it
exists, judge the distance of the two segments Asl, As2.If As2 is shorter, replace Asl by
As2 in S1; else quit.

The new algorithm mainly involves crossover operator, but crossover relies strongly on the
current population and may be easily trapped into local minimum. So mutation is
introduced and can effectively solve the problem. But mutation itself is blind; it can act
efficiently at the beginning of the algorithm, but when it's converged round to the
approximate best solution, the probability of successfully optimize the chromosome turns
out to be very low. So Dynamically alter the probability of selecting mutation operator is
necessary. We use the formula below to alter the probability of selecting mutation operator:

p=px(1-GenNumx0.01 / maxGen) (2)

p is the probability of mutation, GenNum is the current evolutionary times; maxGen is the
max evolutionary times when algorithm stops. Fig.2 provides a more detailed description of
the whole algorithm in general.
Random initialization of the population P
While (not satisfied termination condition) do
i=0
Begin

for each individual S; € P do

begin (if i'=N)
{S'«S;
Select (randomly) a City C from S'
repeat
{begin

if (rand() < p;)

{select the city C from S'

invert the gene segment between C and C

}

else
{select (randomly) an individual S in P

assign to C' the next city to the city C in the select individual

}
if (the next city or the previous city of city C in S' is C')
exit repeat loop
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else

{invert the gene segment between C and C
calculate d

if(d<0 and evolutionary speed< critical speed)
exit repeat loop

}
C«C

end

}
if (eval(S") < eval(S;))
S;«S'
i=1+1}
end
calculate evolutionary speed and update the probability of mutation
if (evolutionary speed< critical speed and (rand() < p,)

{select (randomly) S, , S, from P
select (randomly) gene segment As1 from S;
if (As1=As2 and the starting city is same) // As2 in S,

replace Asl with As2
)

Select the better gene segments from those adaptive chromosomes
if (eval(gy) < eval(g,))

81 < &
end

In this section we present the experimental results of the proposed algorithm. All experiments
are performed on PIV 2.4GHz/256M RAM PC. In the experiments all test cases were chosen
from TSPLIB (http:/ /www.iwr.uni-heidelberg.de/groups/comopt/software/ TSPLIB95). The
optimal solution of each test case is known. The parameters for algorithm are as Table.1.

Size of Population 100
Mutation Probability 0.02
Selection Probability 0.05
Critical Speed 5000

Table 1. Parameters for the algorithm

We list the test cases and their optimal solutions in Fig.1.

The above results demonstrate clearly the efficiency of the algorithm. Note that for the seven
test cases the optimum was found in all ten runs. The number of cities in these test cases
varies from 70 to 280. Note also, that the running time of the algorithm was reasonable:
below 3 seconds for problems with up to 100 cities, below 10 seconds for the test case of 144
cities, below 40 seconds for the test case with 280 cities.
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Instance Resultin TSPLIB Optimum in TSPLIB Our Result Time
st70 675 678597 677.109 0.67
eil 7 538 545387 544389 1.16
kroA100 21282 21285443 21285443 1.a9
rd100 910 TO10.396 T010.396 214
P36 QAT DATTL DATT0 024 711
Pr144 58537 58537 58535221 797
4220 2579 2E56.780 2856.769 3347

Fig. 1. Results of the algorithm

3. Information dynamic traveling salesman problem

Most research in evolutionary computation focused on optimization of static, no-change
problems. Many real world optimization problems however are actually dynamic, and
optimization methods capable of continuously adapting the solution to a changing
environment are needed. The main problem with standard evolutionary algorithms used for
dynamic optimization problems appears to be that EAs eventually converge to an optimum
and thereby loose their diversity necessary for efficiently exploring the search space and
consequently also their ability to adapt to a change in the environment when such a change
occurs. Since Psaraftis [11] first introduced DTSP, some research works have touched on this
area [3,4, 6,7,9,10]. However the research is just at the initial phase and quite a few crucial
questions.

3.1 The elastic net method to TSP

The elastic net was first proposed as a biologically motivated method for solving
combinatorial optimization problems such as the traveling salesman problem (TSP) [1]. In
the method, let the coordinates of a city, i, be denoted by the vector ci, and let the
coordinates of the route point (or unit), u, be tu. Define the TSP in terms of a mapping from
a circle to a plane. The TSP consists of finding a mapping from a circle, h, to a finite set of
points, C=ci...cN, in the plane, which minimizes the distance:

D= q&h f(s)ds €)

where the circle, h, is parameterized by arc-length, s, and f(s) provides a unique mapping
from each point on h to a point on the plane. The locus of points defined by f(s) forms a
loop, 1, in the plane which passes through each city exactly once.

The loop, 1, is modeled as finite set, t1..tM, of points, or units. Due to the difficulty in
obtaining a one-to-one mapping of units to plane points (cities) it is customary to set M > N
in order that each city can become associated with at least one unit.

The energy function to be minimized is:

N M M N M
Ez_azlnch(lci _tu |’K_kzlnzq)(|ci_tu |/k)+ﬂ2(|tu _tu+1 |)2 (4)
u=1

i=1  u=1 u=1 i=1
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where ¢(d,K)=exp(-(d2/2K2)), and K is the standard deviation of the function, ¢.
Differentiating E with respect to tu, and multiplying through by K, gives the change
(=—-K0E/ ot,), at,,in the position of a unit, u:

At _(az.fm +kzbu1)(c +IBK( u+l _Ztu +tu—1) (5)
where fui is like follow:
(D( |c;—t,1,K)

ch ~t,1,K)

This term ensures that each city become associated with at least one unit. It is the Gaussian
weighted distance of tu from ci expressed as a proportion of the distances to all other units
from ci. In contrast, the term bui ensures that each unit becomes associated with at least one
unit. It is the Gaussian weighted distance of ci from tu, expressed as proportion of the
distances to all other cities from tu:

i = ©)

(I, 1, 1,K)
by =) )

2. O(l¢;~t,|,K)
v=1

The EN method [8] is analogous to laying a circular loop of elastic on a plane containing a
number of points (cities) and allowing each city to exert an attractive force on the loop. (In
practice the EN method models this loop as finite set of points). Each city is associated with
a Gaussian envelope which (using our physical analogy) effectively means that each city sits
in a Gaussian depression on the plane. The standard deviation of the Gaussians associated
with all cities is identical. Each city attracts a region on the elastic loop according to the
proximity of that region to a given city and the standard deviation of the Gaussian. Initially
the standard deviation is large, so that all regions on the loop are attracted to every city to
the same extent (approximately) as every other region. As the standard deviation is
decreased a city differentially attracts one or more nearby regions on the loop, at the
expense of more distant loop regions. These loop-city interactions are modulated by the
elasticity of the loop, which tends to keep the loop length short; the elasticity also tends to
ensure that each city becomes associated with only one loop region. For a given standard
deviation the integral of loop motion associated with each city is constant, and is the same
for all cities, so that each city induces the same amount of motion of the loop. By slowly
decreasing the standard deviation each city becomes associated with a single point on the
loop_ Thus the loop ultimately defines a route of the cities it passes through. If the standard
deviation is reduced sufficiently slowly then the loop passes through every city; and
therefore defines a complete route through all cities.

3.2 The elastic net method to dynamic TSP
Dynamic TSP (D-TSP)[4] is a TSP determined by the dynamic cost (distance) matrix as
follows:
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D(t) = {dij(t)}n(t)xn(t) (8)

where dij(t) is the cost from city(node) i to city j, t is the real world time. This means that the
number of cities n(t) and the cost matrix are time dependent that’s (1)some cities may
appear, (2)some may disappear and (3)the locations of some may be modified with time
going on. These are the three types of actions to a D-TSP.

The D-TSP solver should be designed as solutions of a two-objective optimization problem.
One is to minimize the size of time windows:

Sp=t—1 ©)

where t tk. The other is to minimize the length of 7(t;) = (7y,75,.... 7,,)) :

I\

d(z(t) = Z 7 ( (10)

i=1
Where ﬂﬂ(fk)+1 = ﬂ‘l .

The two objectives mean that the solver is to find the best tour in the minimal time window.
If this aim cannot be satisfied, we can make some tradeoffs between the two objectives.

We introduce the thought of the EN method into dynamic TSP. First, suppose we have
already attained the maximum optimum of static TSP. Second, add a dynamic point. When
the dynamic point moves to a position, we can use the EN method to attain the maximum
optimum route. The whole processing like Fig.2 shows.

Fig. 2. The processing of EN method to dynamic point

Because the dynamic TSP needs give the maximum optimum in real-time, so the
computation speed very high. Gou's algorithm [2] with Inver-Over operator is a very
efficient evolutionary algorithm for static TSP with high speed and more details about this
algorithm can be got in [5]. We convert it with EN method to solve dynamic TSP. The
algorithm code like following shows.

DEN Algorithm ()

Initiate parameter;

Initiate population {Pi};

While true do

{
Attain dynamic point position (x’, y’);
Inver-Over (x [], y [], path [], M);
EN (x[], y [l path ], X, y);

}

}
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3.3 Experiments and results

We have evaluated the algorithm and test it with the data set from TSPLIB
(http:/ /www .iwr.uni-heidelberg.de/ groups/comopt/software/ TSPLIB95). Fig.3 is the
example of the DEN algorithm to KeroA150 in different time. In the example, the red point
is the dynamic point and it moves around circle. From the example, we can see in different
time, the dynamic point in different position and has the different distance. It shows this
example is a dynamic problem. Through the experiment, we find the DEN algorithm cannot
guarantee the route to be the maximum optimum, but this algorithm can move the dynamic
point and confirm it to the new route very fast. So, it is very valid to solve dynamic TSP
problem.

Distance=26883.955958
time=6.059000

Distance=26b77.913827
time=22.603000

Fig. 3. DEN algorithm to KeroA150 in different time
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4. Conclusion

In this paper, we introduce a fast evolutionary algorithm for combinatorial optimization
problem. This algorithm is based on Inver-over operator, in the algorithm we use some new
strategies including selection operator, replace operator and some new control strategy,
which have been proved to be very efficient to accelerate the converge speed. The new
algorithm shows great efficiency in solving TSP with the problem scale under 300.
Particularly, if we choose a comparatively smaller population scale that involves evolution,
the algorithm is also efficient to get the approximate best solution in a short executing time.
In this paper, we also introduce an approach to solve dynamic TSP-- Elastic Net Method. A
dynamic TSP is harder than a general TSP, which is a NP-hard problem, because the city
number and the cost matrix of a dynamic TSP are time varying. And needs high
computation speed. We propose the algorithm to solve the dynamic TSP, which is a hybrid
of EN method and Inver-Over. Through the experiment, we got good results. Some
strategies may increase the searching speed of evolutionary algorithms for dynamic TSP,
forecasting the change pattern of the cities and per-optimizing, doing more experiments
including changing the city number, and etc. These will be our future work.
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1. Introduction

The Traveling Salesman Problem (TSP), first formulated as a mathematical problem in 1930,
has been receiving continuous and growing attention in artificial intelligence, computational
mathematics and optimization in recent years. TSP can be described as follows: Given a set
of cities, and known distances between each pair of cities, the salesman has to find a shortest
possible tour that visits each city exactly once and that minimises the total distance
travelled.

The mathematical model of TSP is described below:

Given a set of cities C = {C1, C2, C3... Cn}, the distance of each pair of cities is d(Ci,Gj). The
problem is to find a route (C1,C2,C3...Cn) that visits each city exactly once and makes

Zd(Ci,Ci +1)+d(Cn,C1) to have a minimum value.

i=1

TSP is the problem of the permutation of n cities. For n cities, there should be n! different
permutations. For the symmetric TSP, each route has two different ways to represent.
Therefore, the size of its search space is: S =n!/2n= (n-1)!/2. As TSP is an ‘NP-hard” problem,
researchers all over the world try to solve the problem with various algorithms. Genetic
Algorithm (GA), with the advantages of robustness, flexibility and versatility, has been
widely studied to solve large-scale combinatorial and optimization problems. However,
Genetic Algorithm has some significant drawbacks, for instance, the pre-mature
convergence of computations, the poor use of system information during computational
evolutions, expensive computation from evolutional procedures and the poor capability of
“local” search (Potvin, 1996) (Jin et al., 1996) (Wei & Lee, 2004) (Lu et al., 1996).

Although TSP itself seems very simple, as the number of visited cities increases, the
computation of the problem can be extremely time-consuming (in the order of exponential
growth) or even results in no optimal solution in the worst case. Developing effective
algorithms for the TSP has long been a topic of interest in both academic research and
engineering applications, ranging from transportation optimization to the sequencing of
jobs on a single machine.

The methods commonly employed to solve the TSP include simulated annealing algorithm,
artificial neural networks, tabu search algorithm, genetic algorithm (GA), and so on. Each
method has different advantages and disadvantages. For example, GA combines many
positive features (such as robustness, flexibility, and versatility), leading to its widespread
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applications in engineering optimization. However, GA also has some significant
drawbacks, for instance, the pre-mature convergence of computations, the poor use of
system information during computational evolutions, expensive computation from
evolutional procedures, and the poor capability of local search.

The immune system, which is made up of special organs, tissues, cells and proteins, is the
body's defence against infectious organisms and other invaders (Liu, 2009). The immune
system detects and attacks antigens that invade the body through different types of
lymphocytes. Artificial immune systems are adaptive systems inspired by the functions,
principals and models of the vertebrate immune system. When artificial immune systems
are attacked, the immune mechanisms are started to guarantee the basic functions of the
whole intelligent information system. Researches on artificial immune systems aim to set up
engineering models, algorithms and advanced intelligent information system through
intensive study on the information processing mechanisms of biological immune systems.

In the 1970s, Jerne first propounded the hypothesis of the immune network system and
founded the basic theories of the artificial immune systems, Jerne’s idiotypic network
model. Perelson studied on a number of theoretical immune network models proposed to
describe the maintenance of immune memory, which accelerated the development of
artificial immune systems in computer science. In 1986, Farmer built a dynamic model of the
immune system and brought in the concept of learning. Farmer’s work contributed to
turning artificial immune systems to practical application. One important aspect of the
research on artificial immune systems is to develop effective learning and optimization
algorithms. Immune algorithms are one of heuristic search algorithms inspired by immune
principals. In 1990, Bersini put immune algorithms into practice for the first time. By the end
of the 20th century, Forrest et al. started to apply immune algorithms to computer security
field. At the same time, Hunt et al. began to use immune algorithms in machine learning.
Immune algorithms (IAs), mainly simulate the idea of antigen processing, including
antibody production, auto-body tolerance, clonal expansion, immune memory and so on.
The key is the system’s protection, shielding and learning control of the attacked part by
invaders. There are two ways considered to design an immune algorithm: one is to abstract
the structure and function of the biological immune system to computational systems,
simulating immunology using computational and mathematical models; the other is to
consider whether the output of the artificial immune systems is similar with that of the
biological immune system when the two systems have similar invaders. The latter doesn’t
focus on the direct simulation of the process, but the data analysis of the immune algorithm.
As the immune system is closely related to the evolutionary mechanism, the evolutionary
computation is often used to solve the optimization problem in immune algorithms. The
research on artificial immune systems lays a foundation for further study on engineering
optimization problems. On the one hand, it aims to build a computer model of biological
immune system, which contributes to the study of the immune system operation. On the
other hand, it supplies an effective way to solve many practical problems.

Immune Algorithms inspired by biological immune mechanism, can make full use of the
best individuals and the information of the system, and keeps the diversity of the
population. In the optimization process, Immune Algorithms take the useful ideas of
existing optimization algorithms, combine random search with deterministic changes,
reduce the impact of the random factors to the algorithm itself and can better eliminate the
premature convergence and oscillation.
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One kind of immune algorithms is immunity based neural method, such as the neuro-
immune network presented in (Pasti & De Castro, 2006), which is a meta-heuristics for
solving TSP based on a neural network trained using ideas from the immune system. In
addition, an immune-inspired self-organizing neural network proposed by Thiago is
showed to be competitive in relation to the other neural methods with regards to the quality
(cost) of the solutions found (Thiago & Leandro, 2009).

Combining GA with immune algorithms is another kind of method in TSP solving, such as
an immune genetic algorithm based on elitist strategy proposed in (Liang & Yang, 2008). A
genetic algorithm based on immunity and growth for the TSP is also showed to be feasible
and effective, in which a reversal exchange crossover and mutation operator is used to
preserve the good sub tours and to make individuals various, an immune operator is used
to restrain individuals' degeneracy, and a novel growth operator is used to obtain the
optimal solution with more chances (Zeng & Gu, 2007).

Besides, Clonal Selection Algorithm is widely used to solve TSP. For example, a Hyper-
mutation Antibody Clone Selection Algorithm (HACSA) shows the advantage of enhancing
the local search performance of the antibody in solving TSP (Du et al., 2009). A novel Clonal
Selection Algorithm(CSA), which extends the traditional CSA approach by incorporating the
receptor editing method, is proved to be effective in enhancing the searching efficiency and
improving the searching quality within reasonable number of generations (Gao et al., 2007).
Moreover, a number of improved artificial immune algorithms are studied and show the
capability for TSP solutions. For example, an immune algorithm with self-adaptive
reduction used for solving TSP improves the probability that it finds the global optimal
solution by refining the reduction edges which gradually increase in the number and
enhance in the forecasting accuracy (Qi et al., 2008).

To partially overcome the above-mentioned shortcomings of GA, an immune-genetic
algorithm (IGA) is introduced in this book chapter, and then an improved strategy of IGA
for TSP is also discussed. Section 3 is related to a selection strategy incorporated into the
conventional genetic algorithm to improve the performance of genetic algorithm for TSP.
The selection strategy includes three computational procedures: evaluating the diversity of
genes, calculating the percentage of genes, and computing the selection probability of genes.
The computer implementation for the improved immune-genetic algorithm is given in
section 4, and finally the computer numerical experiments will be given in this book
chapter.

2. The immune-genetic algorithm

2.1 Immune algorithms

Immune Algorithms can be divided into Network-based immune algorithm and
Population-based algorithm.

Immune Network theory was first proposed by Jerne in 1974. Currently the most widely
used is Jerne's network based thinking: immune cells in the immune system link each other
through the mutual recognition. When an immune cell recognizes an antigen or another
immune cell, it is activated. On the other hand, the immune cell is inhibited when it is
recognized by other immune cells.

There are two kinds of Immune Network models: the continuous model and the discrete
model. The continuous Immune Network model is based on ordinary differential equations.
The typical models include the model proposed by Farmer et al. in 1986 and the model
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proposed by Varela and Coutinho in 1991. These models have been successfully applied to
continuous optimization problems, automatic navigation system and automatic control field.
However, the equations of continuous immune network model can not always be solved
and usually it needs numerical integration to study the behavior of the system. To make up
the drawbacks of continuous immune network model, the discrete immune network model
is produced, which is based on a set of differential equations or an adaptive iteration.
Population-based Immune Algorithm mainly includes Negative Selection Algorithm and
Positive Selection Algorithm. Negative Selection Algorithm, proposed by Forrest et al. from
the University of Mexico, is a kind of selection Algorithms used to test data change. The
algorithm embodies the ideas of the ideological principles of negative selection (Ge & Mao,
2002). The immune system works out mainly by successfully detecting abnormal changes of
the system. Negative selection refers to the identification and deletion of self-reacting cells,
that is, T cells that may select for and attack self tissues (Forrest et al., 1994). The immune
system removes the immune cells that response to autologous cells to realize self-tolerance
through Negative selection algorithm. There are mainly two procedures contained in
Negative selection algorithm: tolerance and detection. The task in tolerance procedure is to
produce mature detector. In the detection phase, the detector detects the protected system.
Negative selection Algorithm does not directly use self-information, but generates testing
subset by self-assembly through Negative selection. The algorithm is robust, parallel,
distributed detected and easy to implement. However, as its computational complexity
increases exponentially, Negative selection algorithm is not conducive to handling complex
problems. Positive selection algorithm is very similar to Negative selection algorithm. But it
works contrary to the Negative selection algorithm. Negative selection algorithm removes
the self-reacting immune cells, while Positive selection algorithm keeps them.

Besides, Clonal Selection Algorithm is also a widely used immune algorithm. It is inspired
by the clonal selection theory of acquired immunity that explains how B and T lymphocytes
improve their response to antigens over time. The algorithm solves problems through the
mechanisms of cell cloning, high-frequency variation, clonal selection and dying. It is high
parallel and can be used in machine learning, pattern recognition and optimization
domains. Standard Clonal selection algorithm achieves population compression and ensures
the quality of antibody population in the optimal solution through local search. But Positive
selection algorithm requires the system to be static. To make up that defect, Kim and Bentley
proposed Dynamic Clonal algorithms in 2002, mainly for Network Intrusion Detection, to
meet the real-time network security requirements.

2.2 The immune-genetic algorithm

The Immune-Genetic Algorithm (IGA) is an improved genetic algorithm based on biological
immune mechanisms. In the course of immune response, biological immune system
preserves part of the antibodies as memory cells. When the same antigen invades again,
memory cells are activated and a large number of antibodies are generated so that the
secondary immune response is more quickly than the initial response. In the meanwhile,
there are mutual promotion and inhibition between antibodies. Therefore, the diversity and
immune balance of the antibodies are maintained. That is the self-regulatory function of the
immune system. The Immune-Genetic Algorithm simulates the process of adaptive
regulation of biological antibody concentration, in which the optimal solution of the
objective function corresponds to the invading antigens and the fitness f(Xi) of solution Xi
corresponds to the antibodies produced by the immune system. According to the
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concentration of antibodies, the algorithm adaptively regulates the distribution of the search

direction of solutions and greatly enhances the ability to overcome the local convergence.

In general, the Immune-Genetic Algorithm includes:

1. Antigens definition: Abstract the problem to the form of antigens which the immune
system deals with and the antigen recognition to the solution of problem.

2. Initial antibody population generation: The antibody population is defined as the
solution of the problem. The affinity between antibody and antigen corresponds to
the evaluation of solution, the higher the affinity, the better the solution.

3. Calculation of affinity: Calculate the affinity between antigen and antibody.

4. Various immune operations: The immune operations include selection, clone
variation, auto-body tolerance, antibody supplementation and so on. The affinity and
diversity are usually considered to be the guidance of these immune operations.
Among them, select Options usually refer to the antibody poputlation selected from
the population into the next operation or into the next generation of the immune
antibody population. Clone variation is usually the main way of artificial immune
algorithm to generate new antibodies. Auto-body tolerance is the process of judging
the rationality of the presence of the antibodies. Antibody supplementation is the
accessorial means of population recruitment.

5. Evaluation of new antibody population: If the termination conditions are not
satisfied, the affinity is re-calculated and the algorithm restarts from the beginning. If
the termination conditions are satisfied, the current antibody population is the
optimal solution.

6. Evolution of the antibody using standard Genetic Algorithm: crossover and
mutation.

This model makes the immune system learn to identify the antibodies that are helpful to the

antigen recognition. Moreover, the introduction of fitness further improves the

immunogenicity, ensuring the diversity of antibody population in Genetic Algorithm.

Immune-Genetic Algorithm introduces the "immune operator", genes inoculation and

selection, and simulates the specific auto-adaption and artificial immune of the artificial

immune system, possessing good properties of fast global convergence. The specific

workflow of Immune-Genetic Algorithm is described in figure 1.

Step 1. Randomly generate x individuals of parent population. The search space of those
quasi-optimal values x"is composed of mesh points in R". Each part of these
points is an integral multiple of A . Each individual in the population is presented
as (x,0), where x = (x;,%,,--,%,) € X c R", is a solution to the problem. x" € X is the
expected solution. f(x")=max f(x)(x e X)= f ,where f is the max fitness of X .

Step 2. Generate the intermediate population by crossing, with the size 2. The specific
process is that for each individual (x,o)of parent population, select another
individual (x,0') to crossover with (x,5) in a crossover-point to generate y and y .

Step 3. Mutate on the individual (x,o) and generate a new one (x o)

Step 4. Inoculate genes. Inoculating the individual (x,0) means to modify the value of
x and o in the range of variation or the restrictions in some parts of the optimal
individuals. The inoculation process satisfies: if f(x)= f , (x,o) turns to itself with
probability L.
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Begin

A

Generation=0

g
A

Generate initial population at random

v

Calculate the fitness of genes

Termination
conditions
satisfied?

Generation=

Generation+1 Get optimal solution

A

End

Crossover and mutation

v

Inoculate genes

A

Immune selection

v

Generate a new population

Fig. 1. Immune-genetic algorithm workflow

Step 5. Immune selection. It consists of two procedures: Immunity testing and selection.
The first procedure is to test the inoculated individuals. If its fitness is smaller than
its parent's fitness, there has been a serious degradation on the inoculated
individual and its parent individual is used instead for the next competition.
Immune Selection is to select ¢ individuals from 2 individuals according to their
fitness to compose a new parent population.
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Step 6. If the termination conditions are not satisfied, generate a new generation and go
back to step 2.

IGA has two advantages: 1. inoculating genes and adding a priori knowledge can effectively
accelerate the convergence speed and improve the quality of the solution; 2. Concentration
based immune selection method can prevent premature phenomenon and make sure the
optimization process toward the global optimum direction. The disadvantage is that the
selection of genes and inoculation approach should be analyzed according to specific
situations.

3. The Improved immune-genetic algorithm for TSP

This section is related to improvements on the standard immune-genetic algorithm for TSP.
An improved immune-genetic algorithm of the author’s research work (Lu et al., 2007) for
TSP is introduced in this section. The algorithm effectively integrates immune algorithm
into GA (Jiao & Wang, 2000) using an improved strategy of IGA and applies a new selection
strategy in the procedure of inoculating genes. The computer implementation for the
improved algorithm is also discussed in this section.

3.1 The Improved immune-genetic algorithm

The improved immune-genetic algorithm uses a sequential representation to present the
visited cities listed in the order (Lu et al., 2007). For example, the journey (5-7-8-9-4-3-2-6-1)
can be expressed as (578943261). The path based coding method requires that the genetic
code in the chromosome of an individual (a route) is not repeated. That is, any city should
be visited once and only once.

The Roulette Wheel selection is employed where parents are selected according to their fitness
(Lu et al,, 2007). The individuals are generated using the Greedy crossover algorithm, which
selects the first city of one parent, compares the others left in both parents, and chooses the
closer one to extend the traveling way. If one city has been chosen, another city will be
selected. And if both cities have been chosen, a not-yet-selected city will be randomly selected.

A swapping method is used for the TSP in IGA instead of the conventional mutation
method. The method selects a binary code in random, which represents two cities from two
individuals. The binary code is then swapped if the distance (length) of the traveling way
for a new individual is shorter than that of the old one. (Lu et al., 2007)

In the procedure of developing and inoculating genes, the quality of genes has decisive
influence on the convergence speed of the immune algorithm. Therefore, we make full use
of prior knowledge and first develop a good gene pool that includes different genes
representing the shorter traveling way of the TSP. After that, genes are randomly selected
from the gene pool and finally inoculated into individuals.

In solving TSP, if the coordinates of 10 cities are in a circle for example, the route along the
circle is the optimal solution and the optimal gene. The prior knowledge is applied to
develop a gene pool. The gene pool is a two-dimensional 10 x 2 matrix. Having been
calculated and optimized the gene pool can be the best, showed in table 1.

from 0 1 2 3 4 5 6 7 8

to 1 2 3 4 5 6 7 8 9

Table 1. The Gene Pool
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When inoculating genes, a new selection strategy is applied to keep the excellent genes
included in the population of individuals within a reasonable percentage. Those excellent
genes are further used to generate other individuals. The selection strategy is developed
based on the evaluation of the diversity of genes that are involved in the population of
individuals. There are three computational procedures included in the strategy (Lu et al.,
2007): 1) evaluating the diversity of genes included in the population of individuals, 2)
calculating the percentage of genes included in the population of individuals, 3) computing
the selection probability of genes. The details of the procedures are explained as follows.

1. Evaluating the diversity of genes

The diversity of genes is first evaluated by comparing the information entropy of every two
genes. For example, giving two bit strings, each one has two alternative letters in its
alphabet, thus the information entropy for the N genes is given by:

H(N):ﬁiHi(N) )

where Hj=Xi=1s- Pij logPij; Hj(N)is the information entropy of the jth binary bit of two
genes, Pij is the probability of the jth binary bit of two genes being equal to ki. Pij is equal to
0 if the binary bits of two genes are the same; otherwise Pjj is equal to 0.5. M is the number
of genes.

The affinity of genes shows the similarity between the two genes. The affinity of gene v and
gene w is:

1
TV HQ) @
2. Calculating the percentage of genes
The percentage of gene v is Cv, given by:
1 N
c, = N_ Z ac w (3)

w =1

Where ay, , is the affinity of genev and gene w:

, ayv,w > = Tacl

acyy ~— ,Tacl is a predefined threshold

(4)
0, otherwise

If C, is bigger than a predefined threshold, the gene will be inhibited (removed from the
population), otherwise it remains. This step is to remove the extra candidates.

3. Computing the selection probability of genes

The selection probability of gene v is:
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axvl_N[ (1-as, ;)

s=1

€. = ()

n
¢, ax,

vs, ayys 2= Tac2
where aSys — ,Tac2 is a predefined threshold

0, otherwise

ax , = fitness(v)

)

Y ax, =sumfitness ®)

i=1
This formula controls the concentration and diversity of genes. The genes with high affinity
to the antigen will be selected to regenerate. The genes with high percentage are inhibited.
The improvement of the improved genetic algorithm is mainly reflected in that: 1) Improve
the fitness of individual genes and the quality of the individual by inoculating genes. This
way the convergence rate is significantly sped up. 2) Concentration based immune selection
method not only encourages the solution with high fitness, but also inhibits the solution
with high percentage, ensuring the convergence of the algorithm and the diversity of the
solution population. It's also suitable for multimodal function optimization.

3.2 Computer implementation for improved immune-genetic algorithm
The workflow of the improved immune-genetic algorithm is showed in figure 2.
The Computational Flow of the improved immune-genetic algorithm is showed in the
following:
Begin
Initiation: develop a gene pool using prior knowledge; select genes from the gene
pool randomly;
Repeat
Calculate the fitness of each gene;
Calculate the probability that genes are selected;
Generate individuals using the Greedy crossover;
Gene mutates;
Inoculate genes using inoculation algorithm;
Select genes using the selection strategy based on the evaluation of the
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diversity of genes: Calculate the information entropy, the percentage and
the selection probability of genes;
Replace the removed genes with the new developed genes to produce a new
generation of genes;

Until ( the genes satisfy the termination conditions)

End
Begin

A 4

Generate initial population

v

Develop a gene pool

>
A

Calculate the fitness of genes

Termination . .
Get optimal solution

conditions satisfied?

End

Generate the next generation with

selection Crossover & mutation

< The gene pull
y

A

Inoculate genes to improve the
performance of individuals

v

Calculate the information entropy, the percentage
and the selection probability of genes

3

Use concentrate based selection method to keep
excellent genes to generate a new population

Fig. 2. The Improved Immune-Genetic Algorithm
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The information of a gene individual includes gene chromosomes, chromosome length,
individual fitness and the individual’s corresponding variable. In the program, the structure
of a gene individual is defined as follows.

typedef struct individual{

int chrom[n]; /* chromosomes */

float fitness; /* individual fitness */

int totaldistance;

int Ichrom; /* chromosome length */

double varible; /* individual’s corresponding variable */

7
The fitness function employed is showed as equation (9).

Fit(x) = — 1 ©)

> d(Ci,Ci+1)+d(Cn,C1)

i=1

The probability that genes are selected is calculated using the roulette wheel selection with
standard genetic algorithm

A swapping method is used for gene mutation. In the swapping method, a binary code that
represents two cities from two individuals is randomly selected, and is then swapped if the
distance (length) of the traveling way for a new individual is shorter than that of the old
individual (Lu et al., 2007). The figure 3 shows an example of gene mutation: two locations
are randomly selected to mutate. The probability of mutation is between 0.5 and 0.1;

Location 2 v location 7

Before mutation ol 7 le | 5| 1| 9| s8] 3| 4] 2

After mutation 0 7 3 5 1 9 8 6 4

[§=]

Fig. 3. Gene mutation

The computational flow of the gene mutation is as follows.
Begin
Select locations to mutate at random;

If (mutation probability< predefined value) swap the codes on the locations;
End;

The inoculation process is:
Begin
Select a gene randomly from the gene pool;
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Find a reasonable inoculating location;
Find and modify the conflict location of the gene to be inoculated;
Inoculate to the location of the gene;

End;

The process of the selection strategy based on the evaluation of the diversity of genes is:
Begin
Calculate the affinity of genev and @ according to the equation (2), where the
diversity of two genes H(2) is calculated using the equation (1);
Calculate the percentage C, of each gene in the population according to the
equations (3) and (4),
If (C, >= Tacl) remove the gene from the population;
Else the gene remains;
Calculate the selection probability e, of genes according to the equations (5) and
(6):
If( e, >= Tac2) the gene is selected to regenerate;

Else the gene is inhibited;
End;

4. Numerical experiments

Two case studies on 21-city and 56-city traveling salesman problems are given in this section
to compare the solutions genetated by IGA and the conventional GA.
The comparisons of the number of evolutional iterations in IGA and conventional GA of two
cases are showed in Figures 4 and 5 respectively. In both figures, the upper curve shows the
evolutionary process of IGA and the lower one shows the evolutionary process of GA.
Figures 6 and 7 show the optimal path for the TSP in the two case studies.
The results prove that the number of evolutional iterations is significantly reduced by using
IGA. As seen from Figure 4, IGA takes only five iterations to reach the optimal solution
while GA takes about 30 evolutional iterations.The selection strategy and the procedure of
inoculating genes used by the improved immune-genetic algorithm proposed are effective
to improve the performance of the individuals.
Therefore, the improvement on the performance of the individuals of IGA is helpful in
acceleating the iterative process of GA. Althrough the convergence of the algorithm
proposed need to be investigated, the computer numerical experiments on two case
studies demonstrate preliminarily that the improved strategy of IGA is helpful for
improving the evolutional iterations of genetic algorithms for traveling salesman problem
(Lu et al., 2007).
The main data of IGA:

1. The probability of crossover is 0.8~0.9.

2. The probability of mutation is 0.05~0.2.

3. The size of the population is100.

4. The probability of inoculating is 0.85~1.

5. The evolutional generation is 200.
Seen from Figure 4, the optimal solution has been reached in the first 2 generations.
Inoculating genes significantly improves the convergence speed of the algorithm.
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Fig. 4. Comparison of the number of evolutional iterations in IGA and the conventional GA:
21-city case
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Fig. 5. Comparison of the number of evolutional iterations in IGA and the conventional GA:
56-city case

The main data of IGA:
1. The probability of crossover is 0.8~0.9.
2. The probability of mutation is 0.05~0.2.
3.  The size of the population is100.
4. The probability of inoculating is 0.85~1.
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5. The evolutional generation is 300.
Inoculating genes significantly improves the individual fitness and is conducive to the
evolution of the population. As the concentration based selection mechanism is used, the
individual with low percentage and high fitness has a high probability to regenerate. Its
genes will then rapidly spread throughout the population. That’s the reason why there is a
steep slope in Figure 7.

JE— - - + +

/

i <

L ri L% i s - "

Fig. 6. Optimal path for the 21-city TSP
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Fig. 7. Optimal path for the 56-city TSP

5. Concluding remarks

The immune-genetic algorithm integrating the advantages of artificial immune algorithm into
genetic algorithm for TSP is introduced in this chapter. It retains a strong global random
search capability of genetic algorithm, introduces gene inoculation and improves the
convergence speed and accuracy of genetic algorithm. Meanwhile, immune-genetic algorithm
borrows the idea of the antibody diversity from artificial immune system to ensure the
diversity of population, which avoids the disadvantage of premature convergence and poor
local search capabilities of genetic algorithm and improves the search efficiency.

The selection strategy of IGA discussed in this chapter includes three computational
procedures: evaluating the diversity of genes, calculating the percentage of genes, and
computing the selection probability of genes. Numerical experiments performed on 21-city
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and 56-city TSPs show that IGA significantly reduces the number of evolutional iterations
for reaching an optimal solution.
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1. Introduction

Genetic Algorithm (GA) is widely used to find solutions to optimization problems
(Goldberg, 1989). One optimization problem using GA is Travelling Salesman problem
(TSP) (Lawler et al., 1985). The disadvantages of using GA are premature convergence and
poor local search capability. In order to overcome these disadvantages, evolutionary
adaptation algorithms based on the working of the immune system have been devised. One
such algorithm is Genetic Immune Recruitment Mechanism (GIRM) (Bersini & Varela, 1991)
(Tazawa et al., 1995). By incorporating the immune recruitment test and concentrating the
search for a solution in the vicinity of a high-fitness solution, GIRM improves local search
capability. However, narrowing the search range risks conducting to local solutions. In
contrast, Immune Algorithm (IA) (Mori et al., 1997) (Honna et al., 2005) (Matsui et al., 2006),
using production of various antibodies by the immune system and its mechanism of their
adjustment, primarily avoids convergence to local solutions. Its local search capability is not
as good as that of GIRM, but it allows efficient searches for multiple local solutions. GIRM
and IA incorporating the workings of the immune system take more computation time than
GA. Thus, they must be performed with a smaller population size.

To that end, the author devised an algorithm to overcome these GA’s disadvantages with
the small population size. The immune system has two features, the capacity to adapt to
mutations in antigen and a mechanism to balance the generation of antibodies via other
antibodies, and the author developed Genetic Algorithm with Immune Adjustment
Mechanism (GAIAM) incorporating these features in GA. GAIAM maintains the diversity of
the population as a result of the mechanism to adjust antibodies in a group of antibodies, so
it avoids narrowing of the search range. In addition, its local search capability also improved
as a result of the capacity to adapt to mutations in antigen. GAIAM provides effective
results even with a small population size.

Using the TSP, the author compared the performance of GAIAM to that of GA, GIRM, and
IA. First, an experiment was performed using eil51 from the TSPLIB. TSBLIB has benchmark
data of TSP. Eil50 is one of the data in TSPLIB. Because it incorporates two features of the
immune system even with a small population size, the GAIAM allows a more efficient
search over the entire search range without succumbing locally. Moreover, its local search
capability was found to be better than that of other techniques. Furthermore, experiments
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ware performed using data with 100 cities or more, and GAIAM was found to be effective
even in large-scale problems.

This paper first offers an overview of the GAIAM. In addition, differences between it and
GA, GIRM and IA are described. Next, the experiments were performed using the TSP, and
GAIAM’s performance was compared to that of other algorithms. Last, GAIAM’s
effectiveness is set forth.

2. GAIAM

2.1 Feature of immune system

Various antibodies are present in the human body. As antigens invade the body, antibodies
for these antigens are generated to eliminate the antigens. The immune system has the
following two features:

[Feature 1] Capacity to adapt to mutations in antigens

It is difficult to produce antibodies for each and every antigen beforehand. When there is no
antibody adapted for an antigen, genes of the antibodies with the best specificity respond by
mutating. Through repeated mutations, these genes produce antibodies that can adapt to the
antigens.

[Feature 2] Mechanism to balance the generation of antibodies via other antibodies

The generation of antibodies for a given antigen is not a continuous process. Antibodies
recognize each other on the basis of their structure, and when a given antibody is generated
in excess, other antibodies that identify it as an antigen and are also generated to inhibit its
growth, and a balance is maintained.

2.2 GAIAM algorithm

The GAIAM algorithm is shown in Fig.1. The GAIAM algorithm is following.

Step 1. Generation of an initial group of antibodies
N antibodies are generated initially. These antibodies are similar to the individuals
in GA and are helpful in solving optimization problems.

Step 2. Calculation of affinities
The affinities ax; (i =1,..., N) for antigens are calculated. The ax; is set in accordance
with the problem being dealt with. The affinity for an antigen is similar to the
concept of fitness in GA.

Step 3. Calculation of expected values
The expected value e; (i = 1,..., N) of antibodies that can survive into the next
generation is calculated as

e, =—" (1)

Where C; is the density of antibodies of typei (i =1,..., N).

1 N
Ci=—22ay; @)
Nja
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Here, ay;; is the similarity between antibodies of typeiandj (i =1,...,N,j =1,...,N)
and is set in accordance with the problem. N/2 antibodies with low expected values
are eliminated,

1: Generation of an initial group of antibodies

2: Calculation of affinities

3: Calculation of expected values

4: Antibody production

5: Crossover and mutation

6: Adjustment of antibodies

Fig. 1. The GAIAM algorithm

Step 4.

Step 5.

however, among these, 10% of the antibodies with high affinities for antigens are
excluded from elimination.

Antibody production

New antibodies are generated to replace the antibodies eliminated in Step 3. N/2
antibodies are selected from the surviving antibodies on the basis of the expected
values. These selected antibodies are mutated, after which their affinities for
antigens are calculated.

Crossover and mutation

Antibodies are randomly selected (duplication permitted) from N antibodies, they
undergo crossover depending on crossover probability P, thereby generating N/2
antibodies. The generated antibodies undergo mutation depending on mutation
probability Py, after which their affinities for antigens are calculated.



100 Traveling Salesman Problem, Theory and Applications

Step 6. Adjustment of antibodies
With respect to each antibody i of the N/2 antibodies generated in Step 5, an
antibody j with the greatest affinity for i is sought from among the existing N
antibodies. Among antibodies i and j, the one with the higher affinity for an antigen
survives into the next generation, while the other is eliminated.
Step 7. Repetition of Steps 3 to 6 for a determined number of generations.
Step 4 models [Feature 1] of the immune system and Step 6 models [Feature 2] of the
immune system. In GAIAM, antibodies with low density and high affinity for an antigen
tend to survive in order to maintain diversity. Moreover, such antibodies are generated in
GAIAM; antibodies with a high affinity for an antigen are produced through mutation. In
terms of GA, local search capability is improved. Moreover, narrowing of the search range is
eliminated through Step 6. Thus, the narrowing of the search to the vicinity of a single local
solution in GA is eliminated.

3. Comparison of GA, GIRM and IA to GAIAM

3.1 The GA algorithm
Here, the GA algorithm is briefly explained. The GA algorithm is shown in Fig.2.

1: Generation of an initial group

2: Calculation of affinities

3: Reproduction

4: Crossover and mutation

Fig. 2. The GA algorithm

Step 1. Generation of an initial group
Same as Step 1 in the GAIAM
Step 2. Calculation of affinities
Same as Step 2 in the GAIAM
Step 3. Reproduction
N antibodies are selected from antibodies group to surviving next generation on
the basis of the affinity.
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Step 4. Crossover and mutation
Same as Step 5 in the GAIAM
Step 5. Repetition of Steps 2 to 4 for a determined number of generations.
The disadvantages of using GA are premature convergence and poor local search capability.

3.2 The GIRM algorithm
Here, the GIRM algorithm is briefly explained. The GIRM algorithm is shown in Fig.3.

1: Generation of an initial group

2: Calculation of affinities

3: Crossover and mutation

4: Calculation of similarity

5: Immune recruitment test

Fig. 3. The GIRM algorithm

Step 1. Generation of an initial group
Same as Step 1 in the GAIAM
Step 2. Calculation of affinities
Same as Step 2 in the GAIAM
Step 3. Crossover and mutation
Same as Step 5 in the GAIAM
Step 4. Calculation of similarity
Same as similarity for GAIAM
Step 5. Immune recruitment test
An immune recruitment test is performed on antibodies obtained in Step3;
antibodies passing the test are added to the group. Alternatively, antibodies with
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the lowest fitness in the group are removed. For details, see references (Bersini &
Varela, 1991) and (Tazawa et al., 1995) .
Step 6. Repetition of Steps 3 to 5 for a determined number of generations.
With GIRM, highly fit antibodies in the group and similar antibodies increase as a result of
the immune recruitment test, so searching in the proximity of a solution, i.e. highly fit
antibodies, becomes more vigorous. That is, local searches are intensive. When, however,
GIRM succumbs to a high-fitness local solution, it has difficulty escaping.

3.3 The IA algorithm
Here, the IA algorithm is briefly explained. The IA algorithm is shown in Fig.4.

1: Generation of an initial group

2: Calculation of affinities

— 5| 3:Differentiation into memory cells

4: Promotion and inhibition of antibody production

5: Antibody production

6: Crossover and mutation

Fig. 4. The IA algorithm

Step 1. Generation of an initial group
Same as Step 1 in the GAIAM
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Step 2. Calculation of affinities
Same as Step 2 in the GAIAM
Step 3. Differentiation into memory cells
For details, see reference (Mori et al., 1997).
Step 4. Promotion and inhibition of antibody production
Same as Step 3 in the GAIAM
Step 5. Antibody production
New antibodies are produced to replace N/2 antibodies eliminated in Step 4. New
antibodies are produced by randomly determining their genes.
Step 6. Crossover and mutation
Same as Step 5 in the GAIAM
Step 7. Repetition of Steps 3 to 6 for a determined number of generation.
Because of Step 5, the IA avoided narrowing the search to local solutions. However, its local
search capability was not as good as that of the GIRM, because new antibodies were
randomly produced in Step 5.

3.4 Comparison of GA, GIRM and IA to GAIAM

The disadvantages of using GA are premature convergence and poor local search capability.
GIRM has enhanced local search capability but easily conducts to local solutions. IA allows
efficient searches for multiple local solutions, but its search capability in the vicinity of
individual local solutions is poor. GAIAM has improved local search capability because of
its capacity to adapt to mutations and avoids narrowing of the search range because of its
mechanism to adjust antibodies via antibodies; in short, it allows efficient searches.

4. Use in the TSP

4.1 Path representation

Path representation is used for the coding of antibodies. Path representation is shown in
Fig.5. Path representation orders cities by number in the order they are visited. The method
in which initial antibodies are generated will now be explained. First, city numbers are
randomly ordered. Next, antibodies are generated using the 2-opt method (Johnson, 1991).

4

Coding

Fig. 5. Path representation
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4.2 Affinity of antibody and antigen
The affinity ax; of antibody i and the antigen is the inverse of the tour length d.

ax; = L ®)
d

4.3 Crossover and mutation

Various studies have been conducted on crossover methods used in the TSP (Nagata et al.,

1999). The current work, however, sought to assess the performance of an algorithm, so OX

crossover was used instead of a well-performing crossover method (Davis, 1985).

With regard to mutation, antibodies first undergo substitution or inversion once. Next, the

2-opt method was used. Substitution is shown in Fig.6 and inversion in Fig.7. For

substitution, the positions of 2 random cities in the antibodies are switched and for

inversion, the order of 2 random cities is reversed.

Fig. 6. Substitution

Fig. 7. Inversion

4.4 Similarity for antibodies
Similarity ay;; for antibodies i and j is represented by the following equation.

L L
D2 (Pap) *log(pay)

_1.0-a=lb=l 4
ay;,j -L*2.0*log(1.0 /2.0) @

Nub
2

pa,b = (5)

L is the number of cities.
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N is, for antibodies i and j, the number of branches connecting city a and city b on the tour.
Similarity ay;; was normalized; as they approached 0, i and j were dissimilar while they
were similar as they approached 1.

5. Experiments

5.1 Experiment using eil51 from the TSPLIB

An experiment was performed using eil51 from the TSPLIB to assess the performance of
GAIAM. A Linux machine was used. The shortest tour for eil51 is shown in Fig.8. The
shortest tour length is 426. Parameters used in the experiment were generations of G=500, a
crossover probability of P.=0.8, and a mutation probability of P,=0.2. There were 4
population sizes of 20, 30, 50, and 100. The experiment was performed 30 times each.

Fig. 8. The shortest tour length of eil51 (length=426)
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Results are shown in Table.1. In Table.1, d,, is the shortest route length found as a result of
30 individual attempts. avg is the average of d,, for 30 iterations, min is the minimum of d,,
for 30 iterations, max is the maximum of d,, for those iterations, and std is the standard
deviation. N, is the number of times the shortest tour length of 426 was found out of 30
attempts.

N dn N,
avg min | max std
20 426.83 | 426 | 428 | 0.64 9
CAIAM 30 42670 | 426 | 428 | 075 | 14
50 426.67 | 426 | 428 | 055 | 11
100 | 426.60 | 426 | 427 | 050 | 12
20 428.87 | 426 | 432 | 145 1
CA 30 42877 | 426 | 432 | 143 1
50 42857 | 426 | 431 | 117 | 2
100 | 42847 | 427 | 430 | 0.97 0
20 429.73 | 426 | 435 | 2.38 1
GIRM 30 42877 | 426 | 434 | 2.03 2
50 428.03 | 426 | 432 | 1.9 5
100 | 426.83 | 426 | 431 | 1.15 | 13
20 42990 | 426 | 433 | 1.86 1
IA 30 42853 | 426 | 431 | 1.25 1
50 42827 | 426 | 432 | 1.50 2
100 | 427.60 | 426 | 429 | 1.00 4

Table 1. The result of the experiment

Generational changes in entropy when N = 100 are shown in Fig.9. Entropy is the average
similarity of individual antibodies and other antibodies; the average for 30 attempts is
shown in Fig.9. It indicates that there are more similar antibodies in the group as entropy
approaches 1.

In Table 1, GAIAM yielded the best results. GAIAM yielded consistent results regardless of
the population size. Even when N=20, avg is markedly better than that of other techniques.
Both the max and std were smaller than those with other techniques, and the shortest tour
length was found numerous times. With a smaller population size, results for GIRM and IA
were poorer than those for GA. With a larger population size, results were better. When
N=100, GIRM yielded results similar to those from GAIAM, but comparison of results for
GAIAM when N=20 indicate that GAIAM yielded better results overall.

GIRM and IA are modifications of GA, but somewhat larger population size is required for
them to perform well.

In Fig.9, maximum entropy recorded with the GIRM. In Table.1, the avg for GIRM was
better than that for GA and IA, but the max and std were poor. As is apparent from Fig.9 and
Table.1, GIRM has enhanced local search capability but once it conducts to a search in the
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vicinity of high-fitness local solutions it cannot escape, and the search range narrows. Thus,
if the vicinity of optimal values is searched in the search process, optimal values will be
found, but when the search shifts to the vicinity of local solutions away from local values
escape is difficult, and optimal values will not be reached. In Fig.9, the entropy of IA is the
lowest. In Table.1, for IA, the avg was poorer than that for GIRM but better than that for GA.
The max and std were better than with GIRM. For IA, the local search capability was not as
good as with GIRM, but it allowed an efficient search for multiple local solutions. In Fig.9,
entropy for GAIAM remained about 0.67. This is almost midway between entropies for
GIRM and IA. Similarly, GAIAM is superior to other techniques in Table.1 as well.

GAIAM did not conducts to local values and allowed the efficient search over the entire
search range, and its local search capability was also enhanced. In addition, GAIAM
provided viable results even with the small population size.

1
GIEM
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GATAM
06
E Ty
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IA
02
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0 100 200 300 400 00
= eneration

Fig. 9. Generation transition of entropy

5.2 Experiments using ch150, a280, and pcb442

Experiments were performed using ch150, a280, and pcb442 from the TSPLIB to assess the
performance of GAIAM in large city problems. Outlines of ch150, a280, and pcb442 are
shown in Table.2. Parameters are shown in Table.3. The shortest routes for ch150, a280b, and
pcb442 are shown in Fig.10, Fig.11 and Fig.12. Results of the experiments are shown in
Table.4, Table.5 and Table.6 As expected, GAIAM offered the best results. Trends in results
were the same as when eil51 was used. GAIAM’s max was better than the min for GA and
IA. In addition, GAIAM found the shortest route for ch150 in 7 iterations, which is much
better than other techniques. It found a unique shortest route for a280. Following GAIAM,
GIRM had the best of avg , but its max was roughly worse than that of IA and it had the
worst std. As expected, it had enhanced local search capability, but when it conducted to
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local values it lacked the ability to escape them. The above results indicate that GAIAM is
able to provide viable results with the small-size population size even in large-scale
problems. GAIAM allows efficient searches without conducting to local solutions and also
provides enhanced local search capability.

6. Conclusion

GAIAM has faithfully incorporated the two features of the immune system, i.e. the capacity
to adapt to mutations in antigens and the mechanism to adjust antibodies in a group of
antibodies, into GA, and its effectiveness increased as the optimization technique.

Results of experiments with GA, GIRM, and IA were compared to those with GAIAM and
GAIAM'’s performance was assessed via use of GAIAM in the TSP.

According to the results, GAIAM was found to offer more efficient and balanced searches in
the population than IA and GIRM. Consequently, GAIAM sought optimum values from the
entire search range and also displayed enhancement in local search capability. It also
provided viable results with the small population size in large-scale problems as well.
GAIAM is superior to GA, GIRM, and IA in finding solutions for TSP. GAIAM is efficient as
solving method of TSP.

Number of city The shortest length
Ch150 150 6528
a280 280 2579
Pcb442 442 50778

Table 2. The outlines of ch150, a280 and pcb442

Number of Generation Antibody
trials number size
ch150 20 1000 30,50
a280 20 2000 30,50
pcb442 10 2000 30,50

Table 3. The parameters of the experiments

dm
N N,
avg min | max std
CAIAM 30 | 6548.85 | 65628 | 6584 | 1755 | 7
50 | 6544.50 | 6528 | 6570 | 1653 | 7
CA 30 | 6668.35 | 6604 | 6759 | 41.73 | 0
50 | 6691.60 | 6568 | 6766 | 45.80 | 0
GIRM 30 | 6589.40 | 6528 | 6662 | 38.21 | 1
50 | 6572.65 | 65628 | 6696 | 4329 | 2
IA 30 | 6659.80 | 6625 | 6709 | 1888 | 0
50 | 6639.50 | 6571 | 6707 | 37.75 | 0

Table 4. The result of ch150
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Fig. 10. The shortest route of ch150

Fig. 11. The shortest route of a280
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Fig. 12. The shortest route of pcb442
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N d N,
avg min | maxx | std
GAIAM 30 2591.3 | 2579 | 2616 | 1141 | 3
50 2588.5 | 2579 | 2611 | 12.87 | 9
GA 30 2670.5 | 2637 | 2702 | 17.82 | 0
50 26784 | 2651 | 2720 | 16.82 | 0
GIRM 30 2640.8 | 2592 | 2715 | 38.14 | O
50 2621.3 | 2583 | 2667 | 27.26 | 1
A 30 2655.6 | 2633 | 2683 | 15.28 | 0O
50 2655.7 | 2634 | 2666 | 11.61 | 0
Table 5. The result of a280
N i N,
avg min | max std
CAIAM 30 | 51406.3 |51141|51587| 122.81 | 0
50 | 51353.6 |51069 |51879| 277.07 | 0
GA 30 | 53351.3 |53133|53740| 211.59 | 0
50 | 53274.1 |52972|53772| 219.23 | 0
GIRM 30 | 52878.0 52048 |54036| 648.81 | 0
50 | 51856.7 |51426|52332| 31442 | O
A 30 | 52886.5 |52466|53456| 311.54 | O
50 | 52692.7 |52470|52892| 125.50 | 0

Table 6. The result of pcb442
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1. Introduction

Traveling Salesman Problem (TSP) is one of the most challenging combinatorial
optimization problems. As the city number of TSP grows, the feasible solution space size
increases factorially. For the small to mid-size TSP, the Lin-Kernighan (D. S. Johnson, 1990)
(LK) and Lin-Kernighan Heuristic (C. Walshaw, 2001) (LKH) algorithms are very effective.
However, these two algorithms are local search methods which find the best TSP tour in the
k-change neighborhoods of the given initial TSP tour. Thus, they can only find a local
optimal tour for TSP with complex solution space. Accordingly, the LK and LKH algorithms
become very sensitive to the initial solution and often fail to find the global optimal tour
within a reasonable time for solving large scale TSP. To remedy this problem, we make use
of the global search ability of the immune clonal algorithm. Especially, we combine the two
types of approaches (i.e. LK and immune clonal algorithm) to achieve high performance of
the immune clonal algorithm, which can be run on loose-coupled computing environment
for solving the large scale TSP.

The immune clonal algorithm inspired by biological immune system is a type of
evolutionary random search algorithms. More and more research achievements indicate that
immune clonal algorithm can maintain good population diversity and strong global search
capability. Under the searching framework of the immune clonal algorithm, heuristic search
strategies can be conveniently employed to enhance its local search capability. Such
combinations take into account both global and local search strategies, and thus can realize a
good tradeoff between effectiveness and efficiency. Moreover, the parallelizability of the
biological immune system ensures the immune clonal algorithm can be run on loose-
coupled computing environment which is advantageous to solve massive optimization
problems such as the large scale TSP.

Simulation and analysis results show that the edges in the intersection set of several local
optimal tours obtained by LK approach appear in the global optimal tour with high
probability and the probability increases rapidly as the amount of local optimal tours
increases. Using this phenomenon, an intersection set based vaccination strategy is designed
in this chapter to accelerate the convergence speed of the immune clonal algorithm for TSP.
In the immune clonal algorithm, vaccine is a set of genes which are estimations of the genes
expected to appear in the global optimal antibody. The proposed approach in this chapter
takes the intersection gene set of several memory antibodies as vaccine and injects the set
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into antibody populations which are distributed on different computing nodes. This
information-delivery approach between antibody populations, which take vaccine as carrier,
not only accelerated the procedure of the evolution but also promoted the co-evolution
between antibody populations.

The main content of this chapter is arranged as follows. Section 2 provides a brief
description of the related background including the development of the immune inspired
optimization algorithm and its general flow chart. Section 3 describes the main loop of the
proposed high performance immune clonal algorithm for TSP. Section 4 gives a detailed
description of the intersection set based vaccination strategy for TSP. Section 5 investigates
the experimental study of the proposed approach. Finally, concluding remarks are made in
Section 6.

2. Immune optimization

Immunization is a physiological function of biological immune systems, which identify and
remove the invading "non-self" antigen, mutated and damaged cells to maintain the bodies’
physiological balance and stability. Human immune system is a complex system consists of
organs, cells and molecules with immune functions that can protect the body against
pathogens, harmful foreign bodies and other disease factors. The same as neurological and
endocrine systems, immune system has its own operation mechanism and can mutual
cooperate and restraint with other systems, common to maintain the bodies” physiological
balance in the life processes. Since 1940s, with the development of medical research on the
biological immune systems, people's awareness and understanding of the immune system
has been continuously improved, a complete biological immune science system had
gradually formed (Jiao Licheng et al., 2006).

2.1 Some inspiring biological mechanism of immune system

Inspired by the biological immune systems, the model and algorithm of artificial immune
systems are proposed. The key inspiring biological mechanism of immune system includes:
immune recognition, immune memory, immune diversity, immune tolerance, parallelism
and other biological immune mechanism.

1. Immune recognition

Modern immunology believes that immune function is a response to stimulation from
antigens, which is shown as the immune systems’ ability of identifying themselves and
excluding non-self materials. Identification is an important prerequisite in the process of
immune system functions. For the phenomenon of immune recognition, clonal selection
theory believes that because of the differentiation of embryonic cell, the body has formed
many lymphocytic series, each lymphocyte cell’s surface has a specific set of antigen
receptors. When antigens enter the body, they select the corresponding lymphocytes and
specifically bind to the antigen receptors of their surfaces, led to the lymphocyte activation,
propagation, differentiation, and thus lead to specific immune response. In addition, the
antibody itself has antigen determinant, which can be recognized by other internal
antibodies and lead to a reaction with them. So, antibodies have the dual nature of
recognizing antigens and being recognized by other antibodies (F.M. Burnet,1978).

2. Immune memory

Immune memory is another important feature of the immune system. Experimental results
show that it can produce not only B memory cells but also TH memory cells during the
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immune response process. Immune memory can be explained as the phenomena of the
increasing of the number of lymphocytes which have responses to specific antigens. When
immune system first encounters an antigen, lymphocytes have to take some time to adjust
themselves to identify antigens and save the memory information of the antigen after
recognizing. When body meets the same antigen again, the effect of the associative memory,
the Incubation Period of the appearance of antibodies reduced clearly and the content of
antibody increased substantially, Erju duration Chang. Such phenomenon is called
immunological memory (A. Tarakanov & D. Dasgupta, 2000).

Simulation on the immune memory is an important feature of artificial immune algorithms
that distinction from other classic evolutionary algorithms. Farmer first presented an
artificial immune model with memory which regards immune memory mechanism as an
associative memory (J. D. Farmer et al, 1986). Smith compared the immune memory model
and the sparse distributed memory model (SDM) and indicated that initial response
corresponds to the procedure of information storage in SDM, the second response and the
cross-immune response correspond to the procedure of reading memory (D. ]J. Smith et
al,1998). Immune memory mechanisms can greatly accelerate the searching process of the
optimization, speed up the learning process and improve the quality of learning. The
introduction of immune memory mechanisms is an effective means to improve the
efficiency of artificial immune system algorithm.

3. Immune diversity

In biological immune system, the number of antibody type is much larger than that of
known antigen. There are two types of theories to explain the mechanism of immune
diversity, the germlinetheory theory and the somatic mutation hypothesis. According to
these theories, immune diversity may lies in the diversity of the connection of gene
segments and it may be influenced by the complex pairing mechanism of the heavy chain
and light chain. The immune diversity mechanism can be used for the searching procedure
of optimization, it does not try global optimization, but deal with different antigens
evolutionary, so as to enhancing the global search ability and keep the algorithms from
falling into local optimum.

4. Immune tolerance

Immune tolerance is another important type of immune response and also one element of
immunoregulation. Its performance is contrary to the positive immune response, and also
different from a variety of non-specific immune suppressions which have no antigen
specific, and can response or low response to various antigens. Immune tolerance is a
phenomenon of body fail to response to a certain antigen which is caused by the lost
function or death of specific antigen-induced lymphocyte. The general characteristics of
immune tolerance are mainly in the following aspects: 1) For T or B cells were excluded or
inhibited, immune tolerance is specific. 2) It's easier to introduce immature lymphocyte
tolerance than mature cells. 3) The tolerance induction and maintenance of tolerance need
the persistence of toleragen.

5. Parallelism

Biological immune system is a complex parallel system. Lymphoid organs, lymphoid tissue
within other organs, lymphocytes cells and antigen presenting cells distribute to all parts of
the body. Lymphocytes travel around the body by the blood, from one lymphoid organ or
lymph tissue to another, so as to scattered the lymphoid organs and lymphoid tissue
together all around the body into a functional whole. Various components of the immune
system work in parallel and coordinated jointly, achieve all the features of the immune
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system. Simulation of biological immune system is very important to taking full advantage
of loosely coupled computing resources and improving the efficiency of immune system.

2.2 Artificial immune system model

Compared with other intelligent computing systems, a complete set of mathematical theory
has not yet developed in the research areas of artificial immune system. Since the immune
system itself is rather complicated, there are relatively a few research findings on artificial
immune system model. In 1973, Jerne proposed the idiotypic network model (N. K. Jerne,
1973) and initiated the study of artificial immune system model in 1980, Herzenberg, etc.
presented a loose-coupled network architecture which is more suitable for distributed
problems (L. A. Herzenberg & S. J. Black, 1980). In 1986, Hoffmann put forward symmetric
network model (G. W. Hoffmann,1986) based on the immune neuron model according to
the similarity between immune system and nervous system. In 1989, Perelson presented a
probability model of unique type network based on previous studies. (A. S. Perelson, 1989).
In 1990, Farmer proposed dynamic system model (J. D. Farmer, 1990) based on
connectionism, after compared and analyzed the similarities, differences and characteristics
among the immune system, neural network and genetic system.. In 1995, Ishiguro etc.
presented coupled immune network model. In 1997, Tang proposed multi-valued immune
network model based on the mechanism of interaction between B cells and T cells (Z. Tang
et al, 1997). In 1997, borrowing ideas from the mechanism that the system balance can be
maintained by the interaction between B cells, Mitsumoto proposed immune response
network model, which is used for scheduling and controlling the distributed autonomous
robots group (N. Mitsumoto & T. Fukuta, 1997). In 2000, Zak proposed an immune system
stochastic model, according to the principle of response under stress.

At present, two influential artificial immune network models are the Resource Limited
Artificial Immune System (RLAIS) proposed by Jonathan Timmis etc.(J. Timmis & M. Neal,
2001) and the aiNet proposed by De Castro etc. (L. N. De Castro & F. ]J. Von Zuben,2000).
Timmis put forward RLAIS on the basis of Cook and Hunt's research. He also presented the
concept of Artificial Recognition Ball (ARB). Timmis considered that the role of ARB and B
cell function is similar, artificial immune system is composed by a fixed number of ARB.
Further more, by analogy with the natural immune system,, he thought that the stimulation
from which ARB suffered includes the main stimulation, the stimulation and restrain from
adjacent antibody. In addition, the capability of cloning can be determined by the
stimulation given to ARB. De Castro's aiNet algorithm which simulates the stimulation
process of the stimulation from the immune network to antigens, mainly includes the
antibody-antigen recognition, immune cloning proliferation, affinity maturation and
network suppression Immune network is considered as an enabling undirected graph, and
is not fully connected. However, the current prevalence of adaptive immune network model
is rather poor, contains more parameters, and over-reliance on changes in the network
nodes to maintain network dynamics, the lack of the understanding of immune network of
nonlinear information processing capacity are also weak points.At the same time, the design
of the algorithm generally starts from focusing on data compression, therefore, the scope of
the application of the algorithm is limited. It should be noted that the relevant mechanism in
the immune network has been widely used in computer networks, particularly network
security study, but these applications are mostly ideological. There are still no specific
algorithms.
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In addition to the network models described above, there are also two different non-
network models presented respectively by Alexander Tarakanov (A. Tarakanov & D.
Dasgupta, 2000) and Nohara (B. T. Nohara & H. Takahashi, 2000) in 2000.Alexander
Tarakanov etc. tried to establish the form of protein models based on artificial immune
system for the establishment of a formal model. After that, they indicated that the improved
model can be used for the evaluation of the complex calculations of Kaliningrad’s Ecological
Atlas. In their works,much attention was paid to the interaction between the immune
function of cells, and the network was not much involved. Based the feature of antibody
units, Nohara etc. presented a non-network model of artificial immune system.

2.3 Artificial immune system algorithm

As the understanding of the mechanism of the immune system is not yet very deep, there is
not much research on the artificial immune system algorithm. Common artificial immune
algorithms include the following four types: artificial immune network algorithm, negative
selection algorithm, immune evolutionary algorithm and immune clonal selection
algorithm.

1.  Artificial immune network

The simulation researches of the immune network mainly focus on the application of
computer network security, while the study on immune algorithm is rarely seen at present.
Now two typical artificial immune network algorithms are the Resource Limited Artificial
Immune System Algorithm proposed by Timmis etc. (J. Timmis & M. Neal, 2001) and the
aiNet algorithm proposed by De Castro etc. (L. N. De Castro & F. J.Von Zuben, 2000).
However, the current prevalence of adaptive immune network model is rather poor,
contains more parameters, and the over-reliance on changes in the network nodes to
maintain network dynamics, the lack of the understanding of immune network of nonlinear
information processing capacity are also weak points.At the same time, the design of the
algorithm generally starts from focusing on data compression, therefore, the scope of the
application of the algorithm is limited.

2. Negative selection algorithm

Computer security problems and immune system problems encountered with striking
similarities, they both have to be constantly changing environment to maintain system
stability. Distribution, flexibility, adaptively and robust solution of the immune system are
exactly what the field of computer security expects. According to self / non-self distinction
principle of the immune system, Forrest etc. proposed a negative selection algorithm which
can detect changes in computer system (S. Forrest et al, 1994). The algorithms simulate the
"negative selection" principal of T cell maturation process: randomly generated detectors,
remove detectors which detect themselves and preserve those detect non-self. Negative
selection algorithm has laid a theoretical foundation for the application of the immunity in
computer network security areas.

3. Immune evolutionary algorithm

As a kind of random search optimization method, evolutionary algorithm has been widely
used. However, it still needs improving in practice. For example, evolutionary algorithm can
not guarantee grantee getting the globally optimal solution, it may lose the best individual
in the population and it also has the problems of premature convergence. More effective
optimization algorithms will be got if evolution and immunity are combined. Under the
framework of evolutionary algorithm, researchers have introduced many features of the
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immune system and developed a number of immune optimization algorithms. Such as
immune optimization algorithm with vaccination (Jiao Licheng & Wang Lei, 2000), immune
optimization algorithm with self-regulation mechanism (Zhang Jun et al.,, 1999), immune
optimization algorithm based on immune response (J. S. Chun et al.,, 1998), and immune
optimization algorithm with immune memory (S. Endoh et al, 1998). These improved
algorithms can quickly find the optimal solution meeting the requirements of certain
accuracy and are useful to solve engineering problems (Jiao Licheng &Du Haifeng, 2003).

4. Immune clonal selection algorithm

Clonal selection algorithm is an important type of immune optimization algorithm, and it
has been widely used in the artificial immune system. In 2000, De Castro etc. concentrated
the clonal selection mechanism of immune system with the help of previous studies, and
proposed a clonal selection based immune algorithm, which was successfully used to solve
pattern recognition, numerical optimization and combinatorial optimization problems (L. N.
De Castro & F. J. Von Zuben, 2000). In 2002, Kim etc. proposed a dynamic clonal selection
algorithm and it was used to solve the anomaly detection problem in the continuous
changing environment (J. Kim & P. J. Bentley, 2002) In 2005, Jiao Licheng, Du Haifeng etc.
proposed Immune polyclonal Strategy based on the work of predecessors, and what was
more they proposed Immune clonal selection algorithm for solving the problem about high
dimensional function optimization (Du Haifeng et al, 2005), which achieved good results.
Jiao Licheng and others have also presented some other high-level algorithm, Such as the
Immune Memory Clonal Programming Algorithm (Du Haifeng et al, 2004), Adaptive chaos
clonal evolutionary programming algorithm (Du Haifeng, 2005) and so on.

2.4 Artificial immune optimization algorithm

Engineering Optimization technology is a technology for solving various engineering
optimal problems. As an important branch of science, engineering optimization technology
has been attracting widespread attention, and been applied in many engineering fields, such
as system control, artificial intelligence, pattern recognition, production scheduling, VLSI
technology, fault diagnosis, computer engineering and so on. Engineering process
optimization plays an important role in improving the efficiency and effectiveness and
saving resources. Theoretical study of optimization algorithms also plays an important role
in improving performance of algorithm, broadening the application field of algorithm,
improving algorithms system. Therefore, study of the optimization theory and algorithm is
important both theoretically and practically.

As science and technology continues to progress and the computer technology has been
widely used, the scale and complexity of engineering optimization problems are increasing.
Because of some inherent limitations and shortcomings, traditional optimization methods
fail to meet such requirements to solve complex optimization problems. Researchers have to
find new ideas to solve problems. Since the 1980s, a number of novel optimization
algorithms have been proposed, such as artificial neural networks, simulated annealing,
tabu search, evolutionary algorithms, ant colony optimization, particle swarm optimization,
artificial immune algorithms, EDA algorithms and hybrid optimization strategy. These
algorithms develop through simulating or revealing certain natural phenomena or a
process, and the ideas and content relate to mathematics, physics, biological evolution,
artificial intelligence, neuroscience and statistics, so it provides new methods to solve the
complex problems. These new algorithms can often get rid of the limitations of traditional
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optimization algorithm, using heuristic optimization strategies to explore the optimal
solution, and has been used in a large number of practical applications and achieved
encouraging results. With the development of interdisciplinary research, new intelligent
optimization algorithms are emerging and bring new solutions to the optimization
problems.

Artificial immune system is an adaptive system for solving the complex problems by
simulating the function and principle of biological immune system. Immune algorithm
retains many intelligent features of the biological immune system, so it has great diversity
maintaining mechanisms, global search capability and robustness, and enables parallel
search. Artificial immune algorithm is getting more and more attentions from researchers,
and it is widely used for numerical optimization (Gong Maoguo et al, 2007), combinatorial
optimization, multicast routing (Liu Fang et al, 2003), job shop scheduling (Z.X. Ong et al,
2005) multi-objective optimization (Shang Ronghua et al, 2007) and other engineering
optimization problems.

2.5 The concept of immunology used in immune optimization algorithm

Immune optimization algorithm simulates immune mechanisms of biological immune
system to deal with engineering optimization problems. Before Immune optimization
algorithm is constructed, we need to map the various elements in engineering optimization
problems to related concepts in immunology. As the biological immune system is very
complex, it is impossible and unnecessary to completely apply biology definition in the
artificial immune system. In order to better describe the artificial immune system algorithm,
the following will briefly explain a few common used immune academic terms and their
meaning in immune optimization algorithms.

1. Antigen

In the artificial immune system, it generally refers to the problem and its constraints, which
is similar with fitness function in evolutionary algorithm. Specifically, it is a function of the
objective function, and is the initiating factor and the important metrics of artificial immune
algorithms.

2. Antibody

In the artificial immune system, it generally refers to candidate solutions of the problem,
which is similar with individual in evolutionary algorithm. Collection of antibodies is called
antibody group. In practice, the antibody generally appears in the form of coding.

3. Antibody-antigen affinity

It shows that the Antibody’s binding capacity to Antigen, and reflects the binding site of a
single antibody and the binding force of the unit antigen (or epitopes). In artificial immune
system, it is used to show how the antibody at different locations (code) affects the antigen
(or objective function).

4. Vaccine

Vaccine is defined as the estimate of the best individual gene, resulting from evolutionary
environment or prior knowledge of the unknown problem.

5. Memory unit

In the artificial immune system, memory unit is an antibody group composed by specific
antibody, which is used to maintain species diversity and the optimal solution in the process
of solving problem.

6. Clone
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Clone is the proliferation processes of biological Immune systems. In the artificial immune
system cloning operator, based on clonal selection theory, clone is a composite operator
which is a combination of selection, expansion, mutation and crossover operators.

3. Parallel immune memory clonal selection algorithm for large scale TSP

Traveling salesman problem (TSP) is a classical combinatorial optimization problem, with a
strong engineering background and extensive application. TSP problem can be formally
described as: given N citiesC= {C1,C2,--~,CN} , and the distance between any two
cities d(Ci,Cj), find a closed pathCr = C,,(1),C,,(2),~»,C,Z(N)}, through all cities in C only
once, making minimal total distance zi:fd(c,r(i),c,,(,ﬂ) +d(C,,(N),C,,(1)) (D.S.Johnson and
L.A.McGeoch, 1997). The solution space of TSP problem increases rapidly as the size of the
problem increases, as a result, traditional methods (such as the exhaustive method, dynamic
programming, branch and bound, etc.) have been powerless. It has proven that TSP problem
is NP-hard combinatorial optimization problem, and it is difficult to find an effective
algorithm to obtain the optimal solution in polynomial time. Therefore for Large-scale
problems, people are more inclined to seek an algorithm that can find acceptable
approximate solution in a limited time. Approximation algorithm for solving TSP is divided
into two categories: tour construction algorithm and loop improved algorithm. Tour
construction algorithms start from an illegal solution and gradually change the path until to
get up a legitimate path. Such algorithms include: nearest neighbor algorithm, greedy
algorithm, Clarke-Wright algorithm, Christofides algorithm (D.S.Johnson & L.A.McGeoch,
1997) and so on. After given an initial legitimate solution, circle improved algorithm uses a
certain strategy to find solutions of better quality. Such algorithms include: local search
strategy (r-Opt, LK, LKH, cycle LK (D. S. Johnson & L. A. McGeoch, 2002), etc.), tabu search
(D.S.Johnson & L.A.McGeoch, 1997), simulated annealing (D.S.Johnson & L.A.McGeoch,
1997), genetic algorithm (T. Guo & Z. Michalewicz, 1998), ant colony algorithm (X.M. Song
et al., 1998), particle swarm optimization (X.X.He et al., 2006), multi-level algorithms (C.
Walshaw, 2001), immune algorithms (Wang Lei et al., 2000) and so on.

For large search spaces of massive TSP, the computing power of single computer is far from
being able to satisfy the search algorithm on the request of the time. At the same time, with
the development of network technology, there exists a large number of loosely coupled idle
computation resource. It is practicable that cluster these computing resources to handle
large and complex problems. Therefore, the research on parallel algorithms running in a
loosely coupled environment has a very important significance. Parallel algorithms for
solving large-scale TSP have attracted more and more attention. There has been some
research results about parallel ACO (Lv Qiang et al.,, 2007), however currently just in its
infancy. This chapter attempts to design a parallel immune algorithm to solve this complex
problem.

At present, the achievements of parallel artificial immune system research are mostly
parallel immune algorithms that have been existed. Artificial immune system model on
parallel research is still rare. However, the parallel algorithm is not simply the only existing
serial algorithm using multiple processors in parallel to achieve. In the parallel genetic
algorithm results, many mature parallel modes are in emergence, such as: Master (Master-
Slave) model, fine-grained (Fine-grained) model, coarse-grained (Coarse-grained) model,
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mixed ( Hybrid) model (Erick Cantt-Paz, 2000) and so on. Especially, the coarse-grained
parallel model which is widely used can not only speed up the speed of algorithm for large-
scale complex problems, and a variety of groups in the search can make the algorithm more
stable, avoid local optima.

In this chapter, based on the successful experience of the Parallel genetic algorithm, artificial
immune system, TMSM and PIMCSA are designed to solve the large-scale TSP problem
according with the features of artificial immune system. TMSM is a coarse-grained two
parallel artificial immune model, which stimulate the distributed immune memory and
immune response mechanisms based on TMSM of PIMCSA. the migration of vaccines
instead of individual migration in PIMCSA, not only reduces the cost of communication
greatly, but also accelerate the convergence. Either the simulations of the symmetric or
asymmetric TSP problem show that, PIMCSA compared with the most effective one of the
local search algorithm cycle LK(D. S. Johnson, 1990) algorithm and the pure random search
algorithm Guo Tao evolutionary algorithm (T. Guo & Z. Michalewicz, 1998) whose
performance is best recognized , is much better. Meanwhile PIMCSA has good scalability.

3.1 Towerlike master-slave model

Coarse-grained parallel model of genetic algorithm is on the basis of the model of multi-
populations evolution (Fig. 1), that is, each sub-population evolves independently, and sub-
populations do the individual migration to a certain interval. On the research of coarse-
grained parallel genetic algorithm, sub-species topology (X.M. Song et al, 2006),
chromosome migration strategies (X.X. He et al., 2006), sub- population division strategy(C.
Walshaw, 2001) and so on are key points of the algorithm design.

When designing a parallel artificial immune system, we should not only consider the
division and organizational structure of sub-population antibody along with the way to
information interactions of sub-populations of antibodies. The proposed tower master-slave
model (TMSM) is a coarse-grained two parallel artificial immune system model, which is
not only parallel but also embodies the distributed characteristics of antibodies populations
and immune memory characteristics.

Fig. 1. Coarse-grained parallel genetic algorithm model



122 Traveling Salesman Problem, Theory and Applications

dominant delegate

Sub-population

Fig. 2. Tower-like master-slave model

Definition 1: The towerlike master-slave model (TMSM), as shown in Fig. 2, is a two layer
coarse-grained parallel model. The model consists of two types of populations organized as
in Fig. 2, including a memory population M and several antibody populations P.

The top layer of the TMSM is the memory population M =(A1,A2,---,Am) formed by m
memory antibodies. Each memory antibody of M corresponds to an antibody sub-
population. The under layer of TMST are m sub-populations of antibodies with size .
Definition 2: Each memory antibody in memory population M, A,- (i=1,2,---,m), is mapped
to a sub-population P, . We call Ai is the dominant delegate of populationP; .

TMSM inherits the advantage of the evolution of a variety of groups of a coarse-grained
parallel model, while with modifies according to the characteristics of the immune system.
In TMSM, the antibody population is divided into a memory and several sub-populations.
Moreover, a one to one map between antibody in memory and sub-population is
established. Such a design not only makes the immune system get the memory function, but
also produce the distributed immune memory with the below driven algorithm used to a
distributed population of antibodies. Meanwhile, the corresponding immune mechanism,
the self adaptive extraction and inoculation mechanism o f the immune vaccine and can be
expanded with this model.

As the memory population served to initiate and terminate the process of calculation, as
well as schedule the task of information exchange between sub-populations of antibodies,
the concept of primary and secondary comes out. Memory population is the "primary" and
the sub-species antibody is "secondary." This is essentially different from the primary-
secondary parallel model of the parallel genetic algorithm (Erick Cantta-Paz, 2000).

3.2 PIMCSA for solving TSP
To solve the TSP problem, Parallel Immune Memory Clonal Selection Algorithm (PIMCSA)
adopted the encoding method of path representation. The antibody affinity A, is defined as:

Affinity(A)= (Length(A) - HKB) / HKB 1)

Length(A) indicates the path length after antibody A decoded, HKB indicates Held-Karp
Bound of TSP problem which is the estimation of optimal path length of TSP.



A High Performance Immune Clonal Algorithm for Solving Large Scale TSP 123

In accordance with the description of the general framework of PIMCSA, PIMCSA includes
two parts: the memory population immune algorithm (Memory Immune Algorithm, MIA)
and sub-populations of antibody immune algorithm (Population Immune Algorithm, PIA).
MIA and PIA process were designed to solve large-scale TSP problems.

3.2.1 Immune algorithm of memory population

Memory population immune algorithm (MIA) is running in memory antibody population
driven algorithm of TMSM. MIA is the initiator of the parallel algorithm and termination of
immune persons, not only in the memory to complete the memory antibody population
evolution that is self-learning and memory mature operation, while responsible for
extraction and distribution of vaccines to the antibody sub-populations. The pseudo code of
memory immune algorithm population is described as follows:

Memory population immune algorithm (MIA):

Set algorithm termination conditions, and let evolution generations r=0 ;
Initialize population of memory antibodies randomly M(r) and calculate of affinity,
then set Collection of vaccines V(r) to be Empty set;
While (algorithm termination conditions are not satisfied )
{
Try to receive every antibody A; which is sended from P; to M(r).If A; is
received and it’s affinity is larger than A;,
Then A; isreplaced by A;;
Run mature implementation of memory: M(r +1)=Maturation(M(r));
Run Dynamic vaccine extraction operation: V(r+1)= Extraction(M(r + 1)) ;
Run vaccine distribution operation: Dispatch(Pl, e -,Pm) ;
r=r+1;
}
Count, output the result, and send termination signal of the algorithm to each sub-
population.

Mature implementation of memory: Cyclic LK algorithm process is adopted in the mature
implementation of memory. For each memory antibody population, Aj is got after local
search 4-Opt is done firstly, then after optimizing Aj through LK algorithm, we can get
local optimal solution A7. If the affinity of Af is greater thanA;, the alternative
A;with A, otherwise A; is retained. Mature memory populations in post-operation is
M(r+1).

The strategy of the extraction of dynamic memory antibody vaccines will be divided into
two parts, Vaccine is extracted from a part and is inoculated to another part of the
memory of antibody sub-populations corresponding antibodies. Therefore, the moving
into sub-populations of antibody vaccine is the evolutionary experience concluded from
the representative of their own advantages other than some good memories antibodies.
Extraction and distribution of this vaccine strategy is conducive to the exchange between
the antibody sub-populations experience and accelerates the evolution of species.
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Meanwhile, when the vaccine is extracted each time, it will be re-divided into two groups
of memory. This will prevent too many antibodies being assigned to the sub-populations,
so as to prevent the algorithm prematurity which is caused by the loss of diversity. The
operation of dynamic extraction and distribution of vaccines will be given in detail in the
next section.

3.2.2 Immune algorithm of antibody population

The immune algorithm of antibody sub-populations (PIA) is a driven algorithm running on
every sub-population of antibodies in TMSM. PIA receives two kinds of information from
the immune algorithm of memory populations in the process of iteration: Algorithm
termination information and vaccines information.

Immune algorithm of antibody sub-populations maintains the iterative evolution of
antibody sub-populations. The operation process of clonal selection can be adopted in the
iterative evolution. The immune genetic operation to Sub-population of the antibodies is
composed by the vaccination operation and Inver-over operator. It will be given in detail in
the next section. The pseudo-code of the immune algorithm which runs in the sub-

populations of antibody P;(i=1,2,---,m) is given as follows:

Immune algorithm of antibody sub-populations(PIA):

Let iteration times t=0, set termination signal Halt=False;

Initialize the population of memory antibodies P;(t)= (Ai1 (t),A%(t), A, (t))
randomly, and calculate of affinity;

Assume A () to be optimal antibody in P;(t) » Set current optimal antibody affinity:
CurrentBest=Affinity(1_Xi (t)) ;

Send A;(t) to the population of memory M;

Set current vaccine v(t) to be Empty.

While ( Halt is not True)

{

Try to receive the termination signal algorithm from the population of memory M, If
received, Set Halt=True. Otherwise, jump out of the loop;

Try to receive the vaccine from the population of memory M, If received, replace v with
the new vaccine;

Run clonal operation: p/'(t) - CL(Pi(t)) ;

Run immunity operation: " (t) = IG(PZ-’ (t)) ;

Run clonal selection operation: p;(¢+1)-sL(p/ (t)) ;

Find the optimal antibody  frome(t+1),If Affinity(z_&i (t+ 1)) > CurrentBest , then
set CurrentBest=Afﬁnity(1_&i (t+ 1)) and send A, (t+1) to M;

t=t+1;

}

Cloning operation: cloning operation CL is defined as follows,
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cL(Pi(t)) = (cL(Ar (1)) L (A% (1)....cL(A (1)) @

In the formula, . (4/(»)- 1A ( j=12,-n ),I_j is Unit row vector with q dimensions),
which is called thef; colon of antibody A’j(t). Clone size ¢ jand the antibody
affinity A'j(t)are related. §;is greater while affinity is greater.

Let Y]"(t) = CL( Alj(t)) = {y}1 (t),y}z (t),--.,y}% (f)} , then the sub-populations of antibodies
after the CL operation can be written as:

Pl-'(t)={Yi(t),Yé(t),...,Yh(t)} )

Immune gene action: immune genetic operation is defined as follows >

16(P/ (1) = (1G04 0) 16(40), 16X, 0) @

Assume Y]"’(t) = IG(Y]" (t)) = {y;l (£). ¥} (t)""'y;q/ (t)} , then the sub-populations of antibodies
after the IG operation can be written as:

P(£)={ Y] (5), Y3 (8), . Yy (1)} 5)

Immune genetic manipulation IG acts on the antibody with the operator which is chosen
with equal probability between vaccination operator Vaccination and Inver-over operator
Inver-over operator which is famous for Guo Tao algorithm designed for TSP problems an
effective operation of the genetic evolution. Vaccination operator is designed according to
the dynamic vaccine extracted from the memory population M. Detailed operational
procedures will be written in the next section.

Inver-over operator is the local search which runs in the encoded space around with
antibody, using the heuristic information within the sub-populations of antibodies.
Vaccination operator will introduce the knowledge learned from the memory population M
to the antibodies, in the use of heuristic information from other sub-populations of
antibodies.

Clonal selection operation: clonal selection operation are defined as follows,

st (P! (1)) = (st (¥ (1)) st (¥3 (1)) s (¥ (1)) ©
If Ai]- (t + 1) = SL(Y]“ (t)) (j=1,2,---,1),then the population in SL post-operation is,
By(t+1)=(Al (t+1), Aly(t+1),-- A%, (£+1)) @)

The process of the operation SL(Y]'f(t)) acted on Y]"‘(t) is as follows: the antibody with

maximum optimal affinity chosen from Y]"' (t) can be written as,

Vi ()= {y']'-k ()] maxaffinity (y (t)), k=1, .,q].} ®)
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If  Affinity| v} (t))> Affinity (A (£)],  th let  SL(Y:(t))=y4(t).  Otherwise,
SL(Y}(t)ISZY(‘Z‘Jij(t)). (AG), e e (%(0)=; erwise

4. Dynamic vaccination

In artificial immune system, the vaccine is an estimate of the best individual gene on the
basis of evolution environment or the apriori knowledge of unknown problem. Vaccine is
not an individual, which can not be decoded to a solution of a problem as antibodies can be
done. It just has the characteristics on some places of the genes. Therefore vaccine can be
regarded as a single gene or a set of gene sequences fragment. The right choice for the
vaccine will have a positive role in promoting population evolution, and thus have a very
vital significance to the operating efficiency of algorithm. But, the quality of selection of
vaccine and generated antibodies will only affect the function of the vaccination of immune
operator, but will not involve to the convergence of algorithm.

4.1 Selection and distribution of vaccine

For TSP problem and PIMCSA algorithm, we design a dynamic vaccine extraction (Dynamic
Vaccination, DV) strategy and a vaccine allocation strategy as described below.

Dynamic vaccination strategy will first divide current memory antibody population into
two antibody sets: the set of vaccines extraction M;j (1’ + 1) and the vaccination
setM, (r + 1) . Let k is the largest positive integer less than or equal to m/2 (m is the size of
memory population), then randomly select k memory antibodies to compose M; (r +1) ,
and the remaining antibodies compose M, (1’ + 1) .Then, do intersection operation for all the
memory antibodies, and get the set E(r +1) of the public sides on the k paths. And next, we
merge the sides with public cities into public sub-paths, and store the received public sub-
paths and the rest of public sides as a multi-gene vaccine group and single-gene vaccine
respectively into vaccine setV(T+1). In V(r+1) , a single gene vaccine with length 1
represents an edge of the path and its storage form is city sequences of the end of a edge.
Vaccine group represents a section of sub-paths such that a sequence of the edges of the
head-to-serial, and its storage form is the sorted arrangement of a number of cities, and its
length is the number of edges that sub-paths include.

After producing the vaccines, we will distribute them to the antibody sub-populations. We
design the following vaccine distribution operation. First of all, randomly choose a
vaccine U; from the vaccine set V(r+1), which may be a single gene vaccine or a multi-
genes vaccine group. Then, randomly choose a memory antibody A j from the vaccinatjon
set M,(r+1) and send the vaccine U; to the antibody sub-population P]' that A]'
corresponds to.

4.2 Vaccination

As the vaccination operations will bring the loss of population diversity when accelerating
the convergence of algorithm. In Section 1.2 where we will operate it as part of immune
genes operation rather than independent step, will help alleviate the loss of the diversity of
antibody population. For the TSP problem, we take the implementation of the Inver-over
operator and vaccination operator in equal probability, which jointly constitute the immune
genes operators. The immune genes operation process of the antibody sub-population
Pj(t)(j=1,2,., m)is described as follows:
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The operation process of IG(P]" (t)) :

for each antibody A'i(t) in Pj(t)

{

if (Rand(0,1)<0.5 )
Viccination(A’i(t)) ;

else

Inver_over (A’i(t)) ;

}

Here, Rand(O,l) is a random number between 0 and 1. The vaccination Viccination(A) on
antibody A is described as follows:

The operation process of Viccination(A) :

Viccination (A)
{
If (the current vaccine v of antibody sub-population is not empty)
{
Cis the first city in ¥ - ¢’ is the nextcity of cin U ;
While ( ¢ is not the last city in 0 )
{
turn the city between the next city of cand ¢’ in A’
c=c';
¢’ =The next city of ¢" in v
}
}
}

Here, the process of vaccination operation using Inver-over operator plant the edges of a
single-gene vaccine into the operated antibody or plant the edges of multi-genes vaccine
group into the operated individuals.

5. Simulating results and analysis

The simulating software of the proposed approach PIMCSA was developed by C&MPI and
ran on the HPC (Cluster) parallel computing platform. We got several typical symmetric
and asymmetric TSP instances from TSPLIB and tested them.

As the memory mature operation of PIMCSA used steps of ILK, and immune genetic
manipulation of antibody sub-population introduced the Inver-over operator, we compare
the performance of PIMCSA with iterated Lin-Kernighan (ILK) algorithm (D. S. Johnson,
1990) and GuoTao (GT) algorithm (T. Guo & Z. Michalewicz, 1998). ILK algorithm is one of
the most effective algorithms based on local search, and GT algorithm is the best pure
evolutionary stochastic searching algorithm. In PIMCSA, antibody sub-population number
m is set as 8, antibody sub-population size 7 is set as 30. Population size of ILK and GT
algorithm are both set as 30. Termination condition of these three algorithms is that current
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optimal path length of memory population is less than the best known path length or equal
to it, or the current optimal path remains unchanged in 50 iterations. All the experimental
data are statistical results of 20 independent runs.

5.1 Performances on symmetric TSP instances

Table 1 shows the performances of compared algorithms on symmetric TSP problems with
different type and size. In the table, “Percent over Opt” refers to the percentage of difference
between path length and the optimal path length, and “Running Time (seconds) “refers to
the average time of computing.

Percent over Opt (mean) Running Time (mean)
Instance Cities Opt

ILK GT |PIMCSA| ILK GT (PIMCSA
ATT532 532 27686 0.086 | 0.114 0 127.5 83.5 174
GR666 666 294358 | 0.061 | 0.176 0.003 2921 102.4 59.6
DSJ1000 1000 | 18659688 | 0.133 | 0.152 0.008 418.6 3724 52.2
PR2392 2392 | 378032 | 0.142 | 0.357 0.006 102.5 87.3 16.6
RL5915 5915 | 565530 | 0.163 | 0.879 0.047 293.7 226.9 239.1

PLA7397 7397 | 23260728 | 0.059 | 0.356 0.007 8843.2 8221.1 | 17624
R111849 11849 | 923288 | 0.191 | 0.824 0.105 6311.3 5352.8 | 2581.3
USA13509 | 13509 | 19982859 | 0.163 | 1.209 0.067 10352.3 | 89315 | 3520.7
PLA33810 | 33810 | 66050499 | 0.184 | 1.813 0.152 76315.8 | 53356.6 | 181374
PLA85900 | 85900 |142382641| 0.246 | 1.115 0.214 | 214307.5 | 113755.9 | 29883.2

Average 0.1428 | 0.6995 | 0.0609 [ 31736.45 [ 19049.04 | 5626.99

Table 1. Performance comparisons on Symmetric TSP Instances

As it can be seen from Table 1, for symmetric TSP problems, both the tour quality and
computing time of the proposed PIMCSA are superior to other two compared algorithms.
With the increase of problem scale, the advantage of PIMCSA is getting more obvious. ILK
can obtain TSP solution tour with higher quality, but the time cost of ILK is large, so it needs
too long computing time for solving large scale TSP instances. GT expenses little computing
time at each generation, however, it is easy to fall into local optimum. The running time of
GT is shorter, but the quality of solution tour is not very good. PIMCSA combines the
strengths of these two types of methods, it use the random search with small time cost for
global search, and then it use the heuristic search with large time cost for local search.
Experimental results indicate that PIMCSA achieves a good trade off between solution
quality and computing time.

5.2 Performances on asymmetric TSP Instances

For asymmetric TSP with N cities, we use Jonker and Volgenant’s method to transform it
into symmetric TSP with 2N cities (Noda E et al., 2002).

NoteC = [Cij] NxN 38 the cost matrix of asymmetric TSP problem, we can use equation (9) to
transform it into C' = [Cﬂ 5 which is the cost matrix of the transformed symmetric TSP
instance. L is a sufficiently large real number. In this paper, we set L = max(c-j/

Yy
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C}\I+i,j=C}',N+i=Cij i,j=1,2,"'NﬂlTldi¢j

CE\]+i,i:C;,N+i:_L i=1,2,-N )
¢ =L otherwise
Instance | Cities Opt Percent over Opt (mean) Running Time (mean)
ILK GT | PIMCSA| ILK GT | PIMCSA
BR17 17 39 0 0 0 214 3.57 0.12
P43 43 5620 0.082 | 0.372 0.002 33.2 21.7 25.3
RY48P 48 14422 0.037 | 0.506 0.015 23.6 24.2 1.34
FTV70 71 1950 0.132 | 0.358 0.039 429 38.1 2.33
KRO124P 100 36230 0.031 | 0.114 0.007 72.3 55.6 1.15
FT53 106 6905 0 0.037 0 31.2 634 1.85
FTV170 171 2755 0.018 | 0.326 0.044 69.3 42.7 1.03
RBG358 358 1163 0.139 | 1977 0.006 137.5 114.6 36.6
RBG 403 403 2465 0.082 | 0.973 0 291.7 174.3 59.4
RBG 443 443 2720 0.074 | 0.661 0 3725 351.1 84.9
Average 0.0595 | 0.5324 | 0.0113 | 107.634 | 88.927 | 21.402

Table 2. Performance comparisons on asymmetric TSP problems

Table 2 shows asymmetric TSP simulation experiment results. Every term’s meaning is as
same as Table 1. According to the data of table 2, we can come to the same conclusions as
that of table 1.

5.3 Performances on Large Scale Art TSP Instances

Robert Bosch has created a fascinating series of instances of the traveling salesman problem
(TSP) that provide continuous-line drawings of well-known pieces of art. In this part, large
scale art TSP instances with sizes from 100,000 to 200,000 were adopted to verify the
efficiency of the proposed PIMCSA.

Fig. 3, Fig. 4 and Fig.5 are the city location and TSP tour obtained by the proposed PIMCSA.
It can be seen that the obtained tours have no road crossing which indicates the tour is of
good quality.

Table 3 is the numerical results of PIMCSA on six large scale art TSP instances. The best
known tour lengths (BT) in table 3 are given by Keld Helsgaun and published on the
website TSP Homepage (http:/ /www.tsp.gatech.edu/data/art/index.html).

Instance Cities Best KHOW?BTF())M Lengths L;I;:)gut;ls Percent over BT
Monalisal00K | 100K 5,757,199 5,758,769 0.0273
Vangogh120K | 120K 6,543,643 6,5455,94 0.0298
Venus140K 140K 6,810,730 6,812,641 0.0281
Parejal60K 160K 7,620,040 7,622,486 0.0321
Curbet180K 180K 7,888,801 7,891,518 0.0344
Earring200K 200K 8,171,733 8,174,864 0.0383
Average 0.0317

Table 3. Experimental results of PIMCSA on large scale art TSP instances



130 Traveling Salesman Problem, Theory and Applications
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(a) City Location of Monalisal00K Instance (b) Part of the obtained Tour
Fig. 3. Performance of PIMCSA on Monalisal00K Instance

(a) City Location of Venus140K Instance (b) Part of the obtained Tour
Fig. 4. Performance of PIMCSA on Venus140K Instance

(a) City Location of Earring200K Instance (b) Part of the obtained Tour
Fig. 5. Performance of PIMCSA on Earring200K Instance
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5.4 Effectiveness of the vaccine extraction strategy

This part of experiments is used to verify the effectiveness of PIMCSA vaccine strategy. Fig.
6 and Fig.7 shows the percentage of the edges’ appearance in the known best tour. The
higher the percentage the more superior the vaccine is. These data are statistic results of 20
independent runs.

Rate of edges in the best tour

—=—RL11849
0.7% —=—USA13509 |
—4— P A85900
07 1 L T T
0 100 200 300 400 500

[terations

Fig. 6. Vaccine prediction accuracy for symmetric TSP

Rate of edges in the best tour

0.6 ——KRO124P | |
- h —=—FTV170
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0'50 20 40 60 80 100

lterations
Fig. 7. Vaccine prediction accuracy for asymmetric TSP

Whether the problem is symmetrical or asymmetrical, the prediction accuracy of the vaccine
increases rapidly along with the iteration times and the percentage is gradually close to one.
It indicates that heuristic information of vaccine is helpful to speed up the algorithms’
convergence. Further more, when the scale of the problem is large, the initial prediction
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accuracy of vaccine becomes high, however, the increasing rate of prediction accuracy is
slow. When problem size is small, the initial vaccine prediction accuracy is low, but it
increased rapidly along with iterations.

5.5 Scalability of parallel algorithm

Speedup ratio is an evaluation of the time gain of parallel algorithms. For a given
application, speedup ratio of parallel system indicates how many times parallel algorithm is
faster than serial algorithm. If Ts is the time that we need from start of algorithm to the last
on a serial computer and T, is the time we need on a parallel computer, the speedup ratio S
is defined as:

L

S=
Ty

(10)

We use the efficiency to measure the rate of a processor's effectively used computing power.
If the CPU number is p, the efficiency E is defined as:

E=> (11)
P

If W is the total computation of problem, 1,(w,p)is additional expenses (which is a function
of Wand p), then T, can be expressed as:

T, :w (12)

Thus, the speed-up ratio S and efficiency E can be expressed as:

s W ___ W P __P (13)
T, W+Ty(W,p) 1+T,(W,p)/W 1+0Q

E=5 1 1

poA+T(W,p)/W 1+Q

(14)

From equation (13) and (14) we can see that Q="T,(W,p)/W is the key factor affect the
efficiency of algorithms and processor. If W is certain, Ty(W,p)is only associated with p, it
can be written as T, (p) . This function is determined by the algorithm. T,(p) increase more
slowly, the scalability of algorithm is better, otherwise be worse. From equation (14) we can
deduce:

Ty (W.p)

0o 1

Y (15)
w S E
Fig. 8 and Fig. 9 show the relationship between Q and p. Antibody sub-population size is 30,

memory population size is p-1. The data are average results of 20 independent runs.
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Fig. 9. Scalability of asymmetric TSP

When the scale of problem is certain, as the number of processors (p) increases, €2 shows
linear increasing trend, it indicates that PIMCSA has good scalability. When problem
becomes larger, Q becomes smaller and increases more slowly, it indicates that the

scalability of PIMCSA is better on large scale TSP problems.

These results above are reasonable. Additional expenses mainly include three parts: the
expense of communication (denoted as Ci), vaccine producing of memory population
(denoted as C;) and vaccine delivery costs (denoted as Cs). C; will linearly increase when p
increase under certain scale of problem. C; will linearly increase with the increase of p too. p
has no influence on Cz. C 1 and C ; are the major overhead costs for large-scale TSP problem.
Compared to C; and Cy, C 3 can be neglected. Therefore, if the scale of problem is certain,
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Ty (W,p) will increase linearly with the increasing of p. When the scale of problem becomes
larger, the total computation of problem (W) will increase, so © will increase more slowly.

6. Conclusion

This chapter first introduces the immune system and immune optimization algorithm, and
then proposes the parallel immune memory clonal selection algorithm (PIMCSA) for solving
large scale TSP problem. In the proposed PIMCSA, a dynamic vaccine extraction (DV)
strategy is designed for solving large-scale TSP problem. Based on the general framework of
PIMCSA, a special designed memory population immune algorithm (MIA) and a specific
antibody sub-populations immune algorithm (PIA) are also proposed for solving TSP
problems. Simulating results on the symmetric and asymmetric TSP instances in TSPLIB
indicate that PIMCSA has good performance on both tour quality and running time. We also
verify the validity of PIMCSA vaccine extraction strategy. Experimental results show that
the rate of accuracy increases rapidly with the process of iteration and gradually close to 1.
In addition, this chapter also analyses in theory that speedup ratio of parallel algorithms
and the processor efficiency are related to variables Q (the ratio of the extra overhead of
algorithm and the total calculated amount of the problems). Experimental results show that,
the parameter Q of PIMCSA generally tends to enlarge linearly with the increase of the
number of processors p, indicating that PIMCSA have good scalability.

It can be seen that the dynamic vaccine strategy designed in this chapter is very effective for
the combinatorial optimization problems just as TSP problem. PIMCSA is a parallel artificial
immune algorithm suitable for solving large-scale and complex optimization problems. For
the parallel artificial immune algorithm, it is an important direction for further research that
how to determine the size, quantity of the antibody sub-populations, and the relationship
between them and the number of processors, computing power.
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to Optimize Delivery Problem
with Interactive-Time
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1. Introduction

Due to the complicated road network, the efficiency of product distribution remains on a
lower level in Japan compared to that of the USA, which disadvantages the productivity of
Japanese industries. This inefficiency also causes social problems and economical losses.
Namely, we are facing the necessity of urgently reducing the volume of car exhaust gases to
meet environmental requirement as well as curtailing transport expenses in Japan.

There are many distribution systems that should be optimized, including the delivery of
parcels, letters and products supply/distribution across multiple enterprises. In order to
improve the efficiency of these distributions, it is necessary to optimize the delivery routes,
or the delivery order of multiple delivery locations (addresses). One round delivery
comprises more than several tens or hundreds of different locations. Thus, the optimization
of a delivery route can be modelled as such a large-scale of Traveling Salesman Problem
(TSP). However, TSP is a combinatorial problem that causes computational explosion due to
n! order of combinations for n-city TSP. Therefore, to practically obtain the efficient delivery
route of such a distribution system, a near optimal solving method of TSP is indispensable.
Yet, the practical use of such a solving method on an actual site needs human confirmation
(which is difficult to formulate) of the solution, since social and human conditions are
involved. Namely, human users should check to understand that the solution is practical.
Users sometimes should correct manually or select the alternative solution.

Therefore, the TSP solving methods are required to ensure the response time necessary for
the above human interaction.

By the way, solutions generated by domain experts may have 2~3% of deviation from the
mathematical optimal solution, but they never generate worse solutions which may cause
practical problems. On the other hand, conventional approximate TSP solving methods
(Lawer et al., 1985; Kolen & Pesch, 1994; Yamamoto & Kubo, 1997) may generate even
mathematically optimal solutions in some cases but cannot ensure the amount of errors
below 2~3%. Such errors possibly discourage user, which makes those conventional
methods not practically useful, especially for the above-mentioned applications.

Strict TSP solving methods, such as the branch and cut method (Grotschel & Holland, 1991)
and Dynamic Programming (DP) (Bertsekas, 1987) or approximate solving methods using
Simulated Annealing (SA) (Kirkpatrick et al., 1983; Ingber, 1993; Miki et al., 2003) and Tabu
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Search (TS) (Glover, 1989; 1990; Hooker & Natraj, 1995; Fang et al., 2003), take much time for
calculation. Therefore, they cannot guarantee the above-mentioned real-time conditions. The
Lin-Kernighan (LK) method and its improved version (Lin & Kernighan, 1972) are also
proposed as solving methods of the TSP. However, they cannot constantly guarantee expert-
level accuracy (Kubota et al., 1999).

Thus, we developed a method which efficiently solves the TSP, using Genetic Algorithm
(GA) (Onoyama et al.,, 2000). This method enables to guarantee the responsiveness by
limiting the number of generations of GA and by improving genetic operations (initial
generations, mutation, and crossover). However, in some distribution patterns, this solving
method fell into a local minimum and could not achieve expert-level accuracy. Therefore,
we needed further improvement of our solving method to guarantee expert-level accuracy
for all cases.

The chapter is organized as follows: In the next (second) section, the delivery route
optimization problem and its technical problems are described. In the third section, the
method for solving the problem is proposed. Then, in the fourth section, experiments to
validate its effect and its results are shown. In the fifth section, the effectiveness of the
solving method will be proved based on the experiments, and in the sixth section, we will
compare it with other methods. And in the last seventh section, the results will be
concluded.

2. Problems in delivery route optimization

In this section, firstly, two kinds of actual distribution systems are depicted. And, in 2.2, the
optimization problems of these distribution systems are formally and technically described.

2.1 Delivery route optimization problem

A distribution network across multiple manufacturing enterprises is outlined in Fig. 1. Parts
for production are delivered from parts makers (suppliers) to factories directly or through
depots. Parts are not delivered to a factory or a depot independently by each parts maker,
but a truck goes around several parts makers and collects parts. This improves the
distribution efficiency, which contributes to the curtailment of distribution expenses and to
the reduction of the volume of car exhaust gases.

Factory m

Fig. 1. Large-scale distribution network
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In order to optimize the above-mentioned large-scale distribution network, we need to
grasp the total cost of distribution under various conditions by repeating the simulation
process as shown in Fig. 2. First, the conditions have to be set up manually, concerning
locations of more than ten factories (parts integration points for production), locations of
dozens of depots (intermediate depositories of parts), and allocation of trucks to transport
parts. To calculate distribution cost in each simulation, it is necessary to create delivery
routes. However, there are several hundreds of parts makers, dozens of depots and more
than ten factories. Therefore, there are about 1000 distributing routes on each of which a
truck goes around dozens (max. 40) of parts makers starting from one of the depots or
factories. Thus, in each simulation, a delivery route creation is repeated about 1000 times for
a set of conditions manually set up, the total delivery cost is calculated, and a person in
charge globally decides the network optimality as shown in Fig. 2. To globally evaluate
these results, human judgment is indispensable and interactive response time (less than tens
of seconds) is required. Thus, the system needs to create about 1000 or several hundreds of
distribution routes within at least tens of seconds. Therefore, one route has to be created
within tens of milliseconds.

Input conditions

a) Total number of Depot,

—)  costand resources (e.g. trucks) of each Depot
b) Location of depot, supplierand factory

¢) Load’ s volume and its supplier; etc.

N2

| System creates delivery routes and calculates costs.

N2

—| Repeat under other conditions |

Examine simulation results from many aspects and|
determine the optimal network

Fig. 2. Simulation process

Meanwhile, as to the delivery route optimization problem for parcels and letters, a round
delivery is carried out 1-3 times a day with a small vehicle such as a motorcycle or a small
truck.. Delivery zone that is covered by one vehicle is different according to the region.
Delivery locations are comparatively overcrowded in the urban area, whereas scattered in
the rural area. Therefore, the number of locations (addresses) for delivery differs - over
several tens or hundreds - depending on the region and time zone. It is necessary to make
and optimize a new delivery route for each round delivery since delivery locations change
every day and every time. Though human or social factors should be considered, this is a
problem to search the shortest path or route, modelled as a famous “Chinese Postman
Problem” or “Traveling Salesman Problem (TSP)”. The computer support by near optimal
solving method is quite useful to reduce the burden and loss time of workers as well as car
exhaust gases in such distribution networks or parcels /letters delivery.

2.2 Technical problems
The delivery route optimization problem of these distribution systems is formulated as
follows:
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The delivery network is represented by weighted complete graph G=(V,E,w). V is node set.
A node v; (i=1,..,N) represents a location (address) for delivery. N is the number of
nodes. E is edge set. A edge e;j represents a route from v; to v,;. w is edge weight set. A edge
weight d;; represents a distance from node v; to node v, dij = dji. The problem to find the
minimal-length Hamilton path in such a graph G=(V,E,w) is called Traveling Salesman
Problem (TSP).

Thus, to improve the delivery efficiency of such distribution systems, it is required to obtain
an approximate solution of a TSP within an interactive length of time (max. tens of
milliseconds). Yet, expert-level accuracy (less than 3% of the deviation from the optimal
solution) is always necessary, since domain experts may have such errors in their solutions
but never generate worse solutions which may cause practical problems.

We developed an efficient method for solving the TSP by elaborating a random restart
method. The developed method enables to guarantee the responsiveness by limiting the
number of repetitions and by devising component methods and heuristics (Kubota et al.,
1999). However, to meet the required guarantee of expert-level accuracy (below 3% of
errors), it took more than 100 milliseconds to solve one TSP, which caused the time to solve
one TSP should be significantly decreased.

Therefore, in order to improve the real time behavior, we proposed a GA that uses heuristics
for the crossover and the mutation, and yet whose generation number is limited (Onoyama
et al., 2000).

However, for some kinds of delivery location patterns, obtained solutions had more than 3%
of errors. To overcome these weaknesses of the solving method, other heuristics were
applied. Nevertheless, these heuristics were not effective again for some patterns, and the
above-mentioned accuracy was still not guaranteed for all kinds of patterns (as is described
in detail in section 5.1).

In the next section, an intelligent approximate method to solve above-mentioned problems
is proposed.

3. A multi-world intelligent genetic algorithm

As stated in the foregoing sections, the delivery routing problem in the above distribution
systems can be formalized as a TSP. Especially a symmetrical (non-directed) Euclidean TSP
(Lawer et al., 1985; Yamamoto & Kubo, 1997) is assumed in this chapter.

3.1 Concept of the proposed method

In order to solve problems mentioned above (in section 2), the following multi-world
intelligent GA (MIGA) method is proposed. This guarantees both real-time responsiveness
and accuracy for various kinds of delivery location patterns. At the initial phase of GA,
groups of individuals (population) that become the candidates of the solution are generated.
And, based on the population, new individuals (solution candidates) are generated by the
crossover and the mutation operator, and individuals are improved by the evaluation and
the selection. With our GA, each individual (chromosome) represents the tour, namely the
delivery route in TSP. Each gene of the chromosome represents the node number
(identification number of the address for delivery). A chromosome is a sequence of nodes
whose alignment represents a round order as shown in Fig. 3.
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Fig. 3. Chromosome

3.1.1 Multi-world intelligent GA
It is difficult to find an effective search method that always guarantees expert-level
optimality as well as the required real-time behavior for various distribution location
patterns. Heuristics, that are effective to particular patterns, are not necessarily useful to
other patterns. Yet, the application of excessively complicate algorithms or heuristics makes
the responsiveness worse. Therefore, a high-speed GA that mainly uses simple general
heuristics is combined with an intelligent GA, into which knowledge for handling particular
problems is incorporated. In this way, we could avoid local minima for various delivery
location patterns.
Concretely speaking, a 2opt-type mutation is used for the high-speed GA. This 2opt-type
mutation quickly improves tours. Therefore, good solutions are usually expected to be
obtained within a short length of time. However, it also takes risks of falling into a local
minimum. Our experiments revealed that this high-speed GA (called 2opt-type GA)
computes some inefficient tours for certain delivery location patterns.
Thus, a multi-world intelligent GA method is proposed. In this method, there are two kinds
of GA worlds; (1) an intelligent GA world (called block-type GA) holding the knowledge to
meet the particularities of problems as well as (2) the high-speed GA world (called 2opt-type
GA). Both kinds of worlds are independently executed. Such execution is repeated. The
same kind of worlds can be repeated. And they are collaborated through integrating the
results.
In the intelligent GA world, the following rather problem-oriented knowledge about the
neighborhood conditions or their relaxation is incorporated into operations of the block-type
GA so that these operations can be controlled through utilizing the knowledge.
a. Multi-step NI method
This is particular heuristics that constructs the initial tour by using step-by-step the
NI (Nearest Insertion) method to globally consider adjacent delivery locations, where
the adjacency is defined by problem-oriented knowledge as mentioned later.
b. Block-type mutation
This mutation selects a node randomly out of a tour, and mutates it together with its
neighbor nodes in order to avoid local minimum solutions.

3.1.2 Limiting the generation number of GA
In this method, the computation time necessary for processing the GA is calculated as
follows.



142 Traveling Salesman Problem, Theory and Applications

Let
. n be the the population size,

e [ be the length per individual,

¢ T(X)be the computation time of X,

e Prob(X) the probability of X, and

o Ave(X) the average of X.
So the computation time can be estimated as
computation time =
T(initialize) + number of generations * T(one generation of GA) + margin constant C
with

o T(initialize) = n * Cini * fini(l)

o T(one generation of GA) =

T(crossover stage) + T(mutation stage) + T(evaluation) + T(selection)

o T(crossover stage) = n * Prob(crossover) * Ave(T(crossover))

o Ave(T(crossover)) = Ceros * fros(l)

e T(mutation stage) = n * Prob(mutation) * Ave(T(mutation))

o Ave(T(mutation)) = Cuut * finur(l)

e T(evaluation) = Cp; * fr(l, n), T(selection) = Csq * far(n)
As the parameters of GA, n, I, Prob(crossover) and Prob(mutation) are given. fii(l), feros(l), famut(1),
far(l, n) and f.i(n) are respectively computational complexity of each operation (initialization,
crossover, mutation, fitness evaluation, and selection) that basically does not depend on
hardware details such as the CPU architecture. These are derived through analyzing the
algorithm. For example, since “quick sort” is used in the selection operator, fwi(n) is
calculated as follows:

fsel(n) = n*(logn)"'cin"_co (1)

Here, C; and Cy are the coefficients for the minor dimension to calculate the complexity of

the quick sort algorithm. Cini, Cerosy Couuty Crit, Ceet, are coefficients to obtain computation time

from the complexity of each operation mentioned above. These coefficients are hardware

dependant but can be identified using the result of experiments. More precisely, these can

be calculated using the number of steps of each program, and identified/adjusted using the

result of experiments to take detailed factors such as the CPU architecture into account. The

computation time for one generation of GA changes stochastically.

However, the estimation error can be suppressed within allowable ranges, through

1. dividing the computation time into that of fundamental components and

2. calculating the computation time using each component’s computational complexity
and the experimental results to determine the coefficient.

Furthermore, to absorb this estimation error, and to guarantee the interactive real-time

responsiveness, a margin constant C can be set by the user as a safety margin.

Using this computation time, the number of generations repeatable within the required

response time can be calculated.

3.2 Components of the proposed method
In this method, a gene represents a (traveling) node, and an individual represents a tour.
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3.2.1 Method for generating initial individuals

In order to obtain a highly optimized solution by avoiding the convergence into a local

minimum, the randomness of the initial individuals is important. However, the speed of

convergence slows down, if totally random initial solutions are generated as is done by a

random method. Thus, the other methods are devised as shown below.

a. Random method

Construct a tour by putting nodes in a random order.

b. Random NI method

Put nodes in a random order and insert them into a tour by using the NI method

according to the randomized order.

c¢.  Multi-step NI method

In case experts generate a tour (a traveling route), they usually determine the order of

delivery locations, globally considering the whole route, so that the nearest location from

the present one can always be the next location to deliver. On the model of such global

consideration of experts, a multi-step NI method is proposed which enables to generate a

tour similar to the tour generated by experts.

In detail, this method constructs a tour through the following steps:

1.  Que(nodes) is a queue of nodes with their check count of each node initialized as zero.
foutgen is the tour generated. w is a real type variable that meets the requirement 1<= w.
Its initial value is decided by problem-oriented knowledge. For example, w is decided
based on the position of the entire node as follows:

= (Dist,, +d* o) / Dist,, (2)

Distq, is an average of the distance between each node and a depot. o is a standard

deviation of the distance among nodes. The initial value of d is 1.0.

Enqueue all nodes to Que(nodes) at random order.

Dequeue a node (nodeqqq) from Que(nodes).

Temporally add a nodeg to tourge, by the NI method.

Evaluate Lyr.and Lyfer. Lyre is the length of toure, before its addition. La. is the length of

tour g after its addition. ... (¥)

6. If Lofter < (Lpre * w), then node,q, is inserted (actually added) into fourg., and w is returned
to an initial value. Else enqueue node,s to Que(nodes), with check count of nodes
incremented.

7. f the check count of the top node of Que(nodes) is not zero, then w is increased, and the
check count of every node in Que(nodes) is initialized zero. Here, the quantity of this
increase is also decided by problem-oriented knowledge, for example, dyew = doia + 0.5
of the equation (2).

8. If Que(nodes) is empty, then it ends. Else it returns to step (3) and repeat.

* Distances between two points are calculated for all their combinations by the Dijkstra

method beforehand.

AN

3.2.2 Method for crossover (NI-combined crossover)

To inherit good features of parents by crossover and to realize the quick convergence in GA,
a crossover operation using the NI method is proposed. This crossover operation called NI-
combined crossover comprises the following steps (Fig. 4):
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1. toutpar = {x1, X2, ..., X} and tourype2 = {y1, Y2, ..., Y} are parent tours and four; is a child
tour.

2. Determine a crossover point x; from touty,1.

3. Copy a sub-tour {xi, x2 ..., xi}, representing a group of nodes located before the
crossover point in touty,1, to tour ;.

4. Change the order of remaining nodes {x;+1, ... , x,}, according to the order of nodes in
toUtpar2.

5. Insert the remaining nodes into fours, using the NI method in the order that is
changed in (4). When all nodes of foury.1 are inserted to toura;, the crossover processing
ends.

In this way, the generated tour is represented as a new child. Through applying this NI-

combined crossover, the order of nodes contained in parents is inherited to their children to

increase the convergence speed.

:' Parent-1 | Parent-2 [  Child |
(1)Start: : 13245768 16384752

1 V¥ Determine the crossover point
(2)Step1::13245768 16384752

|

Copy———__|

(3)Step2:: 1324 57|68 16384752 1324

Change the order of remaining nodes according to Parent2's orde
|

1
(@)step3:! 6875 ||16384752| | [1324

(5)Stepd:] 6>8?‘ 16384752| | 13624

| Insert remaining nodes by NI method.

13682547

— Insert———

End:

Fig. 4. NI-combined crossover

3.2.3 Method for mutation

Mutation of GAs often did not have much impact on the convergence of solutions without
combining local search methods or without embedding problem-oriented knowledge. Thus,
the following two mutation methods are proposed.

a. 2opt-type mutation

This method enables to improve the convergence speed by combining a 2opt-like simple
local search heuristic method with GA’s mutation operation. This consists of the following
steps :

1. toutps = {x1, X2, ..., Xu} is @ parent tour and tour; is a child tour.

Copy the contents of toury,, to tour.

Select a node x; randomly from tour;.

Select another node x; randomly from toura, except {x;, xi+1}.

Generate toutee {x1,..., XiXj, ... , Xi+1,Xj+1,..., Xu} by reversing sub-tour {xi+1, ..., xj} of
toureni {x1,..., XiXi+1, ..., X Xj+1,..., Xn}

A N



A Multi-World Intelligent Genetic Algorithmto Optimize Delivery Problem With Interactive-Time 145

6. If Lo < Lgen (tour length is not improved), then it ends. Else copy the contents of tourgen
to tourq;. Until such link exchanges are all checked, return to step (4) and repeat. L is
the length of fourge. Lasi is the length of toura,.

b. Block-type mutation
2opt-type mutation easily improves tours, and good solutions are expected to be obtained
within a short length of time. However, it also takes risks of failing into a local minimum. To
obtain a solution closer to the optimum, it is desirable to escape from a local minimum by
destroying a block of a tour at a time. For this purpose, the following block-type mutation is
proposed. This consists of the following steps:

1. toutpsr = {x1, x2, ..., X} is a parent tour. toury, is a child tour.

2. Select a node x; randomly from tourpq.

3. Move the nodes, except {xi,, ..., xi+,} namely except x; and its neighbor nodes of toury,
to tourqi. The size of neighborhood r is specified as problem-oriented knowledge, for
instance, a random number from 0 to B * (the distance to the node farthest from a depot). B
is a constant number specified as problem-oriented knowledge.

4. Insert {xi, ..., xi+,} into toury,; using the NI method. When all nodes have been inserted
to tours,, the mutation processing ends.

3.2.4 Method for selection

In order to get highly optimized solutions and realize quick convergence in GAs,
individuals are selected out of the population including both parents' and children's. And,
10% of individuals in a new generation are selected randomly from the above populations to
give the chance of reproduction to even inferior individuals. Furthermore, to enhance the
evolution efficiency, only one individual is selected when the same individuals are
generated.

3.3 Proposed solving method

Through integrating above components, the following three kinds of GA methods are
proposed to ensure both real-time responsiveness and accuracy for various kinds of delivery
location patterns.

3.3.1 2opt-type GA (high-speed GA)

This method is shown in Fig. 5. This method makes it possible to guarantee quick
convergence of solutions through improving initial solutions due to the random NI method
and through applying the NI-combined crossover and the 2opt-type mutation.

The computational complexity of the NI-combined crossover is O(n2) . On the other hand,
the computational complexity of the 2opt-type mutation is much smaller. Indeed, the
computational complexity of the 2opt-type mutation is O(n2?) in worst cases, but it hardly
occurs for highly optimized individuals generated in the initial population phase by the
random NI method and improved in later phases by the NI-combined crossover.

In more detail, the probability of improvement by link exchanges of the 2opt method is
small, since the NI method inserts each node so that the difference, between

1. the sum of the length of both links with both sides” neighbors and

2. the length of the link among both neighbors before its insertion,

can be minimized. Thus, the computation time of the 2opt-type mutation is expected to be
much smaller than that of operations using the NI method such as the NI-combined
CroSSOVer.
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Generate initial individuals
by random NI method

Terminated Generation ?
Yes

| Evaluate Fitness Values of individuals |
N

| Select individuals |
N

| NI-combined crossover |

L
2opt- type mutation
Fig. 5. 2opt-type GA

3.3.2 Block-type GA (intelligent GA)

This method is shown in Fig. 6. This method is expected to obtain highly optimized
solutions through avoiding local minima. This can be attained through (1) constructing
highly optimized initial solutions by means of the multi-step NI method, and (2)
reconstructing a large part of a locally optimized tour by means of block-type mutation to

avoid falling into a local minimum.

Generate initial individuals
by multi-step NI method (50%)
and random method (50%)

Terminated Generation ?
Yes

| Evaluate Fitness Values of'individuals |
N2

| Select individuals |
N2

| NI-combined crossover |
N2

| block-ty pe mutation |

Fig. 6. Block-type GA
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3.3.3 Multi-world intelligent GA

The finally proposed method is called “Multi-world intelligent GA (MIGA)”. This comprises

the 2opt-type GA method (world) and the block type GA method (world) that follows the

former. MIGA selects the better one out of the solutions obtained in these two GA worlds.

This raises the probability to have highly accurate solutions for various types of delivery

location patterns within an interactive real-time context, because of the following reasons:

1. Asis explained in 3.3.1, though the computation time of the NI-combined crossover is
O(n?), the computation time of the 2opt-type mutation in the 2opt-type GA method
(world) is much smaller than the former. Furthermore, the NI method checks just links
among neighbors but all links among neighbors in the tour to be inserted. Meanwhile,
though not all links, the 2opt operation in the 2opt-type mutation checks links between
nodes that are not neighbors. Thus the 2opt-type mutation in the 2opt-type GA world
but not being in the block type GA world can have the possibility to search other
optimal solutions than the NI method, namely the block type GA method where only
NI method is used effectively as heuristics.

2. On the other hands, the block type GA world can have the possibility to search other
optimal solutions than 2opt-type GA, owing to the Multi step NI method and the
block-type mutation, both of which exploits the power of the NI method enforced by
problem oriented knowledge mentioned previously in (c) of 3.2.1 and in (b) of 3.2.3.

Yet, to guarantee real-time responsiveness, both of these two GAs finish their processing
within the limited length of time through offline calculation of the number of generations
repeatable within the time limit (e.g. 15 milliseconds for each GA).

4. Experiment and results

4.1 Experiment

In this section, the experiment to evaluate the proposed method is explained. The program
codes are written by C language. A computer equipped with Intel Pentium II (450MHz)
processor and 256MB memory is used for this experiment.

As explained by the footnote in the introduction, 40 cities TSPs were used for this
experiment. Yet, various combinations of 40 delivery locations are possible. Thus, randomly
selected 20000 different patterns of 40 delivery locations were prepared. Then, to evaluate
three kinds of GA methods described in 3.3, each solving method solved 20000 test patterns,
100 times per pattern, and the probability to obtain solutions within 3% of errors was
calculated.

In this experiment, the population size is 100 and each crossover rate and mutation rate are
10% respectively. These parameters were determined by the way of comparative
experiments with many sets of parameters.

4.2 Results

To guarantee the real-time responsiveness, the time necessary for processing one generation
is calculated, and based on this value, the number of generations of the GA is determined.
Table 1 shows an example of the number of generations to respond within 30 milliseconds
when the population size is 100. Then, the tests were repeated 100 times per pattern for
three kinds of GAs.

Each test used 20000 kinds of delivery location patterns. The probability to obtain solutions
within 3% of errors compared to the optimal solutions was checked. Furthermore, the



148

Traveling Salesman Problem, Theory and Applications

probability to obtain the optimal solutions within 30 milliseconds was also checked. These
results are shown in Table 2.

#| Method Generating Initial Individuals | Mutation | Number of Generations
1| 2opt-type Random NI 2opt-type 24
2| Block-type Random + Multi step NI Block-type 20
Table 1. The number of generations of each method repeatable within 30 milliseconds
# Method Optimal Below 3%
1 2opt-type GA 84.45% 99.885%
2 Block-type GA 83.75% 99.785%
3 MIGA 92.05% 100.0%

Table 2. The solution optimality

5. Evaluation

5.1 Effect of the proposed TSP solving method
Table 2 shows the usefulness of the proposed MIGA quite convincingly. Only MIGA
method could solve a 40 cities TSP with less than 3% of errors with 100% of probability

within 30 milliseconds.
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(a) 20pt-type GA
(Tour length:259)

Fig. 7. Difference of tour shape in a special location pattern

5.1.1 Effect of block-type GA (intelligent GA)
Tour shapes were examined as to solutions generated by the 2opt-type GA and leaving
more than 3% errors. As a result, most of these shapes were like gear wheels as shown in
Fig. 7 (a). Experts usually generate more straight routes as shown in Fig. 7 (b). If experts find
inefficient routes such as shown in Fig. 7 (a), they reject to use the system since they consider

it as an unreliable one.

(b) Block-type GA
(Tour length:249)
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In case of using a block-type GA (intelligent GA), tours similar to Fig. 7(b) were generated
even for such delivery location patterns. The reason is why the intelligent GA has the block-
type mutation in order to avoid falling into a local minimum.

5.1.2 Effect of multi-world intelligent GA

According to our experiment, in case of the 2opt-type GA, 43 cases out of 20000 tests had
more than 3% errors. In case of the block-type GA method, 23 cases had more than 3%
erTors.

However, the multi-world intelligent GA (MIGA), namely, the 2opt-type GA subsequently
followed by the block-type GA could generate solutions below 3% of error within 30
milliseconds, for every case in 20000 tests. The reason is that, coping with various delivery
location patterns, either the 2opt-type GA or the intelligent GA can avoid falling into a local
minimum (over 3% errors). Thus, MIGA method could guarantee the responsiveness as well
as the expert-level accuracy, namely, below 3% errors.

5.2 Applicability of the proposed solving method

To evaluate the applicability of our proposed solving method, we applied it to a simulation
of a parts supply logistics network which consists of one (assembly) factory, 7 depots, and
30 part makers (suppliers). This simulation needs to optimize the distribution area allocation
of each truck, as well as to optimize each truck route. This simultaneous optimization of
each truck area allocation and each truck route is classified as the Vehicle Routing Problem
(VRP) (Laporte, 1992).

To apply our proposed methods to the VRP, we modified the chromosome structure and the
NI method which is used in GA operations (initial construction, mutation, and crossover).
Namely, the chromosome structure is extended to represent multiple trucks’ routes instead
of one truck’s route, and the extended NI method puts a new node into the best position out
of all truck routes instead of only one truck route.

We simulated the above-mentioned logistics network in 3 cases, which have the same
simulation conditions except the amount of loads, as shown in table 3. The resultant number
of trucks in table 3 is verified as optimal. Moreover, the total tour length deviation from the
optimal solution is less than 3 %.

Consequently, our proposed GA methods such as the multi-step NI method and the block-
type mutation are applicable not only to the TSP but also to more general problems such as
the VRP. That is to say, these methods are effective in solving the problems defined over
metric space such as the TSP and the VRP. Moreover, the concept of the block type mutation
is applicable to the problems defined over topological space which does not have metric
system but only neighborhood system.

# (nurig:f:fl(l)ga ds) Number of trucks Total tour length (Deviation)
1 700 29 1015km (2.6%)
2 900 41 1345km (2.8%)
3 1000 48 1612km (2.8%)

Table 3. VRP simulation result
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6. Comparisons

A lot of methods to solve TSP are proposed for practical applications. In this section, our
methods are compared with other methods.

Three types of the proposed methods (multi-world intelligent GAs) are tested, each of which
has different stopping condition. MIGA1 (multi-world intelligent GA type 1) stops searching
when it stops improving the solution. The computation time of MIGA2 is one tenth of that
of MIGA1. The computation time of MIGA3 is 30 milliseconds. Experiments were conducted
under the following computation environment. Namely, CPU is AMD Athlon 64 X2 3800+
2GHz processor. It is almost the same performance as Athlon 64 3200+ 2GHz because of its
execution on the single core mode with 1GB memory. The programs were written in C
language, compiled by Microsoft Visual C++ NET 2003 ver. 7.1.3091 with /O2 option
(directing the execution speed preference), and executed on Windows XP Professional.

Yet, since other solution methods to be compared are executed on machines with different
performance specification, it is necessary to take the difference into account. Therefore,
referring to the statistical results of tests using RC5-72 benchmark (JLUG, 2008) for
measuring the arithmetic processing speed, we obtained the spec difference correction
coefficient (SDCC). This can be obtained by dividing the resultant value of the benchmark
test executed on the experimental environments of other solution methods, by the resultant
value of the benchmark test on our experimental environment. Through multiplying SDCC
to the execution time of other solution methods, we calculated an assumed execution time
on the same specification machine as ours.

As for the strict optimization method, Branch-and-cut and Dynamic Programming (DP) are
proposed. These methods require long computation time though they can obtain optimal
solutions. Some algorithms using DP can search very near-optimal solutions for the
Euclidean TSP in polynomial time (Arora, 1998). However, even these algorithms take too
long time for practical applications such as ours, and it seems too hard for ordinary system
developers to modify or adjust them for coping with various particular requirements.

As for the approximate solution technique, various techniques are proposed. LK is famous
as the heuristics search technique for TSP. However, LK and its improving methods (Lin &
Kernighan, 1972; Yamamoto & Kubo, 1997) also take a long computation time though the
optimality of obtained solutions is high and these methods are often incorporated with the
meta-heuristics search such as SA, TA and GA.

Simulated Annealing (SA) and Tabu Search (TS) are known as the meta-heuristics search
technique. Theoretically, SA (Kirkpatrick et al., 1983; Ingber, 1993; Miki et al., 2003) is said to
be able to search very near-optimal solutions by decreasing the risk of falling into a local
minimum. But practically, it is very difficult to adjust SA’s parameters such as cooling speed
for coping with various location patterns. Furthermore, SA usually takes a long computation
time to get above-mentioned theoretical near-optimal solutions.

TS (Glover, 1989; 1990; Hooker & Natraj, 1995; Fang et al., 2003) usually needs a long
computation time to get practically optimal solutions. Worse still, TS is said to be weak in
maintaining solution diversity though it has strong capability for local search. However, TS
is improved in these weaknesses by Kanazawa & Yasuda, 2004.

So-called random restart methods (Yanagiura & Ibaraki, 2000), which apply local search
such as 2-opt for improving random initial solutions, can obtain near-optimal solutions.
These include GRASP (Feo et al., 1994) or the elaborated random restart method (Kubota et
al., 1999) that can guarantee responsiveness by limiting the number of repetitions. However,
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according to our experiments, the above-mentioned elaborated random restart method
needed about 100 milliseconds to solve 40 cities TSP and to guarantee less than 3% errors
(Kubota et al., 1999).

As for the Genetic Algorithms (GA) to efficiently solve TSP, various techniques are
proposed. GA applied solving methods using the edges assembly crossover (EAX) (Nagata
& Kobayashi, 1999) and the distance-preserving crossover (DPX) (Whiteley & Starkweather,
1989) could get highly optimized solutions in case of very-large-scale TSPs (with 1000-10000
cities) (Tamaki et al., 1994; Baraglia et al., 2001; Tsai et al., 2004; Nguyen et al., 2007). These
crossover methods examine characteristics of parent’s tour edge to strictly inherit to
children. However, since these crossover operations take long computation time for
analyzing edges, using it for not-very -large-scale TSP is often inefficient.

In reference (Baraglia et al., 2001), two kinds of methods are compared in many cases. It
shows that Cga-LK is advantageous to 300-10000 cities TSP, but Random-LK is
advantageous to 198 cities TSP. Therefore, the solution that can efficiently solve TSP of 1000
cities or more can not necessarily efficiently solve TSP of about 100 cities. As to TSP of our
intended scale (with 10s to 100 cities), in reference (Baraglia et al.,, 2001), a TSP 1in105 is
solved with 1.77% average error rate in 231seconds. The performance specification of this
experimental environment is 200-MHz PentiumPro PC running Linux 2.2.12. Since this
SDCC is 0.048, the solving time on our experimental environment is 11.088 seconds.
Moreover, in reference (Cheng et al., 2002), the performance comparison experiments were
conducted using various crossover operators. Even when the best crossover operator is
used, average error rate is 3.1% and computation time is 750 seconds by SUN SPARC Ultra-
5 10 machine. Since this SDCC is 0.065, the solving time on our environment is 48.75
seconds. Meanwhile, our MIGA1 obtains the optimal solution within 1.11 seconds, and
MIGAZ2 obtains a solution with average error rate 0.31% in 0.15 seconds.

A GA method with the same purpose as ours (aiming to obtain high quality approximate
solution as fast as possible for 10s - 100s cities TSPs) is proposed by Yan et al., 2007. To
compare the proposed methods with GA by Yan and TS by Kanazawa, the proposed
methods are tested on nine benchmark problems in TSPLIB whose number of cities ranges
from 70 to 280. Each problem is solved 100 times.

Table 4 presents the SDCC of each method. And Table 5 presents the experimental results
obtained by applying MIGA to the above nine benchmark problems and results corrected by
using SDCC. The mark “-” on the Table 5 indicates no data. The digits (e.g. 70) contained in
the name (e.g.st70) of TSP indicate the number of cities.

Results of GA by Yan are compared with those of MIGA. Results for the problem st70
indicate MIGA can obtain the solution having almost the same accuracy as GA by Yan,
while the computation time is 20%. Results of problem eil76 indicate MIGA can obtain
always optimal solution though the average error rate of GA by Yan is 1.184% within the
same computation time. Specific results of problem a280 indicate MIGA can obtain solutions
whose average error rate is 4% which is lower than that of GA by Yan and the computation
time is 7% compared with that of GA by Yan.

Next, results of TS by Kanazawa and MIGA are compared. Results indicate MIGA obtained
almost the same accuracy solutions as TS by Kanazawa, while the computation time is 19%
for the problem pr107, 63% for pr144, 45% for pr152, and 5% for pr226.

Overall results show that MIGA is more effective than GA by Yan and TS by Kanazawa in
solving the above mentioned nine TSP benchmark problems whose number of cities ranges
from 70 to 280.
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Results of MIGA3 show the average error rate is around 1% and even the worst case error is
under 3.5%, to solve, within 30 milliseconds, eight TSP benchmark problems whose number

of cities ranges from 70 to 226.

GA by Yan TS by Kanazawa
CPU : Pentium4 CPU : Pentium4
Spec of computing machines 2.4GHz, 2.55GHz,
# %) : 256MB #x1) :1GB (DDR266)
Spec Difference Correction
Coefficient (SDCC) 0519 0.59
Table 4. Spec Difference Correction Coefficient (SDCC)
Average error rate from optimal solution [%]
( Average execution time [sec] )
Name of
TSP TS by MIGA3
GA by Yan MIGA1 MIGA2
Kanazawa
Average Worst
0.312 0 0.370 0.400
st70 (0.348) i (0.750) (0.074) (0.030) 1333
. 1.184 0 1.914 2.193
eil76 0.602) ) (0.844) | (0.080) (0.030) 2974
0.016 0 0.176 0.873
kroA100 | g g77) J 0937) | (0.131) (0.030) 1.588
pr i 0.290 0.086 0.256 0.449 0.899
107 (0.826) (0.985) (0.156) (0.030) )
pr 0 0.190 0.624 1.067 2.460 3.481
136 (3.690) (4.378) (2.016) (0.233) (0.030) )
pr 0 0.019 0 0.149 1.665 2 896
144 (4.136) (4.685) (2.625) (0.284) (0.030) )
pr ) 0.120 0.153 0.551 1.175 277
152 (7.558) (3.375) (0.338) (0.030) )
pr i 0.510 0 0.515 1.854 2 566
226 (12.685) (3.125) (0.652) (0.030) )
4280 10.770 i 3.180 6.572 ) i
(17.371) (10.453) (1.100)

Table 5. Results compared with related works on TSPLIB

7. Conclusion

In this chapter, an intelligent GA method for solving the TSP was proposed and evaluated.
This is applicable to the optimization of various distribution systems such as the parcel and
letter delivery as well as large-scale distribution networks that requires repetitive interactive
simulations. This kind of application requires responsiveness as well as optimality, for
example, solving a TSP with expert-level accuracy within 30 milliseconds.
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In order to guarantee expert-level solutions for various kinds of delivery location patterns,
the high-speed GA world was combined with the intelligent GA world. The high-speed GA
world comprises the random NI method and the 2opt-type mutation. And this high-speed
GA mainly uses simple general heuristics. The intelligent GA world includes the random
method, the multi-step NI method, and the block-type mutation. And particular knowledge
was incorporated in this intelligent GA to overcome the weakness of the high-speed GA.
Namely, to cope with delivery location patterns for which the high-speed GA cannot
guarantee expert-level solutions, this intelligent GA has rather problem-oriented
knowledge.

According to our experiment, in case of using the former high-speed GA, 23 test cases out of
20000 test cases had more than 3% of errors compared to the optimal solution. However, our
proposed multi-world intelligent GA method (which comprises the high-speed GA world
and the intelligent GA world) could solve each of all 20000 test cases within 30 milliseconds
at expert-level accuracy (less than 3% errors).

Our experimental results showed that the proposed methods enable to solve TSPs with
responsiveness and optimality necessary for a large-scale distribution network’s interactive
simulation.
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1. Introduction

The travelling salesman problem (TSP) is a problem in combinatorial optimization studied
in operations research and theoretical computer science. Given a list of cities and their pair-
wise distances, the task is to find a shortest possible tour that visits each city exactly once
(Aarts & Laarhoven, 1985; Beale & Jackson, 1990; Bout & Miller, 1988; Cichock & Unbehaun,
1993; Lin, 1965; Zurada, 1992). The problem was first formulated as a mathematical problem
in 1930 and is one of the most intensively studied problems in optimization. It is used as a
benchmark for many optimization methods. Even though the problem is computationally
difficult, a large number of heuristics and exact methods are known, so that some instances
with tens of thousands of cities can be solved (Beale & Jackson, 1990; Freeman & Skapura,
1991; Lin, 1965).

The TSP has several applications even in its purest formulation, such as planning, logistics,
and the manufacture of microchips. Slightly modified, it appears as a sub-problem in many
areas, such as DNA sequencing. In these applications, the concept city represents, for
example, customers, soldering points, or DNA fragments, and the concept distance
represents travelling times or cost, or a similarity measure between DNA fragments (Beale
& Jackson, 1990; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991; Zurada, 1992). In
many applications, additional constraints such as limited resources or time windows make
the problem considerably harder.

In the theory of computational complexity, the decision version of TSP belongs to the class
of NP-complete problems (Aarts & Laarhoven, 1985; Abe et al., 1992; Burke, 1994; Freeman
& Skapura, 1991; Hopfield & Tank, 1985). Thus, it is assumed that there is no efficient
algorithm for solving TSPs. In other words, it is likely that the worst case running time for
any algorithm for TSP increases exponentially with the number of cities, so even some
instances with only hundreds of cities will take many CPU years to solve exactly. The
travelling salesman problem is regarded as difficult to solve. If there is a way to break this
problem into smaller component problems, the components will be at least as complex as
the original one. This is what computer scientists call NP-hard problems (Aarts &
Laarhoven, 1985; Abe et al., 1992; Freeman & Skapura, 1991).
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Many people have studied this problem. The easiest (and most expensive solution) is to
simply try all possibilities. The problem with this is that for n cities you have (n-1)!
possibilities. This means that for only 11 cities there are about 3.5 million combinations to
try (Freeman & Skapura, 1991). In recent years, many algorithms for solving the TSP have
been proposed (Cichock & Unbehaun, 1993; Dorigo et al., 1991, Goldberg, 1989; Lin &
Kernighan, 1971; Mascato, 1989; Szu & Hartley, 1987). However, these algorithms sustain
several disadvantages. First, some of these algorithms are not optimal in a way that the
solution they obtain may not be the best one. Second, their runtime is not always defined in
advance, since for every problem there are certain cases for which the computation time is
very long due to unsuccessful attempts for optimization. They will often consistently find
good solutions to the problem. These good solutions are typically considered to be good
enough simply because they are the best that can be found in a reasonable amount of time.
Therefore, optimization often takes the role of finding the best solution possible in a
reasonable amount of time. There have been several types of approaches taken to solving
the TSP [10-30] of the numerical methods and the neural networks (NNs) (Beale & Jackson,
1990; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991; Goldberg, 1989; Zurada, 1992).
Recently, NN is well suited for this type of problems.

An NN, also known as a parallel distributed processing network, is a computing paradigm
that is loosely modeled after cortical structures of the brain (Beale & Jackson, 1990; Cichock
& Unbehaun, 1993; Freeman & Skapura, 1991; Zurada, 1992). It consists of interconnected
processing elements called nodes or neurons (Beale & Jackson, 1990; Zurada, 1992). NN, due
to its massive parallelism, has been rigorously studied as an alternative to the conventional
numerical approach for fast solving of the combinatorial optimization or the pattern
recognition problems. The optimization is to find the neuron that lead to the energy
minimum by applying repeatedly the optimization algorithm.

Hopfield model is energy-minimizing network, and is useful as a content addressable
memory or an analog computer for solving combinatorial optimization problems (Abe et al.,
1992; Abe, 1993, 1996; Aiyer et al., 1990; Andresol et al., 1997; Gall & Zissimopoulos 1999;
Hegde et al., 1988; Sharbaro, 1994; Wilson & Pawley, 1988). Generally, Hopfield model may
be operated in a discrete-time mode and continuous-time mode, depending on the model
adopted for describing the neurons. The discrete-time mode is useful as a content
addressable memory, and the continuous-time mode is also useful as an analog computer
for solving combinatorial optimization problems. In formulating the energy function for a
continuous-time Hopfield model, the neurons are permitted to have self-feedback loops. On
the other words, a discrete-time Hopfield model is no self-feedback loops (Beale & Jackson,
1990; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991).

Gradient-type NNs are generalized Hopfield model in which the computational energy
decreases continuously in time loops (Beale & Jackson, 1990; Cichock & Unbehaun, 1993;
Freeman & Skapura, 1991).. The continuous-time model is called the gradient-type model
and converges to one of the stable minima in the state space. The evaluation of model is in
the general direction of the negative gradient of energy function. Typically, the energy
function is made equivalent to a certain objective function that needs to be minimized. The
search for an energy minimum performed by gradient-type model corresponds to the search
for a solution of an optimization problem loops (Beale & Jackson, 1990; Cichock &
Unbehaun, 1993; Freeman & Skapura, 1991).
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The major drawbacks of the continuous-time Hopfield model when it is used to solve some
combinatorial problems, for instance, the TSP, are the non feasibility of the obtained
solutions and the trial-and-error setting of the model parameters loops (Beale & Jackson,
1990; Bout & Miller, 1988; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991). Most of
the researches have been concentrated on the improvement of either the convergence speed
or the convergence rate to the global minimum in consideration of the weight parameter of
the energy function, etc. But there are few that try to solve both global convergence and
speedup by simultaneously setting the initial neuron outputs (Baba, 1989; Biro et al., 1996;
Gall & Zissimopoulos 1999; Gee & Prager, 1995; Heung, 2005).

This chapter proposes an efficient method for improving the convergence performances of
the NN by applying a global optimization method. The global optimization method is a
hybrid of a stochastic approximation (SA) (Styblinski & Tang, 1990) and a gradient descent
method. The approximation value inclined toward a global escaping from a local minimum
is estimated first by the stochastic approximation, and then the gradient-type update rule of
Hopfield model is applied for high-speed convergence. The proposed method has been
applied to the 7- and 10-city TSPs, respectively. We demonstrate the convergence
performance to the conventional Hopfield model with randomized initial neuron outputs
setting.

The rest of the chapter is organized as follows. The travelling salesman problem is
introduced in section 2. Section 3 presents the Hopfield model for solving the TSP. Section 4
presents the method for estimating an initial value of optimization problems by using
stochastic approximation. Section 5 describes how the proposed method can be applied for
globally optimizing the neural network. Section 6 describes the experiments with the
proposed global optimization method focusing on the TSP. The performance comparison of
the experiment results with the Hopfield model is also given. Finally an outlook to future
research activities is presented.

2. Travelling salesman problem

Generally, the optimization problems are typically posed in terms of finding the best way to
do something, subject to certain constraints. When solving these problems with computers,
often the only possible approach is to calculate every possible solution and then choose the
best of those as the answer. Unfortunately, some problems have such large solution spaces
that this is impossible to do. These are problems where the solution cannot be found in a
reasonable time. These problems are referred to as NP-hard or NP-complete problems. In
many cases, these problems are described in term of a cost function (Aarts & Laarhoven,
1985; Beale & Jackson, 1990; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991).

One such problem is the TSP. The TSP describes a salesman who must travel between cities.
The order in which he does so is unimportant, provided he visits each one during his trip,
and finishes in his starting location. Each city is connected to other close by cities, or nodes.
Each of those links between the cities has one or more weights (cost) attached. The cost
describes how "difficult" it is to traverse this edge on the graph, and may be given, for
example, by the cost of an airplane ticket or train ticket, or perhaps by the length of the edge,
or time required for completing the traversal (Beale & Jackson, 1990; Bout & Miller, 1988;
Cichock & Unbehaun, 1993; Lin, 1965; Zurada, 1992). The salesman wants to keep both the
travel costs, as well as the distance he travels as low as possible. That is, the problem is to
find the right sequence of cities to visit. The constraints are that all cities are visited, each is
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visited only once, and the salesman returns to the starting city at the end of the travel. The
cost function to be minimized is the total distance or cost travelled in the course of the
travel.

The TSP is computationally intensive if an exhaustive search is to be performed comparing
all possible routes to find the best one (Freeman & Skapura, 1991). For an n-city trip, there
are n! possible paths. Due to degeneracy, the number of distinct solutions is less than n!. The
term distinct in this case refers to trips with different total distances. For a given trip, it does
not matter which of the n cities is the starting location, in terms of the total distance traveled.
This degeneracy reduces the number of distinct tours by a factor of n. Similarly, for a given
trip, it does not also matter which of two directions the salesman travels. This fact further
reduces the number of distinct trips by a factor of two. Thus, for n-city trip, there are n!/2n
distinct tours to consider.

For a 5-city trip, there would be 120!/10=12 distinct trips-hardly a problem worthy of
solution by a computer! A 10-city trip, however, has 3,628,800/20=181,440 distinct trips; a
30-city trip has over 4x10%0 possibilities. Adding a single city to a trip results in an increase
in the number of distinct trips by a factor of n. Thus, a 31-city trip requires that we examine
31 times as many trips as we must for a 30-city trip. The amount of computation time
required by a digital computer to solve this problem grows exponentially with the number
of cities.

There have been many approaches to solving the Traveling Salesman Problem. These
approaches range from a simple heuristic algorithm to algorithms based on the physical
workings of the human mind to those based on ant colonies (Andresol et al., 1997; Dorigo et
al., 1991; Dorigo & Gambardella, 1997; Lin & Kernighan, 1971; Mascato, 1989; Szu & Hartley,
1987). These algorithms all have the same ultimate goal: in a graph with weighted edges,
find the shortest Hamiltonian path (the path through all nodes with the smallest sum of
edge weights). Unfortunately, this goal is very hard to achieve. The algorithms therefore
settle for trying to accomplish two smaller goals: (1) to more quickly find a good solution
and (2) to find a better good solution. A good solution is one that is close to being optimal
and the best of these good solutions is, of course, the optimal solution itself. There have been
several types of approaches taken to solving the TSP. They include heuristic approaches,
memetic algorithms, ant colony algorithms, simulated annealing, genetic algorithms, neural
networks, and various other methods for more specific variations of the TSP (Abe, 1993;
Andresol et al., 1997; Dorigo et al., 1991; Dorigo & Gambardella, 1997; Lin & Kernighan,
1971; Mascato, 1989; Szu & Hartley, 1987; Xavier & Suykens, 2006; Miihlenbein, 1992).

These approaches do not always find the true optimal solution. Instead, they will often
consistently find good solutions to the problem. These good solutions are typically
considered to be good enough simply because they are the best that can be found in a
reasonable amount of time. Therefore, optimization often takes the role of finding the best
solution possible in a reasonable amount of time.

2.1 Heuristic algorithms

The heuristic means that a rule of thumb, simplification or educated guess that reduces or
limits the search for solutions in domains that are difficult and poorly understood (Lin &
Kernighan, 1971). Unlike algorithms, heuristics do not guarantee optimal, or even feasible,
solutions and are often used with no theoretical guarantee. In contrast, an algorithm is
defined as “a precise rule (or set of rules) specifying how to solve some problem” (Andresol
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etal., 1997; Lin & Kernighan, 1971). To combine these together into a heuristic algorithm, we
would have something like “a set of rules specifying how to solve some problem by
applying a simplification that reduces the amount of solutions checked”. In other words, the
algorithm is the instructions for choosing the correct solution to the problem while the
heuristic is the idea of how to shrink the list of possible solutions down to a reasonable size.
An example of a heuristic approach to the TSP might be to remove the most weighted edge
from each node to reduce the size of the problem (Lin & Kernighan, 1971). The programmer in
this situation may assume that the best solution would not have the most weighted edge.
Upon close inspection, this heuristic may not actually give the best solution, maybe not even a
feasible solution (if all of the most weighted edges from each node are connected with the
same node) but it may be a calculated risk that the programmer takes (Lin & Kernighan, 1971).
The main idea of a heuristic approach to a problem is that, although there is exponential
growth in the number of possible solutions to the problem, evaluating how good a solution
is can be done in polynomial time.

In dealing with the TSP, the most common uses of heuristic ideas work with a local search.
Similarly to the above example, the heuristic does not try to encompass every possibility of
the problem at hand; instead it attempts to apply common sense to shrink the problem to a
manageable size.

Perhaps the most-used local search heuristic that is applied to the TSP is the n-opt method
developed by Lin and Kernighan (Andresol et al., 1997; Lin & Kernighan, 1971). It simply
takes a random path and replaces n edges in it until it finds the best of those paths. This is
typically done where n is set to 2 or 3 (Lin & Kernighan, 1971). These methods were applied
to several different problems. Notably, they were able to find the optimal solutions for a 42-
city problem 4 out of 10 times and the optimal solution to a 48-city problem 2 out of 10 times
(Lin & Kernighan, 1971) (the 10 times in these were running concurrently so the optimum
solution was found in each run of the program).

2.2 Simulated annealing

Simulated annealing is a method that is based on the cooling of a physical system (Kawabe
et al., 2002; Szu & Hartley, 1987; Xavier et al.,, 2006). The general idea is that there is a
temperature (T) and a cost function (H). In our case, the cost function is the sum of the
weights of the edges in our circuit. In the beginning, there is a random solution to the
problem. At each iteration, a change is proposed to this solution and that change is
evaluated based on the cost function and the temperature. If the cost function decreases
then the change is accepted. If the cost function does not decrease then the change is
accepted or rejected based on the temperature. The higher the temperature, the better the
chance that the change will be accepted. As time progresses, the temperature decreases and
eventually there is no possibility for a change to occur without the cost function decreasing.
Using this method, researchers were able to get to within two units of the optimal cost for
problems up to a size of 100 (Xavier et al., 2006).

2.3 Neural networks

A neural network is a massively parallel distributed processor that has a natural propensity
for storing experiential knowledge and making it available for use (Beale & Jackson, 1990;
Bout & Miller, 1988; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991; Lin, 1965;
Zurada, 1992). It resembles the brain in two respects. One is that knowledge is acquired by
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the network through a learning process. Another is that interneuron connection strengths
known as synaptic weights are used to store the knowledge. Basically, a neural network is
made up of many independent units (neurons) and connections between them. The
connections are given various weights based on a “learning process”. Based on the sum of
the products of adjoining neurons and the weights of the connecting edges, each neuron
finds a value. Additionally, if the value of one neuron changes then the values of all the
adjoining neurons also change. This creates a ripple effect that can change the values of
every neuron (although it could also change none of them).

An NN can be applied to a TSP with n cities (Beale & Jackson, 1990; Bout & Miller, 1988;
Cichock & Unbehaun, 1993; Freeman & Skapura, 1991; Lin, 1965; Zurada, 1992). This is done
by creating n2 neurons. The output of each neuron (Vx;) represents whether city x is visited
as the i-th city in the sequence. It is a 1 if this is true or a 0 if it is not. Additionally, the
amount d,, is applied to the calculations as the distance between cities x and y.

2.4 Genetic algorithm

A genetic algorithm (GA) is based on the same idea as the theory of evolution (Goldberg,
1989; Miihlenbein, 1992). Basically, several random sets of parameters are applied to an
algorithm and a fitness value is returned for each. Based on these fitness values, the best sets
are mixed together and new sets are again applied to the algorithm until an optimal set of
parameters is obtained. This effect is usually obtained by breaking the genetic algorithm into
a few small parts. The main parts are the fitness function and the evolution function
(Goldberg, 1989).

The evolution function produces a string of inputs (often a string of bits that are encodings of
the input parameters) then asks the fitness function for a fitness value for that string. When
several strings have been assigned a fitness value, the evolution function takes the best strings,
mixes them together, sometimes throws in a "mutation" to the strings and then sends the
results back as new input strings. The biological analogy is to a human’s genes. In fact, an
input string is often called a chromosome and the bits in the string are referred to as genes.

The fitness function of a genetic algorithm takes in a string of inputs and runs them through
the process that is being evaluated (Miihlenbein, 1992). Based on the performance of the
inputs, the function returns a fitness value. In the case of the TSP, the fitness function
returned the total length or weight of the path found. A GA has two main parts, an
evolution function and a fitness function. In the case of the TSP, the parameters produced by
the evolution function might be the order of the nodes through which the path will go. The
fitness function in that same case would return the total length of the path found. The GA
would then compare fitness values for each input string and assign priority to the ones that
returns lower path lengths. Genetic algorithms and their applications to the TSP are
described by Goldberg (Goldberg, 1989).

2.5 Memetic algorithms

A memetic algorithm (MA) is really a combination of several different techniques (Mascato,
1989). Generally, an MA can be thought of as an algorithm that combines local search
heuristics with a crossover operator (the same type of mixing and matching that happens
with a GA’s evolution function). Despite this, the difference between an MA and a GA is
very distinct. As opposed to the fitness functions of GAs, MAs use a local search heuristic to
determine how the parameter definitions will be modified each iteration. For example, an
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MA might use simulated annealing to find a solution with some parameters and return that
value to the crossover operator just like a GA would return a value from a fitness function.
For this reason there are many other terms used to refer to MAs including hybrid genetic
algorithms, parallel genetic algorithms, and genetic local search algorithms. The research in
MAs was most notably conducted by Mascato (Mascato, 1989). Researchers such as
Miihlenbein have shown MAs to be near-optimal with sizes at least as large as a 200-city
problem.

2.6 Ant colony algorithms

Ant-based algorithms are based on studies of ant colonies in nature (Dorigo et al., 1991;
Dorigo & Gambardella, 1997). The main idea in these algorithms is that the behavior of each
individual ant produces an emergent behavior in the colony. When applied to the TSP,
individual agents (“ants”) traverse the graph of the problem, leaving a chemical
(pheromone) trail behind them. At each node it comes to, an ant must decide which edge to
take to the next node. This is done by checking each edge for pheromone concentration and
applying a probability function to the decision of which edge to choose. The higher the
concentration of pheromone, the more likely the ant is to choose that edge. Also, to avoid
stagnation in travel, the pheromone is given an evaporation rate so that in each iteration the
pheromone loses a certain percentage on each edge. This method was researched originally
by Dorigo, et al. (Dorigo et al., 1991). This method has been shown to do better than other
algorithms on random 50-city problems as well as finding the optimum solutions for
problems with up to 100 cities (Dorigo & Gambardella, 1997).

3. Hopfield model for solving TSP information

In the most general case, NNs consist of a (often very high) number of neurons, each of
which has a number of inputs, which are mapped via a relatively simple function to its
output (Beale & Jackson, 1990; Bout & Miller, 1988; Cichock & Unbehaun, 1993; Freeman &
Skapura, 1991; Lin, 1965; Zurada, 1992). Networks differ in the way their neurons are
interconnected (topology), in the way the output of a neuron determined out of its
inputs(propagation function) and in their temporal behavior(synchronous, asynchronous or
continuous).

Ever since Hopfield and Tank (Hopfield & Tank, 1985) showed that the feedback neural
network could be possibly used to solve combinatorial optimization problems such as the
TSP, great efforts have been made to improve the performance. Most of the early work
focused on ways to find valid solutions because of the disappointing results reported
(Freeman & Skapura, 1991). While some researchers tried to find more appropriate
parameters in the energy function (Aiyer et al.,, 1990; Baba, 1989; Biro et al., 1996; Burke,
1994; Gall & Zisssimopoulos, 1999; Gee & Prager, 1995; Hegde et al., 1988; Hopfield & Tank,
1985; Huang, 2005; Sharbaro, 1994; Wilson & Pawley, 1988), others hoped to get better
energy functions (Baba, 1989). To date, research work has been extended to every aspect of
the Hopfield model (Aarts & Laarhoven, 1985; Abe et al., 1992; Aiyer et al., 1990; Baba, 1989;
Biro et al., 1996; Burke, 1994; Hegde et al., 1988; Hopfield & Tank, 1985; Sharbaro, 1994;
Wilson & Pawley, 1988), and it is now clear how to correctly map problems onto the
network so that invalid solutions never emerge. As for the quality of obtained solutions,
while there are indications that the Hopfield model is solely suitable for solving Euclidean
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TSPs of small size (Wilson & Pawley, 1988), some researchers argue it is unreasonable to
take the TSP as the benchmark to measure the optimization ability of the Hopfield model
(Sharbaro, 1994). According to that, the applicability of the Hopfield model to solve other
optimization problems should not be ignored. By now, the Hopfield model has been
successfully applied to many fields.

A key issue in the application of the Hopfield model is the choice of the weightsl in the
energy function. Previous work addressing this problem is only concerned with the occasion
for solving the TSP. The most successful and earliest work was conducted by Aiyer et al.
(Aiyer et al.,, 1990). Using the eigenvalue analysis, they obtained values for the weights
which make the network converge to very good solutions. Other works concerning on this
problem include the technique of suppressing spurious states (Abe, 1993).

3.1 Hopfield model

Hopfield described a new way of modeling a system of neurons capable of performing
computational tasks (Cichock & Unbehaun, 1993; Zurada, 1992). The Hopfield model
emerged, initially as a means of exhibiting a content addressable memory (CAM). A general
CAM must be capable of retrieving a complete item from the system’s memory when
presented with only sufficient partial information. Hopfield showed that his model was not
only capable of correctly yielding an entire memory from any portion of sufficient size, but
also included some capacity for generalization, familiarity recognition, categorization, error
correction, and time-sequence retention (Hopfield & Tank, 1985).

The Hopfield model, as described in (Beale & Jackson, 1990; Zurada, 1992), comprises a fully
interconnected system of n computational elements or neurons. Fig. 1 is a model of artificial
neural network.

Vi
Vo
V3
gl.) —»V
Wighted Sum Activation
Function
VN

Fig. 1. Model of artificial neural network

In Fig. 1, Hopfield’s original notation has been altered where necessary for consistency. The
strength of the connection, or weight, between neuron i and neuron j is determined by Tj;,
which may be positive or negative depending on whether the neurons act in an excitatory or
inhibitory manner (Freeman & Skapura, 1991). The internal state of each neuron U; is
equivalent to the weighted sum of the external states of all connecting neurons. The external
state of neuron i is given by Vi, with 0 < V; <1. An external input, [i, to each neuron i is also
incorporated. The relationship between the internal state of a neuron and its output level in
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this continuous Hopfield model is determined by an activation function g;(l;), which is
bounded below by 0 and above by 1.
Then the dynamics of each neuron can be given by a system of the differential eq. (1).

au; _ U; _ oA
F_Z]-Tijvj_T"'Ii/ Uy=g (V) @

Where is a time constant, Ii is the external input(bias) of neuron i, and V; and U; are the
output and input of neuron i. The relation g; between the input U; and the output V; is
characterized by a monotonically increasing function such as a sigmoid, or a piecewise
linear function.

Hopfield model is a dynamic network (Beale & Jackson, 1990; Zurada, 1992), which iterates
to converge from an arbitrary input state. The Hopfield model works as minimizing an
energy function. The Hopfield model is single layer network which are fully interconnected.
It is a weighted network where the output of the network is fed back and there are weights
to each of this link. The fully connected Hopfield model is shown in following Fig. 2.

Fig. 2. Fully connected Hopfield model for 5-city TSP

As long as the neuron has a sufficiently high gain, the first term in (1) can be neglected. In
that case, the Hopfield model has the Lyapunov energy function of eq. (2)

1
E=—2 2 2 ViliV; -2, 1V, @
And moreover we may note the following relations hold:

du __OE 19 3)
dt oV, dt

1
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This means that the energy function monotonically decreases with the evolution of the
network's state, and when the network reaches the final stable state, the energy function
falls into a local minimum. The general method of applying the Hopfield model to solve
optimization problems is to map the objectives and constraints involved in the problem into
an energy function, and then obtain the neuron's dynamic equation by means of eq. (3).

3.2 Hopfield model to solve the TSP

The TSP is concerned with how to find a shortest closed path that travels each of n cities
exactly once. In terms of the geometric structure of the distribution of the cities and the
symmetry of distances between a pair of cities, the TSP can be classified into several
categories (Aiyer et al., 1990; Baba, 1989; Biro et al., 1996; Burke, 1994; Gee & Prager, 1995;
Hegde et al., 1988; Sharbaro, 1994; Wilson & Pawley, 1988).

The Hopfield model for the TSP is built of n * n neurons. The network consists of n rows,
containing n neurons according to Fig. 3.

City -

Fig. 3. The division of the network

All neurons have two subscripts. The first one defines the city number and the second one
the position of the city in the tour. If a neuron in the stable state of the network, has the
output signal V,; = 1, then it means that the city x should be visited in the stage i of the tour
(Beale & Jackson, 1990; Zurada, 1992).

The energy function for mapping the TSP proposed by Hopfield is described by eq. (4)

2

A B C

E=2 222 VeV 52202 VeV +—[ZZVM —n]
2 x i j#i 2 i x y#x 2 x i

@)
D
+ EZny;txZidx,ny,i(vy,f—l + Vy,f+1)

Where d,,is the distance from city x to city y, and the scaling parameters A, B, C, D are
positive constants. The first and second term represents the constraint that at most one
neuron of the array V is on fire at each row and column, respectively. The third term
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represents the constraint that the total number of neurons on fire is exactly n. The fourth
term measures the tour length corresponding to a given tour, where the two terms inside the
parenthesis stand for two neighboring visiting cities of V,; implying the tour length is
calculated twice. The energy function reaches a local minimum when the network is at a
valid tour state.

With this formulation, the Hopfield model has the connection strengths and external input
given as eq. (5) and eq. (6)

T,

xi,yi

=—{A6, ,(1-6,)+B(1-5,,)5, ;+C+D(S, ;1 +8, ;1) , | 5)

I..=Cn (6)

x,i
Where §; ; is equal to 1(i # j) or 0 (otherwise).

It is known that the Hopfield model formulation does not work well for the TSP since the
network often converges to infeasible solutions. It has been widely recognized that the
formulation is not ideal, even for problems other than the TSP. The nature of the energy
function that the method utilizes causes infeasible solutions to occur most of the time. A
number of penalty parameters which are an initial values of weights and neurons and the
activation function, need to be fixed before each simulation of the network, yet the values of
these parameters that will enable the network to generate valid solutions are unknown. The
problem of optimally selecting these parameters is not trivial, and much work has been done
to try to facilitate this process (Abe, 1993, 1996; Hegde et al., 1988; Lai & Coghill, 1994). Many
other researchers believed that the Hopfield model’s energy function needed to be modified
before any progress would be made, and considerable effort has also been spent in this area.

4. Initial value estimation by stochastic approximation

We consider the following problem of global unconstrained optimization: minimize the
multiextremal function f(x)eRi, xeRn, i.e.

min f(x) (7)

xeR"
A multiextremal function can be represented as a superposition of uniextremal function(i.e.,
having just one minimum) and other multiextremal function that add some noise to the
uniextremal function. The objective of smoothing can be visualized as filtering out the noise
and performing minimization on the smoothed uniextremal function, in order to reach the
global minimum. In general, since the minimum of the smoothed uniextremal function does
not coincide with the global function minimum, a sequence of minimization runs is required
to zero in the neighborhood of global minimum (Styblinski & Tang, 1990). The smoothing
process is performed by averaging f(x) over some region of the parameter space R" using a
proper weighting (or smoothing) function h"(x).
Let us introduce a vector of random perturbations 7eR?, and add 7 to x. The convolution
function f(x, P) is created as follows (Styblinski & Tang, 1990).

f @B)=[ "B f(x=mdn ®



166 Traveling Salesman Problem, Theory and Applications

Hence:

f @B =Elf(x-m] ©)

Where f(x, f) is the smoothed approximation to original function f(x), and the kernel
function h*(y, p) is the probability density function(pdf) used to sample 7. f controls the
dispersion of h"(y, p), i.e. the degree of f(x), smoothing (Styblinski & Tang, 1990).

Note that f(x, f) can be regarded as an averaged version of f(x), weighted by h"(, p). E;[f(x-
1)] is the expectation with respect to the random variable 7.

Therefore an unbiased estimator f7(x, f) is the average:

JCT W ATEE) (10

Where 1) is sampled with the pdf h*(1;, B).
The kernel function #"(;, ) should have the following properties (Styblinski & Tang, 1990):

A 1
W, 8)=(— 11
(1.5) (ﬁ”) (1)

is piecewise differentiable with respect to 7.

o limg_o h"(y, p) = 6(n) (Dirac delta function)

o N'(n, P)isapdf.

Under above the conditions, limg_o f(x, B) = [r" 6(17) f(x - 1) dny = f(x - 0) = f(x). Several pdfs
fulfill above conditions, such as Gaussian, uniform, and Cauchy pdfs.

Smoothing is able to eliminate the local minima of f(x, f), if f is sufficiently large. If § — 0,
then f(x, f) — f(x). This should actually happen at the end of optimization to provide
convergence to the true function minimum (Styblinski & Tang, 1990). Formally, the
optimization problem can be written as:

min £ (x, 8) (12)
xeR"

with f — 0 as x — x*. Where x"is the global minimum of original function f(x). One class of
methods to solve the modified problem Eq. (12), to be called large sample(LS) stochastic
methods, can be characterized as follows: for each new point x, a large number of points
sampled with the pdf h"(y, B) (Eq. (11)) is used to estimate f(x, ) and its gradient V,f(x, ).
The number of samples used should be sufficiently large to give small errors of the relevant
estimators. Optimization and averaging are separated in LS methods. This is very inefficient
(Styblinski & Tang, 1990).

Optimization and averaging can be combined into one iterative process, leading to much
more efficient small-sample (SS) methods of stochastic programming. A large class of SS
methods, called stochastic approximation, is applied to the function minimization or
maximization (Styblinski & Tang, 1990). Their basic principle of operation is that only a
small number of samples are used in each iteration to find the necessary estimators, but all
the information is averaged over many steps.

In function minimization, SA methods create stochastic equivalent to the gradient methods
of nonlinear programming. The advanced algorithms are proposed to estimate the gradient
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Vif(x, B). As the algorithm progresses, f§ — 0, reducing the smoothing degree of the f(x),
and providing convergence to the true minimum. The SA algorithm implements a well-
defined approximation to the conjugate gradient. The value x based on the smoothed
function f(x, p) is updated, as following,

& = Vi £ (x B)
Sy = STEP / [ [
d = (1-pe)dia + P & (0 p <1) (13)

Pr = (1—/’1#1) / (1+ pk—l_R)
Xgp1 = X — Sy dy

Where k(1,2,..., MAXITER) is the number of iterations, ¢ is the gradient, S is a step size, d is
the search direction, p is the gradient averaging coefficient of f(x, f), and R(0<R<I) is a
constant controlling the rate of change of px. Therefore, we can find the global minimum of
original function by iteratively performing one cycle of the SA optimization as § — 0. This is
called the stochastic approximation with smoothing (SAS) (Styblinski & Tang, 1990).

Fig. 4 is the flow chart of SA algorithm. In this Fig. 4, each new value x is performed in the
direction S dy, where di is a convex combination of the previous direction di; and a new
gradient &. Especially R is responsible for the rate of change of pj, that is, it modifies the
search direction di and provides a suitable amount of inertia of gradient direction.

(  Stat )
Y

Set B, x,, k=0

Set pameters :
MAXITER, STEP,
h(n), EPS

Perform Eq.(7) k = k+1

K=MAXITER or

Sk dk < EPS
?

( Stop )

Fig. 4. Flowchart of stochastic approximation
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Fig. 5 is the flow charts of SAS algorithm that repeatedly performs the SA algorithm
according to a sequence: {fp, f1, ...} — 0. We can get the global minimum by using the SAS
algorithm based on specific sequences {f} and {NMAX]}. It turned out that the final solutions
were not very sensitive to a specific choice of theses sequences based on rough heuristic
criteria such as: low problem dimensionality requires a smaller number of function
evaluations, f should be large at the beginning of optimization (to determine the
approximate position of the global minimum), and small at the end of optimization (for
precision) (Styblinski & Tang, 1990).

We consider the function f(x) = x4 - 16x2 + 5x as an example (Styblinski & Tang, 1990). This
function is continuous and differentiable, and it has two distinct minima as shown in Fig. 6.
The smoothed f(x, p) is plotted to different values of § — 0({5, 4, 3, 2, 1, 0.001, 0.0}) and
MAXITER=100 for uniform pdf. We can show that minimize the smoothed function f(x, f)
withf —0asx — x".

As shown in Fig. 6, the smoothed functional f(x, ) is an uniextremal function having one
minimum x; from f =5 to f=3. That is, smoothing is able to eliminate the local minima of
f(x, p), if B is sufficiently large. If § — 0, then f(x, f) = f(x). We can also find out that the
minimum x; of uniextremal function inclines toward the global minimum x* of the original
function f(x) in Fig. 6.

On the other hand, the simulated annealing is often explained in terms of the energy that
particle has at any given temperature (Kwabe et al., 2002; Szu & Hartley, 1987; Xavier et al.,
2006). A similar explanation can be given to the smoothed approximation approach
discussed. Perturbing x can be viewed as adding some random energy to a particle which x

( Stat )

/ Set =B, x=x,, N=0 /

v

Set pameters :

B:Bn({BO!B1 ’ “.}->0)1
NMAX

f

Perform SA. Algorithm

o

Yes

( Stop )

Fig. 5. Flowchart of stochastic approximation with smoothing

n = n+1,
B=Bn(Br>Bn+1)
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Fig. 6. Smoothed function f(x, f) to p values

represents. The larger the f, the larger the energy (i.e., the larger the temperature in the
simulated annealing), and also the broader the range of x changes. Reducing f for the
smoothed approximation corresponds to temperature reduction in the simulated annealing.
Although the global minimum can be found by repeatedly applying SA according to a
sequence: {f, f1, ...} — 0, there are a few problems as follows: a specific sequences and a
parameters should be determined heuristically in each iterations, and, due to its stochastic
process, its convergence speed is rather slower than that of the deterministic algorithm and
sometimes results in approximate solution.

For this reason, SAS is the stochastic algorithm as the simulated annealing. The stochastic
algorithms guarantee that converges to the global minimum, but their convergence speed is
lower than that of the deterministic algorithms. In order to solve the limitation of
convergence speed, we present a new optimization method that combines advantages of
both the stochastic algorithm and the deterministic algorithm. That is, we propose a hybrid
method of SA algorithm and gradient descent algorithm. SA algorithm is previously applied
to estimate an initial value leading to the global minimum, and the gradient descent
algorithm is also applied for high-speed convergence. In Fig. 6, if we utilize the minimum x;
as an initial value of gradient descent algorithm, the global minimum of original function
can be quickly and correctly looked for rather than that find by repeatedly applying the SA
according to a sequences {f}.

Fig. 7 is the flow chart of proposed method. If the other minima exist between x; (minimum
of original function by using the gradient descent algorithm) and global minimum x*, x* can
be find out by repeatedly applying the proposed method.

5. Neural network optimization by the proposed method

The basic idea in this paper is that, in applying the SA, if we initially choose a large f, we
can get an uniextremal smoothed function f(x, ), the minimum value x; of which can
approximately point out the hill side value of the global minimum well. Comparing
optimization of functions with NNs, minimization of the function f(x) to variable x are
much the same as the minimization of energy function E(V) to neuron outputs V.
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Fig. 7. Flowchart of the proposed method

Accordingly, we apply the proposed method to optimize the neural network. The update
rule of Hopfield model is used in optimization as a gradient descent algorithm and operated
in batch mode. SA algorithm is previously applied to estimate an initial neuron outputs
leading to the global minimum, and then the update rule of Hopfield model is also applied
for high-speed convergence. The neural network will be quickly optimized and clearly
guaranteed that converges to a global minimum in state space if we go about it like this.
Therefore, the proposed hybrid algorithm using the SA and the update rule of Hopfield
model can be detailed as follows:
Step 1. Define the energy function E(V) for the given problems.

E(V) = - (1/2)%; 5 T; V; V, - X, 1V, (14)
Where Tj; denotes the weight value connecting the output of the j neuron with the input of
the i neuron, I; is the bias of i neuron, V; and V; are the outputs of i and j neurons,
respectively.
Step 2. Calculate the smoothed gradient VyvE'(V, §) over the E(V).

VVE (V. B)=(1/2)(B/m[E(V + Bn) ~E(V = p)] = =1/ 2, X Ty (Vi + V) =* X,
VIV ID I RS IALT) I IAAESIA]

Step 3. Set the randomized initial neuron outputs Vo.

(15)
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Step 4. Estimate the neuron outputs by performing SA with a large f according to the
gradient VvE(V, p).
Perform the conventional update rule of Hopfield model using the neuron outputs
estimated in Step 4.
If the energy function E(V) value by the step 5 is less than a tolerance limit EPV,

then stop. Otherwise go to step 4.

Step 5.

Step 6.

6. Experimental results and discussions

The proposed method has been applied to the 7- and 10-city TSPs. TSP is one of the
combinatorial optimization problems. For an n-city tour, there are n!/2n distinct circuits to
consider (Freeman & Skaoura, 1991).

Pentium [V-2.8G CPU has been used in experiments. The initial values of neuron outputs
are randomly chosen in [-0.5 ~ +0.5] by using the random seeds, the output function in
response to the net input of neuron is sigmoid function, and then the gain is chosen in 0.5.
The stopping rule is used in each experiment so as to terminate the calculation if all the
outputs do not change any more or the energy function E(V) becomes less than the tolerance
limit EPV=0.0001. The initial dispersion control parameter f;=3.0 and the smoothing
function h(n) with uniform pdf are chosen, respectively.

The experimental results for each example are shown in Table 1 and 4, where Nuy, and Nsa are
the number of iterations of Hopfield model and SA algorithm, respectively. E; is the final
energy value in termination. fgy and tpy are the CPU time in [sec] of Hopfield model and
proposed algorithm, respectively. In Table 2 and 4, x~ and ¢ are mean and standard deviation.
Fig. 8 shows the 7- and 10-city coordinates that are randomly generated, respectively. A (x,
y) coordinates are the 2-dimensional city positions.

Table 1 shows the experimental results of 7-city TSP to 10 random seeds. In case of Hopfield
model, the constraints are satisfied at random seeds 5, 20, and 30, but the stopping rule is
only satisfied in random seeds 5 and 20. The proposed method satisfies the stopping rule to
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Fig. 8. 7-city (a) and 10-city (b) coordinates
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Random Hopfield model Proposed method
seeds | Naw | E | tiv [NswNaw| Ec |t
0 241 10.00257[ 0.08 1,287 | 0.0001 [ 0.05
3 266 [0.00217| 0.07 1,287 | 0.0001 | 0.05
5 298 10.0001 [ 0.04 1,287 | 0.0001 | 0.05
8 153 [0.0023%| 0.04 1,287 | 0.0001 [ 0.05

10 325 10.00227[ 0.11 1,287 | 0.0001 0.05
15 212 10.0018"| 0.06 1,287 | 0.0001 0.05
20 337 10.0001 | 0.06 1,287 | 0.0001 0.05
30 315 [0.00147[ 0.05 1,287 | 0.0001 0.05
50 182 10.0024"| 0.03 1,287 | 0.0001 0.05
100 248 0.00197| 0.08 1,287 | 0.0001 0.05

Table 1. Experimental results of 7-city TSP( #: non-convergence)

all 10 trials. The Hopfield model shows the faster convergence than the proposed method in
case of the random seed 5. This result shows that the deterministic rule of steepest descent
may converge fast if the initial point is happen to be set near the global minimum. But there
are few systematic methods that guarantee this initial point setting. The convergence rate by
proposed method is 5 times and its convergence speed (time) is some higher than that of
Hopfield model in case of successful convergence. We can also know that one cycle of SA
takes more time than that of Hopfield model. Compared with the update rule of Hopfield
model, SA is by reason of stochastic algorithm. But the SA algorithm is executed by a
number of iteration in the proposed method.

Table 2 represents the experimental results of 7-city TSP to 100 trials. Especially, Table 2
shows the experimental results that satisfy the stopping rule. N, ¢, and P, are the number of
iterations, the CPU time, and convergence ratio. As seen, the convergence rate by the
proposed method is about 2.3 times and its convergence speed (time) is about 1.2 times
higher than that of Hopfield model, respectively. The experimental results show that the
convergence performances of proposed method