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Preface

Computational complexity theory is a core branch of study in theoretical computing 
science and mathematics, which is generally concerned with classifying computational 
problems with their inherent diffi  culties. One of the core open problems is the resolu-
tion of P and NP problems. These are problems which are very important, however, for 
which no effi  cient algorithm is known. The Traveling Salesman Problem (TSP) is one of 
these problems, which is generally regarded as the most intensively studied problem 
in computational mathematics. 

Assuming a traveling salesman has to visit a number of given cities, starting and end-
ing at the same city. This tour, which represents the length of the travelled path, is the 
TSP formulation. As the number of cities increases, the determination of the optimal 
tour (in this case a Hamiltonian tour), becomes inexorably complex. A TSP decision 
problem is generally classi ed as NP-Complete problem. 

One of the current and best-known approaches to solving TSP problems is with the 
application of Evolutionary algorithms. These algorithms are generally based on natu-
rally occurring phenomena in nature, which are used to model computer algorithms. 
A number of such algorithms exists; namely, Arti cial Immune System, Genetic Algo-
rithm, Ant Colony Optimization, Particle Swarm Optimization and Self Organising 
Migrating Algorithm.  Algorithms based on mathematical formulations such as Dif-
ferential Evolution, Tabu Search and Scatt er Search have also been proven to be very 
robust. 

Evolutionary Algorithms generally work on a pool of solutions, where the underlying 
paradigm att empts to obtain the optimal solution. These problems are hence classi ed 
as optimization problems. TSP, when resolved as an optimization problem, is classi ed 
as a NP-Hard problem.

This book is a collection of current research in the application of evolutionary algo-
rithms and other optimal algorithms to solving the TSP problem. It brings together 
researchers with applications in Arti cial Immune Systems, Genetic Algorithms, Neu-
ral Networks and Diff erential Evolution Algorithm.  Hybrid systems, like Fuzzy Maps, 
Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book 
presents both theoretical as well as practical applications of TSP, which will be a vital 
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tool for researchers and graduate entry students in the  eld of applied Mathematics, 
Computing Science and Engineering.

Donald Davendra

Faculty of Electrical Engineering and Computing Science 
Technical University of Ostrava 

Tr. 17. Listopadu 15, Ostrava
Czech Republic

donald.davendra@vsb.cz
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Traveling Salesman Problem: 
An Overview of Applications, Formulations,  

and Solution Approaches 
Rajesh Matai1, Surya Prakash Singh2 and Murari Lal Mittal3 

1Management Group, BITS-Pilani 
2Department of Management Studies, Indian Institute of Technology Delhi, New Delhi 

3Department of Mechanical Engineering, Malviya National Institute of Technology Jaipur,  
India 

1. Introduction 
1.1 Origin 
The traveling salesman problem (TSP) were studied in the 18th century by a mathematician 
from Ireland named Sir William Rowam Hamilton and by the British mathematician named 
Thomas Penyngton Kirkman. Detailed discussion about the work of Hamilton & Kirkman 
can be seen from the book titled Graph Theory (Biggs et al. 1976). It is believed that the 
general form of the TSP have been first studied by Kalr Menger in Vienna and Harvard. The 
problem was later promoted by Hassler, Whitney & Merrill at Princeton.  A detailed 
dscription about the connection between Menger & Whitney, and the development of the 
TSP can be found in (Schrijver, 1960). 

1.2 Definition 
Given a set of cities and the cost of travel (or distance) between each possible pairs, the TSP, 
is to find the best possible way of visiting all the cities and returning to the starting point 
that minimize the travel cost (or travel distance). 

1.3 Complexity 
Given n is the number of cities to be visited, the total number of possible routes covering all 
cities can be given as a set of feasible solutions of the TSP and is given as (n-1)!/2.  

1.4 Classification 
Broadly, the TSP is classified as symmetric travelling salesman problem (sTSP), asymmetric 
travelling salesman problem (aTSP), and multi travelling salesman problem (mTSP). This 
section presents description about these three widely studied TSP.  
sTSP: Let { }1 ,......, nV v v= be a set of cities, ( ){ }, : ,A r s r s V= ∈ be the edge set, and 

rs srd d= be a cost measure associated with edge ( ),r s A∈ . 
The sTSP is the problem of finding a minimal length closed tour that visits each city once. In 
this case cities iv V∈  are given by their coordinates ( ),i ix y  and rsd  is the Euclidean 
distance between r and s then we have an Euclidean TSP. 
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aTSP: If rs srd d≠ for at least one ( ),r s then the TSP becomes an aTSP. 
mTSP: The mTSP is defined as: In a given set of nodes, let there are m salesmen located at a 
single depot node. The remaining nodes (cities) that are to be visited are intermediate nodes. 
Then, the mTSP consists of finding tours for all m salesmen, who all start and end at the 
depot, such that each intermediate node is visited exactly once and the total cost of visiting 
all nodes is minimized. The cost metric can be defined in terms of distance, time, etc. 
Possible variations of the problem are as follows: Single vs. multiple depots: In the single 
depot, all salesmen finish their tours at a single point while in multiple depots the salesmen 
can either return to their initial depot or can return to any depot keeping the initial number 
of salesmen at each depot remains the same after the travel. Number of salesmen: The number 
of salesman in the problem can be fixed or a bounded variable. Cost: When the number of 
salesmen is not fixed, then each salesman usually has an associated fixed cost incurring 
whenever this salesman is used. In this case, the minimizing the requirements of salesman 
also becomes an objective. Timeframe: Here, some nodes need to be visited in a particular 
time periods that are called time windows which is an extension of the mTSP, and referred 
as multiple traveling salesman problem with specified timeframe (mTSPTW). The 
application of mTSPTW can be very well seen in the aircraft scheduling problems. Other 
constraints: Constraints can be on the number of nodes each salesman can visits, maximum 
or minimum distance a salesman travels or any other constraints. The mTSP is generally 
treated as a relaxed vehicle routing problems (VRP) where there is no restrictions on 
capacity. Hence, the formulations and solution methods for the VRP are also equally valid 
and true for the mTSP if a large capacity is assigned to the salesmen (or vehicles). However, 
when there is a single salesman, then the mTSP reduces to the TSP (Bektas, 2006).  

2. Applications and linkages 
2.1 Application of TSP and linkages with other problems 
i. Drilling of printed circuit boards 
A direct application of the TSP is in the drilling problem of printed circuit boards (PCBs) 
(Grötschel et al., 1991). To connect a conductor on one layer with a conductor on another 
layer, or to position the pins of integrated circuits, holes have to be drilled through the 
board. The holes may be of different sizes. To drill two holes of different diameters 
consecutively, the head of the machine has to move to a tool box and change the drilling 
equipment. This is quite time consuming. Thus it is clear that one has to choose some 
diameter, drill all holes of the same diameter, change the drill, drill the holes of the next 
diameter, etc. Thus, this drilling problem can be viewed as a series of TSPs, one for each hole 
diameter, where the 'cities' are the initial position and the set of all holes that can be drilled 
with one and the same drill. The 'distance' between two cities is given by the time it takes to 
move the drilling head from one position to the other. The aim is to minimize the travel time 
for the machine head. 
ii. Overhauling gas turbine engines 
(Plante et al., 1987) reported this application and it occurs when gas turbine engines of 
aircraft have to be overhauled. To guarantee a uniform gas flow through the turbines there 
are nozzle-guide vane assemblies located at each turbine stage. Such an assembly basically 
consists of a number of nozzle guide vanes affixed about its circumference. All these vanes 
have individual characteristics and the correct placement of the vanes can result in 
substantial benefits (reducing vibration, increasing uniformity of flow, reducing fuel 
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consumption). The problem of placing the vanes in the best possible way can be modeled as 
a TSP with a special objective function. 
iii. X-Ray crystallography 
Analysis of the structure of crystals (Bland & Shallcross, 1989; Dreissig & Uebach, 1990) is an 
important application of the TSP. Here an X-ray diffractometer is used to obtain information 
about the structure of crystalline material. To this end a detector measures the intensity of X-
ray reflections of the crystal from various positions. Whereas the measurement itself can be 
accomplished quite fast, there is a considerable overhead in positioning time since up to 
hundreds of thousands positions have to be realized for some experiments. In the two 
examples that we refer to, the positioning involves moving four motors. The time needed to 
move from one position to the other can be computed very accurately. The result of the 
experiment does not depend on the sequence in which the measurements at the various 
positions are taken. However, the total time needed for the experiment depends on the 
sequence. Therefore, the problem consists of finding a sequence that minimizes the total 
positioning time. This leads to a traveling salesman problem. 
iv. Computer wiring 
(Lenstra & Rinnooy Kan, 1974) reported a special case of connecting components on a 
computer board. Modules are located on a computer board and a given subset of pins has to 
be connected. In contrast to the usual case where a Steiner tree connection is desired, here 
the requirement is that no more than two wires are attached to each pin. Hence we have the 
problem of finding a shortest Hamiltonian path with unspecified starting and terminating 
points. A similar situation occurs for the so-called testbus wiring. To test the manufactured 
board one has to realize a connection which enters the board at some specified point, runs 
through all the modules, and terminates at some specified point. For each module we also 
have a specified entering and leaving point for this test wiring. This problem also amounts 
to solving a Hamiltonian path problem with the difference that the distances are not 
symmetric and that starting and terminating point are specified. 
v. The order-picking problem in warehouses 
This problem is associated with material handling in a warehouse (Ratliff & Rosenthal, 
1983). Assume that at a warehouse an order arrives for a certain subset of the items stored in 
the warehouse. Some vehicle has to collect all items of this order to ship them to the 
customer. The relation to the TSP is immediately seen. The storage locations of the items 
correspond to the nodes of the graph. The distance between two nodes is given by the time 
needed to move the vehicle from one location to the other. The problem of finding a shortest 
route for the vehicle with minimum pickup time can now be solved as a TSP. In special 
cases this problem can be solved easily, see (van Dal, 1992) for an extensive discussion and 
for references. 
vi. Vehicle routing  
Suppose that in a city n mail boxes have to be emptied every day within a certain period of 
time, say 1 hour. The problem is to find the minimum number of trucks to do this and the 
shortest time to do the collections using this number of trucks. As another example, suppose 
that n customers require certain amounts of some commodities and a supplier has to satisfy 
all demands with a fleet of trucks. The problem is to find an assignment of customers to the 
trucks and a delivery schedule for each truck so that the capacity of each truck is not 
exceeded and the total travel distance is minimized. Several variations of these two 
problems, where time and capacity constraints are combined, are common in many real-
world applications. This problem is solvable as a TSP if there are no time and capacity 
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constraints and if the number of trucks is fixed (say m ). In this case we obtain an m -
salesmen problem. Nevertheless, one may apply methods for the TSP to find good feasible 
solutions for this problem (see Lenstra & Rinnooy Kan, 1974).  
vii. Mask plotting in PCB production  
For the production of each layer of a printed circuit board, as well as for layers of integrated 
semiconductor devices, a photographic mask has to be produced. In our case for printed 
circuit boards this is done by a mechanical plotting device. The plotter moves a lens over a 
photosensitive coated glass plate. The shutter may be opened or closed to expose specific 
parts of the plate. There are different apertures available to be able to generate different 
structures on the board. Two types of structures have to be considered. A line is exposed on 
the plate by moving the closed shutter to one endpoint of the line, then opening the shutter 
and moving it to the other endpoint of the line. Then the shutter is closed. A point type 
structure is generated by moving (with the appropriate aperture) to the position of that 
point then opening the shutter just to make a short flash, and then closing it again. Exact 
modeling of the plotter control problem leads to a problem more complicated than the TSP 
and also more complicated than the rural postman problem. A real-world application in the 
actual production environment is reported in (Grötschel et al., 1991).  

2.2 Applications of mTSP and connections with other problems 
This section is further divided into three. In the first section, the main application of the 
mTSP is given. The second part relates TSP with other problems. The third part deals with 
the similarities between the mTSP with other problems (the focus is with the VRP). 

2.2.1 Main applications 
The main apllication of mTSP arises in real scenario as it is capacble to handle multiple 
salesman. These situations arise mostly in various routing and scheduling problems. Some 
reported applications in literature are presented below. 
i. Printing press scheduling problem: One of the major and primary applications of the 

mTSP arises in scheduling a printing press for a periodical with multi-editions. Here, 
there exist five pairs of cylinders between which the paper rolls and both sides of a page 
are printed simultaneously. There exist three kind of forms, namely 4-, 6- and 8-page 
forms, which are used to print the editions. The scheduling problem consists of 
deciding which form will be on which run and the length of each run. In the mTSP 
vocabulary, the plate change costs are the inter-city costs. For more details papers by 
Gorenstein (1970) and Carter & Ragsdale (2002) can be referred.  

ii. School bus routing problem: (Angel et al., 1972) investigated the problem of 
scheduling buses as a variation of the mTSP with some side constraints. The objective of 
the scheduling is to obtain a bus loading pattern such that the number of routes is 
minimized, the total distance travelled by all buses is kept at minimum, no bus is 
overloaded and the time required to traverse any route does not exceed a maximum 
allowed policy. 

iii. Crew scheduling problem: An application for deposit carrying between different 
branch banks is reported by (Svestka & Huckfeldt, 1973). Here, deposits need to be 
picked up at branch banks and returned to the central office by a crew of messengers. 
The problem is to determine the routes having a total minimum cost. Two similar 
applications are described by (Lenstra & Rinnooy Kan , 1975 and Zhang et al., 1999). 
Papers can be referred for delaited analysis. 
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iv. Interview scheduling problem: (Gilbert & Hofstra, 1992) found the application of 
mTSP, having multiperiod variations, in scheduling interviews between tour brokers 
and vendors of the tourism industry. Each broker corresponds to a salesman who must 
visit a specified set of vendor booths, which are represented by a set of T cities. 

v. Hot rolling scheduling problem: In the iron and steel industry, orders are scheduled 
on the hot rolling mill in such a way that the total set-up cost during the production can 
be minimized. The details of a recent application of modeling such problem can be read 
from (Tang et al., 2000). Here, the orders are treated as cities and the distance between 
two cities is taken as penalty cost for production changeover between two orders. The 
solution of the model will yield a complete schedule for the hot strip rolling mill. 

vi. Mission planning problem: The mission planning problem consists of determining an 
optimal path for each army men (or planner) to accomplish the goals of the mission in 
the minimum possible time. The mission planner uses a variation of the mTSP where 
there are n planners, m goals which must be visited by some planners, and a base city to 
which all planners must eventually return. The application of the mTSP in mission 
planning is reported by (Brummit & Stentz, 1996; Brummit & Stentz, 1998; and Yu et al., 
2002). Similarly, the routing problems arising in the planning of unmanned aerial 
vehicle applications, investigated by (Ryan et al., 1998), can also be modelled as  mTSP. 

vii. Design of global navigation satellite system surveying networks: A very recent and an 
interesting application of the mTSP, as investigated by (Saleh & Chelouah, 2004) arises in 
the design of global navigation satellite system (GNSS) surveying networks. A GNSS is a 
space-based satellite system which provides coverage for all locations worldwide and is 
quite crucial in real-life applications such as early warning and management for disasters, 
environment and agriculture monitoring, etc. The goal of surveying is to determine the 
geographical positions of unknown points on and above the earth using satellite 
equipment. These points, on which receivers are placed, are co-ordinated by a series of 
observation sessions. When there are multiple receivers or multiple working periods, the 
problem of finding the best order of sessions for the receivers can be formulated as an 
mTSP. For technical details refer (Saleh & Chelouah, 2004). 

2.2.2 Connections with other problems 
The above-mentioned problems can be modeled as an mTSP. Apart from these above 
metioned problmes, mTSP can be also related to other problems. One such example is 
balancing the workload among the salesmen and is described by (Okonjo-Adigwe, 1988). 
Here, an mTSP-based modelling and solution approach is presented to solve a workload 
scheduling problem with few additional restrictions. Paper can be referred for detailed 
description and analysis. Similalry, (Calvo & Cordone, 2003; Kim & Park, 2004) investigated 
overnight security service problem. This problem consists of assigning duties to guards to 
perform inspection duties on a given set of locations with subject to constraint such as 
capacity and timeframe. For more comprehensive review on various application of mTSP 
authors advise to refer papers by (Macharis & Bontekoning, 2004; Wang & Regan, 2002; 
Basu et al., 2000). 

2.2.3 Connections with the VRP 
mTSP can be utilized in solving several types of VRPs. (Mole et al., 1983) discuss several 
algorithms for VRP, and present a heuristic method which searches over a solution space 
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formed by the mTSP. In a similar context, the mTSP can be used to calculate the minimum 
number of vehicles required to serve a set of customers in a distance-constrained VRP 
(Laptore et al., 1985; Toth & Vigo, 2002). The mTSP also appears to be a first stage problem 
in a two-stage solution procedure of a VRP with probabilistic service times. This is discussed 
further by (Hadjiconstantinou & Roberts, 2002). (Ralphs, 2003) mentions that the VRP 
instances arising in practice are very hard to solve, since the mTSP is also very complex. This 
raises the need to efficiently solve the mTSP in order to attack large-scale VRPs. The mTSP is 
also related to the pickup and delivery problem (PDP). The PDP consists of determining the 
optimal routes for a set of vehicles to fulfill the customer requests (Ruland & Rodin, 1997). If 
the customers are to be served within specific time intervals, then the problem becomes the 
PDP with time windows (PDPTW). The PDPTW reduces to the mTSPTW if the origin and 
destination points of each request coincide (Mitrović-Minić et al., 2004).  

3. Mathematical formulations of TSP and mTSP 

The TSP can be defined on a complete undirected graph ( ),G V E=  if it is symmetric or on a 

directed graph ( ),G V A=  if it is asymmetric. The set V ={1, . . . , n} is the vertex set, 

( ){ }, : , ,E i j i j V i j= ∈ <  is an edge set and ( ){ }, : , ,A i j i j V i j= ∈ ≠  is an arc set. A cost matrix 

( )ijC c=  is defined on E or on A. The cost matrix satisfies the triangle inequality whenever 

ij ik kjc c c≤ + , for all i , j , k  . In particular, this is the case of planar problems for which the 

vertices are points ( ),i i iP X Y=  in the plane, and ( ) ( )2 2
ij i j i jc X X Y Y= − + − is the Euclidean 

distance. The triangle inequality is also satisfied if ijc  is the length of a shortest path from i  

to j on G. 

3.1 Integer programming formulation of sTSP 
Many TSP formulations are available in literature. Recent surveys by (Orman & Williams, 
2006; O¨ncan et al., 2009) can be referred for detailed analysis. Among these, the (Dantzig et 
al., 1954) formulation is one of the most cited mathematical formulation for TSP. 
Incidentally, an early description of Concorde, which is recognized as the most performing 
exact algorithm currently available, was published under the title ‘Implementing the 
Dantzig–Fulkerson–Johnson algorithm for large traveling salesman problems’ (Applegate et 
al., 2003). This formulation associates a binary variable xij with each edge (i, j), equal to 1 if 
and only if the edge appears in the optimal tour. The formulation of TSP is as follows. 
Minimize 

 ij ij
i j

c x
<
∑  (1)

Subject to 

 2ik kj
i k j k

x x
< >

+ =∑ ∑        ( )k V∈  (2)
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In this formulation, constraints (2), (3) and (4) are referred to as degree constraints, subtour 
elimination constraints and integrality constraints, respectively. In the presence of (2), 
constraints (3) are algebraically equivalent to the connectivity constraints 
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3.2 Integer programming formulation of aTSP 
The (Dantzig et al., 1954) formulation extends easily to the asymmetric case. Here xij is a 
binary variable, associated with arc (i,j) and equal to 1 if and only if the arc appears in the 
optimal tour. The formulation is as follows. 
Minimize 

                                                        ij ij
i j
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≠
∑                                                                                       (6) 

Subject to 
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1
n

ij
j

x
=

=∑        ( ),i V i j∈ ≠  (7) 

 
1

1
n

ij
i

x
=
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,

| | 1ij
i j S

x S
∈

≤ −∑        ( ),2 | | 2S V S n⊂ ≤ ≤ −  (9) 

    0ijx =  or 1             ( ),i j A∈  (10) 

3.3 Integer programming formulations of mTSP 
Different types of integer programming formulations are proposed for the mTSP. Before 
presenting them, some technical definitions are as follows. The mTSP is defined on a graph 

( ),G V A= , where V is the set of n nodes (vertices) and A is the set of arcs (edges). 
Let ( )ijC c=  be a cost (distance) matrix associated with A. The matrix C is said to be 
symmetric when ij jic c= , ( ),i j A∀ ∈  and asymmetric otherwise. If ij jk ikc c c+ ≥ , , ,i j k V∀ ∈ , C 
is said to satisfy the triangle inequality. Various integer programming formulations for the 
mTSP have been proposed earlier in the literature, among which there exist assignment-
based formulations, a tree-based formulation and a three-index flow-based formulation. 
Assignment based formulations are presented in following subsections. For tree based 
formulation and three-index based formulations refer (Christofides et al., 1981). 
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3.3.1 Assignment-based integer programming formulations  
The mTSP is usually formulated using an assignment based double-index integer linear 
programming formulation. We first define the following binary variable: 

1
0ijx
⎧

= ⎨
⎩

 If arc (i, j) is used in the tour, 

Otherwise. 
Then, a general scheme of the assignment-based directed integer linear programming 
formulation of the mTSP can be given as follows: 
Minimize 

 
1 1

n n

ij ij
i j

c x
= =
∑∑  

Subject to 

 1
2

n

j
j

x m
=

=∑  (11) 

 1
2

n

j
j

x m
=

=∑  (12) 

 
1

1
n

ij
i

x
=

=∑ ,   2,.......,j n=  (13) 

 
1

1
n

ij
j

x
=

=∑ , 2,.......,i n=  (14) 

 + subtour elimination constraints, (15) 

 { }0,1ijx ∈ , ( ),i j A∀ ∈ , (16) 

where (13), (14) and (16) are the usual assignment constraints, (11) and (12) ensure that exactly 
m salesmen depart from and return back to node 1 (the depot). Although constraints (12) are 
already implied by (11), (13) and (14), we present them here for the sake of completeness. 
Constraints (15) are used to prevent subtours, which are degenerate tours that are formed 
between intermediate nodes and not connected to the origin. These constraints are named as 
subtour elimination constraints (SECs). Several SECs have been proposed for the mTSP in the 
literature. The first group of SECs is based on that of (Dantzig et al., 1954) originally proposed 
for the TSP, but also valid for the mTSP. These constraints can be shown as follows: 

 1ij
i S j S

x S
∈ ∈

≤ −∑∑ ,       { }\ 1S V∀ ⊆ ,       S ≠ ∅  (17) 

or alternatively in the following form 
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 1ij
i S j S

x
∉ ∈

≥∑∑ ,       { }\ 1S V∀ ⊆ ,       S ≠ ∅  (18) 

Constraints (17) or (18) impose connectivity requirements for the solution, i.e. prevent the 
formation of subtours of cardinality S not including the depot. Unfortunately, both families 
of these constraints increase exponentially with increasing number of nodes, hence are not 
practical for neither solving the problem nor its linear programming relaxation directly. 
Miller et al. (1960) overcame this problem by introducing O(n2) additional continuous 
variables, namely node potentials, resulting in a polynomial number of SECs. Their SECs are 
given as follows (denoted by MTZ-SECs): 

 1i j iju u px p− + ≤ −  for 2 i j n≤ ≠ ≤  (19) 

Here, p denotes the maximum number of nodes that can be visited by any salesman. The 
node potential of each node indicates the order of the corresponding node in the tour.  
(Svestka & Huckfeldt, 1973) propose another group of SECs for the mTSP which require 
augmenting the original cost matrix with new rows and columns. However, (Gavish, 1976) 
showed that their constraints are not correct for m≥2 and provided the correct constraints as 
follows: 

 ( ) 1i j iju u n m x n m− + − ≤ − −  for 2 i j n≤ ≠ ≤  (20) 

Other MTZ-based SECs for the mTSP have also been proposed. The following constraints 
are due to Kulkarni & Bhave (1985) (denoted by KB-SECs): 

 1i j iju u Lx L− + ≤ −  for 2 i j n≤ ≠ ≤  (21) 

In these constraints, the L is same as p in (19). It is clear that MTZ-SECs and KB-SECs are 
equivalent.  

3.3.2 Laporte & Nobert’s formulations 
(Laporte & Nobert, 1980) presented two formulations for the mTSP, for asymmetrical and 
symmetrical cost structures, respectively, and consider a common fixed cost f for each 
salesman used in the solution. These formulations are based on the two-index variable xij 
defined previously.  

3.3.2.1 Laporte & Nobert’s formulation for the asymmetric mTSP 

Minimize 
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This formulation is a pure binary integer where the objective is to minimize the total cost 
of the travel as well as the total number of salesmen. Note that constraints (23) and (24) 
are the standard assignment constraints, and constraints (25) are the SECs of (Dantzig et 
al., 1954). The only different constraints are (22), which impose degree constraints on the 
depot node.  
3.3.2.2 Laporte & Nobert’s formulation for the symmetric mTSP 
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 1m ≥  and integer (32)

The interesting issue about this formulation is that it is not a pure binary integer formulation 
due to the variable x1j, which can either be 0, 1 or 2. Note here that the variable x1j is only 
defined for i <j, since the problem is symmetric and only a single variable is sufficient to 
represent each edge used in the solution. Constraints (28) and (29) are the degree constraints 
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on the depot node and intermediate nodes, respectively. Other constraints are as previously 
defined. 

4. Exact solution approaches 
4.1 Exact algorithms for the sTSP 
When (Dantzig et al., 1954) formulation was first introduced, the simplex method was in its 
infancy and no algorithms were available to solve integer linear programs. The practitioners 
therefore used a strategy consisting of initially relaxing constraints (3) and the integrality 
requirements, which were gradually reintroduced after visually examining the solution to 
the relaxed problem. (Martin, 1966) used a similar approach. Initially he did not impose 
upper bounds on the xij variables and imposed subtour elimination constraints on all sets S= 
{i, j } for which j is the closest neighbour of i . Integrality was reached by applying the 
‘Accelerated Euclidean algorithm’, an extension of the ‘Method of integer forms’ (Gomory, 
1963). (Miliotis, 1976, 1978) was the first to devise a fully automated algorithm based on 
constraint relaxation and using either branch-and-bound or Gomory cuts to reach 
integrality. (Land, 1979) later puts forward a cut-and-price algorithm combining subtour 
elimination constraints, Gomory cuts and column generation, but no branching. This 
algorithm was capable of solving nine Euclidean 100-vertex instances out of 10. It has long 
been recognized that the linear relaxation of sTSP can be strengthened through the 
introduction of valid inequalities. Thus, (Edmonds, 1965) introduced the 2-matching 
inequalities, which were then generalized to comb inequalities (Chv´atal, 1973). Some 
generalizations of comb inequalities, such as clique tree inequalities (Grötschel & 
Pulleyblank, 1986) and path inequalities (Cornu´ejols et al., 1985) turn out to be quite 
effective. Several other less powerful valid inequalities are described in (Naddef, 2002). In 
the 1980s a number of researchers have integrated these cuts within relaxation mechanisms 
and have devised algorithms for their separation. This work, which has fostered the growth 
of polyhedral theory and of branch-and-cut, was mainly conducted by (Padberg and Hong, 
1980; Crowder & Padberg, 1980; Grötschel & Padberg, 1985; Padberg & Grötschel, 1985; 
Padberg & Rinaldi, 1987, 1991; Grötschel & Holland, 1991). The largest instance solved by 
the latter authors was a drilling problem of size n =2392. The culmination of this line of 
research is the development of Concorde by (Applegate et al., 2003, 2006), which is today the 
best available solver for the symmetric TSP. It is freely available at www.tsp.gatech.edu. 
This computer program is based on branch-and-cut-and-price, meaning that both some 
constraints and variables are initially relaxed and dynamically generated during the 
solution process. The algorithm uses 2-matching constraints, comb inequalities and certain 
path inequalities. It makes use of sophisticated separation algorithms to identify violated 
inequalities. A detailed description of Concorde can be found in the book by (Applegate et 
al., 2006). Table 1 summarizes some of the results reported by (Applegate et al., 2006) for 
randomly generated instances in the plane. All tests were run on a cluster of compute nodes, 
each equipped with a 2.66 GHz IntelXeon processor and 2 Gbyte of memory. The linear 
programming solver used was CPLEX 6.5. It can be seen that Concorde is quite reliable for 
this type of instances. All small TSPLIB instances (n ≤ 1000) were solved within 1 min on a 
2.4 GHz ADM Opteron processor. On 21 medium-size TSPLIB instances (1000 ≤ n ≤ 2392), 
the algorithm converged 19 times to the optimum within a computing time varying between 
5.7 and 3345.3 s. The two exceptions required 13999.9 s and 18226404.4 s. The largest 
instance now solved optimally by Concorde arises from a VLSI application and contains 
85900 vertices (Applegate et al., 2009). 
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on the depot node and intermediate nodes, respectively. Other constraints are as previously 
defined. 

4. Exact solution approaches 
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infancy and no algorithms were available to solve integer linear programs. The practitioners 
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requirements, which were gradually reintroduced after visually examining the solution to 
the relaxed problem. (Martin, 1966) used a similar approach. Initially he did not impose 
upper bounds on the xij variables and imposed subtour elimination constraints on all sets S= 
{i, j } for which j is the closest neighbour of i . Integrality was reached by applying the 
‘Accelerated Euclidean algorithm’, an extension of the ‘Method of integer forms’ (Gomory, 
1963). (Miliotis, 1976, 1978) was the first to devise a fully automated algorithm based on 
constraint relaxation and using either branch-and-bound or Gomory cuts to reach 
integrality. (Land, 1979) later puts forward a cut-and-price algorithm combining subtour 
elimination constraints, Gomory cuts and column generation, but no branching. This 
algorithm was capable of solving nine Euclidean 100-vertex instances out of 10. It has long 
been recognized that the linear relaxation of sTSP can be strengthened through the 
introduction of valid inequalities. Thus, (Edmonds, 1965) introduced the 2-matching 
inequalities, which were then generalized to comb inequalities (Chv´atal, 1973). Some 
generalizations of comb inequalities, such as clique tree inequalities (Grötschel & 
Pulleyblank, 1986) and path inequalities (Cornu´ejols et al., 1985) turn out to be quite 
effective. Several other less powerful valid inequalities are described in (Naddef, 2002). In 
the 1980s a number of researchers have integrated these cuts within relaxation mechanisms 
and have devised algorithms for their separation. This work, which has fostered the growth 
of polyhedral theory and of branch-and-cut, was mainly conducted by (Padberg and Hong, 
1980; Crowder & Padberg, 1980; Grötschel & Padberg, 1985; Padberg & Grötschel, 1985; 
Padberg & Rinaldi, 1987, 1991; Grötschel & Holland, 1991). The largest instance solved by 
the latter authors was a drilling problem of size n =2392. The culmination of this line of 
research is the development of Concorde by (Applegate et al., 2003, 2006), which is today the 
best available solver for the symmetric TSP. It is freely available at www.tsp.gatech.edu. 
This computer program is based on branch-and-cut-and-price, meaning that both some 
constraints and variables are initially relaxed and dynamically generated during the 
solution process. The algorithm uses 2-matching constraints, comb inequalities and certain 
path inequalities. It makes use of sophisticated separation algorithms to identify violated 
inequalities. A detailed description of Concorde can be found in the book by (Applegate et 
al., 2006). Table 1 summarizes some of the results reported by (Applegate et al., 2006) for 
randomly generated instances in the plane. All tests were run on a cluster of compute nodes, 
each equipped with a 2.66 GHz IntelXeon processor and 2 Gbyte of memory. The linear 
programming solver used was CPLEX 6.5. It can be seen that Concorde is quite reliable for 
this type of instances. All small TSPLIB instances (n ≤ 1000) were solved within 1 min on a 
2.4 GHz ADM Opteron processor. On 21 medium-size TSPLIB instances (1000 ≤ n ≤ 2392), 
the algorithm converged 19 times to the optimum within a computing time varying between 
5.7 and 3345.3 s. The two exceptions required 13999.9 s and 18226404.4 s. The largest 
instance now solved optimally by Concorde arises from a VLSI application and contains 
85900 vertices (Applegate et al., 2009). 
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N Type Sample size Mean CPU seconds
100
500
1000
2000
2500

random
random
random
random
random

10000 
10000 
1000 
1000 
1000 

0.7 
50.2 
601.6 

14065.6 
53737.9 

Table 1. Computation times for Concorde 

4.2 Exact algorithms for the aTSP 
An interesting feature of aTSP is that relaxing the subtour elimination constraints yields a 
Modified Assignment Problem (MAP), which is an assignment problem. The linear 
relaxation of this problem always has an integer solution and is easy to solve by means of a 
specialized assignment algorithm, (Carpaneto & Toth, 1987; Dell’Amico & Toth, 2000 and 
Burkard et al., 2009). Many algorithms based on the AP relaxation have been devised. Some 
of the best known are those of (Eastman,1958; Little et al., 1963; Carpaneto & Toth, 1980; 
Carpaneto et al., 1995 and Fischetti & Toth, 1992). Surveys of these algorithms and others 
have been presented in (Balas & Toth, 1985; Laporte, 1992 and Fischetti et al., 2002). It is 
interesting to note that (Eastman, 1958) described what is probably the first ever branch-
and-bound algorithm, 2 years before this method was suggested as a generic solution 
methodology for integer linear programming (Land & Doig, 1960), and 5 years before the 
term ‘branch-and-bound’ was coined by (Little et al., 1963). The (Carpaneto et al., 1995) 
algorithm has the dual advantage of being fast and simple. The (Fischetti & Toth, 1992) 
algorithm improves slightly on that of (Carpaneto et al., 1995) by computing better lower 
bounds at the nodes of the search tree. The Carpanteo, Dell’Amico & Toth algorithm works 
rather well on randomly generated instances but it often fails on some rather small 
structured instances with as few as 100 vertices (Fischetti et al., 2002). A branch- and bound 
based algorithm for the asymmetric TSP is proposed by (Ali & Kennington, 1986). The 
algorithm uses a Lagrangean relaxation of the degree constraints and a subgradient 
algorithm to solve the Lagrangean dual. 

4.3 Exact algorithms for mTSP 
The first approach to solve the mTSP directly, without any transformation to the TSP is due 
to (Laporte & Nobert, 1980), who propose an algorithm based on the relaxation of some 
constraints of the mTSP. The problem they consider is an mTSP with a fixed cost f associated 
with each salesman. The algorithm consists of solving the problem by initially relaxing the 
SECs and performing a check as to whether any of the SECs are violated, after an integer 
solution is obtained. The first attempt to solve large-scale symmetric mTSPs to optimality is 
due to (Gavish & Srikanth, 1986). The proposed algorithm is a branch-and-bound method, 
where lower bounds are obtained from the following Lagrangean problem constructed by 
relaxing the degree constraints. The Lagrangean problem is solved using a degree-
constrained minimal spanning tree which spans over all the nodes. The results indicate that 
the integer gap obtained by the Lagrangean relaxation decreases as the problem size 
increases and turns out to be zero for all problems with n≥400. (Gromicho et al., 1992) 
proposed another exact solution method for mTSP. The algorithm is based on a quasi-
assignment (QA) relaxation obtained by relaxing the SECs, since the QA-problem is solvable 
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in polynomial time. An additive bounding procedure is applied to strengthen the lower 
bounds obtained via different r-arborescence and r-anti-arborescence relaxations and this 
procedure is embedded in a branch-and-bound framework. It is observed that the additive 
bounding procedure has a significant effect in improving the lower bounds, for which the 
QA-relaxation yields poor bounds. The proposed branch-and-bound algorithm is superior 
to the standard branch-and-bound approach with a QA-relaxation in terms of number of 
nodes, ranging from 10% less to 10 times less. Symmetric instances are observed to yield 
larger improvements. Using an IBM PS/70 computer with an 80386 CPU running at 25 
MHz, the biggest instance solved via this approach has 120 nodes with the number of 
salesman ranging from 2 to 12 in steps of one (Gromicho, 2003). 

5. Approximate approaches  
There are mainly two ways of solving any TSP instance optimally. The first is to apply an 
exact approach such as Branch and Bound method to find the length. The other is to 
calculate the Held-Karp lower bound, which produces a lower bound to the optimal 
solution. This lower bound is used to judge the performance of any new heuristic proposed 
for the TSP. The heuristics reviewed here mainly concern with the sTSP, however some of 
these heuristics can be modified appropriatley to solve the aTSP. 

5.1 Approximation 
Solving even moderate size of the TSP optimally takes huge computtaional time, therefore 
there is a room for the development and application of approximate algorithms, or 
heuristics. The approximate approach never guarantee an optimal solution but gives near 
optimal solution in a reasonable computational effort. So far, the best known approximate 
algorithm available is due to (Arora, 1998). The complexity of the approximate algorithm is 

( ) ( )( )2log O cO n n  where n is problem size of TSP. 

5.2 Tour construction approaches 
All tour construction algorithms stops when a solution is found and never tries to improve it. 
It is believed that tour construction algorithms find solution within 10-15% of optimality. Few 
of the tour construction algorithms available in published literature are described below. 

5.2.1 Closest neighbor heuristic 
This is the simplest and the most straightforward TSP heuristic. The key to this approach is 
to always visit the closest city. The polynomial complexity associated with this heuristic 
approach is ( )2O n . The closest approach is very similar to minimum spanning tree 
algorithm. The steps of the closest neighbor are given as: 
1. Select a random city. 
2. Find the nearest unvisited city and go there. 
3. Are there any unvisitied cities left? If yes, repeat step 2. 
4. Return to the first city. 
The Closest Neighbor heuristic approach generally keeps its tour within 25% of the Held-
Karp lower bound (Johnson & McGeoch, 1995). 
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in polynomial time. An additive bounding procedure is applied to strengthen the lower 
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algorithm. The steps of the closest neighbor are given as: 
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5.2.2 Greedy heuristic 
The Greedy heuristic gradually constructs a tour by repeatedly selecting the shortest edge 
and adding it to the tour as long as it doesn’t create a cycle with less  than N edges, or 
increases the degree of any node to more than 2. We must not add the same edge twice of 
course. Complexity of the greedy heuristic is ( )( )2

2logO n n . Steps of Greedy approach are: 
1. Sort all edges. 
2. Select the shortest edge and add it to our tour if it doesn’t violate any of the above 

constraints. 
3. Do we have N edges in our tour? If no, repeat step 2. 
The Greedy algorithm normally keeps solution within 15- 20% of the Held-Karp lower 
bound (Johnson & McGeoch, 1995). 

5.2.3 Insertion heuristic  
Insertion heuristics are quite straight forward, and there are many variants to choose from. 
The basics of insertion heuristics is to start with a tour of a subset of all cities, and then 
inserting the rest by some heuristic. The initial subtour is often a triangle. One can also start 
with a single edge as subtour. The complexity with this type of heuristic approach is given 
as O(n2). Steps of an Insertion heuristic are: 
Select the shortest edge, and make a subtour of it. 
1. Select a city not in the subtour, having the shortest distance to any one of the cities in 

the subtour. 
2. Find an edge in the subtour such that the cost of inserting the selected city between the 

edge’s cities will be minimal. 
3. Repeat step 2 until no more cities remain.  

5.2.4 Christofide heuristic 
Most heuristics can only guarantee a feasible soluiton or a fair near optimal solution. 
Christofides extended one of these heuristic approaches which is known as Christofides 
heuristic. Complexity of this approach is O(n3). The steps are gievn below:  
1. Build a minimal spanning tree from the set of all cities. 
2. Create a minimum-weight matching (MWM) on the set of nodes having an odd degree. 

Add the MST together with the MWM. 
3. Create an Euler cycle from the combined graph, and traverse it taking shortcuts to 

avoid visited nodes. 
Tests have shown that Christofides’ algorithm tends to place itself around 10% above the 
Held-Karp lower bound. More information on tour construction heuristics can be found in  
(Johnson & McGeoch, 2002). 

5.3 Tour improvement 
After generating the tour using any tour construction heuristic, an improvment heuristic can 
be further applied to improve the quality of the tour generated. Popularly, 2-opt and 3-opt 
exchange heuristic is applied for improving the solution. The performance of 2-opt or 3-opt 
heuristic basically depends on the tour generated by the tour construction heuristic. Other 
ways of improving the solution is to apply meta-heuristic approaches such as tabu search or 
simulated annealing using 2-opt and 3-opt. 
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Fig. 1. A 2- opt move and 3-opt move 

5.3.1 2-opt and 3-opt  
The 2-opt algorithm removes randomly two edges from the already generated tour, and 
reconnects the new two paths created. This is refered as a 2-opt move. The reconnecting is 
done such a way to keep the tour valid (see figure 1 (a)). This is done only if the new tour is 
shorter than older. This is continued till no further improvement is possible. The resulting 
tour is now 2 optimal. The 3-opt algorithm works in a similar fashion, but instead of 
removing the two edges it removes three edges. This means there are two ways of 
reconnecting the three paths into a valid tour (see figure 1(b) and figure 1(c)). Search is 
completed when no more 3-opt moves can improve the tour quality. If a tour is 3 optimal it 
is also 2 optimal (Helsgaun). Running the 2-opt move often results in a tour with a length 
less than 5% above the Held-Karp bound. The improvements of a 3-opt move usually 
generates a tour about 3% above the Held-Karp bound (Johnson & McGeoch, 1995). 

5.3.2 k-opt 
In order to improve the already generated tour from tour construction heuristic, k-opt move 
can be applied (2-opt and 3-opt are special cases of k-opt exchange heuristic) but exchange 
heuristic having k>3 will take more computational time. Mainly one 4-opt move is used, 
called “the crossing bridges” (see Figure 2). This particular move cannot be sequentially 
constructed using 2-opt moves. For this to be possible two of these moves would have to be 
illegal (Helsgaun). 
 

 
 

Fig. 2. Double bridge move 
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5.2.2 Greedy heuristic 
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constraints. 
3. Do we have N edges in our tour? If no, repeat step 2. 
The Greedy algorithm normally keeps solution within 15- 20% of the Held-Karp lower 
bound (Johnson & McGeoch, 1995). 

5.2.3 Insertion heuristic  
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The basics of insertion heuristics is to start with a tour of a subset of all cities, and then 
inserting the rest by some heuristic. The initial subtour is often a triangle. One can also start 
with a single edge as subtour. The complexity with this type of heuristic approach is given 
as O(n2). Steps of an Insertion heuristic are: 
Select the shortest edge, and make a subtour of it. 
1. Select a city not in the subtour, having the shortest distance to any one of the cities in 

the subtour. 
2. Find an edge in the subtour such that the cost of inserting the selected city between the 

edge’s cities will be minimal. 
3. Repeat step 2 until no more cities remain.  

5.2.4 Christofide heuristic 
Most heuristics can only guarantee a feasible soluiton or a fair near optimal solution. 
Christofides extended one of these heuristic approaches which is known as Christofides 
heuristic. Complexity of this approach is O(n3). The steps are gievn below:  
1. Build a minimal spanning tree from the set of all cities. 
2. Create a minimum-weight matching (MWM) on the set of nodes having an odd degree. 

Add the MST together with the MWM. 
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avoid visited nodes. 
Tests have shown that Christofides’ algorithm tends to place itself around 10% above the 
Held-Karp lower bound. More information on tour construction heuristics can be found in  
(Johnson & McGeoch, 2002). 

5.3 Tour improvement 
After generating the tour using any tour construction heuristic, an improvment heuristic can 
be further applied to improve the quality of the tour generated. Popularly, 2-opt and 3-opt 
exchange heuristic is applied for improving the solution. The performance of 2-opt or 3-opt 
heuristic basically depends on the tour generated by the tour construction heuristic. Other 
ways of improving the solution is to apply meta-heuristic approaches such as tabu search or 
simulated annealing using 2-opt and 3-opt. 
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5.3.3 Lin-Kernighan 
Lin & Kernighan constructed an algorithm making it possible to get within 2% of the Held-
Karp lower bound. The Lin-Kernighan heuristic (LK) is a variable k-way exchange heuristic. 
It decides the value of suitable k at each iteration. This makes the an improvement heuristic 
quite complex, and few have been able to make improvements to it. The time complexity of 
LK is approximately ( )2.2O n  (Helsgaun), making it slower than a simple 2-opt 
implementation. 

5.3.4 Tabu search 
It is a neighborhood-search algorithm which seacrh the better solution in the neighbourhood 
of the existing solution. In general, tabu search (TS) uses 2-opt exchange mechanism for 
searching better solution. A problem with simple neighborhood search approach i.e. only 2-
opt or 3-opt exchange heuristic is that these can easily get stuck in a local optimum. This can 
be avoided easily in TS approach. To avoid this TS keeps a tabu list containing bad solution 
with bad exchange. There are several ways of implementing the tabu list. For more detail 
paper by (Johnson & McGeoch, 1995) can be referred. The biggest problem with the TS is its 
running time. Most implementations for the TSP generally takes O(n3) (Johnson & McGeoch, 
1995), making it far slower than a 2-opt local search. 

5.3.5 Simulated annealing 
Simulated Annealing (SA) has been successfully applied and adapted to give an 
approximate solutions for the TSP. SA is basically a randomized local search algorithm 
similar to TS but do not allow path exchange that deteriorates the solution. (Johnson & 
McGeoch, 1995) presented a  baseline implementation of SA for the TSP. Authors used 2-opt 
moves to find neighboring solutions. In SA, Better results can be obtained by increasing the 
running time of the SA algorithm, and it is found that the results are comparable to the LK 
algorithm. Due to the 2-opt neighborhood, this particular implementation takes ( )2O n  with 
a large constant of proportionality (Johnson & McGeoch, 1995). 

5.3.6 Genetic algorithm 
Genetic Algorithm (GA) works in a way similar to the nature. A basic GA starts with a 
randomly generated population of candidate solutions. Some (or all) candidates are then 
mated to produce offspring and some go through a mutating process. Each candidate has a 
fitness value telling us how good they are. By selecting the most fit candidates for mating 
and mutation the overall fitness of the population will increase. Applying GA to the TSP 
involves implementing a crossover routine, a measure of fitness, and also a mutation 
routine. A good measure of fitness is the actual length of the solution. Different approaches 
to the crossover and mutation routines are discussed in (Johnson & McGeoch, 1995). 

5.4 Ant colony optimization 
Researchers are often trying to mimic nature to solve complex problems, and one such 
example is the successful use of GA. Another interesting idea is to mimic the movements of 
ants. This idea has been quite successful when applied to the TSP, giving optimal solutions 
to small problems quickly (Dorigo & Gambardella, 1996). However, as small as an ant’s 
brain might be, it is still far too complex to simulate completely. But we only need a small 
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part of their behaviour for solving the problem. Ants leave a trail of pheromones when they 
explore new areas. This trail is meant to guide other ants to possible food sources. The key 
to the success of ants is strength in numbers, and the same goes for ant colony optimization. 
We start with a group of ants, typically 20 or so. They are placed in random cities, and are 
then asked to move to another city. They are not allowed to enter a city already visited by 
themselves, unless they are heading for the completion of our tour. The ant who picked the 
shortest tour will be leaving a trail of pheromones inversely proportional to the length of the 
tour. This pheromone trail will be taken in account when an ant is choosing a city to move 
to, making it more prone to walk the path with the strongest pheromone trail. This process 
is repeated until a tour being short enough is found. Consult (Dorigo & Gambardella, 1996) 
for more detailed information on ant colony optimization for the TSP. 

5.5 The Held-Karp lower bound 
This lower bound if the common way of testing the performance of any new TSP heuristic. 
Held-Karp (HK) bound is actually a solution to the linear programming relaxation of the 
integer formulation of TSP (Johnson et al. 1996). A HK lower bound averages about 0.8% 
below the optimal tour length (Johnson et al., 1996). For more details regarding the HK 
lower bound, paper by (Johnson et al., 1996) can be referred. 

5.6 Heuristic solution approaches for mTSP 
One of the first heuristics addressing TSP is due to (Russell, 1977). The algorithm is an 
extended version of the Lin & Kernighan (1973) heuristic. (Potvin et al., 1989) have given 
another heuristic based on an exchange procedure for the mTSP. (Fogel, 1990) proposed a 
parallel processing approach to solve the mTSP using evolutionary programming. Problems 
with 25 and 50 cities were solved and it is noted that the evolutionary approach obtained 
very good near-optimal solutions. (Wacholder et al., 1989) extended the Hopfield-Tank 
ANN model to the mTSP but their model found to be too complex to find even feasible 
soultions. Hsu et al. (1991) presented a neural network (NN) approach to solve the mTSP. 
The authors stated that their results are better than (Wacholder et al., 1989). (Goldstein, 
1990) and (Vakhutinsky & Golden, 1994) presented a self-organizing NN approach for the 
mTSP. A self-organizing NN for the VRP based on an enhanced mTSP NN model is due to 
(Torki et al., 1997). Recently, (Modares et al., 1999 and Somhom et al., 1999) have developed 
a self-organizing NN approach for the mTSP with a minmax objective function, which 
minimizes the cost of the most expensive route. Utilizing GA for the solution of mTSP seems 
to be first due to (Zhang et al., 1999). A recent application by (Tang et al., 2000) used GA to 
solve the mTSP model developed for hot rolling scheduling. (Yu et al., 2002) also used GA to 
solve the mTSP in path planning. (Ryan et al., 1998) used TS in solving a mTSP with time 
windows. (Song et al., 2003) proposed an extended SA approach for the mTSP with fixed 
costs associated with each salesman. (Gomes & Von Zuben, 2002) presented a neuro-fuzzy 
system based on competitive learning to solve the mTSP along with the capacitated VRP. 
Sofge et al. (2002) implemented and compared a variety of evolutionary computation 
algorithms to solve the mTSP, including the use of a neighborhood attractor schema, the 
shrink-wrap algorithm for local neighborhood optimization, particle swarm optimization, 
Monte-Carlo optimization, genetic algorithms and evolutionary strategies. For more 
detailed description, papers mentioned above can be referred. 
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1. Introduction 
Traveling salesman problem (TSP) means that a travelling salesman needs to promote 
products in n cities (including the city where he lives). After visiting each city (each city can 
be visited once), he returns to the departure city. Let’s suppose that there is one road to 
connect each two cities. What is the best route to follow in order to minimize the distance of 
the journey?  
TSP has been proven to be a NP-hard problem, i.e. failure of finding a polynomial time 
algorithm to get a optimal solution. TSP is easy to interpret, yet hard to solve. This problem 
has aroused many scholars’ interests since it was put forward in 1932. However, until now, 
no effective solution has been found. 
Though TSP only represents a problem of the shortest ring road, in actual life, many 
physical problems are found to be the TSP. Example 1, postal route. Postal route problem is 
a TSP. Suppose that a mail car needs to collect mails in n places. Under such circumstances, 
you can show the route through a drawing containing n+1 crunodes. One crunode means a 
post office which this mail car departures from and returns to. The remaining n crunodes 
mean the crunodes at which the mails need to be collected. The route that the mail car 
passes through is a travelling route. We hope to find a travelling route with the shortest 
length. Example 2, mechanical arm. When a mechanical arm is used to fasten the nuts for 
the ready-to-assembling parts on the assembly line, this mechanical arm will move from the 
initial position (position where the first nut needs to be fastened) to each nut in proper order 
and then return to the initial position. The route which the mechanical arm follows is a 
travelling route in the drawing which contains crunodes as nuts; the most economical 
travelling route will enable the mechanical arm to finish its work within the shortest time. 
Example 3, integrated circuit. In the course of manufacturing the integrated circuit, we often 
need to insert thousands of electrical elements. It will consume certain energy when moving 
from one electrical element to the other during manufacturing. How can we do to arrange 
the manufacturing order to minimum the energy consumption? This is obviously a solution 
for TSP. Except for the above examples, problems like route distribution of transportation 
network, choice of tourist route, laying of pipelines needed for city planning and 
engineering construction are interlinked with the problems of finding the shortest route. So, 
it is of significance to make a study on the problem of the shortest route. This renders us a 
use value. 
As finding a solution for TSP plays an important role in the real life, since the TSP appeared, 
it has attracted many scholars to make a study on it.   
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2. Mathematical description for the TSP and its general solving method 
2.1 Mathematical description for the TSP 
According to the definition of the TSP, its mathematical description is as follows: 
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Where ijd  means the distance between the city i and city j; decision variable 1ijx =  means 
the route the salesman passes through (including the route from city i and city j); 0ijx =  
means the route which isn’t chosen by the salesman. Objective function (2.1.1) means the 
minimum total distance; (2.1.2) means that a salesman only can departure from the city i for 
one time; (2.1.3) means that a salesman only can enter the city j for one time; (2.1.2) and 
(2.1.3) only give an assurance that the salesman visits each city once, but it doesn’t rule out 
the possibility of any loop; (2.1.4) requires that no loop in any city subset should be formed 
by the salesman ; S  means the number of elements included in the set S . 

2.2 Traditional solving method for TSP 
At present, the solving methods for TSP are mainly divided into two parts: traditional 
method and evolution method. In terms of traditional method, there are precise algorithm 
and approximate algorithm.  

2.2.1 Precise algorithm for solving the TSP 
Linear programming 
This is a TSP solving method that is put forward at the earliest stage. It mainly applies to the 
cutting plane method in the integer programming, i.e. solving the LP formed by two 
constraints in the model and then seeking the cutting plane by adding inequality constraint 
to gradually converge at an optimal solution.  
When people apply this method to find a cutting plane, they often depend on experience. So 
this method is seldom deemed as a general method. 
Dynamic programming  
   S  is the subset of the set {2,3, }n . k S∈  and ( , )C S k  means the optimal travelling route 
(setting out from 1, passing through the points in S  and ending to k ). When 1S = , 

1{{ }, } kC k k d=  and ( 2,3, )k n= . When 1S > , according to the optimality principle, the 
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dynamic programming equation of TSP can be written as 
{ }

( , ) min [ ( { , }, ) ]jkj S k
C S k C S j k j d

∈ −
= − +  

and the solution can be obtained by the iterative method based on dynamic programming. 
As the time resource (i.e. time complexity) needed for dynamic programming is 2( 2 )nO n ⋅ , 
and its needed space resource (i.e. space complexity) is ( 2 )nO n ⋅ , when n is added to a 
certain point, these complexities will increase sharply. As a result, except for the minor 
problem, this is seldom used.  
Branch-bound algorithm 
Branch-bound algorithm is a search algorithm widely used by people. It controls the 
searching process through effective restrictive boundary so that it can search for the optimal 
solution branch from the space state tree to find an optimal solution as soon as possible. The 
key point of this algorithm is the choice of the restrictive boundary. Different restrictive 
boundaries may form different branch-bound algorithms. 
Branch-bound algorithm is not good for solving the large-scale problem. 

2.2.2 Approximate algorithm for solving the TSP 
As the application of precise algorithm to solve problem is very limited, we often use 
approximate algorithm or heuristic algorithm. The result of the algorithm can be assessed by 

*/C C ε≤ . C is the total travelling distance generated from approximate algorithm; *C  is 
the optimal travelling distance; ε  is the upper limit for the ratio of the total travelling 
distance of approximate solution to optimal solution under the worst condition. The value 
of ε >1.0. The more it closes to 1.0, the better the algorithm is. These algorithms include:   
Interpolation algorithm 
Interpolation algorithm can be divided into several parts according to different interpolation 
criteria. Generally it includes following steps:    
Step 1. Choose the insertion edge (i and j) and insertion point k through a certain way. 

Insert k into i and j to form { , , , , }i k j ; 
Step 2. Follow the process in an orderly manner to form a loop solution.  
Interpolation algorithm mainly includes: 
1. Latest interpolation effect 2ε = . Time complexity: 2( )O n . 

2. Minimum interpolation effect 2ε = . Time complexity: 2( lg )O n n . 

3. Arbitrary interpolation effect 21g 0.16nε = + . Time complexity: 2( )O n . 

4. Farthest interpolation effect 2 lg 0.16nε = + . Time complexity: 2( )O n . 

5. Convex interpolation effect ε  (unknown). Time complexity: 2( lg )O n n . 
Nearest-neighbour algorithm 
Step 1.   Choose one departure point randomly;  
Step 2.  Choose the nearest point in an orderly manner to add to the current solution until 

the loop solution is formed. 
Effect: (lg 1) 2nε = + . Time complexity: 2( )O n  
Clark & Wright algorithm 
Step 1. Choose one departure point P randomly to calculate ij pi pj ijs d d d= + + ;   
Step 2. Array ijs  in ascending order;   
Step 3. Connect each ( , )i j  in an orderly manner upon arrangement to form a loop 

solution. 
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Effect: 2 lg 7 2 21nε = + . Time complexity: 2( )O n  
Double spanning tree algorithm 
Step 1.  First determine the minimum spanning tree. 
Step 2. Determine the Euler loop by adding a repetitive edge to each edge of the tree; 
Step 3. Eliminate the repetitive point in the sequence of Euler loop point to form a loop 

solution. 
Effect: 2ε = . Time complexity: 2( )O n  
Christofides algorithm 
Step 1. First determine the minimum spanning tree; 
Step 2. Solve the minimum weight matching problem to all the singular vertexes of the tree; 
Step 3. Add the matching edge to the spanning tree to determine its Euler loop; 
Step 4. Eliminate the repetitive point in the sequence of Euler loop point to form a loop 

solution. 
Effect: 2 3ε = . Time complexity: 3( )O n  
r opt−  algorithm 
This algorithm is a locally improved search algorithm and is put forward by Lin and other 
people (1965). Its thought is to improve the current solution by exchanging r  edges each 
time according to the given initial loop. As for different r , we find from massive calculation 
that 3 opt−  is better than 2 opt− , and 4 opt−  and 5 opt−  are not better than 3 opt− . The 
higher the r  is, the more time the calculation will take. So we often use 3 opt− . 
Effect: 2ε =  ( 8, 4)n r n≥ ≤ . Time complexity: ( )rO n  
Hybrid algorithm 
Use a certain approximate algorithm to find an initial solution and then improve the 
solution by using one or several algorithms of r opt− .Usually, Hybrid algorithm will help 
you to get better solution, but it takes a long time. 
Probabilistic algorithm 
Based on the given 0ε > , this algorithm is often used to solve the TSP within the range of 
1 ε+ .Suppose that G is in the unit square and function ( )t n  is mapped to the positive ration 
number and satisfies the following two conditions: (1) 2 2log logt n→ ; (2) to all n , n t  is 
the perfect square, so the steps are as follows:  
Step 1. Form the network by using 1/2[ ( ) ]t n n  as size. Divide the unit square into ( )n t n  

and G  into several ( )n t n  subgraphs; 
Step 2. Use dynamic programming to find the optimal loop for each subgraph; 
Step 3. Contract ( )n t n  subgraph into one point. The distance definition is the shortest 

distance of the optimal sub-loop of the original subgraph. In addition, determine 
the minimum generation number T of the new graph; 

Step 4. See T ∪ {the optimal sub-loop of each optimal sub-loop of } as the close loop with 
repetitive point and edge. According to the condition of the triangle inequality, 
reduce the repetitive points and edges to find a TSP loop. 

Effect: 1ε = +  (give the positive number randomly). Time complexity: ( lg )O n n . 
As these traditional algorithms are local search algorithms, they only help to find a local 
optimal solution when used for solving the TSP. It is hard to reach a global optimal solution 
and solve large-scale problem. So, people started to look for an evolution algorithm to solve 
the TSP. 
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3. Evolution algorithm for solving the TSP 
As stated above, the traditional algorithms used to solve the TSP have some limitation. With 
the development of evolution algorithm, many numerical optimization algorithms appear. 
They are ACA, GA, SA, TS, PSO and IA, etc. These algorithms are, to some extent, random 
search algorithms. ACA and PSO are typical parallel algorithms. Though they cannot 
guarantee to help you to obtain an optimal solution within the limited time, they can give 
you a satisfactory solution within the affordable time range. To figure out the effect of the 
solution for TSP obtained by using optimization algorithm, we should consider the 
algorithm’s search ability. Algorithm with strong optimization will produce better effect. 
Algorithm which is easy to trap in local extremum often helps you to obtain the local 
optimal solution for TSP. 

3.1 Ant colony algorithm for solving the TSP 
Ant colony algorithm (ACA) is a relatively new analogy evolution algorithm, which was put 
forward by scholars such as Italian scholar Dorigo. They called it ant colony system and 
used this ant colony to solve the TSP, achieving fairly good experimental result. As for ACA, 
n  represents the number of cities for the TSP; m represents the number of ant in the ant 
colony; ijd  ( , 1,2, , )i j n=  represents the distance between city i  and city j ; ( )ij tτ  
represents the concentration of pheromone on the line of city i  and city j  at the time of 
t .At the initial time, the concentration of pheromone on each route is similar to one another. 
When (0)ij Cτ = , C  is a constant. During the moving process, ant ( 1,2, , )k m=  will 
determine which direction it will change according to the concentration of pheromone on 
each route. ( )k

ijP t  represents the probability for ant to move from city i  to city j  at the time 
of t . Its formula is  
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Wherein: tabuk ( 1,2, , )k m=  means that ant k  has passed through the set of the city. From 
the beginning, tabuk  has only one element, i.e. the departure city of ant k . With the process 
of evolution, the elements for tabuk  increase continuously; allowed {1,2, , } tabuk kn= −  
means the next city that ant k  is allowed to choose. ijη  represents the visibility, and is taken 
from the reciprocal of the length of the route ( , )i j ; ,α β  regulates the relatively important 
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used to represent the volatility of pheromone. After ω  time, the ants complete one circle. 
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Wherein: tabuk ( 1,2, , )k m=  means that ant k  has passed through the set of the city. From 
the beginning, tabuk  has only one element, i.e. the departure city of ant k . With the process 
of evolution, the elements for tabuk  increase continuously; allowed {1,2, , } tabuk kn= −  
means the next city that ant k  is allowed to choose. ijη  represents the visibility, and is taken 
from the reciprocal of the length of the route ( , )i j ; ,α β  regulates the relatively important 
degree of pheromone concentrationτ  and visibilityη . 
As time goes by, the pheromone on each route gradually disappears. Parameter 1 ρ− is 
used to represent the volatility of pheromone. After ω  time, the ants complete one circle. 
Pheromone concentration on each route can be adjusted according to the following formula:  
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Wherein:  k
ijτΔ  means the pheromone concentration left on the route ( , )i j  by the k  ants 

during the process of this circle; ijτΔ  means the total pheromone concentration released on 
the route ( , )i j  by all the ants during the process of this circle. 
   ACA not only uses the positive feedback principle which may, to some extent, quicken the 
evolution process, but also is a parallel algorithm in nature. The ongoing process of 
information exchange and communication between individuals helps to find a better 
solution. It is easy to converge at a local extremum when there is only one individual. 
However, through cooperation, multiple individuals will help us to get a certain subset of 
the solution space, which provide a better environment for us to carry out a further 
exploration on solution space. The movement of multiple individuals in the ant colony is 
random. Actually, the measures taken to avoid the possibility of appearance of local 
extremum slow down the velocity of convergence. When the scale of ant colony expands, it 
will take a longer time to look for a better route.  
In the light of the above problems, many scholars at home and abroad make an 
improvement of the basic ACA. Though some achievements have been made, they are not 
enough as a whole. Some principles are still needed to found to make a proof and test in 
practice.  

3.2 Solve the TSP through particle swarm optimization 
Ant colony algorithm is a discrete random number algorithm, which is suitable for solving 
the discrete optimization problem. TSP is a typical discrete optimization problem, so, since 
the appearance of ant colony algorithm, many scholars have used this algorithm to solve the 
TSP. However, as the travelling salesman problem is a NP, and the pheromone needs to be 
updated when ant colony algorithm is iterated each time, so, when solving the large-scale 
TSP, it will meet some problems such as slow searching speed. Though scholars at home 
and abroad have made some efforts to accelerate the searching speed, but what they’ve 
done is not enough as a whole. Some principles are still needed to found to make a proof 
and test in practice. Particle swarm optimization is a continuous algorithm. Its iteration 
formula is simple and easy to achieve. A slight improvement of this algorithm will help you 
to solve the discrete optimization problem of the travelling salesman. As its iteration 
formula is very simple, a use of this algorithm may help you to solve the slow searching 
speed problem found from the ant colony algorithm. 
At present, different improvement algorithms for PSO have been provided to solve the TSP. 
In particular, great result has been made by Maurice who used discrete PSO algorithm to 
solve the TSP.A hybrid PSO algorithm which is used to solve the TSP is provided on the 
basis of GA, AC and SA. Application of PSO algorithm to solve the travelling salesman 
problem is a fresh attempt. However, as the traditional PSO will easily trap in the local 
optimal solution, we provide two improve strategies for the standard PSO and use them to 
solve the TSP. 

4. Solve the TSP through improved PSO algorithm 
4.1 Solve the TSP through DPSO algorithm 
4.1.1 DPSO principle 
Dynamic programming is a typical deterministic algorithm for solving the optimization 
problem. It is provided on the basis of the optimality principle and non-aftereffect and used 
for the algorithm of multistage decision process. Optimality principle: any truncation of the 
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optimal decision still remains the optimal state; non-aftereffect: after truncation in any stage, 
the decision made in the later stage is only connected to the initial state of this stage and has 
no connection to others. Dynamic programming, through optimality principle and non-
aftereffect, analyze the optimization problem in stages to simplify the problem, which 
greatly reduce the calculation steps. 
PSO algorithm is an interactive parallel searching algorithm as well as a good attempt to 
look for global extremum. However, when solving the optimization problem of high 
dimensional function, as the mutual restraint exists between each dimensional variable, 
disadvantage has been found when the PSO algorithm is used to solve this problem. 
According to the numerical value test result, this algorithm is proven to be very effective 
when the dimension is low. The solving process of dynamic programming is to simplify the 
complex problem to obtain the solution. A combination of this with the property of PSO 
algorithm will surely improve the optimal performance of the PSO algorithm. 
As for the solution of the problem 1 2 imin ( ) ( , , , ),   . .  a , n i if f x x x s t x b= ≤ ≤x 1,2, .i n=   
(4.1.1.1), a strategy should be provided to fix some variables and change the remaining 
variables; i.e. partition the variable and approximate the optimal solution of the majorized 
function through partitioning to convert the high dimensional optimization problem into 
low dimensional optimization problem to get the condition optimal solution. Then fix the 
other part to get the other group of condition optimal solution. Use this information to carry 
out a comprehensive optimization process. Be aware that this strategy is different from the 
principle of dynamic programming, because aftereffect exists when partition optimization is 
applied. So, a strategy method concerning reasonable approximation of global extremum 
should be provided for the partition optimization of aftereffect.  
It is hard to decide the order of fixed variable in the process of calculation.  Different 
strategies can be used during the process of practical operation; after the algorithm traps in 
the local extremum, it may pick some components to be fixed randomly from the local 
optimal solution, or choose some components alternately; at the same time, transform the 
original problem into two problems after some components are picked randomly. If the 
dimension is too high, this problem can also be transformed into multiple problems to find a 
solution.  See the following problem 

 1 2 3 4 5 6min ( , , , , , )f x x x x x x , (4.1.1.2)  

If PSO algorithm gives a local optimal solution 1* 1* 1* 1*
1 2 6( , , )x x x=x , the following two 

strategies can transform the high dimension optimization into low dimension optimization: 
(1) pick several components randomly, e.g. pick 3 components 1* 1* 1*

1 2 4, ,x x x , then the result is  

                 1* 1* 1*
1 2 3 4 5 6min ( , , , , , )f x x x x x x  (4.1.1.3) 

A local optimal solution 1* 1* 2* 1* 2* 2*
1 2 3 4 5 6( , , , , , )x x x x x x  is given by using the PSO algorithm 

again. Then pick some components randomly or alternately (for example, if you pick 
components 1, 2 and 4 last time, you can pick components 3, 5 and 6 this time); in this way, a 
new optimal problem is found. Continue the run until you find a satisfactory result. (2) Pick 
some components randomly and divide the original problem into several problems, 
including: ① 1* 1* 1*

1 2 3 4 5 6min ( , , , , , )f x x x x x x  and 1* 1* 1*
1 2 3 4 5 6min ( , , , , , )f x x x x x x . It may write 

down all the possible forms (i.e. 3
6 20C = ) of the three variables to divide the original 
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Wherein:  k
ijτΔ  means the pheromone concentration left on the route ( , )i j  by the k  ants 

during the process of this circle; ijτΔ  means the total pheromone concentration released on 
the route ( , )i j  by all the ants during the process of this circle. 
   ACA not only uses the positive feedback principle which may, to some extent, quicken the 
evolution process, but also is a parallel algorithm in nature. The ongoing process of 
information exchange and communication between individuals helps to find a better 
solution. It is easy to converge at a local extremum when there is only one individual. 
However, through cooperation, multiple individuals will help us to get a certain subset of 
the solution space, which provide a better environment for us to carry out a further 
exploration on solution space. The movement of multiple individuals in the ant colony is 
random. Actually, the measures taken to avoid the possibility of appearance of local 
extremum slow down the velocity of convergence. When the scale of ant colony expands, it 
will take a longer time to look for a better route.  
In the light of the above problems, many scholars at home and abroad make an 
improvement of the basic ACA. Though some achievements have been made, they are not 
enough as a whole. Some principles are still needed to found to make a proof and test in 
practice.  

3.2 Solve the TSP through particle swarm optimization 
Ant colony algorithm is a discrete random number algorithm, which is suitable for solving 
the discrete optimization problem. TSP is a typical discrete optimization problem, so, since 
the appearance of ant colony algorithm, many scholars have used this algorithm to solve the 
TSP. However, as the travelling salesman problem is a NP, and the pheromone needs to be 
updated when ant colony algorithm is iterated each time, so, when solving the large-scale 
TSP, it will meet some problems such as slow searching speed. Though scholars at home 
and abroad have made some efforts to accelerate the searching speed, but what they’ve 
done is not enough as a whole. Some principles are still needed to found to make a proof 
and test in practice. Particle swarm optimization is a continuous algorithm. Its iteration 
formula is simple and easy to achieve. A slight improvement of this algorithm will help you 
to solve the discrete optimization problem of the travelling salesman. As its iteration 
formula is very simple, a use of this algorithm may help you to solve the slow searching 
speed problem found from the ant colony algorithm. 
At present, different improvement algorithms for PSO have been provided to solve the TSP. 
In particular, great result has been made by Maurice who used discrete PSO algorithm to 
solve the TSP.A hybrid PSO algorithm which is used to solve the TSP is provided on the 
basis of GA, AC and SA. Application of PSO algorithm to solve the travelling salesman 
problem is a fresh attempt. However, as the traditional PSO will easily trap in the local 
optimal solution, we provide two improve strategies for the standard PSO and use them to 
solve the TSP. 

4. Solve the TSP through improved PSO algorithm 
4.1 Solve the TSP through DPSO algorithm 
4.1.1 DPSO principle 
Dynamic programming is a typical deterministic algorithm for solving the optimization 
problem. It is provided on the basis of the optimality principle and non-aftereffect and used 
for the algorithm of multistage decision process. Optimality principle: any truncation of the 
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optimal decision still remains the optimal state; non-aftereffect: after truncation in any stage, 
the decision made in the later stage is only connected to the initial state of this stage and has 
no connection to others. Dynamic programming, through optimality principle and non-
aftereffect, analyze the optimization problem in stages to simplify the problem, which 
greatly reduce the calculation steps. 
PSO algorithm is an interactive parallel searching algorithm as well as a good attempt to 
look for global extremum. However, when solving the optimization problem of high 
dimensional function, as the mutual restraint exists between each dimensional variable, 
disadvantage has been found when the PSO algorithm is used to solve this problem. 
According to the numerical value test result, this algorithm is proven to be very effective 
when the dimension is low. The solving process of dynamic programming is to simplify the 
complex problem to obtain the solution. A combination of this with the property of PSO 
algorithm will surely improve the optimal performance of the PSO algorithm. 
As for the solution of the problem 1 2 imin ( ) ( , , , ),   . .  a , n i if f x x x s t x b= ≤ ≤x 1,2, .i n=   
(4.1.1.1), a strategy should be provided to fix some variables and change the remaining 
variables; i.e. partition the variable and approximate the optimal solution of the majorized 
function through partitioning to convert the high dimensional optimization problem into 
low dimensional optimization problem to get the condition optimal solution. Then fix the 
other part to get the other group of condition optimal solution. Use this information to carry 
out a comprehensive optimization process. Be aware that this strategy is different from the 
principle of dynamic programming, because aftereffect exists when partition optimization is 
applied. So, a strategy method concerning reasonable approximation of global extremum 
should be provided for the partition optimization of aftereffect.  
It is hard to decide the order of fixed variable in the process of calculation.  Different 
strategies can be used during the process of practical operation; after the algorithm traps in 
the local extremum, it may pick some components to be fixed randomly from the local 
optimal solution, or choose some components alternately; at the same time, transform the 
original problem into two problems after some components are picked randomly. If the 
dimension is too high, this problem can also be transformed into multiple problems to find a 
solution.  See the following problem 

 1 2 3 4 5 6min ( , , , , , )f x x x x x x , (4.1.1.2)  

If PSO algorithm gives a local optimal solution 1* 1* 1* 1*
1 2 6( , , )x x x=x , the following two 

strategies can transform the high dimension optimization into low dimension optimization: 
(1) pick several components randomly, e.g. pick 3 components 1* 1* 1*

1 2 4, ,x x x , then the result is  

                 1* 1* 1*
1 2 3 4 5 6min ( , , , , , )f x x x x x x  (4.1.1.3) 

A local optimal solution 1* 1* 2* 1* 2* 2*
1 2 3 4 5 6( , , , , , )x x x x x x  is given by using the PSO algorithm 

again. Then pick some components randomly or alternately (for example, if you pick 
components 1, 2 and 4 last time, you can pick components 3, 5 and 6 this time); in this way, a 
new optimal problem is found. Continue the run until you find a satisfactory result. (2) Pick 
some components randomly and divide the original problem into several problems, 
including: ① 1* 1* 1*

1 2 3 4 5 6min ( , , , , , )f x x x x x x  and 1* 1* 1*
1 2 3 4 5 6min ( , , , , , )f x x x x x x . It may write 

down all the possible forms (i.e. 3
6 20C = ) of the three variables to divide the original 
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problem into 20 optimization problems. ① If you think the dimension is too high, pick p  ( p  
is relatively high in number) components randomly and transform the original problem into 
several optimization problems. You can also list all the p

nC  optimization problems and use 
PSO algorithm to solve several optimization problems you get. Then compare the results of 
these optimization problems and pick the best one to use as the local optimal solution next 
step, and further analyze this solution until you find the satisfactory result. 

4.1.2 Computational steps of the DPSO  
As for the optimization problem of the formula (4.1.1.1), the key algorithm steps are as 
follows:   
Step 1. Randomly generate the initial population m . Under normal circumstances, 10m ≥ . 
Step 2. After figure up certain algebras through PSO or after use PSO and find that the 

target values within several successive algebras remain the same, set the optimal 
solution as * 0 0 0

1 2( , , )nx x x=x . 

Step 3. Pick [ ]
2
n  component randomly from the optimal solution *x  and set it as 

1 2 [ ]
2

0 0 0, ,
ni i ix x x . 

Step 4. Use PSO to solve the following two optimization problems 

  
1 2 [ ]

2

0 0 0
1 2min ( ) ( , , , , , , , )

ni i i nf f x x x x x x=x , (4.1.2.1) 

and 

  
1 2 [ ]

2

0 0 0
1 2min ( ) ( , , , , , , , )

ni i i nf f x x x x x x=x . (4.1.2.2) 

In these two optimization problems, one is the function of [ ]
2
nn −  dimension and the other 

is the function of [ ]
2
n  dimension. 

Step 5. Choose the best result from these two optimization problems to use as the current 
optimal solution *x  to see if it can reach a satisfactory result. If not, iterate the steps 
by starting from step 3; if a satisfactory result is obtained, terminate the 
computational process and get the optimal solution. 

Note: Other strategies may be applied to Step 3, and here is only one of them. In order to 
ensure the rapid convergence of the algorithm, pick the optimal solution after each 
calculation to use it as a particle for the calculation next time.  

4.1.3 Solve the TSP through DPSO 
For the TSP with n cities ( 1 2, , na a a ), use 1 2 1( , , , , )i i in ia a a a  to represent the route (i.e. 

1 2i i ina a a→ → ). 1 2, , ,i i ina a a  is an array of 1 2, , , na a a  and is called solution sequence. 
As stated above, DPSO algorithm is applicable to the continuous problem. As TSP is a 
typical discrete problem, its solution is a sequence or loop rather than a point within the 
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solution space. In order to apply DPSO to TSP, we introduce to you some definitions and 
algorithms of the solution sequence. 
Definition 1  Exchange and exchange sequence  Exchange the j  point and k  point of the 
solution sequence to form a new solution sequence. This is called exchange and is 
indicated with ( , )E j k .Exchange ija  and ika  in the solution sequence of 

( , , , , , , , )1 2a a a a ai i ij inikT = . The new solution after exchange is ( , )T E j k+ . The 
ordered sequence 1 2( , , , )mQ E E E=  after m times of exchanges is called exchange 
sequence. Exchange T  through the exchange sequence in an orderly manner to generate a 
new solution. i.e.  

         1 2 1 2( , , , ) [( ) ]m mT Q T E E E T E E E+ = + = + + + +   (4.1.3.1) 

When 0m = , Q  is equivalent to empty sequence. This means that formula (6.4.1.3.1) doesn’t 
do any exchange for the solution sequence. Under such circumstances, you can add an 
exchange result to the exchange sequence and place this exchange result to the end of the 
sequence to form a new sequence.  
Definition 2  Solution sequence difference  As for any two solution sequences 1T  and 2T  
of the same TSP, the exchange sequence Q  always exists. As a result,  2 1T T Q= +  is 
formed. Q  is the difference of the solution sequences 2T  and 1T , i.e. the result of 

2 1T T− .When 1 1 2( , , )nT a a a=  and 2 1 2( , , )nT b b b=  are found, you can use the following 
procedure 1 to calculate 2 1Q T T= − . 
Procedure 1  Q = empty sequence  
 for 1j =  to n   
 for 1i =  to n   
 if i ja b=  and i j≠  then add ( , )E i j  to Q  

          end 
            end 
In respect of 1T  and 2T , there are many Qs to be used in the formula 2 1T T Q= + . 
Definition 3  Product of decimal and exchange sequence  (0,1)η ∈  and exchange sequence is 

Q  which has an exchange of 0n . If 0 0

0 0

1m m
n n

η +
≤ <  ( 0m  is an integer from 0 to 0 1n − ), 

Qη ⋅  is the sequence formed by 0m  exchange before Q .   
Through this operation, the above algorithm can be used to solve the discrete optimization 
problem like TSP. 

4.1.4  Test and discussion of the performance of the algorithm  
Use 14 points of the TSP provided by Huang Lan and other people to test the effectiveness 
of the algorithm. Description of the 14 points of the TSP is listed in table 1. 
 

Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
X 16.47 16.47 20.09 22.39 25.23 22.00 20.47 17.20 16.30 14.05 16.53 21.52 19.41 20.09 
Y 96.10 94.44 92.54 93.37 97.24 96.05 97.02 96.29 97.38 98.12 97.38 95.59 97.13 94.55 

Table 1. Position data for 14 points 
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problem into 20 optimization problems. ① If you think the dimension is too high, pick p  ( p  
is relatively high in number) components randomly and transform the original problem into 
several optimization problems. You can also list all the p

nC  optimization problems and use 
PSO algorithm to solve several optimization problems you get. Then compare the results of 
these optimization problems and pick the best one to use as the local optimal solution next 
step, and further analyze this solution until you find the satisfactory result. 

4.1.2 Computational steps of the DPSO  
As for the optimization problem of the formula (4.1.1.1), the key algorithm steps are as 
follows:   
Step 1. Randomly generate the initial population m . Under normal circumstances, 10m ≥ . 
Step 2. After figure up certain algebras through PSO or after use PSO and find that the 

target values within several successive algebras remain the same, set the optimal 
solution as * 0 0 0

1 2( , , )nx x x=x . 

Step 3. Pick [ ]
2
n  component randomly from the optimal solution *x  and set it as 

1 2 [ ]
2

0 0 0, ,
ni i ix x x . 

Step 4. Use PSO to solve the following two optimization problems 

  
1 2 [ ]

2

0 0 0
1 2min ( ) ( , , , , , , , )

ni i i nf f x x x x x x=x , (4.1.2.1) 

and 

  
1 2 [ ]

2

0 0 0
1 2min ( ) ( , , , , , , , )

ni i i nf f x x x x x x=x . (4.1.2.2) 

In these two optimization problems, one is the function of [ ]
2
nn −  dimension and the other 

is the function of [ ]
2
n  dimension. 

Step 5. Choose the best result from these two optimization problems to use as the current 
optimal solution *x  to see if it can reach a satisfactory result. If not, iterate the steps 
by starting from step 3; if a satisfactory result is obtained, terminate the 
computational process and get the optimal solution. 

Note: Other strategies may be applied to Step 3, and here is only one of them. In order to 
ensure the rapid convergence of the algorithm, pick the optimal solution after each 
calculation to use it as a particle for the calculation next time.  

4.1.3 Solve the TSP through DPSO 
For the TSP with n cities ( 1 2, , na a a ), use 1 2 1( , , , , )i i in ia a a a  to represent the route (i.e. 

1 2i i ina a a→ → ). 1 2, , ,i i ina a a  is an array of 1 2, , , na a a  and is called solution sequence. 
As stated above, DPSO algorithm is applicable to the continuous problem. As TSP is a 
typical discrete problem, its solution is a sequence or loop rather than a point within the 
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solution space. In order to apply DPSO to TSP, we introduce to you some definitions and 
algorithms of the solution sequence. 
Definition 1  Exchange and exchange sequence  Exchange the j  point and k  point of the 
solution sequence to form a new solution sequence. This is called exchange and is 
indicated with ( , )E j k .Exchange ija  and ika  in the solution sequence of 

( , , , , , , , )1 2a a a a ai i ij inikT = . The new solution after exchange is ( , )T E j k+ . The 
ordered sequence 1 2( , , , )mQ E E E=  after m times of exchanges is called exchange 
sequence. Exchange T  through the exchange sequence in an orderly manner to generate a 
new solution. i.e.  

         1 2 1 2( , , , ) [( ) ]m mT Q T E E E T E E E+ = + = + + + +   (4.1.3.1) 

When 0m = , Q  is equivalent to empty sequence. This means that formula (6.4.1.3.1) doesn’t 
do any exchange for the solution sequence. Under such circumstances, you can add an 
exchange result to the exchange sequence and place this exchange result to the end of the 
sequence to form a new sequence.  
Definition 2  Solution sequence difference  As for any two solution sequences 1T  and 2T  
of the same TSP, the exchange sequence Q  always exists. As a result,  2 1T T Q= +  is 
formed. Q  is the difference of the solution sequences 2T  and 1T , i.e. the result of 

2 1T T− .When 1 1 2( , , )nT a a a=  and 2 1 2( , , )nT b b b=  are found, you can use the following 
procedure 1 to calculate 2 1Q T T= − . 
Procedure 1  Q = empty sequence  
 for 1j =  to n   
 for 1i =  to n   
 if i ja b=  and i j≠  then add ( , )E i j  to Q  

          end 
            end 
In respect of 1T  and 2T , there are many Qs to be used in the formula 2 1T T Q= + . 
Definition 3  Product of decimal and exchange sequence  (0,1)η ∈  and exchange sequence is 

Q  which has an exchange of 0n . If 0 0

0 0

1m m
n n

η +
≤ <  ( 0m  is an integer from 0 to 0 1n − ), 

Qη ⋅  is the sequence formed by 0m  exchange before Q .   
Through this operation, the above algorithm can be used to solve the discrete optimization 
problem like TSP. 

4.1.4  Test and discussion of the performance of the algorithm  
Use 14 points of the TSP provided by Huang Lan and other people to test the effectiveness 
of the algorithm. Description of the 14 points of the TSP is listed in table 1. 
 

Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
X 16.47 16.47 20.09 22.39 25.23 22.00 20.47 17.20 16.30 14.05 16.53 21.52 19.41 20.09 
Y 96.10 94.44 92.54 93.37 97.24 96.05 97.02 96.29 97.38 98.12 97.38 95.59 97.13 94.55 

Table 1. Position data for 14 points 
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Use DPSO to carry out 8 times of tests and set the parameters as 1 0.53ω = ,  1 0.35η =  and 
2 0.45η = . The number of the initial population is 600. Set the maximum iterative number as 

300. The result as follows:  
 

Test serial number 1 2 3 4 5 6 7 8 
Get the algebra of 

the optimum value 
30.8785 

58 30 58 58 58 58 93 196 

Get the best route 
each time 6-12-7-13-8-11-9-10-1-2-14-3-4-5 

Tabela 2.                            

Algorithm analysis table 

Number of the solution space (14-1)!/2=3 113 510 400 
Average iterative number (58× 5+30+93+196)/8=76.125 
Average search space for each test 600+76.125× 200=15825 
Proportion of the search space to 
solution space 

15825/3113510400=0.000508% 

Tabela 3. 

From the above test, we can see that DPSO may go beyond the local extremum to gen the 
final optimal solution for the problem. To achieve this, we should transform the high 
dimension optimization into low dimension optimization. We should optimize the 
remaining components while maintain some components unchanged; by doing this 
alternately, the ability for algorithm to optimize the high dimension problem will be 
strengthened. This improved algorithm only represents an improvement on the calculative 
strategy front. It does not add additional calculation and step to the algorithm, hence, 
maintaining the simplification of the PSO algorithm. At the same time, it helps to transform 
a high dimension optimization problem into several low dimension optimization problems, 
which will not complicate the calculation procedure. 

4.2  Solve the TSP through MCPSO 
When use MCPSO to solve the TSP, you also need to go through the relevant procedure 
which is used by continuous optimization algorithm to solve the discrete optimization 
problem; except for the above methods, MCPSO also has midpoint problem, so we 
introduce you the following definition:  
Definition  Midpoint solution sequence  Set two solution sequences 1 1 2( , , )nT a a a=  and 

2 1 2( , , )nT b b b=  for n cities of TSP and make the solution sequence as 

1 1 11 2 1 2( , , , , , , , )n n n nT a a a b b b+ +=  ( 1 [ / 2]n n= ).If repetitive point appears in the solution, 
adjustment can be made according to the procedure 2 to make it become a feasible 
solution sequence and call it a midpoint solution sequence of 1T  and 2T .  
Procedure 2   
Step 1. Search for the repetitive point of 

11 2, , , na a a  from 
1 11 2, , ,n n nb b b+ +  and replace it 

with 0; 
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Step 2.  Search for the points which are different from the points of 
1 11 2, , ,n n nb b b+ +  from 

1 11 2, , ,n n na a a+ +  and replace the 0 point in an orderly manner. 

4.2.1  Steps for MCPSO to solve the TSP  
The steps for MCPSO algorithms to solve the TSP are as follows:  
Step 1. Set relevant parameters l , 1β , 2β  and δ , and begin to conduct initialization 

complex. Each point is the solution sequence generated randomly and is indicated 
with x ; 

Step 2. Pick l  solution sequences, good and bad, for rx  and fx , and calculate the 

midpoint sequence mx  and ratio λ . Then determine the best solution sequence 1x ;   
Step 3. Based on certain probability,  
               Pick formula 1 2 1( ) ( )p f r f fφ φ= + − + −x x x x x x  through probability 1β  

               Pick formula 1 2 1( ) ( )p r r f fφ φ= + − + −x x x x x x  through probability 2β  

               Pick formula 1 2 1( ) ( )p f f r fφ φ= + − + −x x x x x x  through probability 1 21 β β− −  

to get m  new solution sequences px  to replace the bad solution sequence fx  to form a new 

complex; 
Step 4. If the satisfactory result is reached, go to Step 5; otherwise, go back to Step 2; 
Step 5. Show the optimal solution. 

4.2.2 Test and discussion of the performance of the algorithm  
Test the algorithm based on the 14 points of the TSP provided by Huang Lan and other 
people. The optimum value is 30.8785.We use this problem to test the optimal performance 
of MCPSO algorithm. Its parameters are 0.85δ = , 1 0.675β = , 2 0.175β =  and 50l = . The 
pop-size is 600 and the upper limit of iterative number is 200. In order to facilitate 
comparison, we also use SGA and ACO to solve this problem. These two have the same 
pop-size and iteration upper limit as MCPSO. Each algorithm is run for 10 times. The 
parameter setting for these two algorithms are: SGA: multiplying probability 

0.2rP = ,crossing probability 0.6cP =  and mutation probability 0.05mP = ; ACO: constant 
20C = , pheromone factor 1α = , heuristic factor 1β = , and information keeping factor 
0.8ρ = . The results of these algorithms are shown in the table 4.2.2.1 and the change curve 

of average mean fitness is shown in the figure 4.2.2.1. 
ACO and integer-coded SGA can be directly used to solve the discrete optimization 
problems such as TSP. These algorithms have the ability to search for the global optimal 
solution, but the efficiency is relatively low as they can only make a change based on the 
probability. MCPSO is a continuous algorithm which introduces the group searching 
mechanism of PSO into the complex method. It considers the global property between 
solutions through geometry point, optimization and other principles so as to shorten the 
distance between the solution with poor adaptability and the solution with good 
adaptability. In order to avoid being trapped in the local extremum, certain probability will 
be considered. Shortening the distance between bad solution and good solution will help 
you to get the optimal solution in a more precise way within a short time, and greatly 
enhance the searching ability. The appearance of the algorithm targeted to TSP solution 
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Use DPSO to carry out 8 times of tests and set the parameters as 1 0.53ω = ,  1 0.35η =  and 
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Test serial number 1 2 3 4 5 6 7 8 
Get the algebra of 

the optimum value 
30.8785 

58 30 58 58 58 58 93 196 
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Tabela 2.                            
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Step 1. Search for the repetitive point of 
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1 11 2, , ,n n nb b b+ +  and replace it 

with 0; 
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sequence not only helps to keep the above characteristics of MCPSO, but also guarantees the 
effective application of MCPSO to discrete problems. As for the 14 points of TSP, the 
running of MCPSO algorithm (7 out of 10 times) will help you to find the optimal solution 
with relatively low iterative number. However, after 10 times of running of ACO and SGA, 
no optimal solution is found. From this, we can see the advantage of MCPSO. 
                         

Algorithm 

Number of 
times of 

reaching the 
optimum 

value 

Minimum 
algebra for 

reaching the 
optimum 

value 

Average algebra 
for reaching the 
optimum value

Best value Average 
value 

Standard 
deviation 

ACO 0 N/A N/A 31.8791 33.6888 3.7000 
SGA 0 N/A N/A 34.4509 35.9578 3.4209 

MCPSO 7 35 143.57 30.8785 31.0262 0.7137 

Table 4. Comparison of the results from three algorithms 

 
                        
Fig. 1.  

5. Application of the improved PSO algorithm for the TSP 

PCB’s digital control drilling problem can be described as follows: Process all the holes by 
starting from the tool changing point (repetition and omission are not allowed). After the 
processing, return to this point to do tool changing and processing for other aperture. In 
terms of digital control programming, we should consider the order of drill hole processing 
to minimize the time idle running, i.e. the best route problem of tool changing or the TSP 
problem in nature. With regard to the processing problem for a series of holes, the 
coordinate for these 20 holes has been listed in the figure 5.1. We use PCB-CAD software 
and PSO, SGA, ACO, DPSO and MCPSO to solve this problem. The parameter setting for 
PSO is: 0.25ω = , 1 0.3c =  and 2 0.45c = . The speed will be indicated through exchange 
sequence. The parameters of the other three algorithms are the same as above. The tool 
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changing routes generated are shown in figures 5.1 to 5.6. The latter five algorithms are run 
individually for 10 times with the upper limit of iterative number each time of 200 and pop-
size of 600. The figures presented are their optimal structures. The path lengths for the tool 
changing routes generated from 6 algorithms are given in table 5.2. 
 

No. x  y  No. x  y  No. x  y  

1 1 1 8 2.5 7.5 15 7 15.5 
2 1 3 9 2.5 1 16 7 13.5 
3 1 7 10 3.5 2 17 7 12.1 
4 1 8 11 3.5 8.2 18 7 12 
5 2.5 14 12 3.5 12.9 19 7 10 
6 2.5 13.5 13 3.5 13.2 20 7 4 
7 2.5 13 14 3.5 13.9    

Table 5. Position for 20 holes 

 Algorithm PCB-CAD ACO SGA PSO MCPSO DPSO 
Average 
length 

61.5555 60.5610 58.6334 59.4244 43.4923 44.4978 

Minimum 
length 

61.5555 56.7481 52.2687 53.2687 40.1203 40.1203 

Table 6. Calculation result comparison                               

 
Fig. 5.1 Tool changing route chart generated from PCB-CAD            

 
Fig. 5.2 Tool changing route chart generated from PSO                  
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Fig. 5.3 Tool changing route chart generated from SGA 

 
 

Fig. 5.4 Tool changing route chart generated from ACO                

 
 

Fig. 5.5 Tool changing route chart generated from MCPSO              

 
Fig. 5.6 Tool changing route chart generated from DPSO 
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From above, see can see that the lengths of tool changing routes generated from 
optimization algorithms are shorter than that generated from PCB-CAD software, of which 
the MCPCO enjoy the shortest length (about 29% shorter than others). Determination of the 
best route for PCB digital control drilling can effectively solve the optimization problem of 
the digital control programming in the course of PCB processing and develop a PCB 
automatic programming system. 

6. Summary  
This article consists of the definition of TSP, mathematical description methods, traditional 
solving methods for the TSP and problems existing in the traditional solving methods. At 
the same time, it introduces the evolution algorithms for solving the TSP. Based on this, two 
algorithms (MCPSO and DPSO) are provided. Finally, it shows us the best tool changing 
route for the digital control drilling by using the algorithms given.  

7. References:  
[1] Mo Yuanbin, Expansion and Application of PSO (D). Hangzhou: Zhejiang University. 

2007 
[2] Garey M R, Johnson D S. Computers and Intractabilitys: A Guide to the Theory of NP-

Completeness [M]. San Francisco: Freeman WH , 1979. 
[3] Maurice Clerc. Discrete Particle Swarm Optimization Illustrated by the Traveling Sales 

man Problem [DB/OL ]. 
               http: //www. mauriceclerc. net, 2000. 
[4] Gao S，Han B,Wu X J．et al. Solving Traveling Sales2man Problem by Hybrid Particle 

Swarm Optimization Algorithm [ J ]. Control and Decision, 2004, 19 ( 11) :1286-
1289.  

[5] (US) Robert E. Larson (Writer). Chen Weiji (Translator). Dynamic Programming. 1st 
edition. Beijing: Tsinghua University Press, 1984 

[6] (US) Leon Cooper and Mary W. Cooper (Writers). Zhang Youwei (Translator). 
Dynamic Programming. 1st edition. Beijing: National Defence Industrial Press, 
1985 

[7] Huang Lan and Wang Kangping, etc. Solve the Traveling Salesman Problem through 
PSO Algorithm [J]. Journal of Jilin University, 2003 (4): 477-480．  

[8] Meng Fanzhen, Hu Yunchang and Xu Hui, etc. Genetic Algorithm of the Traveling 
Salesman Problem [J]. System Engineering Theory and Practice, 1997, 2 (7): 15-
21.  

[9] Conley WC. Programming an automated punch or drill[J]. International Journal of 
Systems Science, 1991, 22(11): 2039-2025. 

[10] Wang Xiao and Liu Huixia. Modeling and Solving of the Best Tool Changing Route for 
PCB Digital Control Drilling [J]. Journal of Computer Aided Design and Graphics. 
2001, 13 (7): 590-593. 



 Traveling Salesman Problem, Theory and Applications 

 

38 

 
 

Fig. 5.3 Tool changing route chart generated from SGA 

 
 

Fig. 5.4 Tool changing route chart generated from ACO                

 
 

Fig. 5.5 Tool changing route chart generated from MCPSO              

 
Fig. 5.6 Tool changing route chart generated from DPSO 

The Advantage of Intelligent Algorithms for TSP 

 

39 

From above, see can see that the lengths of tool changing routes generated from 
optimization algorithms are shorter than that generated from PCB-CAD software, of which 
the MCPCO enjoy the shortest length (about 29% shorter than others). Determination of the 
best route for PCB digital control drilling can effectively solve the optimization problem of 
the digital control programming in the course of PCB processing and develop a PCB 
automatic programming system. 

6. Summary  
This article consists of the definition of TSP, mathematical description methods, traditional 
solving methods for the TSP and problems existing in the traditional solving methods. At 
the same time, it introduces the evolution algorithms for solving the TSP. Based on this, two 
algorithms (MCPSO and DPSO) are provided. Finally, it shows us the best tool changing 
route for the digital control drilling by using the algorithms given.  

7. References:  
[1] Mo Yuanbin, Expansion and Application of PSO (D). Hangzhou: Zhejiang University. 

2007 
[2] Garey M R, Johnson D S. Computers and Intractabilitys: A Guide to the Theory of NP-

Completeness [M]. San Francisco: Freeman WH , 1979. 
[3] Maurice Clerc. Discrete Particle Swarm Optimization Illustrated by the Traveling Sales 

man Problem [DB/OL ]. 
               http: //www. mauriceclerc. net, 2000. 
[4] Gao S，Han B,Wu X J．et al. Solving Traveling Sales2man Problem by Hybrid Particle 

Swarm Optimization Algorithm [ J ]. Control and Decision, 2004, 19 ( 11) :1286-
1289.  

[5] (US) Robert E. Larson (Writer). Chen Weiji (Translator). Dynamic Programming. 1st 
edition. Beijing: Tsinghua University Press, 1984 

[6] (US) Leon Cooper and Mary W. Cooper (Writers). Zhang Youwei (Translator). 
Dynamic Programming. 1st edition. Beijing: National Defence Industrial Press, 
1985 

[7] Huang Lan and Wang Kangping, etc. Solve the Traveling Salesman Problem through 
PSO Algorithm [J]. Journal of Jilin University, 2003 (4): 477-480．  

[8] Meng Fanzhen, Hu Yunchang and Xu Hui, etc. Genetic Algorithm of the Traveling 
Salesman Problem [J]. System Engineering Theory and Practice, 1997, 2 (7): 15-
21.  

[9] Conley WC. Programming an automated punch or drill[J]. International Journal of 
Systems Science, 1991, 22(11): 2039-2025. 

[10] Wang Xiao and Liu Huixia. Modeling and Solving of the Best Tool Changing Route for 
PCB Digital Control Drilling [J]. Journal of Computer Aided Design and Graphics. 
2001, 13 (7): 590-593. 



 Traveling Salesman Problem, Theory and Applications 

 

40 

[11] Colorni, A., Dorigo, M., and Maniezzo, V. Distributed optimization by ant colonies. 
Proceedings of the First European Conference on Artificial Life, Paris, France, 
Varela, F. and Bourgine, P. (Eds.), Elsevier Publishing, 1991, 134-142. 

 
 

0

Privacy-Preserving Local Search for the Traveling
Salesman Problem

Jun Sakuma1 and Shigenobu Kobayashi2
1University of Tsukuba

2Tokyo Institute of Technology
Japan

1. Introduction

In this chapter, we specifically examine distributed traveling salesman problems in which the
cost function is defined by information distributed among two or more parties. Moreover, the
information is desired to be kept private from others.
As intuitive situations in which distributed private information appears in combinatorial
optimization problems, we take problems in supply chain management (SCM) as examples.
In SCM, the delivery route decision, the production scheduling and the procurement
planning are fundamental problems. Solving these problems contributes to improvement
of the correspondence speed to the customer and shortening the cycle time(Vollmann, 2005;
Handfield & Nichols, 1999). In the process of forming the delivery route decision and
production schedule decision, the combinatorial optimization plays an important role.
When the SCM is developed between two or more enterprises, information related to the
stock, the production schedule, and the demand forecast must be shared among enterprises.
Electronic Data Interchange (EDI), the standardized data exchange format over the network,
is often used to support convenient and prompt information sharing1. Information sharing
apparently enhances the SCM availability; however, all information related to the problem
resolution must be disclosed to all participants to lay the basis for global optimization. Such
information is often highly confidential and its disclosurewould be impossible in many cases.
As more concrete examples, two scenarios are presented. These scenarios pose situations that
appear to be unsolvable unless private information is shared.
Scenario 1: Let there be a server EA that manages a route-optimization service and a user EB

who tries to use this service. The user’s objective is to find the optimal route that visits points
F1, ...,Fn chosen by himself. The user, however, does not like to reveal the list of visiting points
to the server. The server manages a matrix of cost for traveling between any two points. The
server does not like to reveal the cost matrix to the user, either. How can the user learn the
optimal route without mutually revelation of private information?
Note that this problem is obviously solved as the Traveling Salesman Problem (TSP) if either
of traveling cost or visiting points is shared. As more complicated examples, a multi-party
situation is described next.
Scenario 2: Let there be two shipping companies EA and EB in two regionsA and B. Client EC

requests that EA deliver freight to point FA
1
, ...,FAn in region A and also requests EB to deliver

1United Nations Economic Commission for Europe, http://www.unece.org/trade/untdid/welcome.htm
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freight to point FB
1
, ...,FBn in region B, separately. Now EA,EB and EC are involved in the

business cooperation and try to unify the delivery route to reduce the overall delivery cost. To
search for the optimum unified route and to estimate the reduced cost, EA and EB must reveal
their costs between any two points, but they would not reveal their delivery cost because they
seek mutual confidentiality. How can these companies search for the optimal unified delivery
route without revealing their confidential information?
In these scenarios, costs and visiting points are confidential information and participants
would not reveal them. As shown, the difficulty of private information sharing sometimes
thwarts problem resolution.
In our study, we specifically investigate a privacy-preserving local search to solve the traveling
salesmanproblem. The easiestway to converting existingmetaheuristics toprivacy-preserving
metaheuristics is to introduce an entity called a trusted third party (TTP). A TTP is an entity
that facilitates interactions between two parties who both trust the TTP. If a TTP exists, then all
parties can send their private information to the TTP; the TTP can find a local optimum using
the existing metaheuristics and can return the optimized solution.
This idea works perfectly. However, preparation of a TTP is often quite difficult mainly in
terms of cost. Needless to say, a protocol that works only between participants in the standard
network environment (e.g. TCP/IP network) is preferred.
Secure function evaluation (SFE) (Yao, 1986; Goldreich, 2004) is a general and well studied
methodology for evaluating any function privately, which allows us to convert any existing
metaheuristics into privacy-preserving metaheuristics. However, the computational cost of
SFE is usually quite large. The time complexity of SFE is asymptotically bounded by the
polynomial of the size of theBoolean circuit of the computation. If the computation is primitive,
SFE works practically; however, it can be too inefficient for practical use, particular when the
large-scale computation is performed or large amount of datasets are taken as inputs and
outputs.
In solving the traveling salesman problem by means of metaheuristics, not only the input
size but the number of iterations can be quite large. Therefore, in our protocol, in order to
solve TSP in a privacy-preserving manner, we make use of a public-key cryptosystem with
homomorphic property, which allows us to compute addition of encrypted integers without
decryption. Existing SFE solutions are used only for small portions of our computation as a
part of a more efficient overall solution.

2. Problem denition

In this section, we introduce distributed situations of the traveling salesman problem (TSP).
Then the privacy in the distributed traveling salesman problem is defined.
Let G = (V,E) be an undirected graph and |V| = n be the number of cities. For each edge
ei, j ∈ E, a cost connecting node i and node j, αi, j, is prescribed. Tours are constrained to be a
Hamilton cycle. Then the objective of TSP is to find a tour such that the sum of the cost of
included edges is as low as possible.
The permutation representation or the edge representation is often used to describe tours. In
this chapter, we introduce the scalar product representation with indicator variables for our
solution. Let x = (x1,2, ...,x1,n,x2,3, ...,x2,n, ...,xn−1,n) be a tour vector where xi, j are indicator
variables such that

xi, j =

⎧⎪⎪⎨⎪⎪⎩
1 ei, j is included in the tour,

0 otherwise.
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The cost can be written as an instance vector α = (α1,2, ...,αn−1,n) similarly. The number of
elements of the tour vector x and the cost vector α are d = n(n − 1)/2. For simplicity, we
respectively describe the i-th element of x and α as xi and αi. Then, using this representation,
the objective function of TSP is written in the form of the scalar product:

f (x,α) =
d�

i=1

αixi = α · x. (1)

The constraint function of the TSP is defined as

g(x;V) =

⎧⎪⎪⎨⎪⎪⎩
1 If x is a Hamilton cycle of V,

0 otherwise.

Next, we consider distributed situations of the TSP. The instance of the TSP consists of city set
V and cost vector α.
First, the simplest and typical two-party distributed situation is explained. Let there be two
parties P(1) and P(2). Assume that city set V is publicly shared by P(1) and P(2). In such a
case, P(1) (referred to as searcher) arbitrarily chooses a city subset V� ⊆ V and privately holds
it. Here, V� represents the searcher’s private list of visiting cities. The searcher can generate
tour x that includes all cities in V� and aims to minimize the total cost of the tour.
In addition, P(2) (referred to as server) privately holds cost vector α for all cities in V. The
server works to support the optimization of the searcher.
We call this problem (1,1)-TSP or one-server one-searcher TSP. Here, (1,1)-TSP corresponds to
the formal description of scenario 1 described in section 1.
Multi-party cases are explained as the extension of (1,1)-TSP. Assume a situation in which
the cost vector α is distributed among k servers. Let α(i) be a vector that is owned by the i-th

server such that α =
�k

i=1α(i). As in the case of (1,1)-TSP, V� is chosen by the searcher. We
designate this distributed TSP as (k,1)-TSP, which corresponds to the formal description of
scenario 2 presented in section 1.
Next we explain (1,k)-TSP. Let {V�(1), ...,V�(k)} be city subsets that are chosen independently
by k searchers independently. Let V� = ∪k

i=1
V�(i). The server privately manages α.

See Fig. 1 for the partitioning patterns of these distributed TSPs. Apparently, (1,1)-TSP is
a special case of these cases. The cost function is represented as the scalar product of two
vectors in all situations. The constraint function is written as g(x;V�), which is evaluable by
the searcher in (1,1) or (k,1)-TSP . However, g(x;V�) cannot be evaluated by any single party
in (1,k)-TSP.
In our protocol presented in latter sections, we require that constraint function g is evaluable
by a single party. For this reason, we specifically investigate (1,1)-TSP and (k,1)-TSP in what
follows.

3. Our approach

In this section, we explain our approach for solving distributed TPSs with private information
by means of the local search. For the convenience of description, we specifically examine
(1,1)-TSP in the following sections. The extension to (k,1)-TSP is mentioned in Section 6.
Let N(x) be a set of neighborhoods of solution x. Let ∈r denote an operation which chooses
an element form a given set uniformly at random. Then, the algorithm of local search without
privacy preservation is described as follows:
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ei, j ∈ E, a cost connecting node i and node j, αi, j, is prescribed. Tours are constrained to be a
Hamilton cycle. Then the objective of TSP is to find a tour such that the sum of the cost of
included edges is as low as possible.
The permutation representation or the edge representation is often used to describe tours. In
this chapter, we introduce the scalar product representation with indicator variables for our
solution. Let x = (x1,2, ...,x1,n,x2,3, ...,x2,n, ...,xn−1,n) be a tour vector where xi, j are indicator
variables such that

xi, j =

⎧⎪⎪⎨⎪⎪⎩
1 ei, j is included in the tour,

0 otherwise.
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respectively describe the i-th element of x and α as xi and αi. Then, using this representation,
the objective function of TSP is written in the form of the scalar product:
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The constraint function of the TSP is defined as
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1 If x is a Hamilton cycle of V,

0 otherwise.

Next, we consider distributed situations of the TSP. The instance of the TSP consists of city set
V and cost vector α.
First, the simplest and typical two-party distributed situation is explained. Let there be two
parties P(1) and P(2). Assume that city set V is publicly shared by P(1) and P(2). In such a
case, P(1) (referred to as searcher) arbitrarily chooses a city subset V� ⊆ V and privately holds
it. Here, V� represents the searcher’s private list of visiting cities. The searcher can generate
tour x that includes all cities in V� and aims to minimize the total cost of the tour.
In addition, P(2) (referred to as server) privately holds cost vector α for all cities in V. The
server works to support the optimization of the searcher.
We call this problem (1,1)-TSP or one-server one-searcher TSP. Here, (1,1)-TSP corresponds to
the formal description of scenario 1 described in section 1.
Multi-party cases are explained as the extension of (1,1)-TSP. Assume a situation in which
the cost vector α is distributed among k servers. Let α(i) be a vector that is owned by the i-th

server such that α =
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i=1α(i). As in the case of (1,1)-TSP, V� is chosen by the searcher. We
designate this distributed TSP as (k,1)-TSP, which corresponds to the formal description of
scenario 2 presented in section 1.
Next we explain (1,k)-TSP. Let {V�(1), ...,V�(k)} be city subsets that are chosen independently
by k searchers independently. Let V� = ∪k

i=1
V�(i). The server privately manages α.

See Fig. 1 for the partitioning patterns of these distributed TSPs. Apparently, (1,1)-TSP is
a special case of these cases. The cost function is represented as the scalar product of two
vectors in all situations. The constraint function is written as g(x;V�), which is evaluable by
the searcher in (1,1) or (k,1)-TSP . However, g(x;V�) cannot be evaluated by any single party
in (1,k)-TSP.
In our protocol presented in latter sections, we require that constraint function g is evaluable
by a single party. For this reason, we specifically investigate (1,1)-TSP and (k,1)-TSP in what
follows.

3. Our approach

In this section, we explain our approach for solving distributed TPSs with private information
by means of the local search. For the convenience of description, we specifically examine
(1,1)-TSP in the following sections. The extension to (k,1)-TSP is mentioned in Section 6.
Let N(x) be a set of neighborhoods of solution x. Let ∈r denote an operation which chooses
an element form a given set uniformly at random. Then, the algorithm of local search without
privacy preservation is described as follows:
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Fig. 1. Privacy model of the distributed TSP

[Local search]

1. Generate an initial tour x0

2. x ∈r N(x0), N(x0)←N(x0) \ {x}.

3. If f (x) < f (x0),x0← x

4. If some termination conditions are satisfied, output x0 as x
∗. Else, go to step 2.

In the process of local search, cost values are evaluated many times. From the perspective of
privacy preservation, if cost values are shared at each iteration, information leakage is likely
to arise. For example, in (1,1)-TSP, the searcher might infer some elements of the server’s
private distance vector from a series of tours and cost values.
Fortunately, formany rank-basedmetaheuristics algorithms, including local search, cost values
need not always be evaluated; the evaluation of a paired comparison of two cost values is
sometimes sufficient. This fact is convenient for privacy preservation in optimization because
the risk of information leakage from the result of paired comparison would be much smaller
than the cost value itself.
Considering the matters described above, we consider a protocol that solves
privacy-preserving optimization through a combination of local search and a cryptographic
protocol that privately compares a pair of scalar products.
First, we define the private paired comparison of the scalar product. Let x1,x2,α ∈ Z

d
m(=

[0, ...,m− 1]d). Also assume the the following inequalities.

– α · x2 − α · x1 ≥ 0 be I+

– α · x2 − α · x1 < 0 be I−

Then, the problem can be stated as follows:

Statement 1 (Private scalar product comparison) Let there be two parties: Alice and Bob. Alice has
two private vectors x1,x2 and Bob has a private vector α. At the end of the protocol, Alice learns one
correct inequality in {I−, I+} and nothing else. Bob learns nothing.

We call this problem private scalar product comparison. Assuming that there exist protocols that
solve this private scalar product comparison, private scalar product comparison allows us to
perform local search in a privacy-preserving manner as shown below:
In step one, the searcher generates an initial tour x0. In step two, the searcher chooses a tour
in neighborhood of x0, N(x0), uniformly at random. These two steps can be executed by the
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searcher solely. At step three, we make use of private scalar product comparison. Recall that
f (x) = α · x and f (x0) = α · x0. Whatweneed here is to learnwhether or not α · x0−α · x< 0. This
problem is readily solved by means of private scalar product comparison without sharing the
searcher’s x, x0 and the server’s α. In step four, the searcher can terminate the computations
after generating a prescribed number of individuals, or can terminate the serarch when he
finds N(x) = ∅. In both cases, step four can be executed by the searcher solely.
As shown, assuming the existence of a protocol for private scalar product comparison,
TSPs including private information can be securely solved. In next section, we introduce
cryptographic building blocks required for solving private scalar product comparison. Then
in Section 5, a protocol for solving the private scalar product comparison is presented.

4. Cryptographic building blocks

In this section, three cryptographic building blocks are introduced.

4.1 Homomorphic public-key cryptosystem
For our protocol, we use a public-key cryptosystem with a homomorphic property. A
public-key cryptosystem is a triple (Gen, Enc, Dec) of probabilistic polynomial-time algorithm
for key-generation, encryption, and decryption, respectively. The key generation algorithm
generates a valid pair (sk,pk) of secret and public keys. The secret key and public key are
used only for decryption and encryption. Then Zp = {0,1, ...,p− 1} denotes the plain text space.
The encryption of a plain text t ∈ Zp is denoted as Encpk (t;r), where r is a random integer.
The decryption of a cipher text is denoted as t = Decsk (c). Given a valid key pair (pk,sk),
Decsk (Encpk (t;r)) = t for any t and r is required.
A public key cryptosystem with additive homomorphic property satisfies the following
identities.

Enc(t1;r1) · Enc(t2;r2) = Enc(t1 + t2 mod p;r1 + r2)

Enc(t1;r1)
t2 = Enc(t1t2 mod p;r1)

In those equations, t1, t2 ∈ Zp are plain texts and r1,r2 are random numbers. These random
numbers are used to introduce redundancy into ciphers for security reasons; encrypted values
of an integer with taking difference random numbers are represented differently. These
properties enable the addition of any two encrypted integers and the multiplication of an
encrypted integer by an integer. A public-key cryptosystem is semantically secure when a
probabilistic polynomial-time adversary cannot distinguish between random encryptions of
two elements chosen by herself. Paillier cryptosystem is known as a semantically secure
cryptosystem with homomorphic property(Pailler, 1999). We use the Paillier cryptosystem in
experiments in section 6.

4.2 Secure function evaluation
As mentioned in the introductory section, secure function evaluation (SFE) is a general
and well studied cryptographic primitive which allows two or more parties to evaluate a
specified function of their inputs without revealing (anything else about) their inputs to each
other (Goldreich, 2004; Yao, 1986).
In principle, any private distributed computation can be securely evaluated by means of SFE.
However, although polynomoially bounded, naive implementation of local search using SFE
can be too inefficient. Therefore, in order to achieve privacy-preserving local search efficiently,
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[Local search]

1. Generate an initial tour x0

2. x ∈r N(x0), N(x0)←N(x0) \ {x}.

3. If f (x) < f (x0),x0← x

4. If some termination conditions are satisfied, output x0 as x
∗. Else, go to step 2.

In the process of local search, cost values are evaluated many times. From the perspective of
privacy preservation, if cost values are shared at each iteration, information leakage is likely
to arise. For example, in (1,1)-TSP, the searcher might infer some elements of the server’s
private distance vector from a series of tours and cost values.
Fortunately, formany rank-basedmetaheuristics algorithms, including local search, cost values
need not always be evaluated; the evaluation of a paired comparison of two cost values is
sometimes sufficient. This fact is convenient for privacy preservation in optimization because
the risk of information leakage from the result of paired comparison would be much smaller
than the cost value itself.
Considering the matters described above, we consider a protocol that solves
privacy-preserving optimization through a combination of local search and a cryptographic
protocol that privately compares a pair of scalar products.
First, we define the private paired comparison of the scalar product. Let x1,x2,α ∈ Z
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m(=

[0, ...,m− 1]d). Also assume the the following inequalities.

– α · x2 − α · x1 ≥ 0 be I+

– α · x2 − α · x1 < 0 be I−

Then, the problem can be stated as follows:

Statement 1 (Private scalar product comparison) Let there be two parties: Alice and Bob. Alice has
two private vectors x1,x2 and Bob has a private vector α. At the end of the protocol, Alice learns one
correct inequality in {I−, I+} and nothing else. Bob learns nothing.

We call this problem private scalar product comparison. Assuming that there exist protocols that
solve this private scalar product comparison, private scalar product comparison allows us to
perform local search in a privacy-preserving manner as shown below:
In step one, the searcher generates an initial tour x0. In step two, the searcher chooses a tour
in neighborhood of x0, N(x0), uniformly at random. These two steps can be executed by the
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searcher solely. At step three, we make use of private scalar product comparison. Recall that
f (x) = α · x and f (x0) = α · x0. Whatweneed here is to learnwhether or not α · x0−α · x< 0. This
problem is readily solved by means of private scalar product comparison without sharing the
searcher’s x, x0 and the server’s α. In step four, the searcher can terminate the computations
after generating a prescribed number of individuals, or can terminate the serarch when he
finds N(x) = ∅. In both cases, step four can be executed by the searcher solely.
As shown, assuming the existence of a protocol for private scalar product comparison,
TSPs including private information can be securely solved. In next section, we introduce
cryptographic building blocks required for solving private scalar product comparison. Then
in Section 5, a protocol for solving the private scalar product comparison is presented.

4. Cryptographic building blocks

In this section, three cryptographic building blocks are introduced.

4.1 Homomorphic public-key cryptosystem
For our protocol, we use a public-key cryptosystem with a homomorphic property. A
public-key cryptosystem is a triple (Gen, Enc, Dec) of probabilistic polynomial-time algorithm
for key-generation, encryption, and decryption, respectively. The key generation algorithm
generates a valid pair (sk,pk) of secret and public keys. The secret key and public key are
used only for decryption and encryption. Then Zp = {0,1, ...,p− 1} denotes the plain text space.
The encryption of a plain text t ∈ Zp is denoted as Encpk (t;r), where r is a random integer.
The decryption of a cipher text is denoted as t = Decsk (c). Given a valid key pair (pk,sk),
Decsk (Encpk (t;r)) = t for any t and r is required.
A public key cryptosystem with additive homomorphic property satisfies the following
identities.

Enc(t1;r1) · Enc(t2;r2) = Enc(t1 + t2 mod p;r1 + r2)

Enc(t1;r1)
t2 = Enc(t1t2 mod p;r1)

In those equations, t1, t2 ∈ Zp are plain texts and r1,r2 are random numbers. These random
numbers are used to introduce redundancy into ciphers for security reasons; encrypted values
of an integer with taking difference random numbers are represented differently. These
properties enable the addition of any two encrypted integers and the multiplication of an
encrypted integer by an integer. A public-key cryptosystem is semantically secure when a
probabilistic polynomial-time adversary cannot distinguish between random encryptions of
two elements chosen by herself. Paillier cryptosystem is known as a semantically secure
cryptosystem with homomorphic property(Pailler, 1999). We use the Paillier cryptosystem in
experiments in section 6.

4.2 Secure function evaluation
As mentioned in the introductory section, secure function evaluation (SFE) is a general
and well studied cryptographic primitive which allows two or more parties to evaluate a
specified function of their inputs without revealing (anything else about) their inputs to each
other (Goldreich, 2004; Yao, 1986).
In principle, any private distributed computation can be securely evaluated by means of SFE.
However, although polynomoially bounded, naive implementation of local search using SFE
can be too inefficient. Therefore, in order to achieve privacy-preserving local search efficiently,
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we make use of existing SFE solutions for small portions of our computation as a part of a
more efficient overall solution.

4.3 Random shares
Let x= (x1, ...,xd) ∈ Z

d
N
. When we say A and B have random shares of x, A has xA = (xA

1
, ...,xA

d
)

and B has xB = (xB
1
, ...,xB

d
) in which xA

i
and xB

i
are uniform randomly distributed in ZN with

satisfying xi = (xA
i
+ xB

i
) modN for all i. Random shares allow us to keep a private value

between two parties without knowing the value itself. Note that if one of the party pass the
share to the other, the private value is readily recovered.

5. Scalar product comparison

Before describing the protocol for scalar product comparison, we introduce a protocol
which privately computes scalar products from privately distributed vectors. Goethals et
al. proposed a protocol to compute scalar products of two distributed private vectors without
revealing them bymeans of the homomorphic public-key cryptosystem (Goethals et al., 2004).
For preserving the protocol generality, parties are described as Alice and Bob in this section.
The problem of private scalar product is stated as follows:

Statement 2 (Private scalar product) Let there be two parties: Alice and Bob. Alice has a private
vector x ∈ Zd

μ; Bob also has a private vector α ∈ Z
d
μ. At the end of the protocol, both Alice and Bob learn

random shares of scalar product x · α and nothing else.

Let Zp be the message space for some large p. Set μ = �
√
p/d�. In what follows, the random

number used in encryption function Enc is omitted for simplicity. Then, the protocol is
described as follows.
[Private scalar product protocol]

– Private Input of Alice: α ∈ Zd
μ

– Private Input of Bob: x ∈ Zd
μ

– Output of Alice and Bob: rA + rB = x · α mod p

(Alice and Bob output rA and rB, respectively)

1. Alice: Generate a public and secret key pair (pk,sk).

2. Alice: For i= 1, ...,d, compute ci = Encpk (αi) and send them to Bob.

3. Bob: Compute w← (
∏d

i=1 c
xi
i
) · Encpk (−rB) where rB ∈r Zp and send w to Alice.

4. Alice: Compute Dec(w) = rA(= x · α− rB)

In step two, Alice sends the ciphertext of her private vector (c1, ...,cd) to Bob. Bob does not
possess the secret key. Therefore, he cannot learn Alice’s vector from received ciphertexts.
However, in step three, he can compute the encrypted scalar product based on homomorphic
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properties without knowing Alice’s x:

w = (
d∏

i=1

cxi
i
) · Encpk (−rB) = (

d∏

i=1

Encpk (αi)
xi) · Encpk (−rB)

= Encpk (α1x1) · · · Encpk (αdxd) · Encpk (−rB)

= Encpk (
d∑

i=1

αixi − rB) = Encpk (α · x− rB)

Then, in step four, Alice correctly obtains a random share of α · x by decrypting w using
her secret key: Bob’s rB is a random share of α · x, too. Assuming that Alice and Bob behave
semi-honestly2, it canbeproved that the scalar product protocol is secure (Goethals et al., 2004).
In the discussions of subsequent sections, we assume that all parties behave as semi-honest
parties.
A protocol for the private scalar product comparison appears to be obtained readily using
the private scalar product protocol. The difference of two scalar products α · x2 − α · x1 can be
computed as

d∏

i=1

c
x2,i
i
·

d∏

i=1

c
−x1,i
i

= Encpk (α · x2 − α · x1). (2)

By sending this to Alice, Alice learns α · x2 − α · x1. Equation 2 appears to compare two scalar
products successfully and privately. However, it is not secure based on statement 1 because
not only the comparison result but also the value of α · x1 −α · x2 is known to Alice. In the case
of the TSP, tour vectors are x1,x2 ∈ {0,1}

d. Therefore, Bob’s x1 and x2 are readily enumerated
from the value of α · x2 − α · x1 by Alice. To block Alice’s enumeration, Bob can multiply some
positive random value rB to the difference of two scalar products,

d∏

i=1

c
rBx2,i
i
·

d∏

i=1

c
−rBx1,i
i

= Encpk (rB(α · x2 − α · x1)).

By sending this to Alice, Alice learns rB(α · x2 −α · x1). Since rB > 0, Alice can knowwhether or
not α · x2 > α · x1 from this randomized value; however, this is not secure, either. rB is a divider
of rB(α · x2 − α · x1) and is readily enumerated again. Alice can also enumerate the candidate
of Bob’s x1 and x2 for each rB in polynomial time.
As shown, multiplying a random number does not contribute to hinder Alice’s guess, either.
In our protocol, we use the SFE for private comparison with scalar product protocol. Private
comparison is stated as follows:

Statement 3 (Private comparison of random shares) Let Alice’s input be xA and Bob’s input be xB,
where xA

i
and xB

i
are random shares of xi for all i. Then, private comparison of random shares

computes the index i∗ such that

i∗ = argmax
i

(xAi + xBi ). (3)

2A semi-honest party is one who follows the protocol properly with the exception that the party retains
a record of all its intermediate observations. From such accumulated records, semi-honest parties attempt
to learn other party’s privte information (Goldreich, 2004).
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we make use of existing SFE solutions for small portions of our computation as a part of a
more efficient overall solution.

4.3 Random shares
Let x= (x1, ...,xd) ∈ Z
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. When we say A and B have random shares of x, A has xA = (xA
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between two parties without knowing the value itself. Note that if one of the party pass the
share to the other, the private value is readily recovered.

5. Scalar product comparison

Before describing the protocol for scalar product comparison, we introduce a protocol
which privately computes scalar products from privately distributed vectors. Goethals et
al. proposed a protocol to compute scalar products of two distributed private vectors without
revealing them bymeans of the homomorphic public-key cryptosystem (Goethals et al., 2004).
For preserving the protocol generality, parties are described as Alice and Bob in this section.
The problem of private scalar product is stated as follows:

Statement 2 (Private scalar product) Let there be two parties: Alice and Bob. Alice has a private
vector x ∈ Zd

μ; Bob also has a private vector α ∈ Z
d
μ. At the end of the protocol, both Alice and Bob learn

random shares of scalar product x · α and nothing else.

Let Zp be the message space for some large p. Set μ = �
√
p/d�. In what follows, the random
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μ
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μ
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∏d

i=1 c
xi
i
) · Encpk (−rB) where rB ∈r Zp and send w to Alice.
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properties without knowing Alice’s x:

w = (
d∏

i=1

cxi
i
) · Encpk (−rB) = (

d∏

i=1

Encpk (αi)
xi) · Encpk (−rB)

= Encpk (α1x1) · · · Encpk (αdxd) · Encpk (−rB)

= Encpk (
d∑

i=1

αixi − rB) = Encpk (α · x− rB)
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d∏

i=1

c
x2,i
i
·

d∏

i=1

c
−x1,i
i
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d∏

i=1

c
rBx2,i
i
·

d∏

i=1

c
−rBx1,i
i
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i
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i
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i

(xAi + xBi ). (3)
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After the protocol execution, Alice knows i∗ and nothing else: Bob learns nothing.

When Alice has a cost vector α and Bob has two tour vectors x1,x2, the protocol for private
scalar product comparison is obtained using SFE as follows:
[Private scalar product comparison]

– Private Input of Alice : α ∈ Zd
m

– Private Input of Bob : x1,x2 ∈ Z
d
m

– Output of Bob : An inequation I ∈ {I−, I+} (Alice has no output)

1. Alice: Generate a private and public key pair(pk,sk) and send pk to Bob.

2. Alice: For i= 1, ...,d, Alice computes ci = Encpk (αi). Send them to Bob.

3. Bob: Compute w←
�d

i=1 c
x2,i
i
·
�d

i=1 c
−x1,i
i
· Encpk (−r

B) and send w to Alice where r ∈r ZN

4. Alice: Compute rA = Decsk(w)(= x2 · α− x1 · α− r
B).

5. Alice and Bob: Jointly run a SFE for private comparison. If ((rA + rB) modN) ≥ 0, I+ is
returned to Bob. Else, I− is returned to Bob.

First, Alice encrypts her cost vector and send all elements to Bob. Then, Bob computes the
encrypted difference of two scalar products with randomization as follows:

w =
d�

i=1

c
x2,i
i
·

d�

i=1

c
−x1,i
i
· Encpk (−r

B) (4)

= Encpk

⎛⎜⎜⎜⎜⎜⎝
d�

i=1

αix2,i −

d�

i=1

αix1,i − r
B

⎞⎟⎟⎟⎟⎟⎠ (5)

= Encpk
�
α · x2 − α · x1 − r

B
�
. (6)

At step four, Alice obtains

rA = x2 · α− x1 · α− r
B, (7)

where rA and rB are random shares of x2 ·α− x1 ·α overZN ; both do not learn any from random
shares. Then at the last step, Both jointly run SFE for private comparison to evaluate whether
or not (rA + rB) modN is greater than zero, which is the desired output.
In what follows, we describe the execution of this protocol as (α, (x1,x2)) −→SPC (∅, I).
Note that the input size for SFE is p regardless of the vector size m and dimension d. In
principle, the computational load of SFE is large particularly when the input size is large.
Although the computation complexity of this protocol in step two and step three is still O(d),
we can reduce the entire computational cost of private scalar product comparison by limiting
computation of SFE only to comparison of random shares.

Theorem 1 (Security of private scalar product comparison) Assume Alice and Bob behave
semi-honestly. Then, private scalar product comparison protocol is secure in the sense of Statement 1.

The security proof should follow the standardized proof methodology called simulation
paradigm (Goldreich, 2004). However, due to the limitation of the space, we explain the
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security of this protocol by showing that parties cannot learn nothing but the output from
messages exchanged between parties.
The messages Bob receives from Alice before step five is Encpk (α1), ...,Encpk (αd). Because Bob
does not have Alice’s secret key, Bob learns nothing about Alice’s vector. The information
Alice receives from Bob before step five is only a random share rA = α · x2 − α · x2 − rB, from
which she cannot learn anything, either. At step five, it is guaranteed that SFE reveals only
the comparison result (Yao, 1986). Consequently, the overall protocol is secure in the sense of
Statement 1.

6. Local search of TSP using scalar product comparison

Using the protocol for private scalar product comparison, local search is convertible to a
privacy-preserving protocol. As an example, we introduce a Privacy Preserving Local Search
(PPLS) for TSP using 2-opt neighborhood.
Because the local search described in Section 3 is rank-based, it is readily extended to a
privacy-preserving protocol. Using the protocol for private scalar product comparison, PPLS
is designed as follows:
[Privacy-Preserving Local Search]

– Private Input of Server: instance vector α ∈ Zd
m

– Private Input of Searcher: subset of instance V� ⊆ V

– Private Output of Searcher: local optimal solution x∗

1. Server: Generate a pair of a public and a secret key (pk,sk) and send pk to the searcher.

2. Server: For i = 1, ...,d, compute ci = Encpk (αi) and send them to the searcher.

3. Searcher: Generate an initial solution x0 using V�

4. Searcher: x ∈r N(x0),N(x0)←N(x0) \ {x}

5. Searcher:

a) Compute (α, (x,x0)) −→SPC (∅, I) with probability 0.5. Otherwise, compute
(α, (x0,x)) −→SPC (∅, I).

b) If I corresponds to α · x− α · x0 < 0, then x0← x

6. Searcher: If N(x0) = ∅ or satisfies some termination condition, x∗ ← x0 and output x∗.
Otherwise, go to step 4.

Step one and step two can be executed solely by the server. In step three, an solution is
initialized. Step three and step four are also executed solely by the searcher.
Step five can be executed privately by means of private scalar product comparison. Note that
the order of the inputs of private scalar product comparison is shuffled randomly in step 5(a).
The reason is explained in detail in Section 6.2.
Readers can find multi-party expansion of private scalar product protocol in (Goethals et al.,
2004). Multi-party expansion of private scalar product comparison is straightforward with a
similar manner in the literature. This expansion readily allows us to obtain protocols of PPLS
for (k,1)-TSP.
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After the protocol execution, Alice knows i∗ and nothing else: Bob learns nothing.
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At step four, Alice obtains
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B, (7)

where rA and rB are random shares of x2 ·α− x1 ·α overZN ; both do not learn any from random
shares. Then at the last step, Both jointly run SFE for private comparison to evaluate whether
or not (rA + rB) modN is greater than zero, which is the desired output.
In what follows, we describe the execution of this protocol as (α, (x1,x2)) −→SPC (∅, I).
Note that the input size for SFE is p regardless of the vector size m and dimension d. In
principle, the computational load of SFE is large particularly when the input size is large.
Although the computation complexity of this protocol in step two and step three is still O(d),
we can reduce the entire computational cost of private scalar product comparison by limiting
computation of SFE only to comparison of random shares.

Theorem 1 (Security of private scalar product comparison) Assume Alice and Bob behave
semi-honestly. Then, private scalar product comparison protocol is secure in the sense of Statement 1.

The security proof should follow the standardized proof methodology called simulation
paradigm (Goldreich, 2004). However, due to the limitation of the space, we explain the
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security of this protocol by showing that parties cannot learn nothing but the output from
messages exchanged between parties.
The messages Bob receives from Alice before step five is Encpk (α1), ...,Encpk (αd). Because Bob
does not have Alice’s secret key, Bob learns nothing about Alice’s vector. The information
Alice receives from Bob before step five is only a random share rA = α · x2 − α · x2 − rB, from
which she cannot learn anything, either. At step five, it is guaranteed that SFE reveals only
the comparison result (Yao, 1986). Consequently, the overall protocol is secure in the sense of
Statement 1.

6. Local search of TSP using scalar product comparison

Using the protocol for private scalar product comparison, local search is convertible to a
privacy-preserving protocol. As an example, we introduce a Privacy Preserving Local Search
(PPLS) for TSP using 2-opt neighborhood.
Because the local search described in Section 3 is rank-based, it is readily extended to a
privacy-preserving protocol. Using the protocol for private scalar product comparison, PPLS
is designed as follows:
[Privacy-Preserving Local Search]

– Private Input of Server: instance vector α ∈ Zd
m

– Private Input of Searcher: subset of instance V� ⊆ V

– Private Output of Searcher: local optimal solution x∗

1. Server: Generate a pair of a public and a secret key (pk,sk) and send pk to the searcher.

2. Server: For i = 1, ...,d, compute ci = Encpk (αi) and send them to the searcher.

3. Searcher: Generate an initial solution x0 using V�

4. Searcher: x ∈r N(x0),N(x0)←N(x0) \ {x}

5. Searcher:

a) Compute (α, (x,x0)) −→SPC (∅, I) with probability 0.5. Otherwise, compute
(α, (x0,x)) −→SPC (∅, I).

b) If I corresponds to α · x− α · x0 < 0, then x0← x

6. Searcher: If N(x0) = ∅ or satisfies some termination condition, x∗ ← x0 and output x∗.
Otherwise, go to step 4.

Step one and step two can be executed solely by the server. In step three, an solution is
initialized. Step three and step four are also executed solely by the searcher.
Step five can be executed privately by means of private scalar product comparison. Note that
the order of the inputs of private scalar product comparison is shuffled randomly in step 5(a).
The reason is explained in detail in Section 6.2.
Readers can find multi-party expansion of private scalar product protocol in (Goethals et al.,
2004). Multi-party expansion of private scalar product comparison is straightforward with a
similar manner in the literature. This expansion readily allows us to obtain protocols of PPLS
for (k,1)-TSP.
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6.1 Communication and computation complexity
Communication between the server and the searcher occurs in steps one, two, and five. In
(1,1)-TSP, we can naturally assume that the cost vector α is not changed during optimization.
Therefore, transfer of (c1, ...,cd) occurs only once in steps one and two. The communication
complexity of step 5(a) is O(1). As shown, the communication complexity is not time
consuming in this protocol.
The time consuming steps of PPLS are private comparison by SFE (step five of private scalar
product comparison) and exponentiation computed by the searcher (step three of private scalar
product comparison). The computation time of the SFE is constant for any d and cannot be
reduced anymore. On the other hand, there is still room for improvement in the exponentiation
step.
Using naive implementation, step three of private scalar product comparison costs O(d)(=
O(n2)). To reduce this computation, we exploit the fact that the number of changed edges by
2-opt is much smaller than d.
In vector x− x0, only 2 elements are changed from 1 to 0 and the other 2 elements are changed
from 0 to −1 when 2-opt is used as the neighborhood. The remaining elements are all 0
irrespective of the problem size. Since the exponentiation of 0 can be skipped in step three of
private scalar product comparison, the time complexity is saved at most O(1) by computing
only in changing edges.

6.2 Security
Given a TTP, the ideally executed privacy-preserving optimization is the following.

Statement 4 (Privacy-preserving local search for (1,1)-TSP (ideal)) Let the searcher’s input beV� ⊆V.
Let the server’s input be α ∈ Zd

m. After the execution of the protocol, the searcher learns the (local)
optimal solution x∗, but nothing else. The server learns nothing at the end of the protocol, either.

Unfortunately, the security of the PPLS is not equivalent to this statement. We briefly verify
what is protected and leaked after the protocol execution.
Messages sent from the searcher to the server are all random shares. Thus, it is obvious that
the server does not learn anything from the searcher.
There remains room for discussion about what the searcher can guess from what it learns
because this point is dependent on the problem domain. The searcher learns a series of the
outcome of private scalar product comparison protocol in the middle of PPLS execution. Let
the outcome of the t-th private scalar product comparison be I(t).
In the case of TSP, I(t) corresponds to an inequality, α · x−α · x0 ≤ 0 or α · x−α · x0 > 0. Although
the elements of the private cost vector α are not leaked from this, the searcher learns whether
α · (x− x0) > 0 or not from this comparison. This indicates that orders of cost values might be
partially implied by the searcher because the searcher knows what edges are included in these
solutions.
As long as the server and the searchermutually interact only through the private scalar product
comparison, the server never learns the searcher’sV� and the searcher never learns the server’s
α. However, the security of PPLS is not perfect as a protocol with a TTP. A method to block
the guess of the searcher from intermediate messages remains as a challenge for future study.
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7. Experimental analysis and discussion

In this section, we show experimental results of PPLS for (1,1)-TSP in order to evaluate the
computation time and investigate its scalability.

7.1 Setting
Five problem instances were chosen from TSPLIB(Reinelt, 1991). The city size is 195 – 1173.
In the distributed TSP, the searcher can choose a subset of cities V� arbitrarily as the input.
For our experiments, V� is set to V for all problems because the computation time becomes
greatest when V = V�. PPLS was terminated when x0 reaches a local optimum.
As a homomorphic cryptosystem, the Paillier cryptosystem(Pailler, 1999) with 512-bit and
1024-bit key was used. The server and the searcher program were implemented using java.
Both programswere run separately on a Xeon 2.8 GHz (CPU) with 1 GB (RAM) PCswith a 100
Mbps Ethernet connection. For SFE, Fairplay (Malkhi et al., 2004), a framework for generic
secure function evaluation, was used.
PPLS was repeated for 50, 100, and 300 times with changing initial tours (depicted as 50-itr,
100-itr and 300-itr).
Both the first and the second step of PPLS can be executed preliminarily before choosing city
subset V�. Therefore, we measured the execution time from the third step to the termination
of the protocol.

7.2 Results
Fig. 2 shows the estimated computation time required for optimization. With a 512-bit key,
PPLS (1-itr) spent 19 (min) and 79 (min) to reach the local optimum of rat195 and rat575. Using
a 1024-bit key, PPLS (1-itr) spent 21 (min) and 89 (min) for the same problems.
Table 1 shows the error index (=100× obtained best tour length / known best tour length) of
PPLS (average of 20 trials). Note that privacy preservation does not affect the quality of the
obtained solution in anyway because the protocol does not change the behavior of local search
if the same random seed is used.
Earlier, we set V� = V for all problems. Even when the number of cities |V| is very large, the
computation time is related directly to the number of chosen cities |V�| because the number of
evaluations is usually dependent on the number of chosen cities.
Although the computation time is not yet sufficiently small in large-scale problems, results
show that the protocol completes in a practical time in privacy-preserving setting when the
number of cities are not very numerous.

8. Related works

A few studies have been made of the Privacy-Preserving Optimization (PPO). Silaghi
et al. proposed algorithms for distributed constraint satisfaction and optimization
with privacy enforcement (MPC-DisCSP)(Silaghi, 2003)(Silaghi & Mitra, 2004). Actually,
MPC-DisCSP is based on a SFE technique (Ben-Or et al., 1988). Yokoo et al. proposed
a privacy-preserving protocol to solve dynamic programming securely for the multi-agent
system (Yokoo & Suzuki, 2002; Suzuki & Yokoo, 2003). (Brickell & Shmatikov, 2005) proposed
a privacy-preserving protocol for single source shortest distance (SSSD) which is a
privacy-preserving transformation of the standard Dijkstra’s algorithm to find the shortest
path on a graph. These studies are all based on cryptographic guarantees of security.
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Unfortunately, the security of the PPLS is not equivalent to this statement. We briefly verify
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Messages sent from the searcher to the server are all random shares. Thus, it is obvious that
the server does not learn anything from the searcher.
There remains room for discussion about what the searcher can guess from what it learns
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PPLS (2-opt)
1-itr. 50-itr. 100-itr. 300-itr.

rat195 13.3 9.16 8.73 8.65
pcb442 16.4 8.88 8.88 8.88
rat575 11.6 9.96 9.96 9.90
rat783 12.2 10.8 10.8 10.3
pcb1173 15.4 12.9 12.9 12.3

Table 1. The error index of PPLS (2-opt).

To the best of authors’ knowledge, this study is the first attempt for privacy-preserving
optimization by means of meta-heuristics. As discussed earlier, private scalar product
comparison allows us to compare two scalar products. It follows that our PPLS is available for
anyprivacy-preserving optimizationproblemsprovided that the cost function is represented in
the formof scalar products. In addition, private scalar product comparison canbe incorporated
into not only local search but more sophisticated meta-heuristics, such as genetic algorithms
or tabu search, as long as the target algorithm uses only paired comparison for selection.

9. Summary

We proposed and explained a protocol for privacy-preserving distributed combinatorial
optimization using local search. As a connector that combines local search and privacy
preservation, we designed a protocol to solve a problem called private scalar product
comparison. The security of this protocol is theoretically proved. Then, we designed a
protocol for privacy-preserving optimization using a combination of local search and private
scalar product comparison. Our protocol is guaranteed to behave identically to algorithms
that do not include features for privacy preservation.
As an example of distributed combinatorial optimization problems, we specifically examined
the distributed TSP and designed a privacy-preserving local search that adopts 2-opt as a
neighborhood operator. The result show that privacy-preserving local searchwith 2-opt solves
a 512-city problemwithin a fewhourswith about 10% error. Although the computation time is
not yet sufficiently small in a large-scale problem, it is confirmed that the protocol is completed
in a practical time, even in privacy-preserving setting. Both the searcher’s and the server’s
computation can be readilyparalleled. The implementation of parallel computation is a subject
for futurework. Application of PPLS to distributed combinatorial optimization problems such
as the distributed QAP, VRP, and Knapsack problem is also a subject for future work.
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1. Introduction

One of the most studied problem in operations research and management science during the
past few decades has been the Traveling Salesman Problem (TSP). The TSP is rather a simple
problem formulation, but what has garnered it much attention is the fact that it belongs to a
specific class of problems which has been labelled as “non-deterministic polynomial” or NP.
What this implies is that no algorithm currently exists which can find the exact solution in
“polynomial time”. A number of current engineering applications are formed around this
premise; such as cryptography.
TSP manages to capture the imagination of theoretical computer scientists and
mathematicians as it simply describes the complexity of NP Completeness. A number
of resources exists on the internet such as the TSPLIB , which allow any novice user to
understand and incorporate the TSP problem.
Since no concrete mathematical algorithm exists to solve the TSP problem, a specific branch of
research, namely evolutionary science, has been applied rather effectively to find solutions.
Evolutionary science itself is divided into many scopes, but the most effective ones have
been the deterministic approaches and random approaches. Deterministic approaches like
Branch and Bound (Land & Doig, 1960) and Lin-Kernighan local searches (Lin & Kernighan,
1973) have proven very effective over the years. Random based approaches, incorporated
in heuristics have generally provided a guided search pattern. Therefore the most effective
algorithms have been a hybrid of the two approaches.
This research introduces another approach, which is based on a chaotic map (Davendra &
Zelinka, 2010). A chaotic system is one which displays a chaotic behavior and it based on
a function which in itself is a dynamical system. What is of interest is that the map iterates
across the functional space in discrete steps, each one in a unique footprint. What this implies
is that the same position in not iterated again. This provides a great advantage as the number
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TSP manages to capture the imagination of theoretical computer scientists and
mathematicians as it simply describes the complexity of NP Completeness. A number
of resources exists on the internet such as the TSPLIB , which allow any novice user to
understand and incorporate the TSP problem.
Since no concrete mathematical algorithm exists to solve the TSP problem, a specific branch of
research, namely evolutionary science, has been applied rather effectively to find solutions.
Evolutionary science itself is divided into many scopes, but the most effective ones have
been the deterministic approaches and random approaches. Deterministic approaches like
Branch and Bound (Land & Doig, 1960) and Lin-Kernighan local searches (Lin & Kernighan,
1973) have proven very effective over the years. Random based approaches, incorporated
in heuristics have generally provided a guided search pattern. Therefore the most effective
algorithms have been a hybrid of the two approaches.
This research introduces another approach, which is based on a chaotic map (Davendra &
Zelinka, 2010). A chaotic system is one which displays a chaotic behavior and it based on
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generated in unique and when input into an evolutionary algorithm, it provides a unique
mapping schema. The question that remains to be answered is that whether this system
improves on a generic random number generator or not.
This chapter is divided into the following sections. Section 2 introduces the TSP problem
formulation. Section 3 describes the algorithm used in this research; Differential Evolution
(DE) and Section 4outlines its permutative varient EDE. The chaotic maps used in this research
are described in Section 5 whereas the experimentation is given in Section 6. The chapter is
concluded in Section 7.

2. Travelling salesman problem

A TSP is a classical combinatorial optimization problem. Simply stated, the objective of a
traveling salesman is to move from city to city, visiting each city only once and returning back
to the starting city. This is called a tour of the salesman. In mathematical formulation, there is

a group of distinct cities {C1,C2,C3, ...,CN} , and there is given for each pair of city
{

Ci,Cj

}

a distance d
{

Ci,Cj

}
. The objective then is to find an ordering π of cities such that the total

time for the salesman is minimized. The lowest possible time is termed the optimal time. The
objective function is given as:

N−1

∑
i=1

d
(

Cπ(i),Cπ(i+1)

)
+ d

(
Cπ(N),Cπ(1)

)
(1)

This quality is known as the tour length. Two branches of this problem exist, symmetric and
asymmetric. A symmetric problem is one where the distance between two cities is identical,

given as: d
{

Ci,Cj

}
= d

{
Cj,Ci

}
for 1 ≤ i, j ≤ N and the asymmetric is where the distances are

not equal. An asymmetric problem is generally more difficult to solve.
The TSP has many real world applications; VSLA fabrication (Korte, 1988) to X-ray
crystallography (Bland & Shallcross, 1989). Another consideration is that TSP is NP-Hard as
shown by Garey (1979), and so any algorithm for finding optimal tours must have a worst-case
running time that grows faster than any polynomial (assuming the widely believed conjecture
that P �= NP).
TSP has been solved to such an extent that traditional heuristics are able to find good solutions
to merely a small percentage error. It is normal for the simple 3-Opt heuristic typically getting
with 3-4% to the optimal and the variable-opt algorithm of Lin & Kernighan (1973) typically
getting around 1-2%.
The objective for new emerging evolutionary systems is to find a guided approach to TSP and
leave simple local search heuristics to find better local regions, as is the case for this chapter.

3. Differential evolution algorithm

Differential evolution (DE) is one of the evolutionary optimization methods proposed by Price
(1999) to solve the Chebychev polynomial fitting problem. DE is a population-based and
stochastic global optimizer, and has proven to be a robust technique for global optimization.
In order to describe DE, a schematic is given in Figure 1.
There are essentially five sections to the code. Section 1 describes the input to the heuristic.
D is the size of the problem, Gmax is the maximum number of generations, NP is the total
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Canonical Differential Evolution Algorithm

1.Input :D, Gmax, NP ≥ 4, F ∈ (0,1+) ,CR ∈ [0,1],and initial bounds :x(lo), x(hi).

2.Initialize :

�
∀i ≤ NP ∧ ∀j ≤ D : xi,j,G=0 = x(lo)j + randj [0,1] •

�
x(hi)

j − x(lo)j

�

i = {1,2, ..., NP}, j = {1,2, ..., D}, G = 0,randj[0,1] ∈ [0,1]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3.While G < Gmax

∀i ≤ NP

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4. Mutate and recombine :
4.1 r1,r2,r3 ∈ {1,2, ...., NP},

randomly selected,except :r1 �= r2 �= r3 �= i
4.2 jrand ∈ {1,2, ..., D}, randomly selected once each i

4.3 ∀j ≤ D,uj,i,G+1 =

⎧⎨
⎩

xj,r3,G + F · (xj,r1,G − xj,r2,G)
if (randj[0,1] < CR ∨ j = jrand)
xj,i,G otherwise

5. Select

xi,G+1 =

�
ui,G+1 if f (ui,G+1) ≤ f (xi,G)
xi,G otherwise

G = G + 1

Fig. 1. Canonical Differential Evolution Algorithm

number of solutions, F is the scaling factor of the solution and CR is the factor for crossover. F
and CR together make the internal tuning parameters for the heuristic.
Section 2 outlines the initialization of the heuristic. Each solution xi,j,G=0 is created randomly
between the two bounds x(lo) and x(hi) . The parameter j represents the index to the values
within the solution and i indexes the solutions within the population. So, to illustrate, x4,2,0
represents the second value of the fourth solution at the initial generation.
After initialization, the population is subjected to repeated iterations in section 3.
Section 4 describes the conversion routines of DE. Initially, three random numbers r1,r2,r3
are selected, unique to each other and to the current indexed solution i in the population in
4.1. Henceforth, a new index jrand is selected in the solution. jrand points to the value being
modified in the solution as given in 4.2. In 4.3, two solutions, xj,r1,G and xj,r2,G are selected
through the index r1 and r2 and their values subtracted. This value is then multiplied by F,
the predefined scaling factor. This is added to the value indexed by r3 .
However, this solution is not arbitrarily accepted in the solution. A new random number
is generated, and if this random number is less than the value of CR, then the new value
replaces the old value in the current solution. Once all the values in the solution are obtained,
the new solution is vetted for its fitness or value and if this improves on the value of the
previous solution, the new solution replaces the previous solution in the population. Hence
the competition is only between the new child solution and its parent solution.
Price (1999) has suggested ten different working strategies. It mainly depends on the problem
on hand for which strategy to choose. The strategies vary on the solutions to be perturbed,
number of differing solutions considered for perturbation, and finally the type of crossover
used. The following are the different strategies being applied.

Strategy 1: DE/best/1/exp: ui,G+1 = xbest,G + F • (xr1,G − xr2,G)
Strategy 2: DE/rand/1/exp: ui,G+1 = xr1,G + F • �xr2,G − xr3,G

�
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generated in unique and when input into an evolutionary algorithm, it provides a unique
mapping schema. The question that remains to be answered is that whether this system
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This chapter is divided into the following sections. Section 2 introduces the TSP problem
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not equal. An asymmetric problem is generally more difficult to solve.
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crystallography (Bland & Shallcross, 1989). Another consideration is that TSP is NP-Hard as
shown by Garey (1979), and so any algorithm for finding optimal tours must have a worst-case
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that P �= NP).
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with 3-4% to the optimal and the variable-opt algorithm of Lin & Kernighan (1973) typically
getting around 1-2%.
The objective for new emerging evolutionary systems is to find a guided approach to TSP and
leave simple local search heuristics to find better local regions, as is the case for this chapter.
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number of solutions, F is the scaling factor of the solution and CR is the factor for crossover. F
and CR together make the internal tuning parameters for the heuristic.
Section 2 outlines the initialization of the heuristic. Each solution xi,j,G=0 is created randomly
between the two bounds x(lo) and x(hi) . The parameter j represents the index to the values
within the solution and i indexes the solutions within the population. So, to illustrate, x4,2,0
represents the second value of the fourth solution at the initial generation.
After initialization, the population is subjected to repeated iterations in section 3.
Section 4 describes the conversion routines of DE. Initially, three random numbers r1,r2,r3
are selected, unique to each other and to the current indexed solution i in the population in
4.1. Henceforth, a new index jrand is selected in the solution. jrand points to the value being
modified in the solution as given in 4.2. In 4.3, two solutions, xj,r1,G and xj,r2,G are selected
through the index r1 and r2 and their values subtracted. This value is then multiplied by F,
the predefined scaling factor. This is added to the value indexed by r3 .
However, this solution is not arbitrarily accepted in the solution. A new random number
is generated, and if this random number is less than the value of CR, then the new value
replaces the old value in the current solution. Once all the values in the solution are obtained,
the new solution is vetted for its fitness or value and if this improves on the value of the
previous solution, the new solution replaces the previous solution in the population. Hence
the competition is only between the new child solution and its parent solution.
Price (1999) has suggested ten different working strategies. It mainly depends on the problem
on hand for which strategy to choose. The strategies vary on the solutions to be perturbed,
number of differing solutions considered for perturbation, and finally the type of crossover
used. The following are the different strategies being applied.

Strategy 1: DE/best/1/exp: ui,G+1 = xbest,G + F • (xr1,G − xr2,G)
Strategy 2: DE/rand/1/exp: ui,G+1 = xr1,G + F • �xr2,G − xr3,G

�
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Strategy 3: DE/rand−best/1/exp: ui,G+1 = xi,G + λ • (xbest,G − xr1,G
)

+F • (xr1,G − xr2,G)
Strategy 4: DE/best/2/exp: ui,G+1 = xbest,G + F • (xr1,G − xr2,G − xr3,G − xr4,G

)
Strategy 5: DE/rand/2/exp: ui,G+1 = x5,G + F • (xr1,G − xr2,G − xr3,G − xr4,G

)
Strategy 6: DE/best/1/bin: ui,G+1 = xbest,G + F • (xr1,G − xr2,G)
Strategy 7: DE/rand/1/bin: ui,G+1 = xr1,G + F • (xr2,G − xr3,G

)
Strategy 8: DE/rand−best/1/bin: ui,G+1 = xi,G + λ • (xbest,G − xr1,G

)
+F • (xr1,G − xr2,G)

Strategy 9: DE/best/2/bin: ui,G+1 = xbest,G + F • (xr1,G − xr2,G − xr3,G − xr4,G
)

Strategy 10: DE/rand/2/bin: ui,G+1 = x5,G + F • (xr1,G − xr2,G − xr3,G − xr4,G
)

The convention shown is DE/x/y/z. DE stands for Differential Evolution, x represents a
string denoting the solution to be perturbed, y is the number of difference solutions considered
for perturbation of x, and z is the type of crossover being used (exp: exponential; bin:
binomial).
DE has two main phases of crossover: binomial and exponential. Generally, a child solution
ui,G+1 is either taken from the parent solution xi,G or from a mutated donor solution vi,G+1 as

shown : uj,i,G+1 = vj,i,G+1 = xj,r3,G + F •
(

xj,r1,G − xj,r2,G

)
.

The frequency with which the donor solution vi,G+1 is chosen over the parent solution
xi,G as the source of the child solution is controlled by both phases of crossover. This is
achieved through a user defined constant, crossover CR which is held constant throughout
the execution of the heuristic.
The binomial scheme takes parameters from the donor solution every time that the generated
random number is less than the CR as given by randj [0,1] < CR , else all parameters come
from the parent solution xi,G.
The exponential scheme takes the child solutions from xi,G until the first time that the random
number is greater than CR, as given by randj [0,1]< CR, otherwise the parameters comes from
the parent solution xi,G.
To ensure that each child solution differs from the parent solution, both the exponential and
binomial schemes take at least one value from the mutated donor solution vi,G+1.

3.1 Tuning parameters
Outlining an absolute value for CR is difficult. It is largely problem dependent. However a few
guidelines have been laid down by Price (1999). When using binomial scheme, intermediate
values of CR produce good results. If the objective function is known to be separable, then
CR = 0 in conjunction with binomial scheme is recommended. The recommended value of CR
should be close to or equal to 1, since the possibility or crossover occurring is high. The higher
the value of CR, the greater the possibility of the random number generated being less than
the value of CR, and thus initiating the crossover.
The general description of F is that it should be at least above 0.5, in order to provide sufficient
scaling of the produced value.
The tuning parameters and their guidelines are given in Table 1.

4. Enhanced differential evolution algorithm

Enhanced Differential Evolution (EDE) (Davendra, 2001; Davendra & Onwubolu, 2007a;
Onwubolu & Davendra, 2006; 2009), heuristic is an extension of the Discrete Differential
Evolution (DDE) variant of DE (Davendra & Onwubolu, 2007b). One of the major drawbacks
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Control Variables Lo Hi Best? Comments

F: Scaling Factor 0 1.0+ 0.3 – 0.9 F ≥ 0.5
CR: Crossover probability 0 1 0.8 − 1.0 CR = 0, seperable

CR = 1, epistatic

Table 1. Guide to choosing best initial control variables

of the DDE algorithm was the high frequency of in-feasible solutions, which were created after
evaluation. However, since DDE showed much promise, the next logical step was to devise a
method, which would repair the in-feasible solutions and hence add viability to the heuristic.
To this effect, three different repairment strategies were developed, each of which used a
different index to repair the solution. After repairment, three different enhancement features
were added. This was done to add more depth to the DDE problem in order to solve
permutative problems. The enhancement routines were standard mutation, insertion and
local search. The basic outline is given in Figure 2.

4.1 Permutative population
The first part of the heuristic generates the permutative population. A permutative solution
is one, where each value within the solution is unique and systematic. A basic description is

1. Initial Phase

(a) Population Generation: An initial number of discrete trial solutions are generated
for the initial population.

2. Conversion

(a) Discrete to Floating Conversion: This conversion schema transforms the parent
solution into the required continuous solution.

(b) DE Strategy: The DE strategy transforms the parent solution into the child solution
using its inbuilt crossover and mutation schemas.

(c) Floating to Discrete Conversion: This conversion schema transforms the continuous
child solution into a discrete solution.

3. Mutation

(a) Relative Mutation Schema: Formulates the child solution into the discrete solution
of unique values.

4. Improvement Strategy

(a) Mutation: Standard mutation is applied to obtain a better solution.

(b) Insertion: Uses a two-point cascade to obtain a better solution.

5. Local Search

(a) Local Search: 2 Opt local search is used to explore the neighborhood of the solution.

Fig. 2. EDE outline
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CR = 0 in conjunction with binomial scheme is recommended. The recommended value of CR
should be close to or equal to 1, since the possibility or crossover occurring is high. The higher
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The general description of F is that it should be at least above 0.5, in order to provide sufficient
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given in Equation 2.

PG = {x1,G, x2,G, ..., xNP,G}, xi,G = xj,i,G

xj,i,G=0 = (int)
(

randj [0,1] •
(

x(hi)
j + 1 − x(lo)j

)
+

(
x(lo)j

))

i f xj,i /∈
{

x0,i, x1,i, ..., xj−1,i

}

i = {1,2,3, ..., NP} , j = {1,2,3, .., D} (2)

where PG represents the population, xj,i,G=0 represents each solution within the population

and x(lo)j and x(hi)
j represents the bounds. The index i references the solution from 1 to NP,

and j which references the values in the solution.

4.2 Forward transformation
The transformation schema represents the most integral part of the DDE problem. Onwubolu
(Onwubolu, 2005) developed an effective routine for the conversion.
Let a set of integer numbers be represented as in Equation 3:

xi ∈ xi,G (3)

which belong to solution xj,i,G=0 . The equivalent continuous value for xi is given as 1 • 102 <

5 • 102 ≤ 102.
The domain of the variable xi has length of 5 as shown in 5 • 102. The precision of the value
to be generated is set to two decimal places (2 d.p.) as given by the superscript two (2) in 102

. The range of the variable xi is between 1 and 103. The lower bound is 1 whereas the upper
bound of 103 was obtained after extensive experimentation. The upper bound 103 provides
optimal filtering of values which are generated close together (Davendra & Onwubolu, 2007b).
The formulation of the forward transformation is given as:

x�i = −1 +
xi • f • 5
103 − 1

(4)

Equation 4 when broken down, shows the value xi multiplied by the length 5 and a scaling
factor f. This is then divided by the upper bound minus one (1). The value computed is
then decrement by one (1). The value for the scaling factor f was established after extensive
experimentation. It was found that when f was set to 100, there was a tight grouping of the
value, with the retention of optimal filtration�s of values. The subsequent formulation is given
as:

x�i = −1 +
xi • f • 5
103 − 1

= −1 +
xi • f • 5
103 − 1

(5)

4.3 Backward transformation
The reverse operation to forward transformation, backward transformation converts the real
value back into integer as given in Equation 6 assuming xi to be the real value obtained from
Equation 5.

int [xi] =
(1 + xi) •

(
103 − 1

)
5 • f

=
(1 + xi) •

(
103 − 1

)
500

(6)
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The value xi is rounded to the nearest integer.

4.4 Recursive mutation
Once the solution is obtained after transformation, it is checked for feasibility. Feasibility
refers to whether the solutions are within the bounds and unique in the solution.

xi,G+1 =

⎧⎪⎨
⎪⎩

ui,G+1 if

�
uj,i,G+1 �=

�
u1,i,G+1, ...,uj−1,i,G+1

�

x(lo) ≤ uj,i,G+1 ≤ x(lo)

xi,G

(7)

Recursive mutation refers to the fact that if a solution is deemed in-feasible, it is discarded and
the parent solution is retained in the population as given in Equation 7.

4.5 Repairment
In order to repair the solutions, each solution is initially vetted. Vetting requires the resolution
of two parameters: firstly to check for any bound offending values, and secondly for repeating
values in the solution. If a solution is detected to have violated a bound, it is dragged to the
offending boundary.

uj,i,G+1 =

�
x(lo) if uj,i,G+1 < x(lo)

x(hi) if uj,i,G+1 > x(hi) (8)

Each value, which is replicated, is tagged for its value and index. Only those values, which
are deemed replicated, are repaired, and the rest of the values are not manipulated. A second
sequence is now calculated for values, which are not present in the solution. It stands to reason
that if there are replicated values, then some feasible values are missing. The pseudocode is
given in Figure 3
Three unique repairment strategies were developed to repair the replicated values: front
mutation, back mutation and random mutation, named after the indexing used for each particular
one.

Algorithm for Replication Detection

Assume a problem of size n, and a schedule given as X = {x1, .., xn}. Create a random solution
schedule ∃!xi : R(X) := {x1, .., xi.., xn}; i ∈ Z+, where each value is unique and between the
bounds x(lo) and x(hi).

1. Create a partial empty schedule P (X) := {}
2. For k = 1,2, ....,n do the following:

(a) Check if xk ∈ P (X).

(b) IF xk /∈ P (X)
Insert xk → P (Xk)

ELSE
P (Xk) = ∅

3. Generate a missing subset M (X) := R (X)\P (X).

Fig. 3. Pseudocode for replication detection
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The value xi is rounded to the nearest integer.
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Fig. 3. Pseudocode for replication detection

61Chaos Driven Evolutionary Algorithm for the Traveling Salesman Problem



8 Traveling Salesman Problem, Theory and Applications

Algorithm for Random Mutation

Assume a problem of size n, and a schedule given as X = {x1, .., xn}. Assume the missing
subset M(X) and partial subset P(X) from Figure 3.

1. For k = 1,2, ....,n do the following:

(a) IF P (Xk) = ∅
Randomly select a value from the M (X) and insert it in P (Xk) given as
M (XRnd)→ P (Xk)

(b) Remove the used value from the M (X).

2. Output P (X) as the obtained complete schedule.

Fig. 4. Pseudocode for random mutation

4.5.1 Random mutation
The most complex repairment schema is the random mutation routine. Each value is selected
randomly from the replicated array and replaced randomly from the missing value array as
given in Figure 4.
Since each value is randomly selected, the value has to be removed from the array after
selection in order to avoid duplication. Through experimentation it was shown that random
mutation was the most effective in solution repairment.

4.6 Improvement strategies
Improvement strategies were included in order to improve the quality of the solutions.
Three improvement strategies were embedded into the heuristic. All of these are one time
application based. What this entails is that, once a solution is created each strategy is applied
only once to that solution. If improvement is shown, then it is accepted as the new solution,
else the original solution is accepted in the next population.

4.6.1 Standard mutation
Standard mutation is used as an improvement technique, to explore random regions of space
in the hopes of finding a better solution. Standard mutation is simply the exchange of two
values in the single solution.
Two unique random values are selected r1,r2 ∈ rand [1, D], where as r1 �= r2 . The values

indexed by these values are exchanged: Solutionr1

exchange↔ Solutionr1 and the solution is
evaluated. If the fitness improves, then the new solution is accepted in the population. The
routine is shown in Figure 5.

4.6.2 Insertion
Insertion is a more complicated form of mutation. However, insertion is seen as providing
greater diversity to the solution than standard mutation.
As with standard mutation, two unique random numbers are selected r1,r2 ∈ rand [1, D]. The
value indexed by the lower random number Solutionr1 is removed and the solution from that
value to the value indexed by the other random number is shifted one index down. The
removed value is then inserted in the vacant slot of the higher indexed value Solutionr2 as
given in Figure 6.
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Algorithm for Standard Mutation

Assume a schedule given as X = {x1, .., xn}.

1. Obtain two random numbers r1 and r2, where r1 = rnd
(

x(lo), x(hi)
)

and r2 =

rnd
(

x(lo), x(hi)
)

, the constraint being r1 �= r2

(a) Swap the two indexed values in the solution

i. xr1 = xr2 and xr2 = xr1 .

(b) Evaluate the new schedule X� for its objective given as f (X�).
(c) IF f (X�) < f (X)

i. Set the old schedule X to the new improved schedule X� as X = X�.

2. Output X as the new schedule.

Fig. 5. Pseudocode for standard mutation

4.7 Local search
There is always a possibility of stagnation in evolutionary algorithms. DE is no exemption to
this phenomenon.
Stagnation is the state where there is no improvement in the populations over a period of
generations. The solution is unable to find new search space in order to find global optimal
solutions. The length of stagnation is not usually defined. Sometimes a period of twenty
generation does not constitute stagnation. Also care has to be taken as not be confuse the local
optimal solution with stagnation. Sometimes, better search space simply does not exist. In
EDE, a period of five generations of non-improving optimal solution is classified as stagnation.
Five generations is taken in light of the fact that EDE usually operates on an average of a
hundred generations. This yields to the maximum of twenty stagnations within one run of
the heuristic.

Algorithm for Insertion

Assume a schedule given as X = {x1, .., xn}.

1. Obtain two random numbers r1 and r2, where r1 = rnd
(

x(lo), x(hi)
)

and r2 =

rnd
(

x(lo), x(hi)
)

, the constraints being r1 �= r2 and r1 < r2.

(a) Remove the value indexed by r1 in the schedule X.

(b) For k=r1,.....,r2 − 1, do the following:

i. xk = xk+1.

(c) Insert the higher indexed value r2 by the lower indexed value r1 as: Xr2 = Xr1 .

2. Output X as the new schedule.

Fig. 6. Pseudocode for Insertion
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Algorithm for Random Mutation

Assume a problem of size n, and a schedule given as X = {x1, .., xn}. Assume the missing
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1. For k = 1,2, ....,n do the following:
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Randomly select a value from the M (X) and insert it in P (Xk) given as
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(b) Remove the used value from the M (X).
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Fig. 4. Pseudocode for random mutation

4.5.1 Random mutation
The most complex repairment schema is the random mutation routine. Each value is selected
randomly from the replicated array and replaced randomly from the missing value array as
given in Figure 4.
Since each value is randomly selected, the value has to be removed from the array after
selection in order to avoid duplication. Through experimentation it was shown that random
mutation was the most effective in solution repairment.

4.6 Improvement strategies
Improvement strategies were included in order to improve the quality of the solutions.
Three improvement strategies were embedded into the heuristic. All of these are one time
application based. What this entails is that, once a solution is created each strategy is applied
only once to that solution. If improvement is shown, then it is accepted as the new solution,
else the original solution is accepted in the next population.

4.6.1 Standard mutation
Standard mutation is used as an improvement technique, to explore random regions of space
in the hopes of finding a better solution. Standard mutation is simply the exchange of two
values in the single solution.
Two unique random values are selected r1,r2 ∈ rand [1, D], where as r1 �= r2 . The values

indexed by these values are exchanged: Solutionr1

exchange↔ Solutionr1 and the solution is
evaluated. If the fitness improves, then the new solution is accepted in the population. The
routine is shown in Figure 5.

4.6.2 Insertion
Insertion is a more complicated form of mutation. However, insertion is seen as providing
greater diversity to the solution than standard mutation.
As with standard mutation, two unique random numbers are selected r1,r2 ∈ rand [1, D]. The
value indexed by the lower random number Solutionr1 is removed and the solution from that
value to the value indexed by the other random number is shifted one index down. The
removed value is then inserted in the vacant slot of the higher indexed value Solutionr2 as
given in Figure 6.
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Algorithm for Standard Mutation

Assume a schedule given as X = {x1, .., xn}.

1. Obtain two random numbers r1 and r2, where r1 = rnd
(

x(lo), x(hi)
)

and r2 =

rnd
(

x(lo), x(hi)
)

, the constraint being r1 �= r2

(a) Swap the two indexed values in the solution

i. xr1 = xr2 and xr2 = xr1 .

(b) Evaluate the new schedule X� for its objective given as f (X�).
(c) IF f (X�) < f (X)

i. Set the old schedule X to the new improved schedule X� as X = X�.

2. Output X as the new schedule.

Fig. 5. Pseudocode for standard mutation

4.7 Local search
There is always a possibility of stagnation in evolutionary algorithms. DE is no exemption to
this phenomenon.
Stagnation is the state where there is no improvement in the populations over a period of
generations. The solution is unable to find new search space in order to find global optimal
solutions. The length of stagnation is not usually defined. Sometimes a period of twenty
generation does not constitute stagnation. Also care has to be taken as not be confuse the local
optimal solution with stagnation. Sometimes, better search space simply does not exist. In
EDE, a period of five generations of non-improving optimal solution is classified as stagnation.
Five generations is taken in light of the fact that EDE usually operates on an average of a
hundred generations. This yields to the maximum of twenty stagnations within one run of
the heuristic.

Algorithm for Insertion

Assume a schedule given as X = {x1, .., xn}.

1. Obtain two random numbers r1 and r2, where r1 = rnd
(

x(lo), x(hi)
)

and r2 =

rnd
(

x(lo), x(hi)
)

, the constraints being r1 �= r2 and r1 < r2.

(a) Remove the value indexed by r1 in the schedule X.

(b) For k=r1,.....,r2 − 1, do the following:

i. xk = xk+1.

(c) Insert the higher indexed value r2 by the lower indexed value r1 as: Xr2 = Xr1 .

2. Output X as the new schedule.

Fig. 6. Pseudocode for Insertion
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To move away from the point of stagnation, a feasible operation is a neighborhood or
local search, which can be applied to a solution to find better feasible solution in the local
neighborhood. Local search in an improvement strategy. It is usually independent of the
search heuristic, and considered as a plug-in to the main heuristic. The point of note is that
local search is very expensive in terms of time and memory. Local search can sometimes be
considered as a brute force method of exploring the search space. These constraints make
the insertion and the operation of local search very delicate to implement. The route that
EDE has adapted is to check the optimal solution in the population for stagnation, instead
of the whole population. As mentioned earlier five (5) non-improving generations constitute
stagnation. The point of insertion of local search is very critical. The local search is inserted at
the termination of the improvement module in the EDE heuristic.
Local search is an approximation algorithm or heuristic. Local search works on a neighborhood.
A complete neighborhood of a solution is defined as the set of all solutions that can be arrived at
by a move. The word solution should be explicitly defined to reflect the problem being solved.
This variant of the local search routine is described in Onwubolu (2002) and is generally
known as a 2-opt local search.
The basic outline of a local search technique is given in Figure 7. A number α is chosen equal
to zero (0) (α = ∅). This number iterates through the entire population, by choosing each
progressive value from the solution. On each iteration of α, a random number i is chosen
which is between the lower (1) and upper (n) bound. A second number β starts at the position
i, and iterates till the end of the solution. In this second iteration another random number j is
chosen, which is between the lower and upper bound and not equal to value of β. The values
in the solution indexed by i and j are swapped. The objective function of the new solution is
calculated and only if there is an improvement given as Δ (x, i, j)< 0, then the new solution is
accepted.
The complete template of EDE is given in Figure 8.

Algorithm for Local Search

Assume a schedule given as X = {x1, .., xn}, and two indexes α and β. The size of the schedule
is given as n. Set α = 0.

1. While α < n

(a) Obtain a random number i = rand[1,n] between the bounds and under constraint
i /∈ α.

(b) Set β = {i}
i. While β < n

A. Obtain another random number j = rand[1,n] under constraint j /∈ β.

B. IF Δ (x, i, j) < 0;
{

xi = xj
xj = xi

C. β = β ∪ {j}
ii. α = α ∪ {j}

Fig. 7. Pseudocode for 2 Opt Local Search
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Enhanced Differential Evolution Template

Input :D, Gmax, NP ≥ 4, F ∈ (0,1+) ,CR ∈ [0,1],and bounds :x(lo), x(hi).

Initialize :

⎧⎪⎪⎨
⎪⎪⎩

∀i ≤ NP ∧ ∀j ≤ D

⎧⎨
⎩

xi,j,G=0 = x(lo)j + randj [0,1] •
�

x(hi)
j − x(lo)j

�

i f xj,i /∈
�

x0,i, x1,i, ..., xj−1,i

�

i = {1,2, ..., NP}, j = {1,2, ..., D}, G = 0,randj[0,1] ∈ [0,1]
Cost : ∀i ≤ NP : f

�
xi,G=0

�
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

While G < Gmax

∀i ≤ NP

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mutate and recombine :
r1,r2,r3 ∈ {1,2, ...., NP}, randomly selected, except :r1 �= r2 �= r3 �= i
jrand ∈ {1,2, ..., D}, randomly selected once each i

∀j ≤ D,uj,i,G+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�
γj,r3,G

�
←

�
xj,r3,G

�
:
�

γj,r1,G

�
←

�
xj,r1,G

�
:�

γj,r2,G

�
←

�
xj,r2,G

�
Forward Transformation

γj,r3,G + F · (γj,r1,G − γj,r2,G)
if (randj[0,1] < CR ∨ j = jrand)�

γj,i,G

�
←

�
xj,i,G

�
otherwise

�
u�

i,G+1

�
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�
ρj,i,G+1

�
←

�
ϕj,i,G+1

�
Backward Transformation�

uj,i,G+1

�mutate←
�

ρj,i,G+1

�
Mutate Schema

if
�

u�
j,i,G+1

�
/∈
��

u0,i,G+1
�

,
�
u1,i,G+1

�
, ..
�

uj−1,i,G+1

��
�

uj,i,G+1

�
←

�
u�

i,G+1

�
Standard Mutation�

uj,i,G+1

�
←

�
u�

i,G+1

�
Insertion

Select :

xi,G+1 =

�
ui,G+1 if f (ui,G+1) ≤ f (xi,G)
xi,G otherwise

G = G + 1
Local Search xbest = Δ (xbest, i, j) if stagnation

Fig. 8. EDE Template

5. Chaotic systems

Chaos theory has its manifestation in the study of dynamical systems that exhibit certain
behavior due to the perturbation of the initial conditions of the systems. A number of such
systems have been discovered and this branch of mathematics has been vigorously researched
for the last few decades.
The area of interest for this chapter is the embedding of chaotic systems in the form of chaos
number generator for an evolutionary algorithm.
The systems of interest are discrete dissipative systems. The two common systems of Lozi map
and Delayed Logistic (DL) were selected as mutation generators for the DE heuristic.
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To move away from the point of stagnation, a feasible operation is a neighborhood or
local search, which can be applied to a solution to find better feasible solution in the local
neighborhood. Local search in an improvement strategy. It is usually independent of the
search heuristic, and considered as a plug-in to the main heuristic. The point of note is that
local search is very expensive in terms of time and memory. Local search can sometimes be
considered as a brute force method of exploring the search space. These constraints make
the insertion and the operation of local search very delicate to implement. The route that
EDE has adapted is to check the optimal solution in the population for stagnation, instead
of the whole population. As mentioned earlier five (5) non-improving generations constitute
stagnation. The point of insertion of local search is very critical. The local search is inserted at
the termination of the improvement module in the EDE heuristic.
Local search is an approximation algorithm or heuristic. Local search works on a neighborhood.
A complete neighborhood of a solution is defined as the set of all solutions that can be arrived at
by a move. The word solution should be explicitly defined to reflect the problem being solved.
This variant of the local search routine is described in Onwubolu (2002) and is generally
known as a 2-opt local search.
The basic outline of a local search technique is given in Figure 7. A number α is chosen equal
to zero (0) (α = ∅). This number iterates through the entire population, by choosing each
progressive value from the solution. On each iteration of α, a random number i is chosen
which is between the lower (1) and upper (n) bound. A second number β starts at the position
i, and iterates till the end of the solution. In this second iteration another random number j is
chosen, which is between the lower and upper bound and not equal to value of β. The values
in the solution indexed by i and j are swapped. The objective function of the new solution is
calculated and only if there is an improvement given as Δ (x, i, j)< 0, then the new solution is
accepted.
The complete template of EDE is given in Figure 8.

Algorithm for Local Search

Assume a schedule given as X = {x1, .., xn}, and two indexes α and β. The size of the schedule
is given as n. Set α = 0.

1. While α < n

(a) Obtain a random number i = rand[1,n] between the bounds and under constraint
i /∈ α.

(b) Set β = {i}
i. While β < n

A. Obtain another random number j = rand[1,n] under constraint j /∈ β.

B. IF Δ (x, i, j) < 0;
{

xi = xj
xj = xi

C. β = β ∪ {j}
ii. α = α ∪ {j}

Fig. 7. Pseudocode for 2 Opt Local Search
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Enhanced Differential Evolution Template

Input :D, Gmax, NP ≥ 4, F ∈ (0,1+) ,CR ∈ [0,1],and bounds :x(lo), x(hi).

Initialize :

⎧⎪⎪⎨
⎪⎪⎩

∀i ≤ NP ∧ ∀j ≤ D

⎧⎨
⎩

xi,j,G=0 = x(lo)j + randj [0,1] •
�

x(hi)
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�

i f xj,i /∈
�
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�

i = {1,2, ..., NP}, j = {1,2, ..., D}, G = 0,randj[0,1] ∈ [0,1]
Cost : ∀i ≤ NP : f

�
xi,G=0

�
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

While G < Gmax

∀i ≤ NP

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mutate and recombine :
r1,r2,r3 ∈ {1,2, ...., NP}, randomly selected, except :r1 �= r2 �= r3 �= i
jrand ∈ {1,2, ..., D}, randomly selected once each i

∀j ≤ D,uj,i,G+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�
γj,r3,G

�
←

�
xj,r3,G

�
:
�

γj,r1,G

�
←

�
xj,r1,G

�
:�

γj,r2,G

�
←

�
xj,r2,G

�
Forward Transformation

γj,r3,G + F · (γj,r1,G − γj,r2,G)
if (randj[0,1] < CR ∨ j = jrand)�

γj,i,G

�
←

�
xj,i,G

�
otherwise

�
u�

i,G+1

�
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�
ρj,i,G+1

�
←

�
ϕj,i,G+1

�
Backward Transformation�

uj,i,G+1

�mutate←
�

ρj,i,G+1

�
Mutate Schema

if
�

u�
j,i,G+1

�
/∈
��

u0,i,G+1
�

,
�
u1,i,G+1

�
, ..
�

uj−1,i,G+1

��
�

uj,i,G+1

�
←

�
u�

i,G+1

�
Standard Mutation�

uj,i,G+1

�
←

�
u�

i,G+1

�
Insertion

Select :

xi,G+1 =

�
ui,G+1 if f (ui,G+1) ≤ f (xi,G)
xi,G otherwise

G = G + 1
Local Search xbest = Δ (xbest, i, j) if stagnation

Fig. 8. EDE Template

5. Chaotic systems

Chaos theory has its manifestation in the study of dynamical systems that exhibit certain
behavior due to the perturbation of the initial conditions of the systems. A number of such
systems have been discovered and this branch of mathematics has been vigorously researched
for the last few decades.
The area of interest for this chapter is the embedding of chaotic systems in the form of chaos
number generator for an evolutionary algorithm.
The systems of interest are discrete dissipative systems. The two common systems of Lozi map
and Delayed Logistic (DL) were selected as mutation generators for the DE heuristic.
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5.1 Lozi map
The Lozi map is a two-dimensional piecewise linear map whose dynamics are similar to those
of the better known Henon map (Hennon, 1979) and it admits strange attractors.
The advantage of the Lozi map is that one can compute every relevant parameter exactly, due
to the linearity of the map, and the successful control can be demonstrated rigorously.
The Lozi map equations are given in Equations 9 and 10.

y1 (t + 1) = 1 − a |y1 (t)|+ y2 (t) (9)

y2 (t + 1) = by1 (t) (10)

The parameters used in this work are a = 1.7 and b = 0.5 as suggested in Caponetto et al.
(2003). The Lozi map is given in Figure 9.

5.2 Delayed logistic map
The Delayed Logistic (DL) map equations are given in Equations 11 and 12.

y1 (t + 1) = y2 (11)

y2 (t + 1) = ay2 (1 − y1) (12)

The parameters used in this work is a = 2.27. The DL map is given in Figure 10.

6. Experimentation

The experimentation has been done on a few representative instances of both symmetric
and asymmetric TSP problems. The chaotic maps are embedded in the place of the random

Fig. 9. Lozi map
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Fig. 10. Delayed Logistic

number generator in the EDE algorithm and the new algorithm is termed EDEC. Five repeated
experimentation of each instance is done by the two different chaotic embedded algorithms.
The average results of all the ten experimentation is compared with EDE and published results
in literature.

6.1 Symmetric TSP
Symmetric TSP problem is one, where the distance between two cities is the same to and fro.
This is considered the easiest branch of TSP problem.
The operational parameters for TSP is given in Table 2.
Experimentation was conducted on the City problem instances. These instances are of 50
cities and the results are presented in Table 3. Comparison was done with Ant Colony
(ACS) (Dorigo & Gambardella, 1997), Simulated Annealing (SA) (Lin et al., 1993), Elastic Net
(EN) (Durbin & Willshaw, 1987), Self Organising Map (SOM) (Kara et al., 2003) and EDE of
Davendra & Onwubolu (2007a). The time values are presented alongside.
In comparison, ACS is the best performing heuristic for TSP, and EDEC is second best
performing heuristic. On average EDEC is only 0.02 above the values obtained by ACS. It

Parameter Value

Strategy 5
CR 0.8
F 0.5

NP 100
Generation 50

Table 2. EDEC TSP operational values
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(ACS) (Dorigo & Gambardella, 1997), Simulated Annealing (SA) (Lin et al., 1993), Elastic Net
(EN) (Durbin & Willshaw, 1987), Self Organising Map (SOM) (Kara et al., 2003) and EDE of
Davendra & Onwubolu (2007a). The time values are presented alongside.
In comparison, ACS is the best performing heuristic for TSP, and EDEC is second best
performing heuristic. On average EDEC is only 0.02 above the values obtained by ACS. It

Parameter Value

Strategy 5
CR 0.8
F 0.5

NP 100
Generation 50

Table 2. EDEC TSP operational values

67Chaos Driven Evolutionary Algorithm for the Traveling Salesman Problem



14 Traveling Salesman Problem, Theory and Applications

Instant ACS SA EN SOM EDE EDEC

City set 1 5.88 5.88 5.98 6.06 5.98 5.89
City set 2 6.05 6.01 6.03 6.25 6.04 6.02
City set 3 5.58 5.65 5.7 5.83 5.69 5.61
City set 4 5.74 5.81 5.86 5.87 5.81 5.78
City set 5 6.18 6.33 6.49 6.7 6.48 6.21

Average 5.88 5.93 6.01 6.14 6 5.9

Table 3. Symmetric TSP comparison

must be noted that all execution time for EDEC was under 10 seconds. Extended simulation
would possibly lead to better results.

6.2 Asymmetric TSP
Asymmetric TSP is the problem where the distance between the different cities is different,
depending on the direction of travel. Five different instances were evaluated and compared
with Ant Colony (ACS) with local search (Dorigo & Gambardella, 1997) and EDE of Davendra
& Onwubolu (2007a). The results are given in Table 4.

Instant Optimal ACS 3-OPT ACS 3-OPT EDE EDEC
best average average average

p43 5620 5620 5620 5639 5620
ry48p 14422 14422 14422 15074 14525
ft70 38673 38673 38679.8 40285 39841
kro124p 36230 36230 36230 41180 39574
ftv170 2755 2755 2755 6902 4578

Table 4. Asymmetric TSP comparison

ACS heuristic performs very well, obtaining the optimal value, whereas EDE has an average
performance. EDEC significantly improves the performance of EDE. One of the core difference
is that ACS employs 3−Opt local search on each generation of its best solution, where as EDEc
has a 2−Opt routine valid only in local optima stagnation.

7. Conclusion

The chaotic maps used in this research are of dissipative systems, and through
experimentation have proven very effective. The results clearly validate that the chaotic maps
provide a better alternative to random number generators in the task of sampling of the fitness
landscape.
This chapter has just introduced the concept of chaotic driven evolutionary algorithms.
Much work remains, as the correct mapping structure has to be investigated as well as the
effectiveness of this approach to other combinatorial optimization problems.
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Instant ACS SA EN SOM EDE EDEC

City set 1 5.88 5.88 5.98 6.06 5.98 5.89
City set 2 6.05 6.01 6.03 6.25 6.04 6.02
City set 3 5.58 5.65 5.7 5.83 5.69 5.61
City set 4 5.74 5.81 5.86 5.87 5.81 5.78
City set 5 6.18 6.33 6.49 6.7 6.48 6.21

Average 5.88 5.93 6.01 6.14 6 5.9

Table 3. Symmetric TSP comparison

must be noted that all execution time for EDEC was under 10 seconds. Extended simulation
would possibly lead to better results.

6.2 Asymmetric TSP
Asymmetric TSP is the problem where the distance between the different cities is different,
depending on the direction of travel. Five different instances were evaluated and compared
with Ant Colony (ACS) with local search (Dorigo & Gambardella, 1997) and EDE of Davendra
& Onwubolu (2007a). The results are given in Table 4.

Instant Optimal ACS 3-OPT ACS 3-OPT EDE EDEC
best average average average

p43 5620 5620 5620 5639 5620
ry48p 14422 14422 14422 15074 14525
ft70 38673 38673 38679.8 40285 39841
kro124p 36230 36230 36230 41180 39574
ftv170 2755 2755 2755 6902 4578

Table 4. Asymmetric TSP comparison

ACS heuristic performs very well, obtaining the optimal value, whereas EDE has an average
performance. EDEC significantly improves the performance of EDE. One of the core difference
is that ACS employs 3−Opt local search on each generation of its best solution, where as EDEc
has a 2−Opt routine valid only in local optima stagnation.

7. Conclusion

The chaotic maps used in this research are of dissipative systems, and through
experimentation have proven very effective. The results clearly validate that the chaotic maps
provide a better alternative to random number generators in the task of sampling of the fitness
landscape.
This chapter has just introduced the concept of chaotic driven evolutionary algorithms.
Much work remains, as the correct mapping structure has to be investigated as well as the
effectiveness of this approach to other combinatorial optimization problems.
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1. Introduction    

The traveling salesman problem (TSP)[1] is one of the most widely studied NP-hard 
combinatorial optimization problems. Its statement is deceptively simple, and yet it remains 
one of the most challenging problems in Operational Research. The simple description of 
TSP is: Give a shortest path that covers all cities along. Let G = (V; E) be a graph where V is a 
set of vertices and E is a set of edges. Let C = (cij) be a distance (or cost) matrix associated 
with E. The TSP requires determination of a minimum distance circuit (Hamiltonian circuit 
or cycle) passing through each vertex once and only once. C is said to satisfy the triangle 
inequality if and only if cij + cjk  cik for all i, j, k∈V. 
Due to its simple description and wide application in real practice such as Path Problem, 
Routing Problem and Distribution Problem, it has attracted researchers of various domains 
to work for its better solutions. Those traditional algorithms such as Cupidity Algorithm, 
Dynamic Programming Algorithm, are all facing the same obstacle, which is when the 
problem scale N reaches to a certain degree, the so-called “Combination Explosion” will 
occur. For example, if N=50, then it will take 485 10× years under a super mainframe 
executing 100 million instructions per second to reach its approximate best solution. 
A lot of algorithms have been proposed to solve TSP[2-7]. Some of them (based on dynamic 
programming or branch and bound methods) provide the global optimum solution. Other 
algorithms are heuristic ones, which are much faster, but they do not guarantee the optimal 
solutions. There are well known algorithms based on 2-opt or 3-opt change operators, Lin-
Kerninghan algorithm (variable change) as well algorithms based on greedy principles 
(nearest neighbor, spanning tree, etc). The TSP was also approached by various modern 
heuristic methods, like simulated annealing, evolutionary algorithms and tabu search, even 
neural networks. 
In this paper, we proposed a new algorithm based on Inver-over operator, for combinatorial 
optimization problems. In the new algorithm we use some new strategies including 
selection operator, replace operator and some new control strategy, which have been proved 
to be very efficient to accelerate the converge speed. At the same time, we also use this 
approach to solve dynamic TSP. The algorithm to solve the dynamic TSP problem, which is 
the hybrid of EN and Inver-Over algorithm. 
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2. Tradition approaches for travel salesman problems 
2.1 Genetic algorithm (GA) 
Genetic Algorithm is based on the idea of Darwin evolutionism and Mendel genetics that 
simulates the process of nature to solve complex searching problems. It adopts the strategy 
of encoding the population and the genetic operations, so as to direct the individuals’ 
heuristic study and searching direction. Since GA owns the traits of self-organization, self-
adaptation, self-study etc, it breaks away from the restriction of the searching space and 
some other auxiliary information. However, when facing different concrete problems (e.g. 
TSP), it’s always necessary for us to seek better genetic operators and more efficient control 
strategy due to the gigantic solution space and limitation of computation capacity. 
Use GA solve the TSP, including the following steps: 
Chromosome Coding:  In this paper, we will use the most direct way to denote TSP-path 
presentation. For example, path 4-2-1-3-4 can be denoted as (4, 2, 1, 3) or (2, 3, 1, 4) and it is 
referred as a chromosome. Every chromosome is regarded as a validate path. (In this paper, 
all paths should be considered as a ring, or closed path). 
Fitness value: The only standard of judging whether an individual is “good” or not. We take 
the reciprocal of the length of each path as the fitness function. Length the shorter, fitness 
values the better. The fitness function is defined as following formula: 
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Evolutionary Operator or Evolutionary Strategy: they are including selection operator, 
crossover operator and mutation operator. 
Selection Strategy: After crossover or mutation, new generations are produced. In order to 
keep the total number consistent, those individuals who are not adjust to the environment 
must be deleted, whereas the more adaptive ones are kept. 
Probability of mutation: In order to keep the population sample various, and prevent from 
trapping into local minimum, mutation is quite necessary. But to seek higher executing 
speed, the probability of mutation must be selected properly. 
Terminal conditions: The stop condition of the algorithm. 

2.2 A fast evolutionary algorithm based on inver-over operator 
Inver-over operator has proved to be a high efficient Genetic Algorithm[2]. The creativity of 
this operator is that it adopts the operation of inversion in genetic operators, which can 
effectively broaden the variety of population and prevent from local minimum and lead to 
find the best solutions quickly and accurately. GT algorithm[2] is be perceived as a set of 
parallel hill-climbing procedures. 
In this section, we introduce some new genetic operators based on GT. And there are also 
some modifications on some details, which aim to quicken the convergence speed. 
Numerical experiments show the algorithm can effectively keep the variety of population, 
and avoid prematurely in traditional algorithms. It has proved to be very efficient to solve 
small and moderate scale TSP; particularly, larger-scale problem can also get a fast 
convergence speed if we choose a small population that involves the evolution. 
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Selection Operator: Randomly select two chromosomes 1S , 2S  from population {P}, let f 
( 2S )>f ( 1S ); randomly select a gene segment 1sΔ  from 1S , then judge if there is gene 
segment 2sΔ  in 2S  that meets the conditions below: it has the same length (number of 
cities) and the starting city with 1sΔ . If 2sΔ  exists, replace 1sΔ  by 2sΔ  in chromosome 1S , 
then the rest genes are adjusted follow the partly mapping rules.  
Replace Operator: Randomly select two chromosomes 1S , 2S  from population {P}, let f 
( 2S )>f ( 1S ), let 1S  be the parent, then randomly select a gene segment 1sΔ  in 1S , then 
judge if there is a gene segment 2sΔ  exists in 2S  that meets the conditions below: it has the 
same length (number of cities) and cities with 1sΔ , only the sequence of cities varies. If it 
exists, judge the distance of the two segments 1sΔ , 2sΔ . If 2sΔ  is shorter, replace 1sΔ  by 

2sΔ  in 1S ; else quit. 
The new algorithm mainly involves crossover operator, but crossover relies strongly on the 
current population and may be easily trapped into local minimum. So mutation is 
introduced and can effectively solve the problem. But mutation itself is blind; it can act 
efficiently at the beginning of the algorithm, but when it’s converged round to the 
approximate best solution, the probability of successfully optimize the chromosome turns 
out to be very low. So Dynamically alter the probability of selecting mutation operator is 
necessary.  We use the formula below to alter the probability of selecting mutation operator:  

                 (1 0.01 /max )p p GenNum Gen= × − ×  (2) 

p  is the probability of mutation, GenNum is the current evolutionary times; maxGen is the 
max evolutionary times when algorithm stops. Fig.2 provides a more detailed description of 
the whole algorithm in general. 
Random initialization of the population P  
While (not satisfied termination condition) do 
i=0 
Begin  
  for each individual iS P∈  do 
  begin (if i!=N) 
{ ' iS S←  
Select (randomly) a City C  from 'S  
repeat 
{begin 
   if 1( () )rand p≤  

     {select the city 'C from 'S  
     invert the gene segment between C and 'C  
     } 
   else 
    {select (randomly) an individual ''S  in P  
assign to 'C  the next city to the city C  in the select individual 
} 
   if (the next city or the previous city of city C  in 'S  is 'C ) 
   exit repeat loop 



 Traveling Salesman Problem, Theory and Applications 

 

72 

2. Tradition approaches for travel salesman problems 
2.1 Genetic algorithm (GA) 
Genetic Algorithm is based on the idea of Darwin evolutionism and Mendel genetics that 
simulates the process of nature to solve complex searching problems. It adopts the strategy 
of encoding the population and the genetic operations, so as to direct the individuals’ 
heuristic study and searching direction. Since GA owns the traits of self-organization, self-
adaptation, self-study etc, it breaks away from the restriction of the searching space and 
some other auxiliary information. However, when facing different concrete problems (e.g. 
TSP), it’s always necessary for us to seek better genetic operators and more efficient control 
strategy due to the gigantic solution space and limitation of computation capacity. 
Use GA solve the TSP, including the following steps: 
Chromosome Coding:  In this paper, we will use the most direct way to denote TSP-path 
presentation. For example, path 4-2-1-3-4 can be denoted as (4, 2, 1, 3) or (2, 3, 1, 4) and it is 
referred as a chromosome. Every chromosome is regarded as a validate path. (In this paper, 
all paths should be considered as a ring, or closed path). 
Fitness value: The only standard of judging whether an individual is “good” or not. We take 
the reciprocal of the length of each path as the fitness function. Length the shorter, fitness 
values the better. The fitness function is defined as following formula: 

                       
∑
=

+

= N

i
Ninin CCd

Sif

1
mod)1()( ],[

1)(

  
(1)

 
Evolutionary Operator or Evolutionary Strategy: they are including selection operator, 
crossover operator and mutation operator. 
Selection Strategy: After crossover or mutation, new generations are produced. In order to 
keep the total number consistent, those individuals who are not adjust to the environment 
must be deleted, whereas the more adaptive ones are kept. 
Probability of mutation: In order to keep the population sample various, and prevent from 
trapping into local minimum, mutation is quite necessary. But to seek higher executing 
speed, the probability of mutation must be selected properly. 
Terminal conditions: The stop condition of the algorithm. 

2.2 A fast evolutionary algorithm based on inver-over operator 
Inver-over operator has proved to be a high efficient Genetic Algorithm[2]. The creativity of 
this operator is that it adopts the operation of inversion in genetic operators, which can 
effectively broaden the variety of population and prevent from local minimum and lead to 
find the best solutions quickly and accurately. GT algorithm[2] is be perceived as a set of 
parallel hill-climbing procedures. 
In this section, we introduce some new genetic operators based on GT. And there are also 
some modifications on some details, which aim to quicken the convergence speed. 
Numerical experiments show the algorithm can effectively keep the variety of population, 
and avoid prematurely in traditional algorithms. It has proved to be very efficient to solve 
small and moderate scale TSP; particularly, larger-scale problem can also get a fast 
convergence speed if we choose a small population that involves the evolution. 

A Fast Evolutionary Algorithm for Traveling Salesman Problem  

 

73 

Selection Operator: Randomly select two chromosomes 1S , 2S  from population {P}, let f 
( 2S )>f ( 1S ); randomly select a gene segment 1sΔ  from 1S , then judge if there is gene 
segment 2sΔ  in 2S  that meets the conditions below: it has the same length (number of 
cities) and the starting city with 1sΔ . If 2sΔ  exists, replace 1sΔ  by 2sΔ  in chromosome 1S , 
then the rest genes are adjusted follow the partly mapping rules.  
Replace Operator: Randomly select two chromosomes 1S , 2S  from population {P}, let f 
( 2S )>f ( 1S ), let 1S  be the parent, then randomly select a gene segment 1sΔ  in 1S , then 
judge if there is a gene segment 2sΔ  exists in 2S  that meets the conditions below: it has the 
same length (number of cities) and cities with 1sΔ , only the sequence of cities varies. If it 
exists, judge the distance of the two segments 1sΔ , 2sΔ . If 2sΔ  is shorter, replace 1sΔ  by 

2sΔ  in 1S ; else quit. 
The new algorithm mainly involves crossover operator, but crossover relies strongly on the 
current population and may be easily trapped into local minimum. So mutation is 
introduced and can effectively solve the problem. But mutation itself is blind; it can act 
efficiently at the beginning of the algorithm, but when it’s converged round to the 
approximate best solution, the probability of successfully optimize the chromosome turns 
out to be very low. So Dynamically alter the probability of selecting mutation operator is 
necessary.  We use the formula below to alter the probability of selecting mutation operator:  

                 (1 0.01 /max )p p GenNum Gen= × − ×  (2) 

p  is the probability of mutation, GenNum is the current evolutionary times; maxGen is the 
max evolutionary times when algorithm stops. Fig.2 provides a more detailed description of 
the whole algorithm in general. 
Random initialization of the population P  
While (not satisfied termination condition) do 
i=0 
Begin  
  for each individual iS P∈  do 
  begin (if i!=N) 
{ ' iS S←  
Select (randomly) a City C  from 'S  
repeat 
{begin 
   if 1( () )rand p≤  

     {select the city 'C from 'S  
     invert the gene segment between C and 'C  
     } 
   else 
    {select (randomly) an individual ''S  in P  
assign to 'C  the next city to the city C  in the select individual 
} 
   if (the next city or the previous city of city C  in 'S  is 'C ) 
   exit repeat loop 



 Traveling Salesman Problem, Theory and Applications 

 

74 

   else 
    {invert the gene segment between C and 'C  
    calculate d 
    if(d<0 and evolutionary speed< critical speed) 
    exit repeat loop 
    } 
   'C C←  
end 
} 
if ( ( ') ( ))ieval S eval S≤  
   'iS S←  
   i = i +1} 
  end 
calculate evolutionary speed and update the probability of mutation 
if (evolutionary speed< critical speed and 2( () )rand p≤  
 {select (randomly) 1S , 2S  from P  
  select (randomly) gene segment 1sΔ  from 1S  
  if ( 1sΔ = 2sΔ and the starting city is same) // 2sΔ  in 2S  
   replace 1sΔ  with 2sΔ  
 } 
Select the better gene segments from those adaptive chromosomes 
if 1 2( ( ) ( ))eval g eval g≤  

21 gg ←  
end 
 

In this section we present the experimental results of the proposed algorithm. All experiments 
are performed on PⅣ 2.4GHz/256M RAM PC. In the experiments all test cases were chosen 
from TSPLIB (http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95). The 
optimal solution of each test case is known. The parameters for algorithm are as Table.1. 
 

Size of Population 100 

Mutation Probability 0.02 

Selection Probability 0.05 

Critical Speed 5000 

Table 1. Parameters for the algorithm 

We list the test cases and their optimal solutions in Fig.1. 
The above results demonstrate clearly the efficiency of the algorithm. Note that for the seven 
test cases the optimum was found in all ten runs. The number of cities in these test cases 
varies from 70 to 280. Note also, that the running time of the algorithm was reasonable: 
below 3 seconds for problems with up to 100 cities, below 10 seconds for the test case of 144 
cities, below 40 seconds for the test case with 280 cities. 
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Fig. 1. Results of the algorithm 

3. Information dynamic traveling salesman problem 
Most research in evolutionary computation focused on optimization of static, no-change 
problems. Many real world optimization problems however are actually dynamic, and 
optimization methods capable of continuously adapting the solution to a changing 
environment are needed. The main problem with standard evolutionary algorithms used for 
dynamic optimization problems appears to be that EAs eventually converge to an optimum 
and thereby loose their diversity necessary for efficiently exploring the search space and 
consequently also their ability to adapt to a change in the environment when such a change 
occurs. Since Psaraftis [11] first introduced DTSP, some research works have touched on this 
area [3,4, 6,7,9,10]. However the research is just at the initial phase and quite a few crucial 
questions. 

3.1 The elastic net method to TSP 
The elastic net was first proposed as a biologically motivated method for solving 
combinatorial optimization problems such as the traveling salesman problem (TSP) [1]. In 
the method, let the coordinates of a city, i, be denoted by the vector ci, and let the 
coordinates of the route point (or unit), u, be tu. Define the TSP in terms of a mapping from 
a circle to a plane. The TSP consists of finding a mapping from a circle, h, to a finite set of 
points, C=ci…cN, in the plane, which minimizes the distance: 

                                            ( )
h

D f s ds= ∫  (3) 

where the circle, h, is parameterized by arc-length, s, and f(s) provides a unique mapping 
from each point on h to a point on the plane. The locus of points defined by f(s) forms a 
loop, l, in the plane which passes through each city exactly once. 
The loop, l, is modeled as finite set, t1..tM, of points, or units. Due to the difficulty in 
obtaining a one-to-one mapping of units to plane points (cities) it is customary to set M > N 
in order that each city can become associated with at least one unit. 
The energy function to be minimized is: 
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We list the test cases and their optimal solutions in Fig.1. 
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cities, below 40 seconds for the test case with 280 cities. 
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Fig. 1. Results of the algorithm 

3. Information dynamic traveling salesman problem 
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questions. 

3.1 The elastic net method to TSP 
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the method, let the coordinates of a city, i, be denoted by the vector ci, and let the 
coordinates of the route point (or unit), u, be tu. Define the TSP in terms of a mapping from 
a circle to a plane. The TSP consists of finding a mapping from a circle, h, to a finite set of 
points, C=ci…cN, in the plane, which minimizes the distance: 
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D f s ds= ∫  (3) 

where the circle, h, is parameterized by arc-length, s, and f(s) provides a unique mapping 
from each point on h to a point on the plane. The locus of points defined by f(s) forms a 
loop, l, in the plane which passes through each city exactly once. 
The loop, l, is modeled as finite set, t1..tM, of points, or units. Due to the difficulty in 
obtaining a one-to-one mapping of units to plane points (cities) it is customary to set M > N 
in order that each city can become associated with at least one unit. 
The energy function to be minimized is: 
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where φ(d,K)=exp(-(d2/2K2)), and K is the standard deviation of the function, φ. 
Differentiating E with respect to tu, and multiplying through by K, gives the change 
( / )uK E t= − ∂ ∂ , ut , in the position of a unit, u: 
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where fui is like follow: 
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This term ensures that each city become associated with at least one unit. It is the Gaussian 
weighted distance of tu from ci expressed as a proportion of the distances to all other units 
from ci. In contrast, the term bui ensures that each unit becomes associated with at least one 
unit. It is the Gaussian weighted distance of ci from tu, expressed as proportion of the 
distances to all other cities from tu: 
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The EN method [8] is analogous to laying a circular loop of elastic on a plane containing a 
number of points (cities) and allowing each city to exert an attractive force on the loop. (In 
practice the EN method models this loop as finite set of points). Each city is associated with 
a Gaussian envelope which (using our physical analogy) effectively means that each city sits 
in a Gaussian depression on the plane. The standard deviation of the Gaussians associated 
with all cities is identical. Each city attracts a region on the elastic loop according to the 
proximity of that region to a given city and the standard deviation of the Gaussian. Initially 
the standard deviation is large, so that all regions on the loop are attracted to every city to 
the same extent (approximately) as every other region. As the standard deviation is 
decreased a city differentially attracts one or more nearby regions on the loop, at the 
expense of more distant loop regions. These loop-city interactions are modulated by the 
elasticity of the loop, which tends to keep the loop length short; the elasticity also tends to 
ensure that each city becomes associated with only one loop region. For a given standard 
deviation the integral of loop motion associated with each city is constant, and is the same 
for all cities, so that each city induces the same amount of motion of the loop. By slowly 
decreasing the standard deviation each city becomes associated with a single point on the 
loop_ Thus the loop ultimately defines a route of the cities it passes through. If the standard 
deviation is reduced sufficiently slowly then the loop passes through every city; and 
therefore defines a complete route through all cities. 

3.2 The elastic net method to dynamic TSP 
Dynamic TSP (D-TSP)[4] is a TSP determined by the dynamic cost (distance) matrix as 
follows: 
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 ( ) ( )( ) { ( )}ij n t n tD t d t ×=  (8) 

where dij(t) is the cost from city(node) i to city j, t is the real world time. This means that the 
number of cities n(t) and the cost matrix are time dependent that’s (1)some cities may 
appear, (2)some may disappear and (3)the locations of some may be modified with time 
going on. These are the three types of actions to a D-TSP.  
The D-TSP solver should be designed as solutions of a two-objective optimization problem. 
One is to minimize the size of time windows: 

 k ks t t= −  (9) 
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where ( ) 1 1kn tπ π+ = . 

The two objectives mean that the solver is to find the best tour in the minimal time window. 
If this aim cannot be satisfied, we can make some tradeoffs between the two objectives. 
We introduce the thought of the EN method into dynamic TSP. First, suppose we have 
already attained the maximum optimum of static TSP. Second, add a dynamic point. When 
the dynamic point moves to a position, we can use the EN method to attain the maximum 
optimum route. The whole processing like Fig.2 shows. 
 

 

Fig. 2. The processing of EN method to dynamic point 

Because the dynamic TSP needs give the maximum optimum in real-time, so the 
computation speed very high. Gou’s algorithm [2] with Inver-Over operator is a very 
efficient evolutionary algorithm for static TSP with high speed and more details about this 
algorithm can be got in [5]. We convert it with EN method to solve dynamic TSP. The 
algorithm code like following shows. 
DEN Algorithm () 
{ 
  Initiate parameter; 
  Initiate population {Pi}; 
  While true do 
  {   
     Attain dynamic point position (x’, y’); 
     Inver-Over (x [], y [], path [], M); 
     EN (x [], y [], path [], x’, y’); 
  } 
} 
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3.3 Experiments and results 
We have evaluated the algorithm and test it with the data set from TSPLIB 
(http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95). Fig.3 is the 
example of the DEN algorithm to KeroA150 in different time. In the example, the red point 
is the dynamic point and it moves around circle. From the example, we can see in different 
time, the dynamic point in different position and has the different distance. It shows this 
example is a dynamic problem. Through the experiment, we find the DEN algorithm cannot 
guarantee the route to be the maximum optimum, but this algorithm can move the dynamic 
point and confirm it to the new route very fast. So, it is very valid to solve dynamic TSP 
problem.  
 

 

 
Fig. 3. DEN algorithm to KeroA150 in different time 
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4. Conclusion 
In this paper, we introduce a fast evolutionary algorithm for combinatorial optimization 
problem. This algorithm is based on Inver-over operator, in the algorithm we use some new 
strategies including selection operator, replace operator and some new control strategy, 
which have been proved to be very efficient to accelerate the converge speed. The new 
algorithm shows great efficiency in solving TSP with the problem scale under 300. 
Particularly, if we choose a comparatively smaller population scale that involves evolution, 
the algorithm is also efficient to get the approximate best solution in a short executing time. 
In this paper, we also introduce an approach to solve dynamic TSP-- Elastic Net Method. A 
dynamic TSP is harder than a general TSP, which is a NP-hard problem, because the city 
number and the cost matrix of a dynamic TSP are time varying. And needs high 
computation speed. We propose the algorithm to solve the dynamic TSP, which is a hybrid 
of EN method and Inver-Over. Through the experiment, we got good results. Some 
strategies may increase the searching speed of evolutionary algorithms for dynamic TSP, 
forecasting the change pattern of the cities and per-optimizing, doing more experiments 
including changing the city number, and etc. These will be our future work. 
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1. Introduction  
The Traveling Salesman Problem (TSP), first formulated as a mathematical problem in 1930, 
has been receiving continuous and growing attention in artificial intelligence, computational 
mathematics and optimization in recent years. TSP can be described as follows: Given a set 
of cities, and known distances between each pair of cities, the salesman has to find a shortest 
possible tour that visits each city exactly once and that minimises the total distance 
travelled. 
The mathematical model of TSP is described below: 
Given a set of cities C = {C1, C2, C3… Cn}, the distance of each pair of cities is d(Ci,Cj). The 
problem is to find a route （C1,C2,C3…Cn）that visits each city exactly once and makes 
 

n

i 1
d(Ci,Ci 1) d(Cn,C1)

=
+ +∑ to have a minimum value. 

TSP is the problem of the permutation of n cities. For n cities, there should be n! different 
permutations. For the symmetric TSP, each route has two different ways to represent. 
Therefore, the size of its search space is: S =n!/2n= (n-1)!/2. As TSP is an ‘NP-hard’ problem, 
researchers all over the world try to solve the problem with various algorithms. Genetic 
Algorithm (GA), with the advantages of robustness, flexibility and versatility, has been 
widely studied to solve large-scale combinatorial and optimization problems. However, 
Genetic Algorithm has some significant drawbacks, for instance, the pre-mature 
convergence of computations, the poor use of system information during computational 
evolutions, expensive computation from evolutional procedures and the poor capability of 
“local” search (Potvin, 1996) (Jin et al., 1996) (Wei & Lee, 2004) (Lu et al., 1996). 
Although TSP itself seems very simple, as the number of visited cities increases, the 
computation of the problem can be extremely time-consuming (in the order of exponential 
growth) or even results in no optimal solution in the worst case. Developing effective 
algorithms for the TSP has long been a topic of interest in both academic research and 
engineering applications, ranging from transportation optimization to the sequencing of 
jobs on a single machine.   
The methods commonly employed to solve the TSP include simulated annealing algorithm, 
artificial neural networks, tabu search algorithm, genetic algorithm (GA), and so on. Each 
method has different advantages and disadvantages. For example, GA combines many 
positive features (such as robustness, flexibility, and versatility), leading to its widespread 
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applications in engineering optimization. However, GA also has some significant 
drawbacks, for instance, the pre-mature convergence of computations, the poor use of 
system information during computational evolutions, expensive computation from 
evolutional procedures, and the poor capability of local search. 
The immune system, which is made up of special organs, tissues, cells and proteins, is the 
body's defence against infectious organisms and other invaders (Liu, 2009). The immune 
system detects and attacks antigens that invade the body through different types of 
lymphocytes. Artificial immune systems are adaptive systems inspired by the functions, 
principals and models of the vertebrate immune system. When artificial immune systems 
are attacked, the immune mechanisms are started to guarantee the basic functions of the 
whole intelligent information system. Researches on artificial immune systems aim to set up 
engineering models, algorithms and advanced intelligent information system through 
intensive study on the information processing mechanisms of biological immune systems. 
In the 1970s, Jerne first propounded the hypothesis of the immune network system and 
founded the basic theories of the artificial immune systems, Jerne’s idiotypic network 
model. Perelson studied on a number of theoretical immune network models proposed to 
describe the maintenance of immune memory, which accelerated the development of 
artificial immune systems in computer science. In 1986, Farmer built a dynamic model of the 
immune system and brought in the concept of learning. Farmer’s work contributed to 
turning artificial immune systems to practical application. One important aspect of the 
research on artificial immune systems is to develop effective learning and optimization 
algorithms. Immune algorithms are one of heuristic search algorithms inspired by immune 
principals. In 1990, Bersini put immune algorithms into practice for the first time. By the end 
of the 20th century, Forrest et al. started to apply immune algorithms to computer security 
field. At the same time, Hunt et al. began to use immune algorithms in machine learning. 
Immune algorithms (IAs), mainly simulate the idea of antigen processing, including 
antibody production, auto-body tolerance, clonal expansion, immune memory and so on. 
The key is the system’s protection, shielding and learning control of the attacked part by 
invaders. There are two ways considered to design an immune algorithm: one is to abstract 
the structure and function of the biological immune system to computational systems, 
simulating immunology using computational and mathematical models; the other is to 
consider whether the output of the artificial immune systems is similar with that of the 
biological immune system when the two systems have similar invaders. The latter doesn’t 
focus on the direct simulation of the process, but the data analysis of the immune algorithm.  
As the immune system is closely related to the evolutionary mechanism, the evolutionary 
computation is often used to solve the optimization problem in immune algorithms. The 
research on artificial immune systems lays a foundation for further study on engineering 
optimization problems. On the one hand, it aims to build a computer model of biological 
immune system, which contributes to the study of the immune system operation. On the 
other hand, it supplies an effective way to solve many practical problems. 
Immune Algorithms inspired by biological immune mechanism, can make full use of the 
best individuals and the information of the system, and keeps the diversity of the 
population. In the optimization process, Immune Algorithms take the useful ideas of 
existing optimization algorithms, combine random search with deterministic changes, 
reduce the impact of the random factors to the algorithm itself and can better eliminate the 
premature convergence and oscillation. 
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One kind of immune algorithms is immunity based neural method, such as the neuro-
immune network presented in (Pasti & De Castro, 2006), which is a meta-heuristics for 
solving TSP based on a neural network trained using ideas from the immune system. In 
addition, an immune-inspired self-organizing neural network proposed by Thiago is 
showed to be competitive in relation to the other neural methods with regards to the quality 
(cost) of the solutions found (Thiago & Leandro, 2009).  
Combining GA with immune algorithms is another kind of method in TSP solving, such as 
an immune genetic algorithm based on elitist strategy proposed in (Liang & Yang, 2008).  A 
genetic algorithm based on immunity and growth for the TSP is also showed to be feasible 
and effective, in which a reversal exchange crossover and mutation operator is used to 
preserve the good sub tours and to make individuals various, an immune operator is used 
to restrain individuals' degeneracy, and a novel growth operator is used to obtain the 
optimal solution with more chances (Zeng & Gu, 2007).  
Besides, Clonal Selection Algorithm is widely used to solve TSP. For example, a Hyper-
mutation Antibody Clone Selection Algorithm (HACSA) shows the advantage of enhancing 
the local search performance of the antibody in solving TSP (Du et al., 2009). A novel Clonal 
Selection Algorithm(CSA), which extends the traditional CSA approach by incorporating the 
receptor editing method, is proved to be effective in enhancing the searching efficiency and 
improving the searching quality within reasonable number of generations (Gao et al.,  2007).  
Moreover, a number of improved artificial immune algorithms are studied and show the 
capability for TSP solutions. For example, an immune algorithm with self-adaptive 
reduction used for solving TSP improves the probability that it finds the global optimal 
solution by refining the reduction edges which gradually increase in the number and 
enhance in the forecasting accuracy (Qi et al., 2008). 
To partially overcome the above-mentioned shortcomings of GA, an immune-genetic 
algorithm (IGA) is introduced in this book chapter, and then an improved strategy of IGA 
for TSP is also discussed. Section 3 is related to a selection strategy incorporated into the 
conventional genetic algorithm to improve the performance of genetic algorithm for TSP. 
The selection strategy includes three computational procedures: evaluating the diversity of 
genes, calculating the percentage of genes, and computing the selection probability of genes.  
The computer implementation for the improved immune-genetic algorithm is given in 
section 4, and finally the computer numerical experiments will be given in this book 
chapter. 

2. The immune-genetic algorithm 
2.1 Immune algorithms 
Immune Algorithms can be divided into Network-based immune algorithm and 
Population-based algorithm.  
Immune Network theory was first proposed by Jerne in 1974. Currently the most widely 
used is Jerne's network based thinking: immune cells in the immune system link each other 
through the mutual recognition. When an immune cell recognizes an antigen or another 
immune cell, it is activated. On the other hand, the immune cell is inhibited when it is 
recognized by other immune cells. 
There are two kinds of Immune Network models: the continuous model and the discrete 
model. The continuous Immune Network model is based on ordinary differential equations. 
The typical models include the model proposed by Farmer et al. in 1986 and the model 
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proposed by Varela and Coutinho in 1991. These models have been successfully applied to 
continuous optimization problems, automatic navigation system and automatic control field.  
However, the equations of continuous immune network model can not always be solved 
and usually it needs numerical integration to study the behavior of the system. To make up 
the drawbacks of continuous immune network model, the discrete immune network model 
is produced, which is based on a set of differential equations or an adaptive iteration. 
Population-based Immune Algorithm mainly includes Negative Selection Algorithm and 
Positive Selection Algorithm. Negative Selection Algorithm, proposed by Forrest et al. from 
the University of Mexico, is a kind of selection Algorithms used to test data change. The 
algorithm embodies the ideas of the ideological principles of negative selection (Ge & Mao, 
2002). The immune system works out mainly by successfully detecting abnormal changes of 
the system. Negative selection refers to the identification and deletion of self-reacting cells, 
that is, T cells that may select for and attack self tissues (Forrest et al., 1994). The immune 
system removes the immune cells that response to autologous cells to realize self-tolerance 
through Negative selection algorithm. There are mainly two procedures contained in 
Negative selection algorithm: tolerance and detection. The task in tolerance procedure is to 
produce mature detector. In the detection phase, the detector detects the protected system. 
Negative selection Algorithm does not directly use self-information, but generates testing 
subset by self-assembly through Negative selection. The algorithm is robust, parallel, 
distributed detected and easy to implement. However, as its computational complexity 
increases exponentially, Negative selection algorithm is not conducive to handling complex 
problems. Positive selection algorithm is very similar to Negative selection algorithm. But it 
works contrary to the Negative selection algorithm. Negative selection algorithm removes 
the self-reacting immune cells, while Positive selection algorithm keeps them. 
Besides, Clonal Selection Algorithm is also a widely used immune algorithm. It is inspired 
by the clonal selection theory of acquired immunity that explains how B and T lymphocytes 
improve their response to antigens over time. The algorithm solves problems through the 
mechanisms of cell cloning, high-frequency variation, clonal selection and dying. It is high 
parallel and can be used in machine learning, pattern recognition and optimization 
domains. Standard Clonal selection algorithm achieves population compression and ensures 
the quality of antibody population in the optimal solution through local search. But Positive 
selection algorithm requires the system to be static. To make up that defect, Kim and Bentley 
proposed Dynamic Clonal algorithms in 2002, mainly for Network Intrusion Detection, to 
meet the real-time network security requirements. 

2.2 The immune-genetic algorithm 
The Immune-Genetic Algorithm (IGA) is an improved genetic algorithm based on biological 
immune mechanisms. In the course of immune response, biological immune system 
preserves part of the antibodies as memory cells. When the same antigen invades again, 
memory cells are activated and a large number of antibodies are generated so that the 
secondary immune response is more quickly than the initial response. In the meanwhile, 
there are mutual promotion and inhibition between antibodies. Therefore, the diversity and 
immune balance of the antibodies are maintained. That is the self-regulatory function of the 
immune system. The Immune-Genetic Algorithm simulates the process of adaptive 
regulation of biological antibody concentration, in which the optimal solution of the 
objective function corresponds to the invading antigens and the fitness f(Xi) of solution Xi 
corresponds to the antibodies produced by the immune system. According to the 

Immune-Genetic Algorithm for Traveling Salesman Problem 

 

85 

concentration of antibodies, the algorithm adaptively regulates the distribution of the search 
direction of solutions and greatly enhances the ability to overcome the local convergence. 
In general, the Immune-Genetic Algorithm includes: 

1. Antigens definition: Abstract the problem to the form of antigens which the immune 
system deals with and the antigen recognition to the solution of problem. 

2. Initial antibody population generation: The antibody population is defined as the 
solution of the problem. The affinity between antibody and antigen corresponds to 
the evaluation of solution, the higher the affinity, the better the solution. 

3. Calculation of affinity: Calculate the affinity between antigen and antibody. 
4. Various immune operations: The immune operations include selection, clone 

variation, auto-body tolerance, antibody supplementation and so on. The affinity and 
diversity are usually considered to be the guidance of these immune operations. 
Among them, select Options usually refer to the antibody poputlation selected from 
the population into the next operation or into the next generation of the immune 
antibody population. Clone variation is usually the main way of artificial immune 
algorithm to generate new antibodies. Auto-body tolerance is the process of judging 
the rationality of the presence of the antibodies. Antibody supplementation is the 
accessorial means of population recruitment. 

5. Evaluation of new antibody population: If the termination conditions are not 
satisfied, the affinity is re-calculated and the algorithm restarts from the beginning. If 
the termination conditions are satisfied, the current antibody population is the 
optimal solution. 

6. Evolution of the antibody using standard Genetic Algorithm: crossover and 
mutation. 

This model makes the immune system learn to identify the antibodies that are helpful to the 
antigen recognition. Moreover, the introduction of fitness further improves the 
immunogenicity, ensuring the diversity of antibody population in Genetic Algorithm. 
Immune-Genetic Algorithm introduces the "immune operator", genes inoculation and 
selection, and simulates the specific auto-adaption and artificial immune of the artificial 
immune system, possessing good properties of fast global convergence. The specific 
workflow of Immune-Genetic Algorithm is described in figure 1. 
Step 1. Randomly generate μ  individuals of parent population. The search space of those 

quasi-optimal values *x is composed of mesh points in nR . Each part of these 
points is an integral multiple of Δ  . Each individual in the population is presented 
as ( , )x σ , where 1 2( , , , ) n

nx x x x X R= ∈ ⊂ , is a solution to the problem. *x X∈ is the 
expected solution. *( ) max ( )( )f x f x x X f= ∈ =  , where *f  is the max fitness of X . 

Step 2. Generate the intermediate population by crossing, with the size 2μ . The specific 
process is that for each individual ( , )x σ of parent population, select another 
individual ( , )' 'x σ  to crossover with ( , )x σ  in a crossover-point to generate y and 'y . 

Step 3. Mutate on the individual ( , )x σ  and generate a new one ' '( , )x σ  
Step 4. Inoculate genes. Inoculating the individual ( , )x σ  means to modify the value of 

x andσ in the range of variation or the restrictions in some parts of the optimal 
individuals. The inoculation process satisfies: if *( )f x f= , ( , )x σ  turns to itself with 
probability l. 
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Fig. 1. Immune-genetic algorithm workflow 

Step 5. Immune selection. It consists of two procedures: Immunity testing and selection. 
The first procedure is to test the inoculated individuals. If its fitness is smaller than 
its parent's fitness, there has been a serious degradation on the inoculated 
individual and its parent individual is used instead for the next competition. 
Immune Selection is to select μ  individuals from 2μ  individuals according to their 
fitness to compose a new parent population. 
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Step 6. If the termination conditions are not satisfied, generate a new generation and go 
back to step 2. 

IGA has two advantages: 1. inoculating genes and adding a priori knowledge can effectively 
accelerate the convergence speed and improve the quality of the solution; 2. Concentration 
based immune selection method can prevent premature phenomenon and make sure the 
optimization process toward the global optimum direction. The disadvantage is that the 
selection of genes and inoculation approach should be analyzed according to specific 
situations. 

3. The Improved immune-genetic algorithm for TSP 
This section is related to improvements on the standard immune-genetic algorithm for TSP. 
An improved immune-genetic algorithm of the author’s research work (Lu et al., 2007) for 
TSP is introduced in this section. The algorithm effectively integrates immune algorithm 
into GA (Jiao & Wang, 2000) using an improved strategy of IGA and applies a new selection 
strategy in the procedure of inoculating genes. The computer implementation for the 
improved algorithm is also discussed in this section. 

3.1 The Improved immune-genetic algorithm 
The improved immune-genetic algorithm uses a sequential representation to present the 
visited cities listed in the order (Lu et al., 2007). For example, the journey (5-7-8-9-4-3-2-6-1) 
can be expressed as (578943261). The path based coding method requires that the genetic 
code in the chromosome of an individual (a route) is not repeated. That is, any city should 
be visited once and only once. 
The Roulette Wheel selection is employed where parents are selected according to their fitness 
(Lu et al., 2007). The individuals are generated using the Greedy crossover algorithm, which 
selects the first city of one parent, compares the others left in both parents, and chooses the 
closer one to extend the traveling way. If one city has been chosen, another city will be 
selected. And if both cities have been chosen, a not-yet-selected city will be randomly selected. 
A swapping method is used for the TSP in IGA instead of the conventional mutation 
method. The method selects a binary code in random, which represents two cities from two 
individuals. The binary code is then swapped if the distance (length) of the traveling way 
for a new individual is shorter than that of the old one. (Lu et al., 2007) 
In the procedure of developing and inoculating genes, the quality of genes has decisive 
influence on the convergence speed of the immune algorithm. Therefore, we make full use 
of prior knowledge and first develop a good gene pool that includes different genes 
representing the shorter traveling way of the TSP. After that, genes are randomly selected 
from the gene pool and finally inoculated into individuals.  
In solving TSP, if the coordinates of 10 cities are in a circle for example, the route along the 
circle is the optimal solution and the optimal gene. The prior knowledge is applied to 
develop a gene pool. The gene pool is a two-dimensional 10 x 2 matrix. Having been 
calculated and optimized the gene pool can be the best, showed in table 1. 
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When inoculating genes, a new selection strategy is applied to keep the excellent genes 
included in the population of individuals within a reasonable percentage. Those excellent 
genes are further used to generate other individuals. The selection strategy is developed 
based on the evaluation of the diversity of genes that are involved in the population of 
individuals. There are three computational procedures included in the strategy (Lu et al., 
2007): 1) evaluating the diversity of genes included in the population of individuals, 2) 
calculating the percentage of genes included in the population of individuals, 3) computing 
the selection probability of genes. The details of the procedures are explained as follows. 
1. Evaluating the diversity of genes 
The diversity of genes is first evaluated by comparing the information entropy of every two 
genes. For example, giving two bit strings, each one has two alternative letters in its 
alphabet, thus the information entropy for the N genes is given by: 
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where Hj=Σi=1s- Pij logPij; Hj(N)is the information entropy of the jth binary bit of two 
genes, Pij is the probability of the jth binary bit of two genes being equal to ki. Pij is equal to 
0 if the binary bits of two genes are the same; otherwise Pij is equal to 0.5. M is the number 
of genes. 
The affinity of genes shows the similarity between the two genes. The affinity of gene v and 
gene w is: 
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2. Calculating the percentage of genes 
The percentage of gene v is Cv, given by: 
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If Cν  is bigger than a predefined threshold, the gene will be inhibited (removed from the 
population), otherwise it remains. This step is to remove the extra candidates. 
3. Computing the selection probability of genes 
The selection probability of gene v is:  
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This formula controls the concentration and diversity of genes. The genes with high affinity 
to the antigen will be selected to regenerate. The genes with high percentage are inhibited. 
The improvement of the improved genetic algorithm is mainly reflected in that: 1) Improve 
the fitness of individual genes and the quality of the individual by inoculating genes. This 
way the convergence rate is significantly sped up. 2) Concentration based immune selection 
method not only encourages the solution with high fitness, but also inhibits the solution 
with high percentage, ensuring the convergence of the algorithm and the diversity of the 
solution population. It’s also suitable for multimodal function optimization. 

3.2 Computer implementation for improved immune-genetic algorithm 
The workflow of the improved immune-genetic algorithm is showed in figure 2.  
The Computational Flow of the improved immune-genetic algorithm is showed in the 
following: 
   Begin 
          Initiation: develop a gene pool using prior knowledge; select genes from the gene 
          pool randomly; 
          Repeat 
                           Calculate the fitness of each gene; 
                           Calculate the probability that genes are selected; 
                           Generate individuals using the Greedy crossover; 
                           Gene mutates; 
                     Inoculate genes using inoculation algorithm; 
                     Select genes using the selection strategy based on the evaluation of the  
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                     diversity of genes: Calculate the information entropy, the percentage and   
                     the selection probability of genes; 
                     Replace the removed genes with the new developed genes to produce a new 
                     generation of genes; 
              Until ( the genes satisfy the termination conditions) 
   End 
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Fig. 2. The Improved Immune-Genetic Algorithm 
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The information of a gene individual includes gene chromosomes, chromosome length, 
individual fitness and the individual’s corresponding variable. In the program, the structure 
of a gene individual is defined as follows. 
 
    typedef struct individual{ 
 int chrom[n];              /* chromosomes */ 
 float fitness;                /* individual fitness */ 
 int totaldistance; 
 int lchrom;                  /* chromosome length */ 
 double varible;           /* individual’s corresponding variable */ 
    }; 
 
The fitness function employed is showed as equation (9). 

 n

i 1

1Fit (x )
d (C i, C i 1) d (C n , C 1)

=

=
+ +∑

  (9) 

The probability that genes are selected is calculated using the roulette wheel selection with 
standard genetic algorithm 
A swapping method is used for gene mutation. In the swapping method, a binary code that 
represents two cities from two individuals is randomly selected, and is then swapped if the 
distance (length) of the traveling way for a new individual is shorter than that of the old 
individual (Lu et al., 2007). The figure 3 shows an example of gene mutation: two locations 
are randomly selected to mutate. The probability of mutation is between 0.5 and 0.1;  
 

 

Fig. 3. Gene mutation 

The computational flow of the gene mutation is as follows. 
   Begin 
               Select locations to mutate at random; 
               If  (mutation probability< predefined value) swap the codes on the locations; 
   End; 
 

The inoculation process is: 
   Begin 
              Select a gene randomly from the gene pool; 
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              Find a reasonable inoculating location; 
              Find and modify the conflict location of the gene to be inoculated; 
              Inoculate to the location of the gene; 
   End; 
 

The process of the selection strategy based on the evaluation of the diversity of genes is: 
   Begin 
              Calculate the affinity of geneν  and ω  according to the equation (2), where the  
              diversity of two genes (2)H is calculated using the equation (1);  
              Calculate the percentage Cν of each gene in the population according to the  
              equations (3) and (4), 
                                      If ( Cν >= Tac1) remove the gene from the population; 
                                      Else   the gene remains; 
                Calculate the selection probability eν of genes according to the equations (5) and  
                (6): 
                                      If( eν >= Tac2) the gene is selected to regenerate; 
                                      Else   the gene is inhibited; 
   End; 

4. Numerical experiments 
Two case studies on 21-city and 56-city traveling salesman problems are given in this section 
to compare the solutions genetated by IGA and the conventional GA.  
The comparisons of the number of evolutional iterations in IGA and conventional GA of two 
cases are showed in Figures 4 and 5 respectively. In both figures, the upper curve shows the 
evolutionary process of IGA and the lower one shows the evolutionary process of GA. 
Figures 6 and 7 show the optimal path for the TSP in the two case studies. 
The results prove that the number of evolutional iterations is  significantly reduced by using 
IGA. As seen from Figure 4, IGA takes only five iterations to reach the optimal solution 
while GA takes about 30 evolutional iterations.The selection strategy and the procedure of 
inoculating genes used by the improved immune-genetic algorithm proposed are effective 
to improve the performance of the individuals. 
Therefore, the improvement on the performance of the individuals of IGA is helpful in 
acceleating the iterative process of GA. Althrough the convergence of the algorithm 
proposed need to be investigated, the computer numerical experiments on two case 
studies demonstrate preliminarily that the improved strategy of IGA is helpful for 
improving the evolutional iterations of genetic algorithms for traveling salesman problem 
( Lu et al., 2007). 
The main data of IGA:  

1. The probability of crossover is 0.8~0.9.   
2. The probability of mutation is 0.05~0.2. 
3. The size of the population is100.              
4. The probability of inoculating is 0.85~1. 
5. The evolutional generation is 200.  

Seen from Figure 4, the optimal solution has been reached in the first 2 generations. 
Inoculating genes significantly improves the convergence speed of the algorithm. 
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Fig. 4. Comparison of the number of evolutional  iterations in IGA and the conventional GA: 
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5. The evolutional generation is 300.  
Inoculating genes significantly improves the individual fitness and is conducive to the 
evolution of the population. As the concentration based selection mechanism is used, the 
individual with low percentage and high fitness has a high probability to regenerate.  Its 
genes will then rapidly spread throughout the population. That’s the reason why there is a 
steep slope in Figure 7. 
 

 
Fig. 6. Optimal path for the 21-city TSP 
 

 
Fig. 7. Optimal path for the 56-city TSP 

5. Concluding remarks 
The immune-genetic algorithm integrating the advantages of artificial immune algorithm into 
genetic algorithm for TSP is introduced in this chapter. It retains a strong global random 
search capability of genetic algorithm, introduces gene inoculation and improves the 
convergence speed and accuracy of genetic algorithm. Meanwhile, immune-genetic algorithm 
borrows the idea of the antibody diversity from artificial immune system to ensure the 
diversity of population, which avoids the disadvantage of premature convergence and poor 
local search capabilities of genetic algorithm and improves the search efficiency. 
The selection strategy of IGA discussed in this chapter includes three computational 
procedures: evaluating the diversity of genes, calculating the percentage of genes, and 
computing the selection probability of genes. Numerical experiments performed on 21-city 
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and 56-city TSPs show that IGA significantly reduces the number of evolutional iterations 
for reaching an optimal solution.  
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1. Introduction  
Genetic Algorithm (GA) is widely used to find solutions to optimization problems 
(Goldberg, 1989). One optimization problem using GA is Travelling Salesman problem 
(TSP) (Lawler et al., 1985). The disadvantages of using GA are premature convergence and 
poor local search capability. In order to overcome these disadvantages, evolutionary 
adaptation algorithms based on the working of the immune system have been devised. One 
such algorithm is Genetic Immune Recruitment Mechanism (GIRM) (Bersini & Varela, 1991) 
(Tazawa et al., 1995). By incorporating the immune recruitment test and concentrating the 
search for a solution in the vicinity of a high-fitness solution, GIRM improves local search 
capability. However, narrowing the search range risks conducting to local solutions. In 
contrast, Immune Algorithm (IA) (Mori et al., 1997) (Honna et al., 2005) (Matsui et al., 2006), 
using production of various antibodies by the immune system and its mechanism of their 
adjustment, primarily avoids convergence to local solutions. Its local search capability is not 
as good as that of GIRM, but it allows efficient searches for multiple local solutions. GIRM  
and IA incorporating the workings of the immune system take more computation time than 
GA. Thus, they must be performed with a smaller population size.  
To that end, the author devised an algorithm to overcome these GA’s disadvantages with 
the small population size. The immune system has two features, the capacity to adapt to 
mutations in antigen and a mechanism to balance the generation of antibodies via other 
antibodies, and the author developed Genetic Algorithm with Immune Adjustment 
Mechanism (GAIAM) incorporating these features in GA. GAIAM maintains the diversity of 
the population as a result of the mechanism to adjust antibodies in a group of antibodies, so 
it avoids narrowing of the search range. In addition, its local search capability also improved 
as a result of the capacity to adapt to mutations in antigen. GAIAM provides effective 
results even with a small population size.  
Using the TSP, the author compared the performance of GAIAM to that of GA, GIRM, and 
IA. First, an experiment was performed using eil51 from the TSPLIB. TSBLIB has benchmark 
data of TSP. Eil50 is one of the data in TSPLIB. Because it incorporates two features of the 
immune system even with a small population size, the GAIAM allows a more efficient 
search over the entire search range without succumbing locally. Moreover, its local search 
capability was found to be better than that of other techniques. Furthermore, experiments 
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as good as that of GIRM, but it allows efficient searches for multiple local solutions. GIRM  
and IA incorporating the workings of the immune system take more computation time than 
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IA. First, an experiment was performed using eil51 from the TSPLIB. TSBLIB has benchmark 
data of TSP. Eil50 is one of the data in TSPLIB. Because it incorporates two features of the 
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ware performed using data with 100 cities or more, and GAIAM was found to be effective 
even in large-scale problems.  
This paper first offers an overview of the GAIAM. In addition, differences between it and 
GA, GIRM and IA are described. Next, the experiments were performed using the TSP, and 
GAIAM’s performance was compared to that of other algorithms. Last, GAIAM’s 
effectiveness is set forth.  

2. GAIAM 
2.1 Feature of immune system 
Various antibodies are present in the human body. As antigens invade the body, antibodies 
for these antigens are generated to eliminate the antigens. The immune system has the 
following two features: 
[Feature 1] Capacity to adapt to mutations in antigens 
It is difficult to produce antibodies for each and every antigen beforehand. When there is no 
antibody adapted for an antigen, genes of the antibodies with the best specificity respond by 
mutating. Through repeated mutations, these genes produce antibodies that can adapt to the 
antigens. 
[Feature 2] Mechanism to balance the generation of antibodies via other antibodies 
The generation of antibodies for a given antigen is not a continuous process. Antibodies 
recognize each other on the basis of their structure, and when a given antibody is generated 
in excess, other antibodies that identify it as an antigen and are also generated to inhibit its 
growth, and a balance is maintained. 

2.2 GAIAM algorithm  
The GAIAM algorithm is shown in Fig.1. The GAIAM algorithm is following. 
Step 1. Generation of an initial group of antibodies 

N antibodies are generated initially. These antibodies are similar to the individuals 
in GA and are helpful in solving optimization problems. 

Step 2. Calculation of affinities 
The affinities axi (i = 1,…, N) for antigens are calculated. The  axi is set in accordance 
with the problem being dealt with. The affinity for an antigen is similar to the 
concept of fitness in GA. 

Step 3. Calculation of expected values 
The expected value ei (i = 1,…, N) of antibodies that can survive into the next 
generation is calculated as 
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Here, ayi,j is the similarity between antibodies of type i and j (i = 1,…,N, j = 1,…,N) 
and is set in accordance with the problem. N/2 antibodies with low expected values 
are eliminated, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. The GAIAM algorithm 

however, among these, 10% of the antibodies with high affinities for antigens are 
excluded from elimination. 

Step 4. Antibody production 
New antibodies are generated to replace the antibodies eliminated in Step 3. N/2 
antibodies are selected from the surviving antibodies on the basis of the expected 
values. These selected antibodies are mutated, after which their affinities for 
antigens are calculated. 

Step 5. Crossover and mutation 
Antibodies are randomly selected (duplication permitted) from N antibodies, they 
undergo crossover depending on crossover probability Pc, thereby generating N/2 
antibodies. The generated antibodies undergo mutation depending on mutation 
probability Pm, after which their affinities for antigens are calculated. 

1: Generation of an initial group of antibodies

2: Calculation of affinities

3: Calculation of expected values

4: Antibody production

5: Crossover and mutation

6:  Adjustment of antibodies
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Fig. 1. The GAIAM algorithm 

however, among these, 10% of the antibodies with high affinities for antigens are 
excluded from elimination. 
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antigens are calculated. 
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Step 6. Adjustment of antibodies 
With respect to each antibody i of the N/2 antibodies generated in Step 5, an 
antibody j with the greatest affinity for i is sought from among the existing N 
antibodies. Among antibodies i and j, the one with the higher affinity for an antigen 
survives into the next generation, while the other is eliminated. 

Step 7. Repetition of Steps 3 to 6 for a determined number of generations. 
Step 4 models [Feature 1] of the immune system and Step 6 models [Feature 2] of the 
immune system. In GAIAM, antibodies with low density and high affinity for an antigen 
tend to survive in order to maintain diversity. Moreover, such antibodies are generated in 
GAIAM; antibodies with a high affinity for an antigen are produced through mutation. In 
terms of GA, local search capability is improved. Moreover, narrowing of the search range is 
eliminated through Step 6. Thus, the narrowing of the search to the vicinity of a single local 
solution in GA is eliminated. 

3. Comparison of GA, GIRM and IA to GAIAM 
3.1 The GA algorithm 
Here, the GA algorithm is briefly explained. The GA algorithm is shown in Fig.2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The GA algorithm 
 

Step 1. Generation of an initial group  
Same as Step 1 in the GAIAM  

Step 2. Calculation of affinities  
Same as Step 2 in the GAIAM  

Step 3. Reproduction 
N  antibodies are selected from antibodies group to surviving next generation on 
the basis of the affinity. 

1: Generation of an initial group
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Step 4. Crossover and mutation  
Same as Step 5 in the GAIAM   

Step 5. Repetition of Steps 2 to 4 for a determined number of generations. 
The disadvantages of using GA are premature convergence and poor local search capability. 

3.2 The GIRM algorithm 
Here, the GIRM algorithm is briefly explained. The GIRM algorithm is shown in Fig.3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. The GIRM algorithm 
 

Step 1. Generation of an initial group  
Same as Step 1 in the GAIAM  

Step 2. Calculation of affinities  
Same as Step 2 in the GAIAM  

Step 3. Crossover and mutation  
Same as Step 5 in the GAIAM  

Step 4. Calculation of similarity  
Same as similarity for GAIAM  

Step 5. Immune recruitment test  
An immune recruitment test is performed on antibodies obtained in Step3; 
antibodies passing the test are added to the group. Alternatively, antibodies with 
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Step 4. Crossover and mutation  
Same as Step 5 in the GAIAM   
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the lowest fitness in the group are removed. For details, see references (Bersini & 
Varela, 1991) and (Tazawa et al., 1995) .  

Step 6. Repetition of Steps 3 to 5 for a determined number of generations.  
With GIRM, highly fit antibodies in the group and similar antibodies increase as a result of 
the immune recruitment test, so searching in the proximity of a solution, i.e. highly fit 
antibodies, becomes more vigorous. That is, local searches are intensive. When, however, 
GIRM succumbs to a high-fitness local solution, it has difficulty escaping.  

3.3 The IA algorithm  
Here, the IA algorithm is briefly explained. The IA algorithm is shown in Fig.4. 

                    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Fig. 4. The IA algorithm  
 

Step 1. Generation of an initial group  
Same as Step 1 in the GAIAM  
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5:  Antibody production
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Step 2. Calculation of affinities  
Same as Step 2 in the GAIAM  

Step 3. Differentiation into memory cells  
For details, see reference (Mori et al., 1997).  

Step 4. Promotion and inhibition of antibody production  
Same as Step 3 in the GAIAM  

Step 5. Antibody production  
New antibodies are produced to replace N/2 antibodies eliminated in Step 4. New 
antibodies are produced by randomly determining their genes.  

Step 6. Crossover and mutation  
Same as Step 5 in the GAIAM  

Step 7. Repetition of Steps 3 to 6 for a determined number of generation.  
Because of Step 5, the IA avoided narrowing the search to local solutions. However, its local 
search capability was not as good as that of the GIRM, because new antibodies were 
randomly produced in Step 5. 

3.4 Comparison of GA, GIRM and IA to GAIAM 
The disadvantages of using GA are premature convergence and poor local search capability. 
GIRM has enhanced local search capability but easily conducts to local solutions. IA allows 
efficient searches for multiple local solutions, but its search capability in the vicinity of 
individual local solutions is poor. GAIAM has improved local search capability because of 
its capacity to adapt to mutations and avoids narrowing of the search range because of its 
mechanism to adjust antibodies via antibodies; in short, it allows efficient searches.  

4. Use in the TSP 
4.1 Path representation 
Path representation is used for the coding of antibodies. Path representation is shown in 
Fig.5. Path representation orders cities by number in the order they are visited. The method 
in which initial antibodies are generated will now be explained. First, city numbers are 
randomly ordered. Next, antibodies are generated using the 2-opt method (Johnson, 1991).  
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the lowest fitness in the group are removed. For details, see references (Bersini & 
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Step 2. Calculation of affinities  
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4.2 Affinity of antibody and antigen 
The affinity axi of antibody i and the antigen is the inverse of the tour length d.  

 
d

axi
1

=   (3) 

4.3 Crossover and mutation 
Various studies have been conducted on crossover methods used in the TSP (Nagata et al., 
1999). The current work, however, sought to assess the performance of an algorithm, so OX 
crossover was used instead of a well-performing crossover method (Davis, 1985). 
With regard to mutation, antibodies first undergo substitution or inversion once. Next, the 
2-opt method was used. Substitution is shown in Fig.6 and inversion in Fig.7. For 
substitution, the positions of 2 random cities in the antibodies are switched and for 
inversion, the order of 2 random cities is reversed.  
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Nab is, for antibodies i and j, the number of branches connecting city a and city b on the tour.  
Similarity ayi,j was normalized; as they approached 0, i and j were dissimilar while they 
were similar as they approached 1. 

5. Experiments  

5.1 Experiment using eil51 from the TSPLIB 
An experiment was performed using eil51 from the TSPLIB to assess the performance of 
GAIAM. A Linux machine was used. The shortest tour for eil51 is shown in Fig.8. The 
shortest tour length is 426. Parameters used in the experiment were generations of G=500, a 
crossover probability of Pc=0.8, and a mutation probability of Pm=0.2. There were 4 
population sizes of 20, 30, 50, and 100. The experiment was performed 30 times each.  

 
Fig. 8. The shortest tour length of eil51 (length=426) 
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Results are shown in Table.1. In Table.1, dm is the shortest route length found as a result of 
30 individual attempts. avg is the average of dm for 30 iterations, min is the minimum of dm 
for 30 iterations, max is the maximum of dm for those iterations, and std is the standard 
deviation. No is the number of times the shortest tour length of 426 was found out of 30 
attempts.  

dm 
 

N 
avg min max std 

No 

20 426.83 426 428 0.64 9 
30 426.70 426 428 0.75 14 
50 426.67 426 428 0.55 11 

 GAIAM 

100 426.60 426 427 0.50 12 

20 428.87 426 432 1.45 1 
30 428.77 426 432 1.43 1 
50 428.57 426 431 1.17 2 

 GA 

100 428.47 427 430 0.97 0 

20 429.73 426 435 2.38 1 
30 428.77 426 434 2.03 2 
50 428.03 426 432 1.96 5 

 GIRM 

100 426.83 426 431 1.15 13 

20 429.90 426 433 1.86 1 
30 428.53 426 431 1.25 1 
50 428.27 426 432 1.50 2 

 IA 

100 427.60 426 429 1.00 4 

Table 1. The result of the experiment 

Generational changes in entropy when N = 100 are shown in Fig.9. Entropy is the average 
similarity of individual antibodies and other antibodies; the average for 30 attempts is 
shown in Fig.9. It indicates that there are more similar antibodies in the group as entropy 
approaches 1.  
In Table 1, GAIAM yielded the best results. GAIAM yielded consistent results regardless of 
the population size. Even when N=20, avg is markedly better than that of other techniques. 
Both the max and std were smaller than those with other techniques, and the shortest tour 
length was found numerous times. With a smaller population size, results for GIRM and IA 
were poorer than those for GA. With a larger population size, results were better. When 
N=100, GIRM yielded results similar to those from GAIAM, but comparison of results for 
GAIAM when N=20 indicate that GAIAM yielded better results overall.  
GIRM and IA are modifications of GA, but somewhat larger population size is required for 
them to perform well.  
In Fig.9, maximum entropy recorded with the GIRM. In Table.1, the avg for GIRM was 
better than that for GA and IA, but the max and std were poor. As is apparent from Fig.9 and 
Table.1, GIRM has enhanced local search capability but once it conducts to a search in the 
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vicinity of high-fitness local solutions it cannot escape, and the search range narrows. Thus, 
if the vicinity of optimal values is searched in the search process, optimal values will be 
found, but when the search shifts to the vicinity of local solutions away from local values 
escape is difficult, and optimal values will not be reached. In Fig.9, the entropy of IA is the 
lowest. In Table.1, for IA, the avg was poorer than that for GIRM but better than that for GA. 
The max and std were better than with GIRM. For IA, the local search capability was not as 
good as with GIRM, but it allowed an efficient search for multiple local solutions. In Fig.9, 
entropy for GAIAM remained about 0.67. This is almost midway between entropies for 
GIRM and IA. Similarly, GAIAM is superior to other techniques in Table.1 as well.  
GAIAM did not conducts to local values and allowed the efficient search over the entire 
search range, and its local search capability was also enhanced. In addition, GAIAM 
provided viable results even with the small population size. 

 
 

Fig. 9. Generation transition of entropy 

5.2 Experiments using ch150, a280, and pcb442  
Experiments were performed using ch150, a280, and pcb442 from the TSPLIB to assess the 
performance of GAIAM in large city problems. Outlines of ch150, a280, and pcb442 are 
shown in Table.2. Parameters are shown in Table.3. The shortest routes for ch150, a280b, and 
pcb442 are shown in Fig.10, Fig.11 and Fig.12. Results of the experiments are shown in 
Table.4, Table.5 and Table.6 As expected, GAIAM offered the best results. Trends in results 
were the same as when eil51 was used. GAIAM’s max was better than the min for GA and 
IA. In addition, GAIAM found the shortest route for ch150 in 7 iterations, which is much 
better than other techniques. It found a unique shortest route for a280. Following GAIAM, 
GIRM had the best of avg , but its max was roughly worse than that of IA and it had the 
worst std. As expected, it had enhanced local search capability, but when it conducted to 
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local values it lacked the ability to escape them. The above results indicate that GAIAM is 
able to provide viable results with the small-size population size even in large-scale 
problems. GAIAM allows efficient searches without conducting to local solutions and also 
provides enhanced local search capability. 

6. Conclusion 
GAIAM has faithfully incorporated the two features of the immune system, i.e. the capacity 
to adapt to mutations in antigens and the mechanism to adjust antibodies in a group of 
antibodies, into GA, and its effectiveness increased as the optimization technique.  
Results of experiments with GA, GIRM, and IA were compared to those with GAIAM and 
GAIAM’s performance was assessed via use of GAIAM in the TSP.  
According to the results, GAIAM was found to offer more efficient and balanced searches in 
the population than IA and GIRM. Consequently, GAIAM sought optimum values from the 
entire search range and also displayed enhancement in local search capability. It also 
provided viable results with the small population size in large-scale problems as well. 
GAIAM is superior to GA, GIRM, and IA in finding solutions for TSP. GAIAM is efficient as 
solving method of TSP. 
 

 Number of city The shortest length 
Ch150 150 6528 
a280 280 2579 
Pcb442 442 50778 

Table 2. The outlines of ch150, a280 and pcb442 
 

 Number of 
trials 

Generation 
number 

Antibody   
size 

ch150 20 1000 30,50 
a280 20 2000 30,50 
pcb442 10 2000 30,50 

Table 3.  The parameters of the experiments 
 

dm 
 N 

avg min max std 
No

30 6548.85 6528 6584 17.55 7  GAIAM
50 6544.50 6528 6570 16.53 7 
30 6668.35 6604 6759 41.73 0  GA 
50 6691.60 6568 6766 45.80 0 
30 6589.40 6528 6662 38.21 1  GIRM 
50 6572.65 6528 6696 43.29 2 
30 6659.80 6625 6709 18.88 0  IA 
50 6639.50 6571 6707 37.75 0 

Table 4. The result of ch150 
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Fig. 10. The shortest route of ch150 
 

 
Fig. 11. The shortest route of a280 
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Fig. 10. The shortest route of ch150 
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Fig. 12. The shortest route of pcb442 
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dm 
  

N 
avg min maxx std 

No

30 2591.3 2579 2616 11.41 3 GAIAM
50 2588.5 2579 2611 12.87 9 
30 2670.5 2637 2702 17.82 0 GA 
50 2678.4 2651 2720 16.82 0 
30 2640.8 2592 2715 38.14 0 GIRM 
50 2621.3 2583 2667 27.26 1 
30 2655.6 2633 2683 15.28 0 IA 
50 2655.7 2634 2666 11.61 0 

Table 5.  The result of a280  
 

dm 
 

N 
avg min max std 

No

30 51406.3 51141 51587 122.81 0 GAIAM
50 51353.6 51069 51879 277.07 0 
30 53351.3 53133 53740 211.59 0 GA 
50 53274.1 52972 53772 219.23 0 
30 52878.0 52048 54036 648.81 0 GIRM 
50 51856.7 51426 52332 314.42 0 
30 52886.5 52466 53456 311.54 0 IA 
50 52692.7 52470 52892 125.50 0 

Table 6.  The result of pcb442 
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1. Introduction 
Traveling Salesman Problem (TSP) is one of the most challenging combinatorial 
optimization problems. As the city number of TSP grows, the feasible solution space size 
increases factorially. For the small to mid-size TSP, the Lin-Kernighan (D. S. Johnson, 1990) 
(LK) and Lin-Kernighan Heuristic (C. Walshaw, 2001) (LKH) algorithms are very effective. 
However, these two algorithms are local search methods which find the best TSP tour in the 
k-change neighborhoods of the given initial TSP tour. Thus, they can only find a local 
optimal tour for TSP with complex solution space. Accordingly, the LK and LKH algorithms 
become very sensitive to the initial solution and often fail to find the global optimal tour 
within a reasonable time for solving large scale TSP. To remedy this problem, we make use 
of the global search ability of the immune clonal algorithm. Especially, we combine the two 
types of approaches (i.e. LK and immune clonal algorithm) to achieve high performance of 
the immune clonal algorithm, which can be run on loose-coupled computing environment 
for solving the large scale TSP.  
The immune clonal algorithm inspired by biological immune system is a type of 
evolutionary random search algorithms. More and more research achievements indicate that 
immune clonal algorithm can maintain good population diversity and strong global search 
capability. Under the searching framework of the immune clonal algorithm, heuristic search 
strategies can be conveniently employed to enhance its local search capability. Such 
combinations take into account both global and local search strategies, and thus can realize a 
good tradeoff between effectiveness and efficiency.  Moreover, the parallelizability of the 
biological immune system ensures the immune clonal algorithm can be run on loose-
coupled computing environment which is advantageous to solve massive optimization 
problems such as the large scale TSP.  
Simulation and analysis results show that the edges in the intersection set of several local 
optimal tours obtained by LK approach appear in the global optimal tour with high 
probability and the probability increases rapidly as the amount of local optimal tours 
increases. Using this phenomenon, an intersection set based vaccination strategy is designed 
in this chapter to accelerate the convergence speed of the immune clonal algorithm for TSP.  
In the immune clonal algorithm, vaccine is a set of genes which are estimations of the genes 
expected to appear in the global optimal antibody. The proposed approach in this chapter 
takes the intersection gene set of several memory antibodies as vaccine and injects the set 
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1. Introduction 
Traveling Salesman Problem (TSP) is one of the most challenging combinatorial 
optimization problems. As the city number of TSP grows, the feasible solution space size 
increases factorially. For the small to mid-size TSP, the Lin-Kernighan (D. S. Johnson, 1990) 
(LK) and Lin-Kernighan Heuristic (C. Walshaw, 2001) (LKH) algorithms are very effective. 
However, these two algorithms are local search methods which find the best TSP tour in the 
k-change neighborhoods of the given initial TSP tour. Thus, they can only find a local 
optimal tour for TSP with complex solution space. Accordingly, the LK and LKH algorithms 
become very sensitive to the initial solution and often fail to find the global optimal tour 
within a reasonable time for solving large scale TSP. To remedy this problem, we make use 
of the global search ability of the immune clonal algorithm. Especially, we combine the two 
types of approaches (i.e. LK and immune clonal algorithm) to achieve high performance of 
the immune clonal algorithm, which can be run on loose-coupled computing environment 
for solving the large scale TSP.  
The immune clonal algorithm inspired by biological immune system is a type of 
evolutionary random search algorithms. More and more research achievements indicate that 
immune clonal algorithm can maintain good population diversity and strong global search 
capability. Under the searching framework of the immune clonal algorithm, heuristic search 
strategies can be conveniently employed to enhance its local search capability. Such 
combinations take into account both global and local search strategies, and thus can realize a 
good tradeoff between effectiveness and efficiency.  Moreover, the parallelizability of the 
biological immune system ensures the immune clonal algorithm can be run on loose-
coupled computing environment which is advantageous to solve massive optimization 
problems such as the large scale TSP.  
Simulation and analysis results show that the edges in the intersection set of several local 
optimal tours obtained by LK approach appear in the global optimal tour with high 
probability and the probability increases rapidly as the amount of local optimal tours 
increases. Using this phenomenon, an intersection set based vaccination strategy is designed 
in this chapter to accelerate the convergence speed of the immune clonal algorithm for TSP.  
In the immune clonal algorithm, vaccine is a set of genes which are estimations of the genes 
expected to appear in the global optimal antibody. The proposed approach in this chapter 
takes the intersection gene set of several memory antibodies as vaccine and injects the set 
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into antibody populations which are distributed on different computing nodes. This 
information-delivery approach between antibody populations, which take vaccine as carrier, 
not only accelerated the procedure of the evolution but also promoted the co-evolution 
between antibody populations.  
The main content of this chapter is arranged as follows. Section 2 provides a brief 
description of the related background including the development of the immune inspired 
optimization algorithm and its general flow chart. Section 3 describes the main loop of the 
proposed high performance immune clonal algorithm for TSP. Section 4 gives a detailed 
description of the intersection set based vaccination strategy for TSP. Section 5 investigates 
the experimental study of the proposed approach. Finally, concluding remarks are made in 
Section 6. 

2. Immune optimization 
Immunization is a physiological function of biological immune systems, which identify and 
remove the invading "non-self" antigen, mutated and damaged cells to maintain the bodies’ 
physiological balance and stability. Human immune system is a complex system consists of 
organs, cells and molecules with immune functions that can protect the body against 
pathogens, harmful foreign bodies and other disease factors. The same as neurological and 
endocrine systems, immune system has its own operation mechanism and can mutual 
cooperate and restraint with other systems, common to maintain the bodies’ physiological 
balance in the life processes. Since 1940s, with the development of medical research on the 
biological immune systems, people's awareness and understanding of the immune system 
has been continuously improved, a complete biological immune science system had 
gradually formed (Jiao Licheng et al., 2006). 

2.1 Some inspiring biological mechanism of immune system 
Inspired by the biological immune systems, the model and algorithm of artificial immune 
systems are proposed. The key inspiring biological mechanism of immune system includes: 
immune recognition, immune memory, immune diversity, immune tolerance, parallelism 
and other biological immune mechanism. 
1. Immune recognition 
Modern immunology believes that immune function is a response to stimulation from 
antigens, which is shown as the immune systems’ ability of identifying themselves and 
excluding non-self materials. Identification is an important prerequisite in the process of 
immune system functions. For the phenomenon of immune recognition, clonal selection 
theory believes that because of the differentiation of embryonic cell, the body has formed 
many lymphocytic series, each lymphocyte cell’s surface has a specific set of antigen 
receptors. When antigens enter the body, they select the corresponding lymphocytes and 
specifically bind to the antigen receptors of their surfaces, led to the lymphocyte activation, 
propagation, differentiation, and thus lead to specific immune response. In addition, the 
antibody itself has antigen determinant, which can be recognized by other internal 
antibodies and lead to a reaction with them. So, antibodies have the dual nature of 
recognizing antigens and being recognized by other antibodies (F.M. Burnet,1978). 
2. Immune memory 
Immune memory is another important feature of the immune system. Experimental results 
show that it can produce not only B memory cells but also TH memory cells during the 
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immune response process. Immune memory can be explained as the phenomena of the 
increasing of the number of lymphocytes which have responses to specific antigens. When 
immune system first encounters an antigen, lymphocytes have to take some time to adjust 
themselves to identify antigens and save the memory information of the antigen after 
recognizing. When body meets the same antigen again, the effect of the associative memory, 
the Incubation Period of the appearance of antibodies reduced clearly and the content of 
antibody increased substantially, Erju duration Chang. Such phenomenon is called 
immunological memory (A. Tarakanov & D. Dasgupta, 2000).  
Simulation on the immune memory is an important feature of artificial immune algorithms 
that distinction from other classic evolutionary algorithms. Farmer first presented an 
artificial immune model with memory which regards immune memory mechanism as an 
associative memory (J. D. Farmer et al, 1986). Smith compared the immune memory model 
and the sparse distributed memory model (SDM) and indicated that initial response 
corresponds to the procedure of information storage in SDM, the second response and the 
cross-immune response correspond to the procedure of reading memory (D. J. Smith et 
al,1998). Immune memory mechanisms can greatly accelerate the searching process of the 
optimization, speed up the learning process and improve the quality of learning. The 
introduction of immune memory mechanisms is an effective means to improve the 
efficiency of artificial immune system algorithm. 
3. Immune diversity 
In biological immune system, the number of antibody type is much larger than that of 
known antigen. There are two types of theories to explain the mechanism of immune 
diversity, the germlinetheory theory and the somatic mutation hypothesis. According to 
these theories, immune diversity may lies in the diversity of the connection of gene 
segments and it may be influenced by the complex pairing mechanism of the heavy chain 
and light chain. The immune diversity mechanism can be used for the searching procedure 
of optimization, it does not try global optimization, but deal with different antigens 
evolutionary, so as to enhancing the global search ability and keep the algorithms from 
falling into local optimum. 
4. Immune tolerance 
Immune tolerance is another important type of immune response and also one element of 
immunoregulation. Its performance is contrary to the positive immune response, and also 
different from a variety of non-specific immune suppressions which have no antigen 
specific, and can response or low response to various antigens. Immune tolerance is a 
phenomenon of body fail to response to a certain antigen which is caused by the lost 
function or death of specific antigen-induced lymphocyte. The general characteristics of 
immune tolerance are mainly in the following aspects: 1) For T or B cells were excluded or 
inhibited, immune tolerance is specific. 2) It’s easier to introduce immature lymphocyte 
tolerance than mature cells. 3) The tolerance induction and maintenance of tolerance need 
the persistence of toleragen. 
5. Parallelism 
Biological immune system is a complex parallel system. Lymphoid organs, lymphoid tissue 
within other organs, lymphocytes cells and antigen presenting cells distribute to all parts of 
the body. Lymphocytes travel around the body by the blood, from one lymphoid organ or 
lymph tissue to another, so as to scattered the lymphoid organs and lymphoid tissue 
together all around the body into a functional whole. Various components of the immune 
system work in parallel and coordinated jointly, achieve all the features of the immune 
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4. Immune tolerance 
Immune tolerance is another important type of immune response and also one element of 
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phenomenon of body fail to response to a certain antigen which is caused by the lost 
function or death of specific antigen-induced lymphocyte. The general characteristics of 
immune tolerance are mainly in the following aspects: 1) For T or B cells were excluded or 
inhibited, immune tolerance is specific. 2) It’s easier to introduce immature lymphocyte 
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the persistence of toleragen. 
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system. Simulation of biological immune system is very important to taking full advantage 
of loosely coupled computing resources and improving the efficiency of immune system. 

2.2 Artificial immune system model 
Compared with other intelligent computing systems, a complete set of mathematical theory 
has not yet developed in the research areas of artificial immune system. Since the immune 
system itself is rather complicated, there are relatively a few research findings on artificial 
immune system model. In 1973, Jerne proposed the idiotypic network model (N. K. Jerne, 
1973) and initiated the study of artificial immune system model in 1980, Herzenberg, etc. 
presented a loose-coupled network architecture which is more suitable for distributed 
problems (L. A. Herzenberg & S. J. Black, 1980). In 1986, Hoffmann put forward symmetric 
network model (G. W. Hoffmann,1986) based on the immune neuron model according to 
the similarity between immune system and nervous system. In 1989, Perelson presented a 
probability model of unique type network based on previous studies. (A. S. Perelson, 1989). 
In 1990, Farmer proposed dynamic system model (J. D. Farmer, 1990) based on 
connectionism, after compared and analyzed the similarities, differences and characteristics 
among the immune system, neural network and genetic system.. In 1995, Ishiguro etc. 
presented coupled immune network model. In 1997, Tang proposed multi-valued immune 
network model based on the mechanism of interaction between B cells and T cells (Z. Tang 
et al, 1997). In 1997, borrowing ideas from the mechanism that the system balance can be 
maintained by the interaction between B cells, Mitsumoto proposed immune response 
network model, which is used for scheduling and controlling the distributed autonomous 
robots group (N. Mitsumoto & T. Fukuta, 1997). In 2000, Zak proposed an immune system 
stochastic model, according to the principle of response under stress. 
At present, two influential artificial immune network models are the Resource Limited 
Artificial Immune System (RLAIS) proposed by Jonathan Timmis etc.(J. Timmis & M. Neal, 
2001) and the aiNet proposed by De Castro etc. (L. N. De Castro & F. J. Von Zuben,2000). 
Timmis put forward RLAIS on the basis of Cook and Hunt’s research. He also presented the 
concept of Artificial Recognition Ball (ARB). Timmis considered that the role of ARB and B 
cell function is similar, artificial immune system is composed by a fixed number of ARB. 
Further more, by analogy with the natural immune system,, he thought that the stimulation 
from which ARB suffered includes the main stimulation, the stimulation and restrain from 
adjacent antibody. In addition, the capability of cloning can be determined by the 
stimulation given to ARB. De Castro's aiNet algorithm which simulates the stimulation 
process of the stimulation from the immune network to antigens, mainly includes the 
antibody-antigen recognition, immune cloning proliferation, affinity maturation and 
network suppression Immune network is considered as an enabling undirected graph, and 
is not fully connected. However, the current prevalence of adaptive immune network model 
is rather poor, contains more parameters, and over-reliance on changes in the network 
nodes to maintain network dynamics, the lack of the understanding of immune network of 
nonlinear information processing capacity are also weak points.At the same time, the design 
of the algorithm generally starts from focusing on data compression, therefore, the scope of 
the application of the algorithm is limited. It should be noted that the relevant mechanism in 
the immune network has been widely used in computer networks, particularly network 
security study, but these applications are mostly ideological. There are still no specific 
algorithms. 
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In addition to the network models described above, there are also two different non-
network models presented respectively by Alexander Tarakanov (A. Tarakanov & D. 
Dasgupta, 2000) and Nohara (B. T. Nohara & H. Takahashi, 2000) in 2000.Alexander 
Tarakanov etc. tried to establish the form of protein models based on artificial immune 
system for the establishment of a formal model. After that, they indicated that the improved 
model can be used for the evaluation of the complex calculations of Kaliningrad’s Ecological 
Atlas. In their works,much attention was paid to the interaction between the immune 
function of cells, and the network was not much involved. Based the feature of antibody 
units, Nohara etc. presented a non-network model of artificial immune system. 

2.3 Artificial immune system algorithm 
As the understanding of the mechanism of the immune system is not yet very deep, there is 
not much research on the artificial immune system algorithm. Common artificial immune 
algorithms include the following four types: artificial immune network algorithm, negative 
selection algorithm, immune evolutionary algorithm and immune clonal selection 
algorithm. 
1. Artificial immune network 
The simulation researches of the immune network mainly focus on the application of 
computer network security, while the study on immune algorithm is rarely seen at present. 
Now two typical artificial immune network algorithms are the Resource Limited Artificial 
Immune System Algorithm proposed by Timmis etc. (J. Timmis & M. Neal, 2001) and the 
aiNet algorithm proposed by De Castro etc. (L. N. De Castro & F. J.Von Zuben, 2000). 
However, the current prevalence of adaptive immune network model is rather poor, 
contains more parameters, and the over-reliance on changes in the network nodes to 
maintain network dynamics, the lack of the understanding of immune network of nonlinear 
information processing capacity are also weak points.At the same time, the design of the 
algorithm generally starts from focusing on data compression, therefore, the scope of the 
application of the algorithm is limited. 
2. Negative selection algorithm 
Computer security problems and immune system problems encountered with striking 
similarities, they both have to be constantly changing environment to maintain system 
stability. Distribution, flexibility, adaptively and robust solution of the immune system are 
exactly what the field of computer security expects. According to self / non-self distinction 
principle of the immune system, Forrest etc. proposed a negative selection algorithm which 
can detect changes in computer system (S. Forrest et al, 1994). The algorithms simulate the 
"negative selection" principal of T cell maturation process: randomly generated detectors, 
remove detectors which detect themselves and preserve those detect non-self. Negative 
selection algorithm has laid a theoretical foundation for the application of the immunity in 
computer network security areas. 
3. Immune evolutionary algorithm 
As a kind of random search optimization method, evolutionary algorithm has been widely 
used. However, it still needs improving in practice. For example, evolutionary algorithm can 
not guarantee grantee getting the globally optimal solution, it may lose the best individual 
in the population and it also has the problems of premature convergence. More effective 
optimization algorithms will be got if evolution and immunity are combined. Under the 
framework of evolutionary algorithm, researchers have introduced many features of the 
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system. Simulation of biological immune system is very important to taking full advantage 
of loosely coupled computing resources and improving the efficiency of immune system. 

2.2 Artificial immune system model 
Compared with other intelligent computing systems, a complete set of mathematical theory 
has not yet developed in the research areas of artificial immune system. Since the immune 
system itself is rather complicated, there are relatively a few research findings on artificial 
immune system model. In 1973, Jerne proposed the idiotypic network model (N. K. Jerne, 
1973) and initiated the study of artificial immune system model in 1980, Herzenberg, etc. 
presented a loose-coupled network architecture which is more suitable for distributed 
problems (L. A. Herzenberg & S. J. Black, 1980). In 1986, Hoffmann put forward symmetric 
network model (G. W. Hoffmann,1986) based on the immune neuron model according to 
the similarity between immune system and nervous system. In 1989, Perelson presented a 
probability model of unique type network based on previous studies. (A. S. Perelson, 1989). 
In 1990, Farmer proposed dynamic system model (J. D. Farmer, 1990) based on 
connectionism, after compared and analyzed the similarities, differences and characteristics 
among the immune system, neural network and genetic system.. In 1995, Ishiguro etc. 
presented coupled immune network model. In 1997, Tang proposed multi-valued immune 
network model based on the mechanism of interaction between B cells and T cells (Z. Tang 
et al, 1997). In 1997, borrowing ideas from the mechanism that the system balance can be 
maintained by the interaction between B cells, Mitsumoto proposed immune response 
network model, which is used for scheduling and controlling the distributed autonomous 
robots group (N. Mitsumoto & T. Fukuta, 1997). In 2000, Zak proposed an immune system 
stochastic model, according to the principle of response under stress. 
At present, two influential artificial immune network models are the Resource Limited 
Artificial Immune System (RLAIS) proposed by Jonathan Timmis etc.(J. Timmis & M. Neal, 
2001) and the aiNet proposed by De Castro etc. (L. N. De Castro & F. J. Von Zuben,2000). 
Timmis put forward RLAIS on the basis of Cook and Hunt’s research. He also presented the 
concept of Artificial Recognition Ball (ARB). Timmis considered that the role of ARB and B 
cell function is similar, artificial immune system is composed by a fixed number of ARB. 
Further more, by analogy with the natural immune system,, he thought that the stimulation 
from which ARB suffered includes the main stimulation, the stimulation and restrain from 
adjacent antibody. In addition, the capability of cloning can be determined by the 
stimulation given to ARB. De Castro's aiNet algorithm which simulates the stimulation 
process of the stimulation from the immune network to antigens, mainly includes the 
antibody-antigen recognition, immune cloning proliferation, affinity maturation and 
network suppression Immune network is considered as an enabling undirected graph, and 
is not fully connected. However, the current prevalence of adaptive immune network model 
is rather poor, contains more parameters, and over-reliance on changes in the network 
nodes to maintain network dynamics, the lack of the understanding of immune network of 
nonlinear information processing capacity are also weak points.At the same time, the design 
of the algorithm generally starts from focusing on data compression, therefore, the scope of 
the application of the algorithm is limited. It should be noted that the relevant mechanism in 
the immune network has been widely used in computer networks, particularly network 
security study, but these applications are mostly ideological. There are still no specific 
algorithms. 

A High Performance Immune Clonal Algorithm for Solving Large Scale TSP   

 

117 

In addition to the network models described above, there are also two different non-
network models presented respectively by Alexander Tarakanov (A. Tarakanov & D. 
Dasgupta, 2000) and Nohara (B. T. Nohara & H. Takahashi, 2000) in 2000.Alexander 
Tarakanov etc. tried to establish the form of protein models based on artificial immune 
system for the establishment of a formal model. After that, they indicated that the improved 
model can be used for the evaluation of the complex calculations of Kaliningrad’s Ecological 
Atlas. In their works,much attention was paid to the interaction between the immune 
function of cells, and the network was not much involved. Based the feature of antibody 
units, Nohara etc. presented a non-network model of artificial immune system. 

2.3 Artificial immune system algorithm 
As the understanding of the mechanism of the immune system is not yet very deep, there is 
not much research on the artificial immune system algorithm. Common artificial immune 
algorithms include the following four types: artificial immune network algorithm, negative 
selection algorithm, immune evolutionary algorithm and immune clonal selection 
algorithm. 
1. Artificial immune network 
The simulation researches of the immune network mainly focus on the application of 
computer network security, while the study on immune algorithm is rarely seen at present. 
Now two typical artificial immune network algorithms are the Resource Limited Artificial 
Immune System Algorithm proposed by Timmis etc. (J. Timmis & M. Neal, 2001) and the 
aiNet algorithm proposed by De Castro etc. (L. N. De Castro & F. J.Von Zuben, 2000). 
However, the current prevalence of adaptive immune network model is rather poor, 
contains more parameters, and the over-reliance on changes in the network nodes to 
maintain network dynamics, the lack of the understanding of immune network of nonlinear 
information processing capacity are also weak points.At the same time, the design of the 
algorithm generally starts from focusing on data compression, therefore, the scope of the 
application of the algorithm is limited. 
2. Negative selection algorithm 
Computer security problems and immune system problems encountered with striking 
similarities, they both have to be constantly changing environment to maintain system 
stability. Distribution, flexibility, adaptively and robust solution of the immune system are 
exactly what the field of computer security expects. According to self / non-self distinction 
principle of the immune system, Forrest etc. proposed a negative selection algorithm which 
can detect changes in computer system (S. Forrest et al, 1994). The algorithms simulate the 
"negative selection" principal of T cell maturation process: randomly generated detectors, 
remove detectors which detect themselves and preserve those detect non-self. Negative 
selection algorithm has laid a theoretical foundation for the application of the immunity in 
computer network security areas. 
3. Immune evolutionary algorithm 
As a kind of random search optimization method, evolutionary algorithm has been widely 
used. However, it still needs improving in practice. For example, evolutionary algorithm can 
not guarantee grantee getting the globally optimal solution, it may lose the best individual 
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immune system and developed a number of immune optimization algorithms. Such as 
immune optimization algorithm with vaccination (Jiao Licheng & Wang Lei, 2000), immune 
optimization algorithm with self-regulation mechanism (Zhang Jun et al., 1999), immune 
optimization algorithm based on immune response (J. S. Chun et al., 1998), and immune 
optimization algorithm with immune memory (S. Endoh et al., 1998). These improved 
algorithms can quickly find the optimal solution meeting the requirements of certain 
accuracy and are useful to solve engineering problems (Jiao Licheng &Du Haifeng, 2003). 
4. Immune clonal selection algorithm 
Clonal selection algorithm is an important type of immune optimization algorithm, and it 
has been widely used in the artificial immune system. In 2000, De Castro etc. concentrated 
the clonal selection mechanism of immune system with the help of previous studies, and 
proposed a clonal selection based immune algorithm, which was successfully used to solve 
pattern recognition, numerical optimization and combinatorial optimization problems (L. N. 
De Castro & F. J. Von Zuben, 2000). In 2002, Kim etc. proposed a dynamic clonal selection 
algorithm and it was used to solve the anomaly detection problem in the continuous 
changing environment (J. Kim & P. J. Bentley, 2002) In 2005, Jiao Licheng, Du Haifeng etc. 
proposed Immune polyclonal Strategy based on the work of predecessors, and what was 
more they proposed Immune clonal selection algorithm for solving the problem about high 
dimensional function optimization (Du Haifeng et al, 2005), which achieved good results. 
Jiao Licheng and others have also presented some other high-level algorithm, Such as the 
Immune Memory Clonal Programming Algorithm (Du Haifeng et al, 2004), Adaptive chaos 
clonal evolutionary programming algorithm (Du Haifeng, 2005) and so on. 

2.4 Artificial immune optimization algorithm 
Engineering Optimization technology is a technology for solving various engineering 
optimal problems. As an important branch of science, engineering optimization technology 
has been attracting widespread attention, and been applied in many engineering fields, such 
as system control, artificial intelligence, pattern recognition, production scheduling, VLSI 
technology, fault diagnosis, computer engineering and so on. Engineering process 
optimization plays an important role in improving the efficiency and effectiveness and 
saving resources. Theoretical study of optimization algorithms also plays an important role 
in improving performance of algorithm, broadening the application field of algorithm, 
improving algorithms system. Therefore, study of the optimization theory and algorithm is 
important both theoretically and practically. 
As science and technology continues to progress and the computer technology has been 
widely used, the scale and complexity of engineering optimization problems are increasing. 
Because of some inherent limitations and shortcomings, traditional optimization methods 
fail to meet such requirements to solve complex optimization problems. Researchers have to 
find new ideas to solve problems. Since the 1980s, a number of novel optimization 
algorithms have been proposed, such as artificial neural networks, simulated annealing, 
tabu search, evolutionary algorithms, ant colony optimization, particle swarm optimization, 
artificial immune algorithms, EDA algorithms and hybrid optimization strategy. These 
algorithms develop through simulating or revealing certain natural phenomena or a 
process, and the ideas and content relate to mathematics, physics, biological evolution, 
artificial intelligence, neuroscience and statistics, so it provides new methods to solve the 
complex problems. These new algorithms can often get rid of the limitations of traditional 
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optimization algorithm, using heuristic optimization strategies to explore the optimal 
solution, and has been used in a large number of practical applications and achieved 
encouraging results. With the development of interdisciplinary research, new intelligent 
optimization algorithms are emerging and bring new solutions to the optimization 
problems. 
Artificial immune system is an adaptive system for solving the complex problems by 
simulating the function and principle of biological immune system. Immune algorithm 
retains many intelligent features of the biological immune system, so it has great diversity 
maintaining mechanisms, global search capability and robustness, and enables parallel 
search. Artificial immune algorithm is getting more and more attentions from researchers, 
and it is widely used for numerical optimization (Gong Maoguo et al, 2007), combinatorial 
optimization, multicast routing (Liu Fang et al, 2003), job shop scheduling (Z.X. Ong et al, 
2005) multi-objective optimization (Shang Ronghua et al, 2007) and other engineering 
optimization problems. 

2.5 The concept of immunology used in immune optimization algorithm 
Immune optimization algorithm simulates immune mechanisms of biological immune 
system to deal with engineering optimization problems. Before Immune optimization 
algorithm is constructed, we need to map the various elements in engineering optimization 
problems to related concepts in immunology. As the biological immune system is very 
complex, it is impossible and unnecessary to completely apply biology definition in the 
artificial immune system. In order to better describe the artificial immune system algorithm, 
the following will briefly explain a few common used immune academic terms and their 
meaning in immune optimization algorithms. 
1. Antigen 
In the artificial immune system, it generally refers to the problem and its constraints, which 
is similar with fitness function in evolutionary algorithm. Specifically, it is a function of the 
objective function, and is the initiating factor and the important metrics of artificial immune 
algorithms. 
2. Antibody 
In the artificial immune system, it generally refers to candidate solutions of the problem, 
which is similar with individual in evolutionary algorithm. Collection of antibodies is called 
antibody group. In practice, the antibody generally appears in the form of coding. 
3. Antibody-antigen affinity 
It shows that the Antibody’s binding capacity to Antigen, and reflects the binding site of a 
single antibody and the binding force of the unit antigen (or epitopes). In artificial immune 
system, it is used to show how the antibody at different locations (code) affects the antigen 
(or objective function). 
4. Vaccine 
Vaccine is defined as the estimate of the best individual gene, resulting from evolutionary 
environment or prior knowledge of the unknown problem.  
5. Memory unit 
In the artificial immune system, memory unit is an antibody group composed by specific 
antibody, which is used to maintain species diversity and the optimal solution in the process 
of solving problem. 
6. Clone 
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immune system and developed a number of immune optimization algorithms. Such as 
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Clone is the proliferation processes of biological Immune systems. In the artificial immune 
system cloning operator, based on clonal selection theory, clone is a composite operator 
which is a combination of selection, expansion, mutation and crossover operators.  

3. Parallel immune memory clonal selection algorithm for large scale TSP 

Traveling salesman problem (TSP) is a classical combinatorial optimization problem, with a 
strong engineering background and extensive application. TSP problem can be formally 
described as: given N cities { }21 , , , NC C C=C , and the distance between any two 
cities ( ),i jC Cd , find a closed path ( ) ( ) ( ){ }1 2, , , NC C Cπ π π π=C , through all cities in C only 
once, making minimal total distance ( ) ( )( ) ( ) ( )( )1

1 11 , ,N
i i Ni d C C d C Cπ π π π

−
+= +∑ (D.S.Johnson and 

L.A.McGeoch, 1997). The solution space of TSP problem increases rapidly as the size of the 
problem increases, as a result, traditional methods (such as the exhaustive method, dynamic 
programming, branch and bound, etc.) have been powerless. It has proven that TSP problem 
is NP-hard combinatorial optimization problem, and it is difficult to find an effective 
algorithm to obtain the optimal solution in polynomial time. Therefore for Large-scale 
problems, people are more inclined to seek an algorithm that can find acceptable 
approximate solution in a limited time. Approximation algorithm for solving TSP is divided 
into two categories: tour construction algorithm and loop improved algorithm. Tour 
construction algorithms start from an illegal solution and gradually change the path until to 
get up a legitimate path. Such algorithms include: nearest neighbor algorithm, greedy 
algorithm, Clarke-Wright algorithm, Christofides algorithm (D.S.Johnson & L.A.McGeoch, 
1997) and so on. After given an initial legitimate solution, circle improved algorithm uses a 
certain strategy to find solutions of better quality. Such algorithms include: local search 
strategy (r-Opt, LK, LKH, cycle LK (D. S. Johnson & L. A. McGeoch, 2002), etc.), tabu search 
(D.S.Johnson & L.A.McGeoch, 1997), simulated annealing (D.S.Johnson & L.A.McGeoch, 
1997), genetic algorithm (T. Guo & Z. Michalewicz, 1998), ant colony algorithm (X.M. Song 
et al., 1998), particle swarm optimization (X.X.He et al., 2006), multi-level algorithms (C. 
Walshaw, 2001), immune algorithms (Wang Lei et al., 2000) and so on. 
For large search spaces of massive TSP, the computing power of single computer is far from 
being able to satisfy the search algorithm on the request of the time. At the same time, with 
the development of network technology, there exists a large number of loosely coupled idle 
computation resource. It is practicable that cluster these computing resources to handle 
large and complex problems. Therefore, the research on parallel algorithms running in a 
loosely coupled environment has a very important significance. Parallel algorithms for 
solving large-scale TSP have attracted more and more attention. There has been some 
research results about parallel ACO (Lv Qiang et al., 2007), however currently just in its 
infancy. This chapter attempts to design a parallel immune algorithm to solve this complex 
problem. 
At present, the achievements of parallel artificial immune system research are mostly 
parallel immune algorithms that have been existed. Artificial immune system model on 
parallel research is still rare. However, the parallel algorithm is not simply the only existing 
serial algorithm using multiple processors in parallel to achieve. In the parallel genetic 
algorithm results, many mature parallel modes are in emergence, such as: Master (Master-
Slave) model, fine-grained (Fine-grained) model, coarse-grained (Coarse-grained) model, 
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mixed ( Hybrid) model (Erick Cantú-Paz, 2000) and so on. Especially, the coarse-grained 
parallel model which is widely used can not only speed up the speed of algorithm for large-
scale complex problems, and a variety of groups in the search can make the algorithm more 
stable, avoid local optima. 
In this chapter, based on the successful experience of the Parallel genetic algorithm, artificial 
immune system, TMSM and PIMCSA are designed to solve the large-scale TSP problem 
according with the features of artificial immune system. TMSM is a coarse-grained two 
parallel artificial immune model, which stimulate the distributed immune memory and 
immune response mechanisms based on TMSM of PIMCSA. the migration of vaccines 
instead of individual migration in PIMCSA, not only reduces the cost of communication 
greatly, but also accelerate the convergence. Either the simulations of the symmetric or 
asymmetric TSP problem show that, PIMCSA compared with the most effective one of the 
local search algorithm cycle LK(D. S. Johnson, 1990) algorithm and the pure random search 
algorithm Guo Tao evolutionary algorithm (T. Guo & Z. Michalewicz, 1998) whose 
performance is best recognized , is much better. Meanwhile PIMCSA has good scalability. 

3.1 Towerlike master-slave model 
Coarse-grained parallel model of genetic algorithm is on the basis of the model of multi-
populations evolution (Fig. 1), that is, each sub-population evolves independently, and sub-
populations do the individual migration to a certain interval. On the research of coarse-
grained parallel genetic algorithm, sub-species topology (X.M. Song et al., 2006), 
chromosome migration strategies (X.X. He et al., 2006), sub- population division strategy(C. 
Walshaw, 2001) and so on are key points of the algorithm design. 
When designing a parallel artificial immune system, we should not only consider the 
division and organizational structure of sub-population antibody along with the way to 
information interactions of sub-populations of antibodies. The proposed tower master-slave 
model (TMSM) is a coarse-grained two parallel artificial immune system model, which is 
not only parallel but also embodies the distributed characteristics of antibodies populations 
and immune memory characteristics. 
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Fig. 1. Coarse-grained parallel genetic algorithm model 



 Traveling Salesman Problem, Theory and Applications 

 

120 

Clone is the proliferation processes of biological Immune systems. In the artificial immune 
system cloning operator, based on clonal selection theory, clone is a composite operator 
which is a combination of selection, expansion, mutation and crossover operators.  

3. Parallel immune memory clonal selection algorithm for large scale TSP 

Traveling salesman problem (TSP) is a classical combinatorial optimization problem, with a 
strong engineering background and extensive application. TSP problem can be formally 
described as: given N cities { }21 , , , NC C C=C , and the distance between any two 
cities ( ),i jC Cd , find a closed path ( ) ( ) ( ){ }1 2, , , NC C Cπ π π π=C , through all cities in C only 
once, making minimal total distance ( ) ( )( ) ( ) ( )( )1

1 11 , ,N
i i Ni d C C d C Cπ π π π

−
+= +∑ (D.S.Johnson and 

L.A.McGeoch, 1997). The solution space of TSP problem increases rapidly as the size of the 
problem increases, as a result, traditional methods (such as the exhaustive method, dynamic 
programming, branch and bound, etc.) have been powerless. It has proven that TSP problem 
is NP-hard combinatorial optimization problem, and it is difficult to find an effective 
algorithm to obtain the optimal solution in polynomial time. Therefore for Large-scale 
problems, people are more inclined to seek an algorithm that can find acceptable 
approximate solution in a limited time. Approximation algorithm for solving TSP is divided 
into two categories: tour construction algorithm and loop improved algorithm. Tour 
construction algorithms start from an illegal solution and gradually change the path until to 
get up a legitimate path. Such algorithms include: nearest neighbor algorithm, greedy 
algorithm, Clarke-Wright algorithm, Christofides algorithm (D.S.Johnson & L.A.McGeoch, 
1997) and so on. After given an initial legitimate solution, circle improved algorithm uses a 
certain strategy to find solutions of better quality. Such algorithms include: local search 
strategy (r-Opt, LK, LKH, cycle LK (D. S. Johnson & L. A. McGeoch, 2002), etc.), tabu search 
(D.S.Johnson & L.A.McGeoch, 1997), simulated annealing (D.S.Johnson & L.A.McGeoch, 
1997), genetic algorithm (T. Guo & Z. Michalewicz, 1998), ant colony algorithm (X.M. Song 
et al., 1998), particle swarm optimization (X.X.He et al., 2006), multi-level algorithms (C. 
Walshaw, 2001), immune algorithms (Wang Lei et al., 2000) and so on. 
For large search spaces of massive TSP, the computing power of single computer is far from 
being able to satisfy the search algorithm on the request of the time. At the same time, with 
the development of network technology, there exists a large number of loosely coupled idle 
computation resource. It is practicable that cluster these computing resources to handle 
large and complex problems. Therefore, the research on parallel algorithms running in a 
loosely coupled environment has a very important significance. Parallel algorithms for 
solving large-scale TSP have attracted more and more attention. There has been some 
research results about parallel ACO (Lv Qiang et al., 2007), however currently just in its 
infancy. This chapter attempts to design a parallel immune algorithm to solve this complex 
problem. 
At present, the achievements of parallel artificial immune system research are mostly 
parallel immune algorithms that have been existed. Artificial immune system model on 
parallel research is still rare. However, the parallel algorithm is not simply the only existing 
serial algorithm using multiple processors in parallel to achieve. In the parallel genetic 
algorithm results, many mature parallel modes are in emergence, such as: Master (Master-
Slave) model, fine-grained (Fine-grained) model, coarse-grained (Coarse-grained) model, 

A High Performance Immune Clonal Algorithm for Solving Large Scale TSP   

 

121 

mixed ( Hybrid) model (Erick Cantú-Paz, 2000) and so on. Especially, the coarse-grained 
parallel model which is widely used can not only speed up the speed of algorithm for large-
scale complex problems, and a variety of groups in the search can make the algorithm more 
stable, avoid local optima. 
In this chapter, based on the successful experience of the Parallel genetic algorithm, artificial 
immune system, TMSM and PIMCSA are designed to solve the large-scale TSP problem 
according with the features of artificial immune system. TMSM is a coarse-grained two 
parallel artificial immune model, which stimulate the distributed immune memory and 
immune response mechanisms based on TMSM of PIMCSA. the migration of vaccines 
instead of individual migration in PIMCSA, not only reduces the cost of communication 
greatly, but also accelerate the convergence. Either the simulations of the symmetric or 
asymmetric TSP problem show that, PIMCSA compared with the most effective one of the 
local search algorithm cycle LK(D. S. Johnson, 1990) algorithm and the pure random search 
algorithm Guo Tao evolutionary algorithm (T. Guo & Z. Michalewicz, 1998) whose 
performance is best recognized , is much better. Meanwhile PIMCSA has good scalability. 

3.1 Towerlike master-slave model 
Coarse-grained parallel model of genetic algorithm is on the basis of the model of multi-
populations evolution (Fig. 1), that is, each sub-population evolves independently, and sub-
populations do the individual migration to a certain interval. On the research of coarse-
grained parallel genetic algorithm, sub-species topology (X.M. Song et al., 2006), 
chromosome migration strategies (X.X. He et al., 2006), sub- population division strategy(C. 
Walshaw, 2001) and so on are key points of the algorithm design. 
When designing a parallel artificial immune system, we should not only consider the 
division and organizational structure of sub-population antibody along with the way to 
information interactions of sub-populations of antibodies. The proposed tower master-slave 
model (TMSM) is a coarse-grained two parallel artificial immune system model, which is 
not only parallel but also embodies the distributed characteristics of antibodies populations 
and immune memory characteristics. 
 

P

P P

P

PP

P P

 
Fig. 1. Coarse-grained parallel genetic algorithm model 



 Traveling Salesman Problem, Theory and Applications 

 

122 

P

PP

P

PP

P P

...

...

...

...

...

...

...

...

...
...

... ...

...
...

......

P

 dominant delegate

Sub-population

 
Fig. 2. Tower-like master-slave model 

Definition 1: The towerlike master-slave model (TMSM), as shown in Fig. 2, is a two layer 
coarse-grained parallel model. The model consists of two types of populations organized as 
in Fig. 2, including a memory population M and several antibody populations P.  
The top layer of the TMSM is the memory population ( )1 2

ˆ ˆ ˆ, , , m=M A A A  formed by m 
memory antibodies. Each memory antibody of M corresponds to an antibody sub-
population. The under layer of TMST are m sub-populations of antibodies with size n. 
Definition 2: Each memory antibody in memory population M, ˆ

iA ( 1,2, ,i m= ), is mapped 
to a sub-population iP . We call ˆ

iA is the dominant delegate of population iP . 
TMSM inherits the advantage of the evolution of a variety of groups of a coarse-grained 
parallel model, while with modifies according to the characteristics of the immune system. 
In TMSM, the antibody population is divided into a memory and several sub-populations. 
Moreover, a one to one map between antibody in memory and sub-population is 
established. Such a design not only makes the immune system get the memory function, but 
also produce the distributed immune memory with the below driven algorithm used to a 
distributed population of antibodies. Meanwhile, the corresponding immune mechanism, 
the self adaptive extraction and inoculation mechanism o f the immune vaccine and can be 
expanded with this model. 
As the memory population served to initiate and terminate the process of calculation, as 
well as schedule the task of information exchange between sub-populations of antibodies, 
the concept of primary and secondary comes out. Memory population is the "primary" and 
the sub-species antibody is "secondary." This is essentially different from the primary-
secondary parallel model of the parallel genetic algorithm (Erick Cantú-Paz, 2000). 

3.2 PIMCSA for solving TSP 
To solve the TSP problem, Parallel Immune Memory Clonal Selection Algorithm (PIMCSA) 
adopted the encoding method of path representation. The antibody affinity A, is defined as: 

                     ( ) ( )( )Affinity Length /HKB HKB= −A A   (1) 

( )Length A  indicates the path length after antibody A decoded, HKB indicates Held-Karp 
Bound of TSP problem which is the estimation of optimal path length of TSP. 
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In accordance with the description of the general framework of PIMCSA, PIMCSA includes 
two parts: the memory population immune algorithm (Memory Immune Algorithm, MIA) 
and sub-populations of antibody immune algorithm (Population Immune Algorithm, PIA).  
MIA and PIA process were designed to solve large-scale TSP problems.  

3.2.1 Immune algorithm of memory population 
Memory population immune algorithm (MIA) is running in memory antibody population 
driven algorithm of TMSM. MIA is the initiator of the parallel algorithm and termination of 
immune persons, not only in the memory to complete the memory antibody population 
evolution that is self-learning and memory mature operation, while responsible for 
extraction and distribution of vaccines to the antibody sub-populations. The pseudo code of 
memory immune algorithm population is described as follows: 
 

Memory population immune algorithm (MIA): 

Set algorithm termination conditions, and let evolution generations r＝0； 
Initialize population of memory antibodies randomly ( )rM  and calculate of affinity, 
then set Collection of vaccines ( )rV  to be Empty set; 
  While (algorithm termination conditions are not satisfied ) 
  { 
     Try to receive every antibody iA  which is sended from iP  to ( )rM .If iA  is 
received and it’s affinity is larger than ˆ iA , 
Then ˆ iA  is replaced by iA ; 
     Run mature implementation of memory: ( ) ( )( )1 Maturationr r+ =M M ; 
     Run Dynamic vaccine extraction operation: ( ) ( )( )1 Extraction 1r r+ = +V M ; 
     Run vaccine distribution operation: ( )1 2Dispatch , , , mP P P ; 
     r＝r+1; 
} 
Count, output the result, and send termination signal of the algorithm to each sub-
population. 

 

Mature implementation of memory: Cyclic LK algorithm process is adopted in the mature 
implementation of memory. For each memory antibody population, ˆ i′A  is got after local 
search 4-Opt is done firstly, then after optimizing ˆ i′A  through LK algorithm, we can get 
local optimal solution ˆ i′′A . If the affinity of ˆ i′′A  is greater than ˆ iA , the alternative 
ˆ iA with ˆ i′′A , otherwise ˆ iA  is retained. Mature memory populations in post-operation is 
( )1r +M . 

The strategy of the extraction of  dynamic memory antibody vaccines will be divided into 
two parts, Vaccine is extracted from a part and is inoculated to another part of the 
memory of antibody sub-populations corresponding antibodies. Therefore, the moving 
into sub-populations of antibody vaccine is the evolutionary experience concluded from 
the representative of their own advantages other than some good memories antibodies. 
Extraction and distribution of this vaccine strategy is conducive to the exchange between 
the antibody sub-populations experience and accelerates the evolution of species. 
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Meanwhile, when the vaccine is extracted each time, it will be re-divided into two groups 
of memory. This will prevent too many antibodies being assigned to the sub-populations, 
so as to prevent the algorithm prematurity which is caused by the loss of diversity. The 
operation of dynamic extraction and distribution of vaccines will be given in detail in the 
next section. 

3.2.2 Immune algorithm of antibody population 
The immune algorithm of antibody sub-populations (PIA) is a driven algorithm running on 
every sub-population of antibodies in TMSM. PIA receives two kinds of information from 
the immune algorithm of memory populations in the process of iteration: Algorithm 
termination information and vaccines information.  
Immune algorithm of antibody sub-populations maintains the iterative evolution of 
antibody sub-populations. The operation process of clonal selection can be adopted in the 
iterative evolution. The immune genetic operation to Sub-population of the antibodies is 
composed by the vaccination operation and Inver-over operator. It will be given in detail in 
the next section. The pseudo-code of the immune algorithm which runs in the sub-
populations of antibody ( 1,2, , )i i m=P is given as follows:   
 

Immune algorithm of antibody sub-populations(PIA): 

Let iteration times t＝0, set termination signal Halt＝False; 
Initialize the population of memory antibodies ( ) ( ) ( ) ( )( )1 2, , ,i i i

i nt t t t=P A A A  
randomly, and calculate of affinity; 
Assume ( )i tA  to be optimal antibody in ( )i tP ，Set current optimal antibody affinity: 

( )( )=Affinity iCurrentBest tA ; 
Send ( )i tA  to the population of memory M; 
Set current vaccine ( )v t  to be Empty. 
While ( Halt is not True) 
{ 
Try to receive the termination signal algorithm from the population of memory M, If 
received, Set Halt＝True. Otherwise, jump out of the loop; 
Try to receive the vaccine from the population of memory M, If received, replace v with 
the new vaccine; 
Run clonal operation: ( ) ( )( )CL ii t t=′P P ; 
Run immunity operation: ( ) ( )( )IG i ti t =′′ ′P P ; 
Run clonal selection operation: ( ) ( )( )SL1i it t=+ ′′P P ; 
Find the optimal antibody from ( )1i t +P ,If ( )( )Affinity 1i t CurrentBest+ >A , then 
set ( )( )=Affinity 1iCurrentBest t +A and send ( )1i t +A to M; 
t = t+1; 
} 

Cloning operation: cloning operation CL is defined as follows, 
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       ( )( ) ( )( ) ( )( ) ( )( )( )21CL CL ,CL ,...,CL ni ii t tti t = A AAP   (2) 

In the formula, ( )( ) ( )CL
i i
j jjt t= ×A I A  ( 1,2, ,j n= ), jI is Unit row vector with jq  dimensions), 

which is called the jq  colon of antibody ( )i j tA . Clone size jq and the antibody 
affinity ( )i j tA are related. jq is greater while affinity is greater. 
Let ( )( ) ( ) ( ) ( ){ }1 2CL , ,...,( )

jj j jq
i j t y t y t y tj t ′ ′ ′==′ AY , then the sub-populations of antibodies 

after the CL operation can be written as: 

        ( ) { }21( ), ( ),..., ( )ni t t t t= ′ ′ ′′P Y Y Y   (3) 

Immune gene action: immune genetic operation is defined as follows， 

    ( )( ) ( ) ( ) ( )( )1 2IG ( ) IG ( ) IG ( )IG , , , ni t t tt ′ ′ ′′ = Y Y YP   (4) 

Assume ( ) ( ) ( ) ( ){ }1 2, ,...,( ) ( )
jj j jqy t y t y tj jt t ′′ ′′ ′′′′ ′= =Y IG Y , then the sub-populations of antibodies 

after the IG operation can be written as: 

          ( ) { }1 2( ), ( ),..., ( )nt t t t′′ = ′′ ′′ ′′P Y Y Y   (5) 

Immune genetic manipulation IG acts on the antibody with the operator which is chosen 
with equal probability between vaccination operator Vaccination and Inver-over operator 
.Inver-over operator which is famous for Guo Tao algorithm designed for TSP problems an 
effective operation of the genetic evolution. Vaccination operator is designed according to 
the dynamic vaccine extracted from the memory population M. Detailed operational 
procedures will be written in the next section. 
Inver-over operator is the local search which runs in the encoded space around with 
antibody, using the heuristic information within the sub-populations of antibodies. 
Vaccination operator will introduce the knowledge learned from the memory population M 
to the antibodies, in the use of heuristic information from other sub-populations of 
antibodies. 
Clonal selection operation: clonal selection operation are defined as follows, 

    ( )( ) ( )( ) ( )( ) ( )( )( )SL SL SL SL1 2, , ,i t nt t t′′ ′′ ′′′′ = Y Y YP  (6) 

If ( ) ( )( )1 SLi
jj tt ′′+ = YA ( 1,2, ,j n= ),then the population in SL post-operation is , 

   ( ) ( ) ( ) ( )( )1 21 1 , 1 , , 1i i i
ni t t t t+ = + + +P A A A   (7) 

The process of the operation ( )( )SL j t′′Y acted on ( )j t′′Y is as follows: the antibody with   
maximum optimal affinity chosen from ( )j t′′Y can be written as, 

   ( ) ( ) ( ){ }|maxaffinity( ), 1, , jjk jky tj t t k q′′ ′′ ′′ == y y   (8) 
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Meanwhile, when the vaccine is extracted each time, it will be re-divided into two groups 
of memory. This will prevent too many antibodies being assigned to the sub-populations, 
so as to prevent the algorithm prematurity which is caused by the loss of diversity. The 
operation of dynamic extraction and distribution of vaccines will be given in detail in the 
next section. 

3.2.2 Immune algorithm of antibody population 
The immune algorithm of antibody sub-populations (PIA) is a driven algorithm running on 
every sub-population of antibodies in TMSM. PIA receives two kinds of information from 
the immune algorithm of memory populations in the process of iteration: Algorithm 
termination information and vaccines information.  
Immune algorithm of antibody sub-populations maintains the iterative evolution of 
antibody sub-populations. The operation process of clonal selection can be adopted in the 
iterative evolution. The immune genetic operation to Sub-population of the antibodies is 
composed by the vaccination operation and Inver-over operator. It will be given in detail in 
the next section. The pseudo-code of the immune algorithm which runs in the sub-
populations of antibody ( 1,2, , )i i m=P is given as follows:   
 

Immune algorithm of antibody sub-populations(PIA): 

Let iteration times t＝0, set termination signal Halt＝False; 
Initialize the population of memory antibodies ( ) ( ) ( ) ( )( )1 2, , ,i i i

i nt t t t=P A A A  
randomly, and calculate of affinity; 
Assume ( )i tA  to be optimal antibody in ( )i tP ，Set current optimal antibody affinity: 

( )( )=Affinity iCurrentBest tA ; 
Send ( )i tA  to the population of memory M; 
Set current vaccine ( )v t  to be Empty. 
While ( Halt is not True) 
{ 
Try to receive the termination signal algorithm from the population of memory M, If 
received, Set Halt＝True. Otherwise, jump out of the loop; 
Try to receive the vaccine from the population of memory M, If received, replace v with 
the new vaccine; 
Run clonal operation: ( ) ( )( )CL ii t t=′P P ; 
Run immunity operation: ( ) ( )( )IG i ti t =′′ ′P P ; 
Run clonal selection operation: ( ) ( )( )SL1i it t=+ ′′P P ; 
Find the optimal antibody from ( )1i t +P ,If ( )( )Affinity 1i t CurrentBest+ >A , then 
set ( )( )=Affinity 1iCurrentBest t +A and send ( )1i t +A to M; 
t = t+1; 
} 

Cloning operation: cloning operation CL is defined as follows, 
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       ( )( ) ( )( ) ( )( ) ( )( )( )21CL CL ,CL ,...,CL ni ii t tti t = A AAP   (2) 

In the formula, ( )( ) ( )CL
i i
j jjt t= ×A I A  ( 1,2, ,j n= ), jI is Unit row vector with jq  dimensions), 

which is called the jq  colon of antibody ( )i j tA . Clone size jq and the antibody 
affinity ( )i j tA are related. jq is greater while affinity is greater. 
Let ( )( ) ( ) ( ) ( ){ }1 2CL , ,...,( )

jj j jq
i j t y t y t y tj t ′ ′ ′==′ AY , then the sub-populations of antibodies 

after the CL operation can be written as: 

        ( ) { }21( ), ( ),..., ( )ni t t t t= ′ ′ ′′P Y Y Y   (3) 

Immune gene action: immune genetic operation is defined as follows， 
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jj j jqy t y t y tj jt t ′′ ′′ ′′′′ ′= =Y IG Y , then the sub-populations of antibodies 

after the IG operation can be written as: 

          ( ) { }1 2( ), ( ),..., ( )nt t t t′′ = ′′ ′′ ′′P Y Y Y   (5) 

Immune genetic manipulation IG acts on the antibody with the operator which is chosen 
with equal probability between vaccination operator Vaccination and Inver-over operator 
.Inver-over operator which is famous for Guo Tao algorithm designed for TSP problems an 
effective operation of the genetic evolution. Vaccination operator is designed according to 
the dynamic vaccine extracted from the memory population M. Detailed operational 
procedures will be written in the next section. 
Inver-over operator is the local search which runs in the encoded space around with 
antibody, using the heuristic information within the sub-populations of antibodies. 
Vaccination operator will introduce the knowledge learned from the memory population M 
to the antibodies, in the use of heuristic information from other sub-populations of 
antibodies. 
Clonal selection operation: clonal selection operation are defined as follows, 

    ( )( ) ( )( ) ( )( ) ( )( )( )SL SL SL SL1 2, , ,i t nt t t′′ ′′ ′′′′ = Y Y YP  (6) 

If ( ) ( )( )1 SLi
jj tt ′′+ = YA ( 1,2, ,j n= ),then the population in SL post-operation is , 

   ( ) ( ) ( ) ( )( )1 21 1 , 1 , , 1i i i
ni t t t t+ = + + +P A A A   (7) 

The process of the operation ( )( )SL j t′′Y acted on ( )j t′′Y is as follows: the antibody with   
maximum optimal affinity chosen from ( )j t′′Y can be written as, 

   ( ) ( ) ( ){ }|maxaffinity( ), 1, , jjk jky tj t t k q′′ ′′ ′′ == y y   (8) 
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If ( )( ) ( )( )Affinity Affinity i
jy tj t′′ > A , then let ( )( ) ( )SL j y tjt′′ ′′=Y . Otherwise, 

( )( ) ( )SL i
j jt t′′ =Y A . 

4. Dynamic vaccination 
In artificial immune system, the vaccine is an estimate of the best individual gene on the 
basis of evolution environment or the apriori knowledge of unknown problem. Vaccine is 
not an individual, which can not be decoded to a solution of a problem as antibodies can be 
done. It just has the characteristics on some places of the genes. Therefore vaccine can be 
regarded as a single gene or a set of gene sequences fragment. The right choice for the 
vaccine will have a positive role in promoting population evolution, and thus have a very 
vital significance to the operating efficiency of algorithm. But, the quality of selection of 
vaccine and generated antibodies will only affect the function of the vaccination of immune 
operator, but will not involve to the convergence of algorithm.  

4.1 Selection and distribution of vaccine 
For TSP problem and PIMCSA algorithm, we design a dynamic vaccine extraction (Dynamic 
Vaccination, DV) strategy and a vaccine allocation strategy as described below.  
Dynamic vaccination strategy will first divide current memory antibody population into 
two antibody sets: the set of vaccines extraction ( )1 1r +M and the vaccination 
set ( )2 1r +M . Let k is the largest positive integer less than or equal to m/2 (m is the size of 
memory population), then randomly select k memory antibodies to compose ( )1 1r +M , 
and the remaining antibodies compose ( )2 1r +M .Then, do intersection operation for all the 
memory antibodies, and get the set ( )1r +E of the public sides on the k paths. And next, we 
merge the sides with public cities into public sub-paths, and store the received public sub-
paths and the rest of public sides as a multi-gene vaccine group and single-gene vaccine 
respectively into vaccine set ( )1r +V . In ( )1r +V , a single gene vaccine with length 1 
represents an edge of the path and its storage form is city sequences of the end of a edge. 
Vaccine group represents a section of sub-paths such that a sequence of the edges of the 
head-to-serial, and its storage form is the sorted arrangement of a number of cities, and its 
length is the number of edges that sub-paths include.  
After producing the vaccines, we will distribute them to the antibody sub-populations. We 
design the following vaccine distribution operation. First of all, randomly choose a 
vaccine iv  from the vaccine set ( )1r +V , which may be a single gene vaccine or a multi-
genes vaccine group. Then, randomly choose a memory antibody ˆ jA from the vaccination 
set ( )2 1r +M  and send the vaccine iv  to the antibody sub-population jP  that ˆ jA  
corresponds to. 

4.2 Vaccination 
As the vaccination operations will bring the loss of population diversity when accelerating 
the convergence of algorithm. In Section 1.2 where we will operate it as part of immune 
genes operation rather than independent step, will help alleviate the loss of the diversity of 
antibody population. For the TSP problem, we take the implementation of the Inver-over 
operator and vaccination operator in equal probability, which jointly constitute the immune 
genes operators. The immune genes operation process of the antibody sub-population 

( )j t′P (j = 1, 2,..., m) is described as follows: 
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The operation process of ( )( )IG j t′P : 

 for each antibody ( )i t′A  in ( )j t′P  
 { 
if ( ( )Rand 0,1 0.5≤  )   
    ( )( )Viccination i t′A ; 
else   

( )( )Inver_over i t′A ; 
} 

Here, ( )Rand 0,1  is a random number between 0 and 1. The vaccination ( )Viccination A on 
antibody A is described as follows: 

The operation process of ( )Viccination A ： 

( )Viccination A  
{ 
 If (the current vaccine v of antibody sub-population is not empty) 
{ 
c is the first city in v ， c′ is the next city of c in v ; 
While ( c is not the last city in v ) 
{ 
      turn the city between the next city of c and c′ in ′A  
      c c= ′ ; 
      c′ =The next city of c′ in v 
} 
} 
} 

Here, the process of vaccination operation using Inver-over operator plant the edges of a 
single-gene vaccine into the operated antibody or plant the edges of multi-genes vaccine 
group into the operated individuals. 

5. Simulating results and analysis  
The simulating software of the proposed approach PIMCSA was developed by C&MPI and 
ran on the HPC (Cluster) parallel computing platform. We got several typical symmetric 
and asymmetric TSP instances from TSPLIB and tested them. 
As the memory mature operation of PIMCSA used steps of ILK, and immune genetic 
manipulation of antibody sub-population introduced the Inver-over operator, we compare 
the performance of PIMCSA with iterated Lin-Kernighan (ILK) algorithm (D. S. Johnson, 
1990) and GuoTao (GT) algorithm (T. Guo & Z. Michalewicz, 1998). ILK algorithm is one of 
the most effective algorithms based on local search, and GT algorithm is the best pure 
evolutionary stochastic searching algorithm. In PIMCSA, antibody sub-population number 
m is set as 8, antibody sub-population size n is set as 30. Population size of ILK and GT 
algorithm are both set as 30. Termination condition of these three algorithms is that current 
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If ( )( ) ( )( )Affinity Affinity i
jy tj t′′ > A , then let ( )( ) ( )SL j y tjt′′ ′′=Y . Otherwise, 

( )( ) ( )SL i
j jt t′′ =Y A . 

4. Dynamic vaccination 
In artificial immune system, the vaccine is an estimate of the best individual gene on the 
basis of evolution environment or the apriori knowledge of unknown problem. Vaccine is 
not an individual, which can not be decoded to a solution of a problem as antibodies can be 
done. It just has the characteristics on some places of the genes. Therefore vaccine can be 
regarded as a single gene or a set of gene sequences fragment. The right choice for the 
vaccine will have a positive role in promoting population evolution, and thus have a very 
vital significance to the operating efficiency of algorithm. But, the quality of selection of 
vaccine and generated antibodies will only affect the function of the vaccination of immune 
operator, but will not involve to the convergence of algorithm.  

4.1 Selection and distribution of vaccine 
For TSP problem and PIMCSA algorithm, we design a dynamic vaccine extraction (Dynamic 
Vaccination, DV) strategy and a vaccine allocation strategy as described below.  
Dynamic vaccination strategy will first divide current memory antibody population into 
two antibody sets: the set of vaccines extraction ( )1 1r +M and the vaccination 
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and the remaining antibodies compose ( )2 1r +M .Then, do intersection operation for all the 
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respectively into vaccine set ( )1r +V . In ( )1r +V , a single gene vaccine with length 1 
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Vaccine group represents a section of sub-paths such that a sequence of the edges of the 
head-to-serial, and its storage form is the sorted arrangement of a number of cities, and its 
length is the number of edges that sub-paths include.  
After producing the vaccines, we will distribute them to the antibody sub-populations. We 
design the following vaccine distribution operation. First of all, randomly choose a 
vaccine iv  from the vaccine set ( )1r +V , which may be a single gene vaccine or a multi-
genes vaccine group. Then, randomly choose a memory antibody ˆ jA from the vaccination 
set ( )2 1r +M  and send the vaccine iv  to the antibody sub-population jP  that ˆ jA  
corresponds to. 

4.2 Vaccination 
As the vaccination operations will bring the loss of population diversity when accelerating 
the convergence of algorithm. In Section 1.2 where we will operate it as part of immune 
genes operation rather than independent step, will help alleviate the loss of the diversity of 
antibody population. For the TSP problem, we take the implementation of the Inver-over 
operator and vaccination operator in equal probability, which jointly constitute the immune 
genes operators. The immune genes operation process of the antibody sub-population 

( )j t′P (j = 1, 2,..., m) is described as follows: 
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The operation process of ( )( )IG j t′P : 

 for each antibody ( )i t′A  in ( )j t′P  
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if ( ( )Rand 0,1 0.5≤  )   
    ( )( )Viccination i t′A ; 
else   

( )( )Inver_over i t′A ; 
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Here, ( )Rand 0,1  is a random number between 0 and 1. The vaccination ( )Viccination A on 
antibody A is described as follows: 

The operation process of ( )Viccination A ： 

( )Viccination A  
{ 
 If (the current vaccine v of antibody sub-population is not empty) 
{ 
c is the first city in v ， c′ is the next city of c in v ; 
While ( c is not the last city in v ) 
{ 
      turn the city between the next city of c and c′ in ′A  
      c c= ′ ; 
      c′ =The next city of c′ in v 
} 
} 
} 

Here, the process of vaccination operation using Inver-over operator plant the edges of a 
single-gene vaccine into the operated antibody or plant the edges of multi-genes vaccine 
group into the operated individuals. 

5. Simulating results and analysis  
The simulating software of the proposed approach PIMCSA was developed by C&MPI and 
ran on the HPC (Cluster) parallel computing platform. We got several typical symmetric 
and asymmetric TSP instances from TSPLIB and tested them. 
As the memory mature operation of PIMCSA used steps of ILK, and immune genetic 
manipulation of antibody sub-population introduced the Inver-over operator, we compare 
the performance of PIMCSA with iterated Lin-Kernighan (ILK) algorithm (D. S. Johnson, 
1990) and GuoTao (GT) algorithm (T. Guo & Z. Michalewicz, 1998). ILK algorithm is one of 
the most effective algorithms based on local search, and GT algorithm is the best pure 
evolutionary stochastic searching algorithm. In PIMCSA, antibody sub-population number 
m is set as 8, antibody sub-population size n is set as 30. Population size of ILK and GT 
algorithm are both set as 30. Termination condition of these three algorithms is that current 
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optimal path length of memory population is less than the best known path length or equal 
to it, or the current optimal path remains unchanged in 50 iterations. All the experimental 
data are statistical results of 20 independent runs. 

5.1 Performances on symmetric TSP instances 
Table 1 shows the performances of compared algorithms on symmetric TSP problems with 
different type and size. In the table, “Percent over Opt” refers to the percentage of difference 
between path length and the optimal path length, and “Running Time (seconds) “refers to 
the average time of computing. 
 

Percent over Opt (mean) Running Time (mean) 
Instance Cities Opt 

ILK GT PIMCSA ILK GT PIMCSA 
ATT532 532 27686 0.086 0.114 0 127.5 83.5 17.4 
GR666 666 294358 0.061 0.176 0.003 292.1 102.4 59.6 
DSJ1000 1000 18659688 0.133 0.152 0.008 418.6 372.4 52.2 
PR2392 2392 378032 0.142 0.357 0.006 102.5 87.3 16.6 
RL5915 5915 565530 0.163 0.879 0.047 293.7 226.9 239.1 
PLA7397 7397 23260728 0.059 0.356 0.007 8843.2 8221.1 1762.4 
RL11849 11849 923288 0.191 0.824 0.105 6311.3 5352.8 2581.3 
USA13509 13509 19982859 0.163 1.209 0.067 10352.3 8931.5 3520.7 
PLA33810 33810 66050499 0.184 1.813 0.152 76315.8 53356.6 18137.4 
PLA85900 85900 142382641 0.246 1.115 0.214 214307.5 113755.9 29883.2 

Average 0.1428 0.6995 0.0609 31736.45 19049.04 5626.99 

Table 1. Performance comparisons on Symmetric TSP Instances 

As it can be seen from Table 1, for symmetric TSP problems, both the tour quality and 
computing time of the proposed PIMCSA are superior to other two compared algorithms. 
With the increase of problem scale, the advantage of PIMCSA is getting more obvious. ILK 
can obtain TSP solution tour with higher quality, but the time cost of ILK is large, so it needs 
too long computing time for solving large scale TSP instances. GT expenses little computing 
time at each generation, however, it is easy to fall into local optimum. The running time of 
GT is shorter, but the quality of solution tour is not very good. PIMCSA combines the 
strengths of these two types of methods, it use the random search with small time cost for 
global search, and then it use the heuristic search with large time cost for local search. 
Experimental results indicate that PIMCSA achieves a good trade off between solution 
quality and computing time.  

5.2 Performances on asymmetric TSP Instances 
For asymmetric TSP with N cities, we use Jonker and Volgenant’s method to transform it 
into symmetric TSP with 2N cities (Noda E et al., 2002). 
Note ij N N

c
×

= ⎡ ⎤⎣ ⎦C as the cost matrix of asymmetric TSP problem, we can use equation (9) to 
transform it into 2 2ij N N

c
×

′ = ⎡ ⎤⎣ ⎦′C  which is the cost matrix of the transformed symmetric TSP 
instance. L is a sufficiently large real number. In this paper, we set ( )max ijL c= . 
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Percent over Opt (mean) Running Time (mean) Instance Cities Opt 
ILK GT PIMCSA ILK GT PIMCSA 

BR17 17 39 0 0 0 2.14 3.57 0.12 
P43 43 5620 0.082 0.372 0.002 33.2 21.7 25.3 
RY48P 48 14422 0.037 0.506 0.015 23.6 24.2 1.34 
FTV70 71 1950 0.132 0.358 0.039 42.9 38.1 2.33 
KRO124P 100 36230 0.031 0.114 0.007 72.3 55.6 1.15 
FT53 106 6905 0 0.037 0 31.2 63.4 1.85 
FTV170 171 2755 0.018 0.326 0.044 69.3 42.7 1.03 
RBG358 358 1163 0.139 1.977 0.006 137.5 114.6 36.6 
RBG 403 403 2465 0.082 0.973 0 291.7 174.3 59.4 
RBG 443 443 2720 0.074 0.661 0 372.5 351.1 84.9 

Average 0.0595 0.5324 0.0113 107.634 88.927 21.402 

Table 2. Performance comparisons on asymmetric TSP problems 
Table 2 shows asymmetric TSP simulation experiment results. Every term’s meaning is as 
same as Table 1. According to the data of table 2, we can come to the same conclusions as 
that of table 1. 

5.3 Performances on Large Scale Art TSP Instances 
Robert Bosch has created a fascinating series of instances of the traveling salesman problem 
(TSP) that provide continuous-line drawings of well-known pieces of art. In this part, large 
scale art TSP instances with sizes from 100,000 to 200,000 were adopted to verify the 
efficiency of the proposed PIMCSA. 
Fig. 3, Fig. 4 and Fig.5 are the city location and TSP tour obtained by the proposed PIMCSA. 
It can be seen that the obtained tours have no road crossing which indicates the tour is of 
good quality. 
Table 3 is the numerical results of PIMCSA on six large scale art TSP instances. The best 
known tour lengths (BT) in table 3 are given by Keld Helsgaun and published on the 
website TSP Homepage (http://www.tsp.gatech.edu/data/art/index.html).  
 

Instance Cities Best Known Tour Lengths 
(BT) 

Tour 
Lengths Percent over BT 

Monalisa100K 100K 5,757,199 5,758,769 0.0273 
Vangogh120K 120K 6,543,643 6,5455,94 0.0298 
Venus140K 140K 6,810,730 6,812,641 0.0281 
Pareja160K 160K 7,620,040 7,622,486 0.0321 
Curbet180K 180K 7,888,801 7,891,518 0.0344 
Earring200K 200K 8,171,733 8,174,864 0.0383 

Average 0.0317 

Table 3. Experimental results of PIMCSA on large scale art TSP instances 
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optimal path length of memory population is less than the best known path length or equal 
to it, or the current optimal path remains unchanged in 50 iterations. All the experimental 
data are statistical results of 20 independent runs. 

5.1 Performances on symmetric TSP instances 
Table 1 shows the performances of compared algorithms on symmetric TSP problems with 
different type and size. In the table, “Percent over Opt” refers to the percentage of difference 
between path length and the optimal path length, and “Running Time (seconds) “refers to 
the average time of computing. 
 

Percent over Opt (mean) Running Time (mean) 
Instance Cities Opt 

ILK GT PIMCSA ILK GT PIMCSA 
ATT532 532 27686 0.086 0.114 0 127.5 83.5 17.4 
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PR2392 2392 378032 0.142 0.357 0.006 102.5 87.3 16.6 
RL5915 5915 565530 0.163 0.879 0.047 293.7 226.9 239.1 
PLA7397 7397 23260728 0.059 0.356 0.007 8843.2 8221.1 1762.4 
RL11849 11849 923288 0.191 0.824 0.105 6311.3 5352.8 2581.3 
USA13509 13509 19982859 0.163 1.209 0.067 10352.3 8931.5 3520.7 
PLA33810 33810 66050499 0.184 1.813 0.152 76315.8 53356.6 18137.4 
PLA85900 85900 142382641 0.246 1.115 0.214 214307.5 113755.9 29883.2 

Average 0.1428 0.6995 0.0609 31736.45 19049.04 5626.99 

Table 1. Performance comparisons on Symmetric TSP Instances 

As it can be seen from Table 1, for symmetric TSP problems, both the tour quality and 
computing time of the proposed PIMCSA are superior to other two compared algorithms. 
With the increase of problem scale, the advantage of PIMCSA is getting more obvious. ILK 
can obtain TSP solution tour with higher quality, but the time cost of ILK is large, so it needs 
too long computing time for solving large scale TSP instances. GT expenses little computing 
time at each generation, however, it is easy to fall into local optimum. The running time of 
GT is shorter, but the quality of solution tour is not very good. PIMCSA combines the 
strengths of these two types of methods, it use the random search with small time cost for 
global search, and then it use the heuristic search with large time cost for local search. 
Experimental results indicate that PIMCSA achieves a good trade off between solution 
quality and computing time.  

5.2 Performances on asymmetric TSP Instances 
For asymmetric TSP with N cities, we use Jonker and Volgenant’s method to transform it 
into symmetric TSP with 2N cities (Noda E et al., 2002). 
Note ij N N

c
×

= ⎡ ⎤⎣ ⎦C as the cost matrix of asymmetric TSP problem, we can use equation (9) to 
transform it into 2 2ij N N

c
×

′ = ⎡ ⎤⎣ ⎦′C  which is the cost matrix of the transformed symmetric TSP 
instance. L is a sufficiently large real number. In this paper, we set ( )max ijL c= . 
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Percent over Opt (mean) Running Time (mean) Instance Cities Opt 
ILK GT PIMCSA ILK GT PIMCSA 

BR17 17 39 0 0 0 2.14 3.57 0.12 
P43 43 5620 0.082 0.372 0.002 33.2 21.7 25.3 
RY48P 48 14422 0.037 0.506 0.015 23.6 24.2 1.34 
FTV70 71 1950 0.132 0.358 0.039 42.9 38.1 2.33 
KRO124P 100 36230 0.031 0.114 0.007 72.3 55.6 1.15 
FT53 106 6905 0 0.037 0 31.2 63.4 1.85 
FTV170 171 2755 0.018 0.326 0.044 69.3 42.7 1.03 
RBG358 358 1163 0.139 1.977 0.006 137.5 114.6 36.6 
RBG 403 403 2465 0.082 0.973 0 291.7 174.3 59.4 
RBG 443 443 2720 0.074 0.661 0 372.5 351.1 84.9 

Average 0.0595 0.5324 0.0113 107.634 88.927 21.402 

Table 2. Performance comparisons on asymmetric TSP problems 
Table 2 shows asymmetric TSP simulation experiment results. Every term’s meaning is as 
same as Table 1. According to the data of table 2, we can come to the same conclusions as 
that of table 1. 

5.3 Performances on Large Scale Art TSP Instances 
Robert Bosch has created a fascinating series of instances of the traveling salesman problem 
(TSP) that provide continuous-line drawings of well-known pieces of art. In this part, large 
scale art TSP instances with sizes from 100,000 to 200,000 were adopted to verify the 
efficiency of the proposed PIMCSA. 
Fig. 3, Fig. 4 and Fig.5 are the city location and TSP tour obtained by the proposed PIMCSA. 
It can be seen that the obtained tours have no road crossing which indicates the tour is of 
good quality. 
Table 3 is the numerical results of PIMCSA on six large scale art TSP instances. The best 
known tour lengths (BT) in table 3 are given by Keld Helsgaun and published on the 
website TSP Homepage (http://www.tsp.gatech.edu/data/art/index.html).  
 

Instance Cities Best Known Tour Lengths 
(BT) 

Tour 
Lengths Percent over BT 

Monalisa100K 100K 5,757,199 5,758,769 0.0273 
Vangogh120K 120K 6,543,643 6,5455,94 0.0298 
Venus140K 140K 6,810,730 6,812,641 0.0281 
Pareja160K 160K 7,620,040 7,622,486 0.0321 
Curbet180K 180K 7,888,801 7,891,518 0.0344 
Earring200K 200K 8,171,733 8,174,864 0.0383 

Average 0.0317 

Table 3. Experimental results of PIMCSA on large scale art TSP instances 
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               (a) City Location of Monalisa100K Instance         (b) Part of the obtained Tour  

Fig. 3. Performance of PIMCSA on Monalisa100K Instance 

 
              (a) City Location of Venus140K Instance               (b) Part of the obtained Tour 

Fig. 4. Performance of PIMCSA on Venus140K Instance 

 

            (a) City Location of Earring200K Instance               (b) Part of the obtained Tour 

Fig. 5. Performance of PIMCSA on Earring200K Instance 
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5.4 Effectiveness of the vaccine extraction strategy 
This part of experiments is used to verify the effectiveness of PIMCSA vaccine strategy. Fig. 
6 and Fig.7 shows the percentage of the edges’ appearance in the known best tour. The 
higher the percentage the more superior the vaccine is. These data are statistic results of 20 
independent runs. 
 

 
Fig. 6. Vaccine prediction accuracy for symmetric TSP  

 

 
Fig. 7. Vaccine prediction accuracy for asymmetric TSP 

Whether the problem is symmetrical or asymmetrical, the prediction accuracy of the vaccine 
increases rapidly along with the iteration times and the percentage is gradually close to one. 
It indicates that heuristic information of vaccine is helpful to speed up the algorithms’ 
convergence. Further more, when the scale of the problem is large, the initial prediction 
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accuracy of vaccine becomes high, however, the increasing rate of prediction accuracy is 
slow. When problem size is small, the initial vaccine prediction accuracy is low, but it 
increased rapidly along with iterations. 

5.5 Scalability of parallel algorithm 
Speedup ratio is an evaluation of the time gain of parallel algorithms. For a given 
application, speedup ratio of parallel system indicates how many times parallel algorithm is 
faster than serial algorithm. If sT  is the time that we need from start of algorithm to the last 
on a serial computer and pT  is the time we need on a parallel computer, the speedup ratio S 
is defined as: 

 s

p

TS
T

=   (10) 

We use the efficiency to measure the rate of a processor's effectively used computing power. 
If the CPU number is p, the efficiency E is defined as: 

 SE
p

=   (11) 

If W is the total computation of problem, ( )0 ,T W p is additional expenses (which is a function 
of W and p), then pT  can be expressed as: 

 
( )0 ,

p
W T W p

T
p

+
=   (12) 

Thus, the speed-up ratio S and efficiency E can be expressed as: 

 
( ) ( )0 0, 1 , / 1p

pW p pWS
T W T W p T W p W

= = = =
+ + + Ω

 (13) 

 ( )0

1 1
11 , /T W p W

S
pE

+Ω+
= = =   (14) 

From equation (13) and (14) we can see that ( )0 , /T W p WΩ =  is the key factor affect the 
efficiency of algorithms and processor. If W is certain, ( )0 ,T W p is only associated with p, it 
can be written as ( )0T p . This function is determined by the algorithm. ( )0T p  increase more 
slowly, the scalability of algorithm is better, otherwise be worse. From equation (14) we can 
deduce: 

 ( )0 , 11 1
T W p p

W S E
Ω = = − = −  (15) 

Fig. 8 and Fig. 9 show the relationship between Ω and p. Antibody sub-population size is 30, 
memory population size is p-1. The data are average results of 20 independent runs. 
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Fig. 8. Scalability of symmetric TSP   

 
Fig. 9. Scalability of asymmetric TSP 

When the scale of problem is certain, as the number of processors (p) increases, Ω  shows 
linear increasing trend, it indicates that PIMCSA has good scalability. When problem 
becomes larger, Ω  becomes smaller and increases more slowly, it indicates that the 
scalability of PIMCSA is better on large scale TSP problems. 
These results above are reasonable. Additional expenses mainly include three parts: the 
expense of communication (denoted as C1), vaccine producing of memory population 
(denoted as C2) and vaccine delivery costs (denoted as C3). C1 will linearly increase when p 
increase under certain scale of problem. C2 will linearly increase with the increase of p too. p 
has no influence on C3. C 1 and C 2 are the major overhead costs for large-scale TSP problem. 
Compared to C1 and C2, C 3 can be neglected. Therefore, if the scale of problem is certain, 
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( )0 ,T W p  will increase linearly with the increasing of p. When the scale of problem becomes 
larger, the total computation of problem (W) will increase, so Ω  will increase more slowly. 

6. Conclusion 
This chapter first introduces the immune system and immune optimization algorithm, and 
then proposes the parallel immune memory clonal selection algorithm (PIMCSA) for solving 
large scale TSP problem. In the proposed PIMCSA, a dynamic vaccine extraction (DV) 
strategy is designed for solving large-scale TSP problem. Based on the general framework of 
PIMCSA, a special designed memory population immune algorithm (MIA) and a specific 
antibody sub-populations immune algorithm (PIA) are also proposed for solving TSP 
problems. Simulating results on the symmetric and asymmetric TSP instances in TSPLIB 
indicate that PIMCSA has good performance on both tour quality and running time. We also 
verify the validity of PIMCSA vaccine extraction strategy. Experimental results show that 
the rate of accuracy increases rapidly with the process of iteration and gradually close to 1. 
In addition, this chapter also analyses in theory that speedup ratio of parallel algorithms 
and the processor efficiency are related to variables Ω  (the ratio of the extra overhead of 
algorithm and the total calculated amount of the problems). Experimental results show that, 
the parameter Ω of PIMCSA generally tends to enlarge linearly with the increase of the 
number of processors p, indicating that PIMCSA have good scalability.  
It can be seen that the dynamic vaccine strategy designed in this chapter is very effective for 
the combinatorial optimization problems just as TSP problem. PIMCSA is a parallel artificial 
immune algorithm suitable for solving large-scale and complex optimization problems. For 
the parallel artificial immune algorithm, it is an important direction for further research that 
how to determine the size, quantity of the antibody sub-populations, and the relationship 
between them and the number of processors, computing power. 
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1. Introduction     
Due to the complicated road network, the efficiency of product distribution remains on a 
lower level in Japan compared to that of the USA, which disadvantages the productivity of 
Japanese industries. This inefficiency also causes social problems and economical losses. 
Namely, we are facing the necessity of urgently reducing the volume of car exhaust gases to 
meet environmental requirement as well as curtailing transport expenses in Japan.  
There are many distribution systems that should be optimized, including the delivery of 
parcels, letters and products supply/distribution across multiple enterprises. In order to 
improve the efficiency of these distributions, it is necessary to optimize the delivery routes, 
or the delivery order of multiple delivery locations (addresses). One round delivery 
comprises more than several tens or hundreds of different locations. Thus, the optimization 
of a delivery route can be modelled as such a large-scale of Traveling Salesman Problem 
(TSP). However, TSP is a combinatorial problem that causes computational explosion due to 
n! order of combinations for n-city TSP. Therefore, to practically obtain the efficient delivery 
route of such a distribution system, a near optimal solving method of TSP is indispensable. 
Yet, the practical use of such a solving method on an actual site needs human confirmation 
(which is difficult to formulate) of the solution, since social and human conditions are 
involved. Namely, human users should check to understand that the solution is practical. 
Users sometimes should correct manually or select the alternative solution.  
Therefore, the TSP solving methods are required to ensure the response time necessary for 
the above human interaction. 
By the way, solutions generated by domain experts may have 2~3% of deviation from the 
mathematical optimal solution, but they never generate worse solutions which may cause 
practical problems. On the other hand, conventional approximate TSP solving methods 
(Lawer et al., 1985; Kolen & Pesch, 1994; Yamamoto & Kubo, 1997) may generate even 
mathematically optimal solutions in some cases but cannot ensure the amount of errors 
below 2~3%. Such errors possibly discourage user, which makes those conventional 
methods not practically useful, especially for the above-mentioned applications. 
Strict TSP solving methods, such as the branch and cut method (Grotschel & Holland, 1991) 
and Dynamic Programming (DP) (Bertsekas, 1987) or approximate solving methods using 
Simulated Annealing (SA) (Kirkpatrick et al., 1983; Ingber, 1993; Miki et al., 2003) and Tabu 
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Search (TS) (Glover, 1989; 1990; Hooker & Natraj, 1995; Fang et al., 2003), take much time for 
calculation. Therefore, they cannot guarantee the above-mentioned real-time conditions. The 
Lin-Kernighan (LK) method and its improved version (Lin & Kernighan, 1972) are also 
proposed as solving methods of the TSP. However, they cannot constantly guarantee expert-
level accuracy (Kubota et al., 1999). 
Thus, we developed a method which efficiently solves the TSP, using Genetic Algorithm 
(GA) (Onoyama et al., 2000). This method enables to guarantee the responsiveness by 
limiting the number of generations of GA and by improving genetic operations (initial 
generations, mutation, and crossover). However, in some distribution patterns, this solving 
method fell into a local minimum and could not achieve expert-level accuracy. Therefore, 
we needed further improvement of our solving method to guarantee expert-level accuracy 
for all cases. 
The chapter is organized as follows: In the next (second) section, the delivery route 
optimization problem and its technical problems are described. In the third section, the 
method for solving the problem is proposed. Then, in the fourth section, experiments to 
validate its effect and its results are shown. In the fifth section, the effectiveness of the 
solving method will be proved based on the experiments, and in the sixth section, we will 
compare it with other methods. And in the last seventh section, the results will be 
concluded. 

2. Problems in delivery route optimization 
In this section, firstly, two kinds of actual distribution systems are depicted. And, in 2.2, the 
optimization problems of these distribution systems are formally and technically described. 

2.1 Delivery route optimization problem 
A distribution network across multiple manufacturing enterprises is outlined in Fig. 1. Parts 
for production are delivered from parts makers (suppliers) to factories directly or through 
depots. Parts are not delivered to a factory or a depot independently by each parts maker, 
but a truck goes around several parts makers and collects parts. This improves the 
distribution efficiency, which contributes to the curtailment of distribution expenses and to 
the reduction of the volume of car exhaust gases. 
 

Factory 1

Factory ｍ

Parts Maker

Parts Maker

Depot 1

Depot n

Parts Maker

 
Fig. 1. Large-scale distribution network 
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In order to optimize the above-mentioned large-scale distribution network, we need to 
grasp the total cost of distribution under various conditions by repeating the simulation 
process as shown in Fig. 2. First, the conditions have to be set up manually, concerning 
locations of more than ten factories (parts integration points for production), locations of 
dozens of depots (intermediate depositories of parts), and allocation of trucks to transport 
parts. To calculate distribution cost in each simulation, it is necessary to create delivery 
routes. However, there are several hundreds of parts makers, dozens of depots and more 
than ten factories. Therefore, there are about 1000 distributing routes on each of which a 
truck goes around dozens (max. 40) of parts makers starting from one of the depots or 
factories. Thus, in each simulation, a delivery route creation is repeated about 1000 times for 
a set of conditions manually set up, the total delivery cost is calculated, and a person in 
charge globally decides the network optimality as shown in Fig. 2. To globally evaluate 
these results, human judgment is indispensable and interactive response time (less than tens 
of seconds) is required. Thus, the system needs to create about 1000 or several hundreds of 
distribution routes within at least tens of seconds. Therefore, one route has to be created 
within tens of milliseconds. 
 

 
Fig. 2. Simulation process 
Meanwhile, as to the delivery route optimization problem for parcels and letters, a round 
delivery is carried out 1-3 times a day with a small vehicle such as a motorcycle or a small 
truck.. Delivery zone that is covered by one vehicle is different according to the region. 
Delivery locations are comparatively overcrowded in the urban area, whereas scattered in 
the rural area. Therefore, the number of locations (addresses) for delivery differs - over 
several tens or hundreds - depending on the region and time zone. It is necessary to make 
and optimize a new delivery route for each round delivery since delivery locations change 
every day and every time. Though human or social factors should be considered, this is a 
problem to search the shortest path or route, modelled as a famous “Chinese Postman 
Problem” or “Traveling Salesman Problem (TSP)”. The computer support by near optimal 
solving method is quite useful to reduce the burden and loss time of workers as well as car 
exhaust gases in such distribution networks or parcels /letters delivery. 

2.2 Technical problems 
The delivery route optimization problem of these distribution systems is formulated as 
follows:  
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The delivery network is represented by weighted complete graph G=(V,E,w). V is node set. 
A node vi （i=1,…,N）represents a location (address) for delivery. N is the number of 
nodes. E is edge set. A edge eij represents a route from vi to vｊ. w is edge weight set. A edge 
weight dij represents a distance from node vi to node vｊ, dij = dji. The problem to find the 
minimal-length Hamilton path in such a graph G=(V,E,w) is called Traveling Salesman 
Problem (TSP).  
Thus, to improve the delivery efficiency of such distribution systems, it is required to obtain 
an approximate solution of a TSP within an interactive length of time (max. tens of 
milliseconds). Yet, expert-level accuracy (less than 3% of the deviation from the optimal 
solution) is always necessary, since domain experts may have such errors in their solutions 
but never generate worse solutions which may cause practical problems. 
We developed an efficient method for solving the TSP by elaborating a random restart 
method. The developed method enables to guarantee the responsiveness by limiting the 
number of repetitions and by devising component methods and heuristics (Kubota et al., 
1999). However, to meet the required guarantee of expert-level accuracy (below 3% of 
errors), it took more than 100 milliseconds to solve one TSP, which caused the time to solve 
one TSP should be significantly decreased. 
Therefore, in order to improve the real time behavior, we proposed a GA that uses heuristics 
for the crossover and the mutation, and yet whose generation number is limited (Onoyama 
et al., 2000).  
However, for some kinds of delivery location patterns, obtained solutions had more than 3% 
of errors. To overcome these weaknesses of the solving method, other heuristics were 
applied. Nevertheless, these heuristics were not effective again for some patterns, and the 
above-mentioned accuracy was still not guaranteed for all kinds of patterns (as is described 
in detail in section 5.1). 
In the next section, an intelligent approximate method to solve above-mentioned problems 
is proposed. 

3. A multi-world intelligent genetic algorithm 
As stated in the foregoing sections, the delivery routing problem in the above distribution 
systems can be formalized as a TSP. Especially a symmetrical (non-directed) Euclidean TSP 
(Lawer et al., 1985; Yamamoto & Kubo, 1997) is assumed in this chapter. 

3.1 Concept of the proposed method 
In order to solve problems mentioned above (in section 2), the following multi-world 
intelligent GA (MIGA) method is proposed. This guarantees both real-time responsiveness 
and accuracy for various kinds of delivery location patterns. At the initial phase of GA, 
groups of individuals (population) that become the candidates of the solution are generated. 
And, based on the population, new individuals (solution candidates) are generated by the 
crossover and the mutation operator, and individuals are improved by the evaluation and 
the selection. With our GA, each individual (chromosome) represents the tour, namely the 
delivery route in TSP. Each gene of the chromosome represents the node number 
(identification number of the address for delivery). A chromosome is a sequence of nodes 
whose alignment represents a round order as shown in Fig. 3.  
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Fig. 3. Chromosome 

3.1.1 Multi-world intelligent GA 
It is difficult to find an effective search method that always guarantees expert-level 
optimality as well as the required real-time behavior for various distribution location 
patterns. Heuristics, that are effective to particular patterns, are not necessarily useful to 
other patterns. Yet, the application of excessively complicate algorithms or heuristics makes 
the responsiveness worse. Therefore, a high-speed GA that mainly uses simple general 
heuristics is combined with an intelligent GA, into which knowledge for handling particular 
problems is incorporated. In this way, we could avoid local minima for various delivery 
location patterns. 
Concretely speaking, a 2opt-type mutation is used for the high-speed GA. This 2opt-type 
mutation quickly improves tours. Therefore, good solutions are usually expected to be 
obtained within a short length of time. However, it also takes risks of falling into a local 
minimum. Our experiments revealed that this high-speed GA (called 2opt-type GA) 
computes some inefficient tours for certain delivery location patterns. 
Thus, a multi-world intelligent GA method is proposed. In this method, there are two kinds 
of GA worlds; (1) an intelligent GA world (called block-type GA) holding the knowledge to 
meet the particularities of problems as well as (2) the high-speed GA world (called 2opt-type 
GA). Both kinds of worlds are independently executed. Such execution is repeated. The 
same kind of worlds can be repeated. And they are collaborated through integrating the 
results. 
In the intelligent GA world, the following rather problem-oriented knowledge about the 
neighborhood conditions or their relaxation is incorporated into operations of the block-type 
GA so that these operations can be controlled through utilizing the knowledge. 
a. Multi-step NI method 

This is particular heuristics that constructs the initial tour by using step-by-step the                       
NI (Nearest Insertion) method to globally consider adjacent delivery locations, where 
the adjacency is defined by problem-oriented knowledge as mentioned later.  

b. Block-type mutation 
This mutation selects a node randomly out of a tour, and mutates it together with   its 
neighbor nodes in order to avoid local minimum solutions. 

3.1.2 Limiting the generation number of GA 
In this method, the computation time necessary for processing the GA is calculated as 
follows. 
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In the intelligent GA world, the following rather problem-oriented knowledge about the 
neighborhood conditions or their relaxation is incorporated into operations of the block-type 
GA so that these operations can be controlled through utilizing the knowledge. 
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This mutation selects a node randomly out of a tour, and mutates it together with   its 
neighbor nodes in order to avoid local minimum solutions. 

3.1.2 Limiting the generation number of GA 
In this method, the computation time necessary for processing the GA is calculated as 
follows. 
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Let 
• n be the the population size,  

• l be the length per individual,  
• T(X) be the computation time of X, 
• Prob(X) the probability of X, and 
• Ave(X) the average of X. 

So the computation time can be estimated as 
computation time =  
T(initialize) + number of generations * T(one generation of GA) + margin constant C 
with 

• T(initialize) = n * Cini * fini(l) 
• T(one generation of GA) =  
        T(crossover stage) + T(mutation stage) + T(evaluation) + T(selection) 
• T(crossover stage) = n * Prob(crossover) * Ave(T(crossover)) 
• Ave(T(crossover)) = Ccros * fcros(l) 
• T(mutation stage) = n * Prob(mutation) * Ave(T(mutation)) 
• Ave(T(mutation)) = Cmut * fmut(l) 
• T(evaluation) = Cfit * ffit(l, n), T(selection) = Csel * fsel(n) 

As the parameters of GA, n, l, Prob(crossover) and Prob(mutation) are given. fini(l), fcros(l), fmut(l), 
ffit(l, n) and fsel(n) are respectively computational complexity of each operation (initialization, 
crossover, mutation, fitness evaluation, and selection) that basically does not depend on 
hardware details such as the CPU architecture. These are derived through analyzing the 
algorithm. For example, since “quick sort” is used in the selection operator, fsel(n) is 
calculated as follows: 

 * *
1 0( ) (log )self n n n C n C= + +  (1) 

 

Here, C1 and C0 are the coefficients for the minor dimension to calculate the complexity of 
the quick sort algorithm. Cini, Ccros, Cmut, Cfit, Csel, are coefficients to obtain computation time 
from the complexity of each operation mentioned above. These coefficients are hardware 
dependant but can be identified using the result of experiments. More precisely, these can 
be calculated using the number of steps of each program, and identified/adjusted using the 
result of experiments to take detailed factors such as the CPU architecture into account. The 
computation time for one generation of GA changes stochastically.  
However, the estimation error can be suppressed within allowable ranges, through 
1. dividing the computation time into that of fundamental components and  
2. calculating the computation time using each component’s computational complexity 

and the experimental results to determine the coefficient. 
Furthermore, to absorb this estimation error, and to guarantee the interactive real-time 
responsiveness, a margin constant C can be set by the user as a safety margin. 
Using this computation time, the number of generations repeatable within the required 
response time can be calculated. 

3.2 Components of the proposed method 
In this method, a gene represents a (traveling) node, and an individual represents a tour. 
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3.2.1 Method for generating initial individuals 
In order to obtain a highly optimized solution by avoiding the convergence into a local 
minimum, the randomness of the initial individuals is important. However, the speed of 
convergence slows down, if totally random initial solutions are generated as is done by a 
random method. Thus, the other methods are devised as shown below. 
a. Random method 
Construct a tour by putting nodes in a random order. 
b. Random NI method 
Put nodes in a random order and insert them into a tour by using the NI method    
according to the randomized order. 
c. Multi-step NI method 
In case experts generate a tour (a traveling route), they usually determine the order of 
delivery locations, globally considering the whole route, so that the nearest location from 
the present one can always be the next location to deliver. On the model of such global 
consideration of experts, a multi-step NI method is proposed which enables to generate a 
tour similar to the tour generated by experts. 
In detail, this method constructs a tour through the following steps: 
1. Que(nodes) is a queue of nodes with their check count of each node initialized as zero. 

tourgen is the tour generated. w is a real type variable that meets the requirement 1<= w. 
Its initial value is decided by problem-oriented knowledge. For example, w is decided 
based on the position of the entire node as follows:  

  ( * ) /ave avew Dist d Distσ= +  (2) 

        Distave is an average of the distance between each node and a depot. σ is a standard   
deviation of the distance among nodes. The initial value of d is 1.0.  

2. Enqueue all nodes to Que(nodes) at random order. 
3. Dequeue a node (nodeadd) from Que(nodes). 
4. Temporally add a nodeadd to tourgen by the NI method.  
5. Evaluate Lpre and Lafter. Lpre is the length of tourgen before its addition. Lafter is the length of 

tourgen after its addition. … (*) 
6. If Lafter < (Lpre * w), then nodeadd is inserted (actually added) into tourgen and w is returned 

to an initial value. Else enqueue nodeadd to Que(nodes), with check count of nodeadd 
incremented.  

7. f the check count of the top node of Que(nodes) is not zero, then w is increased, and the 
check count of every node in Que(nodes) is initialized zero. Here, the quantity of this 
increase is also decided by problem-oriented knowledge, for example, dnew = dold + 0.5 
of the equation (2).  

8. If Que(nodes) is empty, then it ends. Else it returns to step (3) and repeat. 
* Distances between two points are calculated for all their combinations by the Dijkstra 
method beforehand. 

3.2.2 Method for crossover (NI-combined crossover) 
To inherit good features of parents by crossover and to realize the quick convergence in GA, 
a crossover operation using the NI method is proposed. This crossover operation called NI-
combined crossover comprises the following steps (Fig. 4): 
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1. dividing the computation time into that of fundamental components and  
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and the experimental results to determine the coefficient. 
Furthermore, to absorb this estimation error, and to guarantee the interactive real-time 
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In this method, a gene represents a (traveling) node, and an individual represents a tour. 
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convergence slows down, if totally random initial solutions are generated as is done by a 
random method. Thus, the other methods are devised as shown below. 
a. Random method 
Construct a tour by putting nodes in a random order. 
b. Random NI method 
Put nodes in a random order and insert them into a tour by using the NI method    
according to the randomized order. 
c. Multi-step NI method 
In case experts generate a tour (a traveling route), they usually determine the order of 
delivery locations, globally considering the whole route, so that the nearest location from 
the present one can always be the next location to deliver. On the model of such global 
consideration of experts, a multi-step NI method is proposed which enables to generate a 
tour similar to the tour generated by experts. 
In detail, this method constructs a tour through the following steps: 
1. Que(nodes) is a queue of nodes with their check count of each node initialized as zero. 

tourgen is the tour generated. w is a real type variable that meets the requirement 1<= w. 
Its initial value is decided by problem-oriented knowledge. For example, w is decided 
based on the position of the entire node as follows:  
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tourgen after its addition. … (*) 
6. If Lafter < (Lpre * w), then nodeadd is inserted (actually added) into tourgen and w is returned 

to an initial value. Else enqueue nodeadd to Que(nodes), with check count of nodeadd 
incremented.  

7. f the check count of the top node of Que(nodes) is not zero, then w is increased, and the 
check count of every node in Que(nodes) is initialized zero. Here, the quantity of this 
increase is also decided by problem-oriented knowledge, for example, dnew = dold + 0.5 
of the equation (2).  

8. If Que(nodes) is empty, then it ends. Else it returns to step (3) and repeat. 
* Distances between two points are calculated for all their combinations by the Dijkstra 
method beforehand. 

3.2.2 Method for crossover (NI-combined crossover) 
To inherit good features of parents by crossover and to realize the quick convergence in GA, 
a crossover operation using the NI method is proposed. This crossover operation called NI-
combined crossover comprises the following steps (Fig. 4): 
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1. tourpar1 = {x1, x2, …, xn} and tourpar2 = {y1, y2, …, yn} are parent tours and tourchi is a child 
tour. 

2. Determine a crossover point xi from tourpar1.  
3. Copy a sub-tour {x1, x2, … , xi}, representing a group of nodes located before the 

crossover point in tourpar1, to tourchi. 
4. Change the order of remaining nodes {xi+1, … , xn}, according to the order of nodes in 

tourpar2. 
5. Insert the remaining nodes into tourchi, using the NI method in the order that is 

changed in (4). When all nodes of tourpar1 are inserted to tourchi, the crossover processing 
ends. 

In this way, the generated tour is represented as a new child. Through applying this NI-
combined crossover, the order of nodes contained in parents is inherited to their children to 
increase the convergence speed. 
 

(1)Start: 13245768

Parent-1 Parent-2

16384752

Child

(2)Step1: 163847521324 5768

(3)Step2: 163847521324 5768 1324

(4)Step3: 163847526875 1324

(5)Step4: 163847526875  13624

End: 13682547

Determine the crossover point

Change the order of remaining nodes according to Parent-2's order.

Insert remaining nodes by NI method.

Copy

Insert

 
Fig. 4. NI-combined crossover 

3.2.3 Method for mutation 
Mutation of GAs often did not have much impact on the convergence of solutions without 
combining local search methods or without embedding problem-oriented knowledge. Thus, 
the following two mutation methods are proposed. 
a.     2opt-type mutation 
This method enables to improve the convergence speed by combining a 2opt-like simple 
local search heuristic method with GA’s mutation operation. This consists of the following 
steps : 
1. tourpar = {x1, x2, …, xn} is a parent tour and tourchi is a child tour. 
2. Copy the contents of tourpar to tourchi.  
3. Select a node xi randomly from tourchi.  
4. Select another node xj randomly from tourchi except {xi, xi+1}.  
5. Generate tourgen {x1,…, xi,xj, … , xi+1,xj+1,…, xn} by reversing sub-tour {xi+1, … , xj} of 

tourchi {x1,…, xi,xi+1, … , xj,xj+1,…, xn} 
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6. If Lchi < Lgen (tour length is not improved), then it ends. Else copy the contents of tourgen 
to tourchi. Until such link exchanges are all checked, return to step (4) and repeat. Lgen is 
the length of tourgen. Lchi is the length of tourchi. 

b.     Block-type mutation 
2opt-type mutation easily improves tours, and good solutions are expected to be obtained 
within a short length of time. However, it also takes risks of failing into a local minimum. To 
obtain a solution closer to the optimum, it is desirable to escape from a local minimum by 
destroying a block of a tour at a time. For this purpose, the following block-type mutation is 
proposed. This consists of the following steps: 
1. tourpar = {x1, x2, …, xn} is a parent tour. tourchi is a child tour. 
2. Select a node xi randomly from tourpar.  
3. Move the nodes, except {xi-r, … , xi+r} namely except xi and its neighbor nodes of tourpar, 

to tourchi. The size of neighborhood r is specified as problem-oriented knowledge, for 
instance, a random number from 0 to B * (the distance to the node farthest from a depot). B 
is a constant number specified as problem-oriented knowledge.  

4. Insert {xi-r, … , xi+r} into tourchi using the NI method. When all nodes have been inserted 
to tourchi, the mutation processing ends. 

3.2.4 Method for selection 
In order to get highly optimized solutions and realize quick convergence in GAs, 
individuals are selected out of the population including both parents' and children's. And, 
10% of individuals in a new generation are selected randomly from the above populations to 
give the chance of reproduction to even inferior individuals. Furthermore, to enhance the 
evolution efficiency, only one individual is selected when the same individuals are 
generated.  

3.3 Proposed solving method 
Through integrating above components, the following three kinds of GA methods are 
proposed to ensure both real-time responsiveness and accuracy for various kinds of delivery 
location patterns. 

3.3.1 2opt-type GA (high-speed GA) 
This method is shown in Fig. 5. This method makes it possible to guarantee quick 
convergence of solutions through improving initial solutions due to the random NI method 
and through applying the NI-combined crossover and the 2opt-type mutation. 
The computational complexity of the NI-combined crossover is O(n2) . On the other hand, 
the computational complexity of the 2opt-type mutation is much smaller. Indeed, the 
computational complexity of the 2opt-type mutation is O(n2) in worst cases, but it hardly 
occurs for highly optimized individuals generated in the initial population phase by the 
random NI method and improved in later phases by the NI-combined crossover.  
In more detail, the probability of improvement by link exchanges of the 2opt method is 
small, since the NI method inserts each node so that the difference, between 
1. the sum of the length of both links with both sides’ neighbors and  
2. the length of the link among both neighbors before its insertion,  

can be minimized. Thus, the computation time of the 2opt-type mutation is expected to be 
much smaller than that of operations using the NI method such as the NI-combined 
crossover. 
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Mutation of GAs often did not have much impact on the convergence of solutions without 
combining local search methods or without embedding problem-oriented knowledge. Thus, 
the following two mutation methods are proposed. 
a.     2opt-type mutation 
This method enables to improve the convergence speed by combining a 2opt-like simple 
local search heuristic method with GA’s mutation operation. This consists of the following 
steps : 
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6. If Lchi < Lgen (tour length is not improved), then it ends. Else copy the contents of tourgen 
to tourchi. Until such link exchanges are all checked, return to step (4) and repeat. Lgen is 
the length of tourgen. Lchi is the length of tourchi. 

b.     Block-type mutation 
2opt-type mutation easily improves tours, and good solutions are expected to be obtained 
within a short length of time. However, it also takes risks of failing into a local minimum. To 
obtain a solution closer to the optimum, it is desirable to escape from a local minimum by 
destroying a block of a tour at a time. For this purpose, the following block-type mutation is 
proposed. This consists of the following steps: 
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instance, a random number from 0 to B * (the distance to the node farthest from a depot). B 
is a constant number specified as problem-oriented knowledge.  

4. Insert {xi-r, … , xi+r} into tourchi using the NI method. When all nodes have been inserted 
to tourchi, the mutation processing ends. 

3.2.4 Method for selection 
In order to get highly optimized solutions and realize quick convergence in GAs, 
individuals are selected out of the population including both parents' and children's. And, 
10% of individuals in a new generation are selected randomly from the above populations to 
give the chance of reproduction to even inferior individuals. Furthermore, to enhance the 
evolution efficiency, only one individual is selected when the same individuals are 
generated.  

3.3 Proposed solving method 
Through integrating above components, the following three kinds of GA methods are 
proposed to ensure both real-time responsiveness and accuracy for various kinds of delivery 
location patterns. 

3.3.1 2opt-type GA (high-speed GA) 
This method is shown in Fig. 5. This method makes it possible to guarantee quick 
convergence of solutions through improving initial solutions due to the random NI method 
and through applying the NI-combined crossover and the 2opt-type mutation. 
The computational complexity of the NI-combined crossover is O(n2) . On the other hand, 
the computational complexity of the 2opt-type mutation is much smaller. Indeed, the 
computational complexity of the 2opt-type mutation is O(n2) in worst cases, but it hardly 
occurs for highly optimized individuals generated in the initial population phase by the 
random NI method and improved in later phases by the NI-combined crossover.  
In more detail, the probability of improvement by link exchanges of the 2opt method is 
small, since the NI method inserts each node so that the difference, between 
1. the sum of the length of both links with both sides’ neighbors and  
2. the length of the link among both neighbors before its insertion,  

can be minimized. Thus, the computation time of the 2opt-type mutation is expected to be 
much smaller than that of operations using the NI method such as the NI-combined 
crossover. 
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Fig. 5. 2opt-type GA 
3.3.2 Block-type GA (intelligent GA) 
This method is shown in Fig. 6. This method is expected to obtain highly optimized 
solutions through avoiding local minima. This can be attained through (1) constructing 
highly optimized initial solutions by means of the multi-step NI method, and (2) 
reconstructing a large part of a locally optimized tour by means of block-type mutation to 
avoid falling into a local minimum. 
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Fig. 6. Block-type GA 
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3.3.3 Multi-world intelligent GA 
The finally proposed method is called “Multi-world intelligent GA (MIGA)”. This comprises 
the 2opt-type GA method (world) and the block type GA method (world) that follows the 
former. MIGA selects the better one out of the solutions obtained in these two GA worlds. 
This raises the probability to have highly accurate solutions for various types of delivery 
location patterns within an interactive real-time context, because of the following reasons: 
1. As is explained in 3.3.1, though the computation time of the NI-combined crossover is 

O(n2), the computation time of the 2opt-type mutation in the 2opt-type GA method 
(world) is much smaller than the former. Furthermore, the NI method checks just links 
among neighbors but all links among neighbors in the tour to be inserted. Meanwhile, 
though not all links, the 2opt operation in the 2opt-type mutation checks links between 
nodes that are not neighbors. Thus the 2opt-type mutation in the 2opt-type GA world 
but not being in the block type GA world can have the possibility to search other 
optimal solutions than the NI method, namely the block type GA method where only 
NI method is used effectively as heuristics. 

2. On the other hands, the block type GA world can have the possibility to search other 
optimal solutions than 2opt-type GA, owing to the Multi step NI method and the 
block-type mutation, both of which exploits the power of the NI method enforced by 
problem oriented knowledge mentioned previously in (c) of 3.2.1 and in (b) of 3.2.3. 

Yet, to guarantee real-time responsiveness, both of these two GAs finish their processing 
within the limited length of time through offline calculation of the number of generations 
repeatable within the time limit (e.g. 15 milliseconds for each GA). 

4. Experiment and results 
4.1 Experiment 
In this section, the experiment to evaluate the proposed method is explained. The program 
codes are written by C language. A computer equipped with Intel Pentium II (450MHz) 
processor and 256MB memory is used for this experiment.  
As explained by the footnote in the introduction, 40 cities TSPs were used for this 
experiment. Yet, various combinations of 40 delivery locations are possible. Thus, randomly 
selected 20000 different patterns of 40 delivery locations were prepared. Then, to evaluate 
three kinds of GA methods described in 3.3, each solving method solved 20000 test patterns, 
100 times per pattern, and the probability to obtain solutions within 3% of errors was 
calculated. 
In this experiment, the population size is 100 and each crossover rate and mutation rate are 
10% respectively. These parameters were determined by the way of comparative 
experiments with many sets of parameters. 

4.2 Results 
To guarantee the real-time responsiveness, the time necessary for processing one generation 
is calculated, and based on this value, the number of generations of the GA is determined. 
Table 1 shows an example of the number of generations to respond within 30 milliseconds 
when the population size is 100. Then, the tests were repeated 100 times per pattern for 
three kinds of GAs. 
Each test used 20000 kinds of delivery location patterns. The probability to obtain solutions 
within 3% of errors compared to the optimal solutions was checked. Furthermore, the 
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3.3.2 Block-type GA (intelligent GA) 
This method is shown in Fig. 6. This method is expected to obtain highly optimized 
solutions through avoiding local minima. This can be attained through (1) constructing 
highly optimized initial solutions by means of the multi-step NI method, and (2) 
reconstructing a large part of a locally optimized tour by means of block-type mutation to 
avoid falling into a local minimum. 
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3.3.3 Multi-world intelligent GA 
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probability to obtain the optimal solutions within 30 milliseconds was also checked. These 
results are shown in Table 2. 
 

# Method Generating Initial Individuals Mutation Number of Generations 
1 2opt-type Random NI 2opt-type 24 
2 Block-type Random + Multi step NI Block-type 20 

Table 1. The number of generations of each method repeatable within 30 milliseconds 
 

# Method Optimal Below 3% 
1 2opt-type GA 84.45% 99.885% 
2 Block-type GA 83.75% 99.785% 

3 MIGA 92.05% 100.0% 

Table 2. The solution optimality 

5. Evaluation 
5.1 Effect of the proposed TSP solving method 
Table 2 shows the usefulness of the proposed MIGA quite convincingly. Only MIGA 
method could solve a 40 cities TSP with less than 3% of errors with 100% of probability 
within 30 milliseconds. 
 

                  
                            (a) 2opt-type GA                                            (b) Block-type GA 
                            (Tour length:259)                                          (Tour length:249) 
Fig. 7. Difference of tour shape in a special location pattern 

5.1.1 Effect of block-type GA (intelligent GA) 
Tour shapes were examined as to solutions generated by the 2opt-type GA and leaving 
more than 3% errors. As a result, most of these shapes were like gear wheels as shown in 
Fig. 7 (a). Experts usually generate more straight routes as shown in Fig. 7 (b). If experts find 
inefficient routes such as shown in Fig. 7 (a), they reject to use the system since they consider 
it as an unreliable one.  
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In case of using a block-type GA (intelligent GA), tours similar to Fig. 7(b) were generated 
even for such delivery location patterns. The reason is why the intelligent GA has the block-
type mutation in order to avoid falling into a local minimum. 

5.1.2 Effect of multi-world intelligent GA 
According to our experiment, in case of the 2opt-type GA, 43 cases out of 20000 tests had 
more than 3% errors. In case of the block-type GA method, 23 cases had more than 3% 
errors. 
However, the multi-world intelligent GA (MIGA), namely, the 2opt-type GA subsequently 
followed by the block-type GA could generate solutions below 3% of error within 30 
milliseconds, for every case in 20000 tests. The reason is that, coping with various delivery 
location patterns, either the 2opt-type GA or the intelligent GA can avoid falling into a local 
minimum (over 3% errors). Thus, MIGA method could guarantee the responsiveness as well 
as the expert-level accuracy, namely, below 3% errors.  

5.2 Applicability of the proposed solving method 
To evaluate the applicability of our proposed solving method, we applied it to a simulation 
of a parts supply logistics network which consists of one (assembly) factory, 7 depots, and 
30 part makers (suppliers). This simulation needs to optimize the distribution area allocation 
of each truck, as well as to optimize each truck route. This simultaneous optimization of 
each truck area allocation and each truck route is classified as the Vehicle Routing Problem 
(VRP) (Laporte, 1992).  
To apply our proposed methods to the VRP, we modified the chromosome structure and the 
NI method which is used in GA operations (initial construction, mutation, and crossover). 
Namely, the chromosome structure is extended to represent multiple trucks’ routes instead 
of one truck’s route, and the extended NI method puts a new node into the best position out 
of all truck routes instead of only one truck route. 
We simulated the above-mentioned logistics network in 3 cases, which have the same 
simulation conditions except the amount of loads, as shown in table 3. The resultant number 
of trucks in table 3 is verified as optimal. Moreover, the total tour length deviation from the 
optimal solution is less than 3 %. 
Consequently, our proposed GA methods such as the multi-step NI method and the block-
type mutation are applicable not only to the TSP but also to more general problems such as 
the VRP. That is to say, these methods are effective in solving the problems defined over 
metric space such as the TSP and the VRP. Moreover, the concept of the block type mutation 
is applicable to the problems defined over topological space which does not have metric 
system but only neighborhood system. 
 

 

# Condition 
(number of loads) Number of trucks Total tour length (Deviation) 

1 700 29 1015km (2.6%) 
2 900 41 1345km (2.8%) 
3 1000 48 1612km (2.8%) 

Table 3. VRP simulation result 
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6. Comparisons 
A lot of methods to solve TSP are proposed for practical applications. In this section, our 
methods are compared with other methods.  
Three types of the proposed methods (multi-world intelligent GAs) are tested, each of which 
has different stopping condition. MIGA1 (multi-world intelligent GA type 1) stops searching 
when it stops improving the solution. The computation time of MIGA2 is one tenth of that 
of MIGA1. The computation time of MIGA3 is 30 milliseconds. Experiments were conducted 
under the following computation environment. Namely, CPU is AMD Athlon 64 X2 3800+ 
2GHz processor. It is almost the same performance as Athlon 64 3200+ 2GHz because of its 
execution on the single core mode with 1GB memory. The programs were written in C 
language, compiled by Microsoft Visual C++ .NET 2003 ver. 7.1.3091 with /O2 option 
(directing the execution speed preference), and executed on Windows XP Professional.  
Yet, since other solution methods to be compared are executed on machines with different 
performance specification, it is necessary to take the difference into account. Therefore, 
referring to the statistical results of tests using RC5-72 benchmark (JLUG, 2008) for 
measuring the arithmetic processing speed, we obtained the spec difference correction 
coefficient (SDCC). This can be obtained by dividing the resultant value of the benchmark 
test executed on the experimental environments of other solution methods, by the resultant 
value of the benchmark test on our experimental environment. Through multiplying SDCC 
to the execution time of other solution methods, we calculated an assumed execution time 
on the same specification machine as ours.  
As for the strict optimization method, Branch-and-cut and Dynamic Programming (DP) are 
proposed. These methods require long computation time though they can obtain optimal 
solutions. Some algorithms using DP can search very near-optimal solutions for the 
Euclidean TSP in polynomial time (Arora, 1998). However, even these algorithms take too 
long time for practical applications such as ours, and it seems too hard for ordinary system 
developers to modify or adjust them for coping with various particular requirements. 
As for the approximate solution technique, various techniques are proposed. LK is famous 
as the heuristics search technique for TSP. However, LK and its improving methods (Lin & 
Kernighan, 1972; Yamamoto & Kubo, 1997) also take a long computation time though the 
optimality of obtained solutions is high and these methods are often incorporated with the 
meta-heuristics search such as SA, TA and GA.  
Simulated Annealing (SA) and Tabu Search (TS) are known as the meta-heuristics search 
technique. Theoretically, SA (Kirkpatrick et al., 1983; Ingber, 1993; Miki et al., 2003) is said to 
be able to search very near-optimal solutions by decreasing the risk of falling into a local 
minimum. But practically, it is very difficult to adjust SA’s parameters such as cooling speed 
for coping with various location patterns. Furthermore, SA usually takes a long computation 
time to get above-mentioned theoretical near-optimal solutions.  
TS (Glover, 1989; 1990; Hooker & Natraj, 1995; Fang et al., 2003) usually needs a long 
computation time to get practically optimal solutions. Worse still, TS is said to be weak in 
maintaining solution diversity though it has strong capability for local search. However, TS 
is improved in these weaknesses by Kanazawa & Yasuda, 2004.  
So-called random restart methods (Yanagiura & Ibaraki, 2000), which apply local search 
such as 2-opt for improving random initial solutions, can obtain near-optimal solutions. 
These include GRASP (Feo et al., 1994) or the elaborated random restart method (Kubota et 
al., 1999) that can guarantee responsiveness by limiting the number of repetitions. However, 
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according to our experiments, the above-mentioned elaborated random restart method 
needed about 100 milliseconds to solve 40 cities TSP and to guarantee less than 3% errors 
(Kubota et al., 1999). 
As for the Genetic Algorithms (GA) to efficiently solve TSP, various techniques are 
proposed. GA applied solving methods using the edges assembly crossover (EAX) (Nagata 
& Kobayashi, 1999) and the distance-preserving crossover (DPX) (Whiteley & Starkweather, 
1989) could get highly optimized solutions in case of very-large-scale TSPs (with 1000-10000 
cities) (Tamaki et al., 1994; Baraglia et al., 2001; Tsai et al., 2004; Nguyen et al., 2007). These 
crossover methods examine characteristics of parent’s tour edge to strictly inherit to 
children. However, since these crossover operations take long computation time for 
analyzing edges, using it for not-very -large-scale TSP is often inefficient. 
In reference (Baraglia et al., 2001), two kinds of methods are compared in many cases. It 
shows that Cga-LK is advantageous to 300-10000 cities TSP, but Random-LK is 
advantageous to 198 cities TSP. Therefore, the solution that can efficiently solve TSP of 1000 
cities or more can not necessarily efficiently solve TSP of about 100 cities. As to TSP of our 
intended scale (with 10s to 100 cities), in reference (Baraglia et al., 2001), a TSP lin105 is 
solved with 1.77% average error rate in 231seconds. The performance specification of this 
experimental environment is 200-MHz PentiumPro PC running Linux 2.2.12. Since this 
SDCC is 0.048, the solving time on our experimental environment is 11.088 seconds. 
Moreover, in reference (Cheng et al., 2002), the performance comparison experiments were 
conducted using various crossover operators. Even when the best crossover operator is 
used, average error rate is 3.1% and computation time is 750 seconds by SUN SPARC Ultra-
5 10 machine. Since this SDCC is 0.065, the solving time on our environment is 48.75 
seconds. Meanwhile, our MIGA1 obtains the optimal solution within 1.11 seconds, and 
MIGA2 obtains a solution with average error rate 0.31% in 0.15 seconds.  
A GA method with the same purpose as ours (aiming to obtain high quality approximate 
solution as fast as possible for 10s - 100s cities TSPs) is proposed by Yan et al., 2007. To 
compare the proposed methods with GA by Yan and TS by Kanazawa, the proposed 
methods are tested on nine benchmark problems in TSPLIB whose number of cities ranges 
from 70 to 280. Each problem is solved 100 times.  
Table 4 presents the SDCC of each method. And Table 5 presents the experimental results 
obtained by applying MIGA to the above nine benchmark problems and results corrected by 
using SDCC. The mark “-” on the Table 5 indicates no data. The digits (e.g. 70) contained in 
the name（e.g. st70） of TSP indicate the number of cities.  
Results of GA by Yan are compared with those of MIGA. Results for the problem st70 
indicate MIGA can obtain the solution having almost the same accuracy as GA by Yan, 
while the computation time is 20%. Results of problem eil76 indicate MIGA can obtain 
always optimal solution though the average error rate of GA by Yan is 1.184% within the 
same computation time. Specific results of problem a280 indicate MIGA can obtain solutions 
whose average error rate is 4% which is lower than that of GA by Yan and the computation 
time is 7% compared with that of GA by Yan.  
Next, results of TS by Kanazawa and MIGA are compared. Results indicate MIGA obtained 
almost the same accuracy solutions as TS by Kanazawa, while the computation time is 19% 
for the problem pr107, 63% for pr144, 45% for pr152, and 5% for pr226.  
Overall results show that MIGA is more effective than GA by Yan and TS by Kanazawa in 
solving the above mentioned nine TSP benchmark problems whose number of cities ranges 
from 70 to 280. 
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Results of MIGA3 show the average error rate is around 1% and even the worst case error is 
under 3.5%, to solve, within 30 milliseconds, eight TSP benchmark problems whose number 
of cities ranges from 70 to 226. 
 

 GA by Yan TS by Kanazawa 

Spec of computing machines 
CPU：Pentium4 

2.4GHz, 
メモリ：256MB 

CPU：Pentium4 
2.55GHz, 

メモリ：1GB (DDR266) 
Spec Difference Correction 

Coefficient (SDCC) 0.519 0.590 

Table 4. Spec Difference Correction Coefficient (SDCC) 
 

Average error rate from optimal solution [％] 
( Average execution time [sec] ) 

MIGA3 
Name of 

TSP 
GA by Yan TS by 

Kanazawa MIGA1 MIGA2 
Average Worst 

st70 0.312 
(0.348) - 0 

(0.750) 
0.370 

(0.074) 
0.400 

(0.030) 1.333 

eil76 1.184 
(0.602) - 0 

(0.844) 
1.914 

(0.080) 
2.193 

(0.030) 2.974 

kroA100 0.016 
(0.877) - 0 

(0.937) 
0.176 

(0.131) 
0.873 

(0.030) 1.588 

pr 
107 - 0.290 

(0.826) 
0.086 

(0.985) 
0.256 

(0.156) 
0.449 

(0.030) 0.899 

pr 
136 

0 
(3.690) 

0.190 
(4.378) 

0.624 
(2.016) 

1.067 
(0.233) 

2.460 
(0.030) 3.481 

pr 
144 

0 
(4.136) 

0.019 
(4.685) 

0 
(2.625) 

0.149 
(0.284) 

1.665 
(0.030) 2.896 

pr 
152 - 0.120 

(7.558) 
0.153 

(3.375) 
0.551 

(0.338) 
1.175 

(0.030) 2.77 

pr 
226 - 0.510 

(12.685) 
0 

(3.125) 
0.515 

(0.652) 
1.854 

(0.030) 2.566 

a280 10.770 
(17.371) - 3.180 

(10.453) 
6.572 

(1.100) - - 

Table 5. Results compared with related works on TSPLIB 

7. Conclusion 
In this chapter, an intelligent GA method for solving the TSP was proposed and evaluated. 
This is applicable to the optimization of various distribution systems such as the parcel and 
letter delivery as well as large-scale distribution networks that requires repetitive interactive 
simulations. This kind of application requires responsiveness as well as optimality, for 
example, solving a TSP with expert-level accuracy within 30 milliseconds. 
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In order to guarantee expert-level solutions for various kinds of delivery location patterns, 
the high-speed GA world was combined with the intelligent GA world. The high-speed GA 
world comprises the random NI method and the 2opt-type mutation. And this high-speed 
GA mainly uses simple general heuristics. The intelligent GA world includes the random 
method, the multi-step NI method, and the block-type mutation. And particular knowledge 
was incorporated in this intelligent GA to overcome the weakness of the high-speed GA. 
Namely, to cope with delivery location patterns for which the high-speed GA cannot 
guarantee expert-level solutions, this intelligent GA has rather problem-oriented 
knowledge. 
According to our experiment, in case of using the former high-speed GA, 23 test cases out of 
20000 test cases had more than 3% of errors compared to the optimal solution. However, our 
proposed multi-world intelligent GA method (which comprises the high-speed GA world 
and the intelligent GA world) could solve each of all 20000 test cases within 30 milliseconds 
at expert-level accuracy (less than 3% errors).  
Our experimental results showed that the proposed methods enable to solve TSPs with 
responsiveness and optimality necessary for a large-scale distribution network’s interactive 
simulation. 
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Results of MIGA3 show the average error rate is around 1% and even the worst case error is 
under 3.5%, to solve, within 30 milliseconds, eight TSP benchmark problems whose number 
of cities ranges from 70 to 226. 
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Coefficient (SDCC) 0.519 0.590 

Table 4. Spec Difference Correction Coefficient (SDCC) 
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Table 5. Results compared with related works on TSPLIB 

7. Conclusion 
In this chapter, an intelligent GA method for solving the TSP was proposed and evaluated. 
This is applicable to the optimization of various distribution systems such as the parcel and 
letter delivery as well as large-scale distribution networks that requires repetitive interactive 
simulations. This kind of application requires responsiveness as well as optimality, for 
example, solving a TSP with expert-level accuracy within 30 milliseconds. 
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In order to guarantee expert-level solutions for various kinds of delivery location patterns, 
the high-speed GA world was combined with the intelligent GA world. The high-speed GA 
world comprises the random NI method and the 2opt-type mutation. And this high-speed 
GA mainly uses simple general heuristics. The intelligent GA world includes the random 
method, the multi-step NI method, and the block-type mutation. And particular knowledge 
was incorporated in this intelligent GA to overcome the weakness of the high-speed GA. 
Namely, to cope with delivery location patterns for which the high-speed GA cannot 
guarantee expert-level solutions, this intelligent GA has rather problem-oriented 
knowledge. 
According to our experiment, in case of using the former high-speed GA, 23 test cases out of 
20000 test cases had more than 3% of errors compared to the optimal solution. However, our 
proposed multi-world intelligent GA method (which comprises the high-speed GA world 
and the intelligent GA world) could solve each of all 20000 test cases within 30 milliseconds 
at expert-level accuracy (less than 3% errors).  
Our experimental results showed that the proposed methods enable to solve TSPs with 
responsiveness and optimality necessary for a large-scale distribution network’s interactive 
simulation. 

8. References 
Arora, S. (1998). Polynomial Time Approximation Schemes for Euclidean TSP and Other 

Geometric Problems, Journal of the ACM, Vol. 45, No. 5, pp. 753-782 
Baraglia, R.; Hidalgo, J.I. & Perego, R. (2001). A hybrid heuristic for the traveling salesman 

problem, IEEE Transactions on Evolutionary Computation, Vol. 5, Issue 6, pp. 613-622 
Bertsekas, D. P. (1987). Dynamic Programming: Deterministic and Stochastic Models, Englewood 

Cliffs, NJ: Prentice-Hall 
Cheng, C.; Lee, W. & Wong, K. (2002). A genetic algorithm-based clustering approach for 

database partitioning, IEEE Transactions on Systems, Man and Cybernetics, Part C, 
Vol. 32, Issue 3, pp. 215-230 

Fang, Y.; Liu, G.; He, Y. & Qiu, Y. (2003). Tabu search algorithm based on insertion method, 
Proc. of the 2003 International Conference on Neural Networks and Signal Processing, pp. 
420-423 

Feo, T.A.; Recende M.G.C. & Smith S.H. (1994). A Greedy Randomized Adaptive Search 
Procedure for Maximum Independent Set, Operations Research, Vol. 42, No. 5, pp. 
860-878 

Glover, F. (1989). Tabu Search - Part I, ORSA Journal on Computing, Vol. 1, pp. 190-206 
Glover, F. (1990). Tabu Search - Part II, ORSA Journal on Computing, Vol. 2, pp. 4-32 
Grotschel, M. & Holland, O. (1991). Solution of large-scale symmetric traveling salesman 

problems, Mathematical Programming, Vol. 51, pp. 141-202 
Hooker, J.H. & Natraj, N.R. (1995). Solving a General Routing and Scheduling Problem by 

Chain Decomposition and Tabu Search, Transportation Science, Vol. 29, No. 1, pp. 
30-44 

Ingber, L. (1993). Simulated Annealing Practice versus Theory, Journal of Mathl. Comput. and 
Modelling, Vol. 18, No. 11, pp. 29-57 

JLUG (2008). Benchmark - JLUG RC5-72 Cracking, http://www.orange.co.jp/~masaki/rc572/ 
Kanazawa, T. & Yasuda, K. (2004). Proximate Optimality Principle Based Tabu Search, IEEJ 

Transactions on Electronics, Information and Systems, Vol. 124, No. 3, pp. 912-920 



 Traveling Salesman Problem, Theory and Applications 

 

154 

Kirkpatrick, S.; Gelatt, C. D. & Vecchi, M. P. (1983). Optimization by Simulated Annealing, 
Science, Vol. 220, Num. 4598, pp.  671-680 

Kolen, A. & Pesch, E. (1994). Genetic Local Search in Combinatorial Optimization, Discrete 
Applied Mathematics, Vol. 48, pp. 273-284 

Kubota S.; Onoyama T.; Onayagi K. & Tsuruta S. (1999). Traveling Salesman Problem 
Solving Method fit for Interactive Repetitive Simulation of Large-scale Distribution 
Network, Proc. of IEEE SMC’99, pp. 533-538 

Laporte, G. (1992). The Vehicle Routing Problem: An overview of exact and approximate 
algorithms, European Journal of Operational Research, Vol. 59, pp. 345-358 

Lawer, E.; Lenstra, J.; Rinnony, K. & Shmoys, D. (1985). The Traveling Salesman Problem: A 
Guided Tour of Combinatorial Optimization, John Wiley & Sons, ISBN 0471904137 

Lin, S. & Kernighan, B.W. (1972). An effective heuristic algorithm for the traveling salesman 
problem, Operations Research, Vol. 21, No. 2, pp. 498-516 

Miki, M.; Hiroyasu, T. & Jitta, T. (2003). Adaptive Simulated Annealing for maximum 
temperature, Proc. of IEEE International Conference on Systems, Man and Cybernetics 
2003, Vol. 1, pp. 20-25 

Nagata, Y. & Kobayashi, S. (1999). The Proposal and Evaluation of a Crossover for Traveling 
Salesman Problems: Edge Assembly Crossover, Journal of Japan Society for AI, Vol. 
14, No. 5, pp. 848-859  

Nguyen, H.D.; Yoshihara, I.; Yamamori, K. & Yasunaga, M. (2007). Implementation of an 
Effective Hybrid GA for Large-Scale Traveling Salesman Problems, IEEE 
Transactions on Systems, Man and Cybernetics, Part. B, Vol. 37, Issue. 1, pp. 92-99 

Onoyama, T.; Kubota, S.; Oyanagi, K. & Tsuruta, S. (2000). A Method for Solving Nested 
Combinatorial Optimization Problems, Proc. of  IEEE SMC2000, pp. 340-345 

Tamaki, H.; et al. (1994). A comparison study of genetic codings for the traveling salesman 
problem, Proc. of the 1st IEEE Conference on Evolutionary Computation, pp. 1-6 

Tsai, H.; Yang, J.; Tsai, Y. & Kao, C. (2004). An evolutionary algorithm for large traveling 
salesman problems, IEEE Transactions on Systems, Man and Cybernetics, Part. B, Vol. 
34, Issue. 4, pp. 1718-1729 

Whiteley, D. & Starkweather, T. (1989). Scheduling Problem and Traveling Salesman: The 
Genetic Edge Recombination Operator, Proc. of ICGA'89, pp. 133-140 

Yamamoto, Y. & Kubo, M. (1997). Invitation to Traveling Salesman Problem, Asakura Syoten, 
Tokyo 

Yan, X.; Liu, H.; Yan, J. & Wu, Q. (2007). A Fast Evolutionary Algorithm for Traveling 
Salesman Problem, Proc. of Third International Conference on Natural Computation 
(ICNC 2007), Vol. 4, pp. 85-90 

Yanagiura, M. & Ibaraki, T. (2000). On Metaheuristic Algorithms for Combinatorial 
Optimization Problems, Transactions of the IEICE, Vol. J85-D-II, No. 8, pp. 3-25 

 
 

10 

An Efficient Solving the Travelling Salesman 
Problem: Global Optimization of Neural 

Networks by Using Hybrid Method 
Yong-Hyun Cho 

A School of Computer and Information Comm. Eng., Catholic  University of Daegu 
 330, Kunrakri, Hayangup, Gyeongsan, Gyeongbuk, 712-702 

Korea(South) 

1. Introduction     
The travelling salesman problem (TSP) is a problem in combinatorial optimization studied 
in operations research and theoretical computer science. Given a list of cities and their pair-
wise distances, the task is to find a shortest possible tour that visits each city exactly once 
(Aarts & Laarhoven, 1985; Beale & Jackson, 1990; Bout & Miller, 1988; Cichock & Unbehaun, 
1993; Lin, 1965; Zurada, 1992). The problem was first formulated as a mathematical problem 
in 1930 and is one of the most intensively studied problems in optimization. It is used as a 
benchmark for many optimization methods. Even though the problem is computationally 
difficult, a large number of heuristics and exact methods are known, so that some instances 
with tens of thousands of cities can be solved (Beale & Jackson, 1990; Freeman & Skapura, 
1991; Lin, 1965). 
The TSP has several applications even in its purest formulation, such as planning, logistics, 
and the manufacture of microchips. Slightly modified, it appears as a sub-problem in many 
areas, such as DNA sequencing. In these applications, the concept city represents, for 
example, customers, soldering points, or DNA fragments, and the concept distance 
represents travelling times or cost, or a similarity measure between DNA fragments (Beale 
& Jackson, 1990; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991; Zurada, 1992). In 
many applications, additional constraints such as limited resources or time windows make 
the problem considerably harder. 
In the theory of computational complexity, the decision version of TSP belongs to the class 
of NP-complete problems (Aarts & Laarhoven, 1985; Abe et al., 1992; Burke, 1994; Freeman 
& Skapura, 1991; Hopfield & Tank, 1985). Thus, it is assumed that there is no efficient 
algorithm for solving TSPs. In other words, it is likely that the worst case running time for 
any algorithm for TSP increases exponentially with the number of cities, so even some 
instances with only hundreds of cities will take many CPU years to solve exactly. The 
travelling salesman problem is regarded as difficult to solve. If there is a way to break this 
problem into smaller component problems, the components will be at least as complex as 
the original one. This is what computer scientists call NP-hard problems (Aarts & 
Laarhoven, 1985; Abe et al., 1992; Freeman & Skapura, 1991). 
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1. Introduction     
The travelling salesman problem (TSP) is a problem in combinatorial optimization studied 
in operations research and theoretical computer science. Given a list of cities and their pair-
wise distances, the task is to find a shortest possible tour that visits each city exactly once 
(Aarts & Laarhoven, 1985; Beale & Jackson, 1990; Bout & Miller, 1988; Cichock & Unbehaun, 
1993; Lin, 1965; Zurada, 1992). The problem was first formulated as a mathematical problem 
in 1930 and is one of the most intensively studied problems in optimization. It is used as a 
benchmark for many optimization methods. Even though the problem is computationally 
difficult, a large number of heuristics and exact methods are known, so that some instances 
with tens of thousands of cities can be solved (Beale & Jackson, 1990; Freeman & Skapura, 
1991; Lin, 1965). 
The TSP has several applications even in its purest formulation, such as planning, logistics, 
and the manufacture of microchips. Slightly modified, it appears as a sub-problem in many 
areas, such as DNA sequencing. In these applications, the concept city represents, for 
example, customers, soldering points, or DNA fragments, and the concept distance 
represents travelling times or cost, or a similarity measure between DNA fragments (Beale 
& Jackson, 1990; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991; Zurada, 1992). In 
many applications, additional constraints such as limited resources or time windows make 
the problem considerably harder. 
In the theory of computational complexity, the decision version of TSP belongs to the class 
of NP-complete problems (Aarts & Laarhoven, 1985; Abe et al., 1992; Burke, 1994; Freeman 
& Skapura, 1991; Hopfield & Tank, 1985). Thus, it is assumed that there is no efficient 
algorithm for solving TSPs. In other words, it is likely that the worst case running time for 
any algorithm for TSP increases exponentially with the number of cities, so even some 
instances with only hundreds of cities will take many CPU years to solve exactly. The 
travelling salesman problem is regarded as difficult to solve. If there is a way to break this 
problem into smaller component problems, the components will be at least as complex as 
the original one. This is what computer scientists call NP-hard problems (Aarts & 
Laarhoven, 1985; Abe et al., 1992; Freeman & Skapura, 1991). 
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Many people have studied this problem. The easiest (and most expensive solution) is to 
simply try all possibilities. The problem with this is that for n cities you have (n-1)! 
possibilities. This means that for only 11 cities there are about 3.5 million combinations to 
try (Freeman & Skapura, 1991). In recent years, many algorithms for solving the TSP have 
been proposed (Cichock & Unbehaun, 1993; Dorigo et al., 1991; Goldberg, 1989; Lin & 
Kernighan, 1971; Mascato, 1989; Szu & Hartley, 1987). However, these algorithms sustain 
several disadvantages. First, some of these algorithms are not optimal in a way that the 
solution they obtain may not be the best one. Second, their runtime is not always defined in 
advance, since for every problem there are certain cases for which the computation time is 
very long due to unsuccessful attempts for optimization. They will often consistently find 
good solutions to the problem. These good solutions are typically considered to be good 
enough simply because they are the best that can be found in a reasonable amount of time. 
Therefore, optimization often takes the role of finding the best solution possible in a 
reasonable amount of time. There have been several types of approaches taken to solving 
the TSP [10-30] of the numerical methods and the neural networks (NNs) (Beale & Jackson, 
1990; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991; Goldberg, 1989; Zurada, 1992). 
Recently, NN is well suited for this type of problems. 
An NN, also known as a parallel distributed processing network, is a computing paradigm 
that is loosely modeled after cortical structures of the brain (Beale & Jackson, 1990; Cichock 
& Unbehaun, 1993; Freeman & Skapura, 1991; Zurada, 1992). It consists of interconnected 
processing elements called nodes or neurons (Beale & Jackson, 1990; Zurada, 1992). NN, due 
to its massive parallelism, has been rigorously studied as an alternative to the conventional 
numerical approach for fast solving of the combinatorial optimization or the pattern 
recognition problems. The optimization is to find the neuron that lead to the energy 
minimum by applying repeatedly the optimization algorithm.  
Hopfield model is energy-minimizing network, and is useful as a content addressable 
memory or an analog computer for solving combinatorial optimization problems (Abe et al., 
1992; Abe, 1993, 1996; Aiyer et al., 1990; Andresol et al., 1997; Gall & Zissimopoulos 1999; 
Hegde et al., 1988; Sharbaro, 1994; Wilson & Pawley, 1988). Generally, Hopfield model may 
be operated in a discrete-time mode and continuous-time mode, depending on the model 
adopted for describing the neurons. The discrete-time mode is useful as a content 
addressable memory, and the continuous-time mode is also useful as an analog computer 
for solving combinatorial optimization problems. In formulating the energy function for a 
continuous-time Hopfield model, the neurons are permitted to have self-feedback loops. On 
the other words, a discrete-time Hopfield model is no self-feedback loops (Beale & Jackson, 
1990; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991). 
Gradient-type NNs are generalized Hopfield model in which the computational energy 
decreases continuously in time loops (Beale & Jackson, 1990; Cichock & Unbehaun, 1993; 
Freeman & Skapura, 1991).. The continuous-time model is called the gradient-type model 
and converges to one of the stable minima in the state space. The evaluation of model is in 
the general direction of the negative gradient of energy function. Typically, the energy 
function is made equivalent to a certain objective function that needs to be minimized. The 
search for an energy minimum performed by gradient-type model corresponds to the search 
for a solution of an optimization problem loops (Beale & Jackson, 1990; Cichock & 
Unbehaun, 1993; Freeman & Skapura, 1991).  
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The major drawbacks of the continuous-time Hopfield model when it is used to solve some 
combinatorial problems, for instance, the TSP, are the non feasibility of the obtained 
solutions and the trial-and-error setting of the model parameters loops (Beale & Jackson, 
1990; Bout & Miller, 1988; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991). Most of 
the researches have been concentrated on the improvement of either the convergence speed 
or the convergence rate to the global minimum in consideration of the weight parameter of 
the energy function, etc. But there are few that try to solve both global convergence and 
speedup by simultaneously setting the initial neuron outputs (Baba, 1989; Biro et al., 1996; 
Gall & Zissimopoulos 1999;  Gee & Prager, 1995; Heung, 2005). 
This chapter proposes an efficient method for improving the convergence performances of 
the NN by applying a global optimization method. The global optimization method is a 
hybrid of a stochastic approximation (SA) (Styblinski & Tang, 1990) and a gradient descent 
method. The approximation value inclined toward a global escaping from a local minimum 
is estimated first by the stochastic approximation, and then the gradient-type update rule of 
Hopfield model is applied for high-speed convergence. The proposed method has been 
applied to the 7- and 10-city TSPs, respectively. We demonstrate the convergence 
performance to the conventional Hopfield model with randomized initial neuron outputs 
setting. 
The rest of the chapter is organized as follows. The travelling salesman problem is 
introduced in section 2. Section 3 presents the Hopfield model for solving the TSP. Section 4 
presents the method for estimating an initial value of optimization problems by using 
stochastic approximation. Section 5 describes how the proposed method can be applied for 
globally optimizing the neural network. Section 6 describes the experiments with the 
proposed global optimization method focusing on the TSP. The performance comparison of 
the experiment results with the Hopfield model is also given. Finally an outlook to future 
research activities is presented.  

2. Travelling salesman problem 
Generally, the optimization problems are typically posed in terms of finding the best way to 
do something, subject to certain constraints. When solving these problems with computers, 
often the only possible approach is to calculate every possible solution and then choose the 
best of those as the answer. Unfortunately, some problems have such large solution spaces 
that this is impossible to do. These are problems where the solution cannot be found in a 
reasonable time. These problems are referred to as NP-hard or NP-complete problems. In 
many cases, these problems are described in term of a cost function (Aarts & Laarhoven, 
1985; Beale & Jackson, 1990; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991).   
One such problem is the TSP. The TSP describes a salesman who must travel between cities. 
The order in which he does so is unimportant, provided he visits each one during his trip, 
and finishes in his starting location. Each city is connected to other close by cities, or nodes. 
Each of those links between the cities has one or more weights (cost) attached. The cost 
describes how "difficult" it is to traverse this edge on the graph, and may be given, for 
example, by the cost of an airplane ticket or train ticket, or perhaps by the length of the edge, 
or time required for completing the traversal (Beale & Jackson, 1990; Bout & Miller, 1988; 
Cichock & Unbehaun, 1993; Lin, 1965; Zurada, 1992). The salesman wants to keep both the 
travel costs, as well as the distance he travels as low as possible. That is, the problem is to 
find the right sequence of cities to visit. The constraints are that all cities are visited, each is 
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Many people have studied this problem. The easiest (and most expensive solution) is to 
simply try all possibilities. The problem with this is that for n cities you have (n-1)! 
possibilities. This means that for only 11 cities there are about 3.5 million combinations to 
try (Freeman & Skapura, 1991). In recent years, many algorithms for solving the TSP have 
been proposed (Cichock & Unbehaun, 1993; Dorigo et al., 1991; Goldberg, 1989; Lin & 
Kernighan, 1971; Mascato, 1989; Szu & Hartley, 1987). However, these algorithms sustain 
several disadvantages. First, some of these algorithms are not optimal in a way that the 
solution they obtain may not be the best one. Second, their runtime is not always defined in 
advance, since for every problem there are certain cases for which the computation time is 
very long due to unsuccessful attempts for optimization. They will often consistently find 
good solutions to the problem. These good solutions are typically considered to be good 
enough simply because they are the best that can be found in a reasonable amount of time. 
Therefore, optimization often takes the role of finding the best solution possible in a 
reasonable amount of time. There have been several types of approaches taken to solving 
the TSP [10-30] of the numerical methods and the neural networks (NNs) (Beale & Jackson, 
1990; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991; Goldberg, 1989; Zurada, 1992). 
Recently, NN is well suited for this type of problems. 
An NN, also known as a parallel distributed processing network, is a computing paradigm 
that is loosely modeled after cortical structures of the brain (Beale & Jackson, 1990; Cichock 
& Unbehaun, 1993; Freeman & Skapura, 1991; Zurada, 1992). It consists of interconnected 
processing elements called nodes or neurons (Beale & Jackson, 1990; Zurada, 1992). NN, due 
to its massive parallelism, has been rigorously studied as an alternative to the conventional 
numerical approach for fast solving of the combinatorial optimization or the pattern 
recognition problems. The optimization is to find the neuron that lead to the energy 
minimum by applying repeatedly the optimization algorithm.  
Hopfield model is energy-minimizing network, and is useful as a content addressable 
memory or an analog computer for solving combinatorial optimization problems (Abe et al., 
1992; Abe, 1993, 1996; Aiyer et al., 1990; Andresol et al., 1997; Gall & Zissimopoulos 1999; 
Hegde et al., 1988; Sharbaro, 1994; Wilson & Pawley, 1988). Generally, Hopfield model may 
be operated in a discrete-time mode and continuous-time mode, depending on the model 
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The major drawbacks of the continuous-time Hopfield model when it is used to solve some 
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or time required for completing the traversal (Beale & Jackson, 1990; Bout & Miller, 1988; 
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visited only once, and the salesman returns to the starting city at the end of the travel. The 
cost function to be minimized is the total distance or cost travelled in the course of the 
travel. 
The TSP is computationally intensive if an exhaustive search is to be performed comparing 
all possible routes to find the best one (Freeman & Skapura, 1991). For an n-city trip, there 
are n! possible paths. Due to degeneracy, the number of distinct solutions is less than n!. The 
term distinct in this case refers to trips with different total distances. For a given trip, it does 
not matter which of the n cities is the starting location, in terms of the total distance traveled. 
This degeneracy reduces the number of distinct tours by a factor of n. Similarly, for a given 
trip, it does not also matter which of two directions the salesman travels. This fact further 
reduces the number of distinct trips by a factor of two. Thus, for n-city trip, there are n!/2n 
distinct tours to consider. 
For a 5-city trip, there would be 120!/10=12 distinct trips-hardly a problem worthy of 
solution by a computer! A 10-city trip, however, has 3,628,800/20=181,440 distinct trips; a 
30-city trip has over 4x1030 possibilities. Adding a single city to a trip results in an increase 
in the number of distinct trips by a factor of n. Thus, a 31-city trip requires that we examine 
31 times as many trips as we must for a 30-city trip. The amount of computation time 
required by a digital computer to solve this problem grows exponentially with the number 
of cities. 
There have been many approaches to solving the Traveling Salesman Problem. These 
approaches range from a simple heuristic algorithm to algorithms based on the physical 
workings of the human mind to those based on ant colonies (Andresol et al., 1997; Dorigo et 
al., 1991; Dorigo & Gambardella, 1997; Lin & Kernighan, 1971; Mascato, 1989; Szu & Hartley, 
1987). These algorithms all have the same ultimate goal: in a graph with weighted edges, 
find the shortest Hamiltonian path (the path through all nodes with the smallest sum of 
edge weights). Unfortunately, this goal is very hard to achieve.  The algorithms therefore 
settle for trying to accomplish two smaller goals: (1) to more quickly find a good solution 
and (2) to find a better good solution. A good solution is one that is close to being optimal 
and the best of these good solutions is, of course, the optimal solution itself. There have been 
several types of approaches taken to solving the TSP. They include heuristic approaches, 
memetic algorithms, ant colony algorithms, simulated annealing, genetic algorithms, neural 
networks, and various other methods for more specific variations of the TSP (Abe, 1993; 
Andresol et al., 1997; Dorigo et al., 1991; Dorigo & Gambardella, 1997; Lin & Kernighan, 
1971; Mascato, 1989; Szu & Hartley, 1987; Xavier & Suykens, 2006; Mühlenbein, 1992). 
These approaches do not always find the true optimal solution. Instead, they will often 
consistently find good solutions to the problem. These good solutions are typically 
considered to be good enough simply because they are the best that can be found in a 
reasonable amount of time. Therefore, optimization often takes the role of finding the best 
solution possible in a reasonable amount of time. 

2.1 Heuristic algorithms  
The heuristic means that a rule of thumb, simplification or educated guess that reduces or 
limits the search for solutions in domains that are difficult and poorly understood (Lin & 
Kernighan, 1971). Unlike algorithms, heuristics do not guarantee optimal, or even feasible, 
solutions and are often used with no theoretical guarantee.  In contrast, an algorithm is 
defined as “a precise rule (or set of rules) specifying how to solve some problem” (Andresol 

An Efficient Solving the Travelling Salesman Problem: 
Global Optimization of Neural Networks by Using Hybrid Method   

 

159 

et al., 1997; Lin & Kernighan, 1971). To combine these together into a heuristic algorithm, we 
would have something like “a set of rules specifying how to solve some problem by 
applying a simplification that reduces the amount of solutions checked”. In other words, the 
algorithm is the instructions for choosing the correct solution to the problem while the 
heuristic is the idea of how to shrink the list of possible solutions down to a reasonable size. 
An example of a heuristic approach to the TSP might be to remove the most weighted edge 
from each node to reduce the size of the problem (Lin & Kernighan, 1971). The programmer in 
this situation may assume that the best solution would not have the most weighted edge. 
Upon close inspection, this heuristic may not actually give the best solution, maybe not even a 
feasible solution (if all of the most weighted edges from each node are connected with the 
same node) but it may be a calculated risk that the programmer takes (Lin & Kernighan, 1971). 
The main idea of a heuristic approach to a problem is that, although there is exponential 
growth in the number of possible solutions to the problem, evaluating how good a solution 
is can be done in polynomial time. 
In dealing with the TSP, the most common uses of heuristic ideas work with a local search. 
Similarly to the above example, the heuristic does not try to encompass every possibility of 
the problem at hand; instead it attempts to apply common sense to shrink the problem to a 
manageable size. 
Perhaps the most-used local search heuristic that is applied to the TSP is the n-opt method 
developed by Lin and Kernighan (Andresol et al., 1997; Lin & Kernighan, 1971).  It simply 
takes a random path and replaces n edges in it until it finds the best of those paths. This is 
typically done where n is set to 2 or 3 (Lin & Kernighan, 1971). These methods were applied 
to several different problems. Notably, they were able to find the optimal solutions for a 42-
city problem 4 out of 10 times and the optimal solution to a 48-city problem 2 out of 10 times 
(Lin & Kernighan, 1971) (the 10 times in these were running concurrently so the optimum 
solution was found in each run of the program). 

2.2 Simulated annealing  
Simulated annealing is a method that is based on the cooling of a physical system (Kawabe 
et al., 2002; Szu & Hartley, 1987; Xavier et al., 2006). The general idea is that there is a 
temperature (T) and a cost function (H). In our case, the cost function is the sum of the 
weights of the edges in our circuit. In the beginning, there is a random solution to the 
problem. At each iteration, a change is proposed to this solution and that change is 
evaluated based on the cost function and the temperature.  If the cost function decreases 
then the change is accepted. If the cost function does not decrease then the change is 
accepted or rejected based on the temperature. The higher the temperature, the better the 
chance that the change will be accepted. As time progresses, the temperature decreases and 
eventually there is no possibility for a change to occur without the cost function decreasing. 
Using this method, researchers were able to get to within two units of the optimal cost for 
problems up to a size of 100 (Xavier et al., 2006). 

2.3 Neural networks  
A neural network is a massively parallel distributed processor that has a natural propensity 
for storing experiential knowledge and making it available for use (Beale & Jackson, 1990; 
Bout & Miller, 1988; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991; Lin, 1965; 
Zurada, 1992). It resembles the brain in two respects. One is that knowledge is acquired by 
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visited only once, and the salesman returns to the starting city at the end of the travel. The 
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1987). These algorithms all have the same ultimate goal: in a graph with weighted edges, 
find the shortest Hamiltonian path (the path through all nodes with the smallest sum of 
edge weights). Unfortunately, this goal is very hard to achieve.  The algorithms therefore 
settle for trying to accomplish two smaller goals: (1) to more quickly find a good solution 
and (2) to find a better good solution. A good solution is one that is close to being optimal 
and the best of these good solutions is, of course, the optimal solution itself. There have been 
several types of approaches taken to solving the TSP. They include heuristic approaches, 
memetic algorithms, ant colony algorithms, simulated annealing, genetic algorithms, neural 
networks, and various other methods for more specific variations of the TSP (Abe, 1993; 
Andresol et al., 1997; Dorigo et al., 1991; Dorigo & Gambardella, 1997; Lin & Kernighan, 
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These approaches do not always find the true optimal solution. Instead, they will often 
consistently find good solutions to the problem. These good solutions are typically 
considered to be good enough simply because they are the best that can be found in a 
reasonable amount of time. Therefore, optimization often takes the role of finding the best 
solution possible in a reasonable amount of time. 

2.1 Heuristic algorithms  
The heuristic means that a rule of thumb, simplification or educated guess that reduces or 
limits the search for solutions in domains that are difficult and poorly understood (Lin & 
Kernighan, 1971). Unlike algorithms, heuristics do not guarantee optimal, or even feasible, 
solutions and are often used with no theoretical guarantee.  In contrast, an algorithm is 
defined as “a precise rule (or set of rules) specifying how to solve some problem” (Andresol 
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the network through a learning process. Another is that interneuron connection strengths 
known as synaptic weights are used to store the knowledge. Basically, a neural network is 
made up of many independent units (neurons) and connections between them. The 
connections are given various weights based on a “learning process”. Based on the sum of 
the products of adjoining neurons and the weights of the connecting edges, each neuron 
finds a value. Additionally, if the value of one neuron changes then the values of all the 
adjoining neurons also change. This creates a ripple effect that can change the values of 
every neuron (although it could also change none of them). 
An NN can be applied to a TSP with n cities (Beale & Jackson, 1990; Bout & Miller, 1988; 
Cichock & Unbehaun, 1993; Freeman & Skapura, 1991; Lin, 1965; Zurada, 1992). This is done 
by creating n2 neurons. The output of each neuron (Vx,i) represents whether city x is visited 
as the i-th city in the sequence. It is a 1 if this is true or a 0 if it is not. Additionally, the 
amount dxy is applied to the calculations as the distance between cities x and y. 

2.4 Genetic algorithm  
A genetic algorithm (GA) is based on the same idea as the theory of evolution (Goldberg, 
1989; Mühlenbein, 1992). Basically, several random sets of parameters are applied to an 
algorithm and a fitness value is returned for each. Based on these fitness values, the best sets 
are mixed together and new sets are again applied to the algorithm until an optimal set of 
parameters is obtained. This effect is usually obtained by breaking the genetic algorithm into 
a few small parts. The main parts are the fitness function and the evolution function 
(Goldberg, 1989). 
The evolution function produces a string of inputs (often a string of bits that are encodings of 
the input parameters) then asks the fitness function for a fitness value for that string. When 
several strings have been assigned a fitness value, the evolution function takes the best strings, 
mixes them together, sometimes throws in a "mutation" to the strings and then sends the 
results back as new input strings. The biological analogy is to a human’s genes. In fact, an 
input string is often called a chromosome and the bits in the string are referred to as genes. 
The fitness function of a genetic algorithm takes in a string of inputs and runs them through 
the process that is being evaluated (Mühlenbein, 1992).  Based on the performance of the 
inputs, the function returns a fitness value. In the case of the TSP, the fitness function 
returned the total length or weight of the path found. A GA has two main parts, an 
evolution function and a fitness function. In the case of the TSP, the parameters produced by 
the evolution function might be the order of the nodes through which the path will go. The 
fitness function in that same case would return the total length of the path found. The GA 
would then compare fitness values for each input string and assign priority to the ones that 
returns lower path lengths. Genetic algorithms and their applications to the TSP are 
described by Goldberg (Goldberg, 1989). 

2.5 Memetic algorithms  
A memetic algorithm (MA) is really a combination of several different techniques (Mascato, 
1989). Generally, an MA can be thought of as an algorithm that combines local search 
heuristics with a crossover operator (the same type of mixing and matching that happens 
with a GA’s evolution function). Despite this, the difference between an MA and a GA is 
very distinct. As opposed to the fitness functions of GAs, MAs use a local search heuristic to 
determine how the parameter definitions will be modified each iteration. For example, an 
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MA might use simulated annealing to find a solution with some parameters and return that 
value to the crossover operator just like a GA would return a value from a fitness function. 
For this reason there are many other terms used to refer to MAs including hybrid genetic 
algorithms, parallel genetic algorithms, and genetic local search algorithms.  The research in 
MAs was most notably conducted by Mascato (Mascato, 1989). Researchers such as 
Mühlenbein have shown MAs to be near-optimal with sizes at least as large as a 200-city 
problem. 

2.6 Ant colony algorithms  
Ant-based algorithms are based on studies of ant colonies in nature (Dorigo et al., 1991; 
Dorigo & Gambardella, 1997).  The main idea in these algorithms is that the behavior of each 
individual ant produces an emergent behavior in the colony. When applied to the TSP, 
individual agents (“ants”) traverse the graph of the problem, leaving a chemical 
(pheromone) trail behind them. At each node it comes to, an ant must decide which edge to 
take to the next node.  This is done by checking each edge for pheromone concentration and 
applying a probability function to the decision of which edge to choose. The higher the 
concentration of pheromone, the more likely the ant is to choose that edge.  Also, to avoid 
stagnation in travel, the pheromone is given an evaporation rate so that in each iteration the 
pheromone loses a certain percentage on each edge. This method was researched originally 
by Dorigo, et al. (Dorigo et al., 1991). This method has been shown to do better than other 
algorithms on random 50-city problems as well as finding the optimum solutions for 
problems with up to 100 cities (Dorigo & Gambardella, 1997). 

3. Hopfield model for solving TSP information 
In the most general case, NNs consist of a (often very high) number of neurons, each of 
which has a number of inputs, which are mapped via a relatively simple function to its 
output (Beale & Jackson, 1990; Bout & Miller, 1988; Cichock & Unbehaun, 1993; Freeman & 
Skapura, 1991; Lin, 1965; Zurada, 1992). Networks differ in the way their neurons are 
interconnected (topology), in the way the output of a neuron determined out of its 
inputs(propagation function) and in their temporal behavior(synchronous, asynchronous or 
continuous). 
Ever since Hopfield and Tank (Hopfield & Tank, 1985) showed that the feedback neural 
network could be possibly used to solve combinatorial optimization problems such as the 
TSP, great efforts have been made to improve the performance. Most of the early work 
focused on ways to find valid solutions because of the disappointing results reported 
(Freeman & Skapura, 1991). While some researchers tried to find more appropriate 
parameters in the energy function (Aiyer et al., 1990; Baba, 1989; Biro et al., 1996; Burke, 
1994;  Gall & Zisssimopoulos, 1999; Gee & Prager, 1995; Hegde et al., 1988; Hopfield & Tank, 
1985; Huang, 2005; Sharbaro, 1994; Wilson & Pawley, 1988), others hoped to get better 
energy functions (Baba, 1989). To date, research work has been extended to every aspect of 
the Hopfield model (Aarts & Laarhoven, 1985; Abe et al., 1992; Aiyer et al., 1990; Baba, 1989; 
Biro et al., 1996; Burke, 1994; Hegde et al., 1988; Hopfield & Tank, 1985; Sharbaro, 1994; 
Wilson & Pawley, 1988), and it is now clear how to correctly map problems onto the 
network so that invalid solutions never emerge. As for the quality of obtained solutions, 
while there are indications that the Hopfield model is solely suitable for solving Euclidean 
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while there are indications that the Hopfield model is solely suitable for solving Euclidean 



 Traveling Salesman Problem, Theory and Applications 

 

162 

TSPs of small size (Wilson & Pawley, 1988), some researchers argue it is unreasonable to 
take the TSP as the benchmark to measure the optimization ability of the Hopfield model 
(Sharbaro, 1994). According to that, the applicability of the Hopfield model to solve other 
optimization problems should not be ignored. By now, the Hopfield model has been 
successfully applied to many fields. 
A key issue in the application of the Hopfield model is the choice of the weights1 in the 
energy function. Previous work addressing this problem is only concerned with the occasion 
for solving the TSP. The most successful and earliest work was conducted by Aiyer et al. 
(Aiyer et al., 1990). Using the eigenvalue analysis, they obtained values for the weights 
which make the network converge to very good solutions. Other works concerning on this 
problem include the technique of suppressing spurious states (Abe, 1993). 

3.1 Hopfield model 
Hopfield described a new way of modeling a system of neurons capable of performing 
computational tasks (Cichock & Unbehaun, 1993; Zurada, 1992). The Hopfield model 
emerged, initially as a means of exhibiting a content addressable memory (CAM). A general 
CAM must be capable of retrieving a complete item from the system’s memory when 
presented with only sufficient partial information. Hopfield showed that his model was not 
only capable of correctly yielding an entire memory from any portion of sufficient size, but 
also included some capacity for generalization, familiarity recognition, categorization, error 
correction, and time-sequence retention (Hopfield & Tank, 1985). 
The Hopfield model, as described in (Beale & Jackson, 1990; Zurada, 1992), comprises a fully 
interconnected system of n computational elements or neurons. Fig. 1 is a model of artificial 
neural network.  
 

 
Fig. 1. Model of artificial neural network 

In Fig. 1, Hopfield’s original notation has been altered where necessary for consistency. The 
strength of the connection, or weight, between neuron i and neuron j is determined by Tij, 
which may be positive or negative depending on whether the neurons act in an excitatory or 
inhibitory manner (Freeman & Skapura, 1991). The internal state of each neuron Ui is 
equivalent to the weighted sum of the external states of all connecting neurons. The external 
state of neuron i is given by Vi, with 0 ≤ Vi ≤ 1. An external input, Ii, to each neuron i is also 
incorporated. The relationship between the internal state of a neuron and its output level in 
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this continuous Hopfield model is determined by an activation function gi(Ui), which is 
bounded below by 0 and above by 1. 
Then the dynamics of each neuron can be given by a system of the differential eq. (1). 

 1,     ( )i i
ij j i i i ij

dU UT V I U g V
dt τ

−= − + =∑  (1) 

Where  is a time constant, Ii is the external input(bias) of neuron i, and Vi and Ui are the 
output and input of neuron i. The relation gi  between the input Ui and the output Vi is 
characterized by a monotonically increasing function such as a sigmoid, or a piecewise 
linear function. 
Hopfield model is a dynamic network (Beale & Jackson, 1990; Zurada, 1992), which iterates 
to converge from an arbitrary input state. The Hopfield model works as minimizing an 
energy function. The Hopfield model is single layer network which are fully interconnected. 
It is a weighted network where the output of the network is fed back and there are weights 
to each of this link. The fully connected Hopfield model is shown in following Fig. 2. 
 

 
Fig. 2. Fully connected Hopfield model for 5-city TSP 

As long as the neuron has a sufficiently high gain, the first term in (1) can be neglected. In 
that case, the Hopfield model has the Lyapunov energy function of eq. (2) 

 1
2 i ij j i ii j iE VT V I V= − −∑ ∑ ∑  (2) 

And moreover we may note the following relations hold: 
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This means that the energy function monotonically decreases with the evolution of the 
network's state, and when the network reaches the final stable state, the energy function 
falls into a local minimum. The general method of applying the Hopfield model to solve 
optimization problems is to map the objectives and constraints involved in the problem into 
an energy function, and then obtain the neuron's dynamic equation by means of eq. (3). 

3.2 Hopfield model to solve the TSP  
The TSP is concerned with how to find a shortest closed path that travels each of n cities 
exactly once. In terms of the geometric structure of the distribution of the cities and the 
symmetry of distances between a pair of cities, the TSP can be classified into several 
categories (Aiyer et al., 1990; Baba, 1989; Biro et al., 1996; Burke, 1994; Gee & Prager, 1995; 
Hegde et al., 1988; Sharbaro, 1994; Wilson & Pawley, 1988). 
The Hopfield model for the TSP is built of n ∗ n neurons. The network consists of n rows, 
containing n neurons according to Fig. 3. 
 

 
Fig. 3. The division of the network 

All neurons have two subscripts. The first one defines the city number and the second one 
the position of the city in the tour. If a neuron in the stable state of the network, has the 
output signal Vx,i = 1, then it means that the city x should be visited in the stage i of the tour 
(Beale & Jackson, 1990; Zurada, 1992). 
The energy function for mapping the TSP proposed by Hopfield is described by eq. (4) 
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Where dx,yis the distance from city x to city y, and the scaling parameters A, B, C, D are 
positive constants. The first and second term represents the constraint that at most one 
neuron of the array V is on fire at each row and column, respectively. The third term 
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represents the constraint that the total number of neurons on fire is exactly n. The fourth 
term measures the tour length corresponding to a given tour, where the two terms inside the 
parenthesis stand for two neighboring visiting cities of Vx,i, implying the tour length is 
calculated twice. The energy function reaches a local minimum when the network is at a 
valid tour state. 
With this formulation, the Hopfield model has the connection strengths and external input 
given as eq. (5) and eq. (6) 

 { }, , . , , , 1 , 1 ,(1 ) (1 ) ( )xi yi x y i j x y i j i j i j x yT A B C D dδ δ δ δ δ δ− += − − + − + + +  (5) 

 ,x iI Cn=  (6) 

Where ,i jδ  is equal to 1 ( )i j≠ or 0 (otherwise). 

It is known that the Hopfield model formulation does not work well for the TSP since the 
network often converges to infeasible solutions. It has been widely recognized that the 
formulation is not ideal, even for problems other than the TSP. The nature of the energy 
function that the method utilizes causes infeasible solutions to occur most of the time. A 
number of penalty parameters which are an initial values of weights and neurons and the 
activation function, need to be fixed before each simulation of the network, yet the values of 
these parameters that will enable the network to generate valid solutions are unknown. The 
problem of optimally selecting these parameters is not trivial, and much work has been done 
to try to facilitate this process (Abe, 1993, 1996; Hegde et al., 1988; Lai & Coghill, 1994). Many 
other researchers believed that the Hopfield model’s energy function needed to be modified 
before any progress would be made, and considerable effort has also been spent in this area. 

4. Initial value estimation by stochastic approximation 
We consider the following problem of global unconstrained optimization: minimize the 
multiextremal function ƒ(x)∈Ri, x∈Rn, i.e. 

 min ( )
nx R

f x
∈

 (7) 

A multiextremal function can be represented as a superposition of uniextremal function(i.e., 
having just one minimum) and other multiextremal function that add some noise to the 
uniextremal function. The objective of smoothing can be visualized as filtering out the noise 
and performing minimization on the smoothed uniextremal function, in order to reach the 
global minimum. In general, since the minimum of the smoothed uniextremal function does 
not coincide with the global function minimum, a sequence of minimization runs is required 
to zero in the neighborhood of global minimum (Styblinski & Tang, 1990). The smoothing 
process is performed by averaging ƒ(x) over some region of the parameter space Rn using a 
proper weighting (or smoothing) function h^(x). 
Let us introduce a vector of random perturbations η∈Rn, and add η to x. The convolution 
function ƒ˜(x, β) is created as follows (Styblinski & Tang, 1990). 

 

~ ^( , ) ( , ) ( )nR
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Where dx,yis the distance from city x to city y, and the scaling parameters A, B, C, D are 
positive constants. The first and second term represents the constraint that at most one 
neuron of the array V is on fire at each row and column, respectively. The third term 
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represents the constraint that the total number of neurons on fire is exactly n. The fourth 
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Hence:  

 
~
( , ) [ ( )]x E f xf ηβ η= −  (9)                          

Where ƒ˜(x, β) is the smoothed approximation to original function ƒ(x), and the kernel 
function h^(η, β) is the probability density function(pdf) used to sample η. β controls the 
dispersion of h^(η, β), i.e. the degree of ƒ(x), smoothing (Styblinski & Tang, 1990). 
Note that ƒ˜(x, β) can be regarded as an averaged version of ƒ(x), weighted by h^(η, β). Eη[ƒ(x-
η)] is the expectation with respect to the random variable η. 
Therefore an unbiased estimator ƒ˜(x, β) is the average: 
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Where η is sampled with the pdf h^(η, β). 
The kernel function h^(η, β) should have the following properties (Styblinski & Tang, 1990): 

 ^ 1( , ) ( )nh η β
β

=  (11) 

is piecewise differentiable with respect to η. 
• limβ→0 h^(η, β) = δ(η) (Dirac delta function) 
• h^(η, β) is a pdf. 
Under above the conditions, limβ→0 ƒ˜(x, β) = ∫Rn δ(η) ƒ(x - η) dη = ƒ(x - 0) = ƒ(x). Several pdfs 
fulfill above conditions, such as Gaussian, uniform, and Cauchy pdfs. 
Smoothing is able to eliminate the local minima of ƒ˜(x, β), if β is sufficiently large. If β → 0, 
then ƒ˜(x, β) → ƒ(x). This should actually happen at the end of optimization to provide 
convergence to the true function minimum (Styblinski & Tang, 1990). Formally, the 
optimization problem can be written as: 

 ~min ( , )
nx R

f x β
∈

 (12) 

with β → 0 as x → x*. Where x* is the global minimum of original function ƒ(x). One class of 
methods to solve the modified problem Eq. (12), to be called large sample(LS) stochastic 
methods, can be characterized as follows: for each new point x, a large number of points 
sampled with the pdf h^(η, β) (Eq. (11)) is used to estimate ƒ˜(x, β) and its gradient ∇xƒ˜(x, β). 
The number of samples used should be sufficiently large to give small errors of the relevant 
estimators. Optimization and averaging are separated in LS methods. This is very inefficient 
(Styblinski & Tang, 1990). 
Optimization and averaging can be combined into one iterative process, leading to much 
more efficient small-sample (SS) methods of stochastic programming. A large class of SS 
methods, called stochastic approximation, is applied to the function minimization or 
maximization (Styblinski & Tang, 1990). Their basic principle of operation is that only a 
small number of samples are used in each iteration to find the necessary estimators, but all 
the information is averaged over many steps. 
In function minimization, SA methods create stochastic equivalent to the gradient methods 
of nonlinear programming. The advanced algorithms are proposed to estimate the gradient 
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∇xƒ˜(x, β). As the algorithm progresses, β → 0, reducing the smoothing degree of the ƒ(x), 
and providing convergence to the true minimum. The SA algorithm implements a well-
defined approximation to the conjugate gradient. The value x based on the smoothed 
function ƒ˜(x, β) is updated, as following, 
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Where k(1,2,…,MAXITER) is the number of iterations, ξ is the gradient, S is a step size, d is 
the search direction, ρ is the gradient averaging coefficient of ƒ˜(x, β), and R(0<R<1) is a 
constant controlling the rate of change of ρk. Therefore, we can find the global minimum of 
original function by iteratively performing one cycle of the SA optimization as β → 0. This is 
called the stochastic approximation with smoothing (SAS) (Styblinski & Tang, 1990). 
Fig. 4 is the flow chart of SA algorithm. In this Fig. 4, each new value x is performed in the 
direction Sk dk, where dk is a convex combination of the previous direction dk-1 and a new 
gradient ξk. Especially R is responsible for the rate of change of ρk, that is, it modifies the 
search direction dk and provides a suitable amount of inertia of gradient direction. 
 

 
Fig. 4. Flowchart of stochastic approximation 
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∇xƒ˜(x, β). As the algorithm progresses, β → 0, reducing the smoothing degree of the ƒ(x), 
and providing convergence to the true minimum. The SA algorithm implements a well-
defined approximation to the conjugate gradient. The value x based on the smoothed 
function ƒ˜(x, β) is updated, as following, 
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Where k(1,2,…,MAXITER) is the number of iterations, ξ is the gradient, S is a step size, d is 
the search direction, ρ is the gradient averaging coefficient of ƒ˜(x, β), and R(0<R<1) is a 
constant controlling the rate of change of ρk. Therefore, we can find the global minimum of 
original function by iteratively performing one cycle of the SA optimization as β → 0. This is 
called the stochastic approximation with smoothing (SAS) (Styblinski & Tang, 1990). 
Fig. 4 is the flow chart of SA algorithm. In this Fig. 4, each new value x is performed in the 
direction Sk dk, where dk is a convex combination of the previous direction dk-1 and a new 
gradient ξk. Especially R is responsible for the rate of change of ρk, that is, it modifies the 
search direction dk and provides a suitable amount of inertia of gradient direction. 
 

 
Fig. 4. Flowchart of stochastic approximation 
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Fig. 5 is the flow charts of SAS algorithm that repeatedly performs the SA algorithm 
according to a sequence: {β0, β1, ...} → 0. We can get the global minimum by using the SAS 
algorithm based on specific sequences {β} and {NMAX}. It turned out that the final solutions 
were not very sensitive to a specific choice of theses sequences based on rough heuristic 
criteria such as: low problem dimensionality requires a smaller number of function 
evaluations, β should be large at the beginning of optimization (to determine the 
approximate position of the global minimum), and small at the end of optimization (for 
precision) (Styblinski & Tang, 1990). 
We consider the function ƒ(x) = x4 – 16x2 + 5x as an example (Styblinski & Tang, 1990). This 
function is continuous and differentiable, and it has two distinct minima as shown in Fig. 6. 
The smoothed ƒ˜(x, β) is plotted to different values of β → 0({5, 4, 3, 2, 1, 0.001, 0.0}) and 
MAXITER=100 for uniform pdf. We can show that minimize the smoothed function ƒ˜(x, β) 
with β → 0 as x → x*.  
As shown in Fig. 6, the smoothed functional ƒ˜(x, β) is an uniextremal function having one 
minimum xI from β =5 to β=3. That is, smoothing is able to eliminate the local minima of 
ƒ˜(x, β), if β is sufficiently large. If β → 0, then ƒ˜(x, β) = ƒ(x). We can also find out that the 
minimum xI of uniextremal function inclines toward the global minimum x* of the original 
function ƒ(x) in Fig. 6. 
On the other hand, the simulated annealing is often explained in terms of the energy that 
particle has at any given temperature (Kwabe et al., 2002; Szu & Hartley, 1987; Xavier et al., 
2006). A similar explanation can be given to the smoothed approximation approach 
discussed. Perturbing x can be viewed as adding some random energy to a particle which x  
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Fig. 6. Smoothed function ƒ˜(x, β) to β values 
represents. The larger the β, the larger the energy (i.e., the larger the temperature in the 
simulated annealing), and also the broader the range of x changes. Reducing β for the 
smoothed approximation corresponds to temperature reduction in the simulated annealing.  
Although the global minimum can be found by repeatedly applying SA according to a 
sequence: {β0, β1, ...} → 0, there are a few problems as follows: a specific sequences and a 
parameters should be determined heuristically in each iterations, and, due to its stochastic 
process, its convergence speed is rather slower than that of the deterministic algorithm and 
sometimes results in approximate solution.  
For this reason, SAS is the stochastic algorithm as the simulated annealing. The stochastic 
algorithms guarantee that converges to the global minimum, but their convergence speed is 
lower than that of the deterministic algorithms. In order to solve the limitation of 
convergence speed, we present a new optimization method that combines advantages of 
both the stochastic algorithm and the deterministic algorithm. That is, we propose a hybrid 
method of SA algorithm and gradient descent algorithm. SA algorithm is previously applied 
to estimate an initial value leading to the global minimum, and the gradient descent 
algorithm is also applied for high-speed convergence. In Fig. 6, if we utilize the minimum xI 
as an initial value of gradient descent algorithm, the global minimum of original function 
can be quickly and correctly looked for rather than that find by repeatedly applying the SA 
according to a sequences {β}. 
Fig. 7 is the flow chart of proposed method. If the other minima exist between xf (minimum 
of original function by using the gradient descent algorithm) and global minimum x*, x* can 
be find out by repeatedly applying the proposed method. 

5. Neural network optimization by the proposed method 
The basic idea in this paper is that, in applying the SA, if we initially choose a large  β, we 
can get an uniextremal smoothed function ƒ˜(x, β), the minimum value xI of which can 
approximately point out the hill side value of the global minimum well. Comparing 
optimization of functions with NNs, minimization of the function ƒ(x) to variable x are 
much the same as the minimization of energy function E(V) to neuron outputs V. 
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Fig. 7. Flowchart of the proposed method 
Accordingly, we apply the proposed method to optimize the neural network. The update 
rule of Hopfield model is used in optimization as a gradient descent algorithm and operated 
in batch mode. SA algorithm is previously applied to estimate an initial neuron outputs 
leading to the global minimum, and then the update rule of Hopfield model is also applied 
for high-speed convergence. The neural network will be quickly optimized and clearly 
guaranteed that converges to a global minimum in state space if we go about it like this. 
Therefore, the proposed hybrid algorithm using the SA and the update rule of Hopfield 
model can be detailed as follows: 
Step 1. Define the energy function E(V) for the given problems. 
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Where Tij denotes the weight value connecting the output of the j neuron with the input of 
the i neuron, Ii is the bias of i neuron, Vi and Vj are the outputs of i and j neurons, 
respectively. 
Step 2. Calculate the smoothed gradient ∇VE˜(V, β) over the E(V).  
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Step 3. Set the randomized initial neuron outputs Vo.  
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Step 4. Estimate the neuron outputs by performing SA with a large β according to the  
gradient ∇VE˜(V, β).  

Step 5. Perform the conventional update rule of Hopfield model using the neuron outputs 
estimated in Step 4.  

Step 6. If the energy function E(V) value by the step 5 is less than a tolerance limit EPV, 
then stop. Otherwise go to step 4.  

6. Experimental results and discussions 
The proposed method has been applied to the 7- and 10-city TSPs. TSP is one of the 
combinatorial optimization problems. For an n-city tour, there are n!/2n distinct circuits to 
consider (Freeman & Skaoura, 1991). 
Pentium IV-2.8G CPU has been used in experiments. The initial values of neuron outputs 
are randomly chosen in [-0.5 ~ +0.5] by using the random seeds, the output function in 
response to the net input of neuron is sigmoid function, and then the gain is chosen in 0.5. 
The stopping rule is used in each experiment so as to terminate the calculation if all the 
outputs do not change any more or the energy function E(V) becomes less than the tolerance 
limit EPV=0.0001. The initial dispersion control parameter β0=3.0 and the smoothing 
function h(η) with uniform pdf are chosen, respectively. 
The experimental results for each example are shown in Table 1 and 4, where NHM, and NSA are 
the number of iterations of Hopfield model and SA algorithm, respectively. Et is the final 
energy value in termination. tHM and tPM are the CPU time in [sec] of Hopfield model and 
proposed algorithm, respectively. In Table 2 and 4, x~ and σ are mean and standard deviation. 
Fig. 8 shows the 7- and 10-city coordinates that are randomly generated, respectively. A (x, 
y) coordinates are the 2-dimensional city positions. 
Table 1 shows the experimental results of 7-city TSP to 10 random seeds. In case of Hopfield 
model, the constraints are satisfied at random seeds 5, 20, and 30, but the stopping rule is 
only satisfied in random seeds 5 and 20. The proposed method satisfies the stopping rule to 
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Table 1. Experimental results of 7-city TSP( # : non-convergence) 
all 10 trials. The Hopfield model shows the faster convergence than the proposed method in 
case of the random seed 5. This result shows that the deterministic rule of steepest descent 
may converge fast if the initial point is happen to be set near the global minimum. But there  
are few systematic methods that guarantee this initial point setting. The convergence rate by 
proposed method is 5 times and its convergence speed (time) is some higher than that of  
Hopfield model in case of successful convergence. We can also know that one cycle of SA 
takes more time than that of Hopfield model. Compared with the update rule of Hopfield 
model, SA is by reason of stochastic algorithm. But the SA algorithm is executed by a 
number of iteration in the proposed method. 
Table 2 represents the experimental results of 7-city TSP to 100 trials. Especially, Table 2 
shows the experimental results that satisfy the stopping rule. N, t, and Pr are the number of 
iterations, the CPU time, and convergence ratio. As seen, the convergence rate by the 
proposed method is about 2.3 times and its convergence speed (time) is about 1.2 times 
higher than that of Hopfield model, respectively. The experimental results show that the 
convergence performances of proposed method are superior to that of Hopfield model with 
randomized initial neuron outputs setting. The standard deviation of proposed method is 
lower than that of Hopfield model. It means that the proposed method is less affected by the 
initial outputs setting than Hopfield model. 
Table 3 shows the experimental results of 10-city TSP to 10 random seeds. In case of 
Hopfield model, the constraints are satisfied at random seeds 3, 5, and 30, but the stopping 
rule is only satisfied in random seed 3. The proposed method satisfies the stopping rule to 
all 10 trials as seen Table 1. The convergence rate by proposed algorithm is 10 times, and its 
convergence speed (time) is about 1.9 times higher than that of Hopfield model in case of 
successful convergence. We can also know that one cycle of SA algorithm takes more time 
than that of Hopfield model in this Table 3.  
Table 4 also represents the experimental results of 10-city TSP to 100 trials. Table 4 also 
shows the experimental results that satisfy the stopping rule. As seen, the convergence rate  
Table 1 shows the experimental results of 7-city TSP to 10 random seeds. In case of Hopfield 
model, the constraints are satisfied at random seeds 5, 20, and 30, but the stopping rule is 
only satisfied in random seeds 5 and 20. The proposed method satisfies the stopping rule to 
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Table 4. Experimental results of 10-city TSP to 100 trials 

Table 1 shows the experimental results of 7-city TSP to 10 random seeds. In case of Hopfield 
model, the constraints are satisfied at random seeds 5, 20, and 30, but the stopping rule is 
only satisfied in random seeds 5 and 20. The proposed method satisfies the stopping rule to  
Compared Table 2(7-city) with Table 4(10-city), the Hopfield model is more difficult to set 
initial outputs for proving a good convergence as the problem size becomes larger. But the 
proposed method is less affected by the initial outputs setting and so gives relatively better 
results than the Hopfield model. Consequently, the convergence rate and speed by proposed 
method is higher than that of Hopfield model with randomized initial weights setting. 

7. Conclusions 
This paper proposes a global optimization of neural network by applying a hybrid method, 
which combines a stochastic approximation with a gradient descent. The approximation 
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point inclined toward a global escaping from a local minimum is estimated first by applying 
the stochastic approximation, and then the update rule of Hopfield model is applied for 
high-speed convergence. 
The proposed method is applied to the 7- and 10-city TSPs, respectively. The experimental 
results show that the proposed method has superior convergence performances to the 
conventional method that performs the update rule of Hopfield model with randomized 
initial neuron outputs setting. Especially, the proposed method is less affected by the initial 
outputs setting and so gives relatively better results than the Hopfield model as the prom 
size becomes larger. 
Our future research is to solve on a large scale combinatorial optimization problems by 
using neural networks of the proposed method. 
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1. Introduction     
This work shows the application of Wang’s Recurrent Neural Network with the "Winner 
Takes All" (WTA) principle to solve the classic Operational Research problem called the 
Traveling Salesman Problem. The upgrade version proposed in this work for the ‘Winner 
Takes All’ principle is called soft, because the winning neuron is updated with only part of 
the activation values of the other competing neurons.  
The problems in the TSPLIB (Traveling Salesman Problem Library - Reinelt, 1991) were used 
to compare the soft version with the ‘Winner Takes All’ hard version and they show 
improvement in the results using the 'Winner Takes All' soft version in most of the problems 
tested. 
The implementation of the technique proposed in this paper uses the parameters of Wang‘s 
Neural Network for the Assignment problem (Wang, 1992; Hung & Wang, 2003) using the 
’Winner Takes All' principle to form Hamiltonian circuits (Siqueira et al. 2007) and can be 
used for both symmetric and asymmetric Traveling Salesman Problems. The 2-opt technique 
is used to improve the routes found with the proposed Neural Network, thus becoming a 
technique that is competitive to other Neural Networks. 
Other heuristic techniques have been developed recently to solve the Traveling Salesman 
Problem, and the work of Misevičius et al. (2005) shows the use of the ITS (Iterated Tabu 
Search) technique with a combination of intensification and diversification of solutions for 
the TSP. This technique is combined with the 5-opt and errors are almost zero in almost all 
of the TSPLIB problems tested.  
The work of Wang et al. (2007) shows the use of Particle Swarm to solve the TSP with the use 
of the fraction (quantum) principle to better guide the search for solutions. The authors 
make comparisons with Hill Climbing, Simulated Annealing and Tabu Search, and show in 
a 14-cities case that the results are better than those of the other techniques. 
In the area of Artificial Neural Networks, an interesting technique can be found in the work 
of Massutti & Castro (2009), who use a mechanism to stabilize winning neurons and the 
centroids of the groups of cities for the growing and pruning the network. The authors show 
modifications in the Rabnet’s (real-valued antibody network) parameters for the Traveling 
Salesman Problem and comparisons made with TSPLIB problems solved by other 
techniques show that the Rabnet has better results. 
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Créput & Koukam (2007) show a hybrid technique with self-organizing maps (SOM) and 
evolutionary algorithms to solve the TSP, called Memetic Neural Network (MSOM). The 
results of this technique are compared with the CAN (Co-Adaptive Network) technique, 
developed by Cochrane & Beasley (2003), in which both have results that are regarded as 
satisfactory.  
The Efficient and Integrated Self-Organizing Map (EISOM) was proposed by Jin et al. (2003), 
where a SOM network is used to generate a solution where the winning neuron is replaced 
by the position of the midpoint between the two closest neighboring neurons. The results 
presented by the authors show that the EISOM has better results than the Simulated 
Annealing and the ESOM network (Leung et al., 2004). 
The Modified Growing Ring Self-Organizing Map (MGSOM) presented in the work of Bai et 
al. (2006) shows some changes in the adaptation, selection of the number of neurons, the 
network’s initial weights and the winning neurons indexing functions, as well as the effects 
of these changes on the order of cities for the TSP. The MGSOM technique is easy to 
implement and has a mean error of 2.32% for the 12 instances of the TSPLIB. 
The work of Yi et al. (2009) shows an elastic network with the introduction of temporal 
parameters, helping neurons in the motion towards the cities’ positions. Comparisons with 
problems from the TSPLIB solved with the traditional elastic network show that it is an 
efficient technique to solve the TSP, with smaller error and less computational time than the 
other elastic networks.  
In Li et al. (2009) a class of Lotka-Volterra neural networks is used to solve the Traveling 
Salesman Problem with the application of global inhibitions, analyzing the stability of the 
proposed neural network by means of equilibrium points. The results are analyzed and 
compared with several experiments where the equilibrium status of this network represents 
a feasible solution to the Traveling Salesman Problem. 
The work of Hammer et al. (2009) shows a review of the most recent works in the area of 
Recurrent Neural Networks, including discussions about new paradigms, architectures and 
processing structures of these networks. The authors show the works of Recurrent Neural 
Networks applied in solving various Operational Research problems, such as the Traveling 
Salesman Problem, Quadratic Programming problems, training of Support Vector Machines 
and Winner Takes All. 
This work is divided into four sections besides this introduction. In section 2 are shown 
Wang‘s Recurrent Neural Network and the soft ’Winner Takes All' technique applied to the 
Traveling Salesman Problem. Section 3 shows the comparative results and Section 4 the 
conclusions. 

2. Wang’s neural network with the soft winner takes all principle 
The mathematical formulation of the Traveling Salesman Problem is the same of the 
Assignment problem (1) - (4), with the additional constraint (5) that ensures that the route 
starts and ends in the same city. 
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 xij ∈ {0, 1}, i, j = 1,…, n (4) 

 x~ forms a Hamiltonian circuit, (5) 

where cij and xij are respectively the cost and decision variables associated with the 
assignment of vertex i to vertex j in the Hamiltonian circuit. The objective function (1) 
minimizes costs. The set of constraints (2) and (3) ensure that each city will be visited only 
once. Constraints (4) ensure the condition of integrality of the binary variables xij, and vector 
x~  represents the sequence of a Traveling Salesman’s route.  
To obtain a first approximation for the TSP, Wang’s Recurrent Neural Network is applied to 
the Assignment Problem, this is, the solution satisfies constraints (1) - (4), which can be 
written in matrix form (Hung & Wang, 2003): 

 Minimize C = cTx (6) 

 Subject to Ax = b (7) 

 xij ∈ {0, 1}, i, j = 1,…, n (8) 

where cT is the vector with dimension n2, which contains all of the cost matrix’s lines in 
sequence, vector x contains the n2 xij decision variables and vector b contains the number 1 in 
all of its positions.  Matrix A has dimension 2n × n2, with the following format: 
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where I is the identity matrix with dimension n and each matrix Bi contains zeroes in all of 
its positions, with exception of the i-th line that contains “1” in all of its positions. 
A Wang’s Recurrent Neural Network is defined by the following differential equation 
(Wang, 1992; Hung & Wang, 2003): 
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where xij = g (uij βt)), the equilibrium status of this network is a solution to the Assignment 
Problem (Wang, 1997) and function g is the sigmoid function with parameter β: 

 g(u) = ue β−+1
1 . (10) 

The threshold is the vector of size n2 θ= ATb, which has the value "2" in all of its positions. 
Parameters η, λ and τ are constant and empirically chosen (Hung & Wang, 2003). Parameter 
η penalizes violations of constraints (2) and (3). Parameters λ and τ control the minimization 
of the objective function (1). Considering W = ATA, Wang’s Neural Network’s matrix form is 
the following: 
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The method proposed in this paper uses the "Winner Takes All" principle, which accelerates 
the convergence of Wang’s Recurrent Neural Network, in addition to solve problems that 
appear in multiple solutions or very close solutions (Siqueira et al., 2008). 
The adjustment of parameter λ was done using the standard deviation between the 
coefficients of the rows in the problem’s costs matrix and determining the vector 

 ⎟⎟
⎠

⎞
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⎝
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=

nδδδ
ηλ 1,...,1,1

21
, (12) 

where δi is the standard deviation of row i of costs matrix c (Smith et al., 2007). 
The adjustment of parameter τ uses the third term of the definition of Wang’s Neural 
Network (9), as follows: when cij = cmax, term −λicij exp(−t/τi ) = ki must satisfy g(ki) ≅ 0, this 
is, xij will bear the minimum value (Siqueira et al., 2007), considering cij = cmax and λi = 1/δi, 
where i = 1, ..., n, τ is defined by: 
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After a certain number of iterations, term Wx(t) − θ  of equation (10) has no substantial 
alterations, thus ensuring that constraints (2) and (3) are almost satisfied and the ‘Winner 
Takes All’ method can be applied to establish a solution for the TSP.  
The soft ‘Winner Takes All’ (SWTA) technique is described in the pseudo-code below, 
where the following situations occur with respect to parameter α:  
- when α = 0, the WTA update is nonexistent and Wang’s Neural Network updates the 

solutions for the Assignment Problem with no interference; 
- when α = 1, the update is called hard WTA, because the winner gets all the activation of 

the other neurons and the losers become null. The solution is feasible for the TSP; 
- in the other cases, the update is called soft WTA and the best results are found with 0.25 

≤ α ≤ 0.9. 
 

Pseudo-code for the Soft ‘Winner Takes All’ (SWTA) technique 
Choose the maximum number of routes rmax. 
{ 
While r < rmax 
    { 
    While Wx(t) − θ > φ (where 0 ≤ φ ≤ 2): 
        Find a solution x for the Assignment Problem using Wang’s Neural Network. 
    }  
    Make x  = x and m = 1; 
    Choose a line k from decision matrix x ;  
    Make p = k and x~ (m) = k; 
    { 
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    While m < n: 
            Find klx = argmax{ kix , i = 1, …, n}; 
            Do the following updates: 
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 kjkj xx )( α−= 1 , j = 1,…, n, j ≠ l, 0 ≤ α ≤ 1 (15) 

 ilil xx )( α−= 1 , i = 1,…, n, i ≠ k, 0 ≤ α ≤ 1 (16) 

            Make x~ (m + 1) = l and m = m + 1; 
            to continue the route, make k = l. 
    } 

    Make  xxxx
n

i

n

j
kjipkpkp ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
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α and x~ (n + 1) = p; 

    determine the cost of route C; 
    { 
    If C < Cmin, then  
             Make Cmin = C and x = x . 
    } 
    r = r + 1. 
} 

2.1 Example illustrating the SWTA technique applied to the TSP 
Consider the 10-cities problem proposed in the work of Hopfield & Tank (1985). 
Considering α = 0.7 and the parameters defined by equations (12) and (13), after 32 
iterations Wang’s Neural Network shows the following solution for the Assignment 
Problem: 
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A city must be chosen so that the TSP’s route can be formed, in this case city 1, this is, p = k = 
1. Element l = 3 satisfies 13xxkl = = argmax{ ix1 , i = 1, …, n}, this is, the traveling salesman 
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The method proposed in this paper uses the "Winner Takes All" principle, which accelerates 
the convergence of Wang’s Recurrent Neural Network, in addition to solve problems that 
appear in multiple solutions or very close solutions (Siqueira et al., 2008). 
The adjustment of parameter λ was done using the standard deviation between the 
coefficients of the rows in the problem’s costs matrix and determining the vector 
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where δi is the standard deviation of row i of costs matrix c (Smith et al., 2007). 
The adjustment of parameter τ uses the third term of the definition of Wang’s Neural 
Network (9), as follows: when cij = cmax, term −λicij exp(−t/τi ) = ki must satisfy g(ki) ≅ 0, this 
is, xij will bear the minimum value (Siqueira et al., 2007), considering cij = cmax and λi = 1/δi, 
where i = 1, ..., n, τ is defined by: 
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After a certain number of iterations, term Wx(t) − θ  of equation (10) has no substantial 
alterations, thus ensuring that constraints (2) and (3) are almost satisfied and the ‘Winner 
Takes All’ method can be applied to establish a solution for the TSP.  
The soft ‘Winner Takes All’ (SWTA) technique is described in the pseudo-code below, 
where the following situations occur with respect to parameter α:  
- when α = 0, the WTA update is nonexistent and Wang’s Neural Network updates the 

solutions for the Assignment Problem with no interference; 
- when α = 1, the update is called hard WTA, because the winner gets all the activation of 

the other neurons and the losers become null. The solution is feasible for the TSP; 
- in the other cases, the update is called soft WTA and the best results are found with 0.25 

≤ α ≤ 0.9. 
 

Pseudo-code for the Soft ‘Winner Takes All’ (SWTA) technique 
Choose the maximum number of routes rmax. 
{ 
While r < rmax 
    { 
    While Wx(t) − θ > φ (where 0 ≤ φ ≤ 2): 
        Find a solution x for the Assignment Problem using Wang’s Neural Network. 
    }  
    Make x  = x and m = 1; 
    Choose a line k from decision matrix x ;  
    Make p = k and x~ (m) = k; 
    { 
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    While m < n: 
            Find klx = argmax{ kix , i = 1, …, n}; 
            Do the following updates: 

  xxxx
n

i

n

j
kjilklkl ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++= ∑ ∑

= =1 12
α  (14) 

 kjkj xx )( α−= 1 , j = 1,…, n, j ≠ l, 0 ≤ α ≤ 1 (15) 

 ilil xx )( α−= 1 , i = 1,…, n, i ≠ k, 0 ≤ α ≤ 1 (16) 

            Make x~ (m + 1) = l and m = m + 1; 
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α and x~ (n + 1) = p; 

    determine the cost of route C; 
    { 
    If C < Cmin, then  
             Make Cmin = C and x = x . 
    } 
    r = r + 1. 
} 

2.1 Example illustrating the SWTA technique applied to the TSP 
Consider the 10-cities problem proposed in the work of Hopfield & Tank (1985). 
Considering α = 0.7 and the parameters defined by equations (12) and (13), after 32 
iterations Wang’s Neural Network shows the following solution for the Assignment 
Problem: 
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A city must be chosen so that the TSP’s route can be formed, in this case city 1, this is, p = k = 
1. Element l = 3 satisfies 13xxkl = = argmax{ ix1 , i = 1, …, n}, this is, the traveling salesman 
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makes his route leaving city 1 towards city 3. Using equations (14)-(16), the elements in line 
1 and column 3 are updated resulting in matrix x : 
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00001.0007.0022.00038.100007.0
000001.0001.0065.00001.0001.0919.0
001.0001.00000003.00977.0018.0
801.0002.00000001.0023.0002.0
004.0002.0001.0005.00001.0008.0294.1005.00

x  

In order to continue the route, update k = l = 3 is done and element l = 2 satisfies the 
condition in which 32xxkl = = argmax{ ix3 , i = 1, …, n}.  Proceeding this way, we obtain the 
matrix x  in the form:  
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017.00941.0002.0001.00000002.0
005.0008.00008.0022.10000001.0
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001.0001.001.0984.00006.0000001.0
000002.0007.00064.100002.0
00000019.00001.00296.1
000000001.00993.0005.0
87.0002.000000023.00006.0
004.0002.0001.0005.00001.0008.0294.1005.00

x , 

which is the solution in Fig. 1, at a cost of 2.7518 and a mean error of 2.27%.  
 

 
Fig. 1. Solution for the 10-cities problem of Hopfield & Tank, with cost 2.7518 and mean 
error 2.27% 
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The solution to the SWTA is once again applied to Wang’s Neural Network and after other 
13 iterations the following solution is found:  
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Using the SWTA technique an approximation to the optimal solution is found: 
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005.096.00008.0011.00000001.0
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001.0001.0011.0983.00007.0000001.0
000002.0955.0002.000002.0
00000004.10001.00008.0
000000001.00022.0247.1
001.0001.000000091.10006.0
005.0002.0001.0005.00001.0298.1007.0005.00

x ,  

which is shown in Fig. 2. 
 

 
Fig. 2. Optimal solution for the 10-cities problem of Hopfield & Tank, cost 2.69 
Applying the same SWTA technique to the 30-random-cities problem of Lin & Kernighan 
(1973), the solutions are shown below, where Fig. 3a shows the solution with cost 4.37 and 
2.58% mean error, and Fig. 3b shows the optimal solution with cost 4.26 
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makes his route leaving city 1 towards city 3. Using equations (14)-(16), the elements in line 
1 and column 3 are updated resulting in matrix x : 
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In order to continue the route, update k = l = 3 is done and element l = 2 satisfies the 
condition in which 32xxkl = = argmax{ ix3 , i = 1, …, n}.  Proceeding this way, we obtain the 
matrix x  in the form:  
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which is the solution in Fig. 1, at a cost of 2.7518 and a mean error of 2.27%.  
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The solution to the SWTA is once again applied to Wang’s Neural Network and after other 
13 iterations the following solution is found:  
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Using the SWTA technique an approximation to the optimal solution is found: 
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which is shown in Fig. 2. 
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    (a)                                                                          (b) 

Fig. 3. Solutions for the 10-random-cities problem of Hopfield & Tank: (a) cost 4.37 and 
2.58% mean error; (b) optimal solution with cost 4.26 

3. Results 
The technique proposed in this paper, Soft Winner Takes All applied to Wang’s Recurrent 
Neural Network, was used to solve 36 symmetric and 19 asymmetric problems from the 
TSPLIB (Traveling Salesman Problem Library) database. The results were compared with 
results from both the Hard Winner Takes All technique (Siqueira et al., 2008) and from 
similar techniques published in the literature. 

3.1 TSPLIB symmetric problems 
Table 1 and Table 2 shows the comparison between the Soft and Hard WTA techniques, 
where the results of applying Wang’s Neural Network with Soft WTA and the 2-opt 
(SWTA2) route improving technique in the final solutions have mean error ranging between 
0 and 4.50%. The results without the application of the 2-opt (SWTA) vary between 0 and 
14.39% and are better in almost all problems tested when compared to results obtained with 
the Hard WTA technique, and 95% confidence intervals (CI) for the mean were computed 
on the basis of standard deviations (SD) over 60 runs. Fig. 4 shows a comparison between 
the Soft and Hard WTA techniques applied to 36 problems from the TSPLIB, showing the 
best and worst results found with each technique. 
Table 2 shows that from the 36 problems tested, only 6 have better results with the Hard 
WTA with 2-opt technique: att532, kroA200, u159, kroA150, pr124 and rd100. The best 
solutions with the Hard WTA technique without the 2-opt technique outweigh the results 
with the Soft WTA technique in only 3 problems: lin318, u159 and pr124. 
Fig. 4 shows that from the 36 problems tested, 14 have the worst results with higher costs 
with the Soft WTA technique than with the Hard WTA: rd100, a280, ch130, bier127, 
kroA100, kroC100, kroE100, brazil58, pr107, eil51, gil262, lin318, fl417 and rat575.   
In addition to comparing the technique proposed in this paper with the results of the 
TSPLIB with the Hard WTA technique, the results were compared with the following 
techniques: 
• KNIESG method (Kohonen Network Incorporating Explicit Statistics Global) which 

uses statistical methods to determine the weights of neurons in a Self-Organizing Map, 
where all cities are used for the dispersion of neurons (Aras et al., 1999);  

Recurrent Neural Networks with the Soft ‘Winner Takes All’  
Principle Applied to the Traveling Salesman Problem   

 

185 

Average error (%) 

HWTA SWTA TSP 
name n Optimal

solution
Best Mean SD CI (95%) Best Mean SD CI (95%) 

eil51 51 430 1.16 1.16 0.00 [1.16, 1.16] 0.47 1.59 0.78 [1.40, 1.79] 
brazil58 58 16156 2.90 2.90 0.00 [2.90, 2.90] 1.81 2.65 1.18 [2.35, 2.94] 

st70 70 678.6 2.71 3.55 0.64 [3.39, 3.71] 1.68 1.97 0.46 [1.86, 2.09] 
eil76 76 545.4 1.03 2.00 0.76 [1.81, 2.20] 0 1.27 0.98 [1.02, 1.51] 

kroA100 100 21282 3.68 4.22 0.58 [4.07, 4.36] 3.05 3.73 0.96 [3.49, 3.98] 
kroB100 100 22141 8.27 8.54 0.25 [8.48, 8.60] 4.73 6.12 1.12 [5.83, 6.40] 
kroC100 100 20749 5.20 5.20 0.01 [5.20, 5.21] 3.35 4.10 1.13 [3.81, 4.38] 
kroD100 100 21294 8.57 8.85 0.47 [8.73, 8.97] 4.64 4.73 0.11 [4.71, 4.76] 
kroE100 100 22068 6.18 6.37 0.25 [6.31, 6.44] 4.07 5.41 1.29 [5.09, 5.74] 

rd100 100 7910 6.83 7.00 0.19 [6.95, 7.04] 6.27 7.02 1.28 [6.70, 7.34] 
eil101 101 629 3.02 6.09 2.40 [5.49, 6.70] 3.02 5.86 1.32 [5.54, 6.20] 
lin105 105 14383 4.33 5.41 0.83 [5.20, 5.62] 3.70 3.91 0.24 [3.85, 3.97] 
pr107 107 44303 3.14 3.14 0.00 [3.14, 3.14] 1.65 2.89 0.77 [2.69, 3.08] 
pr124 124 59030 0.33 1.44 1.22 [1.13, 1.75] 2.39 2.77 0.30 [2.69, 2.84] 

bier127 127 118282 4.22 4.45 0.37 [4.35, 4.54] 3.11 5.14 1.61 [4.73, 5.55] 
ch130 130 6110 5.06 5.97 0.83 [5.76, 6.18] 4.52 5.99 1.37 [5.64, 6.33] 
pr136 136 96772 5.99 6.28 0.45 [6.16, 6.39] 5.06 5.66 0.55 [5.52, 5.80] 
gr137 137 69853 9.09 9.14 0.13 [9.11, 9.18] 6.65 8.01 0.99 [7.76, 8.26] 

kroA150 150 26524 8.85 9.53 0.98 [9.28, 9.78] 8.50 8.87 0.50 [8.74, 9.00] 
kroB150 150 26130 7.33 8.43 0.92 [8.20, 8.67] 6.80 7.31 0.52 [7.17, 7.44] 

pr152 152 73682 3.23 3.26 0.02 [3.25, 3.26] 3.22 3.23 0.00 [3.23, 3.23] 
u159 159 42080 6.33 7.16 1.29 [6.84, 7.49] 6.40 7.57 1.07 [7.30, 7.84] 

rat195 195 2323 5.55 6.63 1.37 [6.29, 6.98] 5.42 5.90 0.35 [5.81, 5.99] 
d198 198 15780 10.43 10.75 0.31 [10.68, 10.83] 6.86 7.33 0.57 [7.18, 7.47] 

kroA200 200 29368 8.95 10.57 1.42 [10.21, 10.93] 8.03 8.84 0.91 [8.61, 9.07] 
tsp225 225 3859 7.64 8.40 0.92 [8.16, 8.63] 5.73 7.25 1.56 [6.86, 7.65] 
gil262 262 2378 8.20 8.73 0.58 [8.58, 8.87] 7.65 8.33 0.86 [8.11, 8.55] 
a280 280 2586 12.14 12.22 0.12 [12.19, 12.25] 9.98 12.01 1.96 [11.51, 12.50] 

lin318 318 42029 8.35 8.50 0.16 [8.46, 8.54] 8.97 10.00 0.97 [9.75, 10.25] 
fl417 417 11861 10.11 9.62 0.31 [9.54, 9.70] 9.05 10.02 1.10 [9.74, 10.30] 
pr439 439 107217 9.39 10.95 1.17 [10.66, 11.25] 9.39 10.30 0.85 [10.09, 10.51] 

pcb442 442 50783 9.16 10.50 2.01 [9.99, 11.01] 8.76 10.05 0.95 [9.81, 10.30] 
att532 532 87550 14.58 14.83 0.34 [14.74, 14.91] 9.10 9.96 0.87 [9.74, 10.18] 
rat575 575 6773 10.03 10.46 0.53 [10.33, 10.59] 9.86 10.73 0.59 [10.58, 10.88] 
u724 724 41910 16.85 16.85 0.00 [16.85, 16.85] 10.18 10.56 0.44 [10.45, 10.67] 

pr1002 1002 259045 15.66 15.91 0.30 [15.83, 15.99] 14.39 15.11 0.65 [14.95, 15.28] 

Table 1. Comparisons between the results of 36 symmetric instances from the TSPLIB with 
the Hard WTA (HWTA) and Soft WTA (SWTA) techniques.  
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Fig. 3. Solutions for the 10-random-cities problem of Hopfield & Tank: (a) cost 4.37 and 
2.58% mean error; (b) optimal solution with cost 4.26 

3. Results 
The technique proposed in this paper, Soft Winner Takes All applied to Wang’s Recurrent 
Neural Network, was used to solve 36 symmetric and 19 asymmetric problems from the 
TSPLIB (Traveling Salesman Problem Library) database. The results were compared with 
results from both the Hard Winner Takes All technique (Siqueira et al., 2008) and from 
similar techniques published in the literature. 

3.1 TSPLIB symmetric problems 
Table 1 and Table 2 shows the comparison between the Soft and Hard WTA techniques, 
where the results of applying Wang’s Neural Network with Soft WTA and the 2-opt 
(SWTA2) route improving technique in the final solutions have mean error ranging between 
0 and 4.50%. The results without the application of the 2-opt (SWTA) vary between 0 and 
14.39% and are better in almost all problems tested when compared to results obtained with 
the Hard WTA technique, and 95% confidence intervals (CI) for the mean were computed 
on the basis of standard deviations (SD) over 60 runs. Fig. 4 shows a comparison between 
the Soft and Hard WTA techniques applied to 36 problems from the TSPLIB, showing the 
best and worst results found with each technique. 
Table 2 shows that from the 36 problems tested, only 6 have better results with the Hard 
WTA with 2-opt technique: att532, kroA200, u159, kroA150, pr124 and rd100. The best 
solutions with the Hard WTA technique without the 2-opt technique outweigh the results 
with the Soft WTA technique in only 3 problems: lin318, u159 and pr124. 
Fig. 4 shows that from the 36 problems tested, 14 have the worst results with higher costs 
with the Soft WTA technique than with the Hard WTA: rd100, a280, ch130, bier127, 
kroA100, kroC100, kroE100, brazil58, pr107, eil51, gil262, lin318, fl417 and rat575.   
In addition to comparing the technique proposed in this paper with the results of the 
TSPLIB with the Hard WTA technique, the results were compared with the following 
techniques: 
• KNIESG method (Kohonen Network Incorporating Explicit Statistics Global) which 

uses statistical methods to determine the weights of neurons in a Self-Organizing Map, 
where all cities are used for the dispersion of neurons (Aras et al., 1999);  
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Average error (%) 

HWTA SWTA TSP 
name n Optimal

solution
Best Mean SD CI (95%) Best Mean SD CI (95%) 

eil51 51 430 1.16 1.16 0.00 [1.16, 1.16] 0.47 1.59 0.78 [1.40, 1.79] 
brazil58 58 16156 2.90 2.90 0.00 [2.90, 2.90] 1.81 2.65 1.18 [2.35, 2.94] 

st70 70 678.6 2.71 3.55 0.64 [3.39, 3.71] 1.68 1.97 0.46 [1.86, 2.09] 
eil76 76 545.4 1.03 2.00 0.76 [1.81, 2.20] 0 1.27 0.98 [1.02, 1.51] 

kroA100 100 21282 3.68 4.22 0.58 [4.07, 4.36] 3.05 3.73 0.96 [3.49, 3.98] 
kroB100 100 22141 8.27 8.54 0.25 [8.48, 8.60] 4.73 6.12 1.12 [5.83, 6.40] 
kroC100 100 20749 5.20 5.20 0.01 [5.20, 5.21] 3.35 4.10 1.13 [3.81, 4.38] 
kroD100 100 21294 8.57 8.85 0.47 [8.73, 8.97] 4.64 4.73 0.11 [4.71, 4.76] 
kroE100 100 22068 6.18 6.37 0.25 [6.31, 6.44] 4.07 5.41 1.29 [5.09, 5.74] 

rd100 100 7910 6.83 7.00 0.19 [6.95, 7.04] 6.27 7.02 1.28 [6.70, 7.34] 
eil101 101 629 3.02 6.09 2.40 [5.49, 6.70] 3.02 5.86 1.32 [5.54, 6.20] 
lin105 105 14383 4.33 5.41 0.83 [5.20, 5.62] 3.70 3.91 0.24 [3.85, 3.97] 
pr107 107 44303 3.14 3.14 0.00 [3.14, 3.14] 1.65 2.89 0.77 [2.69, 3.08] 
pr124 124 59030 0.33 1.44 1.22 [1.13, 1.75] 2.39 2.77 0.30 [2.69, 2.84] 

bier127 127 118282 4.22 4.45 0.37 [4.35, 4.54] 3.11 5.14 1.61 [4.73, 5.55] 
ch130 130 6110 5.06 5.97 0.83 [5.76, 6.18] 4.52 5.99 1.37 [5.64, 6.33] 
pr136 136 96772 5.99 6.28 0.45 [6.16, 6.39] 5.06 5.66 0.55 [5.52, 5.80] 
gr137 137 69853 9.09 9.14 0.13 [9.11, 9.18] 6.65 8.01 0.99 [7.76, 8.26] 

kroA150 150 26524 8.85 9.53 0.98 [9.28, 9.78] 8.50 8.87 0.50 [8.74, 9.00] 
kroB150 150 26130 7.33 8.43 0.92 [8.20, 8.67] 6.80 7.31 0.52 [7.17, 7.44] 

pr152 152 73682 3.23 3.26 0.02 [3.25, 3.26] 3.22 3.23 0.00 [3.23, 3.23] 
u159 159 42080 6.33 7.16 1.29 [6.84, 7.49] 6.40 7.57 1.07 [7.30, 7.84] 

rat195 195 2323 5.55 6.63 1.37 [6.29, 6.98] 5.42 5.90 0.35 [5.81, 5.99] 
d198 198 15780 10.43 10.75 0.31 [10.68, 10.83] 6.86 7.33 0.57 [7.18, 7.47] 

kroA200 200 29368 8.95 10.57 1.42 [10.21, 10.93] 8.03 8.84 0.91 [8.61, 9.07] 
tsp225 225 3859 7.64 8.40 0.92 [8.16, 8.63] 5.73 7.25 1.56 [6.86, 7.65] 
gil262 262 2378 8.20 8.73 0.58 [8.58, 8.87] 7.65 8.33 0.86 [8.11, 8.55] 
a280 280 2586 12.14 12.22 0.12 [12.19, 12.25] 9.98 12.01 1.96 [11.51, 12.50] 

lin318 318 42029 8.35 8.50 0.16 [8.46, 8.54] 8.97 10.00 0.97 [9.75, 10.25] 
fl417 417 11861 10.11 9.62 0.31 [9.54, 9.70] 9.05 10.02 1.10 [9.74, 10.30] 
pr439 439 107217 9.39 10.95 1.17 [10.66, 11.25] 9.39 10.30 0.85 [10.09, 10.51] 

pcb442 442 50783 9.16 10.50 2.01 [9.99, 11.01] 8.76 10.05 0.95 [9.81, 10.30] 
att532 532 87550 14.58 14.83 0.34 [14.74, 14.91] 9.10 9.96 0.87 [9.74, 10.18] 
rat575 575 6773 10.03 10.46 0.53 [10.33, 10.59] 9.86 10.73 0.59 [10.58, 10.88] 
u724 724 41910 16.85 16.85 0.00 [16.85, 16.85] 10.18 10.56 0.44 [10.45, 10.67] 

pr1002 1002 259045 15.66 15.91 0.30 [15.83, 15.99] 14.39 15.11 0.65 [14.95, 15.28] 

Table 1. Comparisons between the results of 36 symmetric instances from the TSPLIB with 
the Hard WTA (HWTA) and Soft WTA (SWTA) techniques.  
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Average error (%) 

HWTA2 SWTA2 
TSP 

name n Optimal
solution

best Mean SD CI (95%) Best Mean SD CI (95%) 

eil51 51 430 0 0.31 0.41 [0.21, 0.41] 0 0.09 0.21 [0.04, 0.15] 
brazil58 58 16156 0 0.41 0.52 [0.28, 0.54] 0 0.30 0.51 [0.18, 0.43] 

st70 70 678.6 0 0.14 0.28 [0.07, 0.21] 0 0.14 0.26 [0.08, 0.21] 
eil76 76 545.4 0 0.12 0.28 [0.05, 0.19] 0 0.37 0.65 [0.21, 0.54] 

kroA100 100 7910 0.84 2.12 1.18 [1.82, 2.42] 0 0.47 0.81 [0.26, 0.67] 
kroB100 100 21282 0.71 1.47 0.72 [1.28, 1.65] 0.47 1.76 0.97 [1.52, 2.01] 
kroC100 100 22141 0 0.29 0.40 [0.19, 0.39] 0 0.73 0.88 [0.51, 0.95] 
kroD100 100 20749 0.73 1.23 0.58 [1.08, 1.38] 0.59 0.89 0.41 [0.78, 0.99] 
kroE100 100 21294 0.84 1.65 0.83 [1.44, 1.86] 0.32 1.74 2.25 [1.77, 2.31] 

rd100 100 22068 0.08 0.49 0.50 [0.36, 0.61] 0.49 1.48 0.90 [1.25, 1.71] 
eil101 101 629 0.48 1.63 1.35 [1.29, 1.97] 0.16 0.95 1.20 [0.65, 1.26] 
lin105 105 14383 0.20 0.73 0.77 [0.53, 0.93] 0 1.46 1.33 [1.13, 1.80] 
pr107 107 44303 0 0.53 0.93 [0.29, 0.76] 0 0.11 0.15 [0.07, 0.14] 
pr124 124 59030 0 0.45 0.82 [0.24, 0.66] 0.09 0.98 1.08 [0.71, 1.25] 

bier127 127 118282 0.37 1.08 0.65 [0.92, 1.24] 0.25 1.55 1.03 [1.29, 1.81] 
ch130 130 6110 1.39 1.85 0.72 [1.67, 2.03] 0.80 2.14 1.30 [1.81, 2.47] 
pr136 136 96772 1.21 1.25 0.05 [1.24, 1.26] 0.58 1.18 0.48 [1.06, 1.30] 
gr137 137 69853 2.07 2.96 1.83 [2.50, 3.42] 0.21 1.38 1.75 [0.94, 1.82] 

kroA150 150 26524 1.17 2.35 1.21 [2.04, 2.65] 1.39 2.77 1.30 [2.44, 3.10] 
kroB150 150 26130 2.16 3.48 1.22 [3.18, 3.79] 1.48 3.77 2.27 [3.20, 4.35] 

pr152 152 73682 0 0.00 0.00 [0.00, 0.00] 0 0.51 1.01 [0.25, 0.76] 
u159 159 42080 0 0.51 0.79 [0.31, 0.71] 0.79 1.71 0.86 [1.49, 1.93] 

rat195 195 2323 3.32 3.95 1.11 [3.67, 4.24] 2.71 3.24 0.65 [3.08, 3.41] 
d198 198 15780 1.22 1.95 1.25 [1.64, 2.27] 0.73 0.81 0.11 [0.78, 0.83] 

kroA200 200 29368 0.62 6.02 5.87 [4.54, 7.51] 0.75 1.37 0.65 [1.20, 1.53] 
tsp225 225 3859 2.54 3.10 0.66 [2.94, 3.27] 1.06 1.75 0.96 [1.51, 1.99] 
gil262 262 2378 2.90 3.57 0.96 [3.32, 3.81] 1.89 3.02 1.31 [2.69, 3.35] 
a280 318 42029 4.02 4.07 0.10 [4.04, 4.09] 2.01 2.87 1.02 [2.61, 3.13] 

lin318 280 2586 1.90 2.38 0.84 [2.16, 2.59] 1.89 3.25 1.35 [2.91, 3.59] 
fl417 417 11861 1.58 1.96 0.46 [1.85, 2.08] 1.43 1.61 0.32 [1.53, 1.69] 
pr439 439 107217 2.39 3.26 0.84 [3.05, 3.48] 1.99 3.23 1.43 [2.86, 3.59] 

pcb442 442 50783 2.87 3.18 0.52 [3.05, 3.32] 2.79 3.63 0.97 [3.39, 3.88] 
att532 532 87550 1.28 1.91 1.22 [1.60, 2.22] 1.48 2.12 0.92 [1.89, 2.35] 
rat575 575 6773 4.98 5.89 0.96 [5.65, 6.14] 4.50 5.33 0.78 [5.13, 5.53] 
u724 724 41910 6.28 6.53 0.35 [6.44, 6.62] 4.06 4.47 0.51 [4.34, 4.60] 

pr1002 1002 259045 4.68 5.58 0.72 [5.40, 5.76] 4.39 5.24 1.20 [4.94, 5.55] 

Table 2. Comparisons between the results of 36 symmetric instances from the TSPLIB with 
the Hard WTA with 2-opt (HWTA2) and Soft WTA with 2-opt (SWTA2) techniques.  
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HWTA:worst HWTA:best HWTA2 SWTA:worst SWTA:best SWTA2  
Fig. 4. Comparison between the results of the Hard WTA (HWTA) and Soft WTA (SWTA) 
techniques for 36 symmetrical problems from the TSPLIB 

• the KNIESL technique, which consists of a local version of KNIESG, where only some 
cities are used for the neurons dispersion phase; 

• in the Efficient and Integrated Self-Organizing Method (EISOM), a SOM network is 
used to generate a solution in which the winning neuron is substituted by the position 
of the mid-point between the two closest neighboring neurons (Jin et al., 2003); 

• the Co-Adaptive Network (CAN), which uses the idea of cooperation among 
neighboring neurons and uses a number of neurons that is higher than the number of 
cities in the problem (Cochrane & Beasley, 2003); 

• the Real-Valued Antibody Network (RABNET), which uses a mechanism to stabilize 
the winning neurons and the centroids of the groups of cities for growth and pruning of 
the network (Massutti & Castro, 2009); 

• the Modified Growing Ring Self-Organizing Network (MGSOM) incorporates other 
initialization methods for the weights in the network, with other adaptation parameters 
proposed for the SOM network and other indexing forms for the order of cities (Bai et 
al., 2006); 

• the MSOM, which consists in a hybrid technique with Self-Organizing Maps (SOM) and 
evolutionary algorithms to solve the TSP, called Memetic Neural Network (Créput & 
Kouka, 2007); and  

• the technique of building a decision tree with minimum amplitude to choose the 
candidate cities for path exchange with the Lin-Kernighan of 2 up to 5-opt techniques 
(Kelsgaun, 2000).  

The comparisons are shown in Table 3, where 16 of the 24 problems tested have better 
results with the technique proposed using the 2-opt route improving technique.  
The order of computational complexity of the proposed technique is O(n2 + n) (Wang, 1997), 
considered competitive when compared with the complexity of Self-Organizing Maps, 
which have an O(n2) complexity (Leung et al., 2004). 
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Average error (%) 

HWTA2 SWTA2 
TSP 

name n Optimal
solution

best Mean SD CI (95%) Best Mean SD CI (95%) 

eil51 51 430 0 0.31 0.41 [0.21, 0.41] 0 0.09 0.21 [0.04, 0.15] 
brazil58 58 16156 0 0.41 0.52 [0.28, 0.54] 0 0.30 0.51 [0.18, 0.43] 

st70 70 678.6 0 0.14 0.28 [0.07, 0.21] 0 0.14 0.26 [0.08, 0.21] 
eil76 76 545.4 0 0.12 0.28 [0.05, 0.19] 0 0.37 0.65 [0.21, 0.54] 

kroA100 100 7910 0.84 2.12 1.18 [1.82, 2.42] 0 0.47 0.81 [0.26, 0.67] 
kroB100 100 21282 0.71 1.47 0.72 [1.28, 1.65] 0.47 1.76 0.97 [1.52, 2.01] 
kroC100 100 22141 0 0.29 0.40 [0.19, 0.39] 0 0.73 0.88 [0.51, 0.95] 
kroD100 100 20749 0.73 1.23 0.58 [1.08, 1.38] 0.59 0.89 0.41 [0.78, 0.99] 
kroE100 100 21294 0.84 1.65 0.83 [1.44, 1.86] 0.32 1.74 2.25 [1.77, 2.31] 

rd100 100 22068 0.08 0.49 0.50 [0.36, 0.61] 0.49 1.48 0.90 [1.25, 1.71] 
eil101 101 629 0.48 1.63 1.35 [1.29, 1.97] 0.16 0.95 1.20 [0.65, 1.26] 
lin105 105 14383 0.20 0.73 0.77 [0.53, 0.93] 0 1.46 1.33 [1.13, 1.80] 
pr107 107 44303 0 0.53 0.93 [0.29, 0.76] 0 0.11 0.15 [0.07, 0.14] 
pr124 124 59030 0 0.45 0.82 [0.24, 0.66] 0.09 0.98 1.08 [0.71, 1.25] 

bier127 127 118282 0.37 1.08 0.65 [0.92, 1.24] 0.25 1.55 1.03 [1.29, 1.81] 
ch130 130 6110 1.39 1.85 0.72 [1.67, 2.03] 0.80 2.14 1.30 [1.81, 2.47] 
pr136 136 96772 1.21 1.25 0.05 [1.24, 1.26] 0.58 1.18 0.48 [1.06, 1.30] 
gr137 137 69853 2.07 2.96 1.83 [2.50, 3.42] 0.21 1.38 1.75 [0.94, 1.82] 

kroA150 150 26524 1.17 2.35 1.21 [2.04, 2.65] 1.39 2.77 1.30 [2.44, 3.10] 
kroB150 150 26130 2.16 3.48 1.22 [3.18, 3.79] 1.48 3.77 2.27 [3.20, 4.35] 

pr152 152 73682 0 0.00 0.00 [0.00, 0.00] 0 0.51 1.01 [0.25, 0.76] 
u159 159 42080 0 0.51 0.79 [0.31, 0.71] 0.79 1.71 0.86 [1.49, 1.93] 

rat195 195 2323 3.32 3.95 1.11 [3.67, 4.24] 2.71 3.24 0.65 [3.08, 3.41] 
d198 198 15780 1.22 1.95 1.25 [1.64, 2.27] 0.73 0.81 0.11 [0.78, 0.83] 

kroA200 200 29368 0.62 6.02 5.87 [4.54, 7.51] 0.75 1.37 0.65 [1.20, 1.53] 
tsp225 225 3859 2.54 3.10 0.66 [2.94, 3.27] 1.06 1.75 0.96 [1.51, 1.99] 
gil262 262 2378 2.90 3.57 0.96 [3.32, 3.81] 1.89 3.02 1.31 [2.69, 3.35] 
a280 318 42029 4.02 4.07 0.10 [4.04, 4.09] 2.01 2.87 1.02 [2.61, 3.13] 

lin318 280 2586 1.90 2.38 0.84 [2.16, 2.59] 1.89 3.25 1.35 [2.91, 3.59] 
fl417 417 11861 1.58 1.96 0.46 [1.85, 2.08] 1.43 1.61 0.32 [1.53, 1.69] 
pr439 439 107217 2.39 3.26 0.84 [3.05, 3.48] 1.99 3.23 1.43 [2.86, 3.59] 

pcb442 442 50783 2.87 3.18 0.52 [3.05, 3.32] 2.79 3.63 0.97 [3.39, 3.88] 
att532 532 87550 1.28 1.91 1.22 [1.60, 2.22] 1.48 2.12 0.92 [1.89, 2.35] 
rat575 575 6773 4.98 5.89 0.96 [5.65, 6.14] 4.50 5.33 0.78 [5.13, 5.53] 
u724 724 41910 6.28 6.53 0.35 [6.44, 6.62] 4.06 4.47 0.51 [4.34, 4.60] 

pr1002 1002 259045 4.68 5.58 0.72 [5.40, 5.76] 4.39 5.24 1.20 [4.94, 5.55] 

Table 2. Comparisons between the results of 36 symmetric instances from the TSPLIB with 
the Hard WTA with 2-opt (HWTA2) and Soft WTA with 2-opt (SWTA2) techniques.  
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HWTA:worst HWTA:best HWTA2 SWTA:worst SWTA:best SWTA2  
Fig. 4. Comparison between the results of the Hard WTA (HWTA) and Soft WTA (SWTA) 
techniques for 36 symmetrical problems from the TSPLIB 

• the KNIESL technique, which consists of a local version of KNIESG, where only some 
cities are used for the neurons dispersion phase; 

• in the Efficient and Integrated Self-Organizing Method (EISOM), a SOM network is 
used to generate a solution in which the winning neuron is substituted by the position 
of the mid-point between the two closest neighboring neurons (Jin et al., 2003); 

• the Co-Adaptive Network (CAN), which uses the idea of cooperation among 
neighboring neurons and uses a number of neurons that is higher than the number of 
cities in the problem (Cochrane & Beasley, 2003); 

• the Real-Valued Antibody Network (RABNET), which uses a mechanism to stabilize 
the winning neurons and the centroids of the groups of cities for growth and pruning of 
the network (Massutti & Castro, 2009); 

• the Modified Growing Ring Self-Organizing Network (MGSOM) incorporates other 
initialization methods for the weights in the network, with other adaptation parameters 
proposed for the SOM network and other indexing forms for the order of cities (Bai et 
al., 2006); 

• the MSOM, which consists in a hybrid technique with Self-Organizing Maps (SOM) and 
evolutionary algorithms to solve the TSP, called Memetic Neural Network (Créput & 
Kouka, 2007); and  

• the technique of building a decision tree with minimum amplitude to choose the 
candidate cities for path exchange with the Lin-Kernighan of 2 up to 5-opt techniques 
(Kelsgaun, 2000).  

The comparisons are shown in Table 3, where 16 of the 24 problems tested have better 
results with the technique proposed using the 2-opt route improving technique.  
The order of computational complexity of the proposed technique is O(n2 + n) (Wang, 1997), 
considered competitive when compared with the complexity of Self-Organizing Maps, 
which have an O(n2) complexity (Leung et al., 2004). 
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Average error (%) TSP 
name 5OPT KNIESG KNIESL EISOM MGSOM RABNET CAN MSOM SWTA SWTA2 
eil51 0.85 2.86 2.86 2.56 1.40 0.56 0.94 1.64 0.47 0 
st70 0.61 2.33 1.51 - 1.18 - 0.89 0.59 1.68 0 
eil76 0.2 5.48 4.98 - 3.38 0 2.04 1.86 0 0 
rd100 0.16 2.62 2.09 - 1.17 0.91 1.19 0.43 6.27 0.49 

kroA100 1.65 - - - - 0.24 0.57 0.18 3.05 0 
kroB100 1.42 - - - - 0.91 1.53 0.62 4.73 0.47 
kroC100 1.35 - - - - 0.80 0.80 0.30 3.35 0 
kroD100 0.72 - - - - 0.38 0.80 0.61 4.64 0.59 

eil101 0.27 5.63 4.66 3.59 - 1.43 1.11 2.07 3.02 0.16 
lin105 0.06 1.29 1.98 - 0.03 0 0 0 3.70 0 
pr107 10.78 0.42 0.73 - 0.17 - 0.18 0.14 1.65 0 
pr124 1.67 0.49 0.08 - - - 2.36 0 2.39 0.09 

bier127 0.73 3.08 2.76 - 1.09 0.58 0.69 1.25 3.11 0.25 
ch130 0.58 5.63 4.66 - - 0.57 1.13 0.80 4.52 0.80 
pr136 0.96 5.15 4.53 - 2.15 - 3.93 0.73 5.06 0.58 

kroA150 0.88 - - 1.83 - 0.58 1.55 1.75 8.50 1.40 
pr152 2.1 1.29 0.97 - 0.74 - 0.74 1.07 3.23 0 
rat195 1.35 11.92 12.24 - 5.98 - 4.69 4.69 5.42 2.71 

kroA200 1.07 6.57 5.72 1.64 1.97 0.79 0.92 0.70 8.03 0.75 
lin318 0.35 - - 2.05 - 1.92 2.65 3.48 8.97 1.89 
pcb442 0.62 10.45 11.07 6.11 8.58 - 5.88 3.57 8.76 2.79 
att532 0.99 6.80 6.74 3.35 - - 4.24 3.29 9.10 1.48 
rat575 0.74 - - 2.18 - 4.05 4.89 4.31 9.86 4.50 
pr1002 0.9 - - 4.82 - - 4.18 4.75 14.39 4.39 
mean 4.50 1.29 4.22 3.29 2.32 1.00 2.16 1.78 5.13 1.04 

Table 3. Comparisons between the results of 24 symmetric problems from the TSPLIB with the 
techniques: Soft WTA (SWTA), Soft WTA with 2-opt (SWTA2), 5-OPT (decision tree with 
minimum amplitude of 2 up to 5-opt), KNIESG (Kohonen Network Incorporating Explicit 
Global Statistics), KNIESL (Kohonen Network Incorporating Explicit Statistics Local), EISOM 
(Efficient and Integrated SOM), MGSOM (Modified Growing Ring SOM), RABNET (Real-
valued Antibody Network), CAN (Co-Adaptive Network) and MSOM (Memetic SOM) 
Fig. 5a shows the best result found with the Soft WTA technique for the 1002-cities problem, 
by Padberg and Rinaldi, and Figure 5b shows the best result found with the same technique 
with the 2-opt route improvement. In Fig. 6 are the best results for drilling problem fl417 by 
Reinelt. In Fig. 7 are shown the best results for the of 439-cities problem by Padberg and 
Rinaldi. 
Fig. 8 and 9 show the comparison between the best results for Wang's Recurrent Neural 
Network with the Hard and Soft WTA techniques for drilling problems d198 (Reinelt) and 
pcb442 (Groetschel, Juenger and Reinelt), respectively. Fig. 10 show the best result found 
with the Soft WTA technique for 399-cities problem of Parana, Brazil, where the optimal 
solution to this problem is 7,086,615. 
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(a)                                                                               (b) 

Fig. 5. Example of the pr1002 problem with the application of Wang’s Neural Network: (a) 
with Soft WTA and average error of 14.39%, (b) with Soft WTA and 2-opt improvement with 
average error of 4.39% 

   
(a)                                                                           (b) 

Fig. 6. Example of the fl417 problem with the application of Wang’s Neural Network: (a) 
with Soft WTA and average error of 9.05%, (b) with Soft WTA and 2-opt improvement with 
average error of 1.43% 

 
                                              (a)                                                                      (b) 
Fig. 7. Example of the pr439 problem with the application of Wang’s Neural Network:  
(a) with Soft WTA and average error of 9.39%, (b) with Soft WTA and 2-opt improvement 
with average error of 1.99% 
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Average error (%) TSP 
name 5OPT KNIESG KNIESL EISOM MGSOM RABNET CAN MSOM SWTA SWTA2 
eil51 0.85 2.86 2.86 2.56 1.40 0.56 0.94 1.64 0.47 0 
st70 0.61 2.33 1.51 - 1.18 - 0.89 0.59 1.68 0 
eil76 0.2 5.48 4.98 - 3.38 0 2.04 1.86 0 0 
rd100 0.16 2.62 2.09 - 1.17 0.91 1.19 0.43 6.27 0.49 

kroA100 1.65 - - - - 0.24 0.57 0.18 3.05 0 
kroB100 1.42 - - - - 0.91 1.53 0.62 4.73 0.47 
kroC100 1.35 - - - - 0.80 0.80 0.30 3.35 0 
kroD100 0.72 - - - - 0.38 0.80 0.61 4.64 0.59 

eil101 0.27 5.63 4.66 3.59 - 1.43 1.11 2.07 3.02 0.16 
lin105 0.06 1.29 1.98 - 0.03 0 0 0 3.70 0 
pr107 10.78 0.42 0.73 - 0.17 - 0.18 0.14 1.65 0 
pr124 1.67 0.49 0.08 - - - 2.36 0 2.39 0.09 

bier127 0.73 3.08 2.76 - 1.09 0.58 0.69 1.25 3.11 0.25 
ch130 0.58 5.63 4.66 - - 0.57 1.13 0.80 4.52 0.80 
pr136 0.96 5.15 4.53 - 2.15 - 3.93 0.73 5.06 0.58 

kroA150 0.88 - - 1.83 - 0.58 1.55 1.75 8.50 1.40 
pr152 2.1 1.29 0.97 - 0.74 - 0.74 1.07 3.23 0 
rat195 1.35 11.92 12.24 - 5.98 - 4.69 4.69 5.42 2.71 

kroA200 1.07 6.57 5.72 1.64 1.97 0.79 0.92 0.70 8.03 0.75 
lin318 0.35 - - 2.05 - 1.92 2.65 3.48 8.97 1.89 
pcb442 0.62 10.45 11.07 6.11 8.58 - 5.88 3.57 8.76 2.79 
att532 0.99 6.80 6.74 3.35 - - 4.24 3.29 9.10 1.48 
rat575 0.74 - - 2.18 - 4.05 4.89 4.31 9.86 4.50 
pr1002 0.9 - - 4.82 - - 4.18 4.75 14.39 4.39 
mean 4.50 1.29 4.22 3.29 2.32 1.00 2.16 1.78 5.13 1.04 

Table 3. Comparisons between the results of 24 symmetric problems from the TSPLIB with the 
techniques: Soft WTA (SWTA), Soft WTA with 2-opt (SWTA2), 5-OPT (decision tree with 
minimum amplitude of 2 up to 5-opt), KNIESG (Kohonen Network Incorporating Explicit 
Global Statistics), KNIESL (Kohonen Network Incorporating Explicit Statistics Local), EISOM 
(Efficient and Integrated SOM), MGSOM (Modified Growing Ring SOM), RABNET (Real-
valued Antibody Network), CAN (Co-Adaptive Network) and MSOM (Memetic SOM) 
Fig. 5a shows the best result found with the Soft WTA technique for the 1002-cities problem, 
by Padberg and Rinaldi, and Figure 5b shows the best result found with the same technique 
with the 2-opt route improvement. In Fig. 6 are the best results for drilling problem fl417 by 
Reinelt. In Fig. 7 are shown the best results for the of 439-cities problem by Padberg and 
Rinaldi. 
Fig. 8 and 9 show the comparison between the best results for Wang's Recurrent Neural 
Network with the Hard and Soft WTA techniques for drilling problems d198 (Reinelt) and 
pcb442 (Groetschel, Juenger and Reinelt), respectively. Fig. 10 show the best result found 
with the Soft WTA technique for 399-cities problem of Parana, Brazil, where the optimal 
solution to this problem is 7,086,615. 
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(a)                                                                               (b) 

Fig. 5. Example of the pr1002 problem with the application of Wang’s Neural Network: (a) 
with Soft WTA and average error of 14.39%, (b) with Soft WTA and 2-opt improvement with 
average error of 4.39% 

   
(a)                                                                           (b) 

Fig. 6. Example of the fl417 problem with the application of Wang’s Neural Network: (a) 
with Soft WTA and average error of 9.05%, (b) with Soft WTA and 2-opt improvement with 
average error of 1.43% 

 
                                              (a)                                                                      (b) 
Fig. 7. Example of the pr439 problem with the application of Wang’s Neural Network:  
(a) with Soft WTA and average error of 9.39%, (b) with Soft WTA and 2-opt improvement 
with average error of 1.99% 
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(a)                                                                            (b) 

 
(c)                                                                            (d) 

Fig. 8. Example of the d198 problem with the application of Wang’s Neural Network: (a) 
with Hard WTA and average error of 10.43%, (b) with Hard WTA and 2-opt improvement 
with average error of 1.22% (c) with Soft WTA and average error of 6.86%, (d) with Soft 
WTA and 2-opt improvement with average error of 0.73% 

3.2 Asymmetric problems from the TSPLIB 
Table 4 and Table 5 shows the comparison between the Hard and Soft WTA techniques 
applied to asymmetric problems from the TSPLIB and demonstrates that the Soft WTA 
technique exceeds or equals the Hard WTA technical in all problems using 2-opt technique. 
The average error of the Soft WTA technique with 2-opt (SWTA2) varies between 0 and 
10.56%, and with the Hard WTA technique with 2-opt (HWTA2) this error varies between 0 
and 16.14%. The 95% confidence intervals for the mean were computed on the basis of 
standard deviations (sd) over 60 runs. 
Fig. 11 shows a comparison between the Soft and Hard WTA techniques, showing the best 
and worst results from each asymmetric problem from the TSPLIB. 
The techniques compared with the TSP asymmetric problems are described in the work of 
Glover et al. (2001): 
• the Karp-Steele Path method (KSP) and the General Karp-Steele (GKS) method start 

with a cycle by removing paths and placing new ones to find a Hamiltonian cycle. The 
difference between these methods is that the GKS uses all vertices in the cycle to change 
paths.  
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(a)                                                                           (b) 

 
(c)                                                                           (d) 

Fig. 9. Example of the pcb442 problem with the application of Wang’s Neural Network: (a) 
with Hard WTA and average error of 9.16%, (b) with Hard WTA and 2-opt improvement 
with average error of 2.87%, (c) with Soft WTA and average error of 8.76%, (d) with Soft 
WTA and 2-opt improvement with average error of 2.79% 
 

 
(a)                                                                           (b) 

Fig. 10. Example of 399-cities problem of Paraná, Brazil  (a) with Soft WTA and average 
error of 10.14%, and (b) with Soft WTA and 2-opt improvement with average error  
of 4.43% 
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Fig. 8. Example of the d198 problem with the application of Wang’s Neural Network: (a) 
with Hard WTA and average error of 10.43%, (b) with Hard WTA and 2-opt improvement 
with average error of 1.22% (c) with Soft WTA and average error of 6.86%, (d) with Soft 
WTA and 2-opt improvement with average error of 0.73% 

3.2 Asymmetric problems from the TSPLIB 
Table 4 and Table 5 shows the comparison between the Hard and Soft WTA techniques 
applied to asymmetric problems from the TSPLIB and demonstrates that the Soft WTA 
technique exceeds or equals the Hard WTA technical in all problems using 2-opt technique. 
The average error of the Soft WTA technique with 2-opt (SWTA2) varies between 0 and 
10.56%, and with the Hard WTA technique with 2-opt (HWTA2) this error varies between 0 
and 16.14%. The 95% confidence intervals for the mean were computed on the basis of 
standard deviations (sd) over 60 runs. 
Fig. 11 shows a comparison between the Soft and Hard WTA techniques, showing the best 
and worst results from each asymmetric problem from the TSPLIB. 
The techniques compared with the TSP asymmetric problems are described in the work of 
Glover et al. (2001): 
• the Karp-Steele Path method (KSP) and the General Karp-Steele (GKS) method start 

with a cycle by removing paths and placing new ones to find a Hamiltonian cycle. The 
difference between these methods is that the GKS uses all vertices in the cycle to change 
paths.  
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Fig. 9. Example of the pcb442 problem with the application of Wang’s Neural Network: (a) 
with Hard WTA and average error of 9.16%, (b) with Hard WTA and 2-opt improvement 
with average error of 2.87%, (c) with Soft WTA and average error of 8.76%, (d) with Soft 
WTA and 2-opt improvement with average error of 2.79% 
 

 
(a)                                                                           (b) 

Fig. 10. Example of 399-cities problem of Paraná, Brazil  (a) with Soft WTA and average 
error of 10.14%, and (b) with Soft WTA and 2-opt improvement with average error  
of 4.43% 
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Average error (%) 

HWTA SWTA TSP 
name n Optimal

solution
Best Mean SD CI (95%) Best Mean SD CI (95%) 

br17 17 39 0 0.73 1.25 [0.42, 1.05] 0 0.00 0.00 [0.00, 0.00] 
ftv33 33 1286 0 5.26 0.77 [5.06, 5.45] 0 3.63 1.64 [3.22, 4.05] 
ftv35 35 1473 3.12 4.84 1.33 [4.51, 5.18] 0.61 4.14 3.18 [3.34, 4.95] 
ftv38 38 1530 3.73 3.77 0.03 [3.76, 3.78] 2.94 5.85 2.13 [5.32, 6.39] 
pr43 43 5620 0.29 0.41 0.07 [0.39, 0.43] 0.20 0.28 0.06 [0.26, 0.29] 
ftv44 44 1613 2.60 3.44 0.92 [3.21, 3.67] 2.23 5.29 2.64 [4.62, 5.95] 
ftv47 47 1776 3.83 6.64 2.18 [6.09, 7.20] 5.29 7.32 2.86 [6.60, 8.04] 
ry48p 48 14422 5.59 5.99 0.44 [5.88, 6.10] 2.85 4.16 0.91 [3.93, 4.40] 
ft53 53 6905 2.65 3.04 0.30 [2.96, 3.11] 3.72 5.09 1.53 [4.70, 5.47] 

ftv55 55 1608 11.19 8.00 3.23 [7.18, 8.81] 2.11 5.02 2.91 [4.29, 5.76] 
ftv64 64 1839 2.50 2.50 0.00 [2.50, 2.50] 1.41 2.00 0.55 [1.86, 2.14] 
ft70 70 38673 1.74 2.79 1.01 [2.53, 3.04] 1.70 1.94 0.27 [1.87, 2.01] 

ftv70 70 1950 8.77 7.61 1.96 [7.11, 8.10} 4.10 8.01 3.16 [7.21, 8.81] 
kro124p 124 36230 7.66 9.24 1.44 [8.88, 9.61] 7.27 8.25 1.00 [8.00, 8.50] 
ftv170 170 2755 12.16 13.72 1.24 [13.41, 14.03] 10.56 12.63 2.34 [12.04, 13.22] 
rbg323 323 1326 16.14 16.24 0.16 [16.20, 16.28] 3.02 3.19 0.27 [3.12, 3.26] 
rbg358 358 1163 12.73 17.52 4.54 [16.37, 18.67] 5.76 7.57 2.26 [6.99, 8.14] 
rbg403 403 2465 4.71 4.71 0.00 [4.71, 4.71] 3.53 3.93 0.66 [3.76, 4.10] 
rbg443 443 2720 8.05 8.05 0.00 [8.05, 8.05] 2.98 3.33 0.55 [3.19, 3.47] 

Table 4. Comparisons between the results of the 20 asymmetric problems from the TSPLIB 
for the techniques Hard WTA (HWTA) and Soft WTA (SWTA). 
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Fig. 11. Comparison between the results of the Hard WTA (HWTA) and Soft WTA (SWTA) 
techniques for the 19 asymmetric problems from the TSPLIB 
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Average error (%) 

HWTA2 SWTA2 TSP 
name n Optimal

solution
Best Mean SD CI (95%) Best Mean SD CI (95%) 

br17 17 39 0 0.00 0.00 [0.00, 0.00] 0 0.00 0.00 [0.00, 0.00] 
ftv33 33 1286 0 2.68 2.13 [2.14, 3.22] 0 1.64 2.08 [1.12, 2.17] 
ftv35 35 1473 3.12 3.22 1.28 [2.90, 3.54] 0.61 1.85 2.48 [1.22, 2.48] 
ftv38 38 1530 3.01 3.71 0.37 [3.62, 3.81] 2.94 4.86 2.66 [4.19, 5.54] 
pr43 43 5620 0.05 0.09 0.05 [0.07, 0.10] 0 0.16 0.17 [0.12, 0.21] 
ftv44 44 1613 2.60 3.21 1.36 [2.87, 3.56] 2.23 4.23 1.89 [3.75, 4.71] 
ftv47 47 1776 3.83 4.35 1.04 [4.09, 4.61] 2.82 5.38 2.43 [4.76, 5.99] 
ry48p 48 14422 1.24 2.82 0.57 [2.67, 2.96] 0.76 1.65 1.31 [1.32, 1.98] 
ft53 53 6905 2.65 3.21 0.58 [3.06, 3.36] 2.49 2.79 0.46 [2.67, 2.90] 

ftv55 55 1608 6.03 5.97 1.65 [5.55, 6.39] 1.87 2.31 0.93 [2.08, 2.55] 
ftv64 64 1839 2.50 3.50 1.73 [3.06, 3.94] 1.41 1.73 0.34 [1.65, 1.82] 
ft70 70 38673 1.74 1.74 0.00 [1.74, 1.74] 1.70 2.19 0.34 [2.05, 2.33] 

ftv70 70 1950 8.56 7.54 2.70 [6.85, 8.22] 4.10 7.32 4.98 [6.06, 8.58] 
kro124p 124 36230 7.66 8.19 1.18 [7.89, 8.48] 4.36 4.94 1.29 [4.61, 5.26] 
ftv170 170 2755 12.16 14.03 2.71 [13.34, 14.71] 10.56 11.23 1.32 [10.89, 11.56] 
rbg323 323 1326 16.14 16.34 0.16 [16.30, 16.38] 0.23 1.71 1.29 [1.38, 2.03] 
rbg358 358 1163 8.17 8.91 1.36 [8.57, 9.25] 4.73 6.29 1.55 [5.90, 6.69] 
rbg403 403 2465 4.71 1.54 0.41 [1.44, 1.65] 0.65 0.91 0.33 [0.83, 1.00] 
rbg443 443 2720 2.17 3.93 3.95 [2.94, 4.93] 0.85 0.91 0.06 [0.90, 0.93] 

Table 5. Comparisons between the results of the 19 asymmetric problems from the TSPLIB 
for the techniques Hard WTA with 2-opt (HWTA2) and Soft WTA with 2-opt (SWTA2).  

• the Path Recursive Contraction method (PRC) forms an initial cycle, removing sub-
cycles to find a Hamiltonian cycle 

• the Contraction of Paths (COP) heuristic is a combination of the GKS and PRC 
techniques; 

• the Random Insertion (RI) heuristic starts with two vertices, inserting a vertex not yet 
chosen, creating a cycle. This procedure is repeated to create a route that contains all 
vertices; 

• the Greedy heuristic (GR) choose the smallest path in the graph, contracts this path to 
create a new graph, maintaining this procedure up to the last path, forming a route. 

Table 6 shows that the technique proposed in this paper has equal or better results than the 
techniques mentioned in 11 of the 19 tested asymmetric problems from the TSPLIB: br17, 
ftv33, ftv35, pr43, ftv44, ry48p, ft53, ftv55, ftv64, ft70 and kro124p. 
Considering the techniques without the 2-opt improvement, Fig. 11 shows that the best 
solutions for the Hard WTA technique are better than the Soft WTA in only 3 problems: 
ftv47, ft70 and ft53. A great improvement can also be seen with the Soft WTA technique in 
the quality of the solutions for problems rgb443, rgb323 and rgb358. 
The worst solutions for problems ftv35, ftv38, ftv44, ftv47, ft53, ftv70, ftv170 and rgb403 with 
the Soft WTA technique have higher costs than those found with the Hard WTA. 
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Average error (%) 

HWTA SWTA TSP 
name n Optimal

solution
Best Mean SD CI (95%) Best Mean SD CI (95%) 

br17 17 39 0 0.73 1.25 [0.42, 1.05] 0 0.00 0.00 [0.00, 0.00] 
ftv33 33 1286 0 5.26 0.77 [5.06, 5.45] 0 3.63 1.64 [3.22, 4.05] 
ftv35 35 1473 3.12 4.84 1.33 [4.51, 5.18] 0.61 4.14 3.18 [3.34, 4.95] 
ftv38 38 1530 3.73 3.77 0.03 [3.76, 3.78] 2.94 5.85 2.13 [5.32, 6.39] 
pr43 43 5620 0.29 0.41 0.07 [0.39, 0.43] 0.20 0.28 0.06 [0.26, 0.29] 
ftv44 44 1613 2.60 3.44 0.92 [3.21, 3.67] 2.23 5.29 2.64 [4.62, 5.95] 
ftv47 47 1776 3.83 6.64 2.18 [6.09, 7.20] 5.29 7.32 2.86 [6.60, 8.04] 
ry48p 48 14422 5.59 5.99 0.44 [5.88, 6.10] 2.85 4.16 0.91 [3.93, 4.40] 
ft53 53 6905 2.65 3.04 0.30 [2.96, 3.11] 3.72 5.09 1.53 [4.70, 5.47] 

ftv55 55 1608 11.19 8.00 3.23 [7.18, 8.81] 2.11 5.02 2.91 [4.29, 5.76] 
ftv64 64 1839 2.50 2.50 0.00 [2.50, 2.50] 1.41 2.00 0.55 [1.86, 2.14] 
ft70 70 38673 1.74 2.79 1.01 [2.53, 3.04] 1.70 1.94 0.27 [1.87, 2.01] 

ftv70 70 1950 8.77 7.61 1.96 [7.11, 8.10} 4.10 8.01 3.16 [7.21, 8.81] 
kro124p 124 36230 7.66 9.24 1.44 [8.88, 9.61] 7.27 8.25 1.00 [8.00, 8.50] 
ftv170 170 2755 12.16 13.72 1.24 [13.41, 14.03] 10.56 12.63 2.34 [12.04, 13.22] 
rbg323 323 1326 16.14 16.24 0.16 [16.20, 16.28] 3.02 3.19 0.27 [3.12, 3.26] 
rbg358 358 1163 12.73 17.52 4.54 [16.37, 18.67] 5.76 7.57 2.26 [6.99, 8.14] 
rbg403 403 2465 4.71 4.71 0.00 [4.71, 4.71] 3.53 3.93 0.66 [3.76, 4.10] 
rbg443 443 2720 8.05 8.05 0.00 [8.05, 8.05] 2.98 3.33 0.55 [3.19, 3.47] 

Table 4. Comparisons between the results of the 20 asymmetric problems from the TSPLIB 
for the techniques Hard WTA (HWTA) and Soft WTA (SWTA). 
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techniques for the 19 asymmetric problems from the TSPLIB 
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Average error (%) 

HWTA2 SWTA2 TSP 
name n Optimal

solution
Best Mean SD CI (95%) Best Mean SD CI (95%) 

br17 17 39 0 0.00 0.00 [0.00, 0.00] 0 0.00 0.00 [0.00, 0.00] 
ftv33 33 1286 0 2.68 2.13 [2.14, 3.22] 0 1.64 2.08 [1.12, 2.17] 
ftv35 35 1473 3.12 3.22 1.28 [2.90, 3.54] 0.61 1.85 2.48 [1.22, 2.48] 
ftv38 38 1530 3.01 3.71 0.37 [3.62, 3.81] 2.94 4.86 2.66 [4.19, 5.54] 
pr43 43 5620 0.05 0.09 0.05 [0.07, 0.10] 0 0.16 0.17 [0.12, 0.21] 
ftv44 44 1613 2.60 3.21 1.36 [2.87, 3.56] 2.23 4.23 1.89 [3.75, 4.71] 
ftv47 47 1776 3.83 4.35 1.04 [4.09, 4.61] 2.82 5.38 2.43 [4.76, 5.99] 
ry48p 48 14422 1.24 2.82 0.57 [2.67, 2.96] 0.76 1.65 1.31 [1.32, 1.98] 
ft53 53 6905 2.65 3.21 0.58 [3.06, 3.36] 2.49 2.79 0.46 [2.67, 2.90] 

ftv55 55 1608 6.03 5.97 1.65 [5.55, 6.39] 1.87 2.31 0.93 [2.08, 2.55] 
ftv64 64 1839 2.50 3.50 1.73 [3.06, 3.94] 1.41 1.73 0.34 [1.65, 1.82] 
ft70 70 38673 1.74 1.74 0.00 [1.74, 1.74] 1.70 2.19 0.34 [2.05, 2.33] 

ftv70 70 1950 8.56 7.54 2.70 [6.85, 8.22] 4.10 7.32 4.98 [6.06, 8.58] 
kro124p 124 36230 7.66 8.19 1.18 [7.89, 8.48] 4.36 4.94 1.29 [4.61, 5.26] 
ftv170 170 2755 12.16 14.03 2.71 [13.34, 14.71] 10.56 11.23 1.32 [10.89, 11.56] 
rbg323 323 1326 16.14 16.34 0.16 [16.30, 16.38] 0.23 1.71 1.29 [1.38, 2.03] 
rbg358 358 1163 8.17 8.91 1.36 [8.57, 9.25] 4.73 6.29 1.55 [5.90, 6.69] 
rbg403 403 2465 4.71 1.54 0.41 [1.44, 1.65] 0.65 0.91 0.33 [0.83, 1.00] 
rbg443 443 2720 2.17 3.93 3.95 [2.94, 4.93] 0.85 0.91 0.06 [0.90, 0.93] 

Table 5. Comparisons between the results of the 19 asymmetric problems from the TSPLIB 
for the techniques Hard WTA with 2-opt (HWTA2) and Soft WTA with 2-opt (SWTA2).  

• the Path Recursive Contraction method (PRC) forms an initial cycle, removing sub-
cycles to find a Hamiltonian cycle 

• the Contraction of Paths (COP) heuristic is a combination of the GKS and PRC 
techniques; 

• the Random Insertion (RI) heuristic starts with two vertices, inserting a vertex not yet 
chosen, creating a cycle. This procedure is repeated to create a route that contains all 
vertices; 

• the Greedy heuristic (GR) choose the smallest path in the graph, contracts this path to 
create a new graph, maintaining this procedure up to the last path, forming a route. 

Table 6 shows that the technique proposed in this paper has equal or better results than the 
techniques mentioned in 11 of the 19 tested asymmetric problems from the TSPLIB: br17, 
ftv33, ftv35, pr43, ftv44, ry48p, ft53, ftv55, ftv64, ft70 and kro124p. 
Considering the techniques without the 2-opt improvement, Fig. 11 shows that the best 
solutions for the Hard WTA technique are better than the Soft WTA in only 3 problems: 
ftv47, ft70 and ft53. A great improvement can also be seen with the Soft WTA technique in 
the quality of the solutions for problems rgb443, rgb323 and rgb358. 
The worst solutions for problems ftv35, ftv38, ftv44, ftv47, ft53, ftv70, ftv170 and rgb403 with 
the Soft WTA technique have higher costs than those found with the Hard WTA. 
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Average error (%) 
TSP name

GR RI KSP GKS PRC COP SWTA SWTA2 
br17 102.56 0 0 0 0 0 0 0 
ftv33 31.34 11.82 13.14 8.09 21.62 9.49 0 0 
ftv35 24.37 9.37 1.56 1.09 21.18 1.56 0.61 0.61 
ftv38 14.84 10.20 1.50 1.05 25.69 3.59 2.94 2.94 
pr43 3.59 0.30 0.11 0.32 0.66 0.68 0.20 0 
ftv44 18.78 14.07 7.69 5.33 22.26 10.66 2.23 2.23 
ftv47 11.88 12.16 3.04 1.69 28.72 8.73 5.29 2.82 
ry48p 32.55 11.66 7.23 4.52 29.50 7.97 2.85 0.76 
ft53 80.84 24.82 12.99 12.31 18.64 15.68 3.72 2.49 

ftv55 25.93 15.30 3.05 3.05 33.27 4.79 2.11 1.87 
ftv64 25.77 18.49 3.81 2.61 29.09 1.96 1.41 1.41 
ft70 14.84 9.32 1.88 2.84 5.89 1.90 4.10 4.10 

ftv70 31.85 16.15 3.33 2.87 22.77 1.85 1.70 1.70 
kro124p 21.01 12.17 16.95 8.69 23.06 8.79 7.27 4.36 
ftv170 32.05 28.97 2.40 1.38 25.66 3.59 10.56 10.56 
rbg323 8.52 29.34 0 0 0.53 0 3.02 0.23 
rbg358 7.74 42.48 0 0 2.32 0.26 5.76 4.73 
rbg403 0.85 9.17 0 0 0.69 0.20 3.53 0.65 
rbg443 0.92 10.48 0 0 0 0 2.98 0.85 
mean 25.80 15.07 4.14 2.94 16.39 4.30 3.17 2.22 

Table 6. Comparisons between the results of the 19 asymmetric problems from the TSPLIB 
with the techniques Soft WTA (SWTA), Soft WTA with 2-opt (SWTA2) Random Insertion 
(RI), Karp-Steele Path (KSP), General Karp-Steele path (GKS), Path Recursive Contraction 
(PRC), Contraction or Path (COP) and Greedy heuristic (GR). 

7. Conclusions 
This paper presents a modification in the application of the ‘Winner Takes All’ technique in 
Wang’s Recurrent Neural Network to solve the Traveling Salesman Problem. This technique 
is called Soft ‘Winner Takes All’, because the winning neuron receives only part of the 
activation of the other competing neurons. 
The results were compared with the Hard ‘Winner Takes All’ variation, Self-Organizing 
Maps and the Path insertion and removal heuristics, showing improvement in most of the 
problems tested from the TSPLIB. The average errors for symmetric problems were between 
0 and 4.50%, and for the asymmetric ones, between 0 and 10.56%. 
The proposed technique was implemented with the 2-opt route improvement and the 
results shown in this study were compared both with and without the 2-opt technique.   
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1. Introduction      
Traveling Salesman Problem (TSP) is classical and most widely studied problem in 
Combinatorial Optimization (Applegate D. L. et al., 2006). It has been studied intensively in 
both Operations Research and Computer Science since 1950s as a result of which a large 
number of techniques were developed to solve this problem. Much of the work on TSP is 
not motivated by direct applications, but rather by the fact that it provides an ideal platform 
for study of general methods that can be applied to a wide range of Discrete Optimization 
Problems. Indeed, numerous direct applications of TSP bring life to research area and help 
to direct future work. The idea of problem is to find shortest route of salesman starting from 
a given city, visiting n cities only once and finally arriving at origin city. The investigation 
question which arises is:   

In what order should the cities be visited such that the distance traveled is minimized? 
TSP is represented by complete edge-weighted graph ( , )G V E= with V being set of 

| |n V= nodes or vertices representing cities and E V V⊆ × being set of directed edges or arcs. 
Each arc ( , )i j E∈  is assigned value of length ijd which is distance between cities 
i and j with ,i j V∈ . TSP can be either asymmetric or symmetric in nature. In case of 
asymmetric TSP, distance between pair of nodes ,i j is dependent on direction of traversing 
edge or arc i.e. there is at least one arc ( , )i j  for which ij jid d≠ . In symmetric TSP, ij jid d=  

holds for all arcs in E . The goal in TSP is thus to find minimum length Hamiltonian Circuit 
(Cormen T. H. et al., 2001) of graph, where Hamiltonian Circuit is a closed path visiting 
each of n nodes of G exactly once. Thus, an optimal solution to TSP is permutationπ of 
node indices {1,......., }n such that length ( )f π is minimal, where ( )f π is given by, 

1

( ) ( 1) ( ) (1)
1

( )
n

i i n
i

f d dπ π π ππ
−

+
=

= +∑   

TSP is NP-hard problem as the search space is huge viz. n! Thus, it is not possible to check 
all solutions for city sets with many thousands of cities (Korte B. H. & Vygen J., 2008). 
Hence, a fast and effective heuristic method is needed. Based on a deterministic approach, 
the world record setting TSP solution is by (Applegate D. L. et al.,1995) which has solved 
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instances as large as 24,978 cities to optimality. Trying to solve the course of exponentials 
parallel implementations of TSP were realized (Christof T. & Reinelt G., 1995). However, 
for practicability reasons specifically for large numbers of cities, heuristic approaches for 
solving TSP are very popular, which try to produce an optimal or close to optimal solution. 
It arises as sub-problem in many transportation and logistic applications (Chaudhuri A., 
2007), for example the problem of arranging school bus routes to pick up children in a 
district. This application is of important significance to TSP since it provides motivation for 
Merrill Flood one of the pioneers of TSP research in 1940s. A second application from 1940s 
involved transportation of farming equipment from one location to another leading to 
mathematical studies by P. C. Mahalanobis and R. J. Jessen. More recent applications 
involve scheduling of service call at cable firms, delivery of meals to homebound persons, 
scheduling of stacker cranes in warehouses, routing of trucks for parcel post pickup etc. 
Although transportation applications are most natural setting for TSP, simplicity of the 
model has led to many interesting applications in other areas. A classic example is 
scheduling of machine to drill holes in circuit boards where holes to be drilled are cities and 
cost of travel is the time it takes to move the drill head from one hole to next.  
TSP has some direct importance, since quite a lot of practical applications can be put in this 
form. It also has theoretical significance in Complexity Theory (Garey M. & Johnson D., 
1990) since TSP is one of the classes of NP-Complete Combinatorial Optimization Problems 
(Korte B. H. & Vygen J., 2008) which are difficult optimization problems where the set of 
feasible solutions or trial solutions which satisfy constraints of problem but are not 
necessarily optimal is finite, though usually very large set. The numbers of feasible solutions 
grow as some combinatorics factor such as !n where, n characterizes size of the problem. It 
has often been the case that progress on TSP (Laporte G., 2010) has led to the progress on 
many Combinatorial Optimization Problems. In this way, TSP is an ideal stepping stone for 
study of Combinatorial Optimization Problems. 
Although many optimal algorithms exist for solving TSP it has been realized that it is 
computationally infeasible to obtain optimal solution to the problem. For large-size problem 
(Cormen T. H. et al., 2001) it has been proved that it is almost impossible to generate an 
optimal solution within reasonable amount of time. Heuristics instead of optimal algorithms 
are thus extensively used to solve such problems (Hansen M. P., 2000). Many heuristic 
algorithms give near optimal solutions to the problem which are used for practicability 
reasons specifically for large numbers of cities. Heuristic approaches (Lin S. & Kernighan B. 
W., 1973)  for solving TSP are thus very popular which try to produce an optimal or close to 
optimal solution. The commonly used heuristic approaches are: (a) Greedy Algorithms; (b) 
2-opt Algorithm; (c) 3-opt Algorithm; (d) Simulated Annealing; (e) Genetic Algorithms and 
(e) Artificial Neural Network (ANN). However, efficiencies vary from case to case and from 
size to size.  
Generally the most common heuristic is ANN which are well suited for solving problems 
that are hard to catch in mathematical models. However, the usage and employment of 
ANN in such application domains is often dependent on tractability of processing costs. The 
problem domains for employment of ANN are increasing (Haykin S., 2008) and also 
problem themselves are getting larger and more complex (Arbib M., 2003). This leads to 
larger networks consisting of huge numbers of nodes and interconnection links which 
results in exceeding costs for network specific operations such as evaluation and training. 
Especially the cost intensive training phase of  ANN inherits a major drawback due to the 
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situation that large numbers of patterns viz. input and target values are fed into the network 
iteratively. The effectiveness of ANN can be improved by deployment of Fuzzy Logic (Jang 
J. S. R. et al., 1997) which is a computational paradigm that generalizes classical two valued 
logic for reasoning under uncertainty. This is achieved by the notation of membership. Two 
things are accomplished by this viz. (i) ease of describing human knowledge involving 
vague concepts and (ii) enhanced ability to develop a cost-effective solution to real-world 
problem. Fuzzy Logic is thus is a multi-valued logic (Zadeh L. A., 1994) which is model less 
approach and clever disguise of Probability Theory. ANN and Fuzzy Logic are two 
complementary technologies. ANN can learn from data and feedback. However, 
understanding knowledge or pattern learned by ANN has been difficult. More specifically it 
is difficult to develop an insight about the meaning associated with each neuron and its 
weight. Hence, ANN are often viewed as black box approach. In contrast, Fuzzy Rule Based 
Models are easy to comprehend because it uses linguistic terms and structure of if then 
rules. Unlike ANN, Fuzzy Logic does not come with learning algorithm. Since ANN can 
learn, it is natural to merge two technologies. This merger creates a new term i.e. Neuro 
Fuzzy networks. A Neuro Fuzzy network thus describes a Fuzzy Rule Based Model using 
an ANN like structure. 
In this chapter, Fuzzy Self Organizing Map (FSOM) (Bezdek J. C., 1981; Kohonen T., 2001; 
Arbib M., 2003; Haykin S., 2008) with one dimensional neighborhood is used to find 
optimal solution for symmetrical TSP. The solution generated by FSOM algorithm is 
improved by 2opt algorithm (Aarts E. H. & Lenstra J. K., 2003). FSOM algorithm is 
compared with Lin-Kerninghan (Lin S. & Kernighan B. W., 1973) and Evolutionary 
algorithm (Goldberg D. E., 1989; Deb K., 2001) with enhanced edge recombination operator 
and self-adapting mutation rate. Experimental results indicate that FSOM 2opt hybrid 
algorithm generates appreciably better results compared to both Evolutionary and Lin-
Kerninghan algorithms for TSP as number of cities increases. Some other optimization 
algorithms other than 2opt algorithm give better results. One of the best operators for TSP is 
enhanced edge recombination operator in comparison to permutation operators which are 
for other permutation problems. The chapter is structured as follows. In section 2 a brief 
survey of SOM is given.  The next section illustrates FSOM. Section 4 describes the heuristic 
solution of TSP using FSOM and the corresponding mathematical characterization is given. 
In section 5 numerical results are presented along with an indepth run time analysis. Finally, 
in section 6 conclusions are given. 

2. Self organizing map  
SOM introduced by Teuvo Kohonen (Kohonen T., 2001) is an ANN that is trained using 
competitive, unsupervised learning (Haykin S., 2008) to produce low-dimensional 
discretized representation of input space of training samples called a map which preserves 
topological properties of input space. The development of SOM as neural model is motivated 
by distinct feature of human brain which is organized in many places in such a way that 
different sensory inputs are represented by topologically ordered computational maps. The 
output neurons of network compete among themselves to be activated or fired, with the 
result that only one output neuron or one neuron per group is on at one time. An output 
neuron that wins competition is called winner takes all or winning neuron (Arbib M., 2003). 
SOM is thus useful for visualizing low-dimensional views of high-dimensional data which 
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instances as large as 24,978 cities to optimality. Trying to solve the course of exponentials 
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is identical to multi-dimensional scaling. They generally operate in two modes viz. training 
and mapping. Training builds map using input examples, which is a competitive process 
also called vector quantization. Mapping automatically classifies a new input vector. 
In SOM neurons are placed at nodes of lattice which is usually one or two dimensional. The 
neurons become selectively tuned to various input patterns or classes of input patterns in 
course of competitive learning process. The locations of neurons so tuned become ordered 
with respect to each other in such way that a meaningful coordinate system for different 
input features is created over lattice (Kohonen T., 2001). As a neural model, SOM provides a 
bridge between two levels of adaptation viz. (a) adaptation rules formulated at microscopic 
level of single neuron and (b) formation of experimentally better and physically accessible 
patterns of feature selectivity at microscopic level of neural layers.  
The competitive learning algorithm of SOM is either based on winner takes all or winner takes 
mode approach. However, winner takes most strategy is most common. When input vector is 
presented, distance to each neuron's synaptic weights are calculated. The neuron whose 
weights are most correlated to current input vector is winner. Correlation is equal to scalar 
product of input vector and considered synaptic weights. Only winning neuron modifies its 
synaptic weights to the point presented by input pattern. Synaptic weights of other neurons 
do not change. The learning process is described by  (Arbib M., 2003):  

( )i i iW W x Wη← + − where, i ∈ {0………number of neurons}, 

iW represents all synaptic weights of winning neuron, η is learning rate and x is current 
input vector. This simple algorithm can be extended giving more chance of winning to 
neurons that are rarely activated. The winner takes most has better convergence than winner 
takes all strategy. The difference is that many neurons in winner takes most strategy adapt 
their synaptic weights in single learning iteration only. In this case not only the winner but 
also its neighborhood adapts. The further neighboring neuron is from winner, smaller the 
modification which is applied to its weights. This adaptation process is described as (Bishop 
C. M., 1995): 

( , )( )i i iW W N i x x Wη← + −  

for all neurons i that belongs to winner's neighborhood. iW stands for synaptic weights of 
neuron i and x is current input vector, η stands for learning rate and N (i, x) is function that 
defines neighborhood. Classical SOM is created when function N (i, x) is defined as (Hertz 
J., Krogh A. & Palmer R. G., 1991):  

1 ( , )
0( , ) { ford i w

forothersN i x λ≤=  

where, ( , )d i w is euclidean distance between winning and ith neuron and λ is neighborhood 
radius. To train SOM euclidean distance between input vector and all neural weights are 
calculated. Neuron that has shortest distance to input vector i.e. winner is chosen and its 
weights are slightly modified to direction represented by input vector. Then neighboring 
neurons are taken and their weights are modified in same direction. η and λ are multiplied 
with Δη and Δλ respectively during each learning iteration. These two last parameters are 
always less than one. Therefore, η and λ become smaller during learning process. At 
beginning SOM tries to organize itself globally and with following iterations it performs more 
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and more local organization because learning rate and neighborhood gets smaller. Kohonen 
SOM is shown in Figure 1 (Kohonen T., 2001). It maps input vectors of any dimension onto 
map with one, two or more dimensions. Input patterns which are similar to one another in 
input space are put close to one another in the map. The input vector is passed to every 
neuron. Kohonen SOM is made of vector or matrix of output neurons. If vector representation 
is chosen each neuron have two neighbors, one on left and other on right then it is called one-
dimensional neighborhood as shown in Figure 2. If two-dimensional matrix representation is 
used neurons have 4 neighbors (viz. left, right, top and bottom). This is classical two 
dimensional neighborhood as shown in Figure 3. Instead of taking 4 nearest neurons 8 or more 
can be taken as shown in Figure 4. As many dimensions can be used as required viz. one, two, 
three or more dimensions. However, two dimensional neighborhood is most common. 
 

 
Fig. 1. Kohonen SOM with two dimensional neighborhood and input vector 
 

 
Fig. 2. One dimensional neighborhood of Kohonen SOM 
 

 
Fig. 3. Classical two dimensional neighborhoods 
 

 
Fig. 4. Extended two dimensional neighborhood of Kohonen SOM 
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is identical to multi-dimensional scaling. They generally operate in two modes viz. training 
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3. Fuzzy self organizing map 
FSOM introduces the concept of membership function (Bezdek J. C., 1981; Kohonen T., 
2001; Arbib M., 2003; Haykin S., 2008) in the theory of Fuzzy Sets to learning process. The 
membership Rlj of each pattern l to each neuron j is calculated and weight vector of each 
neuron is adjusted according to memberships of all patterns to the neuron. The learning 
algorithm is illustrated below. In FSOM some network parameters related to neighborhood 
in SOM are replaced with the membership function (Bezdek J. C., 1981; Fritzke B., 1994; 
Kohonen T., 2001). Also the learning rate parameter is omitted. FSOM considers all input 
data at each iteration step. It is thus more effective at decreasing oscillations and avoiding 
dead units. FSOM used here is a combination of SOM and Fuzzy C Means (FCM) (Bezdek J. 
C., 1981) Clustering Algorithm.  

3.1 Fuzzy C means clustering algorithm 
FCM technique is a method of clustering which allows one piece of data to belong to two or 
more clusters. The method is developed by Dunn (Dunn J. C.,1973) and improved by 
Bezdek (Bezdek J. C., 1981) is frequently used in Pattern Recognition. It is based on 
minimization of the following objective function: 

2

1 1
|| ||

N C
m

m ij i j
i j

J u x c
= =

= −∑∑ , 1 m≤ < ∞  

where, m is any real number greater than 1, iju is degree of membership of ix in cluster j , 
ix is thi ith of d dimensional measured data, jc is d dimension center of cluster and ||*||is 

any norm expressing similarity between any measured data and the center. FCM thus 
processes N vectors in d space as data input and uses them in conjunction with first order 
necessary conditions for minimizing FCM objective functional to obtain estimates for two 
sets of unknowns. Fuzzy partitioning is carried out through an iterative optimization of 
objective function with update of membership iju and cluster centers jc by:  
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This iteration will stop when ( 1) ( )max {| |}k k
ij ij iju u ε+ − < where ε is termination criterion 

betweem 0 and 1 in k iteration steps. The procedure converges to a local minimum or a 
saddle point of mJ . The algorithm is composed of following steps: 

a. Initialize the matrix [ ]ijU u= to (0)U . 
b. At k step calculate centre vectors ( ) [ ]k
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c. Update the matrices ( )kU and ( 1)kU + , 
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d. If ( 1) ( )|| ||k kU U ε+ − < then stop, otherwise goto step (b). 
The data are bound to each cluster by means of membership function which represents the 
fuzzy behaviour of this algorithm. This is achieved by the matrix U whose factors are 
numbers between 0 and 1, and represent the degree of membership between data and 
centers of clusters. In FCM approach as the same given datum does not belong exclusively 
to a well defined cluster, it is placed somewhere in the middle such that the membership 
function follows a smoother line to indicate that every datum may belong to several clusters 
with different values of membership coefficient. 
FCM is generalized in many ways (Bezdek J. C., 1981) such as, the memberships includes 
possibilities; prototypes have evolved from points to linear varieties to hyper-quadrics to 
shells to regression functions; the distance includes Minkowski (non-inner product induced) 
and hybrid distances. There are many relatives of FCM for dual problem called relational 
FCM which is useful when data are not object vectors but relational values viz. similarities 
between pairs of objects. There are also many acceleration techniques for FCM as well as 
very large versions of FCM that utilize both progressive sampling and distributed 
clustering. Many techniques use FCM clustering to build Fuzzy rule bases for Fuzzy 
Systems design. Numerous applications of FCM exist (Arbib M., 2003; Haykin S., 2008) 
virtually in every major application area of clustering.   

3.2 FSOM learning algorithm 
In ANN structure, each output neuron directly corresponds to a city in network of cities 
(Haykin S., 2008). The number of output neurons used to describe the cities is generally 
arbitrary. However, if number of neurons is equal to number of cities the problem gets 
simplified. The more the number of neurons, the greater is accuracy of model. The number 
of output neurons needed for good accuracy depends on complexity of the problem. The 
more complex the problem, more output neurons are required. The number of output 
neurons is manually selected. The weight W connects input vector components and output 
neurons. The weight vectors are of same dimensions as sample vectors. The weight 
components are initialized randomly and adjusted gradually using self organizing learning 
algorithm and ultimately a mapping is done from input to output. Let M denote number of 
input patterns, N number of input vector components and K number of output neurons. The 
learning algorithm consists of the following steps (Bezdek J. C., 1981): 

a. Randomize weights for all neurons. 
b. Input all patterns 1{ ,..........., }, 1,.........,l l lNX X X l M= = .Take one random input 

pattern and calculate euclidean distances from each pattern Xl to all output 
neurons. 
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c. Update the matrices ( )kU and ( 1)kU + , 

2
1

1

1

|| ||
|| ||

ij
C mi j

i kk

u
x c
x c

−

=

=
−⎛ ⎞

⎜ ⎟
−⎝ ⎠

∑

 

d. If ( 1) ( )|| ||k kU U ε+ − < then stop, otherwise goto step (b). 
The data are bound to each cluster by means of membership function which represents the 
fuzzy behaviour of this algorithm. This is achieved by the matrix U whose factors are 
numbers between 0 and 1, and represent the degree of membership between data and 
centers of clusters. In FCM approach as the same given datum does not belong exclusively 
to a well defined cluster, it is placed somewhere in the middle such that the membership 
function follows a smoother line to indicate that every datum may belong to several clusters 
with different values of membership coefficient. 
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(Haykin S., 2008). The number of output neurons used to describe the cities is generally 
arbitrary. However, if number of neurons is equal to number of cities the problem gets 
simplified. The more the number of neurons, the greater is accuracy of model. The number 
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more complex the problem, more output neurons are required. The number of output 
neurons is manually selected. The weight W connects input vector components and output 
neurons. The weight vectors are of same dimensions as sample vectors. The weight 
components are initialized randomly and adjusted gradually using self organizing learning 
algorithm and ultimately a mapping is done from input to output. Let M denote number of 
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learning algorithm consists of the following steps (Bezdek J. C., 1981): 

a. Randomize weights for all neurons. 
b. Input all patterns 1{ ,..........., }, 1,.........,l l lNX X X l M= = .Take one random input 

pattern and calculate euclidean distances from each pattern Xl to all output 
neurons. 

2

1
( ) ( ( )) ; 1,........, , 1,........, .

N

lj li ij
i

d t X W t l M j K
=

= − = =∑  



 Traveling Salesman Problem, Theory and Applications 

 

204 

c. Compute memberships of each pattern to all neurons (Tao T., Gan J. R. & Yao L. 
S., 1992). 
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d. Find winning neuron and neighbors of winner. 
e. Adjust synaptic weights of each neuron according to computed memberships. 
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f. Reduce values of parametersη andλ. 
g. Determine stability condition of network. 
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If the stability condition is satisfied or predefined number of iterations is achieved, then 
learning process terminates, otherwise go to Step (b) for another loop of learning. From 
above learning procedure, it is observed that FSOM eases the difficulty of selecting network 
parameters. In above learning procedure, weights are adjusted only once in each learning 
loop and features of all input samples are taken into consideration once weights are 
adjusted (Arbib M., 2003). Thus, learning speed and estimation accuracy are greatly 
improved. 

4. Heuristic solution for traveling salesman problem by fuzzy self organizing 
map 
Most interesting results of self-organization (Dittenbach M. et al., 2000; Kohonen T., 2001; 
Junfei Q. et al., 2007) are achieved in networks that have two dimensional input vectors and 
two dimensional neighborhoods. In this case input to network consists of two values viz. x 
and y which represent a point in two dimensional space. This kind of network can map two 
dimensional objects in such a way that a mesh which covers this object is created. This 
process is illustrated in Figure 5. Each example consists of six squares. First one shows the 
object that should be learned. The second square illustrates network just after 
randomization of all neural weights. Following squares describe the learning process. It is to 
be noted that each neuron or a circle represents a point whose coordinates are equal to 
neuron's weights. These figures illustrate that Kohonen ANN is powerful self-organizing 
and clustering tool. However, it is also possible to create network with one dimensional 
neighborhood and two dimensional inputs (Arbib M., 2003). Learning process of this is 
shown in Figure 6. It is observed that this network tries to organize its neurons in such a 
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way that a relatively short route between all neurons emerges. These experiments are 
stimulus to build system based on one-dimensional FSOM that would solve TSP problems 
(Xu W. & Tsai W. T., 1991; Burke L. I., 1994; Sentiono R., 2001). 
To solve TSP problem a one dimensional network is created. If the weights of neuron is 
equal to some city's coordinates the neuron represents that city. In other words a neuron 
and a city are assigned to each other and there is a one-to-one mapping (Haykin S., 2008) 
between set of cities and set of neurons. All neurons are organized in a vector. This vector 
represents sequence of cities that must be visited. However, some modifications need to be 
done before FSOM is able to fully solve this problem. This is because the real valued neural 
weights are never exactly equal to coordinates of cities. To solve the problem an algorithm 
that modifies FSOM solution to a valid one is  created. Positions of cities and neurons may 
not equal. However, adequate neural weights and cities coordinates are very close to each 
other. An algorithm that modifies neural weights so that they equal to cities coordinates is 
applied. These weights are modified in such a way to restore one-to-one mapping assumed 
at beginning. If neuron A is assigned to a city B it means that weights of neuron A are equal 
to coordinates of city B. After applying this algorithm a good and fast solution is obtained. 
However,  it is not locally optimal (Applegate D. L. et al.,2006; Laporte G., 2010). Thus it 
needs to be optimized using well known 2opt algorithm (Aarts E. H. & Lenstra J. K., 2003). 
In this case 2opt works fast even for large amount of cities because current solution is 
already good. Usually 2opt does not change the solution a lot as shown in the Figure 7. The 
2opt algorithm is based on one simple rule which selects a part of the tour, reverses it and 
inserts back in the cycle. If new tour is shorter than original cycle, then it is replaced. The 
algorithm stops when no improvement can be done. For example if there is a cycle (A, B, C, 
D, E, F) and a path (B, C, D) is reversed, then new cycle is: (A, D, C, B, E, F). After 2opt 
optimization the solution is locally optimal as shown in Figure 8. FSOM optimal training 
parameters are chosen adequately to number of cities to achieve best results (Arbib M., 
2003; Haykin S., 2008). It is found empirically that good training parameters are as follows:  

a. For 200 cities: η = 0.5, Δη = 0.9667, Δλ = 0.966  
b. For 700 cities: η = 0.6, Δη = 0.9665, Δλ = 0.9664  
c. For 1200 cities: η = 0.8, Δη = 0.9662, Δλ = 0.9666  

In every case the number of iterations is set to 25000. 

5. Numerical simulation 
In the quest of finding solution to TSP problem (Applegate D. L. et al., 2006) using FSOM 
following two types of tests are done: 

a. Using city sets taken from TSPLIB (Reinelt G., 1991) in which there are already 
some optimal solutions present  

b. Using randomly chosen cities 
TSPLIB city sets are hard to solve because in many cases the cities are not chosen randomly 
as shown in Figures 9 and 10. Generally larger city sets consist of small patterns. City set 
shown in Figure 10 consists of two different patterns and each of them is used nine times. 
Thus, optimal tour is identical in each one of these smaller patterns shown in Figure 10 top. 
FSOM tries to figure out a unique tour in each of the smaller pattern shown in Figure 10 
bottom. The testing process using randomly chosen cities is more objective. It is based on 
Held-Karp Traveling Salesman bound (Johnson D. S. et al., 2000). An empirical relation for 
expected tour length is: 
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above learning procedure, it is observed that FSOM eases the difficulty of selecting network 
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adjusted (Arbib M., 2003). Thus, learning speed and estimation accuracy are greatly 
improved. 
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two dimensional neighborhoods. In this case input to network consists of two values viz. x 
and y which represent a point in two dimensional space. This kind of network can map two 
dimensional objects in such a way that a mesh which covers this object is created. This 
process is illustrated in Figure 5. Each example consists of six squares. First one shows the 
object that should be learned. The second square illustrates network just after 
randomization of all neural weights. Following squares describe the learning process. It is to 
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way that a relatively short route between all neurons emerges. These experiments are 
stimulus to build system based on one-dimensional FSOM that would solve TSP problems 
(Xu W. & Tsai W. T., 1991; Burke L. I., 1994; Sentiono R., 2001). 
To solve TSP problem a one dimensional network is created. If the weights of neuron is 
equal to some city's coordinates the neuron represents that city. In other words a neuron 
and a city are assigned to each other and there is a one-to-one mapping (Haykin S., 2008) 
between set of cities and set of neurons. All neurons are organized in a vector. This vector 
represents sequence of cities that must be visited. However, some modifications need to be 
done before FSOM is able to fully solve this problem. This is because the real valued neural 
weights are never exactly equal to coordinates of cities. To solve the problem an algorithm 
that modifies FSOM solution to a valid one is  created. Positions of cities and neurons may 
not equal. However, adequate neural weights and cities coordinates are very close to each 
other. An algorithm that modifies neural weights so that they equal to cities coordinates is 
applied. These weights are modified in such a way to restore one-to-one mapping assumed 
at beginning. If neuron A is assigned to a city B it means that weights of neuron A are equal 
to coordinates of city B. After applying this algorithm a good and fast solution is obtained. 
However,  it is not locally optimal (Applegate D. L. et al.,2006; Laporte G., 2010). Thus it 
needs to be optimized using well known 2opt algorithm (Aarts E. H. & Lenstra J. K., 2003). 
In this case 2opt works fast even for large amount of cities because current solution is 
already good. Usually 2opt does not change the solution a lot as shown in the Figure 7. The 
2opt algorithm is based on one simple rule which selects a part of the tour, reverses it and 
inserts back in the cycle. If new tour is shorter than original cycle, then it is replaced. The 
algorithm stops when no improvement can be done. For example if there is a cycle (A, B, C, 
D, E, F) and a path (B, C, D) is reversed, then new cycle is: (A, D, C, B, E, F). After 2opt 
optimization the solution is locally optimal as shown in Figure 8. FSOM optimal training 
parameters are chosen adequately to number of cities to achieve best results (Arbib M., 
2003; Haykin S., 2008). It is found empirically that good training parameters are as follows:  

a. For 200 cities: η = 0.5, Δη = 0.9667, Δλ = 0.966  
b. For 700 cities: η = 0.6, Δη = 0.9665, Δλ = 0.9664  
c. For 1200 cities: η = 0.8, Δη = 0.9662, Δλ = 0.9666  

In every case the number of iterations is set to 25000. 
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In the quest of finding solution to TSP problem (Applegate D. L. et al., 2006) using FSOM 
following two types of tests are done: 

a. Using city sets taken from TSPLIB (Reinelt G., 1991) in which there are already 
some optimal solutions present  

b. Using randomly chosen cities 
TSPLIB city sets are hard to solve because in many cases the cities are not chosen randomly 
as shown in Figures 9 and 10. Generally larger city sets consist of small patterns. City set 
shown in Figure 10 consists of two different patterns and each of them is used nine times. 
Thus, optimal tour is identical in each one of these smaller patterns shown in Figure 10 top. 
FSOM tries to figure out a unique tour in each of the smaller pattern shown in Figure 10 
bottom. The testing process using randomly chosen cities is more objective. It is based on 
Held-Karp Traveling Salesman bound (Johnson D. S. et al., 2000). An empirical relation for 
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L k nR=  

where L is expected tour length, n is a number of cities, R is an area of square box on which 
cities are placed and k is an empirical constant. For n ≥ 100 value of k is:  

0.52229 1.31572 3.074740.70805k
nn n n

= + + −  

 

 

 
Fig. 5. Self-organization of network with two dimensional neighborhoods 

 

 

 
Fig. 6. Self-organization of network with one dimensional neighborhood 

The three random city sets viz. 200, 700, 1200 cities are used in this experiment; square box 
edge length is restricted to 500. All statistics for FSOM are generated after 75 runs on each 
city set. When number of iterations is taken as 100, the average results did not show any 
considerable difference. Better results are obtained on increasing the number of iterations. 
FSOM generates a tour in relatively short time, such as 225 cities set is solved in 254 ms and 
1000 cities set in less than 2 seconds. The average tour lengths for city sets up to 2000 cities 
are comparatively better than optimum. FSOM thus generates solutions that are noticeably 
good from optimal tour. FSOM is compared with the Evolutionary Algorithm (Goldberg D. 
E., 1989; Deb K., 2001). Evolutionary Algorithm uses enhanced edge recombination operator 
(Rahendi N. T A. & Atoum J., 2009) and steady state survivor selection where always the 
worst solution is replaced with tournament parent selection where tournament size depends 
on number of cities and population size. Scramble mutation is used here. The optimal 
mutation rate depends on number of cities and state of evolution. Therefore, self-adapting 
mutation rate is used. Every genotype has its own mutation rate (Michalewicz Z., 1996) 
which is modified in a similar way as in evolution strategies. This strategy adapts mutation 
rate to number of cities and evolution state automatically, so it is not needed to check 
manually which parameters are optimal for each city set. Evolution stops when population 
converges (Goldberg D. E., 1989). Population size is set to 1000 (Michalewicz Z., 1996). 
With smaller populations, Evolutionary Algorithm did not work that well. When 
Evolutionary Algorithm stopped, its best solution is optimized by 2opt algorithm. The 
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results for FSOM, Evolutionary Algorithm and 2opt Algorithm are shown in the Table 1. For 
Evolutionary Algorithm there are 20 runs of algorithm for sets EIL51, EIL101 and RAND100. 
For other sets Evolutionary Algorithm is run twice. The optimum solutions for instances 
taken from TSPLIB are already present there and optimum solutions for random instances 
are calculated from empirical relation described above. 
 

 
Fig. 7. Self Organizing Map solution without 2opt optimization (top). There are two local 
loops on left. First and last neuron can be seen in the middle. They are not connected in 
figure but distance between them is also computed. The same solution improved by 2opt 
(bottom). Loops on left have been erased. Additional changes can be observed 
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figure but distance between them is also computed. The same solution improved by 2opt 
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Fig. 8. 2opt optimization. If there is a cycle (A, B, C, D, E, F) and path (B, C, D) is reversed, 
then new cycle is (A, D, C, B, E, F). 

 
 

 
Fig. 9. Optimal tour length for 225 city set taken from TSPLIB (top) is 3916. Tour length 
generated by FSOM 2opt hybrid (bottom) is 3899. 
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Fig. 10. Optimal tour length for 2392 city set taken from TSPLIB (top) is 378037. Tour length 
generated by FSOM 2opt hybrid (bottom) is 377946. 
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The experiments show that Evolutionary Algorithm (Goldberg D. E., 1989; Deb K., 2001) 
finds better solutions for instances with up to 100 cities. Both average and best results are 
better than FSOM. For city sets with 50 or less, Evolutionary Algorithm finds optimum in 
every execution. The results for 225 cities are nearly comparable for both algorithms. 
However, for larger amount of cities viz. 442 and more FSOM yields better solutions. With 
more number of cities search space increases significantly and Evolutionary Algorithm 
needs bigger population size. For TSP225 with population size of 1000 Evolutionary 
Algorithm result is 4044, but when population size is expanded to 3000 a tour with length 
3949 is found which is comparable to FSOM solution. This underlines the fact that when 
Evolutionary Algorithm is used one can always expand population size (Michalewicz Z., 
1996), so the algorithm has greater chance of achieving good results. However, algorithm is 
much slower then.  
It is interesting to compare FSOM algorithm to other Non-Evolutionary approaches 
(Chaudhuri A., 2007). One of the best TSP algorithms which is appreciably fast is Lin-
Kerninghan Algorithm (Lin S. & Kernighan B. W., 1973). The algorithm is run 20 times on 
each city set. Average results and times are shown in Table 2 which indicate that Lin-
Kerninghan is comparable to that of FSOM. There is no considerable difference in time for 
small 51-city instance which is 0.012 seconds for Lin-Kerninghan and 0.024 seconds for 
FSOM. On other hand, for 2392-city instance Lin-Kerninghan needed just 0.719 seconds and 
FSOM required almost 7 seconds. This is because FSOM is optimized by 2opt which is the 
slowest part of this algorithm. When average results are compared it can be easily seen that 
Lin-Kerninghan is superior in all cases. The higher is number of cities, bigger the difference 
between both algorithms. FSOM is also used to generate initial population for Evolutionary 
Algorithm. Such initialization takes only a fraction of time needed for Evolutionary 
Algorithm to finish because FSOM is fast algorithm. In this case, Evolutionary Algorithm 
tends to converge much faster and finally it did not improve the best solution generated by 
FSOM alone. It seems that all initial solutions are very similar to each other, thus population 
diversity is low and so the Evolutionary Algorithm lost all exploration abilities. 

6. Conclusion 
The experimental results indicate that FSOM 2opt hybrid algorithm generates appreciably 
better results compared to both Evolutionary and Lin Kerninghan Algorithm for TSP as 
number of cities increases. There are some parameters such as η, ηΔ , λΔ that can be 
optimized. Experiments with other Self Organizing networks should be performed and 
gaussian neighborhood and conscience mechanism can be applied which can improve TSP 
solutions generated by ANN (Christof T. & Reinelt G., 1995). Some other optimization 
algorithms may be used other than 2opt algorithm which gives better results. There are 
many algorithms that solve permutation problems. Evolutionary Algorithms have many 
different operators that work with permutations. Enhanced edge recombination is one of the 
best operators for TSP (Goldberg D. E., 1989; Deb K., 2001). However, it is proved that 
other permutation operators which are worse for TSP than enhanced edge recombination 
are actually better for other permutation problems like warehouse or shipping scheduling 
applications (Korte B. H. & Vygen J., 2008). Therefore, it might be possible that FSOM 2opt 
hybrid might work better for other permutation problems than for TSP. 
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FSOM Evolutionary Algorithm 2opt Algorithm 
Instances Optimum Average

Result
Best 

Result
Best
Time

Average
Result 

Best 
Result

Best
Time

Average 
Result

Best 
Result 

Best 
Time 

EIL51 426 435 428 0.024 428.2 426 10 537 524 1.44 
EIL101 629 654 640 0.069 653.3 639 75 869 789 2.96 
TSP225 3916 3909 3899 0.254  4044 871  4679 6.7 
PCB442 50778 50635 50537 0.407  55657 10395  56686 12.37 
PR1002 259045 259024 259010 1.999  286908 25639  292069 29 
PR2392 378037 377969 377946 7.967       
RAND200 3851.81 3844 3769 0.131 3931.4 3822 69.6 4344 4037 5.9 
RAND700 8203.73 8199 8069 0.824  9261 11145  14116 17.8 
RAND1200 11475.66 11469 11437 2.311  12858 56456  24199 37 

Table 1. Comparison of FSOM, Evolutionary Algorithm and 2opt Algorithm 
 

Lin Kerninghan Instances Optimum 
Average Result Average Time 

EIL51 426 427.4 0.012 
EIL101 629 640 0.039 
PCB442 50778 51776.5 0.137 
PR2392 378037 389413 0.719 

Table 2. Results for Lin-Kerninghan Algorithm 
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Best
Time

Average 
Result

Best 
Result 

Best 
Time 

EIL51 426 435 428 0.024 428.2 426 10 537 524 1.44 
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Lin Kerninghan Instances Optimum 
Average Result Average Time 
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PCB442 50778 51776.5 0.137 
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Table 2. Results for Lin-Kerninghan Algorithm 
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1. Introduction    
Techniques of optimization known as metaheuristics have achieved success in the resolution 
of many problems classified as NP-Hard. These methods use non deterministic approaches 
that reach very good solutions which, however, don’t guarantee the determination of the 
global optimum. Beyond the inherent difficulties related to the complexity that characterizes 
the optimization problems, the metaheuristics still face the dilemma of 
exploration/exploitation, which consists of choosing between a greedy search and a wider 
exploration of the solution space. A way to guide such algorithms during the searching of 
better solutions is supplying them with more knowledge of the problem through the use of 
a intelligent agent, able to recognize promising regions and also identify when they should 
diversify the direction of the search. This way, this work proposes the use of Reinforcement 
Learning technique – Q-learning Algorithm (Sutton & Barto, 1998) - as 
exploration/exploitation strategy for the metaheuristics GRASP (Greedy Randomized 
Adaptive Search Procedure) (Feo & Resende, 1995) and Genetic Algorithm (R. Haupt & S. E. 
Haupt, 2004).  The GRASP metaheuristic uses Q-learning instead of the traditional greedy-
random algorithm in the construction phase. This replacement has the purpose of 
improving the quality of the initial solutions that are used in the local search phase of the 
GRASP, and also provides for the metaheuristic an adaptive memory mechanism that 
allows the reuse of good previous decisions and also avoids the repetition of bad decisions. 
In the Genetic Algorithm, the Q-learning algorithm was used to generate an initial 
population of high fitness, and after a determined number of generations, where the rate of 
diversity of the population is less than a certain limit L, it also was applied to supply one of 
the parents to be used in the genetic crossover operator. Another significant change in the 
hybrid genetic algorithm is an interactive/cooperative process, where the Q-learning 
algorithm receives an additional update in the matrix of Q-values based on the current best 
solution of the Genetic Algorithm. The computational experiments presented in this work 
compares the results obtained with the implementation of traditional versions of GRASP 
metaheuristic and Genetic Algorithm, with those obtained using the proposed hybrid 
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methods. Both algorithms had been applied successfully to the symmetrical Traveling 
Salesman Problem, which was modeled as a Markov decision process. 

2. Theoretical foundation 
2.1 GRASP metaheuristic 

The Metaheuristic Greedy Randomized Adaptive Search Procedure - GRASP (Feo & 
Resende, 1995), is a multi-start iterative process, where each iteration consists of two phases: 
constructive and local search. The constructive phase builds a feasible solution, whose 
neighbourhood is investigated until a local minimum is found during the local search phase. 
The best overall solution is kept as the final solution. 
Each iteration of the construction phase let the set of candidate elements be formed by all 
elements that can be incorporated in to the partial solution under construction without 
destroying its feasibility. The selection of the next element for incorporation is determined 
by the evaluation of all candidate elements according to a greedy evaluation function g(c), 
where c is a candidate element to compose the solution. 
The evaluation of the elements by function g(c) leads to the creation of a restricted candidate 
list - RCL formed by the best elements, i.e., those whose incorporation to the current partial 
solution results in the smallest incremental cost (this is the greedy aspect of the algorithm in 
the minimization case). Once the selected element is incorporated into the partial solution, 
the candidate list is updated and the incremental costs are revaluated (this is the adaptive 
aspect of the heuristic). 
The probabilistic aspect of GRASP is given by the random choice of one of the elements of 
the RCL, not necessarily the best, except in the case of the RCL, which has unitary size. In 
this case, the selection criterion is reduced to the greedy criterion. The improvement phase 
typically consists of a local search procedure aimed at improving the solution obtained in 
the constructive phase, since this solution may not represent a global optimum. 
In GRASP metaheuristics, it is always important to use a local search to improve the 
solutions obtained in the constructive phase. The local search phase works in an iterative 
way, replacing successively the current solution by a better one from its neighbourhood.  
Thus, the success of the local search algorithm depends on the quality of the neighbourhood 
chosen (Feo & Resende, 1995). This dependence can be considered a disadvantage of the 
GRASP metaheuristic. 
The GRASP metaheuristic presents advantages and disadvantages: 
Advantages: 

• Simple implementation: greedy algorithm and local search; 
• Some parameters require adjustments: restrictions on the candidate list and the 

number of iterations. 
Disadvantages: 

• It depends on good initial solutions: since it is based only on randomization 
between iterations, each iteration benefits  from the quality of the initial solution; 

• It does not use memory of the information collected during the search. 
This work explores the disadvantages of the GRASP metaheuristic replacing the random-
greedy algorithm of the constructive phase by constructive algorithms that use the              Q-
learning algorithm as an exploitation/exploration strategy aimed at building better initial 
solutions. The pseudo code of the traditional GRASP algorithm is presented in the Fig. 1, 
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where D corresponds to the distance matrix for the TSP instances, αg1 is the control parameter 
of the restricted candidate list - RCL, and Nm the maximal number of interactions. 
 

 

Fig. 1. Traditional GRASP Algorithm 

In the GRASP metaheuristic, the restricted candidate list, specifically the αg parameter, is 
practically the only parameter to be adjusted. The effect of the choice of αg value, in terms of 
quality solution and diversity during the construction phase of the GRASP, is discussed by 
Feo and Resende (Feo & Resende, 1995).  Prais and Ribeiro (Prais & Ribeiro, 1998) proposed 
a new procedure called reactive GRASP, for which the αg parameter of the restricted 
candidate list is self-adjusted according to the quality of the solution previously found. 
In the reactive GRASP algorithm, the αg value is randomly selected from a discreet set 
containing m predetermined feasible values:  

 { }1 ,..., m
g gα αΨ =  (1) 

The use of different αg values at different iterations allows the building of different Restrict 
Candidate Lists - RCL, possibly allowing the generation of distinct solutions that would not 
be built through the use of a single fixed αg value. 
The choice of αg in the set Ψ is made using a probability distribution pi, i=1,...,m, which is 
periodically updated by the so-called absolute qualification rule (Prais & Ribeiro, 1998), 
which is based on the average value of the solutions obtained with each  αg  value and is 
computed as follows: 

 
( ( ))*

i
i

F Sq
A

δ
=  (2) 

for all i=1,...,m, where F(S*) is the value of the overall best solution already found and δ is 
used to explore the updated values of probability pi.  Using qi, the probability distribution is 
given by: 
                                                 
1 The index g is used here to differ from the αg parameter used in the Q-learning algorithm in this 
paper. 
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In this paper, the reactive GRASP is presented as a more robust version of the traditional 
GRASP algorithm, and its performance will be compared with the new method proposed. 

2.2 Genetic algorithm 
Genetic algorithms (GA) are based on a biological metaphor: they see the resolution of a 
problem as a competition among a population of evolving candidate problem solutions. A 
“fitness” function evaluates each solution to decide whether it will contribute to the next 
generation of solutions.  Then, through analogous operations to gene transfer in sexual 
reproduction, the algorithm creates a new population of candidate solutions. At the 
beginning of a run of a genetic algorithm, a large population of random chromosomes is 
created. Each one, when decoded, will represent a different solution to the problem at 
hand. Some of the advantages of a GA (R. Haupt & S. E. Haupt, 2004) include the 
following: 

• It optimizes with continuous or discrete variables; 
• Does not require derivative information; 
• Simultaneously searches through wide sampling of the cost  surface; 
• Deals with a large number of variables and is well suited for parallel computers; 
• Optimizes variables with extremely complex cost surfaces (they can jump out of a 

local minimum); 
• Provides a list of optimum variables, not just a single solution; 
• May encode the variables so that the optimization is done with the encoded 

variables; and 
• Works with numerically generated data, experimental data, or analytical 

functions. 
A typical genetic algorithm presents the following operators: 

• Crossover - this operator is used to vary the population of the chromosomes from 
one generation to the next. It selects the two fittest chromosomes in the population 
and produces a number of offspring. There are several crossover techniques; in this 
work, we will use the one-point crossover. 

• Selection - this operator replicates the most successful solutions found in a 
population at a rate proportional to their relative quality, which is determined by 
the fitness function. In this paper we will use the roulette wheel selection technique 
for this operator. 

• Mutation - used to maintain genetic diversity from one generation of a population 
of chromosomes to the next.  It selects a position of an offspring chromosome with 
small probability and changes the value based on the problem model; for example, 
in this work, the mutation operator modifies the offspring chromosome simply by 
changing the position of a gene. 

The pseudo code of the standard genetic algorithm is summarized in the Fig. 2, where Tc is 
the crossover rate or parameter that determines the rate at which the crossover operator is 
applied, Tm is the equivalent for the mutation rate, Tp is the population size (number of 
chromosomes) and MaxG the number of generations used in the experiment. 
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Fig. 2. Traditional Genetic Algorithm 

2.3 Reinforcement learning 
The reinforcement learning is characterized by the existence of an agent which should learn 
the behaviours through trial-and-error interactions in a dynamic environment. In the 
interaction process the learner agent, at each discrete time step t receives from the 
environment some denominated representation state. Starting from state st∈S (S is the set of 
possible states), the learner agent chooses an action at∈A (A is the set of actions available in 
state st).  When the learner agent chooses an action, receives a numerical reward rt+1, which 
represent the quality of the action selected and the environment response to that action 
presenting st+1, a new state of the environment. 
The agent's goal is to maximize the total reward it receives along the process, so the agent 
has to exploit not only what it already knows in order to obtain the reward, but also explore 
the environment in order to select better action in the future (Sutton & Barto, 1998). 
There are some classes of methods for solving the reinforcement learning problem, such as: 
Dynamic Programming, Monte Carlo methods and Temporal-difference learning.   Each of 
these methods presents its characteristics.  Dynamic programming methods are well 
developed mathematically, but require a complete and accurate model of the environment. 
Monte Carlo methods require no model and are very simple conceptually, but are not suited 
for step-by-step incremental computation.  Temporal-difference methods do not require a 
complete model and are fully incremental, but it's more complex to mathematical analysis.  
Based in the characteristics and need of the problem in hand, this work will use a well-know 
Temporal-difference technique denominated Q-learning algorithm, which will be presented 
in details in the next section. 

2.3.1 The Q-learning algorithm 
Not all reinforcement learning algorithms need a complete modelling of the environment. 
Some of them do not need to have all the transition probabilities and expected return values 
for all the transitions of the possible environmental states. This is the case of the   
reinforcement learning techniques based on temporal differences (Sutton & Barto, 1998). 
One of these techniques is the well-known Q-learning algorithm (Watkins, 1989), considered 
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2.2 Genetic algorithm 
Genetic algorithms (GA) are based on a biological metaphor: they see the resolution of a 
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• Mutation - used to maintain genetic diversity from one generation of a population 
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Fig. 2. Traditional Genetic Algorithm 
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for all the transitions of the possible environmental states. This is the case of the   
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One of these techniques is the well-known Q-learning algorithm (Watkins, 1989), considered 
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one of the most important breakthroughs in reinforcement learning, since its convergence 
for optimum Q-values does not depend on the policy applied.  The updated expression of 
the Q value in the Q-learning algorithm is: 

 ( , ) (1 ) ( , ) [ max ( ', )]q q a A
Q s a Q s a r Q s aα α γ

∈
= − + +  (4) 

where s is the current state, a is the action carried out in the state s, r is the immediate 
reward received for executing a in s, s’  is the new state, γ is a discount factor (0 ≤ γ ≥ 1), and 
αq, (0 < αq < 1) is the learning factor. 
An important characteristic of this algorithm is that the choice of actions that will be 
executed during the iterative process of function Q can be made through any 
exploration/exploitation criterion, even in a random way.  A widely used technique for 
such a choice is the so-called ε-greedy exploration, which consists of an agent to execute the 
action with the highest Q value with probability 1-ε, and choose a random action with 
probability ε. 
The Q-learning was the first reinforcement learning method to provide strong proof of 
convergence. Watkins showed that if each pair state-action is visited an infinite number of 
times and with an adjusted value, the value function Q will converge with probability 1 to 
Q*. The pseudo code of the Q-learning algorithm is presented in the Fig. 3, where, r is the 
reward matrix, ε is the parameter of the ε-greedy police. 
 

 
 

Fig. 3. Q-learning Algorithm 

3. Proposed hybrid methods 
Metaheuristics are approximate methods that depend on good exploration/exploitation 
strategies based on previous knowledge of the problem and are can guide the search for an 
optimum solution in order avoiding local minimum. Good strategies (or good heuristics) 
alternate adequately between exploration and exploitation.  In other words they maintain 
the balance between these two processes during the search for an optimum solution. The 
methods presented here are hybrid since they use a well-known reinforcement learning 
method - Q-learning algorithm - as an exploration/exploitation mechanism for GRASP and 
genetic algorithm metaheuristics (Lima, F. C., et al., 2007). 
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The Fig. 4, presents a framework of the proposed hybrid methods: 
 

 
Fig. 4. Framework of the proposed hybrid methods. 

The proposed methods in this section are applied to solve the symmetric traveling salesman 
problem - TSP and are modelled as a Reinforced Learning Problem. 

3.1 The traveling salesman problem modeled as a sequential decision problem 
The traveling salesman problem can be described as a sequential decision process, 
represented by the quintuplet M= {T, S, A, R, P}, in at least two different ways. For example, 
consider a model where the set of states S is the set of all possible solutions for TSP (Ramos 
et al, 2003). The model in this study has a high-dimensional inconvenience S, since TSP has a 
higher number of possible solutions in the symmetric case (n-1)!/2. 
An alternative to model TSP as a sequential decision problem is to consider that S is formed 
by all the cities to solve TSP.  In this new model, the cardinality of S is equal to the instance 
size of the problem. This lowers the risk of S suffering the “curse of dimensionality”. In this 
study TSP is modelled as a sequential decision problem based on this second alternative. 
To better understand the proposed model, consider an example of TSP with 5 cities shown 
in graph G(V, E, W) of Fig. 5.  V is the set of vertices, E is the set of arcs between the vertices 
and W is the weight associated to each arc. In graph G(V,E,W), a12 corresponds to visiting the 
“city” s2 derived from s1, and the values associated to each arc (number between 
parentheses) corresponds to the distance between the “cities”. 
Considering graph G(V,E,W), the quintuplet M = {T, S, A, R, P}, representing a sequential 
decision process, can be defined by TSP as follows: 

• T: The set of decision instants is denoted by T = {1, 2, 3, 4, 5}, where the cardinality 
of T corresponds to the number of cities that compose a route to TSP. 

• S: The set of states is represented by S = {s1, s2, s3, s4, s5}, where each state si, i=1,...,5 
corresponds to a city2 at a route to TSP. 

• A: The set of possible actions is denoted by: 

                                                 
2 From this point onwards the expression “city” or “cities” indicates the association between a city of 
TSP and a state (or states) from the environment. 



 Traveling Salesman Problem, Theory and Applications 

 

218 

one of the most important breakthroughs in reinforcement learning, since its convergence 
for optimum Q-values does not depend on the policy applied.  The updated expression of 
the Q value in the Q-learning algorithm is: 

 ( , ) (1 ) ( , ) [ max ( ', )]q q a A
Q s a Q s a r Q s aα α γ

∈
= − + +  (4) 

where s is the current state, a is the action carried out in the state s, r is the immediate 
reward received for executing a in s, s’  is the new state, γ is a discount factor (0 ≤ γ ≥ 1), and 
αq, (0 < αq < 1) is the learning factor. 
An important characteristic of this algorithm is that the choice of actions that will be 
executed during the iterative process of function Q can be made through any 
exploration/exploitation criterion, even in a random way.  A widely used technique for 
such a choice is the so-called ε-greedy exploration, which consists of an agent to execute the 
action with the highest Q value with probability 1-ε, and choose a random action with 
probability ε. 
The Q-learning was the first reinforcement learning method to provide strong proof of 
convergence. Watkins showed that if each pair state-action is visited an infinite number of 
times and with an adjusted value, the value function Q will converge with probability 1 to 
Q*. The pseudo code of the Q-learning algorithm is presented in the Fig. 3, where, r is the 
reward matrix, ε is the parameter of the ε-greedy police. 
 

 
 

Fig. 3. Q-learning Algorithm 

3. Proposed hybrid methods 
Metaheuristics are approximate methods that depend on good exploration/exploitation 
strategies based on previous knowledge of the problem and are can guide the search for an 
optimum solution in order avoiding local minimum. Good strategies (or good heuristics) 
alternate adequately between exploration and exploitation.  In other words they maintain 
the balance between these two processes during the search for an optimum solution. The 
methods presented here are hybrid since they use a well-known reinforcement learning 
method - Q-learning algorithm - as an exploration/exploitation mechanism for GRASP and 
genetic algorithm metaheuristics (Lima, F. C., et al., 2007). 

Hybrid Metaheuristics Using Reinforcement Learning Applied to Salesman Traveling Problem 

 

219 

The Fig. 4, presents a framework of the proposed hybrid methods: 
 

 
Fig. 4. Framework of the proposed hybrid methods. 

The proposed methods in this section are applied to solve the symmetric traveling salesman 
problem - TSP and are modelled as a Reinforced Learning Problem. 

3.1 The traveling salesman problem modeled as a sequential decision problem 
The traveling salesman problem can be described as a sequential decision process, 
represented by the quintuplet M= {T, S, A, R, P}, in at least two different ways. For example, 
consider a model where the set of states S is the set of all possible solutions for TSP (Ramos 
et al, 2003). The model in this study has a high-dimensional inconvenience S, since TSP has a 
higher number of possible solutions in the symmetric case (n-1)!/2. 
An alternative to model TSP as a sequential decision problem is to consider that S is formed 
by all the cities to solve TSP.  In this new model, the cardinality of S is equal to the instance 
size of the problem. This lowers the risk of S suffering the “curse of dimensionality”. In this 
study TSP is modelled as a sequential decision problem based on this second alternative. 
To better understand the proposed model, consider an example of TSP with 5 cities shown 
in graph G(V, E, W) of Fig. 5.  V is the set of vertices, E is the set of arcs between the vertices 
and W is the weight associated to each arc. In graph G(V,E,W), a12 corresponds to visiting the 
“city” s2 derived from s1, and the values associated to each arc (number between 
parentheses) corresponds to the distance between the “cities”. 
Considering graph G(V,E,W), the quintuplet M = {T, S, A, R, P}, representing a sequential 
decision process, can be defined by TSP as follows: 

• T: The set of decision instants is denoted by T = {1, 2, 3, 4, 5}, where the cardinality 
of T corresponds to the number of cities that compose a route to TSP. 

• S: The set of states is represented by S = {s1, s2, s3, s4, s5}, where each state si, i=1,...,5 
corresponds to a city2 at a route to TSP. 

• A: The set of possible actions is denoted by: 

                                                 
2 From this point onwards the expression “city” or “cities” indicates the association between a city of 
TSP and a state (or states) from the environment. 



 Traveling Salesman Problem, Theory and Applications 

 

220 

1 2 3 4 5( ) ( ) ( ) ( ) ( )A A s A s A s A s A s= ∪ ∪ ∪ ∪  

12 13 14 15 21 23 24 25 31 32 34 35 41 42 43 45 51 52 53 54{ , , , } { , , , } { , , , } { , , , } { , , , }A a a a a a a a a a a a a a a a a a a a a= ∪ ∪ ∪ ∪  

12 13 14 15 21 23 24 25 31 32 34 35 41 42 43 45 51 52 53 54{ , , , , , , , , , , , , , , , , , , , }A a a a a a a a a a a a a a a a a a a a a=  (5)                  

It is important to emphasize that owing to the restriction of TSP, some actions may not be 
available when constructing a solution. To understand it more clearly, consider the 
following partial solution for TSP: 

 2 3 5:pSol s s s→ →  (6) 

where the decision process is in the decision instant 3 and state s5. In this case the actions 
available are A(s5)={a51, a54}, since the “cities” s2 (action choice a52) and s3 (action choice a53) 
are not permitted to avoid repetitions in the route. 

• R: S × A → ℜ: Expected Return. In TSP, elements rij are calculated using the 
distance between the “cities” si and sj. The return should be a reward that 
encourages the choice of “city” sj closest to si. Since TSP is a minimization problem, 
a trivial method to calculate the reward is to consider it inversely proportional to 
the traveling cost between the cities. That is: 

 1
ij

ij
r

d
=  (7) 

where dij > 0 is a real number that represents the distance from “city” si to “city” sj.  Using 
the weights from the graph in  Fig. 5, R is represented by: 
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• P: S × A × S →  [1, 0]: The function that defines the probability transition between 
states s∈S, where the elements pij(sj|si, aij) correspond to the probability of 
reaching “city” sj when in “city” si and choosing action aij.  The values of pij are 
denoted by: 
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j
ij j i ij
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p s s a
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⎪⎩

 (9) 

The quintuplet M = {T, S, A, R, P} defined in the graph of the Fig. 5. can be defined with no 
loss of generality for a generic graph G(V, E, W), (with |V|=N) where a Hamiltonian cycle 
of cardinality N is found. 
An optimum policy for TSP, given generic graph G(V, E, W), should determine the sequence 
of visits to each “city” si, i=1, 2,...,N to achieve the best possible sum of returns. In this case, 
the problem has a finite-time horizon, sets of states, and discrete and finite actions. 
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Fig. 5. Complete Graph, instance of the TSP with 5 cities. 

3.2 The Markov property 
In a sequential decision process, the environmental response in view of the action choice at 
any time t+1 depends on the history of events at a time before t+1.  This means that the 
dynamic of environmental behaviour will be defined by complete probability distribution 
(Sutton & Barto, 1998): 

 ' 1 1 1 1 1 1 1 1 0 0Pr{ ', | , , , , , , , , , , , }a
ss t t t t t t t tP s s r r s a r s a r s a r s a+ + − − −= = = …  (10) 

where Pr represents the probability of st+1 being s’, for all s, a, r, states, actions and past 
reinforcements st, at, rt, ...., r1, s0, a0. 
However, if the sequential process obeys the Markov property, the environmental response 
at t+1 only depends on information for state s and action a available at t. In other words the 
environment dynamic is specified by: 

 ' 1 1Pr{ ', | , }a
ss t t t tP s s r r s a+ += = =  (11) 

which qualifies it as a Markov decision process – MDP (Puterman, 1994). 
In the traveling salesman problem, an action is chosen (deciding which city to place on the 
route under construction) from state st (the actual city in the route under construction) based 
on the instance between this city and the others.  It is important to note that, to avoid 
violating the restriction imposed by TSP (not to repeat cities on the route), actions that 
would lead to states already visited should not be available in state st.  In this context, TSP is 
a Markov decision process since all the information necessary to make the decision at t is 
available at state st.  A list of actions not chosen during route construction could be included 
in state st to provide information on the actions available in the state. 
The Markov property is fundamentally important in characterizing the traveling salesman 
problem as a reinforcement learning task, since the convergence of methods used in this 
study depends on its verification in the proposed model. 
The restriction imposed on TSP creates an interesting characteristic in the Markov decision 
process associated to the problem.  The fact that the sets of available actions A(s) for state s at 
each time instant t vary during the learning process, implies changes in the strategies for 
choosing actions in any state st.  This means that modifications will occur in the politics used 
during the learning process. Fig. 6 demonstrates this characteristic. 
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Fig. 6. Changes in the number of actions available during the decision process. 

To understand more clearly, consider the following partial solution for TSP: The chart in 
Fig. 6, can be interpreted as follows: A route to TSP is constructed in each episode of the 
learning process. During construction of a route to TSP, at each decision instant t, a state is 
visited s∈S and an action choice a∈A is made.  Since the set A(s) of actions available for state 
s varies along time, in an episode i the set of actions available for state st at instant t can be 
different of the actions available in the same state s at time instant t+k and episode j. This 
confirms that the Markov decision process associated to the traveling salesman problem can 
be modelled has a non-stationary policy. 

3.3 The Q-learning algorithm implemented 
Since the methods presented in this section use Q-learning, this section presents details such 
as: action selection policies and convergence of the algorithm when applied to the proposed 
problem. 

3.3.1 Action selection policies for the Q-learning algorithm 
When solving a reinforcement learning Problem, an action selection policy aims to 
determine the behaviour of the agent so that it alternates adequately between using 
obtained knowledge and acquiring new knowledge. This optimizes the 
exploration/exploitation process of the search space. More than one action selection policy 
is used for Q-learning to determine which policy is most appropriate to implement the 
proposed hybrid methods. 

• The ε-greedy policy chooses the action with the highest expected value, 
compatibility defined by (1-ε) and random action with a probability of ε. 
Mathematically, given the matrix of Q-values Q(s, a), the greedy action a* is 
obtained for state s as follows: 
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where |A(s)| corresponds to the number of possible actions from s, and ε is the control 
parameter between greed and randomness. The restriction in Eq. 12 allows Q-learning 
to explore the state space of the problem and is needed to find the optimum control 
policy. 
• The Adaptive ε-greedy Policy is similar to the ε-greedy policy described. In other 

words, it allows the action with the highest expected value to be chosen, with 
probability defined by (1 - ε) and a random action with probability ε. It is 
different and also “Adaptive”, since the value of ε  suffers exponential decay 
calculated by: 

 { }max , . k
i fv v bε =  (13) 

where k is the episode counter of Q-learning, b is the closest value of 1 and vi < vf ∈ [0,1]. 
The algorithm initially uses high values for ε  (close to vf) and, as the value of k 
increases, choice ε  is directed to lower values (closer to vi). The objective is to allow 
more random choices to be made and to explore more the greedy aspect as the number 
of episodes increases. 
• Based on Visitor Count Policy chooses the action based on a technique called 

Reinforcement Comparison (Sutton & Barto, 1998). In this technique actions are 
chosen based on the principle that actions followed by large rewards are preferred 
to those followed by small rewards. To define a ``large reward'', a comparison is 
made with a standard reward known as a reference reward.  

The objective of the proposed policy is similar to the reinforcement comparison   
technique. However, choosing preferred actions is based on the visitor count to the 
states affected by these actions. That is, the most visited states indicate preferred actions 
in detriment to actions that lead to states with a lower number of visits. When the 
preference measurement for actions is known, the probability of action selection can be 
determined as follows: 
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where πt(a) denotes the probability of selecting action a at step t and pt(a) is the 
preference for action a at time t. This is calculated by: 

 1( ) ( ) ( ( , ) / )t t t t v t Epp a p a N s a Nβ+ = +  (15) 

where s is the state affected by selecting action a at step t, Nv(s, at) is the number of visits 
to state s, NEp is the total number of episodes and β∈[0,1] is the control parameter that 
considers the influence level of preferred actions. 

An experiment was carried out to compare the policies tested using 10 instances of TSP 
available in TSPLIB library (TSPLIB, 2010) and the results for the three policies tested 
simultaneously considering the value of the function and processing time, the adaptive ε-
greedy policy had the best performance. This policy will be used in the version of the Q-
learning algorithm implemented in this work. 
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Fig. 6. Changes in the number of actions available during the decision process. 
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where |A(s)| corresponds to the number of possible actions from s, and ε is the control 
parameter between greed and randomness. The restriction in Eq. 12 allows Q-learning 
to explore the state space of the problem and is needed to find the optimum control 
policy. 
• The Adaptive ε-greedy Policy is similar to the ε-greedy policy described. In other 

words, it allows the action with the highest expected value to be chosen, with 
probability defined by (1 - ε) and a random action with probability ε. It is 
different and also “Adaptive”, since the value of ε  suffers exponential decay 
calculated by: 

 { }max , . k
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where k is the episode counter of Q-learning, b is the closest value of 1 and vi < vf ∈ [0,1]. 
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where πt(a) denotes the probability of selecting action a at step t and pt(a) is the 
preference for action a at time t. This is calculated by: 
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where s is the state affected by selecting action a at step t, Nv(s, at) is the number of visits 
to state s, NEp is the total number of episodes and β∈[0,1] is the control parameter that 
considers the influence level of preferred actions. 

An experiment was carried out to compare the policies tested using 10 instances of TSP 
available in TSPLIB library (TSPLIB, 2010) and the results for the three policies tested 
simultaneously considering the value of the function and processing time, the adaptive ε-
greedy policy had the best performance. This policy will be used in the version of the Q-
learning algorithm implemented in this work. 
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3.4 The GRASP learning method 
In GRASP metaheuristics the exploration and exploitation processes occur at different 
moments. The constructive phase explores the space of viable solutions and the local search 
improves the solution constructed in the initial phase of exploiting the area. Despite the 
clear delimitation of roles, the two phases of GRASP metaheuristics work in collaboration. 
The good performance of local search algorithm varies with the neighbourhood chosen and 
depends substantially on the quality of the initial solution. (Feo & Resende, 1995). 
This section presents a hybrid method using Q-learning algorithm in the constructive phase 
of GRASP metaheuristics. In traditional GRASP metaheuristics iteration is independent, in 
other words, actual iteration does not use information obtained in past iterations (Fleurent & 
Glover, 1999).  The basic idea of this proposed method is to use the information from the Q-
values matrix as a form of memory that enables good decisions to be made in previous 
iterations and avoids uninteresting ones. This facilitates the exploration and exploitation 
process. 
Based on the results of using an isolated Q-learning algorithm to solve the small instances of 
TSP, the approach proposed may significantly improve metaheuristic performance in 
locating the global optimum. 
In the GRASP-Learning method, the Q-learning algorithm is used to construct initial 
solutions for GRASP metaheuristic. A good quality viable solution is constructed at each 
iteration of the algorithm using information from the Q-values matrix.  The Q-values matrix 
can then be used at each GRASP iteration as a form of adaptive memory to allow the past 
experience to be used in the future. The use of adaptive word means that at each iteration 
new information is inserted by using the matrix Q. This influences the constructive phase of 
the next iteration. 
The Q-learning algorithm will therefore be implemented as a randomized greedy algorithm. 
The control between “greed” (Exploration) and “randomness” (Exploitation) is achieved 
using the parameter ε of the transition rule defined in equation 13. The reward matrix is 
determined as follows: 
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where 1/dij is the inverse distance between the two cities ci and cj (city ci is represented by 
state s and city cj by the state accessed by choosing action a), and Nv(s,a) is the number of 
visits to the current state. 
The procedure of the Q-learning algorithm proposed for the GRASP constructive phase 
applied to the symmetric TSP is: 
A table of state-action values Q (Q-values matrix) initially receives a zero value for all items. 
An index of table Q is randomly selected to start the updating process and the index then 
becomes state s0 for Q-learning. State s1 can be obtained from state s0 using the ε-greedy 
adaptive transition rule of the following way: 

• Randomly, selecting a new city of the route, or 
• Using the maximum argument Q in relation to the previous state s0. 

Given states s0 and s1, the iteration that updates table Q begins using the equation 4.  The 
possibility of selecting a lower argument state through randomness ensures the method 
ability to explore other search areas. Table Q is obtained after a maximum number of 
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episodes.  The route to TSP is taken from this matrix.  Constructing a solution for TSP after 
obtaining matrix Q is achieved as follows: 

• Copy the data of matrix Q to auxiliary matrix Q1; 
• Select an index l that shows an initial line of table Q1 (corresponding to the city at 

the start of the route) 
• Starting from line l choose the line's greatest value, index c of this value is the 

column of the next city on the route. 
• Attribute a null value to all the values of column c at Q1, to ensure there is no 

repetition of cities on the route, repeating the basic restriction of TSP; 
• Continue the process while the route is incomplete. 

At each GRASP iteration the matrix Q is updated by executing the Q-learning algorithm.  In 
other words, at the end of Nmax iterations Q-learning algorithm will have executed 
Nmax*NEp episodes, where NEp denotes the number of episodes executed for each iteration. 
Updating the Q-values matrix at each GRASP iteration improves the information quality 
collected throughout the search process.  Fig. 7, shows a overview of the GRASP-Learning 
method. 
 

 

Fig. 7. Framework of the GRASP-Learning Method. 
The local search phase in GRASP-Learning suffers no modifications.  That is, it uses the 
same traditional GRASP algorithm that was implemented in this study as a descending 
method 2-Opt.  This local search technique only moves to a neighbouring solution if it 
improves in objective function.  The Fig. 8, presents a simplified form of the pseudo code 
method GRASP-learning proposed. 
When examining the pseudo code GRASP-Learning algorithm, significant modifications are 
seen in lines 3 and 5.  Function MakeReward in line 3 uses the distance matrix D to create a 
reward matrix, based on Equation 16.  In line 5 the function Qlearning returns a viable solution 
S for TSP and the updated Q-values matrix Q, which is used in the next iteration. The other 
aspects of GRASP-learning algorithm are identical to traditional GRASP metaheuristics. 
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Fig. 8. Pseudo code of GRASP-Learning Algorithm. 

3.5 The cooperative genetic-learning algorithm 
The hybrid genetic algorithm proposed in this section uses reinforcement learning to 
construct better solutions to the symmetric traveling salesman problem. The method main 
focus is the use the Q-learning algorithm to assist the genetic operators with the difficult 
task of achieving balance between exploring and exploiting the problem solution space. The 
new method suggests using the Q-learning algorithm to create an initial population of high 
fitness with a good diversity rate that also cooperates with the genetic operators. 
In the learning process, the Q-learning algorithm considers using either the knowledge 
already obtained or choosing new unexplored search spaces. In other words, it has the 
characteristics of a randomized greedy algorithm. It is greedy owing to its use of the 
maximum value of Q(s, a) to choose action a, contributing to a greater return in state s, and 
randomized since it uses an action choice policy that allows for occasional visits to the other 
states in the environment. This behaviour allows Q-learning to significantly improve the 
traditional genetic algorithm. 
As mentioned previously, the initial population of the proposed genetic algorithm is created 
by Q-learning algorithm. This is achieved by executing Q-learning with a determinate 
number of episodes (NEp).  Tp chromosomes are then created using the matrix Q (Q-values 
matrix), where Tp is the population size. The choice criteria in the creation of each 
chromosome is the value of Q(s, a) associated to each gene so that the genes with the highest 
value of Q(s, a) are predominantly chosen in chromosome composition3. 
In addition to creating the initial population, the Q-learning algorithm cooperates with the 
genetic operators as follows:  

• In each new generation, the best solution S* obtained by the genetic operators is 
used to update the matrix of Q-values Q produced by the Q-learning algorithm in 
previous generations. 

• After updating matrix Q, it is used in subsequent generations by the genetic 
algorithm.  This iteration process rewards the state-action pairs that compose the 

                                                 
3 A chromosome is an individual in the population (for example, a route to TSP), whereas a gene is each 
part that composes a chromosome (in TSP a city composes a route) 
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best solutions from the last generations.  They receive an additional increment that 
identifies them as good decisions.  Calculating the incremental value is based on 
the following theory: 

• According to the model of TSP described in section 3.1, a solution for the model can 
be denoted by Fig. 9.  

 

 
Fig. 9. TSP solution, modelled as a reinforcement learning Problem. 

In the Fig. 9, the sequence of states, actions and rewards corresponds to a solution S 
constructed during an episode of Q-learning algorithm, where si, i=0,…,n is the current 
state and rj, j=1,…,n is the immediate reward received by executing change si, for si+1.  In 
this scenario, with solution S*, the accumulated reward value Ri is easily calculated: 

                                                                 0 1 1 2 3 1 0( , ) n nQ s s r r r r r R−= + + + + + =…  

1 2 2 3 1 1( , ) n nQ s s r r r r R−= + + + + =…  

�  

        1( , )n n n nQ s s r R− = =  (17) 

• As mentioned in section 2.3, the Q-learning algorithm uses equation 4 in its 
updating process. However, since the value of Ri for solution S* is already known, 
the incremental value proposed here can be calculated using: 

 [ ]( , ) ( , ) ( , )i i i i i i iQ s a Q s a R Q s aθ= + −  (18) 

where ai is the action of leaving state si and choosing to go to state si+1, and θ is a 
parameter that considers the importance of incremental value based on the number of 
visits to each state, denoted by: 

 ( , ) /v i iN s a NEpθ =  (19) 

where, Nv is the number of visits to state-action pair (si, ai), e NEp represents the number 
of episodes parameter of the Q-learning algorithm. 
 

Fig. 10, shows a overview of the cooperative Genetic-learning method used. 
The genetic operators were implemented identically to the traditional genetic algorithm, 
using a “dependent” spinner for selection. This allows each individual to be chosen 
proportionally to their value in the fitness function. The crossover of two points was used 
for the crossover operator. The mutation operator consists of a change in position between 
two cities on a route. The pseudo code shown in the Fig. 11 summarizes the method 
described. 
The changes proposed in the Cooperative Genetic-learning algorithm that modify the 
traditional genetic algorithm can be seen in the pseudo code of lines 3, 7, 8, 9 and 15.  In line 
3 the function GeneratePop executes Q-learning algorithm and creates the initial population.  
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Fig. 10. Framework of the Cooperative Genetic-learning. 
 
 

 

Fig. 11. Pseudo code of Cooperative Genetic-learning Algorithm 

In line 7 the diversification rate of the population is compared with limit L.   If the limit L is 
lower (less than 20%), the crossover operator will use a chromosome from an extra 
execution of the Q-learning algorithm (line 9).  In line 15 the matrix of Q-values Q is 
updated using information from the best solution of the current population. 
The hybrid methods described in this section are modified versions of GRASP 
metaheuristics and genetic algorithms.  Modifications used the Q-learning algorithm as an 
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intelligent strategy for exploration and/or exploitation of space solutions of the symmetric 
traveling salesman problem. 
In GRASP metaheuristics, modifications use Q-learning algorithm to construct its initial 
solutions.  According to (Feo & Resende, 1995), one of the disadvantages of traditional 
GRASP metaheuristics is the independence of its iterations.  That is, the algorithm does not 
keep information on the history of solutions found in past iterations. These authors cite the 
good quality of the initial solution, as one of the factors that contribute to the success of a 
local search algorithm.  The proposed use of Q-learning algorithm as an exploratory starting 
point for the GRASP metaheuristic, as described here, overcomes both deficiencies of the 
traditional method cited by (Feo & Resende, 1995).  This is owing to the fact that Q-learning 
algorithm can produce good quality initial solutions and uses its Q-values matrix as a form 
of adaptive memory, allowing good decisions made in the past to be repeated in the future. 
In relation to the genetic algorithm, the proposed method (cooperative Genetic-learning) 
used the Q-learning algorithm to create an initial population. A good quality initial 
population was achieved, both in the value of its objective function and diversity level. 
Another important innovation proposed in this method was the cooperation between Q-
learning algorithm and the genetic operators. 
Tests were carried out with two distinct versions of the genetic hybrid algorithm to 
determine the importance of the proposed cooperation in the algorithm.  One test used the 
cooperative process and the other did not.  The results are presented in the next section. 

4. Experimental results 
Before presenting the computational results it is important to note that the experiments 
carried out do not aim to find an optimum solution for TSP.  Their objective is to compare 
the performance of traditional methods with the new methods proposed. There was no 
concern regarding the quality of entrance parameters during the experiments.  All the 
algorithms were executed under the same condition, that is, the same number of iterations 
and identical values for the common adjustable parameters were used. 
Tests were carried out using 10 instances of the TSPLIB library (TSPLIB, 2010), on a desktop 
computer with: 2.8 Ghz, 2 Gb of RAM memory and Linux operating system.  Processing time 
was measured in seconds.  Since the algorithms are nondeterministic, the results are a mean 
of 30 executions for each instance. 
The information about instances used in the experiment is presented in Table 1: 
 

Instance Name Description Best value 
gr17 City problem (Groetschel) 2085.00 
bays29 Bavaria (street distance) 2020.00 
swiss42 Switzerland (Fricker) 1273.00 
gr48 City problem (Groetschel) 5046.00 
berlin52 Locations in Berlin (Germany) 7542.00 
pr76 City problem (Padberg/Rinaldi) 108158.00 
gr120 Germany (Groetschel) 6942.00 
ch150 City problem (Churritz) 6528.00 
si175 Vertex TSP (M. Hofmeister) 21407.00 
a280 Drilling problem (Ludwig) 2579.00 

Table 1. Information about TSPLIB instances utilized. 
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algorithms were executed under the same condition, that is, the same number of iterations 
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Tests were carried out using 10 instances of the TSPLIB library (TSPLIB, 2010), on a desktop 
computer with: 2.8 Ghz, 2 Gb of RAM memory and Linux operating system.  Processing time 
was measured in seconds.  Since the algorithms are nondeterministic, the results are a mean 
of 30 executions for each instance. 
The information about instances used in the experiment is presented in Table 1: 
 

Instance Name Description Best value 
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bays29 Bavaria (street distance) 2020.00 
swiss42 Switzerland (Fricker) 1273.00 
gr48 City problem (Groetschel) 5046.00 
berlin52 Locations in Berlin (Germany) 7542.00 
pr76 City problem (Padberg/Rinaldi) 108158.00 
gr120 Germany (Groetschel) 6942.00 
ch150 City problem (Churritz) 6528.00 
si175 Vertex TSP (M. Hofmeister) 21407.00 
a280 Drilling problem (Ludwig) 2579.00 

Table 1. Information about TSPLIB instances utilized. 
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4.1 Comparison of the performance of the GRASP metaheuristics implemented 
This section compares the results obtained with the computational implementation of 
GRASP metaheuristics, reactive GRASP and the new method proposed GRASP-Learning.  
All the algorithms were executed under the same parameter conditions. The values of 
adjustable parameters are listed in Table 2. 
 

Instance All GRASP Reactive 
GRASP GRASP-Learning 

TSPLIB Number Iterations α α Episodes αq γ ε 

gr17 300 0.8 * 10 0.9 1.0 * 
bays29     300 0.8 * 10 0.9 1.0 * 
swiss42    300 0.8 * 20 0.9 1.0 * 
gr48       300 0.8 * 20 0.9 1.0 * 
berlin52   300 0.8 * 50 0.9 1.0 * 
pr76       300 0.8 * 100 0.9 1.0 * 
gr120      300 0.8 * 100 0.9 1.0 * 
ch150      300 0.8 * 150 0.9 1.0 * 
si175      300 0.8 * 200 0.9 1.0 * 
a280       300 0.8 * 200 0.9 1.0 * 

Table 2. Adjustable parameters for the metaheuristics GRASP (*Adaptive parameters) 

When examining Table 2, it is important to understand the parameters α of reactive GRASP 
and ε of GRASP-Learning.  Both are self-adjustable values that vary at interval [0, 1]. 
Another important observation is that the parameters α (traditional and reactive version) are 
not equal to the parameter αq of GRASP-Learning.  In other words, parameter α is used to 
control the indices of “greed” and randomness in traditional GRASP and reactive GRASP.  
Parameter αq is the coefficient of learning Q-learning algorithm used in the hybrid GRASP 
version. 
The values listed in Table 3 correspond to the mean of 30 executions obtained with 10 
instances of the symmetric traveling salesman (objective function value, the processing time 
in seconds).  Fig. 12 and Fig. 13 compare the three versions of metaheuristics used, 
considering the objective function value and processing time, respectively.  Data shown in 
graphs were normalized to improve their visualization and understanding. 
The objective function values were normalized by the known optimum value at each 
instance of TSPLIB and the processing time was normalized by the mean execution time of 
each metaheuristic for each instance, this is calculated by Equation 20. 
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where, n is the number of instances used in the experiment, m is the number of algorithms 
tested. Tij is the processing time for instance i executing algorithm j, and TNij is the value of 
normalized time for instance i executing algorithm j. 
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TSPLIB 
Instance 

TSPLIB 
Optimal 

Traditional 
GRASP 

Reactive 
GRASP 

GRASP 
Learning 

Name Value Value Time Value Time Value Time 

gr17 2085.00 2085.00 25.30 2085.00 21.07 2085.00 17.03 
bays29 2020.00 2085.63 112.41 2060.50 103.96 2030.30 46.34 
swiss42 1273.00 1441.43 373.62 1385.07 354.05 1281.40 84.64 
gr48 5046.00 5801.77 559.81 5454.17 532.62 5442.77 127.41 
berlin52 7542.00 8780.73 752.37 8420.93 599.10 8053.60 156.36 
pr76 108159.00 140496.00 1331.51 131380.33 1724.84 129707.33 719.65 
gr120 6942.00 10553.61 5000.10 8773.33 5945.75 8540.47 2443.82 
Ch150 6528.00 10785.59 11167.91 9304.40 12348.96 7012.93 1753.29 
si175 21407.00 25733.07 21509.92 23646.14 12803.00 22700.35 8830.08 
a280 2579.00 5799.77 40484.48 4244.19 37075.25 2991.30 8442.40 

Table 3. Performance of GRASP, reactive GRASP and GRASP-Learning Metaheuristics  
 

 

Fig. 12. Traditional GRASP, Reactive GRASP and GRASP-learning (Objective Function) 

Upon analysis, the results in Table 6 show that the metaheuristic GRASP-Learning had 
better mean results than the traditional GRASP metaheuristic. It even performed better than 
reactive GRASP, the improved version of traditional GRASP metaheuristics. The results for 
objective function achieved with the hybrid method were better than those achieved using 
the traditional method.  In the worst case, a tie occurred since all versions found the 
optimum instance gr17.  In the best case, the new method showed a cost reduction of      
48.42 % (instance a280). 
The hybrid method achieved very competitive results when compared to reactive GRASP.  
It performed better in most instances for objective function values and decreased the cost of 
instance a280 by 29.52%. 
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Fig. 13. Traditional GRASP, Reactive GRASP and GRASP-learning (Processing Time) 

When comparing the processing time results, the advantage of the GRASP-Learning 
metaheuristic is even clearer. When compared with traditional GRASP, it achieved a 
decrease in processing time of 32.69% for instance gr17 (worst case) and 84.30% for instance 
ch150 (best case).  In comparison with reactive GRASP, the hybrid method achieved 19.17% 
for instance gr17 in the worst case and 85.80 in the best case (instance ch150). 
The best processing time results using the GRASP-Learning metaheuristic were achieved 
owing to the good quality of initial solutions created in the constructive phase of Q-learning 
algorithm.  Since the metaheuristic started with good quality solutions, it was able to 
accelerate the local search.  The GRASP-Learning metaheuristic also has the advantage of 
using the memory between iterations.  This means that the quality of the initial solution is 
improved at each iteration, based on the information in the Q-values matrix, which is 
updated at each iteration by the Q-learning algorithm. It is important to note that good 
results are expressed as the instances grow, since greater the instance of TSP, the greater the 
difficulty level of a solution.  Therefore, the advantage of Q-learning algorithm to generate 
good initial solutions is a consequence of the use of the matrix of q-values as a mechanism of 
adaptive memory. 

4.2 Performance comparison of the genetic algorithms implemented 
The experimental results for all versions of the genetic algorithms used were achieved using 
the same entrance parameters. These values are shown in Table 4. 
The Table 5 shows the mean obtained with 30 executions for each version of the genetic 
algorithms. 
The charts in the Fig. 14 and Fig. 15 compare the three versions of algorithms tested 
(traditional genetic, Genetic-learning, cooperative Genetic-learning) considering objective 
function value and processing time, respectively.  Graph data were normalized in a similar 
form to the process used in GRASP metaheuristics.  That is, the objective function value was 
normalized by the optimum value of each instance of TSPLIB and the processing time was 
normalized by the mean execution time of each algorithm for each instance, as described in 
Equation 20. 
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TSPLIB 
Instance All Genetic Algorithms Genetic Learning Algorithm 

Name Number of 
Generations Tc Tm Tp Number of 

Episodes αq γ ε 

gr17 1000 0.7 0.2 100 500 0.8 1 * 
bays29 1000 0.7 0.2 100 500 0.8 1 * 
swiss42 1000 0.7 0.2 100 500 0.8 1 * 
gr48 1000 0.7 0.2 100 500 0.8 1 * 
berlin52 1000 0.7 0.2 100 500 0.8 1 * 
pr76 1500 0.7 0.2 100 1000 0.8 1 * 
gr120 2000 0.7 0.2 100 1000 0.8 1 * 
ch150 2000 0.7 0.2 100 2000 0.8 1 * 
si175 2000 0.7 0.2 100 2000 0.8 1 * 
a280 2000 0.7 0.2 100 2000 0.8 1 * 

Table 4. Adjustable parameters for the Genetics algorithms (*Adaptive parameters) 
 

TSPLIB 
Instance 

TSPLIB 
Optimal 

Traditional 
Genetic Algorithm 

Genetic Learning 
Algorithm 

Cooperative 
Genetic 

Learning 
Algorithm 

Name Value Value Time Value Time Value Time 
gr17 2085.00 2104.97 48.73 2087.37 48.03 2085.00 51.77 
bays29 2020.00 2286.23 52.27 2252.13 52.24 2166.47 57.45 
swiss42 1273.00 1614.20 54.52 1546.53 55.01 1457.73 63.66 
gr48 5046.00 6839.77 55.99 5967.90 56.19 5744.90 66.59 
berlin52 7542.00 10095.63 55.55 8821.93 55.68 8679.43 69.17 
pr76 108159.00 189659.00 89.49 165281.67 95.36 132100.33 123.60 
gr120 6942.00 16480.73 132.05 12205.87 140.41 8787.00 211.51 
ch150 6528.00 19705.47 142.44 9612.33 153.26 8803.37 247.47 
si175 21407.00 30860.97 151.86 29264.13 193.25 24818.03 285.86 
a280 2579.00 13642.07 205.92 3852.67 274.55 3768.03 543.17 

Table 5. Performance of Genetic, Genetic Learning and Cooperative Genetic-Learning.   
When analyzing the experimental results, the Genetic-learning algorithms achieved better 
results for objective function value but not for processing time. 
The result for objective function value is achieved owing to the good quality of the initial 
population generated by Q-learning algorithm and cooperative iteration of genetic operators 
with the Q-values matrix.  The good performance of the objective function value is mainly 
noted as the instances grow.  For example, when comparing the traditional genetic 
algorithm with cooperative Genetic-Learning improvement in the worst case is 0.95% 
(instance gr17) and in the best case 72.38% (instance a280). 
The processing time of cooperative Genetic-learning algorithm is at a disadvantage to the 
other two versions since this version uses Q-learning algorithm in initial population 
construction and cooperation with the genetic operators.  The time spent processing 
episodes NEp of Q-learning algorithm is added to the final execution time.   
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with the Q-values matrix.  The good performance of the objective function value is mainly 
noted as the instances grow.  For example, when comparing the traditional genetic 
algorithm with cooperative Genetic-Learning improvement in the worst case is 0.95% 
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Fig. 14. Genetic, Genetic Learning and Cooperative Genetic-Learning. (Objective Function) 
 

 

Fig. 15. Genetic, Genetic Learning and Cooperative Genetic-Learning. (Processing Time) 

5. Conclusions 
This section presents observations, conclusions and perspectives of this study.  The text is 
subdivided into subsections according to the method proposed. 

5.1 GRASP-learning method 
The proposed method GRASP-Learning satisfies two requirements of GRASP 
metaheuristics: a good final performance based on good quality initial solutions and no 
memory mechanism between iterations. 
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Concerning the quality of initial solutions, using Q-learning algorithm to construct these 
olustions showed promising results for the objective function value and processing time.  
The purpose of the randomized greedy Q-learning algorithm in the constructive phase of 
GRASP metaheuristic is not only to provide good initial solutions, but also a form of 
adaptive memory.  This allows good decisions made in past iterations to be repeated in the 
future. The adaptive memory mechanism is implemented using information from the Q-
values matrix created by Q-learning algorithm. The term adaptive memory is used since the 
Q-values matrix is updated at each episode of Q-learning. This incorporates the experience 
achieved by the learning agent in each update. 
The GRASP-learning metaheuristic achieved better results than traditional GRASP and 
reactive GRASP when comparing general performance. In relation to processing time, good 
performance by GRASP-Learning is especially noted as the instances grow.  This is confirmed 
by the fact that the hybrid method, traditional GRASP and reactive GRASP are only different 
in the constructive phase.  Also, the partially greedy algorithm used in GRASP and reactive 
GRASP has complexity O(n2), while Q-learning algorithm has complexity O(NEp*n) where 
NEp is the number of episodes and n the instance size. Since updating the Q-values during 
execution of GRASP-learning is cumulative (in k iterations of algorithm GRASP-learning, 
k*NEp episodes of Q-learning are executed), the algorithm can be parameterized with a 
relatively small value of NEp.  Based on the complexity orders of the algorithms, Q-learning 
outperforms the partially greedy algorithm as the instances grow. 
Another important aspect that confirms the lower processing time of the hybrid method is 
the good quality of initial solutions constructed by Q-learning algorithm, since the GRASP 
metaheuristic starting with good initial solutions had an accelerated local search. 

5.2 Genetic learning algorithm 
The hybrid genetic algorithm proposed in this study showed very significant results, mainly 
in its cooperative version. Updating the Q-values matrix with elite solutions from each 
population produced a significant improvement in performance, especially in objective 
function values.  The traditional version achieved better processing time results. This was 
expected since the traditional version constructed a randomized initial population. Learning 
versions use Q-learning algorithm; therefore, the execution time of the episodes is added to 
their processing time.  Despite the non-significant processing time results, the Genetic-
learning algorithm appreciably improved the objective function value. This was already 
substantial when comparing the quality of initial populations (see Subsection 4.2) since the 
population created by Q-learning algorithm achieved better quality (better Fitness) and an 
equal diversification rate for larger instances.   
This method also contributes through the mutual cooperation between Q-learning algorithm 
and the genetic operators that exchange information throughout the evolution process. This 
cooperation offers a range of possibilities for the parallel implementation of these 
algorithms, for example by using a cooperative/competitive strategy to solve the traveling 
salesman problem. 

5.3 Future works 
The methods proposed in this study are tested using only the symmetric traveling salesman 
problem.  Although TSP is a classic combined optimization problem from which many other 
practical problems can be derived, applying the methods proposed here to other problems 
of this class requires careful modelling.   
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Another important factor for improvement concerns is the instance sizes in the test. For 
questions of speed in method validation, small and medium-size instances of TSP were used. 
Based on the developed studies and possible improvements, prospects exist for the 
following future works: 

• Computational tests with instances of TSP with a higher number of cities to 
determine the behaviour of the methods proposed when using larger instances. 

• Applying GRASP-Learning metaheuristic and Genetic-learning algorithm to other 
combinatorial optimization problems. 

• Using parallel hybrids for the traveling salesman problem based on the hybrid 
methods proposed here. This study is currently being developed in a PhD thesis of 
PPgEEC/UFRN (Queiroz, J.P.  et al., 2008) with very interesting results. 

• Investigating the use of the reinforcement learning Q-learning algorithm to 
improve other metaheuristics. 
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1. Introduction     
Faced with a scientific force and a critical need to solve large-scale and/or time-constrained 
problems, the industry reports that access to high-performance computing (HPC) capability 
is required now more than ever. Continued hardware and software advances, such as more 
powerful and lower-cost processors, have made it easier for scientists and engineers to 
install and use clusters / multi-cores and complete high-performance computing jobs.  
In particular, the Traveling Salesman Problem (TSP) is one of the most famous problems 
(and the best one perhaps studied) in the field of the combinatorial optimization. In spite of 
the apparent simplicity of their formulation, the TSP is a complex solving problem and the 
complexity of its solution has been a continue challenge to the mathematicians for centuries. 
Not only the study of this problem has attracted people from mathematics but also many 
researchers of other fields like operations research, physics, biology, or artificial intelligence, 
and accordingly there is a vast amount of literature on it. On the other hand, not yet an 
effective polynomial-time algorithm is known for the general case. Many aspects of the 
problem still need to be considered and questions are still left to be answered satisfactorily. 
A significant challenge is being able to predict TSP performance order. It is important to 
bear in mind, that the TSP conclusions drawn could eventually be applied to any TSP family 
problem. There are important cases of practical problems that can be formulated as TSP 
problems and many other problems are generalizations of this problem. Therefore, there is a 
tremendous need for predicting the performance order of TSP algorithms. 
Measuring the execution time (performance) of a TSP parallel algorithm for all possible 
input values would allow answering any question about how the algorithm will respond 
under any set of conditions. Unfortunately, it is impossible to make all of these 
measurements. TSP performance depends on the number of cores used, the data size, as 
well as other parameters. Detecting the main other parameters that affect performance order 
is the real clue to obtain a good estimation. The issue of measuring performance for the TSP 
problem in practice and how to relate practical results to the theoretical analysis is 
addressed in this chapter as a knowledge discovery methodology.  
The defined methodology for performance modelling begins by generating a representative 
sample of the full population of TSP instances and measuring their execution times. An 
interactive and iterative process explores data in search of patterns and/or relationships 
detecting the main parameters that affect performance. Knowing the main parameters 
which characterise time complexity, it becomes possible to suspect new hypotheses to 
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restart the process and to produce a subsequent improved time complexity model. Finally, 
the methodology predicts the performance order for new data sets on a particular parallel 
computer by replacing a numerical identification. The methodology arises out of the need to 
give an answer to a great number of problems that are normally set aside. Besides, this is a 
good starting point for understanding some facts related with the non-deterministic 
algorithms, particularly the data-dependents algorithms. Any minimum contribution in this 
sense represents a great advance due to the lack of general knowledge.  
An Euclidean TSP implementation, called global pruning algorithm (GP-TSP), to obtain the 
exact TSP solution in a parallel machine has been developed and studied. It is used to analyze 
the influence of indeterminism in performance prediction, and also to show the usefulness of 
the methodology. It is a branch-and-bound algorithm which recursively searches all possible 
paths and prunes large parts of the search space by maintaining a global variable containing the 
length of the shortest path found so far. If the length of a partial path is bigger than the current 
minimal length, this path is not expanded further and a part of the search space is pruned. The 
GP-TSP execution time depends on the number of processors (P), the number of cities (C), and 
other parameters. As a result of our investigation, right now the sum of the distances from one 
city to the other cities (SD) and the mean deviation of SDs values (MDSD) are the numerical 
parameters characterizing the different input data beyond the number of cities. 
Comparisons of experimental results with predictions have been quite promising. Therefore, 
the efficacy of the methodology proposed has been demonstrated. In addition to the 
prediction capability, an interesting and practical issue from this research has been 
discovered: how to select the best starting city. With this important and non-trivial selection, 
the time spent on evaluation has been dramatically reduced. 
This chapter is organized as follows. The next section describes the Traveling Salesman 
Problem, their computational complexity and their applications in several fields. Besides, it 
provides detailed coverage of the GP-TSP parallel algorithm. Section 3 presents the 
knowledge discovery methodology to the problem of predicting the TSP performance. 
Section 4 focuses on the discovering process carried out to find the significant input 
parameters and building the GP-TSP prediction model. In addition, two outstanding 
experiments have been studied. Section 5 summarizes and draws the main conclusions of 
this chapter. Appendix A shows the specification of the parallel machine used along the 
experimentation stage. Appendix B shows the characteristics of a clustering tool used to 
discover internal data information. 

2. Traveling Salesman Problem 
The Traveling Salesman Problem (TSP) is one of the most famous problems (and the best 
one perhaps studied) in the field of combinatorial optimization. In spite of the apparent 
simplicity of its formulation, the TSP is a complex data-dependent problem. Not only the 
complexity of its solution has been a continue challenge to the researchers of several fields 
but also the prediction of its performance. Predicting TSP performance is vital due to there 
are many practical problems that can be formulated as TSP problems and others problems 
are generalizations of this problem. 

2.1 Problem statement 
The TSP for C cities is the problem of finding a tour visiting all the cities exactly once and 
returning to the starting city such that the sum of the distances between consecutive cities is 
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minimized (TSP page, 2010). The requirement of returning to the starting city does not 
change the computational complexity of the problem.  

2.2 Computational complexity 
The TSP has been shown to be NP-hard (Karp, 1972). More precisely, it is complete for the 
complexity class (FPNP)1, and the decision problem version is NP-complete. If an efficient 
algorithm is found for the TSP problem, then efficient algorithms could be found for all 
other problems in the NP-complete class. Although it has been shown that, theoretically, the 
Euclidean TSP is equally hard with respect to the general TSP (Garey et al., 1976), it is 
known that there exists a sub exponential time algorithm for it. 
The most direct solution for a TSP problem would be to calculate the number of different 
tours through C cities. Given a starting city, it has C-1 choices for the second city, C-2 choices 
for the third city, etc. Multiplying these together it gets (C-1)! for one city and C! for the C 
cities. Another solution is to try all the permutations (ordered combinations) and see which 
one is cheapest. At the end, the order is also factorial of the number of cities. Briefly, the 
solutions which appear in the literature are quite similar. 
The factorial algorithm's complexity motivated the research in two attack lines: exact 
algorithms or heuristics algorithms. The exact algorithms search for an optimal solution 
through the use of branch-and-bound, linear programming or branch-and-bound plus cut 
based on linear programming (Karp, 1972) techniques. Heuristics solutions are 
approximation algorithms that reach an approximate solution (close to the optimal) in a 
time fraction of the exact algorithm. TPS heuristics algorithms might be based on genetic 
and evolutionary algorithms (Tsai et al., 2002), simulated annealing (Pepper et al., 2002), 
Tabu search, neural networks (Aras et al., 2003), ant systems, among others. 

2.3 Practical problems 
The TSP often comes up as a subproblem in more complex combinatorial problems. The best 
known and important one of which is the vehicle routing problem, that is, the problem of 
determining for a fleet of vehicles which customers should be served by each vehicle and in 
what order each vehicle should visit the customers assigned to it (Christofides, 1985).  
Another similar example is the problem of arranging school bus routes to pick up the 
children in a school district. The TSP naturally arises in many transportation and logistics 
applications (TSP page, 2010). 
Besides problems having the TSP structure occur in the analysis of the structure of crystals 
(Bland & Shallcross, 1989), in material handling in a warehouse (Ratliff & Rosenthal, 1983), 
in genome rearrangement (Sankoff & Blanchette, 1997), in phylogenetic tree construction 
(Korostensky & Gonnet, 2000), and predicting protein functions (Johnson & Liu, 2006), 
among others. Important practical computer science problems including the TSP structure 
appear in clustering of data arrays (Lenstra & Kan, 1975), in sequencing of jobs on a single 
machine (Gilmore & Gomory, 1964), in physical mapping problems (Alizadeh et al., 1993), 
in drilling of printed circuits boards (Duman, 2004). 

                                                 
1 The class NP is the set of decision problems that can be solved by a non-deterministic Turing machine 
in polynomial time. FP means function problems. 
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1 The class NP is the set of decision problems that can be solved by a non-deterministic Turing machine 
in polynomial time. FP means function problems. 
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2.4 Related problems 
An equivalent formulation in terms of graph theory can be described. Given a complete 
weighted graph find a Hamiltonian cycle with the least weight. The vertices would 
represent the cities, the edges would represent the roads, and the weights would be the cost 
or distance of that road (Gutin & Punnen, 2006). 
Another related problem consists of finding a Hamiltonian cycle in a weighted graph with 
the minimal length of the longest edge. This problem, known as the bottleneck traveling 
salesman problem, is really useful in transportation and logistics areas. 
Related variations on the TSP include the resource constrained traveling salesman problem 
which has applications in scheduling with an aggregate deadline (Miller & Pekny, 1991). 
The prize collecting TSP (Balas, 1989) and the orienteering problem (Golden et al., 1987) are 
special cases of the resource constrained TSP. The problem of finding a tour of maximum 
length is the objective in MAX TSP (Barvinok et al., 2003). The maximum scatter TSP is the 
problem of computing a path on a set of points in order to maximize the minimum edge 
length in the path. It is motivated by applications in manufacturing and medical imaging 
(Arkin et al., 1996).  

2.5 GP-TSP parallel algorithm 
As a representative of the practical problems, a global pruning TSP algorithm (called GP-
TSP), has been deeply studied. It obtains the exact TSP Euclidean solution in a parallel 
machine. For simplicity, the algorithm works with cities in R2 instead of R3 and uses the 
Euclidean distance due to it is the most straightforward way of computing distances 
between cities in a two-dimensional space. Nevertheless, the choice of the distance measure 
used (Euclidean, Manhattan, Chebychev, …) is irrelevant. More over, it would be the same 
to work with an equivalent formulation in terms of graph theory. Therefore, the ideas of this 
article can be generalized. 
The GP-TSP algorithm is indeed both useful and profitable to analyze the influence of 
indeterminism in performance prediction. It is a branch-and-bound algorithm which 
recursively search all possible paths. It follows the Master-Worker programming paradigm 
(Fritzsche, 2007). Each city is represented by two coordinates in the Euclidean plane. 
Considering C different cities, the Master defines a certain level L to divide the tasks. Tasks 
are the possible permutations of C-1 cities in L elements. The granularity G of a task is the 
number of cities that defines the task sub-tree, this is G = C - L. At the execution start-up the 
Master sends the cities coordinates to every Worker. 
A diagram of the possible permutations for five cities (Vienna, Graz, Linz, Barcelona, 
Madrid), considering the salesman starts and ends his trip at Vienna, can be seen in Figure 
1. The Master can divide this problem into 1 task of level 0 or 4 tasks of level 1 or 12 tasks of 
level 2 for example. The tasks of the first level would be represented by the cities Vienna and 
Graz for the first task, Vienna and Linz for the second, followed by Vienna and Barcelona, 
and Vienna and Madrid. The requirement of returning to the starting city is without 
detracting from the generality. In this closed cycle the salesman may begin and end in the 
city who wants. 
Knowing the latitude and longitude of two cities on the Earth, it is possible to determine the 
distance between them in kilometres. The table 1 lists the latitude and longitude of the five 
cities mentioned previously. Figure 2(a) shows a strictly lower triangular distance matrix 
where each box contains the Euclidean distance in kilometres between two cities. 
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Fig. 1. Possible paths for the salesman considering five cities: Vienna, Graz, Linz, Barcelona, 
Madrid 
 

 Latitude Longitude
Barcelona 40° 26' north 3° 42' west

Graz 48° 13' north 16° 22' east
Linz 47° 05' north 15° 22' east

Madrid 48° 19' north 14° 18' east
Vienna 41° 18' north 2° 06' east 

Table 1. Latitude and longitude of the five cities 

Workers are responsible for calculating the distance of the permutations left in the task and 
sending to the Master the best path and distance of these permutations. One of the 
characteristics of the TSP is that once the distance for a path is superior to the already 
computed minimum distance it is possible to prune this path tree.  
Figure 2(b) and Figure 2(c) exhibit the pruning processes for the GP-TSP algorithm where 
each arrow has the distance between the two cities it connects. Analyzing Figure 2(b), the 
total distance for the first followed path (in the left) is of 3845 km. The distance between 
Vienna and Barcelona on the second path (in the right) is already of 4737 km. It is then not 
necessary for the algorithm to keep calculating distances from the city Barcelona on because 
it is impossible to reach a better distance for this branch. Analyzing the other example, the 
total distance for the first followed path (in the left of Figure 2(c)) is of 3845 km. Then, the 
distance between Linz and Barcelona on the second path (in the right of Figure 2(c)) is 
already of 4839 km. Therefore, it is not necessary for the algorithm to keep calculating 
distances from the city Barcelona on. 

3. TSP knowledge discovery methodology 
The scientific experimental knowledge discovery methodology presented here is a first 
attempt to estimate the performance order of a TSP parallel algorithm. As well as the 
process of knowledge discovery is certainly not new, it is typical of the experimental  
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indeterminism in performance prediction. It is a branch-and-bound algorithm which 
recursively search all possible paths. It follows the Master-Worker programming paradigm 
(Fritzsche, 2007). Each city is represented by two coordinates in the Euclidean plane. 
Considering C different cities, the Master defines a certain level L to divide the tasks. Tasks 
are the possible permutations of C-1 cities in L elements. The granularity G of a task is the 
number of cities that defines the task sub-tree, this is G = C - L. At the execution start-up the 
Master sends the cities coordinates to every Worker. 
A diagram of the possible permutations for five cities (Vienna, Graz, Linz, Barcelona, 
Madrid), considering the salesman starts and ends his trip at Vienna, can be seen in Figure 
1. The Master can divide this problem into 1 task of level 0 or 4 tasks of level 1 or 12 tasks of 
level 2 for example. The tasks of the first level would be represented by the cities Vienna and 
Graz for the first task, Vienna and Linz for the second, followed by Vienna and Barcelona, 
and Vienna and Madrid. The requirement of returning to the starting city is without 
detracting from the generality. In this closed cycle the salesman may begin and end in the 
city who wants. 
Knowing the latitude and longitude of two cities on the Earth, it is possible to determine the 
distance between them in kilometres. The table 1 lists the latitude and longitude of the five 
cities mentioned previously. Figure 2(a) shows a strictly lower triangular distance matrix 
where each box contains the Euclidean distance in kilometres between two cities. 
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Fig. 1. Possible paths for the salesman considering five cities: Vienna, Graz, Linz, Barcelona, 
Madrid 
 

 Latitude Longitude
Barcelona 40° 26' north 3° 42' west

Graz 48° 13' north 16° 22' east
Linz 47° 05' north 15° 22' east

Madrid 48° 19' north 14° 18' east
Vienna 41° 18' north 2° 06' east 

Table 1. Latitude and longitude of the five cities 

Workers are responsible for calculating the distance of the permutations left in the task and 
sending to the Master the best path and distance of these permutations. One of the 
characteristics of the TSP is that once the distance for a path is superior to the already 
computed minimum distance it is possible to prune this path tree.  
Figure 2(b) and Figure 2(c) exhibit the pruning processes for the GP-TSP algorithm where 
each arrow has the distance between the two cities it connects. Analyzing Figure 2(b), the 
total distance for the first followed path (in the left) is of 3845 km. The distance between 
Vienna and Barcelona on the second path (in the right) is already of 4737 km. It is then not 
necessary for the algorithm to keep calculating distances from the city Barcelona on because 
it is impossible to reach a better distance for this branch. Analyzing the other example, the 
total distance for the first followed path (in the left of Figure 2(c)) is of 3845 km. Then, the 
distance between Linz and Barcelona on the second path (in the right of Figure 2(c)) is 
already of 4839 km. Therefore, it is not necessary for the algorithm to keep calculating 
distances from the city Barcelona on. 

3. TSP knowledge discovery methodology 
The scientific experimental knowledge discovery methodology presented here is a first 
attempt to estimate the performance order of a TSP parallel algorithm. As well as the 
process of knowledge discovery is certainly not new, it is typical of the experimental  
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Fig. 2. (a) Matrix of Euclidean distances between cities (in km), (b)-(c) Two pruning 
processes in the GP-TSP algorithm 

sciences. An experimental science is based on observation of performing repeated controlled 
experiments. Before computers were used to automate this process, people involved in 
math, physics or statistics were using probability techniques to model historical data.  
The methodology consists of three main phases. First, the design and composition of 
experiments to define and improve the TSP asymptotic time complexity. Next, the 
validation of the built model. Finally, the definition of the TSP asymptotic time complexity. 

3.1 Design and composition of experiments to define and improve the asymptotic 
time complexity 
Foremost it is important understanding the application domain and the relevant prior 
knowledge, and analyzing their behavior step by step, in a deep way. It is a try-and-error 
method that requires specialists to manually or automatically identify the relevant 
parameters that can affect the execution time of the algorithm studied. Discovering the 
proper set of parameters is the basis to obtain a good capacity of prediction.  
Designing a well-built experiment involves articulating a goal, choosing an output that 
characterizes an aspect of that goal and specifying the data that will be used in the study 
taking into account the worked hypotheses at that time. The experiments must provide a 
representative sample (a good training data set) first to measure the quality of the model / 
hypotheses and then to fit the model. After the necessary training data have been defined 
the TSP parallel algorithm studied must process each experiment obtaining a tour visiting 
and the execution time invested as output. 
The term knowledge discovery in databases (KDD) refers to the process of analyzing data 
from different perspectives and summarizing it into useful information. Technically, KDD is 
the process of finding correlations or patterns among dozens of fields in large relational 
databases. A KDD process, a bold closed curve in Figure 3, involves data preparation, 
defining a study, reading the data and building a model, understanding the model, and 
finally predicting. It is an interactive and iterative process, surrounding numerous steps 
with many decisions that the end-user carries out (Groth, 1998). 
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Fig. 3. Knowledge acquisition 

Inside the KDD process, a gray closed curve in Figure 3, the stages of data preparation and 
defining a study surrounds both the decision of choosing between the data mining 
techniques (classification, regression, clustering, dependency modeling, summarization of 
data, or change and deviation detection), and also the selection of the data mining algorithm 
to apply according to the chosen technique. 
Regarding the analysis of the problem, a clustering study could be performed to potentially 
identify groups. Clustering is the process of partitioning of a data set into subsets (clusters), 
so that the data in each subset (ideally) share some common trait (often proximity according 
to some defined distance measure). Therefore, a clustering data-mining tool through k-
means algorithm analyzes the measured times and the main parameters values that affect 
performance in order to summarize these into a useful information. Knowing the main 
parameters which characterize time complexity, it becomes possible to suspect new 
hypotheses to restart the process and to produce a subsequent improved time complexity 
model. 
Figure 3 shows the knowledge acquisition process which includes the design of 
experiments, the execution of the TSP parallel algorithm and the KDD process. There is no 
doubt that the design of experiments is directly related to the suspected hypotheses. The 
solid lines in Figure 3 represent the compulsory path to follow in the methodology and the 
dashed lines represent paths of refinement. 

3.2 Validation of the model 
A new data set is proposed to be able to validate the created model. Although the validation 
data set constitutes a hold-out sample, it has not been considered in the building of the 
model. This enables to estimate the error in the predictions without having the assumption 
that the execution times follow a particular distribution. 
The analytical formulation, together a particular architecture, is used to make predictions for 
each experiment in the validation data. The quality analysis is a relevant issue in this stage and 
has to include interest measurements. The prediction for each experiment is then compared to 
the value of the dependent variable that was actually observed in the validation data obtaining 
the prediction error. Then the average of the square of these errors enables to compare 
different models and to assess the accuracy of the model in making predictions.  
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processes in the GP-TSP algorithm 

sciences. An experimental science is based on observation of performing repeated controlled 
experiments. Before computers were used to automate this process, people involved in 
math, physics or statistics were using probability techniques to model historical data.  
The methodology consists of three main phases. First, the design and composition of 
experiments to define and improve the TSP asymptotic time complexity. Next, the 
validation of the built model. Finally, the definition of the TSP asymptotic time complexity. 

3.1 Design and composition of experiments to define and improve the asymptotic 
time complexity 
Foremost it is important understanding the application domain and the relevant prior 
knowledge, and analyzing their behavior step by step, in a deep way. It is a try-and-error 
method that requires specialists to manually or automatically identify the relevant 
parameters that can affect the execution time of the algorithm studied. Discovering the 
proper set of parameters is the basis to obtain a good capacity of prediction.  
Designing a well-built experiment involves articulating a goal, choosing an output that 
characterizes an aspect of that goal and specifying the data that will be used in the study 
taking into account the worked hypotheses at that time. The experiments must provide a 
representative sample (a good training data set) first to measure the quality of the model / 
hypotheses and then to fit the model. After the necessary training data have been defined 
the TSP parallel algorithm studied must process each experiment obtaining a tour visiting 
and the execution time invested as output. 
The term knowledge discovery in databases (KDD) refers to the process of analyzing data 
from different perspectives and summarizing it into useful information. Technically, KDD is 
the process of finding correlations or patterns among dozens of fields in large relational 
databases. A KDD process, a bold closed curve in Figure 3, involves data preparation, 
defining a study, reading the data and building a model, understanding the model, and 
finally predicting. It is an interactive and iterative process, surrounding numerous steps 
with many decisions that the end-user carries out (Groth, 1998). 

Predicting Parallel TSP Performance: A Computational Approach   

 

243 

Executing TSP 
parallel algorithm KDD process

Space of 
possible 

hypotheses

Training 
data

Experiments

preprocessing

preprocessed
data

transformation

source
data

executing
data mining 
algorithm

transformed
data

patterns / 
correlations

understanding 
the patterns

Training 
data

Experiments + 
execution times Knowledge

(model)

data
cleaning

TSP asymptotic 
time complexity (O)predicting

s

xe
d

med

aning

 
Fig. 3. Knowledge acquisition 

Inside the KDD process, a gray closed curve in Figure 3, the stages of data preparation and 
defining a study surrounds both the decision of choosing between the data mining 
techniques (classification, regression, clustering, dependency modeling, summarization of 
data, or change and deviation detection), and also the selection of the data mining algorithm 
to apply according to the chosen technique. 
Regarding the analysis of the problem, a clustering study could be performed to potentially 
identify groups. Clustering is the process of partitioning of a data set into subsets (clusters), 
so that the data in each subset (ideally) share some common trait (often proximity according 
to some defined distance measure). Therefore, a clustering data-mining tool through k-
means algorithm analyzes the measured times and the main parameters values that affect 
performance in order to summarize these into a useful information. Knowing the main 
parameters which characterize time complexity, it becomes possible to suspect new 
hypotheses to restart the process and to produce a subsequent improved time complexity 
model. 
Figure 3 shows the knowledge acquisition process which includes the design of 
experiments, the execution of the TSP parallel algorithm and the KDD process. There is no 
doubt that the design of experiments is directly related to the suspected hypotheses. The 
solid lines in Figure 3 represent the compulsory path to follow in the methodology and the 
dashed lines represent paths of refinement. 

3.2 Validation of the model 
A new data set is proposed to be able to validate the created model. Although the validation 
data set constitutes a hold-out sample, it has not been considered in the building of the 
model. This enables to estimate the error in the predictions without having the assumption 
that the execution times follow a particular distribution. 
The analytical formulation, together a particular architecture, is used to make predictions for 
each experiment in the validation data. The quality analysis is a relevant issue in this stage and 
has to include interest measurements. The prediction for each experiment is then compared to 
the value of the dependent variable that was actually observed in the validation data obtaining 
the prediction error. Then the average of the square of these errors enables to compare 
different models and to assess the accuracy of the model in making predictions.  
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It is important to bear in mind that every stage in the design of experiments to obtain and 
improve the asymptotic time complexity is validated. Figure 4 exhibits the entire model 
validation phase. 
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Fig. 4. Model validation phase 

3.3 Definition of the asymptotic time complexity 
The refined built model allows defining the asymptotic time complexity for the TSP parallel 
algorithm studied, Figure 5. Then the analytical formulation will be instanced with values 
coming from a new input data set and a particular parallel computer in order to give a 
prediction of performance. 
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Fig. 5. The final definition of the TSP asymptotic time complexity 

The entire TSP knowledge discovery methodology is shown in Figure 6. Every stage in the 
methodology defined can implicate a backward motion to previous steps in order to obtain 
extra or more precise information to fit the final model. 

4. Analyzing the GP-TSP algorithm 
Using simple experiments, varying one or two values at a time, it is possible to infer that time 
required for the parallel GP-TSP algorithm depends on certain parameters.  Discovering these 
significant GP-TSP input parameters is the main issue of this section. Then, the prediction of 
GP-TSP performance order and two relevant experiments are analyzed. 
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Fig. 6. Performance prediction using the knowledge discovery methodology 

4.1 Discovering the significant GP-TSP input parameters 
It is clear that the GP-TSP execution time depends on the number of processors (P), the 
number of cities (C), and other parameters. Discovering the other parameters is the key to obtain a 
good or an acceptable prediction of performance order. Undoubtedly, the knowledge 
discovery in databases process (KDD process) has been one of the most profitable stages in the 
scientific examination. A huge amount of data sets was processed with the only goal of finding 



 Traveling Salesman Problem, Theory and Applications 

 

244 

It is important to bear in mind that every stage in the design of experiments to obtain and 
improve the asymptotic time complexity is validated. Figure 4 exhibits the entire model 
validation phase. 
 

Execution of the TSP 
parallel algorithm

Validation
data

Validation
data

Experiments + 
execution times

Comparisons

Prediction of 
performance TSP asymptotic 

time complexity (O)

Space of 
possible 

hypotheses

Execution 
time

Architecture of the
parallel computer 

Experiments 

 
Fig. 4. Model validation phase 

3.3 Definition of the asymptotic time complexity 
The refined built model allows defining the asymptotic time complexity for the TSP parallel 
algorithm studied, Figure 5. Then the analytical formulation will be instanced with values 
coming from a new input data set and a particular parallel computer in order to give a 
prediction of performance. 
 

Knowledge
(model)

TSP asymptotic time 
complexity (O)

 
Fig. 5. The final definition of the TSP asymptotic time complexity 

The entire TSP knowledge discovery methodology is shown in Figure 6. Every stage in the 
methodology defined can implicate a backward motion to previous steps in order to obtain 
extra or more precise information to fit the final model. 

4. Analyzing the GP-TSP algorithm 
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4.1 Discovering the significant GP-TSP input parameters 
It is clear that the GP-TSP execution time depends on the number of processors (P), the 
number of cities (C), and other parameters. Discovering the other parameters is the key to obtain a 
good or an acceptable prediction of performance order. Undoubtedly, the knowledge 
discovery in databases process (KDD process) has been one of the most profitable stages in the 
scientific examination. A huge amount of data sets was processed with the only goal of finding 
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some common properties. First intuitions guided the different tests in order to determine the 
characteristics, the relationships, and the patterns between the data sets.  
As a result of the investigation, right now the sum of the distances from one city to the other 
cities (SD) and the mean deviation of SDs values (MDSD) are the numerical parameters 
characterizing the different input data beyond the number of cities (C). But how these final 
parameters have been obtained? Next, it is described the followed way to discover the above 
mentioned dependencies (SD and MDSD) and the construction of a model. 

4.1.1 First hypothesis  location of the cities (geographical pattern) 
Given a number of cities with its pattern of distribution, the initial experiments have 
provided evidence that times required for the completion of the algorithm are dissimilar. In 
order to understand the general process, show its progress and results, it has been chosen an 
example data set to follow along this section. It consists of five different geographical 
patterns of fifteen cities each one (named GPat1 to GPat5) as it is shown in Figure 7. 
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Fig. 7. Five patterns defined for fifteen cities 
The GP-TSP implementation receives the number of cities (C) and their coordinates ((x1, y1), 
…, (xi, yi), …, (xC, yC)), the level (L), and the number of processors (P) as input parameters. It 
behaves recursively searching all possible paths and applying the global pruning strategy 
whenever it is feasible and, finally, generating the minimal path and the time spent. 
Table 2 shows the GP-TSP execution times (in sec.) by pattern (columns GPat1 to GPat5) and 
starting city (1...15) using only 8 nodes of the parallel machine described in Appendix A. It is 
important to observe the dispersion of times while maintaining constant the number of 
processors (P) and the number of cities (C). 
Hence before continuing, there are two important concepts to refresh. The main goal of data 
mining is finding useful patterns and knowledge in data. Besides, clustering is one of the 
major data mining techniques, grouping objects together into clusters that exhibit internal 
cohesion (similar execution time) and external isolation. Therefore, in this work, clustering 
has been applied to discover the internal information and then to decrease the data-
dependence. This general action has been done using the well-known k-means clustering 
algorithm (MacQueen, 1967) included in the Cluster-Frame tool; see Appendix B for extra 
information about the tool. With the idea of obtaining quite similar groups with respect to 
the groups (patterns) used at the beginning, k was fixed in five (k is the number of clusters). 
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The initial centroids (one for each cluster) were randomly selected by the clustering tool. 
Figure 8 shows the experiments by cluster in the Cluster-Frame environment. 
 

Geographical pattern (GPat) 
  

1 2 3 4 5 
Starting 

city 
Time 
spent 

Assigned
cluster 

Time
spent

Assigned
cluster 

Time 
spent

Assigned
cluster 

Time
spent

Assigned
cluster 

Time 
spent 

Assigned 
cluster 

1 216.17 1 36.50 3 15.34 2 10.51 4 8.03 5 
2 214.44 1 36.82 3 15.19 2 10.49 4 7.82 5 
3 77.25 1 38.09 3 15.57 2 10.02 4 7.71 5 
4 72.64 1 37.29 3 15.02 2 10.30 4 7.91 5 
5 70.94 1 18.54 2 15.84 2 10.41 4 7.83 5 
6 74.21 1 17.83 2 15.24 2 10.24 4 7.71 5 
7 75.59 1 18.16 2 10.31 4 10.36 4 7.93 5 
8 73.72 1 18.03 2 10.34 4 10.26 4 7.87 5 
9 69.47 1 17.79 2 10.27 4 9.98 4 8.14 5 
10 74.96 1 17.48 2 10.23 4 9.88 4 8.22 5 
11 75.89 1 17.07 2 10.24 4 9.85 4 8.04 5 
12 70.17 1 17.39 2 10.28 4 9.87 4 8.12 5 
13 73.73 1 18.10 2 10.36 4 9.88 4 7.98 5 
14 70.87 1 17.37 2 10.17 4 9.95 4 8.02 5 
15 73.30 1 18.00 2 10.32 4 9.97 4 7.78 5 

Mean 92.23  22.97  12.32  10.14  7.94  

Table 2. GP-TSP execution times (in sec.) and assigned cluster by k-means algorithm 

 

 
Fig. 8. Cluster-Frame environment 
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characteristics, the relationships, and the patterns between the data sets.  
As a result of the investigation, right now the sum of the distances from one city to the other 
cities (SD) and the mean deviation of SDs values (MDSD) are the numerical parameters 
characterizing the different input data beyond the number of cities (C). But how these final 
parameters have been obtained? Next, it is described the followed way to discover the above 
mentioned dependencies (SD and MDSD) and the construction of a model. 

4.1.1 First hypothesis  location of the cities (geographical pattern) 
Given a number of cities with its pattern of distribution, the initial experiments have 
provided evidence that times required for the completion of the algorithm are dissimilar. In 
order to understand the general process, show its progress and results, it has been chosen an 
example data set to follow along this section. It consists of five different geographical 
patterns of fifteen cities each one (named GPat1 to GPat5) as it is shown in Figure 7. 
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The GP-TSP implementation receives the number of cities (C) and their coordinates ((x1, y1), 
…, (xi, yi), …, (xC, yC)), the level (L), and the number of processors (P) as input parameters. It 
behaves recursively searching all possible paths and applying the global pruning strategy 
whenever it is feasible and, finally, generating the minimal path and the time spent. 
Table 2 shows the GP-TSP execution times (in sec.) by pattern (columns GPat1 to GPat5) and 
starting city (1...15) using only 8 nodes of the parallel machine described in Appendix A. It is 
important to observe the dispersion of times while maintaining constant the number of 
processors (P) and the number of cities (C). 
Hence before continuing, there are two important concepts to refresh. The main goal of data 
mining is finding useful patterns and knowledge in data. Besides, clustering is one of the 
major data mining techniques, grouping objects together into clusters that exhibit internal 
cohesion (similar execution time) and external isolation. Therefore, in this work, clustering 
has been applied to discover the internal information and then to decrease the data-
dependence. This general action has been done using the well-known k-means clustering 
algorithm (MacQueen, 1967) included in the Cluster-Frame tool; see Appendix B for extra 
information about the tool. With the idea of obtaining quite similar groups with respect to 
the groups (patterns) used at the beginning, k was fixed in five (k is the number of clusters). 
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The initial centroids (one for each cluster) were randomly selected by the clustering tool. 
Figure 8 shows the experiments by cluster in the Cluster-Frame environment. 
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10 74.96 1 17.48 2 10.23 4 9.88 4 8.22 5 
11 75.89 1 17.07 2 10.24 4 9.85 4 8.04 5 
12 70.17 1 17.39 2 10.28 4 9.87 4 8.12 5 
13 73.73 1 18.10 2 10.36 4 9.88 4 7.98 5 
14 70.87 1 17.37 2 10.17 4 9.95 4 8.02 5 
15 73.30 1 18.00 2 10.32 4 9.97 4 7.78 5 

Mean 92.23  22.97  12.32  10.14  7.94  

Table 2. GP-TSP execution times (in sec.) and assigned cluster by k-means algorithm 
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The k-means algorithm aims at minimizing a squared error function. In Equation (1), it is 
presented the widely used objective function with n data points and k disjoint subsets 
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where |xi(j)-cj|2 is a chosen distance measure between a data point xi(j) and the cluster 
centroid cj. The entire function is an indicator of the distance of the n data points from their 
respective cluster centroids. 
Table 2 show the assigned cluster for each experiment after executing k-means algorithm. 
For the clusters 1 to 5, the centroids values were 92.23 sec., 16.94 sec., 37.17 sec., 10.19 sec., 
and 7.94 sec., respectively.  
The quality evaluation involves the validation of the above mentioned hypothesis. For each 
experiment, the assigned cluster was confronted with the defined graphic pattern 
previously. The percentage of hits expresses the capacity of prediction. A simple observation 
is that the execution times were clustered in a similar way to patterns fixed at starting, see 
Figure 7. In this example, the capacity of prediction was near of 75% (56 hits on 75 
possibilities). There was a close relationship between the patterns and the execution times. 
Conclusions: The initial hypothesis for the GP-TSP has been corroborated; the capacity of 
prediction has been greater than 75% for the full range of experiments worked. The 
remaining percentage has given evidence of the existence of other significant parameters. 
Therefore, a deep analysis of results revealed an open issue remained for discussion and 
resolution, the singular execution times by pattern. Another major hypothesis was 
formulated. At this stage, the asymptotic time complexity was defined as O(P, C, pattern).  

4.1.2 Second hypothesis  location of the cities and starting city 
The example data set is the same used previously. Comparing each chart of Figure 7 with its 
corresponding column in Table 2 it is easy to infer some important facts. The two far cities 
(1, 2) in Figure 7(a) correspond with the two higher time values of starting city 1 and 2 in 
Table 2(GPat1). The four far cities (1, 4) in Figure 7(b) correspond with the four higher 
execution time values of starting city 1 to 4 in Table 2(GPat2). The six far cities in Figure 7(c) 
correspond with the six higher time values of Table 2(GPat3). The cities in Figure 7(d) are 
distributed among two zones; therefore, the times turn out to be similar enough, see Table 
2(GPat4). Finally, the cities in Figure 7(e) are closed enough; in consequence, the times are 
quite similar, see Table 2(GPat5). 
An additional important observation is that the mean of execution times by geographical 
pattern decreases as the cities approach, see again Table 2. 
Conclusions: Without doubt, the location of the cities and the starting city (C1) play an 
important role in execution times; the hypothesis has been corroborated. However, an open 
issue remained for discussion and resolution: how to relate a pattern (in general) with a 
numerical value which means execution time. This relationship would be able to establish a 
numerical characterization of patterns. On this basis, an original hypothesis was formulated. 
At this point, the GP-TSP asymptotic time complexity was redefined as O(C, P, pattern, C1).  

4.1.3 Third hypothesis  sum of distances and mean deviation of sum of distances 
What parameters could be used to quantitatively characterize different geographical 
patterns in the distribution of cities? In graph theory, the distance of a vertex p, d(p), of such 
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a connected graph G is defined by d(p) = Σ d(p, q) where d(p, q) is the distance between p and 
q and the summation extends over all vertices q of G. This measure is an inverse measure of 
centrality. Therefore, following the ideas previously mentioned, the sum of the distances 
from one city to the other cities (SDj, as it is shown in Equation 2), and the mean deviation of 
SDs values (MDSD) are the worked inputs right now. As greater is the sum of the distances, 
the lower is the centrality. 
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The SD value is an index time. If a j particular city is very remote of the others, its SDj will 
be considerably greater to the rest and consequently its execution time will also grow. This 
can be observed in Table 3. 
Why is it needed to consider MDSD in addition to SD as a significant parameter? Quite 
similar SD values from the same geographical pattern (same column) of Table 3 imply 
similar execution times. The SD4 and SD10 values for the geographical pattern 1 are 230.11 
and 234.84, respectively. Then, their execution times are similar 72.64 sec. and 74.96 sec. 
(labelled with the symbol ◊). Instead, this relation is not true considering similar SD values 
coming from different geographical patterns (different columns). The SD3 value for 
geographical pattern 1 and the SD10 value for geographical pattern 2 are similar (315.51 and  
 

Geographical pattern (GPat) 
  

1 2 3 4 5 
Starting 

city 
Time 
spent SD Time 

spent SD Time
spent SD Time

spent SD Time 
spent SD 

1 216.17 853.94 36.50 746.10 15.34 664.60 10.51 643.75 8.03 148.74 
2 214.44 887.44 36.82 740.49 15.19 649.14 10.49 635.54 7.82 104.16 
3 * 77.25 * 315.51 38.09 820.63 15.57 707.70 10.02 555.70 7.71 141.15 
4 ◊ 72.64 ◊ 230.11 37.29 789.80 15.02 678.07 10.30 599.99 7.91 103.35 
5 70.94 226.88 18.54 345.83 15.84 643.65 10.41 611.45 7.83 111.79 
6 74.21 244.56 17.83 330.76 15.24 638.04 10.24 595.58 7.71 102.81 
7 75.59 276.09 18.16 369.56 10.31 467.99 10.36 592.68 7.93 111.28 
8 73.72 294.62 18.03 383.38 10.34 490.55 10.26 639.61 7.87 147.14 
9 69.47 233.53 17.79 370.10 10.27 491.52 9.98 574.23 8.14 123.19 
10 ◊ 74.96 ◊ 234.84 * 17.48 * 323.12 10.23 446.48 9.88 578.78 8.22 172.52 
11 75.89 259.19 17.07 332.87 10.24 477.42 9.85 544.61 8.04 124.64 
12 70.17 234.22 17.39 325.19 10.28 449.03 9.87 534.91 8.12 131.68 
13 73.73 306.99 18.10 383.11 10.36 504.79 9.88 530.72 7.98 109.78 
14 70.87 239.19 17.37 327.02 10.17 451.21 9.95 574.97 8.02 124.96 
15 73.30 295.27 18.00 372.00 10.32 494.09 9.97 534.36 7.78 96.29 

MDSD  140.94  165.47  90.60  31.56  16.78 

Table 3. GP-TSP execution times (in sec.) and sum of the distances from each starting city 



 Traveling Salesman Problem, Theory and Applications 

 

248 

The k-means algorithm aims at minimizing a squared error function. In Equation (1), it is 
presented the widely used objective function with n data points and k disjoint subsets 
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a connected graph G is defined by d(p) = Σ d(p, q) where d(p, q) is the distance between p and 
q and the summation extends over all vertices q of G. This measure is an inverse measure of 
centrality. Therefore, following the ideas previously mentioned, the sum of the distances 
from one city to the other cities (SDj, as it is shown in Equation 2), and the mean deviation of 
SDs values (MDSD) are the worked inputs right now. As greater is the sum of the distances, 
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323.12, respectively) but the execution times are completely dissimilar  77.25 sec. and 17.48 
sec. (labelled with the symbol *). The reason is due to the different between the MDSD 
values of geographical pattern 1 and 2. 
Conclusions: It is important to emphasize that the GP-TSP algorithm obtains good results of 
prediction. The asymptotic time complexity for the GP-TSP algorithm should be defined as 
O(P, C, SD, MDSD). Another important fact has been reached beyond was originally sought. 
Choosing the j city which has minimum SDj associated value, it is possible to obtain the 
exact TSP solution investing less amount of time. Much better results it would be reached if 
the algorithm begins considering the closer L cities to j city.  

4.2 Predicting GP-TSP performance order 
The GP-TSP has a time complexity of O(P, C, SD, MDSD). The analytical formulation allows 
making predictions for a new data set on a particular parallel computer. Figure 9 shows the 
prediction framework.  
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Fig. 9. The prediction of performance framework 

4.3 Two relevant GP-TSP experiments 
Additional TSP experiments have been performed to verify certain hypotheses. Some of 
them have shown how important is the geographical pattern of the cities instead of knowing 
their coordinates. Other experiments which follow a specific pattern have helped to confirm 
the strong compliance of our hypotheses. Due to the significance, these two groups of 
experiments were chosen to be developed in this section. 

4.3.1 Importance of the geographical pattern 
Making geometric transformations (shifting, scaling, and rotation) to well-known patterns is 
without no doubt a trivial test. This is an excellent case study for understanding the 
importance of geographical pattern. Applying each one of the transformations to a set of 
cities, similar execution times are expected executing the same algorithm. This leading to 
conclude, the time required to reach the solution of the GP-TSP algorithm is invariant to 
certain transformations into the geographical patterns. 
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The coordinates of a city shifted by Δx in the x-dimension and Δy in the y-dimension are 
given by 

 ´ ´x x x y y y= + Δ = + Δ  (3) 

where x and y are the original and x’ and y’ are the new coordinates. 
The coordinates of a city scaled by a factor Sx in the x-direction and y-direction (the city is 
enlarged in size when Sx is greater than 1 and reduced in size when Sx is between 0 and 1) 
are given by 

 ´ ´x yx xS y yS= =  (4) 

The coordinates of a city rotated through an angle θ about the origin of the coordinate 
system are given by 

 ´ cos sin ´ sin cosx x y y x yθ θ θ θ= + = − +  (5) 

An example set consisting of fifteen cities is chosen from the historical database. The 
execution times were obtained using 32 nodes of the parallel machine described in 
Appendix A. The shifting and rotation transformations are obtained interchanging x-
coordinate by y-coordinate, and the scaling transformation dividing by 2 both coordinates. 
All these patterns are shown in Figure 10.  
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Fig. 10. A historical pattern consisting of fifteen cities. Besides, the same pattern shifted and 
rotated, and then the pattern scaled 
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Table 4 exhibits the execution times for the example set starting by each one of the cities.  
Analyzing the values by row, the historical execution times and the execution times of the 
geometric transformations for an experiment (row) are quite similar as it was to be expected. 
For all the experiments, the mean deviation was smaller than 2%. 
 
 
 

Pattern Starting
city Historical Shigted+Rotated Scaled

Mean 
deviation

1 46.25 48.52 47.30 0.78 
2 100.30 105.60 102.77 1.81 
3 73.48 76.34 74.52 1.04 
4 32.92 34.52 33.75 0.54 
5 30.83 31.96 31.35 0.39 
6 30.49 31.92 31.22 0.48 
7 31.77 33.00 32.21 0.45 
8 30.10 31.06 30.43 0.35 
9 31.08 32.13 31.92 0.42 

10 30.98 32.24 31.60 0.42 
11 29.94 31.09 30.36 0.42 
12 30.33 31.53 30.85 0.42 
13 31.45 32.82 32.14 0.46 
14 32.67 33.44 32.53 0.37 
15 32.49 33.49 32.89 0.36 

 
 

Table 4. Comparison of execution times (in sec.) using 32 nodes for the three patterns plotted 
in Figure 9 

4.3.2 Limit case  
A singular case is to have the cities uniformly distributed in a circumference, see an example 
in Fig. 11. As the MDSD value will be near to 0, similar execution times are expected. The 
idea is considering a limit case in order to confirm the hypothesis with respect to the MDSD 
value and the geographical pattern. 
Table 5 exhibits a comparative study of GP-TSP behaviour; the means and means deviations 
of execution times of different number of cities uniformly distributed in each circumference 
pattern are shown. The number of cities is between 15 and 25. As it can be appreciated in 
Table 5, there is a progressive increase in the mean times. For every circumference, the 
execution times were quite similar starting by each one of the cities. The mean deviations 
were smaller than 4%. 
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Fig. 11. A circumference pattern composed of 24 uniformly distributed cities 

 
#Cities 15 16 17 18 19 20 21 22 23 24 25 
Mean 12.71 17.47 23.42 32.93 42.95 54.94 68.67 129.53 367.29 1085.57 2957.15 
Mean 

deviation 0.03 0.04 0.08 0.08 0.07 0.10 0.10 0.11 0.30 2.12 3.03 

Table 5. Mean and mean deviation of execution times (in sec.) using 32 nodes by the number 
of cities that are present in each circumference pattern 

5. Conclusions 
This chapter introduces a knowledge discovery methodology to estimate the performance 
order of a hard data-dependent parallel algorithm that solves the traveling salesman 
problem. It is important to understand that the parallel performance achieved depends on 
several factors, including the application, the parallel computer, the data distribution, and 
also the methods used for partitioning the application and mapping its components onto the 
architecture. 
Briefly, the general knowledge discovery methodology begins by designing a considerable 
number of experiments and measuring their execution times. A well-built experiment 
guides the experimenters in choosing what experiments actually need to be performed in 
order to provide a representative sample. A data-mining tool then explores these collected 
data in search of patterns and/or relationships detecting the main parameters that affect 
performance. Knowing the main parameters which characterise performance, it becomes 
possible to suspect new hypotheses to restart the process and to produce a subsequent 
improved time complexity model. Finally, the methodology predicts the performance order 
for new data sets on a particular parallel computer by replacing a numerical identification. 
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architecture. 
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number of experiments and measuring their execution times. A well-built experiment 
guides the experimenters in choosing what experiments actually need to be performed in 
order to provide a representative sample. A data-mining tool then explores these collected 
data in search of patterns and/or relationships detecting the main parameters that affect 
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possible to suspect new hypotheses to restart the process and to produce a subsequent 
improved time complexity model. Finally, the methodology predicts the performance order 
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A TSP parallel implementation (called GP-TSP) has been deeply studied. The GP-TSP 
algorithm analyzes the influence of indeterminism in performance prediction, and also 
shows the usefulness and the profits of the methodology. Their execution time depends on 
the number of cities (C), the number of processors (P), and other parameters. As a result of 
the investigation, right now the sum of the distances from one city to the other cities (SD) 
and the mean deviation of SDs values (MDSD) are the numerical parameters characterizing 
the different input data beyond the number of cities. The followed way to discover this 
proper set of parameters has been exhaustively described.  
The defined methodology for performance modelling is applicable to other related problems 
such as the knapsack problem, the graph partition, the bin packing, the motion planning, 
among others. 

Appendix 
A. Specification of the parallel machine 
The execution has been reached with a 32 node homogeneous PC (Cluster Pentium IV 
3.0GHz., 1Gb DDR-DSRAM 400Mhz., Gigabit Ethernet) at the Computer Architecture and 
Operating Systems Department, University Autonoma of Barcelona. All the 
communications have been accomplished using a switched network with a mean distance 
between two communication end-points of two hops. The switches enable dynamic routes 
in order to overlap communication. 

B. Characteristics of Cluster-Frame environment 
Cluster-Frame is a dynamic and open environment of clustering (Fritzsche, 2007). It permits 
the evaluation of clustering methods such as K-Means, K-Prototypes, K-Modes, K-Medoid, 
K-Means+, K-Means++ for the same data set. Using Cluster-Frame, the results reached 
applying different methods and using several parameters can be analyzed and compared. 
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1. Introduction

The multiple traveling salesman problem (mTSP) is a generalization of the well-known
traveling salesman problem (TSP; see Applegate et al., 2006; Greco, 2008; Gutin and Punnen,
2007; or Lawler et al., 1985) ) in which each of c cities must be visited by exactly one of s
(1 < s < c) traveling salesmen. When there is a single depot (or “base”) for all the salesmen,
the problem is called the single depot mTSP. On the other hand, when the salesmen are initially
based at different depots, then the problem is referred to as the multi-depot mTSP (MmTSP). If
the salesmen are required to return to their respective original bases at the end of the travels,
the problem is referred to as the fixed destination MmTSP. When the salesmen are not required
to return to their original bases, the problem is referred to as the nonfixed destination MmTSP.
It is often also stipulated in the nonfixed destination MmTSP that the number of salesmen at a
given depot at the end of the travels be the same as the number of salesmen that were initially
there. Also, if there is no requirement that every salesman be activated, then fixed costs are
(typically) associated with the salesmen and included in the cost-minimization objective of
the problem, along with (or in lieu of) the usual total inter-site travel costs. More detailed
discussions of these and other variations of the problem can be found in Bektas (2006), and
Kara and Bektas (2006), among others.
Bektas (2006) discusses many contexts in which the mTSP has been applied including combat
mission planning, transportation planning, print scheduling, satellite suveying systems
design, and workforce planning contexts, respectively. More recent applications that are
described in the literature include those of routing unmanned combat aerial vehicles (Shetty
et al., 2008), scheduling quality inspections (Tang et al., 2007), scheduling trucks for the
transportation of containers (Zhang et al., 2010), and scheduling workforce (Tang et al., 2007).
Also, beyond these specific contexts, one can easily argue that most of the practical contexts
in which the TSP has been applied could be more realistically modeled as mTSP’s. Hence, the
problem has a very wide range of applicability.
Mathematical Programming models that have been developed to solve the mTSP are reviewed
in Bektas (2006). Additional formulations are proposed in Kara and Bektas (2006). Because
of the complexity of the models, solution methods have been mostly heuristic approaches.
The exact procedures are the cutting planes approach of Laporte and Norbert (1980), and
the branch-and-bound approaches of Ali and Kennington (1986), Gavish and Srikanth (1986),
and Gromicho et al. (1992), respectively (see Bektas, 2006). The heuristic approaches that have
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been developed are reviewed in Bektas (2006) and Ghufurian and Javadian (2010). They can be
classified into two broad groups that we label as the “transformation-based” and the “direct”
heuristics, respectively. The “transformation-based” heuristics consist of transforming the
problem into a standard TSP on expanded graphs, and then using TSP heuristics to solve
it (see Betkas, 2006). The “direct” heuristics tackle the problem in its natural form. They
include evolutionary, genetic, k-opt, neural network, simulated annealing, and tabu search
procedures, respectively (see Bektas, 2006, and Ghufurian and Javadian, 2010 for detailed
discussions).
A general limitation of the existing literature is the fragmentation of models over the different
types of mTSP’s discussed above. In general, models developed for one type of mTSP cannot
be applied in a straightforward manner to other types. Also, to the best of our knowledge,
except for the VRP model of Christofides et al. (1981), and the fixed destination MmTSP Integer
Programming (IP) model of Kara and Bektas (2006), none of the existing models can be
extended in a straightforward manner to handle differentiated travel costs for the salesmen.
Differentiated travel costs are more realistic in many practical situations however, such as in
contexts of routing/scheduling vehicles for example, where there may be differing pay rates
for drivers, vehicle types, and/or transportation modes.
In this chapter, we consider a generalization of the mTSP where there are differentiated
intersite travel costs associated with the salesmen. There are several depots from which
travels start (i.e., the problem considered is the MmTSP), the salesmen are required to return
to their respective staring bases at the end of their travels (i.e., destinations are fixed), and the
number of salesmen to be activated is a decision variable. We present a linear programming
(LP) formulation of this problem. The complexity orders of the number of variables and the
number of constraints of the proposed LP are O

(
c9·s3) and O

(
c8·s3), respectively, where c

and s are the number of customer sites and the number of salesmen in the MmTSP instance,
respectively. Hence, the model goes beyond the scope of the mTSP per se, to a re-affirmation
of the equality of the computational complexity classes “P” and “NP.” Also, the proposed
model can be adjusted in a straightforward manner to accommodate nonfixed destinations
and/or situations where it is required that all the salesmen be activated. It is therefore a
more comprehensive model than existing ones that we know of (see Bektas (2006), and Kara
and Bektas (2006)). In formulating our proposed LP, we first develop a bipartite network
flow-based model of the problem. Then, we use a path-based modeling framework similar
to that used in Diaby (2006b, 2007b, 2010a, and 2010b). The approach is illustrated with a
numerical example.
Three reports (by a same author) with negative claims having some relation to the modeling
approach used in this paper have been publicized through the internet (Hofman, 2006, 2007,
and 2008b). These are the only such reports (and negative claims) that we know of. There is
a counter-example claim in Hofman (2006) that has to do with the relaxation of the model
in Diaby (2006b) suggested in Diaby (2006a) (see Diaby, 2006a, p. 20: “Proposition 6”).
There is another counter-example claim (Hofman (2008b)) that pertains to a simplification
of the model in Diaby (2007b) discussed in Diaby (2008). Indeed further checking revealed
flawed developments in both of the papers against which these counter-example claims were
made, specifically, “Proposition 6” for Diaby (2006a), and Theorem 25 and Corollary 26 for
Diaby (2008). However, these are not aaplicable to the respective published, peer-reviewed
papers dealing with the respective “full” models (Diaby(2006b), and Diaby (2007b)).Hence,
the counter-example claims may have had some merit, but only for the relaxations to
which they pertain. The claim in Hofman (2007) rests on the premise that an integral
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polytope with an exponential number of vertices cannot be completely described using
a polynomially-bounded number of linear constraints (see Hofman, 2007, p. 3). It is a
well-established fact however, that the Assignment Polytope for example, is integral, has n!
extreme points (where n is the number of assignments), and is completely described by 2n
linear constraints (see Burkard et al., 2007, pp. 24-26, and Schrijver, 1986, pp. 108-110, among
others). Other contradictions of the premise of Hofman (2007) include the Transportation
Polytope (see Bazaraa et al, 2010, pp. 513-535), and the general Min-Cost Network Flow
Polytope (see Ahuja et al., 1993, 294-449, or Bazaraa et al., 2010, pp. 453-493, for example).
Characterizations of integral polytopes in general and additional examples (including some
non-network flow-based ones) contradicting the premise of Hofman (2007) are discussed
in Nemhauser and Wolsey, 1988, pp. 535-607, and Schrijver, 1986, pp. 266-338, among
others. Hence, the foundations and implications of the claim in Hofman (2007) are in strong
contradiction of well-established Operations Research knowledge.
It should be noted also that our overall approach consists essentially of developing an
alternate linear programming reformulation of the Assignment Polytope (see Burkard et al.,
2007, pp. 24-34) in terms of “complex flow modeling”variables we introduce (see section 4 of
this chapter). Hence, the developments in Yannakakis (1991) in particular, are not applicable
in the context of this work, since we do not deal with the TSP polytope per se (see Lawler et
al., 1988, pp.256-261).
The plan of the chapter is as follows. Our BNF-based model of the MmTSP is developed
in section 2. A path representation of the BNF-based solutions is developed in section 3.
An Integer Programming (IP) model of the path representations in developed in section 4.
A path-based LP reformulation of the BNF-based Polytope is developed in section 5. Our
proposed overall LP model is developed model in section 6. Conclusions are discussed in
section 7.

Definition 1 (“MmTSP schedule”) We will refer to any feasible solution to the fixed destination
MmTSP as a “MmTSP schedule.”

The following notation will be used throughout the rest of the chapter.

Notation 2 (General notation) :

1. d : Number of depot sites/nodes;

2. D := {1,2, . . . ,d} (index set for the depot sites);

3. c : Number of customer sites/nodes;

4. C := {1,2, . . . ,c} (index set for the customer sites);

5. s : Number of salesmen;

6. S := {1,2, . . . ,s} (index set for the salesmen);

7. ∀p ∈ S, bp : Index of the starting base (or initial depot) for salesman p (bp ∈ D);

8. ∀p ∈ S, fp : Fixed cost associated with the activation of salesman p;

9. ∀p ∈ S, ∀(i, j) ∈ (D ∪ C)2, epij : Cost of travel from site i to site j by salesman p;

10. A MmTSP schedule wherein salesman p visits mp customers with ip,k being the kth

customer visited will be denoted as the ordered set ((p, ip,k) : p ∈ S,k = 1, . . . ,mp), where
S ⊆ S denotes the subset of activated salesmen;
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polytope with an exponential number of vertices cannot be completely described using
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An Integer Programming (IP) model of the path representations in developed in section 4.
A path-based LP reformulation of the BNF-based Polytope is developed in section 5. Our
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section 7.

Definition 1 (“MmTSP schedule”) We will refer to any feasible solution to the fixed destination
MmTSP as a “MmTSP schedule.”

The following notation will be used throughout the rest of the chapter.

Notation 2 (General notation) :

1. d : Number of depot sites/nodes;

2. D := {1,2, . . . ,d} (index set for the depot sites);

3. c : Number of customer sites/nodes;

4. C := {1,2, . . . ,c} (index set for the customer sites);

5. s : Number of salesmen;

6. S := {1,2, . . . ,s} (index set for the salesmen);

7. ∀p ∈ S, bp : Index of the starting base (or initial depot) for salesman p (bp ∈ D);

8. ∀p ∈ S, fp : Fixed cost associated with the activation of salesman p;

9. ∀p ∈ S, ∀(i, j) ∈ (D ∪ C)2, epij : Cost of travel from site i to site j by salesman p;

10. A MmTSP schedule wherein salesman p visits mp customers with ip,k being the kth

customer visited will be denoted as the ordered set ((p, ip,k) : p ∈ S,k = 1, . . . ,mp), where
S ⊆ S denotes the subset of activated salesmen;
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11. R : Set of real numbers;

12. For two column vectors x and y,
(

x
y

)
= (xT ,yT)T will be written as “(x, y)” (where

(·)Tdenotes the transpose of (·)), except for where that causes ambiguity;

13. For two column vectors a and b, and a function or expression A having (a, b) as an
argument, “A ((a, b))” will be written as “A(a, b)”, except for where that causes ambiguity;

14. xi : ith component of vector x;

15. “0” : Column vector (of comfortable size) that has every entry equal to 0;

16. “1” : Column vector (of comfortable size) that has every entry equal to 1;

17. Conv(·) : Convex hull of (·);
18. Ext(·) : Set of extreme points of (·);
19. The notation “∃ 〈

i1 ∈ A1; . . . ; ip ∈ Ap
〉

:
〈

B1; . . . ; Bq
〉

” stands for “There exists at least p
objects with at least one from each Ar (r = 1, . . . , p), such that each expression Bs (s = 1, . . . , q)
holds true.” Where that does not cause ambiguity, the brackets (one or both sets) will be
omitted.

Assumption 3 We assume, without loss of generality (w.l.o.g.), that:

1. c≥ 5;

2. d≥ 1;

3. ∀j ∈ D, {p ∈ S : bp = j} �=∅;

4. ∀p ∈ S, ∀i ∈ C, epii = ∞;

5. ∀p ∈ S, ∀(i, j) ∈ D
2, epij = ∞

6. The set of cutomers/customer sites has been augmented with a fictitious customer/site,
indexed as c := c+ 1, with ep,c,c = 0 for all p ∈ S, ep,i,c = ep,i,bp for all (p, i) ∈ (S,C), and
ep,c,i = ∞ for all (p, i) ∈ (S,C);

7. Fictitious customer site c can be visited multiple times by one or more of the traveling
salesmen in any MmTSP schedule.

2. Bipartite network flow-based model of MmTSP schedules

The purpose of the bipartite network flow (BNF)-based model developed in this section is to
simplify the exposition of the development of our overall LP model discussed in sections 5
and 6 of this chapter. However, as far as we know, it is a first such model for the MmTSP,

and we believe it can also serve as the basis of good (near-optimal) heuristic procedures for
solving large-scale (practical-sized) MmTSP’s. We will first present the model. Then, we will
illustrate it with a numerical example.

Notation 4 :

1. C := C ∪ {c} = C ∪ {c+ 1}
2. ∀p ∈ S, Tp : = {1, . . . ,c} (index set for the order (or “times”) of visits for salesman p);
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3. ∀p ∈ S, ∀i ∈ C, ∀t ∈ Tp, xp,i,t denotes a non-negative variable that is greater than zero iff i
is the tth customer to be visited by salesman p.

Definition 5 (“BNF-based Polytope”) Let P1 :=
{

x ∈ R
scc : x satisfies (1)-(6)

}
, where (1)-(6) are

specified as follows:

∑
p∈S

∑
t∈Tp

xp,i,t = 1; i ∈ C (1)

∑
p∈S

∑
t∈Tp

xp,c,t = (s− 1)c; (2)

∑
i∈C

xp,i,t = 1; p ∈ S, t ∈ Tp (3)

xp,c,t−1 − xp,c,t ≤ 0; p ∈ S, t ∈ Tp : t > 1 (4)

xpit ∈ {0,1}; p ∈ S, i ∈ C, t ∈ T (5)

xp,c,t ≥ 0; p ∈ S, t ∈ Tp (6)

We refer to Conv(P1) as the “Bipartite Network Flow (BNF)-based Polytope.”

Theorem 6 There exists a one-to-one mapping of the points of P1 (i.e., the extreme points of the
BNF-based Polytope) onto the MmTSP schedules.

Proof. It is trivial to verify that a unique point of P1 can be constructed from any given MmTSP
schedule and vice versa.
The BNF-based formulation is illustrated in Example 7.

Example 7 Fixed destination MmTSP with:

– d= 2, D = {1,2};

– s= 2, S = {1,2}, b1 = 1,b2 = 2;

– c= 5, C = {1,2,3,4,5};
BNF tableau form of the BNF-based formulation (where entries in the body are “technical
coefficients,” and entries in the margins are “right-hand-side values”):

salesman “1” salesman “2”
time of visit, t = 1 2 3 4 5 1 2 3 4 5 “Demand”

customer “1” 1 1 1 1 1 1 1 1 1 1 1
customer “2” 1 1 1 1 1 1 1 1 1 1 1
customer “3” 1 1 1 1 1 1 1 1 1 1 1
customer “4” 1 1 1 1 1 1 1 1 1 1 1
customer “5” 1 1 1 1 1 1 1 1 1 1 1
customer “6” 1 1 1 1 1 1 1 1 1 1 5

“Supply” 1 1 1 1 1 1 1 1 1 1 −

- Illustrations of Theorem 6:
- Illustration 1:
Let the MmTSP schedule be: ((1,1), (1,3), (1,2), (2,5), (2,4)) .
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3. ∀p ∈ S, ∀i ∈ C, ∀t ∈ Tp, xp,i,t denotes a non-negative variable that is greater than zero iff i
is the tth customer to be visited by salesman p.

Definition 5 (“BNF-based Polytope”) Let P1 :=
{
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scc : x satisfies (1)-(6)

}
, where (1)-(6) are
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We refer to Conv(P1) as the “Bipartite Network Flow (BNF)-based Polytope.”

Theorem 6 There exists a one-to-one mapping of the points of P1 (i.e., the extreme points of the
BNF-based Polytope) onto the MmTSP schedules.

Proof. It is trivial to verify that a unique point of P1 can be constructed from any given MmTSP
schedule and vice versa.
The BNF-based formulation is illustrated in Example 7.

Example 7 Fixed destination MmTSP with:

– d= 2, D = {1,2};

– s= 2, S = {1,2}, b1 = 1,b2 = 2;

– c= 5, C = {1,2,3,4,5};
BNF tableau form of the BNF-based formulation (where entries in the body are “technical
coefficients,” and entries in the margins are “right-hand-side values”):

salesman “1” salesman “2”
time of visit, t = 1 2 3 4 5 1 2 3 4 5 “Demand”

customer “1” 1 1 1 1 1 1 1 1 1 1 1
customer “2” 1 1 1 1 1 1 1 1 1 1 1
customer “3” 1 1 1 1 1 1 1 1 1 1 1
customer “4” 1 1 1 1 1 1 1 1 1 1 1
customer “5” 1 1 1 1 1 1 1 1 1 1 1
customer “6” 1 1 1 1 1 1 1 1 1 1 5

“Supply” 1 1 1 1 1 1 1 1 1 1 −

- Illustrations of Theorem 6:
- Illustration 1:
Let the MmTSP schedule be: ((1,1), (1,3), (1,2), (2,5), (2,4)) .
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The unique point of P1 corresponding to this schedule is obtained by setting the entries of x as follows:

∀(i, t) ∈ (C,T1), x1,i,t =

{
1 if (i, t) ∈ {(1,1), (3,2), (2,3),{6,4), (6,5)}
0 otherwise

∀(i, t) ∈ (C,T2), x2,i,t =

{
1 if (i, t) ∈ {(5,1), (4,2), (6,3),{6,4), (6,5)}
0 otherwise

This solution can be shown in tableau form as follows (where only non-zero entries of x are shown):

salesman “1” salesman “2”
time of visit, t = 1 2 3 4 5 1 2 3 4 5

customer “1” 1
customer “2” 1
customer “3” 1
customer “4” 1
customer “5” 1
customer “6” 1 1 1 1 1

- Illustration 2:
Let x ∈ P1 be as follows:

∀(i, t) ∈ (C,T1), x1,i,t =

{
1 for (i, t) ∈ {(6,1), (6,2), (6,3),{6,4), (6,5)}
0 otherwise

∀(i, t) ∈ (C,T2), x2,i,t =

{
1 for (i, t) ∈ {(3,1), (5,2), (1,3),{4,4), (2,5)}
0 otherwise

The unique MmTSP schedule corresponding to this point is ((2,3), (2,5), (2,1), (2,4), (2,2)) .

3. Path representation of BNF-based solutions

In this section, we develop a path representation of the extreme points of the BNF-based
Polytope (i.e., the points of P1). The framework for this representation is the multipartite
digraph, G = (V, A), illustrated in Example 10. The nodes of this graph correspond to the
variables of the BNF-based formulation (i.e., the “cells” of the BNF-based tableau). The
arcs of the graph represent (roughly) the inter-site movements at consecutive times of travel,
respectively.

Definition 8

1. The set of nodes of Graph G that correspond to a given pair (p,k) ∈ (S,Tp) is referred to as
a stage of the graph;

2. The set of nodes of Graph G that correspond to a given customer site i ∈ C is referred to as
a level of the graph.

For the sake of simplicity of exposition, we perform a sequential re-indexing of the stages of
the graph and formalize the specifications of the nodes and arcs accordingly, as follows.
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Notation 9 (Graph formalization)

1. n := s · c (Number of stages of Graph G);

2. R := {1, . . . ,n} (Set of stages of Graph G);

3. R := R\{n} (Set of stages of Graph G with positive-outdegree nodes);

4. ∀ p ∈ S, rp := ((p − 1)c + 1) (Sequential re-indexing of stage (p,1));

5. ∀ p ∈ S, rp := p · c (Sequential re-indexing of stage (p,c));

6. ∀ r ∈ S, pr := max{p ∈ S : rp ≤ r} (Index of the salesman associated with stage r);

7. V := {(i,r) : i ∈ C, r ∈ R} (Set of nodes/vertices of Graph G);

8. ∀ r ∈ R; i ∈ C,

Fr(i) :=

⎧⎪⎪⎨
⎪⎪⎩

C\{i} for r < n; i ∈ C;
{c} for r < rpr

; i = c

C for rpr
= r < n; i = c

∅ for r = n
(Forward star of node (i,r) of GraphG);

9. ∀ r ∈ R; i ∈ C,

Br(i) :=
�

∅ for r = 1
{j ∈ C : i ∈ Fr−1(j)} for r > 1

(Backward star of node (i,r) of Graph G);

10. A := {(i,r, j) ∈ (C, R,C) : j ∈ Fr(i)} (Set of arcs of Graph G).

The notation for the multipartite graph representation is illustrated in Example 10 for the
MmTSP instance of Example 7.

Example 10 The multipartite graph representation of the MmTSP of Example 7 is summarized as
follows:

-n = 2 × 5 = 10; R = {1,2, . . . ,10}; R = {1, . . . ,9};
- Stage indices for the salesmen:

Salesman, p First stage, rp Last stage, rp
1 1 5
2 6 10

- Salesman index for the stages:

Stage, r Salesman index, pr
r ∈ {1,2,3,4,5} 1

r ∈ {6,7,8,9,10} 2

- Forward stars of the nodes of Graph G:
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Stage, r
Level, i 1 2 3 4 5 6 7 8 9 10

i = 1 C\{1} C\{1} C\{1} C\{1} C\{1} C\{1} C\{1} C\{1} C\{1} ∅
i = 2 C\{2} C\{2} C\{2} C\{2} C\{2} C\{2} C\{2} C\{2} C\{2} ∅
i = 3 C\{3} C\{3} C\{3} C\{3} C\{3} C\{3} C\{3} C\{3} C\{3} ∅
i = 4 C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} ∅
i = 5 C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} ∅
i = 6 {6} {6} {6} {6} C {6} {6} {6} {6} ∅

- Backward stars of the nodes of Graph G:

Stage, r
Level, i 1 2 3 4 5 6 7 8 9 10
i = 1 ∅ C\{1} C\{1} C\{1} C\{1} C\{1} C\{1} C\{1} C\{1} C\{1}
i = 2 ∅ C\{2} C\{2} C\{2} C\{2} C\{2} C\{2} C\{2} C\{2} C\{2}
i = 3 ∅ C\{3} C\{3} C\{3} C\{3} C\{3} C\{3} C\{3} C\{3} C\{3}
i = 4 ∅ C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} C\{4}
i = 5 ∅ C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} C\{5}
i = 6 ∅ C C C C C C C C C

- Graph illustration: Graph G

Definition 11 (“MmTSP-path-in-G”)

1. We refer to a path of Graph G that spans the set of stages of the graph (i.e., a walk of length
(n − 1) of the graph) as a through-path of the graph;
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2. We refer to a through-path of Graph G that is incident upon each level of the graph pertaining
to a customer site in C at exactly one node of the graph as a “MmTSP-path-in-G” (plural:
“MmTSP-paths-in-G”); that is, a set of arcs, ((i1,1, i2), (i2,2, i3), ..., (in−1,n − 1, in)) ∈ An−1,
is a MmTSP-path-in-G iff (∀t ∈ C, ∃ p ∈ R : ip = t, and ∀(p,q) ∈ (R, R\{p}) : (ip, iq) ∈ C

2,
ip �= iq).

An illustration of a MmTSP-path-in-G is given in Figure 1 for the MmTSP instance of Example
7. The MmTSP-path-in-G that is shown on the figure corresponds to the MmTSP schedule:
((1,1), (1,3), (1,2), (2,5), (2,4)).

Fig. 1. Illustration of a MmTSP-path-in-G

Theorem 12 The following statements are true:

(i) There exists a one-to-one mapping between the MmTSP-paths-in-G and the extreme
points of the BNF-based Polytope (i.e., the points of P1);

(ii) There exists a one-to-one mapping between the MmTSP-paths-in-G and the MmTSP
schedules.

Proof. The theorem follows trivially from definitions.

Theorem 13 A given MmTSP-path-in-G cannot be represented as a convex combination of other
MmTSP-paths-in-G.
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Stage, r
Level, i 1 2 3 4 5 6 7 8 9 10
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i = 4 C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} ∅
i = 5 C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} ∅
i = 6 {6} {6} {6} {6} C {6} {6} {6} {6} ∅

- Backward stars of the nodes of Graph G:
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i = 4 ∅ C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} C\{4}
i = 5 ∅ C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} C\{5}
i = 6 ∅ C C C C C C C C C

- Graph illustration: Graph G

Definition 11 (“MmTSP-path-in-G”)

1. We refer to a path of Graph G that spans the set of stages of the graph (i.e., a walk of length
(n − 1) of the graph) as a through-path of the graph;
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2. We refer to a through-path of Graph G that is incident upon each level of the graph pertaining
to a customer site in C at exactly one node of the graph as a “MmTSP-path-in-G” (plural:
“MmTSP-paths-in-G”); that is, a set of arcs, ((i1,1, i2), (i2,2, i3), ..., (in−1,n − 1, in)) ∈ An−1,
is a MmTSP-path-in-G iff (∀t ∈ C, ∃ p ∈ R : ip = t, and ∀(p,q) ∈ (R, R\{p}) : (ip, iq) ∈ C

2,
ip �= iq).

An illustration of a MmTSP-path-in-G is given in Figure 1 for the MmTSP instance of Example
7. The MmTSP-path-in-G that is shown on the figure corresponds to the MmTSP schedule:
((1,1), (1,3), (1,2), (2,5), (2,4)).

Fig. 1. Illustration of a MmTSP-path-in-G

Theorem 12 The following statements are true:

(i) There exists a one-to-one mapping between the MmTSP-paths-in-G and the extreme
points of the BNF-based Polytope (i.e., the points of P1);

(ii) There exists a one-to-one mapping between the MmTSP-paths-in-G and the MmTSP
schedules.

Proof. The theorem follows trivially from definitions.

Theorem 13 A given MmTSP-path-in-G cannot be represented as a convex combination of other
MmTSP-paths-in-G.

265
Linear Programming Formulation of the
Multi-Depot Multiple Traveling Salesman Problem with Differentiated Travel Costs



10 Traveling Salesman Problem, Theory and Applications

Proof. The theorem follows directly from the fact that every MmTSP-path-in-G represents an
extreme flow of the standard shortest path network flow polytope associated with Graph G,

W :=

⎧⎨
⎩w ∈ [0,1]|A| : ∑

i∈C

∑
j∈F1(i)

wi,1,j = 1;

∑
j∈Fr(i)

wirj − ∑
j∈Br(i)

wj,r−1,i = 0, r ∈ R\{1}, i ∈ C

⎫⎬
⎭

(where w is the vector of flow variables associated with the arcs of Graph G) (see Bazaraa et al.,
2010, pp. 619-639).

Notation 14 We denote the set of all MmTSP-paths-in-G as Ω; i.e.,

Ω :=
�
((i1,1, i2), (i2,2, i3), ..., (in−1,n − 1, in)) ∈ An−1 :

�∀ t ∈ C, ∃ p ∈ R : ip = t
�

;
�
∀ (p,q) ∈ (R, R\{p}) : (ip, iq) ∈ C

2, ip �= iq
��

.

4. Integer programming model of the path representations

Notation 15 (“Complex flow modeling” variables) :

1. ∀(p,r, s) ∈ R3 : r < s < p, ∀(i, j,k, t,u,v) ∈ (C, Fr(i),C, Fs(k),C, Fp(u)), z(irj)(kst)(upv) denotes
a non-negative variable that represents the amount of flow in Graph G that propagates from
arc (i,r, j) on to arc (k, s, t), via arc (u, p,v); z(irj)(kst)(upv) will be witten as z(i,r,j)(k,s,t)(u,p,v)
whenever needed for clarity.

2. ∀(r, s) ∈ R2 : r < s, ∀(i, j,k, t) ∈ (C, Fr(i),C, Fs(k)), y(irj)(kst) denotes a non-negative variable
that represents the total amount of flow in Graph G that propagates from arc (i,r, j) on to arc
(k, s, t); y(irj)(kst) will be witten as y(i,r,j)(k,s,t) whenever needed for clarity.

The constraints of our Integer Programming (IP) reformulation of P1 are as follows:

∑
i∈C

∑
j∈F1(i)

∑
t∈F2(j)

∑
v∈F3(t)

z(i,1,j)(j,2,t)(t,3,v) = 1 (7)

∑
v∈Bp(u)

z(irj)(kst)(v,p−1,u) − ∑
v∈Fp(u)

z(irj)(kst)(upv) = 0;

p,r, s ∈ R : r < s < p − 1; i ∈ C; j ∈ Fr(i); k ∈ C; t ∈ Fs(k); u ∈ C (8)

∑
v∈Bp(u)

z(irj)(v,p−1,u)(kst) − ∑
v∈Fp(u)

z(irj)(upv)(kst) = 0;

p,r, s ∈ R : r + 1 < p < s; i ∈ C; j ∈ Fr(i); k ∈ C; t ∈ Fs(k); u ∈ C (9)
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∑
v∈Bp(u)

z(v,p−1,u)(irj)(kst) − ∑
v∈Fp(u)

z(upv)(irj)(kst) = 0;

p,r, s ∈ R : 1 < p < r < s; i ∈ C; j ∈ Fr(i); k ∈ C; t ∈ Fs(k); u ∈ C (10)

y(irj)(kst) − ∑
u∈C

∑
v∈Fp(u)

z(irj)(kst)(upv) = 0;

p,r, s ∈ R : r < s < p; i ∈ C; j ∈ Fr(i); k ∈ C; t ∈ Fs(u) (11)

y(irj)(upv) − ∑
k∈C

∑
t∈Fs(k)

z(irj)(kst)(upv) = 0;

p,r, s ∈ R : r < s < p; i ∈ C; j ∈ Fr(i); u ∈ C; v ∈ Fp(u) (12)

y(kst)(upv) − ∑
i∈C

∑
j∈Fr(i)

z(irj)(kst)(upv) = 0;

p,r, s ∈ R : r < s < p; k ∈ C; t ∈ Fs(k); u ∈ C; v ∈ Fp(u) (13)

y(irj)(kst) − ∑
p∈R:
p<r

∑
v∈Fp(u)

z(upv)(irj)(kst) − ∑
p∈R:

r<p<s

∑
v∈Fp(u)

z(irj)(upv)(kst)

− ∑
p∈R:
s<p

∑
v∈Bp+1(u)

z(irj)(kst)(vpu) = 0;

r, s ∈ R : r < s; i ∈ C; j ∈ Fr(i); k ∈ C; t ∈ Fs(k); u ∈ C\{i, j,k, t} (14)

∑
k∈C\{j}

∑
t∈Fr+1(k)

y(irj)(k,r+1,t) = 0; r ∈ R\{n − 1}; i ∈ C; j ∈ Fr(i) (15)

∑
(r,s)∈R2:

s>r

∑
j∈Fr(i)

∑
k∈Bs+1(i)

y(irj)(ksi) + ∑
(r,s)∈R2:

s>r

∑
j∈Fr(i)

∑
k∈Fs(i)

y(irj)(isk) +

∑
(r,s)∈R2:

s>r

∑
j∈Br+1(i)

∑
k∈Bs+1(i)

y(jri)(ksi) + ∑
(r,s)∈R2:

s>r+1

∑
j∈Br+1(i)

∑
k∈Fs(i)

y(jri)(isk) = 0;

i ∈ C (16)
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Proof. The theorem follows directly from the fact that every MmTSP-path-in-G represents an
extreme flow of the standard shortest path network flow polytope associated with Graph G,

W :=

⎧⎨
⎩w ∈ [0,1]|A| : ∑

i∈C

∑
j∈F1(i)

wi,1,j = 1;

∑
j∈Fr(i)

wirj − ∑
j∈Br(i)

wj,r−1,i = 0, r ∈ R\{1}, i ∈ C

⎫⎬
⎭

(where w is the vector of flow variables associated with the arcs of Graph G) (see Bazaraa et al.,
2010, pp. 619-639).

Notation 14 We denote the set of all MmTSP-paths-in-G as Ω; i.e.,

Ω :=
�
((i1,1, i2), (i2,2, i3), ..., (in−1,n − 1, in)) ∈ An−1 :

�∀ t ∈ C, ∃ p ∈ R : ip = t
�

;
�
∀ (p,q) ∈ (R, R\{p}) : (ip, iq) ∈ C

2, ip �= iq
��

.

4. Integer programming model of the path representations

Notation 15 (“Complex flow modeling” variables) :

1. ∀(p,r, s) ∈ R3 : r < s < p, ∀(i, j,k, t,u,v) ∈ (C, Fr(i),C, Fs(k),C, Fp(u)), z(irj)(kst)(upv) denotes
a non-negative variable that represents the amount of flow in Graph G that propagates from
arc (i,r, j) on to arc (k, s, t), via arc (u, p,v); z(irj)(kst)(upv) will be witten as z(i,r,j)(k,s,t)(u,p,v)
whenever needed for clarity.

2. ∀(r, s) ∈ R2 : r < s, ∀(i, j,k, t) ∈ (C, Fr(i),C, Fs(k)), y(irj)(kst) denotes a non-negative variable
that represents the total amount of flow in Graph G that propagates from arc (i,r, j) on to arc
(k, s, t); y(irj)(kst) will be witten as y(i,r,j)(k,s,t) whenever needed for clarity.

The constraints of our Integer Programming (IP) reformulation of P1 are as follows:

∑
i∈C

∑
j∈F1(i)

∑
t∈F2(j)

∑
v∈F3(t)

z(i,1,j)(j,2,t)(t,3,v) = 1 (7)

∑
v∈Bp(u)

z(irj)(kst)(v,p−1,u) − ∑
v∈Fp(u)

z(irj)(kst)(upv) = 0;

p,r, s ∈ R : r < s < p − 1; i ∈ C; j ∈ Fr(i); k ∈ C; t ∈ Fs(k); u ∈ C (8)

∑
v∈Bp(u)

z(irj)(v,p−1,u)(kst) − ∑
v∈Fp(u)

z(irj)(upv)(kst) = 0;

p,r, s ∈ R : r + 1 < p < s; i ∈ C; j ∈ Fr(i); k ∈ C; t ∈ Fs(k); u ∈ C (9)
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y(irj)(kst) ∈ {0,1}; r, s ∈ R : r < s; (i, j, k, t) ∈ (C, Fr(i), C, Fs(k)) (17)

z(irj)(kst)(upv) ∈ {0,1}; p,r, s ∈ R : r < s < p;

(i, j, k, t, u, v) ∈ (C, F1(i), C, Fs(k), C, Fp(u)). (18)

One unit of flow is initiated at stage 1 of Graph G by constraint (7). Constraints (8), (9), and (10)
are extended Kirchhoff Equations (see Bazaraa et al., 2010, pp. 454) that ensure that all flows
initiated at stage 1 propagate onward, to stage n of the graph, in a connected and balanced
manner. Specifically, the total flow that traverses both of two given arcs (i,r, j) and (k, s, t)
(where s > r) and also enters a given node (u, p) is equal to the total flow that traverses
both arcs and also leaves the node. Constraints (8), (9) and (10) enforce this condition for
“downstream” nodes relative to the two arcs (i.e., when p > s), “intermediary” nodes (i.e.,
when r < p < s), and “upstream” nodes (i.e., when p < r), respectively. Constraints (11), (12),
and (13) ensure the consistent accounting of the flow propagation amount between any given
pair of arcs of Graph G across all the stages of the graph. We refer to constraints (14) as the
“visit requirements”constraints. They stipulate that the total flow on any given arc of Graph G
must propagate on to every level of the graph pertaining to a non-fictitious customer site, or
be part of a flow propagation that spans the levels of the graph pertaining to non-fictitious
customer sites. Constraints (15) ensure that the initial flow propagation from any given arc
of Graph G occurs in an “unbroken” fashion. Finally, constraints (16) stipulate (in light of the
other constraints) that no part of the flow from arc (i,r, j) of Graph G can propagate back onto
level i of the graph if i pertains to a non-fictitious customer site or onto level j if j pertains to a
non-fictitious customer site.
The correspondence between the constraints of our path-based IP model above and those
of Problem BNF are as follows. Constraints (1) and (2) of Problem BNF are “enforced” (i.e.,
the equivalent of the condition they impose is enforced) in the path-based IP model by the
combination of constraints (7), (14), and (16). Constraints (3) of Problem BNF are enforced
through the combination of constraints (7)-(10) of the path-based IP model. Finally, constraints
(4) of the BNF-based model are enforced in the path-based IP model through the structure of
Graph G itself (since travel from the fictitious customer site to a non-fictitious customer site is
not allowed for a given salesman). Hence, the “complicating” constraints of the BNF-based
model are handled only implicitly in our path-based IP reformulation above.

Remark 16 Following standard conventions, any y- or z-variable that is not used the system (7)-(18)
(i.e., that is not defined in Notation 15) is assumed to be constrained to equal zero throughout the
remainder of the chapter.

Definition 17

1. Let QI := {(y,z) ∈ R
m : (y,z) satis f ies (7)-(18)}, where m is the number of variables in the

system (7)-(18). We refer to Conv(QI) as the “IP Polytope;”

2. We refer to the linear programming relaxation of QI as the “LP Polytope,” and denote it
by QL; i.e., QL := {(y,z) ∈ R

m : (y,z) satisfies (7)-(16), and 0 ≤ (y, z) ≤ 1}, where m is the
number of variables in the system (7)-(16).
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Theorem 18 The following statements are true for QI and QL:

(i) The number of variables in the system (7)-(16) is O
(
c9 · s3) ;

(ii) The number of constraints in the system (7)-(16) is O
(
c8 · s3) .

Proof. Trivial.

Theorem 19 (y,z) ∈ QI ⇐⇒ There exists exactly one n-tuple (ir ∈ C, r = 1, . . . ,n) such that:
(i)

z(arb)(csd)(ep f ) =

{
1 for p,r, s ∈ R : r < s < p; (a,b, c,d, e, f ) = (ir, ir+1, is, is+1, ip, ip+1)
0 otherwise

(ii)

y(arb)(csd) =

{
1 for r, s ∈ R : r < s; (a,b, c,d) = (ir, ir+1, is, is+1)
0 otherwise

(iii) ∀ t ∈ C, ∃p ∈ R : ip = t;
(iv) ∀ (p,q) ∈ (R, R\{p}), (ip, iq) ∈ C

2 =⇒ ip �= iq.

Proof. Let (y,z) ∈ QI . Then, given (17)-(18):
(a) =⇒:

(a.1) Constraint (7) =⇒There exists exactly one 4-tuple (ir ∈ C, r = 1, . . . ,4) such that:

z(i1,1,i2)(i2, 2,i3)(i3, 3,i4) = 1 (19)

Condition (i) follows directly from the combination of (19) with constraints (8)-(10).

(a.2) Condition (ii) follows from the combination of condition (i) with constraints (11)-(13),
and constraints (15).

(a.3) Condition (iii) follows from the combination of conditions (i) and (ii) with constraints
(14).

(a.4) Condition (iv) follows from the combination of Conditions (i) and (ii) with constraints
(16).

(b)⇐=: Trivial.

Theorem 20 The following statements hold true:

(i) There exists a one-to-one mapping between the points of QI and the MmTSP-paths-in-G;

(ii) There exists a one-to-one mapping between the points of QI , and the extreme points of
the BNF-based polytope (i.e., the points of P1);

(iii) There exists a one-to-one mapping between the points of QI and the MmTSP schedules.

Proof. Conditions (i) follows directly from the combination of Theorem 19 and Definition
11.2. Conditions (ii) and (iii) follow from the combination of condition (i) with Theorem 12.

Definition 21 Let (y,z) ∈ QI . Let (ir ∈ C, r = 1, . . . ,n) be the n-tuple satisfying Theorem 19 for
(y,z). We refer to the solution to Problem BNF corresponding to (y,z) as the “MmTSP schedule
corresponding to (y,z),” and denote it by the ordered set M(y,z) :=

(
(pr, ir), r ∈ R : ir �= c

)
.
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y(irj)(kst) ∈ {0,1}; r, s ∈ R : r < s; (i, j, k, t) ∈ (C, Fr(i), C, Fs(k)) (17)
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(i, j, k, t, u, v) ∈ (C, F1(i), C, Fs(k), C, Fp(u)). (18)

One unit of flow is initiated at stage 1 of Graph G by constraint (7). Constraints (8), (9), and (10)
are extended Kirchhoff Equations (see Bazaraa et al., 2010, pp. 454) that ensure that all flows
initiated at stage 1 propagate onward, to stage n of the graph, in a connected and balanced
manner. Specifically, the total flow that traverses both of two given arcs (i,r, j) and (k, s, t)
(where s > r) and also enters a given node (u, p) is equal to the total flow that traverses
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pair of arcs of Graph G across all the stages of the graph. We refer to constraints (14) as the
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must propagate on to every level of the graph pertaining to a non-fictitious customer site, or
be part of a flow propagation that spans the levels of the graph pertaining to non-fictitious
customer sites. Constraints (15) ensure that the initial flow propagation from any given arc
of Graph G occurs in an “unbroken” fashion. Finally, constraints (16) stipulate (in light of the
other constraints) that no part of the flow from arc (i,r, j) of Graph G can propagate back onto
level i of the graph if i pertains to a non-fictitious customer site or onto level j if j pertains to a
non-fictitious customer site.
The correspondence between the constraints of our path-based IP model above and those
of Problem BNF are as follows. Constraints (1) and (2) of Problem BNF are “enforced” (i.e.,
the equivalent of the condition they impose is enforced) in the path-based IP model by the
combination of constraints (7), (14), and (16). Constraints (3) of Problem BNF are enforced
through the combination of constraints (7)-(10) of the path-based IP model. Finally, constraints
(4) of the BNF-based model are enforced in the path-based IP model through the structure of
Graph G itself (since travel from the fictitious customer site to a non-fictitious customer site is
not allowed for a given salesman). Hence, the “complicating” constraints of the BNF-based
model are handled only implicitly in our path-based IP reformulation above.

Remark 16 Following standard conventions, any y- or z-variable that is not used the system (7)-(18)
(i.e., that is not defined in Notation 15) is assumed to be constrained to equal zero throughout the
remainder of the chapter.

Definition 17

1. Let QI := {(y,z) ∈ R
m : (y,z) satis f ies (7)-(18)}, where m is the number of variables in the

system (7)-(18). We refer to Conv(QI) as the “IP Polytope;”

2. We refer to the linear programming relaxation of QI as the “LP Polytope,” and denote it
by QL; i.e., QL := {(y,z) ∈ R

m : (y,z) satisfies (7)-(16), and 0 ≤ (y, z) ≤ 1}, where m is the
number of variables in the system (7)-(16).
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Theorem 18 The following statements are true for QI and QL:

(i) The number of variables in the system (7)-(16) is O
(
c9 · s3) ;

(ii) The number of constraints in the system (7)-(16) is O
(
c8 · s3) .

Proof. Trivial.

Theorem 19 (y,z) ∈ QI ⇐⇒ There exists exactly one n-tuple (ir ∈ C, r = 1, . . . ,n) such that:
(i)

z(arb)(csd)(ep f ) =

{
1 for p,r, s ∈ R : r < s < p; (a,b, c,d, e, f ) = (ir, ir+1, is, is+1, ip, ip+1)
0 otherwise

(ii)

y(arb)(csd) =

{
1 for r, s ∈ R : r < s; (a,b, c,d) = (ir, ir+1, is, is+1)
0 otherwise

(iii) ∀ t ∈ C, ∃p ∈ R : ip = t;
(iv) ∀ (p,q) ∈ (R, R\{p}), (ip, iq) ∈ C

2 =⇒ ip �= iq.

Proof. Let (y,z) ∈ QI . Then, given (17)-(18):
(a) =⇒:

(a.1) Constraint (7) =⇒There exists exactly one 4-tuple (ir ∈ C, r = 1, . . . ,4) such that:

z(i1,1,i2)(i2, 2,i3)(i3, 3,i4) = 1 (19)

Condition (i) follows directly from the combination of (19) with constraints (8)-(10).

(a.2) Condition (ii) follows from the combination of condition (i) with constraints (11)-(13),
and constraints (15).

(a.3) Condition (iii) follows from the combination of conditions (i) and (ii) with constraints
(14).

(a.4) Condition (iv) follows from the combination of Conditions (i) and (ii) with constraints
(16).

(b)⇐=: Trivial.

Theorem 20 The following statements hold true:

(i) There exists a one-to-one mapping between the points of QI and the MmTSP-paths-in-G;

(ii) There exists a one-to-one mapping between the points of QI , and the extreme points of
the BNF-based polytope (i.e., the points of P1);

(iii) There exists a one-to-one mapping between the points of QI and the MmTSP schedules.

Proof. Conditions (i) follows directly from the combination of Theorem 19 and Definition
11.2. Conditions (ii) and (iii) follow from the combination of condition (i) with Theorem 12.

Definition 21 Let (y,z) ∈ QI . Let (ir ∈ C, r = 1, . . . ,n) be the n-tuple satisfying Theorem 19 for
(y,z). We refer to the solution to Problem BNF corresponding to (y,z) as the “MmTSP schedule
corresponding to (y,z),” and denote it by the ordered set M(y,z) :=

(
(pr, ir), r ∈ R : ir �= c

)
.
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5. Linear programming reformulation of the BNF-based Polytope

Our linear programming reformulation of the BNF-based Polytope consists of QL. We show
that every point of QL is a convex combination of points of QI , thereby establishing (in light
of Theorems 13 and 20) the one-to-one correspondence between the extreme points of QL and
the points of QI .

Theorem 22 (Valid constraints) The following constraints are valid for QL:
(i) ∀(r, s, t) ∈ R3 : r < s < t,

∑
ir∈C

∑
jr∈Fr(ir)

∑
is∈C

∑
js∈Fs(is)

∑
it∈C

∑
jt∈Ft(it)

z(ir ,r,jr)(is ,s,js)(it ,t,jt) = 1

(ii) ∀(r, s) ∈ R2 : r < s,
∑

ir∈C

∑
jr∈Fr(ir)

∑
is∈C

∑
js∈Fs(is)

y(ir ,r,jr)(is ,s,js) = 1

Proof. (i) Condition (i). First, note that by constraint (7), condition (i) of the theorem holds for
(r, s, t) = (1,2,3).
Now, assume 1 < r < s < t. Then, we have:

∑
ir∈C

∑
jr∈Fr(ir)

∑
is∈C

∑
js∈Fs(is)

∑
it∈C

∑
jt∈Ft(it)

z(ir ,r,jr)(is ,s,js)(it ,t,jt)

= ∑
ir∈C

∑
jr∈Fr(ir)

∑
is∈C

∑
js∈Fs(is)

y(ir ,r,jr)(is ,s,js) (Using (11))

= ∑
ir∈C

∑
jr∈Fr(ir)

∑
is∈C

∑
js∈Fs(is)

∑
i1∈C

∑
j1∈F1(i1)

z(i1,1,j1)(ir ,r,jr)(is ,s,js) (Using (13))

= ∑
i1∈C

∑
j1∈F1(i1)

∑
is∈C

∑
js∈Fs(is)

∑
ir∈C

∑
jr∈Fr(ir)

z(i1,1,j1)(ir ,r,jr)(is ,s,js) (Re-arranging)

= ∑
i1∈C

∑
j1∈F1(i1)

∑
is∈C

∑
js∈Fs(is)

y(i1,1,j1)(is ,s,js) (Using (12))

= ∑
i1∈C

∑
j1∈F1(i1)

∑
is∈C

∑
js∈Fs(is)

∑
i2∈C

∑
j2∈F2(i2)

z(i1,1,j1)(i2,2,j2)(is ,s,js) (Using (12))

= ∑
i1∈C

∑
j1∈F1(i1)

∑
i2∈C

∑
j2∈F2(i2)

∑
is∈C

∑
js∈Fs(is)

z(i1,1,j1)(i2,2,j2)(is ,s,js) (Re-arranging)

= ∑
i1∈C

∑
j1∈F1(i1)

∑
i2∈C

∑
j2∈F2(i2)

y(i1,1,j1)(i2,2,j2) (Using (11))

= ∑
i1∈C

∑
j1∈F1(i1)

∑
i2∈C

∑
j2∈F2(i2)

∑
i3∈C

∑
j3∈F3(i3)

z(i1,1,j1)(i2,2,j2)(i3,3,j3) (Using (11))

= 1 (Using (7)).

(ii) Condition (ii) of the theorem follows directly from the combination of condition (i) and
constraints (11)-(13).
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Lemma 23 Let (y,z) ∈ QL. The following holds true:

∀r ∈ R : r ≤ n − 3, ∀(ir, ir+1, ir+2, ir+3) ∈ (C, Fr(ir),C, Fr+2(ir+2)),

y(ir ,r,ir+1)(ir+2,r+2,ir+3) > 0 ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

(i) ir+2 ∈ Fr+1(ir+1);
and

(ii) z(ir ,r,ir+1)(ir+1,r+1,ir+2)(ir+2,r+2,ir+3) > 0.

(20)

Proof. For r ∈ R, constraints (12) for s = r + 1 and p = r + 2 can be written as:

y(ir ,r,ir+1)(ir+2,r+2,ir+3) − ∑
k∈C

∑
t∈Fr+1(k)

z(ir ,r,ir+1)(k,r+1,t)(ir+2,r+2,ir+3) = 0

∀(ir, ir+1, ir+2, ir+3) ∈ (C, Fr(ir),C, Fr+2(ir+2)). (21)

Constraints (11)-(13), and (15) =⇒
∀(ir, ir+1, ir+2, ir+3,k, t) ∈ (C, Fr(ir),C, Fr+2(ir+2),C,C),
z(ir ,r,ir+1)(k,r+1,t)(ir+2,r+2,ir+3) > 0 =⇒ (k = ir+1, and t = ir+2).

(22)

Using (22), (21) can be written as:

y(ir ,r,ir+1)(ir+2,r+2,ir+3) − z(ir ,r,ir+1)(ir+1,r+1,ir+2)(ir+2,r+2,ir+3) = 0

∀(ir, ir+1, ir+2, ir+3) ∈ (C, Fr(ir),C, Fr+2(ir+2)). (23)

Condition (ii) of the equivalence in the lemma follows directly from (23).
Condition (i) follows from Remark 16 and the fact that z(ir ,r,ir+1)(ir+1,r+1,ir+2)(ir+2,r+2,ir+3) is not
defined if ir+2 /∈ Fr+1(ir+1).

Notation 24 (“Support graph” of (y,z)) For (y,z) ∈ QL :

1. The sub-graph of Graph G induced by the positive components of (y,z) is denoted as:

G(y,z) :=(V(y,z), A(y,z)),

where:

V(y,z) :=

⎧
⎨
⎩(i,1) ∈ V : ∑

j∈F1(i)
∑

t∈F2(j)
y(i,1,j)(j,2,t) > 0

⎫⎬
⎭∪

⎧
⎨
⎩(i,r) ∈ V : 1 < r < n; ∑

a∈C

∑
b∈F1(a)

∑
j∈Fr(i)

y(a,1,b)(irj) > 0

⎫
⎬
⎭∪

⎧
⎨
⎩(i,n) ∈ V : ∑

a∈C

∑
b∈F1(a)

∑
j∈Bn(i)

y(a,1,b)(j,r−1,i) > 0

⎫
⎬
⎭ ; (24)
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5. Linear programming reformulation of the BNF-based Polytope

Our linear programming reformulation of the BNF-based Polytope consists of QL. We show
that every point of QL is a convex combination of points of QI , thereby establishing (in light
of Theorems 13 and 20) the one-to-one correspondence between the extreme points of QL and
the points of QI .

Theorem 22 (Valid constraints) The following constraints are valid for QL:
(i) ∀(r, s, t) ∈ R3 : r < s < t,

∑
ir∈C

∑
jr∈Fr(ir)

∑
is∈C

∑
js∈Fs(is)

∑
it∈C

∑
jt∈Ft(it)

z(ir ,r,jr)(is ,s,js)(it ,t,jt) = 1

(ii) ∀(r, s) ∈ R2 : r < s,
∑

ir∈C

∑
jr∈Fr(ir)

∑
is∈C

∑
js∈Fs(is)

y(ir ,r,jr)(is ,s,js) = 1

Proof. (i) Condition (i). First, note that by constraint (7), condition (i) of the theorem holds for
(r, s, t) = (1,2,3).
Now, assume 1 < r < s < t. Then, we have:

∑
ir∈C

∑
jr∈Fr(ir)

∑
is∈C

∑
js∈Fs(is)

∑
it∈C

∑
jt∈Ft(it)

z(ir ,r,jr)(is ,s,js)(it ,t,jt)

= ∑
ir∈C

∑
jr∈Fr(ir)

∑
is∈C

∑
js∈Fs(is)

y(ir ,r,jr)(is ,s,js) (Using (11))

= ∑
ir∈C

∑
jr∈Fr(ir)

∑
is∈C

∑
js∈Fs(is)

∑
i1∈C

∑
j1∈F1(i1)

z(i1,1,j1)(ir ,r,jr)(is ,s,js) (Using (13))

= ∑
i1∈C

∑
j1∈F1(i1)

∑
is∈C

∑
js∈Fs(is)

∑
ir∈C

∑
jr∈Fr(ir)

z(i1,1,j1)(ir ,r,jr)(is ,s,js) (Re-arranging)

= ∑
i1∈C

∑
j1∈F1(i1)

∑
is∈C

∑
js∈Fs(is)

y(i1,1,j1)(is ,s,js) (Using (12))

= ∑
i1∈C

∑
j1∈F1(i1)

∑
is∈C

∑
js∈Fs(is)

∑
i2∈C

∑
j2∈F2(i2)

z(i1,1,j1)(i2,2,j2)(is ,s,js) (Using (12))

= ∑
i1∈C

∑
j1∈F1(i1)

∑
i2∈C

∑
j2∈F2(i2)

∑
is∈C

∑
js∈Fs(is)

z(i1,1,j1)(i2,2,j2)(is ,s,js) (Re-arranging)

= ∑
i1∈C

∑
j1∈F1(i1)

∑
i2∈C

∑
j2∈F2(i2)

y(i1,1,j1)(i2,2,j2) (Using (11))

= ∑
i1∈C

∑
j1∈F1(i1)

∑
i2∈C

∑
j2∈F2(i2)

∑
i3∈C

∑
j3∈F3(i3)

z(i1,1,j1)(i2,2,j2)(i3,3,j3) (Using (11))

= 1 (Using (7)).

(ii) Condition (ii) of the theorem follows directly from the combination of condition (i) and
constraints (11)-(13).
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Lemma 23 Let (y,z) ∈ QL. The following holds true:

∀r ∈ R : r ≤ n − 3, ∀(ir, ir+1, ir+2, ir+3) ∈ (C, Fr(ir),C, Fr+2(ir+2)),

y(ir ,r,ir+1)(ir+2,r+2,ir+3) > 0 ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

(i) ir+2 ∈ Fr+1(ir+1);
and

(ii) z(ir ,r,ir+1)(ir+1,r+1,ir+2)(ir+2,r+2,ir+3) > 0.

(20)

Proof. For r ∈ R, constraints (12) for s = r + 1 and p = r + 2 can be written as:

y(ir ,r,ir+1)(ir+2,r+2,ir+3) − ∑
k∈C

∑
t∈Fr+1(k)

z(ir ,r,ir+1)(k,r+1,t)(ir+2,r+2,ir+3) = 0

∀(ir, ir+1, ir+2, ir+3) ∈ (C, Fr(ir),C, Fr+2(ir+2)). (21)

Constraints (11)-(13), and (15) =⇒
∀(ir, ir+1, ir+2, ir+3,k, t) ∈ (C, Fr(ir),C, Fr+2(ir+2),C,C),
z(ir ,r,ir+1)(k,r+1,t)(ir+2,r+2,ir+3) > 0 =⇒ (k = ir+1, and t = ir+2).

(22)

Using (22), (21) can be written as:

y(ir ,r,ir+1)(ir+2,r+2,ir+3) − z(ir ,r,ir+1)(ir+1,r+1,ir+2)(ir+2,r+2,ir+3) = 0

∀(ir, ir+1, ir+2, ir+3) ∈ (C, Fr(ir),C, Fr+2(ir+2)). (23)

Condition (ii) of the equivalence in the lemma follows directly from (23).
Condition (i) follows from Remark 16 and the fact that z(ir ,r,ir+1)(ir+1,r+1,ir+2)(ir+2,r+2,ir+3) is not
defined if ir+2 /∈ Fr+1(ir+1).

Notation 24 (“Support graph” of (y,z)) For (y,z) ∈ QL :

1. The sub-graph of Graph G induced by the positive components of (y,z) is denoted as:

G(y,z) :=(V(y,z), A(y,z)),

where:

V(y,z) :=

⎧
⎨
⎩(i,1) ∈ V : ∑

j∈F1(i)
∑

t∈F2(j)
y(i,1,j)(j,2,t) > 0

⎫⎬
⎭∪

⎧
⎨
⎩(i,r) ∈ V : 1 < r < n; ∑

a∈C

∑
b∈F1(a)

∑
j∈Fr(i)

y(a,1,b)(irj) > 0

⎫
⎬
⎭∪

⎧
⎨
⎩(i,n) ∈ V : ∑

a∈C

∑
b∈F1(a)

∑
j∈Bn(i)

y(a,1,b)(j,r−1,i) > 0

⎫
⎬
⎭ ; (24)
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A(y,z) :=

⎧⎨
⎩(i,1, j) ∈ A : ∑

t∈F2(j)
y(i,1,j)(j,2,t) > 0

⎫⎬
⎭∪

⎧⎨
⎩(i,r, j) ∈ A : r > 1; ∑

a∈C

∑
b∈F1(a)

y(a,1,b)(irj) > 0

⎫⎬
⎭ . (25)

2. The set of arcs of G(y,z) originating at stage r of G(y,z) is denoted Ar(y,z);

3. The index set associated with Ar(y,z) is denoted Λr(y,z) := {1,2, . . . , |Ar(y,z)|}. For
simplicity Λr(y,z) will be henceforth written as Λr;

4. The νth arc in Ar(y,z) is denoted as ar,ν(y,z). For simplicity ar,ν(y,z) will be henceforth
written as ar,ν;

5. For (r,ν) ∈ (R,Λr), the tail of ar,ν is labeled tr,ν(y,z); the head of ar,ν is labeled hr,ν(y,z).
For simplicity, tr,ν(y,z) will be henceforth written as tr,ν, and hr,ν(y,z), as hr,ν;

6. Where that causes no confusion (and where that is convenient), for (r, s) ∈ R2 : s > r, and
(ρ,σ) ∈ (Λr,Λs), “y(ir,ρ ,r,jr,σ)(is,σ ,s,js,σ)” will be henceforth written as “y(r,ρ)(s,σ).” Similarly, for

(r, s, t) ∈ R3 with r < s < t and (ρ,σ,τ) ∈ (Λr,Λs,Λt), “z(ir,ρ ,r,jr,ρ)(is,σ ,s,js,σ)(it,τ ,t,jt,τ)” will be
henceforth written as “z(r,ρ)(s,σ)(t,τ);”

7. ∀(r, s) ∈ R2 : s ≥ r + 2, ∀(ρ,σ) ∈ (Λr,Λs), the set of arcs at stage (r + 1) of G(y, z) through
which flow propagates from ar,ρ onto as,σ is denoted:

I(r,ρ)(s,σ)(y,z) := {λ ∈ Λr+1 : z(r,ρ)(r+1,λ)(s,σ) > 0};

8. ∀(r, s) ∈ R2 : s ≥ r + 2, ∀(ρ,σ) ∈ (Λr,Λs), the set of arcs at stage (s − 1) of G(y, z) through
which flow propagates from ar,ρ onto as,σ is denoted:

J(r,ρ)(s,σ)(y,z) := {μ ∈ Λs−1 : z(r,ρ)(s−1,μ)(s,σ) > 0}.

Remark 25 Let (y,z) ∈ QL. An arc of G is included in G(y,z) iff at least one of the flow variables (or
entries of (y,z)) associated with the arc (as defined in Notation 15) is positive.

Theorem 26 Let (y,z) ∈ QL. Then,

∀ (r, s) ∈ R2 : s ≥ r + 2, ∀(ρ,σ) ∈ (Λr,Λs),

( (i) y(r,ρ)(s,σ) > 0 ⇐⇒ I(r,ρ)(s,σ)(y,z) �=∅;

(ii) y(r,ρ)(s,σ) > 0 ⇐⇒ J(r,ρ)(s,σ)(y,z) �=∅;

(iii) y(r,ρ)(s,σ) = ∑
λ∈I(r,ρ)(s,σ)(y,z)

z(r,ρ)(r+1,λ)(s,σ) = ∑
μ∈J(r,ρ)(s,σ)(y,z)

z(r,ρ)(s−1,μ)(s,σ) ).

Proof. The theorem follows directly from the combination of constraints (12) and constraints
(15).
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Definition 27 (“Level-walk-in-(y,z)”) Let (y,z) ∈ QL. For (r, s) ∈ R2 : s ≥ r + 2, we refer to the
set of arcs, {ar,νr , ar+1,νr+1 , . . . , as,νs}, of a walk of G(y,z) as a “level-walk-in-(y,z) from (r,νr) to
(s,νs)” (plural: “level-walks-in-(y,z) from (r,νr) to (s,νs)”) if ∀(g, p,q) ∈ R3 : r ≤ g < p < q ≤ s,
z(g,νg)(p,νp)(q,νq) > 0.

Notation 28 Let (y,z) ∈ QL. ∀(r, s) ∈ R2 : s ≥ r + 2, ∀(ρ,σ) ∈ (Λr,Λs),

1. The set of all level-walks-in-(y,z) from (r,ρ) to (s,σ) is denoted W(r,ρ)(s,σ)(y,z);

2. The index set associated with W(r,ρ)(s,σ)(y,z) is denoted Π(r,ρ)(s,σ)(y,z) := {1, 2, . . . ,���W(r,ρ)(s,σ)(y,z)
���};

3. The kth element of W(r,ρ)(s,σ)(y,z) (k ∈ Π(r,ρ)(s,σ)(y,z)) is denoted P(r,ρ),(s,σ),k(y,z);

4. ∀k ∈ Π(r,ρ)(s,σ)(y,z), the (s − r + 2)-tuple of customer site indices included in
P(r,ρ),(s,σ),k(y,z) is denoted C(r,ρ),(s,σ),k(y,z); i.e., C(r,ρ),(s,σ),k(y,z) := (tr,ir,k

, . . . , ts+1,is+1,k
),

where the (p, ip,k)’s index the arcs in P(r,ρ),(s,σ),k(y,z), and ts+1,is+1,k
:= hs,is,k

.

Theorem 29 Let (y,z) ∈ QL. The following holds true:
∀(r, s) ∈ R2 : s ≥ r + 2, ∀(ρ,σ) ∈ (Λr,Λs),

y(r,ρ)(s,σ) > 0 ⇐⇒
⎧⎨
⎩

(i) W(r,ρ)(s,σ)(y,z) �=∅;and
(ii) ∀p ∈ R : r < p < s, ∀νp ∈ Λp,
z(r,ρ)(p,νp)(s,σ) > 0 ⇐⇒ ∃ k ∈ Π(r,ρ)(s,σ)(y,z) : ap,νp ∈ P(r,ρ),(s,σ),k(y,z).

Proof. First, note that it follows directly from Lemma 23 that the theorem holds true for all
(r, s) ∈ R2 with s = r + 2, and all (νr,νs) ∈ (Λr,Λs).
(a) =⇒:
Assume there exists an integer ω ≥ 2 such that the theorem holds true for all (r, s) ∈ R2 with s
= r + ω, and all (νr,νs) ∈ (Λr,Λs). We will show that the theorem must then also hold for all
(r, s) ∈ R2 with s = r + ω + 1, and all (νr,νs) ∈ (Λr,Λs).
Let (p,q) ∈ R2 with q = p + ω + 1, and (α, β) ∈ (Λp,Λq) be such that:

y(p,α)(q,β) > 0. (26)

(a.1) Relation (26) and Theorem 26=⇒

I(p,α)(q,β)(y,z) �=∅. (27)

It follows from (27), Definition 24.7, and constraints (13) that:

∀λ ∈ I(p,α)(q,β)(y,z), y(p+1,λ)(q,β) > 0. (28)

By assumption (since q = (p + 1) + ω), (28) =⇒

(a.1.1) ∀λ ∈ I(p,α)(q,β)(y,z), W(p+1,λ)(q,β)(y,z) �=∅; and (29a)

(a.1.2) ∀λ ∈ I(p,α)(q,β)(y,z), ∀t ∈ R : p + 1 < t < q, ∀τ ∈ Λt,

z(p+1,λ)(t,τ)(q,β) > 0 ⇐⇒ ∃ i ∈ Π(p+1,λ)(q,β)(y,z) : at,τ ∈ P(p+1,λ)(q,β),i(y,z). (29b)
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A(y,z) :=

⎧⎨
⎩(i,1, j) ∈ A : ∑

t∈F2(j)
y(i,1,j)(j,2,t) > 0

⎫⎬
⎭∪

⎧⎨
⎩(i,r, j) ∈ A : r > 1; ∑

a∈C

∑
b∈F1(a)

y(a,1,b)(irj) > 0

⎫⎬
⎭ . (25)

2. The set of arcs of G(y,z) originating at stage r of G(y,z) is denoted Ar(y,z);

3. The index set associated with Ar(y,z) is denoted Λr(y,z) := {1,2, . . . , |Ar(y,z)|}. For
simplicity Λr(y,z) will be henceforth written as Λr;

4. The νth arc in Ar(y,z) is denoted as ar,ν(y,z). For simplicity ar,ν(y,z) will be henceforth
written as ar,ν;

5. For (r,ν) ∈ (R,Λr), the tail of ar,ν is labeled tr,ν(y,z); the head of ar,ν is labeled hr,ν(y,z).
For simplicity, tr,ν(y,z) will be henceforth written as tr,ν, and hr,ν(y,z), as hr,ν;

6. Where that causes no confusion (and where that is convenient), for (r, s) ∈ R2 : s > r, and
(ρ,σ) ∈ (Λr,Λs), “y(ir,ρ ,r,jr,σ)(is,σ ,s,js,σ)” will be henceforth written as “y(r,ρ)(s,σ).” Similarly, for

(r, s, t) ∈ R3 with r < s < t and (ρ,σ,τ) ∈ (Λr,Λs,Λt), “z(ir,ρ ,r,jr,ρ)(is,σ ,s,js,σ)(it,τ ,t,jt,τ)” will be
henceforth written as “z(r,ρ)(s,σ)(t,τ);”

7. ∀(r, s) ∈ R2 : s ≥ r + 2, ∀(ρ,σ) ∈ (Λr,Λs), the set of arcs at stage (r + 1) of G(y, z) through
which flow propagates from ar,ρ onto as,σ is denoted:

I(r,ρ)(s,σ)(y,z) := {λ ∈ Λr+1 : z(r,ρ)(r+1,λ)(s,σ) > 0};

8. ∀(r, s) ∈ R2 : s ≥ r + 2, ∀(ρ,σ) ∈ (Λr,Λs), the set of arcs at stage (s − 1) of G(y, z) through
which flow propagates from ar,ρ onto as,σ is denoted:

J(r,ρ)(s,σ)(y,z) := {μ ∈ Λs−1 : z(r,ρ)(s−1,μ)(s,σ) > 0}.

Remark 25 Let (y,z) ∈ QL. An arc of G is included in G(y,z) iff at least one of the flow variables (or
entries of (y,z)) associated with the arc (as defined in Notation 15) is positive.

Theorem 26 Let (y,z) ∈ QL. Then,

∀ (r, s) ∈ R2 : s ≥ r + 2, ∀(ρ,σ) ∈ (Λr,Λs),

( (i) y(r,ρ)(s,σ) > 0 ⇐⇒ I(r,ρ)(s,σ)(y,z) �=∅;

(ii) y(r,ρ)(s,σ) > 0 ⇐⇒ J(r,ρ)(s,σ)(y,z) �=∅;

(iii) y(r,ρ)(s,σ) = ∑
λ∈I(r,ρ)(s,σ)(y,z)

z(r,ρ)(r+1,λ)(s,σ) = ∑
μ∈J(r,ρ)(s,σ)(y,z)

z(r,ρ)(s−1,μ)(s,σ) ).

Proof. The theorem follows directly from the combination of constraints (12) and constraints
(15).
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Definition 27 (“Level-walk-in-(y,z)”) Let (y,z) ∈ QL. For (r, s) ∈ R2 : s ≥ r + 2, we refer to the
set of arcs, {ar,νr , ar+1,νr+1 , . . . , as,νs}, of a walk of G(y,z) as a “level-walk-in-(y,z) from (r,νr) to
(s,νs)” (plural: “level-walks-in-(y,z) from (r,νr) to (s,νs)”) if ∀(g, p,q) ∈ R3 : r ≤ g < p < q ≤ s,
z(g,νg)(p,νp)(q,νq) > 0.

Notation 28 Let (y,z) ∈ QL. ∀(r, s) ∈ R2 : s ≥ r + 2, ∀(ρ,σ) ∈ (Λr,Λs),

1. The set of all level-walks-in-(y,z) from (r,ρ) to (s,σ) is denoted W(r,ρ)(s,σ)(y,z);

2. The index set associated with W(r,ρ)(s,σ)(y,z) is denoted Π(r,ρ)(s,σ)(y,z) := {1, 2, . . . ,���W(r,ρ)(s,σ)(y,z)
���};

3. The kth element of W(r,ρ)(s,σ)(y,z) (k ∈ Π(r,ρ)(s,σ)(y,z)) is denoted P(r,ρ),(s,σ),k(y,z);

4. ∀k ∈ Π(r,ρ)(s,σ)(y,z), the (s − r + 2)-tuple of customer site indices included in
P(r,ρ),(s,σ),k(y,z) is denoted C(r,ρ),(s,σ),k(y,z); i.e., C(r,ρ),(s,σ),k(y,z) := (tr,ir,k

, . . . , ts+1,is+1,k
),

where the (p, ip,k)’s index the arcs in P(r,ρ),(s,σ),k(y,z), and ts+1,is+1,k
:= hs,is,k

.

Theorem 29 Let (y,z) ∈ QL. The following holds true:
∀(r, s) ∈ R2 : s ≥ r + 2, ∀(ρ,σ) ∈ (Λr,Λs),

y(r,ρ)(s,σ) > 0 ⇐⇒
⎧⎨
⎩

(i) W(r,ρ)(s,σ)(y,z) �=∅;and
(ii) ∀p ∈ R : r < p < s, ∀νp ∈ Λp,
z(r,ρ)(p,νp)(s,σ) > 0 ⇐⇒ ∃ k ∈ Π(r,ρ)(s,σ)(y,z) : ap,νp ∈ P(r,ρ),(s,σ),k(y,z).

Proof. First, note that it follows directly from Lemma 23 that the theorem holds true for all
(r, s) ∈ R2 with s = r + 2, and all (νr,νs) ∈ (Λr,Λs).
(a) =⇒:
Assume there exists an integer ω ≥ 2 such that the theorem holds true for all (r, s) ∈ R2 with s
= r + ω, and all (νr,νs) ∈ (Λr,Λs). We will show that the theorem must then also hold for all
(r, s) ∈ R2 with s = r + ω + 1, and all (νr,νs) ∈ (Λr,Λs).
Let (p,q) ∈ R2 with q = p + ω + 1, and (α, β) ∈ (Λp,Λq) be such that:

y(p,α)(q,β) > 0. (26)

(a.1) Relation (26) and Theorem 26=⇒

I(p,α)(q,β)(y,z) �=∅. (27)

It follows from (27), Definition 24.7, and constraints (13) that:

∀λ ∈ I(p,α)(q,β)(y,z), y(p+1,λ)(q,β) > 0. (28)

By assumption (since q = (p + 1) + ω), (28) =⇒

(a.1.1) ∀λ ∈ I(p,α)(q,β)(y,z), W(p+1,λ)(q,β)(y,z) �=∅; and (29a)

(a.1.2) ∀λ ∈ I(p,α)(q,β)(y,z), ∀t ∈ R : p + 1 < t < q, ∀τ ∈ Λt,

z(p+1,λ)(t,τ)(q,β) > 0 ⇐⇒ ∃ i ∈ Π(p+1,λ)(q,β)(y,z) : at,τ ∈ P(p+1,λ)(q,β),i(y,z). (29b)

273
Linear Programming Formulation of the
Multi-Depot Multiple Traveling Salesman Problem with Differentiated Travel Costs



18 Traveling Salesman Problem, Theory and Applications

(a.2) Relation (26) and Theorem 26 =⇒

J(p,α)(q,β)(y,z) �=∅. (30)

It follows from (30), Definition 24.8, and constraints (11) that:

∀μ ∈ J(p,α)(q,β)(y,z), y(p,α)(q−1,μ) > 0. (31)

By assumption (since (q − 1) = p + ω), (31) =⇒

(a.2.1) ∀μ ∈ J(p,α)(q,β)(y,z), W(p,α)(q−1,μ)(y,z) �=∅; and (32a)

(a.2.2) ∀μ ∈ J(p,α)(q,β)(y,z), ∀t ∈ R : p < t < q − 1, ∀τ ∈ Λt,

z(p,α)(t,τ)(q−1,μ) > 0 ⇐⇒ ∃ k ∈ Π(p,α)(q−1,μ)(y,z) : at,τ ∈ P(p,α)(q−1,μ),k(y,z). (32b)

(a.3) Constraints (11)-(14) and Theorem 26.iii =⇒

(a.3.1) ∀μ ∈ Λq−1, ∃ �λ ∈ I(p,α)(q,β)(y,z); i ∈ Π(p+1,λ)(q,β)(y,z)� :
〈

aq−1,μ ∈ P(p+1,λ)(q,β),i(y,z)
〉

; and (33a)

(a.3.2) ∀λ ∈ Λp+1, ∃ �μ ∈ J(p,α)(q,β)(y,z); k ∈ Π(p,α)(q−1,μ)(y,z)� :
〈

ap+1,λ ∈ P(p,α)(q−1,μ),k(y,z)
〉

. (33b)

(a.4) From the combination of (33a), (33b), constraints (9), and constraints (14), we must have
that:

∃ �λ ∈ I(p,α)(q,β)(y,z); i ∈ Π(p+1,λ)(q,β)(y,z); μ ∈ J(p,α)(q,β)(y,z); k ∈ Π(p,α)(q−1,μ)(y,z)� :
〈
∀t ∈ R : p < t < q, ∀τ ∈ Λt : at,τ ∈ P(p+1,λ)(q,β),i(y,z), z(p,α)(t,τ)(q,β) > 0;
(
P(p+1,λ)(q,β),i(y,z)\{aq,β}

)
=

(
P(p,α)(q−1,μ),k(y,z)\{ap,α}

)
�=∅

〉
. (34)

(In words, (34) says that there must exist level-walks-in-(y,z) from (p + 1,λ) to (q, β), and
level-walk-in-(y,z) from (p,α) to (q− 1, β) that “overlap” at intermediary stages between (p+ 1)
and (q − 1) (inclusive)).
(a.5) Let λ ∈ I(p,α)(q,β)(y,z), i ∈ Π(p+1,λ)(q,β)(y,z), μ ∈ J(p,α)(q,β)(y,z), and k ∈ Π(p,α)(q−1,μ)(y,z)
be such that they satisfy (34). Then, it follows directly from definitions that

P := {ap,α} ∪ P(p+1,λ)(q,β),i(y,z) = {aq,β} ∪ P(p,α)(q−1,μ),k(y,z) (35)

is a level-walk-in-(y,z) from (p,α) to (q, β).
Hence, we have that W(p,α)(q,β)(y,z) �=∅.
(b) ⇐=: Follows directly from definitions and constraints (12).
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Theorem 30 Let (y,z) ∈ QL. Then, ∀(α, β) ∈ (Λ1,Λn−1) : y(1,α)(n−1,β) > 0, the following are true:
(i) W(1,α)(n−1,β)(y,z) �=∅, and Π(1,α)(n−1,β)(y,z) �=∅;
(ii) ∀k ∈ Π(1,α)(n−1,β)(y,z), C(1,α)(n−1,β),k(y,z) ⊇ C;
(iii) ∀k ∈ Π(1,α)(n−1,β)(y,z), ∀(p,q) ∈ (R, R\{p}),(
(ip, iq) ∈ C(1,α)(n−1,β),k(y,z))2, and (ip, iq) �= (c,c)

)
=⇒ ip �= iq.

Proof.
Condition (i) follows from Theorem 29.
Condition (ii) follows from constraints (14).
Condition (iii) follows from the combination of condition (i) and constraints (16).

Definition 31 (“MmTSP-path-in-(y,z)”) Let (y,z) ∈ QL. ∀(ν1,νn−1) ∈ (Λ1,Λn−1), a
level-walk-in-(y,z) from (1,ν1) to (n − 1,νn−1) is referred to as a “MmTSP-path-in-(y,z) (from
(1,ν1) to (n − 1,νn−1))” (plural: “MmTSP -paths-in-(y,z) (from (1,ν1) to (n − 1,νn−1))).”

Theorem 32 (Equivalences for MmTSP-paths-in-(y,z)) For (y,z) ∈ QL :

(i) Every MmTSP-path-in-(y,z) corresponds to exactly one MmTSP-path-in-G;

(ii) Every MmTSP-path-in-(y,z) corresponds to exactly one extreme point of the BNF-based
Polytope;

(iii) Every MmTSP-path-in-(y,z) corresponds to exactly one point of QI ;

(iv) Every MmTSP-path-in-(y,z) corresponds to exactly one MmTSP schedule.

Proof. Condition (i) follows from Definition 11.2 and Theorem 30. Conditions (ii) − (iv)
follow from the combination of condition (i) with Theorem 20.

Theorem 33 Let (y,z) ∈ QL. The following hold true:
(i) ∀r ∈ R, ∀ρ ∈ Λr,

∃
〈

α ∈ Λ1; β ∈ Λn−1; ι ∈ Π(1,α)(n−1,β)(y,z)
〉

: ar,ρ ∈ P(1,α),(n−1,β),ı(y,z).

(ii) ∀(r, s) ∈ R2 : r < s, ∀ρ ∈ Λr; σ ∈ Λs,

y(r,ρ)(s,σ) > 0 ⇐⇒ ∃
〈

α ∈ Λ1; β ∈ Λn−1; ι ∈ Π(1,α)(n−1,β)(y,z)
〉

:

(ar,ρ, as,σ) ∈ P2
(1,α),(n−1,β),ı(y,z);

(iii) ∀(r, s, t) ∈ R3 : r < s < t, ∀ρ ∈ Λr, ∀σ ∈ Λs, ∀τ ∈ Λt,

z(r,ρ)(s,σ)(t,τ) > 0 ⇐⇒ ∃
〈

α ∈ Λ1; β ∈ Λn−1; ι ∈ Π(1,α)(n−1,β)(y,z)
〉

:

(ar,ρ, as,σ, at,τ) ∈ P3
(1,α),(n−1,β),ı(y,z).

Proof. The theorem follows directly from Theorem 29.

Theorem 34 (“Convex independence” of MmTSP-paths-in-(y,z)) Let (y,z) ∈ QL. A given
MmTSP-path-in-(y,z) cannot be represented as a convex combination of other MmTSP-paths-in-(y,z).
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(a.2) Relation (26) and Theorem 26 =⇒

J(p,α)(q,β)(y,z) �=∅. (30)

It follows from (30), Definition 24.8, and constraints (11) that:

∀μ ∈ J(p,α)(q,β)(y,z), y(p,α)(q−1,μ) > 0. (31)

By assumption (since (q − 1) = p + ω), (31) =⇒

(a.2.1) ∀μ ∈ J(p,α)(q,β)(y,z), W(p,α)(q−1,μ)(y,z) �=∅; and (32a)

(a.2.2) ∀μ ∈ J(p,α)(q,β)(y,z), ∀t ∈ R : p < t < q − 1, ∀τ ∈ Λt,

z(p,α)(t,τ)(q−1,μ) > 0 ⇐⇒ ∃ k ∈ Π(p,α)(q−1,μ)(y,z) : at,τ ∈ P(p,α)(q−1,μ),k(y,z). (32b)

(a.3) Constraints (11)-(14) and Theorem 26.iii =⇒

(a.3.1) ∀μ ∈ Λq−1, ∃ �λ ∈ I(p,α)(q,β)(y,z); i ∈ Π(p+1,λ)(q,β)(y,z)� :
〈

aq−1,μ ∈ P(p+1,λ)(q,β),i(y,z)
〉

; and (33a)

(a.3.2) ∀λ ∈ Λp+1, ∃ �μ ∈ J(p,α)(q,β)(y,z); k ∈ Π(p,α)(q−1,μ)(y,z)� :
〈

ap+1,λ ∈ P(p,α)(q−1,μ),k(y,z)
〉

. (33b)

(a.4) From the combination of (33a), (33b), constraints (9), and constraints (14), we must have
that:

∃ �λ ∈ I(p,α)(q,β)(y,z); i ∈ Π(p+1,λ)(q,β)(y,z); μ ∈ J(p,α)(q,β)(y,z); k ∈ Π(p,α)(q−1,μ)(y,z)� :
〈
∀t ∈ R : p < t < q, ∀τ ∈ Λt : at,τ ∈ P(p+1,λ)(q,β),i(y,z), z(p,α)(t,τ)(q,β) > 0;
(
P(p+1,λ)(q,β),i(y,z)\{aq,β}

)
=

(
P(p,α)(q−1,μ),k(y,z)\{ap,α}

)
�=∅

〉
. (34)

(In words, (34) says that there must exist level-walks-in-(y,z) from (p + 1,λ) to (q, β), and
level-walk-in-(y,z) from (p,α) to (q− 1, β) that “overlap” at intermediary stages between (p+ 1)
and (q − 1) (inclusive)).
(a.5) Let λ ∈ I(p,α)(q,β)(y,z), i ∈ Π(p+1,λ)(q,β)(y,z), μ ∈ J(p,α)(q,β)(y,z), and k ∈ Π(p,α)(q−1,μ)(y,z)
be such that they satisfy (34). Then, it follows directly from definitions that

P := {ap,α} ∪ P(p+1,λ)(q,β),i(y,z) = {aq,β} ∪ P(p,α)(q−1,μ),k(y,z) (35)

is a level-walk-in-(y,z) from (p,α) to (q, β).
Hence, we have that W(p,α)(q,β)(y,z) �=∅.
(b) ⇐=: Follows directly from definitions and constraints (12).
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Theorem 30 Let (y,z) ∈ QL. Then, ∀(α, β) ∈ (Λ1,Λn−1) : y(1,α)(n−1,β) > 0, the following are true:
(i) W(1,α)(n−1,β)(y,z) �=∅, and Π(1,α)(n−1,β)(y,z) �=∅;
(ii) ∀k ∈ Π(1,α)(n−1,β)(y,z), C(1,α)(n−1,β),k(y,z) ⊇ C;
(iii) ∀k ∈ Π(1,α)(n−1,β)(y,z), ∀(p,q) ∈ (R, R\{p}),(
(ip, iq) ∈ C(1,α)(n−1,β),k(y,z))2, and (ip, iq) �= (c,c)

)
=⇒ ip �= iq.

Proof.
Condition (i) follows from Theorem 29.
Condition (ii) follows from constraints (14).
Condition (iii) follows from the combination of condition (i) and constraints (16).

Definition 31 (“MmTSP-path-in-(y,z)”) Let (y,z) ∈ QL. ∀(ν1,νn−1) ∈ (Λ1,Λn−1), a
level-walk-in-(y,z) from (1,ν1) to (n − 1,νn−1) is referred to as a “MmTSP-path-in-(y,z) (from
(1,ν1) to (n − 1,νn−1))” (plural: “MmTSP -paths-in-(y,z) (from (1,ν1) to (n − 1,νn−1))).”

Theorem 32 (Equivalences for MmTSP-paths-in-(y,z)) For (y,z) ∈ QL :

(i) Every MmTSP-path-in-(y,z) corresponds to exactly one MmTSP-path-in-G;

(ii) Every MmTSP-path-in-(y,z) corresponds to exactly one extreme point of the BNF-based
Polytope;

(iii) Every MmTSP-path-in-(y,z) corresponds to exactly one point of QI ;

(iv) Every MmTSP-path-in-(y,z) corresponds to exactly one MmTSP schedule.

Proof. Condition (i) follows from Definition 11.2 and Theorem 30. Conditions (ii) − (iv)
follow from the combination of condition (i) with Theorem 20.

Theorem 33 Let (y,z) ∈ QL. The following hold true:
(i) ∀r ∈ R, ∀ρ ∈ Λr,

∃
〈

α ∈ Λ1; β ∈ Λn−1; ι ∈ Π(1,α)(n−1,β)(y,z)
〉

: ar,ρ ∈ P(1,α),(n−1,β),ı(y,z).

(ii) ∀(r, s) ∈ R2 : r < s, ∀ρ ∈ Λr; σ ∈ Λs,

y(r,ρ)(s,σ) > 0 ⇐⇒ ∃
〈

α ∈ Λ1; β ∈ Λn−1; ι ∈ Π(1,α)(n−1,β)(y,z)
〉

:

(ar,ρ, as,σ) ∈ P2
(1,α),(n−1,β),ı(y,z);

(iii) ∀(r, s, t) ∈ R3 : r < s < t, ∀ρ ∈ Λr, ∀σ ∈ Λs, ∀τ ∈ Λt,

z(r,ρ)(s,σ)(t,τ) > 0 ⇐⇒ ∃
〈

α ∈ Λ1; β ∈ Λn−1; ι ∈ Π(1,α)(n−1,β)(y,z)
〉

:

(ar,ρ, as,σ, at,τ) ∈ P3
(1,α),(n−1,β),ı(y,z).

Proof. The theorem follows directly from Theorem 29.

Theorem 34 (“Convex independence” of MmTSP-paths-in-(y,z)) Let (y,z) ∈ QL. A given
MmTSP-path-in-(y,z) cannot be represented as a convex combination of other MmTSP-paths-in-(y,z).
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Proof. The theorem follows directly from the combination of Theorems 13 and 32.

Definition 35 (“Weights” of MmTSP-paths- in-(y,z)) Let (y,z) ∈ QL. For (α, β) ∈ (Λ1,Λn−1)
such that y(1,α)(n−1,β) > 0, and k ∈ Π(1,α)(n−1,β)(y,z), we refer to the quantity

ωαβk(y,z) := min
(r,s,t)∈R3:r<s<t;

(ρ,σ,τ) ∈ (Λr ,Λs ,Λt): (ar,ρ , as,σ , at,τ) ∈ P3
(1,α),(n−1,β),k(y,z)

{
z(r,ρ)(s,σ)(t,τ)

}
(36)

as the ”weight” of (MmTSP-path-in-(y,z)) P(1,α),(n−1,β),k(y,z).

Lemma 36 Let (y,z) ∈ QL. The following holds true:
(i) ∀(r, s, t) ∈ R3 : r < s < t, ∀(νr,νs,νt) ∈ (Λr,Λs,Λt),

z(r,νr)(s,νs)(t,νt) ≥ ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,νr , as,νs , at,νt )∈P3
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z);

(ii) ∀(r, s) ∈ R2 : r < s, ∀(νr,νs) ∈ (Λr,Λs),

y(r,νr)(s,νs) ≥ ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,νr , as,νs )∈P2
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z).

Proof. The theorem follows directly from the combination of Theorem 33, Theorem 34 and the
flow conservations implicit in constraints (11)-(13) (see Bazaraa et al., 2006, pp. 453-474).

Theorem 37 Let (y,z) ∈ QL. The following holds true:
(i) ∀(r, s, t) ∈ R3 : r < s < t, ∀(νr,νs,νt) ∈ (Λr,Λs,Λt),

z(r,νr)(s,νs)(t,νt) = ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,νr , as,νs , at,νt )∈P3
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z).

(ii) ∀(r, s) ∈ R2 : r < s, ∀(νr,νs) ∈ (Λr,Λs),

y(r,νr)(s,νs) = ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,νr , as,νs )∈P2
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z).

Proof.
(i) Let (r, s, t) ∈ R3 : r < s < t.
From the combination of constraints (7)-(10) and Theorems 22 and 34, we have:

∑
ρ∈Λr

∑
σ∈Λs

∑
τ∈Λt

z(r,ρ)(s,σ)(t,τ) = ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z)

ωαβι(y,z) = 1 (37)

Using Theorem 33, we have:

276 Traveling Salesman Problem, Theory and Applications
Linear Programming Formulation of the
Multi-Depot Multiple Traveling Salesman Problem with Differentiated Travel Costs 21

∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z)

ωαβι(y,z) =

∑
ρ∈Λr

∑
σ∈Λs

∑
τ∈Λt

∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,ρ , as,σ , at,τ)∈P3
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z) (38)

Combining (37) and (38), we have:

∑
ρ∈Λr

∑
σ∈Λs

∑
τ∈Λt

⎛
⎜⎜⎜⎜⎝

z(r,ρ)(s,σ)(t,τ) − ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,ρ , as,σ , at,τ)∈P3
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z)

⎞
⎟⎟⎟⎟⎠

= 0. (39)

Condition (i) of the theorem follows directly from the combination of (39) and Lemma 36.i.
(ii) Let (r, s) ∈ R2 : s > r.
From the combination of constraints (7)-(13) and Theorems 22 and 34, we have:

∑
ρ∈Λr

∑
σ∈Λs

y(r,ρ)(s,σ) = ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z)

ωαβι(y,z) = 1 (40)

Using Theorem 33, we have:

∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z)

ωαβι(y,z) =

∑
ρ∈Λr

∑
σ∈Λs

∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,ρ , as,σ)∈P2
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z) (41)

Combining (40) and (41), we have:

∑
ρ∈Λr

∑
σ∈Λs

⎛
⎜⎜⎜⎜⎝

y(r,ρ)(s,σ) − ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,ρ , as,σ)∈P2
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z)

⎞
⎟⎟⎟⎟⎠

= 0. (42)

The theorem follows directly from the combination of (42) and Lemma 36.ii.

Theorem 38

(i) (y, z) ∈ QL ⇐⇒ (y,z) corresponds to a convex combination of MmTSP-paths-in-G with
coefficients equal to the weights of the corresponding MmTSP-paths-in-(y,z);

(ii) (y, z) ∈ QL ⇐⇒ (y,z) corresponds to a convex combination of extreme points
of the BNF Polytope with coefficients equal to the weights of the corresponding
MmTSP-paths-in-(y,z);
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Proof. The theorem follows directly from the combination of Theorems 13 and 32.

Definition 35 (“Weights” of MmTSP-paths- in-(y,z)) Let (y,z) ∈ QL. For (α, β) ∈ (Λ1,Λn−1)
such that y(1,α)(n−1,β) > 0, and k ∈ Π(1,α)(n−1,β)(y,z), we refer to the quantity

ωαβk(y,z) := min
(r,s,t)∈R3:r<s<t;

(ρ,σ,τ) ∈ (Λr ,Λs ,Λt): (ar,ρ , as,σ , at,τ) ∈ P3
(1,α),(n−1,β),k(y,z)

{
z(r,ρ)(s,σ)(t,τ)

}
(36)

as the ”weight” of (MmTSP-path-in-(y,z)) P(1,α),(n−1,β),k(y,z).

Lemma 36 Let (y,z) ∈ QL. The following holds true:
(i) ∀(r, s, t) ∈ R3 : r < s < t, ∀(νr,νs,νt) ∈ (Λr,Λs,Λt),

z(r,νr)(s,νs)(t,νt) ≥ ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,νr , as,νs , at,νt )∈P3
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z);

(ii) ∀(r, s) ∈ R2 : r < s, ∀(νr,νs) ∈ (Λr,Λs),

y(r,νr)(s,νs) ≥ ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,νr , as,νs )∈P2
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z).

Proof. The theorem follows directly from the combination of Theorem 33, Theorem 34 and the
flow conservations implicit in constraints (11)-(13) (see Bazaraa et al., 2006, pp. 453-474).

Theorem 37 Let (y,z) ∈ QL. The following holds true:
(i) ∀(r, s, t) ∈ R3 : r < s < t, ∀(νr,νs,νt) ∈ (Λr,Λs,Λt),

z(r,νr)(s,νs)(t,νt) = ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,νr , as,νs , at,νt )∈P3
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z).

(ii) ∀(r, s) ∈ R2 : r < s, ∀(νr,νs) ∈ (Λr,Λs),

y(r,νr)(s,νs) = ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,νr , as,νs )∈P2
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z).

Proof.
(i) Let (r, s, t) ∈ R3 : r < s < t.
From the combination of constraints (7)-(10) and Theorems 22 and 34, we have:

∑
ρ∈Λr

∑
σ∈Λs

∑
τ∈Λt

z(r,ρ)(s,σ)(t,τ) = ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z)

ωαβι(y,z) = 1 (37)

Using Theorem 33, we have:
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∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z)

ωαβι(y,z) =

∑
ρ∈Λr

∑
σ∈Λs

∑
τ∈Λt

∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,ρ , as,σ , at,τ)∈P3
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z) (38)

Combining (37) and (38), we have:

∑
ρ∈Λr

∑
σ∈Λs

∑
τ∈Λt

⎛
⎜⎜⎜⎜⎝

z(r,ρ)(s,σ)(t,τ) − ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,ρ , as,σ , at,τ)∈P3
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z)

⎞
⎟⎟⎟⎟⎠

= 0. (39)

Condition (i) of the theorem follows directly from the combination of (39) and Lemma 36.i.
(ii) Let (r, s) ∈ R2 : s > r.
From the combination of constraints (7)-(13) and Theorems 22 and 34, we have:

∑
ρ∈Λr

∑
σ∈Λs

y(r,ρ)(s,σ) = ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z)

ωαβι(y,z) = 1 (40)

Using Theorem 33, we have:

∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z)

ωαβι(y,z) =

∑
ρ∈Λr

∑
σ∈Λs

∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,ρ , as,σ)∈P2
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z) (41)

Combining (40) and (41), we have:

∑
ρ∈Λr

∑
σ∈Λs

⎛
⎜⎜⎜⎜⎝

y(r,ρ)(s,σ) − ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,ρ , as,σ)∈P2
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z)

⎞
⎟⎟⎟⎟⎠

= 0. (42)

The theorem follows directly from the combination of (42) and Lemma 36.ii.

Theorem 38

(i) (y, z) ∈ QL ⇐⇒ (y,z) corresponds to a convex combination of MmTSP-paths-in-G with
coefficients equal to the weights of the corresponding MmTSP-paths-in-(y,z);

(ii) (y, z) ∈ QL ⇐⇒ (y,z) corresponds to a convex combination of extreme points
of the BNF Polytope with coefficients equal to the weights of the corresponding
MmTSP-paths-in-(y,z);
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(iii) (y, z) ∈ QL ⇐⇒ (y,z) corresponds to a convex combination of MmTSP schedules with
coefficients equal to the weights of the corresponding MmTSP-paths-in-(y,z).

Proof. The theorem follows directly from Definition 35 and the combination of Theorems 34,
and 37.

Theorem 39 The following hold true:

(i) Ext(QL) = QI ;
(ii) QL = Conv(QI);

Proof. The theorem follows directly from the combination of Theorems 32, 34, and 38.

6. Linear Programming formulation of the MmTSP

6.1 Reformulation of the travel costs
We will now discuss the costs associated with the arcs of Graph G (or, equivalently, with
the variables of the BNF-based model), and the objective function costs to apply over QL,
respectively.

Notation 40 (Reformulated travel costs)

1. ∀r ∈ R, ∀(i, j) ∈ C
2 : (i,r, j) ∈ A,

δirj :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fpr + epr,bpr ,i + epr,i,j if (r = rp; i �= c);
0 if ((r = rp; i = c) or (rp = r = n − 1; i = j = c));
epr,i,j if ((rp < r < rp) or (rp = r < n − 1; i = c));
epr,i,bpr

if ((rp = r < n − 1; i ∈ C) or (rp = r = n − 1; i �= c; j = c));
epr,i,j + epr,j,bpr

if (rp = r = n − 1; i �= c; j �= c).
(Reformulated travel costs for the arcs of Graph G);

2. ∀(p,r, s) ∈ R3 : r < s < p, ∀(u, v, i, j, k, t) ∈ (C, Fr(i), C, Fs(k), C, Fp(u)),

δ(irj)(kst)(upv) :=

⎧⎨
⎩

δirj + δkst + δupv if (r = 1; s = 2; p = 3);
δupv if (r = 1; s = 2; p > 3);
0 otherwise.

(Reformulated travel costs for the “complex flow modeling” variables).

Example 41 Consider the MmTSP of Example 7:

Let the original costs be:

- Salesman “1”:
- f1= 80
- Inter-site travel costs: b1 1 2 3 4 5

b1 − 18 16 9 21 15
1 18 − 24 14 14 7
2 4 6 − 21 17 13
3 20 18 3 − 14 28
4 14 27 13 5 − 8
5 29 6 8 16 22 −
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- Salesman “2”:
- f2= 90
- Inter-site travel costs: b2 1 2 3 4 5

b2 − 27 8 5 28 13
1 22 − 21 24 16 11
2 3 11 − 15 14 10
3 18 3 12 − 7 28
4 19 1 17 20 − 6
5 16 24 17 9 20 −

The costs to apply to the arcs of Graph G are illustrated for i = 4, j ∈ {3,6}, and r ∈ {1,2,5,9}, as
follows:

r = 1 r = 2 r = 5 r = 9
j = 3 80 + 21 + 5 = 106 5 14 20 + 18 = 38
j = 6 80 + 21 + 14 = 115 14 14 19

6.2 Overall linear program
Theorem 42 Let:

ϑ(y,z) := δT · z + 0T · y

= ∑
(p,r,s)∈R3:p<r<s

∑
i∈C

∑
j∈Fr(i)

∑
k∈C

∑
t∈Fs(k)

∑
u∈C

∑
v∈Fp(u)

δ(irj)(kst)(upv)z(irj)(kst)(upv)

Then, for (y,z) ∈ Ext(QL), ϑ(y,z) accurately accounts the cost of the MmTSP sschedule
corresponding to (y, z).

Proof. From Theorem 39,

(y,z) ∈ Ext(QL)⇐⇒ (y,z) ∈ QI

Now, using Theorem 19, it can be verified directly that for (y,z) ∈ QI , ϑ(y,z) accurately
accounts the total of cost of the MmTSP schedule corresponding to (y,z), M(y,z) (see
Definition 21).

Theorem 43 The following statements are true of basic feasible solutions (BFS) of

Problem LP : min{ϑ(y,z) : (y,z) ∈ QL}
and MmTSP schedules:

(i) Every BFS of Problem LP corresponds to a MmTSP schedule;

(ii) Every MmTSP schedule corresponds to a BFS of Problem LP;

(iii) The mapping of BFS’s of Problem LP onto MmTSP schedule is surjective.

Proof. Statements (i) and (ii) of the theorem follow directly from the combination of Theorem
39 and the correspondence between BFS’s of LP models and extreme points of their associated
polyhedra (see Bazaraa et al., 2010, pp. 94-104). Statement (iii) follows from the primal
degeneracy of Problem LP (see Nemhauser and Wolsey, 1988, p. 32).
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(iii) (y, z) ∈ QL ⇐⇒ (y,z) corresponds to a convex combination of MmTSP schedules with
coefficients equal to the weights of the corresponding MmTSP-paths-in-(y,z).

Proof. The theorem follows directly from Definition 35 and the combination of Theorems 34,
and 37.

Theorem 39 The following hold true:

(i) Ext(QL) = QI ;
(ii) QL = Conv(QI);

Proof. The theorem follows directly from the combination of Theorems 32, 34, and 38.

6. Linear Programming formulation of the MmTSP

6.1 Reformulation of the travel costs
We will now discuss the costs associated with the arcs of Graph G (or, equivalently, with
the variables of the BNF-based model), and the objective function costs to apply over QL,
respectively.

Notation 40 (Reformulated travel costs)

1. ∀r ∈ R, ∀(i, j) ∈ C
2 : (i,r, j) ∈ A,

δirj :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fpr + epr,bpr ,i + epr,i,j if (r = rp; i �= c);
0 if ((r = rp; i = c) or (rp = r = n − 1; i = j = c));
epr,i,j if ((rp < r < rp) or (rp = r < n − 1; i = c));
epr,i,bpr

if ((rp = r < n − 1; i ∈ C) or (rp = r = n − 1; i �= c; j = c));
epr,i,j + epr,j,bpr

if (rp = r = n − 1; i �= c; j �= c).
(Reformulated travel costs for the arcs of Graph G);

2. ∀(p,r, s) ∈ R3 : r < s < p, ∀(u, v, i, j, k, t) ∈ (C, Fr(i), C, Fs(k), C, Fp(u)),

δ(irj)(kst)(upv) :=

⎧⎨
⎩

δirj + δkst + δupv if (r = 1; s = 2; p = 3);
δupv if (r = 1; s = 2; p > 3);
0 otherwise.

(Reformulated travel costs for the “complex flow modeling” variables).

Example 41 Consider the MmTSP of Example 7:

Let the original costs be:

- Salesman “1”:
- f1= 80
- Inter-site travel costs: b1 1 2 3 4 5

b1 − 18 16 9 21 15
1 18 − 24 14 14 7
2 4 6 − 21 17 13
3 20 18 3 − 14 28
4 14 27 13 5 − 8
5 29 6 8 16 22 −

278 Traveling Salesman Problem, Theory and Applications
Linear Programming Formulation of the
Multi-Depot Multiple Traveling Salesman Problem with Differentiated Travel Costs 23

- Salesman “2”:
- f2= 90
- Inter-site travel costs: b2 1 2 3 4 5

b2 − 27 8 5 28 13
1 22 − 21 24 16 11
2 3 11 − 15 14 10
3 18 3 12 − 7 28
4 19 1 17 20 − 6
5 16 24 17 9 20 −

The costs to apply to the arcs of Graph G are illustrated for i = 4, j ∈ {3,6}, and r ∈ {1,2,5,9}, as
follows:

r = 1 r = 2 r = 5 r = 9
j = 3 80 + 21 + 5 = 106 5 14 20 + 18 = 38
j = 6 80 + 21 + 14 = 115 14 14 19

6.2 Overall linear program
Theorem 42 Let:

ϑ(y,z) := δT · z + 0T · y

= ∑
(p,r,s)∈R3:p<r<s

∑
i∈C

∑
j∈Fr(i)

∑
k∈C

∑
t∈Fs(k)

∑
u∈C

∑
v∈Fp(u)

δ(irj)(kst)(upv)z(irj)(kst)(upv)

Then, for (y,z) ∈ Ext(QL), ϑ(y,z) accurately accounts the cost of the MmTSP sschedule
corresponding to (y, z).

Proof. From Theorem 39,

(y,z) ∈ Ext(QL)⇐⇒ (y,z) ∈ QI

Now, using Theorem 19, it can be verified directly that for (y,z) ∈ QI , ϑ(y,z) accurately
accounts the total of cost of the MmTSP schedule corresponding to (y,z), M(y,z) (see
Definition 21).

Theorem 43 The following statements are true of basic feasible solutions (BFS) of

Problem LP : min{ϑ(y,z) : (y,z) ∈ QL}
and MmTSP schedules:

(i) Every BFS of Problem LP corresponds to a MmTSP schedule;

(ii) Every MmTSP schedule corresponds to a BFS of Problem LP;

(iii) The mapping of BFS’s of Problem LP onto MmTSP schedule is surjective.

Proof. Statements (i) and (ii) of the theorem follow directly from the combination of Theorem
39 and the correspondence between BFS’s of LP models and extreme points of their associated
polyhedra (see Bazaraa et al., 2010, pp. 94-104). Statement (iii) follows from the primal
degeneracy of Problem LP (see Nemhauser and Wolsey, 1988, p. 32).
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Corollary 44 Problem LP solves the MmTSP.

7. Conclusions

We have developed a first linear programming (LP) formulation of the multi-depot multiple
traveling salesman problem. The computational complexity order of the number of variables
and the number of constraints of our proposed LP are O(c9 · s3) and O(c8 · s3), respectively,
where c and s are the number of customer sites and the number of salesmen in the MmTSP
instance, respectively. Hence, our development represents a new re-affirmation of the
important “P = NP” result. With respect to solving practical-sized problems, the major
limitation of our LP model is its very-large-scale nature. However, we believe that to the
extend that the solution method for the proposed model can be streamlined along the lines of
procedures for special-structured LP (see Ahuja et al., 1993, pp 294-449; Bazaraa et al., 2010,
pp. 339-392, 453-605; Desaulniers et al., 2005; and Ho and Loute, 1981; for examples), it may
eventually become possible to solve large-sized problems to optimality or near-optimality.
The summary of one idea we are currently pursuing for such a streamlining is as follows:
(i) Use a column generation/Dantzig-Wolfe decomposition framework where constraints
(15)-(16) of our proposed model are handled implicitly, constraints (11)-(14) are “convexified”
into the Master Problem (MP), and columns of the overall problem are generated using the
“complex flow modeling” constraints (7) and (8)-(10); (ii) Manage size further by using
revised simplex (see Bazaraa et al., 2010, pp. 201-233) in solving the MP; (iii) Adapt
the threaded-indexing method for solving the Assignment Problem (see Barr et al., 1977;
Cunningham, 1976; Golver and Klingman, 1970, 1973; and Glover et al., 1972, 1973) using
the correspondence between Basic Feasible Solutions (BFS’s) of the Assignment Problem and
BFS’s of our model to streamline pivoting operations and to avoid degenerate pivots.
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Corollary 44 Problem LP solves the MmTSP.
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1. Introduction

The relevance of the Traveling Salesman Problem (TSP), or the Traveling Salesperson Problem,
is large and an indication of that it is the fact the present book is not the first(Applegate et al.,
2006; Lawler et al., 1985; Gutin & Punnen, 2007). In this chapter we do not define the problem,
neither offer new and faster way of solution, we present, instead, an application of TSP to
sociophysics. The specific problem we deal here is to offer a dynamical explanation to the
vote distribution of some corporations, i.e. the corporate vote. Recently, this distribution was
described for the ruling party inMexico during the majority of the XX century. With the arrival
of the new millennium such a party became opposition, but it keep part of the organization
which gave it a large power during seven decades. In reference (Hernández-Saldaña, 2009) the
distribution of votes of this political party during the newmillennium elections was described
very well by the so called daisy models of rank r (Hernández-Saldaña et al., 1998). However,
the physical origins of these models makes hard to establish a direct link with a socio-political
phenomena. In order to explore a solution to this problem a TSP approach was proposed in
(Hernández-Saldaña, 2009) and analyzed in (Hernández-Saldaña et al., 2010). In the present
chapter we offer an integrated and detailed exposition of the subject.
In recent years the analysis of the distribution of votes from the point of view of statistical
physics has been of interest. The analysis include the proportional vote in Brazil (Filho et al.,
1999; 2003; Bernardes et al., 2002; Lyra et al., 2003); India and Brazil (Araripe et al., 2006); India
and Canada (Sinha & Pan, 2006); Mexico (Morales-Matamoros et al., 2006) and Indonesia
(Situngkir, 2004). A statistical analysis of election in Mexico (Báez et al., 2010) and Russia
(Sadovsky & Gliskov, 2007) has been realized. Several models appeared in order to
understand why we vote as we do (Fortunato & Castellano, 2007) or a study of the spatial
correlations of the voting patterns (Borghesi & Bouchaud, 2010). The analysis of this problem
is only one aspect of two new branches in physical sciences: the sociophysics and the
econophysics. For an illuminating exposition of the former topic see the book of P. Ball (Ball,
2004), and for the latter consult the book of R.N. Mantegna (Mantegna & Stanley, 2000).
But, how to use TSP to model votes?. The idea is compare the statistical properties of the
number of votes obtained for a political party in each cabin with the distance between cities
in a TSP. The way to compare pears(votes) with apples(distances) is to map them to new
variables where their statistical properties could be compared. Such a process is named, for
historical reason, unfolding and we shall devote subsection 3.1 to explain carefully how this
is performed. The idea is to measure in a dimensionless variable with density one. This
approach has been successful analyzing fluctuation properties in a large set of problems,
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mainly in the spectra of quantum systems with a chaotic classical counterpart. One of the
relevant aspects was to find universal features in the fluctuation which depends only of
large symmetries present in the system, like the existence of time invariance or not. In fact
this statistical approach, named Random Matrix Theory, is currently successful and with an
increasing number of applications, see Refs. (Brody et al., 1981; Mehta, 2004; Guhr et al., 1998)
for explanation.
The TSP has not been absent of such approach, in reference (Méndez-Sánchez et al., 1996)
an attempt to find universal properties of the quasi-optimal paths of TSP on an ensemble of
randomly distributed cities was performed. However no RMT fluctuations have been found,
but a fitting with a novel model, named daisy model of rank r was found in a posterior
work (Hernández-Saldaña et al., 1998). This model raised in the frame of the statistical
analysis of spectra of disordered systems at the transition from metal to insulator, i.e. a
localization transition of the system quantum states. This model shall be describe below, since
in one of its version, the rank 2 reproduces the statistical properties of the quasi-optimal paths
in TSP and, describes some cases of the corporate vote distributions.
Since in the present chapter we are concern to statistical properties of quasi-optimal paths, the
way and the time we obtain such a solutions is irrelevant. The results presented here have
been obtained using simulated annealing according to (Press et al., 2007).
The rest of the chapter is organized as follows: In the next section we describe the TSP
models we use to compare with the corporate vote. In the same chapter we discuss about
the importance of the initial distribution of cities taken as an example actual country maps.
In section 3we develop the statistical measures we shall use. In section 4we explain how the
daisy models are built up as well as the electoral data. We compare all the models and data in
section 5. We summarize the results and offer some conclusions in section 6.

2. Models and initial conditions

In order to enlighten the corporate vote we use two models (Hernández-Saldaña et al., 2010),
both depart from a master square lattice of size b in the Euclidean space (x,y), i.e. the
intersection are localized at (nb,mb), with n and m integers. The cities shall be positioned
in the intersection surroundings according to a probability distribution of width σ, P(σ)
centered at (nb,mb). Hence, the position of the cities is

xi = nb+ pi (1)

yi = mb+ qi, (2)

being (pi,qi) selected from the distribution P(σ), which have zero mean. Up to now, the
particular distribution is arbitrary. We choose as our model I an uniform one of total width
2σs and as the model II a Gaussian one of standard deviation σg. We shall use this parameter
in order to obtain a transition from the square lattice for σs = σg = 0 to a map which looks like
a randomly distributed cities map.
As it shall be clear when we discuss the nearest neighbour distribution, the important feature
in this transition appears when the distribution width is large enough in order to admit a
distribution overlap between nearest sites, i.e., when σs = σg = b/2 (see figure 1).
In order to obtain enough statistics we consider an ensemble of maps. In the present work we
use 500 maps of 32× 31 cities. The quasi-optimal paths is obtained using simulated annealing
(Press et al., 2007). In figure 2 we present four realizations for different values of σ and for
both models.
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Fig. 1. Schematic construction of models I and II. In the figure we consider model II. The
Gaussians are centered at red cross sites and cites are selected from the distribution.
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Fig. 2. Realizations of maps for both models with the parameter values indicated.

The statistical properties of distances between cities in the quasi-optimal path will be the
point of comparison with votes for a corporate party. Note that this simple models are
based on standard TSP, the peculiarity resides in the initial city distributions used for the
calculations. This point is important since the initial set of cities, even in actual distribution
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in TSP and, describes some cases of the corporate vote distributions.
Since in the present chapter we are concern to statistical properties of quasi-optimal paths, the
way and the time we obtain such a solutions is irrelevant. The results presented here have
been obtained using simulated annealing according to (Press et al., 2007).
The rest of the chapter is organized as follows: In the next section we describe the TSP
models we use to compare with the corporate vote. In the same chapter we discuss about
the importance of the initial distribution of cities taken as an example actual country maps.
In section 3we develop the statistical measures we shall use. In section 4we explain how the
daisy models are built up as well as the electoral data. We compare all the models and data in
section 5. We summarize the results and offer some conclusions in section 6.

2. Models and initial conditions

In order to enlighten the corporate vote we use two models (Hernández-Saldaña et al., 2010),
both depart from a master square lattice of size b in the Euclidean space (x,y), i.e. the
intersection are localized at (nb,mb), with n and m integers. The cities shall be positioned
in the intersection surroundings according to a probability distribution of width σ, P(σ)
centered at (nb,mb). Hence, the position of the cities is

xi = nb+ pi (1)

yi = mb+ qi, (2)

being (pi,qi) selected from the distribution P(σ), which have zero mean. Up to now, the
particular distribution is arbitrary. We choose as our model I an uniform one of total width
2σs and as the model II a Gaussian one of standard deviation σg. We shall use this parameter
in order to obtain a transition from the square lattice for σs = σg = 0 to a map which looks like
a randomly distributed cities map.
As it shall be clear when we discuss the nearest neighbour distribution, the important feature
in this transition appears when the distribution width is large enough in order to admit a
distribution overlap between nearest sites, i.e., when σs = σg = b/2 (see figure 1).
In order to obtain enough statistics we consider an ensemble of maps. In the present work we
use 500 maps of 32× 31 cities. The quasi-optimal paths is obtained using simulated annealing
(Press et al., 2007). In figure 2 we present four realizations for different values of σ and for
both models.
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Fig. 1. Schematic construction of models I and II. In the figure we consider model II. The
Gaussians are centered at red cross sites and cites are selected from the distribution.
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Fig. 2. Realizations of maps for both models with the parameter values indicated.

The statistical properties of distances between cities in the quasi-optimal path will be the
point of comparison with votes for a corporate party. Note that this simple models are
based on standard TSP, the peculiarity resides in the initial city distributions used for the
calculations. This point is important since the initial set of cities, even in actual distribution
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of cities, rules what kind of distances distributions could appear. If the initial distribution
of cities has no large distances the quasi-optimal path can not create them. In reference
(Hernández-Saldaña et al., 2010) the distribution of cities was done and a large dependence of
the country was found. Here we present a sample made for 16 countries with data taken from
(Applegate et al., 2006). In figure 3 we present the histogram of all the possible distances in
the maps. Even when all the countries, exception of Tanzania and Oman, present almost the
same power law behaviour at the beginning, the tail and the bulk in the histograms present
large variations, from exponential, like Sweden, to large fluctuations like Canada and China.
The distribution of normalized distances (or unfolded) with the procedure described below
shows similar fluctuations (see figure 1 and 2 in (Hernández-Saldaña et al., 2010)). The search
of universal properties in the TSP of actual countries is important even when figure 3 shows
large fluctuations.

3. Statistical properties

The statistical characterization we used is commonly named spectral analysis since it is
applied to spectra of quantum, optical or acoustical systems. But, for completeness, we
add here a wide explanation about it together with some computational details usually not
considered in the literature. The applications of this statistical analysis is completely general,
see references (Bohigas, 1991; Guhr et al., 1998; Mehta, 2004) for a general introduction.

3.1 Unfolding
The statistical analysis starts with a crucial step: separate the fluctuating properties from the
secular ones in the data. This procedure fulfills two goals. First one, we take into account that
the data could have a non constant density and a smooth variation could exist. The second
goal is to have normalized fluctuations that can be compared between differentmembers of an
ensemble or even between different systems. This aspect played a crucial role in the analysis
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Fig. 3. Histogram of distances between cities for the countries shown in the inset. The data
have been taken from (Applegate et al., 2006). Notice that all the countries, except Tanzania
and Oman, start with a power law.
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Fig. 4. Different averages of a random sequence, in (a) an uniformly random signal is shown
in stars, its average is zero (blue dotted line). In (b) a signal with arithmetical average equal
to zero, but with fluctuation around 2sin(x), in red dashed line. The units are arbitrary.

of quantum chaotic systems and several of its applications. Including TSP and electoral
processes. This procedure is called, for historical reasons, unfolding.
It is common to consider fluctuations, or the statistics like the variance, of a sequence which
present a constant average or density like the presented in figure 4(a) in stars. In that case it
is clear that the variance, for instance, is calculated in the usual way. However, there exists a
large number of cases where the average is not longer constant but a smooth function like a
polynomial or a sine function. In figure 4(b) we show this case. The arithmetical average is the
same as in the previous case and indicated in dotted blue line, but the fluctuations, in fact, are
around a sine function (red dashed line) and they are what we wish to analyze. That is clear
that in the latter case the true average is a function and not longer a single number. In fact, an
arithmetical analysis says that the function �y�(x) = 0 is a good result in both cases and the
variance is smaller in case (b). A simple view of the data shows how wrong is this procedure
and what we require to analyze are the fluctuations around the sine function.
The nature of the average function depends on the particular system and could have different
forms and contributions. A common example is the case of the quantum energy levels, Ei, in a
Hamiltonian system where there exists a good approximation to the average density. In such
a case the density is well represented by the Weyl formulae,

�ρ(E)�=
1

(2πh̄)d

∫
δ(H − E)dpdq. (3)

Where δ(·) is the Dirac delta function, H corresponds to the Hamiltonian of d degrees of
freedom and the integral is perform on all the phase space variables (p,q). The basic quantum
area is represented by h̄, the Planck’s constant. This approximation is valid in the semiclassical
limit. Even in the case where the system dynamics is well established an accurate calculation
of the average is a delicate task (Guhr et al., 1998).
It is customary to deal with the integrated density N (E) instead of the density itself and the
split is denoted as

N (E) =NSecular(E) +N f luctuations(E). (4)

As we explained previously, a second goal is to compare fluctuations of several members of
an ensemble or even different systems. The reason, as we shall see below, is after unfolding
the new variables will have mean equal to one. In the case where the system has a constant
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of cities, rules what kind of distances distributions could appear. If the initial distribution
of cities has no large distances the quasi-optimal path can not create them. In reference
(Hernández-Saldaña et al., 2010) the distribution of cities was done and a large dependence of
the country was found. Here we present a sample made for 16 countries with data taken from
(Applegate et al., 2006). In figure 3 we present the histogram of all the possible distances in
the maps. Even when all the countries, exception of Tanzania and Oman, present almost the
same power law behaviour at the beginning, the tail and the bulk in the histograms present
large variations, from exponential, like Sweden, to large fluctuations like Canada and China.
The distribution of normalized distances (or unfolded) with the procedure described below
shows similar fluctuations (see figure 1 and 2 in (Hernández-Saldaña et al., 2010)). The search
of universal properties in the TSP of actual countries is important even when figure 3 shows
large fluctuations.

3. Statistical properties

The statistical characterization we used is commonly named spectral analysis since it is
applied to spectra of quantum, optical or acoustical systems. But, for completeness, we
add here a wide explanation about it together with some computational details usually not
considered in the literature. The applications of this statistical analysis is completely general,
see references (Bohigas, 1991; Guhr et al., 1998; Mehta, 2004) for a general introduction.

3.1 Unfolding
The statistical analysis starts with a crucial step: separate the fluctuating properties from the
secular ones in the data. This procedure fulfills two goals. First one, we take into account that
the data could have a non constant density and a smooth variation could exist. The second
goal is to have normalized fluctuations that can be compared between differentmembers of an
ensemble or even between different systems. This aspect played a crucial role in the analysis
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Fig. 3. Histogram of distances between cities for the countries shown in the inset. The data
have been taken from (Applegate et al., 2006). Notice that all the countries, except Tanzania
and Oman, start with a power law.

286 Traveling Salesman Problem, Theory and Applications A Sociophysical Application of TSP: The Corporate Vote 5

0 1 2 3 4 5 6x
-3

-2

-1

0

1

2

3

y

(a) Uniformly random

0 1 2 3 4 5 6x
-3

-2

-1

0

1

2

3

y

(b) Random on a sine function

Fig. 4. Different averages of a random sequence, in (a) an uniformly random signal is shown
in stars, its average is zero (blue dotted line). In (b) a signal with arithmetical average equal
to zero, but with fluctuation around 2sin(x), in red dashed line. The units are arbitrary.

of quantum chaotic systems and several of its applications. Including TSP and electoral
processes. This procedure is called, for historical reasons, unfolding.
It is common to consider fluctuations, or the statistics like the variance, of a sequence which
present a constant average or density like the presented in figure 4(a) in stars. In that case it
is clear that the variance, for instance, is calculated in the usual way. However, there exists a
large number of cases where the average is not longer constant but a smooth function like a
polynomial or a sine function. In figure 4(b) we show this case. The arithmetical average is the
same as in the previous case and indicated in dotted blue line, but the fluctuations, in fact, are
around a sine function (red dashed line) and they are what we wish to analyze. That is clear
that in the latter case the true average is a function and not longer a single number. In fact, an
arithmetical analysis says that the function �y�(x) = 0 is a good result in both cases and the
variance is smaller in case (b). A simple view of the data shows how wrong is this procedure
and what we require to analyze are the fluctuations around the sine function.
The nature of the average function depends on the particular system and could have different
forms and contributions. A common example is the case of the quantum energy levels, Ei, in a
Hamiltonian system where there exists a good approximation to the average density. In such
a case the density is well represented by the Weyl formulae,

�ρ(E)�=
1

(2πh̄)d

∫
δ(H − E)dpdq. (3)

Where δ(·) is the Dirac delta function, H corresponds to the Hamiltonian of d degrees of
freedom and the integral is perform on all the phase space variables (p,q). The basic quantum
area is represented by h̄, the Planck’s constant. This approximation is valid in the semiclassical
limit. Even in the case where the system dynamics is well established an accurate calculation
of the average is a delicate task (Guhr et al., 1998).
It is customary to deal with the integrated density N (E) instead of the density itself and the
split is denoted as

N (E) =NSecular(E) +N f luctuations(E). (4)

As we explained previously, a second goal is to compare fluctuations of several members of
an ensemble or even different systems. The reason, as we shall see below, is after unfolding
the new variables will have mean equal to one. In the case where the system has a constant

287A Sociophysical Application of TSP: The Corporate Vote



6 Traveling Salesman Problem, Theory and Applications

density this procedure can be performed by dividing the spectrum by the density. In fact, the
name itself “unfolding” comes from the density of energy in nuclear systems: For complex
nuclei, the density is almost a semicircle and the idea is to unfold it to create a new, constant,
density. Notice that this procedure is always of local character.
Now, we proceed to explain carefully how the unfolding is performed for distances in the TSP,
however, mutatis mutandis, the present explanation can be applied to quantum energy levels,
acoustic resonances, votes, DNA basis distances, etc. In order to perform the separation of
equation (4) we require the analogue of the spectrum Ei, which is ordered as

E1 < E2 < E3 < · · ·< Ek < · · · . (5)

Hence we consider the cumulative of lengths for a quasi-optimal tour, dk = ∑k
i=1 li with li =√

(xi − xi−1)2 + (yi − yi−1)2. The cities are positioned at the points (xi,yi) and the cumulative
lengths are ordered in increasing index. Notice that in this case the tour is periodic but in the
case of energies not. The density of d’s (or of energies) is defined as

ρ(d) = ∑
k

δ(d− dk), (6)

The corresponding cumulative, or integrated, density is

N (d) = ∑
k

Θ(d− dk), (7)

with Θ(x), the Heaviside or step function. This creates a staircase function with the pair of
numbers (dk,k) and an example is shown in figure5(b). The secular part could be evaluated by
a polynomial fitting of degree n. Numerical experience shows better results if, instead starting
at N (d1) = 1 we start at one half (see figure 5)(Bohigas, 1991).
We shall perform the statistical analysis on the variable transformed as

ξk =NSecular(dk), (8)

The secular part depends on the particular system taken into account or if we are considering
a particular window. Notice that this transformationmakes themean level spacing to be unity,
i.e. Δ ≡ �ξk − ξk−1� = 1. The new variables are expressed in units of mean level spacing.
The analysis is performed on windows of different size, this kind of analysis is always of local
character. The polynomial fitted does not produce a good match in the window extremes
(see figure 5(a)) hence, the extreme data are not considered for the statistical analysis. It is
convenient to divide the data set in three parts and use only the middle third of the data. In
order to avoid a data loss, the window is moved from third to third in order to only loss the

extremes of the whole data. The subsets of data ξk
i of window i are considered as members

of an ensemble and the statistics will consider averaging on these subsets, i.e., an ensemble
average. We shall return to this point later. In figure 5 we show a fitting on a large window
of a very complex set of data (the quasi-optimal path obtained for Sweden). The larger the
window the larger the polynomial degree used to fit it, hence, it is important to consider
smaller windows in case the integrated density presents similar long range fluctuations. For
practical purposes we consider no less than 300 data per window in order to keep 100 fitted
data. Another important question is which degree in the polynomial must be considered. A
large value of n could consider part of the fluctuations as the secular term. The answer is not
trivial and requires of knowledge of the system itself. Any way, it is important to look directly
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Fig. 5. Integrated densityN (d) calculated for the quasi-optimal path obtained for Sweden
(blue histogram) and different polynomial fittings. We plot a window from 0 to 100000 km in
the length variable d. The fitting was performed in the window from d = 10000 to 100000 km.
The linear approach is shown in black dot-dash line, the 2nd order in red dotted line, the 3rd
order in dashed red line and the 4th order polynomial in black line. Note that even the fourth
degree polynomial does not fit at all this large window but follows nicely the general shape.

the data fitting and do not believe the correlation coefficient value a priori(see figure 4). Many
statistical estimators could give false results.
An important point is the integrated density could involve large numbers and we can loss
accuracy in the fitting. A way to solve it is to use the translational invariance of the data and
translate the windows to the origin each time. Since we are interested in differences of ξk this
translation does not affect the analysis.
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Fig. 6. A close up to previous figure, in order to see the fitted polynomial. Notice the staircase
structure.
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The analysis is performed on windows of different size, this kind of analysis is always of local
character. The polynomial fitted does not produce a good match in the window extremes
(see figure 5(a)) hence, the extreme data are not considered for the statistical analysis. It is
convenient to divide the data set in three parts and use only the middle third of the data. In
order to avoid a data loss, the window is moved from third to third in order to only loss the
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of an ensemble and the statistics will consider averaging on these subsets, i.e., an ensemble
average. We shall return to this point later. In figure 5 we show a fitting on a large window
of a very complex set of data (the quasi-optimal path obtained for Sweden). The larger the
window the larger the polynomial degree used to fit it, hence, it is important to consider
smaller windows in case the integrated density presents similar long range fluctuations. For
practical purposes we consider no less than 300 data per window in order to keep 100 fitted
data. Another important question is which degree in the polynomial must be considered. A
large value of n could consider part of the fluctuations as the secular term. The answer is not
trivial and requires of knowledge of the system itself. Any way, it is important to look directly

288 Traveling Salesman Problem, Theory and Applications A Sociophysical Application of TSP: The Corporate Vote 7

0 20000 40000 60000 80000 100000
d/km

0

200

400

600

800

In
te

gr
at

ed
 D

en
si

ty

Fig. 5. Integrated densityN (d) calculated for the quasi-optimal path obtained for Sweden
(blue histogram) and different polynomial fittings. We plot a window from 0 to 100000 km in
the length variable d. The fitting was performed in the window from d = 10000 to 100000 km.
The linear approach is shown in black dot-dash line, the 2nd order in red dotted line, the 3rd
order in dashed red line and the 4th order polynomial in black line. Note that even the fourth
degree polynomial does not fit at all this large window but follows nicely the general shape.

the data fitting and do not believe the correlation coefficient value a priori(see figure 4). Many
statistical estimators could give false results.
An important point is the integrated density could involve large numbers and we can loss
accuracy in the fitting. A way to solve it is to use the translational invariance of the data and
translate the windows to the origin each time. Since we are interested in differences of ξk this
translation does not affect the analysis.
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3.2 Fluctuations
Given the new sequence

ξ1 < ξ2 < ξ3 < · · · < ξk < · · ·< ξN , (9)

we shall characterize their statistical properties. The probability of have a value at ξ1 and
ξ1 + dξ1, another between ξ2 and ξ2 + dξ2 and, in general a number between ξk and ξk + dξk,
is

P(ξ1, · · · ,ξN)dξ1 · · ·dξN , (10)

regardless the labelling. Hence the statistical properties are characterized by the n-point
correlation function,

Rn(ξ1, · · · ,ξn) =
N!

(N− n)!

∫
P(ξ1, · · · ,ξN)dξn+1 · · ·dξN . (11)

However, for practical purposes, in the literature it is considered two measures, the
nearest-neighbor distribution p(1, s) and the number variance Σ2(L). The first one is the
probability to have a separation si = ξi − ξi−1 between s and s+ ds and measures short range
correlations. The latter is the variance of the number of levels in a box of size L and measures
long range correlations. Several other statistics could be used, like Fourier transform,
skewness, kurtosis and the n-th neighbor distribution width. For larger explanation, the
reader could see references (Bohigas, 1991; Guhr et al., 1998; Mehta, 2004).
The nearest-neighbour distribution is built up by a histogram of si = ξi− ξi−1. Themean value
is, by construction, one. Since, in general, we are considering an analysis on windows which
are taken as statistically equivalent, the final distribution is an average on the distributions of
all the windows, i.e., we consider an ensemble average. However could be possible to build up
an ensemble of systems, as those considered in model I and II, this average is considered in a
natural way. In both cases we consider the average of all the distributions, say the p(1; s) of
each window or system.
In a similar way the n-th neighbour distribution is measured in the variable si = ξi+n − ξi.
The number variance is calculated directly counting the number of level or numbers in boxes
of size L and considering the variance. In order to obtain theoretical predictions it is useful to
consider the 2-level cluster function Y2(s), defined as

Y2(s) = 1− R2(s). (12)

Where R2(s) is the two point correlation function as defined in (11). This function can be
evaluated if we have information about the neighbours distribution for all order, i.e.,

R2(s) =
∞

∑
n=1

p(n; s). (13)

Using equations (12) and (13) we can obtain the number variance by

Σ2(L) = L− 2
∫ L

0
ds(L− s)Y2(s). (14)

Hence, if we know all the n-th neighbour distribution it is possible to calculate an analytical
expression for Σ2. Even when we shall not use the Σ2 statistics for comparison with the
electoral results is useful to calculate it. In figure 7 we show the result for several values of
the TSP models and the asymptotic behavior in daisy models, where the grow is ∼ L/(r+ 1).
The correlations are slightly different but all them remain linear.
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Fig. 7. Number variance Σ2 for the models and values indicated in the inset. For the daisy
models only the asymptotic values are reported.

4. Electoral data and daisy models

4.1 The electoral data
The electoral data were taken from the Mexican electoral authorities official web page
(Instituto Federal Electoral, 2006) and they can be obtained on request as well. We consider
three elections in the new millennium: the federal elections in 2000, 2003 and 2006. The
selection was made since, in the three cases, the corporate party, the Partido Revolucionario
Institucional (PRI), arrived as oppositionwith only their corporatemembers (in fact, this party
loose the presidential election in 2000). This offer the opportunity to explore the corporate
vote only. Additionally, the database of the last elections are available in electronic format.
Analysis on different Mexican elections is matter of current research.
Federal elections in Mexico are organized by the Instituto Federal Electoral (IFE) and they
are made by direct vote. In such an election, people choose the republic president and the
members of both chambers. The country is divided in electoral districts and the cabins are
localized according to the number of registered electors. Each cabin admits a maximum of
750 votes, except the special cabin which could admit a larger number of votes. Such cabins
are devoted to people who have the right to vote but who are in transit or live in a different
place where they are registered for electoral matters. The number of cabins in whole country
is around 117,000.
The distribution of votes is built up by counting in how many cabins exists 1 vote, 2 votes and
so on and considering a histogram of them. In symbols, be ni the number of votes in cabin i,
built the sequence xi by

xi+1 = xi + ni+1, (15)

and define x1 = n1. The corresponding histograms for the crude data can be seen in reference
(Hernández-Saldaña, 2009). In order to obtain the statistical properties the unfolding must be
done, however, a natural way to order the votes counts like in (9) is not obvious or, even, does
not exist. This is clear since the order of cabins is assigned alphabetically into the database
(Instituto Federal Electoral, 2006) and with no relation to the social or political distribution
of votes of this particular party. Hence, the density of vote could vary tremendously or,
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3.2 Fluctuations
Given the new sequence

ξ1 < ξ2 < ξ3 < · · · < ξk < · · ·< ξN , (9)

we shall characterize their statistical properties. The probability of have a value at ξ1 and
ξ1 + dξ1, another between ξ2 and ξ2 + dξ2 and, in general a number between ξk and ξk + dξk,
is

P(ξ1, · · · ,ξN)dξ1 · · ·dξN , (10)

regardless the labelling. Hence the statistical properties are characterized by the n-point
correlation function,

Rn(ξ1, · · · ,ξn) =
N!

(N− n)!

∫
P(ξ1, · · · ,ξN)dξn+1 · · ·dξN . (11)

However, for practical purposes, in the literature it is considered two measures, the
nearest-neighbor distribution p(1, s) and the number variance Σ2(L). The first one is the
probability to have a separation si = ξi − ξi−1 between s and s+ ds and measures short range
correlations. The latter is the variance of the number of levels in a box of size L and measures
long range correlations. Several other statistics could be used, like Fourier transform,
skewness, kurtosis and the n-th neighbor distribution width. For larger explanation, the
reader could see references (Bohigas, 1991; Guhr et al., 1998; Mehta, 2004).
The nearest-neighbour distribution is built up by a histogram of si = ξi− ξi−1. Themean value
is, by construction, one. Since, in general, we are considering an analysis on windows which
are taken as statistically equivalent, the final distribution is an average on the distributions of
all the windows, i.e., we consider an ensemble average. However could be possible to build up
an ensemble of systems, as those considered in model I and II, this average is considered in a
natural way. In both cases we consider the average of all the distributions, say the p(1; s) of
each window or system.
In a similar way the n-th neighbour distribution is measured in the variable si = ξi+n − ξi.
The number variance is calculated directly counting the number of level or numbers in boxes
of size L and considering the variance. In order to obtain theoretical predictions it is useful to
consider the 2-level cluster function Y2(s), defined as

Y2(s) = 1− R2(s). (12)

Where R2(s) is the two point correlation function as defined in (11). This function can be
evaluated if we have information about the neighbours distribution for all order, i.e.,

R2(s) =
∞

∑
n=1

p(n; s). (13)

Using equations (12) and (13) we can obtain the number variance by

Σ2(L) = L− 2
∫ L

0
ds(L− s)Y2(s). (14)

Hence, if we know all the n-th neighbour distribution it is possible to calculate an analytical
expression for Σ2. Even when we shall not use the Σ2 statistics for comparison with the
electoral results is useful to calculate it. In figure 7 we show the result for several values of
the TSP models and the asymptotic behavior in daisy models, where the grow is ∼ L/(r+ 1).
The correlations are slightly different but all them remain linear.
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4. Electoral data and daisy models

4.1 The electoral data
The electoral data were taken from the Mexican electoral authorities official web page
(Instituto Federal Electoral, 2006) and they can be obtained on request as well. We consider
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loose the presidential election in 2000). This offer the opportunity to explore the corporate
vote only. Additionally, the database of the last elections are available in electronic format.
Analysis on different Mexican elections is matter of current research.
Federal elections in Mexico are organized by the Instituto Federal Electoral (IFE) and they
are made by direct vote. In such an election, people choose the republic president and the
members of both chambers. The country is divided in electoral districts and the cabins are
localized according to the number of registered electors. Each cabin admits a maximum of
750 votes, except the special cabin which could admit a larger number of votes. Such cabins
are devoted to people who have the right to vote but who are in transit or live in a different
place where they are registered for electoral matters. The number of cabins in whole country
is around 117,000.
The distribution of votes is built up by counting in how many cabins exists 1 vote, 2 votes and
so on and considering a histogram of them. In symbols, be ni the number of votes in cabin i,
built the sequence xi by

xi+1 = xi + ni+1, (15)

and define x1 = n1. The corresponding histograms for the crude data can be seen in reference
(Hernández-Saldaña, 2009). In order to obtain the statistical properties the unfolding must be
done, however, a natural way to order the votes counts like in (9) is not obvious or, even, does
not exist. This is clear since the order of cabins is assigned alphabetically into the database
(Instituto Federal Electoral, 2006) and with no relation to the social or political distribution
of votes of this particular party. Hence, the density of vote could vary tremendously or,
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even, could not exist in the database. A way to handle this problem and in order to break
the geographical correlations is to consider a randomization of the votes and construct an
ordered sequence like in equation (9). Clearly, this new sequence should have an uniform
distribution and we can use it in order to unfold the sequence since its density is constant.
Notice that the transformed nearest neighbour distribution of votes is the mapped vote ni
to the unfolded new variable si. This procedure gives only information about the nearest
neighbour distribution and it puts limits to our analysis. However, opens the research of a
natural order in the vote being it geographical, corporative, social, etc.
In TSP the problem does not appear since the quasi optimal path offers a natural way to
make the ordering. In the case of actual cities maps, however, the unfolding must be carefully
performed since there exists a lot of variations (Hernández-Saldaña et al., 2010).

4.2 Daisy model of rank r
The daisy model is constructed by retaining each r+ 1 level in a sequence of random numbers
increasingly ordered as in (9). Since the original sequence of numbers have the nth-neighbour
distribution given by

p(n; s) =
sn−1

(n− 1)!
exp(−s), (16)

and being n= 1 the first or nearest neighbour, the new sequence has the (r+ 1)nth-neigbours
distribution. But is must be renormalized in order to recover the standard average values, i.e.

∫ ∞

0
sp(n; s)ds= n. (17)

With the appropriate change of variable we obtain the nth-neighbour distribution for the daisy
model of rank r:

pr(n; s) =
(r+ 1)(r+1)n

Γ ((r+ 1)n)
s(r+1)n−1exp (−(r+ 1)s) . (18)

Where Γ(·) is the gamma function. See reference (Hernández-Saldaña et al., 1998) for the
whole derivation. The name of the models becomes clear for the case of rank r = 1: Here
we label each level in the sequence ξi, one with the label “she loves me” and the next with the
label “she loves me not”. Since we are optimistic we retain only the love sequence. Meanwhile
the rank 1 model applies to the metal to insulator transition the rank 2 fits very well the TSP
with an ensemble of randomly distributed cities (Hernández-Saldaña et al., 1998).

5. Results

We can compare the nearest neighbour distribution p(s) obtained from model I and II with
the electoral results. The comparison is done on three cases: the presidential election of 2006,
the senators election in 2000 and the low chamber election in 2006. The selection was done in
order to present different cases. We shall use the notation p(s) instead of p(1; s) for shortand.
The TSP models were built up on rectangles of size b = 10 km and 500 maps of 32× 31 cities.
The p(s) for 2006 presidential election is presented in figure 8 in black histogram. The daisy
model of rank 3, in black dashed line, presents a remarkable fitting to the distribution main
bulk. The explicit expression for this daisy model is

p3(s) =
44

3!
s3 exp(−4s). (19)
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Fig. 8. Nearest neighbour distribution for the Presidential election in 2006 compared with
models I and II and daisy models. The parameter values are indicated in the inset. Notice
that the daisy model of rank 3 fits remarkably well the vote distribution. The variable s is
expressed in mean spacings units, see subsection 3.1 for explanation.

However the tail does not longer fit, being fitted instead by a rank 2 daisy (see figure 9 ).
Neither model I or II could fit the distribution bulk, but the tail is well fitted from widths, σ,
departing from σs ∼ 6.5 (in red line with circles) and σg ∼ 8.5 (in blue line with diamonds)) for
the respective model. The numerical exploration in both model shows that the decay reaches
a limit compatible with an exp(−3s) decay (see figure 9). This limit corresponds to the daisy
model of rank 2,

p2(s) =
33

2!
s2 exp(−3s), (20)

and it is compatible with a TSP with cities selected from an uniform random distribution
(Hernández-Saldaña et al., 1998). As we have noticed before, for this values of σ we have
overlapping city distributions, since for model I this start at σs = b/2 and for model II at
σg = b/2, the distributions centers are two standard deviations apart.
Hence, a tail compatible with slower decay∼ 3 does not appear in the analyzed electoral data.
It will be interesting to analyze the data for the incoming election in 2012. In the case of our
models, model II presents slower decay for values larger than 3b.
Referring the fit at the beginning of the vote distribution, we compare with other σ values for
both models, see figure 10. For model I, maps with a σs ≈ 2.75 fit well, meanwhile for model
II the value is σg = 3.5 and the close up is reported in figure 11. As a general feature, the
TSP models presented here are unable to produce a distribution with a start different from a
power law of order 2 for values of σ larger than ∼ b/2. Hence, this models do not reproduce
this feature present in both, the electoral data and in the daisy models.
The rest of the comparisons are reported in figures 12 and 13. For the case of Low chamber
election during 2006, figure 12, the value of the fitting parameters at the tail are compatible
with b/2 and rank 3 daisy model. The values are σs ≈ 3.90 and σg ≈ 4.75. For the distribution
beginning the values are equal to those reported for Presidential election in 2006. In the case
of Senator in 2000, figure 13, the tail is fitted by r= 4 and σs ≈ 3.13 and σg = 3.5. The beginning
of the vote distribution presents a linear grow that makes it incompatible with all the models
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even, could not exist in the database. A way to handle this problem and in order to break
the geographical correlations is to consider a randomization of the votes and construct an
ordered sequence like in equation (9). Clearly, this new sequence should have an uniform
distribution and we can use it in order to unfold the sequence since its density is constant.
Notice that the transformed nearest neighbour distribution of votes is the mapped vote ni
to the unfolded new variable si. This procedure gives only information about the nearest
neighbour distribution and it puts limits to our analysis. However, opens the research of a
natural order in the vote being it geographical, corporative, social, etc.
In TSP the problem does not appear since the quasi optimal path offers a natural way to
make the ordering. In the case of actual cities maps, however, the unfolding must be carefully
performed since there exists a lot of variations (Hernández-Saldaña et al., 2010).

4.2 Daisy model of rank r
The daisy model is constructed by retaining each r+ 1 level in a sequence of random numbers
increasingly ordered as in (9). Since the original sequence of numbers have the nth-neighbour
distribution given by

p(n; s) =
sn−1

(n− 1)!
exp(−s), (16)

and being n= 1 the first or nearest neighbour, the new sequence has the (r+ 1)nth-neigbours
distribution. But is must be renormalized in order to recover the standard average values, i.e.

∫ ∞

0
sp(n; s)ds= n. (17)

With the appropriate change of variable we obtain the nth-neighbour distribution for the daisy
model of rank r:

pr(n; s) =
(r+ 1)(r+1)n

Γ ((r+ 1)n)
s(r+1)n−1exp (−(r+ 1)s) . (18)

Where Γ(·) is the gamma function. See reference (Hernández-Saldaña et al., 1998) for the
whole derivation. The name of the models becomes clear for the case of rank r = 1: Here
we label each level in the sequence ξi, one with the label “she loves me” and the next with the
label “she loves me not”. Since we are optimistic we retain only the love sequence. Meanwhile
the rank 1 model applies to the metal to insulator transition the rank 2 fits very well the TSP
with an ensemble of randomly distributed cities (Hernández-Saldaña et al., 1998).

5. Results

We can compare the nearest neighbour distribution p(s) obtained from model I and II with
the electoral results. The comparison is done on three cases: the presidential election of 2006,
the senators election in 2000 and the low chamber election in 2006. The selection was done in
order to present different cases. We shall use the notation p(s) instead of p(1; s) for shortand.
The TSP models were built up on rectangles of size b = 10 km and 500 maps of 32× 31 cities.
The p(s) for 2006 presidential election is presented in figure 8 in black histogram. The daisy
model of rank 3, in black dashed line, presents a remarkable fitting to the distribution main
bulk. The explicit expression for this daisy model is

p3(s) =
44

3!
s3 exp(−4s). (19)
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Fig. 8. Nearest neighbour distribution for the Presidential election in 2006 compared with
models I and II and daisy models. The parameter values are indicated in the inset. Notice
that the daisy model of rank 3 fits remarkably well the vote distribution. The variable s is
expressed in mean spacings units, see subsection 3.1 for explanation.

However the tail does not longer fit, being fitted instead by a rank 2 daisy (see figure 9 ).
Neither model I or II could fit the distribution bulk, but the tail is well fitted from widths, σ,
departing from σs ∼ 6.5 (in red line with circles) and σg ∼ 8.5 (in blue line with diamonds)) for
the respective model. The numerical exploration in both model shows that the decay reaches
a limit compatible with an exp(−3s) decay (see figure 9). This limit corresponds to the daisy
model of rank 2,

p2(s) =
33

2!
s2 exp(−3s), (20)

and it is compatible with a TSP with cities selected from an uniform random distribution
(Hernández-Saldaña et al., 1998). As we have noticed before, for this values of σ we have
overlapping city distributions, since for model I this start at σs = b/2 and for model II at
σg = b/2, the distributions centers are two standard deviations apart.
Hence, a tail compatible with slower decay∼ 3 does not appear in the analyzed electoral data.
It will be interesting to analyze the data for the incoming election in 2012. In the case of our
models, model II presents slower decay for values larger than 3b.
Referring the fit at the beginning of the vote distribution, we compare with other σ values for
both models, see figure 10. For model I, maps with a σs ≈ 2.75 fit well, meanwhile for model
II the value is σg = 3.5 and the close up is reported in figure 11. As a general feature, the
TSP models presented here are unable to produce a distribution with a start different from a
power law of order 2 for values of σ larger than ∼ b/2. Hence, this models do not reproduce
this feature present in both, the electoral data and in the daisy models.
The rest of the comparisons are reported in figures 12 and 13. For the case of Low chamber
election during 2006, figure 12, the value of the fitting parameters at the tail are compatible
with b/2 and rank 3 daisy model. The values are σs ≈ 3.90 and σg ≈ 4.75. For the distribution
beginning the values are equal to those reported for Presidential election in 2006. In the case
of Senator in 2000, figure 13, the tail is fitted by r= 4 and σs ≈ 3.13 and σg = 3.5. The beginning
of the vote distribution presents a linear grow that makes it incompatible with all the models
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Fig. 9. Same as previous figure but in semilog scale. Notice that daisy of rank 3 does not fit
the tail, it is better fitted by rank 2 daisy and for models I and II with the values indicated in
the inset.

presented here. Notwithstanding such a result appears clearly as a deviation into the crude
data reported previously in (Hernández-Saldaña, 2009).
From the analysis it is clear the correct tail for electoral results requires some overlapping
between the initial cities distribution. The model II, the Gaussian one, presents a better fitting
in all the cases. The TSP models fails in to obtain correctly the maxima of the distribution.
This fail is common in all the cases and that happens even in the case of daisy models. It
is a truism that the maxima and the average in a probability distribution are not the same.
Since the distribution is normalized a different value of position of maxima causes a different
rate decay at the tail. Hence, a search on new TSP models which could present a different

0 1 2 3
s

0

0.2

0.4

0.6

0.8

1

p(
s)

Model I,  σ = 2.75
Model II,  σ = 3.5
r = 3
President 2006

Fig. 10. Nearest neighbour distribution for the Presidential election in 2006 compared with
models I and II and daisy models in order to fit the distribution at the beginning. The
parameter values are indicated in the inset.
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position of the maxima could give a better fitting of electoral data. A remarkable exception is
Presidential case in 2006.
In reference to the long range correlation for the TSP models they grow linearly, but
with a slope that slightly differs from daisy models. It is important to remark that long
range correlations are extremely sensitive to unfolding procedure, but knowledge of longer
correlations than first neighbour helps to understand the dynamics. Such has been the
experience in quantum chaos and recently in the study of DNA sequences.
As a final point for this section is in reference to the reliability of electoral data. Even when
we assume a fair play election and that the data are correctly collected and expressed, such a
phenomenon is of a large complexity. One, which can be determined, is the self consistency in
the data. In the Mexican 2006 election such a reliability is unclear (Báez et al., 2010) and must
be taken into account when the analysis is performed. The 2006 data for the corporate party
was particularly clear since they were, by far, the third position in the whole election. Many
of the usual allies that sum their vote to this party were split with the two other large parties.

6. Conclusion

In this chapter we expose an application of TSP to a socio-political problem: explain the
distribution of votes of a corporate party. The link between TSP and vote processes is made
considering the distances between cities as the amount of votes received for a party in a cabin.
In order to compare their statistical properties we perform a deconvolution process in order
to separate the fluctuation from the average properties, such a procedure is called unfolding.
The comparison was made for the nearest neighbour distribution of the unfolded variables.
The corporate vote distribution for Mexican elections of 2000, 2003 and 2006 show that the
distribution presents an exponential decay and start with a power law. These distributions
are well described by a daisy model of rank r but there is not a clear interpretation for these
models and the vote distribution. However, since the TSP with a cities distribution randomly
selected is well described by a daisy model or frank 2, we decide to explore this option. To
this end, we consider two TSP models with different initial cities distribution. We start with
a square master lattice with a probability distribution centered in the intersection. The city
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Fig. 11. Same as previous figure. The TSP models does not fit departing from s ≈ 0.35
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presented here. Notwithstanding such a result appears clearly as a deviation into the crude
data reported previously in (Hernández-Saldaña, 2009).
From the analysis it is clear the correct tail for electoral results requires some overlapping
between the initial cities distribution. The model II, the Gaussian one, presents a better fitting
in all the cases. The TSP models fails in to obtain correctly the maxima of the distribution.
This fail is common in all the cases and that happens even in the case of daisy models. It
is a truism that the maxima and the average in a probability distribution are not the same.
Since the distribution is normalized a different value of position of maxima causes a different
rate decay at the tail. Hence, a search on new TSP models which could present a different
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position of the maxima could give a better fitting of electoral data. A remarkable exception is
Presidential case in 2006.
In reference to the long range correlation for the TSP models they grow linearly, but
with a slope that slightly differs from daisy models. It is important to remark that long
range correlations are extremely sensitive to unfolding procedure, but knowledge of longer
correlations than first neighbour helps to understand the dynamics. Such has been the
experience in quantum chaos and recently in the study of DNA sequences.
As a final point for this section is in reference to the reliability of electoral data. Even when
we assume a fair play election and that the data are correctly collected and expressed, such a
phenomenon is of a large complexity. One, which can be determined, is the self consistency in
the data. In the Mexican 2006 election such a reliability is unclear (Báez et al., 2010) and must
be taken into account when the analysis is performed. The 2006 data for the corporate party
was particularly clear since they were, by far, the third position in the whole election. Many
of the usual allies that sum their vote to this party were split with the two other large parties.

6. Conclusion

In this chapter we expose an application of TSP to a socio-political problem: explain the
distribution of votes of a corporate party. The link between TSP and vote processes is made
considering the distances between cities as the amount of votes received for a party in a cabin.
In order to compare their statistical properties we perform a deconvolution process in order
to separate the fluctuation from the average properties, such a procedure is called unfolding.
The comparison was made for the nearest neighbour distribution of the unfolded variables.
The corporate vote distribution for Mexican elections of 2000, 2003 and 2006 show that the
distribution presents an exponential decay and start with a power law. These distributions
are well described by a daisy model of rank r but there is not a clear interpretation for these
models and the vote distribution. However, since the TSP with a cities distribution randomly
selected is well described by a daisy model or frank 2, we decide to explore this option. To
this end, we consider two TSP models with different initial cities distribution. We start with
a square master lattice with a probability distribution centered in the intersection. The city
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Fig. 12. Nearest neighbour distribution for the cases indicated in the inset. (a) Linear scale
and (b) the semilog scale in order to show the behaviour at the tail.

location is selected from this probability distribution. We use two models, model I consists of
an uniform distribution of total width 2σs and, as model II, a Gaussian distribution of width
σg . Both models present a transition from a distribution of cities, departing from a square
lattice for σ = 0 to a distribution of cities that resembles one selected randomly. For large
enough width both models reproduce the rank 2 daisy model tail.
With this two models we analyzed the electoral problem. The result obtained shows that the
tail behavior could be described by such a models but the behaviour for small distances is
not. The vote data best situated for analysis is the federal election in 2006. For the Presidential
election of 2006, the extreme case, the decaying behaviour is well fitted by the models and the
rank 2 daisy model. For an intermediate case, as it is represented by the Deputy and Senator
elections in 2006 the model reproduces the tail by width values that are near from the value
b/2, being b the size of the master square lattice. In all the vote distribution of 2006 the small
distance behaviour is well described by our models with width of the order of (3/5)b.
The problem in the description for small distances with our models is that they present a limit
for the beginning of the distribution. This limit appears when the width of the models admits
overlapping of the different sites in the master lattice. This limit appears not only in ourmodel
but in actual cities distribution( see figure 3). If this behaviour is universal or not it is matter
of current research.
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Fig. 13. Nearest neighbour distribution for the cases indicated in the inset. (a) Linear and (b)
semilog scales in order to show the behaviour at the tail.
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The existence of overlapping or not in the models becomes crucial in the description. This
could be interpreted, in the vote case, as the corporate party having a similar distribution of
voters in each cabin instead of single agents. In terms of a political description this means
that agents of the party (the members of a national syndicate like the elementary school
teachers, for instance) have a sphere of influence (with their relatives, for instance). This kind
of behaviour has been observed, see (Crespo, 2008). How far this analogy goes is matter of
current research and opens new questions about how we vote, beyond of the opinion models
currently investigated by (Fortunato & Castellano, 2007), for instance. The peculiarities and
deviations in the actual data can be taken into account. In the case of 2000 elections all the vote
distributions presented a linear grow for small number of votes. This behaviour could not be
explained by the models, this is a characteristic of such election. The electoral data itself can
be noisy and subject to a lot of influences no related to fair-game. To this subject see (Crespo,
2008; Báez et al., 2010).
Even when the distribution of votes of the corporate party are better described by daisy
models than the presented models of TSP, the latter offers a better dynamical insight of the
voters behaviour. The search of new TSP models that present a better description of the actual
data is open as well as models that reproduce the dynamics of the corporate vote. Human
societies are complex, indeed, but simple models are discovering and enlightening features
that could be explanation of the large consequences of our every day behaviour.
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2008; Báez et al., 2010).
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1. Introduction

Starting from a practical Health Economics problem (the optimal planning of visits for a given
medical registrar to its allocated cities, for selection and registration of eligible patients to
be included in the regional non-communicable diseases registries for a specified type of
chronic disease) we construct a mathematical model. We show that this model can be seen
as a new generalization of the following problems: Prize Collecting Traveling Salesman
Problem, Simple Cycle Problem, Capacitated Prize-Collecting Traveling Salesman Problem
or Orienteering Problem.
Our purpose is that of finding a cycle, belonging to a directed graph, with a given number of
vertices (nodes), among which one is fixed, so that the total bonus (which varies in time) is
maximized and the total costs (transport costs plus accommodation costs) are minimized. A
boundary condition must also be satisfied.
In contrast to the known generalizations of the Traveling Salesman Problem, the originality of
our approach relies on three ideas:
- the fact that the exact number of cycle vertices is fixed,
- the bonus depends not only on the visited vertex, but also on the visiting time, that is, on the
position of the vertex along the cycle, and
- the goal is expressed by a vector, with two components (bonus and cost).
The solving of the problem reduces to the determination of a lexicographic max-min
non-dominant cycle, the choice of the lexicographic order being determined by the initial
health economics problem.
It is important to mention that we do not just analyze the problem from a theoretical point of
view, but also from a practical one, therefore we propose two algorithms: a Greedy algorithm
and an exact one. They both generate good solutions. Unfortunately, the exact algorithm
becomes slower as the number of vertices increases. That is, as in (Trobec et al., 2009), we also
analyze the possibility of using parallel calculus for improving the execution time.
We are interested in continuing the research, focused on other health economics problems,
whose mathematical model can be seen as a generalization of the classical Traveling Salesmen
Problem.
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whose mathematical model can be seen as a generalization of the classical Traveling Salesmen
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2. The medical motivational background

During the last years, many studies belonging to a field known as Health Economics Research,
have been developed. The term includes a multitude of issues related to the management of
pharmaceutical products and of medical activities, from an optimization perspective. In this
context, several major issues arise:

– finding new treatments with increased effectiveness and with little costs;

– making the treatment to be carried out to a patient as bearable as possible (little
inconvenience, fewer side effects);

– detecting, in early stages, the disease, since it is known that healing is safer, faster and less
expensive as the disease is diagnosed sooner;

– monitoring a chronic disease both for determining its objective causes, and for
understanding its evolution trend, in order to anticipate correctly the necessary treatment
costs;

– finding those treatments which may keep the patient’s life quality at a high level, but
with lower costs (usually constrained to fit into a given budget), in chronic diseases, when
returning to the normal health state is impossible;

– preventing infectious diseases, by controlling the possible contacts, isolating the sick
persons, and, in some cases vaccinating them.

The basic idea behind pharmacoeconomics studies is: to win as a good health as possible with
the smallest amount of money. Therefore, in these studies which consider a treatment by its
results reported to the cost, some ratios are generated, called indices. Among them, we recall
ICER, INB, and NHB. It is clear that, in order to draw a conclusion closer to reality on the
costs and effectiveness of a treatment, it is necessary to apply it to a sufficient number of
patients. As a result, costs and effects will be replaced by average costs, average effects,
respectively. The need of averages leads to the necessity of using results from mathematical
statistics. Hence, if in their early phases, the pharmacoeconomics studies highlighted the
treatment effects and identified the costs involved in applying it (the actual cost of the
drugs used, their application costs, costs of the medical advices), nowadays these studies
have been starting to use advanced mathematical tools like Probability Theory, Bayesian
Analysis, Markov Processes and Multi-Criteria Optimization. We recall (Briggs & Sculpher,
1998; Briggs et al., 2006; Fayers, 1997) and (Willan & Briggs, 2006) as main reference works
related to pharmacoeconomics studies, works that use the indices mentioned above.
Because health budgets are not unlimited, whatever the country, the health economics
problems are, in most cases, optimization problems which get a multi-criteria character (see,
for example, (Lupsa, 1999; 2000a;b; Tigan et al., 2001; Grosan et al., 2005; 2007)). Other works,
as (Canfelt et al., 2004; Kang & Lagakos, 2007; Chiorean et al, 2008; Lupsa et al, 2008; Neamtiu,
2008; 2009), contain mathematical models which were built by using Bayesian Analysis,
Markov Processes or Dynamic Optimization.
The aim of this chapter is to present an approach to a health-economics problem, using in
its solving variants of the Traveling Salesman Problem. The problem was raised during the
optimization process of the data collection for the cancer registry at the North-West Regional
Cancer Registry (Romania). The research is sustained by a multidisciplinary consortium in
the framework of CRONIS project (contract no. 11-003/2007, developed under PN II national
R&D programme, financed by the Romanian Government).
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3. The problem of medical registrars

To organize regional non-communicable diseases registries for a specified type of chronic
disease (cancer, diabetes, cardiovascular), registrars (persons with specialized training who
register data) must visit, at certain interval of times, the medical units subordinated (clinics,
hospitals, etc.) for selection and registration of eligible patients to be included in the
register. More precisely, registrars, based on medical documentation, have to decide
whether a case should be registered or not, and, in the first situation, to specify, beside
the patient’s personal data, some disease-related remarks, remarks that are coded. For
example, for cancer, the registration and coding rules are well established and standardized
(see (World Health Organization, 1991)).
Knowing those medical units which are subordinated to a registrar, the problem is to plan the
days in which he has to make the registrations at every medical unit. The maximum number
of registrations that he/she can make in one day is known, as well as the fact that, in one day,
he/she visits one medical unit, due to the fact that these units are in different locations (cities).
The number of patients whose medical records have to be investigated is variable, it increases
from one day to another. Specifically, every morning, in the stack of processed medical
records, new ones are added. One makes the assumption that, at the very beginning, the
number of existing medical records is known and also its growth rate, depending of time. In
this paper we assume that the rate is constant, and equal to the monthly average number of
new files. Planning should be such that the number of medical records left unchecked (from
all the files gathered until the end of the period) to be as low as possible, and also the total
costs (which include transportation costs plus subsistence and accommodation costs) to be
as low as possible. The registrar may remain for several days to record documents in one
medical unit. He/she can move from one unit to another or return to the base, case in which
he/she is obliged to remain a day there.
The following data are known:
- n, the number of hospitals, numbered from 1 to n; with 0 being numbered the hospital to
which the registrar belongs; it is the location where he starts the early registration period and
where he must return at the end of the recording process;
- p, the number of days corresponding to the time period when the registration is made;
- cij, transport costs from hospital i to hospital j, for any i, j ∈ {0,1, . . . ,n}, i �= j;
- q, maximum number of medical records that can be investigated by the registrar in a day;
- di, accommodation costs per night if remains to sleep overnight in the area corresponding to
hospital i (if it coincides with the place where hospital 0 is located, we have obviously di = 0);
- fi, estimated number of medical records that can exist in hospital i at the beginning of the
work;
- ri, the growth rate, from day to day, of the number of medical records;
- s, daily subsistence if, in that day, the registrar is located in another location than that where
the hospital to which he belongs is;
- δ, the working number of hours/days.
We use the notation T = {1, . . . , p}.
One of the difficulties in solving this problem is the fact that there are hospitals where the
number of medical records to be processed exceeds the processing capacity of the registrar in
a day. In that case, he has to work more than a day at that site and we must decide which is
better for him, to stay over night there or to go back home and return the next day. Another
difficulty arises from the fact that the total number of medical records to be processed at a site
increases from one day to the next. To treat these difficulties, we introduce dummy (fictive)
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3. The problem of medical registrars

To organize regional non-communicable diseases registries for a specified type of chronic
disease (cancer, diabetes, cardiovascular), registrars (persons with specialized training who
register data) must visit, at certain interval of times, the medical units subordinated (clinics,
hospitals, etc.) for selection and registration of eligible patients to be included in the
register. More precisely, registrars, based on medical documentation, have to decide
whether a case should be registered or not, and, in the first situation, to specify, beside
the patient’s personal data, some disease-related remarks, remarks that are coded. For
example, for cancer, the registration and coding rules are well established and standardized
(see (World Health Organization, 1991)).
Knowing those medical units which are subordinated to a registrar, the problem is to plan the
days in which he has to make the registrations at every medical unit. The maximum number
of registrations that he/she can make in one day is known, as well as the fact that, in one day,
he/she visits one medical unit, due to the fact that these units are in different locations (cities).
The number of patients whose medical records have to be investigated is variable, it increases
from one day to another. Specifically, every morning, in the stack of processed medical
records, new ones are added. One makes the assumption that, at the very beginning, the
number of existing medical records is known and also its growth rate, depending of time. In
this paper we assume that the rate is constant, and equal to the monthly average number of
new files. Planning should be such that the number of medical records left unchecked (from
all the files gathered until the end of the period) to be as low as possible, and also the total
costs (which include transportation costs plus subsistence and accommodation costs) to be
as low as possible. The registrar may remain for several days to record documents in one
medical unit. He/she can move from one unit to another or return to the base, case in which
he/she is obliged to remain a day there.
The following data are known:
- n, the number of hospitals, numbered from 1 to n; with 0 being numbered the hospital to
which the registrar belongs; it is the location where he starts the early registration period and
where he must return at the end of the recording process;
- p, the number of days corresponding to the time period when the registration is made;
- cij, transport costs from hospital i to hospital j, for any i, j ∈ {0,1, . . . ,n}, i �= j;
- q, maximum number of medical records that can be investigated by the registrar in a day;
- di, accommodation costs per night if remains to sleep overnight in the area corresponding to
hospital i (if it coincides with the place where hospital 0 is located, we have obviously di = 0);
- fi, estimated number of medical records that can exist in hospital i at the beginning of the
work;
- ri, the growth rate, from day to day, of the number of medical records;
- s, daily subsistence if, in that day, the registrar is located in another location than that where
the hospital to which he belongs is;
- δ, the working number of hours/days.
We use the notation T = {1, . . . , p}.
One of the difficulties in solving this problem is the fact that there are hospitals where the
number of medical records to be processed exceeds the processing capacity of the registrar in
a day. In that case, he has to work more than a day at that site and we must decide which is
better for him, to stay over night there or to go back home and return the next day. Another
difficulty arises from the fact that the total number of medical records to be processed at a site
increases from one day to the next. To treat these difficulties, we introduce dummy (fictive)
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hospitals, as it will be seen next.
Let us consider hospital i. The total number of unprocessed medical records that exist until
the morning of day k is fi + (k− 1)ri. To process the files collected until the morning of the
last day (the p-th day), it would be necessary mi working days, where

mi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fi + (p− 1)ri
q

, if
fi + (p− 1)ri

q
∈ N,

�
fi + (p− 1)ri

q

�
+ 1, if

fi + (p− 1)ri
q

�∈ N.

(1)

Therefore, for the sake of simplicity, we consider that, instead of hospital i, we have mi

hospitals, denoted by i1,. . . ,imi
. All the files of these hospitals come from the hospital i; the

number of files in these hospitals will vary in time, but none of themwill exceed the maximum
number of files that can be processed in one day. More precisely, the moment when, at the
hospital ih, q files have been gathered for processing, the subsequent files are considered to be
at hospital ih+1; when for hospital ih+1, q files are gathered, the next ones are sent to hospital
ih+2, etc.
We denote by gih,k the number of files to be processed, existing in hospital ih in the day k ∈ T.
This is equal to

gih,k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fi + (k− 1)ri, if h = 1, fi + (k− 1)ri � q,
q, if h = 1, fi + (k− 1)ri > q,
0, if 1< h, fi + (k− 1)ri − (h− 1)q� 0,
fi + (k− 1)ri − (h− 1)q, if 1< h, 1� fi + (k− 1)ri − (h− 1)q� q,
q, if1< h, fi + (k− 1)ri − (h− 1)q > q.

(2)

The distance between any two dummy hospitals generated by hospital i is equal to di (instead
of transport, the accommodation has to be paid), and the distance between any dummy
hospital ih and hospital k, k �= i, is equal to the distance between hospital i and hospital k.
Then, the following relation holds:

cih,k =

�
cik, ∀ h ∈ {1, . . . ,mi}, k ∈ {0,1, . . . ,n} \ {i},
di, ∀ h ∈ {1, . . . ,mi}, k ∈ {i1, . . . , im}, ih �= k.

(3)

Following this transformation, the problem size increases by increasing the number of
hospitals, but the problem is simplified by the fact that every day, the registrar can examine
all existing files in any of the hospitals where he arrives. We denote by m the number of new
hospitals resulting by performing this transformation (i.e. m = m1 + · · ·+mn).
We continue to denote by cik the transport costs between any two hospitals i and k, i �= k.
Since there may be days when the registrar does not work in the subordinated hospitals, we
introduce more p dummy hospitals, numbered m+ 1,. . . ,m+ p.
The transport costs for the new hospitals are defined by

cik =

⎧⎪⎪⎨
⎪⎪⎩

0, if i,k ∈ {m+ 1, . . . ,m+ p}, i �= k,
c0k, if i ∈ {m+ 1, . . . ,m+ p}, k ∈ {1, . . . ,m},
0, if i = 0, k ∈ {m+ 1, . . . ,m+ p},
ci0, if i ∈ {1, . . . ,m}, k ∈ {m+ 1, . . . ,m+ p}.

(4)
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Every day, the number of existing medical records in the location m+ 1, . . . ,m+ p is equal to
0, hence we have

gij = 0, ∀ i ∈ {m+ 1, . . . ,m+ p}, j ∈ {1, . . . , p}.

The accommodation costs will be also equal to 0, so

di = 0, ∀ i ∈ {m+ 1, . . . ,m+ p}.

Because, under the new conditions, the registrar will not stay more than one day in a hospital,
we attach the subsistence costs to the hospital. More precisely, we define the numbers si,
i ∈ {1, . . . ,m+ p}, by si := s, if the hospitals i and 0 are not at the same location and si := 0
otherwise.
Hence, after making these changes, we consider that we have m+ p+ 1 hospitals, from 0 to
m+ p, with 0 being the “home” hospital (the registrar’s home). The following data are known:

– transport costs between any two locations i,k ∈ {0,1, . . . ,m+ p}, i �= k, denoted by cik,

– number ofmedical records that can be processed in the hospital i in every day j∈ T, denoted
by gij,

– the accommodation cost, di, and the subsistence cost, si, according to the area where the
hospital i is located.

Example. Let us take n = 3, p = 4, q = 10, e = 14, d1 = 3, d2 = 7, d3 = 2, s = 1,

C =

⎡
⎢⎢⎣

0 5 7 3
5 0 2 4
7 2 0 6
3 4 6 0

⎤
⎥⎥⎦ ,

f1 = 20, f2 = 15, f3 = 1, r1 = 2, r2 = 1, r3 = 3.

According with the previous specification, we work with m = 3+ 2+ 1 and p = 4. In total,
10 hospitals, plus the “home” hospital, 0. The transport costs between any two hospitals are
given in the table 1.

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
S0 0 5 5 5 7 7 3 0 0 0 0
S1 5 0 0 0 2 2 4 5 5 5 5
S2 5 0 0 0 2 2 4 5 5 5 5
S3 5 0 0 0 2 2 4 5 5 5 5
S4 7 2 2 2 0 0 6 7 7 7 7
S5 7 2 2 2 0 0 6 7 7 7 7
S6 3 4 4 4 6 6 0 3 3 3 3
S7 0 5 5 5 7 7 3 0 0 0 0
S8 0 5 5 5 7 7 3 0 0 0 0
S9 0 5 5 5 7 7 3 0 0 0 0
S10 0 5 5 5 7 7 3 0 0 0 0

Table 1. Transportation costs table
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The medical records matrix will be

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 10 10 10
10 10 10 10
0 2 4 6
10 10 10 10
5 6 7 8
1 4 7 10
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The new vectors d and s will be

d = (3,3,3,7,7,2,0,0,0,0),

s = (1,1,1,1,1,1,0,0,0,0).

Our purpose is to obtain a planning for the registrar (this means to specify, for every day j∈ T,
the hospital where the registrar should go) such as the number of medical records that are
processed to be as large as possible, and the costs involved in transportation, accommodation
and subsistence to be as low as possible. The following assumptions are made:

1) If in the day j, j ∈ T, the registrar works at the hospital i, i ∈ {1, . . . ,m + p}, then in the
following night he/she sleeps in the city where hospital i is located. Therefore, the total
costs for that day contain the transportation costs from the location where the registrar
worked in the previous day and the city i, the accommodation costs for one night in locality
i, (equal to di) and the subsistence costs for locality i (equal to si).

2) The departure of the registrar is soon enough, so that, after reaching the destination, he
may work δ hours.

3) The first day, the registrar leaves from hospital 0.

4) The registrar returns to hospital 0 only in the morning of day p+ 1.

5) One day, the registrar works exactly in one hospital.

6) In every hospital the registrar works at most one day.

7) The available amount of money which can be spent for the entire action is equal to e and it
includes also the costs of returning to hospital 0 in the day p+ 1.

4. A mathematical model for the problem of medical registrars

In order to generate the mathematical model, we introduce the binary variables xij,
i ∈ {1, . . . ,m+ p}, j ∈ {1, . . . , p}, where

�
xij = 1, if in day j the registrar is in hospital i,

xij = 0, if not.
(5)

Conditions 3)-5) imply that
m+p

∑
i=1

xij = 1, ∀ j ∈ {1, . . . , p}. (6)
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Condition 4) implies
p

∑
j=1

m+p

∑
i=1

xij = p. (7)

Condition 6) means that
p

∑
j=1

xij � 1, ∀ i ∈ {1, . . . ,m+ p}. (8)

Considering the hypotheses 1) and 3), the first day costs will be

m+p

∑
k=1

(c0k + dk + sk)xk1.

According to hypothesis 4), the costs of returning to hospital 0 in day p+ 1 are

m+p

∑
k=1

ck0xkp.

According to 1), the costs for a day j ∈ {2, . . . , p} are

m+p

∑
i=1

m+p

∑
k=1,k �=i

cikxi,j−1xkj +
m+p

∑
k=1

(dk + sk)xk,j.

Then, the hypothesis 7) implies

m+p

∑
k=1

c0kxk1 +
p

∑
j=2

(
m+p

∑
i=1

m+p

∑
k=1,k �=i

cikxi,j−1xkj

)
+ (9)

+
p

∑
j=1

m+p

∑
k=1

(dk + sk)xkj +
m+p

∑
k=1

ck0xkp � e.

The set of matrices X= [xij] ∈ {0,1}(m+p)×p which verify (6), (7) and (8) will be denoted by X .
The set of matrices X = [xij] ∈ X which verify in addition the condition (8), will be denoted

by X̃.
As the registrar may process in one day all existing files in a location, he will do so. Therefore,
considering that, in one day j ∈ T, he can be in one location, the number of medical records
processed that day will be equal to

m+p

∑
i=1

gijxij,

and the total number of processed medical records is equal to

p

∑
j=1

m+p

∑
i=1

gijxij.

The number of medical records that would be gathered at the end of the period is equal to

m+p

∑
i=1

max{gij | j ∈ {1, . . . , p}}.
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The two objective functions are:

- Ff , which denotes the total processed medical records, i.e. Ff : {0,1}
(m+p)×p → R,

Ff (X) =
m+p

∑
i=1

p

∑
j=1

gijxij, (10)

for all X = [xij] ∈ {0,1}(m+p)×p and

- Fc, which denotes the total cost, i.e. Fc : {0,1}(m+p)×p → R,

Fc(X) =
m+p

∑
k=1

c0kxk1 +
p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

cikxi,j−1xkj +
p

∑
j=1

m+p

∑
k=1

(dk + sk)xkj +
m+p

∑
k=1

ck0xkp, (11)

for all X = [xij] ∈ {0,1}(m+p)×p.
The corresponding mathematical model for the Registrar Problem is the Max-min

Lexicographical Optimization Problemwith the objective function F = (Ff ,Fc) : {0,1}
(m+p)×p →

R
2, whose scalar components are given by (10), (11), and the feasible set is S̃ ,

S̃ = {X ∈ {0,1}(m+p)×p |satisfies the conditions (6), (7), (8), (9)}, (12)

Hence, our problem, denoted by (PB), is the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ff (X) =
m+p

∑
i=1

p

∑
j=1

gijxij

Fc(X) =
m+p

∑
k=1

(c0k + dk + sk)xk1

+
p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

cikxi,j−1xkj

+
p

∑
j=2

m+p

∑
k=1

(dk + sk)xkj +
m+p

∑
k=1

ck0xkp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→ lex−max−min

m+p

∑
i=1

xij = 1, ∀ j ∈ {1, . . . , p},

∑
p
j=1 xij � 1, ∀ i ∈ {1, . . . ,m+ p},

m+p

∑
k=1

(c0k + dk + sk)xk1 +
p

∑
j=2

m+p
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m+p

∑
k=1,k �=i

cikxi,j−1xkj+

+
p

∑
j=2

m+p

∑
k=1

(dk + sk)xkj +
m+p

∑
k=1

ck0xkp � e,

xij ∈ {0, 1}, ∀ i{1, . . . ,m+ p}, j ∈ {1, . . . , p}.

Using an appropriate change of variables, the problem (PB) may be transformed in a linear
one. It is easy to notice that, if x,y,z ∈ {0, 1}, then we have z = x · y if and only if z is the
unique solution of the system ⎧⎨

⎩
x+ y− z� 1
−x− y+ 2z� 0
z ∈ {0, 1}.

(13)
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So, for each j ∈ {2, . . . , p}, i ∈ {1, . . . ,m + p} and k ∈ {1, . . . ,m + p}, k �= i, we introduce the
binary variable

zijk := xi,j−1 · xkj (14)

and the corresponding conditions

xi,j−1 + xkj − zijk � 1,

−xi,j−1 − xkj + 2zijk � 0,

zijk ∈ {0, 1}.

Then the problem (PB) can be rewritten as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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p
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k=1,k �=i
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p

∑
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∑
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(dk + sk)xkj +
m+p

∑
k=1

ck0xkp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→ lex−max−min

m+p

∑
i=1

xij = 1, ∀ j ∈ {1, . . . , p},

∑
p
j=1 xij � 1, ∀ i ∈ {1, . . . ,m+ p},

m+p

∑
k=1

(c0k + dk + sk)xk1 +
p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

cikzijk +
p

∑
j=2

m+p

∑
k=1

(dk + sk)xkj+

+
m+p

∑
k=1

ck0xkp � e,

xi,j−1 + xkj − zijk � 1, ∀ j ∈ {2, . . . , p}, i ∈ {1, . . . ,m+ p}, k ∈ {1, . . . ,m+ p}, k �= i,

−xi,j−1 − xkj + 2zijk � 0, ∀ j ∈ {2, . . . , p}, i ∈ {1, . . . ,m+ p},k ∈ {1, . . . ,m+ p},k �= i,

xij ∈ {0, 1}, ∀ i{1, . . . ,m+ p}, j ∈ {1, . . . , p},
zijk ∈ {0, 1}, ∀ j ∈ {2, . . . , p}, i ∈ {1, . . . ,m+ p}, k ∈ {1, . . . ,m+ p}, k �= i.

This problem can be solved by using any of the algorithms for solving pseudo-boolean linear
optimization problems (see, for example (Hammer & Rudeanu, 1968; Crama, 1989)). But, it
can be seen as a special type of the Prize Collecting Traveling Salesman Problem or as a special
type of the Simple Cycle Problem, as it will be shown in the next section.

5. Max-min lexicographical traveling salesman problem with objective function
depending on a parameter

Let m and p be natural numbers, m �= 0, and let e, gij, akj, bik, ckj, dik, i ∈ {1, . . . ,m + p},
j ∈ {1, . . . , p}, k ∈ {1, . . . ,m+ p}, k �= i, be positive real numbers.
By X we denote the set of the matrices X = [xij] with m + p rows and p columns, whose
elements satisfy the following three conditions:

m+p

∑
i=1

xij = 1, ∀ j ∈ {1, . . . , p}, (15)
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depending on a parameter

Let m and p be natural numbers, m �= 0, and let e, gij, akj, bik, ckj, dik, i ∈ {1, . . . ,m + p},
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p

∑
j=1

xij � 1, ∀ i ∈ {1, . . . ,m+ p}, (16)

xij ∈ {0, 1}, ∀ i ∈ {1, . . . ,m+ p}, j ∈ {1, . . . , p}, (17)

and by X̃ the set of matrices of X which satisfies, in addition, the bounded condition

p

∑
j=1

m+p

∑
k=1

ckjxkj +
p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

dikxi,j−1xkj � e. (18)

Let us remark that from (15) we obtain

m+p

∑
i=1

p

∑
j=1

xij = p. (19)

Then, from (16) it follows that there are p distinct indices i1, . . . , ip ∈ {1, . . . ,m+ p} such that

p

∑
j=1

xik ,j = 1, ∀ k ∈ {1, . . . , p},

and
p

∑
j=1

xij = 0, ∀ i ∈ {1, . . . ,m+ p} \ {i1, . . . , ip}.

Let us define the vector function F = (F1,F2) : X → R
2, where

F1(X) =
m+p

∑
i=1

p

∑
j=1

gijxij, ∀X ∈ X , (20)

F2(X) =
p

∑
j=1

m+p

∑
k=1

akjxkj +
p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

bikxi,j−1xkj, ∀X ∈ X . (21)

The problem (PB) can be see as a special case of the pseudo-boolean lexicographical max-min
optimization problemwith the objective function F and the set of feasible solution equal to X̃ ,
i.e., the problem:

(PBG)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

m+p

∑
i=1

p

∑
j=1

gijxij

p

∑
j=1

m+p

∑
k=1

akjxkj +
p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

bikxi,j−1xkj

⎞
⎟⎟⎟⎟⎠

→ lex−max−min

m+p

∑
i=1

xij = 1, ∀ j ∈ {1, . . . , p},

p

∑
j=1

xij � 1, ∀ i ∈ {1, . . . ,m+ p},

p

∑
j=1

m+p

∑
k=1

ckjxkj +
p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

dikxi,j−1xkj � e,

xij ∈ {0, 1}, ∀ i{1, . . . ,m+ p}, j ∈ {1, . . . , p}.
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We show how the problem (PBG) can be modeled as a new special type of the Prize Collecting
Traveling Salesman Problem, or as a new special type of the Simple Cycle Problem. We
name it max-min lexicographical Traveling Salesman Problem with objective function depending on a
parameter, and we denote it as lex max-min BTSPPF.
To this purpose, let us consider the following complete directed graph G = (V,E), where

V = {0,1, . . . ,m+ p}

and
E = {(i,k) | i ∈ V, k ∈ V, k �= i}.

Let C be the set of all cycles with the following properties:

– contain vertex 0,

– apart from vertex 0, they contain exactly p distinct vertices.

Note that each cycle C ∈ C may be described by a p + 2-dimensional vector (0,u1, . . . ,up,0),
which indicates the order in which the vertices follow one other in the cycle. Since this vector
always contains 0 on the first and on the last position, the useful information is given by the
p-dimensional vector u = (u1, . . . ,up), called descriptor vector or the vector which describes the
cycle C.
For instance, for m = 5, p = 3, the cycle through the vertices 0, 1, 4, 2 and again 0 is described
by the vector u = (1,4,2). Similarly, u = (1,5,4) describes the cycle consisting in the vertices
0, 1, 5 , 4 and returning to 0.

Remark 5.1 The vector u = (u1, . . . ,up) ∈ R
p describes a cycle from C, if and only if the following

two conditions are fulfilled:

i1) uj ∈ {1, . . . ,m+ p}, for all j ∈ {1, . . . , p};

i2) for all k,h ∈ {1, . . . , p}, k �= h, we have uk �= uh.

In the following, we use the function sign : R → {−1,0,1},

signr =

⎧⎨
⎩

0, if r = 0,
1, if r > 0,
−1, if r < 0.

(22)

Remark 5.2 If u = (u1, . . . ,up) is the descriptor vector of a cycle in C, then the following conditions
hold:

i) For every j∈ {1, . . . , p}, there exists a unique hj ∈ {1, . . . ,m+ p} such that hj = uj and, therefore,
if h ∈ {1, . . . ,m+ p}, we have

(1− sign(|uj − h|)) =

�
1, if h = hj ,

0, if h �= hj .
(23)

ii)
m+p

∑
h=1

(1− sign(|h− uj|)) = 1.

iii) For every i ∈ {1, . . . ,m+ p}, there is at most an index ji ∈ {1, . . . , p} such that i = uji .

.
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Traveling Salesman Problem, or as a new special type of the Simple Cycle Problem. We
name it max-min lexicographical Traveling Salesman Problem with objective function depending on a
parameter, and we denote it as lex max-min BTSPPF.
To this purpose, let us consider the following complete directed graph G = (V,E), where

V = {0,1, . . . ,m+ p}

and
E = {(i,k) | i ∈ V, k ∈ V, k �= i}.

Let C be the set of all cycles with the following properties:

– contain vertex 0,

– apart from vertex 0, they contain exactly p distinct vertices.

Note that each cycle C ∈ C may be described by a p + 2-dimensional vector (0,u1, . . . ,up,0),
which indicates the order in which the vertices follow one other in the cycle. Since this vector
always contains 0 on the first and on the last position, the useful information is given by the
p-dimensional vector u = (u1, . . . ,up), called descriptor vector or the vector which describes the
cycle C.
For instance, for m = 5, p = 3, the cycle through the vertices 0, 1, 4, 2 and again 0 is described
by the vector u = (1,4,2). Similarly, u = (1,5,4) describes the cycle consisting in the vertices
0, 1, 5 , 4 and returning to 0.

Remark 5.1 The vector u = (u1, . . . ,up) ∈ R
p describes a cycle from C, if and only if the following

two conditions are fulfilled:

i1) uj ∈ {1, . . . ,m+ p}, for all j ∈ {1, . . . , p};

i2) for all k,h ∈ {1, . . . , p}, k �= h, we have uk �= uh.

In the following, we use the function sign : R → {−1,0,1},

signr =

⎧⎨
⎩

0, if r = 0,
1, if r > 0,
−1, if r < 0.

(22)

Remark 5.2 If u = (u1, . . . ,up) is the descriptor vector of a cycle in C, then the following conditions
hold:

i) For every j∈ {1, . . . , p}, there exists a unique hj ∈ {1, . . . ,m+ p} such that hj = uj and, therefore,
if h ∈ {1, . . . ,m+ p}, we have

(1− sign(|uj − h|)) =

�
1, if h = hj ,

0, if h �= hj .
(23)

ii)
m+p

∑
h=1

(1− sign(|h− uj|)) = 1.

iii) For every i ∈ {1, . . . ,m+ p}, there is at most an index ji ∈ {1, . . . , p} such that i = uji .

.
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Remark 5.3 If X = [xij] ∈ X , then for every j ∈ {1, . . . , p}, the following statements hold:

i) there exists a unique index hj ∈ {1, . . . ,m+ p} such that xhj ,j = 1 and we have xhj = 0, for all

h ∈ {1, . . . ,m+ p} \ {hj};

ii)
m+p

∑
h=1

hxhj = hj.

Theorem 5.4 a) If X = [xij] ∈ X , then the vector u = (u1, . . . ,up), where

uj =
m+p

∑
i=1

ixij, ∀ j ∈ {1, . . . , p}, (24)

is a descriptor of a cycle in C.
b) If the vector u = (u1, . . . ,un) is a descriptor of a cycle in C, then the matrix X = [xij], with

xij = 1 − sign(|i− uj|), ∀ i ∈ {1, . . . ,m+ p}, j ∈ {1, . . . , p}, (25)

verifies the conditions (15) - (17).

Proof. a) If X = [xij] ∈ X , from Remark 5.3, we deduce that, for every j ∈ {1, . . . , p}, there is a
unique hj ∈ {1, . . . ,m+ p} such that

m+p

∑
h=1

hxhj = hj.

Then, in view of (24), we have
uj = hj , ∀ j ∈ {1, . . . , p}. (26)

It follows that uj ∈ {1, . . . ,m+ p}, for all j ∈ {1, . . . , p}.

There may not exist two distinct indices j�, j�� ∈ {1, . . . , p} such that uj� = uj�� . Indeed, if we

have uj� = uj�� , then we get that hj� = hj�� . Then, as j
� �= j��, we have

m+p

∑
h=1

hxhj� +
m+p

∑
h=1

hxhj�� = hj� + hj�� > 1+ 1.

On the other hand, from (16), we obtain

m+p

∑
h=1

hxhj� +
m+p

∑
h=1

hxhj�� � 1+ 1,

that contradicts the previous inequality.
Hence, the numbers uj, j ∈ {1, . . . , p}, are p distinct elements in set {1, . . . ,m+ p}, so the vector
u satisfies the conditions i) and ii) from Remark 5.1. Therefore, the vector u = (u1, . . . ,up) is
the descriptor of a cycle in C.
b) Let us suppose that the vector u= (u1, . . . ,up) is a descriptor of a cycle in C. Let us consider
i ∈ {1, . . . ,m+ p}, j ∈ {1, . . . , p}. Due to the fact that |i− uj|� 0, we have

sign(|i− uj|) ∈ {0, 1},
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which implies
xij = 1 − sign(|i− uj|) ∈ {1, 0}.

Hence (17) holds. Based on Remark 5.2, for every j ∈ {1, . . . , p} we have

m+p

∑
i=1

xij = 1,

so (15) takes place.
Let i ∈ {1, . . . ,m + p}. From Remark 5.2, iii), it results that only the following two cases are
possible:

a) There exists ji ∈ {1, . . . , p} such that uji = i and uj �= i, for all j ∈ {1, . . . , p} \ {ji}; in this case
we have

p

∑
j=1

xij =
p

∑
j=1

(1− sign(|i− uj|)) =
p

∑
j=1,j �=ji

(1− 1) + (1− sign(0)) = 1.

b) There is no j ∈ {1, . . . , p} such that uj = i; in this case

p

∑
j=1

xij =
p

∑
j=1

(1− sign(|i− uj|)) =
p

∑
j=1

(1− 1) = 0.

In both cases (17) holds.�

Corollary 5.5 The following statements hold:

i) If X ∈ X̃ is a feasible solution to problem (PBG), then the vector u = (u1, . . . ,up), where uj is
given by (24), for all j ∈ {1, . . . , p}, is the descriptor vector of a cycle in C, cycle which verifies the
condition

p

∑
j=1

cuj ,j +
p

∑
j=2

duj−1,uj
� e, (27)

equivalent to
p

∑
j=1

m+p

∑
i=1

cij(1− sign(|uj − i|))+ (28)

p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

dik(1− sign(|uj−1 − i|))(1− sign(|uj − k|)) � e.

ii) If u = (u1, . . . ,up) describes a cycle in C for which condition (27) is verified, then the matrix
X = [xij], where xij is given by (25), is a feasible solution to problem (PBG).

Proof. i) Since X = [xij] is a feasible solution to problem (PBG), the conditions (15)- (17) will
be verified. Hence, based on Theorem 5.4, the vector u = (u1, . . . ,up) describes a cycle in C.
Applying Remark 5.3 we deduce that for every j ∈ {1, . . . , p} there is a unique hj ∈ {1, . . . ,m+
p} such that xhj ,j = 1 and xij = 0, for all i ∈ {1, . . . ,m+ p} \ {hj}. Then

m+p

∑
i=1

cijxij = chj ,j. (29)
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p} such that xhj ,j = 1 and xij = 0, for all i ∈ {1, . . . ,m+ p} \ {hj}. Then
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Also, for i,k ∈ {1, . . . ,m+ p} and j ∈ {2, . . . , p}, we have

dikxi,j−1xk,j =

{
dhj−1,hj , if i = hj−1, k = hj
0, if i �= hj−1,or k �= hj .

(30)

From (29) and (30) we get

p

∑
j=1

m+p

∑
k=1

ckjxkj +
p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

dikxi,j−1xkj =
p

∑
j=1

chj ,j +
p−1

∑
j=1

dhj−1,hj .

As X is a feasible solution to (PBG), inequality (18) holds. Therefore, from the previous
equality, we get

p

∑
j=1

chj ,j +
p−1

∑
j=1

dhj−1,hj � e. (31)

Taking into account condition ii) from Remark 5.3, for vector u= (u1, . . . ,up), where uj is given
by (24), we have

uj = hj, for any j ∈ {1, . . . , p}, (32)

which, based on (31), implies that we have

p

∑
j=1

cuj ,j +
p

∑
j=2

duj−1,uj
� e,

so (27) holds.
We will prove that (27) is equivalent to (28).
Let us consider j ∈ {1, . . . , p}. From (32), successively, we get

m+p

∑
i=1

cij(1− sign(|uj − i|)) = chj ,j, (33)

and
m+p

∑
i=1

m+p

∑
k=1,k �=i

dik(1− sign(|uj−1 − i|))(1− sign(|uj − k|)) = dhj−1,hj . (34)

From (33) and (34), it results that, if (28) holds, then (27) also holds, and vice-versa. So, (28) is
equivalent to (27).
ii) Let u = (u1, . . . ,un) be a vector which describes a cycle in C and verifies the condition (28).
Consider also the matrix X = [xij], with xij given by (25). From theorem 5.4, we know that
X verifies (15)-(17). We still have to prove that the condition (18) holds. Let us consider
j ∈ {1, . . . , p}. Using (25), we get:

m+p

∑
i=1

cijxij =
m+p

∑
i=1

cij(1− sign(|i− uj|)) = cuj ,j. (35)

Hence
p

∑
j=1

m+p

∑
i=1

cijxij =
p

∑
j=1

cuj ,j. (36)
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Also,

p−1

∑
j=1

m+p

∑
i=1

m+p

∑
k=1

dikxi,j−1xk,j =
p−1

∑
j=1

m+p

∑
i=1

m+p

∑
k=1,k �=i

dik(1− sign(|i− uj|)(1− sign(|i− uj+1|) (37)

=
p−1

∑
j=1

duj ,uj+1
.

From (36)-(37), taking into account (27), it results that (18) holds. �
Let us denote by C̃ the set of cycles from C which verify the condition (28), and let U(C) be
the set of vectors which describe the cycle in C. On the setU(C), we define the vector function
F̃ = (F̃1, F̃2), where

F̃1(u) =
p

∑
j=1

guj ,j, ∀ u ∈U(C), (38)

and

F̃2(u) =
p

∑
j=1

auj ,j +
p

∑
j=2

buj−1,uj
,∀ u ∈U(C), (39)

respectively.

Remark 5.6 It is not difficult to prove that:

i) If X = [xij] ∈ X , and u = (u1, . . . ,up) is the vector whose components are defined by (24) for all
j ∈ {1, . . . , p}, then

F1(X) = F̃1(u); (40)

ii) If u = (u1, . . . ,up) ∈ U(C), then, for the matrix X = [xij] whose components are defined by (25),
we have

F̃2(u) = F2(X). (41)

We say that a cycle C0 ∈ C̃ is lexicographical max-min non dominate with respect to the set C̃ if there
is no cycle C ∈ C̃ such that:

F̃1(C)> F̃1(C
0), or F̃1(C) = F̃1(C

0) and F̃2(C)< F̃2(C
0).

The problem of finding a lexicographically max-min non dominated cycle with respect to set
C̃ will be denoted as (PG). We describe this problem as:

(PG)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

∑
p
j=1 guj ,j
p

∑
j=1

auj ,j +
p

∑
j=2

buj−1,uj

⎞
⎟⎠ → lex−max−min

p

∑
j=1

cuj ,j +
p

∑
j=2

duj−1,uj
� e,

u = (u1, . . . ,up) ∈U(C).

(42)

By optimal solution for (PG)we understand each lexicographicalmax-min non dominated cycle
with respect to set C̃.
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Corollary 5.7 The following statements hold:
i) If X is an optimal solution to problem (PBG), meaning that it is lex-max-min with respect to set
X , then the vector u = (u1, . . . ,up), where uj is given by (24), for all j ∈ {1, . . . , p}, describes a cycle

which is lexicographical max-min with respect to set C̃.
ii) If the vector u = (u1, . . . ,up) describes a cycle which is lexicographical max-min with respect to the

set C̃, then the matrix X = [xij], where xij are given by (25), is an optimal solution to problem (PB),

which means that it is a lexicographical max-min point according with set X̃.

Proof. Let X = [xij] be a point that is lexicographical max-min non dominated with respect

to the set X̃. Based on Consequence 5.5, the vector u = (u1, . . . ,un) is a feasible solution to
problem (PG). Let us suppose that u is not a lexicographically max-min cycle with respect to
the set C̃ . Two cases are possible:
Case I. There exists C∗ ∈ C̃ such that

F̃1(u) < F̃1(v), (43)

where v denotes the vector which describes the circuit C∗. Based on Consequence 5.5, the
matrix Y = [yij], where yij are given by

yij = 1 − sign(|i− vj|), ∀ i, j ∈ {1, . . . ,n} (44)

is a feasible solution to problem (PBG). Based on Remark 5.6, we have F1(Y) = F̃1(v) and
F2(Y) = F̃2(v). Now, by taking into account (43), we get F1(Y) > F1(X), which contradicts
the hypothesis that X is an optimal solution to problem (PBG), which means that it is
lexicographical max-min non dominated with respect to the set of feasible solutions to the
problem. Since this is a contradiction, we deduce that there cannot exist a cycle C∗ ∈ C such
that (43) holds.
Case II. There exists C∗ ∈ C̃ such that

F̃1(u) = F̃1(v), but F̃2(u) > F̃2(v), (45)

where v is the descriptor vector of the cycle C∗. As in the previous case, we consider the matrix
Y = [yij] whose components are given by (44), matrix which is a feasible solution to problem

(PBG). Based on Remark 5.6, we get that F1(X) = F̃1(u), F̃2(u) = F2(X) and F1(Y) = F̃1(v),
F̃2(v) = F2(Y). Therefore, by taking into account (45), the following relations hold:

F1(X) = F1(Y) and F2(X) > F2(Y),

which contradicts the hypothesis that X is a lexicographical max-min point with respect to the
set of feasible solutions to problem (PBG). Similarly, ii) may be proved. �
From Theorem 5.4 and Consequences 5.5, 5.7, it results that solving the problem (PG) may be
reduced to solving problem (PBG) and vice-versa. Therefore, the Registrar Problem consists
in finding a cycle, C0, which is lexicographical max-min non dominated with respect to the
set C̃.

6. The problem (PG) from general point of view

The (PG) problem can be seen, in terms of the Traveling Salesman Problem, as follows: a
traveling salesman must take a tour through exactly p towns, at his choice among the m+ p
given towns, and stays exactly one day in each town. The costs bik of going from town i to
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town k are also given, for all towns i and k, i �= k. For each town i that is visited, the salesman
gets a bonus gij that depends not only on the location i, but also on the day j he gets to that
location. Also, for each visited location i, in days j, he pays aij for accommodation. The
problem is that of finding a cycle so that the total bonus is maximized and the total costs
(transport costs plus accommodation costs) are minimized. A boundary condition (18) must
also be satisfied.
For this reason, the problem (PG) can be seen as a generalization of the following
problems: Prize Collecting Traveling Salesman Problem, Simple Cycle Problem, Capacitated
Prize-Collecting Traveling Salesman Problem or Orienteering Problem. Note that all these
variants of the Traveling Salesman Problem allow that the cycle not to visit all the vertices of
the graph.
The Prize Collecting Traveling Salesman Problem was posed in 1986 by E. Balas. A synthesis of
the results on this topic and of the solving methods for this problem can be found in (Balas,
2002). In accordance with this paper, in the Prize Collecting Traveling Salesman Problem: a
salesman gets a prize wk in every city k that he visits and pays a penalty cl to every city l that he fails
to visit. Traveling at cost cij between cities i and j our salesman wants to find a tour that minimizes his
travel costs and penalties, subject to a lower bound w0 on the amount of prize money he collects.
In Simple Cycle Problem (see (Fischetti et al, 2002)), a complete undirected graph G = (V,E) is
given. A cost ce is associated to each edge e∈ E and a prize pn is associated to each node n∈V.
The cost of a cycle C is given by the difference between the sum of all costs corresponding to
the edges of this cycle and the sum of all prizes corresponding to the nodes of this cycle. The
problem is to find a min-cost cycle of at least 3 vertices. A further requirement may be that a
given vertex be part of the cycle.
Capacitated Prize-Collecting Traveling Salesman Problem is derived from simple cycle problem.
For this problem, to each node it is assigned a weight and there is a further restriction that the
sum of weights of visited vertices not to exceed a given maximum value.
In the case of the Orienteering Problem or Selective Traveling Salesman Problem, the transport
costs assigned to all edges are zero, that is, ce = 0, for all e ∈ E. In exchange, to each edge e ∈ E
it is assigned a positive value, a duration te, and it is required that the sum of durations for all
visited edges not to exceed a given value.
All these problems can be seen as some variants or generalization of the Traveling Salesman
Problem. Practically (see (Balas, 2002)) each situation involving decisions that affect the
sequence in which various actions, tasks or operations are to be executed, has a traveling
salesman problem aspect to it. We remember that in accordance with (Punnen, 2002) the
Traveling Salesman Problem (TSP) is to find a routing of a salesman who starts from a home
location, visits a prescribed set of cities and returns to the original location in such a way that
the total distance traveled is minimum and each city is visited exactly once.
The differences between the above four TSP variants and the (PG) problem are:

– the fact that the exact number of cycle vertices is fixed,

– the bonus depends not only on the visited vertex, but also on the visiting time, that is, on
the position of the vertex along the cycle;

– the goal is expressed by a vector, with two components (bonus and cost).

The authors of this work do not have knowledge of a paper discussing a TSP variant, where
the bonus depends on the visiting time or where the exact number of vertices to be used is
given (except, obviously, the case where all vertices are to be visited). These are new original
topics, discussed in this work.
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The subject of multi-criteria Traveling Salesman Problem, in a general context, is treated, for
example, by (Ehrgott, 2005). To transfer the concept of optimal solutions to multi-criteria
problems, the notion of Pareto curves was introduced
A Pareto curve is the set of Pareto points or, equivalent, efficient points.
Let D ⊆ R

n be a nonempty set, f = ( f1, ..., fp) : D → R
p a vectorial function, and S ⊆ D. A

point x ∈ S is said to be a max-efficient point of f with respect to S or a max-Pareto point of f
with respect to S if there is no y ∈ S such that

fi(x)� fi(y), ∀i ∈ {1, ..., p} and
p

∑
i=1

fi(x) <
p

∑
i=1

fi(y),

or, equivalent,

fi(x)� fi(y), ∀i ∈ {1, ..., p} and there is h ∈ {1, ..., p} such that fh(x) < fh(y).

Unfortunately, Pareto curves cannot be computed efficiently in many cases because they
are often of exponential size and NP-hard to compute even for otherwise easy optimization
problems. Therefore, sometimes, one prefers to choose a point on this curve, point subject to
some additional restriction which derives from the scalar components of the scope function.
This point is, often, a maximum point of the weighted sum of these scalar components. In
other cases, it is chosen to be a non-dominant point into a lexicographical ordering relation.
This is exactly the situation presented in this paper.
There exist, also, papers which present possibilities to approximate the Pareto curve (see, for
example (Warburton, 1987), (Angel et al., 2004) or (Manthey, 2009)).
The globally convex structure of Pareto curves in studied for example in (Borges & Hansen,
2001) and (Villagra et al., 2006).
We mention that, in (Feillet et al., 2005), the authors show that if, in the TSP, we consider
that we have two objective functions, the profit and the cost, we obtain a bi-criteria TSP.
According to the results of multi-criteria optimization, for solving bi-criteria TSP three cases
are considered by the authors:
- Both objectives are combined in the objective function and the aim is to find a circuit that
minimizes travel costs minus collected profit, i.e. the bi-criteria Traveling Salesman Problem
may be seen as a prize collecting traveling salesman problem;
- The travel costs objective is stated as a constraint and the aim is to find a circuit that
maximizes collected profit such that travel costs do not exceed a preset value, i.e. the bi-criteria
Traveling Salesman Problem may be seen as a orienteering problem;
- The profit objective is stated as a constraint and the aim is to find a circuit that minimizes
travel costs and whose collected profit is not smaller than a preset value, i.e. the bi-criteria
Traveling Salesman Problemmay be seen as a capacitated prize-collecting Traveling Salesman
Problem.
However, the above transformations cannot be applied to our problem because the profit
and the costs depending, in addition, on the time. Based on these considerations we
choose to work with the lexicographic ordering. We remind that the idea to use the
lexicographic ordering in a Traveling Salesman Problemwas used in (Lupsa et al, 2008), where
an application in health economics is also given.
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7. Algorithms for solving problem (PG)

It is known that, for solving a route choice problem, techniques of branch and bound type are
often used. Based on this technique, in the following, three algorithms are given for solving
problem (PG): a greedy algorithm, a parallel approach algorithm and an exact algorithm.

7.1 A greedy algorithm
The algorithm 0.1 constructs a cycle, in a graph, with p + 1 distinct vertices (vertex 0 plus
other p) which satisfies the boundary condition (18). The algorithms signals the case where
it is impossible to construct such a cycle. For its construction, one always goes to the branch
where the growth of the first component, F̃1, of the goal function, is the highest. If there are
several possibilities of getting the same growth, then it favors that whose second component,
F̃2, is the lowest. In the algorithm, the p-dimensional vector u is used. If C̃ �= ∅, it becomes the
descriptor vector of the optimal solution of problem (PG). Also, the following sets are used:
- Vj, that contains, at every iteration j, the candidate vertices to generate the cycle;
- V∗

j , that, at every iteration j, contains those vertices from Vj , whose corresponding

coefficients from component F̃1 of the scope function are maximum;
If the set V∗

j has more than one element, that vertex in the circuit will be chosen, for which

we obtain a minimal increase in the value of F̃2, the second component of the scope function.
This can be fulfilled by using the real number r. The cost of the current circuit is stored in
rj. If when building a circuit we determine that the restriction on costs is not satisfied, the
last added arc is abandoned, the output vertex being temporarily removed from the set of
candidates.

Algorithm 0.1 The Greedy Algorithm.
input: the natural numbers m and p;

the elements of matrices: G = [gij], i ∈ {0,1, . . . ,m+ p}, j ∈ {1, . . . , p};
A= [aij], i ∈ {0,1, . . . ,m+ p}, j ∈ {1, . . . , p};
B = [bik], i ∈ {0,1, . . . ,m+ p}, k ∈ {0,1, . . . ,m+ p};
C= [cij], i ∈ {0,1, . . . ,m+ p}, j ∈ {1, . . . , p};
D = [dik], i ∈ {0,1, . . . ,m+ p}, k ∈ {0,1, . . . ,m+ p};

output: ok — true if a solution exists
u — the solution

algorithm:
uk := 0, ∀k ∈ {0,1, . . . , p};
r0 := 0;
finish := false;
j := 1;
while not finish do

Vj :=

{
x ∈ {1, . . . ,m+ p} \ {u1, . . . ,uj−1}

∣∣∣∣ rj−1 + cx,j + duj−1,x � e

}
;

if Vj �= ∅ then
g∗ :=max{gx,j | x ∈ Vj};
V∗
j := {x ∈ Vj | gx,j = g∗};

r∗ :=min{ax,j + buj−1,x | x ∈ V∗
j };

R∗ := {x ∈ V∗
j | ax,j + buj−1,x = r∗};

choose x ∈ R∗;
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uj := x;
rj := rj−1 + cx,j + duj−1,x;
j := j+ 1;
if j > p then

ok := true
finish := true

end if
else

if j = 1 then
ok := false
finish := true

end if
Vj := Vj\{uj−1};
j := j− 1;

end if
end while

end algorithm

It is possible to make a small change of this algorithm by introducing that vertex which
minimizes the ratio between the growth of function F̃1 and the growth of function F̃2 relatively
to the set of vertex that do not close the cycle; we mention, also, that the introduction of this
vertex does not exceed the cost limit.

7.2 Parallel approach for the registrar route problem
The algorithm previously presented is a serial one, which means that it is perform with one
processing unit, and depends on the number of hospitals that the registrar has to browse. A
more general situation is when the graph is not complete, it means that the registrar may
not move to each hospital, but only to some of them, let us say n. If this number is big
enough, the serial execution will take a lot of time. In order to speed up and get faster the
result, a parallel approach is more convenient. As in (Feilmeier, 1982) applications for high
performance computing are given. If we use more than one processing unit, we may obtain
the desired result approximately n times faster. We know that the registrar starts from node 0
and has to browse n different locations, being constrained by the restrictions of possible total
cost.
The parallel algorithm is of ”master-slave” type and has the following steps:

1. According to the graph of problem (PG), the algorithm generates the adjacent matrix,
denoted by E = [eik], where eik = 1,if in graph G there is an edge from i to k, and eik = 0 if
not, for every i,k ∈ {0, . . . ,m+ p}.

2. In the systemwork as many processors, as many figures 1 appear on the first row of matrix
A. For instance, if five figures 1 appear on the first row, then five processors will work.
Obviously, the maximum number of processors is n. Every processor will store a copy of
the matrix E.

3. According with the adjacent matrix, every processor builds its own circuit and verifies the
restrictions. If they are fulfilled, the processor memorizes the circuit and sends a message
to the processor master. If one processor finds that there exist more than one admissible
circuit, it gives a signal to the master processor, which will allocate another processor in
charge with the new circuit.
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4. Finally, the processor master will decide which circuit is optimal for problem (PG).

Generally, the parallel machine on which the following algorithm may be implemented
is of SIMD type (Single Instruction stream, Multiple Data stream). Due to this fact, no
communication among Slave processors is needed. They communicate only with the
processor Master. Any type of network may be defined on the parallel machine (for the
parallel calculus see, for example (Chiorean, 2000)). When the parallel network is defined
by the program, every processor gets an identification number. The ProcessorMaster receives
0, and all the other processors in the system receive numbers starting with 1.

Algorithm 0.2 ParPg
algorithm:

Define Network {determine the configuration of processors, get their Id’s}
if id= 0 then

Generate Adjacent Matrix(G,E);{input graph, output matrix E}
Determine Number of Slaves (E,n);{n, equal to values of 1 that there are on the

first row}
Send Message to Slaves(E){send matrix E in every processor Slave}

else
for i = 1 to n in parallel do

Get Message from Master(E);
{copy matrix E fromMaster};
Verify Number of Cycles (E, nr);
if nr� 1 then

for j = 1 to nr do
Verify Restrictions on the Cycle(E, j, f inalvalues);
{every processor will work on the ”nr” of cycles};
{in ” f inalvalue”memorizes the values of variables for
the objective function};
Memorize Cycle ( f inalvalues,j,u);
{the corresponding circuit is kept in vector u};
Send Message to Master(j,u);

end for
end if

end for
end if
if id= 0 then

Get Message from Slaves(u){Master collects all the possible cycles}
end if
Determine Optimum cycles( f inalu){Compares cycles and determines the optimum
one, denoted ” f inalu”}
Print( f inalu)

end algorithm

Working this way, with more than one processor, the result is obtained n times faster, where n
is the number of processors in the system.
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uj := x;
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not, for every i,k ∈ {0, . . . ,m+ p}.
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Obviously, the maximum number of processors is n. Every processor will store a copy of
the matrix E.

3. According with the adjacent matrix, every processor builds its own circuit and verifies the
restrictions. If they are fulfilled, the processor memorizes the circuit and sends a message
to the processor master. If one processor finds that there exist more than one admissible
circuit, it gives a signal to the master processor, which will allocate another processor in
charge with the new circuit.
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4. Finally, the processor master will decide which circuit is optimal for problem (PG).

Generally, the parallel machine on which the following algorithm may be implemented
is of SIMD type (Single Instruction stream, Multiple Data stream). Due to this fact, no
communication among Slave processors is needed. They communicate only with the
processor Master. Any type of network may be defined on the parallel machine (for the
parallel calculus see, for example (Chiorean, 2000)). When the parallel network is defined
by the program, every processor gets an identification number. The ProcessorMaster receives
0, and all the other processors in the system receive numbers starting with 1.

Algorithm 0.2 ParPg
algorithm:

Define Network {determine the configuration of processors, get their Id’s}
if id= 0 then

Generate Adjacent Matrix(G,E);{input graph, output matrix E}
Determine Number of Slaves (E,n);{n, equal to values of 1 that there are on the

first row}
Send Message to Slaves(E){send matrix E in every processor Slave}

else
for i = 1 to n in parallel do

Get Message from Master(E);
{copy matrix E fromMaster};
Verify Number of Cycles (E, nr);
if nr� 1 then

for j = 1 to nr do
Verify Restrictions on the Cycle(E, j, f inalvalues);
{every processor will work on the ”nr” of cycles};
{in ” f inalvalue”memorizes the values of variables for
the objective function};
Memorize Cycle ( f inalvalues,j,u);
{the corresponding circuit is kept in vector u};
Send Message to Master(j,u);

end for
end if

end for
end if
if id= 0 then

Get Message from Slaves(u){Master collects all the possible cycles}
end if
Determine Optimum cycles( f inalu){Compares cycles and determines the optimum
one, denoted ” f inalu”}
Print( f inalu)

end algorithm

Working this way, with more than one processor, the result is obtained n times faster, where n
is the number of processors in the system.
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7.3 An exact algorithm of the Little type
For solving the problem (PG), we built an exact but not polynomial algorithm, based on the
branch and bound method as in (Little et al, 1963). For its construction, one always goes to
the branch where the growth of the first component, F̃1, of the goal function, is the highest.
If there are several possibilities of getting the same growth, then it favors that whose second
component, F̃2, is the lowest. The bound is made by using two real improper numbers, b f
and bc. These numbers are defined iteratively. In the beginning, b f := 0 and bc := +∞. If we
have at least a cycle, in the graph attached to our problem, then the value of the pair (b f ,bc)
is equal to the lexicographical max-min of the set of all such pair attached to the cycles which
we have been obtain until this moment.
A finite sequence (kh, Ih, Jh, G

h, fh, γh, δh , w
h)Nh=1, where N � (m+ p) . . . (p+ 1), is built.

– kh is a binary variable: it has the value 1 if the term h was not studied yet and the value 0
otherwise.

– Gh, is the work matrix in the h-th iteration.

– uh ∈ IRp will be used for building the descriptor of a cycle.

– the numbers fh and γh are equal to F̃1(u
h), F̃2(u

h), respectively, and there are computed
iteratively.

– δh is equal to the value of right hand side term of bounded equation corresponding to uh; it
is also iteratively computed.

– The vector wk is used to inhibit branching; its components are iteratively computed.

Algorithm 0.3 An Exact Algorithm
input: the natural numbers m and p;

the elements of matrices: G = [gij], i ∈ {0,1, . . . ,m+ p}, j ∈ {1, . . . , p};
A= [aij], i ∈ {0,1, . . . ,m+ p}, j ∈ {1, . . . , p};
B = [bik], i ∈ {0,1, . . . ,m+ p}, k ∈ {0,1, . . . ,m+ p};
C= [cij], i ∈ {0,1, . . . ,m+ p}, j ∈ {1, . . . , p};
D = [dik], i ∈ {0,1, . . . ,m+ p}, k ∈ {0,1, . . . ,m+ p};

output:
algorithm:

I1 := {0,1, . . . ,m+ p};
J1 := {1, . . . , p};
t1 := 1;
n1 := 0;
u1 := (u0,u1, . . . ,un) = (0, . . . ,0);
u∗ := (0, . . . ,0) ∈ R

p+1;
f1 := 0;
γ1 := 0;
δ1 := 0;
b f := 0;
bc :=+∞;
∀i ∈ I1, ∀j ∈ J1, g

1
ij := gij;

∀j ∈ J1, w
1
j :=max{g1ij | i ∈ I1};

h := 1;
K :=

{
k ∈ {1, . . . ,h}

∣∣tk = 1
}
;
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while K �= ∅ do
s := (maxmaxmin)lex {(nk, fk,γk) | k ∈ K};
choose k ∈ K such that (nk, fk,γk) = s;
j := nk + 1;
I∗ := {i ∈ Ik | δk + cij + duk

j−1,i
> e};

if Ik \ I∗ = ∅ then
tk := 0;

else
∀i ∈ I∗, gkij :=−∞;

wk
j :=max{gij | i ∈ Ik \ I∗};

if fk + ∑
α∈Jk

wk
α < bf then

tk := 0;
else

M := {i ∈ Ik \ I∗ | gij = wk
j };

v :=max{aij + buj−1,i | i ∈ M};

V := {i ∈ M | aij + buj−1,i = v};

choose ukj ∈ V;

if (Ik \ (I∗ ∪ {ukj }) �= ∅) and

fk +
p

∑
α=1α>j

wk
α +max{gij | i ∈ Ik \ (I

∗ ∪ {ukj })}� bf

then
h := h+ 1;
th := 1;
nh := nk;
uh := uk;
uh0 := 0;
fh := fk;
γh := γk;
δh := δk;
Ih := Ik \ I∗;
Jh := Jk;
∀i ∈ I, ∀j ∈ J, ghrs := gkrs;
ghuj ,j

:= −∞;

∀r ∈ J \ {j}, wh
r := wk

r ;
wh
j :=max{ghij | i ∈ Ik};

end if
fk := fk + gk

uk
j ,j
;

γk := γk + auk
j ,j
+ buk

j−1,u
k
j
;

δk := δk + cuk
j ,j
+ duk

j−1,u
k
j
;

if j = p then
if fk � bf then

bf := fk;
bc := γk;
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7.3 An exact algorithm of the Little type
For solving the problem (PG), we built an exact but not polynomial algorithm, based on the
branch and bound method as in (Little et al, 1963). For its construction, one always goes to
the branch where the growth of the first component, F̃1, of the goal function, is the highest.
If there are several possibilities of getting the same growth, then it favors that whose second
component, F̃2, is the lowest. The bound is made by using two real improper numbers, b f
and bc. These numbers are defined iteratively. In the beginning, b f := 0 and bc := +∞. If we
have at least a cycle, in the graph attached to our problem, then the value of the pair (b f ,bc)
is equal to the lexicographical max-min of the set of all such pair attached to the cycles which
we have been obtain until this moment.
A finite sequence (kh, Ih, Jh, G

h, fh, γh, δh , w
h)Nh=1, where N � (m+ p) . . . (p+ 1), is built.

– kh is a binary variable: it has the value 1 if the term h was not studied yet and the value 0
otherwise.

– Gh, is the work matrix in the h-th iteration.

– uh ∈ IRp will be used for building the descriptor of a cycle.

– the numbers fh and γh are equal to F̃1(u
h), F̃2(u

h), respectively, and there are computed
iteratively.

– δh is equal to the value of right hand side term of bounded equation corresponding to uh; it
is also iteratively computed.

– The vector wk is used to inhibit branching; its components are iteratively computed.

Algorithm 0.3 An Exact Algorithm
input: the natural numbers m and p;

the elements of matrices: G = [gij], i ∈ {0,1, . . . ,m+ p}, j ∈ {1, . . . , p};
A= [aij], i ∈ {0,1, . . . ,m+ p}, j ∈ {1, . . . , p};
B = [bik], i ∈ {0,1, . . . ,m+ p}, k ∈ {0,1, . . . ,m+ p};
C= [cij], i ∈ {0,1, . . . ,m+ p}, j ∈ {1, . . . , p};
D = [dik], i ∈ {0,1, . . . ,m+ p}, k ∈ {0,1, . . . ,m+ p};

output:
algorithm:

I1 := {0,1, . . . ,m+ p};
J1 := {1, . . . , p};
t1 := 1;
n1 := 0;
u1 := (u0,u1, . . . ,un) = (0, . . . ,0);
u∗ := (0, . . . ,0) ∈ R

p+1;
f1 := 0;
γ1 := 0;
δ1 := 0;
b f := 0;
bc :=+∞;
∀i ∈ I1, ∀j ∈ J1, g

1
ij := gij;

∀j ∈ J1, w
1
j :=max{g1ij | i ∈ I1};

h := 1;
K :=

{
k ∈ {1, . . . ,h}

∣∣tk = 1
}
;
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while K �= ∅ do
s := (maxmaxmin)lex {(nk, fk,γk) | k ∈ K};
choose k ∈ K such that (nk, fk,γk) = s;
j := nk + 1;
I∗ := {i ∈ Ik | δk + cij + duk

j−1,i
> e};

if Ik \ I∗ = ∅ then
tk := 0;

else
∀i ∈ I∗, gkij :=−∞;

wk
j :=max{gij | i ∈ Ik \ I∗};

if fk + ∑
α∈Jk

wk
α < bf then

tk := 0;
else

M := {i ∈ Ik \ I∗ | gij = wk
j };

v :=max{aij + buj−1,i | i ∈ M};

V := {i ∈ M | aij + buj−1,i = v};

choose ukj ∈ V;

if (Ik \ (I∗ ∪ {ukj }) �= ∅) and

fk +
p

∑
α=1α>j

wk
α +max{gij | i ∈ Ik \ (I

∗ ∪ {ukj })}� bf

then
h := h+ 1;
th := 1;
nh := nk;
uh := uk;
uh0 := 0;
fh := fk;
γh := γk;
δh := δk;
Ih := Ik \ I∗;
Jh := Jk;
∀i ∈ I, ∀j ∈ J, ghrs := gkrs;
ghuj ,j

:= −∞;

∀r ∈ J \ {j}, wh
r := wk

r ;
wh
j :=max{ghij | i ∈ Ik};

end if
fk := fk + gk

uk
j ,j
;

γk := γk + auk
j ,j
+ buk

j−1,u
k
j
;

δk := δk + cuk
j ,j
+ duk

j−1,u
k
j
;

if j = p then
if fk � bf then

bf := fk;
bc := γk;
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u∗ := (uk1, . . . ,u
k
p);

end if
else

h := h+ 1;
th := 1;
nh := nk + 1;
uh := uk + ukj e

j;

fh := fk;
γh := γk;
δh := δk;
Ih := Ik \ {u

k
j };

Jh := Jk \ {j};
∀i ∈ I, ∀j ∈ J, ghrs := gkrs;
∀r ∈ I, ghrj :=−∞;

∀s ∈ J, ghuj ,s := −∞;

∀r ∈ J \ {j}, wh
r := wk

r ;
wh
j := gh

uk
j ,j
;

tk := 0;
end if

end if
end if
K :=

{
k ∈ {1, . . . ,h}

∣∣tk = 1
}
;

end while
if bf=0 then

output: the problem (PBG) is inconsistent;
else

output: u∗ is an optimal solution of (PBG);
end if

end algorithm

The algorithm 0.3 is very easy to implement and it has been used on a number of test cases for
determining the optimal route of the registrar. The output result is optimal.
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Several Trigeminal Neuralgia Treatments, Applied Medical Informatics, Vol. 17, no. 3-4,
72-78, ISSN 103-443-015
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k
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Lupşa, L. (2000) Multicriteria Programming Used in Medico-Economic Analysis of Treatment
Protocols. In Proceedings of the ”Tiberiu Popoviciu” Itinerant Seminar of Functional
Equations, Approximation and Convexity. Editura SRIMA, 103-111, ISBN 973-98591-9-4,

323Some Special Traveling Salesman Problems with Applications in Health Economics



26 Traveling Salesman Problem, Theory and Applications

Cluj-Napoca
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Neanţiu, L. (2009). A Medical Resources Allocation Problem, Results in Mathematics, Vol. 53,
nr. 3-4 (July), 341-348, ISSN 1422-6383

Punnen, A. P. (2002). The Traveling Salesman Problem: Applications, Formulation and
Variations, In: Traveling Salesman Problem and its Variations, Gutin, G. & Punnen,
(Ed.), 1-28, Kluwer Academic Publishers, ISBN 1-4020-0664-0, Dordrecht

Trobec, R.; Vajtersic, M. & Zinterhof, P. (eds) (2009). Parallel Computing. Numerics, Applications,
and Trends. Springer, ISBN 978-1-84882-408-9, Dordrecht Heidelberg London New
York
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Villagra, M.; Barán, B. & Gómez, O. (2006). Global Convexity in the Bi-Criteria Traveling
Salesman Problem. In Artificial Intelligence in Theory and Practice, 217-226, Springer,
ISBN 978-0-387-34654-0, Boston

Warburton, A. (1987). Approximation of Pareto optima in multiple-objective shortest path
problems. Operations Research, Vol. 35, no. 1 (Jan-Feb.), 7079, ISSN 0030-364X

Willan, A. R. & Briggs, A. H. (2006). Statistical Analysis of Cost-effectiveness Data. John Wiley &
Sons Ltd, ISBN 978-0-470-85626-0, Chichester

World Health Organization (1999). Cancer Registration: Principles and Methods, Jensen,
O.M.; Parkon, D.M.; MacLennan, R.; Muir, C.S.; Skeet, R.G. eds., IARC Scientific
Publications no. 95, ISBN 92-832-1195-2, Lyon

324 Traveling Salesman Problem, Theory and Applications



Traveling Salesman Problem, 
Theory and Applications

Edited by Donald Davendra

Edited by Donald Davendra

Photo by Alex Staroseltsev / Shutterstock

This book is a collection of current research in the application of evolutionary 
algorithms and other optimal algorithms to solving the TSP problem. It brings together 

researchers with applications in Artificial Immune Systems, Genetic Algorithms, 
Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy 
Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this 

book presents both theoretical as well as practical applications of TSP, which will 
be a vital tool for researchers and graduate entry students in the field of applied 

Mathematics, Computing Science and Engineering.

ISBN 978-953-307-426-9

Traveling Salesm
an Problem

, Th
eory and A

pplications

ISBN 978-953-51-5501-0


	Traveling Salesman Problem, Theory and Applications
	Contents
	Preface
	Chapter 1
Traveling Salesman Problem: An Overview of Applications, Formulations, and Solution Approaches
	Chapter 2
The Advantage of Intelligent Algorithms for TSP
	Chapter 3
Privacy-Preserving Local Search for the Traveling Salesman Problem
	Chapter 4
Chaos Driven Evolutionary Algorithm for the Traveling Salesman Problem
	Chapter 5
A Fast Evolutionary Algorithm for Traveling Salesman Problem
	Chapter 6
Immune-Genetic Algorithm for Traveling Salesman Problem
	Chapter 7
The Method of Solving for Travelling Salesman Problem Using Genetic Algorithm with Immune Adjustment Mechanism
	Chapter 8
A High Performance Immune Clonal Algorithm for Solving Large Scale TSP
	Chapter 9
A Multi-World Intelligent Genetic Algorithm to Optimize Delivery Problem with Interactive-Time
	Chapter 10
An Efficient Solving the Travelling Salesman Problem: Global Optimization of Neural Networks by Using Hybrid Method
	Chapter 11
Recurrent Neural Networks with the Soft ‘Winner Takes All’ Principle Applied to the Traveling Salesman Problem
	Chapter 12
A Study of Traveling Salesman Problem Using Fuzzy Self Organizing Map
	Chapter 13
Hybrid Metaheuristics Using Reinforcement Learning Applied to Salesman Traveling Problem
	Chapter 14
Predicting Parallel TSP Performance: A Computational Approach
	Chapter 15
Linear Programming Formulation of the Multi-Depot Multiple Traveling Salesman Problem with Differentiated Travel Costs
	Chapter 16
A Sociophysical Application of TSP: The Corporate Vote
	Chapter 17
Some Special Traveling Salesman Problems with Applications in Health Economics



