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Preface 
 

We have a history of cosmology, as a science, that goes back to about 100 years. It was 
Albert Einstein´s general relativity, published at the initial decades of the last century, 
the starting point for applying the scientific method to the knowledge of our universe. 
The first model was built by Einstein applying his field equations to cosmology. It was 
a static model, a constant size universe. Soon it was realized that the universe should 
be expanding: the Hubble´s red shift law from distant galaxies had this interpretation. 
And reversing the time, going back into the past, it was clear that close to the 
beginning the universe should have been very small, and in a state of very high 
density and temperature. Putting things forward in time, we get the idea of an initial 
explosion: the so-called big-bang. But this intuitive idea had many problems built in. 
One of them was how to explain the present size of the visible universe: about 1028cms. 
To arrive at such a large size things in the past needed to have been going much faster 
than today. And this is where the idea of an initial INFLATION (by Guth and Linde), a 
very rapid exponential expansion, came into the picture. To be validated it had to 
predict observable properties. One of them was the flatness of the universe, flatness to 
a high degree because of the rapid exponential expansion that irons the initial 
curvature of space-time. And this is what is observed.  

The initial, and very rapid, exponential expansion had to be quickly stopped by some 
braking agent: the attractive gravitational force seems to be a good candidate. But the 
action of this attractive force could not completely stop the expansion of the universe. 
There is no evidence of any shrinking of the universe in the past: it has always been 
expanding. And we know that gravity has always been present. Today we know that 
the present state of the universe is that of an accelerated expansion. And there is 
evidence of zero acceleration at about half way back in time from today. Apparently 
gravity was able to cancel the inertial acceleration left after inflation. But it did not 
reverse the expansion. After this zero point for acceleration the universe went on 
expanding more and more, and today this expansion is observed to be accelerating. 
Even more intriguing is the fact that, extrapolating this acceleration to the future, the 
universe will probably disaggregate to infinite in a rather short time, considered in 
terms of cosmological scales. It is obvious that a pushing expanding force of some kind 
is still present. One conclusion is that gravity is not able to reverse the expansion of the 
universe: there is another agent present, stronger than gravity, which probably will 
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“soon” produce a doomsday for our universe. Certainly gravity must have been 
operating always, since the very beginning, and most probable will always be there. 
But there is something very important and more powerful that overcomes the 
attractive gravitational force. It was Einstein again the first cosmologist that realized 
this, and he added in his equation the so called lambda term to push and overcome 
gravity. Initially he just wanted to equilibrate gravity and to get a static universe. But 
the Hubble findings, and the same Einstein´s cosmological equations, soon inclined 
the scientific cosmological community to accept the idea that the universe had to be 
expanding.   

This book presents some aspects of the picture presented above. Some scientists 
approach here the subject from different points of view. The book presents then a 
versatile picture: it is the result of the work of many scientists in the field of 
cosmology, in accordance with their expertise and particular interests. It is a collection 
of different aspects produced by important scientists in the field of cosmology. It is a 
bit representative of the odyssey that we have in cosmology, following the effort to 
understand our universe. And it has challenging subjects, like the possible doomsday 
that is pending confirmation from the expected experimental data to be obtained 
within the next decade. 

Each chapter of the book has its particular value: comprehensive reviews, (inflation by 
Prof.  Sergio del Campo), new approaches to cosmology (Prof. Tartaglia, Dr. Olmo, 
Prof. Vallée, Profs. Fahr and Skaliwska), dark matter and dark energy (Drs. Disney, 
Capistrano and Maia, Abada and Nasri), new cosmological models (Prof. Khadekar et 
al., Dr. Socorro et al., Prof. Vigoureux, Prof. Bali Raj), more mathematical approaches 
(Drs. Cho and Hong, Dr. Zecca, Dr. Cabo, Dr. Ortzas and Smith, Dr. Mena et al., Drs. 
Li, Xiao and Zhu), and my own contribution to the possible finite lifetime of the 
universe. 

It has been an honor to me to have had the opportunity to read these papers. I want to 
thank all the authors for their contribution to the science of cosmology.  

Let everybody meet the challenges of the future, trying to find the right answers to 
them. 

Dr. Antonio Alfonso-Faus 
Emeritus Professor (UPM) 

Spain 
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Warm Inflationary Universe Models

Sergio del Campo
Pontificia Universidad Catolica de Valparaiso,

Instituto de Fisica, Curauma, Valparaiso.
Chile

1. Introduction

The most appealing cosmological model to date is the standard hot big-bang scenario.
This model rests on the assumption of the cosmological principle that the universe is both
homogeneous and isotropic at large scale (Peebles, 1991; 1993; 1994; Weinberg, 2008).
Even though this model could explain observational facts such that the approximately 3-K
microwave background radiation (Penzias & Wilson, 1965), the primordial abundances of
the light elements1 (Alpher et al., 1948; Gamow, 1946), the Hubble expansion (Hubble, 1929;
Hubble & Humason, 1931) and the present acceleration (Perlmutter et al., 1999; Riess et al.,
1998), it presents some shortcomings ("puzzles") when this is traced back to very early times
in the evolution of the universe. Among them we distinguish the horizon, the flatness, and the
monopole problems. In dealing with these "puzzles", the standard big-bang model demands
an unacceptable amount of fine-tuning concerning the initial conditions for the universe.
Inflation has been proposed as a good approach for solving most of the cosmological "puzzles"
(Guth, 1981)2. The essential feature of any inflationary universe model proposed so far is the
rapid (accelerated) but finite period of expansion that the universe underwent at very early
times in its evolution.
This brief accelerated expansion serves, apart of solving most of the cosmological problems
mentioned previously, to produce the seeds that, in the course of the subsequent eras of
radiation and matter dominance, developed into the cosmic structures (galaxies and clusters
thereof) that we observe today. In fact, the present popularity of the inflationary scenario
is entirely due to its ability to generate a spectrum of density perturbations which lead to
structure formation in the universe. In essence, the conclusion that all the observations
of microwave background anisotropies performed so far support inflation, rests on the
consistency of the anisotropies with an almost Harrison-Zel’dovich power spectrum predicted
by most of the inflationary universe scenarios (Peiris et al., 2003).
The different inflationary universe model could be classified depending how the scale
factor, a(t), evolves with the cosmological time, t. One of the first models considered
that the scale factor follows a de Sitter law of expansion, i.e. a(t) ∼ exp Ht, with
H the Hubble "parameter". Examples of these models are "old inflaton" (Guth, 1981),
"new inflation" (Albrecht & Steinhardt, 1982; Linde, 1982), "chaotic inflation" (Linde, 1983;
1986), and some corrections to this model (Cárdenas et al., 2003). Also, were described
models in which the scale factor follows a power law, i.e. a(t) ∼ tn, with n > 1
(Lucchin & Matarrese, 1985). Models that present this sort of behavior are "extended inflation"

1 For an historical review on this point, see the Alpher & Herman’s article (Alpher & Herman, 1988).
2 A complete description of inflationary scenarios can be found in the book by Linde (Linde, 1990a).
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(La & Steinhardt, 1989) and its applications (Barrow & Maeda, 1990; Campuzano et al., 2006;
del Campo & Vilenkin, 1989; del Campo & Herrera, 2003; 2005), "chaotic extended inflation"
(Linde, 1990b), "hyperextended inflation" (Steinhardt & Accetta, 1990), which corresponds to
a generalization of the extended models. Various studied of this sort of scenario have been
presented in the literature (del Campo, 1991; De Felice & Trodden, 2004; Liddle & Wands,
1992). Also, there exist a particular scenario of "intermediate inflation" (Barrow, 1990;
Barrow & Saich, 1990) in which the scale factor evolves as a(t) ∼ exp At f , where A is
constant and f is a free parameter which ranges 0 < f < 1. In this sort of scenario, the
expansion of the universe is slower than standard de Sitter inflation, but faster than power
law inflation. The main motivation to study this latter kind of model becomes from string/M
theory. This theory suggests that in order to have a ghost-free action high order curvature
invariant corrections to the Einstein-Hilbert action must be proportional to the Gauss-Bonnet
(GB) term (Boulware & Deser, 1985; 1986). This kind of theory has been applied to the study of
accelerated cosmological solutions (Nojiri et al., 2005). In particular, very recently, it has been
found that (Sanyal, 2007) for a dark energy model the GB interaction in four dimensions with
a dynamical dilatonic scalar field coupling leads to a solution of the form a a(t) = a0 exp At f .
One of the problems that arises in these kind of models is due to the characteristic of the scalar
inflaton potential, V(φ), that it does not present a minimum. The usual mechanism introduced
to bring inflation to an end becomes useless. In fact, the standard mechanism is described by
the stage of oscillations of the scalar field which is an essential part of the so-called reheating
mechanism, where most of the matter and radiation of the universe was created, via the
decay of the inflaton field, while the temperature grows in many orders of magnitude. It
is at this point where the big bang universe is recovered. Here, the reheating temperature, the
temperature associated to the temperature of the universe when the big bang model begins,
is of particular interest. In this epoch the radiation domination begins, where there exist a
number of particles of different kinds. In order to bring the intermediate inflationary period
to an end it is introduced a special mechanisms of reheating via the introduction of a new
scalar field, the so called curvaton field (del Campo & Herrera, 2007a; Lyth & Wands, 2002;
Mollerach, 1990).
Another possible way of schematizing inflationary models is the classification scheme in term
of large-field, small-field and hybrid models (Lyth & Riotto, 1999). In the case of large-field
inflation, (where the inflaton potential, V(φ), satisfies the inequalities V �� > 0 and (logV)�� <
0, with the primes denoting the derivatives with respect to the inflaton field) we have that
the scalar inflaton potential is usually taken to be a polynomial, V(φ) = λ4(φ/φc)n, where λ4

represent the vacuum energy density during inflation, φ0 represents the change of the inflaton
field during inflation and n is a real number, or exponential, such that V(φ) = λ4 exp(φ/φc).
A typical example of this kind of model is chaotic inflation (Linde, 1983; 1986). The most
appealing property that these sort of models have is they do not need special initial conditions
for inflation to start (the start fine-tuning). Of course this fine-tuning has nothing to do with
the fine-tuning needed during the evolution of inflation (the dynamic fine-tuning). Also,
these models are interesting for their simplicity. They predict a significant amount of tensor
perturbations due to the scalar inflaton field gets across the trans-Planckian distance during
inflation (Lyth, 1997) (a fact that should be checked by astronomical observations). However,
due to the inflaton crosses the trans-Planckian boarder, there appear some problems when one
wants to calculate the trans-Planckian expectation value of the inflaton field.
There exist other type of inflationary models that do not need trans-Planckian expectation
values of the inflaton field. These kind of models are part of the so-called small-field (they
characterize by V �� < 0 and (logV)�� < 0). They have been discussed in the context of D-brane
inflation (Baumann et al., 2007) in the supersymmetric standard model(Allahverdi et al., 2006)
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and in supergravity (Lalak & Turzynski, 2008). In each of these cases some fine-tuning of the
effective inflaton potential is required (see Ref. (Linde & Westphal, 2008) for recent treatment
of these issues).
The third category of inflationary universe models are called hybrid inflation(in this case the
inflaton potential satisfies V ′′ > 0 and (logV)′′ > 0) (Linde, 1991; 1994). Here, are introduced
two scalar fields: one of the fields is the inflaton field, φ, which is responsible for the slow-roll
period of inflation, the other one, χ takes care of the end of inflation. In this process, inflation
ends abruptly and is followed by a regime during which topological defects (like global
string (Shafi & Vilenkin, 1984; Vilenkin & Everett, 1982)) could be produced. Perhaps, these
topological defect might play an interesting role in giving an appropriated expression for
density perturbation which is important for understanding the large scale structure in galaxy
formation (Vilenkin & Shellard, 2000). One of the problems that confront hybrid inflation
is related with the fine tuning needed at the beginning of inflation (only a small fraction
of possible initial conditions give rise to successful inflation). This problem is solved if it
is considered nonrenomalizable coupling between the two scalar fields φ and χ. Also, it
was found that hybrid inflation is not compatible with the supersymmetric standard models.
Here it is found that the gravitinos are overproduced by the inflaton decay (Kawasaki et al.,
2006a;b) and thus, in this context hybrid inflation is disfavored. The solution of this problem
needs to take some fine tuning.
Beside of the possible classification of the different inflationary universe scenarios presented
above we may add, in general term, that there are two main competing scenarios in regard to
the slow roll inflation: The standard inflationary model is divided into two regimes: the slow
roll and reheating epochs. In the slow roll period the universe inflates and all interactions
between the inflaton scalar field and any other field are typically neglected. Subsequently, a
reheating period is invoked to end the brief acceleration. After reheating, the universe is filled
with relativistic fluid and thus the universe is connected with the radiation big bang phase.
Warm inflation is an alternative mechanism for having successful inflation. As is well
known, warm inflation3 - as opposed to the conventional "cool" inflation (Kolb & Tuner,
1990; Liddle & Lyth, 2000) - has the attractive feature of not necessitating a reheating phase
at the end of the accelerated expansion thanks to the decay of the inflaton into radiation
and particles during the slow roll (Berera, 1995; 1997; Berera & Fang, 1995; del Campo et al.,
2008). Thus, the temperature of the Universe does not drop dramatically and the Universe
can smoothly proceed into the decelerated, radiation-dominated era essential for a successful
big bang nucleosynthesis (Peebles, 1993). This scenario has further advantages, namely: (i)
the slow-roll condition φ̇2 � V(φ) can be satisfied for steeper potentials, (ii) the density
perturbations originated by thermal fluctuations may be larger than those of quantum
origin (Berera, 2000; Gupta et al, 2002; Taylor & Berera, 2000), (iii) it may provide a very
interesting mechanism for baryogenesis (Brandenberger & Yamaguchi, 2003) and (iv) it may
also be considered as a model, which comes from an effective high dimensional theory.
Different applications of warm inflation have been presented in the literature (Cid et al., 2007;
del Campo & Herrera, 2007b; 2008; Herrera et al., 2006).
Apart of the advantage described above, warm inflation was criticized on the basis that the
inflaton cannot decay during the slow roll (Yokoyama & Linde, 1999). However, in recent
years, it has been demonstrated that the inflaton can indeed decay during the slow-roll phase
- see (Bastero-Gil & Berera, 2005; Berera & Ramos, 2005a; Hall & Moss, 2005) and references
therein - whereby it now rests on solid theoretical grounds.
We should mention that in warm inflation, dissipative effects are important during inflation,
so that radiation production occurs concurrently with the accelerating expansion. The

3 For a nice review on warm inflationary scenarios see the article (Berera et al., 2009).
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dissipating effect arises from a friction term which describes the processes of the scalar field
dissipating into a thermal bath via its interaction with other fields. In fact, we may say that
the decay of the scalar field is described by means of an interaction Lagrangian. For instance,
the authors of (Berera & Ramos, 2003; 2005b; Hall et al., 2004a) take the interaction terms of
the form 1

2 λ2φ2χ2 and gχψψ where the inflationary period presents a two-stage decay chain
φ → χ → ψ. In this case, they reported that the damping term Γ becomes λ3g2φ/256π2.
Also, warm inflation shows how thermal fluctuations during inflation may play a dominant
role in producing the initial perturbations. In such models, the density fluctuations arise
from thermal rather than quantum fluctuations (Berera, 2000; Berera & Fang, 1995; Hall et al.,
2004b; Moss, 1985). These fluctuations have their origin in the hot radiation and influence the
inflaton through a friction term in the equation of motion of the inflaton scalar field (Berera,
1996; del Campo et al., 2007c). Among the most attractive features of these models, warm
inflation ends when the universe heats up to become radiation dominated; at this epoch the
universe stops inflating and smoothly enters a radiation dominated big bang phase (Berera,
1995; 1997). The matter components of the universe are created by the decay of either the
remaining inflationary field or the dominant radiation fluid.
In this chapter we present the warm inflationary universe scenarios in some detail. The
chapter will develop recent advances on this area of continuous research, and their possible
implications in the near future, specially, those related with the confrontations with new
astrophysical observations, which will put strong constraints on these kind of inflationary
universe models. In order to do this, our guideline has been to concentrate on resent results
that seem likely still to be of general concern to those researchers that show interest in this
subject. Here, we pretend to indulge in recollections of different works on this area of research
that have been put forward in the literature. In this way, the intention of this chapter is to
make these developments accessible to someone who is interested in understanding how the
warm inflationary universe models works. Throughout this chapter we use units in which
c = h̄ = kB = 1.

2. Warm inflation at work

We start by considering a spatially flat Friedmann-Robertson-Walker (FRW) universe filled
with a self-interacting inflaton scalar field φ, of energy density, ρφ = 1

2 φ̇2 +V(φ) (with V(φ) =
V the scalar potential), and a radiation energy density, ργ.
The corresponding Friedmann equation reads

3H2 = κ
(
ρφ + ργ

)
. (2.1)

Here, the constant κ is given by κ = 8πG = 8π/m2
P, with mP the Planck mass.

The dynamics of the cosmological model, for ρφ and ργ in the warm inflationary scenario is
described by the equations

ρ̇φ + 3H
(
ρφ + Pφ

)
= −Γφ̇2, (2.2)

and

ρ̇γ + 4Hργ = Γφ̇2, (2.3)

where Pφ = 1
2 φ̇2 − V and Γ represents the dissipation coefficient and it is responsible of

the decay of the scalar field into radiation during the inflationary era. Γ can be assumed
to be a constant or a function of the scaler field φ, or the temperature T, or both (Berera,
1995; 1997). On the other hand, Γ must satisfy Γ > 0 in agreement with the Second Law of
Thermodynamics. Dots mean derivatives with respect to the cosmological time.
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During the inflationary epoch the energy density associated to the scalar field dominates over
the energy density associated to the radiation field (Berera, 2000; Hall et al., 2004b; Moss, 1985)
i.e. ρφ > ργ, the Friedmann equation (2.1) reduces to

H2 ≈ κ

3
ρφ, (2.4)

and from Eqs. (2.2) and (2.4), we can write

φ̇2 = − 2 Ḣ
κ (1 + Q)

, (2.5)

where Q is the rate defined as

Q =
Γ

3H
. (2.6)

For the strong (weak) dissipation regime, we have Q � 1 (Q � 1).
We also consider that during warm inflation the radiation production is quasi-stable (Berera,
2000; Hall et al., 2004b; Moss, 1985), i.e. ρ̇γ � 4Hργ and ρ̇γ � Γφ̇2. From Eq.(2.3) we obtained
that the energy density of the radiation field becomes

ργ =
Γφ̇2

4H
= − Γ Ḣ

2 κ H (1 + Q)
, (2.7)

which could be written as ργ = Cγ T4, where Cγ = π2 g∗/30 and g∗ is the number of
relativistic degrees of freedom. Here T is the temperature of the thermal bath.
From Eqs.(2.5) and (2.7) we get that

T =

[
− Γ Ḣ

2 κ Cγ H (1 + Q)

]1/4

. (2.8)

From first principles in quantum field theory the dissipation coefficient Γ is computed
for models in cases of low-temperature regimes (Moss & Xiong, 2006) (see also
Ref. Berera & Ramos (2001)). Here, was developed the dissipation coefficients in
supersymmetric models which have an inflaton together with multiplets of heavy and light
fields. In this approach, it was used an interacting supersymmetric theory, which has
three superfields Φ, X and Y with a superpotential, W = 1√

2
gΦX2 − 1√

2
hXY2. The scalar

components of the superfields are φ, χ and y respectively 4. In the low -temperature regime,
i.e. where their masses satisfy mχ, mψ > T > H, the dissipation coefficient, when χ and y are
singlets, becomes (Moss & Xiong, 2006)

Γ � 0.64 g2 h4
(

g φ

mχ

)4 T3

m2
χ

. (2.9)

This latter equation can be rewritten as

Γ � Cφ
T3

φ2 , (2.10)

4 This potential could be easily modified to produce Hybrid inflation (Moss & Xiong, 2006).
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the decay of the scalar field into radiation during the inflationary era. Γ can be assumed
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1995; 1997). On the other hand, Γ must satisfy Γ > 0 in agreement with the Second Law of
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where Cφ = 0.64 h4 N . Here N = NχN 2
decay, where Nχ is the multiplicity of the X superfield

and Ndecay is the number of decay channels available in X’s decay (Bueno Sanchez et al., 2008;
Moss & Xiong, 2006).
From Eq.(2.8) the above equation becomes

Γ1/4 (1 + Q)3/4 �
[ −2 Ḣ

9 κ Cγ H

]3/4 Cφ

φ2 , (2.11)

which determines the dissipation coefficient in the strong (or weak) dissipative regime in
terms of scalar field φ and the parameters of the model.
In general the scalar potential can be obtained from Eqs.(2.1) and (2.7)

V(φ) =
1
κ

[
3 H2 +

Ḣ
(1 + Q)

(
1 +

3
2

Q
)]

, (2.12)

which could be expressed explicitly in terms of the scalar field, φ, by using Eqs.(2.5) and (2.11),
in the weak (or strong) dissipative regime.

3. The inclusion of viscous pressure

Usually, for the sake of simplicity, in studying the dynamics of warm inflation the particles
created in the decay of the inflaton are treated as radiation thereby ignoring altogether the
existence of particles with mass in the fluid thus generated. However, the very existence
of these particles necessarily alters the dynamics as they modify the fluid pressure in two
important ways: (i) its hydrodynamic, equilibrium, pressure is no longer pγ = ργ/3, with
ργ the energy density of the radiation fluid, but the slightly more general expression p =
(γ − 1)ρ where the adiabatic index, γ, is bounded by 1 ≤ γ ≤ 2. (ii) It naturally arises
a non-equilibrium, viscous, pressure Π, via two different mechanisms: (a) the inter-particle
interactions (Huang, 1987), and (b) the decay of particles within the fluid (Zeldovich, 1970).
Concerning the latter mechanism, it is well known that the decay of particles within a fluid
can be formally described by a bulk viscous pressure, Π. This is so because the decay is
an entropy-producing scalar phenomenon linked to the spontaneous widening of the phase
space and the bulk viscous pressure is also an scalar entropy-producing agent. In the case of
warm inflation it has been proposed that the inflaton can excite a heavy field and trigger the
decay of the latter into light fields (Berera & Ramos, 2003; 2005a).
Recently, a detailed analysis of the dynamics of warm inflation with viscous pressure showed
that when Π �= 0 the inflationary region takes a larger portion of the phase space associated
to the autonomous system of differential equations than otherwise (Mimoso et al., 2006). It
then follows that the viscous pressure facilitates inflation and lends support to the warm
inflationary scenario.
For the viscous pressure we shall assume the usual fluid dynamics expression Π = −3ζH
(Huang, 1987), where ζ denotes the phenomenological coefficient of bulk viscosity and H the
Hubble function. This coefficient is a positive-definite quantity (a restriction imposed by the
second law of thermodynamics) and in general it is expected to depend on the energy density
of the fluid. We shall resort to the WMAP data to restrict the aforesaid coefficient. In this case
Eq.(2.3) becomes

ρ̇ + 3H(ρ + p + Π) = ρ̇ + 3H(γρ + Π) = Γφ̇2. (3.1)

In this section we shall restrict our analysis to the strong (or high) dissipation regime, i.e.,
Q � 1. The reason for this limitation is the following. Outside this regime radiation and
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particles produced both by the decay of the inflaton and the decay of the heavy fields will be
much dispersed by the inflationary expansion, whence they will have little chance to interact
and give rise to a non-negligible bulk viscosity. Likewise, because a much lower number
of heavy fields will be excited the number of decays of heavy fields into lighter ones will
diminish accordingly. (The weak dissipation regime (R ≤ 1) has been considered by Berera
and Fang (Berera & Fang, 1995) and Moss (Moss, 1985). Further, if R is not big, the fluid will be
largely diluted and the mean free path of the particles will become comparable or even larger
than the Hubble horizon. Hence, the regime will no longer be hydrodynamic but Knudsen’s
and the hydrodynamic expression Π = −3ζ H we are using for the viscous pressure will
become invalid.

3.1 Scalar and tensor perturbations in presence of viscosity
We introduce the dimensionless slow-roll parameters ε and η (Kolb & Tuner, 1990; Linde,
1990b; Lyth, 2000), as a function of the inflaton scalar potential, V(φ) and its two first
derivatives, V,φ = dV(φ)/dφ and V,φφ = d2V(φ)/dφ2,

ε ≡ − Ḣ
H2 =

1
2(1 + Q)

[
V, φ

V

]2
, (3.2)

and

η ≡ − Ḧ
HḢ

� 1
(1 + Q)

[
V, φφ

V
− 1

2

(
V, φ

V

)2
]

. (3.3)

In order to find scalar (density) and tensor (gravitational) perturbations we take the perturbed
FRW metric in the longitudinal gauge which is given by

ds2 = (1 + 2Φ) dt2 − a(t)2(1 − 2Ψ) δij dxidxj , (3.4)

where the functions Φ = Φ(t, x) and Ψ = Ψ(t, x) denote the gauge-invariant variables of
Bardeen (Bardeen, 1980). Introducing the Fourier components eikx, with k the wave number,
the following set of equations, in the momentum space, follow from the perturbed Einstein
field equations -to simplify the writing we omit the subscript k-

Φ = Ψ, (3.5)

Φ̇ + HΦ =
1
2

[
− (γρ + Π) a v

k
+ φ̇ δφ

]
, (3.6)

(δφ)̈ + [3H + Γ] (δφ)̇ +

[
k2

a2 + V, φφ + φ̇Γ, φ

]
δφ = 4φ̇ Φ̇ − [

φ̇ Γ + 2V, φ
]

Φ, (3.7)

(δρ)̇ + 3γHδρ + ka(γρ + Π)v + 3(γρ + Π)Φ̇ − φ̇2Γ, φδφ − Γφ̇[2(δφ)̇ + φ̇Φ] = 0, (3.8)

and

v̇ + 4Hv +
k
a

[
Φ +

δp
(ρ + p)

+
Γφ̇

(ρ + p)
δφ

]
= 0 , (3.9)
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In this section we shall restrict our analysis to the strong (or high) dissipation regime, i.e.,
Q � 1. The reason for this limitation is the following. Outside this regime radiation and
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particles produced both by the decay of the inflaton and the decay of the heavy fields will be
much dispersed by the inflationary expansion, whence they will have little chance to interact
and give rise to a non-negligible bulk viscosity. Likewise, because a much lower number
of heavy fields will be excited the number of decays of heavy fields into lighter ones will
diminish accordingly. (The weak dissipation regime (R ≤ 1) has been considered by Berera
and Fang (Berera & Fang, 1995) and Moss (Moss, 1985). Further, if R is not big, the fluid will be
largely diluted and the mean free path of the particles will become comparable or even larger
than the Hubble horizon. Hence, the regime will no longer be hydrodynamic but Knudsen’s
and the hydrodynamic expression Π = −3ζ H we are using for the viscous pressure will
become invalid.

3.1 Scalar and tensor perturbations in presence of viscosity
We introduce the dimensionless slow-roll parameters ε and η (Kolb & Tuner, 1990; Linde,
1990b; Lyth, 2000), as a function of the inflaton scalar potential, V(φ) and its two first
derivatives, V,φ = dV(φ)/dφ and V,φφ = d2V(φ)/dφ2,

ε ≡ − Ḣ
H2 =

1
2(1 + Q)

[
V, φ

V

]2
, (3.2)

and

η ≡ − Ḧ
HḢ

� 1
(1 + Q)

[
V, φφ

V
− 1

2

(
V, φ

V

)2
]

. (3.3)

In order to find scalar (density) and tensor (gravitational) perturbations we take the perturbed
FRW metric in the longitudinal gauge which is given by

ds2 = (1 + 2Φ) dt2 − a(t)2(1 − 2Ψ) δij dxidxj , (3.4)

where the functions Φ = Φ(t, x) and Ψ = Ψ(t, x) denote the gauge-invariant variables of
Bardeen (Bardeen, 1980). Introducing the Fourier components eikx, with k the wave number,
the following set of equations, in the momentum space, follow from the perturbed Einstein
field equations -to simplify the writing we omit the subscript k-

Φ = Ψ, (3.5)

Φ̇ + HΦ =
1
2

[
− (γρ + Π) a v

k
+ φ̇ δφ

]
, (3.6)

(δφ)̈ + [3H + Γ] (δφ)̇ +

[
k2

a2 + V, φφ + φ̇Γ, φ

]
δφ = 4φ̇ Φ̇ − [

φ̇ Γ + 2V, φ
]

Φ, (3.7)

(δρ)̇ + 3γHδρ + ka(γρ + Π)v + 3(γρ + Π)Φ̇ − φ̇2Γ, φδφ − Γφ̇[2(δφ)̇ + φ̇Φ] = 0, (3.8)

and

v̇ + 4Hv +
k
a

[
Φ +

δp
(ρ + p)

+
Γφ̇

(ρ + p)
δφ

]
= 0 , (3.9)
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where

δp = (γ − 1)δρ + δΠ , δΠ = Π
[

ζ , ρ

ζ
δρ + Φ +

Φ̇
H

]
, (3.10)

and the quantity v arises upon splitting the velocity field as δuj = − iakj

k v eikx (j = 1, 2, 3)
(Bardeen, 1980).
Since the inflaton and the matter-radiation fluid interact with each other isocurvature (i.e.,
entropy) perturbations emerge alongside the adiabatic ones. This occurs because warm
inflation can be understood as an inflationary model with two basics fields (Oliveira, 2002;
Starobinski & Yokoyama, 1995; Starobinski & Tsujikawa, 2001). In this context, dissipative
effects themselves can produce a variety of spectral ranging from red to blue (Berera,
2000; Hall et al., 2004a; Oliveira, 2002), thus producing the running blue to red spectral
suggested by WMAP data (Hinshaw et al., 2009; Komatsu et al., 2009; 2011; Larson et al., 2011;
Spergel et al., 2007).

When looking for non-decreasing adiabatic and isocurvature modes on large scales, k � aH
(which depend only weakly on time), it is permissible to neglect Φ̇ and those terms with
two-times derivatives. This together with the slow-roll approximation, the above equations
simplify enough so we can find solutions in such a way that expressions for the corresponding
scalar and tensor perturbations could be written down.
Here, the density perturbation becomes given by the expression5

δ2
H ≈ 2

25 π2 exp[−2�̃(φ)]
[

Tr

ε̃ Q1/2 V3/2

]
, (3.11)

where ε̃ ≈ 1
2 Q

[
V, φ

V

]2
denotes the dimensionless slow-roll parameter in the high dissipation

phase, i.e. ε̃ = ε(Q � 1), Tr stands for the temperature of the thermal bath and the function
�̃(φ) result to be

�̃(φ) = −
∫ {

Γ, φ

Γ
+

3
8 G(φ)

[
1 −

(
(γ − 1) + Π

ζ , ρ

ζ

)
Γ, φV, φ

3γΓ H

]
(ln(V)), φ

}
d φ . (3.12)

The scalar spectral index ns is defined by

ns − 1 =
d ln δ2

H
d ln k

, (3.13)

which, upon using Eqs.(3.11) and (3.13), results to be given by

ns ≈ 1 −
[

ε̃ + 2 η̃ +

(
2ε̃

Q

)1/2 [
2�̃, φ − Q, φ

2R

]]
, (3.14)

where

η̃ ≈ 1
Q

[
V, φφ

V
− 1

2

(
V, φ

V

)2
]

(3.15)

5 See Ref. (del Campo et al., 2007c) for details.
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stands for the second slow-roll parameter, η, when Q � 1.
One interesting feature of the seven-year data gathered by the WMAP experiment is a
significant running in the scalar spectral index dns/d ln k = αs (Komatsu et al., 2011).
Dissipative effects can lead to a rich variety of spectral from red to blue (Berera, 2000;
Hall et al., 2004a; Oliveira, 2002). From Eq.(3.14) it is seen that in our model the running of
the scalar spectral index is given by

αs � −
√

2 ε̃

Q
[ε̃ , φ + 2η̃ , φ]− ε̃

Q

[(
ε̃ , φ

ε̃
− Q , φ

Q

)(
2�̃, φ − Q, φ

2Q

)

+
(

4�̃, φ φ − (ln(Q)), φφ

)]
. (3.16)

In models with only scalar fluctuations, the marginalized value of the derivative of the spectral
index can be approximated by dns/d ln k = αs ∼ −0.05 for WMAP only ( Spergel et al.,
2007). In including the SN "Constitution" sample6 of type Ia supernovae (Hicken et al., 2009),
which presents a proof for the current acceleration of the universe, and the Baryonic Acoustic
Oscillations (BAOs), which are the sound oscillations of the primeval baryon-photon fluid
prior to the recombination epoch7 (Eisenstein et al., 1998), WMAP-7 presented the range
−0.065 < αs < 0.010 (Komatsu et al., 2011; Larson et al., 2011) for the running scalar spectral
index αs.
With regard to the generation of tensor perturbations during inflation gives rise to stimulated
emission in the thermal background of gravitational waves (Bhattacharya et al., 2006). As a
consequence, an extra temperature dependent factor, coth(k/2T), where, k and T stand for
the wave number and the temperature, respectively, enters the spectrum, A2

g ∝ kng . Thus it
now reads,

A2
g = 2

(
H
2π

)2
coth

[
k

2T

]
� V

6 π2 coth
[

k
2T

]
, (3.17)

the spectral index being

ng =
d

d ln k
ln

[
A2

g

coth[k/2T]

]
= −2 ε , (3.18)

where we have used Eq.(3.2).

A quantity of prime interest is the tensor-scalar ratio, defined as R(k0) =

(
A2

g
PR

)∣∣∣∣
k=k0

where

PR ≡ 25δ2
H /4 and k0 is known as the pivot point. Its expression in the high dissipation limit,

R � 1, follows from using Eqs. (3.11) and (3.17),

R(k0) =

(
A2

g

PR

)∣∣∣∣∣
k=k0

=
2
3

[(
ε̃ r1/2 V5/2

Tr

)
exp[2 �̃(φ)] coth

(
k

2T

)]∣∣∣∣∣
k=k0

. (3.19)

6 This corresponds to an extension of the "Union" sample (Kowalski et al., 2008).
7 Quite recently, the size of the BAO peak was detected in the large-scale correlation function clustering of

approximately 44,000 luminous red galaxies from the Sloan Digital Sky Survey (SDSS) (Eisenstein et al.,
2005)
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index αs.
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where we have used Eq.(3.2).
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where

PR ≡ 25δ2
H /4 and k0 is known as the pivot point. Its expression in the high dissipation limit,
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6 This corresponds to an extension of the "Union" sample (Kowalski et al., 2008).
7 Quite recently, the size of the BAO peak was detected in the large-scale correlation function clustering of

approximately 44,000 luminous red galaxies from the Sloan Digital Sky Survey (SDSS) (Eisenstein et al.,
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In the case in which we consider a chaotic scalar potential, i.e. V(φ) = 1
2 m2 φ2, where m > 0 is

a free parameter, and (as mentioned above) we restrict ourselves to study the high dissipation
regime (Q � 1).
From Eq.(3.11), the scalar power spectrum results to be

PR(k0) ≈ 1
2π2

[
8γΓ0V(φ0)

1/2 + 2
√

3m2(1 − 2γ)

+3
√

3ζ0Γ0(2 − 3γ)
]3/2

[
Γ1/2

0 Tr

31/4m2 V(φ0)3/4

]
, (3.20)

Likewise, Eq.(3.19) provides us with the tensor-scalar ratio

R(k0) ≈ 2
3

[
8γΓ0V(φ0)

1/2 + 2
√

3m2(1 − 2γ)

+3
√

3ζ0Γ0(2 − 3γ)
]−3/2

[
31/4m2V(φ0)

7/4

Γ1/2
0 Tr

]
coth

(
k

2T

)
, (3.21)

where V(φ0) and φ0 stand for the potential and the scalar field, respectively, when the
perturbation, of scale k0 = 0.002Mpc−1, was leaving the horizon.
By resorting to the WMAP three-year data, PR(k0) � 2.3 × 10−9 and R(k0) = 0.095,
and choosing the parameters γ = 1.5, m = 10−6 mP, T � Tr � 0.24 × 1016 GeV and
k0 = 0.002 Mpc−1, it follows from Eqs. (3.20) and (3.21) that V(φ0) � 1.5 × 10−11 m4

P and
ζ0 � 3× 10−6 m3

P. When the scale k0 was leaving the horizon the inflaton decay rate Γ0 is seen
to be of the order of 10−3 mP. Thus Eq. (3.16) tells us that one must augment ζ0 by two orders
of magnitude to have a running spectral index αs close to the observed value ( Spergel et al.,
2007).
While cool inflation typically predicts a nearly vanishing bispectrum, and hence a small (just
a few per cent) deviation from Gaussianity in density fluctuations -see e.g. (Gangui et al.,
1994)-, warm inflation clearly predicts a non-vanishing bispectrum. The latter effect arises
from the non-linear coupling between the the fluctuations of the inflaton and those of the
radiation. This can produce a moderate non-Gaussianity (Gupta, 2006; Gupta et al, 2002)
or even a stronger one -likely to be detected by the PLANCK satellite (Ade et al., 2011;
PLANCK Collaboration, 2009)- if the aforesaid nonlinear coupling is extended to subhorizon
scales (Moss & Xiong, 2007). Because Π implies an additional coupling between the radiation
and density fluctuations it is to be expected that non-Gaussianity will be further enhanced.
Perhaps, this could serve to observationally constrain Π by future experiments.
Thus, our model presents two interesting features: (i) Related to the fact that the dissipative
effects plays a crucial role in producing the entropy mode, they can themselves produce a rich
variety of spectral ranging from red to blue. The possibility of a spectrum which does run so is
particularly interesting because it is not commonly seen in inflationary models which typically
predict red spectral. (ii) The viscous pressure may tell us about how the matter-radiation
component behaves during warm inflation. Specifically, it will be very interesting to know
how the viscosity contributes to the large scale structure of the Universe. In this respect,
we anticipate that the PLANCK mission (Ade et al., 2011; PLANCK Collaboration, 2009) will
significantly enhance our understanding of the large scale structure by providing us with high
quality measurements of the fundamental power spectrum over an larger wavelength range
than the WMAP experiment.
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3.2 Viscosity and the stability of warm inflation
Any inflationary model -whether “cold" or “warm"- must fulfill the requirement of stability8;
that is to say, its inflationary solutions ought to be attractors in the solution space of the
relevant cosmological solutions. It means, in practice, that the scalar field, φ, must approach

an asymptotic attractor characterized by φ̇ � − ∂V
∂φ

(3H)−1 in cold inflation, and φ̇ �

− (∂V/∂φ)

3H(1 + Q)
in warm inflation (see e.g. Liddle et al. (1994); Salopek & Bond (1990)). This

ensures that the system will stay sufficiently near to the slow-roll solution for many Hubble
times. Here V denotes the scalar field potential and H the Hubble expansion rate.
In the case of warm inflation the conditions for stability have been considered by de
Oliveira and Ramos (Oliveira & Ramos, 1998) and, recently, more fully by Moss and Xiong
(Moss & Xiong, 2008 ) who allowed the scalar potential and the damping rate to depend
not only on the inflaton field but on the temperature of the radiation gas as well. This
automatically introduces two further slow-roll parameters and renders the conditions for a
successful warm inflationary scenario even less restrictive.
Here, we want to study the stability of warm inflationary solutions by considering the
presence of massive particles and fields in the radiation fluid as well as the existence of a
the viscous pressure, Π, associated to the resulting mixture of heavy and light particles.
The corresponding field equations are those described previously, but now we will take both
the scalar potential and the damping rate as a function of the temperature, i.e. V = V(φ, T)
and Γ = Γ(φ, T).
The total pressure becomes

p =
1
2

φ̇2 − V(φ, T) + (γ − 1)Ts + Π, (3.22)

where we have included the entropy density, s, that follows from the thermodynamical
relation s = −∂ f /∂T � −V,T, when the Helmholtz free-energy, f = (1/2)φ̇2 + V(φ, T) +
ργ − Ts, is dominated by the scalar potential.
The conservation of the stress-energy can be expressed as

Tṡ + 3H(γTs + Π) = Γφ̇2 . (3.23)

Making u = φ̇, the slow roll equations take the form

u =
−V,φ

3H(1 + Q)
, Ts =

Qu2 + 3Hζ

γ
, 3H2 = V(φ, T) . (3.24)

To find the conditions for the validity of the slow roll approximation, we perform a linear
stability analysis to see whether the system remains close to the slow roll solution for many
Hubble times. In cold inflationary scenario, the slow roll equation is of first order in the time
derivative. Choosing the inflaton field as independent variable, the conservation equations
(2.1) and (3.23) can be written as first order equations in the derivative with respect to φ,
indicated by a prime,

x� = F(x) , (3.25)

8 For more details on this subsection see Ref. (del Campo et al., 2010)

13Warm Inflationary Universe Models



10 Will-be-set-by-IN-TECH

In the case in which we consider a chaotic scalar potential, i.e. V(φ) = 1
2 m2 φ2, where m > 0 is

a free parameter, and (as mentioned above) we restrict ourselves to study the high dissipation
regime (Q � 1).
From Eq.(3.11), the scalar power spectrum results to be

PR(k0) ≈ 1
2π2

[
8γΓ0V(φ0)

1/2 + 2
√

3m2(1 − 2γ)

+3
√

3ζ0Γ0(2 − 3γ)
]3/2

[
Γ1/2

0 Tr

31/4m2 V(φ0)3/4

]
, (3.20)

Likewise, Eq.(3.19) provides us with the tensor-scalar ratio

R(k0) ≈ 2
3

[
8γΓ0V(φ0)

1/2 + 2
√

3m2(1 − 2γ)

+3
√

3ζ0Γ0(2 − 3γ)
]−3/2

[
31/4m2V(φ0)

7/4

Γ1/2
0 Tr

]
coth

(
k

2T

)
, (3.21)

where V(φ0) and φ0 stand for the potential and the scalar field, respectively, when the
perturbation, of scale k0 = 0.002Mpc−1, was leaving the horizon.
By resorting to the WMAP three-year data, PR(k0) � 2.3 × 10−9 and R(k0) = 0.095,
and choosing the parameters γ = 1.5, m = 10−6 mP, T � Tr � 0.24 × 1016 GeV and
k0 = 0.002 Mpc−1, it follows from Eqs. (3.20) and (3.21) that V(φ0) � 1.5 × 10−11 m4

P and
ζ0 � 3× 10−6 m3

P. When the scale k0 was leaving the horizon the inflaton decay rate Γ0 is seen
to be of the order of 10−3 mP. Thus Eq. (3.16) tells us that one must augment ζ0 by two orders
of magnitude to have a running spectral index αs close to the observed value ( Spergel et al.,
2007).
While cool inflation typically predicts a nearly vanishing bispectrum, and hence a small (just
a few per cent) deviation from Gaussianity in density fluctuations -see e.g. (Gangui et al.,
1994)-, warm inflation clearly predicts a non-vanishing bispectrum. The latter effect arises
from the non-linear coupling between the the fluctuations of the inflaton and those of the
radiation. This can produce a moderate non-Gaussianity (Gupta, 2006; Gupta et al, 2002)
or even a stronger one -likely to be detected by the PLANCK satellite (Ade et al., 2011;
PLANCK Collaboration, 2009)- if the aforesaid nonlinear coupling is extended to subhorizon
scales (Moss & Xiong, 2007). Because Π implies an additional coupling between the radiation
and density fluctuations it is to be expected that non-Gaussianity will be further enhanced.
Perhaps, this could serve to observationally constrain Π by future experiments.
Thus, our model presents two interesting features: (i) Related to the fact that the dissipative
effects plays a crucial role in producing the entropy mode, they can themselves produce a rich
variety of spectral ranging from red to blue. The possibility of a spectrum which does run so is
particularly interesting because it is not commonly seen in inflationary models which typically
predict red spectral. (ii) The viscous pressure may tell us about how the matter-radiation
component behaves during warm inflation. Specifically, it will be very interesting to know
how the viscosity contributes to the large scale structure of the Universe. In this respect,
we anticipate that the PLANCK mission (Ade et al., 2011; PLANCK Collaboration, 2009) will
significantly enhance our understanding of the large scale structure by providing us with high
quality measurements of the fundamental power spectrum over an larger wavelength range
than the WMAP experiment.

12 Aspects of Today´s Cosmology Warm Inflationary Universe Models 11

3.2 Viscosity and the stability of warm inflation
Any inflationary model -whether “cold" or “warm"- must fulfill the requirement of stability8;
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relevant cosmological solutions. It means, in practice, that the scalar field, φ, must approach

an asymptotic attractor characterized by φ̇ � − ∂V
∂φ

(3H)−1 in cold inflation, and φ̇ �

− (∂V/∂φ)

3H(1 + Q)
in warm inflation (see e.g. Liddle et al. (1994); Salopek & Bond (1990)). This

ensures that the system will stay sufficiently near to the slow-roll solution for many Hubble
times. Here V denotes the scalar field potential and H the Hubble expansion rate.
In the case of warm inflation the conditions for stability have been considered by de
Oliveira and Ramos (Oliveira & Ramos, 1998) and, recently, more fully by Moss and Xiong
(Moss & Xiong, 2008 ) who allowed the scalar potential and the damping rate to depend
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the scalar potential and the damping rate as a function of the temperature, i.e. V = V(φ, T)
and Γ = Γ(φ, T).
The total pressure becomes

p =
1
2

φ̇2 − V(φ, T) + (γ − 1)Ts + Π, (3.22)

where we have included the entropy density, s, that follows from the thermodynamical
relation s = −∂ f /∂T � −V,T, when the Helmholtz free-energy, f = (1/2)φ̇2 + V(φ, T) +
ργ − Ts, is dominated by the scalar potential.
The conservation of the stress-energy can be expressed as

Tṡ + 3H(γTs + Π) = Γφ̇2 . (3.23)

Making u = φ̇, the slow roll equations take the form

u =
−V,φ

3H(1 + Q)
, Ts =

Qu2 + 3Hζ

γ
, 3H2 = V(φ, T) . (3.24)

To find the conditions for the validity of the slow roll approximation, we perform a linear
stability analysis to see whether the system remains close to the slow roll solution for many
Hubble times. In cold inflationary scenario, the slow roll equation is of first order in the time
derivative. Choosing the inflaton field as independent variable, the conservation equations
(2.1) and (3.23) can be written as first order equations in the derivative with respect to φ,
indicated by a prime,

x� = F(x) , (3.25)

8 For more details on this subsection see Ref. (del Campo et al., 2010)
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where

x =

(
u
s

)
. (3.26)

Thus, the system (2.1), (3.23) becomes

u� = −3H − Γ − V,φu−1 , (3.27)

s� = −3Hγsu−1 − 3HΠ(Tu)−1 + T−1Γu . (3.28)

Here the Hubble rate and entropy density are determined by (2.2) and s � −V,T, respectively.
Taking a background x which satisfies the slow roll equations (3.24), the linearized
perturbations satisfy

δx� = M(x)δx − x� , (3.29)

where

M =

(
A B
C D

)
, (3.30)

is the matrix of first derivatives of F evaluated at the slow roll solution. Linear stability
demands that its determinant be positive and its trace negative.
The matrix elements read,

A =
H
u

{
−3(1 + Q) − �

(1 + Q)2

}
, (3.31)

B =
H
s

{
−c Q − Q

(1 + Q)2 � + b(1 + Q)

}
, (3.32)

C = γ
Hs
u2

(
6 − �

(1 + Q)2

){
1 +

Π
γ2ργ

(
6(1 + Q)2 − 2�

6(1 + Q)2 − �

)}
, (3.33)

D = γ
H
u

(
c − 4 − Q�

γ2(1 + Q)2

)
+

HΠ
uγργ

{
c − Q�

γ2(1 + Q)2 +
3Π

2γ2ργ

}
. (3.34)

In the strong regime (Q � 1), the determinant and trace of M assume the comparatively
simple expressions

det M =
3γQH2

u2

(
4 − 2b + c + (c − 2b)

Π
γ2ργ

− 3
2

Π2

γ4ρ2
γ

)
, (3.35)

and

trM =
H
u

{
−3Q + γ(c − 4) +

Π
2γ3ργ

(
2γ2c + 3

Π
ργ

)}
. (3.36)

Sufficient conditions for stability are that M varies slowly and that

|c| ≤ 4 − 3σ2/2
1 + σ

− 2b , b ≥ 0 , (3.37)

where σ ≡ Π
γ2ργ

. Upon these conditions the determinant results positive and the trace
negative, implying stability of the corresponding solution. Expression (3.37.1) generalizes
Eq. (27) of Moss and Xiong (Moss & Xiong, 2008 ).
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Since the chosen background is not an exact solution of the complete set of equations, the
forcing term in equation (3.29) depends on x�, and will be valid only if x� is small. The size
of x� depends on the quantities u̇/(Hu) and ṡ/(Hs). From the time derivative of (3.24.3) we
obtain

Ḣ
H2 = − �

1 + Q
. (3.38)

Combining this with the other slow-roll equations, (3.24.1) and (3.24.2), we get

u̇
Hu

=
1
Δ

[
− c[A(1 + Q) − BQ] − 4

1 + Q
� +

4Q
1 + Q

β + (Ac − 4)η − 3(1 + Q)c
1 − f

b
]

, (3.39)

and

ṡ
Hs

=
3
Δ

[
A(3 + Q) − B(1 + Q)

1 + Q
� +

Q − 1
1 + Q

Aβ

− 2Aη − (1 + Q)[Ac(Q − 1) + Q + 1]c
(1 − f )Q

b
]

, (3.40)

where

Δ = 4(1 + Q) + Ac(Q − 1) , A =
ργ + γ−1Π
ργ − κΠ

, B =
Π

ργ − κΠ
, (3.41)

f = − 3
2
(1 + Q)2

Q
ζ

γH�
, κ = ργ

ζ,ργ

ζ
. (3.42)

Notice that when Π → 0, one has that A → 1, B → 0, f → 0, and therefore the equations
(3.38)-(3.40) reduce to the corresponding expressions in Ref. Moss & Xiong (2008 ). Obviously,
the value of the parameter κ in this limit depends on the specific expression of the viscosity
coefficient, ζ; but it does not alter the value of B in the said limit. In this limit, the κ parameter
could take any value depending of the model. Its value does not affect the Π → 0 limit.
The thermal fluctuations produce a power spectrum of scalar density fluctuations of the form
(Moss & Xiong, 2008 )

Ps =

√
π

2
H3T
u2

√
1 + Q . (3.43)

Note that the power spectrum of fluctuations in inflationary models where the friction
coefficient depends also on the temperature, i.e., Γ = Γ(φ, T), was considered recently in
Ref. Graham & Moss (2009).
We calculate the spectral index by means of

ns − 1 =
Ṗs

HPs
. (3.44)

By virtue of the equations (3.38)-(3.40), we obtain

ns − 1 =
p1� + p2β + p3η + p4b

Δ
, (3.45)
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where the pi coefficients are given by

p1 = − 10(2 + Q)− A( 3 + 5 c + Q) + B (1 + Q + (5c/2)Q)

1 + Q
, (3.46)

p2 =
A(Q − 1) − 10Q

1 + Q
, (3.47)

p3 =
8(1 + Q)− A(2 + 2c + 2Q + 3cQ)

1 + Q
, (3.48)

p4 =
3(1 + Q)[1 + (1 + 5c/2)Q]

(1 − f )Q
. (3.49)

For Q � 1, and assuming c of order unity, the pi coefficients reduce to

p1 = −10 + A − B(1 + 5c/2); p2 = A − 10; p3 = 8 − A(2+ 3c); p4 =
3Q(1 + 5c/2)

(1 − f )
, (3.50)

and Δ = Q(4 + Ac). Therefore (3.45) becomes

ns − 1 = − 10 − A + B(1 + 5c/2)
(4 + Ac)Q

� − 10 − A
(4 + Ac)Q

β

+
8 − A(2 + 3c)
(4 + Ac)Q

η +
3(1 + 5c/2)

(4 + Ac)(1 − f )
b . (3.51)

The tensor modes happen to be the same as in the cold inflationary models (Moss & Xiong,
2008 ), i.e.,

PT = H2 , (3.52)

and the corresponding spectral index is

nT − 1 = − 2
1 + Q

� . (3.53)

With the help of of (3.52), (3.43) and (3.24.1) the tensor-to-scalar amplitude ratio can be written
as

r =
2 V,φ(φ, T)

9
√

π H3 T(1 + Q)5/2 . (3.54)

The recent WMAP seven-year results imply the upper-bound r < 0.36 (95% CL) (Larson et al.,
2011) on the scalar-tensor ratio. Below, we shall make use of this bound to set constraints on
the parameters of our models.
When applying the formalism of above to the specific case in which the thermodynamic
potential is taken to be (Moss & Xiong, 2008 )

V(φ, T) = −π2

90
g∗T4 − 1

12
m2

φT2 +
1
2

m2
φφ2, (3.55)

where g∗ is the effective number of thermal particles, and the damping coefficient may be
written as
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Γ(φ, T) = Γ0

(
φ

φ0

)m (
T
τ0

)n
, (3.56)

with n and m real numbers and φ0, τ0, and Γ0 some nonnegative constants. The damping
term has a generic form given approximately by Γ ∼ g4φ2τ, where g is the coupling constant
(Hall et al., 2004a). From Ref. Hosoya & Sakagami (1984) the damping term, τ = τ(φ, T), is
related to the relaxation time of the radiation and for the models with an intermediate particle
decay, τ = τ(φ) is linked to the lifetime of the intermediate particle. Different choices of n
and m have been adopted. For instance the case n = m = 0 was considered by Taylor and
Berera (Taylor & Berera, 2000), whereas the choice m = 2, n = −1 corresponds to the damping
term first calculated by Hosoya (Hosoya & Sakagami, 1984). This expression slightly differs
from those in Hall et al. (2004a) and Zhang (2009), where a single index rather than two was
considered.
As for the bulk viscosity coefficient we use the general expression

ζ = ζ0 ρλ
γ , (3.57)

where ζ0 is a positive semi-definite constant and λ an integer that may take any of the two
values: λ = 1/2, i.e., ζ ∝ ρ1/2

γ (Li et al., 2010) (see also Ref. Brevik & Gorbunova (2005)) and
λ = 1, i.e., ζ ∝ ργ (del Campo et al., 2007c).
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Fig. 1. Top row of panels: Plot of the tensor-scalar ratio r as a function of the spectral index
ns, for two values of the λ parameter in the case of example 1 (i.e., potential (3.55)). Bottom
row: Same as the top row but assuming no viscosity (ζ0 = 0). In each panel the 68% and 95%
confidence levels set by seven-year WMAP experiment are shown. The latter places severe
limits on the tensor-scalar ratio (Larson et al., 2011).
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Fig. 1. Top row of panels: Plot of the tensor-scalar ratio r as a function of the spectral index
ns, for two values of the λ parameter in the case of example 1 (i.e., potential (3.55)). Bottom
row: Same as the top row but assuming no viscosity (ζ0 = 0). In each panel the 68% and 95%
confidence levels set by seven-year WMAP experiment are shown. The latter places severe
limits on the tensor-scalar ratio (Larson et al., 2011).
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Panel in Fig. 1 N r N r
top left (m = n = 0) 60 0.351 75 0.314

top right (m = 2, n = 0) 60 0.094 75 0.074

Table 1. Results from first example with λ = 1 (The results for λ = 1/2 are very similar).
Rows from top to bottom refers to panels of Fig. 1 from left to right.

Panel in Fig. 1 N r N r
bottom left (m = n = 0) 60 0.350 75 0.318

bottom right (m = 2, n = 0) 60 0.094 75 0.074

Table 2. Results from first example with no viscosity, i.e., ζ0 = 0.

Figure 1 depicts the dependence of the tensor-scalar ratio, r, on the spectral index, ns, for
the model given by Eqs. (3.55), (3.56), and (3.57) when λ = 0.5 and when λ = 1. From
Ref. (Larson et al., 2011), two-dimensional marginalized constraints (68% and 95% confidence
levels) on inflationary parameters r and ns, the spectral index of fluctuations, defined at k0 =
0.002 Mpc−1. The seven-year WMAP data (Larson et al., 2011) places stronger bounds on r
than the five-year WMAP data (Hinshaw et al., 2009; Komatsu et al., 2009). In order to write
down values that relate ns and r, we used Eqs. (3.51) and (3.54), and the values g∗ = 100, γ =

1.5, ζ0 = (2/3)ζ(1)max, and mφ = 0.75× 10−5, T = 2.5× 10−6, Γ0 = 1.2× 10−6, τ0 = 3.73× 10−5,
φ0 = 0.3 for m = 0, n = 0; and mφ = 2.5 × 10−5, T = 1.75 × 10−6, Γ0 = 3.58 × 10−6,
τ0 = 5.63 × 10−5, φ0 = 0.6 for m = 2, n = 0, in Planck units (Hall et al., 2004a).
Figure1 suggests that the pair of indices (m = 2, n = 0), corresponding to the right panel, is
preferred over the other pair of indices (m = n = 0), left panel. Likewise, it shows that there
is little difference between choosing λ = 1 or λ = 0.5 as well as with the case of no viscosity,
i.e., ζ0 = 0.
Table 2 indicates the value of the ratio r for λ = 1 and different choices of the pair of indices
m and n when the number of e-folds is 60 and when it is 75. Very similar values (not shown)
follow for λ = 0.5. All of them can be checked with the help of Eqs. (3.51) and (3.54).
A comparison of the results shown in both Tables indicates that only in the case of the
pair (m = n = 0) with N = 75 (top and bottom left panels in Fig. 1) viscosity makes a
non-negligible impact.

4. Warm inflation and non-Gaussianity

Due to the existence of a wide range of inflationary universe models it is important to
discriminate between them. One of the features that can help us in this direction is
the non-Gaussianity. In fact, non-Gaussian statistics (such that bispectrum) provides a
powerful tool to observationally discriminate between different mechanisms for generating
the curvature perturbation. But this feature not only well help us to discriminate between
inflationary scenarios, but also, measurement (including an upper bound) of non-Gaussianity
of primordial fluctuations is expected to have the potential to rule out many of inflationary
models that have been put forward.
It has been notice that a single field, slow roll inflationary scenarios are known to produce
negligible non-Gaussianity (Acquaviva et al., 2003; Maldacena, 2003), there exist now a
variety of models available in the literature which may predict an observable signature. One
important referent of this situation is warm inflation. The reason of this is due that warm
inflation could be seen as a model which is analogous to a multi-field inflation scenario, which
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is well know that can produce large non- Gaussianity which can be observed in the near future
experiments such as PLANCK mission (Battefeld & Easther, 2007)
The constraint on the primordial non- Gaussianity is currently obtained from Cosmic
Microwave Background measurements. WMAP sets the limit on the so-called local type of the
primordial non-Gaussianity, which is parameterized by the constant dimensionless parameter
fNL. This parameter appears in the following expression

Φ(x) = ΦG(x) + fNL

(
Φ2

G(x)− �Φ2
G(x)�

)
, (4.1)

where Φ is Bardeeen’s gauge-invariant potential, ΦG is the Gaussian part of the potential
and � � denotes the ensemble average. The ansatz (4.1) is known as the "local" form of
non-Gaussianity9.
The power spectrum P(k) of the Bardeen’s gauge-invariant potential is defined by the
two-point correlation function of the Fourier transform of the Bardeen’s potential

�ΦG(k)ΦG(k
�)� = (2π)3δ3 (k + k�)P(k), (4.2)

where δ represents the Dirac’s delta function. Similarly, The bispectrum B (k1, k2, k3) becomes
given by

�ΦG(k1)ΦG(k2)ΦG(k3)� = (2π)3δ3 (k1 + k2 + k3)B (k1, k2, k3) , (4.3)

The δ3 function in this last expression reflects translational invariance and ensures that
B (k1, k2, k3) depends on the three momenta in such a way that they form a triangle, i.e.
k1 + k2 + k3 = 0. On the other hand, rotational invariance implies that the 3-spectrum
function is symmetric in its arguments.
We should mentioned that the 3-point correlation function en general terms it has a very
particular dependence on momenta. For instance, if it peaks when the three momenta are
equal, then it is referred as equilateral. Now, if one of the three momenta is half of the other
two, then this bispectrum is referred as flattened. Also, if one of the three momenta is much
smaller than the other two, then we say that the bispectrum is squeezed. In general, the shape
for the three-point spectrum could correspond to a superposition of two shapes, the flattened
and the equilateral shapes, for instance (Senatore et al., 2010).
In general terms, the amount of non-Gaussianity in the bispectrum is expressed by the
non-linear function fNL which is given by

fNL (k1, k2, k3) =
5
6

B (k1, k2, k3)

P(k1)P(k2) + P(k2)P(k3) + P(k3)P(k1)
, (4.4)

where the numerical 5/6 factor is introduced for convenience when compared with the results
of the cosmic microwave background radiation data (Komatsu & Spergel, 2001). Models in
which the function fNL results to be a constant are called local models. This kind of models
arise naturally from the non-linear evolution of density perturbations on super-Hubble scales
starting from Gaussian field fluctuations during the inflationary period. Other non-Gaussian
models could give different expression for the bispectrum function, specially those expression
which do not result from the inflationary evolution.

9 This is not the only well-motivated form for a non-Gaussian curvature perturbation. It could be
considered a non-Gaussian part of Φ(x) which need not be correlated with the gaussian part. For
instance, consider a primordial curvature perturbation of the form Φ(x) = ΦG(x) + FNL[ΨG(x)], where
FNL is some arbitrary nonlinear function and the field ΨG(x) is a Gaussian field which is uncorrelated
with ΦG(x) (Barnaby, 2010).
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Panel in Fig. 1 N r N r
top left (m = n = 0) 60 0.351 75 0.314

top right (m = 2, n = 0) 60 0.094 75 0.074

Table 1. Results from first example with λ = 1 (The results for λ = 1/2 are very similar).
Rows from top to bottom refers to panels of Fig. 1 from left to right.

Panel in Fig. 1 N r N r
bottom left (m = n = 0) 60 0.350 75 0.318

bottom right (m = 2, n = 0) 60 0.094 75 0.074

Table 2. Results from first example with no viscosity, i.e., ζ0 = 0.

Figure 1 depicts the dependence of the tensor-scalar ratio, r, on the spectral index, ns, for
the model given by Eqs. (3.55), (3.56), and (3.57) when λ = 0.5 and when λ = 1. From
Ref. (Larson et al., 2011), two-dimensional marginalized constraints (68% and 95% confidence
levels) on inflationary parameters r and ns, the spectral index of fluctuations, defined at k0 =
0.002 Mpc−1. The seven-year WMAP data (Larson et al., 2011) places stronger bounds on r
than the five-year WMAP data (Hinshaw et al., 2009; Komatsu et al., 2009). In order to write
down values that relate ns and r, we used Eqs. (3.51) and (3.54), and the values g∗ = 100, γ =

1.5, ζ0 = (2/3)ζ(1)max, and mφ = 0.75× 10−5, T = 2.5× 10−6, Γ0 = 1.2× 10−6, τ0 = 3.73× 10−5,
φ0 = 0.3 for m = 0, n = 0; and mφ = 2.5 × 10−5, T = 1.75 × 10−6, Γ0 = 3.58 × 10−6,
τ0 = 5.63 × 10−5, φ0 = 0.6 for m = 2, n = 0, in Planck units (Hall et al., 2004a).
Figure1 suggests that the pair of indices (m = 2, n = 0), corresponding to the right panel, is
preferred over the other pair of indices (m = n = 0), left panel. Likewise, it shows that there
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i.e., ζ0 = 0.
Table 2 indicates the value of the ratio r for λ = 1 and different choices of the pair of indices
m and n when the number of e-folds is 60 and when it is 75. Very similar values (not shown)
follow for λ = 0.5. All of them can be checked with the help of Eqs. (3.51) and (3.54).
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non-negligible impact.

4. Warm inflation and non-Gaussianity

Due to the existence of a wide range of inflationary universe models it is important to
discriminate between them. One of the features that can help us in this direction is
the non-Gaussianity. In fact, non-Gaussian statistics (such that bispectrum) provides a
powerful tool to observationally discriminate between different mechanisms for generating
the curvature perturbation. But this feature not only well help us to discriminate between
inflationary scenarios, but also, measurement (including an upper bound) of non-Gaussianity
of primordial fluctuations is expected to have the potential to rule out many of inflationary
models that have been put forward.
It has been notice that a single field, slow roll inflationary scenarios are known to produce
negligible non-Gaussianity (Acquaviva et al., 2003; Maldacena, 2003), there exist now a
variety of models available in the literature which may predict an observable signature. One
important referent of this situation is warm inflation. The reason of this is due that warm
inflation could be seen as a model which is analogous to a multi-field inflation scenario, which
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k1 + k2 + k3 = 0. On the other hand, rotational invariance implies that the 3-spectrum
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We should mentioned that the 3-point correlation function en general terms it has a very
particular dependence on momenta. For instance, if it peaks when the three momenta are
equal, then it is referred as equilateral. Now, if one of the three momenta is half of the other
two, then this bispectrum is referred as flattened. Also, if one of the three momenta is much
smaller than the other two, then we say that the bispectrum is squeezed. In general, the shape
for the three-point spectrum could correspond to a superposition of two shapes, the flattened
and the equilateral shapes, for instance (Senatore et al., 2010).
In general terms, the amount of non-Gaussianity in the bispectrum is expressed by the
non-linear function fNL which is given by
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where the numerical 5/6 factor is introduced for convenience when compared with the results
of the cosmic microwave background radiation data (Komatsu & Spergel, 2001). Models in
which the function fNL results to be a constant are called local models. This kind of models
arise naturally from the non-linear evolution of density perturbations on super-Hubble scales
starting from Gaussian field fluctuations during the inflationary period. Other non-Gaussian
models could give different expression for the bispectrum function, specially those expression
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9 This is not the only well-motivated form for a non-Gaussian curvature perturbation. It could be
considered a non-Gaussian part of Φ(x) which need not be correlated with the gaussian part. For
instance, consider a primordial curvature perturbation of the form Φ(x) = ΦG(x) + FNL[ΨG(x)], where
FNL is some arbitrary nonlinear function and the field ΨG(x) is a Gaussian field which is uncorrelated
with ΦG(x) (Barnaby, 2010).
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The best observational limit on the non-gaussianity at present is from the WMAP seven-year
data release (Komatsu et al., 2011), which gives −10 < fNL < 74 with 95% confidence for
a constant (or local) component, when combined with Large Scale Structure (LSS) data the
bound becomes somewhat stronger −1 < f local

NL < 65 (Slosar et al., 2008).
A description of non-Gaussianity for different models (those could have their genesis in
inflationary universe models or any other different non-inflationary one) could be made
by using the so called shape function (Fergusson & Shellard, 2009). This function becomes
defined as

S (k1, k2, k3) =
1
N

(k1k2k3)
2 B (k1, k2, k3) , (4.5)

where N is a normalization factor, often taken to be N = 1/ fNL.
For instance, in the case of warm inflation it results to be

SWarm (k1, k2, k3) ∝
3!

(k1k2k3)
3

3

∑
i �=j=1

�
kikj

�2
⎡
⎣k2

i k3
j − k5

j +
3

∑
l( �=i �=j)=1

k5
l

⎤
⎦ (4.6)

In the Fergusson and Shellard’s paper (Fergusson & Shellard, 2009) it is described an
improved methods for an efficient computation of the full CMB bispectrum for any general
(nonseparable) primordial bispectrum, where was incorporated the flat sky approximation
and a cubic interpolation. Following this approach, they have found a range for the non-linear
parameter related to warm inflation

− 107 < f Warm
NL < 11. (4.7)

Very recently it has been reported that for warm inflation in the strong regime the total
bispectrum corresponds to a sum of two terms (Moss & Yeomans, 2011 )

B =
6
5

f local
NL ∑

cycli
P(k1)P(k2)− 6

5
f adv
NL ∑

cycli

�
k−2

1 + k−2
2

�
k1 · k2P(k1)P(k2) (4.8)

where f Adv
NL represents the fluid’s bulk motion (advection) terms. Here, in the case of

equilateral triangles it is obtained that fNL = f Local
NL + f Adv

NL .
It was found that the standard deviation of the parameter f adv

NL is around 5 times larger than
the standard deviation in the estimator f Local

NL . For PLANCK (PLANCK Collaboration, 2009),
the detection limit for f Local

NL is expected to be around 5 - 10, depending on how successfully the
backgrounds can be removed. This would imply that PLANCK would only be able to detect
the presence of f adv

NL if the value was at least 25. Certainly, the detection of the f adv
NL contribution

will demand an effort where new experiment of higher resolution need to be developed. This
is an issue that has to be solved by implementing appropriated futures missions.

5. Comments and remarks

In this chapter we have considered a warm inflationary universe models. We have studied this
scenario in which a viscous pressure is present in the matter-radiation fluid. We investigated
the corresponding scalar and tensor perturbations. The contributions of the adiabatic and
entropy modes were described explicitly. Specifically, a general relation for the density
perturbations, Eq.(3.41), the tensor perturbations, Eq. (3.17), and the tensor-scalar ratio -as
well as the dissipation parameter- are modified by a temperature dependent factor.
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We have described various aspects of warm inflationary universe models when viscosity is
taken into account. This feature is a very general characteristic in multiparticle and entropy
producing systems and, in the context of warm inflation, it is of special significance when the
rate of particle production and/or interaction is high. In this chapter we have focused on the
strong regime described by the condition that Q � 1.
On the other hand, we have seen that one important fact of warm inflation in presence of
viscosity is its stability. This feature becomes expressed by the inequalities given by (3.37).
Upon these conditions the determinant (expressed by Eq. (3.35)) results positive and the trace
(expressed by Eq. (3.36)) negative, implying stability of the corresponding solution.
The general expression for the spectral index, ns, expressed by Eq. (3.45), depends explicitly
on viscosity through the four pi coefficients (see Eqs. (3.50)). The latter do not depend on the
slow-roll parameters (�, β, η, and b), as shown by equations (3.46)-(3.49).
In order to further ensure the stability of the warm viscous inflation, the slow-roll parameters
must satisfy the following conditions

� � 1 + Q , |β| � 1 + Q , |η| � 1 + Q ,

as well as the condition on the slow-roll parameter that describes the temperature dependence
of the potential, namely,

|b| � (1 − f )Q
1 + Q

.

where f becomes given by f ≈ − 3
2

Qζ
γH� in the strong regime.

These conditions give the necessary and sufficient condition for the existence of stable
slow-roll solutions. Under these conditions, we got the same stability range obtained in the
no-viscous case, so long as σ = −8/3. In this sense, the range of the slow-roll parameter c
decreases when −8/3 < σ < 0, and increases when σ < −8/3.
To bring in some explicit results we have taken the constraint ns − r plane to first-order in the
slow roll approximation. For the potential (Eq. (3.55)) we obtained that, when λ = 0.5 and
λ = 1, the model is consistent with the WMAP seven year data for the pair of indices (m = 2,
n = 0), see Fig. 1.
Note that in subsection 3.2 we did not address the case, in which we have that the coefficient
of dissipation, Γ, does not depend on the inflaton field and the temperature. In this case a
more detailed and laborious calculation for the density perturbation would be necessary in
order to check the validity of expression (3.43). This is an issue that deserve further study.
The observational bound on the | fNL| parameter, which gives a limit on non-Gaussianity,
comes from the WMAP seven-year data release (Komatsu et al., 2011), which combined with
LSS data it becomes −1 < f local

NL < 65. In this respect the PLANCK satellite observations have
a predicted sensitivity limit of around | fNL| ∼ 5 (Komatsu & Spergel, 2001). The prediction of
warm inflation lies well above the PLANCK threshold, with a specific angular dependence,
should provide a means to test warm inflation observationally.
Finally, in general terms, when we count with a more precise set of data about the detection
of deviations from a Gaussian distribution will allow us to check the predictions from warm
inflationary universe scenario, or any another specific theoretical model.
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1. Introduction  
When studying cosmology one is unavoidably faced with the problem of the relevance and 
meaning of the terms that are in use and any purely physical and mathematical discussion 
borders philosophy. In this respect we must move from the remark that any description of 
the cosmos needs the concepts of space and time. These two entities, so fundamental in 
physics, are indeed neither trivial nor obvious in any respect. Going back into the past to 
look for the thought of the first thinkers we see for instance that Aristotle could not accept 
the idea of an empty space, rejecting even space as something else from the extension of 
existing things. "Nothing" of course does not exist, so anything in between two objects has to 
be something: no void, no emptiness (Aristotle, 350 b.C.).  
The situation with time is even worse. The ancient Grecian thought associated time with 
movement and with flow, however still in the antiquity but after a few centuries we find an 
interesting quote from St. Augustine which gives a vivid picture of the situation: "What is 
time? If nobody asks me I know, however if I wish to answer anybody asking me, I don't know" 
(Augustine, 398 a.D.). I do not want to enter philosophical issues but it is wise to be aware 
that such fundamental questions linger in the background of any scientific discussion on 
cosmology.  
With the birth of modern physics the question regarding the nature of space and time was 
posed in different terms with respect to the past, but not really solved. Newton gave 
definitions attributing to space and time an absolute character: an immutable stage on which 
physical phenomena are played within an equally immutable regular flow setting the pace 
for all changes and movements (Newton, 1687). This simplified and solemn view was 
challenged at the end of the 19th century by the failure of the Galilean transformations to 
guarantee the invariance of Maxwell’s equations.  The ether affair and the Michelson-Morley 
null experiment gave their contribution and finally both space and time were revisited by 
Einstein in his brand new Special Relativity (SR) theory. In SR length and time 
measurements are both observer-dependent and a new absolute entity emerges: space-time. 
A full description of the properties of space-time required a few years and the work of a 
number of scientists, not only Einstein’s. At the end the relation between space-time, on one 
side, and matter/energy, on the other, was cast into the world famous Einstein equations: 

 G Tμν μν= κ  (1) 

A problem still remained. It was and is with the nature of the left hand side of the equations. 
Usually space-time is thought of as a smart mathematical tool more than a physical entity, 
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even though it interacts with matter, as the equations say. This interpretation is not explicit 
and some doubts remain.  On the physical nature of space-time I can report a quote from a 
speech of Einstein’s pronounced in Leiden in the 20’s of the past century (Einstein, 1920): 
“…. according to the general theory of relativity space is endowed with physical qualities; in this 
sense, therefore, there exists an ether. … But this ether may not be thought of as endowed with  
the quality characteristic of ponderable media, as consisting of parts which may be tracked through 
time. …” 
Then space-time is real; Einstein’s sentence was referred to the only space, but the 
implication is that the whole manifold has physical relevance even though it is not possible 
to treat it as matter. 
That space-time is indeed something is clearly accepted by people who, since a long time 
and with poor results so far, are trying to quantize gravity. In these attempts space-time is 
often treated as a sort of field even though a subtle contradiction is implied. Fields need a 
background (space-time) to be described: what would the background of space-time be? 
Nobody has found a way out of this puzzle, at the moment. 
I will not tackle directly the fundamental aspects of the problem; rather, I shall start from a 
simple remark. There is another branch of physics, classical physics, where a fully 
geometrical description is given: this is the theory of three-dimensional material continua 
and in particular the theory of elasticity.  Even though at the beginning engineers and even 
physicists were not much attracted by that new mathematical language developed, at the 
end of the 19th century and first years of the 20th , by the Italian school (Ricci-Curbastro and 
Levi-Civita), after a while, thanks also to the onset of General Relativity, the whole 
machinery of tensor calculus was accepted. Today the elastic properties of continuous 
materials are currently accounted for and described in terms of tensors. 
I shall elaborate on the correspondence between the general properties of space-time and the 
ones of ordinary material continua in order to work out a consistent description of the 
universe and its properties. As we shall see, the core of the theory expounded in the present 
chapter will be the presence in space-time of a strain energy that is the direct analogue of the 
elastic potential energy. The strain energy is associated with the curvature of space-time 
induced by the presence of matter/energy and/or by the presence of texture defects. This 
will be a classical approach to the other puzzling problem related with the vacuum energy. 
The idea of establishing a connection between a sort of rigidity of space-time and its vacuum 
energy is old (Sakharov, 1968), but usually implemented in terms of quantum physics and 
finally facing the problem of the huge mismatch between the values obtained from quantum 
computations and the value needed to account for the cosmological phenomena.  Not all 
problems will be solved by this approach but many useful hints will be found. 

2. Deformable continua 
Let us start considering an N+n-dimensional space, where N and n are integers. We shall 
call this space the embedding manifold and we shall assume it is flat: the geometry in it is 
Euclidean. Let us cover the embedding manifold with some coordinates system that we 
denote with aX  (a runs from 1 to N+n). 
Next we introduce two N-dimensional embedded spaces. The first will be our reference 
manifold and is assumed to be flat; the second embedded space will be the natural manifold 
and will be intrinsically curved (Eshelby, 1956). Each embedded manifold has its own 
coordinates; for them I use the symbols μξ (reference manifold) and xμ (natural manifold); 
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the μ index runs from 1 to N. In the embedding space the reference frame is expressed by n 
linear constraints: 

 ( )1 ,...., constantN n
iF X X + =  (2) 

Viceversa the natural frame is fixed by n generally non-linear constraints: 

 ( )1 ,...., constantN n
iH X X + =  (3) 

The index i runs from 1 to n. Eq.s (2) and (3) permit to express n of the embedding 
coordinates in terms of the other N on the two submanifolds. In practice the N coordinates 
defined on each submanifold will be functions of the N+n coordinates of the embedding 
space: ( )1 ,...., N nX Xμ μ +ξ = ξ  and ( )1 ,...., N nx x X Xμ μ += .  For obvious convenience n will be 
as small as possible, i.e. in most cases it will be n = 1; however for peculiar natural frames 
containing singularities one more dimension can be insufficient to give a flat embedding, so 
more will be required. 
As an additional assumption, suppose, for the moment, that the natural manifold is 
sufficiently regular and all functional dependences are smooth and differentiable as many 
times as needed. As a consequence it will be possible to directly express the coordinates on 
the reference manifold as functions of those on the natural manifold and viceversa. 
Once the above definitions and conditions have been declared we may establish a one to one 
correspondence between points located on the two embedded manifolds. This 
correspondence is embodied in an u vector field: each u vector goes from a point in the 
reference to a point in the natural manifold. The flatness of the embedding space permits a 
global definition of the vector field. The situation described so far is summarized in fig. 1. 
The vector u field is called the displacement vector field; whenever it is non-uniform we say 
that the natural manifold is distorted with respect to the reference one. 
Considering pairs of arbitrarily near positions on both manifolds we may compare the 
corresponding line elements. Let us write 

 2d d dμ ν
μνσ = η ξ ξ  (4) 

for the reference manifold. Due to the flatness condition it must also be 

 y yα β

μν αβ μ ν
∂ ∂

η = δ
∂ξ ∂ξ

 (5) 

The y’s are Cartesian coordinates and the metric tensor ημν corresponds to an Euclidean 
geometry in N dimensions. 
For the natural manifold it will be 

 2ds g dx dxμ ν
μν=  (6) 

Both line elements (5) and (6) can of course be expressed in the embedding space as  

 2 a b
abds dX dX= δ  (7) 
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Fig. 1. The embedding space with the two embedded manifolds. The figure represents a 
three-dimensional embedding of two bidimensional manifolds, but the scheme can be 
applied to any number of dimensions. 

where Cartesian coordinates are assumed, for simplicity; Latin indices from the first part of 
the alphabet (as a, b, c…) run from 1 to N+n. One goes from (7) to (5) or (6) applying 
respectively the constraints (2) and (3) and remarking that (see fig. 1) it is: 

 n r= +r r u  (8) 

Summing up and using (8) we see that the difference between (6) and (4) is: 

 
a a a b

2 2 u u u u
x x x xa a abds d μ νν μ μ ν

∂ ∂ ∂ ∂− σ = δ + δ + δ
∂ ∂ ∂ ∂

 (9) 

The difference (9) has been written in terms of the coordinates on the natural manifold. 
Using on both sides the same coordinates, eq. (9), together with (4) and (6), leads to: 

 2gμν μν μν− η = ε  (10) 

The elements εμν belong to a rank 2 symmetric tensor in N dimensions: it is called the strain 
tensor.  
So far the correspondences we have established may be though of as being purely formal, 
however if we consider a physical situation we may think of obtaining the natural manifold 
from the reference one by continuous deformation. In this case the displacement vector tells 
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us from where to where a given point has been moved during the process and the 
differential part of the displacement does indeed represent the strain induced in the 
manifold. 

2.1 Defects 
The conceptual framework outlined in the previous section permits to introduce another 
important notion: the one of defect or texture defect. 
Defects play an important role in the analysis of the properties of crystals or, in general, of 
material continua. A consistent description for them was worked out between the end of the 
19th and the beginning of the 20th century (Volterra, 1904) and that is the picture I shall use 
in the following.  
Consider the situation represented in fig. 2, whose general structure is the same as that of  
fig.1. We say we have a defect whenever a whole region C of the reference manifold 
corresponds to a point O (or a line or any other lower dimensional subset) of the natural 
manifold, while, for the rest, the correspondence remains one to one. 
 

 
Fig. 2. Defects in continuous manifolds. Point O corresponds to a whole region C of the 
reference manifold. The natural manifold has non-zero strain. 

The presence of a defect implies a non-zero strain tensor in the natural manifold and the 
strain is singular in correspondence of the defect. Defects also induce peculiar symmetries in 
the natural manifold: a pointlike defect induces a central (spherical) symmetry; a straight 
linear defect implies a cylindrical symmetry, etc. A whole classification of defects, on the 
basis of the corresponding symmetries, exists in terms of dislocations and disclinations. 
Volterra’s classification has been extended to space-time by Puntigam and Soleng 
(Puntigam, 1997) who identified the 10 possible types of distortions existing in four 
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dimensions; they wanted to apply the idea of topological defects to the study of cosmic 
strings. I will not enter into further details, since the general concepts are enough for the 
purpose of this chapter. 

2.2 Elasticity 
In physical terms, strain is not enough to account for what happens. We must say something 
about the causes of the distortion of the manifold and their interrelation with the effects. In 
other words, when we try to deform a material system (the reference manifold of our 
abstract representation) we expect it to react back to our action. In three dimensions the 
reaction is in term of stresses in the bulk of the material: strains are relative changes in the 
linear sizes; stresses are forces per unit surface and altogether they form the rank 2 
symmetric stress tensor, σμν. Stresses and strains are mutually and causally connected to 
each other; in this connection consists the elasticity of the material. The simplest assumption 
we can make is that the relation between strain and stress is linear. Indeed if we exclude 
discontinuities in the behaviour of the continuum we are analyzing, linearity is in any case 
the lowest order approximation for the strain/stress functional dependence. Let us then 
limit our study to the linear elasticity case; its basic equation is Hooke’s law, which, in 
tensor notation, is written: 

 C αβ
μν μν αβσ = ε  (11) 

The C αβ
μν ’s are the elements of a rank 4 completely symmetric tensor, which we can call the 

elastic modulus tensor; it contains the properties of the material at the linear approximation 
level. Eq. (11) is a tensor equation so it is covariant and locally coinciding with its expression 
on the tangent space; this means that the upper or lower position of the indices is simply a 
matter of convenience in order to exploit Einstein’s summation convention1.  
If we assume that our material continuum is locally isotropic, simple symmetry arguments 
tell us that the elastic modulus tensor only depends on two parameters, known as the Lamé 
coefficients, λ and μ, of the material. Explicitly one has: 

 ( )Cαβμν αβ μν αμ βν αν βμ= λη η + μ η η + η η  (12) 

Eq. (12) is written for an arbitrary choice of the coordinates; using Cartesian coordinates the 
η’s would be replaced by Kronecker δ’s. Using (12) Hooke’s law becomes: 

 2α
μν α μν μνσ = λε η + με  (13) 

2.2.1 Deformation energy 
It is convenient to write down the elastic potential energy of the strained state, which is 

1
2

W μν
μν= σ ε . Using eq. (13) we obtain: 

 21
2

W μν
μν= λε + με ε  (14) 

                                                 
1 Some care will be required when treating a manifold with Lorentzian signature. 
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Now I have posed the trace of the strain tensor α
αε = ε for short.  

Eq. (14) could have been written also considering the lowest significant terms of the 
Helmholtz free energy FH of the material, written in terms of strain. In fact FH  must contain 
only scalar quantities and, besides a constant, its lowest order is the second, because the 
thermodynamical equilibrium must correspond to a minimum (Landau, 1986). Eq. (14) 
contains the only two second order scalars that can be built from the strain tensor. 

3. Space-time and the universe 
The whole description of strained continua is molded on three-dimensional examples, but 
the treatment holds for any number of dimensions. Of course one needs to generalize the 
interpretation of such things as the stresses and the energy, but formulae and criteria remain 
valid. So let us apply the theory to four dimensions and the Lorentzian signature, i.e. to 
space-time, treated as a physical continuum endowed with properties analogous to the ones 
of ordinary elastic materials. 
As a first step I will generalize the action integral of space time plus matter/energy. The 
generalization consists in that a strained state is associated with a potential like the one 
expressed in eq. (14). The additional term will appear in the Einstein-Hilbert action that 
becomes: 

 2 41
2 matS R gd xμν

μν
 = + λε + με ε + − 
  L  (15) 

Now the scalar curvature R plays the role of dynamical term, since it contains the 
derivatives of the Lagrangian coordinates, i.e. the elements of the metric tensor; Lmat is the 
Lagrangian density of matter/energy. Eq. (15) is the starting point for what I shall call the 
Strained State Theory (SST), which in the following will be applied to the Strained State 
Cosmology (SSC). 
From (15) we can also derive generalized Einstein equations. The new elastic potential terms 
contribute an additional stress/energy tensor in the final equations. We may treat the strain 
tensor in the same way as we do with matter fields, only remembering that it must satisfy 
the constraint represented by eq. (10). In particular the indices of the strain tensor are raised 
and lowered using the full metric tensor. On this footing we obtain the new generalized 
version of eq. (1) in the form: 

 ( )eG T Tμν μν μν= + κ  (16) 

In explicit form it is: 

 ( ) 2eT μν μν μν= λεε + με  (17) 

The tensor T(e)μν  actually belongs to space-time (it is in a sense a self-interaction energy) but 
works as an effective additional term on the side of the sources. 

3.1 A Robertson-Walker universe 
It is commonly assumed that the universe has a Robertson-Walker (RW) symmetry, i.e. it is 
homogeneous and isotropic in space (cosmological principle). This conviction is based both 
on a priori arguments and on the observation. On the theoretical side: why should a given 
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dimensions; they wanted to apply the idea of topological defects to the study of cosmic 
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position or direction in space be more important than another? So let us assume all positions 
and directions are equivalent. In the 19th and at the beginning of the 20th century, as well as 
later on, at the time of the Hoyle-Gold-Bondi steady state cosmology, this argument was 
assumed to hold also for time: why should any given moment be “special”? The 
homogeneity of time together with the homogeneity and isotropy of space forms the so 
called “perfect cosmological principle”. 
The four-dimensional homogeneity has however almost completely been abandoned on the 
basis of observation. Strictly speaking a stationary universe had already been challenged by 
the Olbers’ paradox (1826): why is the sky dark at night? However the crucial data came 
from Hubble’s work at the end of the 20’s of the last century: the redshift of the light coming 
from other galaxies tells us that the universe is expanding. Today, after the publication of 
the observations by the groups led by Adam Riess (Riess, 1998) and Saul Perlmutter 
(Perlmutter, 1999), we even think that the expansion of the universe is accelerating.  
As for the homogeneity and isotropy of space the observational evidence is not so stringent. 
It is evident that locally the universe is neither homogeneous nor isotropic. One has to go to 
a large enough scale to override local inhomogeneities and anisotropies; how large? 
Actually we see large voids in the universe, then huge filaments made of galaxies, so that 
the cosmological principle is assumed to hold at a scale of at least hundreds of megaparsecs 
(Mpc). However it is also true that we have knowledge only of the visible part of the 
universe; of the rest we cannot say almost anything or even nothing at all. In fact various 
anisotropic solutions for the Einstein equations applied to cosmology have been studied and 
the possibility that some “local” inhomogeneity is responsible for what has been interpreted 
as an accelerated expansion has also been considered (Biswas, 2010). 
I will not discuss further these issues, but will stay with the standard cosmology and accept 
that the cosmological principle holds on the average. This assumption greatly simplifies the 
discussion of the global behaviour of the universe and is synthetically expressed by the 
Robertson-Walker symmetry.  
A question is however legitimate now: why is the RW symmetry there? If you just add a 
uniformly distributed dust to an empty Minkowskian space-time you do not obtain, as an 
unique outcome, a RW universe. A homogeneous distribution of matter is gravitationally 
unstable; does this preserve isotropy and lead to a singularity in the past? Not necessarily.  
If I adopt the viewpoint of the SSC, I may think that space-time per se (the natural manifold) 
has a built-in RW symmetry independently from the presence of matter; the latter simply 
responds to the symmetry, reinforcing it. The primordial symmetry is in turn explained 
assuming the presence of a spacelike defect (a Cosmic Defect) within the manifold. Of 
course you might ask why the defect should be there, however we know that going back 
along the chain of “why?”’s sooner or later we exit the domain of physics. We can only try 
and minimizing the number of independent assumptions and if possible look for physically 
consistent interpretations of their meaning. 
The approach of the Strained State Cosmology is best visualized in fig. 3, where the 
embedding of a Robertson-Walker space-time in a three-dimensional flat manifold is shown. 
O is the defect responsible for the RW symmetry. For convenience in making the drawing, 
the example of a closed space has been represented. For an open space the original defect 
would be linear (a ridge) and space-like. All geodetic lines starting from the defect are time-
like; τ is the cosmic time; space is any space-like intersection between the natural manifold 
and an open surface (for instance a hyperplane) in the embedding space. Successive 
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intersections of the natural manifold, in correspondence of increasing values of the cosmic 
time, evidence what the typical 3+1 human view reads as an expanding universe.  
 

 
Fig. 3. Pictorial view of a Robertson-Walker universe embedded in a three-dimensional flat 
space. The picture corresponds to a closed universe. 

The correspondence we establish between the reference and the natural manifold identifies 
an “image” of any given natural space in the reference. We must now write down and 
compare the corresponding line elements on the two manifolds. Due to the simple 
symmetry, the line element on the natural manifold is of course2:  

 ( )2 2 2 2ds d a dl= τ − τ                                                      (18) 

The a function of the cosmic time is the scale factor of the universe; dl is the space length 
element. 
As for the reference manifold you can in principle define the correspondence with the actual 
RW space-time in infinite different ways. Using the coordinates chosen for the natural 
manifold, you are left with four free functions for the choice of the coordinates on the 
reference, with the constraint that the reference has to be flat.  In the specific case under 
consideration, however, the final symmetry reduces the free functions to only one and the 
reference line element is written: 

 ( )2 2 2 2d b d dlσ = τ τ +                                                      (19) 

The function b of the cosmic time has been called gauge function in (Radicella, 2011) but this 
denomination is not entirely correct, since b does not correspond to a real freedom: since we 
assume that the deformation process is a real one, the way the correspondence between the 
                                                 
2 Times are expressed as lengths. 
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unstrained and the strained manifold is established depends on the two Lamé coefficients of 
space-time, under the assumption of local isotropy. 
From eq.s (18) and (19), using the definition (10), we easily obtain the non-zero elements of 
the strain tensor for a RW space-time: 

 

2

2

1
2

1
2

oo

ii

b

a

 −ε =


+ε = −

   (20) 

Once we have the strain tensor, it is possible to deduce the potential term (14) in the action 
integral; indices are raised and lowered by means of the full RW metric tensor. It is: 
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The other ingredients of the action integral, besides the matter/energy Lagrangian density, 
are: 

 
2

3
26 ;a aR g a

a a
 

= − + − =  
 

 
                                 (22) 

Dots denote derivatives with respect to time. 
An expression for b2 is immediately found imposing dW/db = 0 (i.e. extremizing the 
Lagrangian density with respect to the gauge function). Rejecting the inadmissible b = 0, the 
solution is: 
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Given the solution (23) the only residual unknown is the scale factor a. Of course we should 
also specify the type of matter we consider. The simplest is to assume that matter/energy is 
made of dust plus radiation. Under these conditions, applying Hamilton’s principle to the 
action integral (15) leads to: 
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H is the Hubble parameter. The variable z is the redshift factor and use has been made of the 
relation a(1+z) = constant = a0; a0 is the present value of the scale factor. ρm0 and ρr0 are the 
present values of the average matter and radiation densities in the universe; κ = 16πG/c2 is 
the coupling constant between geometry and matter/energy. B combines the Lamé 
coefficients of space-time according to: 
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The term proportional to B in the square root of eq. (24) is the contribution coming from the 
strain of the space-time; the rest is the standard cosmology of a RW universe filled up with 
dust and radiation. 
The choice of the sign for the square root in (24) tells us whether the universe is expanding 
or contracting; the given behaviour is for ever. In the same time we see that the contribution 
from strain implies the onset of acceleration after an initial phase of deceleration. The 
dependence of the expansion rate on the scale factor is shown in fig. 4 in arbitrary units. At 
very early times (z >> 1) the strain contributes a radiation-like term boosting the expansion: 

 2
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BH cz
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κ≅ + ρ  (26) 

In late times (z → -1) the Hubble parameter becomes constant: the expansion assumes an 
exponential trend at a rate depending only on B: 
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We have so seen that the SSC is able to account for the accelerated expansion as being a 
consequence both of the presence of a cosmic defect (the Big Bang) and of the elastic 
properties of space-time.  
 

 
Fig. 4. Expansion rate of a RW universe according to the Strained State Theory. The graph is 
drawn giving arbitrary values to the parameters. The universe always expands; at the 
beginning the expansion decelerates, afterwards it accelerates. 

What remains to be done is to find appropriate values for the parameters of the theory, which, 
at this stage, are B and a0 besides ρm0 and ρr0. This will be the subject of the next section. 

4. Cosmological tests 
In order to determine the optimal values for the parameters of the theory and to check its 
credibility we have considered four typical tests: the dependence of the luminosity of type Ia 
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supernovae (SnIa) on the redshift; the Big Bang Nucleosynthesis (BBN); the acoustic horizon 
scale in the Cosmic Microwave Background; the Large Scale Structure (LSS) formation after 
the recombination era. The first test I have quoted is not in decreasing redshift order as the 
others are; the reason for privileging it is in that SnIa’s have been the first evidence in favor 
of an accelerated expansion (Riess, 1998) (Perlmutter, 1999). 

4.1 The luminosity curve of type Ia supernovae 
Type Ia supernovae are thought to be the product of the implosion of a slowly rotating 
white dwarf star that accretes matter from a companion in a tightly bound binary system 
(Hillebrandt, 2000). These stars have masses that do not exceed the Chandrasekhar limit 
(Chandrasekhar, 1931), i.e roughly 1.38 solar masses. The mass limit and the implosion 
mechanism are such that the characteristic light curve of an SnIa is quite uniform and 
reproducible, so that this kind of objects can be used as standard candles for determining 
cosmic distances (Colgate, 1979). 
In order to exploit the mentioned beautiful property of SnIa’s we need the luminosity distance 
of the source which depends on the expansion mechanism of the universe. When expressed 
in terms of distance modulus and of the redshift parameter it is given by the formula 
(Weinberg, 1972): 
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M is the absolute magnitude of the source; m is the locally observed magnitude; H is the 
Hubble parameter and depends on the expansion model one uses. Formula (28) holds when 
distances are measured in Mpc. 
When applying (28) to the luminosity data from SnIa’s in the framework of the standard 
cosmology, one finds (Riess, 1998) (Perlmutter, 1999) that the sources appear to be dimmer 
than expected from the z value of the host galaxy. The immediate interpretation of this fact 
is that the expansion of the universe is indeed accelerated. 
We applied the SST to try and fit the luminosity data from SnIa’s using formulae (28) and 
(24) (Tartaglia, 2010). The experimental luminosities were from 307 SnIa’s from the 
Supernova Cosmology Project Union Survey (Kowalski, 2008). The result is shown in fig. 5; the 
quality of the fit, if taken as the only test, is good. The free parameters of the theory, 
considering that for z values < 2 the radiation term is negligible, are three; the final reduced 
χ2 is 1.017.  
For comparison we use the Λ Cold Dark Matter (ΛCDM) scenario (Concordance Model), 
which is the simplest and most effective theory currently adopted in order to account for the 
properties of the universe. ΛCDM, when employed to fit the same data of SnIa’s as above, 
gives χ2 = 1.019. The problem with ΛCDM is that the physical nature of the cosmological 
constant Λ (or of the corresponding dark energy) remains a mystery. 
For further analysis it is convenient to explicitly reproduce the χ2 formula: 
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The di’s are the measured values of the distance modulus; d(zi) is the corresponding value 
given by the theory; δdi  are the variances of the experimental data; the sum is over the 
number of supernovae we use. 
This first test is encouraging, but is not enough, so let us go on with more. 

4.2 More tests 
4.2.1 The abundance of primordial isotopes 
The lightest elements up to lithium Li7 (mentioning just the stable isotopes) formed after the 
baryogenesis phase, while the primordial plasma cooled and expanded (Big Bang 
Nucleosynthesis: BBN). The relative abundances of hydrogen, deuterium and helium that 
we find today as a residue of that time depend on the early expansion history, affecting both 
the temperature and the density of the plasma. Since the SST gives an additional 
contribution to the radiation density and pressure, as seen in formula (26), we do not expect 
it to influence the cross section of the nuclear reactions but the quantitative final result of 
BBN. 
 

 
Fig. 5. Fit of the luminosity data from 307 Snia’s obtained using the SST. The distance 
modulus is given as a function of the redshift parameter. The experimental data are shown 
with their error bars. 
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supernovae (SnIa) on the redshift; the Big Bang Nucleosynthesis (BBN); the acoustic horizon 
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In order to exploit the mentioned beautiful property of SnIa’s we need the luminosity distance 
of the source which depends on the expansion mechanism of the universe. When expressed 
in terms of distance modulus and of the redshift parameter it is given by the formula 
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where it is 
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The term in brackets in (30) acts as an effective boost factor for the radiation energy density 
Xboost = 1 + B/Ba0 enhancing the expansion rate. This fact would lead to an earlier freeze-out 
of the neutrons, then to a higher final abundance of He4. Knowing the actual abundance of 
helium we can then put constraints on the value of the parameters of the SST. The 
primordial fraction of helium by mass, Yp, is estimated using various methods and with 
good accuracy; see for instance (Izotov, 2010). We adopted a conservative attitude picking 
up the value Yp = 0.250 ± 0.03 (Iocco, 2009) obtained by an ample analysis of a number of 
different values in the literature. The ensuing constraint in the boost factor is Xboost = 1.025 ± 
0.015. Our final purpose is to perform a statistical analysis of the compatibility of SST with 
the data, so we work out the χ2 constraint that follows from the quoted uncertainties: 
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4.2.2 Cosmic microwave background constraint 
The analysis of the CMB spectrum is a complex task, but the scope of this discussion is 
limited to a compatibility check, so I shall pick out just one parameter whose value is 
affected both by the expansion factor at the matter/radiation equality time and by the 
history of the universe from the decoupling time to the present. The chosen parameter is the 
acoustic scale (Komatsu, 2011):  
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DA is the angular diameter distance to the last scattering surface; rs is the size of the sound 
horizon at recombination; zLS ∼ 1090 is the last scattering redshift. The mode of the 
expansion affects the position of the acoustic peaks which depends on the expansion factor 
at the equality scale ae; in practice the position is influenced by the value of the boost factor 
for the radiation Xboost. The acoustic horizon formula will then be the same as for ΛCDM, but 
the equality scale factor is now boosted: ae = Xboostρr0/ρm0. As for the angular diameter 
distance, it depends on the total expansion history from the last scattering surface to 
present: 
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The final value for lA is not much sensitive to the choice of the cosmological model so we 
will make reference to the values obtained from WMAP-7 using ΛCDM (Komatsu, 2011). 
Our reference experimental (+ΛCDM) value is 302.69 0.76 1.00Obs

Al = ± ± . The first 
uncertainty is the statistical error, the second is an estimate of the uncertainty connected 
with the choice of the model; the two uncertainties are mutually independent so they can be 
added in quadrature. Summing up we have the statistical constraint: 
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4.2.3 Large scale structure formation 
If space-time is expanding in a radiation dominated universe matter density fluctuations 
cannot produce growing seeds for future structures. As we have seen, the presence of strain 
in early epochs effectively increases the radiation density, so retarding the onset of matter 
dominance. This is the reason why LSS poses further constraints on the SST. The effective 
boost, Xboost,  affects the scale of the particle horizon at the equality epoch, zeq ≅ 3150 
(Komatsu, 2011). On the other hand, the SST preserves the Newtonian limit of gravity even 
in presence of defects (Tartaglia, 2010), so that, in SSC, the growth of mass density 
perturbations is affected mainly through the modified expansion rate of the background. 
The horizon at the equality is imprinted in the matter transfer function. The constraint from 
LSS can be written as (Peacock, 1999): 
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Ωm0 is the mass density in units of the critical density ρc = 3H02/8πG; H0 is the Hubble 
constant; h is the Hubble constant in units of 100 km s−1Mpc−1. 
According to the conclusions drawn from the analysis of the data from the 2dF Galaxy 
Redshift Survey (Cole, 2005) it is (Ωm0h)apparent = 0.168 ± 0.016. For consistency we make the 
same assumption as in ref. (Cole, 2005) on the index of the primordial power spectrum (n = 
1). The related constraint on the cosmological parameters of the SSC is:  
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4.3 Global consistency  
The various tests we have described in the previous sections must be satisfied together, so 
we must check for the global compatibility of the constraints when applied to SSC. The 
analysis has been made using standard Bayesian methods (Mackay, 2003). According to 
Bayes theorem the posterior probability p for a given parameter P given the data d is 
proportional to the product of the likelihood L of P times the prior probability for P: 

 ( ) ( ) ( )| |p p∝P d P d PL  (38) 

The likelihood is expressed in terms of the total χ2 as 
2 /2e−χ∝L  and the total χ2 is in turn 

given by the sum of the independent values (29), (32), (35), (37): 
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For this analysis we use three parameters of the theory. The constraints we have considered do 
not require us to distinguish between baryonic and dark matter, so that we consider a single 
parameter density for the dustlike matter, ρm0. The strain related properties, in a RW 
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symmetry, are accounted for by the B parameter. Finally, the present value of the scale factor is 
described in terms of Ba0 (actually we shall use its inverse). A flat distribution for each 
parameter has been assumed. The relativistic energy density has been fixed at ρr0 ≅ 7.8 × 10-31 
kg/m3. The parameter space has been explored with Monte Carlo Markov chain methods 
(Lewis, 2002) running four chains, each one with 104 samples. Convergence criteria were safely 
satisfied, with the Gelman and Rubin ratio (Gelman, 1992) being ≤ 1.003 for each parameter. 
The final results are shown in fig. 6a,b,c.  
 

a)               b)                        c) 

 
Fig. 6. Posterior probability density functions for the parameters of the SSC; the functions 
are normalized. Units are as in Table 1. 

From the probability density functions we obtain the best estimates for the parameters. The 
corresponding amounts are listed in Table 1 where also the maximum likelihood values are 
reported in parentheses. 
 

ρm0 (10-26 kg×m-3) B (10-52 m-2) Ba0-1 (1052 m2) 
0.260 (0.258) ± 0.009 2.22 (2.22) ± 0.06 0.011 (0.009) ± 0.006 

Table 1. Estimated values of the parameters. The numbers in brackets correspond to the 
maximum likelihood. 

The estimated value for the present matter density, when expressed in terms of the critical 
density, becomes Ωm0 = 0.28 ± 0.01 which is consistent with the value commonly accepted 
for the sum of baryonic and dark matter. 

4.3.1 Further compatibility checks 
The theory, together with the values obtained in the previous section for the parameters, can 
be used to evaluate various cosmic quantities that can be verified with observation. For 
instance the calculated Hubble constant of SSC is H0 = 70.2 ± 0.5 km s−1Mpc−1, which 
compares well with 73 ± 2 ± 4 km s−1Mpc−1 obtained from high precision distance 
determination methods (Freedman, 2010). Another interesting quantity is the age of the 
universe; the SSC value is T = 13.7 Gy, fully compatible with the lowest limits obtained from 
the age of the oldest globular clusters and from radioactive dating. 

5. Open problems and perspectives 
The Strained State Theory applied to cosmology, at least in the case of a RW symmetry, 
performs well, as we have seen, however some aspects of the theory require further thought 
and clarification. Let us for instance consider a problem I have hardly touched in the 
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previous sections: the signature of space-time. The logic of the method I have outlined here 
requires a totally undifferentiated flat manifold to start with. In other words the reference 
manifold should best be Euclidean. It is easy to verify however that the results concerning a 
RW universe can be obtained as well starting with a Minkowski reference manifold. The 
latter choice is in a sense friendlier because it has, from the start, the same signature as the 
final strained space-time which we want to describe. However we may ask where does the 
initial signature of a Minkowski space-time come from. Hopefully in the case of SSC the 
start can be Euclidean even if the final state has a Lorentzian signature. In the theory a 
cosmic defect is essential to define the global symmetry of the universe on a large scale and 
all timelike world lines stem out of that defect. Is the presence of a defect the condition for 
introducing the signature (in practice the light cones) in the natural manifold? The guess is 
that it is so, but the fact that the idea works in the case of the RW symmetry is not a proof, 
that should be given in general terms. In any case an important remark is that there must be 
no confusion between the reference manifold, which is Euclidean, and the local tangent 
space at any position in the natural manifold, which is instead Minkowskian. 
The importance of the Cosmic Defect (CD) has been stressed more than once in this chapter. 
Are there other defects in the universe? The answer is in principle yes of course, but, if other 
defects exist, how and where do they show up? The CD is space-like and is the origin of the 
signature of space-time; if additional defects exist they could/should be time-like. A 
possibility is to have, for instance, a linear time-like defect; such defect would be 
surrounded, at any given moment, by a spherically symmetric space. If we think for instance 
to a big spherical cosmic void it could indeed be centered on a linear time-like defect. On the 
other side the present theory, for the essential, is not different from General Relativity: it is 
not locally distinguishable from GR, since the gravitational interaction is described in the 
same geometrical terms. The natural manifold admits locally a flat Minkowskian tangent 
space, just as in GR, and this means that the equivalence principle holds and also that the 
SST complies with the Newtonian limit. By the way the values obtained from the 
cosmological application and listed in Table 1 tell us that the scale at which deviations from 
the standard GR can be expected are very large, much wider than the solar system and even 
than a single galaxy. It is however true that the local spherical symmetry is also the typical 
Schwarzschild symmetry and there GR has a singular exact solution. Today black holes are 
well accepted and evidence for their existence, at least in the center of galaxies, is abundant. 
The conceptual problems posed by the singularity are bypassed by the cosmic censorship 
principle, so that people do not worry too much about them. Is there a connection between 
the black holes of GR and linear defects of the SST? The singularities of GR have to do with 
infinite matter densities; the defects of the SST are in the space-time as such and at most they 
influence the behaviour of surrounding matter. The singularity of a defect in a manifold is 
much friendlier than the singularities of GR. Are there horizons in SST too? All these open 
questions deserve further work and analysis. Remaining in the domain of defects, the 
properties of other symmetries need to be explored, first of all the screw symmetry which 
corresponds to the same symmetry as the one of the Kerr black holes. 
Looking at the Lagrangian density contained in eq. (15) and in particular to the additional 
new elastic potential terms of eq. (14) we see that they look very much like the massive 
gravity Lagrangian density initially proposed by  Fierz and Pauli (Fierz, 1939) (Dvali, 2008). 
This similarity is very strict when it is λ = -2μ, however it must be kept in mind that the 
Fierz-Pauli Lagrangian was proposed in pursuit of a gravitational spin-2 field in a 
Minkowski background; furthermore the Fierz-Pauli Lagrangian is obtained by a 



 
Aspects of Today´s Cosmology  

 

44
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well accepted and evidence for their existence, at least in the center of galaxies, is abundant. 
The conceptual problems posed by the singularity are bypassed by the cosmic censorship 
principle, so that people do not worry too much about them. Is there a connection between 
the black holes of GR and linear defects of the SST? The singularities of GR have to do with 
infinite matter densities; the defects of the SST are in the space-time as such and at most they 
influence the behaviour of surrounding matter. The singularity of a defect in a manifold is 
much friendlier than the singularities of GR. Are there horizons in SST too? All these open 
questions deserve further work and analysis. Remaining in the domain of defects, the 
properties of other symmetries need to be explored, first of all the screw symmetry which 
corresponds to the same symmetry as the one of the Kerr black holes. 
Looking at the Lagrangian density contained in eq. (15) and in particular to the additional 
new elastic potential terms of eq. (14) we see that they look very much like the massive 
gravity Lagrangian density initially proposed by  Fierz and Pauli (Fierz, 1939) (Dvali, 2008). 
This similarity is very strict when it is λ = -2μ, however it must be kept in mind that the 
Fierz-Pauli Lagrangian was proposed in pursuit of a gravitational spin-2 field in a 
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linearization process in which the deviation from the flat Minkowsky manifold is 
represented by a hμν tensor, whose elements are all small with respect to 1. When letting the 
mass of the graviton in the Fierz-Pauli theory go to zero, one is left with a linearized General 
Relativity, whose equations can be used both for the study of gravito-magnetic effects and 
for Gravitational Waves (GW). Fierz and Pauli’s approach however has a problem: its limit 
for zero mass of the graviton does not smoothly reproduce the results of GR: it is the so 
called van Dam-Veltman-Zakharov (vDVZ) discontinuity (van Dam, 1970) (Zakharov, 1970). 
Furthermore a non-zero mass graviton implies the presence of a ghost when studying 
propagating modes. The debate on these problems and on massive gravity is open.  
In any case we must remark that in the SST the strain tensor is not a perturbation of a flat 
Minkowski background, rather it expresses the difference (not necessarily small) with 
respect to an Euclidean reference, which is of course not the tangent space at any given event 
of the natural manifold. The behaviour of a strained space-time with respect to propagating 
perturbations, i.e. waves, must be studied, but we can expect it to be similar, even though 
not identical, with “massive gravity”; in particular we can expect subluminal waves and 
contributions to a cosmic thermal gravitational background according to some appropriate 
dispersion law.  
As a last conceptual aspect to be considered with the SST I start from a simple remark. The 
classical theory of elasticity is the macroscopic manifestation of an underlying microscopic 
reality made of discrete particles with their interactions. Can we think the elasticity of space-
time to have a similar origin? The idea, at first sight, seems reasonable, however the point is 
subtle. On one side, an underlying microscopic structure of space-time would bring us close 
to the attempts to quantize the space-time and gravity (and to their difficulties). On the 
other, we should face the problem I mentioned in the Introduction concerning the implicit 
request of a “background” (a super-space-time?) in which the microscopic structure of 
space-time would be located. Our current view of the universe, whether we are aware of it 
or not, is basically dualistic: on one side space-time with properties of its own; on the other 
side matter/energy described by quantum mechanics in terms of eigenstates and 
eigenvalues of quantum operators associated with physically meaningful parameters. The 
two sides of the duality resist against the attempts to reduce them to a single paradigm. 
Maybe this simply means that nobody has found the right way so far, but it could also be 
that they are mutually irreducible. If so the elasticity of the four-dimensional manifold could 
be a fundamental property of space-time and not the macroscopic approximation of some 
unknown microscopic structure. 

6. Conclusion  
In this chapter I have expounded a theory based on physical intuition, which extends to four 
dimensions what we already know in three when studying material continua. I have used 
concepts such as strain to describe the distortion induced in space-time either by the 
presence of matter/energy or by the presence of texture defects analogous to the ones we 
find in crystalline solids. The idea of an induced strain implies directly the existence of an 
analogue of the deformation energy. This distortion energy enters the Lagrangian of space-
time as an additional potential and leads to a new dynamical history of the universe. The 
structure and fundaments of General Relativity are all preserved. As we have seen, the 
theory, when applied to a Robertson-Walker universe, passes various important consistency 
tests, while reproducing the luminosity/distance curve of type Ia supernovae (in practice it 
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accounts for the accelerated expansion). The values we found for the parameters of the 
theory tell us that locally it will be indistinguishable from GR, while producing emerging 
effects at cosmic scales. There are a number of developments to be pursued and difficulties 
to be discussed and overcome, but the way through seems not to be impassable. 
Of course there are many theories that, in a way or another, account for the accelerated 
expansion while passing various cosmological consistency tests. First of all there is ΛCDM, 
which is reasonably simple and reasonably successful, though not exempt from drawbacks. 
How and why should we discard one theory and prefer another? Most often in cosmology 
new theories are introduced manipulating the Lagrangians or adding fields on heuristic 
bases; internal consistency is of course cared of, but physical intuition plays a minor role. 
Hundreds of papers appear every years discussing details of theories whose basic 
assumptions are motivated only by the final results one wants to obtain; the old Occam’s 
razor (entia non sunt multiplicanda praeter necessitatem) is left behind and it is difficult, if not 
impossible, to think of crucial experiments that can discriminate among the theories. In this 
situation maybe the strategy of sticking as far as possible to what one already knows is 
sound and trying to build the least possible exotic physical scenario is advisable. This is the 
meaning of the Strained State Theory and of the Strained State Cosmology, which is not yet 
an accomplished paradigm, but aspires to become so. We have just started. 
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1. Introduction

The reasons and motivations that lead to the consideration of alternatives to General Relativity
are manifold and have changed over the years. Some theories are motivated by theoretical
reasons while others are more phenomenological. One can thus find theories aimed at
unifying different interactions, such as Kaluza-Klein theory (5-dimensional spacetime as a
possible framework to unify gravitation and electromagnetism) or the very famous string
theory (which should provide a unified explanation for everything, i.e., from particles to
interactions); others appeared as spin-offs of string theory and are now seen as independent
frameworks for testing some of its phenomenology, such is the case of the string-inspired
“brane worlds” (which confine the standard model of elementary particles to a 4-dimensional
brane within a larger bulk accessible to gravitational interactions); we also find modifications
of GR needed to allow for its perturbative renormalization, or modifications aimed at avoiding
the big bang singularity, effective actions related with non-perturbative quantization schemes,
etcetera. All them are motivated by theoretical problems.
On the other hand, we find theories motivated by the need to find alternative explanations for
the current cosmological model and astrophysical observations, which depict a Universe filled
with some kind of aether or dark energy representing the main part of the energy budget of the
Universe, followed by huge amounts of unseen matter which seems necessary to explain the
anomalous rotation curves of galaxies, gravitational lensing, and the formation of structure
via gravitational instability.
One of the goals of this chapter is to provide the reader with elementary concepts and tools
that will allow him/her better understand different alternatives to GR recently considered
in the literature in relation with the cosmic speedup problem and the phenomenology of
quantum gravity during the very early universe. Since such theories are aimed at explaining
certain observational facts, they must be able to account for the new effects they have
been proposed for but also must be compatible with other observational and experimental
constraints coming from other scenarios. The process of building and testing these theories is,
in our opinion, a very productive theoretical exercise, since it allows us to give some freedom
to our imagination but at the same time forces us to keep our feet on the ground.
Though there are no limits to imagination, experiments and observations should be used
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as a guide to build and put limitations on sensible theories. In fact, a careful theoretical
interpretation of experiments can be an excellent guide to constrain the family of viable
theories. In this sense, we believe it is extremely important to clearly understand the
implications of the Einstein equivalence principle (EEP). We hope these notes manage to
convey the idea that theorists should have a deep knowledge and clear understanding of
the experiments related with gravitation.
We believe that f (R) theories of gravity are a nice toy model to study a possible gravitational
alternative to the dark energy problem. Their dynamics is relatively simple and they can
be put into correspondence with scalar-tensor theories of gravity, which appear in many
different contexts in gravitational physics, from extended inflation and extended quintessence
models to Kaluza-Klein and string theory. On the other hand, f (R) theories, in the Palatini
version, also seem to have some relation with non-perturbative approaches to quantum
gravity. Though such approaches have only been applied with certain confidence in highly
symmetric scenarios (isotropic and anisotropic, homogeneous cosmologies) they indicate
that the Big Bang singularity can be avoided quite generally without the need for extra
degrees of freedom. Palatini f (R) theories can also be designed to remove that singularity
and reproduce the dynamical equations derived from isotropic models of Loop Quantum
Cosmology. Extended Lagrangians of the form f (R, Q), being Q the squared Ricci tensor,
exhibit even richer phenomenology than Palatini f (R) models. These are very interesting and
promising aspects of these theories of gravity that are receiving increasing attention in the
recent literature and that will be treated in detail in these lectures.
We begin with Newton’s theory, the discovery of special relativity, and Nordström’s scalar
theories as a way to motivate the idea of gravitation as a curved space phenomenon. Once
the foundations of gravitation have been settled, we shift our attention to the predictions
of particular theories, paying special attention to f (R) theories and some extensions of that
family of theories. We show how the solar system dynamics can be used to reconstruct the
form of the gravity Lagrangian and how modified gravity can be useful in modeling certain
aspects of quantum gravity phenomenology.

2. From Newtonian physics to Einstein’s gravity.

In his Principia Mathematica (1687) Newton introduced the fundamental three laws of
classical mechanics:

• If no net force acts on a particle, then it is possible to select a set of reference frames (inertial
frames), observed from which the particle moves without any change in velocity. This is
the so called Principle of Relativity (PoR).

• From an inertial frame, the net force on a particle of mass m is �F = m�a.

• Whenever a particle A exerts a force on another particle B, B simultaneously exerts a force
on A with the same magnitude in the opposite direction.

Using Newton’s laws one could explain all kinds of motion. When a nonzero force acts on a
body, it accelerates at a rate that depends on its inertial mass mi. A given force will thus lead
to different accelerations depending on the inertial mass of the body. In his Principia, Newton
also found an explanation to Kepler’s empirical laws of planetary motion: between any two
bodies separated by a distance d, there exists a force called gravity given by Fg = G m1m2

d2 .
Here G is a constant, and m1, m2 represent the gravitational masses of those bodies. When one
studies experimentally Newton’s theory of gravity quickly realizes that there is a deep relation
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between the inertial and the gravitational mass of a body. It turns out that the acceleration a
experienced by any two bodies on the surface of the Earth looks the same irrespective of
the mass of those bodies. This suggests that inertial and gravitational mass have the same
numerical values, mi = mg (in general, they are proportional, being the proportionality
constant the same for all bodies). This observation is known as Newton’s equivalence principle
or weak equivalence principle.
From Newton’s laws it follows that Newtonian physics is based on the idea of absolute space,
a background structure with respect to which accelerations can be effectively measured.
However, the PoR implies that, unlike accelerations, absolute positions and velocities are not
directly observable. This conclusion was challenged by some results published in 1865 by J.C.
Maxwell. In Maxwell’s work, the equations of the electric and magnetic field were improved
by the addition of a new term (Maxwell’s displacement current). The new equations predicted
the existence of electromagnetic waves. The explicit appearance in those equations of a speed
c was interpreted as the existence of a privileged reference frame, that of the luminiferous
aether1. According to this, it could be possible to measure absolute velocities (at least with
respect to the aether2).
This idea motivated the experiment carried out by Michelson and Morley in 1887 to measure
the relative velocity of the Earth in its orbit around the sun with respect to the aether3. Despite
the experimental limitations of the epoch, their experiment had enough precision to confirm
that the speed of light is independent of the direction of the light ray and the position of the
Earth in its orbit.
Motivated by this intriguing phenomenon, in 1892 Lorentz proposed that moving bodies
contract in the direction of motion according to a specific set of transformations. In
1905 Einstein presented its celebrated theory of special relativity and derived the Lorentz
transformations using the PoR and the observed constancy of the speed of light without
assuming the presence of an aether. Therefore, though the principle of relative motion had
been put into question by electromagnetism, it was salvaged by Einstein’s reinterpretation4.
As of that moment, it was understood that any good physical theory should be adapted to
the new PoR. Fortunately, Minkowski (1907) realized that Lorentz transformations could
be nicely interpreted in a four dimensional space-time (he thus invented the notion of
spacetime as opposed to the well-known spatial geometry of the time). In this manner, a
Lorentz-invariant theory should be constructed using geometrical invariants such as scalars
and four-vectors, which represents a geometrical formulation of the PoR.

1 The aether was supposed to have very special properties, such as a very high elasticity, and to exhibit
no friction to the motion of bodies through it.

2 The aether was assumed to be at rest because otherwise the light from distant stars would suffer
distortions in their propagation due to local motions of this fluid.

3 Note that the speed of sound is relative to the wind. Analogously, it was thought that the speed of
light should be measured with respect to the aether. Due to the motion of the Earth, that speed should
depend on the position of the Earth and the direction of the light ray. The interferometer was built on
a rotating surface such that the full experiment could be rotated to observe periodic variations of the
interference pattern.

4 It is worth noting that Einstein’s results did not rule out the aether, but they implied that its presence
was irrelevant for the discussion of experiments.
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d2 .
Here G is a constant, and m1, m2 represent the gravitational masses of those bodies. When one
studies experimentally Newton’s theory of gravity quickly realizes that there is a deep relation
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the experimental limitations of the epoch, their experiment had enough precision to confirm
that the speed of light is independent of the direction of the light ray and the position of the
Earth in its orbit.
Motivated by this intriguing phenomenon, in 1892 Lorentz proposed that moving bodies
contract in the direction of motion according to a specific set of transformations. In
1905 Einstein presented its celebrated theory of special relativity and derived the Lorentz
transformations using the PoR and the observed constancy of the speed of light without
assuming the presence of an aether. Therefore, though the principle of relative motion had
been put into question by electromagnetism, it was salvaged by Einstein’s reinterpretation4.
As of that moment, it was understood that any good physical theory should be adapted to
the new PoR. Fortunately, Minkowski (1907) realized that Lorentz transformations could
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spacetime as opposed to the well-known spatial geometry of the time). In this manner, a
Lorentz-invariant theory should be constructed using geometrical invariants such as scalars
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1 The aether was supposed to have very special properties, such as a very high elasticity, and to exhibit
no friction to the motion of bodies through it.

2 The aether was assumed to be at rest because otherwise the light from distant stars would suffer
distortions in their propagation due to local motions of this fluid.

3 Note that the speed of sound is relative to the wind. Analogously, it was thought that the speed of
light should be measured with respect to the aether. Due to the motion of the Earth, that speed should
depend on the position of the Earth and the direction of the light ray. The interferometer was built on
a rotating surface such that the full experiment could be rotated to observe periodic variations of the
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4 It is worth noting that Einstein’s results did not rule out the aether, but they implied that its presence
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2.1 A relativistic theory of gravity: Nordström’s theory.
The acceptance of the new PoR led to the development of relativistic theories of gravity in
which the gravitational field was represented by different types of fields, such as scalars (in
analogy with Newtonian mechanics) or vectors (in analogy with Maxwell’s electrodynamics).
A natural proposal5 in this sense consists on replacing the Newtonian equations by the
following relativistic versions [Norton (1992)]

∇2φ = 4πGρ → �φ = 4πGρ (1)

d�v
dt

= −�∇φ → duμ

dτ
= −∂μφ (2)

This proposal, however, is unsatisfactory. From the assumed constancy of the speed of light,
ημνuμuν = −c2, one finds that uμ

duμ

dτ = 0, which implies the unnatural restriction uμ∂μφ =
dφ
dτ = 0, i.e., the gravitational field should be constant along any observer’s world line.
To overcome this drawback, Nordström proposed that the mass of a body in a gravitational
field could vary with the gravitational potential [Nordström (1912)] . Nordström proposed a
relativistic scalar theory of gravity in which the matter evolution equation (2) was modified
to make it compatible with the constancy of the speed of light

Fμ ≡ d(muμ)

dτ
= −m∂μφ ↔ m

duμ

dτ
+ uμ

dm
dτ

= −m∂μφ. (3)

This equation implies that in a gravitational field m changes as mdφ/dτ = c2dm/dτ, which
leads to m = m0eφ/c2

and avoids the undesired restriction dφ/dt = 0 of the theory presented
before6. The matter evolution equation can thus be written as

duμ

dτ
= −∂μφ − dφ

dτ
uμ . (4)

It is worth noting that this equation satisfies Newton’s equivalence principle in the sense that
the gravitational mass of a body is identified with its rest mass. Free fall, therefore, turns out
to be independent of the rest mass of the body. However, Einstein’s special theory of relativity
had shown a deep relation between mass and energy that should be carefully addressed in the
construction of any relativistic theory of gravity. The equation E = mc2, where m = γm0 and
γ = 1/

√
1 −�v2/c2, states that kinetic energy increases the effective mass of a body, its inertia.

Therefore, if inertial mass is the source of the gravitational field, a moving body could generate
a stronger gravitational field than the same body at rest. By extension of this reasoning, one
can conclude that bodies with different internal energies could fall differently in an external
gravitational field. Einstein found this point disturbing and used it to criticize Nordström’s
theory. In addition, in this theory the gravitational potential φ of point particles goes to −∞
at the location of the particle, thus implying that point particles are massless and, therefore,
cannot exist. One is thus led to consider extended (or continuous) objects, which possess
other types of inertia in the form of stresses that cannot be reduced to a mass. The source

5 Another very natural proposal would be a relativistic theory of gravity inspired by Maxwell’s
electrodynamics, being Fμ ≡ mduμ/dτ = kGμνuν with Gμν = −Gνμ. Such a proposal immediately
implies that Fμuμ = 0 and is compatible with the constancy of c2.

6 Varying speed of light theories may also avoid the restriction dφ/dτ = 0, but such theories break the
essence of special relativity by definition.
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of the gravitational field, the right hand side of (1), should thus take into account also such
stresses.
To overcome those problems and others concerning energy conservation pointed out by
Einstein, Nordström proposed a second theory [Nordström (1913)]

�φ = g(φ)ν (5)

Fμ = −g(φ)ν∂μφ . (6)

where F represents the force per unit volume and g(φ)ν is a density that represents the
source of the gravitational field. To determine the functional form of g(φ) and find a natural
correspondence between ν and the matter sources, Nordström proceeded as follows. Firstly,
he defined the gravitational mass of a system using the right hand side of (5) and (6) as

Mg =
∫

d3xg(φ)ν . (7)

Then he assumed that the inertial mass of the system should be a Lorentz scalar made out of
all the energy sources, which include the rest mass and stresses associated to the matter, the
gravitational field, and the electromagnetic field. He thus proposed the following expression

mi = − 1
c2

∫
d3x[Tm + Gφ + Fem] , (8)

where the trace of the stress-energy tensor of the matter is represented by Tm, the trace of
the electromagnetic field by Fem (which vanishes), and that of the gravitational field by Gm,
being Gμν = (2/κ2)[∂μφ∂νφ − (1/2)ημν(∂λφ∂λφ)] the stress-energy tensor of the (scalar)
gravitational field.
To force the equivalence between inertial and gravitational mass in a system of particles
immersed in an external gravitational field with potential φa, Nordström imposed that for
such a system the following relation should hold

Mg = g(φa)mi . (9)

Then he considered a stationary system on that gravitational field and showed that the
contribution of the local gravitational field to the total inertia of the system was given by

− 1
c2

∫
d3xGφ = − 1

c2

∫
d3x(φ − φa)g(φ)ν . (10)

Combining this expression with (9) and (8) one finds that

∫
d3x

[
Tm + g(φ)ν

(
φ − φa +

c2

g(φa)

)]
= 0 . (11)

Demanding proportionality between Tm and ν, one finds that g(φ) = C/(A + φ). A natural
gauge corresponds to g(φ) = −4πG/φ because it allows to recover the Newtonian result
E0 = mc2 = Mgφa that implies that the energy of a system with gravitational mass Mg in a
field with potential φa is exactly Mgφa. Therefore, from Nordström’s second theory it follows
that the inertial mass of a stationary system varies in proportion to the external potential
whereas Mg remains constant, i.e., m/φ = constant.
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and avoids the undesired restriction dφ/dt = 0 of the theory presented
before6. The matter evolution equation can thus be written as
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It is worth noting that this equation satisfies Newton’s equivalence principle in the sense that
the gravitational mass of a body is identified with its rest mass. Free fall, therefore, turns out
to be independent of the rest mass of the body. However, Einstein’s special theory of relativity
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construction of any relativistic theory of gravity. The equation E = mc2, where m = γm0 and
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1 −�v2/c2, states that kinetic energy increases the effective mass of a body, its inertia.

Therefore, if inertial mass is the source of the gravitational field, a moving body could generate
a stronger gravitational field than the same body at rest. By extension of this reasoning, one
can conclude that bodies with different internal energies could fall differently in an external
gravitational field. Einstein found this point disturbing and used it to criticize Nordström’s
theory. In addition, in this theory the gravitational potential φ of point particles goes to −∞
at the location of the particle, thus implying that point particles are massless and, therefore,
cannot exist. One is thus led to consider extended (or continuous) objects, which possess
other types of inertia in the form of stresses that cannot be reduced to a mass. The source
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of the gravitational field, the right hand side of (1), should thus take into account also such
stresses.
To overcome those problems and others concerning energy conservation pointed out by
Einstein, Nordström proposed a second theory [Nordström (1913)]

�φ = g(φ)ν (5)

Fμ = −g(φ)ν∂μφ . (6)

where F represents the force per unit volume and g(φ)ν is a density that represents the
source of the gravitational field. To determine the functional form of g(φ) and find a natural
correspondence between ν and the matter sources, Nordström proceeded as follows. Firstly,
he defined the gravitational mass of a system using the right hand side of (5) and (6) as

Mg =
∫

d3xg(φ)ν . (7)

Then he assumed that the inertial mass of the system should be a Lorentz scalar made out of
all the energy sources, which include the rest mass and stresses associated to the matter, the
gravitational field, and the electromagnetic field. He thus proposed the following expression

mi = − 1
c2

∫
d3x[Tm + Gφ + Fem] , (8)

where the trace of the stress-energy tensor of the matter is represented by Tm, the trace of
the electromagnetic field by Fem (which vanishes), and that of the gravitational field by Gm,
being Gμν = (2/κ2)[∂μφ∂νφ − (1/2)ημν(∂λφ∂λφ)] the stress-energy tensor of the (scalar)
gravitational field.
To force the equivalence between inertial and gravitational mass in a system of particles
immersed in an external gravitational field with potential φa, Nordström imposed that for
such a system the following relation should hold

Mg = g(φa)mi . (9)

Then he considered a stationary system on that gravitational field and showed that the
contribution of the local gravitational field to the total inertia of the system was given by

− 1
c2

∫
d3xGφ = − 1

c2

∫
d3x(φ − φa)g(φ)ν . (10)

Combining this expression with (9) and (8) one finds that

∫
d3x

[
Tm + g(φ)ν

(
φ − φa +

c2

g(φa)

)]
= 0 . (11)

Demanding proportionality between Tm and ν, one finds that g(φ) = C/(A + φ). A natural
gauge corresponds to g(φ) = −4πG/φ because it allows to recover the Newtonian result
E0 = mc2 = Mgφa that implies that the energy of a system with gravitational mass Mg in a
field with potential φa is exactly Mgφa. Therefore, from Nordström’s second theory it follows
that the inertial mass of a stationary system varies in proportion to the external potential
whereas Mg remains constant, i.e., m/φ = constant.
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With the above results one finds that (5) and (6) turn into (from now on κ2 ≡ 8πG)

φ�φ = − κ2

2
Tm (12)

duμ

dτ
= −∂μ ln φ − uμ

d
dτ

ln φ . (13)

Using these equations it is straightforward to verify that the total energy-momentum of

the system is conserved, i.e., ∂μ
(

Tφ
μν + Tm

μν

)
= 0, where one must take Tm

μν = ρφuμuν for
pressureless matter because, as shown above, the inertial rest mass density of a system grows
linearly with φ.
Nordström’s second theory, therefore, represents a satisfactory example of relativistic theory
of gravity in Minkowski space that satisfies the equivalence between inertial and gravitational
mass and in which energy and momentum are conserved. Unfortunately, it does not predict
any bending of light and also fails in other predictions that were important at the beginning
of the twentieth century such as the perihelion shift of Mercury. Nonetheless, it admits a
geometric interpretation that greatly simplifies its structure and puts forward the direction in
which Einstein’s work was progressing.
Considering a line element of the form ds2 = φ2(−dt2 + d�x2), Einstein and Fokker showed
that the matter evolution equation (13) could be obtained by extremizing the path followed
by a free particle in that geometry, i.e., by computing the variation δ

(−mc2 ∫ ds
)

= 0
[Einstein and Fokker (1914)] . This variation yields the geodesic equation7

dũμ

dτ̃
+ Γμ

αβũαũβ = 0 , (14)

where Γμ
αβ = ∂αφδ

μ
β + ∂βφδ

μ
α − ημρ∂ρφηαβ. The gravitational field equation also takes a very

interesting form
R = 3κ2 T̃m , (15)

where R = −(6/φ3)ηαβ∂α∂βφ and T̃m = Tm/φ4 due to the conformal transformation that
relates the background metric with the Minkowski metric. These last results represent
generally covariant equations that establish a non-trivial relation between gravitation and
geometry. Though this theory was eventually ruled out by observations, its potential impact
on the eventual formal and conceptual formulation of Einstein’s general theory of relativity
must have been important.

2.2 To general relativity via general covariance
The Principle of Relativity together with Newton’s ideas about the equivalence between
inertial and gravitational mass led Einstein to develop what has come to be called the Einstein
equivalence principle (EEP), which will be introduced later in detail. Einstein wanted to
extend the principle of relativity not only to inertial observers (special relativity) but to all
kinds of motion (hence the term general relativity). This motivated the search for generally

7 To obtain (13) from the geodesic equation one should note that dτ̃ = φdτ, ũμ = φuμ, and that the indices
in (13) are raised and lowered with ημν.
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covariant equations 8.
Though it is not difficult to realize that one can construct a fully covariant theory in Minkowski
space, the consideration of arbitrary accelerated frames leads to the appearance of inertial or
ficticious forces whose nature is difficult to interpret. This is due to the fact that Minkowski
spacetime, like Newtonian space, is an absolute space. The possibility of writing the laws of
physics in a coordinate (cartesian, polar,. . . ) and frame (inertial, accelerated,. . . ) invariant way,
helped Einstein to realize that a local, homogeneous gravitational field is indistinguishable
from a constant acceleration. This allowed him to introduce the concept of local inertial frame
(LIF) and find a correspondence between gravitation and geometry, which led to a deep
conceptual change: there exists no absolute space. This follows from the fact that, unlike
other well-known forces, the local effects of gravity can always be eliminated by a suitable
choice of coordinates (Einstein’s elevator).
The forces of Newtonian mechanics, which were thought to be measured with respect to
absolute space, were in fact being measured in an accelerated frame (static with respect to the
Earth), which led to the appearance of the observed gravitational acceleration. According to
Einstein, accelerations produced by interactions such as the electromagnetic field should be
measured in LIFs. This means that they should be measured not with respect to absolute
space but with respect to the local gravitational field (which defines LIFs). In other words,
Einstein identified the Newtonian absolute space with the local gravitational field. Physical
accelerations should, therefore, be measured in local inertial frames, where Minkowskian
physics should be recovered. Gravitation, according to Einstein, was intrinsically different
from the rest of interactions. It was a geometrical phenomenon.
The geometrical interpretation of gravitation implied that it should be described by a tensor
field, the metric gμν, which boils down to the Minkowski metric locally in appropriate
coordinate systems (LIFs) or globally when gravitation is absent. This view made it natural
to interpret the effects of a gravitational field on particles as geodesic motion. In the absence
of non-gravitational interactions, particles should follow geodesics of the background metric,
which are formally described by eq.(14) but with Γμ

αβ, the so-called Levi-Civita connection,
defined in terms of a symmetric metric tensor gμν as

Γμ
αβ =

gμρ

2

[
∂αgρβ + ∂β gρα − ∂ρgαβ

]
. (16)

To determine the dynamics of the metric tensor one needs at least ten independent equations,
as many as independent components there are in gμν. Since the source of the gravitational
field must be related with the stress-energy tensor of matter and the dynamics of classical
mechanics is generally governed by second-order equations, Einstein proposed the following
set of tensorial equations

Rμν − 1
2

gμνR = κ2Tμν , (17)

where Rμν ≡ Rρ
μρν is the so-called Ricci tensor, R = gμνRμν is the Ricci scalar, and Rα

βμν =

∂μΓα
νβ − ∂νΓα

μβ + Γα
μλΓλ

νβ − Γα
νλΓλ

μβ represents the components of the Riemann tensor, the field
strength of the connection Γα

μβ, which here is defined as in (16).

8 The idea of general covariance is nowadays naturally seen as a basic mathematical requirement in any
theory based on the use of differential manifolds. In this sense, though general covariance forces the
use of tensor calculus, it should be noted that it does not necessarily imply curved space-time. Note
also that it is the connection, not the metric, the most important object in the construction of tensors.
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pressureless matter because, as shown above, the inertial rest mass density of a system grows
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Nordström’s second theory, therefore, represents a satisfactory example of relativistic theory
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any bending of light and also fails in other predictions that were important at the beginning
of the twentieth century such as the perihelion shift of Mercury. Nonetheless, it admits a
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Considering a line element of the form ds2 = φ2(−dt2 + d�x2), Einstein and Fokker showed
that the matter evolution equation (13) could be obtained by extremizing the path followed
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interesting form
R = 3κ2 T̃m , (15)

where R = −(6/φ3)ηαβ∂α∂βφ and T̃m = Tm/φ4 due to the conformal transformation that
relates the background metric with the Minkowski metric. These last results represent
generally covariant equations that establish a non-trivial relation between gravitation and
geometry. Though this theory was eventually ruled out by observations, its potential impact
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must have been important.

2.2 To general relativity via general covariance
The Principle of Relativity together with Newton’s ideas about the equivalence between
inertial and gravitational mass led Einstein to develop what has come to be called the Einstein
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7 To obtain (13) from the geodesic equation one should note that dτ̃ = φdτ, ũμ = φuμ, and that the indices
in (13) are raised and lowered with ημν.
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covariant equations 8.
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αβ, the so-called Levi-Civita connection,
defined in terms of a symmetric metric tensor gμν as

Γμ
αβ =

gμρ

2

[
∂αgρβ + ∂β gρα − ∂ρgαβ

]
. (16)

To determine the dynamics of the metric tensor one needs at least ten independent equations,
as many as independent components there are in gμν. Since the source of the gravitational
field must be related with the stress-energy tensor of matter and the dynamics of classical
mechanics is generally governed by second-order equations, Einstein proposed the following
set of tensorial equations

Rμν − 1
2

gμνR = κ2Tμν , (17)

where Rμν ≡ Rρ
μρν is the so-called Ricci tensor, R = gμνRμν is the Ricci scalar, and Rα

βμν =

∂μΓα
νβ − ∂νΓα

μβ + Γα
μλΓλ

νβ − Γα
νλΓλ

μβ represents the components of the Riemann tensor, the field
strength of the connection Γα

μβ, which here is defined as in (16).

8 The idea of general covariance is nowadays naturally seen as a basic mathematical requirement in any
theory based on the use of differential manifolds. In this sense, though general covariance forces the
use of tensor calculus, it should be noted that it does not necessarily imply curved space-time. Note
also that it is the connection, not the metric, the most important object in the construction of tensors.
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Eq. (17) represents a system of non-linear, second-order partial differential equations for the
ten independent components of the metric tensor. The conservation of energy and momentum
is guaranteed independently for the left and the right hand sides of (17). The contraction9

∇μ(Rμν − 1
2 gμνR) = 0 follows from a geometrical identity, whereas ∇μTμν = 0 follows if the

Minkowski equations of motion for the matter fields are satisfied locally. The non-linearity
of the equations manifests the fact that the energy stored in the gravitational field can source
the gravitational field itself in a non-trivial way. Unlike Nordström’s second theory, this set
of tensorial equations imply that the gravitational field is sourced by the full stress-energy
tensor, not just by its trace. This implies that electromagnetic fields, like any other matter
sources, generate a non-zero Ricci tensor and, therefore, gravitate.
Einstein’s theory was rapidly accepted despite its poor experimental verification. In fact,
we had to wait until the 1960’s to have the perihelion shift of Mercury and the deflection
of light by the sun measured to within an accuracy of ∼ 1% and ∼ 50%, respectively. In
1959 Pound and Rebka were able to measure the gravitational redshift for the first time.
Additionally, though Hubble’s discoveries on the recession of distant galaxies had boosted
Einstein’s popularity, those observations were a mere qualitative verification of the effect and
only recently has it been possible to contrast theory and observations with some confidence
in the cosmological setting. It is therefore not surprising that between 1905 and 1960, there
appeared at least 25 alternative relativistic theories of gravitation, where spacetime was flat
and gravitation was a Lorentz-invariant field on that background. Though many researchers
defended Einstein’s idea of curved spacetime, others like Birkhoff did not [Birkhoff (1944)]:

The initial attempts to incorporate gravitational phenomena in flat space-time were not satisfactory.
Einstein turned to the curved spacetime suggested by his principle of equivalence, and so constructed
his general theory of relativity. The initial predictions, based on this celebrated theory of gravitation,
were brilliantly confirmed. However, the theory has not led to any further applications and, because of
its complicated mathematical character, seems to be essentially unworkable. Thus curved spacetime has
come to be regarded by many as an auxiliary construct (Larmor) rather than as a physical reality.

Such strong claims suggest that it was necessary a careful analysis of the foundations of
Einstein’s theory: is spacetime really curved or is gravitation a tensor-like interaction in a
flat background? The next section is devoted to clarify these points and others that will help
establish the foundations of gravitation theory.

2.3 The Einstein equivalence principle
The experimental facts that support the foundations of gravitation should never be
underestimated since they provide a valuable guide in the construction of viable theories and
in constraining the realm of speculation. In this sense, the experimental efforts carried out by
Robert Dicke in the 1960’s [Dicke (1964)] resulted in what has come to be called the Einstein
equivalence principle (EEP) and constitute a fundamental pillar for gravitation theory. We
will briefly review next the experimental evidence supporting it, and the way it enters in the
construction of gravitation theories [Will (1993)]. The EEP states that [Will (2005)]

• Inertial and gravitational masses coincide (weak equivalence principle).

• The outcome of any non-gravitational experiment is independent of the velocity of the
freely-falling reference frame in which it is performed (Local Lorentz Invariance).

9 The differential operator ∇μ represents a covariant derivative, which is the natural extension of the
usual flat space derivative ∂μ to spaces with non-trivial parallel transport.
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• The outcome of any local non-gravitational experiment is independent of where and when
in the universe it is performed (Local Position Invariance).

Let us briefly discuss the experimental evidence supporting the EEP.

2.3.1 Weak equivalence principle
A direct test of WEP is the comparison of the acceleration of two laboratory-sized bodies of
different composition in an external gravitational field. If the principle were violated, then
the accelerations of different bodies would differ. In Dicke’s torsion balance experiment, for
instance, the gravitational acceleration toward the sun of small gold and aluminum weights
were compared and found to be equal with an accuracy of about a part in 1011. One should
note that gold and aluminum atoms have very different properties, which is important for
testing how gravitation couples to different particles and interactions. For instance, the
electrons in aluminum are non-relativistic whereas the k-shell electrons of gold have a 15%
increase in their mass as a result of their relativistic velocities. The electromagnetic negative
contribution to the binding energy of the nucleus varies as Z2 and represents 0.5% of the
total mass of a gold atom, whereas it is negligible in Al. Additionally, the virtual pair field,
pion field, etcetera, around the gold nucleus would be expected to represent a far bigger
contribution to the total energy than in aluminum. This makes it clear that a gold sphere
possesses additional inertial contributions due to the electromagnetic, weak, and strong
interactions that are not present (or are negligible) in the aluminum sphere. If any of those
sources of inertia did not contribute by the same amount to the gravitational mass of the
system, then gold and aluminum would fall with different accelerations.
The precision of Dicke’s experiment was such that from it one can conclude, for instance, that
positrons and other antiparticles fall down, not up [Dicke (1964)]. This is so because if the
positrons in the pair field of the gold atom were to tend to fall up, not down, there would be
an anomalous weight of the atom substantially greater for large atomic number than small.

2.3.2 Tests of local Lorentz invariance
The existence of a preferred reference frame breaking the local isotropy of space would imply
a dependence of the speed of light on the direction of propagation. This would cause shifts in
the energy levels of atoms and nuclei that depend on the orientation of the quantization axis
of the state relative to our universal velocity vector, and on the quantum numbers of the state.
This idea was tested by Hughes (1960) and Drever (1961), who examined the J = 3/2 ground
state of the 7Li nucleus in an external magnetic field. If the Michelson-Morley experiment had
found δ ≡ c−2 − 1 ≈ 10−3, the Hughes-Drever experiment set the limit to δ ≈ 10−15. More
recent experiments using laser-cooled trapped atoms and ions have reached δ ≈ 10−17.
Currently, new ideas coming from quantum gravity (with a minimal length scale), braneworld
scenarios, and models of string theory have motivated new ways to test Lorentz invariance
by considering Lorentz-violating parameters in extensions of the standard model and also
some astrophysical tests. So far, however, no compelling evidence for a violation of Lorentz
invariance has been found.

2.3.3 Tests of local position invariance
Local position invariance can be tested by gravitational redshift experiments, which test
the existence of spatial dependence on the outcome of local non-gravitational experiments,
and by measurements of the fundamental non-gravitational constants that test for temporal
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in constraining the realm of speculation. In this sense, the experimental efforts carried out by
Robert Dicke in the 1960’s [Dicke (1964)] resulted in what has come to be called the Einstein
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will briefly review next the experimental evidence supporting it, and the way it enters in the
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note that gold and aluminum atoms have very different properties, which is important for
testing how gravitation couples to different particles and interactions. For instance, the
electrons in aluminum are non-relativistic whereas the k-shell electrons of gold have a 15%
increase in their mass as a result of their relativistic velocities. The electromagnetic negative
contribution to the binding energy of the nucleus varies as Z2 and represents 0.5% of the
total mass of a gold atom, whereas it is negligible in Al. Additionally, the virtual pair field,
pion field, etcetera, around the gold nucleus would be expected to represent a far bigger
contribution to the total energy than in aluminum. This makes it clear that a gold sphere
possesses additional inertial contributions due to the electromagnetic, weak, and strong
interactions that are not present (or are negligible) in the aluminum sphere. If any of those
sources of inertia did not contribute by the same amount to the gravitational mass of the
system, then gold and aluminum would fall with different accelerations.
The precision of Dicke’s experiment was such that from it one can conclude, for instance, that
positrons and other antiparticles fall down, not up [Dicke (1964)]. This is so because if the
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scenarios, and models of string theory have motivated new ways to test Lorentz invariance
by considering Lorentz-violating parameters in extensions of the standard model and also
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and by measurements of the fundamental non-gravitational constants that test for temporal
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dependence. Gravitational redshift experiments usually measure the frequency shift Z =
Δν/ν = −Δλ/λ between two identical frequency standards (clocks) placed at rest at different
heights in a static gravitational field. If the frequency of a given type of atomic clock is the
same when measured in a local, momentarily comoving freely falling frame (Lorentz frame),
independent of the location or velocity of that frame, then the comparison of frequencies of
two clocks at rest at different locations boils down to a comparison of the velocities of two local
Lorentz frames, one at rest with respect to one clock at the moment of emission of its signal,
the other at rest with respect to the other clock at the moment of reception of the signal. The
frequency shift is then a consequence of the first-order Doppler shift between the frames. The
result is a shift Z = ΔU

c2 , where U is the difference in the Newtonian gravitational potential
between the receiver and the emitter. If the frequency of the clocks had some dependence on
their position, the shift could be written as Z = (1 + α) ΔU

c2 . Comparison of a hydrogen-maser
clock flown on a rocket to an altitude of about 10.000 km with a similar clock on the ground
yielded a limit α < 2 × 10−4.
Another important aspect of local position invariance is that if it is satisfied then the
fundamental constants of non-gravitational physics should be constants in time. Though
these tests are subject to many uncertainties and experimental limitations, there is no strong
evidence for a possible spatial or temporal dependence of the fundamental constants.

2.4 Metric theories of gravity
The EEP is not just a verification that gravitation can be associated with a metric tensor which
locally can be turned into the Minkowskian metric by a suitable choice of coordinates. If
it is valid, then gravitation must be a curved space-time phenomenon, i.e., the effects of
gravity must be equivalent to the effects of living in a curved space-time. For this reason, the
only theories of gravity that have a hope of being viable are those that satisfy the following
postulates (see [Will (1993)] and [Will (2005)]):

1. Spacetime is endowed with a symmetric metric.

2. The trajectories of freely-falling bodies are geodesics of that metric.

3. In local freely-falling reference frames, the non-gravitational laws of physics are those
written in the language of special relativity.

Theories satisfying these postulates are known as metric theories of gravity, and their action can
be written generically as

SMT = SG[gμν, φ, Aμ, Bμν, . . .] + Sm[gμν, ψm] , (18)

where Sm[gμν, ψm] represents the matter action, ψm denotes the matter and non-gravitational
fields, and SG is the gravitational action, which besides the metric gμν may depend on other
gravitational fields (scalars, vectors, and tensors of different ranks). This form of the action
guarantees that the non-gravitational fields of the standard model of elementary particles
couple to gravitation only through the metric, which should allow to recover locally the
non-gravitational physics of Minkowski space. The construction of Sm[gμν, ψm] can thus be
carried out by just taking its Minkowski space form and going over to curved space-time
using the methods of differential geometry. It should be noted that the EEP does neither
point towards GR as the preferred theory of gravity nor provides any constraint or hint on
the functional form of the gravitational part of the action. The functional SG must provide
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dynamical equations for the metric (and the other gravitational fields, if there are any) but its
form must be obtained by theoretical reasoning and/or by experimental exploration.
It is worth noting that if SG contains other long-range fields besides the metric, then
gravitational experiments in a local, freely falling frame may depend on the location and
velocity of the frame relative to the external environment. This is so because, unlike the
metric, the boundary conditions induced by those fields cannot be trivialized by a suitable
choice of coordinates. Of course, local non-gravitational experiments are unaffected since the
gravitational fields they generate are assumed to be negligible, and since those experiments
couple only to the metric, whose form can always be made locally Minkowskian at a given
spacetime event.
Before concluding this section, it should be noted that string theories predict the existence of
new kinds of fields with couplings to fermions and the interactions of the standard model in
a way that breaks the simplicity of metric theories of gravity, i.e., they do not allow for a clean
splitting of the action into a matter sector plus a gravitational sector. Such theories, therefore,
must be regarded as non-metric. Improved tests of the EEP could be used to test the presence
and/or intensity of such couplings, which are expected to represent short range interactions.
These tests can be seen as a branch of high-energy physics not based on particle accelerators.

2.4.1 Two examples of metric theories: General relativity and Brans-Dicke theory.
The field equations of Einstein’s theory of general relativity (GR) can be derived from the
following action

S[gμν, ψm] =
1

16πG

∫
d4x

√−gR(g) + Sm[gμν, ψm] (19)

where R is the Ricci scalar defined below eq.(17). Variation of this action with respect to the
metric leads to Einstein’s field equations10

Rμν − 1
2

gμνR = 8πGTμν (20)

In Einstein’s theory, gravity is mediated by a rank-2 tensor field, the metric, and curvature
is generated by the matter sources. Brans-Dicke theory introduces, besides the metric, a new
gravitational field, which is a scalar. This scalar field is coupled to the curvature as follows

S[gμν, φ, ψm] =
1

16π

∫
d4x

√−g
[

φR(g)− ω

φ
(∂μφ∂μφ)− V(φ)

]
+ Sm[gμν, ψm] (21)

In the original Brans-Dicke theory, the potential was set to zero, V(φ) = 0, so the theory had
only one free parameter, the constant ω in front of the kinetic energy term, which had to be
determined experimentally. Note that the Brans-Dicke scalar has the same dimensions as the
inverse of Newton’s constant and, therefore, can be seen as related to it. In Brans-Dicke theory,
one can thus say that Newton’s constant is no longer constant but is, in fact, a dynamical field.
The field equations for the metric are

Rμν(g)− 1
2

gμνR(g) =
8π

φ
Tμν − 1

2φ
gμνV(φ)+

1
φ

[∇μ∇νφ − gμν�φ
]
+

ω

φ2

[
∂μφ∂νφ − 1

2
gμν(∂φ)2

]

(22)

10 Recall that δ
√−g = − 1

2
√−ggμνδgμν and that δRμν = −∇μδΓλ

λν +∇λδΓλ
μν.
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10 Recall that δ
√−g = − 1

2
√−ggμνδgμν and that δRμν = −∇μδΓλ

λν +∇λδΓλ
μν.
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The equation that governs the scalar field is

(3 + 2ω)�φ + 2V(φ)− φ
dV
dφ

= κ2T (23)

In this theory we observe that both the matter and the scalar field act as sources for the metric,
which means that both the matter and the scalar field generate the spacetime curvature. In
fact, even in vacuum the scalar field curves the spacetime. According to the way we wrote the
metric field equations, it is tempting to identify the Brans-Dicke field with a new matter field.
However, since the Brans-Dicke scalar is sourced by the energy-momentum tensor (via its
trace, which is a scalar magnitude constructed out of the sources of energy and momentum),
we say that it is a gravitational field. Note, in this sense, that standard matter fields, such as
a Dirac field coupled to electromagnetism (iγμ∂μ − m)ψ = eγμ Aμψ, do not couple to energy
and momentum.

3. Experimental determination of the gravity Lagrangian

Einstein’s theory of general relativity (GR) represents one of the most impressive exercises of
human intellect. As we have seen in previous sections, it implied a huge conceptual jump
with respect to Newtonian gravity and, unlike the currently established standard model of
elementary particles, no experiments were carried out to probe the structure of the theory.
In spite of that, to date the theory has successfully passed all precision experimental tests.
Its predictions are in agreement with experiments in scales that range from millimeters to
astronomical units, scales in which weak and strong field phenomena can be observed [Will
(2005)]. The theory is so successful in those regimes and scales that it is generally accepted
that it should also work at larger and shorter scales, and at weaker and stronger regimes.
This extrapolation is, however, forcing us today to draw a picture of the universe that is not
yet supported by other independent observations. For instance, to explain the rotation curves
of spiral galaxies, we must accept the existence of vast amounts of unseen matter surrounding
those galaxies. Additionally, to explain the luminosity-distance relation of distant type Ia
supernovae and some properties of the distribution of matter and radiation at large scales,
we must accept the existence of yet another source of energy with repulsive gravitational
properties (see [Copeland et al. (2006)], [Padmanabhan (2003)], [Peebles and Ratra (2003)] for
recent reviews on dark energy). Together those unseen (or dark) sources of matter and
energy are found to make up to 96% of the total energy of the observable universe! This
huge discrepancy between the gravitationally estimated amounts of matter and energy and
the direct measurements via electromagnetic radiation motivates the search for alternative
theories of gravity which can account for the large scale dynamics and structure without the
need for dark matter and/or dark energy.
In this sense, there has been an enormous international effort in the last years to determine
whether the gravity Lagrangian could depart from Einstein’s one at cosmic scales in a way
compatible with the cosmological observations that support the cosmic speedup. In particular,
many authors have investigated the consequences of promoting the Hilbert-Einstein
Lagrangian to an arbitrary function f (R) of the scalar curvature (see [Olmo (2011)],
[De Felice and Tsujikawa (2010)], [Sotiriou and Faraoni (2010)], [Capozziello and Francaviglia
(2008)] for recent reviews). In this section we will show that the dynamics of the solar system
can be used to set important constraints on the form of the function f (R).
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3.1 Field equations of f (R) theories.
The action that defines f (R) theories has the generic form

S =
1

2κ2

∫
d4x

√−g f (R) + Sm[gμν, ψm] , (24)

where κ2 = 8πG, and we use the same notation introduced in previous sections. Variation of
(24) leads to the following field equations for the metric

fRRμν − 1
2

f gμν −∇μ∇ν fR + gμν� fR = κ2Tμν (25)

where fR ≡ d f /dR. According to (25), we see that, in general, the metric satisfies a system of
fourth-order partial differential equations. The trace of (25) takes the form

3� fR + R fR − 2 f = κ2T (26)

If we take f (R) = R − 2Λ, (25) boils down to

Rμν − 1
2

gμνR = κ2Tμν − Λgμν , (27)

which represents GR with a cosmological constant. This is the only case in which an f (R)
Lagrangian yields second-order equations for the metric11.

Let us now rewrite (25) in the form

Rμν − 1
2

gμνR =
κ2

fR
Tμν − 1

2 fR
gμν[R fR − f ] +

1
fR

[∇μ∇ν fR − gμν� fR
]

(28)

The right hand side of this equation can now be seen as the source terms for the metric. This
equation, therefore, tells us that the metric is generated by the matter and by terms related to
the scalar curvature. If we now wonder about what generates the scalar curvature, the answer
is in (26). That expression says that the scalar curvature satisfies a second-order differential
equation with the trace T of the energy-momentum tensor of the matter and other curvature
terms acting as sources. We have thus clarified the role of the higher-order derivative terms
present in (25). The scalar curvature is now a dynamical entity which helps generate the
space-time metric and whose dynamics is determined by (26).
At this point one should have noted the essential difference between a generic f (R) theory
and GR. In GR the only dynamical field is the metric and its form is fully characterized by
the matter distribution through the equations Gμν = κ2Tμν, where Gμν ≡ Rμν − 1

2 gμνR. The
scalar curvature is also determined by the local matter distribution but through an algebraic
equation, namely, R = −κ2T. In the f (R) case both gμν and R are dynamical fields, i.e.,
they are governed by differential equations. Furthermore, the scalar curvature R, which can
obviously be expressed in terms of the metric and its derivatives, now plays a non-trivial role
in the determination of the metric itself.

11 This is so only if the connection is assumed to be the Levi-Civita connection of the metric (metric
formalism). If the connection is regarded as independent of the metric, Palatini formalism, then f (R)
theories lead to second-order equations. This point will be explained in detail later on.
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This extrapolation is, however, forcing us today to draw a picture of the universe that is not
yet supported by other independent observations. For instance, to explain the rotation curves
of spiral galaxies, we must accept the existence of vast amounts of unseen matter surrounding
those galaxies. Additionally, to explain the luminosity-distance relation of distant type Ia
supernovae and some properties of the distribution of matter and radiation at large scales,
we must accept the existence of yet another source of energy with repulsive gravitational
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recent reviews on dark energy). Together those unseen (or dark) sources of matter and
energy are found to make up to 96% of the total energy of the observable universe! This
huge discrepancy between the gravitationally estimated amounts of matter and energy and
the direct measurements via electromagnetic radiation motivates the search for alternative
theories of gravity which can account for the large scale dynamics and structure without the
need for dark matter and/or dark energy.
In this sense, there has been an enormous international effort in the last years to determine
whether the gravity Lagrangian could depart from Einstein’s one at cosmic scales in a way
compatible with the cosmological observations that support the cosmic speedup. In particular,
many authors have investigated the consequences of promoting the Hilbert-Einstein
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The right hand side of this equation can now be seen as the source terms for the metric. This
equation, therefore, tells us that the metric is generated by the matter and by terms related to
the scalar curvature. If we now wonder about what generates the scalar curvature, the answer
is in (26). That expression says that the scalar curvature satisfies a second-order differential
equation with the trace T of the energy-momentum tensor of the matter and other curvature
terms acting as sources. We have thus clarified the role of the higher-order derivative terms
present in (25). The scalar curvature is now a dynamical entity which helps generate the
space-time metric and whose dynamics is determined by (26).
At this point one should have noted the essential difference between a generic f (R) theory
and GR. In GR the only dynamical field is the metric and its form is fully characterized by
the matter distribution through the equations Gμν = κ2Tμν, where Gμν ≡ Rμν − 1

2 gμνR. The
scalar curvature is also determined by the local matter distribution but through an algebraic
equation, namely, R = −κ2T. In the f (R) case both gμν and R are dynamical fields, i.e.,
they are governed by differential equations. Furthermore, the scalar curvature R, which can
obviously be expressed in terms of the metric and its derivatives, now plays a non-trivial role
in the determination of the metric itself.

11 This is so only if the connection is assumed to be the Levi-Civita connection of the metric (metric
formalism). If the connection is regarded as independent of the metric, Palatini formalism, then f (R)
theories lead to second-order equations. This point will be explained in detail later on.
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The physical interpretation given above puts forward the central and active role played by
the scalar curvature in the field equations of f (R) theories. However, (26) suggests that the
actual dynamical entity is fR rather than R itself. This is so because, besides the metric, fR is
the only object acted on by differential operators in the field equations. Motivated by this, we
can introduce the following alternative notation

φ ≡ fR (29)

V(φ) ≡ R(φ) fR − f (R(φ)) (30)

and rewrite eqs. (28) and (26) in the same form as (22) and (23) with the choice w = 0.
This slight change of notation helps us identify the f (R) theory in metric formalism with a
scalar-tensor Brans-Dicke theory with parameter ω = 0 and non-trivial potential V(φ), whose
action was given in (21). In terms of this scalar-tensor representation our interpretation of
the field equations of f (R) theories is obvious, since both the matter and the scalar field help
generate the metric. The scalar field is a dynamical object influenced by the matter and by
self-interactions according to (23).

3.2 Spherically symmetric systems
A complete description of a physical system must take into account not only the system but
also its interaction with the environment. In this sense, any physical system is surrounded by
the rest of the universe. The relation of the local system with the rest of the universe manifests
itself in a set of boundary conditions. In our case, according to (26) and (28), the metric and
the function fR (or, equivalently, R or φ) are subject to boundary conditions, since they are
dynamical fields (they are governed by differential equations). The boundary conditions for
the metric can be trivialized by a suitable choice of coordinates. In other words, we can
make the metric Minkowskian in the asymptotic region and fix its first derivatives to zero
(see chapter 4 of [Will (1993)] for details). The function fR, on the other hand, should tend
to the cosmic value fRc as we move away from the local system. The precise value of fRc

is obtained by solving the equations of motion for the corresponding cosmology. According
to this, the local system will interact with the asymptotic (or background) cosmology via the
boundary value fRc and its cosmic-time derivative. Since the cosmic time-scale is much larger
than the typical time-scale of local systems (billions of years versus years), we can assume an
adiabatic interaction between the local system and the background cosmology. We can thus
neglect terms such as ḟRc , where dot denotes derivative with respect to the cosmic time.
The problem of finding solutions for the local system, therefore, reduces to solving (28)
expanding about the Minkowski metric in the asymptotic region12, and (26) tending to

3�c fRc + Rc fRc − 2 f (Rc) = κ2Tc (31)

where the subscript c denotes cosmic value, far away from the system. In particular, if we
consider a weakly gravitating local system, we can take fR = fRc + ϕ(x) and gμν = ημν + hμν,
with |ϕ| � | fRc | and |hμν| � 1 satisfying ϕ → 0 and hμν → 0 in the asymptotic region. Note
that should the local system represent a strongly gravitating system such as a neutron star or a
black hole, the perturbative expansion would not be sufficient everywhere. In such cases, the

12 Note that the expansion about the Minkowski metric does not imply the existence of global
Minkowskian solutions. As we will see, the general solutions to our problem turn out to be
asymptotically de Sitter spacetimes.
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perturbative approach would only be valid in the far region. Nonetheless, the decomposition
fR = fRc + ϕ(x) is still very useful because the equation for the local deviation ϕ(x) can be
written as

3�ϕ + W( fRc + ϕ)− W( fRc) = κ2T, (32)

where T represents the trace of the local sources, we have defined W( fR) ≡ R( fR) fR −
2 f (R[ fR]), and W( fRc) is a slowly changing constant within the adiabatic approximation. In
this case, ϕ needs not be small compared to fRc everywhere, only in the asymptotic regions.

3.2.1 Spherically symmetric solutions
Let us define the line element13 [Olmo (2007)]

ds2 = −A(r)e2ψ(r)dt2 +
1

A(r)

(
dr2 + r2dΩ2

)
, (33)

which, assuming a perfect fluid for the sources, leads to the following field equations

Arr + Ar

[
2
r
− 5

4
Ar

A

]
=

κ2ρ

fR
+

R fR − f (R)
2 fR

+
A
fR

[
fRrr + fRr

(
2
r
− Ar

2A

)]
(34)

Aψr

[
2
r
+

fRr
fR

− Ar

A

]
− A2

r
4A

=
κ2P
fR

− R fR − f (R)
2 fR

− A
fRr
fR

[
2
r
− Ar

2A

]
(35)

where fR = fRc + ϕ, and the subscripts r in ψr, fRr, fRrr, Mr denote derivation with respect to
the radial coordinate. Note also that fRr = ϕr and fRrr = ϕrr. The equation for ϕ is, according
to (32) and (33),

Aϕrr = −A
(

2
r
+ ψr

)
ϕr − W( fRc + ϕ)− W( fRc)

3
+

κ2

3
(3P − ρ) (36)

Equations (34), (35), and (36) can be used to work out the metric of any spherically symmetric
system subject to the asymptotic boundary conditions discussed above. For weak sources,
such as non-relativistic stars like the sun, it is convenient to expand them assuming |ϕ| � fRc
and A = 1 − 2M(r)/r, with 2M(r)/r � 1. The result is

− 2
r

Mrr(r) =
κ2ρ

fRc
+ Vc +

1
fRc

[
ϕrr +

2
r

ϕr

]
(37)

2
r

[
ψr +

ϕr

fRc

]
=

κ2

fRc
P − Vc (38)

ϕrr +
2
r

ϕr − m2
c ϕ =

κ2

3
(3P − ρ) (39)

where we have defined

Vc ≡ R fR − f
2 fR
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Rc

and m2
c ≡ fR − R fRR

3 fRR

∣∣∣∣
Rc

. (40)

13 As pointed out in [Olmo (2007)], solar system tests are conventionally described in isotropic coordinates
rather than on Schwarzschild-like coordinates. This justifies our coordinate choice in (33).
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perturbative approach would only be valid in the far region. Nonetheless, the decomposition
fR = fRc + ϕ(x) is still very useful because the equation for the local deviation ϕ(x) can be
written as

3�ϕ + W( fRc + ϕ)− W( fRc) = κ2T, (32)

where T represents the trace of the local sources, we have defined W( fR) ≡ R( fR) fR −
2 f (R[ fR]), and W( fRc) is a slowly changing constant within the adiabatic approximation. In
this case, ϕ needs not be small compared to fRc everywhere, only in the asymptotic regions.
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where fR = fRc + ϕ, and the subscripts r in ψr, fRr, fRrr, Mr denote derivation with respect to
the radial coordinate. Note also that fRr = ϕr and fRrr = ϕrr. The equation for ϕ is, according
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Equations (34), (35), and (36) can be used to work out the metric of any spherically symmetric
system subject to the asymptotic boundary conditions discussed above. For weak sources,
such as non-relativistic stars like the sun, it is convenient to expand them assuming |ϕ| � fRc
and A = 1 − 2M(r)/r, with 2M(r)/r � 1. The result is
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13 As pointed out in [Olmo (2007)], solar system tests are conventionally described in isotropic coordinates
rather than on Schwarzschild-like coordinates. This justifies our coordinate choice in (33).
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This expression for m2
c was first found in [Olmo (2005a;b)] within the scalar-tensor approach.

It was found there that m2
c > 0 is needed to have a well-behaved (non-oscillating) Newtonian

limit. This expression and the conclusion m2
c > 0 were also reached in [Faraoni and Nadeau

(2005)] by studying the stability of de Sitter space. The same expression has been rediscovered
later several times.
Outside of the sources, the solutions of (37), (38) and (39) lead to

ϕ(r) =
C1
r

e−mcr (41)

A(r) = 1 − C2

r

(
1 − C1

C2 fRc
e−mcr

)
+

Vc

6
r2 (42)

A(r)e2ψ = 1 − C2

r

(
1 +

C1
C2 fRc

e−mcr
)
− Vc

3
r2 (43)

where an integration constant ψ0 has been absorbed in a redefinition of the time coordinate.
The above solutions coincide, as expected, with those found in [Olmo (2005a;b)] for the
Newtonian and post-Newtonian limits using the scalar-tensor representation and standard
gauge choices in Cartesian coordinates. Comparing our solutions with those, we identify

C2 ≡ κ2

4π fRc
M� and

C1
fRcC2

≡ 1
3

(44)

where M� =
∫

d3xρ(x). The line element (33) can thus be written as
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)

dt2 +
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6
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)
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where we have defined the effective Newton’s constant and post-Newtonian parameter γ as

G =
κ2

8π fRc

(
1 +

e−mcr

3

)
and γ =

3 − e−mcr

3 + e−mcr
(46)

respectively. This completes the lowest-order solution in isotropic coordinates.

3.2.2 The gravity Lagrangian according to solar system experiments
From the definitions of Eq.(46) we see that the parameters G and γ that characterize the
linearized metric depend on the effective mass mc (or inverse length scale λmc ≡ m−1

c ).
Newton’s constant, in addition, also depends on fRc. Since the value of the background
cosmic curvature Rc changes with the cosmic expansion, it follows that fRc and mc must
also change. The variation in time of fRc induces a time variation in the effective Newton’s
constant which is just the well-known time dependence that exists in Brans-Dicke theories.
The length scale λmc , characteristic of f (R) theories, does not appear in the original
Brans-Dicke theories because in the latter the scalar potential was assumed to vanish, V(φ) ≡
0, in contrast with (30), which implies an infinite interaction range (mc = 0 → λmc = ∞).
In order to have agreement with the observed properties of the solar system, the Lagrangian
f (R) must satisfy certain basic constraints. These constraints will be very useful to determine
the viability of some families of models proposed to explain the cosmic speedup. A very
representative family of such models, which do exhibit self-accelerating late-time cosmic
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solutions, is given by f (R) = R − Rn+1
0 /Rn, where R0 is a very low curvature scale that

sets the scale at which the model departs from GR, and n is assumed positive. At curvatures
higher than R0, the theory is expected to behave like GR while at late times, when the cosmic
density decays due to the expansion and approaches the scale R0, the modified dynamics
becomes important and could explain the observed speedup.
In viable theories, the effective cosmological constant Vc must be negligible. Most importantly,
the interaction range λmc must be shorter than a few millimeters because such Yukawa-type
corrections to the Newtonian potential have not been observed, and observations indicate that
the parameter γ is very close to unity. This last constraint can be expressed as (L2

S/λ2
mc
) � 1,

where LS represents a (relatively short) length scale that can range from meters to planetary
scales, depending on the particular test used to verify the theory. In terms of the Lagrangian,
this constraint takes the form

fR − R fRR

3 fRR

∣∣∣∣
Rc

L2
S � 1 . (47)

A qualitative analysis of this constraint can be used to argue that, in general, f (R) theories
with terms that become dominant at low cosmic curvatures, such as the models f (R) =
R − Rn+1

0 /Rn, are not viable theories in solar system scales and, therefore, cannot represent
an acceptable mechanism for the cosmic expansion.
Roughly speaking, eq.(47) says that the smaller the term fRR(Rc), with fRR(Rc) > 0 to
guarantee m2

ϕ > 0, the heavier the scalar field. In other words, the smaller fRR(Rc), the shorter
the interaction range of the field. In the limit fRR(Rc) → 0, corresponding to GR, the scalar
interaction is completely suppressed. Thus, if the nonlinearity of the gravity Lagrangian had
become dominant in the last few billions of years (at low cosmic curvatures), the scalar field
interaction range λmc would have increased accordingly. In consequence, gravitating systems
such as the solar system, globular clusters, galaxies,. . . would have experienced (or will
experience) observable changes in their gravitational dynamics. Since there is no experimental
evidence supporting such a change14 and all currently available solar system gravitational
experiments are compatible with GR, it seems unlikely that the nonlinear corrections may be
dominant at the current epoch.
Let us now analyze in detail the constraint given in eq.(47). That equation can be rewritten as
follows

Rc

[
fR

R fRR

∣∣∣∣
Rc

− 1

]
L2

S � 1 (48)

We are interested in the form of the Lagrangian at intermediate and low cosmic curvatures,
i.e., from the matter dominated to the vacuum dominated eras. We shall now demand that the
interaction range of the scalar field remains as short as today or decreases with time so as to
avoid dramatic modifications of the gravitational dynamics in post-Newtonian systems with
the cosmic expansion. This can be implemented imposing

[
fR

R fRR
− 1

]
≥ 1

l2R
(49)

14 As an example, note that the fifth-force effects of the Yukawa-type correction introduced by the scalar
degree of freedom would have an effect on stellar structures and their evolution, which would lead to
incompatibilities with current observations.
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This expression for m2
c was first found in [Olmo (2005a;b)] within the scalar-tensor approach.

It was found there that m2
c > 0 is needed to have a well-behaved (non-oscillating) Newtonian
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+
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where an integration constant ψ0 has been absorbed in a redefinition of the time coordinate.
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3
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where M� =
∫
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(
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3
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3 + e−mcr
(46)

respectively. This completes the lowest-order solution in isotropic coordinates.
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also change. The variation in time of fRc induces a time variation in the effective Newton’s
constant which is just the well-known time dependence that exists in Brans-Dicke theories.
The length scale λmc , characteristic of f (R) theories, does not appear in the original
Brans-Dicke theories because in the latter the scalar potential was assumed to vanish, V(φ) ≡
0, in contrast with (30), which implies an infinite interaction range (mc = 0 → λmc = ∞).
In order to have agreement with the observed properties of the solar system, the Lagrangian
f (R) must satisfy certain basic constraints. These constraints will be very useful to determine
the viability of some families of models proposed to explain the cosmic speedup. A very
representative family of such models, which do exhibit self-accelerating late-time cosmic
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solutions, is given by f (R) = R − Rn+1
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sets the scale at which the model departs from GR, and n is assumed positive. At curvatures
higher than R0, the theory is expected to behave like GR while at late times, when the cosmic
density decays due to the expansion and approaches the scale R0, the modified dynamics
becomes important and could explain the observed speedup.
In viable theories, the effective cosmological constant Vc must be negligible. Most importantly,
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corrections to the Newtonian potential have not been observed, and observations indicate that
the parameter γ is very close to unity. This last constraint can be expressed as (L2
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0 /Rn, are not viable theories in solar system scales and, therefore, cannot represent
an acceptable mechanism for the cosmic expansion.
Roughly speaking, eq.(47) says that the smaller the term fRR(Rc), with fRR(Rc) > 0 to
guarantee m2

ϕ > 0, the heavier the scalar field. In other words, the smaller fRR(Rc), the shorter
the interaction range of the field. In the limit fRR(Rc) → 0, corresponding to GR, the scalar
interaction is completely suppressed. Thus, if the nonlinearity of the gravity Lagrangian had
become dominant in the last few billions of years (at low cosmic curvatures), the scalar field
interaction range λmc would have increased accordingly. In consequence, gravitating systems
such as the solar system, globular clusters, galaxies,. . . would have experienced (or will
experience) observable changes in their gravitational dynamics. Since there is no experimental
evidence supporting such a change14 and all currently available solar system gravitational
experiments are compatible with GR, it seems unlikely that the nonlinear corrections may be
dominant at the current epoch.
Let us now analyze in detail the constraint given in eq.(47). That equation can be rewritten as
follows
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We are interested in the form of the Lagrangian at intermediate and low cosmic curvatures,
i.e., from the matter dominated to the vacuum dominated eras. We shall now demand that the
interaction range of the scalar field remains as short as today or decreases with time so as to
avoid dramatic modifications of the gravitational dynamics in post-Newtonian systems with
the cosmic expansion. This can be implemented imposing
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14 As an example, note that the fifth-force effects of the Yukawa-type correction introduced by the scalar
degree of freedom would have an effect on stellar structures and their evolution, which would lead to
incompatibilities with current observations.
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as R → 0, where l2 � L2
S represents a bound to the current interaction range of the scalar field.

Thus, eq.(49) means that the interaction range of the field must decrease or remain short, ∼ l2,
with the expansion of the universe. Manipulating this expression, we obtain

d log[ fR]

dR
≤ l2

1 + l2R
(50)

which can be integrated twice to give the following inequality

f (R) ≤ A + B
(

R +
l2R2

2

)
(51)

where B is a positive constant, which can be set to unity without loss of generality. Since
fR and fRR are positive, the Lagrangian is also bounded from below, i.e., f (R) ≥ A. In
addition, according to the cosmological data, A ≡ −2Λ must be of order a cosmological
constant 2Λ ∼ 10−53 m2. We thus conclude that the gravity Lagrangian at intermediate and
low scalar curvatures is bounded by

− 2Λ ≤ f (R) ≤ R − 2Λ +
l2R2

2
(52)

This result shows that a Lagrangian with nonlinear terms that grow with the cosmic expansion
is not compatible with the current solar system gravitational tests, such as we argued above.
Therefore, those theories cannot represent a valid mechanism to justify the observed cosmic
speed-up. Additionally, our analysis has provided an empirical procedure to determine the
form of the gravitational Lagrangian. The function f (R) found here nicely recovers Einstein’s
gravity at low curvatures but allows for some quadratic corrections at higher curvatures,
which is of interest in studies of the very early Universe.

4. Quantum gravity phenomenology and the early universe

The extrapolation of the dynamics of GR to the very strong field regime indicates that the
Universe began at a singularity and that the death of a sufficiently massive star unavoidably
leads to the formation of a black hole or a naked singularity. The existence of space-time
singularities is one of the most impressive predictions of GR. This prediction, however, also
represents the end of the theory, because the absence of a well-defined geometry implies the
absence of physical laws and lack of predictability [Hawking (1975); Novello and Bergliaffa
(2008)]. For this reason, it is generally accepted that the dynamics of GR must be changed
at some point to avoid these problems. A widespread belief is that at sufficiently high
energies the gravitational field must exhibit quantum properties that alter the dynamics and
prevent the formation of singularities. However, a completely satisfactory quantum theory of
gravity is not yet available. To make some progress in the qualitative understanding of how
quantum gravity may affect the dynamics of the Universe near the big bang, in this section we
show how certain modifications of GR may be able to capture some aspects of the expected
phenomenology of quantum gravity.
We begin by noting that Newton’s and Planck’s constants may be combined with the speed
of light to generate a length lP =

√
h̄G/c3, which is known as the Planck length. The Planck

length is usually interpreted as the scale at which quantum gravitational phenomena should
play a non-negligible role. However, since lengths are not relativistic invariants, the existence
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of the Planck length raises doubts about the nature of the reference frame in which it should be
measured and about the limits of validity of special relativity itself. This poses the following
question: can we combine in the same framework the speed of light and the Planck length in
such a way that both quantities appear as universal invariants to all observers? The solution
to this problem will give us the key to consider quantum gravitational phenomena from a
modified gravity perspective.

4.1 Palatini approach to modified gravity
To combine in the same framework the speed of light and the Planck length in a way that
preserves the invariant and universal nature of both quantities, we first note that though
c2 has dimensions of squared velocity it represents a 4-dimensional Lorentz scalar rather
than the squared of a privileged 3-velocity. Similarly, we may see l2

P as a 4-d invariant with
dimensions of length squared that needs not be related with any privileged 3-length. Because
of dimensional compatibility with a curvature, the invariant l2

P could be introduced in the
theory via the gravitational sector by considering departures from GR at the Planck scale
motivated by quantum effects. However, the situation is not as simple as it may seem at first.
In fact, an action like the one we obtained in the last section15,

S[gμν, ψ] =
h̄

16πl2
P

∫
d4x

√−g
[

R + l2
PR2

]
+ Sm[gμν, ψ] , (53)

where Sm[gμν, ψ] represents the matter sector, contains the scale l2
P but not in the invariant

form that we wished. The reason is that the field equations that follow from (53) are equivalent
to those of the following scalar-tensor theory

S[gμν, ϕ, ψ] =
h̄

16πl2
P

∫
d4x

√−g

[
(1 + ϕ)R − 1

4l2
P

ϕ2

]
+ Sm[gμν, ψ] , (54)

which given the identification φ = 1 + ϕ coincides with the case w = 0 of Brans-Dicke theory
with a non-zero potential V(φ) = 1

4l2
P
(φ − 1)2. As is well-known and was explicitly shown in

Section 3, in Brans-Dicke theory the observed Newton’s constant is promoted to the status of
field, Ge f f ∼ G/φ. The scalar field allows the effective Newton’s constant Ge f f to dynamically
change in time and in space. As a result the corresponding effective Planck length, l̃2

P = l2
P/φ,

would also vary in space and time. This is quite different from the assumed constancy and
universality of the speed of light in special relativity, which is implicit in our construction of
the total action. In fact, our action has been constructed assuming the Einstein equivalence
principle (EEP), whose validity guarantees that the observed speed of light is a true constant
and universal invariant, not a field16 like in varying speed of light theories [Magueijo (2003)]
(recall also that Nordström’s first scalar theory was motivated by the constancy of the speed
of light). The situation does not improve if we introduce higher curvature invariants in
(54). We thus see that the introduction of the Planck length in the gravitational sector in the
form of a universal constant like the speed of light is not a trivial issue. The introduction of

15 Restoring missing factors of c in (24), we find that 1
16πG = h̄

16πl2
P

and, therefore, κ2 = 8πl2
P/h̄.

16 If the Einstein equivalence principle is true, then all the coupling constants of the standard model are
constants, not fields [Will (2005)].
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as R → 0, where l2 � L2
S represents a bound to the current interaction range of the scalar field.

Thus, eq.(49) means that the interaction range of the field must decrease or remain short, ∼ l2,
with the expansion of the universe. Manipulating this expression, we obtain
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which can be integrated twice to give the following inequality
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2
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where B is a positive constant, which can be set to unity without loss of generality. Since
fR and fRR are positive, the Lagrangian is also bounded from below, i.e., f (R) ≥ A. In
addition, according to the cosmological data, A ≡ −2Λ must be of order a cosmological
constant 2Λ ∼ 10−53 m2. We thus conclude that the gravity Lagrangian at intermediate and
low scalar curvatures is bounded by

− 2Λ ≤ f (R) ≤ R − 2Λ +
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2
(52)

This result shows that a Lagrangian with nonlinear terms that grow with the cosmic expansion
is not compatible with the current solar system gravitational tests, such as we argued above.
Therefore, those theories cannot represent a valid mechanism to justify the observed cosmic
speed-up. Additionally, our analysis has provided an empirical procedure to determine the
form of the gravitational Lagrangian. The function f (R) found here nicely recovers Einstein’s
gravity at low curvatures but allows for some quadratic corrections at higher curvatures,
which is of interest in studies of the very early Universe.

4. Quantum gravity phenomenology and the early universe

The extrapolation of the dynamics of GR to the very strong field regime indicates that the
Universe began at a singularity and that the death of a sufficiently massive star unavoidably
leads to the formation of a black hole or a naked singularity. The existence of space-time
singularities is one of the most impressive predictions of GR. This prediction, however, also
represents the end of the theory, because the absence of a well-defined geometry implies the
absence of physical laws and lack of predictability [Hawking (1975); Novello and Bergliaffa
(2008)]. For this reason, it is generally accepted that the dynamics of GR must be changed
at some point to avoid these problems. A widespread belief is that at sufficiently high
energies the gravitational field must exhibit quantum properties that alter the dynamics and
prevent the formation of singularities. However, a completely satisfactory quantum theory of
gravity is not yet available. To make some progress in the qualitative understanding of how
quantum gravity may affect the dynamics of the Universe near the big bang, in this section we
show how certain modifications of GR may be able to capture some aspects of the expected
phenomenology of quantum gravity.
We begin by noting that Newton’s and Planck’s constants may be combined with the speed
of light to generate a length lP =

√
h̄G/c3, which is known as the Planck length. The Planck

length is usually interpreted as the scale at which quantum gravitational phenomena should
play a non-negligible role. However, since lengths are not relativistic invariants, the existence
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of the Planck length raises doubts about the nature of the reference frame in which it should be
measured and about the limits of validity of special relativity itself. This poses the following
question: can we combine in the same framework the speed of light and the Planck length in
such a way that both quantities appear as universal invariants to all observers? The solution
to this problem will give us the key to consider quantum gravitational phenomena from a
modified gravity perspective.

4.1 Palatini approach to modified gravity
To combine in the same framework the speed of light and the Planck length in a way that
preserves the invariant and universal nature of both quantities, we first note that though
c2 has dimensions of squared velocity it represents a 4-dimensional Lorentz scalar rather
than the squared of a privileged 3-velocity. Similarly, we may see l2

P as a 4-d invariant with
dimensions of length squared that needs not be related with any privileged 3-length. Because
of dimensional compatibility with a curvature, the invariant l2

P could be introduced in the
theory via the gravitational sector by considering departures from GR at the Planck scale
motivated by quantum effects. However, the situation is not as simple as it may seem at first.
In fact, an action like the one we obtained in the last section15,

S[gμν, ψ] =
h̄

16πl2
P

∫
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√−g
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R + l2
PR2

]
+ Sm[gμν, ψ] , (53)

where Sm[gμν, ψ] represents the matter sector, contains the scale l2
P but not in the invariant

form that we wished. The reason is that the field equations that follow from (53) are equivalent
to those of the following scalar-tensor theory

S[gμν, ϕ, ψ] =
h̄

16πl2
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∫
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√−g
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(1 + ϕ)R − 1

4l2
P

ϕ2

]
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which given the identification φ = 1 + ϕ coincides with the case w = 0 of Brans-Dicke theory
with a non-zero potential V(φ) = 1

4l2
P
(φ − 1)2. As is well-known and was explicitly shown in

Section 3, in Brans-Dicke theory the observed Newton’s constant is promoted to the status of
field, Ge f f ∼ G/φ. The scalar field allows the effective Newton’s constant Ge f f to dynamically
change in time and in space. As a result the corresponding effective Planck length, l̃2

P = l2
P/φ,

would also vary in space and time. This is quite different from the assumed constancy and
universality of the speed of light in special relativity, which is implicit in our construction of
the total action. In fact, our action has been constructed assuming the Einstein equivalence
principle (EEP), whose validity guarantees that the observed speed of light is a true constant
and universal invariant, not a field16 like in varying speed of light theories [Magueijo (2003)]
(recall also that Nordström’s first scalar theory was motivated by the constancy of the speed
of light). The situation does not improve if we introduce higher curvature invariants in
(54). We thus see that the introduction of the Planck length in the gravitational sector in the
form of a universal constant like the speed of light is not a trivial issue. The introduction of

15 Restoring missing factors of c in (24), we find that 1
16πG = h̄

16πl2
P

and, therefore, κ2 = 8πl2
P/h̄.

16 If the Einstein equivalence principle is true, then all the coupling constants of the standard model are
constants, not fields [Will (2005)].
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curvature invariants suppressed by powers of RP = 1/l2
P unavoidably generates new degrees

of freedom which turn Newton’s constant into a dynamical field.
Is it then possible to modify the gravity Lagrangian adding Planck-scale corrected terms
without turning Newton’s constant into a dynamical field? The answer to this question
is in the affirmative. One must first note that metricity and affinity are a priori logically
independent concepts [Zanelli (2005)]. If we construct the theory à la Palatini, that is in terms of
a connection not a priori constrained to be given by the Christoffel symbols, then the resulting
equations do not necessarily contain new dynamical degrees of freedom (as compared to GR),
and the Planck length may remain space-time independent in much the same way as the
speed of light and the coupling constants of the standard model, as required by the EEP. A
natural alternative, therefore, seems to be to consider (53) in the Palatini formulation. The
field equations that follow from (53) when metric and connection are varied independently
are [Olmo (2011)]

fRRμν(Γ)− 1
2

f gμν = κ2Tμν (55)

∇α

(√−g fRgβγ
)
= 0 , (56)

where f = R + R2/RP, fR ≡ ∂R f = 1+ 2R/RP, RP = 1/l2
P, and κ2 = 8πl2

P/h̄. The connection
equation (56) can be easily solved after noticing that the trace of (55) with gμν,

R fR − 2 f = κ2T , (57)

represents an algebraic relation between R ≡ gμνRμν(Γ) and T, which generically implies that
R = R(T) and hence fR = fR(R(T)) [from now on we denote fR(T) ≡ fR(R(T))]. For the
particular Lagrangian (53), we find that R = −κ2T, like in GR. This relation implies that (56)
is just a first order equation for the connection that involves the matter, via the trace T, and
the metric. The connection turns out to be the Levi-Civita connection of an auxiliary metric,

Γα
μν =

hαβ

2

(
∂μhβν + ∂νhβμ − ∂βhμν

)
, (58)

which is conformally related with the physical metric, hμν = fR(T)gμν. Now that the
connection has been expressed in terms of hμν, we can rewrite (55) as follows

Gμν(h) =
κ2

fR(T)
Tμν − Λ(T)hμν (59)

where Λ(T) ≡ (R fR − f )/(2 f 2
R) = (κ2T)2/RP, and looks like Einstein’s theory for the metric

hμν with a slightly modified source. This set of equations can also be written in terms of the
physical metric gμν as follows

Rμν(g)− 1
2

gμνR(g) =
κ2

fR
Tμν − R fR − f

2 fR
gμν − 3

2( fR)2

[
∂μ fR∂ν fR − 1

2
gμν(∂ fR)

2
]
+

1
fR

[∇μ∇ν fR − gμν� fR
]

. (60)
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In this last representation, one can use the notation introduced in (29) and (30) to show that
these field equations coincide with those of a Brans-Dicke theory with parameter w = −3/2
(see eq.(22)). Note that all the functions f (R), R, and fR that appear on the right hand side of
(60) are functions of the trace T. This means that the modified dynamics of (60) is due to the
new matter terms induced by the trace T of the matter, not to the presence of new dynamical
degrees of freedom. This also guarantees that, unlike for the w �= −3/2 Brans-Dicke theories,
for the w = −3/2 theory Newton’s constant is indeed a constant.
From the structure of the field equations (59) and (60), and the relation gμν = (1/ fR)hμν, it
follows that gμν is affected by the matter-energy in two different ways. The first contribution
corresponds to the cumulative effects of matter, and the second contribution is due to the
dependence on the local density distributions of energy and momentum. This can be seen
by noticing that the structure of the equations (59) that determine hμν is similar to that
of GR, which implies that hμν is determined by integrating over all the sources (gravity
as a cumulative effect). Besides that, gμν is also affected by the local sources through the
factor fR(T). To illustrate this point, consider a region of the spacetime containing a total
mass M and filled with sources of low energy-density as compared to the Planck scale
(|κ2T/RP | � 1). For the quadratic model f (R) = R + R2/RP, in this region (59) boils
down to Gμν(h) = κ2Tμν + O(κ2T/RP), and hμν ≈ (1 + O(κ2T/RP))gμν, which implies
that the GR solution is a very good approximation. This confirms that hμν is determined
by an integration over the sources, like in GR. Now, if this region is traversed by a particle of
mass m � M but with a non-negligible ratio κ2T/RP, then the contribution of this particle to
hμν can be neglected, but its effect on gμν via de factor fR = 1 − κ2T/RP on the region that
supports the particle (its classical trajectory) is important. This phenomenon is analogous to
that described in the so-called Rainbow Gravity [Magueijo and Smolin (2004)], an approach to
the phenomenology of quantum gravity based on a non-linear implementation of the Lorentz
group to allow for the coexistence of a constant speed of light and a maximum energy scale
(the flat space version of that theory is known as Doubly Special Relativity [Amelino-Camelia
(2002); Amelino-Camelia and Smolin (2009); Magueijo and Smolin (2002; 2003)]). In Rainbow
Gravity, particles of different energies (energy-densities in our case) perceive different metrics.

4.2 The early-time cosmology of Palatini f (R) models.
The quadratic Palatini model introduced above turns out to be virtually indistinguishable
from GR at energy densities well below the Planck scale. It is thus natural to ask if this
theory presents any particularly interesting feature at Planck scale densities. A natural context
where this question can be explored is found in the very early universe, when the matter
energy-density tends to infinity as we approach the big bang.
In a spatially flat, homogeneous, and isotropic universe, with line element ds2 = −dt2 +
a2(t)d�x2, filled with a perfect fluid with constant equation of state P = wρ and density ρ, the
Hubble function that follows from (60) (or (59)) takes the form

H2 =
1

6 fR

[
f + (1 + 3w)κ2ρ

]
[
1 + 3

2 Δ
]2 , (61)
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curvature invariants suppressed by powers of RP = 1/l2
P unavoidably generates new degrees

of freedom which turn Newton’s constant into a dynamical field.
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P/h̄. The connection
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In this last representation, one can use the notation introduced in (29) and (30) to show that
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This result indicates that if the universe is dominated by a matter source with w > −1, then
at t = 0 the universe has zero physical volume, the density is infinite, and all curvature
scalars blow up, which indicates the existence of a big bang singularity. The quadratic Palatini
model introduced above, however, can avoid this situation. For that model, (61) becomes
[Barragan et al. (2009a;b); Olmo (2010)]

H2 =
κ3ρ

3

(
1 + 2R

RP

) (
1 + 1−3w

2
R

RP

)

[
1 − (1 + 3w) R

RP

]2 . (62)

This expression recovers the linear dependence on ρ of GR in the limit |R/RP| � 1. However,
if R reaches the value Rb = −RP/2, then H2 vanishes and the expansion factor a(t) reaches a
minimum. This occurs for w > 1/3 if RP > 0 and for w < 1/3 if RP < 0. The existence of a
non-zero minimum for the expansion factor implies that the big bang singularity is avoided.
The avoidance of the big bang singularity indicates that the time coordinate can be extended
backwards in time beyond the instant t = 0. This means that in the past the universe was in
a contracting phase which reached a minimum and bounced off to the expanding phase that
we find in GR.
We mentioned at the beginning of this section that the avoidance of the big bang singularity
is a basic requirement for any acceptable quantum theory of gravity. Our procedure to
construct a quantum-corrected theory of gravity in which the Planck length were a universal
invariant similar to the speed of light has led us to a cosmological model which replaces
the big bang by a cosmic bounce. To obtain this result, it has been necessary to resort to
the Palatini formulation of the theory. In this sense, it is important to note that the metric
formulation of the quadratic curvature model discussed here, besides turning the Planck
length into a dynamical field, is unable to avoid the big bang singularity. In fact, in metric
formalism, all quadratic models of the form R + (aR2 + bRμνRμν)/RP that at late times tend
to a standard Friedmann-Robertson-Walker cosmology begin with a big bang singularity.
Palatini theories, therefore, appear as a potentially interesting framework to discuss quantum
gravity phenomenology.

4.3 A Palatini action for loop quantum cosmoloy
Growing interest in the dynamics of the early-universe in Palatini theories has arisen,
in part, from the observation that the effective equations of loop quantum cosmology
(LQC) [Ashtekar et al. (2006a;b;c); Ashtekar (2007); Bojowald (2005); Szulc et al. (2007)], a
Hamiltonian approach to quantum gravity based on the non-perturbative quantization
techniques of loop quantum gravity [Rovelli (2004); Thiemann (2007)], could be exactly
reproduced by a Palatini f (R) Lagrangian [Olmo and Singh (2009)]. In LQC, non-perturbative
quantum gravity effects lead to the resolution of the big bang singularity by a quantum bounce
without introducing any new degrees of freedom. Though fundamentally discrete, the theory
admits a continuum description in terms of an effective Hamiltonian that in the case of a
homogeneous and isotropic universe filled with a massless scalar field leads to the following
modified Friedmann equation

3H2 = 8πGρ

(
1 − ρ

ρcrit

)
, (63)
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where ρcrit ≈ 0.41ρPlanck. At low densities, ρ/ρcrit � 1, the background dynamics is the same
as in GR, whereas at densities of order ρcrit the non-linear new matter contribution forces the
vanishing of H2 and hence a cosmic bounce. This singularity avoidance seems to be a generic
feature of loop-quantized universes [Singh (2009)].
Palatini f (R) theories share with LQC an interesting property: the modified dynamics that
they generate is not the result of the existence of new dynamical degrees of freedom but rather
it manifests itself by means of non-linear contributions produced by the matter sources, which
contrasts with other approaches to quantum gravity and to modified gravity. This similarity
makes it tempting to put into correspondence Eq.(63) with the corresponding f (R) equation
(60). Taking into account the trace equation (57), which for a massless scalar becomes R fR −
2 f = 2κ2ρ and implies that ρ = ρ(R), one finds that a Palatini f (R) theory able to reproduce
the LQC dynamics (63) must satisfy the differential equation

fRR = − fR

(
A fR − B

2(R fR − 3 f )A + RB

)
(64)

where A =
√

2(R fR − 2 f )(2Rc − [R fR − 2 f ]), B = 2
√

Rc fR(2R fR − 3 f ), and Rc ≡ κ2ρc. If
one imposes the boundary condition limR→0 fR → 1 at low curvatures, and äLQC = äPal
(where ä represents the acceleration of the expansion factor) at ρ = ρc, the solution to this
equation is unique. The solution was found numerically [Olmo and Singh (2009)], though the
following function can be regarded as a very accurate approximation to the LQC dynamics
from the GR regime to the non-perturbative bouncing region (see Fig.1)

d f
dR

= − tanh

(
5

103
ln

[(
R

12Rc

)2
])

(65)
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Fig. 1. Vertical axis: d f /dR ; Horizontal axis: R/Rc. Comparison of the numerical solution
with the interpolating function (65). The dashed line represents the numerical curve.

This result is particularly important because it establishes a direct link between the Palatini
approach to modified gravity and a cosmological model derived from non-perturbative
quantization techniques.
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techniques of loop quantum gravity [Rovelli (2004); Thiemann (2007)], could be exactly
reproduced by a Palatini f (R) Lagrangian [Olmo and Singh (2009)]. In LQC, non-perturbative
quantum gravity effects lead to the resolution of the big bang singularity by a quantum bounce
without introducing any new degrees of freedom. Though fundamentally discrete, the theory
admits a continuum description in terms of an effective Hamiltonian that in the case of a
homogeneous and isotropic universe filled with a massless scalar field leads to the following
modified Friedmann equation
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as in GR, whereas at densities of order ρcrit the non-linear new matter contribution forces the
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it manifests itself by means of non-linear contributions produced by the matter sources, which
contrasts with other approaches to quantum gravity and to modified gravity. This similarity
makes it tempting to put into correspondence Eq.(63) with the corresponding f (R) equation
(60). Taking into account the trace equation (57), which for a massless scalar becomes R fR −
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4.4 Beyond Palatini f (R) theories.
Nordström’s second theory was a very interesting theoretical exercise that successfully
allowed to implement the Einstein equivalence principle in a relativistic scalar theory.
However, among other limitations, that theory did not predict any new gravitational effect for
the electromagnetic field. In a sense, Palatini f (R) theories suffer from this same limitation.
Since their modified dynamics is due to new matter contributions that depend on the trace
of the stress-energy tensor, for traceless fields such as a radiation fluid or the electromagnetic
field, the theory does not predict any new effect. This drawback can be avoided if one adds to
the Palatini Lagrangian a new piece dependent on the squared Ricci tensor, RμνRμν, where we
assume Rμν = Rνμ [Barragan and Olmo (2010); Olmo et al. (2009)]. In particular, the following
action

S[gμν, Γμ
αβ, ψ] =

1
2κ2

�
d4x

�−g
�

R + a
R2

RP
+

RμνRμν

RP

�
+ Sm[gμν, ψ] , (66)

implies that R = R(T) but Q ≡ RμνRμν = Q(Tμν), i.e., the scalar Q has a more complicated
dependence on the stress-energy tensor of matter than the trace. For instance, for a perfect
fluid, one finds

Q
2RP

= −
�

κ2P +
f̃
2
+

RP

8
f̃ 2
R

�
+

RP

32

⎡
⎣3

�
R

RP
+ f̃R

�
−

��
R

RP
+ f̃R

�2
− 4κ2(ρ + P)

RP

⎤
⎦

2

,

(67)
where f̃ = R + aR2/RP and R is a solution of R f̃R − 2 f̃ = κ2T. From this it follows that even
if one deals with a radiation fluid (P = ρ/3) or with a traceless field, the Palatini action (66)
generates modified gravity without introducing new degrees of freedom.
For this model, it has been shown that completely regular bouncing solutions exist for both
isotropic and anisotropic homogeneous cosmologies filled with a perfect fluid. In particular,
one finds that for a < 0 the interval 0 ≤ w ≤ 1/3 is always included in the family of
bouncing solutions, which contains the dust and radiation cases. For a ≥ 0, the fluids
yielding a non-singular evolution are restricted to w > a

2+3a , which implies that the radiation
case w = 1/3 is always nonsingular. For a detailed discussion and classification of the
non-singular solutions depending on the value of the parameter a and the equation of state w,
see [Barragan and Olmo (2010)].
As an illustration, consider a universe filled with radiation, for which R = 0. In this case, the
function Q boils down to [Barragan and Olmo (2010)]

Q =
3R2

P
8

⎡
⎣1 − 8κ2ρ

3RP
−

�
1 − 16κ2ρ

3RP

⎤
⎦ . (68)

This expression recovers the GR value at low curvatures, Q ≈ 4(κ2ρ)2/3+ 32(κ2ρ)3/9RP + . . .
but reaches a maximum Qmax = 3R2

P/16 at κ2ρmax = 3RP/16, where the squared root of (68)
vanishes. It can be shown that at ρmax the shear also takes its maximum, namely, σ2

max =√
3/16R3/2

P (C2
12 + C2

23 + C2
31), which is always finite, and the expansion vanishes producing a

cosmic bounce regardless of the amount of anisotropy (see Fig.2). The model (66), therefore,
avoids the well-known problems of anisotropic universes in GR, where anisotropies grow
faster than the energy density during the contraction phase leading to a singularity that can
only be avoided by sources with w > 1.
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As an illustration, consider a universe filled with radiation, for which R = 0. In this case, the
function Q boils down to [Barragan and Olmo (2010)]

Q =
3R2

P
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⎡
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3RP
−

�
1 − 16κ2ρ

3RP

⎤
⎦ . (68)

This expression recovers the GR value at low curvatures, Q ≈ 4(κ2ρ)2/3+ 32(κ2ρ)3/9RP + . . .
but reaches a maximum Qmax = 3R2

P/16 at κ2ρmax = 3RP/16, where the squared root of (68)
vanishes. It can be shown that at ρmax the shear also takes its maximum, namely, σ2

max =√
3/16R3/2

P (C2
12 + C2

23 + C2
31), which is always finite, and the expansion vanishes producing a

cosmic bounce regardless of the amount of anisotropy (see Fig.2). The model (66), therefore,
avoids the well-known problems of anisotropic universes in GR, where anisotropies grow
faster than the energy density during the contraction phase leading to a singularity that can
only be avoided by sources with w > 1.
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Fig. 2. Evolution of the expansion as a function of κ2ρ/RP in radiation universes with low
anisotropy, which is controlled by the combination C2 = C2

12 + C2
23 + C2

31. The case with
C2 = 0 corresponds to the isotropic flat case, θ2 = 9H2.
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1. Introduction 
In physics and other fields, the definition of duration is a fundamental problem. We are 
used to astronomical time based upon the idea that the rotation of Earth is perfectly regular, 
an assumption which nowadays we know to be slightly erroneous. A unit of time based 
upon the period of a chosen atomic vibration is preferred. In all cases we need a time which 
we accept as a standard, taken for granted. But there are cases where duration associated 
with such a universal time does not seem appropriate. At certain linstants it seems to an 
individual that time elapses more slowly or more quickly. This psychological time is 
subjective, it depends upon the person concerned and the circumstances. For a given 
individual it also depends upon age; at the end of life a day seems shorter than in youth. Of 
course this “relativity” of duration has nothing to do with relativity of time met in special 
relativity and is not at all in opposition to it. Before starting our presentation we must warn 
that we shall abundantly make use of mathematics as we believe they may be a help for 
thinking, despite the fact that in many cases only the qualitative aspects of the conclusions 
must be retained. 
If we have chosen a standard or reference time t, such as for example the astronomical one, 
what is the most general time θ we can derive from it as a function θ(t)? We assume that θ(t) 
must be a continuous function of t (though a discrete time could be proposed) and add that 
θ(t) must not decrease when t increases. More precisely we may write, if f(a,b) is the the 
duration of interval (a,b), and since f(a,b) must  increase in the large with b and decrease in 
the large with a 

f(a,b) + f(b,c) = f(a,c)  

f(a,b) ≥ 0, b≥a 

f(a,a) = 0. 

If we add the hypothesis that f is differentiable, we have 

f(a+da, b) + f(b, c+dc) = f(a+da, c+dc). 

Replacing f(a+da,b) by f(a,b)+∂f(a,b)/∂a da and the like for f(b, c+dc) and f(a+da, c+dc) we 
obtain 

∂f(a,b)/∂a = ∂f(a,c)/∂a. 
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So ∂f(a,b)/∂a is independent of b. Consequently, after integration with respect to a, we  
have 

f(a,b) = F(a) + Cst, 
 

the integration constant being a function of b or G(b). It gives 

f(a,b) = F(a) + G(b). 
 

But, since f(a,a) = 0, we have G = -  F and so 

f(a,b) = G(b) - G(a) 

or 

f(a,b) = θ(b) – θ(a), 
 

function θ(t)  being obviously continuous  at not decreasing with t, as required. 
We consider now a dynamical system. This involves in its evolution equation a reference 
time t which, in a way, is impartial. But since it has nothing to do with the considered 
system it does not take into account its intrinsic behaviour. Metaphorically all reference 
instants have not the same value. If the system were conscious, some instants, or short 
intervals of reference time, would have a greater importance than others. In the extreme case 
of very profound sleep or, better, of a coma, duration is not felt. This is close to the point of 
view of Aristotle in chapter IV of his “Physics” (Hussey, 1983): “When we feel no change in 
our thought, or we are unconscious of this change, or when we feel it without being aware 
of it, then it seems to us that no time have elapsed”. Augustine in book XI of his 
“Confessions” expresses an opinion not far from that of Aritotle (Warner, 1963): “What is 
time? If nobody asks, I know; but if I want to explain, I do not know!  Nevertheless – I tell it 
confidently – I know that if nothing  happened, there would be no time passed…”Finally we 
are inclined to propose as a first approach  that the more rapidly the state of the system 
changes, the more important are the corresponding reference instants.  
We choose, as an index of importance of reference instant t, the scalar square of the speed of 
evolution of the  state at this instant, that is to say (dX(t)/dt)2. Of course many other indexes 
are possible, given for example by a strictly increasing function of the modulus of the speed. 
So we propose as an intrinsic or “internal duration” d(t1,t2) of reference interval (t1,t2) the 
integral (Vallée, 1996, 2005) 

∫ t1,t2    (dX(t)/dt)2 dt, 

the internal duration of infinitesimal interval (t,t+dt) being (dXt)/dt)2dt. An “internal time”, 
coherent with this duration and defined up to an additive constant, is given by 

θ(t) = d(t0,t)  

and we have 
 

d(t1,t2) = θ(t2) – θ(t1), 

 
Duration, Systems and Cosmology 77 

a result which is in accordance with what we expected from the most general time we can 
derive from a given standard or reference time t. 

2. Explosions and implosions 

This internal time may be used for any dynamical system defined by a differential equation. 
We have particularly considered what we have called “elliptic explosion-implosion”, 
“hyperbolic explosion” and, as an intermediary case,“parabolic explosion” (Vallée, 1996, 
2005). 

2.1 Elliptic explosion-implosion 
In the case of an “elliptic explosion-implosion”, the equation of evolution is given by 

 dX(t)/dt = q/p  sgn(p-t)  (q2 – X2(t))1/2 / X(t)          (1) 

where the state X(t) is a mere scalar with 

X(0) = 0,  p> 0, q > 0,  0 ≤ t ≤ 2p.  

It is easy to see that 

 X(t) = q/p (p2 -  (p-t)2)1/2           (2)        

since by derivation it gives 

 dX(t)/dt = q/p  (p-t) / (p2 – (p-t)2)1/2            (3)         

which is the expression obtained from (1) if we replace X(t) by (2)  
The graph of function X(t), which represents the evolution of state X(t)with reference time t, 
is the upper part of an ellipse of great axis 2p and small axis q .The absciss of the center is p 
and its ordinate is 0.  X(t) starts from 0 at t=0, increases to its maximum value q at t= p, then 
decreases and attains 0 at t=2p. The speed at t= 0 is +∞ and -∞ at t= 2p. That is why we have 
an explosion at the beginning and an implosion at the end, and so what we can call an 
“elliptic explosion –implosion”. The square of the speed of evolution is according to (3), 
after a very classical decomposition of  

q2/p2  (t-p)2/(p2 - (p-t)2)1/2  =  q2/p2   (p-t)2/t(2p-t), 

given by 

(d(X(t))/dt)2  = q2/p2  (q2 – X2(t)) / X2(t)  

= q2/2p (1/t – 2/p  + 1/2p-t). 

The “internal time” we can obtain by integration is defined up to an additive constant we 
can choose freely. The most simple choice gives 

 θ(t) = q2/2p  (Logt - 2t/p - Log(2p-t)          (4)   

We see that when the reference time t varies from 0 to 2p, the “internal time” varies from -∞ 
to + ∞. Obviously this circumstance, the push back of t = 0 to θ = - ∞ and the push forward 
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of t = 2p to + ∞, is linked to the behaviour of the square of the speed near t = 0 and near t = 
2p which generates logarithms. 

2.2 Hyperbolic explosion 
In the case of “hyperbolic explosion” the equation of evolution is  

 dX(t)/dt =  q/p  (q2 + X2(t)) / X(t) ,     (5) 

with 

X(0) = 0 , p>0, q>0, 

0 ≤ t 

It is easy to verify that we have 

 X(t) = q/p ((p+t)2 – p2)1/2 ,      (6) 

since by derivation  

dX(t)/dt = q/p  (p+t) / ((p+t)2 – p2), 

expression also obtained from  (5) when we replace X(t) by (6).  
The graph of function X(t)  is the upper half right part of an hyperbola. The absciss of its 
center is –p and its ordinate is 0. The asymptote associated with the graph of X(t) has a slope 
equal to q/p. X(t) starts from 0 at t = 0, then tends to +∞ when t tends to +∞. For great values 
of t, X(t) behaves as (q/p) t + q. The square of the speed of evolution is   

(dX(t)/dt)2 =  q2/2p (1/t + 2/p – 1/2p+t). 

This gives an “internal time” equal to 

 θ(t) =  q2/2p  (Logt + 2t/p  - Log(2p+t))   (7)      

for which when reference time t varies from 0 to +∞, “internal time” varies from - ∞ to + ∞.  

2.3 Parabolic explosion 
The “parabolic explosion” is an intermediary case, as parabola is “intermediary” between 
ellipse and hyperbola. Starting from equation (1), we shall make p tend to ∞ while keeping 
q2/p equal to a constant h. We have 

dX(t)/dt = (h/p)1/2  (hp – X2(t))1/2 / X(t) 

= (h2 – h/p X2(t))1/2 / X(t), 

which gives, when p tends to ∞, the new equation of evolution 

 dX(t)/dt = h/X(t)     (8)        

with 

X(0) = 0, 
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and 

h > 0.  

So 

 X(t) = (2ht)1/2 .   (9)    

The graph of function X(t) is the upper part of a parabola of summit at t = 0 and  having t 
axis as axis. It is the limit of the half ellipse seen in the elliptic case.  We have an explosion at 
t = 0 with initial speed + ∞. This speed decreases with time and tends to 0 while X(t) tends to  
+∞. The square of the speed is      

(dX(t)/dt)2 = h/2t, 

giving the “internal time” 

 θ(t) = h/2  Logt,   (10)      

which varies from  -∞ to +∞ when t varies from 0 to +∞.    

3. Infinite internal duration 
In the three cases seen above we have observed the possibility of an infinite “internal 
duration” linked to the push back (or forward) of a particular reference instant. Obviously 
this is linked to the behaviour of (dX(t)/dt)2 near this reference instant. We choose, to 
simplify the presentation, reference instant t = 0, and suppose that X(t) is an analytic 
function near this point. So X(t) behaves near t = 0 as tn , dX(t)/dt as tn-1 , (dX(t)/dt)2  as t2n-2  

and so ∫ (dX(t)/dt)2 dt  as t2n-1/2n-1 . If n is different from   1/2, there is no singularity and no 
push back of t = 0 to θ = -∞. But if n = ½  X(t) behaves as t1/2 , dX(t)/dt as t-1/2, (dX(t)/dt)2 as 
t-1  and  ∫(d(X(t)/dt)2 dt as Log t. There is a push back of t = 0 to θ = - ∞ and possibility of 
infinite interval time . A push forward of reference instant t = a to θ = + ∞ happens if X(t) 
behaves as (a-t)1/2  near t = a. In the case of “elliptic explosion-implosion”, X(t) behaves as 
t1/2  near t = 0 and as (2p-t)1/2 near t = 2p. So, as we have seen, we have a push back and a 
push forward. For “hyperbolic explosion” as well as for “parabolic explosion” X(t) behaves 
as t1/2 near t = 0 and there is a push back.  

4. Equation of evolution in term of “internal time” 

It may be of interest, for a given evolution of a system described by function X(t), to express 
X(t) in term  of “internal time” θ instead of reference time t. Let us take as an example the 
case of “parabolic explosion”. We have  

X(t) = (2ht)1/2 

and 

θ(t) = h/2  Logt,  

t(θ) = exp(2θ/h) 
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of t = 2p to + ∞, is linked to the behaviour of the square of the speed near t = 0 and near t = 
2p which generates logarithms. 

2.2 Hyperbolic explosion 
In the case of “hyperbolic explosion” the equation of evolution is  

 dX(t)/dt =  q/p  (q2 + X2(t)) / X(t) ,     (5) 
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X(0) = 0 , p>0, q>0, 

0 ≤ t 
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 X(t) = q/p ((p+t)2 – p2)1/2 ,      (6) 
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and 

h > 0.  

So 
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t = 0 with initial speed + ∞. This speed decreases with time and tends to 0 while X(t) tends to  
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function near this point. So X(t) behaves near t = 0 as tn , dX(t)/dt as tn-1 , (dX(t)/dt)2  as t2n-2  

and so ∫ (dX(t)/dt)2 dt  as t2n-1/2n-1 . If n is different from   1/2, there is no singularity and no 
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It may be of interest, for a given evolution of a system described by function X(t), to express 
X(t) in term  of “internal time” θ instead of reference time t. Let us take as an example the 
case of “parabolic explosion”. We have  

X(t) = (2ht)1/2 

and 

θ(t) = h/2  Logt,  

t(θ) = exp(2θ/h) 
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It gives  

X(t(θ)) = (2h)1/2 exp(θ/h). 

So, in term of “internal time”, the state varies exponentially from 0 to +∞ while θ varies from 
- ∞ to + ∞, instead of growing as t ½ when t goes from 0 to +∞. 

5. Time and space 
The system considered may, more generally, be defined by X(t,x), a scalar function of 
“reference time” t and space point x , satisfying a partial derivative equation. We consider, 
as the index of importance of reference instant t, the integral, supposed to be convergent,  
extended to whole space S, of the square of the speed of evolution  (∂X(t,x)/∂t)2, that is to 
say  

 ∫S (∂X(t,x)/∂t)2 dx.  (11)       

So the “internal duration” of interval (t1,t2) is given by 

d(t1,t2) = ∫t1,t2  ∫S (∂X(t,x)/∂t)2 dx dt,                

and an « internal time » by 

θ(t) =  d(t0,t). 

We shall apply this formalism to the dynamical system constituted by a space-time field of 
temperatures, in the case of heat diffusion, with S = (-∞,+∞). Temperature at point x, at 
reference instant t, is u(t,x). The partial derivative equation of evolution is 

∂u(t,x)/∂t - ∂2u(t,x)/∂x2 = 0. 

If the repartition of temperatures at t = 0 is given by function (more generally distribution) 
u0(x), the solution of the above equation is 

u(x,t) = ∫-∞ +∞  1/2(πt)1/2   exp(-(x-s)2/4t)  u0(s) ds. 

At initial reference instant t = 0, we suppose that the field of temperatures is given by δ(x) or 
Dirac distribution centered at x= 0 (in a rather simplified language it is equal to 0 
everywhere except at t = 0 where it is infinite, the integral being nevertheless equal to 1). 
The repartition of temperatures at reference instant t is, according to the precedent equation 
and the properties of δ(x), given classically by the Laplace-Gauss function 

u(t,x) =  (4πt)1/2 exp(-x2/4t). 

When reference instant t tends to +∞, this function “flattens” and tends to ε(x) or “epsilon 
distribution” (Vallée, 1992), in short it is equal to zero everywhere, the integral being 
nevertheless equal to 1. We have  

(∂u(t,x)/∂t)2 =  1/16π  (1+x2/2t)2/ t3  exp(-x2/2t) 

and 

∫R  (∂u(t,x)/∂t)2 dx = 3 (2π)1/2/16  t-5/2. 
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So the « internal duration » of reference interval (t1,t2) is, by integration from t1 to t2,  

d(t1,t2) = (2π)1/2/8  (t1 -3/2 – t2 -3/2) 

and an “internal time” is given by the following function (increasing with t) 

 θ(t) = - (2π)1/2/8   t – 3/2.    (12) 

When reference time t varies from 0 to + ∞, “internal time” θ varies from - ∞ to 0. Initial 
reference instant t = 0 is pushed back to - ∞. “Internal duration” from t >0 to +∞, is finite and 
equal to (2π)1/2/8  t-3/2. 

6. Time and cosmology 
We shall now interpret the notion of “internal time” in the field of cosmology. We consider 
models for which the state of the universe, at reference instant t, is given by the so called 
scalar factor R(t). According to Lemaître, Friedman and Robertson (Berry, 1976) a possible 
equation of evolution is 

 (dR(t)/dt)2  =  8πG/3   ρ(t) R2(t)  –kc2  +  Λ/3  R2(t),    (13)   

R(0) = 0,                          

G being the gravitational constant, c the speed of light, k the index of curvature (k= -1, space 
with negative curvature; k = 0, flat space; k =+1, space with positive curvature), Λ the 
cosmological constant, ρ(t) the density of matter equal to a/R3(t)) or its material equivalent 
b/R4(t) when there is only radiation, a and b being two constants. When k = +1, R(t) is 
interpreted as the radius of the universe. 

6.1 Radiation with null cosmological constant 
If we consider the case of positive curvature with null cosmological constant and density of 
matter negligible compared to the equivalent density of matter of pure radiation (k=+1, 
Λ=0, ρ(t) = b/R4(t)), we have  

 (dR(t)/dt)2 = 8πG/3  b/R2(t) - c2     (14)                          

and 

R(0) = 0.                                                   

This case corresponds to the « elliptic explosion-implosion” considered above where, after 
having taken the square of the two members of equation (1), we replace X(t) by R(t), choose  

q = cp,  

and 

p = (b8πG/3)1/2 /c2.  

It gives, according to (2), 

R(t) = q/p (2pt – t2)1/2 = (2(8πGb/3)1/2 t –c2t2)1/2 

and the graph of function R(t) is, as we know, elliptical. 
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It gives  
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say  
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and an « internal time » by 

θ(t) =  d(t0,t). 

We shall apply this formalism to the dynamical system constituted by a space-time field of 
temperatures, in the case of heat diffusion, with S = (-∞,+∞). Temperature at point x, at 
reference instant t, is u(t,x). The partial derivative equation of evolution is 

∂u(t,x)/∂t - ∂2u(t,x)/∂x2 = 0. 

If the repartition of temperatures at t = 0 is given by function (more generally distribution) 
u0(x), the solution of the above equation is 

u(x,t) = ∫-∞ +∞  1/2(πt)1/2   exp(-(x-s)2/4t)  u0(s) ds. 

At initial reference instant t = 0, we suppose that the field of temperatures is given by δ(x) or 
Dirac distribution centered at x= 0 (in a rather simplified language it is equal to 0 
everywhere except at t = 0 where it is infinite, the integral being nevertheless equal to 1). 
The repartition of temperatures at reference instant t is, according to the precedent equation 
and the properties of δ(x), given classically by the Laplace-Gauss function 

u(t,x) =  (4πt)1/2 exp(-x2/4t). 

When reference instant t tends to +∞, this function “flattens” and tends to ε(x) or “epsilon 
distribution” (Vallée, 1992), in short it is equal to zero everywhere, the integral being 
nevertheless equal to 1. We have  

(∂u(t,x)/∂t)2 =  1/16π  (1+x2/2t)2/ t3  exp(-x2/2t) 

and 

∫R  (∂u(t,x)/∂t)2 dx = 3 (2π)1/2/16  t-5/2. 
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So the « internal duration » of reference interval (t1,t2) is, by integration from t1 to t2,  

d(t1,t2) = (2π)1/2/8  (t1 -3/2 – t2 -3/2) 

and an “internal time” is given by the following function (increasing with t) 

 θ(t) = - (2π)1/2/8   t – 3/2.    (12) 

When reference time t varies from 0 to + ∞, “internal time” θ varies from - ∞ to 0. Initial 
reference instant t = 0 is pushed back to - ∞. “Internal duration” from t >0 to +∞, is finite and 
equal to (2π)1/2/8  t-3/2. 

6. Time and cosmology 
We shall now interpret the notion of “internal time” in the field of cosmology. We consider 
models for which the state of the universe, at reference instant t, is given by the so called 
scalar factor R(t). According to Lemaître, Friedman and Robertson (Berry, 1976) a possible 
equation of evolution is 

 (dR(t)/dt)2  =  8πG/3   ρ(t) R2(t)  –kc2  +  Λ/3  R2(t),    (13)   

R(0) = 0,                          

G being the gravitational constant, c the speed of light, k the index of curvature (k= -1, space 
with negative curvature; k = 0, flat space; k =+1, space with positive curvature), Λ the 
cosmological constant, ρ(t) the density of matter equal to a/R3(t)) or its material equivalent 
b/R4(t) when there is only radiation, a and b being two constants. When k = +1, R(t) is 
interpreted as the radius of the universe. 

6.1 Radiation with null cosmological constant 
If we consider the case of positive curvature with null cosmological constant and density of 
matter negligible compared to the equivalent density of matter of pure radiation (k=+1, 
Λ=0, ρ(t) = b/R4(t)), we have  

 (dR(t)/dt)2 = 8πG/3  b/R2(t) - c2     (14)                          

and 

R(0) = 0.                                                   

This case corresponds to the « elliptic explosion-implosion” considered above where, after 
having taken the square of the two members of equation (1), we replace X(t) by R(t), choose  

q = cp,  

and 

p = (b8πG/3)1/2 /c2.  

It gives, according to (2), 

R(t) = q/p (2pt – t2)1/2 = (2(8πGb/3)1/2 t –c2t2)1/2 

and the graph of function R(t) is, as we know, elliptical. 
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The “internal time“ of this cosmological system is, according to equation (3), 

θ(t) = c2p/2  (Log t – 2t/p  - Log(2p – t)), 

or 

 θ(t)  = (2πGb/3)1/2 (Logt – tc2/(2πGb/3)1/2  -  Log(2(2πGb/3)1/2 –t).          (15)                   

While reference time t goes from 0 (big bang) to t = 2p (big crunch) “internal time” θ goes 
from -∞ to + ∞. In that case I propose to call θ “generalized cosmological time” (Vallée, 1996, 
2005) in remembrance of “cosmological time” (Milne, 1948) given by 

c2p/2  Logt  

or 

 (2πGb/3)1/2 Logt.  (16) 

which is approximately valid for t “small”.  
If we consider now the case of flat space, null cosmological constant and pure radiation 

k = 0, Λ = 0, 

ρ(t) = b/R4(t)), 

we have 

(dR(t)/dt)2 = 8πG/3  b/R2(t),  

or 

dR(t)/dt = 2 (2πGb/3)1/2 /R(t). 

We recognize, according to (9), a “parabolic explosion” with h=2(b2πG/3)1/2). We have  

R(t) = 2 (b2πG/3)1/4  t ½ 

and, according to (10), the “internal time” is given by 

 θ(t) =  (2πGb/3)1/2  Logt,   (17)                          

identical to the approximate formula (13). While t goes from 0 (big bang) to +∞, θ varies 
from -∞ to +∞. 

6.2 No matter nor radiation 
There are other cases (Berry, 1989) for which we can introduce  “internal time”. Some of 
them may not be realistic, but due to the uncertainty concerning our conception of the 
universe and its evolution, they must not be discarded systematically. 
For example we may have a universe with no matter and no radiation, at least as an 
approximation. As a first case we add that space has a negative curvature and a negative   
cosmological constant  

k = -1, Λ < 0,  

ρ(t) = 0.  
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We have 

(dR(t)/dt)2 = c2 + Λ/3 R2(t),  R(0) = 0, 

dR(t)/dt = (c2 + Λ/3 R2(t))1/2, 

which gives 

R(t) = c (3/|-Λ|)-1/2  sin(t (|-Λ|/3)1/2). 

R(t) starts from 0 (big bang) reaches its maximum  c(3/|-Λ|)1/2,decreases and attains 0 at t = 
2π (|-Λ|/3)-1/2 (big crunch). We have  

(dR(t)/dt)2  =  c2 cos2(t (|-Λ|/3)1/2)) = c2/2 (1+cos 2t (|-Λ|/3)1/2) 

which give after integration 

 θ(t) = c2/2  (t + sin2t(|-Λ|/3)1/2 ) /2(|-Λ|/3)1/2).   (18) 

So θ varies from 0 to c2π/4 (|-Λ|/3)-1/2 as t varies from 0 to π/2 (|-Λ|/3)-1/2. A finite 
reference duration gives here a finite “internal duration”. 
Another possibility is the case of a universe with no matter nor radiation as above but with 
positive curvature and positive cosmological constant 

k = +1, Λ > 0, 

ρ(t) = 0.  

We have 

(dR(t)/dt)2  = -c2 + Λ/3  R2(t),     

dR(t)/dt = (-c2 + Λ/3 R2(t))1/2,, 

and so 

R(t) = c (3/Λ)1/2  cosh(t(Λ/3)1/2). 

R(t) starts from c(3/Λ)1/2 at t= 0 and tends, in a way closer and closer to an exponential  to 
+∞ as t tends to +∞. We have 

(dR(t)/dt)2 = c2 sinh2(t(Λ/3)1/2), 

and after integration 

 θ(t) = c2/2  (-t + cosh2(t(Λ/3)1/2/2(Λ/3)1/2),  (19) 

which varie from c2 /2 to +∞ when t varies from 0 to +∞ (not forgetting that θ is defined up 
to an arbitrary constant). An infinite reference duration gives an infinite “internal duration”. 

6.3 Matter but no radiation 
We shall consider some other cases, also presented by Berry, where radiation is negligeable. 
We start with the hypothesis of a flat space and a negative cosmological constant 

k=0, Λ<0,  
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The “internal time“ of this cosmological system is, according to equation (3), 

θ(t) = c2p/2  (Log t – 2t/p  - Log(2p – t)), 

or 

 θ(t)  = (2πGb/3)1/2 (Logt – tc2/(2πGb/3)1/2  -  Log(2(2πGb/3)1/2 –t).          (15)                   

While reference time t goes from 0 (big bang) to t = 2p (big crunch) “internal time” θ goes 
from -∞ to + ∞. In that case I propose to call θ “generalized cosmological time” (Vallée, 1996, 
2005) in remembrance of “cosmological time” (Milne, 1948) given by 

c2p/2  Logt  

or 

 (2πGb/3)1/2 Logt.  (16) 

which is approximately valid for t “small”.  
If we consider now the case of flat space, null cosmological constant and pure radiation 

k = 0, Λ = 0, 

ρ(t) = b/R4(t)), 

we have 

(dR(t)/dt)2 = 8πG/3  b/R2(t),  

or 

dR(t)/dt = 2 (2πGb/3)1/2 /R(t). 

We recognize, according to (9), a “parabolic explosion” with h=2(b2πG/3)1/2). We have  

R(t) = 2 (b2πG/3)1/4  t ½ 

and, according to (10), the “internal time” is given by 

 θ(t) =  (2πGb/3)1/2  Logt,   (17)                          

identical to the approximate formula (13). While t goes from 0 (big bang) to +∞, θ varies 
from -∞ to +∞. 

6.2 No matter nor radiation 
There are other cases (Berry, 1989) for which we can introduce  “internal time”. Some of 
them may not be realistic, but due to the uncertainty concerning our conception of the 
universe and its evolution, they must not be discarded systematically. 
For example we may have a universe with no matter and no radiation, at least as an 
approximation. As a first case we add that space has a negative curvature and a negative   
cosmological constant  

k = -1, Λ < 0,  

ρ(t) = 0.  
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We have 

(dR(t)/dt)2 = c2 + Λ/3 R2(t),  R(0) = 0, 

dR(t)/dt = (c2 + Λ/3 R2(t))1/2, 

which gives 

R(t) = c (3/|-Λ|)-1/2  sin(t (|-Λ|/3)1/2). 

R(t) starts from 0 (big bang) reaches its maximum  c(3/|-Λ|)1/2,decreases and attains 0 at t = 
2π (|-Λ|/3)-1/2 (big crunch). We have  

(dR(t)/dt)2  =  c2 cos2(t (|-Λ|/3)1/2)) = c2/2 (1+cos 2t (|-Λ|/3)1/2) 

which give after integration 

 θ(t) = c2/2  (t + sin2t(|-Λ|/3)1/2 ) /2(|-Λ|/3)1/2).   (18) 

So θ varies from 0 to c2π/4 (|-Λ|/3)-1/2 as t varies from 0 to π/2 (|-Λ|/3)-1/2. A finite 
reference duration gives here a finite “internal duration”. 
Another possibility is the case of a universe with no matter nor radiation as above but with 
positive curvature and positive cosmological constant 

k = +1, Λ > 0, 

ρ(t) = 0.  

We have 

(dR(t)/dt)2  = -c2 + Λ/3  R2(t),     

dR(t)/dt = (-c2 + Λ/3 R2(t))1/2,, 

and so 

R(t) = c (3/Λ)1/2  cosh(t(Λ/3)1/2). 

R(t) starts from c(3/Λ)1/2 at t= 0 and tends, in a way closer and closer to an exponential  to 
+∞ as t tends to +∞. We have 

(dR(t)/dt)2 = c2 sinh2(t(Λ/3)1/2), 

and after integration 

 θ(t) = c2/2  (-t + cosh2(t(Λ/3)1/2/2(Λ/3)1/2),  (19) 

which varie from c2 /2 to +∞ when t varies from 0 to +∞ (not forgetting that θ is defined up 
to an arbitrary constant). An infinite reference duration gives an infinite “internal duration”. 

6.3 Matter but no radiation 
We shall consider some other cases, also presented by Berry, where radiation is negligeable. 
We start with the hypothesis of a flat space and a negative cosmological constant 

k=0, Λ<0,  
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ρ(t) = a/R3(t).  

We have 

(dR(t)/dt)2 = 8πGa/3/R(t) + Λ/3  R2(t), 

which gives, A being a constant, 

 R(t) = A sin2/3 (t/2  (3|Λ|)1/2).    (20) 

So R(t) starts from 0 at t = 0 with infinite speed (big bang) reaches its maximum, decreases 
and attains 0 again for t = 2π/(3|Λ|)1/2 (big crunch). Near t = 0 R(t) behaves as t2/3  which is 
different from t1/2. So, as we have seen, there is no push back of reference instant t= 0 to -∞ 
and, for analogous reasons, no push forward of instant t = 2π/(3|Λ|)1/2 to + ∞.   
We have now the intermediary case where the cosmological constant is equal to zero (k=0, 
Λ=0, ρ(t) = a/R3(t))., which gives 

(dR(t)/dt)2 = 8πGa/3 /R(t)   

and 

R1/2(t) dR(t)/dt = (8πGa/3)1/2 

or 

R(t) = (8πGa/3)1/3  t2/3 

When t varies from 0 to +∞, R(t) increases from 0 with infinite speed (big bang) to +∞. 
We have 

(dR(t)/dt)2  =  4/3  (8πGa/3)2/3  t-2/3, 

which gives after integration 

 θ(t) = 3 (8πGa/3)2/3 (2/3)2/3  t1/3.  (21) 

There is no push back of reference instant t = 0. 
Now we must see the case where the cosmological constant is positive (k=0, Λ>0, ρ(t) = 
a/R). We have 

(dR(t)/dt)2 = 8πG/3 a/R(t) +Λ/3 R2(t) 

and B being a constant 

 R(t) = B sinh2/3(t/2  (3Λ)1/2). (22) 

R(t) starts from zero at t=0 with infinite speed (big bang) and tends to +∞ exponentially. 
There is no push back of reference instant t=0 to -∞. 

6.4 Null cosmological constant and no radiation 
There are other interesting cases with negligible radiation and null cosmological constant. 
We start with a space of negative cuvature (k=-1,Λ=0, ρ(t) =a/R3(t)). We have 

 (dR(t)/dt)2 = 8πGa/3 /R(t) + c2.    (23) 
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It is easier to represent the graph of function  R(t) parametrically than explicitely. This gives 
with 0 ≤ u 

R(t) = 8πGa/6  (coshu - 1), 

t = 8πGa/6c (sinhu - u). 

R(t) starts from 0 at reference instant t= 0 with infinite speed (big bang), then tends to +∞ 
asymptotically as ct. Near t =0, R(t) behaves as t1/3. It proves as we have already seen that 
there is no push back of reference instant t =0  to -∞.  
If space is flat (k=0, Λ=0, ρ(t) = a/R3) we find a case already studied above, we have 

(dR(t)/dt)2 = 8πGa/3/R(t) 

and 

θ(t)= 3 (8πGa/3)2/3 (2/3)2/3 t1/3. 

We also have the case of a space of positive curvature (k=+1,Λ=0,ρ(t)=a/R3). We have 

 (dR(t)/dt)2 = 8πGa/3/R(t) – c2.     (24) 

The graph of function R(t) is a cycloid represented parametrically by 

R(t) = 8πGa/6 (1 – cosv), 

t = 8πGa/6c (v – sinv), 

0 ≤ v ≤ π.  

R(t) starts from 0, at reference instant t=0, with an infinite speed (big bang). It increases up 
to 8πGa/6 attained at t = 8πGa/6c (π/2 -1), then decreases to 0 attained at t =   8πGa/6  (π – 
2). Near t = 0, R(t) behaves as t2/3 and so there is no push back of instant t = 0 to - ∞, and for 
similar reasons no push forward of instant  t = 8πGa/6  (π-2) to + ∞. 

7. Another approach to “internal time” 
This new approach will put, metaphorically speaking, emphasis on perception. The purpose 
being to propose a modelling of the perception duration. First we consider the linear 
differential equation 

 dx(t)/dt = - a(t) x(t) + v(t),   (25)   

where t is reference time, x(t) and v(t) two scalar functions . We have classically   

 x(t) =  φ(t, t0) x(t0)  +  ∫to,t  φ(t,τ) v(τ) dτ    (26) 

where   

 φ(t, t0) = exp (- ∫t0, t  a(s) ds ) (27) 

with the hypothesis that φ(t, t0)  tends to 0 if t tends to + ∞. When a(t) is a mere constant a, it 
means obviously that a is strictly positive. The sign – has been placed before the integral to 
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ρ(t) = a/R3(t).  
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make more evident that the positivity of a has this consequence. Let us remark that we have 
the following property of  “ transitivity” 

 φ(t’,t) φ(t,τ) = φ(t’,τ).   (28) 

We interpret v(t) as an external influence. In the most simple case we have  

v(t) = b(t) u(t), 

more generally we could have 

v(t) = b0(t) u(t) + b1(t) du(t)/dt + … 

involving derivatives of u(t). This formulation is nor irrealistic and is well adapted to the 
modellisation of a tachymeter or an accelerometer if we consider mainly the first or the 
second derivatives the other terms being rather negligible. This  formula which we may also 
write with the help of the Dirac distribution  δ and its derivatives  

v(t) = ∫-∞,+∞ ( b0(τ) δ(t-τ) + b1(τ) δ’(t-τ) + …) u(τ) dτ 

Each bi((t) is a “factor of attention” concerning a particular derivative. The passage of function 
u to function v is made by what we call “observation operator” (Vallée, 1951, 2002). Here this 
operator acts in an instantaneous way, being purely local. The first factor b0(t), or more simply 
b(t), may be considered  positive (when it is null there is no attention and so no perception at 
the considered instant t). This factor of attention has  been pointed out (Condillac, 1754) : “…it 
remains an impression more or less strong according to the fact that the attention has been 
more or less intense”. More generally the passage of u to v through v = O(x), O being an 
“observation operator”, is not instantaneous but hereditary, that is to say involving the past 
and present of u. This has been observed (Bergson, 1939): “In fact ‘pure’ perception, that is to 
say instantaneous, is only an ideal, a limit. Every perception fills a certain length of duration, 
extends the past in the present…”. For example we may have a convolution 

v(t) = ∫t0 ,t   k(t-τ) u(τ) dτ, 

where v(t) depends upon the values of u on interval (t0,t). More generally, if we do not leave 
the case of linear  “observation operators” we have a Volterra composition giving 

v(t) = ∫t0 t  k(t,τ) dτ . 

The formalism of “observation operators” permits to see in which cases such an operator 
does not alter the observed function u. We must have  

O(u) = λ u, 

so u must be an eigen function of operator O and λ is the associated eigen value which may 
be complex. If λ = 1, we have a fixed point. We give these details about “observation 
operators” because we shall meet them in several circumstances, the problem of 
appreciation of time having to do with observation and more generally with what we could 
call “mathematical epistemology” (Vallée, 2002). 
Let us come back to the differential equation and its solution (26). We interpret φ(t,τ) v(τ) as 
what remains at instant t of the perception v(τ) felt at anterior instant τ , it is the result of the 
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transfer by memorization of v(τ) from τ to t. The property of transitivity (27) makes this 
transfer coherent. According to the hypothesis that φ(t,τ) tends to 0  if  t-τ tends to +∞, we 
may say that the transferred perception  φ(t,τ) v(τ) tends to 0 if τ tends to  - ∞. In other words 
we may conclude that the more ancient is a perception the more feeble is its remembrance. If 
our differential system starts with the null state we have according to (26) a Volterra  
composition  which reduces to convolution when a(s) is a constant a 

x(t) = ∫ t0, t   φ(t,τ) v(τ) dτ. 

We may interpret  x(t) as the result of the superposition of all the successive perceptions, 
from t0 to t, as they are transferred to t by memorization. The passage from v(t)  to x(t) is 
given by a special type of linear “observation operator” which we call “memorization 
operator”. It may be compared to the factor of forgetfulness (Vogel, 1965) or the memory 
coefficient (Allais, 1972).   
We shall consider now differential equation (25), or more precisely its solution (26) where 
we replace x(t) by θ(t),  as a model of perception and memorization of duration valid for a 
dynamical system considering t as “reference time” and θ(t) as a subjective or “internal 
time”, even if these expressions are to be understood metaphorically. Taking into account 
(27) we have 

 θ(t) = ∫ t0,t  exp (-∫ τ,t  a(s)ds)  v(τ) dτ,    (29) 

to which we add 

a(t) ≥ 0,      v(t) ≥ 0 . 

While t – t 0  is the reference duration of interval (t0, t),  θ(t) – θ(t0) =  θ(t) is its subjective or 
internal duration. It depends upon the way the considered system perceives through v(t) 
and memorizes, not upon the way the state of the system evolves as it was the case in the 
first approach to “internal time”. 
Of course t is a good parametrisation of time, in the sense that two distinct instants are 
represented by two different values of t.  If θ(t) is to be a good parametrisation of time, it 
must be a strictly increasing function of t, a condition realized if  v(t) never vanishes on an 
interval not reduced to a mere instant. The hypothesis that  a(t) ≥ 0 has for consequence that 
the factor of memorization φ(t,τ) decreases in the large when τ diminishes.  
We must now interpret function v(t) in the most simple case where  

v(t) = b(t) u(t), 

with  

b(t) ≥  0  ,   u(t)  ≥  0. 

Of course more elaborated cases could be considered, making a full use of « observation 
operators ». 
We consider that function u(t) gives the evolution of the weight of importance of reference 
instant t. The very simple “observation operator” represented by b(t) appears as a “factor of 
attention” given to u(t) which represents the intrinsic importance of reference instant t itself. 
Since t is by definition an objective time or “reference time”, all instants t have an equal 
intrinsic importance which we may decide to be equal to 1. So we may write simply 
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transfer by memorization of v(τ) from τ to t. The property of transitivity (27) makes this 
transfer coherent. According to the hypothesis that φ(t,τ) tends to 0  if  t-τ tends to +∞, we 
may say that the transferred perception  φ(t,τ) v(τ) tends to 0 if τ tends to  - ∞. In other words 
we may conclude that the more ancient is a perception the more feeble is its remembrance. If 
our differential system starts with the null state we have according to (26) a Volterra  
composition  which reduces to convolution when a(s) is a constant a 

x(t) = ∫ t0, t   φ(t,τ) v(τ) dτ. 

We may interpret  x(t) as the result of the superposition of all the successive perceptions, 
from t0 to t, as they are transferred to t by memorization. The passage from v(t)  to x(t) is 
given by a special type of linear “observation operator” which we call “memorization 
operator”. It may be compared to the factor of forgetfulness (Vogel, 1965) or the memory 
coefficient (Allais, 1972).   
We shall consider now differential equation (25), or more precisely its solution (26) where 
we replace x(t) by θ(t),  as a model of perception and memorization of duration valid for a 
dynamical system considering t as “reference time” and θ(t) as a subjective or “internal 
time”, even if these expressions are to be understood metaphorically. Taking into account 
(27) we have 

 θ(t) = ∫ t0,t  exp (-∫ τ,t  a(s)ds)  v(τ) dτ,    (29) 

to which we add 

a(t) ≥ 0,      v(t) ≥ 0 . 

While t – t 0  is the reference duration of interval (t0, t),  θ(t) – θ(t0) =  θ(t) is its subjective or 
internal duration. It depends upon the way the considered system perceives through v(t) 
and memorizes, not upon the way the state of the system evolves as it was the case in the 
first approach to “internal time”. 
Of course t is a good parametrisation of time, in the sense that two distinct instants are 
represented by two different values of t.  If θ(t) is to be a good parametrisation of time, it 
must be a strictly increasing function of t, a condition realized if  v(t) never vanishes on an 
interval not reduced to a mere instant. The hypothesis that  a(t) ≥ 0 has for consequence that 
the factor of memorization φ(t,τ) decreases in the large when τ diminishes.  
We must now interpret function v(t) in the most simple case where  

v(t) = b(t) u(t), 

with  

b(t) ≥  0  ,   u(t)  ≥  0. 

Of course more elaborated cases could be considered, making a full use of « observation 
operators ». 
We consider that function u(t) gives the evolution of the weight of importance of reference 
instant t. The very simple “observation operator” represented by b(t) appears as a “factor of 
attention” given to u(t) which represents the intrinsic importance of reference instant t itself. 
Since t is by definition an objective time or “reference time”, all instants t have an equal 
intrinsic importance which we may decide to be equal to 1. So we may write simply 
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vt) = b(t) 

as the weight attributed to instant t  is equal to the “factor of attention” b(t) at this instant.  

7.1 Perception of duration with imperfect memorization 
In our model we have an imperfect memorization when a(t) is not  identical to 0. The factor 
of memorization 

φ(t,τ) = exp (- ∫τ,t  a(s)ds) 

is strictly inferior to 1 and  tends to 0 when t – τ tends to + ∞, so when τ tends to - ∞. The 
remembrance of past perceptions vanishes with time. Since, as we have seen, v(t) is equal to 
b(t) we may write  according to (28) 

θ(t) = ∫t0, t  exp ( - ∫ τ, t  a(s)ds) b(τ)dτ, 

or  

dθ(t) = (-a(t) θ(t) + b(t)) dt, 

explaining the antagonistic roles of  b(t) > 0   and  -a(t) θ(t) < 0 , representing attention on 
one side and oblivion on the other. Or, if we consider the case where a(t) reduces to constant 
a>0, 

θ(t) = exp (-at)  ∫to,t  exp aτ  b(τ) dτ. 

It is interesting to see what happens when b(t) is a Dirac distribution δ(t-γ), centered on 
instant γ . It is an idealisation  which gives 

θ(t) =  exp (-a (t-γ)) , 

t > γ. 

We see that the reference duration of instant γ, obviously equal to 0, is perceived just after 
this instant, due to the infinite attention implied, as having a finite subjective or internal 
duration; It is perceived later has having a decreasing value tending to 0. If we replace the 
Dirac δ by a flash of attention, things are not so sharply defined but are of the same nature: a 
very short interval of reference time is perceived as middle sized interval of “internal time” 
and this impression diminishes with time and disappears.  The reference time, 1/a, 
necessary to see the perceived duration divided by e is a measure of what we may call the 
“subjective duration of the present” or the “thickness of an instant”, in accordance with 
Bergson’s remark quoted above and close to the concept of  constant of time familiar in 
dynamics. 

7.2 Perception of duration with perfect memorization 

Perfect memorization is obtained when the factor of memorization is always equal to 1, that 
is to say when a(t) is identical to 0. Then  

dθ(t)/dt  = b(t), 

with 
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b(t) ≥  0 , θ(t0) = 0. 

We have 

 θ(t) = ∫t0,t  b(τ) dτ,   (30) 

it is the subjective or “internal duration” of interval (t0,t). In other terms it is the subjective 
duration of instants of consciousness in this interval, instants where b(t) = 0 having no 
impact (metaphorically or not : deep sleep or coma). If b(t) takes only values 1 or 0, θ(t) is 
equal to the internal duration (as well as reference duration) of instants of consciousness. 
When b(t) takes value 1 at discrete instants it acts as  a stroboscopic selecting device. When 
b(t) is constant θ(t) is proportional to t-t0. If for example, the “factor of attention” decreases 
exponentially with time, that is to say if  

b(t) =   b exp(-λt), 

with 

b > 0, λ > 0.  

We have, with t0 = 0, 

θt) = 1- exp(-λt). 

The “internal duration” or perceived duration since t0 = 0, increases from 0 to 1 while 
“reference duration” tends to +∞. This circumstance may be found during the observation of 
a disintegrating radioactive  material if the factor of attention b(t) is proportional to 
disintegration activity which decreases exponentially.  

8. Another approach to cosmology and other problems 
First we consider the case of perfect memorization for a conscious being which may be 
human. It has often  been remarked that the perceived or “internal duration” of the same 
interval of “reference time” diminishes with age. It may be interpreted by saying that the 
intrinsic importance of an instant  in early age is much greater than later. Birth may be 
compared to a kind of biological big bang, particularly if we consider that life starts at the 
very moment of conception. Another argument is that an interval of reference time 
measured by comparison to the length life already elapsed, seems shorter and shorter. In 
other words we may say that the “factor of attention” given to a reference instant is 
proportional to the intrinsic importance of this instant. So if t = 0 is the reference instant of 
conception, an acceptable “factor of attention “ b(t) adapted to this case may be given by a 
function decreasing with time and starting with a great value, we may even have b(0) = + ∞. 
The most simple example is given by  

 b(t) = b/t ,      (31) 

b >0.           

Then we have  

θ(t) – θ(t0) = b Log (t/t0)  = b Log t - b Log t0,   
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interval of “reference time” diminishes with age. It may be interpreted by saying that the 
intrinsic importance of an instant  in early age is much greater than later. Birth may be 
compared to a kind of biological big bang, particularly if we consider that life starts at the 
very moment of conception. Another argument is that an interval of reference time 
measured by comparison to the length life already elapsed, seems shorter and shorter. In 
other words we may say that the “factor of attention” given to a reference instant is 
proportional to the intrinsic importance of this instant. So if t = 0 is the reference instant of 
conception, an acceptable “factor of attention “ b(t) adapted to this case may be given by a 
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b >0.           

Then we have  
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but since θ(t) is defined up to an arbitrary constant, we write 

 θ(t) = b Log t      (32)  

We find here a logarithmic psychological time already proposed (Lecomte du Noüy, 1936) 
on the basis of the speed of cicatrisation of wounds which decreases with time. With this 
“internal time”, the beginning of life is pushed back to - ∞, a feeling frequent among human 
beings. Considerations formally similar may be developed in the case of some 
thermodynamical systems where entropy decreases as 1/t, generating an “entropic time” 
(Prigogine, 1947). 
We had found the same result with “parabolic explosion” and with the case, seen at the end 
of section 6.1, which introduces Milne’s cosmological time. Near reference instant t= 0 (big 
bang) the events affecting the universe are important to an extreme, it is quite acceptable to 
admit that b(t), as a physical “factor of importance” (very metaphorically a “factor of 
attention” adapted to it), has a pole at  t = 0 and may be represented by function 1/t. 
Reference instant t= 0 is pushed back to “internal instant” θ = - ∞. From the “internal time” 
point of view this universe has no beginning, the instant of big bang is not an “internal 
instant”.  
We may imagine now a more general case, of explosive-implosive type. The reference 
instants near the beginning of explosion (t = 0) or near the end of implosion (t =σ) have a 
tremendous importance and we may admit that function b(t)  has a pole at  each of these 
points. The most simple example, if we affect the two poles of the same coefficient b, 
assuming that they are of the same importance, is given by 

 b(t) = b(1/t  +  1/σ-t),   (33) 

b> 0, σ > 0,                                                          

and then we have 

θ(t) = b Log (t/t0) – b Log (σ-t/σ-t0) 

or, θ(t) being defined up to a constant, 

 θ(t) = b (Log t – Log (σ-t)),    (34) 

which varies from -∞ (at t = 0) to +∞ (at t = σ) and is equal to 0 for t = σ/2.  It is the reciprocal 
of the logistic function  

t(θ) = σ exp θ/b / 1 + exp θ/b . 

We already had a result close to (34) with the case of elliptic explosion-implosion which 
gave for “internal time”  

 θ(t) =    q2/2p  (Logt – 2t/p – Log(2p-t))    (4) 

met again in the cosmological case of radiation with null cosmological constant (15). 
According to (34) reference instants t = 0 and t =σ are pushed back to - ∞ for the first one and 
to + ∞ for the second. There is no reference instants for big bang nor for big crunch So the 
“life of the universe” whose reference duration is finite and equal to σ has an infinite 
“internal duration”. From the “internal time” point of view this universe has no beginning 
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nor end as well as in the elliptic explosion-implosion and cosmological case with no 
radiation and  null cosmological constant.  
The presence of term 2t/p may be surprising. In fact it does not exist in the new formulation 
(34). If we identify σ with 2p and q2/2p to b, to make the comparison more clear, (4) 
becomes 

θ(t) =  b (Logt – 4t/σ – Log(σ-t)). 

In the case of elliptic « explosion-implosion”, according to the following expression given in 
section 2.1 

(d(X(t)/dt)2  = q2/2p (1/t  - 2/p  + 1/2p-t)), 

We see that the index of importance of reference instant t contains, apart from the terms 
involving 1/t and 1/2p-t , a constant negative term. The result is that for t = p, the index of 
importance is equal to 0. This is quite normal since at inst ant t = p the speed of evolution of 
the system is null. Since equation (33) gives 

b(σ/2) = 4/σ, 

we may change (33)  into 

 b(t) = b (1/t – 4/σ +  1/σ-t),  (35) 

the factor of importance or of attention b(t), always positive, being considered as a whole 
and not decomposable into parts. 
We may also consider that the behaviour of the system near the end of its evolution is not 
necessarily symmetrical of its behaviour near the beginning, and propose  

b(t) = b1 1/t  +  b2  1/σ-t, 

b1 > 0 ,  b2  > 0, 

or even, if we want to have  

b(σ/2) = 0, 

 b(t) = b1 1/t   -  2 (b1+ b2)/σ  + b2 1/σ-t .       (36) 

Since we made a comparison between an explosive system with an infinite speed of 
evolution at the beginning,  which is the case of universe in certain modellisations, and the 
evolution of a human being (or another sort of conscious creature) as far as “internal time” is 
concerned. We could also make the same comparison between an explosive-implosive 
system with an infinite positive speed of evolution at the beginning and an infinite negative 
speed at the end, also a possible case for universe or a conscious creature.  

9. Conclusion 
The measure of time has always been a problem to philosophers and scientists. Early human 
beings of the paleolithic age founded it on the regular movements of moon and sun and the 
apparent rotation of heavens, opening the way to scientific thinking. It has been said that if 
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the sky of earth had been extremely cloudy this sort of thinking would have been delayed or 
even would never have started. Space seems to have been less mysterious to human mind 
up to the point that the standard representation of time is a straight line, even if attempts to 
introduce n dimensional time have been made (Vallée, 1991).But aside from attempts to 
measure time in a way acceptable to all, time as it is felt by each individual is another 
problem. Each of us, by an “inverse transfer” (Vallée, 1974) is unconsciously ready to 
attribute his own intimate structures, also his feeling of time and duration to universe itself. 
A behaviour which, despite its obvious defect of giving a distorted image of the 
environment  has the advantage to render time more familiar, introducing a kind of taming 
of the external world. 
Influenced by the subjective apprehension of time we evoked, our aim is to propose, for a 
dynamical system, this expression being taken with its broadest meaning, a concept of 
“internal time”. The system may be inanimate, in the sense that, for it, consciousness is 
meaningless, or it may be a conscious being. So in many cases certain concepts will be used 
metaphorically, particularly when applied to the inanimate. We used the concept of 
importance of an instant, giving two kinds of definitions. In the first case the degree of 
importance is directly linked to the intensity of change of the state of the system at this 
instant, a point of view which is more or less akin to that of Aristotle and Augustine. In the 
second case, relatively close to that of Condillac or even of Lecomte du Noüy, this 
importance is more or less “felt”. It seems that this aspect of the problem of time has mostly 
interested philosophers and not scientists with the exception of economist Allais and 
cosmologist Milne. 
One of the most interesting results obtained is that in certain cases the “reference duration” 
of the  life (or a part of it) of the system is finite while its “internal duration” is infinite. Of 
course this is not the general case, but permits in some cases, mainly certain “explosion-
implosions” to eliminate apparent paradoxes. Many people when a big bang or big crunch 
theory is presented to them do not see that the “instant” of the big bang or the “instant” of 
the big crunch are not  instants. They do not belong to the set of  instants of time as well as 
the degree 0 of Kelvin temperature scale is not  a degree of temperature in fact unaccessible. 
Allusions made to psychological interpretation of some sort of “biological” explosion-
implosion are obviously extremely controversial, particularly when a sort of big crunch is 
considered. These considerations must be seen from a rather metaphorical point of point of 
view, remembering that in many cases only the qualitative aspects of mathematical results 
must be retained., a viewpoint which is rather new, despite the progress of ideas such as 
fuzzy sets and fuzzy logiics. 
Indeed in recent cosmological models with inflation, big bang is excluded. So what we have 
presented concerning big bang seems to loose a part of its interest. Nevertheless a universe 
starting with R(0) strictly positive may have an “internal time” pushing back t = 0 to θ = -∞, 
since it is only the behaviour of (dR(t)/dt)2 which  is important. Moreover we do not know 
what will be the models of universe even in near future with the problem of  “dark matter”. 
So the idea of “internal time “remains, in cosmology. But another problem arises: before the 
so called Planck’s time there are difficulties concerning laws of physics, and so the definition 
of time itself. 
What about the future of “internal time” in cosmology and other fields? A first point is that, 
for the sake of simplicity, we considered only systems with scalar state. It would be good to 

 
Duration, Systems and Cosmology 93 

generalize to vector state of dimension n. The definition of the index of importance of 
reference instant permits it, since it is the scalar square of a vector. But other indexes are 
possible, they just need to be a norm or any positive increasing function of a norm. The 
choice we made, the square of the Euclidian norm, has many advantages but others are 
eligible. Another direction of research would be to introduce some kind of “internal time” 
adapted to a quantum mechanical systems, despite obvious difficulties, or even to the 
conception of a discrete time having something to do with Planck’s time as a unit of 
duration. 
More generally a scientific introduction of subjectivities affecting systems, in certain cases 
metaphorically speaking, has a great interest. The consideration of concepts intrinsically 
linked to a system, instead of being imposed from the outside, is also very desirable. 
Equations of evolution or values of some traits expressed in term of such subjective or 
intrinsic features may be suggestive. An example  is given by the length of life for certain 
species of animals measured by the number of their heartbeats, length which appears as of 
the same order of magnitude. 
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Revised Concepts for Cosmic Vacuum Energy
and Binding Energy: Innovative Cosmology
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1. Introduction

Contemporary cosmology confronted with WMAP observations of the cosmic microwave
background radiation and with distant supernova locations in the magnitude - redshift
diagram obviously has to call for cosmic vacuum energy as a necessary prerequisite. Most
often this vacuum energy is associated with the cosmological constant Λ, introduced by
Einstein and presently experiencing a fantastic revival in form of ”dark energy”. Within the
framework of General Relavity the term connected with Λ acts analogous to constant vacuum
energy density. With a positive value, Λ describes an inflationary action on cosmic dynamics
which in view of more recent cosmological data to most astronomers appears to be absolutely
needed. In this article, however, we shall question this hypothesis of a constant vacuum
energy density showing that it is not justifyable on physical grounds, because it claims for
a physical reality that acts upon spacetime and matter dynamics without itself being acted
upon by spacetime or matter.
In the past cosmic mass generation mechanisms have been formulated at different places in
the literature and based on different physical concepts. A deeper study proves that these
alternative theoretical forms of mass creation in the expanding universe all lead to terms
in the GR field equations which can be shown to act analogously to terms arising from
vacuum energy. In addition we also demonstrate that gravitational cosmic binding energy
connected with structure formation acts identically to negative cosmic mass energy density,
i.e. reducing the action of proper mass density. This again resembles an action of cosmic
vacuum energy. Hence one is encouraged to believe that actions of cosmic vacuum energy,
gravitational binding energy and mass creation are closely related to eachother, perhaps are
even in some respect identical phenomena.
Based on results presented in this article we propose that the action of vacuum energy on
cosmic spacetime dynamics inevitably leads to a decay of vacuum energy density. Connected
with this decay is a decrease of cosmic binding energy and the appearance of new gravitating
mass in the universe, identifyable with creation of newly appearing effective mass in the
expanding universe. If this all is adequately taken into account by the energy-momentum
tensor of the GR field equations, one is then led to non-standard cosmologies which for the
first time can guarantee the conservation of the total energy both in static and expanding
universes.
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2 Will-be-set-by-IN-TECH

2. The concept of absolutely empty space

The question what means empty space , or synonymous for that - vacuum - , in fact is a very
fundamental one and has already been put by mankind since the epoch of the greek natural
philosophers till the present epoch of modern quantum field theoreticians. The changing
opinions given in answers to this fundamental question over the changing epochs have been
reviewed for example by Overduin & Fahr (2003) , but we do not want to repeat here all of
these different answers that have been given in the past, but only to begin this article we
want to emphasize a few fundamental aspects of our thinking of the physical constitution of
empty space. Especially challenging in this respect is the possibility that empty space could
be energy-charged. This we shall investigate further below in this article.
In our brief and first definition we want to denote empty space as a spacetime without any
topified or localized energy representations, i.e.without energy singularities in form of point
masses like baryons, leptons, darkions (i.e. dark matter particles) or photons, even without
point-like quantum mechanical vacuum fluctuations. If then nevertheless it should be needed
to discuss that such empty spaces could be still energy-loaded, then this energy of empty
space has to be seen as a pure volume-energy, somehow connected with the magnitude of the
volume or perhaps with a scalar quantity of spacetime metrics, like for instance the global
curvature of this space. In a completely empty space of this virtue of course no spacepoints
can be distinguished from others, and thus volume-energy or curvature, if existent, are
numerically identical at all space coordinates.
Under these prerequisites it nevertheless would not be the most reasonable assumption, as
many people believe, that vacuum energy density �vac = ρvacc2 needs to be considered as
a constant quantity whatever spacetime does or is forced to do, i.e. whether it expands,
collapses or stagnates. This is simply because the unit of volume is no cosmologically relevant
quantity - and consequently vacuum energy density neither is. If at all, it would probably
appear more reasonable to assume that the energy loading of a homologously comoving
proper volume does not by its magnitude reflect the time that has passed in the cosmic
evolution, i.e. perhaps that specific quantity has to be a constant. But this then, surprisingly
enough, would mean that the enduring quantity, instead of the vacuum energy density �vac,
is

evac = �vac
√−g3d3V (1)

where g3 is the determinant of the 3d-space metric which in case of a Robertson-Walker
geometry is given by

g3 = g11g22g33 = − 1
(1 − Kr2)

R6r4 sin2 ϑ (2)

with K denoting the curvature parameter, the function R = R(t) determines the
time-dependent scale of the universe and the differential 3-space volume element in
normalized polar coordinates is given by

d3V = drdϑdϕ (3)

This then leads to the relation
evac = �vac

√
R6r4 sin2 ϑ/(1 − Kr2)drdϑdϕ = �vac

R3√
1−Kr2 r2 sin ϑdrdϑdϕ

which shows that a postulated invariance of evac consequently and logically would lead to a
variability of the vacuum energy density in the form
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�vac = ρvacc2 ∼ R(t)−3 (4)
which for instance would already exclude that Einstein‘s cosmological constant could ever
be treated as an equivalent to a vacuum energy density, since requiring the identity Λ =
8πGρvac/c2.
On the other hand the invariance of the vacuum energy per co-moving proper volume, evac,
can of course only be expected with some physical sense, if this quantity does not do any
work on the dynamics of the cosmic metrics, especially by physically or causally influencing
the evolution of the scale factor R(t) of the universe.
If on the other hand such a work is done and vacuum energy influences the dynamics
of the cosmic spacetime, since it leads to a non-vanishing energy-momentum tensor, then
thermodynamic requirements should be fulfilled, for example relating vacuum energy density
and vacuum pressure by the standard thermodynamic relation (see Goenner (1997))

d
dR

(�vacR3) = −pvac
d

dR
R3 (5)

This equation is shown to be fulfilled by an expression of the form

pvac = −3 − n
3

�vac (6)

if the vacuum energy density itself is represented by a scale-dependence �vac ∼ Rn. Then,
however, it turns out that the above thermodynamic condition, besides for the trivial case
n = 3 when the vacuum does not at all act as a pressure (since pvac(n = 3) = 0) , is only
non-trivially fulfilled for n ≶ 3 which would still allow for n = 0 , i.e. a constant vacuum
energy density �vac ∼ R0 = const.
A much more rigorous, but highly interesting restriction for n is, however, obtained when one
recognizes that the above thermodynamic expression (5) under cosmic conditions needs to be
enlarged by the work that the expanding volume does against the inner gravitational binding
in this volume. In mesoscale gas dynamics (aerodynamics, meteorology etc.)this term does
generally not play a role, however, on cosmic scales there is a need to take into account this
term. Under cosmic perspectives binding energy is an absolutely necessary quanity to be
brought into the thermodynamical energy balance. As worked out in quantitative terms by
Fahr & Heyl (2007a;b) this then leads to the following completed relation

d
dR

(�vacR3) = −pvac
d

dR
R3 − 8π2G

15c4
d

dR
[(�vac + 3pvac)

2R5] (7)

where the last term accounts for binding energy.
This completed equation, as one can easily show, is also solved by the relation of the form
pvac = − 3−n

3 �vac ,

but only if: n = 2 !

meaning that the corresponding vacuum energy density must vary like

�vac ∼ R−2 (8)
This thus means that, if it has to be taken into account that vacuum energy acts upon spacetime
in a thermodynamical sense then the most reasonable assumption for the vacuum energy
density would be to assume that it drops off with the expansion inversely proportional to the
square of the cosmic scale - instead of it being a constant.
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4 Will-be-set-by-IN-TECH

3. Philosophical perspectives of vacuum concepts and an effective
vacuum-energy density

For fundamental conceptual reasons it may be necessary to explore why at all a vacuum
should gravitate, since, when really being ”nothing”, then it should most probably not do
anything. At least based on an understanding that the ancient greek atomists had, the vacuum
is a complete emptiness simply offering empty places and thereby allowing atoms freely
to move. One should then really not expect to have any gravitational action from such a
vacuum. Aristotle, however, brought into this conceptual viewing his principle of nature‘s
objection against emptiness ( ”horror vacui”). This is a new aspect realizing that empty space
around matter particles is not as empty as without those particles, but is polarized by the
existence or presence of real matter. This idea furtheron very much complicated the concept
of vacuum making it a rather lengthy and even not yet finished story (see e.g. Barrow (2000);
Fahr (2004); Wesson et al. (1996)). In the recent decades it became evident that vacuum must
be energy-loaded (see e.g. Lamoreaux (2010); Streeruwitz (1975); Zeldovich (1981)) and by
its energy it should hence also influence gravitational fields, even, if it is not clear in which
concrete form.
Nowadays the GRT action of the vacuum is taken into account by an appropriately
formulated, hydrodynamical energy-momentum tensor Tvac

μν , formulating the metrical source
of the energy sitting in the vacuum as described by a fluid with vacuum pressure pvac and
equivalent vacuum mass energy density ρvac. Then with a constant vacuum energy density
�vac = ρvacc2, as assumed in the present-day standard cosmology (Bennett et al., 2003), one
obtains this tensor in the form (see e.g. Overduin and Fahr, 2001)

Tvac
μν = (ρvacc2 + pvac)UμUν − pvacgμν = ρvacc2gμν (9)

where Uλ are the components of the vacuum fluid 4-velocity vector.
This term, taken together with Einstein‘s cosmological constant term Λ (Einstein, 1917),
and placed on the right-hand side of the GRT field equations then leads to an effective
cosmological constant given by

Λe f f =
8πG

c2 ρvac − Λ (10)

The first problem always seen after Einstein (1917) is connected with the free choice one is
left with concerning the numerical value of Λ. One way to obtain a first answer to that
question, at least for the completely empty, i.e. matter-free space, is a rationally pragmatic and
aprioristic definition, - namely an answer coming up from an apriori definition of how empty
space should be constituted and should be manisfesting itself. If it is rationally postulated
that empty space should be free of any spacetime-curving sources, and thus free of local or
global curvature, if one requires that selfparallelity of 4-vectors at parallel transports along
closed wordlines in this empty space should be guaranteed, and if one expects no action
of empty space on freely propagating test photons in this empty space, then as shown by
Overduin & Fahr (2003) or Fahr (2004) the only viable solution is Λe f f ,0 = 0! , meaning that
the cosmological constant should be fixed such that

Λ0 = Λ − 8πG
c2 ρvac,0 (11)
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where ρvac,0 denotes the equivalent mass density of the vacuum of empty, i.e. matter-free
space. Once fixed in this above form, the cosmological constant cannot be different from
this value Λ0 in a matter-filled universe, simply meaning that in a matter-filled universe the
effective quantity representing the action of the vacuum energy density is given by:

Λe f f =
8πG

c2 (ρvac − ρvac,0) (12)

expressing the interesting fact that in matter-filled universe only the difference between the
values of the vacuum energy densities ρvac,0 of empty space and of matter-polarized space
ρvac gravitates, i.e. influences the spacetime geometry. That could give an explanation why
obviously the vacuum energy calculated by field theoreticians does not gravitate by its full
magnitude.
This also points to the perhaps most astonishing fact that the geometrically relevant vacuum
energy density depends on the matter distributed in space, and in a homogeneous universe
this can only mean that: ρvac = ρvac(ρ) , an idea that deeply reminds to the views already
developed by Aristotle at around 400 bC.
Though this idea of the vacuum state being influenced by the presence of matter in space
appears to be reasonable in view of field sources polarizing space around them by acting
on sporadic quantum fluctuations and partly screening off the strength of real field sources,
it stays nevertheless hard to draw any quantitative conclusions from that context. For that
reason we shall try another way below to find the unknown function ρvac = ρvac(ρ).

4. The standard cosmology based on five cosmic scalar quantities

Standard cosmology is based on some basic scalar quantities that are treated as
3-spacecoordinate-independent, but time-dependent. Amongst these are matter density ρ,
scalar pressure p, isotropic curvature characterized by a space-independent Riemann scalar R,
and the cosmological constant Λ. These basic elements can be used, if the universe is treated
as homogeneously filled with matter of a space-indendent scalar pressure and carries out a
homologous expansion. Then Einstein‘s General relativistic field equations can be condensed
to a set of only two cosmologically relevant linear differential equations of second order for
the scale of the universe R and its first and second derivatives with respect to time, Ṙ and R̈,
given in the form (see e.g. Goenner (1997))

(
Ṙ(t)
R(t)

)2

= H2(t) =
8πG

3
ρ(t)− kc2

R2(t)
+

Λc2

3
(13)

and:

R̈(t)
R(t)

= −4πG
3c2 (3p(t) + ρ(t)c2) +

Λc2

3
(14)

Here H(t) = Ṙ/R is the Hubble function that depends on the contributing densities ρ, the
pressure and the curvature parameter k, attaining values of k = 0 (uncurved space); k = +1
(positively curved space) or k = −1 (negatively curved space).
The matter density ρ nowadays in cosmology is composed of baryonic and dark matter, i.e.
ρ = ρb + ρd, where the two quantities vary identically with cosmic time or cosmic scale.
At cosmic times greater than the recombination period t ≥ trec the associated pressures pb,d
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usually are neglected with respect to their corresponding rest mass densities ρb,dc2. Then
depending on selected values for the ratios Ωb = ρb/ρc , Ωd = ρd/ρc and ΩΛ = ρΛ/ρc
, with ρΛ = Λc2/8πG and the critical density given by ρc = 3H2/8πG, one obtains a
manifold of different solutions R = R(t) of the above system of differential equations, each
belonging to a specific set of numerical values for the five cosmologically relevant parameters:
H0 = H(t0), k, Ωb,0 = Ωb(t0), Ωd,0 = Ωd(t0) and ΩΛ,0 = ΩΛ(t0). To decide which of
these parameter sets best fits cosmologically relevant observational data, like the WMAP data
from the ”Wilkinson Microwave Anisotropy Probe” survey (Bennett et al., 2003) or the distant
supernova data (Perlmutter et al., 1999), multi-parameter fit procedures have recently been
carried out. As the best-fitting consensus the following set of parameters thereby has been
found: H0 = 71km/s/Mpc, k = 0, Ωb,0 = 0, 046, Ωd,0 = 0.23 and ΩΛ,0 = 0.73. These values
are nowadays taken as result of modern precision cosmology, characterizing the facts of our
actual universe. Perhaps, however, a reminder to weaknesses in the basic assumptions of such
a form of precision cosmology may be in place here.
One most essential ingredience of standard cosmology is the assumption that the total,
spacelike mass of the physical universe, conceivable for any spacepoint on the basis of a
point-oriented spacetime metrics g∗ik - irrespective of its dark or baryonic nature, is constant.
This then is usually thought to imply that the corresponding matter densities ρb,d in
a homogeneous universe scale reversely proportional to the 3d- volume of the physical

universe V∗
3 =

∫ x∞ d3x
√

det3 g∗, which in all cases of standard cosmology means inversely
proportional to R3.
Another essential point of standard cosmology is to assume a strict homogeneity of energy
depositions in cosmic space connected with an isotropic homologous expansion of cosmic
matter. Though these items seem to be cosmo-philosophically well supported by the so-called
”cosmological principle” (see e.g. Stephani (1988)), one nevertheless has to recognize that the
actual universe is very much different from expectations derived from this principle. In fact
the actual universe is highly structured in forms of galaxies, galaxy clusters, superclusters,
walls and voids (Ellis, 1983; Geller & Huchra, 1989) - perhaps one can call that a ”structured
homogeneity”. Only on scales larger than several hundred million lightyears the universe
seems to be nearly homogeneous. However if the structuring develops as function of cosmic
time, then this actual universe does not expand like an equivalent one with homogeneously
smeared out matter (Buchert, 2008; Wiltshire, 2007). Matter distribution had perhaps been
very homogeneous, at least down to temperature fluctuations of the order of ΔT

T ≈ 10−5 at
the epoch of the last scattering of CMB photons when the cosmic microwave background
was freezing out of cosmic matter distribution. In the cosmic eons after that phase in
fact matter distribution, as evident in the appearance of the universe, must have become
very inhomogeneous through gravitational growth of seed structures. Fitting a perfectly
symmetrical spacetime geometry to a universe which , however, has a lumpy matter
distribution up to largest scales (e.g. see Wu et al. (1999)) represents a highly questionable
procedure as shown by Buchert (2001; 2005; 2008) or Wiltshire (2007) (see chapter 9.1).
Besides of the above, perhaps the even most problematic concept used in present-day standard
cosmology is the application of a constant vacuum energy density �vac = ρvacc2. Historically
and ideologically this originates from Einstein‘s introduction of a cosmological constant Λ
(Einstein, 1917) emanating from application of the variational principle to the spacetime
Lagrangian (Overduin & Fahr, 2003), appearing as such on the left, i.e. the ”metrical” side
of the GRT field equations, however, when transfered to the right side of these equations,
is equivalent to a vacuum energy density ρvac = c2Λ/8πG, also associated with a vacuum
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pressure pvac = − ρvacc2 (e.g. see Peebles & Ratra (2003)). In this form it has experienced
a great importance in the present epoch of cosmology (Bennett et al., 2003; Perlmutter et al.,
1999).
The problem with this concept of a constant vacuum energy density has already been adressed
in the first section of this paper and here can be enlarged to the whole universe: At the
expansion of the universe, connected with the increase of the cosmic 3-space volume V3,
consequently the total vacuum energy Evac =

∫
ρvacc2dV3

√−g3 ∼ ∫
dV3

√−g3permanently
increases. This could perhaps even be accepted, if vacuum energy is completely actionless
as a cosmologically decoupled quantity with no backreaction to cosmic expansion. As we
have shown before, constant vacuum energy density, however, is associated with a pressure
pvac = −ρvacc2 that evidently acts on the cosmic expansion accelerating its rate. The purely
geometrical increase of cosmic vacuum energy thus is untenable.
This is all the more true when matter density comoves with the cosmic scale expansion to
configurations with permanently decreasing gravitational binding. Here it must appear as
completely unphysical that an evolving cosmic system, at the same time, gains energy in form
of increasing vacuum energy, while simultaneously it has to do work against the internal,
intermaterial gravitational attractive forces. For instance for an uncurved universe (i.e. k =
0) and Λ put equal to zero, the first Friedmann equation (see Equ. (13)) simplifies into the
form Ṙ2 = (8πG/3)ρR2 = Φ(R) and thus allows to identify a relevant cosmic gravitational
potential Φ(R) in analogy to the one in Hamilton-Lagrangian dynamics (see Fahr & Heyl
(2007a;b)). Therefore at the cosmic expansion permanently work has to be done by cosmic
matter against an intermaterial force per mass which for ρ ∼ R−3 is given by

f (R) = − dΦ
dR

=
8πG

3
ρ0R0(

R0
R

)2 (15)

Instead of loosing energy by permanently doing work dE/dt = −Ṙ f (R) against this force
per time unit, - and instead of decelerating its expansion due to that, the universe may even
accelerate its expansion by R̈ = f (R) + ΛRc2/3. With the action of a constant vacuum
energy density (Λ = const) this universe even accumulates more and more energy in form
of vacuum energy. This shows that the concept of constant vacuum energy density implies a
physically highly implausible ”perpetuum mobile” principle: The vacuum permanently acts
upon matter and spacetime geometry, but is itself not acted upon by these latter quantities
(see Fahr & Heyl (2007a;b), and Figure 1 for illustrative purposes).
This may raise the question whether at present with the form of the standard cosmology one
may have a correct basis for a successful description of the given universe and its dynamics.
Thus in the ongoing part of this article we shall investigate the following four fundamental,
cosmologically relevant critical points:

1. Is the mass of the universe constant?

2. What is metric-relevant cosmic mass density?

3. How is gravitational binding energy represented in the energy-momentum tensor?

4. How all of that is reflected in a variable vacuum energy density?

With the arguments given below we demonstrate that an expanding universe with constant
total energy, the so-called ”economic universe” (also termed as a ”coasting universe) is
indicated as most probable in which both cosmic mass density and cosmic vacuum energy
density are decreasing according to (1/R2), R being the characteristic scale of the universe.
Under these conditions the origin of the present universe from an initially pure cosmic
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Fig. 1. Schematic illustration of the physical action of a constant vacuum energy density and
of inter-material cosmic gravitational fields requiring work to be done, if co-moving matter is
transfered to larger cosmic scales S = R.

vacuum state appears to be possible. This is because the incredibly huge vacuum energy
density, derived by quantumfield theoreticians, in this economic universe decays during
its expansion up to present-day scales to just the observationally permitted small value of
the present universe, but its energy reappears in the energy density of created effective
cosmic matter. It is interesting to see that very similar conclusions concerning the ratio
of cosmic vacuum energy and cosmic matter density have been drawn from attempts to
formulate the GRT equations in a scale-invariant, Weyl‘ian form like recently tried in the
Quasi-Steady-State-cosmology (QSSC) by Hoyle et al. (1993), or in conformal cosmological
scalar-tensor theories by Mannheim (2000) or by Scholz (n.d.).

5. How to define the mass of the universe?

According to the famous Mach principle (Mach, 1883) inertial masses of cosmic particles
are not particle-genuine quantities, but have a relational character being a functional of
the spacetime constellation of other cosmic masses in the universe. Only with respect to
other masses accelerations have physical relevance (see also Jammer & Bain (2000)). As a
consequence, inertial particle masses, and, perhaps in the sense of the general relativistic
equivalence principle, also heavy masses, should change their values when the spatial
constellation of the surrounding cosmic masses changes - which is the case in an expanding
universe with increase of its scale R = R(t). This principle implies that inertia depends in
some unclear way on the presence and distribution of other massive bodies in the universe,
and has been seriously studied in its consequences (see reviews given in Barbour & Pfister
(1995), or Barbour (1995),Wesson (2004),Jammer & Bain (2000)).
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In the beginning even Einstein attempted to develop his GR field equations in full accordance
to Mach‘s principle, however, in the later stages he recognized the non-Machian character
of his GR theory and divorced from this principle (Holton, 1970). Experts of this field
still today have controversial opinions whether or not Einstein‘s GR theory is ”Machian”
or ”non-Machian”. Nevertheless attempts have been made to develop an adequate form
of a ”relational”, i.e. Machian mechanics (Goenner, 1995; Reissner, 1995). Especially the
requested concrete scale-dependence of cosmic masses is unclear in its nature, though
perhaps already suggested by conformal invariance requirements or general relativistic action
principle arguments given by early arguments developed in Hoyle (1990; 1992); Hoyle et al.
(1994a;b) along the line of the general relativistic action principle.
We study this relation a little deeper here starting from the question what at all should
and could be called in a physically relevant, conceptually meaningful sense ”the mass of
the universe Mu” and how then it could be understood, if this quantity increases with the
universal scale R? According to the most logical concept, this mass Mu should represent the
spacelike sum over all masses distributed in the universe at some event of time, judged from
some arbitrary cosmic vantage point, i.e. the space-like sum of all masses within the mass
horizon associated to this point. One way to define such a quantity has been mathematically
carried out by Fahr & Heyl (2007b) and leads to the following mathematical expression of
cosmic mass

Muc2 = 4πρ0c2
∫ Ru

0

exp(λ(r)/2)r2dr√
1 − ( H0r

c )2
(16)

where the function in the numerator of the integrand is given by the following metrical
expression

exp(λ(r)) =
1

1 − 8πG
rc2 ρ0

∫ r
0

x2dx√
1−(

H0 x
c )2

(17)

The reason behind this above expression is that the environment around an arbitrary vantage
point is described analogous to a point in the center of a star surrounded by stellar matter
distribution, the difference in this case being only that the metric in this cosmic case also is of
the inner Schwarzschild form, however, with the matter density given by the cosmic density
ρo taking into account the additional fact that matter in the surroundings of a homologously
expanding universe is equipped with the Hubble dynamics of the expanding universe.
As evident from the above expression no real matter can be summed-up anymore from
beyond the ”local Schwarzschild infinity” (i.e. ”point-associated Schwarzschild mass
horizon”, see Fahr & Heyl (2006)) which is at a distance

Ru =
1
π

√
c2

2Gρ0
(18)

which, however, also means that the mass horizon distance is related to the cosmic mass
density by

ρ0(Ru) =
c2

2π2GR2
u

(19)

and naturally leads to a point-associated mass of the universe given by Fahr & Heyl (2006)
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Mu =
3πc2

8G
Ru (20)

This scale dependence of cosmic mass, does not only point to the fact that Mach‘s relation
is fulfilled for the mass of the universe in the above definition of Mu. It in addition also
proves that Thirring‘s relation derived from a completely different context (see Mashhoon
et al. (1984), and also Fahr & Zoennchen (2006)) in the form

Mu =
3c2Ru

4G
(21)

is also fulfilled up to the factor (π/2).

6. Gravitational binding energy reflected in an effective mass density

In a completely different approach Fischer (1993) may be giving from a new aspect of physics
an explanation for this change of cosmic mass Mu with scale R coming to conclusions very
similar to the above ones. He makes an attempt to include the gravitational binding energy
into the energy-momentum tensor Tμν of the GRT field equations. Interestingly enough his
derivations lead to the result, that in a positively curved universe the corresponding term for
the binding, or potential energy density Tp

μν has to be introduced into the GRT equations by

Tp
μν = −C

ρ

Γ
gμν (22)

where gμν denotes the metric tensor, C is an appropriately defined constant which amongst
other factors contains the gravitational constant G, and Γ is the actual curvature radius of the
positively curved universe.
In this formulation two things are perhaps eye-catching: At first this term again contains a
proportionality to the density ρ , and at second this term has a negative sign and has gμν

as a factor, thus in the GRT field equations formally it has the same action as that term
connected with the action of vacuum energy density formulated with the quantity Λe f f .
This points to an interesting physical connection between vacuum energy and gravitational
binding energy. Obtaining its space-like components as vanishing and adding up the time-like
tensor components T00 and Tp

00 of cosmic matter und cosmic binding energy then shows a very
surprising connection between creation of matter and binding energy given in the form

T̂00 = T00 + Tp
00 = (ρ − C

ρ

Γ
)g00 (23)

This can thus be interpreted as saying that the intermaterial, gravitational binding energy
reduces the cosmologically, i.e. geometrically acting, relevant, effective cosmic matter density
to ρ∗ ≤ ρ, where ρ should be called the ”proper density” given in uncurved spacetimes, by
the following amount

ρ∗ = ρ(1 − C
1
Γ
) (24)

If in the course of the cosmic expansion the cosmic curvature radius Γ increases, it thus means
that gravitational binding energy, and, equivalent to that, the cosmic vacuum energy should
decrease, while at the same time the effective density changes in time in a Machian form with
a rate
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ρ̇∗ =
d
dt
[ρ(1 − C

1
Γ
)] (25)

It is perhaps interesting to recognize that for instance for a universe with Hoyle‘s ”steady state
requirement”, i.e. with dρ/dt = 0! , this then evidently would require

ρ̇∗ = ρC
1
Γ2 Γ̇ (26)

This means a mass creation rate proportional to the matter density ρ itself which is positive for
increasing cosmic curvature radius Γ. In other words: At decreasing cosmic binding energy
the effective density increases by the rate ρ̇∗which , as will be shown further down in this
paper, is identical to that one obtained by Hoyle (1948).
It is interesting to notice that an introduction of the gravitational binding energy according to
the suggestion by Fischer (1993) leads to two differential equations that can be combined to

S̈ =
Cρc

6Γ
(S0 − S) (27)

which leads to cosmological solutions for positively curved universes representing an
oscillatory behaviour of the cosmic scale parameter R around an equilibrium value R0 with
positively valued (R ≤ R0) und negatively valued (R ≥ R0) vacuum energy densities in the
successive half-phases of the oscillation. It is perhaps challenging to conjecture that the action
of vacuum energy, binding energy and creation of effective matter density could be closely
related to eachother and perhaps even be identical.

A similar connection between vacuum energy and mass density was also pointed out by ?
who showed that the cosmological term connected with the quantity Λ should be coupled to
matter density ρ and, concretely spoken, should in fact be proportional to it.
The problem of what should be called cosmic matter density thereby is by far not a trivial
one, because the ”matter density” is intrinsically connected with the prevailing spacetime
geometry. The latter, however, only aposteriori is obtained from solutions of the GRT field
equations after putting the right mass density into the energy-momentum tensor. The usual
definition of matter density as ”mass per unit volume” is in fact problematic in curved
spaces. Usually the density is identified with what one should call the ”proper density”, i.e.
mass within a free-falling unit volume, i.e. within a reference system without internal tidal
gravitational accelerations. Of course in the universe one finds co-moving inertial restframes,
nevertheless even in such systems tidal accelerations are acting over finite dimensions of
a Finite 3d-space volume, causing for a metrical distortion of unit volumes. The effect
of this metrical distortion reduces the proper density ρ as has been discussed by Fahr &
Heyl (2007a;b) and for the low-density limit ρ0 � ρc ( with ρc denoting the Schwarzschild
density on a scale RES(M) = 3

√
3M/4πρ0 (see Einstein and Straus, 1945) given by ρc =

(3/4π)(c2/2G)3 M−2 ) also leads to a reduction of the proper density given by an expression

ρ∗ = ρ0(1 − (ρ0/ρc)
1/3) (28)

7. Effective mass change as equivalence to cosmic mass generation

Early attempts to describe universes with mass creation like those presented by Hoyle (1948)
show very interesting relations between this form of matter creation and the change of
effective cosmic matter density. To describe a steady-state universe Hoyle (1948) introduced
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√
3M/4πρ0 (see Einstein and Straus, 1945) given by ρc =

(3/4π)(c2/2G)3 M−2 ) also leads to a reduction of the proper density given by an expression

ρ∗ = ρ0(1 − (ρ0/ρc)
1/3) (28)

7. Effective mass change as equivalence to cosmic mass generation

Early attempts to describe universes with mass creation like those presented by Hoyle (1948)
show very interesting relations between this form of matter creation and the change of
effective cosmic matter density. To describe a steady-state universe Hoyle (1948) introduced
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Fig. 2. Visualization of the Einstein-Straus globule surrounding a mass M within the
expanding Robertson-Walker universe.

a divergence-free mass-creation tensor Cμν = −3RṘδμν/cA into the GR field equations,
with A being a constant curvature scale. With the introduction of this term he can describe
a universe with constant mass density ρ = ρ0 = const, an inflationary expansion R =
R0 exp[c(t − t0)/A], and a mass creation rate given by ρ̇ = c

A ρ0. As we have recently shown
(Fahr & Heyl, 2007a;b) an identical inflationary expansion is also described by an Einstein-de
Sitter cosmological model of an empty universe, however, under the action of a cosmological
constant Λ. This is true, if this constant Λ is related to Hoyle‘s creation rate by

Λ3/2 =
8πG

√
3

c5 ρ̇ (29)

This points to the fact that cosmologically analogous phenomena can be described by the
action either of mass creation ρ̇ or of a cosmological constant Λ = 8πGρvac/c2, i.e. by a
vacuum energy density. It may furthermore be of interest to recognize that Hoyle‘s creation
rate automatically leads to the fulfillment of a quasi-Machian relation between mass and
radius of the universe, which has already been mentioned before, and here reappears from
this context in the form

Mu = Mu0 exp[
c(t − t0)

A
]3 = Mu0

(
R(t)
R0

)3
(30)

The above analysis came along the early mass-creation theory published by Hoyle (1948).
This early theoretical approach has, however, been consequently extended by Hoyle and his
co-workers and has meanwhile been put into a larger astrophysical framework (see Hoyle
et al. (1993; 1994a;b; 1997) where individual strong gravity centers in an expanding universe
are considered that act as centers of mass creation called ”Quasi-steady state cosmologies”
(QSSC-models). Later in this paper we discuss these QSSC-models in a broader context, since
these models are connected with more general scale-invariance requirements in the GRT field
equations. We want, however, to emphasize already here that the above-revealed evidence
(29), here derived from Hoyle‘s early creation theory and revealing a close relation between
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mass creation rate, vacuum energy density and actual cosmic mass density, is again equally
retained in these later QSSC-models as we shall show later in this paper.

8. Mass increase on local scales

According to Einstein & Straus (1945) a locally realized mass M is surrounded by a spherical
shell with a radius RES(M) = 3

√
3M/4πρ0. At this shell surface a steady and differentiable

transition from the inner Schwarzschild metric into the outer Robertson-Walker metric of
a homologously expanding universe is possible. This also implies that spacepoints on the
Einstein-Straus shell are expanding with respect to the center of the shell as Robertson-Walker
spacepoints do, i.e. like

ṘES/RES = Ṙ0/R0 = H0 (31)

with H0 denoting the Hubble constant.
Adopting vacuum energy as being ubiquitously active in the universe one can ask, what
amount of work the pressure connected with this vacuum energy does at the expansion of the
local Einstein-Straus globule. For the inside of this globule this work is positively valued, and
due to energy conservation reasons, it should thus lead to an increase of the energy constituted
by this globule. Ascribing this energy gain to the internal mass of the globule then delivers
the interesting result (Fahr & Heyl, 2007a;b)) that

Ṁ
M

=
ρ0,vac
ρ0,mat

H0 (32)

where ρ0,vac and ρ0,mat denote the densities of the present mass equivalent of the vacuum
energy and of the cosmic matter. For a constant ratio of these energy densities the above
relation simply expresses, - since Ṁ/M ∼ Ṙ/R - (i.e. the economical universe, see further
down), a proportionality of the globular mass M, - and, if generalized to the scale Ru, of the
mass Mu of the universe - , with the radius in the form

M/RES(M) ∼ Mu/Ru = const (33)

again as already envisioned by Mach (1883), but here proven as being valid also on local scales.

9. Why structure formation accelerates the cosmic expansion rate

Here we want to start with an easyminded exercise showing that gravitational structure
formation in the universe may have the quite unexpected tendency to accelerate, like a force
would do, the Hubble flow velocity, a virtue that is nowadays all over in the astrophysical
literature ascribed to the action of the vacuum pressure pvac. Let us assume that structure
formation has developed at some epoch of cosmic evolution to some organized state such that
not anymore a homogeneous matter density distribution prevails, but instead a homogeneous
distribution of hierarchically organized matter distribution. From galactic number count
statistics one knows that this expresses itself in observed local two-point correlation functions
ξ(l) expressing the probability to find another galaxy at a distance l from the local space point.
For completely homogeneous matter distribution the function ξ would be constant. In cosmic
reality, however, this two-point correlation probability over wide ranges of scales is shown to
fall off by
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Fig. 3. Dependence of ρ for different values of α. The black solid line represents the case of a
homogeneous density ρ̄

ξ(l) = ξ(l0) · ( l0
l
)α (34)

with the power index α � 1.8 and some inner scale l0 typical for galaxies (see Bahcall (1988);
Bahcall & Chokshi (1992)). In terms of matter density this expresses the fact that cosmic
matter distribution has been organized, so that the mean density has not changed, but a
density clustering has appeared at each local environment. This clustering is associated with a
more pronounced gravitational binding of this organized matter, i..e. more negative potential
energy has developed during the process of structuring.
To calculate the latter we start from a local density distribution corresponding to the
probability function given by Eqn.(34) and write the clustered density in the form ρ(l) = ρ0
(l/l0)−α. In order to conserve the initial mass at the structuring process the central density ρ0
has to be defined as

ρ0 =
3 − α

3
ρ̄ · (lm/l0)α (35)

with lm as an outer integration scale. Figure 3 shows the dependence of ρ(l) on the power-law
index α.
Now the potential energy of this organized, clustered matter can be calculated according to
Fahr and Heyl (2007b)

�pot = Gρ2
0l5

0

∫ xm

1
4πx2dxx−α 1

x

∫ x

1
4πx�2dx�x�−α (36)

where the normalized distance scale has been defined by x = l/l0. Thus one obtains

�pot = (4π)2Gρ2
0l5

0

∫ xm

1
xdxx−α[

1
3 − α

(x3−α − 1)] (37)
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which leads to

�pot =
(4π)2

3 − α
Gρ2

0l5
0

∫ xm

1
dx[(x4−2α − x1−α)] (38)

and

�pot =
(4π)2

3 − α
Gρ2

0l5
0

∣∣∣∣
x5−2α

5 − 2α
− x2−α

2 − α

∣∣∣∣
xma

1
(39)

which when taking xm � 1 leads to

�pot =
(4π)2

3 − α
Gρ2

0l5
0 x5−2α

m (
1

5 − 2α
− x−3

m
2 − α

) � (4π)2

(3 − α)(5 − 2α)
Gρ2

0l5
0 x5−2α

m (40)

and reminding the requirement ρ0 = 3−α
3 ρ̄xα

m finally leads to

�pot =
(4π)2(3 − α)

9(5 − 2α)
Gρ̄2l5

0 x5
m (41)

Now it is interesting to recognize that for α = 0 (i.e. homogeneous matter distribution) in fact
again the potential energy of a homogeneously filled sphere with radius lm is found, namely

�pot(α = 0) = (4π)2

15 Gρ̄2l5
m (see Fahr and Heyl, 2007). �pot(α = 0) serves as reference value for

the potential energy in the associated re-homogenized universe.

9.1 A one-dimensional analogue
Now imagine a one-dimensional, unidirectional cosmological matter flow as an easy-minded
representation of the cosmic Hubble-flow, then one should trust the validity of the following
set of equations due to mass-, momentum-, and energy-flow conservation

ρU = Φ1

ρ(U̇ + U
d
dz

U) = �

ρU
(

U2

2
+ �̄pot

)
= Φ2

Here Φ1 and Φ2 denote constant mass and energy flows, U is the flow velocity and �̄pot =

�pot/(4πρl3
m/3) denotes the potential energy per mass. � is a force per volume that we want

to find, but do not know yet. Now, neglecting explicit local time-dependence (i.e. U̇ = 0) one
finds from the third equation

(
U2

2
+ �̄pot

)
= Φ2/Φ1 = const (42)

which leads to

d
dz

(
U2

2
+ �̄pot

)
=

�
ρ
− d

dz

[
(4π)(3 − α)

3(5 − 2α)
Gρ̄l2

m

]
= 0 (43)

Describing the ongoing of cosmic structuring purely by a change in time of the power index
α, this then delivers the interesting result

109Revised Concepts for Cosmic Vacuum Energy and Binding Energy: Innovative Cosmology



14 Will-be-set-by-IN-TECH

Fig. 3. Dependence of ρ for different values of α. The black solid line represents the case of a
homogeneous density ρ̄

ξ(l) = ξ(l0) · ( l0
l
)α (34)

with the power index α � 1.8 and some inner scale l0 typical for galaxies (see Bahcall (1988);
Bahcall & Chokshi (1992)). In terms of matter density this expresses the fact that cosmic
matter distribution has been organized, so that the mean density has not changed, but a
density clustering has appeared at each local environment. This clustering is associated with a
more pronounced gravitational binding of this organized matter, i..e. more negative potential
energy has developed during the process of structuring.
To calculate the latter we start from a local density distribution corresponding to the
probability function given by Eqn.(34) and write the clustered density in the form ρ(l) = ρ0
(l/l0)−α. In order to conserve the initial mass at the structuring process the central density ρ0
has to be defined as

ρ0 =
3 − α

3
ρ̄ · (lm/l0)α (35)

with lm as an outer integration scale. Figure 3 shows the dependence of ρ(l) on the power-law
index α.
Now the potential energy of this organized, clustered matter can be calculated according to
Fahr and Heyl (2007b)

�pot = Gρ2
0l5

0

∫ xm

1
4πx2dxx−α 1

x

∫ x

1
4πx�2dx�x�−α (36)

where the normalized distance scale has been defined by x = l/l0. Thus one obtains

�pot = (4π)2Gρ2
0l5

0

∫ xm

1
xdxx−α[

1
3 − α

(x3−α − 1)] (37)

108 Aspects of Today´s Cosmology Revised Concepts for Cosmic Vacuum Energy and Binding Energy: Innovative Cosmology 15

which leads to

�pot =
(4π)2

3 − α
Gρ2

0l5
0

∫ xm

1
dx[(x4−2α − x1−α)] (38)

and

�pot =
(4π)2

3 − α
Gρ2

0l5
0

∣∣∣∣
x5−2α

5 − 2α
− x2−α

2 − α

∣∣∣∣
xma

1
(39)

which when taking xm � 1 leads to

�pot =
(4π)2

3 − α
Gρ2

0l5
0 x5−2α

m (
1

5 − 2α
− x−3

m
2 − α

) � (4π)2

(3 − α)(5 − 2α)
Gρ2

0l5
0 x5−2α

m (40)

and reminding the requirement ρ0 = 3−α
3 ρ̄xα

m finally leads to

�pot =
(4π)2(3 − α)

9(5 − 2α)
Gρ̄2l5

0 x5
m (41)

Now it is interesting to recognize that for α = 0 (i.e. homogeneous matter distribution) in fact
again the potential energy of a homogeneously filled sphere with radius lm is found, namely

�pot(α = 0) = (4π)2

15 Gρ̄2l5
m (see Fahr and Heyl, 2007). �pot(α = 0) serves as reference value for

the potential energy in the associated re-homogenized universe.

9.1 A one-dimensional analogue
Now imagine a one-dimensional, unidirectional cosmological matter flow as an easy-minded
representation of the cosmic Hubble-flow, then one should trust the validity of the following
set of equations due to mass-, momentum-, and energy-flow conservation

ρU = Φ1

ρ(U̇ + U
d
dz

U) = �

ρU
(

U2

2
+ �̄pot

)
= Φ2

Here Φ1 and Φ2 denote constant mass and energy flows, U is the flow velocity and �̄pot =

�pot/(4πρl3
m/3) denotes the potential energy per mass. � is a force per volume that we want

to find, but do not know yet. Now, neglecting explicit local time-dependence (i.e. U̇ = 0) one
finds from the third equation

(
U2

2
+ �̄pot

)
= Φ2/Φ1 = const (42)

which leads to

d
dz

(
U2

2
+ �̄pot

)
=

�
ρ
− d

dz

[
(4π)(3 − α)

3(5 − 2α)
Gρ̄l2

m

]
= 0 (43)

Describing the ongoing of cosmic structuring purely by a change in time of the power index
α, this then delivers the interesting result

109Revised Concepts for Cosmic Vacuum Energy and Binding Energy: Innovative Cosmology



16 Will-be-set-by-IN-TECH

�
ρ

=
d
dz

[
(4π)(3 − α)

3(5 − 2α)
Gρ̄l2

m

]
= −4π

3
Gρl2

m
3 − 2α

(5 − 2α)2
dα

dz
(44)

expressing the fact that for values α ≥ 1.5 further increase of the structuring index α
manifests a positive force � that accelerates the cosmic mass flow. For us this seems the
first time it has been shown that gravitational structuring in a moving cosmic flow implies an
acceleration of the flow velocity, inditcating that analogously in an expanding universe this
might aswell induce an acceleration of the cosmic expansion as usually ascribed to the action
of vacuum-energy.

9.2 Structured universes
An independent consideration perhaps points into the same direction as derived above
allowing to conclude that cosmic binding energy acts as if it would reduce the effectively
gravitating matter density, hence like a form of positive vacuum energy density. It namely
turns out that a structured universe expands differently from a homogenized universe
with identical total mass (see Buchert (2001; 2005; 2008); Räsänen (2006); Wiltshire (2007);
Zalaletdinov (1992)). Quantitatively this was especially shown by Wiltshire (2007) for a
2-phase toy-model of the universe representing the distribution of cosmic matter in form
of non-homologously expanding low-density voids and high-density walls. Describing
for this purpose this cosmic matter structure by so-called volume-filling factors fv and fw

and defining the phasestructure densities by ρv,w =
∫

Vv,w
d3x

√
det3 gρ(t,�x)/Vv,w with Vv,w

denoting the void- and wall-volume respectively, one obtains the following relation

ρ̄2 = ρv fv + ρw fw = ρv fv + ρw(1 − fv) (45)

Introducing typical phase scales Rv,w and describing their temporal variations with
phase-averaged GRT field equations, one obtains the phase densities for the voids and the
walls, respectively, as given by

ρv = ρ̄2(R/Rv)
3 (46)

and:

ρw = ρ̄2(R/Rw)
3 (47)

Reminding that the acceleration parameter, generally defined by q = −R̈R/Ṙ2, for the
homogenized, above mentioned 2-phase universe turns out to be obtainable in the following
form (Wiltshire, 2007)

q̄2( fv) =
−(1 − fv)(8 f 3

v + 39 f 2
v − 12 fv − 8)

(4 + fv + 4 f 2
v )2

(48)

then proves that in a globally uncurved universe the structure function fv causes a term in
the GRT field equations which is analogous to that describing the action of a vacuum energy
density ρvac of the value

ρvac =
ρ̄2(1 − 2q̄2)

2(q̄2 + 1)
(49)

This shows that in a nearly void-dominated universe, i.e. with fv � 1 and q̄2( fv � 1) = 0,
one would find a well-tuned constant expansion dynamics (i.e. a ”coasting universe”; Fahr
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Fig. 4. Illustration of the non-homologous expansion of a two phase universe with void and
wall regions having different matter densities.

& Heyl (2007a); Fahr (2006); Fahr & Heyl (2007b); Kolb (1989)) analogous to the action of
a vacuum energy density given by ρvac( fv � 1) � (1/2)ρ̄2. For phase-structures as they
may come up during the non-homologous expansion of the two-phase universe (i.e. with
Ṙw ≤ Ṙv) characterized by a structure function fv ≥ fvc = 0.57, where fvc denotes the critical
void-volume fill factor q̄2 changes its sign and one obtains q̄2 ≤ 0, i.e. an accelerated expansion
of the universe which is conventionally ascribed to the action of a vacuum energy ρvac( fv ≥
fvc) ≥ ρ̄2/2. In these phases, one could as well state it like that, the average density ρ̄2 in such
a universe appears to be reduced to an effective density given by

ρ̄2( fv ≥ fvc) = ρ̄2 − ρ̄vac( fv ≥ fvc) = ρ̄2(1 − 1 − 2q̄2
2(q̄2 + 1)

) (50)

This shows that in that phase of non-homologous structure evolution characterized by fv ≥
fvc = 0.57 the average cosmic density appears to be reduced by more than 50 percent due to
gravitational binding energies sitting in the wall-structured, dense matter formations.
Some caution, however, in advertizing this result too much, is perhaps in place. This is due to
the fact that Wiltshire in his analysis starts out from the scalar differential equations given by
Eqns. (13) and (14) and in these only treats cosmic averages of the remaining scalar quantities
R = gijRij, denoting the Riemann scalar as contraction and the Ricci tensor Rij by the metric
tensor gij, and ρ. Thereby it turns out that when going back from his 2-phase universe to an
averaged homogeneous replace-universe some back-reaction terms Q = Q(��ρ��,��R��) are
obtained, entering the two scalar differential equations of the Einstein field equations, which
are left from the homogenization. A correct treatment of spacetime inhomogeneities would,
however, require the calculation of ’back-reaction’ terms starting from the level of nonlinear,
second-order partial differential equations coming from the tensor formulation of the GRT
field equations. This calculation has up to now not been carried out, and thus Wiltshire‘s
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ρ̄2(1 − 2q̄2)

2(q̄2 + 1)
(49)

This shows that in a nearly void-dominated universe, i.e. with fv � 1 and q̄2( fv � 1) = 0,
one would find a well-tuned constant expansion dynamics (i.e. a ”coasting universe”; Fahr
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Fig. 4. Illustration of the non-homologous expansion of a two phase universe with void and
wall regions having different matter densities.

& Heyl (2007a); Fahr (2006); Fahr & Heyl (2007b); Kolb (1989)) analogous to the action of
a vacuum energy density given by ρvac( fv � 1) � (1/2)ρ̄2. For phase-structures as they
may come up during the non-homologous expansion of the two-phase universe (i.e. with
Ṙw ≤ Ṙv) characterized by a structure function fv ≥ fvc = 0.57, where fvc denotes the critical
void-volume fill factor q̄2 changes its sign and one obtains q̄2 ≤ 0, i.e. an accelerated expansion
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This shows that in that phase of non-homologous structure evolution characterized by fv ≥
fvc = 0.57 the average cosmic density appears to be reduced by more than 50 percent due to
gravitational binding energies sitting in the wall-structured, dense matter formations.
Some caution, however, in advertizing this result too much, is perhaps in place. This is due to
the fact that Wiltshire in his analysis starts out from the scalar differential equations given by
Eqns. (13) and (14) and in these only treats cosmic averages of the remaining scalar quantities
R = gijRij, denoting the Riemann scalar as contraction and the Ricci tensor Rij by the metric
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averaged homogeneous replace-universe some back-reaction terms Q = Q(��ρ��,��R��) are
obtained, entering the two scalar differential equations of the Einstein field equations, which
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second-order partial differential equations coming from the tensor formulation of the GRT
field equations. This calculation has up to now not been carried out, and thus Wiltshire‘s
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results should at present not be over-emphasized, but taken with some scepticism (Buchert,
2008).

10. The universe as energy-less system

Is it imaginable that the universe, enormously large and extended as it is, nevertheless does
not represent huge amounts of energy, to the contrary perhaps is a system of vanishing energy.
If not representing any real, countable energy, it then might be understandable that such a
universe, despite its evolution, can actually even originate from nothing, since permanently
constituting nothing. But how can all what we see in the universe, when added up, represent
a vanishing amount of energy?
This could in fact be possible, because in physics one knows that there exist positively and
negatively valued energies, so that their sum can cancel. If all the positively valued energies
in the universe accumulate to E and the negatively valued energies , i.e. the gravitational
binding energies in the universe, accumulate to U , then it might turn out that the sum of
both, i.e. L = E + U , vanishes. In the following we shall show that the ”L = 0” - universe
is actually possible, if matter density and vacuum energy density vary in specific forms with
the scale of the universe.
As we have shown in Fahr and Heyl (2007a/b) the total energy E = E(R) of an uncurved
universe can be calculated as the spacelike sum over all energies given by the following
expression

E(R) =
∫ V3

(ρ̂c2 + 3p̂)
√−g3d3V =

4π

3
R3(ρ̂c2 + 3p̂) (51)

For a complete sum all mass densities have been subsummed by the quantity ρ̂ which
comprehends baryonic matter, dark matter and vacuum equivalent mass density, i.e. is
given in the form ρ̂ = ρb + ρd + ρvac, as well all pressures constituting energy densities are
subsummed by the quantity p̂ = pb + pd + pvac. As one can see from the above expression,
the total energy E(R) is proportional to R3.
In that phase of the universe which we try to energetically balance here pressures of baryonic
and dark matter may be assumed to be negligible with respect to their corresponding rest
mass energy densities. In addition, a polytropic relation between ρvac and pvac can be used in
the form

pvac = − (3 − n)
3

ρvacc2 (52)

since for the most general case a scale-dependent vacuum energy density in the form ρvac ∼
R−n must be admitted (see Fahr and Heyl, 2007b).
In a similar way one can also calculate the total gravitational binding energy U(R) in this
universe as the spacelike sum over the total potential energy and obtains the following
expression

U(R) =
∫ R

0
4πr2(ρb + ρd + (n − 2)ρvac)Φ(r)dr (53)

where Φ(r) = −(2/3)πG(ρb + ρd + (n − 2)ρvac)r2 is the internal cosmic gravitational
potential. This then leads to

U(R) = −8π2G
15

(ρb + ρd + (n − 2)ρvac)
2R5 (54)
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Now the No-energy-requirement L = E + U = 0 simply leads to the following relation

3c2

2πGR2 = (ρb + ρd + (n − 2)ρvac) (55)

with n being the unknown polytropic constant in the relation between vacuum pressure
and vacuum mass density pvac = − (3−n)

3 ρvacc2. As evident from the above relation, the
requirement L = 0 is only fulfilled, if all mass densities in the universe scale as R−2,
identical to the scale-dependence already derived at different places and within different
contexts presented further above in this article. The pressing question, how this mass creation
could be explained, can now easily be answered on the basis of the above deduced context,
namely because now vacuum energy density, different from the assumptions in the standard
cosmology, is not anymore taken as constant, but turns out to be variable and decaying at the
expansion of the universe with ρvac ∼ R−2 with the selfsuggesting solution ρ̇vac ∝ ρ̇. The most
encouraging point in this view now is that the universe can start from a Planck volume Vpl

with a Planck scale R = rpl =
√

Gh/2πc with the initial vacuum energy density of ρvac(rpl) =

mpl/(4πr3
pl/3) ( just the value calculated by field theoreticians) and then only later at our

present epoch has dropped down to the accepted astrophysical values of the present universe
corresponding to ρvac,0 = 0.73ρc,0 � 10−29g/cm3 (see Fahr and Heyl, 2007b).

11. Discussion and outlook

We would like to finish this article reminding the readers to a series of more recent papers
in which the conclusion of a scale-variability of cosmic masses, reached in this paper here,
also is drawn, however, from quite independent theoretical views connected with general
symmetry or invariance principles valid in a generalized form of Einstein‘s general relativistic
field theory. The latter theory is not conformally scale-invariant as was emphasized by Hoyle
(1990; 1992). Einstein’s field equations can be derived from a variational principle applied to
the following universal action function

S0,1 = −∑
a

∫ 2

1
mada +

1
12

M2
p

∫ 2

1

∫
R
√−gd4x (56)

where the Planck mass has been defined by:

Mp =
3ch

4πG
= 1.06 · 10−6g � 1019 GeV

c2 (57)

Here ma and da are the masses and worldline increments of the particles in the universe, and
R and g are the Riemann scalar and the determinant of the metric tensor gik. The quantity
d4x is the differential 4D spacetime volume element. As Hoyle pointed out, if one measures
the action in units of the Planck constant h, and all velocities in units of the velocity of light
c, then masses attain the dimension [1/L] where L is a cosmic length scale. Hoyle furtheron
emphasizes in his articles - Maxwell’s theory, quantum theory and Dirac’s theory - they are all
conformally invariant, but Einstein’s theory is not.
Conformal invariance (invariance with respect to local scale-recalibrations) according to H.
Weyl should also be fulfilled by the theory of general relativity. Following this conceptual
view of Weyl (1961) also the field theory like GRT should fulfill conformal scale-invariance.
This requirement when connected with the general request of the minimum action principle
then as can be seen from Equ. (3) automatically requires that mass is created at geodetic
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expression

U(R) =
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could be explained, can now easily be answered on the basis of the above deduced context,
namely because now vacuum energy density, different from the assumptions in the standard
cosmology, is not anymore taken as constant, but turns out to be variable and decaying at the
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11. Discussion and outlook

We would like to finish this article reminding the readers to a series of more recent papers
in which the conclusion of a scale-variability of cosmic masses, reached in this paper here,
also is drawn, however, from quite independent theoretical views connected with general
symmetry or invariance principles valid in a generalized form of Einstein‘s general relativistic
field theory. The latter theory is not conformally scale-invariant as was emphasized by Hoyle
(1990; 1992). Einstein’s field equations can be derived from a variational principle applied to
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Here ma and da are the masses and worldline increments of the particles in the universe, and
R and g are the Riemann scalar and the determinant of the metric tensor gik. The quantity
d4x is the differential 4D spacetime volume element. As Hoyle pointed out, if one measures
the action in units of the Planck constant h, and all velocities in units of the velocity of light
c, then masses attain the dimension [1/L] where L is a cosmic length scale. Hoyle furtheron
emphasizes in his articles - Maxwell’s theory, quantum theory and Dirac’s theory - they are all
conformally invariant, but Einstein’s theory is not.
Conformal invariance (invariance with respect to local scale-recalibrations) according to H.
Weyl should also be fulfilled by the theory of general relativity. Following this conceptual
view of Weyl (1961) also the field theory like GRT should fulfill conformal scale-invariance.
This requirement when connected with the general request of the minimum action principle
then as can be seen from Equ. (3) automatically requires that mass is created at geodetic
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motions of comoving cosmic masses. To respect these theoretical prerequisites would mean
that the field equations should be invariant with respect to local recalibrations of the worldline
element according to:

da∗2 = Ψ2(
−→
A )gik(

−→
A )daidak = L(

−→
A )−2da2 (58)

This is now only fulfilled in connection with the cosmic action minimum, if at the same time
where the above relation holds the masses in the universe do also scale by:

m∗
a = ma

1

Ψ(
−→
A )

= L(
−→
A )ma (59)

Taking creation of matter as concequence of a scale-invariant GRT action principle Hoyle et al.
(1993) have developed their Quasi-Steady-State cosmology (QSSC) deriving a scalar mass
creation field C(X) which is obtained as solution of a wave equation given by

�X C(X) +
1
6

R(X)C(X) = f−1 ∑
A0

δ4(X − A0)√−g(A0)
(60)

where �X is the 4-d Laplace operator, X denotes a 4-d spacetime point, R(X) is the
Riemannian scalar at X, and A0 are 4-d spacetime positions of real particles in the universe.
The function f is needed as a positive coupling constant. At the place of a particle A0 one
obtains the gradient components of the creation field by

Ci(A0) =

[
∂C(X)

∂xi

]

A0

(61)

and is lead to a scalar mass creation bound by the relation

∂

∂t

(
CiCi

)
A0

= ṁ2
a(A0) (62)

where ma is the mass of the particle at A0. As the authors analyse further down in their article
(Hoyle et al., 1993) creation of field bosons can only occur in connection with massive particles
at places A0 , and becomes effective only where strong gradients of the C(X)− fields due to
strong Riemannian scalar curvatures R(X) are established in the universe, i.e. near already
existing strong mass concentrations. A steady-state form of creation, like that required by
Hoyle (1948), under these restricting auspices is unlikely. Mass generation in this QSSC does
only happen when particles come close to cosmic mass concentrations or cosmic black holes.
But from localized creation rates an average cosmic creation rate

〈
Ċ2〉

4 can be derived which
then instead of Eqns. (1) and (2) can be brought into the field equations of QSSC yielding the
following form

(
Ṙ(t)
R(t)

)2

=
8πG

3
ρ(t)− kc2

R2(t)
+

Λc2

3
− 4πG

3
f
〈

Ċ2
〉

3
(63)

and:

R̈(t)
R(t)

= −4πG
3c2 (3p(t) + ρ(t)c2) +

Λc2

3
+

8π

3
G f

〈
Ċ2

〉
3

(64)

This system of equations has been solved by Sachs et al. (1996) in the following form
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RQSSC(t) = exp[(
t
P
) {1 + η cos θ(t)}] (65)

where P is a constant and θ(t) is a known periodic function with a period Q � P and η ≤ 1
as a constant parameter. It turns out that the envellope of the above solution behaves like a
solution of the standard cosmology, however, with a vacuum energy density given by

ΛQSSC = −6πG f
〈

Ċ2
〉

3
(66)

The above demonstrates that QSSC cosmological theories, taking general-relativistic scale
invariance as a serious request, will automatically lead to cosmic mass creation and to a fake
form of negative vacuum energy density.
There are also recent studies by Mannheim (2001; 2003; 2006) in the literature which point into
a similar direction. Mannheim (2006) investigates the logical independence of the general
covariance principle, the equivalence principle and the Einstein GRT field equations and
manifests several restrictions in the present-day formulation of the energy-momentum tensor
which can shed light to why at present the standard cosmology is in troubles. As we do in this
article here, he also argues that to solve the outstanding present-day cosmological constant
problem with the enormous discrepancy of field-theoretical and astrophysically admittable
vacuum energy density, it is not necessary to quench the vacuum energy term itself, but only
to find out, by what amount the vacuum energy actually gravitates. His answer is going into
the same direction than the one given in this article here culminating in the claim that most
of the field-theoretical vacuum energy does not gravitate since it is just compensated by the
action of the cosmological constant Λ leading to the fact that for empty space Λe f f ,0 = 0!. The
gravitationally relevant part of vacuum energy only is due to the matter-polarized vacuum.
To reach this conclusion he carefully checks all the ingredients of all terms on the RHS and LHS
of the Einstein GRT equations. He identifies, as one of problems, the conventional formulation
of the energy-momentum tensor Tik based on the assumption of geodetic motions of massive,
singular particles with invariant masses m which first leads to the expression

Tik =
mc√−g

∫
dτ · δ4(x − y(τ))

dyi

dτ

dyk

dτ
(67)

which is covariantly conserved and systematically leads to the corresponding
hydrodynamical expression for Tik that is generally used in present-day cosmology.
This formulation is used despite the modern understanding that particles are far from
being kinematic objects with invariant masses, but are thought to realize their masses
dynamically by means of spontaneous symmetry breaking, and despite the fact that the
standard SU(3)xSU(2)xU(1) - field unification theory ascribes the basic level of material
energy representation to scalar wave fields rather than to particles. The variational principle,
if applied to the scalar wave action, then leads to the following equation of motion for the
scalar wave field S given by

S;μ
;μ +

ξ

6
SRμ

μ − m2S = 0 (68)

This equation is very similar to the one derived by Hoyle et al. (1993), except that in the latter
the mass creation is connected with the existing particle motions.
Mannheim discusses several possibilities to change Einstein‘s GRT equations in order to
absorb the concept of dynamical masses from field theoretical considerations as discussed
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above. Seeking, however, for alternatives to Einstein‘s GRT equations by looking for
generalizations, one should always take care that in these generalizations the Einstein
equations are contained as a special case. Amongst the general covariant pure metric theories
of gravity the most convincing generalization, as it appears to Mannheim, is to complement
the Einstein Hilbert action by additional coordinate-invariant pure metric terms which, in
the Newton limit, do not perturb the validity of Newtons gravity on the scale of the solar
system. Also he discusses additional macroscopic gravitational fields as a company of the
metric tensor gik. Here the most suggestive step would be to introduce scalar fields. As
also taken up by Scholz (n.d.), the idea from H.Weyl to start from conformal gravity theories
is discussed by Mannheim (2006). Weyl developing his metrical gravity theory recognized
an enlarged Riemann tensor, the conformal, so-called Weyl tensor Cλμνκ , with remarkable
symmetry properties. It namely invariantly transforms under the conformal transformation
gμν(x) → exp[2α(x)]gμν(x) as Cλ

μνκ(x) → Cλ
μνκ(x), since all derivatives of the function α(x)

drop out identically. Due to this property the Weyl tensor manifests the same relation to
conformal transformations as does the Maxwell tensor to gauge transformations. This can be
used to introduce the Weyl action function

IW = −αg

∫
d4x

√−gCλμνκ(x)Cλμνκ(x) (69)

which is invariant under conformal transformations. Here αg is a dimensionless constant
controling conformal cosmology by a theory-immanent effective coupling quantity, obviously
replacing Newton´s gravitational constant G in Einstein´s GRT equations. This Weyl action
IW forbids interestingly enough the appearance of any fundamental integration constant like
the cosmological constant Λ, as it is admitted at the application of the action-minimizing
variational principle to the Einstein-Hilbert action function. The GRT field equations derived
on the basis of the Weyl action IW lead to a new energy momentum tensor of conformal
cosmology given by

Tμν = Tμν
kin − 1

6
S2

0(Rμν − 1
2

gμνRα
α)− gμνλS4

0 = 0 (70)

where the first term on the RHS is the conventional energy momentum tensor of the moving
matter particles which is fully compensated by a second part connected with the spacetime
geometry and the scalar function S0. In this conformal theory there is energy not just in
the matter fields, but in the spacetime geometry as well. As Mannheim (2006) can show the
associated generalized conformal field equation can be brought into the form

Rμν − 1
2

gμνRα
α =

6
S2

0
(Tμν

kin − gμνλS4
0) (71)

revealing that this conformal cosmology equation is analogous to the Einstein GRT equations
with the difference of an effective dynamically induced gravitational coupling function given
by Ge f f = − 3c2

4πS2
0

(see also Mannheim (1992) and the conformal analogue of Einstein‘s Λ given

by Λ̄ = λS4
0. When solving the above equation for a Robertson-Walker symmetrical geometry,

and introducing as conformal analogues to Einstein‘s GRT the quantities

Ω̄m =
8πGe f f ρm

3c2H2 (72)
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Ω̄Λ =
Λ̄

3cH2 (73)

then Mannheim (2000) obtains the following result for the acceleration parameter

q =
1
2
(1 +

3pm

ρm
) Ω̄m − Ω̄Λ (74)

again demonstrating from the basis of this conformal cosmology that something analogous to
vacuum energy is operating and causing an accelerated expansion but physically connected
with nothing like an energy-loaded vacuum but with a scalar field S0.
At the end of this article we would like to conclude from all what has been analysed in
original studies presented in this article here and from companying literature discussed in
this article, that vacuum energy density as it is treated in standard cosmology, i.e. treated as a
constant quantity, does not appear to be physically justified, but a generalized representation
of this term should be further discussed in cosmology which, however, is of a completely
different nature and is variable in magnitude depending on geometrical properties or scalar
field properties in the universe.
Although the standard model of cosmology, the ΛCDM-model celebrated big successes in the
past and most of the astronomers believe in it, it seems that reality behaves a bit different.
Recent investigations by Kroupa et al. (2010) have shown that ΛCDM fails, since on scales
of the Local group no dark matter action can be admitted, and so the standard model is
faced with a big problem. Therefore it is convenient to consider also alternative models, like
the ones presented in this article in order to develop a model of the universe that reflects
cosmic reality better than ΛCDM. Nevertheless these kinds of models will have to prove
themselves when they are applied to modern cosmological observations like the Supernova Ia
data or the anisotropies of the Cosmic Microwave Backround (CMB). However the question
remains if the CMB actually represents the matter distribution for a time of about 300000 years
after the big bang, or if they should be interpreted in a different way under the conditions of
mass-creating models (Fahr & Zoennchen, 2009)?
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1. Introduction   
Only beasts could remain indifferent to questions about the origin, structure and fate of the 
cosmos in which they live. Only saints could resign themselves to never knowing the 
answers. The upshot has been that every civilization known to anthropology has put 
together such meagre observations as it possesses, has interpreted them in the light of 
currently fashionable ideas, and then manufactured as plausible a cosmological story as it 
can to tell its students and its children. The trouble is that none of those cosmologies have 
stood the test of time. Have we any reason to be more confident in the Big Bang Cosmology 
(BBC) which is fashionable today? 
There are many good reasons to be sceptical of cosmology as a subject. For instance: 
(A) There is only one universe! At a stroke this removes from our armoury as scientists all 
the statistical tools that have proved indispensable for understanding most of astronomy. 
(B) The universe has been opaque to electromagnetic radiation for all but 4 of the 60 decades 
of time which stretch from the Planck era (dex -43 sec) to today (dex +17 sec.) Since as much 
interesting physics could have occurred in each logarithmic decade, it seems foolish to hope 
the we will ever know much about the origin of the cosmos, which is lost too far back in the 
logarithmic mists of Time. Even the Large Hadron Collider will probe the microscopic 
physics back only as far as dex (-10) secs [1]. 
(C) Cosmology requires us to extrapolate what physics we know over huge ranges in space 
and time, where such extrapolations have rarely, if ever, worked in physics before. Take 
gravitation for instance. When we extrapolate the Inverse Square Law (dress it up how you 
will as G.R.) from the Solar System where it was established, out to galaxies and clusters of 
galaxies, it simply never works. We cover up this scandal by professing to believe in “Dark 
Matter” – for which independent evidence is lacking.  
(D) The human and historical time frame is so short compared to the cosmic one that we 
have in effect only a few still shots of a dynamical universe, with no proper (oblique) 
motions. It’s as if we had to deduce not only the final score, but the rules of a football match 
from a few still photos. 
(E) By cosmical (i.e. intergalactic) standards our local background is very bright. For 
instance the extra-galactic universe contributes less than one percent of the optical 
photons even at a dark mountain site on a moonless night. Much of the universe must 
therefore, and at many wavelengths, still lie hidden below the sky, even from space, 
because of the problem of contrast. And according to Tolman [2] distant extended objects 
like galaxies will be dimmed by (1+z) to the fourth power, an enormous factor at the kind 
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of redshifts (z~10) where galaxies are supposed to form. Many galaxies, even nearby, will 
be sunk below the sky. 
Even so cosmology is such a fascinating subject that I for one would like to believe that 
progress can and is being made. But how could one tell? Just because large teams are 
dedicated to working out the details of BBC doesn’t mean that the underlying paradigm is 
secure. Although Hubble is widely and incorrectly credited with the discovery of expansion 
back near 1930, in fact he died in 1956 still sceptical, as were many of his contemporaries, of 
the dramatic notion that redshift implies expansion. Today the opposite attitude prevails 
where expansion, and all that it implies, goes virtually unquestioned. To be sure there is 
more evidence, but not all that evidence points in the same direction. Scientific history is 
littered with theories which once fitted many facts – Newtonian gravitation for instance. In 
the end though it is the discrepancies which signify more, even where they are relatively 
minor (e.g. the perihelion of Mercury). And as a galaxy astronomer I can see many worrying 
discrepancies between BBC as it stands now and the galaxies we can observe so minutely in 
our neighbourhood. We do BBC no favours by accepting it without question. We only blind 
ourselves to other truths or modifications that might be staring us in the face.  
Here I discuss BBC mainly from an epistemic point of view and in particular try to answer 
two questions: 
(1) Do we have enough evidence to be confident that BBC is broadly right? 
(2) Where the evidence is contradictory, as it certainly is in the case of BBC, can one 
nevertheless come to a rational verdict on its soundness, taking into account the whole 
surrounding network of interlocking clues? 
As to the first question I will suggest that the answer is ‘ Probably No’ because BBC appears 
to have more Free Parameters than relevant observations. As to the second there is a 
Bayesian way to summarize contradictory evidence, but one’s final verdict necessarily 
depends on the rather arbitrary weights (Likelihoods) one must attach to some of the 
contradictory clues. There is a great deal of room for debate here but I contend that it is a 
debate that needs to be held, and discussed openly. 

2. BBC’s lack of evidential significance 
We question the significance of BBC by looking at the difference between the number of 
measurements with cosmological relevance that have been made, and the number of Free 
Parameters (FPs) introduced by BB theory to fit those same measurements. Where that 
difference is comfortably positive, one might regard cosmological theory as “significant” in 
the sense that the fit may be better, perhaps much better than one could have expected by 
chance. But where it is zero or negative there is no such balance of probabilities to 
recommend it. 
Precisely which, and how many FPs are regarded as ‘Cosmological’, as distinct from more 
widely ‘Astrophysical’, is to some extent a question of taste, but it does not matter much so 
long as we treat them consistently, i.e. if included for fitting they also be included for 
measurement.  
We proceed by means of an historical table (Table 1) where each line introduces either new 
FPs (column 3) widely touted then as being of cosmological significance or the first (seldom 
the best) claimed measurement of them (column 4), with the concurrent difference in 
number between the two i.e. the concurrent “Significance”, in column 5. This is purely a 
counting exercise with no real need to understand what the parameters are, or how they 
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have been measured. Readers interested in such details can however follow them up in 
Ratra and Vogeley’s excellent recent review ‘The Beginning and Evolution of the Universe’ 
[7]. I deliberately halted the survey after the first account of WMAP’s findings in 2003 in 
order to let the dust settle but have used the same ensemble of parameters as they did. No 
doubt more recent, and probably more controversial additions (or subtractions) could be 
made, according to taste. 
 

 (1) (2) (3) (4) (5) 

 DATE NEW STEP NEW FREE 
PARAMS 

NEW 
MEASUREMENTS 

CURRENT 
SIGNIFICANCE. 

1 1917 Einstein’s model 0H , 0k , 0Ω  One equation 
between them. -2 

2 1921 Cosmological 
constant ΛΩ   -3 

3 1929 Galaxy Redshifts  0H  -2 

4 1965 
Cosmic 
Background 
Radiation(CBR) 

η  η  -2 

5 1970’s Big Bang 
Nucleosynthesis  

bΩ  
 bΩ  -2 

6 1974 Cosmochronology   (~ 1/ 0H ) -2 

7 1978 Dark Matter MΩ   -3 
8 1970,s Initial Seeds A,ns  -5 

9 1978 Gravitational 
Waves r  -6 

10 1981 Inflation N  -7 

11 1980’s Large Scale 
Structure 

b, 8σ , ξ   -10 

12 1990 COBE   A -9 
13 1998 Supernovae w ΛΩ  -9 

14 1998 Clustering  8σ  -8 

15 2000 Galaxy Infall  ξ  -7 

16 2000 BOOMERANG  
 ns, MΩ , 0Ω  

( 0k  inferred from  
equation in row 1) 

-4 

17 2003 WMAP d sn /dlogk, τ , 0τ  τ ,d sn /dlogk, b -4 

Table 1. Cosmological parameters 

The main conclusion to note is the large  number of Free Parameters that have, over the 
years, been widely and variously allowed into the discussion of cosmology. Many have been 
measured (column 4) with varying degrees of reliability. But at no stage, so far as I can see, 
has there been an excess of independent measurements over FPs. Nor is the trend a healthy 
one (col. 5). The Significance there, which is what matters in the end, is no better now than it 
was back in 1917. Of course we’ve got more measurements, far more, but so have we got a 
far more elaborate theory, one covered all over with sticking plasters such as Inflation, Dark 
Matter, and Dark Energy designed to stick poor Humpty Dumpty together again. Even the 
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three successful predictions (of apparently flat space, by Inflation; of the Light Element 
abundances, by nuclear theory (retrodicted); of the maximum ages of the oldest star-
clusters, by Expansion ) are overbalanced by at least half a dozen unpredicted surprises 
(redshifts, CBR, Dark Matter, Inflation, Dark Energy and no CBR quadrupole). 
Of course there are many caveats, some pro-cosmology, some anti. On the pro-side, the 
counting of independent measurements is not trivial. Modern instruments make 
measurements not in a single channel but in a spectrum of channels within a given 
dimension (e.g. wavelength). This could increase the information returned by as much as 
the logarithm of the number of such channels i.e. by several. On the anti- side note that we 
have been counting only the FPs explicitly admitted within the theory. But BBC is not a single 
theory any more but 5 separate sub-theories constructed on top of one another. The ground 
floor is a theory, historically but not fundamentally grounded in General Relativity, to 
explain the redshifts – this is Expansion, which happily also accounts for the Cosmic 
Background Radiation. The second floor is Inflation – needed to solve the horizon and 
‘flatness’ problems of the Big Bang. The third floor is the Dark Matter hypothesis required to 
explain the existence of contemporary visible structures, such as galaxies and clusters, 
which otherwise would never condense within the expanding fireball. The fourth floor is 
some kind of description for the ‘seeds’ from which such structure is to grow. And the fifth 
and topmost floor is the mysterious Dark Energy idea needed to allow for the recent 
acceleration of the Expansion, apparently detected in supernova observations. Each new 
super incumbent theory was selected out of an essentially infinite set of alternatives, to fit 
the observations as they were known at the time. By rejecting the alternatives one is, in 
effect, fitting several extra implicit FPs in each case. These extra “conceptual” FPs should 
arguably be added to the totals in Table 1, perhaps 2 or 3 for each sub-theory, reducing the 
total Significance by 10 or more. This is why such a counting exercise can never be precise. 
These caveats are however arguments at the margin. A healthy theory, with a large positive 
Significance, could afford to ignore them. BBC, with its formally negative Significance, must 
remain for now a bloody tilting ground for its protagonists and sceptics.  

3. Contradictory evidence 
Some aspects of the BBC scenario are better supported than others. The existence of Cosmic 
Background Radiation (CBR) with a Black Body spectrum speaks strongly in favour of an 
early dense hot phase, the essential feature of a Big Bang cosmology, and that state offers a 
plausible womb for gestating the light elements that cannot be manufactured in stars. 
However if redshift is truly evidence of Expansion it should dim distant galaxies out of sight 
in a most dramatic way (The Tolman Effect ]. But we can see  redshift  7 galaxies all too 
easily – an inconvenience which can only be explained by assuming an equally dramatic 
rate of galaxy evolution which fortuitously cancels Tolman. 
On the other hand the universe seems to be highly isotropic – not what one expects of a 
monotonically expanding cosmos in which new, causally disconnected material, 
continuously appears over the horizon. This stumbling block of isotropy was solved by 
‘Inflation’, a vague concept in which it is assumed that once-upon-a-time the universe was 
small enough and static enough for causal contacts to propagate, after which it ‘inflated’ 
exponentially to its present configuration. Apart from being ad-hoc it is extremely ugly in 
that it precludes us from ever deciding whether the cosmos is spatially finite or infinite. 
Thus it throws out most of the cosmological baby with the bath water. 
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In a hot high-pressure cosmos, structure will only form late – after radiation and matter 
have decoupled, and then only slowly, so it is difficult to explain the rich world of clustered 
galaxies we observe today. The structure problem was neatly solved by hypothesizing the 
existence of overwhelming amounts of Cold Dark Matter (CDM), that is to say dark matter 
with a low velocity dispersion which doesn’t interact with radiation.[e.g.4] Thus it would 
condense through much of the radiation era and then act as a focus for the lower amounts of 
ordinary (baryonic) matter to coagulate around. And it wasn’t ad hoc because there already 
existed strong observational evidence that galaxies were dominated dynamically by unseen 
matter 10 to 100 times more massive than the ordinary baryons which make up their stars 
and gas. 
The CDM provides a natural scenario, called Hierarchical Galaxy Formation [HGF], for 
forming galaxies by the merger of smaller objects into larger. Unfortunately the observations 
reveal that galaxies don’t form in this manner. They appear to evolve in the reverse order, 
big ones first (‘downsizing’) and to be far too regular to have formed by random mergers in 
this hierarchical manner (later). 
So the evidence is contradictory, as it often is in a developing and perhaps primitive science. 
In a recent open minded review of BBC Peebles and Nusser [5], while pointing to some 
serious cracks in the edifice, particularly with regard to structure- formation, nevertheless 
concluded; “We do not anticipate that this debate will lead to a substantial departure from 
the standard picture of cosmic evolution from a hot Big Bang, because the picture passes a 
tight network of tests….” 
Fair enough, but surely a convincing discussion demands a quantitative measure of the 
combined strength of such a network, of the jigsaw of interlocking bonds between the 
hypothesis and its surrounding evidential support – both bonds which fit and bonds which 
don’t. That we try to supply next. 

4. Evaluating a network of evidence 
We here assemble a tool for evaluating a jigsaw of contradictory evidence then apply it to 
the BBC, less in the hope of immediately convincing the reader than in demonstrating how 
simply and  powerfully the tool  can work. The conclusions it will lead to will necessarily 
rely on the Likelihoods (weights) that any user must attach to the various pieces of evidence, 
either for or against, that go to make his jigsaw. In the case of BBC it is hard to see how 
many of those weights can be other than rough and ready. Thus so must be one’s final 
conclusion. 
The only permit we know of for Induction is Bayes’ Theorem [e.g.6]: 

1 1 1( | ) ( | ) ( ) / ( )P H E P E H P H P E= ×  

which gives the Probability of Hypothesis H, given Evidence 1E . Rewriting in terms of H  
(‘not-H’) 

1 1 1( | ) ( | ) ( ) / ( )P H E P E H P H P E= ×   

and dividing through 

 1 1
1 1

1 1

( | ) ( | ) ( )( | ) ( | ) ( )
( | ) ( | ) ( )

P H E P E H P HO H E L E H O H
P H E P E H P H

≡ = × ≡ ×    (1) 
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which gives the Probability of Hypothesis H, given Evidence 1E . Rewriting in terms of H  
(‘not-H’) 

1 1 1( | ) ( | ) ( ) / ( )P H E P E H P H P E= ×   

and dividing through 
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which yields the Odds-on H, given 1E , in terms of O(H) – the Odds-on H prior to 
considering 1E , and 1( | )L E H the ‘Likelihood-Odds’, [Sometimes called the ‘Bayes’ Factor’] 
the Probability of 1E  if H is true, divided by the Probability if it is not. Written thus  (1) is no 
more than self-evident common sense.  
Next consider a second clue 2E ; by an identical argument: 

2 2 1( | ) ( | ) ( | )O H E L E H O H E= × = 2 1( | ) ( | ) ( )L E H L E H O H× ×       

and so on, so that finally, considering all n clues: 

 1 2 1 2( | , ,.... ) ( | ) ( | ).... ( | ) ( )n nO H E E E L E H L E H L E H O H= × × ×   (2) 

which we henceforth label ‘The Detective’s Equation’ because it formalizes the procedure a 
rational detective would use to combine all the clues, and the Likelihoods she attaches to 
them, to reach some final measure of her conviction in Hypothesis H. [The Equation is 
presumably well known but we could find no reference to it in the literature] 
The Detective’s Equation does exactly what we want. Each Likelihood-Odds ( | )iL E H  is a 
measure of the strength we assign to the fit between one piece of evidence iE  in the jigsaw 
and the hypothesis H we are trying to fit. The combined strength is multiplicative so that 
several weaker fits may nevertheless combine to equal the strength of a single strong bond. 
This suggests that all the evidence must be included, even where it is rather weak, or hard to 
weigh. A bad fit is characterised by its odds against H, so that its Likelihood – Odds L(E|H) 
is fractional, thus detracting from the strength of the final result. Equivocal evidence 
obviously has a Likelihood of 1 and could be ignored. [Lacking any precise theory of the 
errors involved in quantitative data then if a Normal distribution is adopted, as least 
contentious, an error of 0.1 sigma corresponds to odds of 12 to 1 on; of 2 sigma  44 to 1 
against,  and so on.] 
Now let us apply it to BBC, piece of evidence by piece, assembling the running results as we 
go along in Table 2. If the BBC is true: 
(A) Nothing should be older than the expansion age Eτ  essentially distance divided by 
recession velocity. This appears to be obeyed because, where ages can be determined, for 
instance for star-clusters, for white-dwarf stars and for certain radio-active elements, they all 
appear younger than the expansion-age of about 14 billion years [7]. By definition the 
Likelihood – Odds of this evidence is   

( | )( | )
( | )

A
A

A

P E HL E H
P E H

=  

( | )AP E H  is obviously 1 but  ( | )AP E H  is certainly not zero. Indeed galaxies, the building 
blocks of the cosmos, are notoriously difficult to age and some could well be much older 
than Eτ . Thus ( | )AL E H  presumably increases the odds on H, but by how much? There is 
no obvious or objective answer. It would be unwise to either ignore the evidence altogether, 
or to give it too much weight. A reasonable compromise might be to assign the Likelihood a 
value of 5 say, i.e. assume that the observed ages increase the odds-on H by 5. 
(B) Firmer support comes from evidence that the expanding Universe should have emerged 
from an earlier dense and hot state. Thus the discovery of the Cosmic Background Radiation 
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(CBR)  and its Black Body Spectrum  provide, in the absence of any alternative explanation 
(i.e. ( | )BP E H  ) strong evidence in favour of H with a Likelihood of ( | )BL E H  = 50 say. (I am 
reluctant to use Likelihoods more than 50, or less than 1/50, in a subject which has so often 
proved wrong.) 
Combining (A) and (B) using the Detectives Equation (2) 

( | , ) 5 50 ( )A BO H E E O H= × ×  

i.e. between them they have increased the odds on BBC by no less than 250. 
(C) The cosmos on its largest scale ought to look highly anisotropic – whereas the very 
reverse is observed; the CBR temperatures at the antipodes being identical to a few parts per 
million. This is serious evidence against BBC and might reduce the Likelihood in its favour 
by as much as the CBR argued for it; i.e. one might justifiably assume that ( | )CL E H  = 1/50 
(but see Inflation later). 
Thus one might proceed through the list of clues (Table 2) assigning Likelihoods in each 
case as follows: (D) Because of gravity between its parts the cosmic expansion ought to be 
decelerating – but it is not. (E) If redshift is truly evidence of Expansion it should dim 
distant galaxies in a dramatic way [8]. But we can see high redshift galaxies all too easily – 
an inconvenience which can only be explained by assuming a rate of galaxy evolution which 
fortuitously cancels [8]. (F) As mentioned, light elements like Helium and Deuterium whose 
abundances cannot be otherwise explained could have been synthesized in approximately 
the right amounts in the Big Bang. (G) There are minute but measurable irregularities in the 
CBR with a scale naturally explained in terms of expansion. (H) Expansion naturally 
suppresses condensation into structures such as the galaxies which surround us on all sides. 
The problem is that radiation pressure in the early universe would have smoothed out any 
irregularities in baryonic matter so that by the time the two decoupled there would have 
been no ‘seeds’ from which such irregularities could naturally grow by self-gravitation.  
Taken together, and with the crude Likelihoods I have assigned them in Table 2: 

( | ....) 5 50 1 / 50 1 / 2 1 /10 10 20 1 / 50 1 ( )O H E O H= × × × × × × × = ×  

In other words, by chance, all the 8 clues used so far have cancelled out so that they neither 
favour nor disfavour BBC. 
Next add some modern refinements and observations: 
(I) The structure problem was neatly solved by hypothesizing the existence of overwhelming 
amounts of Cold Dark Matter (CDM), that is to say dark matter with a low velocity dispersion 
which doesn’t interact with radiation. Thus it would condense through much of the radiation 
era and then act as a focus for the lower amounts of ordinary (baryonic) matter to coagulate 
around. And it wasn’t ad hoc because there already existed strong observational evidence that 
galaxies were dominated dynamically by unseen matter 10 to 100 times more massive than the 
ordinary baryons which make up their stars and gas [9]. 
(J) CDM provides a natural scenario, called Hierarchical Galaxy Formation, for forming 
galaxies by the merger of smaller objects into larger . Unfortunately it doesn’t seem any 
longer to be the mode by which observed galaxies formed. Big galaxies evolved first, small 
ones later [10]. 
(K) The stumbling block of isotropy was solved by ‘Inflation’, a vague concept in which it is 
assumed that once-upon-a-time the universe was small enough and static enough for causal 
contacts to propagate, after which it ‘inflated’ exponentially to its present configuration [11, 12 
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(L) Most surprisingly, recent attempts to measure deceleration using exploding stars lead 
to the unpredicted discovery that the universal expansion appears to have accelerated 
recently [13, 14]. Sometimes called ‘Dark Energy’ this phenomenon has not been plausibly 
explained. 
Table 2 shows the above clues, their associated Likelihoods, and in the last column the 
Running Odds as one multiplies those Likelihoods together row after row, not counting any 
prior O(H). 
 

CLUE  Likelihood 
( | )iL C H  

Running 
Odds 

A) Nothing older than expansion age Yes 5 5 
B) Earlier dense state Yes 50:1=50 250 
C) Universe should be anisotropic No 1:50=1/50 5 
D) Universe should decelerate No 1:2=1/2 5/2 
E) Galaxies should dim with redshift  No 1/10 1/4 
F) Could produce light element abundances Yes 20 5 
G) Predicts CBR structure (First Peak) Yes 10 50 
H) Can’t produce observed matter structure  1/50 1 
I) But CDM can produce such structure  25 1/2 
J) But real gals very unlike CDM models  1/10 5/2 
K) Inflation may explain isotropy  2 5 
L) Recent acceleration unexplained  1/20 1/4 

Table 2. Big bang cosmology likelihoods 

The end result, seen at the bottom of the last column, appears, to say the least of it, 
thoroughly unconvincing. The combined odds of all the above evidence yields odds of 4 to 1 
against BBC. However that result relies on a number of Likelihoods whose evaluation is 
bound to be contentious, but which no honest thinker can evade if they are to come to a 
defensible conclusion. 
My conclusion is as tentative as  the Likelihoods I have declared. At 4 to 1 against at least it 
agrees with my uneasy feeling that BBC, once rather beautiful and economic, has grown 
uglier and more ad hoc in recent years. 
My point is not to persuade readers of my own particular viewpoint but to persuade them 
to subject their own convictions on this matter to the same Bayesian analysis. If nothing else 
it should encourage tolerance of dissent, badly needed in this field, or so it seems to me. 

5. Science or folk tale? 
If cosmology is to be a science then the arguments of the last two sections, in so far as they 
are right, suggest that BBC may be in a sickly state. There is much anecdotal evidence to 
support this suspicion. For instance, after publishing a previous sceptical article on this topic 
[15], I received hundreds of e-mails from professional astronomers saying ‘Thank God 
somebody is saying these things at last – but don’t quote me’. Then again many younger 
astronomers will privately admit that they don’t believe a word of Lambda-CDM, ‘But if I 
don’t acknowledge it in my grant and observing proposals then I don’t succeed.’ 
Anecdotes aside let us look at some symptoms of BBC’s malaise. 
(A) When the supernova results came out, cosmology should have stopped in its stride. BBC 
had utterly failed to predict such a thing. But what happened instead? BBC jumped on its 
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horse and galloped off in chase of yet another free parameter, Lambda, based on zero 
physics but with the catchy title ‘Dark Energy’. 
(B) ‘Multiverses’, much discussed by certain cosmologists, are not science. What can never 
be detected is not physics, but metaphysics [26]. 
(C) Computer simulations have much to answer for. So they produce ‘filaments’? So what. 
Look at star-formation simulations on a sub-parsec scale: they produce beautiful filaments 
too [27]. It has nothing to do with cosmology. As Zeldovich explained long ago filaments are 
the natural outcome when gravity overwhelms internal pressure. In any case computer 
simulations, and the Scientific Method, have yet to take the full measure of one another. 
Until they do, arguments based on simulations should be given a low weight. Computer 
simulations have a very mixed record in Astrophysics. 
(D) So much is made to hang from the WMAP data. But it is just another still, and a very 
messy picture, of a single moment in time. Maybe it’s an earlier moment, but not so much 
earlier in the relevant logarithmic sense. And most of the non-Galactic structure lies in the 
First Peak – which has only an oblique bearing on cosmology – and whose position can be 
derived from dimensional considerations alone. 
(E) Most unhealthy is the present comedy surrounding CDM. Galaxies, near or far, simply 
do not conform to the dictates of this once attractive theory. Bigger galaxies seem to evolve 
before small ones – ‘down-sizing’ [10]. There aren’t hundreds of dwarfs for every giant [17]. 
Galaxies don’t have cuspy cores [18]. Mergers are rare and cannot lead to the thin discs we 
see on every side [19]. There is little or no correlation between the properties of exponential 
galaxies and their environments [20, 21]. Finally galaxies exhibit a drastic and puzzling 
degree of self-organisation (forming a 1-parameter set) that is totally at odds with 
Hierarchical Galaxy Formation, the child of CDM [22, 23]. And of course we haven’t found 
the DM, cold or otherwise. So CDM is in tatters – but somehow, like the Emperors New 
Clothes, lives on. Why? Presumably because without it BBC has lost a vital prop – a means 
for forming structure. What is so bizarre is the asymmetry between galaxy astronomy, 
which is rich with Information, and cosmology, which is not. And yet the cart is pushing the 
horse here. [24, 25]. 
Some opine that one shouldn’t criticise an hypothesis without offering an alternative. I do 
not agree. Publishing its weaknesses ought to encourage alternatives, even where the critic 
cannot find one himself. However it is interesting to note that all the dynamical 
discrepancies that call for Dark Matter could as well point elsewhere. Wherever large lumps 
of matter are accelerated by gravitation (e.g. in clusters) the acceleration is always too large; 
it’s as if each accelerated lump is dragged along by its neighbours. That is Mach’s Principle. 
And if there is something to it extragalactic astronomers would be the first to know. 
Given its rickety state one wonders at the hushed respect in which BBC is still widely held 
(‘Cosmology Deference’). Had the subject matter been less momentous one feels that parts of 
it at least would have been discarded some time ago. But there lies its singularity, its 
difference from the rest of science. Mankind seems to need a cosmology, and just now 
BBC is the only one he’s got. But for this observer at least, something even more 
mysterious and interesting appears to be going on out there. The last thing we should be 
doing is trying to force it into an old-fashioned corset that doesn’t seem to fit. Scepticism 
is the portal to progress. Science risks discredit if it isn’t willing to apply to cosmology the 
same sceptical attitude that it does to all other supplicants for its approval. Is BBC really a 
science, or is it a just-so folk tale heavily disguised as a science? One cosmologist [28] said: 
“Cosmology is the dot com of the sciences. Boom or bust. It is about nothing less than the origin 
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and evolution of the Universe, the all of everything. It is the boldest of enterprises and not for the 
fainthearted. Cosmologists are the flyboys of astrophysics, and they often live up to all that image 
conjures up”. That sounds to me like special pleading.. If so then science should certainly 
turn it down.  
The highest compliment we can pay BBC is to treat it as a scientific hypothesis, like any 
other, and weigh up its pros and cons. 
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1. Introduction

The understanding of gravitational phenomena has been considered a fundamental problem
in modern Cosmology. Recent observations of the CMBR power spectrum in the 7-year
data from WMAP (Komatsu et.al., 2011; Jarosik et.al., 2011) tell that the gravitational field
perturbations amplify the higher acoustic modes due to the gravitational field of baryons and
mainly on the influence of Dark matter. Dark matter has been regarded as to be responsible
for inducing a strong gravitational effect on cosmological scale that would lead the young
universe to form large scale structures. Such perturbations are also verified at the local
scales of galaxies and clusters of galaxies. Moreover, the gravitational perturbations also
play an important role in the acceleration of the universe. Due to the cosmological constant
paradigm, modifications of gravity have been studied as a alternative route to obtain the
require correction for Friedman’s equations.
In this sense, Nash’s theorem on gravitational perturbations along extra dimensions has been
revealed to be an appropriated tool in a manner of dealing with such perturbations. In our
present discussion, we seek such explanation within the foundations of geometry, notably
using the notion of geometric or gravitational flow, determined by the extrinsic curvature. In
order to understand the concept of geometric flow, we give a brief review of the problem of
embedding space-times and of its compatibility with the observational aspects of physics.
We discuss the structure and concepts related to the embedding theory as the basis for a
more general theory of gravitation. In this framework, for instance, the cosmological constant
problem is seen as a symptom of the ambiguity of the Riemann curvature in general relativity.
The solution of that ambiguity provided by Nash’s theorem eliminates the direct comparison
between the vacuum energy density and Einstein’s cosmological constant, besides being
compatible with the formation of structures and the accelerated expansion of the universe.
Moreover, it is shown how space-times solutions of Einstein’s equations can be smoothly
deformed along the extra dimensions of an embedding space and how the deformation,
described by the extrinsic curvature, produces an observable effect of topological character
in the universe.
In the following section, we begin reviewing the brane-world program motivated by the
problem of unification of the fundamental interactions. The third section is devoted to Nash’s
embedding theorem and its relation to the gravitational perturbations. The correct embedding
structure of space-time is present here without using junction conditions. In the fourth section,
we show some of the cosmological applications when considering a correct embedding
structure of the space-time. Hence, final remarks are commented in the Conclusion section.
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and evolution of the Universe, the all of everything. It is the boldest of enterprises and not for the 
fainthearted. Cosmologists are the flyboys of astrophysics, and they often live up to all that image 
conjures up”. That sounds to me like special pleading.. If so then science should certainly 
turn it down.  
The highest compliment we can pay BBC is to treat it as a scientific hypothesis, like any 
other, and weigh up its pros and cons. 
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2 Will-be-set-by-IN-TECH

2. On the gravitational constant and Brane-world program

As well known, the gravitational constant in the Newton’s Law given by

�F = m�a = G
mm�

r2
�r
r

, (1)

was introduced to convert the physical dimensions [M2]/[L2] to the dimensions of force
[M][L]/[T2]. It has the value G = 6, 67 × 10−8 cm3/g.sec2, with the same value in a wide
range of applications of (1). In 1914, Max Planck suggested a natural units system in which
G = c = h̄ = 1 and everything else would be measured in centimeters. For that purpose it
was assumed that Newton’s equation (1) also holds at quantum level. Under this condition,
comparing the gravitational energy for m = m� with the quantum energy for a wavelength
λ ∼ r, it follows that

E =< �F.�r >= G
m2

λ
=

h̄c
λ

.

Together with Maxwell equations and the laws of thermodynamics, this leads to three
quantities which characterize the so-called Planck regime:

mpl =

√
h̄c
G

∼ 1019Gev, λpl =

√
h̄G
c3 ∼ 10−33cm, tpl =

√
h̄G
c5 ∼ 10−44sec. (2)

Planck’s conclusion established a landmark in the development of modern physics:

“These quantities retain their natural significance as long as the law of gravitation and
that of the propagation of light in a vacuum and the two principles of thermodynamics
remain valid; they therefore must be found always the same, when measured by the
most widely different intelligences according to the most different methods” (Planck,
1914)

Today, we can safely say that electrodynamics, actually all known gauge theories, and the
laws of thermodynamics remain solid. However, the validity of Newton’s law at 10−33cm has
not been experimentally confirmed. It has been recently shown to hold at 10−3cm, but with
strong hints that it breaks down at 10−4cm (Decca et al., 2007). It should be noted also that
the constant G is valid for the Newtonian space-time which has the product topology Σ3 × R,
where Σ3 denotes the 3-dimensional simultaneity sections, implying that the gravitational
constant has the physical dimensions [G] = [L]3/[M][T]2, appropriate for 3-dimensional
manifolds only.
In 1916, Newton’s gravitational law changed dramatically to General Relativity, including the
principles of equivalence, the general covariance and Einstein’s equations in a 4-dimensional
space-time

Rμν − 1
2

Rgμν = 8πGTμν . (3)

The Newtonian gravitational constant G, was retained in (3), to guarantee that the theory
would reproduce the Newtonian theory in its weak field limit, without the need to
change constants. However, the consequences of this are quite embarrassing: indeed, the
maintenance of G in (3) originates the hierarchy problem of the fundamental interactions.
While all relativistic gauge interactions are quantized at the Tev scales of energies, gravitation
would be quantized only at ∼ 1019Gev, which, as we have seen, coincide with the level
predicted by Planck for Newtonian quantum gravity which is the weak field limit of General
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Relativity. Furthermore, the relativistic quantum gravitational theory compatible with the
physical dimensions of G would be defined only in a 3-dimensional foliation of the space-time,
as originally conceived by Dirac (Dirac, 1959), Arnowitt, Deser and Misner (Arnowitt et al.,
1962). However, such foliation is not consistent with the diffeomorphism invariance of
General Relativity (Kuchar, 1992).
The criticism on the validity of Planck’s regime for quantum gravity is the basis of the
brane-world program by Arkani-Hamed, G. Dvali and S. Dimopolous (ADD for short)
(Arkani-Hamed et al., 1998) proposing a solution of the hierarchy problem of the two
fundamental energy scales in nature, namely, the electroweak and Planck scales [MPl/mEW ∼
1016] (Carter, 2001). It contains essentially three fundamental postulates:

1. the space-time or brane-world is an embedded differentiable sub manifold of another space
(the bulk) whose geometry is defined by the Einstein-Hilbert action (therefore this should
not be confused with the “brane” of string/M-theory);

2. all gauge interactions are confined to the four-dimensional brane-world (this is a
consequence of the poincaré symmetry of the electromagnetic field and in general of the
dualities of yang-mills fields, which are consistent in four-dimensional space-time only);

3. gravitation is defined by Einstein’s equations for the bulk, propagating along the extra
dimensions at Tev energy scale.

It follows from (2) that all ordinary matter fields interacting with gauge fields must also be
confined to the same space-time; the original ADD paper refers to graviton probes to the extra
dimensions, but classically it means that the bulk is locally foliated by a family brane-world
sub-manifolds, whose metric depend on the extra-dimensional coordinates in the bulk.
The impact of such program in theoretical and observational cosmology has been discussed
at length as, e.g., in Refs. (Randall, 1999, a;b; Dvali, 2000; Sahni, 2002; 2003; Shiromizu, 2000;
Dick, 2001; Hogan, 2001; Deffayet, 2002; Alcaniz, 2002; Jain et al., 2002; Lue, 2006). For
instance, concerning the dark matter problem, just like the gravitational field of ordinary
matter, dark matter gravity could also propagate in the bulk and in principle should be
derived from the same bulk gravitational equations. When considering the acceleration
expansion problem, modifications of gravity at very large scales also have been regarded as
an alternative route to deal with the accelerated expansion of the universe, often described
by something called dark energy. That route in turn has been predominantly associated with
the existence of extra-dimensions which a modified friedman’s equation can be obtained and
provide the correct acceleration expansion.
Some popular brane-world models use Strings/M-theory motivations and use additional
postulates such as a z2 symmetry across the brane-world (or d-brane-world) as in the
Randall-Sundrum models (Randall, 1999, b). This symmetry was not considered here
essentially because the z2 symmetry breaks the regularity of the embedding, thus preventing
the use of the perturbation mechanism which is the essential feature in our arguments.
To be free from these limitations we require a model independent formulation based on the
perturbational theory of embedded submanifolds as stated in (Maia et al., 2005; 2007), rather
than particular junction conditions that we discuss more details in the next section.

3. The embedding problem

The embedding of a manifold into another is a non-trivial problem and has its roots in
the classic problem in differential geometry, originated in the early days of the Riemannian
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geometry. The curvature tensor defined by Riemann can describe the local shape of a
Riemannian manifold only up to the condition that it does not “stretch".
Reviewing the concept, given a basis {eμ} the Riemann tensor describes the curvature of a
manifold by displacing a vector field eρ along a closed parallelogram defined by eμ and eν and
comparing the result with the original vector obtaining:

R(eμ, eν)eρ = Rμνρσeσ = [∇μ,∇ρ]eσ .

When the difference is zero, the manifold is said to be flat. Such Riemannian flat space is not
necessarily equal to a flat space in Euclidean geometry. For instance, it could likewise be a
cylinder or a helicoid. After Riemann conceptualized a manifold intrinsically, the question if
the geometry of a Riemannian manifold has the same geometry of a manifold embedded in an
Euclidean soon arose. Today we know that every Riemannian manifold defined intrinsically
can be embedded isometrically, locally or globally, in a Euclidean space with appropriate
dimensions (Odon, 2010).
Nonetheless, the existence of a background geometry is necessary to fix the ambiguity of the
Riemann curvature of a given manifold, without a reference structure. General Relativity
solves this ambiguity problem by specifying that the tangent Minkowski space is a flat
plane, as decided by the Poincaré symmetry, and not by the Riemann geometry itself. The
same space-time is chosen as the ground state for the gravitational field, where particles
and quantum field are defined. This choice would be fine, were not for the experimental
evidences of a small but non-zero cosmological constant. Since the presence of this constant
is not compatible with the Minkowski space-time, we face a conflicting situation: Either we
define particles, quantum fields and their vacua states in the Minkowski space-time using the
Poincaré group, or else these properties should be defined in a De Sitter space-time using the
De Sitter group (Maia et al., 2009). The cosmological constant and the vacuum energy density
based on the Poincaré symmetry cannot be present simultaneously in Einstein’s equations,
without bringing up the current cosmological constant issue.
The ambiguity of the curvature tensor was known by Riemann himself, when he
acknowledged that his curvature tensor defines a class of objects and not just one (Riemann,
1854). This is explicit in Riemann’s words when he states “by considering arbitrary bendings
-without stretching” of such surfaces which are equivalent to a plane due to the lines on
the surfaces remain unaltered even when bending. It imposes a serious constraint on the
dynamics of the geometry itself. This means that the Riemann curvature has a degree of
ambiguity, characterizing classes of equivalence of manifolds which would otherwise have
different shapes or topologies where it cannot evolve nor stretch. In particular, there are
infinite many flat Riemannian manifolds, all with zero Riemann curvature, but with different
shapes.
A solution of such ambiguity was conjectured by L. Schlaefli in 1871, proposing that all
Riemannian manifolds must be embedded in a larger space, so that the components of the extrinsic
curvature may decide the difference between two Riemann-flat geometries (Schlaefli, 1873).
However, the embedding depend on the solution of the Gauss-Codazzi-Ricci equations,
involving the metric, the extrinsic curvature and the third fundamental form as independent
variables. They provide the necessary and sufficient conditions for the existence of the
embedded manifold (Eisenhart, 1966). Until recently those equations could be solved only
with the help of positive power series expansions of the embedding functions (that is, they
must be analytic functions), and so each embedding had to be examined separately.
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The proof that all differentiable Riemannian manifolds can be embedded in a space with
sufficient number of dimensions using exclusively smooth functions was given by Nash
(Nash, 1956) in 1956, when he introduced the notion of smoothing operators in Riemannian
geometry, leading to the geometric flow condition

kμν = − 1
2

∂gμν

∂y
(4)

where kμν denotes the extrinsic curvature and y represents a coordinate on a direction
orthogonal to the embedded geometry.
In the following we derive the condition (4) in the simple case of just one extra dimension.
Higher dimensional cases were also implicit in Nash’s paper and this was applied as a possible
extension of the ADM quantization of the gravitational field (Maia et al., 2007).

4. Geometric flow

Consider a Riemannian manifold V̄n with metric ḡμν, and its local isometric embedding in a
D-dimensional Riemannian manifold VD , D = n + 1, given by a differentiable and regular
map X : V̄n → VD satisfying the embedding

gμν = GABX A
,μX B

,ν ; GABX A
,μ ηB

b = 0; GABηA
a ηB

b = gab = ±δab . (5)

where we have denoted by GAB the metric components of VD in arbitrary coordinates, and
where η̄ denotes the unit vector field orthogonal to V̄n. The extrinsic curvature of V̄n is by
definition the projection of the variation of η on the tangent plane (Eisenhart, 1966)

k̄μν = −X A
,μ η̄B

,νGAB = X A
,μνη̄BGAB . (6)

The integration of the system of equations gives the required embedding map X .
In order to understand the meaning of the extrinsic curvature, construct the one-parameter
group of diffeomorphisms defined by the map hy(p) : VD → VD , describing a continuous
curve α(y) = hy(p), passing through the point p ∈ V̄n, with unit normal vector α�(p) = η(p)

(Crampin, 1986). The group is characterized by the composition hy ◦ h±y� (p)
de f
= hy±y�(p),

h0(p)
de f
= p. Applying this diffeomorphisms to all points of a small neighborhood of p, we

obtain a congruence of curves (or orbits) orthogonal to V̄n. It does not matter if the parameter
y is time-like or not, nor if it is positive or negative.
Given a geometric object ω̄ in V̄n , its Lie transport along the flow for a small distance δy is
given by Ω = Ω̄ + δy£ηΩ̄, where £η denotes the Lie derivative with respect to η Crampin
(1986). In particular, the Lie transport of the Gaussian frame {X A

μ , η̄A
a }, defined on V̄n gives

ZA
,μ = X A

,μ + δy £ηX A
,μ = X A

,μ + δy ηA
,μ (7)

ηA = η̄A + δy [η̄, η̄]A = η̄A (8)

However, from (6) we note that in general η,μ �= η̄,μ.
It is important to note that the set of coordinates ZA obtained by integrating these equations
does not necessarily describe another manifold. In order to be so, they need to satisfy embedding
equations similar to (5):

ZA
,μZB

,νGAB = gμν, ZA
,μηBGAB = 0, ηAηBGAB = 1 . (9)
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The proof that all differentiable Riemannian manifolds can be embedded in a space with
sufficient number of dimensions using exclusively smooth functions was given by Nash
(Nash, 1956) in 1956, when he introduced the notion of smoothing operators in Riemannian
geometry, leading to the geometric flow condition

kμν = − 1
2

∂gμν

∂y
(4)

where kμν denotes the extrinsic curvature and y represents a coordinate on a direction
orthogonal to the embedded geometry.
In the following we derive the condition (4) in the simple case of just one extra dimension.
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extension of the ADM quantization of the gravitational field (Maia et al., 2007).

4. Geometric flow

Consider a Riemannian manifold V̄n with metric ḡμν, and its local isometric embedding in a
D-dimensional Riemannian manifold VD , D = n + 1, given by a differentiable and regular
map X : V̄n → VD satisfying the embedding

gμν = GABX A
,μX B

,ν ; GABX A
,μ ηB

b = 0; GABηA
a ηB

b = gab = ±δab . (5)

where we have denoted by GAB the metric components of VD in arbitrary coordinates, and
where η̄ denotes the unit vector field orthogonal to V̄n. The extrinsic curvature of V̄n is by
definition the projection of the variation of η on the tangent plane (Eisenhart, 1966)

k̄μν = −X A
,μ η̄B

,νGAB = X A
,μνη̄BGAB . (6)

The integration of the system of equations gives the required embedding map X .
In order to understand the meaning of the extrinsic curvature, construct the one-parameter
group of diffeomorphisms defined by the map hy(p) : VD → VD , describing a continuous
curve α(y) = hy(p), passing through the point p ∈ V̄n, with unit normal vector α�(p) = η(p)

(Crampin, 1986). The group is characterized by the composition hy ◦ h±y� (p)
de f
= hy±y�(p),

h0(p)
de f
= p. Applying this diffeomorphisms to all points of a small neighborhood of p, we

obtain a congruence of curves (or orbits) orthogonal to V̄n. It does not matter if the parameter
y is time-like or not, nor if it is positive or negative.
Given a geometric object ω̄ in V̄n , its Lie transport along the flow for a small distance δy is
given by Ω = Ω̄ + δy£ηΩ̄, where £η denotes the Lie derivative with respect to η Crampin
(1986). In particular, the Lie transport of the Gaussian frame {X A

μ , η̄A
a }, defined on V̄n gives

ZA
,μ = X A

,μ + δy £ηX A
,μ = X A

,μ + δy ηA
,μ (7)

ηA = η̄A + δy [η̄, η̄]A = η̄A (8)

However, from (6) we note that in general η,μ �= η̄,μ.
It is important to note that the set of coordinates ZA obtained by integrating these equations
does not necessarily describe another manifold. In order to be so, they need to satisfy embedding
equations similar to (5):

ZA
,μZB

,νGAB = gμν, ZA
,μηBGAB = 0, ηAηBGAB = 1 . (9)
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Replacing (7) and (8) in (9) and using the definition (6) we obtain the metric and the extrinsic
curvature of the new manifold

gμν = ḡμν − 2yk̄μν + y2 ḡρσ k̄μρk̄νσ (10)

kμν = k̄μν − 2yḡρσ k̄μρk̄νσ . (11)

Taking the derivative of (10) with respect to y we obtain Nash’s deformation condition (4).
The analogy of geometry with fluid flows is similar but different from the Ricci flow proposed
by R. Hamilton using the caloric fluid and Fourier’s heat flux to obtain the expression

Rμν = − 1
2

∂gμν

∂y

that resembles (4) (Hamilton, 1982). This result was subsequently applied with enormous
success by G. Perelman to solve the Poincaré conjecture (Perelman, 2002). Unfortunately
the Ricci-flow is not relativistic and it is not compatible with Einstein’s equations or with
relativistic cosmology.
The equations (9) need to be integrated so define a new manifold. The integrability conditions
for these equations are given by the non-trivial components of the Riemann tensor of the
embedding space1, expressed in the frame {ZA

μ , ηA} as

5RABCDZA
,αZB

,βZC
,γZD

,δ = Rαβγδ +(kαγkβδ−kαδkβγ) (12)
5RABCDZA

,αZB
,βZC

,γηD = kα[β;γ] (13)

These are the mentioned Gauss-Codazzi equations (the third equation -the Ricci equation-
does not appear in the case of just one extra dimension) (Eisenhart, 1966). The first of
these equation (Gauss) shows that the Riemann curvature of the embedding space acts as
a reference for the Riemann curvature of the embedded space-time. Both Riemann curvatures
are ambiguous in the sense described by Riemann, but Gauss’ equation (12) shows that
their difference is given by the extrinsic curvature, completing the proof of the Schlaefli
embedding conjecture by use of Nash’s deformation condition (4). The second equation
(Codazzi) complements this interpretation, stating that the projection of the Riemann tensor
of the embedding space along the normal direction is given by the tangent variation of the
extrinsic curvature.
Equations (10) and (11) describe the metric and extrinsic curvature of the deformed geometry
V4. By varying y they describe a continuous sequence of deformations in the the embedding
space. The existence of these deformations are given by the integrability conditions (12) and
(13) which are therefore not dynamical equations.
As in Kaluza-Klein and in the brane-world theories, the embedding space V5 has a metric
geometry defined by the higher-dimensional Einstein’s equations

5RAB − 1
2

5RGAB = G∗T∗
AB . (14)

where G∗ is the new gravitational constant and where T∗
AB denotes the components of the

energy-momentum tensor of the known gauge fields and material sources. From these

1 To avoid confusion with the four dimensional Riemann tensor Rαβγδ, the five-dimensional Riemann
tensor is denoted by 5RABCD. The extrinsic curvature terms in these equations follows from the
five-dimensional Christoffel symbols together with the use of (4).
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dynamical equations we may derive the gravitational field in the embedded space-times.
Taking the tangent, vector and scalar components2 of (14) and using the previous confinement
conditions (19) one can obtain

Rμν − 1
2

Rgμν − Qμν = 8πGTμν (15)

k ρ
μ;ρ − h,μ = 0 , (16)

where the term Qμν in the first equation results from the expression of RAB in (14), involving
the orthogonal and mixed components of the Christoffel symbols for the metric GAB.
Explicitly this new term is

Qμν = gρσkμρkνσ − kμνh − 1
2

(
K2 − h2

)
gμν , (17)

where h2 = gμνkμν is the squared mean curvature and K2 = kμνkμν is the squared Gauss
curvature. This quantity is therefore entirely geometrical and it is conserved in the sense of

Qμν
;ν = 0 . (18)

Therefore we may derive observable effects associated with the extrinsic curvature capable to
be seen by four-dimensional observers in space-times.
With all these tools at hand, modern Cosmology has been investigated and represents an
important source of data that can provide a deeper comprehension of the gravitational
structure and evolution of the universe. Not only this, but it calls for new gravitational
theories far beyond Einstein’s approach. Even though we are long way from a concrete
fully-developed theory, dark matter and dark energy play a major role on this quest,
representing fundamental constraints to these new gravitational models. It is also important
to make the following observations:
1) A cosmological constant was not included in the equation for the higher dimensional space
V5 in (14), so that the cosmological constant problem does not appear. With this choice we also
ensure the existence of an embedded 4-dimensional Minkowski space-time (a cosmological
constant was included in (Maia et al., 2005), but here we see no reason for it).

2) In contrast with the extra dimensional perturbative behaviour of the gravitational field,
all gauge fields of the standard model remain confined to the four-dimensional space-time.
This is a direct consequence of the gauge field structure. Just as a reminder, the Yang- Mills
equations can be written as D ∧ F = 0, D ∧ F∗ = 4π J∗, where F = Fμνdxμ ∧ dxν , Fρσ =
[Dρ, Dσ], Dμ = I∂μ + Aμ, F∗ = F∗

μνdxμ ∧ dxν and F∗
μν = �μνρσF∗ ρσ. The duality operation

F → F∗ requires the existence of an isomorphism between 3-forms and 1-forms, which can
only be realized in a four dimensional space-time manifold. Therefore, the confinement of
gauge fields, matter and vacuum states is a property that is independent of the perturbation
of the brane-world geometry.
There are two relevant consequences of the confinement. In the first place, it implies that
all ordinary matter which interacts with the gauge fields, and also the vacuum states and
its energy-momentum tensor associated with the confined fields also remain confined to
the four-dimensional brane-world. Secondly, the diffeomorphism invariance of General

2 The third gravitational equation was omitted here due to the fact that it vanishes in 5-D, but when the
higher dimensional space-time is considered, one can obtain the equation R− (K2 − H2) +R(D− 5) =
0, sometimes called gravitational scalar equation.
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Relativity cannot apply to the bulk manifold VD , for it would imply in breaking the
confinement. Of course, such limitation could be fixed by applying a coordinate gauge, but
then we will be imposing a modification to Nash’s theorem. Nash’s theorem demands the
embedding to be differentiable and regular, so that there is a 4 × 4 non-singular sub-matrix
of the Jacobian determinant of the embedding map, thus guaranteeing the diffeomorphism
invariance in the four-dimensional embedded submanifold only. Admitting that the original
(on-embedded) space-time is a solution of Einstein’s equations, the gauge fields, matter and its
vacuum states keep a 1 : 1 correspondence with the source fields in the embedded space-time
structure. Consequently, the confinement can be generally set as a condition on the embedding
map such that

8πGTμν = G∗ZA
,μZB

,νT∗
AB, ZA

,μηBT∗
AB = 0, and ηAηBT∗

AB = 0 (19)

3) Einstein’s equations can be written as

5RAB = G∗
(

T∗
AB − 1

3
T∗GAB

)

The tensor 5RAB may be evaluated in the embedded space-times by contracting it with
ZA

,μ, ZB
,ν, ZA

μ ηB and ηAηB. Using (4), (9) and the confinement conditions (19), Einstein’s
equations become

5Rμν = Rμν +
∂kμν

∂y
− 2kμρkρ

ν + hhμν (20)

5Rμ5 = kρ
μ;ρ +

∂Γρ
μ5

∂y
(21)

It follows that the Israel-Lanczos condition does not follow from Einstein’s equations (3)
by themselves. It becomes necessary that the embedded geometry does satisfy particular
conditions such that the Ricci curvature of the embedding space coincide with the extrinsic
curvature of the embedded space-time, that is 5Rμν = kμν, which is not generally true. One
of these conditions is that the embedded space-time acts as a mirror boundary between two
regions of the embedding space (see e.g. (Israel, 1966)). In this case we may evaluate the
difference of 5Rμν from both sides of the space-times and the above mentioned boundary
condition holds. However, in doing so the deformation given by (4) ceases to be. Therefore,
to find the deformations caused by the extrinsic curvature, such special conditions are not
applied and they are not needed. To make it clear how it works, one can first take (14) and
contracting with the metric GAB and using the confinement conditions in (19) and (14), one
can find

R = − 2
3

α∗T∗ , (22)

and also

RAB = α∗
(

T∗
AB − 1

3
T∗GAB

)
, (23)

where the components can be obtained in the Gaussian frame {ZA
,μ, ηA}. Hence, we have

RABZA
,μZB

,ν = α∗
(

T∗
AB − 1

3
T∗GAB

)
ZA

,μZB
,ν = α∗

(
T∗

μν −
1
3

T∗gμν

)
.
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As we can see, the right side of the previous equation is the same expression as that verified
in the IDL condition which must coincide with the extrinsic curvature in the brane-world.
However, this is not true inasmuch as the left side of the equation is the contracted form of
Gauss equations. We may check it writing the components in the Gaussian frame of (14) and
obtain (15). As a consequence of Gauss-Codazzi-Ricci equations, in the higher dimensional
space-time structure, the direct contraction of the Ricci equation gives

R = R− (K2 + H2) + 2
∂h
∂y

, (24)

where RABηAηB = ∂h
∂y + K2.

Taking (22) and (24), and applying in (15), one can find

Rμν −
∂kμν

∂y
− 2kρ

μkρν + hkμν = α∗
(

T∗
μν −

1
3

T∗gμν

)
. (25)

In fact, it shows that the IDL condition only can be obtained by imposing some serious
constraints on the embedding process. Still, if we want to insist on obtaining the IDL
condition, we must assume some simplifying conditions. Let the brane-world has a boundary
such that it separated into two sides labeled (+) and (-) regions. The difference calculated
in each side of the brane-world is zero when y → 0. In other words, we have the same
equation obtained in (25) the more we approach y = 0 from each side inasmuch as there is not
a effective distinction in the riemannian geometry when evaluated from each side to the other.
This situation turns to be quite different when the Z2 is considered. In this case, the extrinsic
curvature (or any object that could access extra-dimensions) has its image mirrored in the
brane-world (which acts as a mirror). For instance, if we have k+μν = −k−μν, the derivatives[
−
(

∂kμν

∂y

)]
= α∗

(
T∗

μν − 1
3 T∗gμν

)
constantly change when they approach y → 0. By using the

mean value theorem in the interval [−y, y], we can evaluate the difference between both sides
and obtain [

−
(

∂kμν

∂y

)]
=

−k+μν + k−μν

y
.

Denoting [X] = X+ − X− and X = X̄(x)δ(y), we have

y[X] =
∫ y

−y

d
dξ

(|ξ|X)dξ =
∫ y

−y

∂|ξ|
∂ξ

Xdξ +
∫ y

−y
|ξ| dX

dξ
dξ

=
∫ y

−y

∂|ξ|
∂ξ

X̄δ(ξ)dξ +
∫ y

−y
|ξ| ∂δ(ξ)

∂ξ
X̄dξ = 2X̄ .

In the case that [X] = α∗
(

T∗
μν − 1

3 T∗gμν

)
, we obtain Lanczos equation

k+μν − k−μν = −2α∗
(

T∗
μν −

1
3

T∗gμν

)
, (26)

that describes the jump of the extrinsic curvature in the background separation point y = 0.
Hence, the IDL condition is obtained when the Z2 symmetry is applied to (26) obtaining

kμν = α∗
(

T∗
μν −

1
3

T∗gμν

)
. (27)
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The use of Z2 symmetry induces a serious constraint on the embedding differentiable
structure. Once a perturbation occurs in a point of the background it is mirrored in the
brane-world background and two tangent vectors on each side can be defined. The projections
of these vectors point in opposite directions which means that the embedding differentiable
functions cannot be properly defined (Maia, 2004).
In summary, the theoretical scheme presented here are consequence of a fundamental
perturbational process stated by Nash’s embedding theorem. Nash’s perturbation method
innovates in two basic aspects: first, there is no need to apply the restrictive convergent
series power of analytical function hypothesis to make an embedding between two manifolds.
Secondly, the perturbational nature of the process we can obtain dynamical equations as
well as integrating them such as in Cauchy’s problem in Mechanics and it also gives a
prescription on how to construct geometrical structures by deforming simpler ones. It seems
that this geometric perturbation process has to do with the formation of structures in the early
universe. When Nash’s theorem is applied to physics, it provides a general mathematical tool
appropriated to the brane-world program. In the model independent covariant formulation
the extrinsic curvature appears as an independent symmetric tensor field which evolves
together with the brane-world dynamics. Interestingly, the presence of the independent
symmetric rank-two tensor field has been considered long before the observation of the
accelerated expansion of the universe under different motivations and circumstances as a
possible repulsive gravitational field (Isham et al., 1971).

5. Cosmological applications

After all these geometrical considerations, in the following we summarize important ideas of
works on the applications of Nash’s theorem to Cosmology as seen in (Maia et al., 2009; 2005;
Odon, 2010; Capistrano, 2010). The first step to do is to defined the background geometry. The
standard Friedman-Lemaître-Robertson-Walker(FLRW) model is sufficiently simple to make
it locally embedded in a 5-dimensional flat space, satisfying Nash’s differentiable conditions.
Therefore, it can be taken as a background cosmology, which can be deformed along the
fifth-dimension. However, here the effects of the extrinsic geometry are shown in the FLWR
background only (that is without perturbations).

5.1 The Cosmological Constant problem
The so-called Cosmological Constant problem had its first seeds planted in 1916, with the ideas
of Nernst (Nernst, 1916). He studied the non-vanishing vacuum energy density that was
fulfilled with radiation-only content, which was confirmed by the Casimir effect in 1948
(Casimir, 1948; Mostepanenko, 1997; Jaffe, 2005). In late 1920’s, Pauli (Pauli, 1933; Straumann,
2002; Rugh, 2002) made studies about the gravitational influence of the vacuum energy
density of the radiation field, suggesting a conflict between the vacuum energy density and
gravitation. If vacuum energy density is considered, then gravity should be dispensed.
Intriguingly, the conflicting Pauli’s results passed unnoticed by scientific community. Only
on subsequent decades, the observations of quasars in the mid-late of the 1960’s suggested
the reconsideration of Λ (Petrosian, 1974).
Here we refer to the cosmological constant problem described in (Weinberg, 1989). Using the
semiclassical Einstein’s equations in General Relativity the quantum vacuum can be described
as a perfect fluid with state equation pv = − < ρ >v= constant (Zel’dovich, 1967):

Rμν − 1
2

Rgμν + Λgμν = 8πGTm
μν + 8πG < ρ >v gμν , (28)
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where Tm
μν stands for the classical sources. Comparing the constant terms in both sides of this

equation we obtain Λ/8πG =< ρ >, or as it is commonly stated, the cosmological constant is
the vacuum energy density. However, current observations tell that Λ/8πG ∼ 10−47(Gev)4

(here, c = 1). On the other hand, admitting that quantum field theory holds up to the
Planck scale, the vacuum energy density would be < ρ >v∼ (1019Gev)4 = 1076(Gev)4. This
difference cannot be resolved by any known theoretical procedure in quantum field theory.
Even supposing that quantum field theory holds to the Tev scale or less, the difference would
be still too large to compensate. This difficulty has become to known as the cosmological
constant problem.
In one proposal to solve this problem, a scalar field is added to the right hand side of Einstein’s
equations, such that it adjusts the difference between the two constants (Chen & Wu, 1990;
Waga, 1993; Caldwell & Linder, 2005; Lima, 2004; Padmanabham, 2007). Of course, this scalar
field must also agree the other cosmological conditions, such as the structure formation, the
past and present inflationary periods, and the smooth transition to and from the standard
cosmology period. The adjustments of this field to such conditions have proven to be not so
simple. A more geometrical approach to the problem, the Einstein-Hilbert action principle
has been tentatively modified, using for example higher derivative Lagrangians, or more
generally a Lagrangean defined by an arbitrary function of the Ricci curvature, in the so
called f(R) theories (Capozziello et.al., 1998). However, it becomes a necessity to give a
meaning to the resulting action principle, which is after all a fundamental principle. In
comparison, the Einstein-Hilbert principle has a specific meaning, stating that the geometry
of the space-time must be as smooth as possible. Furthermore, it comes after Newton’s
gravitational law, when it is expressed geometrically, so that at the end, it is founded in
experimental facts. In this respect, given the arbitrariness of f(R), it is not at all clear that
the present astrophysical observations are sufficient to decide on such function (Sokolowski,
2007). Another fine-tuning approach suggests new two fundamental scales (Alfonso-Faus,
2009), the cosmological quantum black hole (CQBH) and the quantum black hole (QBH) in
order to solve the ambiguity of Λ in the cosmological problem by using an appropriate choice
of parameters, e.g h̄ ∼ 10−122 that lead from the Planck scale to the Cosmological scale without
conflicting with Λh̄ ∼ 1, instead of using G = c = h̄ = 1.
As also suggest in (Alfonso-Faus, 2009), we must emphasize that the previous difference in
the cosmological problem is not only numerical, but it is mainly conceptual, resulting from
the superposition of two incompatible ground states for the gravitational field in General
Relativity: The flat Minkowski ground state was chosen to be the reference of curvature, but
the experimental evidences of Λ/8πG �= 0 however small, point to a De Sitter ground state,
which is conceptually incompatible with the Minkowski’s choice. The implications being
that particles and fields, their masses and spins defined by the Casimir operators of the De
Sitter group are different from those defined by the Poincaré group, and they coincide only
when Λ vanishes. The above numerical and conceptual conflicts can be resolved with the
Schlaefli embedding conjecture as implemented by Nash, where the De Sitter and Minkowski
space-times may coexist. Indeed, in (15), Λ/8πG is a gravitational component resulting
from the gravitational equations in the embedding space. However, the vacuum energy
density < ρ >v is a confined quantity in the space-time, regardless of the perturbations of
its metric. Finally, the presence of the extrinsic curvature kμν in the conserved quantity Qμν

of (15), imply that those constants cannot be canceled without imposing a constraint on the
extrinsic curvature, which is now part of the gravitational dynamics in the embedding space
(Maia et al., 2009; Capistrano & Odon, 2010).
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5.2 The accelerated expansion
A interesting situation occurs when Nash’s theorem is applied to the Dark energy problem
as proposed in (Maia et al., 2005). One of the most known brane-world models is the
Randall-Sundrum type II (RSII) (Randall, 1999, b). When applied to Cosmology, the vacuum
energy density in a 3-brane is still smaller than the one predicted by quantum field theory,
which means that the cosmological constant problem persists, even though the fundamental
Tev scale energy is preserved. A similar situation occurs when dealing with the Dark energy
problem in which the RS model II provides the following modified Friedmann equation

(
ȧ
a

)2
=

8π

3m2
pl

ρ +
16π2

9m6
5

ρ2 , (29)

where m5 is the 5-dimensional planck scale, mpl is the 4-dimensional planck scale. The
correction term corresponds to the square of the energy density ρ2 of the confined matter
(Tujikawa, 2004; Tujikawa et.al., 2004; Maia, 2004). As it is well known, this result is not
compatible with recent observational data (Komatsu et.al., 2011; Jarosik et.al., 2011) since the
additional term on Friedmann’s equation, i.e, the energy density ρ2, provides a deceleration
scenario of the universe, besides affecting the nucleosynthesis of large structures. To remedy
this situation, other attempts have been studied, such as particular classes of bulk and brane
scalar potentials (Langlois, 2001), notwithstanding they lead to a fine-tuning mechanisms.
In (Maia et al., 2005), the Friedmann-Lemaître-Robertson-Walker (FLRW) line element was
embedded in a 5-dimensional space with constant curvature bulk space whose geometry
satisfy Einstein’s equations with a cosmological constant given by (14). When the equations
are written in the Gaussian frame defined by the embedded space-time, we obtain a larger
set of gravitational field equations. The general solution of (16) for the FLRW geometry was
found to be

kij =
b
a2 gij, i, j = 1, 2, 3, k44 =

−1
ȧ

d
dt

b
a

, (30)

where we notice that the function b(t) = k11 remains an arbitrary function of time. As a direct
consequence of the confinement of the gauge fields, equation (16) is homogeneous, meaning
that one component k11 = b(t) remains arbitrary. Denoting the Hubble and the extrinsic
parameters by H = ȧ/a and B = ḃ/b, respectively, we may write all components of the
extrinsic geometry in terms of B/H as follows

k44 = − b
a2 (

B
H

− 1)g44, (31)
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a4
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B2

H2 − 2
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H

+ 4
)

, h =
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+ 2) (32)

Qij =
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B
H

− 1
)

gij, Q44 = − 3b2

a4 , (33)

Q = −(K2 − h2) =
6b2

a4
B
H

, (34)

Next, by replacing the above results in (15) and applying the conservation laws, we obtain the
Friedmann equation modified by the presence of the extrinsic curvature, i.e.,

(
ȧ
a

)2
+

κ

a2 =
4
3

πGρ +
Λ∗
3

+
b2

a4 . (35)
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When compared with the phenomenological quintessence phenomenology with constant EoS
we have found a very close match with the golden set of cosmological data on the accelerated
expansion of the universe.
Notice that we have not used the Israel-Lanczos condition (27) as used in (Randall, 1999,
b). If we do so, in the case of the usual perfect fluid matter, then we obtain in (35) a
term proportional to ρ2. It is possible to argue that the above energy-momentum tensor
Tμν also include a dark energy component in the energy density ρ. However, in this case
we gain nothing because we will be still in darkness concerning the nature of this energy.
Finally, as it was shown in the previous section, the Israel-Lanczos condition requires that the
four-dimensional space-time behaves like a boundary brane-world, with a mirror symmetry
on it, which is not compatible with the regularity condition for local and differentiable
embedding.
Therefore, the conclusion from (Maia et al., 2005) is that the extrinsic curvature is a good
candidate for the universe accelerator. In the next section we start anew, with a mathematical
explanation on why only gravitation access the extra dimensions using the mentioned
theorem of Nash on local embeddings, and the geometric properties of spin-2 fields defined
on space-times.

5.3 The dynamics of extrinsic curvature
Hitherto, we did not have at the time any previous information on the dynamics of the
extrinsic curvature. The only widely accepted relation of that curvature with matter sources
is the Israel-Lanczos boundary condition, as applied to the Randall-Sundrum brane-world
cosmology. However, this condition fixes once for all the extrinsic curvature, so that it
does not follow the dynamics of the brane-world. Thus, a more fundamental explanation
for the dynamics of the extrinsic curvature is required. In the purpose of complementing
the study shown in (Maia et al., 2005) is to show that the extrinsic curvature behaves as an
independent spin-2 field whose effect on the gravitational field is precisely the observed
accelerated expansion.
From the theoretical point of view, it would be a satisfactory solution for the dark energy
problem if the b(t) (35) function was a unique solution, but, in fact, it depends on a choice of
a family of solutions for the extrinsic curvature induced by the homogeneity of the Codazzi
equation (16) which is well-known equation in differential geometry. Thus, to be free from
these pathologies a proper mechanism or an additional dynamical equation for extrinsic
curvature should be implemented. In spite of Brane-world models get some attention on
recent years due to several options for dark energy, their mechanisms are still not completely
understood or justified. These are mostly based on specific models using special conditions.
For such large scale phenomenology as the expansion of the universe, a general theory based
on fundamental principles and on solid mathematical foundations is still lacking.
Another aspect of Nash’s theorem is that the extrinsic curvature are the generator of the
perturbations of the gravitational field along the extra dimensions. The symmetric rank-2
tensor structure of the extrinsic curvature lends the physical interpretation of an independent
spin-2 field on the embedded space-time. The study of linear massless spin-2 fields in
Minkowski space-time dates back to late 1930s (Pauli, 1939). Some years later, Gupta
(Gupta, 1954) noted that the Fierz-Pauli equation has a remarkable resemblance with the
linear approximation of Einstein’s equations for the gravitational field, suggesting that such
equation could be just the linear approximation of a more general, non-linear equation for
massless spin-2 fields. In reality, he also found that any spin-2 field in Minkowski space-time
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must satisfy an equation that has the same formal structure as Einstein’s equations. This
amounts to saying that, in the same way as Einstein’s equations can be obtained by an infinite
sequence of infinitesimal perturbations of the linear gravitational equation, it is possible
to obtain a non-linear equation for any spin-2 field by applying an infinite sequence of
infinitesimal perturbations to the Fierz-Pauli equations. The result is an Einstein-like system
of equations, the Gupta equations (Gupta, 1954; Fronsdal, 1978).
In order to write the Gupta equations for the extrinsic curvature kμν of an embedded
Riemannian geometry with metric gμν, we may use an analogy with the derivation of the
Riemann tensor, defining the “connection" associated with kμν and then the corresponding
Riemann tensor, but keeping in mind that the geometry of the embedded space-time is already
defined by the metric tensor gμν. Let us define the tensor

fμν =
2
K

kμν, and f μν =
2
K

kμν , (36)

so that f μρ fρν = δ
μ
ν . Subsequently, we construct the “Levi-Civita connection" associated with

fμν, based on the analogy with the “metricity condition". Let us denote by || the covariant
derivative with respect to fμν (while keeping the usual (; ) notation for the covariant derivative
with respect to gμν), so that fμν||ρ = 0. With this condition we obtain the “f-connection"

Υμνσ =
1
2
(
∂μ fσν + ∂ν fσμ − ∂σ fμν

)

and
Υμν

λ = f λσ Υμνσ

The “f-Riemann tensor" associated with this f-connection is

Fναλμ = ∂αΥμλν − ∂λΥμαν + ΥασμΥσ
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αν

and the “f-Ricci tensor" and the “f-Ricci scalar", defined with fμν are, respectively,

Fμν = f αλFναλμ and F = f μνFμν

Finally, write the Gupta equations for the fμν field

Fμν − 1
2
F fμν = α f τμν (37)

where τμν stands for the source of the f-field, with coupling constant α f . Note that the above
equation can be derived from the action

δ
∫

F
√
| f |dv

Note also that, unlike the case of Einstein’s equations, here we have not the equivalent to the
Newtonian weak field limit, so that we cannot tell about the nature of the source term τμν. For
this reason, we start with the simplest Ricci-flat-like equation for fμν, i.e.,

Fμν = 0 . (38)

For simplicity, the equations were written in 5-d but it remains valid for a higher dimensional
bulk. With this new set of equations, in principle the homogeneity of Codazzi equations can
be lift. The work on Gupta’s theorem is currently on progress and applications to the Dark
energy problem have been recently investigated. A more detailed discussion can be found in
(Maia et.al., 2011; Capistrano, 2010)
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5.4 Local gravity and structure formation
Current local dark matter observations based on gravitational micro-lensing, optical and
x-ray astronomical observations tell that the local dark matter phenomenology is different
from that in cosmology. In fact, there is no evidence that the same structure formation
caused by geometric perturbations similar to the cosmological situation is still present around
the already formed structures, at least at the same rate. Gravitational lensing evidences a
gravitational field with a certain metric symmetry. In some cases the dark matter gravitational
field is anchored to an observed structure (spiral galaxies, gravitational halos in clusters etc.)
and its metric symmetry is the same as that of the observed structure. Until very recently these
observations indicated that the source of the local dark matter gravitation (that is, the dark
matter itself) was usually attached to galaxies and clusters. In other cases, as in the example
of the Abell 520 cluster (MS0451+02), the dark matter gravitational field seems to be away
from any baryon substructures. Another recent evidence of the local dark matter gravity is
observed through x-ray astronomy in near colliding clusters (exemplified by the bullet cluster
1E0657-558). The observed effect is the formation of a sonic bullet-like substructure moving
through the intercluster plasma, long before the cluster themselves collide. This is attributed
to the collision of the real dark matter halos assumed to be around the colliding clusters.
Admitting Newtonian gravity, the center of mass of the moving object coincide with the
Newtonian halos. Such wide range of experimental evidences from cosmology to local gravity
suggests the necessity of a comprehensive analysis of the dark matter gravitational field per
se, regardless of any other attributes that dark matter may eventually possess. Therefore, it is
possible that the theoretical power spectrum obtained from (35) coincide with the observed
one. In a preliminary analysis, we obtained a power spectrum which is similar to the
power spectrum from the cosmic microwave background radiation obtained from the WMAP
experiment. On the other hand, Nash’s geometric perturbations may be present as a local

Fig. 1. The theoretical power spectrum calculated with the CAMB for −1 ≤ ω0 ≤ −1/3, Massive
Neutrinos=1, massless neutrinos =3.04.

process, as for example in young galaxies and in cluster collisions. However, in most other
cases there are not sufficient experimental evidences that it is still going on. The formation of
large structures in the early universe has been mostly attributed to gravitational perturbations
produced by other than baryons sources, generally referred to as the dark matter component
of the universe. In the present case, the extrinsic curvature solution of (37) should have an
observable effect in space-time, independently of the perturbations.
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6. Conclusions

The fundamental problems of Modern cosmology are three-fold: the Λ paradigm, dark energy
and dark matter. With the high developing of the observational methods and devices, these
problems have demanded a series of theoretical needs also stimulating the development of
theories beyond Einstein’s. Our approach here was to stress the study of the embedding
process between manifolds and its necessity for the contemporary physics. By its own nature,
the embedding between manifolds is a perturbational process of geometry and the recent
fundamental problems on Cosmology seem to point to the same question: what is gravity
and how it can be perturbed? The studies on the extrinsic curvature have been made at length
in the literature but with no the required accuracy by using junction conditions that induce
the extrinsic geometry to be minimized to gauge fields and matter. Since we understand
the embedding conditions, the using of any junction condition can be dispensed and the
geometrical limitation for the embedding can be lifted.
In the early days of Riemannian geometry, the embedding between two Riemannian
geometries was such a problem due to the fact the need of a relative geometric reference
was missing. The existence of a background geometry is necessary to fix the ambiguity
of the Riemann curvature of a given manifold, without a reference structure. General
relativity solves this ambiguity problem by specifying that the tangent Minkowski space
is a flat plane, as decided by the Poincaré symmetry, and not by the Riemann geometry
itself. Such difficulty was known by Riemann himself, when he acknowledged that his
curvature tensor defines a class of objects and not just one (Riemann, 1854). Unlike the case
of string theory the bulk geometry is a solution of Einstein’s equations, acting as a dynamic
reference of shape for all embedded Riemann geometries. This generality follows from the
remarkable accomplishment of Nash’s theorem on embedded geometries. Nash showed
that any Riemannian geometry can be generated by continuous sequence of infinitesimal
perturbations defined by the extrinsic curvature. It seems natural that this result provides
the required geometrical structure to describe a dynamically changing universe. This plays
an essential feature for a new gravitational theory.
The four-dimensionality of the embedded space-times is determined by the dualities of
the gauge fields, which corresponds to the equivalent concept of confinement gauge fields
and ordinary matter in the brane-world program. However, this confinement implies
that the extrinsic curvature cannot be completely determined, simply because Codazzi’s
equations becomes homogeneous. Incidently, the Randall-Sundrum model avoids this
problem by imposing the Israel-Lanczos condition on a fixed boundary-like brane-world.
Since the extrinsic curvature assumes a fundamental role in Nash’s theorem, an additional
equation is required. Recently, works on the subject noted that the extrinsic curvature is an
independent rank-2 symmetric tensor, which corresponds to a spin-2 field defined on the
embedded space-time. However, as it was demonstrated by Gupta, any spin-2 field satisfy
an Einstein-like equation. After the due adaption to an embedded space-time, the analysis
of Gupta’s equations for the extrinsic curvature of the FLWR geometry and the study of the
behavior of the extrinsic curvature at the various stages of the evolution of the universe is still
an open question and the works on the subject are currently on progress.
The embedding of a space-time manifold into another defined by the Einstein-Hilbert
principle may lead to an interesting gravitational theory, not only because its mathematical
consistency provided by the Schlaefli conjecture as resolved by Nash’s theorem, but mainly
because it can meet the demands of modern cosmology, with the minimum of additional
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assumptions which can be fundamental for the development of a soft-after gravitational
quantum field theory.
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1. Introduction

Dark matter is known to contribute about 22% to the total mass density in the Universe.
Its existence started to be noticed in 1933, when Fritz Zwicky made an estimate of the total
mass of the Coma cluster of galaxies outside our local group (Zwicky, 1933). Assuming that
the galaxies in that cluster form a gravitationally bound system, he measured the cluster’s
geometrical size and the velocity dispersion of galaxies in it via Doppler redshift. He found
that the mass of the Coma cluster had to be about 400 times larger than the estimate based on
the number of galaxies and the total brightness of the cluster. He concluded that there must
be some ‘non-visible’ form of matter which would provide enough gravity to hold the cluster
gravitationally bound. This non-visible mass is called ‘dark matter’.
There is by now extensive astronomical evidence supporting the existence of dark matter.
The strongest such evidence comes from the measurements of the circular velocity of stars
and gas in spiral galaxies versus their radial distance. If one assumes that the bulb in the
center of a typical spiral galaxy is spherically symmetric, then one would expect the orbital
velocity v(r) outside the disk to behave like 1/

√
r. Instead, the study of thousands of

rotation curves of spiral galaxies shows that the orbital velocity rises from the center until
it reaches a limiting value vC ∼ (100 − 200) km/s, and then stays flat outside the galaxy core
(Persic & Salucci & Stel, 1996). For example, the observed velocity of the rotation curve of
the spiral galaxy M33, one of the brightest spiral galaxies in our local group, at r � 10kpc is
vC � 120km/s, whereas the expected velocity is v � 40km/s. One infers from this that the
total mass in the galaxy is about nine times the luminous matter (Ωlum ∼ 10%). This implies
that there is about ten times more mass in the halo of spiral galaxies than in the disk.
There is also evidence of dark matter in elliptic galaxies and cluster of galaxies. This comes
from the observation of X-rays emitted via the bremsstrahlung process e+ p → e+ p+ γ from
the intergalactic gas in the cluster. Assuming hydrostatic equilibrium, we can deduce from the
measurement of the X-ray luminosity and the shape of its spectrum, assumed isothermal, the
mass distribution in the galaxy that is necessary to bind the hot gas. The observations indicate
that the total mass associated with these systems is considerably larger than the luminous
component (Fabricant & Gorenstein, 1983; Stewart et al., 1984). Note that cluster masses can
also be determined from their lensing effect on light from distant sources (Mellier, 1999).
Furthermore, during the past few years, data from the WMAP satellite has provided us
with the most precise measurements yet of the cosmological parameters (Spergel et al., 2007;
Pope et al., 2004). By analyzing the location and the height of the acoustic peaks of the
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temperature fluctuations, one can extract the contribution of the different species to the critical
energy density of the Universe. For instance, the height of the first peak relative to the
second one gives a baryon density of about 4%, which is consistent with the predictions of the
primordial theory of Big Bang nucleosynthesis (Steigman, 2010). The third peak is sensitive
to the amount of total matter density in the Universe and can be used to extract the energy
density ΩDM of dark matter in the Universe. The best fit is (Komatsu, 2010):

ΩDMh̄2 = 0.1123 ± 0.0035, (1)

where h̄ is the Hubble constant in units of 100km × s−1 × Mpc−1.
Yet, even though dark matter dominates the matter mass ‘budget’ of the Universe, its very
nature remains elusive. Indeed, what are its quantum numbers, its mass? How does it
interact with the Standard Model particles? One should also say that up until now, it has not
been directly detected. But there is a number of basic properties that any candidate for dark
matter should have1. First of all, it must be massive, and this is because of the non-relativistic
velocities involved. Second, it must be stable so that it would survive until today, which
means it must have a lifetime larger than that of the Universe. Third, it must be electrically
neutral, otherwise it would have been very likely seen via its electromagnetic interaction
with visible matter. Also, the abundance of such stable charged massive particles would be
severely constrained, in particular from searches in the deep sea water (Amsler et al., 2008).
Fourth, a dark-matter candidate should not interact strongly. Indeed, if such a massive stable
particle could do so, it would be able to bind and form anomalously heavy nuclei. But the
resulting number of such anomalously heavy nuclei that would be present today is shown
to be excluded by existing searches (Javorsek, 2001; 2002). Fifth, for a dark matter candidate
to act as a seed for structure formation, it must decouple at a temperature of the order of its
mass. Such a candidate is known as "cold dark matter". Sixth, it must give the right relic
dark-matter density, which, by the latest astrophysical observations, is about 22% of the total
energy density in the Universe (Komatsu, 2010).
While the Standard Model of elementary particle Physics is very successful at describing
the interactions between ‘visible’ particles, it cannot accommodate for a weakly interacting
massive particle (WIMP) as a suitable candidate for dark matter. Hence, extensions of the
Standard Model are inevitable and, given the elusiveness of dark matter, modeling becomes
a necessity. In this framework, the most popular candidate for dark matter is the neutralino,
a neutral R-odd supersymmetric particle. Indeed, neutralinos are produced or destroyed in
pairs only, thus rendering the lightest SUSY particle (LSP) stable (Ellis et al., 1984). In the
minimal version of the supersymmetric extension of the Standard Model, the neutralino χ0

1
is a linear combination of the fermionic partners of the neutral electroweak gauge bosons
(gauginos) and the neutral Higgs bosons (higgsinos). It can annihilate through a t-channel
sfermion exchange into Standard-Model fermions, or via a t-channel chargino-mediated
process into W+W−, or through an s-channel pseudoscalar Higgs exchange into fermion
pairs. Also, it can undergo elastic scattering with nuclei through mainly a scalar Higgs
exchange (Jungman, 1996).
However, having a neutralino as a candidate for light dark matter can be a real challenge.
For example, in mSUGRA, the constraint from WMAP observations and the bound on the
pseudo-scalar Higgs mass from LEP give neutralino mass mχ0

1
≥ 50GeV (Belanger et al., 2009;

Akrami et al., 2010). If one allows the gaugino masses M1 and M2 to be free parameters

1 We implicitly mean a candidate from the realm of elementary particles.
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and the gluino mass to satisfy the universal condition at some grand unification scale, that
is, M3 = 3M2, then the LSP should be heavier than about 28GeV (Vasquez et al., 2010), see
also (Feldman, 2010; Kuflik, 2010). A similar analysis is done in (Fornengo et al., 2011) with
the gluino mass taken as a free parameter, and it is concluded that the lower limit on the
neutralino mass varies between about 7GeV and 12GeV, depending on the gluino mass and
the degeneracy of the squarks. In the extension of the MSSM with an extra singlet chiral
superfield (NMSSM), a model with 11 input parameters, it is found that a neutralino with a
mass of the order of a few GeVs is possible, with a higher likelihood peaked at around 15GeV
(Vasquez et al., 2010).
Therefore, with the aim of modeling dark matter that could be as light as a few GeVs and
maybe lighter, and with no clear clue yet as to what the internal structure of the WIMP is,
if any, a ‘pedestrian’ approach can be attractive. In this logic, the simplest of models is to
extend the Standard Model with a real scalar field, the dark matter, a Standard-Model gauge
singlet that interacts with visible particles via the Higgs field only. To ensure stability, it is
endowed with a discrete Z2 symmetry that does not break spontaneously. Such a model can
be seen as a low-energy remnant of some higher-energy physics waiting to be understood.
In this cosmological setting, such an extension has first been proposed in (Silveira, 1985) and
further studied in (McDonald, 1994) where the unbroken Z2 symmetry is extended to a global
U(1) symmetry. A more extensive exploration of the model and its implications was done in
(Burgess et al., 2011), specific implications on Higgs detection and LHC physics discussed
in (Barger et al., 2008) and one-loop vacuum stability looked into and perturbativity bounds
obtained in (Gonderinger et al., 2010). However, the work (He et al., 2009; Asano & Kitano,
2010) considers this minimal extension too and uses constraints from the direct-detection
experiments XENON10 (Angle et al., 2008) and CDMSII (Ahmed et al., 2009) to exclude dark
matter masses smaller than 50, 70 and 75GeV for Higgs masses equal to 120, 200 and
350GeV respectively. Furthermore, it was recently shown that the Fermi-LAT data on the
isotropic diffuse gamma-ray emission can potentially exclude this one-singlet dark-matter
model for masses as low as 6GeV, assuming a NFW profile for the dark-matter distribution
(Arina & Tytgat, 2011).
So, in order to allow for light dark matter in this ‘bottom-up’ approach, the natural step
forward is to add another real scalar field, endowed with a Z2 symmetry too, but one
which is spontaneously broken so that new channels for dark matter annihilation are opened,
increasing this way the annihilation cross-section, hence allowing smaller masses for the
WIMP. This auxiliary field must also be a Standard-Model gauge singlet. The present chapter
introduces this extension and presents some of its aspects. The aim is to use this example as a
generic prototype in order to show how modeling of cold dark matter can be done and what
are the main steps to follow. Most of the technical material used here is drawn from (Abada,
2011).
This chapter is organized as follows. After this introduction, we present the model in the
next section. The spontaneous breaking of the electroweak and the additional Z2 symmetries
is performed in the usual way and the physical modes as well as the physical parameters
are explained. There is mixing between the physical new scalar field and the Higgs, and
this is one of the quantities parametrizing the subsequent physics. We discuss in section
three the imposition of the constraint from the dark matter relic density on the dark-matter
annihilation cross-section and study its effects. Of course, as we will see, the space of
parameters is quite large and cannot be covered in its entirety in any study of reasonable
size. Representative values have to be selected and the behavior of the model, as well as its
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temperature fluctuations, one can extract the contribution of the different species to the critical
energy density of the Universe. For instance, the height of the first peak relative to the
second one gives a baryon density of about 4%, which is consistent with the predictions of the
primordial theory of Big Bang nucleosynthesis (Steigman, 2010). The third peak is sensitive
to the amount of total matter density in the Universe and can be used to extract the energy
density ΩDM of dark matter in the Universe. The best fit is (Komatsu, 2010):

ΩDMh̄2 = 0.1123 ± 0.0035, (1)

where h̄ is the Hubble constant in units of 100km × s−1 × Mpc−1.
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a neutral R-odd supersymmetric particle. Indeed, neutralinos are produced or destroyed in
pairs only, thus rendering the lightest SUSY particle (LSP) stable (Ellis et al., 1984). In the
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1
is a linear combination of the fermionic partners of the neutral electroweak gauge bosons
(gauginos) and the neutral Higgs bosons (higgsinos). It can annihilate through a t-channel
sfermion exchange into Standard-Model fermions, or via a t-channel chargino-mediated
process into W+W−, or through an s-channel pseudoscalar Higgs exchange into fermion
pairs. Also, it can undergo elastic scattering with nuclei through mainly a scalar Higgs
exchange (Jungman, 1996).
However, having a neutralino as a candidate for light dark matter can be a real challenge.
For example, in mSUGRA, the constraint from WMAP observations and the bound on the
pseudo-scalar Higgs mass from LEP give neutralino mass mχ0

1
≥ 50GeV (Belanger et al., 2009;

Akrami et al., 2010). If one allows the gaugino masses M1 and M2 to be free parameters

1 We implicitly mean a candidate from the realm of elementary particles.
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and the gluino mass to satisfy the universal condition at some grand unification scale, that
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be seen as a low-energy remnant of some higher-energy physics waiting to be understood.
In this cosmological setting, such an extension has first been proposed in (Silveira, 1985) and
further studied in (McDonald, 1994) where the unbroken Z2 symmetry is extended to a global
U(1) symmetry. A more extensive exploration of the model and its implications was done in
(Burgess et al., 2011), specific implications on Higgs detection and LHC physics discussed
in (Barger et al., 2008) and one-loop vacuum stability looked into and perturbativity bounds
obtained in (Gonderinger et al., 2010). However, the work (He et al., 2009; Asano & Kitano,
2010) considers this minimal extension too and uses constraints from the direct-detection
experiments XENON10 (Angle et al., 2008) and CDMSII (Ahmed et al., 2009) to exclude dark
matter masses smaller than 50, 70 and 75GeV for Higgs masses equal to 120, 200 and
350GeV respectively. Furthermore, it was recently shown that the Fermi-LAT data on the
isotropic diffuse gamma-ray emission can potentially exclude this one-singlet dark-matter
model for masses as low as 6GeV, assuming a NFW profile for the dark-matter distribution
(Arina & Tytgat, 2011).
So, in order to allow for light dark matter in this ‘bottom-up’ approach, the natural step
forward is to add another real scalar field, endowed with a Z2 symmetry too, but one
which is spontaneously broken so that new channels for dark matter annihilation are opened,
increasing this way the annihilation cross-section, hence allowing smaller masses for the
WIMP. This auxiliary field must also be a Standard-Model gauge singlet. The present chapter
introduces this extension and presents some of its aspects. The aim is to use this example as a
generic prototype in order to show how modeling of cold dark matter can be done and what
are the main steps to follow. Most of the technical material used here is drawn from (Abada,
2011).
This chapter is organized as follows. After this introduction, we present the model in the
next section. The spontaneous breaking of the electroweak and the additional Z2 symmetries
is performed in the usual way and the physical modes as well as the physical parameters
are explained. There is mixing between the physical new scalar field and the Higgs, and
this is one of the quantities parametrizing the subsequent physics. We discuss in section
three the imposition of the constraint from the dark matter relic density on the dark-matter
annihilation cross-section and study its effects. Of course, as we will see, the space of
parameters is quite large and cannot be covered in its entirety in any study of reasonable
size. Representative values have to be selected and the behavior of the model, as well as its
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capabilities, are described accordingly. Though our main interest in this work is light dark
matter, yet we allow the dark-matter mass to vary from 0.1GeV to 100GeV, sometimes higher.
We find that the model is rich enough to bear dark matter for most of these masses, including
those in the very light sector. In section four, we determine the total cross section σdet for
non-relativistic elastic scattering of dark matter off a nucleon target and compare it to the
current direct-detection experimental bounds and projected sensitivity. For this, we choose
the results of CDMSII (Ahmed et al., 2009) and XENON100 (April et al., 2010), as well as the
projections of SuperCDMS (Schnee et al., 2005) and XENON1T (April et al., 2010). Here too
we cannot cover all of the parameters’ space nor are we going to give a detailed account of
the behavior of σdet as a function of the dark matter mass, but general trends are mentioned.
In section five, we show how low-energy particle phenomenology can constrain the various
parameters of the model. We have space for only one typical example, namely, the decay of
the Bs meson into a pair of μ−μ+. Here, we take from the start light dark matter, with a mass
in the range 0.1GeV − 10GeV. Finally, in the last section, we finish the chapter with a number
of concluding remarks.

2. A two-singlet extension to the Standard Model

The Standard Model is extended by two real, scalar, and Z2 -symmetric fields. One is the dark
matter field S0 for which the Z2 symmetry is unbroken while the other field χ1 undergoes
spontaneous symmetry breaking. Both fields are Standard-Model gauge singlets and hence,
can interact with the other sectors of the Standard Model only via the Higgs doublet H. This
latter is taken in the unitary gauge such that H† = 1/

√
2 (0 h�), where h� is a real scalar. The

potential function involving S0, h� and χ1 is given by the following expression:

U =
m̃2

0
2

S2
0 −

μ2

2
h�2 − μ2

1
2

χ2
1 +

η0

24
S4

0 +
λ

24
h�4 + η1

24
χ4

1 +
λ0

4
S2

0h�2 + η01
4

S2
0χ2

1 +
λ1
4

h�2χ2
1, (2)

where the mass-squared parameters m̃2
0, μ2and μ2

1 and all the coupling constants are real
positive numbers. The Higgs field undergoes spontaneous electroweak symmetry breaking
and oscillates around the vacuum expectation value v = 246GeV (Nakamura et al., 2010). The
field χ1 will oscillate around the vacuum expectation value v1 > 0. Both v and v1 are related
to the parameters of the theory by the two relations:

v2 = 6
μ2η1 − 6μ2

1λ1

λη1 − 36λ2
1

; v2
1 = 6

μ2
1λ − 6μ2λ1

λη1 − 36λ2
1

. (3)

The self-coupling constants are assumed sufficiently larger than the mutual ones and
perturbation theory is assumed applicable throughout.
Writing h� = v + h̃ and χ1 = v1 + S̃1, the potential function becomes, up to an irrelevant
zero-field energy:

U = Uquad + Ucub + Uquar, (4)

where the mass-squared (quadratic) terms are gathered in Uquad , the cubic interactions in
Ucub and the quartic ones in Uquar. The quadratic terms are given by:

Uquad =
1
2

m2
0S2

0 +
1
2

M2
hh̃2 +

1
2

M2
1S̃2

1 + M2
1hh̃S̃1, (5)
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where the mass-squared coefficients are related to the original parameters of the theory by the
following relations:

m2
0 = m̃2

0 +
λ0

2
v2 +

η01
2

v2
1; M2

h = −μ2 +
λ

2
v2 +

λ1
2

v2
1;

M2
1 = −μ2

1 +
λ1
2

v2 +
η1
2

v2
1; M2

1h = λ1v v1. (6)

As we see, in this basis, the mass-squared matrix is not diagonal: there is mixing between
the fields h̃ and S̃1. Denoting by h and S1the physical field eigenmodes of the mass-squared
matrix, we rewrite:

Uquad =
1
2

m2
0S2

0 +
1
2

m2
hh2 +

1
2

m2
1S2

1, (7)

where the physical fields are related to the mixed ones by a 2 × 2 rotation:
(

h
S1

)
=

(
cos θ sin θ
− sin θ cos θ

)(
h̃
S̃1

)
. (8)

Here θ is the mixing angle, related to the original mass-squared parameters by the relation:

tan 2θ =
2M2

1h

M2
1 − M2

h
, (9)

and the physical masses in (7) by the two relations:

m2
h =

1
2

[
M2

h + M2
1 + ε

(
M2

h − M2
1

)√(
M2

h − M2
1

)2
+ 4M4

1h

]
;

m2
1 =

1
2

[
M2

h + M2
1 − ε

(
M2

h − M2
1

)√(
M2

h − M2
1
)2

+ 4M4
1h

]
, (10)

where ε is the sign function.
Written now directly in terms of the physical fields, the cubic interactions are expressed as
follows:

Ucub =
λ
(3)
0
2

S2
0h +

η
(3)
01
2

S2
0S1 +

λ(3)

6
h3 +

η
(3)
1
6

S3
1 +

λ
(3)
1
2

h2S1 +
λ
(3)
2
2

hS2
1, (11)

where the cubic physical coupling constants are related to the original parameters via the
following relations:

λ
(3)
0 = λ0v cos θ + η01v1 sin θ, η

(3)
01 = η01v1 cos θ − λ0v sin θ;

λ(3) = λv cos3 θ +
3
2

λ1 sin 2θ (v1 cos θ + v sin θ) + η1v1 sin3 θ;

η
(3)
1 = η1v1 cos3 θ − 3

2
λ1 sin 2θ (v cos θ − v1 sin θ)− λv sin3 θ; (12)

λ
(3)
1 = λ1v1 cos3 θ +

1
2

sin 2θ [(2λ1 − λ) v cos θ − (2λ1 − η1) v1 sin θ]− λ1v sin3 θ;

λ
(3)
2 = λ1v cos3 θ − 1

2
sin 2θ [(2λ1 − η1) v1 cos θ + (2λ1 − λ) v sin θ] + λ1v1 sin3 θ.
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capabilities, are described accordingly. Though our main interest in this work is light dark
matter, yet we allow the dark-matter mass to vary from 0.1GeV to 100GeV, sometimes higher.
We find that the model is rich enough to bear dark matter for most of these masses, including
those in the very light sector. In section four, we determine the total cross section σdet for
non-relativistic elastic scattering of dark matter off a nucleon target and compare it to the
current direct-detection experimental bounds and projected sensitivity. For this, we choose
the results of CDMSII (Ahmed et al., 2009) and XENON100 (April et al., 2010), as well as the
projections of SuperCDMS (Schnee et al., 2005) and XENON1T (April et al., 2010). Here too
we cannot cover all of the parameters’ space nor are we going to give a detailed account of
the behavior of σdet as a function of the dark matter mass, but general trends are mentioned.
In section five, we show how low-energy particle phenomenology can constrain the various
parameters of the model. We have space for only one typical example, namely, the decay of
the Bs meson into a pair of μ−μ+. Here, we take from the start light dark matter, with a mass
in the range 0.1GeV − 10GeV. Finally, in the last section, we finish the chapter with a number
of concluding remarks.

2. A two-singlet extension to the Standard Model

The Standard Model is extended by two real, scalar, and Z2 -symmetric fields. One is the dark
matter field S0 for which the Z2 symmetry is unbroken while the other field χ1 undergoes
spontaneous symmetry breaking. Both fields are Standard-Model gauge singlets and hence,
can interact with the other sectors of the Standard Model only via the Higgs doublet H. This
latter is taken in the unitary gauge such that H† = 1/

√
2 (0 h�), where h� is a real scalar. The

potential function involving S0, h� and χ1 is given by the following expression:

U =
m̃2
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1 +
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h�2χ2
1, (2)

where the mass-squared parameters m̃2
0, μ2and μ2

1 and all the coupling constants are real
positive numbers. The Higgs field undergoes spontaneous electroweak symmetry breaking
and oscillates around the vacuum expectation value v = 246GeV (Nakamura et al., 2010). The
field χ1 will oscillate around the vacuum expectation value v1 > 0. Both v and v1 are related
to the parameters of the theory by the two relations:

v2 = 6
μ2η1 − 6μ2

1λ1

λη1 − 36λ2
1

; v2
1 = 6

μ2
1λ − 6μ2λ1

λη1 − 36λ2
1

. (3)

The self-coupling constants are assumed sufficiently larger than the mutual ones and
perturbation theory is assumed applicable throughout.
Writing h� = v + h̃ and χ1 = v1 + S̃1, the potential function becomes, up to an irrelevant
zero-field energy:

U = Uquad + Ucub + Uquar, (4)

where the mass-squared (quadratic) terms are gathered in Uquad , the cubic interactions in
Ucub and the quartic ones in Uquar. The quadratic terms are given by:

Uquad =
1
2

m2
0S2

0 +
1
2

M2
hh̃2 +

1
2

M2
1S̃2

1 + M2
1hh̃S̃1, (5)

156 Aspects of Today´s Cosmology Modeling Light Cold Dark Matter 5

where the mass-squared coefficients are related to the original parameters of the theory by the
following relations:
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η01
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As we see, in this basis, the mass-squared matrix is not diagonal: there is mixing between
the fields h̃ and S̃1. Denoting by h and S1the physical field eigenmodes of the mass-squared
matrix, we rewrite:

Uquad =
1
2
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0 +
1
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hh2 +
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1S2

1, (7)

where the physical fields are related to the mixed ones by a 2 × 2 rotation:
(

h
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)
=

(
cos θ sin θ
− sin θ cos θ

)(
h̃
S̃1

)
. (8)

Here θ is the mixing angle, related to the original mass-squared parameters by the relation:

tan 2θ =
2M2
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1 − M2

h
, (9)

and the physical masses in (7) by the two relations:
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h =
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where ε is the sign function.
Written now directly in terms of the physical fields, the cubic interactions are expressed as
follows:

Ucub =
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h3 +

η
(3)
1
6

S3
1 +

λ
(3)
1
2

h2S1 +
λ
(3)
2
2

hS2
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where the cubic physical coupling constants are related to the original parameters via the
following relations:

λ
(3)
0 = λ0v cos θ + η01v1 sin θ, η

(3)
01 = η01v1 cos θ − λ0v sin θ;

λ(3) = λv cos3 θ +
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2

λ1 sin 2θ (v1 cos θ + v sin θ) + η1v1 sin3 θ;

η
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1 = η1v1 cos3 θ − 3

2
λ1 sin 2θ (v cos θ − v1 sin θ)− λv sin3 θ; (12)

λ
(3)
1 = λ1v1 cos3 θ +

1
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sin 2θ [(2λ1 − λ) v cos θ − (2λ1 − η1) v1 sin θ]− λ1v sin3 θ;
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2
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Written too directly in terms of the physical fields, the quartic interactions are given by:

Uquar =
η0
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1
24
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(4)
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6
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where the physical quartic coupling constants are written in terms of the original parameters
of the theory as follows:

λ(4) = λ cos4 θ +
3
2

λ1 sin2 2θ + η1 sin4 θ, η
(4)
1 = η1 cos4 θ +

3
2

λ1 sin2 2θ + λ sin4 θ;

λ
(4)
0 = λ0 cos2 θ + η01 sin2 θ, η

(4)
01 = η01 cos2 θ + λ0 sin2 θ, λ

(4)
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1
2
(η01 − λ0) sin 2θ,

λ
(4)
1 =

1
2

[
(3λ1 − λ) cos2 θ − (3λ1 − η1) sin2 θ

]
sin 2θ;

λ
(4)
2 = λ1 cos2 2θ − 1

4
(2λ1 − η1 − λ) sin2 2θ;

λ
(4)
3 =

1
2

[
(η1 − 3λ1) cos2 θ − (λ − 3λ1) sin2 θ

]
sin 2θ. (14)

In addition to the above sector and after spontaneous breaking of the electroweak and Z2
symmetries, we need to rewrite the part of the Standard Model lagrangian affected by the
mixing angle θ. We thus have:

USM = ∑
f

(
λh f h f̄ f + λ1 f S1 f̄ f

)
+ λ

(3)
hw hW−

μ W+μ + λ
(3)
1w S1W−

μ W+μ

+λ
(3)
hz h

(
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)2
+ λ

(3)
1z S1

(
Zμ

)2
+ λ

(4)
hw h2W−

μ W+μ + λ
(4)
1w S2

1W−
μ W+μ

+λh1whS1W−
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(4)
hz h2 (Zμ

)2
+ λ

(4)
1z S2

1
(
Zμ

)2
+ λh1zhS1

(
Zμ

)2 . (15)

The quantities m f , mw and mz are the masses of the fermion f , the W and the Z gauge bosons
respectively, and the above coupling constants are given by the following relations:

λh f = −m f

v
cos θ; λ1 f =

m f

v
sin θ;

λ
(3)
hw = 2

m2
w

v
cos θ; λ

(3)
1w = −2

m2
w

v
sin θ;

λ
(3)
hz =

m2
z

v
cos θ; λ

(3)
1z = −m2

z
v

sin θ;

λ
(4)
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m2
w

v2 cos2 θ; λ
(4)
1w =

m2
w

v2 sin2 θ; λh1w = −m2
w

v2 sin 2θ;

λ
(4)
hz =

m2
z

2v2 cos2 θ; λ
(4)
1z =

m2
z

2v2 sin2 θ; λh1z = − m2
z

2v2 sin 2θ. (16)
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3. Effects of the relic density constraint

The original theory (2) has nine parameters: three mass parameters (m̃0, μ, μ1), three
self-coupling constants (η0, λ, η1) and three mutual coupling constants (λ0, η01, λ1). The
dark-matter self-coupling constant η0 does not enter the calculations of the lowest-order
processes to come ?, so effectively, one is left with eight parameters. The spontaneous breaking
of the electroweak and Z2 symmetries for the Higgs and χ1 fields respectively introduces the
two vacuum expectation values v and v1 given to lowest order in (3). The value of v is fixed
experimentally to be 246GeV and we fix the value of v1 at the order of the electroweak scale,
say 100GeV. So now six parameters left. It is natural to choose four of these the three physical
masses m0 (dark matter), m1 (S1 field) and mh (Higgs), plus the mixing angle θ between S1 and
h. We give the Higgs mass the value mh = 138GeV, compatible with current experimental
bounds. The two last parameters one chooses to work with are the two physical mutual

coupling constants λ
(4)
0 (dark matter – Higgs) and η

(4)
01 (dark matter – S1 particle), see (13).

The thermal dynamics of the Universe within the standard cosmological model Kolb & Turner
(1998) relates the WIMP relic density ΩDM to its annihilation rate by two relations, which are
essentially model independent:

ΩDMh̄2 � 1.07 × 109x f√
g∗mPl �v12σann�GeV

; x f � ln
0.038mPlm0 �v12σann�√g∗x f

. (17)

The notation is as follows: the quantity h̄ is the Hubble constant in units of 100km × s−1 ×
Mpc−1, the quantity mPl = 1.22× 1019GeV the Planck mass, m0 the WIMP (dark matter) mass,
x f = m0/Tf the ratio of the WIMP mass to the freeze-out temperature Tf and g∗ the number of
relativistic degrees of freedom with mass less than Tf . The quantity �v12σann� is the thermally
averaged annihilation cross-section of a pair of two dark-matter particles multiplied by their
relative speed in the center-of-mass reference frame. Solving (17) with the current accepted
value (1) for ΩDM yields a constraint on the annihilation cross-section, i.e.:

�v12σann� � (1.9 ± 0.2)× 10−9GeV−2. (18)

In a given model like the one presented here, the above constraint translates into a relation
between the parameters of the theory entering the calculated expression of �v12σann�, hence
limiting the intervals of possible dark matter masses. This constraint can also be exploited in
order to examine aspects of the theory like perturbativity, while at the same time reducing the
number of parameters by one. For example, in this model, we can use (18) to obtain the mutual

coupling constant η
(4)
01 as a function of the remaining four parameters

(
m0, m1, θ, λ

(4)
0

)
and

study aspects of the model through its behavior. For example, we can ask which dark-matter
mass regions are consistent with perturbativity. Note that through the relations (12) and (14),

once the two mutual coupling constants λ
(4)
0 and η

(4)
01 are perturbative, all the other physical

coupling constants will be.
The dark-matter annihilation cross sections (times the relative speed) through all possible
channels within the model can be calculated in the usual manner to lowest order in
perturbation theory Abada (2011). The quantity �v12σann� is the sum of all these contributions.

Imposing �v12σann� = 1.9 × 10−9GeV−2 dictates the behavior of η
(4)
01 , which is displayed as a

function of the dark matter mass m0. Of course, as there are four free parameters, the behavior
is bound to be rich and diverse and we cannot describe every bit of it in such a small space.
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Written too directly in terms of the physical fields, the quartic interactions are given by:
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3. Effects of the relic density constraint
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Mpc−1, the quantity mPl = 1.22× 1019GeV the Planck mass, m0 the WIMP (dark matter) mass,
x f = m0/Tf the ratio of the WIMP mass to the freeze-out temperature Tf and g∗ the number of
relativistic degrees of freedom with mass less than Tf . The quantity �v12σann� is the thermally
averaged annihilation cross-section of a pair of two dark-matter particles multiplied by their
relative speed in the center-of-mass reference frame. Solving (17) with the current accepted
value (1) for ΩDM yields a constraint on the annihilation cross-section, i.e.:

�v12σann� � (1.9 ± 0.2)× 10−9GeV−2. (18)

In a given model like the one presented here, the above constraint translates into a relation
between the parameters of the theory entering the calculated expression of �v12σann�, hence
limiting the intervals of possible dark matter masses. This constraint can also be exploited in
order to examine aspects of the theory like perturbativity, while at the same time reducing the
number of parameters by one. For example, in this model, we can use (18) to obtain the mutual

coupling constant η
(4)
01 as a function of the remaining four parameters

(
m0, m1, θ, λ

(4)
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)
and

study aspects of the model through its behavior. For example, we can ask which dark-matter
mass regions are consistent with perturbativity. Note that through the relations (12) and (14),

once the two mutual coupling constants λ
(4)
0 and η

(4)
01 are perturbative, all the other physical

coupling constants will be.
The dark-matter annihilation cross sections (times the relative speed) through all possible
channels within the model can be calculated in the usual manner to lowest order in
perturbation theory Abada (2011). The quantity �v12σann� is the sum of all these contributions.

Imposing �v12σann� = 1.9 × 10−9GeV−2 dictates the behavior of η
(4)
01 , which is displayed as a

function of the dark matter mass m0. Of course, as there are four free parameters, the behavior
is bound to be rich and diverse and we cannot describe every bit of it in such a small space.
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Also, importantly enough, one has to note from the outset that for a given set of values of
the parameters, the solution to the relic-density constraint is not unique: besides positive real
solutions (when they exist), we may find negative real or even complex solutions. Indeed,
from the physical coefficients in (12) and (14), one can show that 〈v12σann〉 is a sum of quotients

of up-to-quartic polynomials in η
(4)
01 . This means that, ultimately, the relic-density constraint

is going to be an algebraic equation in η
(4)
01 , which has always solutions in the complex plane,

but not necessarily on the positive real axis. In our context, we are only interested in finding

the smallest of the positive real solutions in η
(4)
01 when they exist, looking at its behavior and

finding out in which mass regions it is small enough to be perturbative.
We start the description with a small mixing angle, say θ = 10 o, and a very weak mutual

S0 – Higgs coupling constant, say λ
(4)
0 = 0.01. The behavior of η

(4)
01 versus m0 for the S1

mass m1 = 10GeV is displayed in Fig. 1. The range of m0 shown is wide, from 0.1GeV to
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Fig. 1. η
(4)
01 vs m0 for small m1, small mixing and very small WIMP-Higgs coupling.

200GeV, cut in four intervals to allow for ‘local’ features to be displayed. We see that the
relic-density constraint on S0 annihilation has no positive real solution for m0 � 1.3GeV, and
so, with these very small masses, S0 cannot be a dark matter candidate. In other words,
for m1 = 10GeV, the particle S0 cannot annihilate into the lightest fermions only in a way
compatible with the relic-density constraint; inclusion of the c-quark is necessary. Note that

right about m0 � 1.3GeV, the c threshold, the mutual coupling constant η
(4)
01 starts at about

0.8, a value, while perturbative, that is roughly eighty-fold larger than the mutual S0 – Higgs

coupling constant λ
(4)
0 . Then η

(4)
01 decreases, steeply first, more slowly as we cross the τ mass
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towards the b mass. Just before m1/2, the coupling η
(4)
01 hops onto another solution branch

that is just emerging from negative territory, gets back to the first one at precisely m1/2 as
this latter carries now smaller values, and then jumps up again onto the second branch as
the first crosses the m0-axis down. It goes up this branch with a moderate slope until m0
becomes equal to m1, a value at which the S1 annihilation channel opens. Right beyond m1,

there is a sudden fall to a value η
(4)
01 � 0.0046 that is about half the value of λ

(4)
0 , and η

(4)
01

stays flat till m0 � 45GeV where it starts increasing, sharply after 60GeV. In the mass interval
m0 � 66GeV − 79GeV, there is a ‘desert’ with no positive real solutions to the relic-density
constraint, hence no viable dark matter candidate. Beyond m0 � 79GeV, the mutual coupling

constant η
(4)
01 keeps increasing monotonously, with a small notch at the W mass and a less

noticeable one at the Z mass.
For this value of m1 (10GeV), all values reached by η

(4)
01 in the mass range considered are

perturbativily acceptable. This may not be the case for larger values of m1. For example, for

m1 = 30GeV while keeping θ = 10o and λ
(4)
0 = 0.01, the mutual coupling constant η

(4)
01 starts

at m0 � 1.5GeV with the very large value 89.8 and decreases very sharply right after, to 2.04
at about 1.6GeV. The other overall features are similar to the case m1 = 10GeV.
One important question to ask is whether the model ever allows for very light dark matter.
To look into this matter, one fixes m0 at a small value, say m0 = 0.2GeV, and let m1 vary. The

behavior of η
(4)
01 is displayed in Fig. 2. The allowed S0 annihilation channels are the very light

fermions e, u, d, μ and s, plus S1 when m1 < m0. Qualitatively, we notice that in fact, there

are no solutions for m1 < m0, a mass at which η
(4)
01 takes the very small value � 0.003. It

goes up a solution branch and leaves it at m1 � 0.4GeV to descend on a second branch that

enters negative territory at m1 � 0.7GeV, forcing η
(4)
01 to return onto the first branch. There

is an accelerated increase till m1 � 5GeV, a value at which η
(4)
01 � 0.5. And then a desert, no

positive real solutions, no viable dark matter.
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Fig. 2. η
(4)
01 vs m1 for very light S1, small mixing and very small WIMP-Higgs coupling.

Increasing m0 until about 1.3GeV does not change these overall features: some ‘movement’
for very small values of m1 and then an accelerated increase till reaching a desert with a lower
bound that changes with m0. Note that in all these cases where m0 � 1.3GeV, all values of

η
(4)
01 are perturbative. Therefore, the model can very well accommodate very light dark matter

with a restricted range of S1 masses. However, the situation changes after the inclusion of
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relic-density constraint on S0 annihilation has no positive real solution for m0 � 1.3GeV, and
so, with these very small masses, S0 cannot be a dark matter candidate. In other words,
for m1 = 10GeV, the particle S0 cannot annihilate into the lightest fermions only in a way
compatible with the relic-density constraint; inclusion of the c-quark is necessary. Note that

right about m0 � 1.3GeV, the c threshold, the mutual coupling constant η
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01 starts at about

0.8, a value, while perturbative, that is roughly eighty-fold larger than the mutual S0 – Higgs
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towards the b mass. Just before m1/2, the coupling η
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that is just emerging from negative territory, gets back to the first one at precisely m1/2 as
this latter carries now smaller values, and then jumps up again onto the second branch as
the first crosses the m0-axis down. It goes up this branch with a moderate slope until m0
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(4)
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01 starts

at m0 � 1.5GeV with the very large value 89.8 and decreases very sharply right after, to 2.04
at about 1.6GeV. The other overall features are similar to the case m1 = 10GeV.
One important question to ask is whether the model ever allows for very light dark matter.
To look into this matter, one fixes m0 at a small value, say m0 = 0.2GeV, and let m1 vary. The

behavior of η
(4)
01 is displayed in Fig. 2. The allowed S0 annihilation channels are the very light

fermions e, u, d, μ and s, plus S1 when m1 < m0. Qualitatively, we notice that in fact, there

are no solutions for m1 < m0, a mass at which η
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01 takes the very small value � 0.003. It

goes up a solution branch and leaves it at m1 � 0.4GeV to descend on a second branch that
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for very small values of m1 and then an accelerated increase till reaching a desert with a lower
bound that changes with m0. Note that in all these cases where m0 � 1.3GeV, all values of

η
(4)
01 are perturbative. Therefore, the model can very well accommodate very light dark matter

with a restricted range of S1 masses. However, the situation changes after the inclusion of
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the τ annihilation channel. Indeed, though the overall shape of the behavior of η
(4)
01 as a

function of m1 is qualitatively the same, the desert threshold is pushed significantly higher,

and more significantly, η
(4)
01 starts to be larger than one already at moderately small values of

m1, therefore loosing perturbativity. In fact, for m0 = 1.5GeV already, the desert is effectively

erased as we have a sudden jump to highly non-perturbative values of η
(4)
01 right after m1 �

28GeV ?. However, for m1 moderately small, for example � 20GeV in the case m0 = 1.5GeV,

the values of η
(4)
01 are smaller than one and physical use of the model is possible if needed.

Some new features come when increasing the value of the mutual coupling constant λ
(4)
0 .

Figure 3 shows the behavior of η
(4)
01 as a function of the dark matter mass m0 when λ

(4)
0 = 0.2,

θ = 10o and m1 = 20GeV. We see that η
(4)
01 starts at m0 � 1.4GeV with a value of about 1.95. It

decreases with a sharp change of slope at the b threshold, then makes a sudden dive at about
5GeV, a change of branch at m1/2 down till about 12GeV where it jumps up back onto the
previous branch just before going to cross into negative territory. It drops sharply at m0 = m1
and then increases slowly until m0 � 43.3GeV. Beyond, there is nothing, a desert. This is of

course different from the situation of very small λ
(4)
0 like in Fig. 1 above: here we see some

kind of natural dark-matter mass ‘confinement’ to small-moderate viable2 values.
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Fig. 3. η
(4)
01 vs m0 for small mixing, moderate m1 and WIMP-Higgs coupling.

For larger values of m1 with moderate λ
(4)
0 = 0.2, one obtains roughly the same behavior but

here too not all values of η
(4)
01 are perturbative. For example, for m1 = 60GeV, the mutual

coupling η
(4)
01 starts very high (� 85) at m0 � 1.5GeV, and then decreases rapidly. There is a

usual change of branches and a desert starting at about 49GeV. However, what is interesting
here is that, in contrast with previous situations, the desert starts at a mass m0 < m1, i.e., before
the opening of the S1 annihilation channel. In other words, the dark matter is annihilating into
the light fermions only and the model is perturbatively viable in the range 20GeV – 49GeV.

Larger values of λ
(4)
0 can also be studied. For λ

(4)
0 = 1 and as long as m1 � 79.2GeV, one

finds the usual small m0-deserts as well as the familar action at the different mass thresholds,
with nothing suprisingly new. However, for m1 � 79.3GeV, there is a highly non-perturbative

2 Note that the values of η
(4)
01 for 1.6GeV � m0 � 43.3GeV are all perturbative.
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branch η
(4)
01 jumps onto at small and moderate values of m0 ?. This highly non-perturbative

region stretches in size as m1 increases.
Increasing the S1 – Higgs mixing angle θ can bring new features too. Figure 4 shows the

behavior of η
(4)
01 as a function of m0 for θ = 40o, λ

(4)
0 = 0.01 and m1 = 20GeV. One recognizes

features similar to those of the case θ = 10o, though coming in different relative sizes. The
very-small-m0 desert ends at about 0.3GeV. There are by-now familiar features at the c and b
masses, m1/2 and m1. Two relatively small forbidden intervals (deserts) appear for relatively
large values of the dark matter mass: 67.3GeV − 70.9GeV and 79.4GeV − 90.8 GeV. The W
mass is in the forbidden region but there is action as we cross the Z mass. Other values
of m1 behave similarly with an additional effect, namely, a sudden drop in slope at m0 =
(mh + m1)/2 coming from the ignition of S0 annihilation into S1 and Higgs.
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Fig. 4. η
(4)
01 versus m0 for moderate m1, moderate mixing and small WIMP-Higgs coupling.

Increasing the value of λ
(4)
0 for larger values of θ has the effect of making the behavior of η

(4)
01

smoother while keeping the same overall features like the confining of the mass of a viable
dark matter to small-moderate values, a dark matter particle annihilating into light fermions
only. It has also the effect of eliminating those highly non-perturbative regions discussed
above.

4. Dark-matter direct detection

Experiments like CDMS II Ahmed et al. (2009), XENON 10/100 Angle et al. (2008); ?,
DAMA/LIBRA Bernabei et al. (2010) and CoGeNT Aalseth et al. (2010) carry a direct search
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the τ annihilation channel. Indeed, though the overall shape of the behavior of η
(4)
01 as a
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and more significantly, η
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m1, therefore loosing perturbativity. In fact, for m0 = 1.5GeV already, the desert is effectively

erased as we have a sudden jump to highly non-perturbative values of η
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01 right after m1 �

28GeV ?. However, for m1 moderately small, for example � 20GeV in the case m0 = 1.5GeV,

the values of η
(4)
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(4)
0 .
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(4)
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(4)
01 starts at m0 � 1.4GeV with a value of about 1.95. It
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Fig. 3. η
(4)
01 vs m0 for small mixing, moderate m1 and WIMP-Higgs coupling.

For larger values of m1 with moderate λ
(4)
0 = 0.2, one obtains roughly the same behavior but

here too not all values of η
(4)
01 are perturbative. For example, for m1 = 60GeV, the mutual

coupling η
(4)
01 starts very high (� 85) at m0 � 1.5GeV, and then decreases rapidly. There is a

usual change of branches and a desert starting at about 49GeV. However, what is interesting
here is that, in contrast with previous situations, the desert starts at a mass m0 < m1, i.e., before
the opening of the S1 annihilation channel. In other words, the dark matter is annihilating into
the light fermions only and the model is perturbatively viable in the range 20GeV – 49GeV.

Larger values of λ
(4)
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(4)
0 = 1 and as long as m1 � 79.2GeV, one

finds the usual small m0-deserts as well as the familar action at the different mass thresholds,
with nothing suprisingly new. However, for m1 � 79.3GeV, there is a highly non-perturbative

2 Note that the values of η
(4)
01 for 1.6GeV � m0 � 43.3GeV are all perturbative.
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branch η
(4)
01 jumps onto at small and moderate values of m0 ?. This highly non-perturbative

region stretches in size as m1 increases.
Increasing the S1 – Higgs mixing angle θ can bring new features too. Figure 4 shows the

behavior of η
(4)
01 as a function of m0 for θ = 40o, λ

(4)
0 = 0.01 and m1 = 20GeV. One recognizes

features similar to those of the case θ = 10o, though coming in different relative sizes. The
very-small-m0 desert ends at about 0.3GeV. There are by-now familiar features at the c and b
masses, m1/2 and m1. Two relatively small forbidden intervals (deserts) appear for relatively
large values of the dark matter mass: 67.3GeV − 70.9GeV and 79.4GeV − 90.8 GeV. The W
mass is in the forbidden region but there is action as we cross the Z mass. Other values
of m1 behave similarly with an additional effect, namely, a sudden drop in slope at m0 =
(mh + m1)/2 coming from the ignition of S0 annihilation into S1 and Higgs.
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Fig. 4. η
(4)
01 versus m0 for moderate m1, moderate mixing and small WIMP-Higgs coupling.

Increasing the value of λ
(4)
0 for larger values of θ has the effect of making the behavior of η

(4)
01

smoother while keeping the same overall features like the confining of the mass of a viable
dark matter to small-moderate values, a dark matter particle annihilating into light fermions
only. It has also the effect of eliminating those highly non-perturbative regions discussed
above.

4. Dark-matter direct detection

Experiments like CDMS II Ahmed et al. (2009), XENON 10/100 Angle et al. (2008); ?,
DAMA/LIBRA Bernabei et al. (2010) and CoGeNT Aalseth et al. (2010) carry a direct search
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for a dark matter signal. Such a signal would typically come from the elastic scattering of
a dark matter WIMP off a non-relativistic nucleon target. However, such experiments have
not yet detected an unambiguous signal, but rather yielded increasingly stringent exclusion
bounds on the dark matter – nucleon elastic-scattering total cross-section σdet in terms of the
dark matter mass m0.
Therefore, in order to see if the present two-singlet extension of the Standard Model is a viable
dark matter model, we have to calculate σdet as a function of m0 for different values of the
parameters (θ, λ

(4)
0 , m1) and project its behavior against the experimental bounds. We will

limit ourselves to the region 0.1GeV – 100GeV as we are interested in light dark matter only.
As experimental bounds, we will use the results from CDMSII and XENON100, as well as
the future projections of SuperCDMS Schnee et al. (2005) and XENON1T April et al. (2010).
As the figures below show (Gaitskell et al., 2011), in the region of our interest, XENON100 is
only slightly tighter than CDMSII, SuperCDMS significantly lower and XENON1T the most
stringent by far. But it is important to note that all these results loose reasonable predictability
in the very light sector, say below 5GeV.
The scattering of S0 off a SM fermion f occurs via the t-channel exchange of the SM Higgs and
S1. In the non-relativistic limit, the effective Lagrangian describing this scattering reads:

L(eff)
S0− f = a f S2

0 f̄ f , (19)

where the coupling constant a f is related to the physical parameters of the theory by the
following relation:

a f = −m f

2v

⎡
⎣λ

(3)
0 cos θ

m2
h

− η
(3)
01 sin θ

m2
1

⎤
⎦ . (20)

From this interaction, we calculate the total cross-section for this scattering process and find:

σS0 f→S0 f =
m4

f

4π
�

m f + m0

�2
v2

⎡
⎣λ

(3)
0 cos θ

m2
h

− η
(3)
01 sin θ

m2
1

⎤
⎦

2

. (21)

At the nucleon level, the effective interaction Lagrangian between S0 and a nucleon N = p or
n has the form:

L(eff)
S0−N = aNS2

0 N̄N, (22)

where the effective S0− nucleon coupling constant aN is given by the relation:

aN =

�
mN − 7

9 mB

�

v

⎡
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(3)
0 cos θ

m2
h

− η
(3)
01 sin θ

m2
1

⎤
⎦ , (23)

where mN is the nucleon mass and mB the baryon mass in the chiral limit ?. The total cross
section for non-relativistic S0 – N elastic scattering is therefore:

σdet ≡ σS0 N→S0 N =
m2

N

�
mN − 7

9 mB

�2

4π (mN + m0)
2 v2
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(3)
0 cos θ

m2
h
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(3)
01 sin θ

m2
1

⎤
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2

. (24)
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Let us briefly discuss the behavior of σdet as a function of m0 for an indicative set of values

of the parameters (θ, λ
(4)
0 , m1). Of course, we have to impose systematically the relic-density

constraint on the dark matter annihilation cross-section (18). But in addition, we will require
here that the coupling constants are perturbative, and so impose the additional requirement

0 ≤ η
(4)
01 ≤ 1. Also, before getting into some details, let us quickly mention some

global trends in the behavior of the detection cross-section. Generally, as m0 increases, the
detection cross-section σdet starts from high values, slopes down to minima that depend on
the parameters and then picks up moderately. There are features and action at the usual
mass thresholds, with varying sizes and shapes. Excluded regions are there, those coming
from the relic-density constraint and new ones originating from the additional perturbativity
requirement. Close to the upper boundary of the mass interval considered in this study, there
is no universal behavior to mention as in some cases σdet will increase monotonously and, in
some others, it will decrease or ‘not be there’ at all.
For a small Higgs – S1 mixing angle, say θ = 10o, and a very weak mutual S0 – Higgs coupling,

λ
(4)
0 = 0.01, the behavior of σdet is displayed in figure 5 where m1 = 20GeV. We see that for

the two mass intervals 20GeV − 65GeV and 75GeV − 100GeV, plus an almost singled-out
dip at m0 = m1/2, the elastic scattering cross section is below the projected sensitivity of
SuperCDMS. However, XENON1T will probe all these masses except for m0 � 58GeV and
85GeV.
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Fig. 5. Elastic N − S0 scattering cross-section as a function of m0 for moderate m1, small
mixing and small WIMP-Higgs coupling.

Also, as we see in Fig. 5, most of the mass range for very light dark matter is excluded for
these values of the parameters. Is this systematic? In general, smaller values of m1 drive the
predictability ranges to the lighter sector of the dark matter masses. Figure 6 illustrates this
pattern. We have taken m1 = 5GeV, just above the lighter-quarks threshold. In the small-mass
region, we see that SuperCDMS is passed in the range 5GeV − 30GeV. Here too, all this mass
range will be probed by the XENON1T experiment, except a sharp dip at m0 = m1/2 =
2.5GeV, but for such a very light mass, the experimental results are not without ambiguity.
Reversely, increasing m1 shuts down possibilities for very light dark matter and thins the
intervals as it drives the predicted masses to larger values Abada (2011).
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global trends in the behavior of the detection cross-section. Generally, as m0 increases, the
detection cross-section σdet starts from high values, slopes down to minima that depend on
the parameters and then picks up moderately. There are features and action at the usual
mass thresholds, with varying sizes and shapes. Excluded regions are there, those coming
from the relic-density constraint and new ones originating from the additional perturbativity
requirement. Close to the upper boundary of the mass interval considered in this study, there
is no universal behavior to mention as in some cases σdet will increase monotonously and, in
some others, it will decrease or ‘not be there’ at all.
For a small Higgs – S1 mixing angle, say θ = 10o, and a very weak mutual S0 – Higgs coupling,

λ
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0 = 0.01, the behavior of σdet is displayed in figure 5 where m1 = 20GeV. We see that for

the two mass intervals 20GeV − 65GeV and 75GeV − 100GeV, plus an almost singled-out
dip at m0 = m1/2, the elastic scattering cross section is below the projected sensitivity of
SuperCDMS. However, XENON1T will probe all these masses except for m0 � 58GeV and
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Also, as we see in Fig. 5, most of the mass range for very light dark matter is excluded for
these values of the parameters. Is this systematic? In general, smaller values of m1 drive the
predictability ranges to the lighter sector of the dark matter masses. Figure 6 illustrates this
pattern. We have taken m1 = 5GeV, just above the lighter-quarks threshold. In the small-mass
region, we see that SuperCDMS is passed in the range 5GeV − 30GeV. Here too, all this mass
range will be probed by the XENON1T experiment, except a sharp dip at m0 = m1/2 =
2.5GeV, but for such a very light mass, the experimental results are not without ambiguity.
Reversely, increasing m1 shuts down possibilities for very light dark matter and thins the
intervals as it drives the predicted masses to larger values Abada (2011).
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Fig. 6. Elastic N − S0 scattering cross-section as a function of m0 for light S1, small mixing
and small WIMP-Higgs coupling.

A larger mutual coupling constant λ
(4)
0 has the general effect of squeezing the acceptable

intervals of m0 by pushing the values of σdet up. Also, increasing the mixing angle θ has the
general effect of increasing the value of σdet. Figure 7 shows this trend for θ = 40o; compare
with Fig. 5. The only allowed masses by the current bounds of CDMSII and XENON100 are
between 20GeV and 50GeV, the narrow interval around m1/2, and another very sharp one, at
about 94GeV. The projected sensitivity of XENON1T will probe all these mases except those
at m0 � 30GeV and 94GeV. Finally, there are regions of the parameters for which the model
has no predictability. This can happen when we combine the effects of increasing the values

of the two parameters λ
(4)
0 and m1.
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Fig. 7. Elastic N − S0 scattering cross-section as a function of m0 for moderate m1, large
mixing and small WIMP-Higgs coupling.
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5. Constraints from phenomenology

Besides its direct scattering off a nucleon, a light dark-matter WIMP can manifest itself
in various low-energy processes. Possible delectability puts restrictions on the various
parameters of a model like the one presented here. In this section, we illustrate this mechanism
with an example ? and limit ourselves to low dark-matter masses, say from 0.1GeV − 10GeV.

To ensure applicability of perturbation theory, the requirement η
(4)
01 < 1 is here too imposed

throughout, together with a choice of weak values for λ
(4)
0 . Finally, all particle data used in

the sequel is taken from (Nakamura et al., 2010).
The process we consider is the decay of the b̄s bound state Bs into, predominately,
a pair of μ+μ−. The two corresponding SM diagrams sum up to yield a branching
ratio B(SM)

(
Bs → μ+μ−) = (3.4 ± 0.5) × 10−9, whereas the experimental value is

B(exp) (Bs → μ+μ−) � 4.7 × 10−8. It means there is room for non-SM (invisible) processes to
consider. In this two-singlet extension of the Standard Model, two additional decay diagrams
occur, both via S1 exchange, yielding together the branching ratio:

B(S1)(Bs → μ+μ−) =
9τBs G

4
F f 2

Bs
m5

Bs

2048π5 m2
μm4

t |VtbV∗
ts|2

(
1 − 4m2

μ/m2
Bs

)3/2

(
m2

Bs
− m2

1

)2
+ m2

1Γ2
1

sin4 θ. (25)

The particle data appearing in this expression are the Bs life-time τBs = 1.43ps, its mass mBs =
5.366GeV, the Fermi coupling constant GF , the Bs form factor fBs that we take to be 210MeV,
the muon (t-quark) mass mμ(t), and the CKM elements Vtb and Vts. The quantity Γ1 is the
decay rate of the particle S1.
This process depends directly on m1 and the mixing angle θ, whereas m0 and the mutual

coupling λ
(4)
0 enter (25) via the decay rate Γ1. A generic behavior of B(S1)(Bs → μ+μ−) is

shown in Fig. 8. Figure (L) shows the region (in gray) in the (m1, θ) plane for which B(S1) is
below the experimental value. The white narrow band about mBs is what is excluded by B(exp),
whereas the white zone on the left is lost to the relic-density constraint and perturbativity

requirement. Varying m0 in the range 0.1GeV − 10GeV and λ
(4)
0 in the interval 0.01 − 0.9

has little direct effect on the behavior of B(S1) as a function of m1 and θ, but does affect the
relic-density constraint and perturbativity exclusion zones in their shapes, sizes and positions.
Aside from these exclusion zones, most of the rest of the area is generically within the
experimental bound, which means, in this sense, this process is not very restrictive by itself.
Figure (R) on the right in Fig. 8 shows the regions (in gray) for which B(S1) is squeezed
between B(exp) from above and the Standard Model prediction B(SM) + 3σ from below, thus
targetting an unambiguous signal if any. The behavior we see in this figure is generic across

the ranges of m0 and λ
(4)
0 : the V-shape structure in gray developing from m1 = mBs is the

allowed region. The white region in the middle is due the B(exp) and the white region outside
is due to B(SM) + 3σ. It can happen that some of the gray V is eaten up by the relic-density

constraint and perturbativity requirement for larger values of λ
(4)
0 .

Once a region is gray on figure (R), one has to check whether the dark-matter direct detection is
allowed for the corresponding parameters. Remember that the constraint from relic density is
applied systematically. Bearing in mind that the existing and predicted experimental bounds
have no predictability for masses 0.1GeV ≤ m0 ≤ 5GeV, we have checked that the direct
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intervals of m0 by pushing the values of σdet up. Also, increasing the mixing angle θ has the
general effect of increasing the value of σdet. Figure 7 shows this trend for θ = 40o; compare
with Fig. 5. The only allowed masses by the current bounds of CDMSII and XENON100 are
between 20GeV and 50GeV, the narrow interval around m1/2, and another very sharp one, at
about 94GeV. The projected sensitivity of XENON1T will probe all these mases except those
at m0 � 30GeV and 94GeV. Finally, there are regions of the parameters for which the model
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The process we consider is the decay of the b̄s bound state Bs into, predominately,
a pair of μ+μ−. The two corresponding SM diagrams sum up to yield a branching
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(
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The particle data appearing in this expression are the Bs life-time τBs = 1.43ps, its mass mBs =
5.366GeV, the Fermi coupling constant GF , the Bs form factor fBs that we take to be 210MeV,
the muon (t-quark) mass mμ(t), and the CKM elements Vtb and Vts. The quantity Γ1 is the
decay rate of the particle S1.
This process depends directly on m1 and the mixing angle θ, whereas m0 and the mutual

coupling λ
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0 enter (25) via the decay rate Γ1. A generic behavior of B(S1)(Bs → μ+μ−) is

shown in Fig. 8. Figure (L) shows the region (in gray) in the (m1, θ) plane for which B(S1) is
below the experimental value. The white narrow band about mBs is what is excluded by B(exp),
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has little direct effect on the behavior of B(S1) as a function of m1 and θ, but does affect the
relic-density constraint and perturbativity exclusion zones in their shapes, sizes and positions.
Aside from these exclusion zones, most of the rest of the area is generically within the
experimental bound, which means, in this sense, this process is not very restrictive by itself.
Figure (R) on the right in Fig. 8 shows the regions (in gray) for which B(S1) is squeezed
between B(exp) from above and the Standard Model prediction B(SM) + 3σ from below, thus
targetting an unambiguous signal if any. The behavior we see in this figure is generic across

the ranges of m0 and λ
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0 : the V-shape structure in gray developing from m1 = mBs is the

allowed region. The white region in the middle is due the B(exp) and the white region outside
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constraint and perturbativity requirement for larger values of λ
(4)
0 .

Once a region is gray on figure (R), one has to check whether the dark-matter direct detection is
allowed for the corresponding parameters. Remember that the constraint from relic density is
applied systematically. Bearing in mind that the existing and predicted experimental bounds
have no predictability for masses 0.1GeV ≤ m0 ≤ 5GeV, we have checked that the direct
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detection cross-section is between SuperCDMS and Xenon1T for all gray points in figure (R),

and this stays true for most values of m0 and small λ
(4)
0 . Therefore, there is no significant

additional exclusion from direct detection.
From this process, there is probably one element to retain if we want the model to contribute a
distinct signal to Bs → μ+μ− for the range of m0 chosen, and that it to restrict 4.8GeV � m1 �
6.2GeV and θ � 8o. No additional constraint on m0 is necessary while keeping λ

(4)
0 � 0.1 to

avoid systematic exclusion from direct detection is safe.
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Fig. 8. The branching ratio (in gray) B(S1)(Bs → μ+μ−) ≤ B(exp) in the left figure (L), and
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6. Concluding remarks

In this chapter, we have tried to show how a plausible scenario can model light cold
dark matter. The model consists in enlarging the Standard Model with two gauge-singlet
Z2-symmetric scalar fields. One is the dark matter field S0, stable, while the other undergoes
spontaneous symmetry breaking, resulting in the physical field S1. The goal is to open
additional channels through which S0 can annihilate, hence reducing its number density.

The model is parametrized by three quantities: the physical mutual coupling constant λ
(4)
0

between S0 and the Higgs, the mixing angle θ between S1 and the Higgs and the mass m1 of
the particle S1.
We have carried our analysis in three steps. First we have imposed on the annihilation
cross-section of S0 the constraint from the observed dark-matter relic density and looked at

its effects through the behavior of the physical mutual coupling constant η
(4)
01 between S0 and

S1 as a function of the dark matter mass m0. Apart from forbidden regions (deserts) and
others where perturbativity is lost, we find that for most values of the three parameters, there
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are viable solutions in the small-moderate mass ranges of the dark matter sector. Deserts are
found for most of the ranges of the parameters whereas perturbativity is lost mainly for larger

values of m1. Through the behavior of η
(4)
01 , we could see the mass thresholds which mostly

affect the annihilation of dark matter, and these are at the c, τ and b masses, as well as m1/2
and m1. Also, we have seen that for small values of m1, very light dark matter is viable,
with a mass as small as 1GeV. This is of course useful for understanding the results of the
experiments DAMA/LIBRA, CoGeNT, CRESST Seidel (2010) as well as the recent data of the
Fermi Gamma Ray Space Telescope.
The next step was to analyze dark-matter direct detection in the context of this model. We have
imposed systematically the relic-density constraint and, in addition, restricted the dark-matter

mass regions to be consistent with perturbativity (η(4)
01 ≤ 1). We have found that the model

survives current experimental bounds for a wide range of the parameter space, while at
the same time recongnizing that most of the allowed mass regions will be probed by the
XENON1T experiment.
The last step was to use an example to see how low-energy phenomenology can restrain the
paramaters’ space. We have analysed the decay of the meson Bs into a pair of μ+μ− and
saw how this could constrain significantly the S1 mass and the S1− Higgs mixing angle θ .
Other processes can be envisaged, and further constraints should be expected (abada & Nasri,
2011). Implications on the Higgs detection through the measurable channels should also be
considered as current experimental bounds from LEP II data can be used to constrain the
mixing angle θ and possibly other parameters.
This model can be investigated in other directions. For example, the S1 vacuum expectation
value v1 was taken equal to 100GeV, but a priori, nothing prevents us from considering other

scales. However, taking v1 much larger than the electro-weak scale requires η
(4)
01 to be very

small, which will result in the suppression of the crucial annihilation channel S0S0 → S1S1.
Also, we have fixed the Higgs mass to mh = 138GeV, which is consistent with the current
acceptable experimental bounds (Nakamura et al., 2010). Yet, it can be useful to ask here
too what the effect of changing this mass would be. Finally, in this study, besides the dark
matter field S0, only one extra field has been considered. Naturally, one can generalize the
investigation to include N such fields and discuss the cosmology and particle phenomenology
in terms of N. It just happens that the model is rich enough to open new possibilities in the
quest for dark matter worth pursuing. At the same time, it tells us that modeling cold dark
matter is as challenging as it is exciting.

7. References

Zwicky, T.; Helv. Phys. Acta 6, 124 (1933).
Persic, M., Salucci, P., Stel, F.; Mon. Not. Roy. Astron. Soc. 281, 27 (1996)

(arXiv:astro-ph/9506004).
Fabricant, D., Gorenstein, P.; Ap. J. 267 (1983) 535.
Stewart, G.C., Canizares, C.R., Fabian, A.C., and Nilsen, P.E.J.; Ap. J. 278 (1984) 53.
Mellier, Y.; Ann. Rev. Ast. Astr. 37 (1999) 127.
Spergel, D.N. et al. [WMAP Collaboration]; Astrophys. J. Suppl. 170 (2007) 377

[arXiv:astro-ph/0603449 ].
Pope, A. et al. [The SDSS Collaboration]; Astrophys. J. 607 (2004) 655

(arXiv:astro-ph/0401249).
Steigman, G.; arXiv:1008.4765 [astro-ph.CO].

169Modeling Light Cold Dark Matter



16 Will-be-set-by-IN-TECH

detection cross-section is between SuperCDMS and Xenon1T for all gray points in figure (R),

and this stays true for most values of m0 and small λ
(4)
0 . Therefore, there is no significant

additional exclusion from direct detection.
From this process, there is probably one element to retain if we want the model to contribute a
distinct signal to Bs → μ+μ− for the range of m0 chosen, and that it to restrict 4.8GeV � m1 �
6.2GeV and θ � 8o. No additional constraint on m0 is necessary while keeping λ

(4)
0 � 0.1 to

avoid systematic exclusion from direct detection is safe.

0 2 4 6 8 10
0

10

20

30

40

m1�GeV�

Θ

Λ0
�4� � 0.03, m0 � 8GeV �L�

3.5 4.0 4.5 5.0 5.5 6.0 6.5
5

10

15

20

25

30

35

40

m1�GeV�

Θ

Λ0
�4� � 0.03, m0 � 8GeV �R�

Fig. 8. The branching ratio (in gray) B(S1)(Bs → μ+μ−) ≤ B(exp) in the left figure (L), and
B(SM) + 3σ ≤ B(S1)(Bs → μ+μ−) ≤ B(exp) in (R). The angle θ is in degrees.

6. Concluding remarks

In this chapter, we have tried to show how a plausible scenario can model light cold
dark matter. The model consists in enlarging the Standard Model with two gauge-singlet
Z2-symmetric scalar fields. One is the dark matter field S0, stable, while the other undergoes
spontaneous symmetry breaking, resulting in the physical field S1. The goal is to open
additional channels through which S0 can annihilate, hence reducing its number density.

The model is parametrized by three quantities: the physical mutual coupling constant λ
(4)
0

between S0 and the Higgs, the mixing angle θ between S1 and the Higgs and the mass m1 of
the particle S1.
We have carried our analysis in three steps. First we have imposed on the annihilation
cross-section of S0 the constraint from the observed dark-matter relic density and looked at

its effects through the behavior of the physical mutual coupling constant η
(4)
01 between S0 and

S1 as a function of the dark matter mass m0. Apart from forbidden regions (deserts) and
others where perturbativity is lost, we find that for most values of the three parameters, there

168 Aspects of Today´s Cosmology Modeling Light Cold Dark Matter 17

are viable solutions in the small-moderate mass ranges of the dark matter sector. Deserts are
found for most of the ranges of the parameters whereas perturbativity is lost mainly for larger

values of m1. Through the behavior of η
(4)
01 , we could see the mass thresholds which mostly

affect the annihilation of dark matter, and these are at the c, τ and b masses, as well as m1/2
and m1. Also, we have seen that for small values of m1, very light dark matter is viable,
with a mass as small as 1GeV. This is of course useful for understanding the results of the
experiments DAMA/LIBRA, CoGeNT, CRESST Seidel (2010) as well as the recent data of the
Fermi Gamma Ray Space Telescope.
The next step was to analyze dark-matter direct detection in the context of this model. We have
imposed systematically the relic-density constraint and, in addition, restricted the dark-matter

mass regions to be consistent with perturbativity (η(4)
01 ≤ 1). We have found that the model

survives current experimental bounds for a wide range of the parameter space, while at
the same time recongnizing that most of the allowed mass regions will be probed by the
XENON1T experiment.
The last step was to use an example to see how low-energy phenomenology can restrain the
paramaters’ space. We have analysed the decay of the meson Bs into a pair of μ+μ− and
saw how this could constrain significantly the S1 mass and the S1− Higgs mixing angle θ .
Other processes can be envisaged, and further constraints should be expected (abada & Nasri,
2011). Implications on the Higgs detection through the measurable channels should also be
considered as current experimental bounds from LEP II data can be used to constrain the
mixing angle θ and possibly other parameters.
This model can be investigated in other directions. For example, the S1 vacuum expectation
value v1 was taken equal to 100GeV, but a priori, nothing prevents us from considering other

scales. However, taking v1 much larger than the electro-weak scale requires η
(4)
01 to be very

small, which will result in the suppression of the crucial annihilation channel S0S0 → S1S1.
Also, we have fixed the Higgs mass to mh = 138GeV, which is consistent with the current
acceptable experimental bounds (Nakamura et al., 2010). Yet, it can be useful to ask here
too what the effect of changing this mass would be. Finally, in this study, besides the dark
matter field S0, only one extra field has been considered. Naturally, one can generalize the
investigation to include N such fields and discuss the cosmology and particle phenomenology
in terms of N. It just happens that the model is rich enough to open new possibilities in the
quest for dark matter worth pursuing. At the same time, it tells us that modeling cold dark
matter is as challenging as it is exciting.

7. References

Zwicky, T.; Helv. Phys. Acta 6, 124 (1933).
Persic, M., Salucci, P., Stel, F.; Mon. Not. Roy. Astron. Soc. 281, 27 (1996)

(arXiv:astro-ph/9506004).
Fabricant, D., Gorenstein, P.; Ap. J. 267 (1983) 535.
Stewart, G.C., Canizares, C.R., Fabian, A.C., and Nilsen, P.E.J.; Ap. J. 278 (1984) 53.
Mellier, Y.; Ann. Rev. Ast. Astr. 37 (1999) 127.
Spergel, D.N. et al. [WMAP Collaboration]; Astrophys. J. Suppl. 170 (2007) 377

[arXiv:astro-ph/0603449 ].
Pope, A. et al. [The SDSS Collaboration]; Astrophys. J. 607 (2004) 655

(arXiv:astro-ph/0401249).
Steigman, G.; arXiv:1008.4765 [astro-ph.CO].

169Modeling Light Cold Dark Matter



18 Will-be-set-by-IN-TECH

Komatsu. E. et al.; arXiv:1001.4538 [astro-ph.CO].
Amsler, C., et al. [Particle Data Group]; Phys. Lett. B 667, 1 (2008).
Javorsek, D. et al.; Phys. Rev. Lett. 87, 231804 (2001).
Javorsek, D. et al.; Phys. Rev. D 65, 072003 (2002).
Ellis, J., Hagelin, J., Nanopoulos, D., Olive, K. and Srednicki, M.; Nucl. Phys. B238 (1984) 453.
Jungman, G., Kamionkowski, M. and Griest, K.; Phys. Rept. 267 (1996) 195

(arXiv:hep-ph/9506380).
Belanger, G., Boudjema, F., Pukhov, A. and Singh, R.; JHEP 0911, 026 (2009).
Akrami, Y., Scott, P., Edsjo, J., Conrad, J. and Bergstrom, L.; JHEP 1004, 057 (2010).
Vasquez, D., Belanger, G., Boehm, C., Pukhov, A.and Silk, J.; Phys. Rev. D 82, 115027 (2010).
Feldman, D., Liu, Z. and Nath, P.; Phys. Rev. D81 (2010) 117701 (arXiv:1003.0437

[hep-ph]).
Kuflik, E., Pierce, A. and Zurek, K.; Phys. Rev. D81 (2010) 111701.
Fornengo, N., Scopel, S. and Bottino, A.; Phys. Rev. D 83, 015001 (2011).
Silveira, V. and Zee, A.; Phys. Lett. B161 (1985) 136.
McDonald, J.; Phys. Rev. D50 (1994) 3637.
Burgess, C., Pospelov, M. and ter Veldhuis, T.; Nucl. Phys. B619 (2001) 709.
Barger, V., Langacker, P., McCaskey, M., Ramsey-Musolf, M. and Shaughnessy, G.;

Phys. Rev. D77 (2008) 035005 (arXiv:0706.4311 [hep-ph]).
Gonderinger, M., Li, Y., Patel, H. and Ramsey-Musolf, M.; JHEP 053 (2010) 1001, 2010

(arXiv:0910.3167 [hep-ph]).
He, X., Li, T., Li, X., Tandean, J. and Tsai, H.; Phys. Rev. D79 (2009) 023521 (arXiv:0811.0658

[hep-ph]).
Asano, M. and Kitano, R.; Phys. Rev. D 81, 054506 (2010).
Angle, J. et al. [XENON Collaboration]; Phys. Rev. Lett. 100 (2008) 021303 (arXiv:0706.0039

[astro-ph]).
Ahmed, Z. et al. [CDMS Collaboration]; Phys. Rev. Lett. 102 (2009) 011301

(arXiv:0802.3530 [astro-ph]).
Arina, C. and Tytgat, M.; JCAP 1101, 011 (2011).
Abada, A., Nasri. S. and Ghaffor, D.; Phys. Rev. D83, 095021 (2011).
Aprile, E. et al. [XENON100 Collaboration]; Phys. Rev. Lett. 105 (2010) 131302

(arXiv:1005.0380 [astro-ph.CO]).
Schnee, R. et al. [The SuperCDMS Collaboration]; arXiv:astro-ph/0502435.
Aprile, E. et al. [Xenon Collaboration]; J. Phys. Conf. Ser. 203 (2010) 012005.
Nakamura, K. et al. [Particle Data Group]; J. Phys. G37 (2010) 075021.
The effect of η0 in the one-real-scalar extension of the Standard Model is discussed in Spergel,

D. and Steinhardt, P.; Phys. Rev. Lett. 84 (2000) 3760 (astro-ph/9909386).
Kolb, E. and Turner, M.; ‘The Early Universe’, Addison-Wesley, (1998).
Bernabei, R., Belli, P., Cappella, F. et al. [DAMA/LIBRA Collaboration]; Eur. Phys. J. C67 (2010)

39 (arXiv:1002.1028 [astro-ph.GA]).
Aalseth, C.E. et al. [CoGeNT Collaboration]; arXiv:1002.4703 [astro-ph.CO].
Gaitskell, R., Mandic, V. and Filippini, J.; SUSY Dark Matter/Interactive Direct Detection Limit

Plotter; http://dmtools.berkeley.edu/limitplots.
Abada, A. and Nasri, S.; work in progress.
Seidel, W.; WONDER 2010 Workshop, Laboratory Nazionali del Gran Sasso, Italy, March

22-23, 2010; IDM 2010 Workshop, Montpellier, France, July 26-30, 2010.

170 Aspects of Today´s Cosmology

Part 4 

New Cosmological Models 



18 Will-be-set-by-IN-TECH

Komatsu. E. et al.; arXiv:1001.4538 [astro-ph.CO].
Amsler, C., et al. [Particle Data Group]; Phys. Lett. B 667, 1 (2008).
Javorsek, D. et al.; Phys. Rev. Lett. 87, 231804 (2001).
Javorsek, D. et al.; Phys. Rev. D 65, 072003 (2002).
Ellis, J., Hagelin, J., Nanopoulos, D., Olive, K. and Srednicki, M.; Nucl. Phys. B238 (1984) 453.
Jungman, G., Kamionkowski, M. and Griest, K.; Phys. Rept. 267 (1996) 195

(arXiv:hep-ph/9506380).
Belanger, G., Boudjema, F., Pukhov, A. and Singh, R.; JHEP 0911, 026 (2009).
Akrami, Y., Scott, P., Edsjo, J., Conrad, J. and Bergstrom, L.; JHEP 1004, 057 (2010).
Vasquez, D., Belanger, G., Boehm, C., Pukhov, A.and Silk, J.; Phys. Rev. D 82, 115027 (2010).
Feldman, D., Liu, Z. and Nath, P.; Phys. Rev. D81 (2010) 117701 (arXiv:1003.0437

[hep-ph]).
Kuflik, E., Pierce, A. and Zurek, K.; Phys. Rev. D81 (2010) 111701.
Fornengo, N., Scopel, S. and Bottino, A.; Phys. Rev. D 83, 015001 (2011).
Silveira, V. and Zee, A.; Phys. Lett. B161 (1985) 136.
McDonald, J.; Phys. Rev. D50 (1994) 3637.
Burgess, C., Pospelov, M. and ter Veldhuis, T.; Nucl. Phys. B619 (2001) 709.
Barger, V., Langacker, P., McCaskey, M., Ramsey-Musolf, M. and Shaughnessy, G.;

Phys. Rev. D77 (2008) 035005 (arXiv:0706.4311 [hep-ph]).
Gonderinger, M., Li, Y., Patel, H. and Ramsey-Musolf, M.; JHEP 053 (2010) 1001, 2010

(arXiv:0910.3167 [hep-ph]).
He, X., Li, T., Li, X., Tandean, J. and Tsai, H.; Phys. Rev. D79 (2009) 023521 (arXiv:0811.0658

[hep-ph]).
Asano, M. and Kitano, R.; Phys. Rev. D 81, 054506 (2010).
Angle, J. et al. [XENON Collaboration]; Phys. Rev. Lett. 100 (2008) 021303 (arXiv:0706.0039

[astro-ph]).
Ahmed, Z. et al. [CDMS Collaboration]; Phys. Rev. Lett. 102 (2009) 011301

(arXiv:0802.3530 [astro-ph]).
Arina, C. and Tytgat, M.; JCAP 1101, 011 (2011).
Abada, A., Nasri. S. and Ghaffor, D.; Phys. Rev. D83, 095021 (2011).
Aprile, E. et al. [XENON100 Collaboration]; Phys. Rev. Lett. 105 (2010) 131302

(arXiv:1005.0380 [astro-ph.CO]).
Schnee, R. et al. [The SuperCDMS Collaboration]; arXiv:astro-ph/0502435.
Aprile, E. et al. [Xenon Collaboration]; J. Phys. Conf. Ser. 203 (2010) 012005.
Nakamura, K. et al. [Particle Data Group]; J. Phys. G37 (2010) 075021.
The effect of η0 in the one-real-scalar extension of the Standard Model is discussed in Spergel,

D. and Steinhardt, P.; Phys. Rev. Lett. 84 (2000) 3760 (astro-ph/9909386).
Kolb, E. and Turner, M.; ‘The Early Universe’, Addison-Wesley, (1998).
Bernabei, R., Belli, P., Cappella, F. et al. [DAMA/LIBRA Collaboration]; Eur. Phys. J. C67 (2010)

39 (arXiv:1002.1028 [astro-ph.GA]).
Aalseth, C.E. et al. [CoGeNT Collaboration]; arXiv:1002.4703 [astro-ph.CO].
Gaitskell, R., Mandic, V. and Filippini, J.; SUSY Dark Matter/Interactive Direct Detection Limit

Plotter; http://dmtools.berkeley.edu/limitplots.
Abada, A. and Nasri, S.; work in progress.
Seidel, W.; WONDER 2010 Workshop, Laboratory Nazionali del Gran Sasso, Italy, March

22-23, 2010; IDM 2010 Workshop, Montpellier, France, July 26-30, 2010.

170 Aspects of Today´s Cosmology

Part 4 

New Cosmological Models 



 0

Higher Dimensional Cosmological Model of the
Universe with Variable Equation of State

Parameter in the Presence of G and Λ

G S Khadekar1, Vaishali Kamdi1 and V G Miskin2

1Department of Mathematics, Rashtrasant Tukadoji Maharaj Nagpur University,
Mahatma Jyotiba Phule Educational Campus, Amravati Road, Nagpur-440033

2Department of Mathematics, Yeshwantrao Chavan College of Engineering (YCCE),
Hingna Road, Wanadongri, Nagpur- 441110

India

1. Introduction

The Kaluza-Klein theory has a long and venerable history. However, the original Kaluza
version of this theory suffered from the assumption that the 5-dimensional metric does not
depend on the extra coordinate (the cylinder condition). Hence the proliferation in recent
years of various versions of Kaluza-Klein theory, supergravity and superstrings. The number
of authors (Wesson (1992), Chatterjee et al. (1994a), Chatterjee (1994b), Chakraborty and Roy
(1999)) have considered multi dimensional cosmological model. Kaluza-Klein achievements
is shown that five dimensional general relativity contains both Einstein’s four-dimensional
theory of gravity and Maxwell’s theory of electromagnetism.
Chatterjee and Banerjee (1993) and Banerjee et al. (1995) have studied Kaluza-Klein
inhomogeneous cosmological model with and without cosmological constants respectively.
So far there has been many cosmological solution dealing with higher dimensional model
containing a variety of matter field. However, there is a few work in a literature where variable
G and Λ have been consider in higher dimension.
Beesham (1986a, 1986b) and Abdel-Rahman (1990) used a theory of gravitation using G and
Λ as no constant coupling scalars. Its motivation was to include a G-coupling ’constant’ of
gravity as pioneered by Dirac (1937). Since the similar papers by Dirac (1938), a possible
variation of G has been investigated with no success by several teams, through geophysical
and astronomical observations, at the scale of solar system and with binary systems (Uzan
(2003)). However, it should be stressed that we are talking here about time variations at a
cosmological scale and cosmological observations still can not put strong limits on such a
variation, specially at the late times of the evolution. In any case the strongest constraints are
the presently observed G0 value and observational limits of Λ0. Sistero (1991) found exact
solution for zero pressure models satisfying G = G0(

R
R0
)m. Barrow (1996) formulated and

studied the problem of varying G in Newtonian Gravitation and Cosmology. Exact solutions
and all asymptotic cosmological behaviour are found for universe with G ∝ tm.
A key object in dark energy investigation is the equation of state parameter ω, which relates
pressure and density through an equation of state of the form p = ωρ. Due to lack of
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observational evidence in making a distinction between constant and variable ω, usually
the equation of state parameter is considered as a constant (Kujat et al. (2002), Bartelmann
et al. (2005) ) with values 0, 1

3 ,−1 and +1 for dust, radiation, vacuum fluid and stiff fluid
dominated Universe respectively. But in general, ω is a function of time or redshift (Chevron
and Zhuravlev (2000), Zhuravlev (2001), Peebles and Ratra (2003), Das et al. (2005) ). For
instance, quintessence models involving scalar fields give rise to time-dependent ω (Ratra
and Peebles (1988), Turner and White (1997), Caldwell et al. (1998), Liddle and Scherrer (1999),
Steinhardt et al. (1999) ). So, there is enough ground for considering ω as time-dependent for
a better understanding of the cosmic evolution.
A number of authors have argued in favor of the dependence Λ ∼ t−2 first expressed by
Bertolami (1986) and later by several authors (Berman (1990), Beesham (1986b), Singh et al.
(1998), Gasperini (1987), Khadekar et al. (2006) ) in different context. Motivation with the
work of Ibotombi (2007) and Mukhopadhyay et al. (arXiv:0711.4800v1, (2010)), in this work
we have studied 5D Kaluza-Klein type metric with perfect fluid and variable G and Λ.
Recently the cosmological implication of a variable speed of light (VSL) during the early
evolution of the universe have been considered by [Belincho and Chakrabarty (2003), Belincho
(2004)]. Varying speed of light (VSL) model proposed by Moffat (1993) and Albrecht and
Maguejio (1999) in which light was traveling faster in the early periods of the existence
of the universe, might solve the same problems as inflation. Einstein’s field equations for
Friedmann-Roberton-Walker (FRW) space time in the VSL theory have been solved by Barrow
(1999), who also obtained the rate of variation of speed of light required to solve the flatness
and cosmological constant problem for a review of these theories.
We have obtained exact solutions for Zeldovich fluid models satisfying G = G0(

R
R0
)m with

global equation of state of the form p = 1
3 φρ, where φ is a function of scale factor R. In

section 2 and 3 of the chapter we have studied two variable Λ model of the form Λ ∼ ( Ṙ
R )

2

and Λ ∼ ρ under the assumption that the equation of state parameter ω is a function of
time. It is shown that possibility of signature flip of the deceleration parameter q. In section
4 of the chapter we have examined the perfect fluid cosmological model by considering the
equation of state parameter ω is constant with varying G, c and Λ by using Lie method given
by Ibrabimov (1999) and find the possible forms of the constants G, Λ and c that integrable the
field equations in the framework of Kaluza-Klein theory of gravitation.

2. Field equations

We consider the 5D Robertson-Walker metric

ds2 = c2(t)dt2 − R2(t)
[

dr2

(1 − kr2)
+ r2(dθ2 + sin2θdφ2)

]
+ A2(t)dψ2, (1)

where R(t) is the scale factor, A(t) = Rn and k = 0, −1 or + 1 is the curvature parameter
for flat, open and closed universe, respectively. The universe is assumed to be filled with
distribution of matter represented by energy-momentum tensor of a perfect fluid

Tij = (p + ρ)uiuj − pgij, (2)

where, ρ is the energy density of the cosmic matter and p is its pressure and ui is the five
velocity vector such that uiuj = 1.
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The Einstein field equations are given by

Rij − 1
2

gijR = −8πG(t)
[Tij

c4 − Λ(t)
8πG

gij

]
, (3)

where the cosmological term Λ is time-dependent and c, the velocity of light in vacuum.
In the follwing two section we have assumed the velocity of light is unity i.e. c = 1. The
conservation equation for variable G and Λ is given by

ρ̇ + (3 + n)
Ṙ
R
(p + ρ) = −

(
Ġ
G

ρ +
Λ̇

8πG

)
. (4)

Using co-moving co-ordinates ui = (1, 0, 0, 0, 0) in (2) and with metric (1), the Einstein field
equations become

8πGρ = 3
[
(n + 1)

Ṙ2

R2 +
k

R2

]
− Λ(t), (5)

8πGp = −(n + 2)
R̈
R
− (n2 + n + 1)

Ṙ2

R2 − k
R2 + Λ(t), (6)

8πGp = −3
(

R̈
R
+

Ṙ2

R2 +
k

R2

)
+ Λ(t). (7)

where dot (·) denotes derivative with respective to t.
The usual conservation law yields (i.e. Tij

;j = 0 )

ρ̇ + (3 + n)(ρ + p)
Ṙ
R

= 0. (8)

Using Eq.(8) in Eq.(4)we have,
8πĠρ + Λ̇ = 0. (9)

Equations (5), (6) and (9) are the fundamental equations and they reduce to standard
Friedmann cosmology when G and Λ are constants. Equations (5) and (6) may be written
as

3(n + 2)R̈ = −8πGR(3p + ρ)− 3n2 Ṙ2

R
+ 2ΛR, (10)

3(n + 1)Ṙ2 = 8πGR2
[

ρ +
Λ

8πG

]
− 3k. (11)

Eq.(8) can also be expressed as

d
dt
(ρRn+3) + p

d
dt
(Rn+3) = 0. (12)

Equations (5), (9) and (12) are independent and they will be used as fundamental. Once
the problem is determined, the integration constants are characterized by the observable
parameters

H0 =
Ṙ0
R0

, (13)
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σ0 =
4π

3
G0ρ0

H2
0

, (14)

q0 = − R̈0

R0H2
0

, (15)

�0 =
p0
ρ0

, (16)

which must satisfy Einstein’s equations at present cosmic time t0:

Λ0 = 3H2
0

[
σ0(3�0 + 1)− (n + 2)

2
q0 +

n2

2

]
, (17)

k
R2

0
= H2

0

[
3(1 + �0)σ0 − (n + 2)

2
q0 +

(n2 − 2n − 2)
2

]
, (18)

and the conservation Eq. (9) can be written as

Λ̇0G0 + 6Ġ0H2
0 σ0 = 0. (19)

3. Solutions of field equations

We find out the solutions of the field equations for two different equation of state: (i) p = 1
3 ρφ

and (ii) p = ω(t)ρ

3.1 Case (I):
We assume the global equation of state

p =
1
3

ρφ, (20)

where φ is a function of the scale factor R.
From Eq.(12) and Eq.(20) we obtain

1
ψ

dψ

dR
+

(n + 3)
3

φ

R
= 0, (21)

where
ψ = ρRn+3. (22)

Equation (21) be the first condition to determine the problem; either φ or ψ may be in term
of arbitrary function. If φ is a given explicit function of R, then Eq.(20) is determined and ψ
follows from Eq.(21)

ψ = ψ0 exp
[
−

∫
(n + 3)

3
φ

R
dR

]
. (23)

If ψ is given function, from Eq.(20) we get φ as

φ = − 3
(n + 3)

R
ψ

dψ

dR
. (24)
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Substitute the value of ψ from Eq.(22) in the Friedmann’s Eq.(5) we get

3(n + 1)Ṙ2 = 8πGψR−(n+1) + ΛR2 − 3k. (25)

Eqs. (9) and (22) with d
dt = (Ṙ d

dR ) give

8π
dG
dR

+ ψ−1Rn+3 dΛ
dR

= 0. (26)

If G(R) is given then after integrating from Eq.(26) we get Λ(R) and from Eq.(25) we get
R = R(t) and the problem is solved. Similarly if Λ(R) may be given instead of G(R) derives
from Eq.(26) we get G(R) and then from Eq. (25) we get R = R(t).

3.1.1 Zeldovich fluid satisfying G = G0(
R
R0
)m

To solve Eq.(26) for Zeldovich fluid with φ = 3. In this case (23) gives,

ψ = ρ0

(
R0
R

)n+3
. (27)

Substituting ψ from (26) into (25), we have

Λ = Λ0 + Bm

[
1 −

(
R
R0

)[m−2(n+3)]
]

R−(n+3)
0 , (28)

where,

Bm =
6m

[m − 2(n + 3)]
σ0H2

0 , (29)

for m �= 2(n+ 3), Bm is a parameter related to the integration constant of Eq.(25). From Eq.(17),

Λ0 = 3H2
0

[
4σ0 − (n + 2)

2
q0 +

n2

2

]
. (30)

Taking into account Eqs.(26 & 28), Friedmann’s Eq. (24) takes the form

Ṙ2 = αnRm−2(n+2) + βnR2 − 1
(n + 1)

k, (31)

where

αn =
−4(n + 3)

(n + 1)(m − 2(n + 3))
H2

0 σ0R(n+3)−m
0 , (32)

βn =
H2

0
(n + 1)

[(
4 +

2m
(m − 2(n + 3))

R−(n+3)
0

)
σ0 − (n + 2)

2
q0

]
. (33)

Finally the equation for the parameter (18) reduces to

k
R2

0
= H2

0

[
6σ0 − (n + 2)

2
q0 +

(n2 − 2n − 2)
2

]
. (34)
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where
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(n + 1)(m − 2(n + 3))
H2

0 σ0R(n+3)−m
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βn =
H2

0
(n + 1)

[(
4 +

2m
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R−(n+3)
0

)
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2
q0
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k
R2

0
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[
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2

]
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and (19) is also satisfied.
Λ0G0 + 6Ġ0H2

0 σ0, (35)

The model is characterized by the set of parameters (H0, G0, σ0, q0, m) with m �= 2(n + 3).
The case m < 2(n + 3) implies Bm < 0 in Eq.(29) and αn > 0 in Eq.(32) and vice-versa; βn <

(≥)0 according to m n, σ0 and q0 combine in Eq.(33); Λ0 < (≥)0 as σ0 < (≥)( (n+2)
2 q0 − n2

2 ) as
given by Eq. (30). From Eq.(34) it is observed that for the curvature parameter k = +1, 0 ,−1

we get [6σ0 − (n+2)
2 q0 +

(n2−2n−2)
2 ] < (≥)0. The models are completely characterized by the

set of parameters (H0, G0, σ0, q0, m) with m �= 2(n + 3).

3.2 Case (II):
Let us choose the barotropic equation of state

p = ωρ. (36)

Here, we assume that the equation of state parameter ω is time-dependent i.e. ω = ω(t) such
that ω = ( t

τ )
a − 1 where τ is a constant having dimension of time.

Field equations (5-7) can also be expressed as

3(n + 1)H2 +
3k
R2 = 8πGρ + Λ(t), (37)

3(n + 1)H2 + 3(n + 1)Ḣ = −8πG[(n + 1)p + ρ]− 3nk
R2 + nΛ(t). (38)

From Eq. (37), for flat universe (k = 0), we get

ρ =
3(n + 1)H2 − Λ(t)

8πG
. (39)

Using Eq. (37) and Eq.(38) with Eq. (36) we get the differential equation of the form

dH
dt

=
(1 + ω)Λ

3
+ [(n + 1)ω − 2]H2. (40)

To solve Eq. (40) we assume two variable Λ model: Λ = 3αH2 and Λ = 8πGγρ.

3.2.1 Case (i): Λ = 3αH2

For this case Eq. (40) reduces to

dH
H2 =

[
(n + α + 1)ta

τa − (n + 3)
]

dt. (41)

After solving equation (41) we get,

H =
(a + 1)τa

[(n + 3)(a + 1)tτa − (n + α + 1)t(a+1)]
, (42)

writing H = Ṙ
R in Eq. (42) and integrating it further we get the solution set as

R(t) = C2
[
(n + 3)(a + 1)τat−a − (n + α + 1)

]− 1
a(n+3) , (43)
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ρ(t) =
3(n − α + 1)(a + 1)2τ2a

8πG

[
(n + 3)(a + 1)τat − (n + α + 1)t(a+1)

]−2
, (44)

Λ(t) =
3α(a + 1)2τ2a

[
(n + 3)(a + 1)τat − (n + α + 1)t(a+1)

]2 , (45)

where C2 is an integration constant.
If a = 0 then ω = 0 and τ = 1 but Eq. (42) indicates that a can not be equal to zero for physical
validity.
Again, using Eqs. (39) and (42) we get

α

(n + 1)
= 1 − Ωm = ΩΛ, (46)

where, in absence of any curvature, matter density Ωm and dark energy density ΩΛ are related
by the equation

Ωm + ΩΛ = 1. (47)

3.2.2 Case (ii): Λ = 8πGγρ
For this case Eq. (40) can be written as

dH
dt

=

[(
1 + 2γ

1 + γ

)(
t
τ

)a
(n + 1)− (n + 3)

]
H2. (48)

After solving Eq. (48) we get,

H =
(1 + γ)(a + 1)τa

[
(n + 3)(1 + γ)(a + 1)τat − (1 + 2γ)(n + 1)ta+1

] . (49)

Using H = Ṙ
R in Eq. (49) and integrating we get

R(t) = C3
[
(n + 3)(1 + γ)(a + 1)τat−a − (1 + 2γ)(n + 1)

]− 1
a(n+3) , (50)

ρ(t) =
3(n + 1)

8πG
(1 + γ)(a + 1)2τ2a

[
(n + 3)(1 + γ)(a + 1)τat − (1 + 2γ)(n + 1)t(a+1)

]2 , (51)

Λ(t) =
3(n + 1)γ(1 + γ)(a + 1)2τ2a

[
(n + 3)(1 + γ)(a + 1)τat − (1 + 2γ)(n + 1)t(a+1)

]2 , (52)

where C3 is an integration constant.
Eq. (50) shows that for physical validity a �= 0. Again from the field equations we can easily
find that γ is related to Ωm and ΩΛ through the relation

γ =
ΩΛ
Ωm

. (53)
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3α(a + 1)2τ2a

[
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]2 , (45)
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3.2.2 Case (ii): Λ = 8πGγρ
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dH
dt
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[(
1 + 2γ

1 + γ

)(
t
τ

)a
(n + 1)− (n + 3)

]
H2. (48)

After solving Eq. (48) we get,
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[
(n + 3)(1 + γ)(a + 1)τat − (1 + 2γ)(n + 1)ta+1
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R in Eq. (49) and integrating we get
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[
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8πG
(1 + γ)(a + 1)2τ2a
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Λ(t) =
3(n + 1)γ(1 + γ)(a + 1)2τ2a
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]2 , (52)

where C3 is an integration constant.
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γ =
ΩΛ
Ωm

. (53)
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4. Solution of the field equations by using Lie method

The Einstein’s filed equations (3) with varying G, c and Λ for the flat model (1) when for R = A
i.e. n = 1 and k = 0 can be written as

8πGρ + Λc2 = 6H2, (54)

− 8πGp + Λc2 = 3
(

R̈
R
+ H2

)
, (55)

ρ̇ + 4(ρ + p)H = − Λ̇c4

8πGρ
− Ġ

G
+ 4

ċ
c

. (56)

We assume that div (Ti
j ) = 0, then with p = ωρ, where ω = constant then Eq. (56) reduces to

ρ̇ + 4(1 + ω)ρH = 0, (57)

− Λ̇c4

8πGρ
− Ġ

G
+ 4

ċ
c
= 0. (58)

In this section we shall study the Kaluza-Klein type cosmological model through the method
of Lie group symmetries, showing that under the assumed hypothesis there are other
solutions of the field equations. We shall show how the Lie method allow us to obtain different
solutions for the field equations.
In order to use the Lie method, we can write the field equations: from Eqs. (54)-(55) we obtain

R̈
R
− Ṙ2

R2 = −8πG
3c2 (ω + 1)ρ, (59)

and therefore,

Ḣ = −8πG
3c2 (ω + 1)ρ. (60)

From equation (57), we can obtain

H = − 1
4(ω + 1)

ρ̇

ρ
. (61)

Hence
Ḣ = − 1

4(ω + 1)
(

ρ̇

ρ
)̇. (62)

Hence from Eq. (60)

(
ρ̇

ρ
)̇ =

16πG
3c2 (ω + 1)2ρ. (63)

By taking A0 = − 16π
3 (ω + 1)2, we get

(
ρ̇

ρ
)̇ =

A0G
3c2 ρ. (64)

After expanding Eq. (64) we get

ρ̈ =
ρ̇2

ρ
+

AG
3c2 ρ. (65)
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We are going now to apply the standard procedure of Lie group analysis to this equation [see
Ibragimov (1999) for details and notation].
A vector field X

X = ζ(t, ρ)∂t + η(t, ρ)∂ρ, (66)

is a symmetry of equation (65) iff

−ζ ft − η fρ + ηtt + (2ηtρ − ζtt) + (ηρρ − 2ζtρ)ρ̇
−2 − ζρρρ̇3

+ (ηρ − 2ζt − 3ρ̇ζρ) f −
[
ηt + (ηρ − ζt)ρ̇ − ρ̇2ζρ

]
fρ̇ = 0, (67)

where f (t, ρ, ρ̇) =
ρ̇2

ρ + A0G
3c2 ρ.

By expanding and separating (67) with respect to power of ρ̇ we obtain the overdetermined
system:

ζρρ + ρ−1ζρ = 0, (68)

ηρρ − 2ζtρ + ρ−2η − ρ−1ηρ = 0, (69)

2ηtρ − ζtt − 3A
G
c2 ρ2ζρ − 2ρ−1ηt = 0, (70)

ηtt − A(
Ġ
c2 − 2G

ċ
c3 )ρ

2ζ − 2Aη
G
c2 + (ηρ − 2ζt)A

G
c2 ρ2 = 0. (71)

Solving (68) - (71), we find that

ζ(t, ρ) = 2et + a, η(t, ρ) = (bt + d0)ρ, (72)

subject to the constrain
Ġ
G

= 2
ċ
c
+

bt + d0 − 4e
2et − a

, (73)

where a, b, e, d0 are all constants.
In order to solve Eq. (73) we consider the case b = 0 and d0 − 4e = 0. In this case the solution
(73) reduces to

Ġ
G

= 2
ċ
c
⇒ G

c2 = B = Constant, (74)

which means that constant G and c vary but in such a way that the relation G
c2 is constant.

The solution of the type
dt

ζ(t, ρ)
=

dρ

η(t, ρ)
, (75)

is called invariant solution, therefore, from (72) with b = 0 and d0 − 4e = 0, the energy density
is obtained as:

dt
−2et + a

=
dρ

4eρ
, (76)

⇒ ρ =
ρ0

(2et − a)2 , (77)

for simplicity we adopt
⇒ ρ = ρ0t−2, (78)
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Ḣ = − 1

4(ω + 1)
(

ρ̇

ρ
)̇. (62)

Hence from Eq. (60)

(
ρ̇

ρ
)̇ =

16πG
3c2 (ω + 1)2ρ. (63)

By taking A0 = − 16π
3 (ω + 1)2, we get

(
ρ̇

ρ
)̇ =

A0G
3c2 ρ. (64)

After expanding Eq. (64) we get

ρ̈ =
ρ̇2

ρ
+

AG
3c2 ρ. (65)

180 Aspects of Today´s Cosmology Higher Dimensional Cosmological Model of the Universe with Variable Equation of State Parameter in the Presence of G and Λ 9

We are going now to apply the standard procedure of Lie group analysis to this equation [see
Ibragimov (1999) for details and notation].
A vector field X

X = ζ(t, ρ)∂t + η(t, ρ)∂ρ, (66)

is a symmetry of equation (65) iff

−ζ ft − η fρ + ηtt + (2ηtρ − ζtt) + (ηρρ − 2ζtρ)ρ̇
−2 − ζρρρ̇3

+ (ηρ − 2ζt − 3ρ̇ζρ) f −
[
ηt + (ηρ − ζt)ρ̇ − ρ̇2ζρ

]
fρ̇ = 0, (67)

where f (t, ρ, ρ̇) =
ρ̇2

ρ + A0G
3c2 ρ.

By expanding and separating (67) with respect to power of ρ̇ we obtain the overdetermined
system:

ζρρ + ρ−1ζρ = 0, (68)

ηρρ − 2ζtρ + ρ−2η − ρ−1ηρ = 0, (69)

2ηtρ − ζtt − 3A
G
c2 ρ2ζρ − 2ρ−1ηt = 0, (70)

ηtt − A(
Ġ
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ċ
c
⇒ G

c2 = B = Constant, (74)

which means that constant G and c vary but in such a way that the relation G
c2 is constant.

The solution of the type
dt

ζ(t, ρ)
=

dρ

η(t, ρ)
, (75)

is called invariant solution, therefore, from (72) with b = 0 and d0 − 4e = 0, the energy density
is obtained as:

dt
−2et + a

=
dρ

4eρ
, (76)

⇒ ρ =
ρ0

(2et − a)2 , (77)

for simplicity we adopt
⇒ ρ = ρ0t−2, (78)

181
Higher Dimensional Cosmological Model 
of the Universe with Variable Equation of State Parameter in the Presence of G and 



10 Will-be-set-by-IN-TECH

where ρ0 is constant of integration.
From the value of ρ we can easily obtained the scale factor R as: from (61) after integration we
get

ρ = Aω R−4(ω+1), (79)

⇒ R = (A∗
ωt)1/2(ω+1) , (80)

where Aω and A∗
ω are constants.

From this value of R we can easily find H and from equation (54) we obtain the behaviour of
cosmological constant Λ.

c2Λ = 6H2 − 8πGρ

c2 ρ, (81)

we get

Λ = (3β2 − 8πBρ0)
1

t2c2 =
L0

t2c2 , (82)

where L0 = (3β2 − 8πBρ0).
Put all the above results in (58) we get the exact behaviour for c:

ċ
c
+ λ(

ċ
c
+

1
t
) = 0, (83)

where λ = L0
8πBρ0

with λ ∈ R+ i.e. a positive real number and thus we get from (83) after
integration

c = c0t−α, (84)

where α = λ
1+λ .

Also from
Ġ
G

= 2
ċ
c
⇒ G = G0t−2α. (85)

Hence we get the following solutions in the framework of Kaluza-Klien theory of gravitation.

G = G0t−2α c = c0t−α, Λ = Λ0t−2(1−α),

R = (A∗
ωt)1/2(ω+1) , ρ = ρ0t−2. (86)

This type of solutions are obtained by Belinchon (2004) in the context of general theory of
relativity.

5. Conclusion

In this chapter by considering the gravity with G and Λ a coupling constant of Einstein field
equations with usual conservation laws (Tij

;j = 0), we obtained the exact solution of the field
equations. It is shown that the field equations for perfect fluid cosmology are identical to
Eisenstein equations for G and Λ including Eq. (12). It is also observed that, the additional
conservation Eq. (9) gives the coupling of scalar field with matter.
In the case (I) by introducing the general method of solving the cosmological field equations
using a global equation of state of the form p = 1

3 ρφ, without loss of generality, we find the
exact solutions for Zeldovich matter distribution. It is observed that from Eq. (29) Bm < 0 for
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the case m < 2(n + 3) and Λ0 < (≥)0 as σ0 < (≥)( (n+2)
2 q0 − n2

2 ). Similarly [6σ0 − (n+2)
2 q0 +

(n2−2n−2)
2 ] < (≥)0 depends on the value of curvature parameter k.

In the case (II), by using equation of state of the form p = ω(t)ρ, we again find out the exact
solutions of the field equations for two different cases: Λ = 3αH2 and Λ = 8πGγρ. By
selecting a simple power law expression of t for the equation of state parameter ω, equivalence
of model Λ ∼ ( Ṙ

R )
2 and Λ ∼ ρ have been established in the frame work of Kaluza-Klein theory

of gravitation. With the help of Eqs. (45) and (52) it is easy to show that Eqs. (42) and (49)
are differ by constant while Eqs. (43) and (44) become identical with the Eqs. (50) and (51)
respectively. This implies that Λ ∼ ( Ṙ

R )
2 and Λ ∼ ρ are equivalent for five dimensional space

time.
Using Eq. (42) and Eq. (46), we obtain

q = −
[

1 −
[
(n + 3)− (n + 1)(2 − Ωm)

(
t
τ

)a]]
. (87)

Eq. (87) shows that q is time dependent and hence may be change its sign during cosmic
evolution. It has also been possible to show that the sought for signature flipping of
deceleration parameter q can be obtained by a suitable choice of a.
In the last section of the chapter we have studied the behaviour of time varying constants G, c
and Λ in a perfect fluid model. To obtain the solution we imposed the assumption, div(Ti

j ) =

0, from which we obtained the dimensional constant Aω that relates ρ ∝ R−4(ω+1)and the
relationship G

c2 = B = constant for all value of t, i.e. G and c vary but in such a way that
G
c2 remain constant. It is also observed that G, c and Λ are decreasing function of t. The Lie
method maybe the most powerful but has drawbacks, it is very complicate.
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quantity of matter that is not interacting electromagnetically, but only through gravitation.
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1986) formulated a scalar-tensor theory of gravitation in which the metric is coupled with a
dimensionless scalar field. In a recent analysis using the standard scalar field cosmological
models (Socorro et al., 2010; 2011), contrary to claims in the specialized literature, it is shown
that the SB theory cannot provide a realistic solution to the dark matter problem of Cosmology
for the dust epoch, because the contribution of the scalar field is equivalent to stiff matter. We
can reinterpret this result in a sense that the galaxy halo was formed during this primigenius
epoch and its evolution until the dust era using the standard scalar field cosmological theory.
In this theory the strength of the coupling between gravity and the scalar field is determined
by an arbitrary coupling constant ω. This constant ω can be used to have a lorenzian (-1,1,1,1)
or seudo-lorenzian (-1,-1,1,1) signature when we build the Wheeler-DeWitt equation. The
values for this constant, in the classical regime, are dictated by the condition to have real
functions. Other problem inherent to this theory is that not exist how build the invariants
with this field as in the case to scalar curvature. So, was necessary to reinterpret the formalism
where this field is considered as matter content in the theory in the Einstein frame.
On the other hand, this approach is classified with another name, by instant,
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a dynamical solution for explaining naturally why the universe has entered an epoch of
accelerated expansion at a late stage of its evolution. Instead, K-essence is based on the
idea of a dynamical attractor solution which causes it to act as a cosmological constant only
at the onset of matter domination. Consequently, K-essence overtakes the matter density
and induces cosmic acceleration at about the present epoch. Usually K-essence models are

10



12 Will-be-set-by-IN-TECH

Ratra, B. and Peebles, P. J. E. (1988), Phys. Rev. D , Vol. 37, 3406.
Turner, T. S. and White, M. (1997), Phys. Rev. D, Vol. 56, R4439.
Caldwell et al. (1998), Phys. Rev. Lett. , Vol. 80, 1582.
Liddle, A. R. and Scherrer, R. J. (1999), Phys. Rev. D , Vol. 59, 023509.
Steinhardt, P. J. et al. (1999), Phys. Rev. D , Vol. 59, 123504.
Bertolami, O. (1986), Nuovo Cimento , Vol. 93, 36.
Berman, M. S. (1990), Int. J. Theor. Phys., Vol. 29, 567.
Singh, T., Beesham, A. and Mbokazi, W. S. (1998), Gen. Relativ. Gravit. , Vol. 30, 537.
Gasperini, M. (1987), Phys. Lett. B, Vol. 194, 347.
Khadekar, G. S. et al. (2000), Int. Jou. Mod. Phys. D, Vol. 15, 1.
Singh, N. I. and Sorokhaibam, A. (2007), Astrophys. Space Sci., Vol. 310, 131.
Mukhopadhyay, U., Ray, S. and Dutta Choudhury, S. B. (2010), arXiv:0711.4800v3 .
Belinchon, J. A., and Chakrabarty, I. (2003), Int.Jour. Moder. Phys., Vol.D12, 1113, gr-qc/044046.
Belinchon, J.A., (2004), An excuse for revising a theroy of time-varying constant, gr-qc/044026.
Moffat, J.W., (1993), Int.Jour. Moder. Phys.D, Vol.2, 351.
Albrechet, A., and Magueijo, J., (1999), Phys. Rev. D, vol.59, 043516.
Barrow, J.D., (1999), Phys. Rev. D,Vol.59, 043515.
Ibravimov, N.H., (1999), Elementary Lie group Analysis and Ordinary Differential Equations, Jhon

Wiley and Sons.

184 Aspects of Today´s Cosmology

0

Cosmological Bianchi Class A Models in
Sáez-Ballester Theory

J. Socorro1, Paulo A. Rodríguez1, Abraham Espinoza-García1,
Luis O. Pimentel2 and Priscila Romero3

1Departamento de Física de la DCeI de la Universidad de Guanajuato-Campus
León, Guanajuato

2Departamento de Física de la Universidad Autónoma Metropolitana
3Facultad de Ciencias de la Universidad Autónoma del Estado de México,

Instituto Literario No. 100, Toluca, Edo de Mex
México

1. Introduction

Several observations suggest that in galaxies and galaxy clusters there is an important
quantity of matter that is not interacting electromagnetically, but only through gravitation.
This is the well known dark matter problem. Several solutions have been consider for
this problem, modifying the gravitational theory or introducing new forms of matter and
interaccions. To address the dark matter problem Saez and Ballester (SB) (Saez & Ballester,
1986) formulated a scalar-tensor theory of gravitation in which the metric is coupled with a
dimensionless scalar field. In a recent analysis using the standard scalar field cosmological
models (Socorro et al., 2010; 2011), contrary to claims in the specialized literature, it is shown
that the SB theory cannot provide a realistic solution to the dark matter problem of Cosmology
for the dust epoch, because the contribution of the scalar field is equivalent to stiff matter. We
can reinterpret this result in a sense that the galaxy halo was formed during this primigenius
epoch and its evolution until the dust era using the standard scalar field cosmological theory.
In this theory the strength of the coupling between gravity and the scalar field is determined
by an arbitrary coupling constant ω. This constant ω can be used to have a lorenzian (-1,1,1,1)
or seudo-lorenzian (-1,-1,1,1) signature when we build the Wheeler-DeWitt equation. The
values for this constant, in the classical regime, are dictated by the condition to have real
functions. Other problem inherent to this theory is that not exist how build the invariants
with this field as in the case to scalar curvature. So, was necessary to reinterpret the formalism
where this field is considered as matter content in the theory in the Einstein frame.
On the other hand, this approach is classified with another name, by instant,
Armendariz-Picon et al, called this formalism as K-essence (Armendariz et al., 2000), as
a dynamical solution for explaining naturally why the universe has entered an epoch of
accelerated expansion at a late stage of its evolution. Instead, K-essence is based on the
idea of a dynamical attractor solution which causes it to act as a cosmological constant only
at the onset of matter domination. Consequently, K-essence overtakes the matter density
and induces cosmic acceleration at about the present epoch. Usually K-essence models are

10



2 cosmology

restricted to the Lagrangian density of the form

S =
∫

d4x
√−g f(φ) (∇φ)2 . (1)

One of the motivations to consider this type of Lagrangian originates from string theory
(Armendariz et al., 1999). For more details for K-essence applied to dark energy, you can see
in (Copeland et al., 2006) and reference therein. Many works in SB formalism in the classical
regime have been done, where the Einstein field equation is solved in a direct way, using a
particular ansatz for the main scalar factor of the universe (Singh & Agrawal, 1991; Ram &
Singh, 1995; Mohanty & Pattanaik, 2001; Singh & Ram, 2003), yet a study of the anisotropy
behaviour trough the form introduced in the line element has been conected (Reddy & Rao,
2001; Mohanty & Sahu, 2003; 2004; Adhav et al., 2007; Rao et al., 2007; 2008a-2008b; Shri et al.,
2009; Tripathy et al., 2009; Singh, 2009; Pradhan & Singh, 2010).
On another front, the quantization program of this theory has not been constructed. The
main complication can be traced to the lack of an ADM type formalism. We can transform
this theory to conventional one where the dimensionless scalar field is obtained from
energy-momentum tensor as an exotic matter contribution, and in this sense we can use this
formalism for the quantization program, where the ADM formalism is well known (Ryan,
1972).
In this work, we use this formulation to obtain classical and quantum exact solutions to
anisotropic Bianchi Class A cosmological models with stiff matter. The first step is to write
SB formalism in the usual manner, that is, we calculate the corresponding energy-momentum
tensor to the scalar field and give the equivalent Lagrangian density. Next, we proceed to
obtain the corresponding canonical Lagrangian Lcan to Bianchi Class A cosmological models
through the Legendre transformation, we calculate the classical Hamiltonian H, from which
we find the Wheeler-DeWitt (WDW) equation of the corresponding cosmological model under
study. We employ in this work the Misner parametrization due that a natural way appear the
anisotropy parameters to the scale factors.
The simpler generalization to Lagrangian density for the SB theory (Saez & Ballester, 1986)
with the cosmological term, is

Lgeo = (R − 2Λ − F(φ)φ,γφ,γ) , (2)

where φ,γ = gγαφ,α, R the scalar curvature, F(φ) a dimensionless function of the scalar field.
In classical field theory with scalar field, this formalism corresponds to null potencial in the
field φ, but the kinetic term is exotic by the factor F(φ).
From the Lagrangian (2) we can build the complete action

I =
∫

Σ

√−g(Lgeo + Lmat)d4x, (3)

where Lmat is the matter Lagrangian, g is the determinant of metric tensor. The field equations
for this theory are

Gαβ + gαβΛ − F(φ)
(

φ,αφ,β − 1
2

gαβφ,γφ,γ
)

= −8πGTαβ, (4a)

2F(φ)φ,α
;α +

dF
dφ

φ,γφ,γ = 0, (4b)
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where G is the gravitational constant and as usual the semicolon means a covariant derivative.
The equation (4b) take the following form for all cosmological Bianchi Class A models,
assuming that the scalar field is only time dependent ( here � = d

dτ = d
Ndt )

3Ω�φ�F + φ��F +
1
2

dF
dφ

φ�2 = 0,

which can be put in quadrature form as

1
2

Fφ�2 = F0e−6Ω, (5)

this equation is seen as corresponding to a stiff matter content contribution.

The same set of equations(4a,4b) is obtained if we consider the scalar field φ as part of the
matter budget, i.e. say Lφ = −F(φ)gαβφ,αφ,β with the corresponding energy-momentum
tensor

Tαβ = F(φ)
(

φ,αφ,β − 1
2

gαβφ,γφ,γ
)

, (6)

which is conserved and equivalent to a stiff (see appendix section 7). In this new line of

reasoning, action (3) can be rewritten as a geometrical part (Hilbert-Einstein with Λ) and
matter content (usual matter plus a term that corresponds to the exotic scalar field component
of SB theory).
In this way, we write the action (3) in the usual form

I =
∫

Σ

√−g
(
R − 2Λ + Lmat + Lφ

)
d4x, (7)

and consequently, the classical equivalence between the two theories. We can infer that

this correspondence also is satisfied in the quantum regime, so we can use this structure for
the quantization program, where the ADM formalism is well known for different classes of
matter (Ryan, 1972). Using this action we obtain the Hamiltonian for SB. We find that the
WDW equation is solved when we choose one ansatz similar to this employed in the Bohmian
formalism of quantum mechanics and the gravitational part in the solutions are the same that
these found in the literature, years ago (Obregón & Socorro, 1996).
This work is arranged as follow. In section 2 we present the method used, employing the
FRW cosmological model with barotropic perfect fluid and cosmological constant. In section
3 we construct the Lagrangian and Hamiltonian densities for the anisotropic Bianchi Class
A cosmological model. In section 4 the classical solutions using the Jacobi formalism are
found. Here we present partial results in the solutions for some Bianchi’s cosmological
models. Classical solution to Bianchi I is complete in any gauge, but the Bianchi II and
VIh=−1, the solutions are found in particular gauge. Other Biachi’s, only the master equation
are presented. In Section 5 the complete cuantization scheme is presented, obtaining the
corresponding Wheeler-DeWitt equation and its solutions are presented in unified way using
the classification scheme of Ellis and MacCallum (Ellis & MacCallum, 1969) and Ryan and
Shepley, (Ryan & Shepley, 1975).
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4 cosmology

2. The method

Let us start with the line element for a homogeneous and isotropic FRW universe

ds2 = −N2(t)dt2 + a2(t)
[

dr2

1 − κr2 + r2dΩ2
]

, (8)

where a(t) is the scale factor, N(t) is the lapse function, and κ is the curvature constant that
can take the values 0, 1 and −1, for flat, closed and open universe, respectively. The total
Lagrangian density then reads

L =
6ȧ2a

N
− 6κNa +

F(φ)a3

N
φ̇2 + 16πGNa3ρ − 2Na3Λ , (9)

where ρ is the energy density of matter, we will assume that it complies with a barotropic
equation of state of the form p = γρ, where γ is a constant. The matter content is assumed
as a perfect fluid Tμν = (ρ + p)uμuν + gμνp where uμ is the fluid four-velocity satisfying
uμuμ = −1 . Taking the covariant derivative we obtain the relation

3Ω̇ρ + 3Ω̇p + ρ̇ = 0,

whose solution becomes
ρ = ργe−3Ω(1+γ), (10)

where ργ is an integration constant.
From the canonical form of the Lagrangian density (9), and the solution for the barotropic
fluid equation of motion, we find the Hamiltonian density for this theory, where the momenta
are defined in the usual way Πqi = ∂L

∂q̇i , where qi = (a, φ) are the field coordinates for this
system,

Πa =
∂L
∂ȧ

=
12aȧ

N
, → ȧ =

NΠa

12a
,

Πφ =
∂L
∂φ̇

=
2Fa3φ̇

N
, → φ̇ =

NΠφ

2Fa3 , (11)

so, the Hamiltonian density become

H =
a−3

24

[
a2Π2

a +
6

F(φ)
Π2

φ + 144κa4 + 48a6Λ − 384πGργa3(1−γ)
]

. (12)

Using the transformation Πq =
dSq
dq , the Einstein-Hamilton-Jacobi (EHJ) associated to Eq. (12)

is

a2
(

dSa

da

)2
+

6
F(φ)

(
dSφ

dφ

)2
+ 48a6Λ − 384πGργa3(1−γ) = 0 . (13)

The EHJ equation can be further separated in the equations

6
F(φ)

(
dSφ

dφ

)2
= μ2 , (14)

a2
(

dSa

da

)2
+ 48a6Λ − 384πGργa3(1−γ) = −μ2 , (15)
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where μ is a separation constant. With the help of Eqs. (11), we can obtain the solution up to
quadratures of Eqs. (14) and (15),

∫ √
F(φ) dφ =

μ

2
√

6

∫
a−3(τ) dτ , (16a)

Δτ =
∫ a2da√

8
3 πGργa3(1−γ) − Λ

3 a6 − ν2
, (16b)

with ν =
μ
12 . Eq. (16a) readily indicates that

F(φ)φ̇2 = 6ν2a−6(τ) . (17)

Also, this equation could be obtained by solving equation (4b). Moreover, the matter
contribution of the SB scalar field to the r.h.s. of the Einstein equations would be

ρφ =
1
2

F(φ)φ̇2 ∝ a−6 , (18)

this energy density of a scalar field has the range of scaling behaviors (Andrew & Scherrer,
1998; Ferreira & Joyce, 1998), is say, scales exactly as a power of the scale factor like, ρφ ∝ a−m,
when the dominant component has an energy density which scales as similar way. So, the
contribution of the scalar field is the same as that of stiff matter with a barotropic equation of
state γ = 1. This is an interesting result, since the original SB theory was thought of as a way
to solve the missing matter problem now generically called the dark matter problem. To solve
the latter, one needs a fluid behaving as dust with γ = 0, it is surprising that such a general
result remains unnoticed until now in the literature about SB. This is an instance of the results
of the analysis of the energy momentum tensor of a scalar field by Marden (Marden, 1988) for
General Relativity with scalar matter and by Pimentel (Pimentel, 1989) for the general scalar
tensor theory. In both works a free scalar field is equivalent to a stiff matter fluid.
Furthermore, having identified the general evolution of the scalar field with that of a stiff
fluid means that the Eq. (16b) can be integrated separately without a complete solution for
the scalar field. In (Socorro et al., 2011) appear a compilation of exact solutions in the case of
the original SB theory to FRW cosmological model and in (Socorro et al., 2010) were presented
the classical and quantum solution to Bianchi type I.

3. The master Hamiltonian to Bianchi Class A cosmological models

Let us recall here the canonical formulation in the ADM formalism of the diagonal Bianchi
Class A cosmological models. The metric has the form

ds2 = −dt2 + e2Ω(t) (e2β(t))ij ωi ωj, (19)

where βij(t) is a 3x3 diagonal matrix, βij = diag(β+ +
√

3β−, β+ −√
3β−,−2β+), Ω(t) is a

scalar and ωi are one-forms that characterize each cosmological Bianchi type model, and that
obey dωi = 1

2 Ci
jkωj ∧ ωk, Ci

jk the structure constants of the corresponding invariance group,
these are included in table 1.
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the scalar field. In (Socorro et al., 2011) appear a compilation of exact solutions in the case of
the original SB theory to FRW cosmological model and in (Socorro et al., 2010) were presented
the classical and quantum solution to Bianchi type I.

3. The master Hamiltonian to Bianchi Class A cosmological models

Let us recall here the canonical formulation in the ADM formalism of the diagonal Bianchi
Class A cosmological models. The metric has the form

ds2 = −dt2 + e2Ω(t) (e2β(t))ij ωi ωj, (19)

where βij(t) is a 3x3 diagonal matrix, βij = diag(β+ +
√

3β−, β+ −√
3β−,−2β+), Ω(t) is a

scalar and ωi are one-forms that characterize each cosmological Bianchi type model, and that
obey dωi = 1

2 Ci
jkωj ∧ ωk, Ci

jk the structure constants of the corresponding invariance group,
these are included in table 1.
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Bianchi type 1-forms ωi

I ω1 = dx1, ω2 = dx2, ω3 = dx3

II ω1 = dx2 − x1dx3, ω2 = dx3, ω3 = dx1

VIh=−1 ω1 = e−x1
dx2, ω2 = ex1

dx3, ω3 = dx1

VII0 ω1 = dx2 + dx3, ω2 = −dx2 + dx3, ω3 = dx1

VIII ω1 = dx1 + [1 + (x1)2]dx2 + [x1 − x2 − (x1)2x2]dx3,
ω2 = 2x1dx2 + (1 − 2x1x2)dx3,
ω3 = dx1 + [−1 + (x1)2]dx2 + [x1 + x2 − (x1)2x2]dx3

IX ω1 = − sin(x3)dx1 + sin(x1) cos(x3)dx2,
ω2 = cos(x3)dx1 + sin(x1) sin(x3)dx2, ω3 = cos(x1)dx2 + dx3

Table 1. One-forms for the Bianchi Class A models.

We use the Bianchi type IX cosmological model as toy model to apply the method discussed
in the previous section. The total Lagrangian density then reads

LIX = e3Ω

[
6

Ω̇2

N
− 6

β̇2
+

N
− 6

β̇2−
N

+
F(φ)

N
φ̇2 + 16πGNρ − 2NΛ

+Ne−2Ω

{
1
2

(
e4β++4

√
3β− + e4β+−4

√
3β− + e−8β+

)

−
(

e−2β++2
√

3β− + e−2β+−2
√

3β− + e4β+

)}]
, (20)

making the calculation of momenta in the usual way, Πqμ = ∂L
∂q̇μ , where qμ = (Ω, β+, β−, φ)

ΠΩ =
12
N

e3ΩΩ̇, → Ω̇ =
N
12

e−3ΩΠΩ,

Π+ = −12
N

e3Ωβ̇+, → β̇+ = − N
12

e−3ΩΠ+,

Π− = −12
N

e3Ωβ̇−, → β̇− = − N
12

e−3ΩΠ+,

Πφ =
2F
N

e3Ωφ̇, → φ̇ =
N
2F

e−3ΩΠφ,

and introducing into the Lagrangian density, we obtain the canonical Lagrangian as

LIX = Πqμ q̇μ − NH⊥,

with the Hamiltonian density

H⊥ =
e−3Ω

24

(
−Π2

Ω − 6
F(φ)

Π2
φ + Π2

+ + Π2− + U(Ω, β±) + C1

)
, (21)

where the gravitational potential becomes,
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The equation (21) can be considered as a master equation for all Bianchi Class A cosmological
model in the stiff epoch in the Sáez-Ballester theory, with U(Ω, β±) is the potential term of the
cosmological model under consideration, that can read it to table II.

Bianchi type Hamiltonian density H
I e−3Ω

24

[
−Π2

Ω − 6
F Π2

φ + Π2
+ + Π2− − 48Λe6Ω + 384πGργe−3(γ−1)Ω

]

II e−3Ω

24

[
−Π2

Ω − 6
F Π2

φ + Π2
+ + Π2− − 48Λe6Ω + 384πGργe−3(γ−1)Ω

+12e4Ωe4β++4
√

3β−
]

VI−1
e−3Ω

24

[
−Π2

Ω − 6
F Π2

φ + Π2
+ + Π2− − 48Λe6Ω + 384πGργe−3(γ−1)Ω

+48e4Ωe4β+

]

VII0
e−3Ω

24

[
−Π2

Ω − 6
F Π2

φ + Π2
+ + Π2− − 48Λe6Ω + 384πGργe−3(γ−1)Ω

+12e4Ω
(

e4β++4
√

3β− − e4β+ + e4β+−4
√

3β−
)]

VIII e−3Ω

24

[
−Π2

Ω − 6
F Π2

φ + Π2
+ + Π2− − 48Λe6Ω + 384πGργe−3(γ−1)Ω

+12e4Ω
(

e4β++4
√

3β− + e4β+−4
√

3β− + e−8β+

−2
{

e4β+ − e−2β+−2
√

3β− − e−2β++2
√

3β−
})]

IX e−3Ω

24

[
−Π2

Ω − 6
F Π2

φ + Π2
+ + Π2− − 48Λe6Ω + 384πGργe−3(γ−1)Ω

+12e4Ω
(

e4β++4
√

3β− + e4β+−4
√

3β− + e−8β+

−2
{

e4β+ + e2β+−2
√

3β− + e−2β++2
√

3β−
})]

Table 2. Hamiltonian density for the Bianchi Class A models.

4. Classical scheme

In this section, we present the classical solutions to all Bianchi Class A cosmological models
using the appropriate set of variables,

β1 = Ω + β+ +
√

3β−,

β2 = Ω + β+ −
√

3β−,

β3 = Ω − 2β+. (22)

4.1 Bianchi I
For building one master equation for all Bianchi Class A models, we begin with the simplest
model give by the Bianchi I, and give the general treatment. The corresponding Lagrangian
for this cosmological model is written as

LI = eβ1+β2+β3

[
2β̇1 β̇2

N
+

2β̇1 β̇3
N

+
2β̇2 β̇3

N
+

F(φ)φ̇2

N
+ 16NπGργ e−(1+γ)(β1+β2+β3) − 2NΛ

]
,

(23)
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The equation (21) can be considered as a master equation for all Bianchi Class A cosmological
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Table 2. Hamiltonian density for the Bianchi Class A models.

4. Classical scheme

In this section, we present the classical solutions to all Bianchi Class A cosmological models
using the appropriate set of variables,

β1 = Ω + β+ +
√

3β−,

β2 = Ω + β+ −
√

3β−,

β3 = Ω − 2β+. (22)

4.1 Bianchi I
For building one master equation for all Bianchi Class A models, we begin with the simplest
model give by the Bianchi I, and give the general treatment. The corresponding Lagrangian
for this cosmological model is written as

LI = eβ1+β2+β3

[
2β̇1 β̇2

N
+

2β̇1 β̇3
N

+
2β̇2 β̇3

N
+

F(φ)φ̇2

N
+ 16NπGργ e−(1+γ)(β1+β2+β3) − 2NΛ

]
,

(23)
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the momenta associated to the variables (βi, φ) are

Π1 =
2
N
(β̇2 + β̇3)eβ1+β2+β3 , β̇1 =

N
4

e−(β1+β2+β3)(Π2 + Π3 − Π1),

Π2 =
2
N
(β̇1 + β̇3)eβ1+β2+β3 , β̇2 =

N
4

e−(β1+β2+β3)(Π1 + Π3 − Π2),

Π3 =
2
N
(β̇1 + β̇2)eβ1+β2+β3 , β̇3 =

N
4

e−(β1+β2+β3)(Π1 + Π2 − Π3),

Πφ =
2Fφ̇

N
eβ1+β2+β3 , φ̇ =

N
2F

e−(β1+β2+β3)Πφ, (24)

so, the Hamiltonian is

HI =
1
8

e−(β1+β2+β3)
[
−Π2

1 − Π2
2 − Π2

3 +
2
F

Π2
φ + 2Π1Π2 + 2Π1Π3 + 2Π2Π3

+16Λe2(β1+β2+β3) − 128πGργe(1−γ)(β1+β2+β3)
]

, (25)

using the hamilton equation, where � = d
dτ = d

Ndt , we have

Π�
1 = −4Λeβ1+β2+β3 + 16πG(1 − γ)ργe−γ(β1+β2+β3), (26)

Π�
2 = −4Λeβ1+β2+β3 + 16πG(1 − γ)ργe−γ(β1+β2+β3), (27)

Π�
3 = −4Λeβ1+β2+β3 + 16πG(1 − γ)ργe−γ(β1+β2+β3), (28)

Π�
φ =

1
4

e−(β1+β2+β3) F�
F2φ� Π2

φ, (29)

β�1 =
1
4

e−(β1+β2+β3) [−Π1 + Π2 + Π3] , (30)

β�2 =
1
4

e−(β1+β2+β3) [−Π2 + Π1 + Π3] , (31)

β�3 =
1
4

e−(β1+β2+β3) [−Π3 + Π1 + Π2] , (32)

φ� = 1
2F

e−(β1+β2+β3)Πφ, (33)

equations (26,27,28) implies
Π1 = Π2 + k1 = Π3 + k2. (34)

Also, the differential equation for field φ can be reduced to quadratures when we use
equations (29) and (33), as

1
2

F(φ)φ�2 = φ0e−2(β1+β2+β3), ⇒
√

F(φ)dφ =
√

2φ0 e−(β1+β2+β3)dτ, (35)

which correspond to equation (5) obtained in direct way from the original Einstein field
equation. The corresponding classical solutions for the field φ for this cosmological model
can be seen in ref. (Socorro et al., 2010).

Using this result and the equation for the field φ given in (24) we can find that 2
Π2

φ

F = 16φ0.
From the hamilton equation for the momenta Π1 can be written for the two equations of state
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γ = ±1, introducing the generic parameter

λ =

{−4Λ, γ = 1
−4Λ + 32πGρ1, γ = −1 (36)

as Π�
1 = λeβ1+β2+β3 , then re-introducing into the Hamiltonian equation (25) we find one

differential equation for the momenta Π1 as

4
λ

Π�2
1 + 2Π2

1 − κΠ1 − k3 = 0, (37)

where the corresponding constants are

κ = 2(k1 + k2), k3 =

{
k2

1 + k2
2 − 16φ0, γ = −1

k2
1 + k2

2 − 16φ0 + 128πGρ1, γ = 1
(38)

and whose solution is

Π1 =
κ

6
±

√
κ2 + 12k3

6
sin

[√
3λ

2
Δτ

]
. (39)

On the other hand, using this result in the sum of equation (52,53,54), we obtain that

β1 + β2 + β3 = Ln

[
α√
12λ

cos

[√
3λ

2
Δτ

]]
, α = 2

√
κ2 + 12k3, (40)

solution previously found in ref. (Socorro et al., 2010) using the Hamilton-Jacobi approach.

4.2 Bianchi’s Class A cosmological models
The corresponding Lagrangian for these cosmological model are written using the Lagrangian
to Bianchi I, as

LII = LI + Neβ1+β2+β3

[
1
2

e2(β1−β2−β3)
]

, (41)

LVIh=−1 = LI + Neβ1+β2+β3
[
2e−2β3

]
, (42)

LVIIh=0 = LI + Neβ1+β2+β3

[
1
2

e2(β1−β2−β3) +
1
2

e2(−β1+β2−β3) − e−2β3

]
, (43)

LVIII = LI +
N
2

eβ1+β2+β3
[
e2(β1−β2−β3) + e2(−β1+β2−β3) + e2(−β1−β2+β3)

−2
(
−e−2β1 + e−2β2 + e−2β3

)]
, (44)

LIX = LI +
N
2

eβ1+β2+β3
[
e2(β1−β2−β3) + e2(−β1+β2−β3) + e2(−β1−β2+β3)

−2
(

e−2β1 + e−2β2 + e−2β3
)]

, (45)

the momenta associated to the variables (βi, φ) are the same as in equation (24), so, the generic
Hamiltonian is

HA = HI − 1
2

e−(β1+β2+β3) [UA(β1, β2, β3)] , (46)
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2

e−(β1+β2+β3) [UA(β1, β2, β3)] , (46)
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where the potential term UA(β1, β2, β3) is given in table III, where A corresponds to particular
Bianchi Class A models (I,II, VIh=−1,VIIh=0,VIII,IX). If we choose the particular gauge to the
lapse function N = e(β1+β2+β3), the equation (46) is much simpler,

HA = HI − 1
2
[UA(β1, β2, β3)] , (47)

where HI is as in equation (25) but without the factor e−(β1+β2+β3)

Bianchi type Potential UA(β1, β2, β3)
I 0
II e4β1

VIh=−1 4e2(β1+β2)

VIIh=0 e4β1 + e4β2 − 2e2(β1+β2)

VIII e4β1 + e4β2 + e4β3 − 2e2(β1+β2) + 2e2(β1+β3) + 2e2(β2+β3)

IX e4β1 + e4β2 + e4β3 − 2e2(β1+β2) − 2e2(β1+β3) − 2e2(β2+β3)

Table 3. Potential UA(β1, β2, β3) for the Bianchi Class A Models.

The Hamilton equations, for all Bianchi Class A cosmological models are as follows

Π�
1 = −4Λeβ1+β2+β3 + 16πG(1 − γ)ργe−γ(β1+β2+β3)

+
∂

∂β1

(
1
2

e−(β1+β2+β3) [UA(β1, β2, β3)]

)
, (48)

Π�
2 = −4Λeβ1+β2+β3 + 16πG(1 − γ)ργe−γ(β1+β2+β3)

+
∂

∂β2

(
1
2

e−(β1+β2+β3) [UA(β1, β2, β3)]

)
, (49)

Π�
3 = −4Λeβ1+β2+β3 + 16πG(1 − γ)ργe−γ(β1+β2+β3)

+
∂

∂β3

(
1
2

e−(β1+β2+β3) [UA(β1, β2, β3)]

)
, (50)

Π�
φ =

1
4

e−(β1+β2+β3) F�
F2φ� Π2

φ, (51)

β�1 =
1
4

e−(β1+β2+β3) [−Π1 + Π2 + Π3] , (52)

β�2 =
1
4

e−(β1+β2+β3) [−Π2 + Π1 + Π3] , (53)

β�3 =
1
4

e−(β1+β2+β3) [−Π3 + Π1 + Π2] , (54)

φ� = 1
2F

e−(β1+β2+β3)Πφ. (55)

In this cosmological models, it is remarkable that the equation for the field φ (35) is mantained
for all Bianchi Class A models, and in particular, when we use the gauge N = eβ1+β2+β3 , the
solutions for this field are independent of the cosmological models.
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4.3 Classical solution in the gauge N = eβ1+β2+β3 , Λ = 0 and γ = 1
With these initial choices, the main equations are written for this gauge as (now a dot means
d
dt )

HA =
1
8

[
−Π2

1 − Π2
2 − Π2

3 +
2
F

Π2
φ + 2Π1Π2 + 2Π1Π3 + 2Π2Π3 − C1

]

−1
2
[UA(β1, β2, β3)] , (56)

with C1 = 128πGρ1.
The hamilton equation, for all Bianchi Class A cosmological models are

Π̇1 = +
∂

∂β1

(
1
2
[UA(β1, β2, β3)]

)
, (57)

Π̇2 = +
∂

∂β2

(
1
2
[UA(β1, β2, β3)]

)
, (58)

Π̇3 = +
∂

∂β3

(
1
2
[UA(β1, β2, β3)]

)
, (59)

Π̇φ =
1
4

Ḟ
F2φ̇

Π2
φ, (60)

β̇1 =
1
4
[−Π1 + Π2 + Π3] , (61)

β̇2 =
1
4
[−Π2 + Π1 + Π3] , (62)

β̇3 =
1
4
[−Π3 + Π1 + Π2] , (63)

φ̇ =
1

2F
Πφ. (64)

4.3.1 Bianchi II

Π̇1 = 2e4β1 , (65)

Π̇2 = 0, → Π2 = p2 = cte, (66)

Π̇3 = 0, → Π3 = p3 = cte, (67)

Π̇φ =
1
4

Ḟ
F2φ̇

Π2
φ, (68)

β̇1 =
1
4
[−Π1 + p2 + p3] , (69)

β̇2 =
1
4
[−p2 + Π1 + p3] , (70)

β̇3 =
1
4
[−p3 + Π1 + p2] , (71)

φ̇ =
1

2F
Πφ, (72)
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Ḟ
F2φ̇

Π2
φ, (68)

β̇1 =
1
4
[−Π1 + p2 + p3] , (69)

β̇2 =
1
4
[−p2 + Π1 + p3] , (70)

β̇3 =
1
4
[−p3 + Π1 + p2] , (71)

φ̇ =
1

2F
Πφ, (72)

195Cosmological Bianchi Class A Models in Sáez-Ballester Theory



12 cosmology

introducing (65) into (56) we find the differential equation for Π1 as Π̇1 = − 1
2 Π2

1 + bΠ1 + c
where the constants are defined as b = p2 + p3 and c = 8φ0 − 1

2
(
p2

2 + p2
3 + C1

)
. The solution

for Π1 is

Π1 = b +
√
−b2 − 2cTan

[
−1

2

√
−b2 − 2cΔt

]
, (73)

and the solutions for βi then are

Δβ1 = −1
2

Ln
[

Cos
(

1
2

√
−b2 − 2cΔt

)]
, (74)

Δβ2 =
1
2

p3Δt +
1
2

Ln
[

Cos
(

1
2

√
−b2 − 2cΔt

)]
, (75)

Δβ3 =
1
2

p2Δt +
1
2

Ln
[

Cos
(

1
2

√
−b2 − 2cΔt

)]
, (76)

(77)

and the solution for the φ field is similar to (35)

1
2

F(φ)φ̇2 = φ0, ⇒
√

F(φ)dφ =
√

2φ0 dt. (78)

So, the solutions in the original variables are

Ω =
1
6

[
(p2 + p3)Δt + Ln

[
Cos

(
1
2

√
−b2 − 2cΔt

)]]
,

β− =

√
3

6

[
−1

2
p3Δt − Ln

[
Cos

(
1
2

√
−b2 − 2cΔt

)]]
,

β+ =
1
12

[
(p3 − 2p2)Δt − 2Ln

[
Cos

(
1
2

√
−b2 − 2cΔt

)]]
. (79)

4.3.2 Bianchi VIh=−1

Π̇1 = 4e2(β1+β2), (80)

Π̇2 = 4e2(β1+β2), → Π2 = Π1 + a1, (81)

Π̇3 = 0, → Π3 = p3 = cte, (82)

Π̇φ =
1
4

Ḟ
F2φ̇

Π2
φ, (83)

β̇1 =
1
4
[−Π1 + Π2 + p3] , (84)

β̇2 =
1
4
[−Π2 + Π1 + p3] , (85)

β̇3 =
1
4
[−p3 + Π1 + Π2] , (86)

φ̇ =
1

2F
Πφ. (87)
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introducing (81) into (56) we find the differential equation for Π1 as Π̇1 − p3Π1 + k1 = 0
where k1 = 1

4
(
p2

3 + a2
1 − 16φ0 + C1 − 2a1p3

)
who solution become as

Π1 =
1

p3

[
ep3Δt + k1

]
, (88)

then the solutions for βi become

Δβ1 =
1
4
(a1 + p3)Δt, (89)

Δβ2 =
1
4
(p3 − a1)Δt, (90)

Δβ3 =
1
4
(a1 − p3)Δt +

1
2p3

[
ep3Δt + k1

]
, (91)

(92)

and the solutions in the original variables are

Ω =
1

12p3

[
2k1 + p3 (a1 + p3)Δt + 2ep3Δt

]
,

β− =
a1

4
√

3
Δt,

β+ = − 1
12p3

[
2k1 + p3 (a1 − 2p3)Δt + 2ep3Δt

]
. (93)

5. Quantum scheme

The WDW equation for these models is achived by replacing Πqμ = −i∂qμ in (21). The factor
e−3Ω may be factor ordered with Π̂Ω in many ways. Hartle and Hawking (Hartle & Hawking,
1983) have suggested what might be called a semi-general factor ordering which in this case
would order e−3ΩΠ̂2

Ω as

− e−(3−Q)Ω ∂Ωe−QΩ∂Ω = −e−3Ω ∂2
Ω + Q e−3Ω∂Ω ,

− 6
F

φs ∂

∂φ
φ−s ∂

∂φ
= − 6

F
∂2

∂φ2 +
6s
F

φ−1 ∂

∂φ
, (94)

where Q and s are any real constants that measure the ambiguity in the factor ordering
in the variables Ω and φ. We will assume in the following this factor ordering for the
Wheeler-DeWitt equation, which becomes

�Ψ − 6
F(φ)

∂2Ψ

∂φ2 +
6s
F

φ−1 ∂Ψ

∂φ
+ Q

∂Ψ

∂Ω
− U(Ω, β±)Ψ − C1Ψ = 0, (95)

where � is the three dimensional d’Lambertian in the �μ = (Ω, β+, β−) coordinates, with
signature (- + +).
When we introduce the Ansatz Ψ = χ(φ)ψ(Ω, β±) in (95), we obtain the general set
of differential equations (under the assumed factor ordering) for the Bianchi type IX
cosmological model

�ψ + Q
∂ψ

∂Ω
−

[
U(Ω, β±) + C1 − μ2

]
ψ = 0, (96)
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6
F(φ)

∂2χ

∂φ2 − 6s
F

φ−1 ∂χ

∂φ
+ μ2χ = 0. (97)

When we calculate the solution to equation (97), we find interesting properties on this, as

1. This equation is a master equation for the field φ for any cosmological model, implying
that this field φ is an universal field as cosmic ground, having the best presence in the stiff
matter era as an ingredient in the formation the structure galaxies and when we consider
two types of functions, F(φ) = ωφm and F(φ) = ωemφ, we have the following exact
solutions (Polyanin & Zaitsev, 2003)
(a) F(φ) = ωφm

the differential equation to solver is

d2χ

dφ2 − sφ−1 dχ

dφ
+ αφmχ = 0, (98)

with α =
ωμ2

6 . The solutions depend on the value to m and s,
i. General solution for any m �= −2 and s, are written in terms of ordinary and modify

Bessel function,

χ = c1φ
1+s

2 Zν

�
2
√

α

m + 2
φ

m+2
2

�
, (99)

with c1 an integration constant, Zν is a generic Bessel function, ν = 1+s
m+2 is the order.

When α > 0 imply ω > 0, Zν become the ordinary Bessel function, (Jν, Yν). If
α < 0,→ w < 0, Zν → (Iν, Kν).

ii. m = −2 and any s,

χ = φ
1+s

2

⎧⎨
⎩

c1 φμ + c2φ−μ , si μ > 0
c1 + c2Lnφ , si μ = 0
c1 sin (μLnφ) + c2 cos (μLnφ) , if μ < 0

, (100)

where μ = 1
2

�|(1 + s)2 − 4α|.
iii. m = −6 and s = 1

χ(φ) = φ2

⎧⎪⎪⎨
⎪⎪⎩

c1 sinh
�√

|α|
2φ2

�
+ c2 cosh

�√
|α|

2φ2

�
, α < 0 → ω < 0

c1 sin
�√

|α|
2φ2

�
+ c2 cos

�√
|α|

2φ2

�
, α > 0 → ω > 0

(101)

(b) F(φ) = ωemφ, for this case we consider the case s = 0,

d2χ

dφ2 + αemφχ = 0, (102)

i. m �= 0

χ = CZ0

�
2
√

α

m
e

mφ
2

�
, (103)

with C is a integration constant and Z0 is the generic Bessel function to zero order.
So, if α > 0 then ω > 0, Z0 is the ordinary Bessel function (J0, Y0). When α < 0,→
ω < 0, Z0 → (I0, K0).
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ii. for m = 0,

χ =

⎧
⎨
⎩

c1 sinh
��|α|φ

�
+ c2 cosh

��|α|φ
�

, if α < 0 → ω < 0

c1 sin
��|α|φ

�
+ c2 cos

��|α|φ
�

, if α > 0 → ω > 0
(104)

2. If we have the solution for the parameter s=0 for arbitrary function F(φ), say χ0, then we
have also the solution for s=-2, as χ(s = −2) = χ0

φ .

To obtain the solution of the other factor of Ψ we use the particular value for the constants
C1 = μ2, and make the following Ansatz for the wave function

ψ(�μ) = W(�μ)e−S(�μ), (105)

where S(�μ) is known as the superpotential function, and W is the amplitude of probability
to that employed in Bohmian formalism (Bohm, 1986), those found in the literature, years ago
(Obregón & Socorro, 1996). So (96) is transformed into

�W − W� S − 2∇W · ∇S + Q
∂W
∂Ω

− QW
∂S
∂Ω

+ W
�
(∇S)2 − U

�
= 0, (106)

where � = Gμν ∂2

∂�μ∂�ν , ∇W · ∇Φ = Gμν ∂W
∂�μ

∂Φ
∂�ν , (∇)2 = Gμν ∂

∂�μ
∂

∂�ν = −( ∂
∂Ω )2 + ( ∂

∂β+
)2 +

( ∂
∂β− )

2, with Gμν = diag(−1, 1, 1), U is the potential term of the cosmological model under
consideration.
Eq (106) can be written as the following set of partial differential equations

(∇S)2 − U = 0, (107a)

W
�
�S + Q

∂S
∂Ω

�
+ 2∇W · ∇ S = 0 , (107b)

�W + Q
∂W
∂Ω

= 0. (107c)

Following reference (Guzmán et al., 2007), first we shall choose to solve Eqs. (107a) and (107b),
whose solutions at the end will have to fulfill Eq. (107c), which play the role of a constraint
equation.

5.1 Transformation of the Wheeler-DeWitt equation
We were able to solve (107a), by doing the change of coordinates (22) and rewrite (107a) in
these new coordinates. With this change, the function S is obtained as follow, with the ansatz
(105),
In this section, we obtain the solutions to the equations that appear in the decomposition of
the WDW equation, (107a), (107b) and (107c), using the Bianchi type IX Cosmological model.
So, the equation [∇]2 = −( ∂

∂Ω )2 + ( ∂
∂β+

)2 + ( ∂
∂β− )

2 can be written in the following way (see
appendix section 8)
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. (108)
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6
F(φ)

∂2χ

∂φ2 − 6s
F

φ−1 ∂χ

∂φ
+ μ2χ = 0. (97)

When we calculate the solution to equation (97), we find interesting properties on this, as

1. This equation is a master equation for the field φ for any cosmological model, implying
that this field φ is an universal field as cosmic ground, having the best presence in the stiff
matter era as an ingredient in the formation the structure galaxies and when we consider
two types of functions, F(φ) = ωφm and F(φ) = ωemφ, we have the following exact
solutions (Polyanin & Zaitsev, 2003)
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ωμ2
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i. General solution for any m �= −2 and s, are written in terms of ordinary and modify

Bessel function,
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√

α
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φ
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2

�
, (99)

with c1 an integration constant, Zν is a generic Bessel function, ν = 1+s
m+2 is the order.

When α > 0 imply ω > 0, Zν become the ordinary Bessel function, (Jν, Yν). If
α < 0,→ w < 0, Zν → (Iν, Kν).
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2

⎧⎨
⎩
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⎪⎪⎩
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�
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(101)

(b) F(φ) = ωemφ, for this case we consider the case s = 0,
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e

mφ
2

�
, (103)

with C is a integration constant and Z0 is the generic Bessel function to zero order.
So, if α > 0 then ω > 0, Z0 is the ordinary Bessel function (J0, Y0). When α < 0,→
ω < 0, Z0 → (I0, K0).
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⎨
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∂Ω )2 + ( ∂

∂β+
)2 +
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∂β− )

2, with Gμν = diag(−1, 1, 1), U is the potential term of the cosmological model under
consideration.
Eq (106) can be written as the following set of partial differential equations

(∇S)2 − U = 0, (107a)
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+ 2∇W · ∇ S = 0 , (107b)

�W + Q
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= 0. (107c)

Following reference (Guzmán et al., 2007), first we shall choose to solve Eqs. (107a) and (107b),
whose solutions at the end will have to fulfill Eq. (107c), which play the role of a constraint
equation.

5.1 Transformation of the Wheeler-DeWitt equation
We were able to solve (107a), by doing the change of coordinates (22) and rewrite (107a) in
these new coordinates. With this change, the function S is obtained as follow, with the ansatz
(105),
In this section, we obtain the solutions to the equations that appear in the decomposition of
the WDW equation, (107a), (107b) and (107c), using the Bianchi type IX Cosmological model.
So, the equation [∇]2 = −( ∂

∂Ω )2 + ( ∂
∂β+

)2 + ( ∂
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The potencial term of the Bianchi type IX is transformed in the new variables into

U = 12
��

e2β1 + e2β2 + e2β3
�2 − 2e2(β1+β2) − 2e2(β1+β3) − 2e2(β2+β3)

�
. (109)

Then (107a) for this models is rewritten in the new variables as

3
�

∂S
∂β1

+
∂S
∂β2

+
∂S
∂β3

�2
− 12

�
∂S
∂β1

∂S
∂β2

+
∂S
∂β1

∂S
∂β3

+
∂S
∂β2

∂S
∂β3

�

− 12
��

e2β1 + e2β2 + e2β3
�2 − 4e2(β1+β2) − 4e2(β1+β3) − 4e2(β2+β3)

�
= 0. (110)

Now, we can use the separation of variables method to get solutions to the last equation for
the S function, obtaining for the Bianchi type IX model

SIX = ±
�

e2β1 + e2β2 + e2β3
�

. (111)

In table 4 we present the corresponding superpotential function S and amplitude W for all
Bianchi Class A models.
With this result, and using for the solution to (107b) in the new coordinates βi, we have for W
function as

WIX = W0 e[(1+
Q
6 )(β1+β2+β3)], (112)

and re-introducing this result into Eq. (107c) we find that Q = ±6. Therefore we have two
wave functions

ψIX (βi) = WIX (βi)Exp
�
±

�
e2β1 + e2β2 + e2β3

��

= Exp
�
±

�
e2β1 + e2β2 + e2β3

���W0, Q=-6
W0Exp [2 (β1 + β2 + β3)], Q=6 (113)

similar solutions were given by Moncrief and Ryan (Moncrief & Ryan, 1991) in standard
quantum cosmology in general relativity. In table 4 we present the superpotential function
S, the amplitude of probability W and the relations between the parameters for the
corresponding Bianchi Class A models.
If one looks at the expressions for the functions S given in table 4, one notes that there is a
general form to write them using the 3x3 matrix mij that appear in the classification scheme
of Ellis and MacCallum (Ellis & MacCallum, 1969) and Ryan and Shepley (Ryan & Shepley,
1975), the structure constants are written in the form

Ci
jk = �jks msi + δi

[kaj], (114)

where ai = 0 for the Class A models.
If we define gi(βi) = (eβ1 , eβ2 , eβ3 ), with βi given in (22), the solution to (107a) can be written
as

S(βi) = ±[gi Mij (gj)
T], (115)

where Mij = mij for the Bianchi Class A, excepting the Bianchi type VIh=−1 for which we
redefine the matrix to be consistent with (115)

Mij = (β1 − β2)

⎛
⎝

0 1 0
1 0 0
0 0 0

⎞
⎠ .
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Bianchi Superpotential S Amplitude of probability W Constraint
type

I constant e(
r
3 +

b
6 +

√
3c
6 )β1+( r

3 +
b
6 −

√
3c
6 )β2+( r

3 − b
3 )β3 r2 − Qr − a2 = 0,

a2 = b2 + c2

II e2β1 e(a−1− Q
6 )β1+aβ2+(a−b)β3 144b2 − 144ab + 36

−Q2 + 24aQ = 0
VIh=−1 2(β1 − β2) e(β1+β2) ea(β1+β2) Q = 0

VIIh=0 e2β1 + e2β2 e(1+ Q
6 )(β1+β2+β3)+a(β1+β2) Q2 − 48a − 36 = 0

VIII e2β1 + e2β2 − e2β3 W0 e[(1+
Q
6 )(β1+β2+β3)] Q = ±6

IX e2β1 + e2β2 + e2β3 W0 e[(1+
Q
6 )(β1+β2+β3)] Q = ±6

Table 4. Superpotential S, the amplitude of probability W and the relations between the
parameters for the corresponding Bianchi Class A models.

Then, for the Bianchi Class A models, the wave function Ψ can be written in the general form

Ψ = χ(φ)W(βi) exp [±[gi Mij (gj)
T]]. (116)

6. Final remarks

Using the analytical procedure of hamilton equation of classical mechanics, in appropriate
coordinates, we found a master equation for all Bianchi Class A cosmological models, we
present partial result in the classical regime for three models of them, but the general equation
are shown for all them. In particular, the Bianchi type I is complete solved without using a
particular gauge. The Bianchi type II and VIh=−1 are solved introducing a particular gauge.
An important results yields when we use the gauge N = eβ1+β2+β3 , we find that the solutions
for the φ field are independent of the cosmological models, and we find that the energy density
associated has a scaling behaviors under the analysis of standard field theory to scalar fields
(Andrew & Scherrer, 1998; Ferreira & Joyce, 1998), is say, scales exactly as a power of the
scale factor like, ρφ ∝ a−m. More of this can be seen to references cited before. On the
other hand, in the quantum regime, wave functions of the form Ψ = W e±S are the only
known exact solutions for the Bianchi type IX model in standard quantum cosmology. In the
SB formalism, these solutions are modified only for the function χ, Ψ = χ(φ)W(�μ) e±S(�μ)

when we include the particular ansatz C1 = μ2. This kind of solutions already have been
found in supersymmetric quantum cosmology (Asano et al., 1993) and also for the WDW
equation defined in the bosonic sector of the heterotic strings (Lidsey., 1994). Recently, in
the books (Paulo, 2010) appears all solutions in the supersymmetric scheme similar at our
formalism. We have shown that they are also exact solutions to the rest of the Bianchi Class
A models in SB quantum cosmology, under the assumed semi-general factor ordering (94).
Different procedures seem to produce this particular quantum state, where S is a solution to
the corresponding classical Hamilton-Jacobi equation (107a).

7. Appendix: Energy momentum tensor

From Eq. (6) we see that the effective energy momentum tensor of the scalar field is

Tα β = F(φ)
(

φ,αφ,β − 1
2

gαβφ,γφ,γ
)

, (117)
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quantum cosmology in general relativity. In table 4 we present the superpotential function
S, the amplitude of probability W and the relations between the parameters for the
corresponding Bianchi Class A models.
If one looks at the expressions for the functions S given in table 4, one notes that there is a
general form to write them using the 3x3 matrix mij that appear in the classification scheme
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1975), the structure constants are written in the form
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6. Final remarks

Using the analytical procedure of hamilton equation of classical mechanics, in appropriate
coordinates, we found a master equation for all Bianchi Class A cosmological models, we
present partial result in the classical regime for three models of them, but the general equation
are shown for all them. In particular, the Bianchi type I is complete solved without using a
particular gauge. The Bianchi type II and VIh=−1 are solved introducing a particular gauge.
An important results yields when we use the gauge N = eβ1+β2+β3 , we find that the solutions
for the φ field are independent of the cosmological models, and we find that the energy density
associated has a scaling behaviors under the analysis of standard field theory to scalar fields
(Andrew & Scherrer, 1998; Ferreira & Joyce, 1998), is say, scales exactly as a power of the
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when we include the particular ansatz C1 = μ2. This kind of solutions already have been
found in supersymmetric quantum cosmology (Asano et al., 1993) and also for the WDW
equation defined in the bosonic sector of the heterotic strings (Lidsey., 1994). Recently, in
the books (Paulo, 2010) appears all solutions in the supersymmetric scheme similar at our
formalism. We have shown that they are also exact solutions to the rest of the Bianchi Class
A models in SB quantum cosmology, under the assumed semi-general factor ordering (94).
Different procedures seem to produce this particular quantum state, where S is a solution to
the corresponding classical Hamilton-Jacobi equation (107a).
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From Eq. (6) we see that the effective energy momentum tensor of the scalar field is

Tα β = F(φ)
(
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, (117)

201Cosmological Bianchi Class A Models in Sáez-Ballester Theory



18 cosmology

this energy momentum tensor is conserved, as follows from the equation of motion for the
scalar field

∇βTα β = ∇β

[
F(φ)

(
φ,αφ,β − 1

2
gαβφ,γφ,γ

)]
= F�(φ)φ,β

(
φ,αφ,β − 1

2
gαβφ,γφ,γ

)

+F(φ)
(

φ
;β

,α φ,β + φ,αφ
;β

,β − 1
2

gαβφ
;β

,γ φ,γ − 1
2

gαβφ,γφ,γ;β
)

= F�(φ)
(

1
2

φ,γφ,γφ,α

)
+ F(φ)

(
φ

;β
,α φ,β + φ,αφ

;β
,β − gαβφ

;β
,γ φ,γ

)

=
1
2

φ,α

(
F�(φ)φ,γφ,γ + 2F(φ)φ ;β

,β

)
= 0. (118)

Now we proceed to show that the energy momentum tensor has the structure of an imperfect
stiff fluid,

Tα β = (ρ + p)UαUβ + pgα β = (2ρ)[UαUβ +
1
2

gα β], (119)

here ρ is the energy density, p the pressure, and Uα the velocity If we choose for the velocity
the normalized derivative of the scalar field, assuming that it is a timelike vector, as is often
the case in cosmology, where the scalar field is only time dependent

Uα = S−1/2φ,α, S = −φ,σφ,σ. (120)

It is evident that the energy momentum tensor of the SB theory is equivalent to a stiff fluid
with the energy density given by

ρ =
S F(φ)

2
= −φ,σφ,σ F(φ)

2
. (121)

Therefore the most important contribution of the scalar field occurs during a stiff matter phase
that is previous to the dust phase.

8. Appendix: Operators in the βi variables

The operators who appear in eqn (95) are calculated in the original variables (Ω, β+, β−);
however the structure of the cosmological potential term gives us an idea to implement new
variables, considering the Bianchi type IX cosmological model, these one given by eqn (22).
The main calculations are based in the following

∂

∂Ω
=

∂

∂β1
+

∂

∂β2
+

∂

∂β3
,

∂2

∂Ω2 =
∂2

∂β2
1
+

∂2

∂β2
2
+

∂2

∂β2
3
+ 2

[
∂2

∂β1∂β2
+

∂2

∂β1∂β3
+

∂2

∂β2∂β3

]
,

∂

∂β+
=

∂

∂β1
+

∂

∂β2
− 2

∂

∂β3
,

∂2

∂β2
+

=
∂2

∂β2
1
+

∂2

∂β2
2
+ 4

∂2

∂β2
3
+ 2

[
∂2

∂β1∂β2
− 2

∂2

∂β1∂β3
− 2

∂2

∂β2∂β3

]
,

∂

∂β−
=

√
3
(

∂

∂β1
− ∂

∂β2

)
,
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∂2

∂β2−
= 3

(
∂2

∂β2
1
+

∂2

∂β2
2
− 2

∂2

∂β1∂β2

)
. (122)

So, the operator (∇)2, �, ∇S∇W are written as

(∇)2 = Gμν ∂

∂�μ

∂

∂�ν
, Gμν = diag(−1, 1, 1), �μ = (Ω, β+, β1)
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this energy momentum tensor is conserved, as follows from the equation of motion for the
scalar field
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Now we proceed to show that the energy momentum tensor has the structure of an imperfect
stiff fluid,

Tα β = (ρ + p)UαUβ + pgα β = (2ρ)[UαUβ +
1
2

gα β], (119)

here ρ is the energy density, p the pressure, and Uα the velocity If we choose for the velocity
the normalized derivative of the scalar field, assuming that it is a timelike vector, as is often
the case in cosmology, where the scalar field is only time dependent

Uα = S−1/2φ,α, S = −φ,σφ,σ. (120)

It is evident that the energy momentum tensor of the SB theory is equivalent to a stiff fluid
with the energy density given by

ρ =
S F(φ)

2
= −φ,σφ,σ F(φ)

2
. (121)

Therefore the most important contribution of the scalar field occurs during a stiff matter phase
that is previous to the dust phase.

8. Appendix: Operators in the βi variables

The operators who appear in eqn (95) are calculated in the original variables (Ω, β+, β−);
however the structure of the cosmological potential term gives us an idea to implement new
variables, considering the Bianchi type IX cosmological model, these one given by eqn (22).
The main calculations are based in the following
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So, the operator (∇)2, �, ∇S∇W are written as
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1. Introduction

The constant c was first introduced as the speed of light. However, with the development of
physics, it came to be understood as playing a more fundamental role, its significance being
not directly that of a usual velocity (even though its dimensions are) and one might thus think
of c as being a fundamental constant of the universe (for a discussion on the speed of light, see,
for example, (Ellis & Uzan, 2005)). Moreover, the advent of Einsteinian relativity, the fact that
c appears in phenomena where there is neither light nor any motion (for example in E = mc2

which shows that c can in principle be measured with a weighing scale and a thermometer
(Braunbeck, 1937) or in the relation (�0μ0)

−1/2 = c showing that c can be obtained from
electrostatic and magnetostatic experiments (Maxwell, 1954)) and its dual-interpretation in
terms of "speed" of light and of "speed" of gravitation 1 forces everybody to associate c with
the theoretical description of space-time itself rather than that of some of its specific contents.
We could not in fact be satisfied by such results and we may think that these different aspects
of ”c” reflect an underlying structure we do not yet comprehend.
All this invites us to connect c to the geometry of the universe. Noting then that both c and
the expansion of the universe provide a universal relation between space and time which both have
the physical dimension of a velocity, we consider that these two facts cannot be a fortuitous
coincidence and that they consequently are two different aspects of a same phenomenon. We
thus consider that c must be related to the expansion of the universe and we postulate as a
fundamental law of nature (Vigoureux et al., 1988) that

c = αȧ = Cst (1)

where α is a positive constant and where a(t) is the cosmic scale factor which can be
assimilated to the radius of the universe in the case of a spherical geometry (of course, all
results also holds when taking c = 1). Equation (1) of course means that the scale factor
increases at a constant expanding rate. Such a case is usually expected to describe an empty
expanding universe (as is for example the Milne universe) or, at the least, an universe in which
the density of matter and radiation are so small that they have negligible effect on the flat
spacetime geometry. However, as we shall see, in our model where appears a cosmological constant

1 Answering to the question by saying that light and gravitation correspond to zero rest-mass particules
does not change the problem.
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assimilated to the radius of the universe in the case of a spherical geometry (of course, all
results also holds when taking c = 1). Equation (1) of course means that the scale factor
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2 Will-be-set-by-IN-TECH

term, a constant velocity of expansion does not need such an empty universe. 2 Let us also note
that eq.(1) verifies the condition Ḣ + (1 + q)H2 = 0 where q = −äa/ȧ2 is the deceleration
parameter and where H is the Hubble parameter. In our case that equation in fact reduces to
Ḣ + H2 = 0 the solution of which is H = 1/t and consequently a ∼ t as expected from eq.(1).
Eq.(1) permits to define c from the knowledge of the geometry of space-time only, that is from its
size and its age. It thus really gives c the statute of a true geometrical fundamental magnitude
of the universe, whereas its value 299,792,458 metres per second not only has no geometrical
meaning, but also has no meaning at all in the early universe when metres and seconds cannot
be defined 3. On the contrary, it is in fact to be underlined that defining c from the size and
the age of the universe has a meaning at all times.
Our aim in this chapter is to show that solving Friedmann’s equations with eq.(1), which thus
appears as an additional constraint, can explain unnatural features of the standard cosmology
without needing any other hypothesis such as those of the inflationary universe or of varying
speed of light cosmologies. We thus show that using eq.(1) can solve
- the flatness problem: in our model, the universe dispays the same evolution as a flat universe
and must appear to be flat whatever it may be (spherical or not);
- the horizon problem: there is no particle horizon;
- the uniformity of the cosmic microwaves background radiation and the small-scale
inhomogeneity problem: we show that it is the same tiny part of the early universe that we can
observe in any direction around us so that it is quite normal to find the observed background
homogeneity. Moreover, it becomes obvious that the universe at time tCMB of the cosmic
microwave background radiation can be quite inhomogeneous so that its inhomogeneities
can be understood as the seeds of cosmological structures (galaxies and clusters of galaxies).
- We also show that it permits to fit observational data of type Ia supernovae without
having to consider an accelerating expansion of the universe: in the standard cosmology, the
interpretation of such observations need to use for q a value close to −0.5 for today and a value
of 0.5 for very high redshits. On the contrary, our calculations show that all observations can
be explained by using q = 0 at all times. So, provide we use eq.(1), the linear approach for the
cosmological scale factor is well supported by observations;
- Studying then the cosmological term problem which is to understand why ρΛ is not only
small but also of the same order of magnitude as the present mass density ρM of the universe,
we finally show how our model also answers that problem.
In each part, we begin by introducing briefly the problem we consider. We then present our
results. Some of them have been published (Viennot & Vigoureux, 2009; Vigoureux et al., 1988;
2001; 2003; 2008). However they have not been presented in details. Moreover we also need
them for a coherent presentation of our model. We thus present them for clarity and for their
subsequent uses in this chapter. In any case, all results are discussed in a detailed way.
In concluding, we first discuss the originality of eq.(1) which has the advantage of giving
unity to number of results which, for some of them, have been found by various authors

2 Usually, such a linear variation of the scale factor leads to at least two special cases. One is an empty
universe (Tμν = 0) with k = −1. The other is a flat universe with the equation of state p = −ρc2/3.
It is consequently concluded that such a variation of the scale factor cannot describe the universe in
which we live. However, it would be to conclude too quickly to deduce that any flat-spacetime metric
must describe an empty universe: we shall see that in our model, the metric of a spherical universe, for
example, can be reduced to that of a flat space-time metric.

3 For example, in its 1960 definition, the meter is defined as "the length equal to 1,650,763.73 wavelengths
in vacuum of the radiation corresponding to the transition between the levels 2p10 and 5d5 of the
krypton 86 atom." Such a definition has obviously no meaning when atoms did not exist.
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from number of different (and sometimes ad hoc) hypotheses. We also open our subject to some
of its consequences in other fields of physics. In fact, we consider eq.(1) as a general law
of nature (Vigoureux et al., 1988) which also concerns other fields of physics such as special
relativity, quantum theory or electromagnetism. Some of these ideas will be shortly open in
our conclusion.

2. Friedmann equations

We briefly summarize here some well-known results for clarity and for their subsequent uses
in this chapter.
Einstein’s field equation which relates the geometry of space-time to the energy content of the
universe can be written

Rij − 1
2

R gij = 8πG
(

Tij − Λ
8πG

gij

)
(2)

As is usual now, the cosmological term Λ has been moved from the left-hand side (curvature
side) to the right-hand side of the Einstein equation and has thus been included inside the
energy-momentum tensor term. This permits to interpret Λ as a part of the matter content of
the universe rather than as a purely geometrical entity.
Taking into account the fact that on very large scale the universe is spatially homogeneous
and isotropic to an excellent approximation (which implies that its metric takes the
Robertson-Walker form) Einstein’s equations reduce to the two Friedmann equations (a dot
refers to a derivative with respect to the cosmic time t)

ȧ2

a2 =
8πGρ

3
− kc2

a2 +
Λ
3

(3)

and
ä
a
= −4πG

3
(ρ + 3

p
c2 ) +

Λ
3

(4)

where G, ρ and p are the gravitationnal constant, matter-energy density and fluid pressure
respectively ; a(t) is the cosmic scale factor characterizing the relative size of the spatial
sections as a function of time. As usual, the curvature parameter k takes on values −1, 0,+1
for negatively curved, flat, and positive curved spatial sections (open, flat or closed universes)
respectively. Note that the cosmological constant Λ will appear in what follows as a
time-dependant function.
The energy conservation can be found by differentiation of eq.(3) and by using eq.(4). It can
also be found by introducing Λ in the energy-momentum tensor and then using Einstein’s
field equation. We get

Λ̇
8πG

+ ρ̇ = −3
(

ρ +
p
c2

) ȧ
a

(5)

3. The solutions of the Friedmann equations

We solve here Friedmann’s equations with the additional constraint (1) which expresses a
restriction on usual variables characterizing the problem.
Using eq.(1), Friedmann equations (3) and eq.(4) become

ȧ2

a2 (1 + kα2) =
8πGρ

3
+

Λ
3

(6)
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term, a constant velocity of expansion does not need such an empty universe. 2 Let us also note
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It is consequently concluded that such a variation of the scale factor cannot describe the universe in
which we live. However, it would be to conclude too quickly to deduce that any flat-spacetime metric
must describe an empty universe: we shall see that in our model, the metric of a spherical universe, for
example, can be reduced to that of a flat space-time metric.

3 For example, in its 1960 definition, the meter is defined as "the length equal to 1,650,763.73 wavelengths
in vacuum of the radiation corresponding to the transition between the levels 2p10 and 5d5 of the
krypton 86 atom." Such a definition has obviously no meaning when atoms did not exist.
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0 = −
(

ρ + 3
p
c2

)
+

Λ
4πG

(7)

These two above eqs.(6, 7) show that when taking Λ �= 0, the linear variation of the scale factor
a(t) = ct/α obtained from eq.(1), does not lead to an empty universe. Moreover, the fact that
ä(t) = 0 in the second one could appear inconsistant with observations. It will however be
shown that observations which need the condition ä(t) �= 0 in the standard model can be
explained without it when using eq.(1).
These equations can be solved in the most general case by using the equation of state
parameter w of a perfect fluid:

p(t) = w ρ(t) c2 (8)

with w a constant (w = 1
3 for the radiation dominated epoch and w = 0 in the case of an

universe dominated by cold matter). Solving eq.(6, 7) with (8) we obtain

ρ(t) =
(
1 + kα2) c2

4πG(1 + w)α2
1

a(t)2 (9)

showing that the cosmic mass density varies with the reciprocal of the squared cosmic scale,
and

Λ(t) = (1 + 3w)4πG ρ(t) =
(1 + 3w)

(
1 + kα2) c2

(1 + w)α2
1

a(t)2 (10)

Such a variation of ρ(t) and of Λ(t) with a(t)−2 will be discussed at the end of this part. It
comes from the presence of the term Λ̇ in eq.(5). This can be seen by introducing eq.(10) into
the left-hand side of eq.(5) which becomes

Λ̇
8πG

+ ρ̇ =
(1 + 3w)

2
ρ̇ + ρ̇ =

3
2
(1 + w)ρ̇ (11)

so that the energy conservation becomes

ρ̇ = −2ρ
ȧ
a

(12)

where the multiplicating factor 2 appears instead of 3.
Eq.(9) also gives (for a spherical universe):

M =
4π

3
a3ρ =

(1 + kα2)c2

3G(1 + w)α2 a(t) k=1, w=0
=

c2(1 + α2)

3G α2 a(t) (13)

showing that the total mass of the universe scales with its cosmic radius (that unexpected
result is discussed at the end of that part). Using that last equation, we note that

GM
Rc2 =

(1 + kα2)

3(1 + w)α2
k=1, w=0

=
(1 + α2)

3α2 (14)

which is a general expression of Mach’s principle (Assis, 1994; Brans & Dicke, 1961) showing
that our model can fulfil the principle of equivalence of rotation (Fahr & Heyl, 2006).
It is often useful to introduce the critical density ρc:

ρc =
3H2

8πG
eq.(1)
=

3c2

8πGα2a2 (15)
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and the density parameter Ω (we take the effects of a cosmological constant into account by
including the vacuum energy density ρΛ = Λ/8πG into the total density). We thus find,
whatever may be the value of w

Ω =
ρtotal

ρc
=

ρ + ρΛ
ρc

= (1 + kα2) (16)

We thus find that the density ρ of the universe may be, as expected on the basis of number of
recent observations, of the same order of the critical density ρc.
The expressions for Ω and ΩΛ are

Ω =
ρ

ρc
=

(1 + kα2)

3
2

1 + w
(17)

ΩΛ =
ρΛ
ρc

=
(1 + kα2)

3
1 + 3w
1 + w

(18)

Solving the three above results for ΩΛ and Ω we obtain in the case of an universe dominated
by cold matter (w = 0) and vacuum energy

Ω =
2
3
(1 + kα2) ΩΛ =

1
3
(1 + kα2) (19)

so that we get (Ω, ΩΛ) = (0.66(1 + kα2), 0.33(1 + kα2)). This result gives Ω/ΩΛ = 2
instead of the value Ω/ΩΛ = 1/2 usually obtained from recent observations. However, it
is to be emphasized, firstly, that this latter numerical result has not be obtained from direct
measurements but from interpretations using explicitely the standard model, and secondly
that it comes from explaining recent observations of type Ia supernovae in terms of an
accelerating expansion of the universe which will appear as unnecessary in our model. It
is worth recalling (an example will be given in the next part) that the same observations can
lead to different numerical results when interpreted with different theories.
Discussion : the above results call two remarks:
- The first one concerns the variation of Λ with respect to time and, more precisely, its a(t)−2

variation in eq. (10). In this connection, let us note that cosmologies with a time variable
cosmological "constant" have been extensively discussed in the litterature (Dolgov, 1983;
Ford, 1985; Ratra & Peebles, 1988) and that it has been shown that they not only lead to no
conflict with existing observations (Riess et al., 2004) but also that they are suggested by recent
observations (Axenides & Perivolaropoulos, 2002; Baryshev et al., 2001; Chernin et al., 2000;
Overduin & Cooperstock, 1998) for example to solve the so-called coincidence problem. More
precisely, the a(t)−2 variation of Λ has been shown to be in conformity with quantum gravity
by Chen and Wu (Chen & Wu, 1990) and consistent with the result of Özer (Özer & Taha, 1987)
and other authors (Khadekar & Butey, 2009; Mukhopadhyay et al., 2011; Ray et al., 2011) who
obtained it in different contexts (S. Ray, for example, consider Λ ∼ H2 leading thus, in our
case (i.e. when using eq.(1)), to Λ ∼ a−2).
- The second remark deals with the variation of masses with a(t). That result could appear
surprising, but, as explained in (Fahr & Heyl, 2007), it has yet been emphasized as possibly
true from completely different reasonings by many physicists (Dirac, 1937; Einstein, 1917;
Fahr & Heyl, 2006; Fahr & Zoennchen, 2006; Hoyle, 1990; 1992; Whitrow, 1946). It moreover
appears, on one hand, that a scaling of masses with the cosmic scale factor is the most natural
scale required to make the theory of general relativity conformally scale-invariant (H. Weyl’s
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explained without it when using eq.(1).
These equations can be solved in the most general case by using the equation of state
parameter w of a perfect fluid:

p(t) = w ρ(t) c2 (8)

with w a constant (w = 1
3 for the radiation dominated epoch and w = 0 in the case of an

universe dominated by cold matter). Solving eq.(6, 7) with (8) we obtain

ρ(t) =
(
1 + kα2) c2

4πG(1 + w)α2
1

a(t)2 (9)

showing that the cosmic mass density varies with the reciprocal of the squared cosmic scale,
and

Λ(t) = (1 + 3w)4πG ρ(t) =
(1 + 3w)

(
1 + kα2) c2

(1 + w)α2
1

a(t)2 (10)

Such a variation of ρ(t) and of Λ(t) with a(t)−2 will be discussed at the end of this part. It
comes from the presence of the term Λ̇ in eq.(5). This can be seen by introducing eq.(10) into
the left-hand side of eq.(5) which becomes

Λ̇
8πG

+ ρ̇ =
(1 + 3w)

2
ρ̇ + ρ̇ =

3
2
(1 + w)ρ̇ (11)

so that the energy conservation becomes

ρ̇ = −2ρ
ȧ
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case (i.e. when using eq.(1)), to Λ ∼ a−2).
- The second remark deals with the variation of masses with a(t). That result could appear
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requirement) and, on the other hand, that it expresses a necessary condition to extend the
equivalence principle with respect to rotating reference systems to the whole universe (Mach’s
principle). We do not discuss here the possible explanations for such a variation of masses
with the scale factor. They are discussed in (Fahr & Heyl, 2007). It still remains that here is an
important point to explore more deeply.

4. The flatness problem

The observable universe is close to a flat Friedmann universe in which the energy density
ρM takes the critical value ρc (Ω0 ∼ 1) and the homogeneous spatial surfaces are euclidean.
That result is all the more surprising that the flat Friedmann model is unstable. In fact, small
deviations from Ω = 1 must quickly grow as time increases. The observation of Ω0 ∼ 1 now
therefore requires extreme fine-tuning of the cosmological initial conditions at the beginning
of the universe. The question has thus been asked to know how Ω could have been so highly
fine-tuned in the past.
A solution of this problem has been proposed in the context of inflationary scenarios. In these
scenarios, k has not to vanish and ρ may not start out close to ρc, but there is an early period of
rapid growth of the universe in which Ω rapidly approachs unity. In few words, the flatness
problem is thus resolved from the fact that when a geometry is scale up by a great factor then
it appears locally flat.
In this part, we show that when using eq.(1), the universe dispays the same evolution as a flat
universe and must appear to be flat whatever it may be (spherical or not). Within our model, it is
consequently not surprising to find it to be flat:
In the conventional cosmology, the Friedmann eq.(3) gives in the case of a flat universe (k = 0)

ȧ2

a2 =
8πGρ

3
+

Λ
3

(20)

That equation is to be compared with eq.(6) we have obtained by using eq.(1) in eq.(3):

ȧ2

a2 =
8πG

3
ρ

1 + kα2 +
Λ

3(1 + kα2)
. (21)

That eq.(21) which describes both flat, closed or open universes following the value of k is quite
similar to eq.(20) which characterizes a flat universe in the standard cosmology. A comparison
between these two equations thus shows that if eq.(1) is valid, the universe must appear to
be flat whatever may be its geometric form (whatever may be the value of k) but with more or
less matter than expected in the standard model following the value −1 or +1 of k since the
density ρ/(1 + kα2) appears in eq.(21) instead of ρ in eq.(20).
These unexpected results can easily be verified: let us consider a flat universe with energy
matter density ρ� and cosmological constant Λ�. Whatever may be ρ� and Λ�, we may
write their values ρ� = ρ/(1 + kα2) and Λ� = Λ/(1 + kα2) with k = ±1. Using then the
Robertson-Walker metric of a flat universe

ds2 = −c2dt2 + a(t)2
(

dr2 + r2(dθ2 + sin2θ dφ2)
)

(22)

and using ρ/(1 + kα2) and Λ/(1 + kα2) instead of ρ� and of Λ� respectively in the
energy-momentum tensor of the Einstein equation, directly lead to eq.(21) which, using eq.(1),
becomes:

ȧ2

a2 =
8πGρ

3
− kc2

a2 +
Λ
3

(23)
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Although it has been obtained from equations describing a flat universe in usual cosmologies,
we thus find the Friedmann equation which corresponds (when k = ±1) to non flat universes

5. The horizon and the smoothness problems

The horizon and the smoothness problems were identified in the 1970s. They point out
that different regions of the universe which cannot have "contacted" each other due to the
great distances between them, have nevertheless the same temperature and the same density
to a high degree of accuracy (one part in one hundred thousand). Given the fact that the
exchange of information or energy cannot take place at velocities greater than that of light
such a result, which underlines the uncanny homogeneity of the universe across apparently
causally disconnected regions, should not be possible. In the standard cosmology the problem
is consequently to understand how the universe can be so smooth at large angular sizes, if
different parts of it were never in contact or in communication 4. That problem may have
been answered by inflationary theory or by variable speed of light theory.
- Inflation provides the following explanation: before the inflationary area, the part of the
universe that we can observe would have occupied a very tiny space and there would have
been plenty of time for everything in this space to be homogeneized. However, it gives no
clear explanations of why the universe would have then exponentially grown.
- The idea of varying speed of light cosmologies, as originally proposed by Moffat (Moffat,
1993) is that a higher propagation velocity for light in the cosmological past would have
increased the propagation of causality so that all or most of the universe could thus have
been causally connected.
In this part, we first show that, using eq.(1), the space-time of any observer is closed on itself
so that there is no horizon problem. We then show that it is the same tiny part of the early
universe that we see in every directions around us, so that it is quite logic to find the observed
uniformity in terms of temperature and density of the cosmological microwaves background
(CMB).
In the standard isotropic and homogeneous model of the universe, the Robertson-Waker
metric may be written

ds2 = −c2dt2 + a(t)2
(

dr2

1 − kr2 + r2dΩ2
)
= −c2dt2 + a(t)2dl2 (24)

where t is the co-moving proper time and where dΩ2 = dθ2 + sin2θ dφ2 is the metric on a
two-sphere. More generally, that equation can also be written

ds2 = −c2dt2 + a(t)2
(

dχ2 + σ2(χ) dΩ2
)

(25)

where χ is the standard radial coordinate. In that equation, the three possible elementary
topologies are defined by σ(χ) = χ for a flat universe, σ(χ) = sin χ for a closed universe and
σ(χ) = sinh χ for an open universe. Using the line element (25) the coordinate of the particle
horizon is obtained by writing that the light we detect now at t = t0 must have been emitted at

4 In conventional cosmologies, the horizon at time of last scattering (z ∼ 1100 − 1500) now substends
an angle of order 1.5 degree. Therefore no physical influence could have smoothed out initial
inhomogeneities and brought points at a redshif z = 1100 − 1500 that are separated by more than a
few degrees to the same temperature and density.
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requirement) and, on the other hand, that it expresses a necessary condition to extend the
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ȧ2
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ȧ2
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ρ
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Λ
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. (21)
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Although it has been obtained from equations describing a flat universe in usual cosmologies,
we thus find the Friedmann equation which corresponds (when k = ±1) to non flat universes
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)

(25)
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4 In conventional cosmologies, the horizon at time of last scattering (z ∼ 1100 − 1500) now substends
an angle of order 1.5 degree. Therefore no physical influence could have smoothed out initial
inhomogeneities and brought points at a redshif z = 1100 − 1500 that are separated by more than a
few degrees to the same temperature and density.
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the beginning of the universe (t = 0). Noting that the path of light is given by setting ds2 = 0
and taking light rays travelling in the radial direction, eq.(25) gives for the particle horizon

ds2 = −c2dt2 + a(t)2dχ2 = 0
eq.(1)
=⇒ χH = ±

t0∫

0

cdt
a(t)

eq.(1)
= ± α

t0∫

0

dt
t
= ±∞ (26)

The integral does not converge and it can easily be shown that there is no particle horizon
whatever may be the geometry of the universe (k = −1, 0,+1). Our model is thus horizon-free
and allows the interactions to eventually homogenize the whole universe. Moreover, in the
case of a spherical universe, it implies that the our "antipodes" can be seen by us now.
Our model could thus explain the observed uniformity in terms of temperature and density
of the cosmological microwaves background radiation (CMB) without needing an inflationary
expansion or a varying speed of light hypothesis. However, although it has no particle horizon
so that all space points could have undergone physical interactions with each others, it shows
that the observed homogeneity does not come from such causal interactions, but from the fact that it is
the same "tiny part" of the primitive universe that we see in any direction around us:
Let us consider the case of a spherical universe (k = +1). Because of the symmetry, the rays that
correspond to photons’ world lines can be chosen so that dφ = dθ = 0. Solving then eq.(25)
for light (ds2 = 0) with these conditions and using eq.(1) give the radial coordinate χ as a
function of time

ds2 = −c2dt2 + a(t)2dχ2 = 0
eq.(1)
=⇒ χ(t) = −α ln

a(t)
a(t0)

= −α ln
t
t0

(27)

where we take for the initial condition χ = 0 at the present value t = t0 of the cosmic time
and where χ increases toward the past. Eq.(27) shows that when using eq.(1), the space-time
of any observer is closed on itself at early times defined by χ(t) = nπ. The first of these (our
spatio-temporal antipode which is defined as the point where the radial coordinate χ(t) takes
the value π), is denoted A on fig. 1.
- Since it can be seen identically in any direction around us, it can reasonably be identified to
the source of the cosmic microwaves background radiation (CMB).
- Since it is then the same "tiny part" of the early universe that we can observe in any directions
around us (the cosmic microwave background radiation arriving at the earth from all directions
in the sky does come from the same tiny part of the early universe), it is not surprising to observe
a very high uniformity in terms of temperature and of density of the CMB. 5

- Neither inflation nor other hypotheses are consequently required to explain the high isotropy
of the CMB.
All these results are shown on fig. 1, on which the logarithmic spiral (eq.27) corresponds to our
past light cone (present observers are at point O). The point A represents our spatiotemporal
antipode and thus corresponds to that "tiny part" of the universe that we observe in any
directions around us (the "source" of the CMB).

5 To give a simple example, consider we are on the north Pole of the Earth and that light must propagate
by following Earth’s surface. Looking at the farthest point of us, we would see the same point of the
south Pole all around us and our background would then appear surprisingly homogeneous.
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Fig. 1. We consider a spherical universe. The circle of radius R(t0) represents the universe at
time t0. The logarithmic spiral corresponds to the past light cone of the observer O, that is, to
trajectories of all the light rays that he/she receives at t = t0. The point A can be seen in any
direction around O. It can thus be identified to the "source" of the CMB. The dashed circle
corresponds to the universe at time tCMB when the CMB was formed. A represents only a
very tiny part of the universe at that time so that, at that time, the seeds of galaxies we
observe now (points Ge) were not at A, but here and there on that dashed circle. They are
symbolically illustrated by grey circles on the dashed circle. Note that they have not the same
size. In fact at tCMB the universe did not need to be homogeneous (and was certainly not) so
that the seeds of these galaxies at that time could be quite different the ones from the others.
The two radius are the world lines of two galaxies: GCMB are galaxies (or their seeds) at time
tCMB; Ge gives their positions at the time te they emitted the light we receive now at t0; G0 are
their current (and unknown) positions now. Because of the spiral form of the light cone, it
could theoretically be possible (if universe was not opaque before tCMB) to see behind galaxies
Ge we see, their earlier seeds (the points Gs near the big-bang, on the galaxy world lines and
on the light cone of O). However, no radiation coming from "before the last scattering surface"
can be "visible" now by definition. May be other "isotropic points" χ = nπ with n > 1 could be
the "source" of isotropic cosmic particles backgrounds.

To be clear, and to show that we do see the same "tiny part A" of the universe in every direction
we look, let us note that the spatial volume enclosed between the coordinate hyperspheres of
radius χ0 − Δχ0 and χ0 is

ΔVχ0 =
∫ χ0

χ0−Δχ0

∫ π

0

∫ 2π

0
(a0e−

χ
α )3 sin2 χ sin θ dχ dθ dφ (28)
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Making the change of variable χ → −α ln t
t0

(eq.(27)), that expression becomes

ΔVt =
∫ t

t−Δt

∫ π

0

∫ 2π

0

c3t2

α2 sin2(−α ln
t
t0
) sin θ dt dθ dφ (29)

It expresses the value of the spatial volume of the observed universe corresponding to past
times between t − Δt and t. Its expression being not simple, we only present its variation
with respect to t on fig. 2. That figure shows that the farther back we look in the past, the
smaller ΔV is, or, in other words, that the volume of the universe we progressively add to
our observed universe when looking farther and farther tends toward 0 when t tends toward
tCMB.
Integrating eq.(29) over the past history of the universe, from tCMB up to the present, we find
the apparent volume Vapp of the universe (the volume which is seen). Taking then α = 1 or
0.3 (see at the end of that paragraph) this volume is only few percents of the universe at the
present time t0.
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Fig. 2. ΔVt (arbitrary units) versus time t (in billion years) : ΔVt represents the volume of the
universe we can observe now corresponding to past cosmic times between t − Δt and t. We
see that when time tends toward tCMB (at about 13.7 Gy) that volume tends toward 0. In
other words, as we look back in time, the spatial part of the observed volume of the universe
that corresponds to times between t − Δt and t, spreads out, then reaches a maximum and
then starts to decrease to be all the more small that we approach tCMB. That figure has been
drawn by taking c = 1, α = 0.35 and Δt = 100 million years. Time increases from t0 = 0
(present time) to 14 billion years in the past.

It can be added that the identification of A with the source of the CMB could permit to
calculate the value of α in eq.(1). Using both the right-hand part of eq.(27) with χ = π and
taking the usual value given by nucleosynthesis for tCMB (the radiation was created when
atoms formed at around 360 000 years after the big-bang) thus would give α ∼ 0.3. With such
a value, the theoretical value of Ω (16) would be Ω ∼ 1.1.
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6. The cosmic microwaves background radiation and the small scale homogeneity

A related comment concerns the problem of the small-scale inhomogeneities needed to
produce astronomical structures that are now observed. Cosmologists are usually searching
in fluctuations of the CMB the density fluctuations that led to galaxies clusters and giant
voids. In this context, the uniformity of the CMB leads to another problem of the standard
cosmology: if the universe was so smooth, then how did anything form ? There must have
been some bumps in the early universe that could grow to create the structures (galaxies and
clusters of galaxies) we see locally. This problem no more exists when using eq.(1).
In our model, the small fluctuations that we observe now in the CMB are not those which gave
birth to the structures of the universe we can observe. In fact, as shown on fig. 1, the galaxies which
emitted the light we receive at t = t0 were not at A at time tA = tCMB (and consequently their
seeds were not in the CMB we observe) but on the circle of radius ctA = ctCMB which represents
the universe at time tCMB. In that light, the uniformity of the CMB not only is obvious (since
it is the same tiny part of the universe that we see in any direction we look), but also it does
not pose any problem to understand the cosmic structures we observe now. In fact nothing
imposes that inhomogeneities of the universe at that time (that is on the dashed circle in fig. 1)
be so small as thoses observed in its very tiny part A (that is to say in the CMB). We cannot
know others regions (other than A) of the circle of radius ctA = ctCMB and they, in fact, may
be have overdense parts. Of course, it remains that studying the small inhomogeneities of the
microwaves background may be useful to understand the past history of the universe.
We can note that it could theoretically be possible (if the universe was not opaque before tCMB)
to observe the seeds Gs (Gs for Gseed) which gave birth to galaxies and cosmic structures. The
two images would then be observed the one behind the other (see fig. 1: behind galaxy Ge,
and beyond the point A, the black points Gs are simultaneously on the world line of Ge and
in our light cone).
We can also note that others points defined by χ = nπ with n > 1 (n integer) are also "isotropic
points" which could be "seen" as a homogeneous background in all directions around us (as
does the CMB). Of course, they cannot correspond to light sources since the universe was by
definition opaque before the "last scattering time". However they may correspond to sources
of isotropic cosmic particles backgrounds.
Remark: These above results can be illustrated by mapping the 3-spatial sphere onto a
3-dimensional hyperplane by a 3-dimensional stereographic projection. Restricting ourselves
to the spherical case (k=1) and using σ(χ) = sin χ in eq.(25) gives

ds2 = −c2dt2 + a(t)2(dχ2 + sin2 χ dΩ2) (30)

Making then the change of variable R = 2 tan(χ/2) we get the metric on the 3-hyperplane

ds2 = −c2dt2 +
a(t)2

(1 + R2

4 )2
(dR2 +R2dΩ2) (31)

Using it, it is straigthforward to show that all points at infinity are the image of the same
antipodal point on S3 so that we can understand that it is really the same point we see in
all directions around us when looking at the CMB. Such a stereographic projection sends
meridians of the 3-sphere (light world lines that do pass through the place of the observer)
to straight lines on the hyperplane making their way toward the observer. Apart from a
change of scale when looking increasingly far, the 3-hyperplane consequently corresponds
more closely to the universe which is seen by each of us.
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Also note that, whatever may be the value of k, using eq.(1) transforms the above metric (25)
into a flat spacetime metric admitting Minkowski coordinates: writing a = ct/α from eq.(1)
and t = t0eu/α as suggested by eq.(27) gives dt/t = du/α so that eq.(25) gives

ds2 =
c2 t2

0
α2 e2u/α(−du2 + dχ2 + σ2(χ) dΩ2) = a(t)2(−du2 + dχ2 + σ2(χ) dΩ2) (32)

where the term a(t)2 = c2t2/α2 represents the factor by which the scale changes in different
locations. Using the conformal time u (u =

∫ cdt
a = α

∫ dt
t ) has thus the advantage of leading

to a "conformally flat" metric.

7. Apparent luminosity and observation of type Ia supernovae

Following pioneering works related in (Norgaard-Nielsen et al., 1989), recent observations of
type Ia supernovae (Perlmutter et al., 1999; Riess et al., 1998; 2004; Schwarzschild, 2004; Tonry
et al., 2003; Wang et al., 2003) have provided a robust extension of the Hubble diagram to
1 < z < 1.8. These results have shown that observations cannot be fitted by using the usual
distance modulus expression with Λ = 0 both for z < 1 and for z > 1. To fit new data points at
redshift 1.755 the standard model thus needs to consider that the expansion of the universe
is accelerating, an effect that is generally attributed to the existence of an hypothetic "dark
energy".
In that part, we show that eq.(1) leads to another expression for the distance-moduli which
can fit all the data without needing for an acceleration of the expansion (fig. 3).
Distances are measured in terms of the "distance modulus" μ = m − M where m is the
apparent magnitude of the source and M its absolute magnitude. The standard expression
for the distance-moduli with respect to z can be found in (Tonry et al., 2003; Weinberg, 1972).
Our aim here is to calculate μ in our model:
let an object be at cosmic radial coordinate χ and consider that the light that it emitted at
cosmic time te is just reaching us at time t0. The luminosity distance dL of the object can be
expressed as (Weinberg, 1972)

dL = (
a2(to)

a(te)
)χ = a(to)(1 + z)χ (33)

Using eq.(1) and noting H0 the Hubble constant at the present time, that expression becomes

dL = (
c

αH0
)(1 + z)χ. (34)

χ can be obtained from calculations similar to that of eq.(26):

χ =
∫ to

te

c
dt

a(t)
eq.(1)
= α ln(

a(to)

a(te)
) = α ln(1 + z) (35)

so that
dL =

c
H0

(1 + z) ln(1 + z) (36)

Expressing the distance modulus μ in terms of dL then gives

μ = 25 + 5 log dL = 25 + 5 log(
c

H(t0)
) + 5 log(1 + z) + 5 log ln(1 + z) (37)
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Fig. 3. Distance modulus μ vs redshift z in our model. The data points are taken from table 5
of the High-z Supernova Search Team (Riess et al., 2004). Whereas conventional cosmologies
fail to fit all experimental data both for z < 1 and for z > 1, this is possible when using eq.(1).
The full line, which represents predictions of the present model (eq.37), has been drawn by
using H0 = 68 km.s−1.Mpc−1 (note a typewriting error in (Vigoureux et al., 2008) where we
wrote H0 = 58 km.s−1.Mpc−1).

where c is in km.s−1 and H in km.s−1.Mpc−1.
The variation of μ with respect to z is shown on fig 3 . Fig. 3 has been obtained by using the
value H(t0) = 68 km/sec/Mpc which agrees well with usual determinations of the Hubble
constant (H(t0) = 73± 4km/sec/Mpc). It shows that eq.(37) can permit to fit all experimental
values in the whole range z < 1 and for z > 1 without any other hypothesis. The use of
eq.(1) thus succeeds in explaining all the data without having to consider an acceleration of
the expansion of the universe. To be clear, whereas in the standard model observations of type
Ia supernovae lead to give the deceleration parameter q a value close to −0.5 for today and
close to +0.5 for very high redshifts, we are able to explain all these observations by taking
q = 0 at all times, as required by eq.(1).
Noting that different fitting of experimental points gives 63 < H < 70 at the present time and
that eq.(1) leads to a scale factor proportional to time (and thus to H(t) = 1/t) the age of the
universe in our model is about 14 billion years.
Remark: the above calculation uses the usual relation a(t0)/a(te) = 1 + z where a(te) is the
scale factor at the time of emission and where a(t0) is the scale factor at the time of observation.
The redshift z undergone by radiation from a comoving object as it travels to us today is thus
related to the scale factor at which it was emitted. It can easily be shown that this relation is
still valid in our model and that it may consequently be used in calculations leading to eq.(37):
using the Robertson-Walker metric (25), consider ligth reaching us (at χ = 0) at the present
time t0 and emitted by a galaxy at a distant position χ = χe and at a time te. Two crests
arriving at t0 and t0 + Δt0 were emitted at te + Δte. Since light has travelled radially inwards
along a null geodesic, we get

c
∫ t0

te

dt
a(t)

= −
∫ χe

0
dχ = c

∫ t0+Δt0

te+Δte

dt
a(t)

(38)
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Fig. 3. Distance modulus μ vs redshift z in our model. The data points are taken from table 5
of the High-z Supernova Search Team (Riess et al., 2004). Whereas conventional cosmologies
fail to fit all experimental data both for z < 1 and for z > 1, this is possible when using eq.(1).
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that eq.(1) leads to a scale factor proportional to time (and thus to H(t) = 1/t) the age of the
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Remark: the above calculation uses the usual relation a(t0)/a(te) = 1 + z where a(te) is the
scale factor at the time of emission and where a(t0) is the scale factor at the time of observation.
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dt
a(t)

(38)

217A New Cosmological Model



14 Will-be-set-by-IN-TECH

Over the period of one cycle of a light wave, the scale factor is essentially a constant. This
yields Δte/a(te) = Δt0/a(t0). Now, the observed and emitted wavelength λ0 and λe are
related to Δt0 and Δte by λe,0 = cΔte,0 so that the cosmological redshift z = (λ0 − λe)/λe =
a0/ae − 1 takes it usual expression and its use is consequently valid in the above calculation.

8. The cosmological constant and the cosmic coincidence problem

In the standard model, the cosmological constant has been introduced to account
for anomalies observed in cosmological data and especially for explaining supernovae
observations (Carroll, 2001). That introduction rises a new cosmological problem which is to
explain the so-called cosmic coincidence problem, that is to understand why ρΛ (the dark energy
density) is not only small but also, as current type Ia supernovae observations indicate, of the
same order of magnitude as the present mass density ρM of the universe.
In fact, in usual models, the mass density ρM changes with time whereas the vacuum energy
is constant. These two energy densities have thus evolved differently throughout the history
of the universe and it is consequently very hard to explain why ρM and ρΛ would coincide
today. Such a coincidence would require that the early universe had been very fine-tuned
(Henttunen et al., 2006) but the underlaying models of particle physics cannot provide a
natural explanation to the necessity of a so carefully fine-tuning.
That problem can be solved, arguably at least, by the anthropic principle argument. There are
however other potential solutions based on physical arguments alone.
The most common is to consider that ρΛ really is not a constant. Peebles and Ratra, for
example, (Peebles & Ratra, 1988; Ratra & Peebles, 1988) have thus considered a model in
which the vacuum energy depends on a scalar field that changes as the universe expands.
The vacuum is then treated as a form of matter and the cosmological constant thus turns out
to be a measure of the energy density of the vacuum.
The quintessence model has then been proposed. It consists in a slowly varying energy
component with a negative equation of state. That "dark energy" associated with the scalar
field slowly evolves down its potential according to an attractor-like solution of the equation
of motion, regardless of the initial conditions and can thus resolve the coincidence problem.
However the proposed solutions cannot satisfy exactly the necessary conditions pΛ = −ρΛc2

and ρΛ(t) ∼ a(t)−n with n �= 0. They consequently cannot exactly generate the cosmological
constant.
In the above part, we have shown that we do not need introducing a cosmological constant in
order to explain type Ia supernovae observations. As explained just under eq.(7), we however
need it to satisfy the Friedmann equations when adding them the additionnal constraint (1).
Our aim in that part is to show that in the model we propose, we find not only that vacuum
can exactly verify the condition pΛ = −ρΛc2 but also that ρΛ and ρM have the same order of
magnitude at all times.
To explain the origin of the cosmological constant, let us consider a quintessence fluid the
density and the pressure of which (denoted ρΛ and pΛ) being thus to be included in the
Friedmann’s equations. Assuming, as is usual, that the equation of state of that fluid has
the form

pΛ = γρΛc2 (39)

where the constant γ, which has to be determined, must be negative to get an anti-gravity.
The cosmological constant can thus be written

Λ = 8πGρΛ (40)
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in eq.(3), and

Λ = −4πG
(

ρΛ + 3
pΛ
c2

)
= −4πGρΛ(1 + 3γ) (41)

in eq.(4). Of course, these two expressions for Λ must be equal so that the two Friedmann
equations are coherent (and consequently the quintessence fluid can generate exactly the
cosmological constant Λ) if and only if

8πGρΛ = −4πGρΛ(1 + 3γ) ⇒ γ = −1 (42)

or, by inserting this result inside eq.(39), if and only if

pΛ = −ρΛc2 (43)

So, the value γ = −1 is that which must be found. Apart from that "coherence reason", two
other reasons can be considered in support of it: first, observations of supernovae indicate
that γ = −1.02+0.13

−0.19 (Riess et al., 2004); second, the value γ = −1 is a necessary and sufficient
condition for the energy-momentum tensor of the vacuum to be Lorentz invariant 6 (see for
example (Jordan, 2005)).
In that part we first show that the standard model cannot satisfy exactly that value and
consequently that it cannot exactly generate the cosmological constant. We then show that
the present model can generate it:
Let us first consider the conventional model (ȧ �= Cst). Introducing eq.(40) and eq.(41) into
Friedmann equations (3) and eq.(4) respectively gives

ȧ2

a2 =
8πG(ρ + ρΛ)

3
− kc2

a2 (44)

ä
a
= −4πG

3
(ρ(1 + 3w) + ρΛ(1 + 3γ)) (45)

Derivating eq.(44) and inserting eq.(45) into the result then leads to

− 3
ȧ
a
(ρ(1 + w) + ρΛ(1 + γ)) = ρ̇ + ρ̇Λ (46)

the solution of which for ρΛ is

ρΛ ∝
1

a3(γ+1)
(47)

Introducing the coherence condition γ = −1 (eq.42) into eq.(47) then leads to ρΛ = Cst, and
to Λ = Cst. These results make Λ to be a pure constant but in that case the quintessence fluid
does not dilute when the universe expands. The key problem then remains to explain the
cosmic coincidence: if ρΛ is constant whereas ρM varies, why these two quantities should be
comparable today ? This shows, that, in the usual cosmology
- if the cosmic fluid can generate exactly the cosmological constant (γ = −1 exactly), then
ρΛ = Cst and consequently the standard model cannot explain the cosmic coincidence, and
- if the standard model want to explain the cosmic coincidence (ρΛ does vary with respect

6 The vacuum must be Lorentz invariant or one would have a preferred frame. The stress-energy tensor
of the vacuum is diagonal and this tensor must be invariant. The only Lorentz invariant nonzero rank
tensor is the metric diag(−1, 1, 1, 1) in a local inertial frame so if the vacuum energy density is non-zero
the pressure has to be −ρc2.
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to a(t)), then, eq.(47) shows that (γ �= −1) and consequently it cannot exactly generate the
cosmological constant.
In other words, in usual theories, the condition γ = −1 is not compatible with the other
condition ρΛ ∼ a(t)−n (n �= 0) and thus provides no answer to the fine-tuning problem.
Contrarily to what is found with these theories, the two conditions γ = −1 (or pΛ = −ρΛc2)
and ρΛ ∝ R−n with n �= 0 can be simultaneously fulfilled when using eq.(1):
When using eq.(1) and eqs.(40, 41), the two Friedmann’s equations (6) and (7) can be written:

( c
αa

)2
=

8πG
3

ρM + ρΛ
1 + kα2 (48)

0 = ρM(1 + 3w) + ρΛ(1 + 3γ) (49)

It is obvious that these two equations do have solutions even when γ = −1. They are

ρM =
c2

8πG
(1 + kα2)

α2
2

1 + w
1
a2 (50)

ρΛ =
c2

8πG
(1 + kα2)

α2
1 + 3w
1 + w

1
a2 (51)

As discussed in section 3, such a variation of ρΛ and of the cosmological "constant" term as
a−2 has been shown to lead to no conflict with existing observations (Riess et al., 2004) and to
be in conformity with quantum cosmology (Chen & Wu, 1990).
We thus have

ρ ∝
1
a2 ρΛ ∝

1
a2 Λ ∝

1
a2 (52)

whatever may be the equation of state of the cosmic fluid. Contrarily to what is obtained in
the standard cosmology, the present model thus do fulfil the two conditions γ = −1 and ρΛ ∝
a−n (with n �= 0) simultaneously. It can consequently explain the origin of the cosmological
constant with a quintessence fluid which dilutes when the universe expands. It can also solve
the problem of the "cosmic coincidence": in this model, the "cosmological constant" in fact
varies in the same way as ρM and has always been comparable to it. Since the two fluids
dilute in the same way and evolve together, it is not suprising to find that they can coincide
now.
Moreover, the above equations (50, 51) also show
- that the two energy densities ρM and ρΛ are exactly equal when w = 1

3 that is to say in the
radiation dominated epoch.
- that ρM = 2ρΛ in the matter epoch.
Let us also recall that eq.(1) can also explain why the mass density of the cosmic fluid is so
near the critical density ρc: using eq.(15) in fact gives

ρΛ = ρc
(1 + kα2)

3
1 + 3w
1 + w

w=0
= ρc

(1 + kα2)

3
(53)

ρM = ρc
(1 + kα2)

3
2

1 + w
w=0
= ρc

2(1 + kα2)

3
(54)

so that
ρΛ ∼ ρc ρtotal = ρc(1 + kα2) (55)
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9. Conclusions

We advocate the possibility that the universal relations existing between space and time in
the so-called "speed of light" and in the expansion of the universe are two aspects of a same
phenomenon:
Introducing eq.(1) as an additionnal constraint to solve the Friedmann equations leads to
interesting ways to explain number of unanswered problems of the standard cosmology
without needing usual hypotheses as, for example, the present accelerating expansion of the
universe or the inflation scenario which assumes that the universe went through an early
period of exponential growth without worrying about how this came about.
We have shown how eq.(1) can solve the flatness and the horizon problems, the problem of
the observed uniformity in term of temperature and density of the cosmological background
radiation, the small-scale inhomogeneity problem (with the one of the seeds of galaxies and of
cosmic structures) and the cosmic coincidence problem. Reconsidering the Hubble diagram
of distance moduli and redshifts as obtained from recent observations of type Ia supernovae,
we have also shown that all the new data can be understood without needing an accelerating
universe.
Whereas a cosmological constant is useless in the present model to explain such observations,
we however need it for coherence in Friedmann’s equations. Concerning that point, one
appealing feature of our results is that eq.(1) permits to accommodate simultaneously the
equation of state pΛ = −ρΛc2 of the quintessence fluid which generates the cosmological
constant Λ (so that it can perfectly generate the cosmological constant), with a varying density
ρΛ ∝ a−n (with n = 2 in our case) which appears to be a necessary condition to avoid the
cosmic coincidence problem.
The present model also explains why ρ, ρc and ρΛ are comparable today. At this point, let us
recall (Vigoureux et al., 2008) that, with eq.(1), a spherical universe (for example) displays the
same evolution as a flat universe in the standard model (section 4).
One of our results may however appear unnatural: the total mass M of the universe would
scale with a(t). Although such a variation has been shown to be the most natural one
to extend the equivalence principle with respect to rotating reference frame to the whole
universe (Mach’s principle); although it appears to be the most natural scale to fulfil the Weyl’s
requirement of conformally scale invariance; although it has also been emphasized as possibly
true by physicists as Dirac, Einstein or Hoyle as discussed in (Fahr & Heyl, 2007), it however
remains to be carefully studied.
Eq.(1) may provide an alternative way to solve the standard cosmological problems and
our results appear compatible with astronomical observations. It leads however to some
numerical values which may seem contradict with some of these (for example, concerning
the proportion of ordinary matter and of black matter, we find (ΩM, ΩΛ) = (0.66, 0.33)
when usual experiments would rather give (ΩM, ΩΛ) = (0.3, 0.7)). However, one has to be
careful before concluding such a question: as liked to recall Einstein, theory and observations
are interdependent and there are no observation which can be directly interpretable without
referring to a given theory. To be able to construct a picture of the world, we must interpret the
observational data within a given theory and we may occasionally forget that we use theories all
the time while we may think of us as giving observational results independently of any theory.
Because of this, our results cannot be too quickly compared with numerical values deduced
from the standard big-bang cosmology. An example of this is given by looking at eqs.(20, 21)
showing that a flat universe corresponding to a given value of the energy density of matter ρ
in usual cosmology, may correspond to a spherical universe with another density ρ/(1 + kα2)
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in our model. Another example is given by the interpretations of observations of type Ia
supernovae: the values q ∼ −0.5 for today and q ∼ +0.5 obtained in the standard model for
very high redshifts are not independant of any theory. On the contrary, they correspond to the
values that must be used inside the usual theory to explain observations. As explained above,
in our model, these same observations lead to the quite different value q = 0 at all times.
Eq.(1) can thus solve usual problems of cosmology. An important remark about this is that
these latter have been solved by using one single hypothesis. It is in fact to be emphasized
that all our results have been obtained from the only hypothesis that the speed of light is related to the
expansion of the universe. An important feature of eq.(1) is thus its unifying power. Eq.(1) gives
unity to number of results which, for some of them, have yet been obtained by other authors
by introducing many quite different, and sometimes ad hoc, hypotheses.
In order to illustrate the importance of such an unifying power of our proposition, let us
present a brief outline of some of the wide variety of hypotheses which have yet been used to
solve one or the other problem:
The variation of ρ and Λ as a−2 in our equations (9, 10), has yet been obtained from some very
general arguments in line with quantum cosmology and with dimensional considerations
(Chen & Wu, 1990) or by postulating the invariance of equations under a change of scale
(Canuto et al., 1977). It has also been directly postulated to explore its consequences as did, for
example, Berman (Berman, 1991) who made the hypothesis that Λ(t) = Bt−2 and ρ(t) = At−2

(leading then to some of our results). Others (Lima & Carvalho, 1994; Mukhopadhyay et al.,
2011) consider the phenomenological assumption Λ ∼ H2 (Overduin & Cooperstock, 1998).
Fahr and Heyl (Fahr & Heyl, 2007) also make the assumption that the total mass density
of the universe (matter and vacuum) scales with a−2 and find the relation c = ȧ(t) in the
particular case k = 0. They then show that such a scaling abolishes the horizon problem and
that the cosmic vacuum energy density can then be reconcilied with its theoretical expected
value. Others postulated the Mach’s principle or, as did Özer (Özer & Taha, 1987), make the
assumption that the equality ρM = ρc is a time-independant feature of the universe from
which they deduce Λ ∼ a(t)−2. Similarly it has also been postulated the ratio ρΛ/ρM to
be constant in time (Freese et al., 1987)... In a similar way Bacinich and Kriz (Bacinich &
Kriz, 1995) found the same logarithmic spiral form of the light cone from the quite different
consideration of a local conservation of the CMB flux...
Eq.(1) may not only unify different results which can have been proposed from number
of different hypotheses, but it may also illustrate and unify different questions about light
(see the introduction). It may thus interest other fields of physics such as special relativity,
quantum theory or electromagnetism.
In its light
- the energy E = m0c2 of a given rest mass m0 can be seen as originating from the expansion
of the universe: it would in fact correspond to a form of "comoving kinetic energy" of any
comoving object carried away by the expansion of the universe (E = m0c2 = α2m0 ȧ2);
- by connecting the light phenomenon (and more generally electromagnetic radiations)
to the expansion of the universe, eq.(1) also illustrates the assumption that the speed of
electromagnetic radiations is indifferent to both its emitter and its absorber and that it can be
neither compounded with that of an object nor transformed away by the choice of a suitable
reference frame. This independance of place (homogeneity), direction (isotropy), source and
detector motions can be understood when connecting c to the expansion of the universe. It
can thus be illustrated by imagining an insect moving on an expanding balloon: the velocity
of the insect is obviously independant of that of the ballon expansion and it is not because the
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insect would go faster or slower that the balloon would expand differently.
In these views, an essential feature of eq.(1) is perhaps to suggest a cosmic interpretation
of light phenomena which would thus essentially appear essentially as a consequence of the
expansion of the universe rather than as a propagating phenomenon.
The expansion of the universe in fact induces two kinds of change in the universe : a growth of
its radius (cdt) and a growth of its circumference (dx = adχ), the second being a consequence
of the first. Both are equivalent so that cdt = adχ = dx. That equivalence makes the expansion
to appear in space although it is essentially a time phenomenon. In the same way, light
appears to propagate into space although its 4-velocity (c, 0, 0, 0) clearly expresses its temporal
nature. In other words, light, and electromagnetic phenomena, are carried by the time axis
(the radius of the universe) but, because of the expansion, they appear to propagate into space
(and so they appear "diagonally" in space-time diagrams). To be clear, consider a comoving
point A in the expanding universe. Because of the expansion, although it has no dynamical
motion, its relation to us in our ligth cone is expressed by the time extension of the distance
D =

∫
a(t)dχ =

∫
cdt = cΔt so that its instant relation to us appears to propagate at velocity

dD/dt = c whatever may be its comoving coordinates.
This may perhaps throw light on current and fondamental problems that are the time
symmetry of Maxwell’s equations, the emission theory or other problems in quantum theory
where considering light as a propagating phenomenon often leads to paradoxes.
The complete time symmetry of Maxwell’s equations (whereas the observed electromagnetic
phenomena are asymmetric with respect to time) in fact tells us that electromagnetic interaction
proceeds not only forward in time (from the emitter to the detector), but also backwards in
time (from the detector to the emitter). In practice, retarded fields are selected because they
appear to correspond to reality, whereas advanced fields are discarded on the grounds that
they are contrary to experiments. However, it seems we need it on a theoretical ground:
purely retarded solutions of Maxwell’s equations embodies an electrodynamical arrow of time
not recognized by the equations themselves. That question has been asked for a long time: it
is generally assumed that a radiating body emits light in every direction, quite regardless of
whether there are near or distant objects which may ultimately absorb that light (in other
words, it radiates "into space"). However, Tetrode, yet in 1922, (Tetrode, 1922) made the
assumption that an atom never emits light except to another atom so that the emitter and
the absorber both act in the emission process, the first one to emit light and the other one "to
tell" the emitter that it is ready to absorb. He thus proposed to eliminate the idea of a mere
emission of light and substituted the idea of a process of exchange of energy between two
definite atoms or molecules. Such propositions were reconsidered by G. N. Lewis in 1926,
and then, in 1927, by Bridgman who held that it is wrong to speak of light as something travelling.
Their paper gave birth to the Wheeler-Feynman absorber theory of radiation (Wheeler &
Feynman, 1945) in which there is no radiation proper (see also (Hoyle & Narlikar, 1995)). They
thus anticipated a quantitative theory of electrodynamics using both retarded and advanced
potential the interest of which is perhaps to try to give both to the emitter and the absorber
the same importance.
Such a use of advanced waves may be somewhat provoking. In fact, it is. However it
seems possible to consider such a dual interaction between an emitter and a detector as
the translation in the langage of classical waves physics of what may reallycorrespond to
an elongation (a dilation) phenomenon (as in the stretching of an elastic band where the
"interaction" between the two ends cannot be accredited to one or to the other end). As written
above, because of the expansion of the universe, the relation of two comoving objects (the two
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ends of the elastic band in our example) in fact appears to us as if a signal was propagating
between them at velocity c. Such a description would suppress the provoking acausal action
from an absorber to an emitter.
As expected by all the above authors, our aim is thus to note that connecting the light
phenomenon to the expansion of the universe may perhaps permit to consider light as an
effect of the stretching of the spacetime rather than as a propagating phenomenon. May be
eq.(1), could thus also open a way to reconsider the origin of electromagnetism.
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ends of the elastic band in our example) in fact appears to us as if a signal was propagating
between them at velocity c. Such a description would suppress the provoking acausal action
from an absorber to an emitter.
As expected by all the above authors, our aim is thus to note that connecting the light
phenomenon to the expansion of the universe may perhaps permit to consider light as an
effect of the stretching of the spacetime rather than as a propagating phenomenon. May be
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1. Introduction 
The importance of gravitation on the large scale is due to the short range of strong and weak 
forces and also to the fact that electromagnetic force becomes weak because of the global 
neutrality of matter as pointed by Dicke and Peebles [1965]. Motivated by the occurrence of 
large number hypothesis, Dirac [1963] proposed a theory with a variable gravitational 
constant (G). Barrow [1978] assumed that G α t-n and obtained from helium abundance for –

5.9 x 10-13 < n < 7 x 10-13, 12 1(2 .93) 10G x yr
G

− −< ±


 by assuming a flat universe. 

Demarque et al. [1994] considered an ansatz in which G α t-n and showed that |n| < 0.1 

corresponds to 1 12 10G x yr
G

− −<


. Gaztanga et al. [2002] considered the effect of variation of 

gravitational constant on the cooling of white dwarf and their luminosity function and 

concluded that 1 13 10G x yr
G

− −<


. 

To achieve possible verification of gravitation and elementary particle physics or to 
incorporate Mach's principle in General Relativity, many atempts (Brans and Dicke [1961], 
Hoyle and Narlikar [1964]) have been made for possible extension of Einstein's General 
Relativity with time dependent G. 
In the early universe, all the investigations dealing with physical process use a model of the 
universe, usually called a big-bang model. However, the big-bang model is known to have 
the short comings in the following aspects. 
i. The model has singularity in the past and possibly one in future. 
ii. The conservation of energy is violated in the big-bang model. 
iii. The big-bang models based on reasonable equations of state lead to a very small 

particle horizon in the early epochs of the universe. This fact gives rise to the 'Horizon 
problem'. 

iv. No consistent scenario exists within the frame work of big-bang model that explains the 
origin, evolution and characteristic of structures in the universe at small scales. 

v. Flatness problem. 
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Thus alternative theories were proposed from time to time. The most well known theory is 
the 'Steady State Theory' by Bondi and Gold [1948]. In this theory, the universe does not 
have any singular beginning nor an end on the cosmic time scale. For the maintenance of 
uniformity of mass density, they envisaged a very slow but continuous creation of matter in 
contrast to the explosive creation at t = 0 of the standard FRW model. However, it suffers the 
serious disqualifications for not giving any physical justification in the form of any 
dynamical theory for continuous creation of matter. Hoyle and Narlikar [1966] adopted a 
field theoretic approach introducing a massless and chargeless scaler field to account for 
creation of matter. In C-field theory, there is no big-bang type singularity as in the steady 
state theory of Bondi and Gold [1948]. Narlikar [1973] has explained that matter creation is a 
accomplished at the expense of negative energy C-field. He also explained that if overall 
energy conservation is to be maintained then the primary creation of matter must be 
accompanied by the release of negative energy and the repulsive nature of this negative 
reservoir will be sufficient to prevent the singularity. Narlikar and Padmanabhan [1985] 
investigated the solution of modified Einstein's field equation which admits radiation and 
negative energy massless scalar creation field as a source. Recently Bali and Kumawat [2008] 
have investigated C-field cosmological model for dust distribution in FRW space-time with 
variable gravitational constant. 
In this chapter, we have investigated C-field cosmological model for barotropic fluid 
distribution with variable gravitational constant. The different cases for γ = 0 (dust 
distribution), γ = 1 (stiff fluid distribution), γ = 1/3 (radiation dominated universe) are also 
discussed. 
Now we discuss Creation-field theory (C-field theory) originated by Hoyle and Narlikar 
[1963] so that it may be helpful to readers to understand Creation-field cosmological model 
for barotropic fluid distribution with variable gravitational constant. 

2. Hoyle-Narlikar creation-field theory 
Hoyle's approach (1948) to the steady state theory was via the phenomena of creation of 
matter. In any cosmological theory, the most fundamental question is "where did the matter 
(and energy) we see around us originate?" by origination, we mean coming into existence by 
primary creation, not transmutation from existing matter to energy or vice-versa. The 
Perfect Cosmological Principle (PCP) deduces continuous creation of matter. In the big-bang 
cosmologies, the singularity at t = 0 is interpreted as the primary creation event. Hoyle's aim 
was to formulate a simple theory within the framework of General Relativity to describe 
such a mechanism. 
Now I discuss this method since it illustrates the power of the Action-principle in a rather 
simple way. 
The action principle 
The creation mechanism is supposed to operate through the interaction of a zero rest mass 
scalar field C of negative energy with matter. The action is given by 

 4 41 1
16 2

i i
i i

a a
A R gd x ma da f C C gd x C da

Gπ
= − − − − +       (2.1) 

where i i
CC
x

∂=
∂

 and f > 0, is a coupling constant between matter and creation field. 

 
C-Field Cosmological Model for Barotropic Fluid Distribution with Variable Gravitational Constant 

 

229 

The variation of a stretch of the world line of a typical particle 'a' between the world points 
A1 and A2 gives 
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kl ik ik k

A A

d a dx dx daA ma g a da ma g C a
da da dada

δ δ δ
       = + Γ − − ⋅    

        
   (2.2) 

Now suppose that the world-line is not endless as it is usually assumed but it begins at A1 
and the variation of the world line is such that δak ≠ 0 at A1. Thus for arbitrary δak which 
vanish at A2, we have 

 
2

2 0
i k l

i
kl

d a da da
da dada

+ Γ =   (2.3) 

along A2A2 while at A1, 

 
i

ik k
dama g C
da

=    (2.4) 

The equation (2.3) tells us that C-field does not alter the geodesic equation of a material 
particle. The effect of C-field is felt only at A1 where the particle comes into existence. The 
equation (2.4) tells us that the 4-momentum of the created particle is balanced by that of the 
C-field. Thus, there is no violation of the matter and energy-momentum conservations law 
as required by the action principle. However, this is achieved because of the negative energy 
of the C-field. The variation of C-field gives from δA = 0,  

 ;
1i

iC n
f

=   (2.5) 

where n = number of creation events per unit proper 4-volume. By creation event, we mean 
points like A1, if the word line had ended at A2 above, we would have called A2 an 
annihilation event. In n, we sum algebraically (i.e. with negative sign for annihilation 
events) over all world-line ends in a unit proper 4-volume. Thus the C-field has its sources 
only in the end-points of the world-lines. 
Finally, the variation of gik gives the Einstein's field equation 

 
( ) ( )

1 8
2

ik ik ik ik
m C

R Rg G T Tπ  − = − +  
   (2.6) 

Here 
( )

ik
m

T  is the energy-momentum of particles a, b, ... while 

 
( )

1
2

ik i K ik l
lC

T f C C g C C = − − 
 

   (2.7) 

is due to Hoyle and Narlikar (1964). 
A comparison with the standard energy-momentum tensors of scalar fields shows that the 
C-field has negative energy. Thus, when a new particle is created then its creation is 
accompanied by the creation of the C-field quanta of energy and momentum. Since the C-
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   (2.6) 

Here 
( )

ik
m

T  is the energy-momentum of particles a, b, ... while 

 
( )

1
2

ik i K ik l
lC

T f C C g C C = − − 
 

   (2.7) 

is due to Hoyle and Narlikar (1964). 
A comparison with the standard energy-momentum tensors of scalar fields shows that the 
C-field has negative energy. Thus, when a new particle is created then its creation is 
accompanied by the creation of the C-field quanta of energy and momentum. Since the C-
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field energy is negative, it is possible to have energy momentum conservation in the entire 
process as shown in (2.4). 

3. The metric and field equations 
We consider FRW space time in the form 

 
2

2 2 2 2 2 2 2 2
2( ) sin

1
drds dt R t r d r d

kr
θ θ φ

 
= − + + 

−  
   (3.1) 

where k = 0, –1, 1 
The modified Einstein's field equation in the presence of C-field is due to Hoyle and 
Narlikar [1964]) is given by 

 
( ) ( )

1 8
2

j j j j
i i i i

m C
R Rg G T Tπ

 
− = − + 

  
   (3.2) 

where ij
ijR g R= , is the scalar curvature, 

( )

j
i

m
T  is the energy-momentum tensor for matter and 

( )

j
i

C
T  the energy-momentum tensor for C-field are given by 

 ( ) 1
( )

j jj
i i

m
T p pgρ ν ν= + −    (3.3) 

and 

 
( )

1
2

j jj l
i li i

C
T f C C g C C = − −  

   (3.4) 

p being isotropic pressure, ρ the matter density, f > 0. We assume that flow vector to be 
comoving so that ν1 = 0 = ν2 = ν3, ν4 = 1 and i i

CC
x

∂=
∂

. 

The non-vanishing components of energy-momentum tensor for matter are given by  

 1
1

( )
( ) 0

m
T p p pρ= + ⋅ − = −    (3.5) 

Similarly 

 2 3
2 3

( ) ( )m m
T p T= − =    (3.6) 

 4
4

( )
( ) 1

m
T p pρ ρ= + ⋅ − =    (3.7) 

The non-vanishing components of energy-momentum tensor for Creation field are given by  

 1 44 2 2
1 4

( )

1 10 1
2 2C

T f g C f C = − − ⋅ ⋅ =  
    (3.8) 
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Similarly 

 2 2 3
2 3

( ) ( )

1
2C C

T f C T= =   (3.9) 

 4 44 2 44 2 2 2 2
4 4 4 4 4

( )

1 1 11
2 2 2C

T f g C g C f C C f C   = − − ⋅ ⋅ = − − = −      
   (3.10) 

where C4 = C  
The modified Einstein field equation (3.10) in the presence of C-field for the metric (3.1) for 
variable G(t) leads to 

 
2

2
2 2

3 3 18 ( )
2

R k G t f C
R R

π ρ + = −  

    (3.11) 

 
.

2
2 2

2 18 ( )
2

LR R k G t p f C
R R R

π  + + = − −  

     (3.12) 

4. Solution of field equations 
The conservation equation 

 ( )
;

8 0j
i j

GTπ =   (4.1) 

leads to 

( )8 8 8 0j j jl l
i iji iljj GT GT GT

x
π π π∂ + Γ − Γ =

∂
 

which gives 

( ) ( ) ( ) ( )1 2 34 1 2 3 3
4 1 2 23 311 12 138 8 0GT G T T T T

t
π π∂ + + + + +∂ Γ Γ Γ  

( ) ] ( ) ( )1 2 3 1 1 2 24 1 2
4 1 214 24 34 14 11 24 128T G T Tπ + + − + + +Γ Γ Γ Γ Γ Γ Γ  

 ( ) ( ) ]3 3 33 4
3 434 13 23 0T T+ + +Γ Γ Γ    (4.2) 

which leads to 

2 2
2

1 1 1 18 8
2 2 1

krG f C G f C p
t r rkr

π ρ π  ∂     − + − + +      ∂ −      
   

]2 2 21 1 3 1cot 8
2 2 2

Rf C p f C G f C p
R

θ ρ π      + − + − − −          
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 2 2
2

1 1 1 1 cot
2 21

R kr R Rf C p f C p
R R r R rkr

θ
        + + − + + − + +        −         

    = 0  (4.3) 

which gives 

 ( )2 21 3 3 38 8 8
2

R R RG f C G f CC G f C
R R R

π ρ π ρ π ρ ρ
  − + − + + −  

   

        = 0  (4.4) 

which yields 
.

1C =  when used in source equation. Using 
.

1C =  in (3.11), we have 

 
2

2 2
3 38 4R kG Gf
R R

π ρ π= + +


  (4.5) 

We assume that universe is filled with barotropic fluid i.e. p = γρ (0 < γ < 1), p being the 

isotropic pressure, ρ the matter density. Now using p = γρ and 
.

1C =  in (3.12), we have 

 
2

2 2
2 18 ( )

2
R R k G t f

R R R
π γρ + + = − −  

 
  (4.6) 

Equations (4.5) and (4.6) lead to 

 ( )
2

2 2
2 1 3 (1 )4 (1 3 )R R kGf
R R R

γ γ π γ+ + = − − +
 

   (4.7) 

To obtain the deterministic solution, we assume that 

 G = Rn    (4.8) 

where R is scale factor and n is a constant. From equations (4.7) and (4.8), we have  

 ( ) ( )
2

12 3 1 (1 ) 3 1nR kR AR
R R

γ γ γ++ + = − − +
   (4.9) 

where 

 A = 4πf  (4.10) 

To find the solution of (4.9), we assume that 

 ( )R F R=   (4.11) 

Thus 

 'dR dF dF dRR FF
dt dt dR dt

= = = =
   (4.12) 

where 

' dFF
dR

=  
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Using (4.11 and (4.12) in (4.9), we have 

 ( ) ( ) ( )22
23 1 3 1

1 nF kdF AR
dR R R

γ γ
γ ++ +

+ = − −   (4.13) 

Equation (4.13) leads to 

 ( )
( )

2 2
2 1

3 3

nA RdRF k
dt n

γ
γ

+− = = −  + + 
  (4.14) 

which leads to 

 
( )

( )

( )
( )2

1
3 33 3

1
n

AdR dt
nk n

R
A

γ
γγ

γ
+

−
=

+ ++ +
−

−

   (4.15) 

To get determinate value of R in terms of cosmic time t, we assume n = –1. Thus equation 
(4.15) leads to 

 
( )
( )

( )
( )

1
3 23 2

1

AdR dt
k

R
A

γ
γγ

γ

−
=

++
−

−

  (4.16) 

From equation (4.16), we have 

 ( ) ( )
( )

2 3 2
1

k
R at b

A
γ

γ
+

= + +
−

   (4.17) 

where 

 ( )
( )

11
2 3 2

A
a

γ
γ

−
=

+
 ,   

2
Nb =   (4.18) 

where N is the constant of integration 
Therefore, the metric (3.1) leads to 

 ( ) ( )
( )

2 2
22 2 2 2 2 2 2

2
3 2

sin
1 1

k drds dt at b r d r d
A kr

γ
θ θ φ

γ
   +

= − + + + +   − −     
 (4.19) 

where 

γ ≠ 1. 

Taking a = 1, b = 0, the metric (4.19) reduces to 

 ( )
( )

2 2
2 2 2 2 2 2 2 2

2
3 2

sin
1 1

k drds dt t r d r d
A kr

γ
θ θ φ

γ
   +

= − + + +   − −     
  (4.20) 



 
Aspects of Today´s Cosmology  

 

232 

 2 2
2

1 1 1 1 cot
2 21

R kr R Rf C p f C p
R R r R rkr

θ
        + + − + + − + +        −         

    = 0  (4.3) 

which gives 

 ( )2 21 3 3 38 8 8
2

R R RG f C G f CC G f C
R R R

π ρ π ρ π ρ ρ
  − + − + + −  

   

        = 0  (4.4) 

which yields 
.

1C =  when used in source equation. Using 
.

1C =  in (3.11), we have 

 
2

2 2
3 38 4R kG Gf
R R

π ρ π= + +


  (4.5) 

We assume that universe is filled with barotropic fluid i.e. p = γρ (0 < γ < 1), p being the 

isotropic pressure, ρ the matter density. Now using p = γρ and 
.

1C =  in (3.12), we have 

 
2

2 2
2 18 ( )

2
R R k G t f

R R R
π γρ + + = − −  

 
  (4.6) 

Equations (4.5) and (4.6) lead to 

 ( )
2

2 2
2 1 3 (1 )4 (1 3 )R R kGf
R R R

γ γ π γ+ + = − − +
 

   (4.7) 

To obtain the deterministic solution, we assume that 

 G = Rn    (4.8) 

where R is scale factor and n is a constant. From equations (4.7) and (4.8), we have  

 ( ) ( )
2

12 3 1 (1 ) 3 1nR kR AR
R R

γ γ γ++ + = − − +
   (4.9) 

where 

 A = 4πf  (4.10) 

To find the solution of (4.9), we assume that 

 ( )R F R=   (4.11) 

Thus 

 'dR dF dF dRR FF
dt dt dR dt

= = = =
   (4.12) 

where 

' dFF
dR

=  

 
C-Field Cosmological Model for Barotropic Fluid Distribution with Variable Gravitational Constant 

 

233 

Using (4.11 and (4.12) in (4.9), we have 

 ( ) ( ) ( )22
23 1 3 1

1 nF kdF AR
dR R R

γ γ
γ ++ +

+ = − −   (4.13) 

Equation (4.13) leads to 

 ( )
( )

2 2
2 1

3 3

nA RdRF k
dt n

γ
γ

+− = = −  + + 
  (4.14) 

which leads to 

 
( )

( )

( )
( )2

1
3 33 3

1
n

AdR dt
nk n

R
A

γ
γγ

γ
+

−
=

+ ++ +
−

−

   (4.15) 

To get determinate value of R in terms of cosmic time t, we assume n = –1. Thus equation 
(4.15) leads to 

 
( )
( )

( )
( )

1
3 23 2

1

AdR dt
k

R
A

γ
γγ

γ

−
=

++
−

−

  (4.16) 

From equation (4.16), we have 

 ( ) ( )
( )

2 3 2
1

k
R at b

A
γ

γ
+

= + +
−

   (4.17) 

where 

 ( )
( )

11
2 3 2

A
a

γ
γ

−
=

+
 ,   

2
Nb =   (4.18) 

where N is the constant of integration 
Therefore, the metric (3.1) leads to 

 ( ) ( )
( )

2 2
22 2 2 2 2 2 2

2
3 2

sin
1 1

k drds dt at b r d r d
A kr

γ
θ θ φ

γ
   +

= − + + + +   − −     
 (4.19) 

where 

γ ≠ 1. 

Taking a = 1, b = 0, the metric (4.19) reduces to 

 ( )
( )

2 2
2 2 2 2 2 2 2 2

2
3 2

sin
1 1

k drds dt t r d r d
A kr

γ
θ θ φ

γ
   +

= − + + +   − −     
  (4.20) 



 
Aspects of Today´s Cosmology  

 

234 

5. Physical and geometric features 
The homogeneous mass density (ρ), the isotropic pressure (p) for the model (4.19) are given 
by  

 ( )

( ) ( )
( )

22

2

12 3
8

3 2
1

a at b k
A

k
at b

A

πρ
γ

γ

+ +
= +
 +

+ + −  

  (5.1) 

 ( )

( ) ( )
( )

22

2

12 3
8 8

3 2
1

a at b k
p A

k
at b

A

γ γ
π πγρ γ

γ
γ

+ +
= = +

 +
+ + −  

  (5.2) 

 
( ) ( )

( )

1

2

1
3 2
1

G R
k

at b
A

γ
γ

−= =
 +

+ + −  

   (5.3) 

q = Deceleration parameter 

..

.
2

2

R
R

R
R

= −  

where R is scale factor given by (4.17). Thus 

 
( ) ( )

( )
( )

2
22

22

2 3 2
2

1

4

ka
a at b

A
q A

a at b

γ
γ

 +
+ + 

−  = − +
+

   (5.4) 

To find C (creation field) 

Using p = γρ, (5.1), (5.3) and (4.17) in (4.4), we have  

( )
( )

( ) ( ) ( )

( )

3
2

2

22

3 3 1 6 3 2
6 3 2

10 4 2 (1 )
3 23 2
(1 )1

k kt
t t

dC t AC
dt A kk tt

AA

γ γ
γ

γ
γγ

γγ

 + +
+ + + 

− + =     + + + +    −−       

   

 ( )
( )2

3 2
3 2

2
(1 )

A t
k

t
A

γ
γ

γ

+
+

 + 
+ − 

   (5.5) 

Equation (5.5) is linear in 2C . The solution of (5.5) is given by 
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 ( )2 4 3 2
(1 )

C
A

γ
γ

+
=

−
   (5.6) 

which gives 

 1C =   (5.7) 

which agrees with the value used in source equation. Here ( )3 2
1

(1 )f
γ

π γ
+

=
−

 which gives  

2
3

f
f

πγ
π

−
=

+
. Equation (5.7) leads to 

 C = t   (5.8) 

Thus creation field increases with time. 
Taking a = 1, b = 0 in equations (5.1) — (5.4), we have 

 8 12 4 fπρ π= +   (5.9) 

 8 8 12 4p f fπ πγ γ πγ= = +    (5.10) 

 
2

1

4

G kt
=

+
   (5.11) 

 
2

1
2 8

kq
t

 = − + 
 

   (5.12) 

6. Discussion 
The matter density (ρ) is constant for the model (4.20). The scale factor (R) increases with 

time. Thus inflationary scenario exists in the model (4.20). 1G H
G t

≅ =


 where H is Hubble 

constant. G → ∞ when t→0 and G → 0 when t→∞. The deceleration parameter (q) < 0 which 
indicates that the model (4.20) represents an accelerating universe. The creation field C 
increases with time and 1C =  which agrees with the value taken in source equation. The 
matter density ρ = constant as given by (5.9). This result may be explained as : Referring to 
Hoyle and Narlikar [2002], Hawking and Ellis [1973], the matter is supposed to move along 
the geodesic normal to the surface t = constant. As the matter moves further apart, it is 
assumed that more matter is continuously created to maintain the matter density at constant 
value. For k = 0, γ = 0 and for k = +1 γ = 0, we get the same results as obtained by Bali and 
Tikekar [2007], Bali and Kumawat [2008] respectively. 
The coordinate distance to the horizon rH is the maximum distance a null ray could have 
travelled at a time t starting from the infinite past i.e. 

 3( )
( )

t

H
dtr t

R t∞

=    (5.13) 
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We could extend the proper time t to (–∞) in the past because of non-singular nature of the 
space-time. Now 

 3
0

( )
t

H
dtr t
tα

=     (5.14) 

where 4 (1 ) (3 1)
3 1

f kπ γ γα
γ

− − +
=

+
 

This integral diverges at lower time showing that the model (4.20) is free from horizon. 
Special Cases: 
i. Dust filled universe i.e. γ = 0, the metric (4.20) leads to 

 
2 2

2 2 2 2 2 2 2 2
2 sin

2 1
k drds dt t r d r d

f kr
θ θ φ

π
  

= − + + +   
−    

   (5.15) 

For k = 0, the metric (5.15) leads to the model obtained by Bali and Tikekar (2007). 
ii. For k = +1, γ = 0, the model (5.15) leads to the model obtained by Bali and Kumawat 

(2008). 
iii. For γ = 1/3 (Radiation dominated universe), the model (4.20) leads to 
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For γ = 1 (stiff fluid universe), the model (4.20) does not exist. 
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1. Introduction

An attractive issue in general relativity is the separation, and possibly the solution, of
field equation of arbitrary spin in space-time of physical relevance, especially from the
cosmological point of view. The knowledge of the normal mode solutions is a basic tool
in view of a quantization of the field that in turns can lead to a further adjustement of the
theoretical formulation of the cosmological model.
In case of the Robertson-Walker (RW) space-time metric, that is the base of spherically
symmetric homogeneous standard cosmology (Weinberg, 1972), the problem has been widely
considered (Penrose and Rindler, 1984; Fulling, 1989; Parker and Toms, 2009). Recently that
goal can be found solved, for arbitrary spin value, in RW metric by the Newmann-Penrose
formalism (Zecca, 2009). The separation method employed to that end has been developed
in the line of Chandrashekar’s separation of Dirac equation in Kerr metric (Chandrasekhar,
1983). In the specific case of spin 0, 1/2, 1 it has been pointed out (Zecca, 2009a; 2010a; 2010b)
that particle creation (annihilation) in expanding universe is possible. (Particle production by
universe expansion was originally discussed by Parker (1969; 1971); see also Parker and Toms,
2009). The presence of this effect modifies the gravitational dynamics of the Universe. An
extension of the Standard Cosmology has also been proposed that includes the back reaction
due to particle production (Zecca, 2010).
The separation of field equation of arbitrary spin has been obtained also in Schwarzschild
metric (Zecca, 2006b). This metric is interesting because it represents the gravitational field
outside a spherical central non rotating mass such as stars, planets, black holes, .. . In this
metric however the separated radial equation are much more difficult to disentagle.
Another situation of relevance concerns the spherically symmetric non homogeneous metrics,
and in particular the one that is the base of the Lemaître-Tolman-Bondi (LTB) cosmological
model. This metric represents a spherically symmetric inhomogeneous universe filled with
freely falling dust matter without pressure. The model can be completely integrated and the
general solution of the Einstein equation depends on three arbitrary functions of the radial
coordinate. (For a comprehensive study of the model see Krasinski, 1997). The separation of
the field equation for spins 0, 1/2 has been shown to be possible also in this model under a
special choice of the mentioned integration functions. The surviving configuration remains
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however sufficiently general because the cosmological model still depends on an arbitrary
function of the radial coordinate (Zecca, 2000; 2001).
In the line of the above considerations, it would be desirable to extend the solution of the
field equation to higher spin values. This seems a difficult task in the LTB metrics. Indeed
in curved space-time the spinor formulation of field equation of spin value greater than 1, in
general involves the knowledge of the Weyl spinor (e.g., Illge, 1993 and references therein).
Contrarily to what happens in the Robertson-Walker (RW) metric, the Weyl spinor does not
vanish in the LTB metrics (e. g., Zecca, 2000a) and makes the solution of the field equation
much more complex.

Therefore, in the present Chapter, we study the spin 1 field equation in LTB models. This is
a case that, as far as the author knows, has not yet been considered. Moreover it is the case
of the higher spin values where the field equation is insensible to the presence of the Weyl
spinor (Illge, 1993). On physical grounds the interest of the spin 1 field case lies in that in the
massless case it can be interpreted, in a standard way, in terms of electromagnetic field and in
the massive case in terms of Proca fields (Illge, 1993; Penrose and Rindler, 1984; Zecca, 2006).
For what concerns the separation of the equation, it is performed for a general LTB metric by
using the Newmann-Penrose formalism based on a previously determined null tetrad frame.
At this general level of the metric, the angular dependence separates. The separated angular
equations coincide with those relative to spin 1 field in Robertson-Walker and Schwarzschild
metric that have been previously integrated (Zecca, 1996; 2005a; 2006b). The complete variable
separation can be then achived for a class of LTD cosmological models. This is obtained under
a factorization assumption Y = Z(r)T(t) on the time and radial dependence of the physical
radius Y(r, t), the same assumption under which the spin 0 and spin 1/2 field equations
have been previously separated. There results that the separated radial dependence can be
reduced to the solution of two independent disentangled ordinary differential equations.
These equations still depend on an arbitrary radial function that is an integration function
of the cosmological model. For what concerns the separated time dependence, it can be
reduced to the solution of two coupled time equations. These equations do not depend on any
arbitrary function and have therefore an absolute character in the class of LTB model satisfying
the factorization assumption. In turn the time equations can be decoupled and reduced to
ordinary differential equations of known form. However due to the special dependence on
the physical parameters, an integration by series, that is explicitly performed in every case,
results unavoidable.
Finally a quantization of the scheme is performed by mimicking the procedure previously
developed for spin 1 field equation in the RW metric (Zecca, 2009a). In that case, the
number of one mode particle production per unit of time at time t was found to be
proportional to the Hubble “constant” Ṙ(t)/R(t). Here the quantization procedure again
leads to preview particle creation (annihilation) in expanding universe for the LTB models
admitting a factorization assumption of the physical radius Y. Moreover it is coherent with the
generally admitted big bang origin assumption of the universe because it avoids considering
“in states” with underlying Minkowskian space-time at time t = −∞ as often assumed in
different examples (Birrell and Davies, 1982; Moradi, 2008; Parker and Toms, 2009). There
results a generalization of the RW case. Here the number of one mode particle creation per
unit of time, at a given time, is proportional to Ẏ(r, t)/Y(r, t) = Ṫ(t)/T(t). The quantity of
particles produced by universe expansion, does not seem of relevance at a generic time of
the cosmological evolution, especially at the present time. Instead, for a cosmological model
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admitting a big bang origin, an enormous number of particles is foreseen to be produced near
the big bang.

2. Spin 1 field equation in a class of spherically symmetric comoving system

The spin 1 field equation for particles of mass m0 can be formulated in a general curved
space-time by the spinor equation (Penrose and Rindler, 1984) in terms of the spinors
ΦAB, ΘAX�

∇A
X�ΦAB = −iμ∗ ΘBX�

∇X�
A ΘBX� = iμ∗ ΦAB

(1)

with ΦAB = ΦBA,
√

2μ∗ the mass of the particle, ∇AX� the covariant spinor derivative. The
formulation (1) holds in a general curved space-time (see e.g., Illge, 1993, and references
therein). The object is to solve the system of equations (1) in the general comoving spherically
symmetric Lemaître-Tolman-Bondi (LTB) metric whose line element is given by

ds2 = gμνdxμdxν = dt2 − eΓdr2 − Y2(dθ2 + sin2 θdϕ2) (2)

with Γ = Γ(r, t), Y = Y(r, t). (See e.g., Krasinski, 1997). The Newmann-Penrose (1962)
formalism is a powerfull tool to that end. Accordingly we consider the null tetrad frame
{li, ni, mi, m�i} that was considered in Zecca 1993, for which the directional derivatives and
the non trivial spin coefficients, that we report for reader’s convenience, are

D ≡ ∂00� = li∂i =
1√
2
(∂t + e−Γ/2∂r),

Δ ≡ ∂11� = ni∂i =
1√
2
(∂t − e−Γ/2∂r),

δ ≡ ∂01� = mi∂i =
1

Y
√

2
(∂θ + i csc θ ∂ϕ),

δ� ≡ ∂10� = m�i∂i =
1

Y
√

2
(∂θ − i csc θ ∂ϕ). (3)

ρ = − 1
Y
√

2

(
Ẏ + Y�e−Γ/2),

μ =
1

Y
√

2

(
Ẏ − Y�e−Γ/2)

β = −α =
cot θ

2Y
√

2
,

� = −γ =
Γ̇

4
√

2

where Ẏ = ∂Y/∂t, Y� = ∂Y/∂r. For the definitions see e. g., Chandrasekhar, 1983 and Penrose
and Rindler, 1984.
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Ẏ − Y�e−Γ/2)

β = −α =
cot θ

2Y
√

2
,

� = −γ =
Γ̇

4
√

2
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By expliciting the covariant spinor derivatives in terms of the directional derivatives and spin
coefficients (3) the equation (1) reduces to the system of coupled differential equations

(D − 2ρ)Φ10 − (δ� − 2α)Φ00 = iμ�Θ00�

(D − ρ + 2�)Φ11 − δ�Φ10 = iμ�Θ10�

(Δ + μ − 2γ)Φ00 − δΦ01 = −iμ�Θ01�

(Δ + 2μ)Φ10 − (δ + 2β)Φ11 = −iμ�Θ11�

(D − ρ)Θ01� − δΘ00� = −iμ�Φ00

(D − ρ + 2�)Θ11� − (δ + 2β)Θ10� + μΘ00� = −iμ�Φ10

(δ� + 2β)Θ01� − (Δ + μ − 2γ)Θ00� + ρΘ11� = −iμ�Φ01

δ�Θ11� − (Δ + μ)Θ10� = −iμ�Φ11

(4)

(Note that the situation is similar to the general case of arbitrary spin field equation in RW
space-time (Zecca, 2009) when specialized to spin s = 1). To separate the system (4) it is
useful to put

ΦAB(r, θ, ϕ, t) = α(t)φk(r)Sk(θ)e
imϕ, k = A + B = 0, 1, 2

Θ00� (r, θ, ϕ, t) = A(t)φ1(r)S1(θ)e
imϕ

Θ10� (r, θ, ϕ, t) = A(t)φ2(r)S2(θ)e
imϕ

Θ01� (r, θ, ϕ, t) = −A(t)φ0(r)S0(θ)eimϕ,

Θ11� = −Θ00�

(5)

where, for convenience, we we assume m = 0,±1,±2, . . .. By using (5) into equation (4) the
angular dependence factors out and one is left with the equations in the r, t variables

(D − 2ρ)(αφ1)− λ1

Y
√

2
αφ0 = iμ∗Aφ1

(D − ρ + 2�)(αφ2)− λ2

Y
√

2
αφ1 = iμ∗Aφ2

(Δ + μ + 2�)(αφ0)− λ3

Y
√

2
αφ1 = iμ∗Aφ0

(Δ + 2μ)(αφ1)− λ4

Y
√

2
αφ2 = iμ∗Aφ1

(D − ρ)(Aφ0) +
λ3

Y
√

2
Aφ1 = iμ∗αφ1

(D − ρ + 2�)(Aφ1)− μAφ1 +
λ4

Y
√

2
Aφ2 = iμ∗αφ2

(Δ + μ + 2�)(Aφ1) + ρAφ1 +
λ1

Y
√

2
Aφ0 = iμ∗αφ1

(Δ + μ)(Aφ2) +
λ2

Y
√

2
Aφ1 = iμ∗αφ2

(6)

Instead the angular functions satisfy the equations
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L−
1 S0 = λ1 S1,

L−
0 S1 = λ2 S2,

L+
0 S1 = λ3 S0,

L+
1 S2 = λ4 S1,

(7)

where it has been set L±
n = ∂θ ∓ m csc θ + n cot θ. λi (i = 1, 2, 3, 4) are the corresponding

separation constants. These equations are the same of those relative to the separation of
spin 1 field in RW space-time (cfr. Zecca 2005; 2009). By setting λ1λ3 = λ2λ4 = −λ2 the
angular equations can be reduced to an eigenvalue problem (Zecca, 1996) whose solutions
are expressible (Zecca, 2005) in terms of Legendre functions and Jacobi polynomials (For the
definitions see e.g., Abramovitz and Stegun, 1970):

S1lm = (1 − ξ2)
m
2 Pm

l (ξ), l = |m|, |m|+ 1, ..

S2lm = (1 − ξ)
m−1

2 (1 + ξ)
m+1

2 P(m+1,m−1)
l−m (ξ), m ≥ 1, l = m, m + 1, ..

S2lm = (1 + ξ)
|m|−1

2 (1 − ξ)
|m|+1

2 P(|m|−1,|m|+1)
l−m (ξ), m ≤ 1, l = |m|, |m|+ 1, .. (8)

S2l0 = sin θ P(1,1)
l+2 (cos θ), l = 0, 1, 2, ..

S0lm(θ) = S2l−m(θ), (ξ = cos θ),

with λ that takes the values λ2 = l(l + 1), l = 0, 1, 2, .. By possibly considering a

normalization factor, the angular functions satisfy

∫
dΩ Silm(θ)e

imϕ
(

Sil �m� (θ)eim�ϕ
)∗

= δll �δmm� (i = 0, 1, 2) (9)

a relation usefull in view of an ortho-normalization of the complete solution of (1).

For what concerns the separation of the r and t dependence in (6), it does not seem to be
obtainable in general even by using the explicit expression of the spin coefficients. In the
following we confine within a class of LTB model for which Γ is related to the function Y and
Y itself can be given in an explicit parametric factorized form.

3. Variable separation in Lemaître - Tolman - Bondi cosmological models

The system (6) can be further separated in its r, t dependence in a sufficiently large class
of cosmological models. Suppose to that end that the universe is filled with freely falling
dust like matter without pressure, as seen in the comoving spherically symmetric space-time
coordinates (2). If the proper energy momentum tensor is considered, the corresponding
Einstein equation can be integrated exactly in parametric form and gives rise to what is widely
known as the Lemaître-Tolman-Bondi (LTB) cosmological model. (For a comprehensive study
of the model see Krasinski, 1997; in the Newman-Penrose formalism see e.g., Zecca, 1993).
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√
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√

2
αφ1 = iμ∗Aφ2
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√

2
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√
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√
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√
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λ1

Y
√

2
Aφ0 = iμ∗αφ1
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λ2

Y
√

2
Aφ1 = iμ∗αφ2

(6)

Instead the angular functions satisfy the equations
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L−
1 S0 = λ1 S1,

L−
0 S1 = λ2 S2,

L+
0 S1 = λ3 S0,

L+
1 S2 = λ4 S1,

(7)
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n = ∂θ ∓ m csc θ + n cot θ. λi (i = 1, 2, 3, 4) are the corresponding
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2 Pm
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2 (1 + ξ)
m+1

2 P(m+1,m−1)
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|m|−1

2 (1 − ξ)
|m|+1

2 P(|m|−1,|m|+1)
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a relation usefull in view of an ortho-normalization of the complete solution of (1).

For what concerns the separation of the r and t dependence in (6), it does not seem to be
obtainable in general even by using the explicit expression of the spin coefficients. In the
following we confine within a class of LTB model for which Γ is related to the function Y and
Y itself can be given in an explicit parametric factorized form.

3. Variable separation in Lemaître - Tolman - Bondi cosmological models

The system (6) can be further separated in its r, t dependence in a sufficiently large class
of cosmological models. Suppose to that end that the universe is filled with freely falling
dust like matter without pressure, as seen in the comoving spherically symmetric space-time
coordinates (2). If the proper energy momentum tensor is considered, the corresponding
Einstein equation can be integrated exactly in parametric form and gives rise to what is widely
known as the Lemaître-Tolman-Bondi (LTB) cosmological model. (For a comprehensive study
of the model see Krasinski, 1997; in the Newman-Penrose formalism see e.g., Zecca, 1993).
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The explicit solution is the following (Demianski and Lasota, 1973)

Y = G
m(r)
2E(r)

(cosh η − 1); t = t0(r) + G
m(r)

(2E(r))
3
2

(sinh η − η), η > 0, E > 0

Y = G
m(r)

−2E(r)
(1 − cos η); t = t0(r) + G

m(r)

(−2E(r))
3
2

(η − sin η), 0 ≤ η ≤ 2π, E < 0

Y =
[3

2
(
2m(r)

) 1
2
(
t − t0(r)

)] 2
3
, E = 0

(10)

m(r), E(r), t0(r) are arbitrary integration functions that depend only on the radial coordinate
and G the gravitational constant. In particular m(r) can be interpreted as the mass contained
in a sphere of radius Y, m(r) = 4πG

∫ r
0 σ(r, t)Y2(r, t)Y�(r, t)dr, σ(r, t) being the matter density.

Moreover Γ and Y are no more independent but

exp Γ =
Y�2(r, t)

1 + 2E(r)
(11)

a relation usefull for the following purposes.
Suppose now to choose t0(r) = 0 in every case and, in case E �= 0,

G m(r) =
(
2|E|) 3

2 (12)

With this choices the physical radius in (10) reads

Y = E
1
2 (cosh η − 1); t = sinh η − η, η > 0, E > 0

Y = |E| 1
2 (1 − cos η); t = η − sin η, 0 ≤ η ≤ 2π, E < 0

Y =
( 9

2

) 1
3

m
1
3 t

2
3 , E = 0

(13)

These assumptions are sufficient to separate the system (6). Indeed from (13), Y is in every
case of the form Y = Z(r)T(t). By using this factorization and relation (11) in the expression
of the directional derivatives and spin coefficients, one is able to separate the time dependence
from eq. (6). The result is expressed in terms of the coupled time equation

α̇T + 2Ṫα − im0 AT = −ikα

AṪ + ȦT − im0αT = ikA
(14)

These equations are formally those of the separation of the spin 1 field equation in RW metric.
Therefore the solutions αk(t), Ak(t) satisfy the constraint

T3(t)
[
Ak(t)α

∗
−k(t) + A∗

−k(t)αk(t)
]
= const (15)

The result follows from Zecca (2006a) after the substitution R(t) → T(t). Also this property
is an usefull tool for the normalization of the complete solution of (1).
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Instead, for what concerns the radial dependence, one obtains

ik =

√
1 + 2E

Z�
φ�

1
φ1

+
2
Z

√
1 + 2E − λ1

Z
φ0

φ1

ik =

√
1 + 2E

Z�
φ�

2
φ2

+
1
Z

√
1 + 2E − λ2

Z
φ1
φ2

−ik =

√
1 + 2E

Z�
φ�

0
φ0

+
1
Z

√
1 + 2E +

λ3

Z
φ1
φ0

−ik =

√
1 + 2E

Z�
φ�

1
φ1

+
2
Z

√
1 + 2E +

λ4
Z

φ2
φ1

(16)

k is a separation constant, the same in all equations, to ensure consistency in the separation
procedure.

4. Decoupling and properties of the radial solutions

The equations (16) are similar to the corresponding ones of the RW metric (Zecca, 2005) and
can therefore be disentangled in a similar way. By defining the operator

Ab =
√

1 + 2E
( 1

Z�
d
dr

+
b
Z

)
− ik, b ∈ C (17)

eqs. (16) reads

A2φ1 =
λ1
Z

φ0 A1φ2 =
λ2

Z
φ1

A∗
1φ0 = −λ3

Z
φ1 A∗

2φ1 = −λ4
Z

φ2

(18)

and can be easily reduced to equations in a single function

ZA2ZA∗
1φ0 = −λ1λ3φ0

ZA1ZA∗
2φ1 = −λ2λ4φ1

ZA∗
1ZA2φ1 = −λ1λ3φ1

ZA∗
2ZA1φ2 = −λ2λ4φ2

(19)

By taking into account that λ1λ3 = λ2λ4 = −λ2, one has further that the radial solutions
satisfy φ1 ≡ φ∗

1 , φ0 ≡ φ∗
2 . Therefore it suffices to solve two independent ordinary differential

equations. By expliciting the equations for φ0, φ1 one obtains respectively

Z
Z�2 (1 + 2E)φ��

0 +
[
(1 + 2E)

( 4
Z� −

ZZ��
Z�3

)
+

E�Z
Z�

]
φ�

0+

+
[ E�

Z� +
2 − λ2 + 4E

Z
+ k2Z + 2ik

√
1 + 2E

]
φ0 = 0 (20)

Z
Z�2 (1 + 2E)φ��

1 +
[
(1 + 2E)

( 4
Z� −

ZZ��
Z�3

)
+

E�Z
Z�

]
φ�

1+

+
[2E�

Z� + k2Z +
2 − λ2 + 4E

Z

]
φ1 = 0 (21)
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−2E(r)
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m(r)

(−2E(r))
3
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Y =
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(10)

m(r), E(r), t0(r) are arbitrary integration functions that depend only on the radial coordinate
and G the gravitational constant. In particular m(r) can be interpreted as the mass contained
in a sphere of radius Y, m(r) = 4πG

∫ r
0 σ(r, t)Y2(r, t)Y�(r, t)dr, σ(r, t) being the matter density.

Moreover Γ and Y are no more independent but

exp Γ =
Y�2(r, t)

1 + 2E(r)
(11)

a relation usefull for the following purposes.
Suppose now to choose t0(r) = 0 in every case and, in case E �= 0,

G m(r) =
(
2|E|) 3

2 (12)

With this choices the physical radius in (10) reads

Y = E
1
2 (cosh η − 1); t = sinh η − η, η > 0, E > 0

Y = |E| 1
2 (1 − cos η); t = η − sin η, 0 ≤ η ≤ 2π, E < 0

Y =
( 9

2

) 1
3

m
1
3 t

2
3 , E = 0

(13)

These assumptions are sufficient to separate the system (6). Indeed from (13), Y is in every
case of the form Y = Z(r)T(t). By using this factorization and relation (11) in the expression
of the directional derivatives and spin coefficients, one is able to separate the time dependence
from eq. (6). The result is expressed in terms of the coupled time equation

α̇T + 2Ṫα − im0 AT = −ikα

AṪ + ȦT − im0αT = ikA
(14)

These equations are formally those of the separation of the spin 1 field equation in RW metric.
Therefore the solutions αk(t), Ak(t) satisfy the constraint

T3(t)
[
Ak(t)α

∗
−k(t) + A∗

−k(t)αk(t)
]
= const (15)

The result follows from Zecca (2006a) after the substitution R(t) → T(t). Also this property
is an usefull tool for the normalization of the complete solution of (1).
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Instead, for what concerns the radial dependence, one obtains

ik =

√
1 + 2E

Z�
φ�

1
φ1

+
2
Z

√
1 + 2E − λ1

Z
φ0

φ1

ik =

√
1 + 2E

Z�
φ�

2
φ2

+
1
Z

√
1 + 2E − λ2

Z
φ1
φ2

−ik =

√
1 + 2E

Z�
φ�

0
φ0

+
1
Z

√
1 + 2E +

λ3

Z
φ1
φ0

−ik =

√
1 + 2E

Z�
φ�

1
φ1

+
2
Z

√
1 + 2E +

λ4
Z

φ2
φ1

(16)

k is a separation constant, the same in all equations, to ensure consistency in the separation
procedure.

4. Decoupling and properties of the radial solutions

The equations (16) are similar to the corresponding ones of the RW metric (Zecca, 2005) and
can therefore be disentangled in a similar way. By defining the operator

Ab =
√

1 + 2E
( 1

Z�
d
dr

+
b
Z

)
− ik, b ∈ C (17)

eqs. (16) reads

A2φ1 =
λ1
Z

φ0 A1φ2 =
λ2

Z
φ1

A∗
1φ0 = −λ3

Z
φ1 A∗

2φ1 = −λ4
Z

φ2

(18)

and can be easily reduced to equations in a single function

ZA2ZA∗
1φ0 = −λ1λ3φ0

ZA1ZA∗
2φ1 = −λ2λ4φ1

ZA∗
1ZA2φ1 = −λ1λ3φ1

ZA∗
2ZA1φ2 = −λ2λ4φ2

(19)

By taking into account that λ1λ3 = λ2λ4 = −λ2, one has further that the radial solutions
satisfy φ1 ≡ φ∗

1 , φ0 ≡ φ∗
2 . Therefore it suffices to solve two independent ordinary differential

equations. By expliciting the equations for φ0, φ1 one obtains respectively

Z
Z�2 (1 + 2E)φ��

0 +
[
(1 + 2E)

( 4
Z� −

ZZ��
Z�3

)
+

E�Z
Z�

]
φ�

0+

+
[ E�

Z� +
2 − λ2 + 4E

Z
+ k2Z + 2ik

√
1 + 2E

]
φ0 = 0 (20)

Z
Z�2 (1 + 2E)φ��

1 +
[
(1 + 2E)

( 4
Z� −

ZZ��
Z�3

)
+

E�Z
Z�

]
φ�

1+

+
[2E�

Z� + k2Z +
2 − λ2 + 4E

Z

]
φ1 = 0 (21)
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Note that the Robertson-Walker metric is a special case of the LTB metric with Y =
rR(t), Z(r) = r, 2E(r) = −ar2, (a = 0,±1). One can check that with this choice, eqs.
(20), (21) become exactly the separated radial equation of spin 1 field in RW metric that were
derived in (Zecca, 2005). In RW flat case, normal modes of the field equation, have also been
determined (Zecca, 2006a) and a quantization procedure developed leading to the possibility
of particle production in expanding universe (Zecca, 2009a). Consequently a simple extension
of the Standard Cosmological model has been proposed to include particle production (Zecca,
2010). Instead in the curved cases of the RW metric the eqs. (20), (21) have been solved by
reduction to Heun’s equation (Zecca, 2009a) without however succeding in determining the
normal modes.
In the LTB case, the solution of the radial equations seems quite difficult for a general E(r).
In particular this is due to the presence of the square root term in (20). One could try to
reduce the equations by expliciting, as assumed in (13), Z(r) = |E(r)|1/2 for E �= 0 and

Z(r) =
(
9m(r)/2

)1/3 for E = 0. However, even with these specifications into the radial
equations, the solution does not become easier.

5. Solution of the separated time equations

In the previous Sections the spin 1 field equation has been separated in the three classes
of LTB cosmological models, each of them depending on an arbitrary radial function. The
resulting time equations (14) are, contrarily to the radial equations, independent of any model
integration function. Therefore it seems usefull to give the explicit solution of the time
equations in each case. By setting B(t) = α(t)T2(t), γ(t) = A(t)T(t) the equations (14) can
be easily reported to the form

im0B = γ̇T − ikγ,

γ̈T + γ̇Ṫ + γ
(

m2
0T +

k2

T

)
= 0

(22)

In this way it suffices to solve the equation for γ(t) to obtain α(t) and A(t). The object is now
of integrating the equation (22) for γ by distinguishing according to the different situations of
E in (13).

5.1 Time equation for E = 0
Here T(t) = t2/3. When substituted into the equation for γ in (22) and then by setting s = t1/3

one obtains
dγ

ds2 + (9m2
0s4 + 9k2)γ = 0 (23)

The solution of (23) can be given by both odd and even regular functions that can be
determined by series. By setting γ = ∑∞

0 cnsn into (23) one has the recurrence relation

(n + 1)(n + 2)cn+2 + 9k2cn = 0, n = 0, 1, 2, 3,

(n + 1)(n + 2)cn+2 + 9k2cn + 9m2
0cn−4 = 0, n = 4, 5, . . .

(24)

Two independent integral γ0, γ1 can be obtaind by setting respectively c1 �= 0, c0 = 0 and
c0 �= 0, c1 = 0. As a consequence of the recurrence relation (24), the general solution is of
the form γ(s) = a0γ0(s) + a1γ1(s), γ0, γ1 being respectively an odd and an even function.
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The radius of convergence of the series is different from 0, on account of general results (e.g.,
Moon and Spancer, 1961; Magnus and Winkler, 1979). One has therefore the t dependence

γ0(t) = c1t
1
3 + c3t + c5t

5
3 + c7t

7
3 + . . .

A0(t) = γ0T−1 =
c1

t
1
3

+ c3t
1
3 + c5t + c7t

5
3 + . . .

(25)

and α0(t) = B0(t)T−2(t) where B0(t) follows from (25), the first equation (22) and the
expression of T(t). Similarly for α1(t), A1(t).

5.2 Time equation for E < 0
Since in the present case T(η) = 1 − cos η, t = η − sin η, the eq. (22) can be reported to a
differential equation in the variable η

d2γ

dη2 +
[
ν0 + ν1 cos η + ν2 cos 2η

]
γ = 0, 0 ≤ η ≤ 2π

ν0 =
3
2

m2
0 + k2, ν1 = −2m2

0, ν2 =
m2

0
2

(26)

Note that, by setting χ = η/2, the equation (26) assumes the form of a Wittaker-Hill equation
(Magnus and Winkler 1979) of period π;

d2γ

dχ2 +
[
λ0 + 4m̄q cos(2χ) + 2q2 cos(4χ)

]
γ = 0

λ0 = 4k2 + 3m2
0, q = ±m0, m̄ = ±2m0

(27)

The interest in this form of the equation lies in that it may have periodic solutions of period
π or 2π. However this possibility is prevented in the present case because the parameter
m̄ = ±2m0 is not, as required, an integer number (see e.g., Magnus and Winkler 1979, Theorem
7.9), m0 being the mass of the particle. Therefore it is convenient to solve directly eq. (26) by
series. It appears that a solution of (26) can be an odd or an even function, We consider
separately the cases. By setting γ(η) = ∑∞

0 c2nη2n into the equation for γ in (26), one obtains
for the coefficients the recurrence relation

(2n + 2)(2n + 1)c2n+2 + ν0c2n +
n

∑
j=0

(−1)j

(2j)!
[
ν1 + ν222j] c2n−2j = 0, n = 0, 1, 2, . . . (28)

If instead one looks for odd solutions, γ(η) = ∑∞
0 c2n+1η2n+1, one finds from (26) the

recurrence relation

(2n + 3)(2n + 2)c2n+3 + ν0c2n+1 +
n

∑
j=0

(−1)j

(2j)!
[
ν1 + ν222j] c2n+1−2j = 0, n = 0, 1, 2, . . . (29)

In both cases the coefficients are completely determined by the first one. To obtain γ(t) one
has to reverte the expression t = η − sin η to have η = η(t) to be substituted in the series
expression of the solution.
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ds2 + (9m2
0s4 + 9k2)γ = 0 (23)

The solution of (23) can be given by both odd and even regular functions that can be
determined by series. By setting γ = ∑∞

0 cnsn into (23) one has the recurrence relation

(n + 1)(n + 2)cn+2 + 9k2cn = 0, n = 0, 1, 2, 3,

(n + 1)(n + 2)cn+2 + 9k2cn + 9m2
0cn−4 = 0, n = 4, 5, . . .

(24)

Two independent integral γ0, γ1 can be obtaind by setting respectively c1 �= 0, c0 = 0 and
c0 �= 0, c1 = 0. As a consequence of the recurrence relation (24), the general solution is of
the form γ(s) = a0γ0(s) + a1γ1(s), γ0, γ1 being respectively an odd and an even function.
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The radius of convergence of the series is different from 0, on account of general results (e.g.,
Moon and Spancer, 1961; Magnus and Winkler, 1979). One has therefore the t dependence

γ0(t) = c1t
1
3 + c3t + c5t

5
3 + c7t

7
3 + . . .

A0(t) = γ0T−1 =
c1

t
1
3

+ c3t
1
3 + c5t + c7t

5
3 + . . .

(25)

and α0(t) = B0(t)T−2(t) where B0(t) follows from (25), the first equation (22) and the
expression of T(t). Similarly for α1(t), A1(t).

5.2 Time equation for E < 0
Since in the present case T(η) = 1 − cos η, t = η − sin η, the eq. (22) can be reported to a
differential equation in the variable η

d2γ

dη2 +
[
ν0 + ν1 cos η + ν2 cos 2η

]
γ = 0, 0 ≤ η ≤ 2π

ν0 =
3
2

m2
0 + k2, ν1 = −2m2

0, ν2 =
m2

0
2

(26)

Note that, by setting χ = η/2, the equation (26) assumes the form of a Wittaker-Hill equation
(Magnus and Winkler 1979) of period π;

d2γ

dχ2 +
[
λ0 + 4m̄q cos(2χ) + 2q2 cos(4χ)

]
γ = 0

λ0 = 4k2 + 3m2
0, q = ±m0, m̄ = ±2m0

(27)

The interest in this form of the equation lies in that it may have periodic solutions of period
π or 2π. However this possibility is prevented in the present case because the parameter
m̄ = ±2m0 is not, as required, an integer number (see e.g., Magnus and Winkler 1979, Theorem
7.9), m0 being the mass of the particle. Therefore it is convenient to solve directly eq. (26) by
series. It appears that a solution of (26) can be an odd or an even function, We consider
separately the cases. By setting γ(η) = ∑∞

0 c2nη2n into the equation for γ in (26), one obtains
for the coefficients the recurrence relation

(2n + 2)(2n + 1)c2n+2 + ν0c2n +
n

∑
j=0

(−1)j

(2j)!
[
ν1 + ν222j] c2n−2j = 0, n = 0, 1, 2, . . . (28)

If instead one looks for odd solutions, γ(η) = ∑∞
0 c2n+1η2n+1, one finds from (26) the

recurrence relation

(2n + 3)(2n + 2)c2n+3 + ν0c2n+1 +
n

∑
j=0

(−1)j

(2j)!
[
ν1 + ν222j] c2n+1−2j = 0, n = 0, 1, 2, . . . (29)

In both cases the coefficients are completely determined by the first one. To obtain γ(t) one
has to reverte the expression t = η − sin η to have η = η(t) to be substituted in the series
expression of the solution.
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5.3 Time equation for E > 0
By expressing now the unknown function γ in terms of η with T(η) = cosh η − 1, t = sinh η −
η, (η > 0), the γ-equation in (22) becomes

d2γ

dη2 +
[
m2

0(cosh η − 1)2 + k2]γ = 0 (30)

that can be put into the form

d2γ

dη2 +
[
σ0 + σ1 cosh η + σ2 cosh 2η

]
γ = 0

σ0 = k2 +
3
2

m2
0, σ1 = −2m2

0, σ2 =
m2

0
2

(31)

The last equation can be integrated by series by distinguishing again between even and odd
solutions. By setting γ1(η) = ∑∞

0 c2nη2n into (31) one has the recurrence relation for the
coefficients cn’s

(2n + 2)(2n + 1)c2n+2 + (σ0 + σ1 + σ2)c2n +
n

∑
j=1

c2n−2j

(2j)!
(
σ1 + σ222j) = 0, n = 0, 1, 2, . . . (32)

Instead by setting γ1(η) = ∑∞
0 c2n+1η2n+1 into (31) one has

(2n + 3)(2n + 2)c2n+3 + (σ0 + σ1 + σ2)c2n+1 +
n

∑
j=1

c2n+1−2j

(2j)!
(
σ1 + σ222j) = 0, n = 0, 1, .. (33)

Here the general solution, γ(t) = a1γ1(t) + a2γ2(t), follows again by expressing η = η(t) into
γ1(η), γ2(η).

5.3.1 Time equation for E > 0 and large t
In the present case one can also determine the behaviour of the situation for large t (large η).
To that end, by setting y = exp η, the equation (30) becomes

d2γ

dy2 +
1
y

dγ

dy
+

[m2
0

4
− m2

0
1
y
+

k2 + 3m2
0/2

y2 − m2
0

y3 +
m2

0
4

1
y4

]
γ = 0 (34)

that is in a suitable form for the mentioned purpose. By looking for asymptotic solutions of
the form

γ(η) = yδ eχ
∞

∑
n=0

c−n

yn (35)

one finds, by inserting into eq. (34),

χ =
−1 ±

√
1 − m2

0

2
, δ = ± m2

0√
1 − m2

0

(36)
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Therefore by considering the dominant term in (35), one has, for y → ∞

γ(y) ∼ y
± m2

0√
1−m2

0 e
−1±

√
1−m2

0
2 y (37)

that is a decaying behaviour, except for m0 = 1 in which case the approximation is not valid.
Note that for large t, t ∼ eη/2 = y/2 so that the behaviour (37) is also the same of that of γ(t)
for large t.

6. Remarks and comments

In the previous Sections the spin 1 field equation has been separated in LTB space-times and
reduced to ordinary differential equations in one variable. The angular dependence of the
wave spinor factors out in a general LTB metric. Due to spherical symmetry it is the same that
the corresponding one in Robertson-Walker and Schwarzschild metric. The further separation
of the time and radial coordinates has been possible in LTB cosmologies for which the physical
radius has the factorised form Y = Z(r)T(t). This assumption still let the LTB comological
model depend on an arbitrary function E(r) (or m(r)). As a consequence the separated time
dependence is essentially unique in the sense that it depends only on the sign of E or on its
vanishing. The time equations have been separated and integrated in all cases.
Instead the radial dependence is reported to the solution of two independent ordinary
differential equations that explicitly depend on E. The choice E(r) = 0, Z(r) = r, T(t) = R(t)
(R(t) the radius on the universe in the RW metric) reduces the scheme to a special case
of the RW space-time. In this case the radial equations can be explicitly solved (Zecca,
2005). Moreover if one considers toghether with (1) also its complex conjugate equation,
a scalar product, induced by a conserved current, can be defined between solutions of (1).
Correspondingly normal modes can be defined, that are the base for a quantization of the
scheme. In turn this implies that particle creation is possible and that the number of one mode
created particles per unit time in expanding universe is proportional to Ṙ(t)/R(t) (Zecca,
2009a). These results, applied to the present LTB scheme with E = 0, R(t) = T(t) = t2/3, give
that the number of one mode created particles per unit time is proportional to Ṫ/T = 2/(3t).
Suppose now E �= 0. The procedure of the mentioned RW case, can be applied to define a
scalar product between solution of (1), as induced by the conserved current (Zecca, 2006a;
2009a). This product finally factorizes in a product of reduced scalar products in a single
variable as a consequence of the assumption Y = Z(r)T(t). By taking into account the
orthogonality relation (9) for the angular solutions, the relation (15) for the time dependence
and by proceeding as in Zecca, 2006a, one is finally left with a one dimensional scalar product
for the solutions of the radial equations (20), (21). If the assumptions on E(r) are such that
the solutions of (20), (21) result ortho-normal in the reduced scalar product, then one recover
a set of normal mode for the solutions of (1). Accordingly, a quantization procedure can be
devoloped as in the flat RW case (Zecca, 2009a). On account of the complete analogy of the
two schemes, again one obtains the results of Zecca (2009a) with the substitution R(t) → T(t).
Therefore (with the mentioned suitable choice of E) the balance n(t) of one mode created and
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for large t.

6. Remarks and comments

In the previous Sections the spin 1 field equation has been separated in LTB space-times and
reduced to ordinary differential equations in one variable. The angular dependence of the
wave spinor factors out in a general LTB metric. Due to spherical symmetry it is the same that
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of the time and radial coordinates has been possible in LTB cosmologies for which the physical
radius has the factorised form Y = Z(r)T(t). This assumption still let the LTB comological
model depend on an arbitrary function E(r) (or m(r)). As a consequence the separated time
dependence is essentially unique in the sense that it depends only on the sign of E or on its
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Instead the radial dependence is reported to the solution of two independent ordinary
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a scalar product, induced by a conserved current, can be defined between solutions of (1).
Correspondingly normal modes can be defined, that are the base for a quantization of the
scheme. In turn this implies that particle creation is possible and that the number of one mode
created particles per unit time in expanding universe is proportional to Ṙ(t)/R(t) (Zecca,
2009a). These results, applied to the present LTB scheme with E = 0, R(t) = T(t) = t2/3, give
that the number of one mode created particles per unit time is proportional to Ṫ/T = 2/(3t).
Suppose now E �= 0. The procedure of the mentioned RW case, can be applied to define a
scalar product between solution of (1), as induced by the conserved current (Zecca, 2006a;
2009a). This product finally factorizes in a product of reduced scalar products in a single
variable as a consequence of the assumption Y = Z(r)T(t). By taking into account the
orthogonality relation (9) for the angular solutions, the relation (15) for the time dependence
and by proceeding as in Zecca, 2006a, one is finally left with a one dimensional scalar product
for the solutions of the radial equations (20), (21). If the assumptions on E(r) are such that
the solutions of (20), (21) result ortho-normal in the reduced scalar product, then one recover
a set of normal mode for the solutions of (1). Accordingly, a quantization procedure can be
devoloped as in the flat RW case (Zecca, 2009a). On account of the complete analogy of the
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annihilated particles per unit of time is

n(t) ∝
Ṫ
T

=
sinh η

(cosh η − 1)2 ; t = sinh η − η, η > 0, E > 0 (38)

n(t) ∝
Ṫ
T

=
sin η

(1 − cos η)2 ; t = η − sin η, 0 ≤ η ≤ 2π, E < 0 (39)

Therefore, for an LTB cosmology for which Ẏ = Z(r)Ṫ(t) �= 0 particle production is non
trivial. Note that for these models one has

Y ∝ Z(r) t
2
3 , t → 0 (40)

n(t) ∝
Ṫ
T

∝
2
3

1
t

, t → 0 (41)

for both E > 0 and E < 0. Hence the cosmological model admits a big bang origin at time
t = 0 and, if particle production is taken for grant, there is, near the big bang origin, an
enormous production of particles that does not depend on the sign of E. This is in some way
the converse of what happens in the flat RW metric where particle production is possible for
different cosmological dynamics, but with a well defined spatial configuration.
We now briefly comment the separation method employed here. The complete separation of
(6) has been done under the special condition (12) for which the physical radius results to
be factorized in the time and radial dependence. It would be interesting to know whether
the mentioned condition is also in some sense necessary to obtain separated time and radial
equations. This would throw also light in the separation of scalar and Dirac field equations
that can be separated in LTB models under the same condition (Zecca, 2009; 2001). Solutions
of (6) not involving Y-factorizations would be as well of interest.
Another point is the problem of the separation of field equations of spin values higher than 1
in LTB models. This is attractive because the explicit recursive structure of (4) is the same that
in the Robertson-Walker metric that in turn is a special case of the general recursive structure
for field equations of arbitrary spin (Zecca, 2009). However, as mentioned in the introduction,
the presence of a non vanishing Weyl spinor as it happens in LTB metric (e. g., Penrose and
Rindler, 1984; Zecca, 2000a) requires a more complex formulation of the field equation for
spin greater than 1 (see e. g., Illge, 1993 and references therein). Also in this case it would
be interesting to know whether the condition (11) still plays a central role for the separation
of the equation, at least in the simplest case of spin s = 3/2. The problem is currently under
investigation.
As final comment, if particle production is taken for grant, its effect is of modifying
the gravitational dynamics of the universe. Therefore it should be taken into account
in the formulation of a cosmological model. A precise formulation of the gravitational
modification seems problematic. The previous quantization scheme does indeed foresee
particle production but it does not specify where and with what density the particles are
produced. However, by mediating over possible spatial distributions, a simple modification
of the Standar Cosmological model has been proposed by an ansatz on the definition of energy
density and of the pressure of the universe (Zecca, 2010).
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1. Introduction

The Dilaton field is a scalar partner of the graviton in the context of superstring theory (1).
Then, the background fields in the vacuum state of this theory should involve its component
in common with the metric ones in the basic action (2; 3). To the simplest approximation
the Dilaton is a massless scalar field showing a special sort of interaction with the matter
modes. This type of coupling, determines that a time varying Dilaton induces time-dependent
coupling constants. Therefore, to overcome this difficulty this field should remain constant at
the current stage of cosmological evolution. In addition, unless it becomes very massive, its
existence can imply an observable kind of "Fifth force", being similar to the ones which are
currently associated to the observations of the Dark Matter. The constraints posed by current
experimental observations determine the lower bound on the mass of the Dilaton to be of the
order m < 10−12GeV (4) . However, there are attempts to make a time dependent Dilaton
consistent with late time cosmology (see (5)).
Therefore, the Dilaton stabilization problem has been the objective of an intense research
activity in recent times due to its physical relevance. It can be emphasized that the Dilaton
is one of various scalar fields emerging from the formulation of superstring theory in its
low-energy limit. Scalar fields describing the sizes and shapes of the extra spatial dimensions
associated in this theory are also arising, and are called "moduli fields". The stabilization of
such moduli fields has also been the object of recent attention, specially in connection with
Type IIB superstring theory. The introduction of fluxes within the compactification spaces has
made it possible to stabilize various moduli fields (7). Moreover, gaugino condensation effects
(8) has been argued to stabilize the Dilaton field in the framework of heterotic superstring
theory (9) and also in string gas cosmology (10).
It can be underlined that, since Dilaton stabilization has special relevance for late time
cosmology, there is motivation for finding mechanisms which do not directly rest on the
concrete assumptions defining the nature of the extra dimensions. Further motivation to
search for alternative Dilaton stabilization mechanisms appears in connection with String Gas
Cosmology (SGC). The SGC (11; 12) is a model of early universe cosmology which employs
new degrees of freedom and symmetries of string theory, and couples these elements with
gravity and Dilaton fields into a classical action model. The Universe is assumed to start as a
compact space filled with a gas of strings. Then, because in string theory there is a maximal
temperature for a gas of closed strings, the cosmological evolution in SGC starts from a phase
of almost constant temperature, called the "Hagedorn phase". The SGC allows to define a
non-singular cosmology in which there is no initial Big Bang explosion. Also, it has been
identified that the thermal fluctuations in a gas of closed strings in the Hagedorn phase gives
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justification to the observed scale-invariant spectrum of cosmological fluctuations in Nature
(13; 14), by adding a particular prediction of a slight blue tilt for gravitational waves (15). In
this, the consistency of the picture also requires that the Dilaton field be stabilized during the
Hagedorn phase. Therefore, in the SGC theory the Dilaton is also required to be fixed at very
early times as well as at very late times.
In the present review chapter I will resume the conclusions of two studies previous done in
common with various collaborators, in connection with the Dilaton vacuum field. They were
presented in Refs. (32; 33). Each of these works assumes different properties for the Dilaton
field as described below in the following two subsections:

1.1 a) Small mass Dilaton
In the discussion done in (32), which will be resumed in the section 2 of this chapter, the
Dilaton field was assumed to show a small mass. Therefore a static solution of the KG equation
for the Dilaton in interaction with gravity and dust matter was searched in that work. The
configuration found showed a large region of homogeneity close to a central symmetry point,
which becomes increasingly spatially varying at large distances. The existence of this static
solution essentially rests on the presence of an interaction of the Dilaton field with pressureless
matter. The solution obtained was a generalization of one formerly investigated in Ref. (18; 19)
in the absence of matter. The special behavior of the scalar field in such works led to the
proposal made in Ref. (18) about considering it as representing the Dilaton of the string theory
(20). The idea came from the arising circumstance that when you fix the value of the scalar
field (which have dimension of mass) at the central symmetry point to be at the Planck scale,
by also requiring an amount of Hubble effect similar to the experimental one, the radius of
existence of the solution gets a value R = 1028cm which is near the radius of the Universe.
Also very much curious is that the values of KG mass of the scalar field obtained by fixing the
above parameters, results to be of the order of 1/R. That is, a very small value which seems
compatible with a very tiny mass acquired by the Dilaton due to boundary conditions or non
perturbative effects, which could deviate its mass from its vanishing first approximation.
It should be remarked that the assumption about the isotropic and homogeneous nature of our
Universe, that is the Cosmological Principle, is central to modern Cosmology (16). However,
recent experimental observations suggest the possibility for the break down of the validity
of the principle at large scales (17). Accepting such a breaking will become necessary if the
obtained solution result to be realized in Nature. Various static models of the Universe have
been considered. Among them are the ones of Einstein, Le Maitre and de’Sitter, respectively.
Originally, Einstein (16) examined a Universe filled of uniformly distributed matter but
obtained a non-static metric. This result motivated him to introduce in his equations the
Cosmological Constant term λ, with the objective of allowing the obtaining of a static solution.
In connection with the solution discussed in (32) it follows that the centrally symmetric static
scalar field which satisfies the Einstein-Klein-Gordon equations (EKG), curves the space time
in a form resembling the one in the de’Sitter space in a large neighborhood of the origin
of coordinates (19). The fact that the scalar field is more weakly varying along the radial
distances when its value at the origin is lower is an interesting arising property to underline.
The associated densities of energy and pressure are positive and negative respectively and
weakly varying, approximating the presence of a positive Cosmological Constant. These
properties suggested the idea proposed in (18) about considering the Dark Energy (DE) as
described by a scalar field in this approximately homogeneous field configuration studied
in (19). As mentioned before, this assumption will determine the abandoning of the
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Cosmological Principle in favor of what could be imagined as a kind of "Matryoshka" model
of the Universe. In this conception, proposed in (18; 19), we could be living inside of a
particular configuration in which the Dilaton field has a definite value resulted from the
collapse of string matter in fermionic states. Then, the idea comes to the mind about that
the Dilaton field could be radiated by the string matter in fermionic states under the extreme
conditions of the collapse of fermion matter. The effective realization of this picture in Nature,
could lead to the possibility that the astrophysical black-holes (by example the ones which are
expected to exist near the centers of the Galaxies) could be no other things that small Universes
in which the Dilaton field gets a different value to the external one. This change could be
produced again by the collapse of fermion matter in falling to the collapsed configuration,
upon the possible radiation of zero angular momentum modes, that is of the Dilaton to furnish
the variation of the internal Dilaton field. We find this picture as an interesting one and think
that its exploration is worth considering. One point to note, is that the proposed collapsed
structures would resemble the so called "gravastars" in Refs. (35; 36). At this point it might be
helpful to underline that given that the above recurrent picture is realized in Nature, supports
the interest of the ideas argued in Ref. (37), about the connections between the cosmological
constant and the quantum behavior of matter in such internal universes.
An important outcome emerged in the examination of the problem, is that the coexistence of
the scalar field as described by the EKG equations including also the dust energy momentum
tensor does not allow the existence of static solutions, at least in centrally symmetric
configurations, in the absence of Dilaton - matter interaction (26). However, when the
interaction is allowed a solution appears. The introduction of the coupling does not damage
the almost homogenous character of the solution in a relative large region around the origin
of the central symmetry, being far away form the limits of the Universe. Another interesting
outcome is that the distributions of matter and Dilaton field both show a very close behavior.
That is, the scalar field is able to sustain an amount of matter being almost proportional
between them.

1.2 a) Large mass stabilized by matter Dilaton
In Ref. (33), which results will be reviewed in section 3 of this chapter, in an alternative way
as in Ref. (32), the possibility for the Dilaton to acquire an appreciable mass due to its generic
interaction with the matter fields was investigated. In other words, the idea which motivated
this study was the universal type of coupling of the Dilaton to the matter fields. This property,
could not only lead to an unwanted effect as the mentioned time-dependence of the coupling
constants, but it also can give the possibility that quantum effects due to the interaction of the
Dilaton with matter, could generate interesting contributions to the Dilaton effective potential.
This question was started to be explored in Ref. (28). That work considered the cosmological
periods when the additional spatial dimensions of superstring theory were already stabilized
and the study was done in the framework of a four-dimensional field theory. The main
objective of study was then the interaction of the Dilaton with massive fermions. These masses
can be defined by fluxes through internal manifolds. Also, in late time cosmology, the masses
could had been generated after supersymmetry breaking. In an alternative early universe
cosmology, one may also take into account fermion masses generated by thermal effects. Ref.
(28) considered a simple form for the Dilaton gravity action in which a massive Dirac fermion
term was included (29). The Einstein frame, was chosen which does not show Dilaton field
dependence in the kinetic terms for the fermions. Alternatively, the fermion mass becomes a
function of the Dilaton through an universal exponential factor in Dilaton gravity (2; 3). The
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chosen action described the low energy effective interaction of Super-Yang-Mills fermions
with the Dilaton field in superstring theory (28). The effective potential for the Dilaton field
was evaluated up to two loop corrections in the small Dilaton radiative quantum field limit.
That leads to a Yukawa like interaction term which allows standard QFT calculations. A fixed
value of the cosmological scale factor was assumed. The outcome of the work was, thanks
to the appearing of logarithms in the loop calculations, that the Dilaton field appeared in the
result in powers multiplied by the exponential factors of the field. This structure, in the one
loop approximation clearly indicated the spontaneous generation of vacuum mean value of
the Dilaton field.
Motivated by the dynamical generation of the Dilaton result in Ref. (28), in Ref. (33) we
addressed the evaluation of next corrections 3-loop terms to the 2-loop evaluation of the
effective potential for the Dilaton field. The main issue explored in this work was the
possibility of the appearance in the improved potential of stabilizing effects which were in fact
absent in the second order correction, and which are suspected to be created by the existence
of massive matter upon the mean value of the Dilaton.
The results obtained indicated, for the fermion mass being selected at the GUT or the top
quark mass scales, that the mean value of the Dilaton field tends to be stabilized at a high value
being close to the Planck mass or the GUT scale, respectively. Therefore, it was suggested
that the appearance of mass for matter in the course of the evolution of the Universe can
generate a stabilizing action on the vacuum expectation value of the Dilaton field making
it unobservable. This effect will tend to stop the time evolution of the mean value, as it is
convenient for String Theory consistency.
It should be remarked that in in Ref. (33), in the process of extending the work to include

higher loop corrections, we have noticed that in Ref. (28), the kinetic term of the Dilaton
Lagrangian was chosen with a negative sign. This selection, although not changing the one
loop correction, led to a sign modification of the 2-loop terms, which suggested the existence
of minima in the effective action argued in Ref. (28). However, in spite of this non physical
adopted assumption, the indication about the dynamical generation in Ref.(28) remained a
valid one, because the change in the metric did not affected the one-loop correction, the basic
quantity indicating the dynamical generation effect. The results of the work in Ref. (33) and
reviewed in this chapter, corrected the evaluation of the two loop term, and indicated that its
place in the stabilizing effect over the Dilaton field is played by higher order contributions.
The exposition of section 3 will proceed as follows: In subection 3.1, the notation and basic
formulation are given. Subsection 3.2 presents the elements of the one, two and three loops
evaluation of the effective potential. Subsection 3.3 discuss the results of the evaluation. In
the concluding subsection 3.4 the conclusions of the work are resumed and commented.

2. A cosmological model with a nearly massless Dilaton field

As remarked in the introduction this section 2 will resume the discussion of the work (32)
in which the Dilaton field was assumed as a scalar field obeying the Einstein-Klein-Gordon
equations in which the mass is assumed to be small. It should be underlined that this
previous assumption resulted in radical contrast with the outcome of the later work reported
in (33), which will be also reviewed in this chapter. However, the appearance of a large mass
suggested by the discussion done in (33), as it will commented at the last section of the chapter
devoted to the conclusions, could not result to be excluding some of the most motivating
suggestions advanced in Ref. (32).
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Given the isotropic and stationary character of the solution which was searched in Ref. (32),
the structure of the metric was proposed in the standard form

ds2 = v(ρ)dxo2 − u(ρ)−1dρ2 − ρ2(sin2θdϕ2 + dθ2),

xo = ct, x1 = ρ, (1)

x2 = ϕ, x3 ≡ θ, (2)

from which the components of the Einstein tensor Gμν were computed. Since the metric tensor
is diagonal and only depending on ρ, the only non vanishing components of Gμν resulted in

G0
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ρ
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The components G2
2 and G3

3 generated second order equations in the temporal component of
the metric, which explicitly did not played an important role thanks to the Bianchi identities
(16)

Gν
μ;ν = 0, (3)

which were employed in the discussion. Assumed the satisfaction of the Einstein equations
the Gν

μ tensor was substituted by the energy momentum tensor Tν
μ . Equation (3) was

interpreted as a set of dynamical equations for the variables of the problem e, p and φ.

2.1 Matter and Dilaton dark energy
In this subsection let us sketch the way followed in (32) for obtaining two of the necessary
equations needed to show the existence of the mentioned static model for the Universe: the
Bianchi relations (3) and the static equation for the scalar field coupled to matter.
The action for the scalar field-matter in the given space time was written in the form

Smat−φ =
∫

L
√−gd4x, (4)

where g is the determinant of the metric tensor, and it was considered that the Lagrangian
density was taking the form:

L =
1
2
(gαβφ,αφ,β + m2φ2) + jφ + Le,p. (5)

The first and the third terms of the right member of (5) are the Lagrangian densities of the
KG scalar field and the dust-like matter respectively, while the second term was an interaction
term between both quantities which was assumed to exist. The strength of the interaction was
represented by the constant source j. Note that, the existing coupling of the Dilaton to matter
fields made this supposition a natural one in our case in which the scalar field was considered
as representing the Dilaton.
As it was previously mentioned we assumed for the matter, the perfect fluid expression (16):

(Te,p)
ν
μ = p δν

μ + uνuμ(p + e), (6)
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2. A cosmological model with a nearly massless Dilaton field
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Given the isotropic and stationary character of the solution which was searched in Ref. (32),
the structure of the metric was proposed in the standard form

ds2 = v(ρ)dxo2 − u(ρ)−1dρ2 − ρ2(sin2θdϕ2 + dθ2),

xo = ct, x1 = ρ, (1)

x2 = ϕ, x3 ≡ θ, (2)

from which the components of the Einstein tensor Gμν were computed. Since the metric tensor
is diagonal and only depending on ρ, the only non vanishing components of Gμν resulted in

G0
0 =

u�
ρ
− 1 − u

ρ2 ,

G1
1 =

u
v

v�
ρ
− 1 − u

ρ2 ,

G2
2 = G3

3 =
u
2v

v�� + uv�
4v

(
u�
u

− v�
v
) +

u
2ρ

(
u�
u

+
v�
v
).

The components G2
2 and G3

3 generated second order equations in the temporal component of
the metric, which explicitly did not played an important role thanks to the Bianchi identities
(16)

Gν
μ;ν = 0, (3)

which were employed in the discussion. Assumed the satisfaction of the Einstein equations
the Gν

μ tensor was substituted by the energy momentum tensor Tν
μ . Equation (3) was

interpreted as a set of dynamical equations for the variables of the problem e, p and φ.

2.1 Matter and Dilaton dark energy
In this subsection let us sketch the way followed in (32) for obtaining two of the necessary
equations needed to show the existence of the mentioned static model for the Universe: the
Bianchi relations (3) and the static equation for the scalar field coupled to matter.
The action for the scalar field-matter in the given space time was written in the form

Smat−φ =
∫

L
√−gd4x, (4)

where g is the determinant of the metric tensor, and it was considered that the Lagrangian
density was taking the form:

L =
1
2
(gαβφ,αφ,β + m2φ2) + jφ + Le,p. (5)

The first and the third terms of the right member of (5) are the Lagrangian densities of the
KG scalar field and the dust-like matter respectively, while the second term was an interaction
term between both quantities which was assumed to exist. The strength of the interaction was
represented by the constant source j. Note that, the existing coupling of the Dilaton to matter
fields made this supposition a natural one in our case in which the scalar field was considered
as representing the Dilaton.
As it was previously mentioned we assumed for the matter, the perfect fluid expression (16):

(Te,p)
ν
μ = p δν

μ + uνuμ(p + e), (6)
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where p was the pressure of the matter. Note that in the work it was assumed a pressureless
matter p = 0. However, for bookkeeping purposes, it was employed the expression for a
general pressure p up to the end when the limit p = 0 was fixed.
As usual uν denoted the contra-variant components of the 4-velocity of the fluid in the system
of reference under consideration. In addition since the search for static configurations was
undertaken, the 4-velocity took the simple form uν = δν

0 .
From the Lagrangian L in (5) and the above remarks the energy momentum tensor of the
scalar field coupled with the matter got the form

Tν
μ = − δν

μ

2
(gαβφ,αφ,β + m2φ2 + 2j φ)

+ gανφ,αφ,μ + pδν
μ + δν

0 δ0
μ(p + e). (7)

From equation (7), the Bianchi relation for μ = 1 in (3) transformed in

−φj� + p� + v�
2v

(p + e) = 0.

In case under consideration this is the only one of the four Bianchi relations which became
different from zero.
The dynamical equation for the scalar field determining the extremum of the action Smat−φ,
resulted in the form

δSmat−φ

δφ
≡ d

dxμ

∂L
∂φ,μ

− ∂L
∂φ

≡ 1√−g
∂

∂xμ (
√−ggμνφ,ν)− m2φ − j

= 0, (8)

which after introducing the components of the metric tensor was simplified to become

uφ�� + uφ�(1
2

v�
v
+

1
2

u�
u

+
2
ρ
)− m2φ − j = 0.

Note that if u = v = 1, that is, in Minkowski space, relation (9) reduces to the static KG
equation for scalar field interacting with an external source j. It might be helpful to notice
that natural units

[e] = [p] = cm−4, [m] = cm−1, [φ] = cm−1,

were employed.

2.2 Einstein equations
The extremum of the action Smat−φwith respect to the metric led to the Einstein equations in
the absence of a Cosmological Constant

Gν
μ = G Tν

μ , (9)

where in natural units G = 8π × l2
p and lp = 1.61 × 10−33cm is the Planck length.
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From relation (7), the Einstein equations (9) were expressed in the form

u�
ρ
− 1 − u

ρ2 = −G[
1
2
(uφ2

,ρ + m2φ2 + 2jφ) + e], (10)

u
v

v�
ρ
− 1 − u

ρ2 = G[
1
2
(uφ2

,ρ − m2φ2 − 2jφ) + p ]. (11)

As it was mentioned above, the third Einstein equation was not needed for determining the
solution, because its satisfaction was implied by the other equations. This expression only
imposed the continuity of the derivative of v with respect to the radial variable since it is a
second order differential equation.
It was assumed that j , which gives the form of the interaction term between the dark energy
and matter is of the form:

j = g
√

e,

where g is a coupling constant for the interaction matter-scalar field. In the natural system of
units [g] = cm−1.
With the aim of working with dimensionless forms of the equations (10) and (11), we defined
the new variables and parameters

r ≡ mρ, Φ ≡
√

8πlpφ,

J ≡
√

8πlp

m2 j, � ≡ 8πl2
p

m2 e, γ ≡ g
m

.

Also, it was fixed the small mass of the Dilaton field to the value estimated in Ref. (18)
for assuring the observed strength of the Hubble effect in the regions near the origin.
Interestingly, this value resulted in the very small quantity, m = 4 × 10−29cm−1 . This mass
is compatible with the zero mass Dilaton in the lowest approximation. In addition the mass
was of the order of the inverse of the estimated radius of the Universe, as it was observed in
Ref. (18).
Therefore, the set of working equations resulted in the form

u,r

r
− 1 − u

r2 = − 1
2
(uΦ,r

2 + Φ2)− JΦ − �, (12)

u
v

v,r

r
− 1 − u

r2 = − 1
2
(−uΦ,r

2 + Φ2 + 2JΦ), (13)

�
v,r

2v
− ΦJ,r = 0, (14)

uΦ,rr − Φ − J = −uΦ,r(
1
2

v,r

v
+

1
2

u,r

u
+

2
r
). (15)

2.3 The solutions near the center of symmetry
In Ref. (32) it was searched for smooth solutions around the origin. Thus, the continuity of the
derivatives v and φ, in all places including the origin, was required. Then, after considering
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2.3 The solutions near the center of symmetry
In Ref. (32) it was searched for smooth solutions around the origin. Thus, the continuity of the
derivatives v and φ, in all places including the origin, was required. Then, after considering
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the equations in a neighborhood of the origin, the asymptotic field values were written in the
form

u = 1 + u1r2...,

v = 1 + v1r2...,

Φ = Φ0 + Φ1r2...,

� = �0 + �1r2...,

where u1, v1, Φ1, �1 after substitution of the asymptotic solution in the equations were
determined in the form

u1 = − 1
3
(

Φ2
0

2
+ J0Φ0 + �0), (16)

v1 = − 1
3
(

Φ2
0

2
+ J0Φ0 − �0

2
), (17)

Φ1 = − 1
6
(Φ0 + J0), (18)

�1 = − �
3
2
0

3γΦ0
(

Φ2
0

2
+ J0Φ0 − �0

2
), (19)

J0 = γ�
1
2
0 .

Note that the spacial dependence of the metric tends to have an homogeneous structure near
the center of symmetry. The quantities Φ0, �0 and the dimensionless coupling constant γ
remained as free parameters. Extensions of this work, could be considered to optimize the
parameters, aiming to compare the predictions of the model with redshift vs. stelar magnitude
in the supernovae obervations. In the next subsection we resume the study done about the
behavior of the solution at all radial distances for given physically motivated values of the
parameters.

2.4 The solutions at a arbitrary radial values
The numerical solutions of the equations (12)-(15) were considered, by selecting the parameter
values γ = −0.75, Φ0 = 2.2 and �0 = 1. These specific choosing corresponded to a coupling
constant g = 2.9 × 10−29cm−1, a value of the scalar field at the origin φ0 = 2.7 × 1032cm−1

(that is, laying at the Planck scale) and a matter energy density of e = 2.3 × 107cm−4. The
determined numerical solutions of the equations (12)-(15) are illustrated in the figures (1)-(4).

These parameters were a priori selected with the aim of fixing the estimated value of 0.7/0.3
for the ratio of the Dark Energy to the matter energy content in the Universe (27) and an
approximate value of the Hubble effect.
From Fig. (1) the global similarity between the space-time being examined and the de Sitter
static solution can be observed. Moreover, due to the chosen value of the Dilaton mass
suggested in Ref. (18), the size of the Universe (defined as the radial distance at which
the singularity of the structure appears) is of the order of the estimated value 1029cm. In
Fig.(2) the dependence of the temporal metric is shown, it evidenced that the observer near
the origin measures a redshift which was imposed to show a value being near to the one
currently observed.
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Fig. 1. The radial contraviant component of the metric g11 ≡ u(r) behaved basically as in the
deSitter Universe having the size R ≡0.25×1029cm.
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Fig. 2. Temporal component of the metric g00 ≡v(r). Its decreasing behavior shows the
redshift of the light arriving to the central zone regions from the outside regions. The radius
of the singularity at the far away regions is R ≡0.25×1029cm.

Figures (3) and (4) illustrate the obtained distribution of energy and scalar field respectively.
Note the similarity between both quantities. That is, the presence of the Dilaton-Matter
coupling not only allowed the existence of the static solution, but in addition it also produced
a configuration in which the proportion of matter and dark energy became approximately
constant over large regions of the space time.

3. Large mass Dilaton stabilization by matter

As it had been mentioned in the Introduction, this section will review the results of the work
presented in Ref. (33) . In this study it was investigated the possibility that the Dilaton
could be stabilized at large values and masses as a direct consequence its universal type of
interaction with matter. The review will be ordered as follows: In subsection 3.1, the notation
and basic formulation employed in Ref. (33) will be given. Subsection 3.2 will review the
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Fig. 3. The matter distribution e(r) resulted as slowly varying with the radial distance. The
coupling between the scalar field and the matter J Φ was central in allowing the existence of
the static solution, in which also the matter to Dark energy content ratio resulted a slowly
varying. The radial singularity defining the end of the space time at R = 0.25 × 1029cm.
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Fig. 4. The scalar field slowly varied with the radial component and behaved very closely
with the matter density e(r); The radial singularity defining the end of the space time is at
R = 0.25 × 1029cm. There is no static metric with Dilaton and matter in coexistence without
interaction.

elements of the one, two and three loops evaluation of the effective potential. The subsection
3.3 discuss the results of the evaluations done.

3.1 The Dilaton action and generating functional
In Ref. (33) it was considered a model of the Dilaton field interacting with fermion matter in
the form

S =
∫

d4x
√
−g(x)(

1
2κ2 gμν(x)∂μφr(x)∂νφr(x) + Ψ(x)(i

gμνγμ
←→
∂ ν

2
− m)Ψ(x)

−Ψ(x)g∗Y φr(x)Ψ(x) + j(x)φr(x) + Ψ(x)η(x) +η(x)Ψ(x)), (20)
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m = exp(α∗ φ)m f , (21)

g∗Y = α∗ m, (22)

α∗ = − 3
4

, (23)

xμ = (x0, x1, x2, x3),
←→
∂ =

−→
∂ −←−

∂ ,
�

γμ, γν
�
= 2gμν(x), (24)

gμν(x) =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ ,

�
−g(x) = 1. (25)

That is, we considered the Dilaton field interacting with a massive fermion in the Einstein
frame, in which the metric gμν was approximated by the Minkowski one in order to simplify
the evaluations. The gravitational constant was explicitly introduced, and natural units were
employed for the distances and mass. The vacuum value of the Dilaton field is named as φ
and its radiative part is called φr. Note that is was assumed that the radiative part is small in
order to retain only the first term in the expansion of the exponential. This was the Yukawa
approximation which was employed in Ref. (33). All the results are functions of the vacuum
field φ.
The parameter defining the Dilaton field dependent exponential, the Planck length κ = lP and
mass mP were defined by the expressions

κ2 =
8πGh

c3 , (26)

κ = lP =
1

mP
= 8.10009 × 10−33 cm, (27)

G = 6.67 × 10−8 cm3 g−1 s−2, (28)

h̄ = 1.05457 × 10−27 cm2 g s−1, (29)

c = 2.9979245800 × 1010 cm s−1. (30)

In the above formula for the action, the coordinates and times are measured in cm, the masses
m in the natural unit cm−1 and the Dilaton field is dimensionless.
Starting from the classical action, the work considered corrections up to 3-loops for the
effective action, assuming a homogenous and time independent value of the Dilaton mean
field φ as

Γ[φ]
V(4)

= −Ve f f (φ), (31)

where V(4) is the four dimensional volume. In order to eliminate the explicit appearance of
the gravitational constant from the diagram technique for evaluating the effective action, its
appearance was eliminated from the equations by redefining the Dilaton field value, the α∗
constant and the coupling as

ϕ = φ/κ, (32)

α = α∗κ = − 3
4

κ, (33)

gY = g∗Yκ. (34)

263On the Dilaton Stabilization by Matter



10 Cosmology book 2

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

1.4

Ε vs.r

Fig. 3. The matter distribution e(r) resulted as slowly varying with the radial distance. The
coupling between the scalar field and the matter J Φ was central in allowing the existence of
the static solution, in which also the matter to Dark energy content ratio resulted a slowly
varying. The radial singularity defining the end of the space time at R = 0.25 × 1029cm.

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3
� vs.r

Fig. 4. The scalar field slowly varied with the radial component and behaved very closely
with the matter density e(r); The radial singularity defining the end of the space time is at
R = 0.25 × 1029cm. There is no static metric with Dilaton and matter in coexistence without
interaction.

elements of the one, two and three loops evaluation of the effective potential. The subsection
3.3 discuss the results of the evaluations done.

3.1 The Dilaton action and generating functional
In Ref. (33) it was considered a model of the Dilaton field interacting with fermion matter in
the form

S =
∫

d4x
√
−g(x)(

1
2κ2 gμν(x)∂μφr(x)∂νφr(x) + Ψ(x)(i

gμνγμ
←→
∂ ν

2
− m)Ψ(x)

−Ψ(x)g∗Y φr(x)Ψ(x) + j(x)φr(x) + Ψ(x)η(x) +η(x)Ψ(x)), (20)

262 Aspects of Today´s Cosmology On the Dilaton Stabilization by Matter 11

m = exp(α∗ φ)m f , (21)

g∗Y = α∗ m, (22)

α∗ = − 3
4

, (23)

xμ = (x0, x1, x2, x3),
←→
∂ =

−→
∂ −←−

∂ ,
�

γμ, γν
�
= 2gμν(x), (24)

gμν(x) =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ ,

�
−g(x) = 1. (25)

That is, we considered the Dilaton field interacting with a massive fermion in the Einstein
frame, in which the metric gμν was approximated by the Minkowski one in order to simplify
the evaluations. The gravitational constant was explicitly introduced, and natural units were
employed for the distances and mass. The vacuum value of the Dilaton field is named as φ
and its radiative part is called φr. Note that is was assumed that the radiative part is small in
order to retain only the first term in the expansion of the exponential. This was the Yukawa
approximation which was employed in Ref. (33). All the results are functions of the vacuum
field φ.
The parameter defining the Dilaton field dependent exponential, the Planck length κ = lP and
mass mP were defined by the expressions

κ2 =
8πGh

c3 , (26)

κ = lP =
1

mP
= 8.10009 × 10−33 cm, (27)

G = 6.67 × 10−8 cm3 g−1 s−2, (28)

h̄ = 1.05457 × 10−27 cm2 g s−1, (29)

c = 2.9979245800 × 1010 cm s−1. (30)

In the above formula for the action, the coordinates and times are measured in cm, the masses
m in the natural unit cm−1 and the Dilaton field is dimensionless.
Starting from the classical action, the work considered corrections up to 3-loops for the
effective action, assuming a homogenous and time independent value of the Dilaton mean
field φ as

Γ[φ]
V(4)

= −Ve f f (φ), (31)

where V(4) is the four dimensional volume. In order to eliminate the explicit appearance of
the gravitational constant from the diagram technique for evaluating the effective action, its
appearance was eliminated from the equations by redefining the Dilaton field value, the α∗
constant and the coupling as

ϕ = φ/κ, (32)

α = α∗κ = − 3
4

κ, (33)

gY = g∗Yκ. (34)
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After these changes, the above written classical action S, to be used for generating the
Feynman expansion, was expressed as follows

S [Ψ, Ψ, ϕr, ϕ] =
∫

d4x (
1
2

gμν(x)∂μ ϕr(x)∂ν ϕr(x) + Ψ(x)(i
gμνγμ

←→
∂ ν

2
− m)Ψ(x)

−Ψ(x)gY ϕr(x)Ψ(x) + j(x)( ϕ + ϕr(x)) + Ψ(x) η(x) +η(x) Ψ(x)). (35)

The expansion was considered in d = 4 − 2� dimensions for implementing dimensional
regularization scheme. Accordingly, the coupling constant gY was modified by the
introduction of the regularization scale parameter μ as follows

g2
Y = μ2�(g0

Y )2,

where g0
Y is the usual coupling constant in four dimensions.

3.1.1 The generating functional and the effective action
In this subsection, we will sketch the main expressions defining the perturbative calculation
which was considered in Ref. (33). The generating functional of the Green functions Z , its
connected part W and the mean field values were defined by the formulae

Z[η, η, j] =
∫

DΨDΨDϕr exp(i S [Ψ, Ψ, ϕr, ϕ]), (36)

W[η, η, j] =
1
i

log Z[η, η, j], (37)

δ W
i δj(x)

= ϕ + �ϕr(x)�, (38)

δ W
i δη(x)

= �Ψ(x)�, (39)

δ W
−i δη(x)

= �Ψ(x)�. (40)

Note that the mean Dilaton field ϕ was considered as homogeneous and the mean value of
the radiative part �ϕr(x)� was assumed to vanish when the sources are zero. The effective
action was defined as the Legendre transform of Z depending on the mean field values as:

Γ[�Ψ�, �Ψ�, ϕ + �ϕr�] = 1
i

log Z[η, η, j]−
∫

dx[j(x)( ϕ + �ϕr(x)�) +
�Ψ(x)� η(x) +η(x) �Ψ(x)� ], (41)

δ Γ
δ�ϕr(x)� = −j(x), (42)

δ Γ
δ�Ψ(x)� = −η(x), (43)

δ Γ
δ�Ψ(x)� = η(x). (44)

The expression for Z, after writing the Yukawa vertex part of the Lagrangian in terms of the
functional derivatives over the sources and integrating the gaussian functional integral that
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remains, led to the Wick expansion formula:

Z[η, η, j] = exp [i
∫

dx gY
δ

iδj(x)
δ

−iδη(x)
δ

iδη(x)
]×

exp
[∫

dx dy (η(x)S(x − y)η(y) +
1
2

j(x)D(x − y)j(y))
]

, (45)

S(x − y) =
∫ dpd

(2π)d
exp(−i p.(x − y))

m − γμ pμ
, (46)

D(x − y) =
∫ dkd

(2π)d
exp(−i k.(x − y))

−(k2 − i�)
, (47)

in which S and D are the fermion and Dilaton free propagators, respectively. The notation
for fermions and scalar field related quantities, and the definition of the Feynman rules for
the generation of the analytic expressions for the various contributions, were exactly the
ones described in Ref. (30), for the cases of scalar and fermion fields. Specifically, for
the momentum space rules, the propagators and the only existing vertex are graphically
illustrated in figure 5.

Fig. 5. The figure illustrates the Feynman rules for the particular Yukawa model
approximation adopted for the Dilaton action in Ref. (33)

3.2 Effective potential evaluation
Let us resume in this section the evaluations of the effective potential for the Dilaton field
done in Ref. (33). They followed after employing the perturbative expansion described in the
past section. The diagrams which were considered are depicted in Fig. 6. They included
up to three loops corrections. The contributions were exactly evaluated for the one and two
loops terms. In addition, the three loop term D32 also was analytically calculated in terms
of Master integrals. However, the three loop diagrams D31 and D33 were determined only

in their leading terms of order log
(

m
μ

)3
. We expect to be able in evaluating the non leading
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corrections (lower powers of log
(

m
μ

)
) in extending the work done in Ref.(33). The results for

each diagram are reviewed in various subsections below.

Fig. 6. The one, two and three loops Feynman diagrams considered in Ref. (33) . The one and
two loop corrections D1 and D2 were exactly calculated. In the case of the three loops terms,
the D32 was completely evaluated in terms of the listed Master integrals in Ref. (31). The D31
and D33 were determined only in their leading logarithm correction.

3.2.1 One loop term D1

The analytic expression for the one loop diagram D1 and its derivative over m2 had the forms

Γ(1) = V(d)
∫ dpd

(2π)di
Tr log(m2 − p2), (48)

d
d m2 Γ(1) = 4V(d)

∫ dpd

(2π)di
1

m2 − p2 . (49)

The result for the momentum integral entering in the derivate of Γ(1) over m2, after divided by
μ2� V(d) (in order to define a 4-dimensional energy density) and integrated over m2, allowed
to write for the one loop effective action density the expression (See Ref. (31))

γ1(m, �, μ) ≡ Γ(1)

μ2�V(d)
= m4(

m
μ
)−2� 8π2−�

(2π)4−2�
Γ (−1 + �) . (50)

After employing the minimal substraction (MS) scheme, that is, getting the finite part by
eliminating the pure pole part in � the Laurent expansion of γ(m, �) and taking the limit
� → 0, the one loop contribution to the effective action density as a function of m and μ
becomes written in the form

γ1(m, μ) = 0.0506606m4
(

2. log
(

m
μ

)
− 2.95381

)
. (51)
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Note that the negative of this term, which defines the one loop effective potential led to
a the dynamical generation of the Dilaton field for positive values of α∗ φ as follows from
log(m) = log(m f ) +α∗ φ. This was the effect which motivated the study started in Ref. (28).

3.2.2 Two loop term D2
For the two loop contribution D2 the analytic expression was

γ2(m, �, μ) ≡ Γ(2)

μ2�V(d)
=

1
2
(g0

Y )2
∫ dpd

1
(2π)di

dpd
2

(2π)di
4(m2 + p1.p2)

(m2 − p2
1)(m

2 − p2
2)(p1 − p2)2

=
1
2
(g0

Y )2m2d−4
∫ dqd

1
(2π)di

dqd
2

(2π)di
4(1 + q1.q2)

(1 − q2
1)(1 − q2

2)(q1 − q2)2

= 2(g0
Y )2m4m−4�(2

∫ dqd
1

(2π)di
dqd

2
(2π)di

1
(1 − q2

1)(1 − q2
2)(q1 − q2)2

−

− 1
2
(
∫ dqd

1
(2π)di

1
(1 − q2

1)
)2), (52)

where the identity q1.q2 = 1
2 (q

2
1 − 1 + q2

2 − 1) + 1 − 1
2 (q1 − q2)

2 was employed. The two
momentum integrals appearing in the last line are the simplest Master integrals for scalar
fields as listed in Ref. (31). The results for them in that reference are:

∫ dqd
1

(2π)di
dqd

2
(2π)di

1
(1 − q2

1)(1 − q2
2)(q1 − q2)2

=
(d − 2)(π)dΓ

(
1 − d

2

)2

2(d − 3)(2π)2d
, (53)

∫ dqd
1

(2π)di
1

(1 − q2
1)

=
(π)

d
2 Γ

(
1 − d

2

)

(2π)d . (54)

They allowed to write for the regularized two loop effective action density the expression

γ2(m, �, μ) = −m4(
m
μ
)−4� 2(g0

Y )2(π)d

(2π)2d (− d − 2
d − 3

+
1
2
)Γ

(
1 − d

2

)2
. (55)

Expanding in Laurent series in � and disregarding the pole part in the limit � → 0, led in Ref.
(33) to the two loop perturbative contribution to the effective action

γ2(m, μ) = 0.0000200507(g0
Y )2m4 (48. log2

(
m
μ

)
− 173.783 log

m
μ

+ 183.83 ). (56)

As it was noted in the Introduction, in Ref. (28) it was employed an inappropriate negative
kinetic term for the Dilaton field. This change, although not affecting the one fermion loop
contribution, which is not altered by the sign of the boson propagator, drastically modified
the sign of the two loop term which linearly depends on the Dilaton propagator. In the
previous evaluation, the two loop terms determined the existence of minima for the Dilaton
potential. Therefore, the consequence of the change in sign fixed by the consideration in Ref.
(33) of the correct positive kinetic energy term, should be further investigated in connection
with the existence of stabilizing minima for the scalar field. This circumstance determined
the motivation for the new three loop corrections considered in Ref. (33) and reviewed in this
chapter.
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3.2.3 Three loops terms
Let us resume the evaluation of the three loop terms in Ref. (33).

3.2.4 Diagram D32
The D32 term is the only of the 3-loops diagrams which is not composed of two fermion or
boson self energy insertions connected in series. For the D31 and D33 cases we had difficulties
in reducing their contributions to a linear combination of tabulated Master integrals. This
obstacle only allowed us to calculate their leading term in the expansion in log(m

μ ). However,
for D32 it was possible to express it as a sum over the Master integrals given in Ref. (31). The
analytic expression of the diagram was

Γ(32) = −V(d) 1
4
(gY)

4
∫ dpd

1
(2π)di

dpd
2

(2π)di
dpd

3
(2π)di

×

Tr
[
(m + pμ

2 γμ)(m + (pμ
2 + pμ

3 − pμ
1 )γμ)(m + pμ

3 γμ)(m + pμ
1 γμ)

]

(m2 − p2
1)(m

2 − p2
2)(m

2 − p2
3)(m

2 − (p2 + p3 − p1)2)(p1 − p3)2(p1 − p2)2

= −V(d) 1
4
(gY)

4
∫ dpd

1
(2π)di

dpd
2

(2π)di
dpd

3
(2π)di

× (57)

m4 + c1(p1, p2, p3)m2 + c2(p1, p2, p3)

(m2 − p2
1)(m

2 − p2
2)(m

2 − p2
3)(m

2 − (p2 + p3 − p1)2)(p1 − p3)2(p1 − p2)2
,

c1(p1, p2, p3) = 3p2.p3+p1.p2 + p1.p3 + p2
2 + p2

3 − p2
1 (58)

c2(p1, p2, p3) = p2
1 p2.p3 + p2

2 p1.p3 + p2
3 p1.p2 − 2 p1.p2 p1.p3. (59)

After defining

z1 = p2
1 − m2,

z2 = p2
2 − m2,

z3 = p2
3 − m2,

z4 = (p1 − p2)
2,

z5 = (p1 − p3)
2,

z6 = (p2 − p1 + p3)
2 − m2, (60)

and employing various vectorial identities expressing the squares of the differences between
any two momenta in terms of the scalar product between them and the squares of the
considered momenta, the integral defining Γ32 was written as follows

Γ32 = −V(d) 1
4
(gY )4

∫ dpd
1

(2π)di
dpd

2
(2π)di

dpd
3

(2π)di
×

m4 + c1(z) m2 + c2(z)
z1 z2 z3 z4 z5 z6

,

z = (z1, z2, z3, z4, z5,z6), (61)

c1(z) =
3
2
(z1 + z2 + z3 + z6)− 2( z4 + z5) + 6m2, (62)

c2(z) =
1
2
(z1z6 + z2z3 − z4z5 + m2(z1 + z2 + z3 + z6) + 2m4). (63)
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Therefore, there exist one or two z factors in the denominator that can be canceled by the
terms of the quadratic polynomial in these quantities. This property allowed the integral to
be decomposed in a linear combination of the Master integrals listed in Ref. (31). The result
for the action density

γ32(m, μ, �) =
Γ(32)

μ2�V(d)
(64)

was expressed in terms of only five of them as follows

γ32(m, μ, �) = −(g0
Y )4 m4

(
m
μ

)−6� (
8I1(�) + 8I2(�)− 4I3(�) + I5(�)− I7(�)

2

)
,

where the functions I1(�), I2(�), I3(�), I5(�) and I7(�) resulted to be given by

I1(�) =
2−3(4−2�)−9π− 3

2 (4−2�)(5(4 − 2�)− 18)M1(�)
3

1 − 2�
+ (65)

2−3(4−2�)−6π−3(4−2�)(3(4 − 2�)− 10)(3(4 − 2�)− 8)
(

M5(�)− 8�
2(4−2�)−7 M4(�)

)

�2 ,

I2(�) = − 2−3(4−2�)−2π−3(4−2�)

1 − 2�

(
M1(�)

3(2 − 2�)2

1 − 2�
+ (3(4 − 2�)− 8)M4(�)

)
, (66)

I3(�) = − 2−3(4−2�)−3π−3(4−2�)

�

(
2(2 − 2�)2 M1(�)

3

1 − 2�
+ (3(4 − 2�)− 8)M5(�)

)
, (67)

I5(�) = (2π)−3(4−2�)M4(�), (68)

I7(�) = (2π)−3(4−2�)M5(�),

in terms of the Master integrals (See Ref. (31)):

M1(�) = π
1
2 (4−2�)Γ

(
1
2
(2� − 4) + 1

)
, (69)

M2(�) = − (2 − 2�) M1(�)
2
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Γ
(

1
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Γ
(

1
2 (2� − 2)

) M1(�)
3, (72)
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3
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2
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7
24
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+

136π4
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+

1
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−256Li4(
1
2
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3.2.3 Three loops terms
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where the special functions Lin( 1
2 ) and ζ(n) are defined as

Lin(x) =
∞

∑
k=1

1
2kkn , (74)

ζ(n) =
∞

∑
k=1

1
kn . (75)

Finally, the application of the before described MS procedure led to the following formula for
the contribution to the vacuum effective action density of the diagram D32

γ32(m, μ) = (g0
Y)

4m4 (0.0000329114 log5
(

m
μ

)
− 0.000105904 log4

(
m
μ

)
+

0.0000165851 log3
(

m
μ

)
+ 0.000441159 log2

(
m
μ

)

−0.00074347 log
(

m
μ

)
+ 0.000388237). (76)

It can be noted that this term has a high quintic power of log5(m
μ ) which was determined by

the also high pole of the � expansion present in the function I1. This represents the highest

power of the log
(

m
μ

)
expansion appearing in the results. The next higher power, the fourth

one, also is arising in this term.

3.2.5 Diagram D31
We were not able to exactly evaluate this contribution (and also the one associated to D33) in
terms of Master integrals. Therefore, for both of these terms we limited ourself to evaluate

their leading terms in the expansion in powers of log
(

m
μ

)
. For this purpose, use was made

of the circumstance that (at variance with D32, but in coincidence with the case of D33)
this term corresponds to a loop formed by two one loop self-energy insertions. Since these
self-energy terms are explicitly calculable in terms of hypergeometric functions, both terms
were expressed as single momentum integral in d dimensions. The diagram had the original
analytic expression

Γ31 = −V(d) 1
2
(gY)

4
∫ dpd

1
(2π)di

dpd
2

(2π)di
dpd

3
(2π)di

×

Tr
[
(m + pμ

2 γμ)(m + pμ
1 γμ)(m + pμ

3 γμ)(m + pμ
1 γμ)

]

(m2 − p2
1)

2(m2 − p2
2)(m

2 − p2
3)(p1 − p3)2(p1 − p2)2

= −V(d) 1
2
(gY)

4
∫ dpd

1
(2π)di

dpd
2

(2π)di
dpd

3
(2π)di

×

m4 + d1(p1, p2, p3)m2 + d2(p1, p2, p3)

(m2 − p2
1)

2(m2 − p2
2)(m

2 − p2
3)(p1 − p3)2(p1 − p2)2 , (77)

d1(p1, p2, p3) = p2
1 + 2p1.p2 + 2p1.p3 + p2.p3 , (78)

d2(p1, p2, p3) = 2 p1.p2 p1.p3 − p2
1 p2.p3. (79)

270 Aspects of Today´s Cosmology On the Dilaton Stabilization by Matter 19

Then, it was defined the fermion self-energy integral and its related vector as follows

s31(p2) =
∫ dpd

1
(2π)di

1
(m2 − p2

1)(p1 − p)2

= − π
d
2

(2π)d Γ(�)
∫ 1

0
dx x−�(m2 − p2(1 − x)− iδ)−�

=
π

d
2

(2π)d Γ(�)(m2)−�
2F1(1 − �, �, 2 − �,− ( p

m )2

1−( p
m )2 )

� − 1
, (80)

vμ(p2) =
∫ dpd

1
(2π)di

p1μ

(m2 − p2
1)(p1 − p)2

= a(p2) pμ, (81)

a(p2) =
p2 + m2

2p2 s31(p2)− L(m, �)

2p2 , (82)

L(m, �) =
∫ dpd

1
(2π)di

1
(m2 − p2

1)
=

π
d
2 md−2

(2π)d Γ(1 − d
2
). (83)

In the above expressions, the Feynman parametric integral was explicitly evaluated by
employing the algebraic calculation program Mathematica. After again defining the action
density contribution as

γ31(m, μ, �) =
Γ(31)

μ2�V(d)
, (84)

performing the Wick rotation in the momenta and extracting the d-dimensional solid angle
arising form the angular integrals, this quantity is expressed as the integral

γ31(m, μ, �) = −
2(g0

Y)
4
(

m
μ

)−6 �
c(m, �)

�2

∫ ∞

0

p3−2�

(p2 + 1)2 f (p, �)dp, (85)

f (p, �) = �2 f1(p, �)Γ(�)2 + f2(p, �) � Γ(�) + f3(p, �), (86)

f1(p, �) = (1 − p2)(3 − (1 − p2)2

4p2 )(s∗31(p2, �))2, (87)

f2(p, �) = (2 − (1 − p2)2

2p2 )s∗31(p2, �)L∗(�), (88)

f3(p, �) = −
(
1 − p2)2

(L∗(�))2

4p2 , (89)

s∗31(p, �) = −
22�−4π

1
2 (4−2�)+2�−4

2F1

(
1 − �, �; 2 − �; p2

p2+1

)

� − 1
, (90)

c(m, �) =
22�−3m4π

1
2 (4−2�)+2�−4

Γ
(

1
2 (4 − 2�)

) , (91)

L∗(�) = �L(1, �). (92)
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As it was mentioned before, we were not able yet to find an epsilon expansion (rigorous
or sufficiently approximated numerical one) allowing to exactly evaluate this integral after
removing the regularization. Therefore, in order to determine an approximation for γ31 we
have made use of an assumption suggested by an exploration done about the asymptotic
power expansion at infinity of the integrand as a function of the momentum integration
variable p. It followed that all the terms of the expansion after integrated, show a single
pole structure in their Laurent expansion in �. Then, it suggests that the full divergence of the
integral at d = 4 is defined by a single pole in �. Assuming this property, the extraction of the
leading correction in log(m

μ ) should be defined by the maximal power of log(m
μ ) appearing

in the coefficient of the zero order term in the expansion of the modified integral γ31(m, μ, �)

γ∗
31(m, μ, �) = −

2(g0
Y)

4
(

m
μ

)−6 �
c(m, 0)

�2

∫ ∞

0

p3−2�

(p2 + 1)2 f (p, 0)dp. (93)

Note that any other power of � in the expansions of c(m, �) and f (p, �) will reduce the
maximal order of the negative powers of epsilon in the full expansion of γ31(m, μ, �), which
determines the leading correction in the expansion. For f (p, 0) it followed

f (p, 0) =
p4

1024π4 − 17p2

1024π4 +
7

256π4 − 1
256π4 p2 . (94)

Then, the use of the formula

∫ ∞

0

p3−2�+m

(p2 + 1)2 dp = −π

4
(m − 2� + 2) csc(

π

2
(m − 2�)), (95)

which shows the 1
� singularity, allowed to write for γ31 the leading logarithm correction to its

finite part

γ31(m, μ) = −0.0000228551(g0
Y )

4 m4 log3
(

m
μ

)
. (96)

3.2.6 Diagram D33
As it was remarked before, this term was treated in a similar way as it was D31. Now, the
corresponding self-energy insertions were boson ones. Again, the two self-energy loops were
explicitly calculable in terms of hypergeometric functions. The starting analytic expression of
the diagram was

Γ33 = V(d) 1
4
(gY)

4
∫ dpd

(2π)di
dpd

1
(2π)di

dpd
2

(2π)di
× 1

(p2)2

Tr[(m + pμ
1 γμ)(m + (p + p1)

νγν)]Tr[(m + pμ
2 γμ)(m + (p2 + p)νγν)]

(m2 − p2
1)

2(m2 − (p1 + p)2)(m2 − p2
2)

2(m2 − (p2 + p)2)
,

= V(d)4(gY)
4
∫ dpd

(2π)di
dpd

1
(2π)di

dpd
2

(2π)di
× 1

(p2)2 ×

(m2 + p1.(p1 + p))(m2 + p2.(p2 + p))
(m2 − p2

1)
2(m2 − (p1 + p)2)(m2 − p2

2)
2(m2 − (p2 + p)2)

, (97)
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where the fermion traces were evaluated for writing the second form of the integral. The last
expression evidenced the decomposition in two serial self-energy terms.
After rotating to Euclidean space the momenta variables of the integration regions and the
external momentum, the fermion selfenergy integral and its related vector integral were
written as follows (See Ref. (30))

s33(q
2, �) =

∫ dqd
1

(2π)di
1

(m2 + q2
1)(m

2 + (q + q1)2

=
(m)−2�

(4π)
d
2

Γ(�)
∫ 1

0
dx (1 + (

q
m
)2x(1 − x))−�

=
(m)−2�

(4π)
d
2

Γ(�)F (
q2

m2 ),

F (q2) =
∫ 1

0
dx (1 + q2x(1 − x))−�

= −
2−�−1(q +

√
q2 + 1)(1 − q√

q2+1
)�F1(1 − �, �, 2 − �, 1

2 (
q√

q2+1
+ 1))

q(� − 1)
−

2−�−1(q −√
q2 + 1)(1 + q√

q2+1
)�F1(1 − �, �, 2 − �, 1

2 (− q√
q2+1

+ 1))

q(� − 1)
,

v33μ(p2) =
∫ dpd

1
(2π)di

p1μ

(m2 − p2
1)(m

2 − (p + p1)2

= a(p2) pμ,

a(p2) = − 1
2

s33(p2, �).

Again the result for parametric Feynman integral was analytically evaluated thanks to
the use of the algebraic calculation program Mathematica. Thus, after extracting the
Euclidean angular integrals and performing some transformations, the effective action density
contribution

γ33(m, μ, �) =
Γ(33)

μ2�V(d)
(98)

was expressed as single momentum integral in the range (0,∞) as follows

γ33(m, μ, �) =
4c(m, �)(g0

Y)
4
(

m
μ

)−6�

�2

∫ ∞

0
dp

p3−2�

(p2 + r2)
2 g(p, �), (99)

g(p, �) = �2g1(p, �)Γ(�)2 + g2(p, �) � Γ(�) + g3(p, �), (100)

g1(m, �) =

(
p2

2
+ 2

)2

s∗33(p, �)2, (101)

g2(m, �) = −2
(

p2

2
+ 2

)
L(�) s∗33(p, �), (102)
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in the coefficient of the zero order term in the expansion of the modified integral γ31(m, μ, �)

γ∗
31(m, μ, �) = −

2(g0
Y)

4
(

m
μ

)−6 �
c(m, 0)

�2

∫ ∞

0

p3−2�

(p2 + 1)2 f (p, 0)dp. (93)

Note that any other power of � in the expansions of c(m, �) and f (p, �) will reduce the
maximal order of the negative powers of epsilon in the full expansion of γ31(m, μ, �), which
determines the leading correction in the expansion. For f (p, 0) it followed

f (p, 0) =
p4

1024π4 − 17p2

1024π4 +
7

256π4 − 1
256π4 p2 . (94)

Then, the use of the formula

∫ ∞

0

p3−2�+m

(p2 + 1)2 dp = −π

4
(m − 2� + 2) csc(

π

2
(m − 2�)), (95)

which shows the 1
� singularity, allowed to write for γ31 the leading logarithm correction to its

finite part

γ31(m, μ) = −0.0000228551(g0
Y )

4 m4 log3
(

m
μ

)
. (96)

3.2.6 Diagram D33
As it was remarked before, this term was treated in a similar way as it was D31. Now, the
corresponding self-energy insertions were boson ones. Again, the two self-energy loops were
explicitly calculable in terms of hypergeometric functions. The starting analytic expression of
the diagram was

Γ33 = V(d) 1
4
(gY)

4
∫ dpd

(2π)di
dpd

1
(2π)di

dpd
2

(2π)di
× 1

(p2)2

Tr[(m + pμ
1 γμ)(m + (p + p1)

νγν)]Tr[(m + pμ
2 γμ)(m + (p2 + p)νγν)]

(m2 − p2
1)

2(m2 − (p1 + p)2)(m2 − p2
2)

2(m2 − (p2 + p)2)
,

= V(d)4(gY)
4
∫ dpd

(2π)di
dpd

1
(2π)di

dpd
2

(2π)di
× 1

(p2)2 ×

(m2 + p1.(p1 + p))(m2 + p2.(p2 + p))
(m2 − p2

1)
2(m2 − (p1 + p)2)(m2 − p2

2)
2(m2 − (p2 + p)2)

, (97)
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where the fermion traces were evaluated for writing the second form of the integral. The last
expression evidenced the decomposition in two serial self-energy terms.
After rotating to Euclidean space the momenta variables of the integration regions and the
external momentum, the fermion selfenergy integral and its related vector integral were
written as follows (See Ref. (30))

s33(q
2, �) =

∫ dqd
1

(2π)di
1

(m2 + q2
1)(m

2 + (q + q1)2

=
(m)−2�

(4π)
d
2

Γ(�)
∫ 1

0
dx (1 + (

q
m
)2x(1 − x))−�

=
(m)−2�

(4π)
d
2

Γ(�)F (
q2

m2 ),

F (q2) =
∫ 1

0
dx (1 + q2x(1 − x))−�

= −
2−�−1(q +

√
q2 + 1)(1 − q√

q2+1
)�F1(1 − �, �, 2 − �, 1

2 (
q√

q2+1
+ 1))

q(� − 1)
−

2−�−1(q −√
q2 + 1)(1 + q√

q2+1
)�F1(1 − �, �, 2 − �, 1

2 (− q√
q2+1

+ 1))

q(� − 1)
,

v33μ(p2) =
∫ dpd

1
(2π)di

p1μ

(m2 − p2
1)(m

2 − (p + p1)2

= a(p2) pμ,

a(p2) = − 1
2

s33(p2, �).

Again the result for parametric Feynman integral was analytically evaluated thanks to
the use of the algebraic calculation program Mathematica. Thus, after extracting the
Euclidean angular integrals and performing some transformations, the effective action density
contribution

γ33(m, μ, �) =
Γ(33)

μ2�V(d)
(98)

was expressed as single momentum integral in the range (0,∞) as follows

γ33(m, μ, �) =
4c(m, �)(g0

Y)
4
(

m
μ

)−6�

�2

∫ ∞

0
dp

p3−2�

(p2 + r2)
2 g(p, �), (99)

g(p, �) = �2g1(p, �)Γ(�)2 + g2(p, �) � Γ(�) + g3(p, �), (100)

g1(m, �) =

(
p2

2
+ 2

)2

s∗33(p, �)2, (101)

g2(m, �) = −2
(

p2

2
+ 2

)
L(�) s∗33(p, �), (102)
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g3(m, �) = L(�)2, (103)

s∗33(p, �) =
s33(p, �)

Γ(�)
, (104)

c(m, �) =
22�−3m4π

1
2 (4−2�)+2�−4

Γ
(

1
2 (4 − 2�)

) , (105)

L(�) =
π2−�

(2π)4−2�
Γ(−1 + �). (106)

Finally, by employing a similar procedure for extracting the leading logarithmic correction in

log
(

m
μ

)
for D31, the analogous contribution for D33 followed in the form

γ33(m, μ) = −0.000329114 (g0
Y)

4 m4 log3
(

m
μ

)
.

3.3 Discussion of the results
This subsection resume the results obtained in Ref. (33) for the effective action density. The
total effective potential value v(m, μ), resulted to be given by the sum of all the evaluated
terms after changing their sign. The total potential and its various contributions were written
as follows

v(m, μ) = v1(m, μ) + v2(m, μ) + v31(m, μ) + v33(m, μ) + v32(m, μ), (107)
v1(m, μ)

m4 = −γ1(m, μ)

m4

= −0.0506606
(

2. log
(

m
μ

)
− 2.95381

)
, (108)

v2(m, μ)

m4 = −γ2(m, μ)

m4

= −0.0000200507(g0
Y )

2(183.83 − 173.783 log
(

m
μ

)
+ 48. log2

(
m
μ

)
), (109)

v31(m, μ)

m4 = −γ31(m, μ)

m4 = 0.0000228551(g0
Y )

4m4 log3
(

m
μ

)
, (110)

v33(m, μ)

m4 = −γ33(m, μ)

m4 = 0.000329114(g0
Y )

4m4 log3
(

m
μ

)
, (111)

v32(m, μ)

m4 = −γ32(m, μ)

m4

= − (g0
Y)

4m4 10−3(0.0329114 log5
(

m
μ

)
− 0.105904 log4

(
m
μ

)

+ 0.0165851 log3
(

m
μ

)
+ 0.441159 log2

(
m
μ

)
−

0.74347 log
(

m
μ

)
+ 0.388237). (112)
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The renormalization point for μ was chosen at the same value of the fermion mass m f , under

consideration, that is Log(
m f
μ )− > 0. Also, it was defined a new scaled scalar field Φ and

interaction parameter g by mean of

Φ = αϕ, (113)

g0
Y = αm = g exp(Φ), (114)

g = αm f . (115)

Then, the evaluated total contribution to the effective potential for the Dilaton v(m, μ) was
expressed as a function v(Φ, g) as follows

v(Φ, g)
m4

f

≡ v(m, μ)

m4
f

= − 0.0000329114e8Φ g4Φ5 + 0.000105904e8Φ g4Φ4

+0.000289673e8Φ g4Φ3 + e4Φ
(
−0.000441159e4Φ g4 − 0.000962436e2Φ g2

)
Φ2 +

e4Φ
(

0.00074347e4Φ g4 + 0.00348448e2Φ g2 − 0.101321
)

Φ +

e4Φ
(
−0.000388237e4Φ g4 − 0.00368594e2Φ g2 + 0.149642

)
. (116)

New functions u5, u4 and u3 representing approximations of the potential were defined in the
form

u5(Φ, g)
m4

f

=
v(Φ, g)

m4
f

, (117)

u4(Φ, g)
m4

f

= 0.000105904e8Φ g4Φ4 + 0.000289673e8Φ g4Φ3 +

e4Φ
(
−0.000441159e4Φ g4 − 0.000962436e2Φ g2

)
Φ2 +

e4Φ
(

0.00074347e4Φ g4 + 0.00348448e2Φ g2 − 0.101321
)

Φ +

e4Φ
(
−0.000388237e4Φ g4 − 0.00368594e2Φ g2 + 0.149642

)
, (118)

u3(Φ, g)
m4

f

= + 0.000289673e8Φ g4Φ3 +

e4Φ
(
−0.000441159e4Φ g4 − 0.000962436e2Φ g2

)
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e4Φ
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0.00074347e4Φ g4 + 0.00348448e2Φ g2 − 0.101321
)

Φ +

e4Φ
(
−0.000388237e4Φ g4 − 0.00368594e2Φ g2 + 0.149642

)
. (119)

Note that u5 coincided v and is of order five in the powers of Φ. The function u4, u3 were
defined as retaining only all the terms up to order Φ4 and Φ3 respectively of the original
function u5 . Therefore, these functions basically correspond to the expansion of order five,

four and three in powers of log
(

m
μ

)
. They were defined in order to study the influence of

increasing the order of the perturbative expansion in powers of log
(

m
μ

)
.
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Note that u5 coincided v and is of order five in the powers of Φ. The function u4, u3 were
defined as retaining only all the terms up to order Φ4 and Φ3 respectively of the original
function u5 . Therefore, these functions basically correspond to the expansion of order five,

four and three in powers of log
(

m
μ

)
. They were defined in order to study the influence of

increasing the order of the perturbative expansion in powers of log
(

m
μ

)
.
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To evidence the dependence on Φ and g of the three functions (after divided by the common
factor m4

f ), they were plotted in figure 7. The range of values of g = m f α was chosen (0, 1) as
suggested by the fact that α is of the order of the Planck length and thus the physical values
of the considered fermion mass are expected to determine g to be smaller than one. The
plot of u5 showed that there is a threshold value of g, below which the potential exhibits
minima tending to stabilize the vacuum mean value of the Dilaton field. This behavior
was also shown by the approximated potentials u4 and u3, a fact that indicated that after
disregarding the higher quintic and quartic terms in the expansion in log(m

μ ), the existence of
Dilaton stabilizing minima is not affected.
When considering the full evaluated potential curve u5, illustrated at the top plot of figure 7,
it can be observed that after lowering the g value below a critical threshold, the minimum
as a function of Φ stops to exist at a critical value gmin. However, in the case of u4 and u3, the
minimum exists for arbitrary values of g− > 0. That is, when the potential approximation
is bounded from below, the potential shows stabilizing minima at any small value of g close
to zero. The field value at the minima grow when the coupling tends to vanish. It can be
noted, that the non bounded from below character of the approximated potential calculated, is
determined by the fact that the quintic power of Φ correction turned to be negative. However,
the physical system under consideration is one in which the total effective potential can be
expected to show an exact bounded from below character. Thus, the next corrections are
expected to exhibit a bounded from below behavior. In accordance with this expectation, in
studying the g dependence at small values, we employed the approximated potential function
u4, assuming that it represents a reasonably good approximation of the exact potential.

3.4 Dilaton field and mass for m f at the GUT scale
In Ref. (33) it was firstly considered that the highest fermion mass m f is given by the GUT
mass scale

m f = mGUT = 5.06773 × 1029cm−1

≡ 1016 GeV, (120)

which produced for the coupling g the value

g = m f α = − 3
4

κ mGUT = −0.0030789542773.

The potential u4 as a function of the field Φ for this particular value of g is shown in figure 8.
The minimum of the curve determined an estimate for the vacuum value of the Dilaton field
given by

Φvac = 5.8576156 = α ϕvac, (121)

ϕvac = − 4
3

5.8576156
1
κ

. (122)

This result indicated that the vacuum mean value of the Dilaton field, after assuming that the
fermion mass is in the GUT scale, became stabilized in the scale of the Planck mass.
For the mass of the field excitation it followed that its value was determined by the second
derivative of the potential curve taken at the minimum, which is given by

d2

dΦ2 u4(Φ,−0.0030789542773)
∣∣∣∣

Φ=Φ(mGUT)
vac

= 1.28179 × 1011m4
f . (123)
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Fig. 7. The three figures show, from top to bottom, the potentials u5, u4 and u3 dependence
on the field Φ and the coupling g, respectively. The potential scale is chosen for a high
magnification range (the minima of the surface at fixed g values are very far below the
plotted range) in order to evidence the presence of a threshold for the appearing of the
minima when the value of g decreases below g = 1. Note that for Φ smaller than some units
and not to small values of g, the three plotted graphs are similar, indicating that the
elimination of the highest fifth, and also the next to highest fourth, powers of the field (or, of
the logarithm in the original expansion) in defining u4 and u3 respectively, are not affecting
the results in the mentioned region. The circumstance that the exact evaluated contribution
has a negative leading term of order five (which makes the result unbounded from below)
explains that for the plot of u5 the minima disappear for sufficiently small values of g.
However, the fact that exact potential should be expected to be bounded from below, we
consider that supports our assumption about employing the bounded from below
approximations of the potential u4 (or u3) in evaluating the Dilaton properties at the small
values of g defined by the GUT and mtop mass scales.
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Fig. 8. The effective potential u4 defined by Eq. 118 as a function of the Dilaton field Φ. The
fermion mass was fixed to correspond to the GUT mass mGUT and the renormalization scale
μ was chosen to coincide with this mass. The minimum of the potential was near the value
Φ = 5.7, which indicates that the field is bound to a high value near the Planck scale.

In order to estimate the Dilaton mass it was considered the linearized equation of motion
for the mean field

(
1
α2 ∂2 +

d2

dΦ2 u4(Φ,−0.00307895)
∣∣∣∣
Φ=Φ(mGUT)

vac

)Φ = 0, (124)

in which the factor 1
α2 multiplying the D’Alembertian appeared due to the previously done

change of field variables Φ = α ϕ.
The above wave equation led to the dispersion relation for the Dilaton modes

(− 1
α2 p2 +

d2

dΦ2 u4(Φ,−0.00307895)
∣∣∣∣
Φ=Φ

(mGUT)
vac

) = 0, (125)

which for the case of the particle at rest p = (m(mGUT)
D , 0, 0, 0) determined for the Dilaton the

mass estimate

m(mGUT)
D =

√
d2

dΦ2 u4(Φ,−0.00307895)
∣∣∣∣
Φ=Φ(mGUT)

vac

m2
GUT | α |

= 5.58626 × 1032 cm−1. (126)

Therefore, the predicted order of the mass for the Dilaton also became an extremely high
value which makes this field mode undetectable in a direct way.

3.5 Dilaton mean value and mass for m f at the top quark mass scale
It was also of interest to take as m f the highest currently known fermion mass: that is, the top
quark one

mtop = 172.0 ± 0.9 GeV = 8.7164 × 1015 cm−1. (127)
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Fig. 9. The effective potential u4 plotted as a function of the Dilaton field Φ. In this case the
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Then, the coupling g in this case got the small value

g = m f α = − 3
4

κ mtop = −5.32659 × 10−17. (128)

Figure 9 shows the dependence of the potential u4 as a function of the field Φ at the above
value of the coupling g. The minimum of the curve in this case gave for the mean Dilaton
field at the vacuum

Φ
(mtop)
vac = 36.3020096 = α ϕ

(mtop)
vac , (129)

ϕ
(mtop)
vac = − 4

3
36.3020096

1
κ

. (130)

This result predicts that, assuming that the maximal fermion mass in Nature is given by the
top quark one, which means a lower bound for the physical masses, the vacuum field of the
Dilaton, again becames stabilized in a scale, which although not being so high, is yet close to
the Planck mass.
In this case the dispersion relation for the Dilaton modes resulted in the form

(− 1
α2 p2 +

d2

dΦ2 u4(Φ,−5.32659 × 10−17)

∣∣∣∣
Φ=Φ

(mtop)
vac

) = 0. (131)

But, after evaluating for the second derivative of the potential at the minimum to be

d2

dΦ2 u4(Φ,−5.32659 × 10−17)

∣∣∣∣
Φ=Φ

(mtop)
vac

= 6.86404 × 1064, (132)
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Fig. 8. The effective potential u4 defined by Eq. 118 as a function of the Dilaton field Φ. The
fermion mass was fixed to correspond to the GUT mass mGUT and the renormalization scale
μ was chosen to coincide with this mass. The minimum of the potential was near the value
Φ = 5.7, which indicates that the field is bound to a high value near the Planck scale.

In order to estimate the Dilaton mass it was considered the linearized equation of motion
for the mean field

(
1
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Φ=Φ(mGUT)
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)Φ = 0, (124)

in which the factor 1
α2 multiplying the D’Alembertian appeared due to the previously done

change of field variables Φ = α ϕ.
The above wave equation led to the dispersion relation for the Dilaton modes

(− 1
α2 p2 +

d2

dΦ2 u4(Φ,−0.00307895)
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Φ=Φ

(mGUT)
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) = 0, (125)

which for the case of the particle at rest p = (m(mGUT)
D , 0, 0, 0) determined for the Dilaton the

mass estimate

m(mGUT)
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√
d2

dΦ2 u4(Φ,−0.00307895)
∣∣∣∣
Φ=Φ(mGUT)

vac

m2
GUT | α |

= 5.58626 × 1032 cm−1. (126)

Therefore, the predicted order of the mass for the Dilaton also became an extremely high
value which makes this field mode undetectable in a direct way.

3.5 Dilaton mean value and mass for m f at the top quark mass scale
It was also of interest to take as m f the highest currently known fermion mass: that is, the top
quark one

mtop = 172.0 ± 0.9 GeV = 8.7164 × 1015 cm−1. (127)
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and fixing again the rest frame momentum p = (m
(mtop)
D , 0, 0, 0) estimated for the Dilaton

mass the value

m
(mtop)
D =

√
d2

dΦ2 u4(Φ,−5.32659 × 10−17)

∣∣∣∣
Φ=Φ

(mtop)
vac

× m2
top | α |

= 7.07209 × 1029 cm−1. (133)

Henceforth, also in this case the predicted mass for the Dilaton turned to be a high value
being now close to the GUT scale. Thus, it can be expected that for maximal fermion masses
in Nature ranging between the lower bound mtop and the GUT scale one, the Dilaton gets
stabilized at a large field value as required by string phenomenology. In addition the resulting
values of its mass, for the same range of m f , became also out of the current observability range
of particle detectors.

4. Conclusions

We had reviewed and commented some issues linked with the possible roles of the Dilaton
in Cosmology and its stabilization properties under the existence of massive fermion matter,
which were advanced in Refs. (32; 33).
In the work (33), the fermion field mass values were considered in two cases: the top quark
mass representing the lower bound of all existing but yet unknown fermion masses in Nature,
and the energy scale of the grand unification theories of order 1016 GeV. In both situations,
the results indicated that the Dilaton mean field becomes stabilized at the very high values
required by its role in allowing gravity to have its observed properties. Then, the same
existence of matter seems to be a possible source of the dynamical fixation of the Dilaton
field at the high values, required by String Theory to imply the observable Einstein theory of
gravity. Furthermore, the evaluations pointed out that the Dilaton field also resulted to be
strongly bound around its mean value, by showing a large mass being close to the GUT or
Planck scales. Therefore, a possible explanation for the lack of observable consequences of the
Dilaton scalar field in Nature was underlined. The discussion included contributions to the
effective potential up to 3-loops. They allowed to consider the influence of the inclusion of
different leading perturbative correction on the main conclusions. After, disregarding in the
evaluated potential: a) the highest order term (quintic) in the expansion in powers of Log(m

μ )

(which determined the unbounded from below structure of the potential at large Φ values ) or
b) the two highest orders (the quintic and the quartic ones), the obtained modified potentials
were both bounded from below at high field values. This procedure allowed that minima as
functions of Φ exist for arbitrarily small values of the coupling g, which allowed to evaluate
at the small coupling values fixed by the GUT and top quark masses. The fact that the Yukawa
theory under consideration should exhibit a bounded from below potential, then supported
the adopted procedure for estimating the vacuum mean values and mass of the Dilaton field.
However, further higher loop evaluations are convenient to define more precise estimated
values of the Dilaton vacuum field and mass and also for checking that they do not affect
the picture. Moreover, it will be also helpful to perform an evaluation of the vacuum mean
value of the square of the radiation Dilaton field (basically defined by a Dilaton propagator
tadpole diagram). A result of < 0|((Φr(x))2|0 > being much smaller than 1 will check a main
assumption adopted in this work: that the QFT with exponential interaction associated to the
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Dilaton field could be well approximated by the here employed Yukawa QFT description for
each value of the mean field Φ.
On another hand the results of the work (32) presented a static solution of the EKG equations
in which the Dilaton was represented by a scalar field showing a small mass of the order of
the inverse of the estimated radius of the Universe. An interaction of the Dilaton with matter
was also included. It arose that the existence of the interaction was central in allowing the
arising of the static solution. The model parameters were able to be fixed for determining a
relation matter-Dark Energy ratio close to the one observed, and which slowly changes with
the increase of the radial distance. However, the assumed small mass of the Dilaton rises
doubts about the validity of this picture for the Dilaton. Consequently, these doubts also
translate to the possible feasibility of the picture speculated in the introduction in which the
Universe could show a kind a "Matryoshka" structure, in which our Universe could result
to be the interior of a kind of "gravastar" (See Refs. (35; 36)). However, the fixation of the
Dilaton field to a high and rigid value induced by the validity of the results of Ref. (33)
could perhaps not to exclude the realization of the mentioned picture. We would like to
underline here an idea, which is already being discussed in the literature, and that in our
view could support the considered picture, by also furnishing a concrete explanation for the
origin and smallness of the Cosmological Constant. The first reference about this point of
view we received from the work reported in Ref. (34). In this article it was pointed out that
the one loop quantization of pure gravity determines deSitter spacetime as a natural solution.
More importantly, it was also underlined that the effect is a consequence of a very much
natural effect: the condensation of the massless and also gravitationally attracting between
themselves gravitons. In other words that work proposed as the source of the Cosmological
Constant (that is, the validity in Nature of the deSitter space time) the expected to occur
condensation of gravitons once the gravity is assumed to be quantized. The smallness of
the CC could be associated to the weakness of the attraction between gravitons. It should
be also pointed out that the technical difficulty linked with the non renormalizability of pure
gravity, should not be considered as a serious obstacle to the possibility of the relevance in
Nature of this effect. This seems to be so, whenever we accept the relevance of string theory
in Physics, because a quantized gravity should be described by string theory in an expected
to be finite way. If such is the case, the just mentioned graviton condensation effect should be
expected in the finite calculational framework of string theory for the quantum gravitational
effects. Finally, the connection of this picture with our discussion comes form the possibility
that the graviton condensation effect could allow a possible realization of the "Matryoshka"
model of the Universe. In it, the collapse of usual matter could occur between regions showing
a difference in the Cosmological Constant values. Such configurations can be imagined as
being closely resembling the so called "gravastars" discussed in Refs. (35; 36). In ending, I
would like to remark about the fact that the observed CC is considered as a surprisingly small
quantity as compared with the energy density of the vacuum modes for the fields associated
to the observed particles in Nature. However, it can be noted that in the framework of QFT
in Minkowski spacetime, such vacuum densities are automatically canceled by the normal
ordering rules in the field quantization procedure. Therefore, one could suspect that such
vacuum contributions can be also efficiently canceled by consistent quantization procedures
in curved spacetimes. The validity of this expectation could perhaps enforce the vanishing of
the CC when QFT is considered in Minkowski space time and the gravitons are assumed as
pure classical modes. However, just the gravitons are assumed to be quantum waves, their
massless character in addition with the natural gravitational attraction existing among them,
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doubts about the validity of this picture for the Dilaton. Consequently, these doubts also
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to be the interior of a kind of "gravastar" (See Refs. (35; 36)). However, the fixation of the
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to be finite way. If such is the case, the just mentioned graviton condensation effect should be
expected in the finite calculational framework of string theory for the quantum gravitational
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quantity as compared with the energy density of the vacuum modes for the fields associated
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strongly suggest the appearance of the graviton condensate already underlined in Ref. (34),
as being equivalent to the instability of the Minkowski spacetime to become a deSitter one.
This last point also rises the idea about that the one loop effective action for gravity which
should be generated by the graviton condensation effect, could also play a role in explaining
the large scale effects currently attributed the existence of the Dark Matter. We expect to be
able of considering some of these questions in further extensions of the work.
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284 Aspects of Today´s Cosmology

1. Introduction

Important programs are being pursued currently to collect distance and recession velocity
data from supernovae type Ia of several groups collecting and analyzing data (SNe Ia)
(Astier et al., 2006; Hicken et al., 2009; Wood-Vasey et al., 2007) and from gamma ray bursts
(GRB) (Schaefer, 2007) and most recently from other supernovae types. These events are
our best hope of "standard candles" looking back in a quantitative manner towards the
epochs of recombination and early galaxy formation, to nearly to the beginning of time
(Leibundgut, 2008). While some optical data have been obtained from orbiting observatories,
data of good quality have been collected from grounded telescopes with the hope to collect
several thousand distance/velocity pairs of ever increasing quality over the next few years.
Likewise, interpretation of the cosmic microwave background (CMB), which consists of
signals remaining from the very primitive Universe after 13 billion years of cooling, may
provide another independent source of data for estimating these parameters (Komatsu et al.,
2009). Interpretation of the Sloan Digital Sky Survey (SDSS) data are being continually refined
and the interpretations broadened to include analysis for the baryonic acoustic oscillations
(BAO) remnant signals (Eisenstein et al., 2005). Another tool for estimation of gross Universe
structure is the X-ray emissions from galaxy clusters (Vikhlinin et al., 2008) with future data
collections planned to answer several cosmological questions (Vikhlinin et al., 2009). Data
from dozens of studies have been used to estimate the Hubble constant, the Universe age and
to support the new idea of Dark Energy (DE) assisted universe expansion (Carroll et al., 1992).
Many decades ago Chandrasekhar successfully investigated the nature of white dwarf
stars with gravitational fields large enough to quickly accrete considerable surrounding gas
(Chandrasekhar, 1964). He predicted that as the object mass increases, Pauli instability of the
dwarf star constituents is approached with a thermonuclear critical mass dependent both on
the nature of the matter, the energy contained within and by the repulsive pressure exerted
from the various nuclear species. When the instability limit is reached the object suffers
collapse quickly followed by thermonuclear explosion which we gaze at in awe as a supernova
(Chandrasekhar & Trooper, 1964). This very successful description, which has been confirmed
many times by observation, is dependent on the polytropic generalizations of matter and
energy. The useful relationships of Chandrasekhar demand unique constants which differ
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2 Will-be-set-by-IN-TECH

between common matter and relativistic matter or radiation. This property allows us to
easily discriminate between the two matter types and manipulate both using modeling with
astronomical data such as that from SNe Ia events. We present a brief derivation of the general
polytropic model in Appendix 5.1.
People are currently investigating the physics of SNe Ia explosions and other cosmological
data with aim to better use improved data for solving many problems of astronomy and
physics (Linden et al., 2009), but reports of calculations of neutrino abundance using these
data are rare. Systematic error remains in the SNE Ia data, however, with SNe Ia luminosity
being correlated to the host galaxy size and mass density (Kelly et al., 2009). We and others
have recently warned of even more systematic errors entering analyses of these data, both
from the viewpoint of mathematical arguments (Oztas & Smith, 2006) and a call to use
proper statistical analysis of the SNe Ia data (Hartnett & Oliveira, 2007; Oztas et al., 2008).
A similar situation, though not identical in nature, has recently arisen regarding the analysis
of the CMB data. The CMB temperature maps published by the Wilkinson Microwave
Anisotropy Probe (WMAP) team are inconsistent with the differential, time-ordered data from
which the descriptive maps are reconstructed (Liu et al., 2009). When a simple correction to
the analytical routine is used the resulting maps become much "smoother" losing the vast
majority of temperature details (Li & Liu, 2009; Liu & Li, 2010a). Indeed, these reinterpreted
maps seem featureless; consistent with extreme homogeneity of the early Universe. Since
interpretation of the analysis of the WMAP group is under question, we leave comparisons
between CMB observations and our analysis of SNe Ia data until that time when these issues
are resolved (Roukema, 2010) and concentrate on the SNe Ia and BAO analyses. We have also
recently published results from an attempt to combine SNe Ia and GRB data for analysis of
cosmological parameters (Smith et al., 2010). Unfortunately the GRB data are exceptionally
noisy making firm conclusions impossible.
Here we extend the use of polytropic tools for the first time to estimate ranges for the average
common matter and relativistic matter densities of the Universe, as well as better estimating
spacetime curvature and DE. We analyze SNe Ia data using luminary distances and associated
distance errors rather than log distances and log errors. Because we use actual distances rather
than the logs (not a trivial difference), we also include a data pair for the earth with no error
for the first time and shall show this important data pair should be included in all analyses
utilizing SNe Ia data. Using actual estimated errors for distance rather than log errors accents
the differences between models with and without the cosmic constant and between results
from different reports. We examine data from four recent SNe Ia collections and can roughly
estimate the current, non-relativistic matter density and the order of the relativistic matter
density. We obtain these values using models combining the polytropic indexes with two
variations of the Friedmann-Robertson-Walker (FRW), the standard model. Our results from
the model admitting significant spacetime but without the cosmic constant are significantly
different from the results using this term, ΩΛ, but in a flat Universe. In general, we also
find the matter densities for the models not invoking the cosmic constant to be much lower
than those with that term. Our calculated low matter densities agree with several estimates
from Big Bang Nucleosynthesis (BBN); calculations derived from first principles (Burles et al.,
2001a;b). Not surprisingly, we also find the typical values for non-relativistic matter to be at
least one order of magnitude larger than the relativistic matter density. Our results are driven
by the great difference in distance errors between nearby and distant SNe Ia which are not
evident when modeling using log errors. The matter densities from many solutions here are
near the low end of the range as predicted by others while the estimated DE and/or spacetime
portions of the Universe are often larger than previous findings. We must emphasize such
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results, varying from popular expectations, are not unexpected since we take care in weighing
observational errors.
On the other hand our results derived from reported BAO parameters do agree with currently
popular values for Ωm and ΩΛ. The suggestion was made over a decade ago that the SDSS
data could be useful to estimate neutrino abundance (Hu et al., 1998) though reports of
progress using that data have not come to our attention. Here we have expanded the range
of data which can be used for such analysis by considering the BAO solutions. Our findings
are extremely sensitive to total matter density and the ratio of polytropic matter species. We
present a brief explanation of our analytical technique in Appendix 5.2.
We are also aware of reports suggesting the Universe may be modeled considering some
components as a Chaplygin gas (Setare, 2009) but we think our approach significantly
different and perhaps more rigorous. We have not performed calculations using SNe Ia data,
that include the effects of Cold Dark Matter (CDM), because the properties are not understood
not allowing us to estimate these polytropic constants. We suggest the SNe Ia and SDSS/BAO
data are extremely useful observations, which in addition to constraining the Hubble constant,
the Universe age and DE, can also be used to define the limits of non-relativistic and relativistic
matter densities. This is because large spacetime is the important independent variable rather
than the much more commonly tested energy, pressure, density, etc. Better constraints on
these cosmological values can be made using larger SNe Ia (and SDSS) data sets, hopefully
with smaller errors, which should be available in the near future after systematic errors
have been corrected (Kelly et al., 2009). Likewise estimates of H0 should await reconciliation
between groups analyzing the CMB data (Li & Liu, 2009; Liu & Li, 2010a). The overall aim of
all this mental anguish will hopefully lead to a much better understanding of the dynamics
and parameters of our expanding Universe and hence our origin and eventual fate.

2. Expansion of the polytropic Universe

We begin with two equations of state we suggest describe the early Universe both during and
after recombination, allowing c = 1 as usually presented

(
ȧ
a
)2 =

8πG
3

ρ +
Λ
3
+

k
a2 (1)

ä
a
=

−4πG
3

(ρ + 3p) +
Λ
3

. (2)

Here ρ is the material content density, p the pressure, a the expansion factor, G the
gravitational constant, Λ the cosmic constant and k the constant of integration; typically
indicating spacetime curvature. For the general situation both variables include contributions
from normal matter, relativistic matter and radiation. Cold dark matter (CDM) is sometimes
considered to be described within ρ. We take the derivative of the first equation with respect
to time and use the result to eliminate ä and arrive at the following relationship

ρ̇ = −3
ȧ
a
(ρ + p). (3)

We presume adiabatic processes dominate Universe expansion and use the polytropic
relationship between pressure and density from Chandrasekhar as p = Kργ, where γ =
1 + 1/n, and n is the polytropic index. This relationship is a well-known equation of state
with n → ∞ for isothermal processes and n = −1 for isobaric processes. By substitution with
Chandrasekhar’s relationship we now have
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ρ̇ = −3
ȧ
a
(ρ + Kργ) (4)

and with separation of variables we can then integrate both sides in a few steps
∫

ρ̇

ρ + Kργ
dt = −3

∫ ȧ
a

dt. (5)

We separate the integrand on the left-hand side into parts and perform some algebra
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We can rearrange Eq. (6) in two steps

ργ−1 =
Cγ−1

a3(γ−1) − KCγ−1
(7)

to arrive at a useful relationship

ρ =
C

(a3(γ−1) − KCγ−1)
1

(γ−1)

. (8)

By presuming an expansion factor of a0 = 1 in Eq. (6), we can solve for C to eliminate this
term

ρ
γ−1
0

1 + Kρ
γ−1
0

= Cγ−1 (9)

and substituting Eq. (9) into Eq. (8) we arrive at our relationship of interest

ρ =
ρ0

(a3(γ−1)(1 + Kρ
γ−1
0 )− Kρ

γ−1
0 )

1
(γ−1)

. (10)

We presume the Universe consists of different matter species with unique values of Ki and
γi describing each variety. We can eliminate each Ki species and use the present values for
our parameters by adhering to the cosmological principle that expansion occurs isotropically
for each species, since both non-relativistic and relativistic matter species have been dilute,
except for stars, since near singularity. We also presume that energy, relativistic matter and
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non-relativistic matter only weakly interact currently, except for the stars, and the contribution
of radiant energy to the Universe has been tiny since recombination.
In the neo-Newtonian framework two phases of matter are important - non-relativistic matter
and relativistic matter and the values we shall use for the associated constants for each are
listed (Chandrasekhar, 1983) and we present brief derivations in Appendix 5.1. We estimate
the relative values for the Chandrasekhar constants for relativistic and normal matter from
considerations of cosmological parameters presented for solution of the SDSS data (Eisenstein
et al., 2005) in our "Modeling and Results" section.

non-relativistic relativistic
nnr = 3/2 nr = 3
γnr = 5/3 γr = 4/3
Knr = 0.645 Kr = 1.124

With these generalizations we can separate the matter density into two different variables
within the Friedmann relationship

(
ȧ
a
)2 =

8πG
3

(ρnr + ρr) +
Λ
3
− k

R2
0a2

(11)

where ρnr and ρr are the densities of non-relativistic and relativistic matter.
For use with SNe Ia data these are redefined as normalized parameters with

Ωr =
ρ0,r
ρc

, Ωnr =
ρ0,nr

ρc
, ΩΛ =

Λ
3H2

0
and Ωk = − k

R2
0H2

0
(12)

where Ωr and Ωnr can be calculated as averages from the present range for H0, the Hubble

constant. For this work we use the critical density parameter ρc =
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for the case of a

Universe without DE(Λ = 0) and so do not require a flat Universe.
We present a more general variation of the common normalization condition for the
parameters of interest as

1 = Ωnr + Ωr + ΩΛ + Ωk. (13)

When we substitute τ for H0t we can simplify these equations into a usable form as derived
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We presume the Universe consists of different matter species with unique values of Ki and
γi describing each variety. We can eliminate each Ki species and use the present values for
our parameters by adhering to the cosmological principle that expansion occurs isotropically
for each species, since both non-relativistic and relativistic matter species have been dilute,
except for stars, since near singularity. We also presume that energy, relativistic matter and
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non-relativistic matter only weakly interact currently, except for the stars, and the contribution
of radiant energy to the Universe has been tiny since recombination.
In the neo-Newtonian framework two phases of matter are important - non-relativistic matter
and relativistic matter and the values we shall use for the associated constants for each are
listed (Chandrasekhar, 1983) and we present brief derivations in Appendix 5.1. We estimate
the relative values for the Chandrasekhar constants for relativistic and normal matter from
considerations of cosmological parameters presented for solution of the SDSS data (Eisenstein
et al., 2005) in our "Modeling and Results" section.

non-relativistic relativistic
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and for brevity we use Anr(a) =
(

1 + Knrρ2/3
0,nr

)
− Knrρ2/3

0,nr
a2 and Ar(a) =
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a .

We collect the normalized terms in a familiar form
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√
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(16)

and presuming the null geodesic of the FRW Universe and multiplying by R0 we get

dR0r
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and by rearranging the differential equation for the separation of variables
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(19)

and introducing H0 we can obtain a relationship between which shall begin to allow us to
calculate the two forms of interesting matter in relationship with Universe expansion
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We now reintroduce Eq.(16) for dτ
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√
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r
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We then integrate both sides to allow for the frequency drop to respond to the Universe
expansion

∫ r1

0

H0R0dr√
1 + ΩkR2

0H2
0r2

=
∫ 1

a1

da
√

a

√
Ωnr

A3/2
nr

+
Ωr

A3
r
+ ΩΛa3 + Ωka

. (22)

By collecting several variables into a simpler term
√

ΩkR0H0r = y and introducing the
redshift relation in terms of frequency decline a = 1/(1 + z) = ξ on the right-hand side
(we shall use ξ as the ratio of observed frequency to emitted frequency) and after a few steps
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we get

DL =
c
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�
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� 1
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A3
r
+ ΩΛξ3 + Ωkξ

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(23)

where the integration begins with the past ξ1 to the present 1, sinn is either sinh or sin
dependent on positive or negative spacetime curvature and the speed of light is in km/s.
For a universe without DE we simply drop the ΩΛξ3 term and allow spacetime curvature and
we designate this solution as Ωr-ST. For a flat, relativistic universe with DE we can greatly
simplify the above relationship as

DL =
c

ξH0

� 1

ξ1

dξ

√
ξ

�
Ωnr

A3/2
nr

+
Ωr

A3
r
+ ΩΛξ3

(24)

which we denote as the Ωr-DE model.
For purposes of comparison we also fit the now famous DE relationship for a flat universe
without relativistic matter in terms of frequency decline

DL =
c

ξH0

� 1

ξ1

dξ

ξ
�

Ωm
ξ + ΩΛξ2

(25)

which we designate as the Simple-DE model. For evaluation of the FRW model without DE
we simply replace the ΩΛξ2 term from the denominator with the Ωkξ term leaving us with an
integral which has been solved analytically (Oztas & Smith, 2006; Peebles, 1993)

DL =
c

ξH0
�|Ωk|

sinn[2(arctanh(
�
|Ωk|)− arctanh(

�|Ωk|�
Ωm
ξ + Ωk

))] (26)

which we designate as the Analytic-ST model and sometimes as the spacetime model.
Notice the normalized matter density terms for Eqs.(23,24) encompass, non-relativistic,
relativistic and light-energy densities. We also need to emphasize the introduction of terms
to account for the two natures of matter also places a dependence of matter density on the
Hubble constant and hence spacetime expansion. This can be easily justified since the range
of SNe Ia data from the present to z=1.55 covers the majority of the Universe age and very
large changes of matter densities. By use of the above models, solidly based on the work of
Chandrasehkar, we attempt to avoid introducing additional parameters as sometimes done
by ad hoc modification of the equation of state, for instance as a Chaplygin gas.
We are able to estimate the Chandrasekhar constants for normal and relativistic matter with
principles used to estimate parameter fits with SDSS data Eisenstein et al. (2005). The densities
for relativistic and normal matter species, ρi, define the various terms of Ωi as

Ωi =
ρ0,i
ρc

for Kiρ
γ−1
0,i = Kiρ

γ−1
c Ωγ−1

i . (27)

So we can use these terms as coefficients for both species of normal and relativistic matter

Bnr = Knrρ2/3
c , Br = Krρ1/3

c .
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relativistic and light-energy densities. We also need to emphasize the introduction of terms
to account for the two natures of matter also places a dependence of matter density on the
Hubble constant and hence spacetime expansion. This can be easily justified since the range
of SNe Ia data from the present to z=1.55 covers the majority of the Universe age and very
large changes of matter densities. By use of the above models, solidly based on the work of
Chandrasehkar, we attempt to avoid introducing additional parameters as sometimes done
by ad hoc modification of the equation of state, for instance as a Chaplygin gas.
We are able to estimate the Chandrasekhar constants for normal and relativistic matter with
principles used to estimate parameter fits with SDSS data Eisenstein et al. (2005). The densities
for relativistic and normal matter species, ρi, define the various terms of Ωi as
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We now define the current matter densities in terms of Bi, matter densities and the expansion
factor as

ρnr =
ρcΩnr

(a2
(

1 + BnrΩ2/3
nr )− BnrΩ2/3

nr

)3/2 , ρr =
ρcΩr(

a(1 + BnrΩ2/3
r )− BrΩ1/3

nr

)3 . (28)

We follow the lead of Eisenstein, using their A and R parameters and perform evaluations
independent of H0, to uncover the relative dependencies of Bi species on normalized matter
density Ωm. Details of our technique for evaluation are presented in Appendix 5.2. Results
and relative errors with evaluations at several popular matter densities are presented below.
There is a recent report indicating systematic errors of up to 10% buried in the luminosities of
many SNe Ia observations. For this reason we present results considering four independent
reports of SNe Ia distances and redshifts, rather than a single or combined set. Hopefully,
removal of more systematic error from these data, which shall soon be made public (Kelly
et al., 2009), will allow better detailed investigation than the 3 parameters used here. A
recent submission claiming serious problems with interpretation of the WMAP5 presentations
dissuades us from investigating this area with our polytropic model until these difficulties
have been resolved (Liu & Li, 2010a;b; Moss et al., 2010; Roukema, 2010).

3. Modeling and results

Calculations are made using only recently published SNe Ia sets. We first examine the 397
data pairs of Hicken and coworkers from their Table 1 as they prefer (Hicken et al., 2009). We
next present fits of the combined 288 SNe Ia treated with the MLCS2K2 Light Curve Fits from
data recently compiled from several sources as presented by (Kessler et al., 2009). We also
present results from the list of Kowalski and coworkers (Kowalski et al., 2008), which are 307
SNe Ia culled from the Union compilation of 414 SN Ia including data from the Supernova
Legacy Survey, the ESSENCE Survey, the Hubble Space Telescope and some older data and
finally, we present results from modeling with 162 SNe Ia data presented by Wood-Vasey and
coworkers (Wood-Vasey et al., 2007). In addition, we add the present frequency ratio of 1 at a
distance of 0 with no error, for an exacting data pair at no financial cost to all data sets (Oztas
et al., 2008).
The actual luminary distances and geometric errors are extracted from the published log
distance and log errors rather than use log-log estimates and we best-fit these curves using
robust minimization. The fitting routines for Tables 1 through 4 with solution trace examples
presented in Figure 1, allow two or three free parameters, one of which is always the Hubble
constant. We prefer H0 as a free parameter having noticed the goodness of fit to be highly
dependent on the freedom of this parameter (no surprise this). The other free parameters
are either Ωnr or Ωnr with Ωk while the remainder of the estimates is always the spacetime
curvature or relativistic matter density, for instance, Ωk = 1 − Ωnr or Ωr = 1 − Ωnr − Ωk.
We do not think the data firm enough to report results from models containing 4 parameters;
necessary for simultaneous solution of Ωk, ΩΛ, Ωnr and Ωr.
Figure 1 is an illustration of the data with the curves from the fits for Simple-DE and
Analytic-ST models to the complete Hicken et al. data. Note the very large errors associated
with ancient SNe Ia distances, to the left on the graph, compared to those of more nearby
explosions, at the lower right-side. Rightly so - one should expect noisy data from signals
more than half the Universe age. Precise distance determination is a problem which has
plagued astronomers from time immemorial (Sharaf & Sendi, 2010). These very large errors
mean the data from ancient SNe Ia play a much smaller role in determining the fit parameters
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Fig. 1. Comparison of the two Standard Models using the abscissa of observed SNe Ia galaxy
frequency ratios rather than redshifts with all 397 pairs plus today. The bottom curve
represents the fit for the Simple-DE model, and the top line the fit for the Analytic-ST model.

Model FP H0 Ωnr or Ωm ΩΛ or Ωk χ2/(N-FP)
Ωr-DE 3 68.4 ± 0.5 0.05 ± 0.03 0.95 ± 0.01(ΩΛ) 1.37

Simple-DE 2 67.9 ± 0.5 0.27 ± 0.03(Ωm) 0.73(ΩΛ) 1.40
Ωr-ST 3 73.6 ± 0.6 0.034 ± 0.30 0.966 ± 0.01(Ωk) 1.79

Analytic-ST 2 67.5 ± 0.5 0.0003 ± 0.06(Ωm) 0.9997(Ωk) 1.92

*With N the number of data pairs (Hicken et al., 2009) after culling 11 outliers(387) and FP
the number of free parameters. H0 in km s−1Mpc−1.

Table 1. Results with data from 386 SNe Ia and today

than nearby supernovae. This contrasts to the more usual fitting regimes which place value on
the ancient distances almost as strongly as those of nearby SNe Ia. Rather than distance errors
increasing somewhat marginally between nearby SNe Ia and distant explosions as usually
presented in the typical log/log plots of luminary magnitude vs. redshift, we present a more
realistic view of error estimates which are incredibly large from distant signals. The results of
this can be seen as the obvious difference between curve traces for both standard models in the
figure. It is more usual that the traces for these two models be nearly inseparable on displayed
graphs - and they do overlap at the smaller distances - lower right-side.
There are 11 data pairs of the Hicken et al. set (397 pairs) which reside more than 2500 km
s−1Mpc−1 from the best fit Analytic-ST model; > 3σ. We remove these and calculate the
values from 387 data pairs with results in Table 1; the goodness of fits for three models are
nicely improved by discarding these 11 pairs. This improvement is surprising considering
the 11 being outliers which should least impact the robust curve fitting process. None of the
models however, return excellent fits with this data as judged by a χ2/N-FP of less than 1.35
(Hartnett & Oliveira, 2007). Noteworthy of this data reduction is that the Simple-DE model
now presents a better fit than the Analytic-ST, for the reverse is true when all 398 data pairs are
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frequency ratios rather than redshifts with all 397 pairs plus today. The bottom curve
represents the fit for the Simple-DE model, and the top line the fit for the Analytic-ST model.

Model FP H0 Ωnr or Ωm ΩΛ or Ωk χ2/(N-FP)
Ωr-DE 3 68.4 ± 0.5 0.05 ± 0.03 0.95 ± 0.01(ΩΛ) 1.37

Simple-DE 2 67.9 ± 0.5 0.27 ± 0.03(Ωm) 0.73(ΩΛ) 1.40
Ωr-ST 3 73.6 ± 0.6 0.034 ± 0.30 0.966 ± 0.01(Ωk) 1.79

Analytic-ST 2 67.5 ± 0.5 0.0003 ± 0.06(Ωm) 0.9997(Ωk) 1.92

*With N the number of data pairs (Hicken et al., 2009) after culling 11 outliers(387) and FP
the number of free parameters. H0 in km s−1Mpc−1.

Table 1. Results with data from 386 SNe Ia and today

than nearby supernovae. This contrasts to the more usual fitting regimes which place value on
the ancient distances almost as strongly as those of nearby SNe Ia. Rather than distance errors
increasing somewhat marginally between nearby SNe Ia and distant explosions as usually
presented in the typical log/log plots of luminary magnitude vs. redshift, we present a more
realistic view of error estimates which are incredibly large from distant signals. The results of
this can be seen as the obvious difference between curve traces for both standard models in the
figure. It is more usual that the traces for these two models be nearly inseparable on displayed
graphs - and they do overlap at the smaller distances - lower right-side.
There are 11 data pairs of the Hicken et al. set (397 pairs) which reside more than 2500 km
s−1Mpc−1 from the best fit Analytic-ST model; > 3σ. We remove these and calculate the
values from 387 data pairs with results in Table 1; the goodness of fits for three models are
nicely improved by discarding these 11 pairs. This improvement is surprising considering
the 11 being outliers which should least impact the robust curve fitting process. None of the
models however, return excellent fits with this data as judged by a χ2/N-FP of less than 1.35
(Hartnett & Oliveira, 2007). Noteworthy of this data reduction is that the Simple-DE model
now presents a better fit than the Analytic-ST, for the reverse is true when all 398 data pairs are
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Model FP H0 Ωnr or Ωm ΩΛ or Ωk χ2/(N-FP)
Ωr-DE 3 74.2 ± 0.5 0.04 ± 1 0.96 ± 1(ΩΛ) 2.24
Ωr-ST 3 79.8 ± 0.6 0.0003 ± 0.02 0.9997 ± 1(Ωk) 2.34

Analytic-ST 2 67.8 ± 0.5 0.42 ± 0.09(Ωm) 0.58(Ωk) 2.66
Simple-DE 2 69.9 ± 0.7 0.76 ± 0.07(Ωm) 0.24(ΩΛ) 3.05

*With N the number of data pairs (283) and FP the number of free parameters (Kessler et al.,
2009). H0 in km s−1Mpc−1.

Table 2. Results with data from 282 SNe Ia and today

Model FP H0 Ωnr or Ωm ΩΛ or Ωk χ2/(N-FP)
Analytic−ST 2 68.0 ± 0.5 0.0002 ± 0.05(Ωm) 0.9996(Ωk) 1.34

Ωr-ST 3 77.4 ± 0.6 0.0002 ± 0.03 0.9997 ± 1(Ωk) 1.44
Ωr-DE 3 75.4 ± 0.6 0.045 ± 0.03 0.955 ± 0.02(ΩΛ) 1.49

Simple−DE 2 75.3 ± 0.7 0.14 ± 0.02(Ωm) 0.86(ΩΛ) 1.50

*With N the number of data pairs (308) and FP the number of free parameters (Kowalski et
al., 2008). H0 in km s−1Mpc−1.

Table 3. Results with data from 307 SNe Ia and today

used. While the matter density for the Simple-DE model is near that expected from previous
publications, ≈0.27, for instance the BAO analysis (Eisenstein et al., 2005), the matter density
returned by the Analytic-ST model is quite low. Low matter density values are also found
from the fits of both polytropic models and the Hubble constant also tends on the low side of
the usual expectation for 3 of the 4 models. When we consider the more detailed polytropic
model which includes the cosmic constant, Ωr-DE, we find it fits the data better than other
models, being on the border of a good fit.
When we discard our exact data pair of today on earth and analyze with only the 386 SNe Ia
data we find significant differences in the goodness of fit of the two standard models. Exclusion
of this single data pair allows the models to "drift" from the origin at x, y of exactly 1,0 and the
values for χ2/(N-FP) increase by nearly 0.1 for both the Simple-DE model and the Analytic-ST
model (results not presented).
In our next analyses we use the 288 data pairs from Kessler and friends (Kessler et al., 2009)
after culling 6 pair outside 2500 Mpc from the curve defined by the Analytic-ST fit. Even
after discarding these outliers, the fits are not considered good as judged by the χ2/(N-FP),
Table 2. The values for matter densities, Ωm, for the two standard models are much greater than
commonly reported. This might be evidence for systematic error which is revealed by our
direct plot and "hidden" in the typical log/log plots. Here we find the polytropic models to be
significant improvements over the two standard models, again with rather low values for Ωm
and with somewhat high values for the Hubble constant, compared with expectations.
We next extend our analysis to all 307 SNe Ia data of Kowalski (Kowalski et al., 2008) and
we find the modeling to yield significantly better fits as judged by lower χ2/(N-FP) for all
models, Table 3. The fit for the Analytic-ST model with a χ2/(N-FP) of 1.34 suggests a good
fit but again the Simple-DE model does not fit the data very well. The matter densities of the
better fitting models are much lower than those usually published from log/log plots, even
the normalized matter density, Ωm, of the Simple-DE model, at 0.14, is well below the oft
presented 0.25 to 0.27.
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Model DF H0 Ωnr or Ωm ΩΛ or Ωk χ2/(N-FP)
Simple-DE 2 66.6 ± 0.7 0.21 ± 0.04(Ωm) 0.79(ΩΛ) 2.12

Ωr-ST 3 69.0 ± 0.7 0.025 ± 0.02 0.975 ± 0.02(Ωk) 2.35
Ωr-DE 3 68.0 ± 0.8 0.065 ± 0.02 0.935 ± 0.05(ΩΛ) 2.60

Analytic-ST 2 65.2 ± 0.7 0.08 ± 0.10(Ωm) 0.92(Ωk) 2.61

*With N the number of data pairs (163) and FP the number of free parameters (Wood-Vasey
et al., 2007). H0 in km s−1Mpc−1.

Table 4. Results with data from 162 SNe Ia and today

We examine our final data set published by Wood-Vasey (Wood-Vasey et al., 2007) consisting
of 60 distance SNe Ia from the ESSENCE Supernova Survey normalized with about 100 other
observations. This is the only time the standard model, Simple-DE, is the the best fit, Table 4. The
Simple-DE model also presents a value for Ωm of 0.21, not much lower than currently popular
values. Notice that all values for χ2/(N-FP) are much greater than two other analyses (Tables
1,3) and similar to the large values reported in Table 2. These, and the results from the Kessler
et al. data may be caused by assigning consistently smaller errors to distance measurements,
compared with other reports. This results in the curve fit being described primarily by the
nearby SNe Ia events, with very low assigned errors, almost totally ignoring earlier SNe Ia.
The curves from this data and the fits of the Kessler data are "flatter" than expected, reflecting
the near linear alignments of nearby SNe Ia as graphed, resulting in large values of χ2/(N-FP).
The Ωr-ST models typically return a value for H0 of 69 to 80 km s−1Mpc−1 which are our
only consistent results in that popular range, but favored by recent multi-parameter WMAP
(6 free parameters)and BAO analyses (Komatsu et al., 2009). The Simple-DE model, which is
most popular model currently, here presents values for H0 of 67 to 75 using these four sets,
so cannot really discriminate between the two controversial values towards each end of this
range (Sandage et al., 2006).
A significant value for relativistic matter density was never found from any model with any of
the the four data sets examined here; we do not present numerical estimates for Ωr since these
report much smaller than the calculated errors of Ωnr for our two models. We do venture an
upper bound for Ωr of <0.001 from the present to near reionization. It seems likely this is
because the portion of universal gravitation due to relativistic particles and photons is and
has been <<0.001. The values of Ωnr and Ωm for the DE models, both presuming a flat
Universe, differ widely. The more sophisticated Ωr-DE model with a Ωnr of about 0.05 or
less suggests the Universe contains much less matter than previous estimates. On the other
hand the Simple-DE model fit with an estimated Ωm of 0.27±0.03 to the culled Hicken et al.
data, which is similar to values published using log luminary distance data (Astier et al., 2006;
Davis et al., 2007) or the official 6-parameter WMAP results(Komatsu et al., 2009) but is short
of a total Ωm of 0.32 found from reanalysis of WMAPLiu et al. (2009). A similar situation
is found for the two models allowing spacetime curvature, Analytic-ST and Ωr-ST, where a
more "typical" value for Ωm of ≈0.25 becomes ≈0.001 with the Ωr-ST model. The two terms
introduced to account for the different natures of matter and the Hubble flow in Eqs.(23,24)
allow matter densities to vary with respect to Universe expansion; these more sophisticated
models suggest a much lower average matter density in the current epoch. The differences in
matter densities between the two DE and two ST models are consistent with the idea that a
universe with more matter requires more energy to continue expanding.
We present two Figures (2 and 3) which are the results from a series of single free parameter
fits, with data of the culled Hicken et al. set and modeling with the two standard models,
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Model FP H0 Ωnr or Ωm ΩΛ or Ωk χ2/(N-FP)
Ωr-DE 3 74.2 ± 0.5 0.04 ± 1 0.96 ± 1(ΩΛ) 2.24
Ωr-ST 3 79.8 ± 0.6 0.0003 ± 0.02 0.9997 ± 1(Ωk) 2.34

Analytic-ST 2 67.8 ± 0.5 0.42 ± 0.09(Ωm) 0.58(Ωk) 2.66
Simple-DE 2 69.9 ± 0.7 0.76 ± 0.07(Ωm) 0.24(ΩΛ) 3.05

*With N the number of data pairs (283) and FP the number of free parameters (Kessler et al.,
2009). H0 in km s−1Mpc−1.

Table 2. Results with data from 282 SNe Ia and today

Model FP H0 Ωnr or Ωm ΩΛ or Ωk χ2/(N-FP)
Analytic−ST 2 68.0 ± 0.5 0.0002 ± 0.05(Ωm) 0.9996(Ωk) 1.34
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Ωr-DE 3 75.4 ± 0.6 0.045 ± 0.03 0.955 ± 0.02(ΩΛ) 1.49

Simple−DE 2 75.3 ± 0.7 0.14 ± 0.02(Ωm) 0.86(ΩΛ) 1.50

*With N the number of data pairs (308) and FP the number of free parameters (Kowalski et
al., 2008). H0 in km s−1Mpc−1.

Table 3. Results with data from 307 SNe Ia and today

used. While the matter density for the Simple-DE model is near that expected from previous
publications, ≈0.27, for instance the BAO analysis (Eisenstein et al., 2005), the matter density
returned by the Analytic-ST model is quite low. Low matter density values are also found
from the fits of both polytropic models and the Hubble constant also tends on the low side of
the usual expectation for 3 of the 4 models. When we consider the more detailed polytropic
model which includes the cosmic constant, Ωr-DE, we find it fits the data better than other
models, being on the border of a good fit.
When we discard our exact data pair of today on earth and analyze with only the 386 SNe Ia
data we find significant differences in the goodness of fit of the two standard models. Exclusion
of this single data pair allows the models to "drift" from the origin at x, y of exactly 1,0 and the
values for χ2/(N-FP) increase by nearly 0.1 for both the Simple-DE model and the Analytic-ST
model (results not presented).
In our next analyses we use the 288 data pairs from Kessler and friends (Kessler et al., 2009)
after culling 6 pair outside 2500 Mpc from the curve defined by the Analytic-ST fit. Even
after discarding these outliers, the fits are not considered good as judged by the χ2/(N-FP),
Table 2. The values for matter densities, Ωm, for the two standard models are much greater than
commonly reported. This might be evidence for systematic error which is revealed by our
direct plot and "hidden" in the typical log/log plots. Here we find the polytropic models to be
significant improvements over the two standard models, again with rather low values for Ωm
and with somewhat high values for the Hubble constant, compared with expectations.
We next extend our analysis to all 307 SNe Ia data of Kowalski (Kowalski et al., 2008) and
we find the modeling to yield significantly better fits as judged by lower χ2/(N-FP) for all
models, Table 3. The fit for the Analytic-ST model with a χ2/(N-FP) of 1.34 suggests a good
fit but again the Simple-DE model does not fit the data very well. The matter densities of the
better fitting models are much lower than those usually published from log/log plots, even
the normalized matter density, Ωm, of the Simple-DE model, at 0.14, is well below the oft
presented 0.25 to 0.27.
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Model DF H0 Ωnr or Ωm ΩΛ or Ωk χ2/(N-FP)
Simple-DE 2 66.6 ± 0.7 0.21 ± 0.04(Ωm) 0.79(ΩΛ) 2.12
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et al., 2007). H0 in km s−1Mpc−1.

Table 4. Results with data from 162 SNe Ia and today

We examine our final data set published by Wood-Vasey (Wood-Vasey et al., 2007) consisting
of 60 distance SNe Ia from the ESSENCE Supernova Survey normalized with about 100 other
observations. This is the only time the standard model, Simple-DE, is the the best fit, Table 4. The
Simple-DE model also presents a value for Ωm of 0.21, not much lower than currently popular
values. Notice that all values for χ2/(N-FP) are much greater than two other analyses (Tables
1,3) and similar to the large values reported in Table 2. These, and the results from the Kessler
et al. data may be caused by assigning consistently smaller errors to distance measurements,
compared with other reports. This results in the curve fit being described primarily by the
nearby SNe Ia events, with very low assigned errors, almost totally ignoring earlier SNe Ia.
The curves from this data and the fits of the Kessler data are "flatter" than expected, reflecting
the near linear alignments of nearby SNe Ia as graphed, resulting in large values of χ2/(N-FP).
The Ωr-ST models typically return a value for H0 of 69 to 80 km s−1Mpc−1 which are our
only consistent results in that popular range, but favored by recent multi-parameter WMAP
(6 free parameters)and BAO analyses (Komatsu et al., 2009). The Simple-DE model, which is
most popular model currently, here presents values for H0 of 67 to 75 using these four sets,
so cannot really discriminate between the two controversial values towards each end of this
range (Sandage et al., 2006).
A significant value for relativistic matter density was never found from any model with any of
the the four data sets examined here; we do not present numerical estimates for Ωr since these
report much smaller than the calculated errors of Ωnr for our two models. We do venture an
upper bound for Ωr of <0.001 from the present to near reionization. It seems likely this is
because the portion of universal gravitation due to relativistic particles and photons is and
has been <<0.001. The values of Ωnr and Ωm for the DE models, both presuming a flat
Universe, differ widely. The more sophisticated Ωr-DE model with a Ωnr of about 0.05 or
less suggests the Universe contains much less matter than previous estimates. On the other
hand the Simple-DE model fit with an estimated Ωm of 0.27±0.03 to the culled Hicken et al.
data, which is similar to values published using log luminary distance data (Astier et al., 2006;
Davis et al., 2007) or the official 6-parameter WMAP results(Komatsu et al., 2009) but is short
of a total Ωm of 0.32 found from reanalysis of WMAPLiu et al. (2009). A similar situation
is found for the two models allowing spacetime curvature, Analytic-ST and Ωr-ST, where a
more "typical" value for Ωm of ≈0.25 becomes ≈0.001 with the Ωr-ST model. The two terms
introduced to account for the different natures of matter and the Hubble flow in Eqs.(23,24)
allow matter densities to vary with respect to Universe expansion; these more sophisticated
models suggest a much lower average matter density in the current epoch. The differences in
matter densities between the two DE and two ST models are consistent with the idea that a
universe with more matter requires more energy to continue expanding.
We present two Figures (2 and 3) which are the results from a series of single free parameter
fits, with data of the culled Hicken et al. set and modeling with the two standard models,
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Fig. 2. Surface of Hubble constants and goodness of fits as functions of normalized matter
densities with the Simple-DE model.

allowing Ωm to be fixed but vary over the ranges close to values found here (Table 1) and
solving for the Hubble constant and χ2/(387) for the two standard models. Because Ωm
are tightly bound the fitting preference for any Ωm at the minima are in the neighborhood
but not exactly those determined via 2 and 3 free parameter modeling. These pseudo,
three-dimensional figures display smooth, declining surfaces with increasing Ωm for the
Simple-DE model. On the other hand, the Analytic-ST model displays a fairly flat surface
below Ωm of 0.10. Notice the reduced χ2/(387) for the Analytic-ST model at low values of Ωm
while the display of the Simple-DE fits suggests lower χ2/(387) with increasing values of Ωm.
While the surfaces for the two models are quite different, the Hubble constants calculated for
both are low and nearly invariant over the two ranges shown.
In Fig. 4 we present the results of fixing Ωm at 0.27 and solving for the constant Ar from
Eq. (24). We see the values found for this working constant are about 1/10 or less than those
we derive from first principles. Unfortunately at this matter density, the goodness of fits are
poor, but we can judge that the empirical value for Kr may be larger than those used by
Chandrasekhar and this presentation. The figure also suggests a strong dependence of H0 on
the nature of matter density retarding Universe expansion. For instance, if Ωm is really around
0.27, as used here, the effects of relativistic matter might be observed in SNe Ia signals.
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Fig. 3. Surface of Hubble constants and goodness of fits as functions of normalized matter
densities with the Analytic-ST model

Using parameters from the Eisenstein (Eisenstein et al., 2005) investigation of cosmic BAO and
presuming a flat Universe we have calculated several values for our coefficients Bnr and Br
of Eq. (28). We have selected three values for Ωm from 0.273 preferred by Eisenstein to 0.32
preferred by Li and Liu Li & Liu (2009). Our results are reported in Table 5 as functions of Ωm
and x, where x is the ratio of Ωr/Ωm, with the sum of relativistic and non-relativistic matter
being Ωm.
In general, the evaluation errors are smallest for Ωm of 0.273, where positive, though small,
values were found for Bnr rather than 0. For this value of normalized matter density the
relative ratios of Ωnr to Ωr might be considered of interest and perhaps even realistic. (Note
the relative magnitudes of Bnr and Br are not directly proportional to the weight fraction of
these species in the Universe.) We also evaluate this routine at the much smaller values of Ωm
of 0.01 and 0.001 but the relative errors are about 2 orders of magnitude larger than for Ωm of
0.273 and not worth reporting.
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Using parameters from the Eisenstein (Eisenstein et al., 2005) investigation of cosmic BAO and
presuming a flat Universe we have calculated several values for our coefficients Bnr and Br
of Eq. (28). We have selected three values for Ωm from 0.273 preferred by Eisenstein to 0.32
preferred by Li and Liu Li & Liu (2009). Our results are reported in Table 5 as functions of Ωm
and x, where x is the ratio of Ωr/Ωm, with the sum of relativistic and non-relativistic matter
being Ωm.
In general, the evaluation errors are smallest for Ωm of 0.273, where positive, though small,
values were found for Bnr rather than 0. For this value of normalized matter density the
relative ratios of Ωnr to Ωr might be considered of interest and perhaps even realistic. (Note
the relative magnitudes of Bnr and Br are not directly proportional to the weight fraction of
these species in the Universe.) We also evaluate this routine at the much smaller values of Ωm
of 0.01 and 0.001 but the relative errors are about 2 orders of magnitude larger than for Ωm of
0.273 and not worth reporting.
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Fig. 4. Calculations of Relativistic Constant Ar from the Simple-DE model with Ωm of 0.27.

Ωm
0.75 0.5 0.25

0.32
Bnr = 0 Bnr = 0 Bnr = 0
Br = 0.326335 Br = 0.980374 Br = 2.26713

δ = 3.3566 δ = 0.1259 δ = 1.7939

0.3
Bnr = 0 Bnr = 0 Bnr = 0
Br = 0.294466 Br = 0.916476 Br = 2.144604

δ = 1.2194 δ = 1.5471 δ = 3.0469

0.273
Bnr = 0.124236 Bnr = 0.008885 Bnr = 0.004552
Br = 0.01 Br = 0.001121 Br = 0.003291

δ = 0.3507 δ = 0.2151 δ = 0.2159

δ is the relative calculation error as presented in Appendix 5.2.

Table 5. Calculation of the coefficients for Eq. 28 from BAO parameters

4. Conclusions

The data from the SDSS and SNe Ia collections are unique to science being by far the best
ensembles of events stretching a large fraction of the Universe age. By using great times
as a variable we can begin to answer questions which cannot be addressed by high energy
experiments, perhaps even at the level of CERN. These data have been used to support several
theories of spacetime and matter expansion including many models of DE (Davis et al., 2007;
Sahni & Starobinsky, 2006) or the related gravitational/DE quintessence (Caresia et al., 2004;
Ratra & Peebles, 2003) or even a decline of light emission frequency with local absolute time
(Oztas et al., 2008). Here we begin to address the problem of the average densities of both
non-relativistic and relativistic matter following the polytropic approach of Chandrasekhar
applying this to variations of the FRW model using SNe Ia data and BOA results. We did
attempt our own calculations of polytropic constants of a more universal nature than those
of Chandrasekhar from first principles, but found these not as well suited for fitting real
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data as those presented by that exceptional individual and used for decades to describe
SNe Ia explosions. Our results with these constants are successful to a first approximation
and suggest this general approach may be useful for investigations into other, seemingly
unrelated, fields.
Using the SNe Ia data from several sources and our sophisticated models we have found the
preponderance of the Universe is either spacetime or dark energy. Our low values for Ωnr
from both regimes, might be equated with the combined densities of baryonic and CDM,
though we prefer only equivalence with Ωb for the following reasons. Our small values are
consistent with results reported for another fit of SNe Ia data of a 5-dimensional model of
the Universe that lumps all matter and energy into a single term but without resorting to
CDM(Hartnett & Oliveira, 2007). A small Ωnr is consistent with two recently published values
for the baryonic density of about 0.05 for the Universe within seconds of singularity (Fields &
Sakhar, 2009; Schramm , 2006) so the value will obviously decline towards our results with
Universe expansion. Our small values for Ωnr is also consistent with recent results from
WMAP analysis where Ωb was calculated as 0.046(Hinshaw et al., 2009). The difference in our
findings and others (Burles et al., 2001a;b) from those of astronomers (Komatsu et al., 2009)
for Ωm might be thought the difference between baryonic and CDM. To solve this problem,
a polytropic model which includes a term for CDM would have to be investigated, realistic
polytropic constants discovered and the model fit to the astronomical data. Unfortunately for
this investigation, CDM seems absent in our neighborhood of the Milky Way as attested in
several un-refuted reports (Bahcall et al., 1995; Bienayme et al., 2006; Creze et al., 1998) which
makes discovery and characterization extremely difficult.
In general, our individually determined estimated errors for the Hubble constant are smaller
than other reports Komatsu et al. (2009). These smaller values for H0, with smaller estimated
errors, mean an older Universe which is helpful for those trying to adjust estimates of the
minimum age from radioactive decay (Dauphas, 2005), globular cluster star composition
(Formicola et al., 2004) and suffer the demands of very early galaxy formation (Primack,
2005). Most of the models investigated here, and with different data sets, return values
for H0 slightly larger than the estimate by A. Sandage of 62.3±6.3 km s−1Mpc−1 from his
accumulated works (Sandage et al., 2006) but also lower than the 70 to 73 km s−1Mpc−1

currently fashionable. Since he and his coworkers have spent lifetimes evaluating the Hubble
constant, and the present work, one cannot discard values in the low to mid-60s without very
serious consideration. It has been well argued that values of H0 derived from FRW modeling
should only be used to estimate the lower bound of Universe age (Melia, 2009). Use of the
polytropic constants require values for H0 deep within the normalized matter parameters
in the models presented here. This "constant" is therefore, of even greater importance than
heretofore imagined for determination of matter densities, spacetime curvature and perhaps
DE. Unfortunately, H0 seems the least well known of any important constant today and
deserves continued, intense investigation(Huchra, 2008). Unfortunate too, because many
astronomers consider H0 a nuisance parameter forgetting this determination an important
reason for throwing the Hubble satellite into outer space.
The nagging and serious cosmological coincidence problem remains, where the expectation
value for DE differs by more than the Planck constant from expectation (Carroll, 2008), with
no resolution on the horizon. Serious flaws in the mathematics of the cosmic constant, which
present as discontinuities, have been published (Oztas & Smith, 2006). In addition to this, it
has also been shown by fundamental argument that the concept of dark energy as currently
employed should not be estimated by the cosmic constant, where use of ΩΛ fails as the origin
of distant signals approach the gravitational horizon (Melia, 2009). Our analysis does not
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Fig. 4. Calculations of Relativistic Constant Ar from the Simple-DE model with Ωm of 0.27.
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support the superiority of the Simple-DE model since this does not fit the distance-frequency
data any better than other models. The concept of DE itself demands more and better SNe Ia
data with more analyses, for resolution of all these problems does not seem at hand (Carroll,
2008).
We suggest our very small result for Ωr of < 10−3 is probably the upper bound for the
abundance of relativistic matter in the Universe, during epochs between the present and
reionization. Estimates of the normalized relativistic matter density have been made and
seem to lie between this value and about 10−6, as suggested from WMAP 3 year data (Goobar
et al., 2006). So the data from SNe observations are useful to establish limits for not only
non-relativistic but relativistic matter. If relativistic matter consists primarily of neutrinos this
is the upper bound of the current, small gravitational contribution of these particles to our
Universe.
Our results following Chandrasekhar’s reasoning and with his constants are moderately
successful to the first approximation when applied to both SNe Ia data and BAO parameters
and suggest the polytropic model is of a very general nature and might be used by
investigators from other, seemingly unrelated, fields. We demonstrate that data from SNe
Ia observations are useful to estimate limits not only for non-relativistic but relativistic matter;
much more astronomical data are needed to better define these values. Solutions from
BAO investigations may provide a particularly good method for investigating a polytropic
Universe; such has already been predicted (Hu et al., 1998).
We should point out our approach approximates changing matter densities with lookback
time, something simpler, standard models ignore. The standard models presume a constant
matter density, which is obviously not the case when fitting data back to z≈1.5. By
incorporating the Hubble constant into the matter density terms, our model corrects for
changing matter densities with expansion and better fit the data. Since Chandrasekhar’s
insight is confirmed by daily supernova explosions across our Universe, serious consideration
should be given to his polytropic approach when dealing with gravity, density and pressure
in cosmology.

5. Appendix

5.1 Polytropic constants
We quickly review the classic derivation of the polytropic constants of Chandrasekhar. We
begin with the usual relationships describing the heat capacities at constant volume, V, and
constant pressure, P, as

CV = (
dQ
dT

) (29)

and

CP = (
dQ
dT

) + R (30)

where R is the ideal gas constant, so that CP − CV = R and CP
CP

= γ. For an ideal gas, such as
monatomic H and He at high temperature in the primitive Universe these heat capacities are
straightforwardly related to the gas constant by

CP =
5
2

R (31)

and
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CV =
3
2

R (32)

with the ratio of Eq. (31) over (32) to be

γ =
CP
CV

=
5
3

. (33)

For the adiabatic situation of a system without heat exchange, dQ = 0 the heat capacity at
constant volume may be cast in the form

CVdT +
RT
V

dV = 0 (34)

and substituting CP − CV for R we get

CV
dT
T

+ (CP − CV)
dV
V

= 0 (35)

With separation of variables we can integrate the equation above to get

CVlog(T) + (CP − CV)log(V) = constant (36)

which rearranges to the simple relationship of

TVγ−1 = constant (37)

after substitution of T with PV
R we get

PV
R

Vγ−1 = constant (38)

which is more simply

PVγ = constant. (39)

In the case where the specific heat remains constant with a changing temperature, dQ
dT =

constant = c we use a similar argument as previously with

γ� = CP − c
CV − c

(40)

leading to a similar relationship with Eq. (37) as

PVγ� = constant. (41)

5.2 Evaluation of Bi coefficients
We briefly review several relationships presented by Eisenstein et al. used in their evaluation
of SDSS data. We use these to evaluate numerical candidates for our Bi species and we
are especially interested in their dependence on the normalized matter density, Ωm. There
might appear to be a hidden dependency of our Bnr and Br on the Hubble constant, because
ρc includes H0, but the ratio of numerical values (for instance, dependence on Ωr/Ωm) are
actually Hubble flow independent.
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The parameter A, used for BAO evaluation, is dependent on several common cosmological
parameters

A = DV(0.35)

√
Ωm H2

0

0.35c
(42)

where DV(z) is the distance to recent redshifts

DV(z) =
[

DM(z)2 cz
H(z)

]1/3

and H(z) is typically defined in terms of E(z)

E(z) =
H2

z
H2

0
=

(
ȧ
a

)2
.

E(z) at a given redshift is used in the present study as the traditional version for a flat Universe

E(z) =
√

Ωm(1 + z)3 + Ωr(1 + z)4

which is the special case of our interest. The term DM(z) is a value reflecting the redshift
distance at recombination depending on the constant DH = c/H0 = 3000/h (in Mpc) and the
value for the integral of 1/E(z)

DM(z) = DH

∫ z

0

dz
E(z)

.

The value for R is a ratio of redshift dependents, where 0.35 is a typical present redshift and
1089 is a popular value for the redshift at recombination during the primitive Universe

R0.35 =
DV(0.35)
DM(1089)

. (43)

For evaluation of relative errors we use R0.35 of 0.0979 and A of 0.469 from Table 1 of Eisenstein
et al. 2005 as reference values. The coefficients Bnr and Br were calculated by minimizing the
relative error of our E(z) with respect to these two reference values as

δ =
|A − 0.469|

0.469
+

|R0.35 − 0.0979|
0.0979

.
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1. Introduction
The effort toward making quantum mechanics and general relativity compatible (quantum
gravity) has lasted more than a century. The string theory and loop quantum gravity both
stand out as strong candidates and currently they both make popular research subjects in
quantum gravity. As we known, Loop quantum gravity (LQG)(Ashtekar & Lewandowski,
2004; Rovelli, 1998; 2004; Thiemann, 2007) is a background independent and non-perturbative
canonical quantum gravity theory. LQG has made many breakthroughs in recent years:
the establishment of the quantum Einstein equations Ashtekar & Tate (1994); Ashtekar et al.
(1995a); Corichi & Zapata (1997); Lewandowshi & Thiemann (1999); Rovelli & Smolin (1994);
Thiemann (1996; 1998a;b;c; 2001), the proof that the Riemannian operators have
discrete eigenvalues Ashtekar et al. (1995b); Lewandowski (1997); Loll (1995a;b; 1997a;b);
Rovilli & Smolin (1995); Thiemann (1998d;e),results concerning the entropy of the black hole
horizon and cosmological horizon entropy with statistical mechanics Ashtekar et al. (1998;
1999; 2000; 2001; 2002; 2003a;b); Berreira et al. (1996); Rovelli (1996a;b); Smolin (1995), and so
on. As an application of loop quantum gravity to cosmology, loop quantum cosmology (LQC)
Bojowald (2005a; 2008); Date (2002) also presents itself as a possible path toward answers to
the cosmological and astrophysical riddles.
As a symmetry reduced model of LQG, LQC inherits the quantum schemes originated from
LQG that dealt with the isotropic and homogeneous universe firstly and then extended to
the inhomogeneous and anisotropic model Bojowald (2002a). It plays an important role in
connecting the LQG theory and the measureable world. On one hand, it is used to test the
full theory, which, in its own form, is extremely complex and difficult to directly apply.On the
other hand, making connections to the real world sheds light on further improvement of the
LQG theory. These reasons make LQC a promising and enlightening subject to study.
In LQC, the collapsing and expanding phases are connected by the cyclic or oscillatory models
Lidsey et al. (2004), and the universe is automatically born with a small scale factor at the fixed
point near the Planck phase Bojowald (2005); Mulryne et al. (2005a). Unlike in the emergent
universe model, this fixed point here is stable and allows the universe to start in an initial
phase of oscillation. Then an inflationary phase is entered, which is the relevant regime for
structure formation. In LQC, there are many different inflationary scenarios Artymowski et al.
(2009); Bojowald et al. (2004); Mulryne et al. (2005b); Zhang & Ling (2007), among which the
one without inflation is the most attractive, mainly because it can explain the inflationary
phase directly from LQG. But, unfortunately, it is difficult to study the structure formation.

16



20 Will-be-set-by-IN-TECH

Leibundgut, B. (2008). Supernovae and Cosmology, Gen. Relativ. Gravit. 40, 221-248.
Linden, A. (2009). Cosmological Parameter Extraction and Biases from Type Ia Supernova

Magnitude Evolution, Astron. Astrophys. 506, 1095-1105.
Liu, H. & Li, T.-P. (2009). Improved CMB Map from WMAP Data, arXiv:0907.2731
Li, T.-P., et al., (2009). Observation Number Correlation in WMAP data, M.N.R.A.S. 398, 47.
Liu, H. & Li, T.-P. (2010). Inconsistency Between WMAP Data and Released Map, Chinese Sci

Bull 55, 907-909.
Liu, H. & Li, T.-P. (2011). Pseudo-Dipole Signal Removal from WMAP Data, Chinese Sci. Bull.

56, 29-33.
Melai, F. (2009). Constraints on Dark Energy from the Observed Expansion of Our Cosmic

Horizon, Int. J. Mod. Phys. D 18, 1113-1127.
Moss, A., Scott, D. & Sigurdson, K. (2010). Induced CMB Quadrapole from Pointing Offsets,

arXiv:1004.3995v1
Oztas, A.M., Smith, M.L. & Paul, J. (2008). Spacetime Curvature is Important for Cosmology

Constrained with Supernova Emissions, Int. J. Theoret. Phys. 47, 725-740.
Oztas, A.M. & Smith, M.L. (2006). Elliptical Solutions to the Standard Cosmology Model with

Realistic Values of Matter Density, Int. J. Theoret. Phys. 45, 925-936.
Peebles, P.J.E. (1993). Principles of Physical Cosmology Princeton University Press, Princeton,

New Jersey.
Primack, J.R. (2005). Precision Cosmology, New Astron. Rev. 49, 25-35.
Peebles, P.J.E. & Ratra, B. (2003). The Cosmological Constant and Dark Energy, Rev. Mod. Phys.

75, 559-606.
Roukema, B.F. (2010). On the Suspected Timing Error in WMAP Map-making,

arXiv:1004.4506v2
Sahni, V. & Starobinsky, A. (2006). Reconstructing Dark Energy, Int. J. Mod. Phys. D 15,

2105-2132.
Sandage, A., el. al., (2006). The Hubble Constant: A Summary of the Hubble Space

Telescope Program for the Luminosity Calibration of Type Ia Supernovae by Means
of Cepheids, Astrophys. J. 653, 843-860.

Schaefer, B.E. (2007). The Hubble Diagram to Redshift >6 from 69 Gamma-Ray Bursts,
Astrophys. J. 660, 16-46.

Schramm, D.N. (2006). Summary of Recent Developments in Primordial Nucleosynthesis,
Ann. N. Y. Acad. Sci. 688, 776-791.

Setare, M.R. (2009). Generalized Chaplygin Gas Model as a New Agegraphic Dark Energy in
Non-flat Universe, Int. J. Theoret. Phys. 48, 3365-3371.

Sharaf, M.A. & Sendi, A.M. (2010). Computational Developments for Distance Determination
of Stellar Groups, J. Astrophys. Astron. 31, 3-16.

Smith, M.L., et at., (2010). Constraints on Dark Energy and Dark Matter from Supernovae and
Gamma Ray Burst Data in Dark Energy: Developments and Implications, Nova
Science, Hauppauge, New York.

Vikhlinin, A., et al., (2008). Chandra Cluster Cosmology Project III: Cosmological Parameter
Constraints, arXiv:0812.2720.

Vikhlinin, A., et al., (2009). X-ray Cluster Cosmology, arXiv:0903.5320.
Wood-Vasey, W.M., et al, (2007). Observational Constraints on the Nature of Dark Energy:

First Cosmological Results from the ESSENCE Supernova Survey, Astrophys. J. 666,
694-715.

304 Aspects of Today´s Cosmology

0

Loop Quantum Cosmology: Effective Theory
and Related Applications

Li-Fang Li, Kui Xiao and Jian-Yang Zhu
Department of Physics, Beijing Normal University, Beijing

China

1. Introduction
The effort toward making quantum mechanics and general relativity compatible (quantum
gravity) has lasted more than a century. The string theory and loop quantum gravity both
stand out as strong candidates and currently they both make popular research subjects in
quantum gravity. As we known, Loop quantum gravity (LQG)(Ashtekar & Lewandowski,
2004; Rovelli, 1998; 2004; Thiemann, 2007) is a background independent and non-perturbative
canonical quantum gravity theory. LQG has made many breakthroughs in recent years:
the establishment of the quantum Einstein equations Ashtekar & Tate (1994); Ashtekar et al.
(1995a); Corichi & Zapata (1997); Lewandowshi & Thiemann (1999); Rovelli & Smolin (1994);
Thiemann (1996; 1998a;b;c; 2001), the proof that the Riemannian operators have
discrete eigenvalues Ashtekar et al. (1995b); Lewandowski (1997); Loll (1995a;b; 1997a;b);
Rovilli & Smolin (1995); Thiemann (1998d;e),results concerning the entropy of the black hole
horizon and cosmological horizon entropy with statistical mechanics Ashtekar et al. (1998;
1999; 2000; 2001; 2002; 2003a;b); Berreira et al. (1996); Rovelli (1996a;b); Smolin (1995), and so
on. As an application of loop quantum gravity to cosmology, loop quantum cosmology (LQC)
Bojowald (2005a; 2008); Date (2002) also presents itself as a possible path toward answers to
the cosmological and astrophysical riddles.
As a symmetry reduced model of LQG, LQC inherits the quantum schemes originated from
LQG that dealt with the isotropic and homogeneous universe firstly and then extended to
the inhomogeneous and anisotropic model Bojowald (2002a). It plays an important role in
connecting the LQG theory and the measureable world. On one hand, it is used to test the
full theory, which, in its own form, is extremely complex and difficult to directly apply.On the
other hand, making connections to the real world sheds light on further improvement of the
LQG theory. These reasons make LQC a promising and enlightening subject to study.
In LQC, the collapsing and expanding phases are connected by the cyclic or oscillatory models
Lidsey et al. (2004), and the universe is automatically born with a small scale factor at the fixed
point near the Planck phase Bojowald (2005); Mulryne et al. (2005a). Unlike in the emergent
universe model, this fixed point here is stable and allows the universe to start in an initial
phase of oscillation. Then an inflationary phase is entered, which is the relevant regime for
structure formation. In LQC, there are many different inflationary scenarios Artymowski et al.
(2009); Bojowald et al. (2004); Mulryne et al. (2005b); Zhang & Ling (2007), among which the
one without inflation is the most attractive, mainly because it can explain the inflationary
phase directly from LQG. But, unfortunately, it is difficult to study the structure formation.

16



2 Will-be-set-by-IN-TECH

To know how and why this is true requires a study of the mathematical structure and the
physical meaning of LQC.
As is well known, LQC is based on the connection dynamics. So far, the successful
quantization of the cosmological model is still confined to the homogeneous Bianchi A
class because one can refer to the diagonal technique Bojowald (2003). With the Ashtekar’s
new variables, the Hamilton constraint can be written as a difference equation. One of
the major successes in LQC is that the big bang singularity can be replaced by the big
bounce Ashtekar et al. (2006a;b; 2008). (The robust demonstration of bounces in LQC is
confined to the cases where quantum back reaction can be safely ignored.). For the general
case, the quantization is more complex and the research is still going on. For the general
inhomogeneous cosmology, there have been three different approaches. The first one is to
introduce the inhomogeneous matter, but still based on the isotropic quantum geometry
and its effective theory. The second approach starts with the full constraint, splits it into
the homogeneous part and the inhomogeneous part, and then obtains the effective theory
Bojowald et al. (2006; 2007; 2008; 2009) (it has achieved a series of successes so far). The third
approach is to deal with the inhomogeneous symmetric model explicitly, and to shed light on
the full theory. At the time of writing, we still do not know whether the general solution is a
difference equation or not.
As we all know, the difference equation of state is difficult to analyze even in the homogeneous
and isotropic model. Thus we need a new tool to extract physical information out of the
theory. That is why the effective theory comes in. The effective theory shares the form
of the classical theory, but contains correction terms from the quantum theory (LQC). The
commonly considered ones include the inverse volume correction, the holonomy correction
and the back reaction correction. The inverse volume correction Bojowald (2002b;c) is used

to solve the quantization problem p− 3
2 in the matter Hamiltonian which cannot be quantized

directly. Instead, we write the equivalent form of p− 3
2 in the classical form, which can be

promoted to the well-defined operator in the quantum theory. This brings a correction term
to the classical theory. And the matter Hamiltonian derived in this way will behave differently
from the classical one on small scales. The matter Hamiltonian shows a repulsive behavior.
The holonomy correction originates from the fact that there does not exist an operator in the
quantum theory corresponding to the connection c Banerjee & Date (2005); Date & Hossain
(2004). When quantized, c should be expressed as sin (μc)/μ. It is obvious that the classical
expression recovers only at the small value of c. This provides a new correction to the classical
equation. The back reaction correction is the main source of correction in genuine quantum
systems Bojowald et al. (2007); Chiou (2008). If brought together, they may counteract each
other. Therefore, it is important to bring all possible quantum corrections together in a
consistent manner and study the corresponding physics. Based on these theories, many
interesting cosmological riddles have been studied, such as the big bang nucleosynthesis,
the already mentioned inflationary scenario, the anisotropy of CMB, and the gravitational
wave and so on. At the same time, many issues still need to be clarified in LQC, such as
the ambiguity problemBojowald et al. (2004) and the different quantum schemes Chiou & Li
(2009a;b); Mielczarek & Szyd (2008); Yang et al. (2009).
Very recently, an integral formulation of loop quantum cosmology with the Feynman
procedure has been discussed, which again shows that the loop quantum cosmology is
different from the Wheeler-DeWitt theory Ashtekar (2010). The spin foam model of LQC has
also been constructed (for recent progress see Ashtekar et al. (2009)). These theories add to the
appeal of LQC from different perspectives.

306 Aspects of Today´s Cosmology Loop Quantum Cosmology: Effective Theory
and Related Applications 3

In this Chapter, we will focus our attention on the effective theory from which we can easily
extract the physical result, and analyzing the explicit model can in turn shed light on the full
theory. The effective LQC theory is a semiclassical theory, and can be derived in different
ways, such as the WKB approximation, the coherent state, and so on. And they are consistent
with each other in the leading term. The effective theory is valid in the semiclassical region,in
between the quantum one and the classical one. And this theory will go back to the classical
theory in the classical region. So we can use effective loop quantum cosmology for both the
semiclassical and the classical region. One the other hand, along with the development of
modern space technology and high-precision measurement techniques, we have accumulated
a large amount of experimental data,probably more than that can be explained well by the
current theory, such as the Pioneer anomaly, dark matter, and the accelerating expansion of the
universe,to name a few. Close connection between the theoretical results and real experiments
is crucial, and motivates us to apply LQC to explicit physical models, and then to compare
theoretical results with real or gedarken experiments. The works to be summarized in this
chapter can be divided into the following three parts.
(I) We discuss the stability properties of an autonomous system in the effective LQC
Xiao & Zhu (2010). The system is described by a self-interacting scalar field φ with positive
potential V, coupled with a barotropic fluid in the Universe. With Γ = VV ′′/V ′2 considered
as a function of λ = V ′/V, the autonomous system is extended from three dimensions to
four dimensions. We find that the dynamic behaviors of a subset, not all, of the fixed points
are independent of the form of the potential. Considering the higher-order derivatives of
the potential, we get an infinite-dimensional autonomous system which can describe the
dynamical behavior of the scalar field with more general potential. We find that there is just
one scalar-field-dominated scaling solution in the loop quantum cosmology scenario.
(II) We discuss the null energy condition in the effective LQC Li & Zhu (2009). Wormhole and
time machine are objects of great interest in general relativity. However, it takes exotic matters
which are impossible on the classical level to support them. But if we introduce the quantum
effects of gravity into the stress-energy tensor, these peculiar objects can be constructed
self-consistently. LQC, with the potential to bridge the classical theory and quantum gravity,
provides a simple way to study quantum effect in the semiclassical case. We investigate the
averaged null energy condition in LQC in the framework of effective Hamiltonian, and find
out that LQC do violate the averaged null energy condition in the massless scalar field coupled
model.
(III) We consider the covariant entropy bound conjecture in the effective LQC Li & Zhu
(2010a). The covariant entropy bound conjecture is an important hint for the quantum gravity,
with several versions available in the literature. For cosmology, Ashtekar and Wilson-Ewing
showed the consistence between the loop gravity theory and one version of this conjecture.
Recently, S. He and H. Zhang proposed a version for the dynamical horizon of the universe,
which validates the entropy bound conjecture for the cosmology filled with perfect fluid in
the classical scenario when the universe is far away from the big bang singularity. But their
conjecture breaks down near the big bang region. We examine this conjecture in the context of
LQC. With the example of photon gas, this conjecture is protected by the quantum geometry
effects.

2. Effective Theory of Loop Quantum Cosmology
LQC is a symmetry-reduced sector of LQG. It is a direct application of the quantization
technique that originated from LQG. This section serves two purposes: First, we show
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that one can indeed find semiclassical solution which is an approximation to the classical
Einstein equations at late times. Second, we derive the effective equations incorporating the
dominating quantum corrections within the framework of geometric quantum mechanics.
The derivation of the effective equation utilizes two main tools: the geometric quantum
mechanics and the “shadow state framework".

2.1 Classical framework
The classical phase space Γ is constructed by the Ashtekar variables (Ai

a, Ea
i ), where Ai

a is
an SU(n) connection and Ea

i is the corresponding canonically conjugate variable. With the
Ashtekar variables, the classical constraint of the gravitational part can be expressed as

Cgrav = −γ−2
∫

V
d3x�ijke−1EaiEbjFi

ab. (1)

In the following, we will see that the Ashtekar variables can describe the classical theory very
well, as the ordinary ADM variables do. Considering isotropic and homogeneous universe,
the pair, (Ai

a, Ea
i ), is equivalent to the following form:

Ai
a = coV− 1

3 oωi
a, (2)

Ea
i = p

√
oqoV− 2

3
oea

i , (3)

where oe is a fiducial background triad, oωi
a is the connection, and oV is the volume of the

fiducial cell. From the above set of equations, we see that all the information about Ai
a and

Ea
i are contained in the pair of new variables (c, p). The classical Hamiltonian constraint for a

spatially flat FRW universe with a free massless scalar field is

C = − 3

κγ2
c2 p

1
2 +

1

2

p2
φ

p
3
2

= 0. (4)

For convenience, we replace the pair (c, p) with (β, V) through the following relationship

β =
c√
p

, (5)

V = p
3
2 . (6)

Then the Hamiltonian constraint can be expressed as

C = − 3

κγ2
β2V +

1

2

p2
φ

V
= 0, (7)

with the symplectic structure Ω = 2
κγ dβ ∧ dV + dφ ∧ dpφ . The phase space Γ consists of all

possible points (β, V, φ, pφ). The Poisson bracket on the phase space is given by

{
f , g

}
=

κγ

2

( ∂ f

∂β

∂g

∂V
− ∂g

∂β

∂ f

∂V

)
+

∂ f

∂φ

∂g

∂pφ
− ∂g

∂φ

∂ f

∂pφ
. (8)
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The evolution of the canonical variable depends on the Poisson equations. Therefore, the
classical equations of motion are given by

β̇ =
{

β, C
}
= − 3

2

β2

γ
− κγ

4

p2
φ

V2
, (9)

V̇ =
{

p, C
}
= 3

β

γ
V, (10)

φ̇ =
{

φ, C
}
=

pφ

V
, (11)

ṗφ =
{

pφ, C
}
= 0. (12)

We can verify that the above equation set is equivalent to the Friedmann equation for a free
scalar field when it is written in terms of the ordinary ADM variables. The new canonically
conjugate variables are related to the old geometrodynamics variables via β = γ ȧ

a and V = a3.

Then, with the definition of the density ρ = 1
2

p2
φ

p3 , we can get the classical Friedmann equation

and the Raychauduri equation as follows

H2 =
κ

3
ρ, (13)

3
ä

a
= −2κρ. (14)

2.2 Quantum framework
LQC is the symmetry reduced model of LQG, and it inherits the quantization schemes of LQG.
LQC is essentially different from the WDW theory. In LQC, the kinematical Hilbert space is in
the “polymer representation” for p, instead of the standard Schrödinger representation. There
is no operator corresponding to c. In addition, it is not densely defined if the inverse volume
function |p|−3/2 is naively quantized as the operator with eigenvalues equal to the inverse of
the volume eigenvalues. Thus, to construct the Hamiltonian constraint operator, we have to

express the classical constraint in terms of the triad variable p and the holonomy h
(μ̄)
k , both of

which have direct quantum analogs.
In the development of LQC, there exist two different quantum schemes: the μ0 scheme and the
μ̄ scheme. In the μ0 scheme, μ0 is a constant on the phase space, and the difference equation
is in uniform step size. The greatest success of this scheme so far is that it can replace the
big bang singularity with the big bounce, which reflects the nature of the quantum geometry
effect. Unfortunately, it suffers from serious physical problems. For example, the critical
value, ρcrit, of the matter density at which the bounce occurs can be made arbitrarily small
by increasing the initial momentum pφ of the scalar field. In other words, large values of pφ

are permissible in the late universe, which leads to bounce at low matter density. This is a
serious drawback because we do not expect the quantum effect to modify the evolution of the
universe in the classical region. In the μ̄ scheme, μ̄ is a function on the phase space, unlike
the constant μ0 in the μ0 scheme. This difference turns out to be enough to remove the major
weakness of the μ0 scheme, while keeping the desirable features of the original scheme. In
this section, we only review the quantization procedure in the μ̄-scheme.
In the μ̄ scheme,one can shrink the loop �ij until the area of the loop approaches the area gap
Δ, measured by the physical metric qab. The physical area of the elementary cell is |p|. Each
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side of �ij is μ̄(p) times the edge of the elementary cell, which leads to

μ̄2|p| = Δ ≡ (2
√

3πγ)l2
pl. (15)

Therefore, μ̄ is a non-trivial function on the phase space and can be rewritten as

μ̄ =

√
Δ
p

, (16)

where γ is the Immirzi parameter1.
Following Dirac, in the quantum theory, we should first construct a kinematical description.
The Hilbert space H

grav
kin is the space L2(RBohr, dμBohr) consisting of square integrable functions

on the Bohr compactification of the real line. To specify states concretely, we work with the
representation of the operator p̂ in which the operator p̂ is diagonal. Eigenstates of p̂ are
labeled by a real number μ and satisfy the orthonormality relation:

�μ1|μ2� = δμ1, μ2 . (17)

The right-hand side of the above equation is the Kronecker delta rather than the Dirac delta

distribution. A general state in H
grav
kin can be expressed as a countable sum �Ψ| = ∑n c(n) �μn|,

where c(n) are complex coefficients and the inner product is given by

�Ψ1| Ψ2� = ∑
n

c̄
(n)
1 c

(n)
2 .

The fundamental operators are p̂ and exp(îμ̄c/2). The action of the operator p̂ on its
eigenvalue is

p̂ |μ� =
8πγl p2

6
μ |μ� (18)

and the action of the operator exp(îμ̄c/2) on |μ� will be given later.
In order to achieve quantization, we should represent the Hamiltonian constraint operator

Ĉgrav in terms of the above well-defined operators. Following the full theory, with the

Thiemann trick, we can rewrite the term that involves the inverse triad e−1 as

e−1�i
jkEa

j Eb
k = ∑

l

oq1/3

2πGγμ̄L
�jkloea

j
oeb

kTr(h
(μ̄)
l {(h(μ̄)

l )
−1

, V}τi), (19)

where the holonomy

h
(μ̄)
l = P exp

∫ μ̄L

0
τi A

i
adxa = exp (μ̄cτl) (20)

1 The general form of μ̄ = ( Δ
p )

x , 0 < x < 1. Here we choose x = 1
2 according to the suggestions of

Ashtekar. However, we still cannot determine it for the following two reasons. (1) The coordinate area
is more natural than an invariant geometrical area when we consider the quantization of the single
curvature components. (2)The quantization requires the area operator which is not well understood in
the full theory.
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is along the edge of coordinate length μ̄L aligned with the direction of oea
l ∂a. τi is the generator

of the SU(2) and satisfies the relationship [τi, τj] = �k
ijτk, where τi =

1
2i σi and σi are the Pauli

matrices in the standard convention.
According to the techniques in the gauge theory, the field strength Fi

ab can be expressed as

Fk
ab = −2 lim

Ar�→0
Tr(

h
(μ̄)
�ij

− 1

μ̄2V2/3
0

)τkoωi
a

oω
j
b, (21)

where

h
(μ̄)
�jk

:= h
(μ̄)
j h

(μ̄)
k (h

(μ̄)
j )−1(h

(μ̄)
k )−1 (22)

is the holonomy along the the four edges of �ij.
Combining Eq.(19) with Eq.(21), the classical Hamiltonian constraint for the gravitational
sector can be rewritten as

Cgrav = − 4sgn(p)

8πγ3μ̄3 ∑
ijk

�ijkTr(h
(μ̄)
j h

(μ̄)
k (h

(μ̄)
j )−1(h

(μ̄)
k )−1h

(μ̄)
i {(hμ̄

i )
−1, V})

= sin(μ̄c)[− 4

8πγ3

sgn(p)

μ3 ∑
k

Trτkh
(μ̄)
i {(h(μ̄)

i )−1, V}] sin(μ̄c), (23)

where in the last step we have used a symmetric ordering of the three terms for later
convenience.

Now, we consider the action of the operator ê
iμ̄c
2 on the state |μ�. Although the geometrical

meaning of this action of ̂exp i(μ̄c/2) is simple, its expression in the |μ� representation is

complicated because μ is not an affine parameter along the integral curve of the vector μ̄ d
dμ .

After calculation, we get

êi μ̄c
2 Ψ̃(μ) = Ψ̃(sgn(μ̃)|μ̃| 2

3 ), where μ̃ = sgn(μ)|μ| 3
2 +

1

K
. (24)

Next, we will change to the v representation for simplicity. In the v representation, the action

of êi(μ̄c/2) on |v� is extremely simple

ê
iμ̄c
2 Ψ(v) = Ψ(v + 1), (25)

and the action of the volume operator on it is

V̂|v� = (
8πγ

6
)

3
2
|v|
K

|v�, (26)

where v = Ksgn(μ)|μ| 3
2 and K = 2

√
2

3
√

3
√

3
. Therefore, we will use the v representation in the

following.
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We can straightforwardly get the action of the operators
̂

sin(
μ̄c
2 ) and

̂
cos(

μ̄c
2 ) on v

representation,

̂
sin(

μ̄c

2
)|v� = 1

2i
[|v + 1� − |v − 1�], (27)

̂
cos(

μ̄c

2
)|v� = 1

2
[|v + 1�+ |v − 1�]. (28)

Then we promote the corresponding physical quantities sin(
μ̄c
2 ),cos(

μ̄c
2 ) and V to the

operators. We have

Ĉgrav =
̂

sin(
μ̄c

2
)[

24isgn(μ)

8πγ3μ̄3
(
̂

sin(
μ̄c

2
)V̂

̂
cos(

μ̄c

2
)− ̂

cos(
μ̄c

2
)V̂

̂
sin(

μ̄c

2
))]

̂
sin(

μ̄c

2
)

= : ̂sin(μ̄c)Â ̂sin(μ̄c). (29)

The action of the operator Â on the state Ψ(v) can be written as

ÂΨ(v) = − 27K

4

√
8π

6γ3/2
|v||v − 1|| − |v + 1||Ψ(v). (30)

One needs to use caution when deriving this expression. sgn(ν) is unambiguously defined
only on states other than the point v = 0. Since the right-hand side vanishes at v = 0, it is just
the domain of sgn(μ), where Â is well defined. Therefore, the operator on the right-hand side
is densely defined.
The action of the gravitational constraint on Ψ(v) is given by

ĈgravΨ(v) = f+(v)Ψ(v + 4) + f0(v)Ψ(v) + f−(v)Ψ(v − 4) (31)

with

f+(v) =
27

16

√
8π

6

Klpl

γ3/2
|v + 2|||v + 1| − |v + 3|| (32)

f−(v) = f+(v − 4) (33)

f0(v) = − f+(v)− f−(v). (34)

From the above, we can see that the gravitational constraint is again a difference operator.
Compared with the μ0-scheme, the new constraint involves steps which are constant in the
eigenvalues of the volume operator V̂, not in the eigenvalues of p̂.
Next, we continue to quantize the matter part of the constraint

Cmatt = 8π|p|− 3
2 p2

φ. (35)

It turns out that despite the existence of an inverse operator p̂−
3
2 , one can quantize it

successfully. With the Thiemann trick, one can always write the inverse operator in an
equivalent way, which contains the quantities that can be easily promoted to the operators.
We express the inverse triad as
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|p|−n = (| 3

γκlμ̄j(j + 1)(2j + 1) ∑
i

Tr(jτi
jh

μ̄
i {j(h

μ̄
i )

−1, V2l/3})|) n
1−l

= (| 9

γκlμ̄j(j + 1)(2j + 1)
Tr(jτ3

jh
μ̄
3 {j(h

μ̄
3 )

−1, V2l/3})|) n
1−l . (36)

In this quantization, there are two ambiguities Bojowald (2002b; 2005), labeled by a half
integer j and a real number l in the range 0 < l < 1. Following the considerations in Perez
(2006); Vandersloot (2005), we will set j = 1/2, and the general case for j can be found in
Chiou & Li (2009a;b). For l, there is no universally accepted concept, and l = 1/2 and l = 3/4
have been used in the literature. Fortunately, the results do not change qualitatively with the
exact choice. Here, we choose j = 1/2 and l = 3/4. Then

|̂p|− 3
2 Ψ(v) =

(
6

8πγ

)3/2

B(v) Ψ(v) (37)

where

B(v) =

(
3

2

)3

K |v|
∣∣∣∣|v + 1|1/3 − |v − 1|1/3

∣∣∣∣
3

. (38)

Combining all the results above, we can write down the full constraint

Ĉ Ψ(v) =
(
Ĉgrav + Ĉmatt

)
Ψ(v) = 0 (39)

as follows:

p2
φΨ(v, φ) = [B(v)]−1

(
C+(v) Ψ(v + 4, φ) + Co(v) Ψ(v, φ) + C−(v) Ψ(v − 4, φ)

)

=: −Θ Ψ(v, φ) (40)

where the coefficients C±(v) and Co(v) are given by:

C+(v) =
3πKG

8
|v + 2| ∣∣|v + 1| − |v + 3|∣∣

C−(v) = C+(v − 4)

Co(v) = −C+(v)− C−(v). (41)

2.3 Effective theory
The effective theory can be derived through the geometric quantum mechanics method.
Because of the fiber bundle structure, any horizontal section can be identified with the classical
phase space. If we can find such a section, then the quantum dynamics on it can be expressed
in terms of effective Hamiltonian, which is simply the expectation value of the quantum
Hamiltonian constraint operator. The expectation value yields the classical term as the leading
term and has quantum correction in the subleading terms. This is the key idea for deriving
the effective equation. Here we can look for a natural section that is approximately preserved
by the flow of the Hamiltonian constraint in a precise sense.
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f+(v) =
27

16

√
8π

6

Klpl

γ3/2
|v + 2|||v + 1| − |v + 3|| (32)

f−(v) = f+(v − 4) (33)

f0(v) = − f+(v)− f−(v). (34)

From the above, we can see that the gravitational constraint is again a difference operator.
Compared with the μ0-scheme, the new constraint involves steps which are constant in the
eigenvalues of the volume operator V̂, not in the eigenvalues of p̂.
Next, we continue to quantize the matter part of the constraint

Cmatt = 8π|p|− 3
2 p2

φ. (35)

It turns out that despite the existence of an inverse operator p̂−
3
2 , one can quantize it

successfully. With the Thiemann trick, one can always write the inverse operator in an
equivalent way, which contains the quantities that can be easily promoted to the operators.
We express the inverse triad as
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|p|−n = (| 3

γκlμ̄j(j + 1)(2j + 1) ∑
i

Tr(jτi
jh

μ̄
i {j(h

μ̄
i )

−1, V2l/3})|) n
1−l

= (| 9

γκlμ̄j(j + 1)(2j + 1)
Tr(jτ3

jh
μ̄
3 {j(h

μ̄
3 )

−1, V2l/3})|) n
1−l . (36)

In this quantization, there are two ambiguities Bojowald (2002b; 2005), labeled by a half
integer j and a real number l in the range 0 < l < 1. Following the considerations in Perez
(2006); Vandersloot (2005), we will set j = 1/2, and the general case for j can be found in
Chiou & Li (2009a;b). For l, there is no universally accepted concept, and l = 1/2 and l = 3/4
have been used in the literature. Fortunately, the results do not change qualitatively with the
exact choice. Here, we choose j = 1/2 and l = 3/4. Then

|̂p|− 3
2 Ψ(v) =

(
6

8πγ

)3/2

B(v) Ψ(v) (37)

where

B(v) =

(
3

2

)3

K |v|
∣∣∣∣|v + 1|1/3 − |v − 1|1/3

∣∣∣∣
3

. (38)

Combining all the results above, we can write down the full constraint

Ĉ Ψ(v) =
(
Ĉgrav + Ĉmatt

)
Ψ(v) = 0 (39)

as follows:

p2
φΨ(v, φ) = [B(v)]−1

(
C+(v) Ψ(v + 4, φ) + Co(v) Ψ(v, φ) + C−(v) Ψ(v − 4, φ)

)

=: −Θ Ψ(v, φ) (40)

where the coefficients C±(v) and Co(v) are given by:

C+(v) =
3πKG

8
|v + 2| ∣∣|v + 1| − |v + 3|∣∣

C−(v) = C+(v − 4)

Co(v) = −C+(v)− C−(v). (41)

2.3 Effective theory
The effective theory can be derived through the geometric quantum mechanics method.
Because of the fiber bundle structure, any horizontal section can be identified with the classical
phase space. If we can find such a section, then the quantum dynamics on it can be expressed
in terms of effective Hamiltonian, which is simply the expectation value of the quantum
Hamiltonian constraint operator. The expectation value yields the classical term as the leading
term and has quantum correction in the subleading terms. This is the key idea for deriving
the effective equation. Here we can look for a natural section that is approximately preserved
by the flow of the Hamiltonian constraint in a precise sense.
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In order to obtain the effective theory, we should choose a coherent state. Here we use a
Gaussian coherent state mostly for the reason that it is the simplest for getting the effective
equation with a late-time, large-volume approximation. We can also choose a more general
form to do this. The Gaussian coherent state is as follows:

(ψβ�,V �;φ�,p�
φ
| =

∫
dpφ ∑

v

e−
1
2 �2(v−v�)2

e
i
2

√
Δβ�(v−v�)

×e−
1
2 �2

φ(pφ−p�
φ)

2

e−iφ�(pφ−p�
φ)(v; pφ |

=:
∫

dpφ ∑
v

ψn(pφ)(v; pφ |, (42)

where v and v� are defined as V = ( 8πγ
6 )

3
2

l3
p

K v and V � = ( 8πγ
6 )

3
2

l3
p

K v�, here K = 2
√

2

3
√

3
√

3
.

Additionally, we should put on it three constraints:

(1)v� � 1,
√

δβ� � 1. This pair of conditions means that the scalar factor is much larger than
the Planck length and demands that the rate of change of the scale factor is much smaller than
the speed of light, which holds even in the early universe.

(2)v�� � 1 and � � √
δβ�. This pair means that the spreads of operator v̂ and β̂ must be small.

(3)φ � �φ and pφ�φ � 1. The last pair of restrictions on parameters demands that the spreads
of φ and pφ are small.
We need to show that the semiclassical state is sharply peaked at the classical point
(β�, V �, φ�, p�φ). Here, we face two difficulties. First, the operator corresponding to p̂ in the

Schrödinger representation is not defined in the polymer framework. So we need to define a
fundamental operator in Hpoly which is approximated by p̂ of the Schrödinger representation.
We define this operator as follows:

β̂Δ =
1

i
√

Δ
(ê

i
2

√
Δβ − ̂

e− i
2

√
Δβ). (43)

The operator β̂Δ agrees approximately with the classical β in the regime
√

Δβ � 1. And its
action on the basis kets |v; pφ� is

β̂|v; pφ� = 1

i
√

Δ
(|v + 1; pφ� − |v − 1; pφ�). (44)

The second difficulty is that the coherent state defined in Eq.(42) lies on Cyl∗. But there is
no inner product on the Cyl∗. In other words, the solutions to the constraints do not reside
in the kinematical Hilbert space, but rather in its algebraic dual space, therefore the required
expectation values cannot be defined on it. Fortunately, we can carry out calculation within
the“shadow state framework". Each shadow captures only a part of the information contained
in our state, but the collection of shadows can be used to determine the full properties of the
state in Cyl∗. We can indeed prove this Gaussian coherent state is sharply peaked at some
classical values (β�, V �, φ�, p�φ). Here we do not give the detailed proof, and refer interested

readers to Taveras (2008).
The required projection P̂γ from Cyl∗ to Cylγ can be defined as

(Ψ| P̂γ := ∑
xj∈γ

Ψ(xj) |xj� ≡ |Ψshad
γ �. (45)
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The corresponding shadow state in our case is

|Ψshad
γ � =

∫
dpφ ∑

n
e−

1
2 �2(n−N)2

e−
i
2

√
Δβ�(n−N)

×e−
1
2 �2

φ(pφ−p�
φ)

2

eiφ�(pφ−p�
φ)|n; pφ�. (46)

Then one can compute the expectation value of the constraint operator directly

�Ĉ� = − 3

16πGγ2μ̄�2 p
1
2

[
1 + e−4�2

(
2 sin2(

√
Δβ�)− 1

)]

+
1

2

(
p�2φ +

1

2�2
φ

)(
6

8πγl2
p

) 3
2

K

[
1

v� + O(v�−3, v�−3�−2)

]
. (47)

Furthermore, we want to know that the equations of motion for the other physical quantities
O. We will use the commutator between O and the Hamiltonian. The corresponding results
are as follows:

�β̇� � − 1

16π

27

16

(
8πγ

6

) 1
2 K

γ2
√

Δ

[
4e−

25
4 �2

cos

(
5

2

√
Δβ�

)
+ 4e−

9
4 �2

cos

(
3

2

√
Δβ�

)

−8e−
1
4 �2

cos

(
1

2

√
Δβ�

)]
−

(
p�φ2 +

1

2�2
φ

)
1

2V �2 ,

�V̇� � 3V �
γ

e−4�2 sin(2
√

Δβ�)
2
√

Δ
,

�φ̇� �
p�φ
V � +O

(
1

V �3

)
,

� ṗφ� = 0.

2.4 Ordinary formalism
As mentioned above, in the geometric quantization picture, we take the expectation values as
our basic observables, and try to obtain an effective description in terms of these variables. We
denote the expectation of β, V, φ, pφ as β̄, V̄, φ̄, p̄φ , respectively. Then we obtain the effective
equations of motion to the first order as follows

C̄ = − 3

κγ2
V̄ β̄2

(
1 − 1

4
Δβ̄2

)
− 6�2

κγ2

V̄

Δ

+
p̄2

φ

2V̄

[
1 + O(V̄−2, V̄−2�−2)

]
, (48)

˙̄β =
3

4γ

√
1 − 1

4
Δβ̄2

[
−2β̄2 + Δβ̄4

]

− κ

4

√
1 − 1

4
Δβ̄2

p̄2
φ

V �2 [1 + O(V̄−2, V̄−2�−2)], (49)

˙̄V = 3
β̄

γ
V̄

√
1 − Δβ̄2

4

(
1 − 1

2
Δβ̄2

)
, (50)
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˙̄φ =
p̄φ

V̄
+ O(V̄−3), (51)

˙̄pφ = 0. (52)

Combining Eq.(48) with Eq.(49), we get the effective Friedmann equation

H2 =
κρ

3
(1 − ρ

ρcrit
) + O(�2), (53)

where H = ȧ
a and ρcrit =

3
κγ2Δ originated from the quantum effect.

From the effective theory, we can easily see that the semiclassical states follow the classical
trajectory until the scalar field density is on the order of 1% of the Planck density where
deviations from the classical trajectory emerge. Then there can be major deviations from the
classical theory. The existence of the correction ρcrit can allow H = 0, meaning a bounce is
possible.
Also, from the equation of motion, we can get the conservation equation and the corrected
Raychaudhuri equation for this effective theory. With the Poisson bracket, we can calculate
ρ̇ = {ρ, C̄}, and get the conservation equation

ρ̇ + 6
ȧ

a
ρ = 0, (54)

which is the same as the classical conservation equation.

Similarly, we calculate ¨̄V = { ˙̄V, C̄}, and express it in terms of the scale factor a. Then we get

3
ä

a
= −2κρ(1 − 5

2

ρ

ρc
) + o(�2). (55)

Compared with the classical Raychaudhuri equation, it also gets a quantum correction term
ρ2

ρc
. Classically, this equation is always negative, but in the effective framework, there is a

bounce at the
ρ
ρc

= 1, which makes ä positive when ρ > 2
5 ρc.

In the end, there are still two points that need to be clarified. First, theoretically, Eq.(53) cannot
describe the correct dynamics near the bounce point because the bounce point

ρ
ρc

= 1 is

outside of the regime of our approximation. The effective framework is applicable only to

a late-time, large-volume universe because � � √
Δβ� is violated badly at the point of

ρ
ρc

= 1.

However, numerical work Ashtekar et al. (2006a;b) has shown that the dynamics derived by
the above describes the evolution of the universe very well even at the bounce, and hence the
results obtained in the effective framework continue to be reliable even beyond their expected
regime. Second, we omit the high-order correction term o(�2) in the modified Friedmann
equation Eq.(53). We should note that near the bounce point, the term in parentheses in the
modified Friedmann equation is approaching 0. It is not known if O(�2) should be omitted

there because � � √
Δβ� is violated. But the numerical results show that the modified

Friedmann equation holds with negligible O(�2) corrections. Therefore, the effective theory
remains valid beyond the domain for which it is constructed.
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2.5 Phenomenological analysis
In the above subsection, we obtain the effective framework of LQC systematically. In this one,
we analyze the holonomy correction and the inverse volume correction phenomenologically,
which is easy to handle and can describe the evolution of the universe correctly. Meanwhile,
it can lead us to new physics heuristically.

2.5.1 The holonomy correction
As mentioned above, the classical Hamiltonian with a free scalar field for the k = 0 FRW
model is given by

Hcl = − 3N

8πGγ2
c2
√
|p|+

Np2
φ

2 |p|3/2
(56)

in terms of the Ashtekar variables c and p. pφ is the conjugate momentum of φ. N is the lapse
function and γ is the Barbero-Immirzi parameter. At the heuristic level, we can impose the
loop quantum corrections of LQC phenomenologically. We simply replace c with

c −→ sin(μ̄c)

μ̄
. (57)

Then we get the description of "holonomization". This effective dynamics is solved as if the
dynamics was classical but governed by the new "holonomized" Hamiltonian, which reads as

He f f = − 3N

8πGγ2

sin2 μ̄c

μ̄2

√
|p|+

Np2
φ

2 |p|3/2
. (58)

As to be expected, the bouncing scenario can be easily obtained at the level of heuristic
effective dynamics without invoking the sophisticated features of LQC. In particular, with the
“improved” scheme imposed for μ̄, the modified Hamiltonian constraint Cμ̄ = 0 immediately
sets an upper bound for the matter density:

ρφ :=
p2

φ

2|p|3 =
3

8πGγ2Δ
sin2 μ̄c ≤ 3ρPl, (59)

where the Planckian density is defined as

ρPl := (8πGγ2Δ)−1. (60)

With this effective Hamiltonian, we have the canonical equation

ṗ =
{

p, He f f

}
= − 8πγ

3

∂He f f

∂c
, (61)

or,

ȧ =
sin(μ̄c) cos(μ̄c)

γμ̄
. (62)

Combining that with the constraint on Hamiltonian, He f f = 0, we obtain the modified
Friedmann equation

H2 =
8π

3
ρ

(
1 − ρ

ρc

)
, (63)
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where H ≡ ȧ
a denotes the Hubble rate, and ρc ≡ 3

8πγ2μ̄2 p
is the quantum critical density.

Compared with the standard Friedmann equation, we can define the effective density

ρe f f = ρ

(
1 − ρ

ρc

)
. (64)

Taking derivative of Eq.(63) and also using the conservation equation of matter, ρ̇ +
3H (ρ + P) = 0, we obtain the modified Raychaudhuri equation

ä

a
= Ḣ + H2 = − 4π

3

{
ρ(1 − ρ

ρc
) + 3

[
P(1 − 2ρ

ρc
)− ρ2

ρc

]}
. (65)

Comparing that with the standard Raychaudhuri equation, we can define the effective
pressure,

Pe f f = P

(
1 − 2ρ

ρc

)
− ρ2

ρc
. (66)

In terms of the effective density and the effective pressure, the modified Friedmann,
Raychaudhuri and conservation equations take the following forms,

H2 =
8π

3
ρe f f , (67)

ä

a
= Ḣ + H2 = − 4π

3

(
ρe f f + 3Pe f f

)
, (68)

ρ̇e f f + 3H
(

ρe f f + Pe f f

)
= 0. (69)

Therefore, we can get the important features of LQC without going into the detailed
construction of LQC at all. This can help us to extract the physics easily and provide insight
into the full theory.

2.5.2 The inverse volume correction
The inverse volume |p|− 3

2 of the matter Hamiltonian can get a quantum correction and the
matter Hamiltonian obtained in this manner will behave differently at small p. This is called
the inverse volume correction, and can be interpreted as providing a natural curvature cut-off.
For a scalar field, the modified matter Hamiltonian is

Hmatt =
1

2
d(a)p2

ϕ + a3V(ϕ) , (70)

where pϕ is the momentum canonically conjugate to ϕ, and d(a), which is classically 1/a3,
encodes the quantum corrections. In the semi-classical regime, where spacetime may be
treated as continuous, it is given by

d(a) =
D(q)

a3
, q =

a2

a2∗
, a∗ =

√
γj

3
�Pl . (71)

and

D(q) = q−3/2

{
3

2l

(
1

l + 2

[
(q + 1)l+2 − |q − 1|l+2

]

− q

1 + l

[
(q + 1)l+1 − sgn(q − 1)|q − 1|l+1

])}3/(2−2l)

. (72)
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Here γ is the Barbero-Immirzi parameter. Since the expression for a−1 is rather complicated,
the final quantization contains quantization ambiguities of different types. Here, j (a half
integer) is resulted from the use of arbitrary representations, and 0 < l < 1 is another
quantization parameter. The approximation to the eigenvalues becomes better for values of j
larger than the minimal one, 1/2.
The scale below which non-perturbative modifications become important is given by a∗.
Typically, one chooses j � 1, so that a∗ � �Pl. The Planck scale marks the onset of discrete
spacetime effects. For �Pl < a � a∗, the universe is in the semiclassical regime. In this regime,
q � 1. With the Taylor expansion, the geometrical density d(a) behaves as

d(a) ∼
[(

3

1 + l

)3/(2−2l)( a

a∗

)3(2−l)/(1−l)
]

1

a3
. (73)

The Hamiltonian determines the dynamics completely. The equation of motion for the matter
is

ϕ̇ = {ϕ,H} = d(a)pϕ . (74)

Combined with the Hamiltonian equation of motion for pϕ, the above equation can be cast
into a second order equation for ϕ Bojowald & Vandersloot (2002); Singh & Toporensky (2004);
Vereshchagin (2004); Tsujikawa et al. (2004),

ϕ̈ +

(
3H − Ḋ

D

)
ϕ̇ + D V,ϕ = 0 . (75)

For �Pl < a � a∗ , we find that Ḋ/D > 3H, which leads to the classical frictional term for an
expanding universe. The case is the opposite if the universe is contracting.
The Friedman equation and the Raychaudhuri equation are as follows:

H2 =
8πG

3

[
ϕ̇2

2D(a)
+ V(ϕ)

]
, (76)

ä

a
= − 8πG

3

[
ϕ̇2

D

(
1 − Ḋ

4HD

)
− V(ϕ)

]
. (77)

The Friedman equation implies a bounce in the scale factor, i.e., ȧ = 0 and ä > 0, which
requires a negative potential. (In a closed model, the curvature term allows for a bounce
with positive potential Singh & Toporensky (2004); Vereshchagin (2004).) Vanishing Hubble
parameter at the bounce implies

ϕ̇2 = −2D(a)V(ϕ) , (78)

so that at the bounce,

ä

a
=

4πG

3

(
6 − d ln D

d ln a

)
V . (79)

Classically, i.e., for D = 1, a bounce for a negative V(ϕ) is not allowed. With the modified
D(a), however, d ln D/d ln a > 6 will hold for sufficiently small a, so ä > 0 is possible. Thus,
the universe has to collapse sufficiently deep into the modified regime before it can bounce
back.
So far, the two corrections appear independently in the discussion. We hope to find a
consistent way to bring them together and study their impact on the universe. All the works
discussed in the following are based on the effective theory.
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3. Stability analysis of an autonomous system
Scalar field plays an important role in modern cosmology. Indeed, scalar field cosmological
models have great importance in the study of the early universe, especially in the investigation
of inflation. The dynamical properties of scalar fields also make an interesting research topic
for modern cosmological studies Copeland et al. (2006); Coley (2003). The dynamical behavior
of scalar field coupled with a barotropic fluid in spatially flat Friedmann-Robertson-Walker
(FRW) universe has been studied by many authors (see Copeland et al. (2006); Coley (2003);
Leon et al. (2010), and the first section of Copeland et al. (2009)).
The phase-plane analysis of the cosmological autonomous system is a useful method for
studying the dynamical behavior of scalar field. One always considers the dynamical behavior
of a scalar field with an exponential potential in the classical cosmology Copeland et al. (1998);
Hao & Li (2003; 2004) or modified cosmology Li & Hao (2004); Samart & Gumjudpai (2007).
And, if one considers the dynamical behavior of a scalar field coupled with a barotropic
fluid, the exponential potential is also the first choice Billyard & Coley (2000); Ferreira & Joyce
(1998); Hoogen et al. (1999); Yu & Wu (2008). The exponential potential V leads to the facts
that the variables Γ = VV ′′/V ′2 equals 1 and that λ = V ′/V is also a constant. Then the
autonomous system is always 2-dimensional in the classical cosmology Copeland et al. (1998),
and 3-dimensional in LQC Samart & Gumjudpai (2007). Although one can also consider
a more complex case with λ being a dynamically changing quantity Copeland et al. (2006);
Macorra & Piccinelli (2000); Ng et al. (2001), the fixed point is not a real one, and this method
is not exact. Recently, Zhou et al Fang et al. (2009); Zhou (2008) introduced a new method
by which one can make Γ a general function of λ. Then the autonomous system is extended
from 2-dimensional to 3-dimensional in the classical cosmology. They found that this method
can help investigate many quintessence models with different potentials. One of our goals
is to extend this method for studying the dynamical behavior of a scalar field with a general
potential coupled with a barotropic fluid in LQC.
Based on the holonomy modification, the dynamical behavior of dark energy in LQC scenario
has recently been investigated by many authors Fu et al. (2008); Lamon & Woehr (2010);
Li & Ma (2010); Samart & Gumjudpai (2007); Wei & Zhang (2007); Xiao & Zhu (2010). The
attractor behavior of scalar field in LQC has also been studied Copeland et al. (2008); Lidsey
(2004). It was found that the dynamical properties of dark-energy models in LQC are
significantly different from those in the classical cosmology. In this section, we examine
the background dynamics of LQC dominated by a scalar field with a general positive
potential coupled with a barotropic fluid. By considering Γ as a function of λ, we investigate
scalar fields with different potentials. Since the Friedmann equation has been modified by
the quantum effect, the dynamical system will be very different from the one in classical
cosmology, e.g., the number of dimensions of autonomous system will change to four in LQC.
It must be pointed out that this method cannot be used to describe the dynamical behavior of
scalar field with arbitrary potential. To overcome this problem, therefore, we should consider
an infinite-dimensional autonomous system.
This section is organized as follows. We present in Subsection 3.1 the basic equations and
the 4-dimensional dynamical system, and discuss in Subsection 3.2 the properties of this
system. In Subsection 3.3, we give more discussions on the autonomous system, and also on
an infinite-dimensional autonomous system. We conclude the section in the last subsection.
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3.1 Basic equations
We focus on the flat FRW cosmology. The modified Friedmann equation in the effective LQC
with holonomy correction can be written as

H2 =
1

3
ρ

(
1 − ρ

ρc

)
, (80)

in which ρ is the total energy density and the natural unit κ = 8πG = 1 is adopted for
simplicity. We consider a self-interacting scalar field φ with a positive potential V(φ) coupled
with a barotropic fluid. Then the total energy density can be written as ρ = ρφ + ργ, with the

energy density of scalar field ρφ = 1
2 φ̇2 + V(φ) and the energy density of barotropic fluid ργ.

We consider that the energy momenta of this field to be covariant conserved. Then one has

φ̈ + 3Hφ̇ + V � = 0, (81)

ρ̇γ + 3γHργ = 0, (82)

where γ is an adiabatic index and satisfies pγ = (γ − 1)ργ with pγ being the pressure of the
barotropic fluid, and the prime denotes the differentiation w.r.t. the field φ. Differentiating
Eq. (80) and using Eqs. (81) and (82), one can obtain

Ḣ = − 1

2

(
φ̇2 + γργ

) [
1 − 2(ργ + ρφ)

ρc

]
. (83)

Eqs. (80)-(82) or Eqs. (81)-(83) characterize a closed system which can determine the cosmic
behavior. To analyze the dynamical behavior of the universe, one can further introduce the
following variables Copeland et al. (1998); Samart & Gumjudpai (2007):

x ≡ φ̇√
6H

, y ≡
√

V√
3H

, z ≡ ρ

ρc
, λ ≡ V �

V
, (84)

where the z term is a special variable in LQC (see Eq. (80)). In the LQC scenario, the total
energy density ρ should be less or equal to the critical energy density ρc, and thus 0 ≤ z ≤ 1.
Notice that, in the classical region, z = 0 for ρ � ρc. Using these new variables, one can obtain

ργ

3H2
=

1

1 − z
− x2 − y2, (85)

Ḣ

H2
= −

[
3x2 +

3γ

2

(
1

1 − z
− x2 − y2

)]
(1 − 2z (86)

Using the new variables (84), and considering Eqs. (85) and (86), one can rewrite Eqs. (80)-(82)
in the following forms,

dx

dN
= −3x −

√
6

2
λy2 + x

[
3x2 +

3γ

2

(
1

1 − z
− x2 − y2

)]

×(1 − 2z), (87)

dy

dN
=

√
6

2
λxy + y

[
3x2 +

3γ

2

(
1

1 − z
− x2 − y2

)]

×(1 − 2z), (88)

dz

dN
= −3γz − 3z (1 − z)

(
2x2 − γx2 − γy2

)
, (89)

dλ

dN
=

√
6λ2x (Γ − 1) , (90)
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where N = ln a and

Γ ≡ VV ��

V �2 . (91)

Note that the potential V(φ) is positive in this section, but one can also discuss a negative
potential. Just as Heard & Wands (2002) shown, the negative scalar potential could slow
down the growth of the scale factor and cause the Universe to be in a collapsing phase. The
dynamical behavior of scalar field with positive and negative potential in brane cosmology
has been discussed by Copeland et al. (2009). In this section we are concerned only with an
expanding universe, and both the Hubble parameter and the potential are positive.
Differentiating λ w.r.t. the scalar field φ, we obtain the relationship between λ and Γ,

dλ−1

dφ
= 1 − Γ. (92)

If we only consider a special case of the potential, like exponential potential Billyard & Coley
(2000); Copeland et al. (1998); Ferreira & Joyce (1998); Hao & Li (2003; 2004); Hoogen et al.
(1999); Li & Hao (2004); Samart & Gumjudpai (2007); Yu & Wu (2008), then λ and Γ are both
constants. In this case, the 4-dimensional dynamical system, Eqs. (87)-(90), reduces to a
3-dimensional one, since λ is a constant. (In the classical dynamical system, the z term does
not exist, and then the dynamical system is reduced from 3-dimensional to 2-dimensional.)
The cost of this simplification is that the potential of the field is restricted. Recently, Zhou
et al Fang et al. (2009); Zhou (2008) considered the potential parameter Γ as a function of
another potential parameter λ, which enables one to study the fixed points for a large number
of potentials. We will follow this method in this and the next subsections to discuss the
dynamical behavior of scalar field in the LQC scenario, and we have

Γ(λ) = f (λ) + 1. (93)

In this case, Eq. (93) can cover many scalar potentials.
For completeness’ sake, we briefly review the discussion of Fang et al. (2009) in the following.
From Eq. (92), one can obtain

dλ

λ f (λ)
=

dV

V
. (94)

Integrating out λ = λ(V), one has the following differential equation of potential

dV

Vλ(V)
= dφ. (95)

Then, Eqs. (94) and (95) give a route for obtaining the potential V = V(φ). If we consider
a concrete form of the potential (e.g., an exponential potential), the dynamical system is
specialized (e.g., the dynamical system is reduced to 3-dimensional if one considers the
exponential potential for dλ/dN = 0). These specialized dynamical systems are too special if
one hopes to distinguish the fixed points that are the common properties of scalar field from
those that are just related to the special potentials Fang et al. (2009). If we consider a more
general λ, then we can get the more general stability properties of scalar field in the LQC
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scenario. We will continue the discussion of this topic in Subsection 3.3. In this case, Eq. (90)
becomes

dλ

dN
=

√
6λ2x f (λ). (96)

Hereafter, Eqs. (87)-(89) along with Eq. (96) are definitely describing a dynamical system. We
will discuss the stability of this system in the following subsection.

3.2 Properties of the autonomous system
Obviously, the terms on the right-hand side of Eqs. (87)-(89) and (96) only depend on x, y, z, λ,
but not on N or other variables. Such a dynamical system is usually called an autonomous

system. For simplicity, we define dx
dN = F1(x, y, z, λ) ≡ F1,

dy
dN = F2(x, y, z, λ) ≡ F2, dz

dN =

F3(x, y, z, λ) ≡ F3, and dλ
dN = F4(x, y, z, λ) ≡ F4. The fixed points (xc, yc, zc, λc) satisfy Fi =

0, i = 1, 2, 3, 4. From Eq. (96), it is straightforward to see that x = 0, λ = 0 or f (λ) = 0 can
make F4(x, y, z, λ) = 0. Also, we must consider λ2 f (λ) = 0. Just as Fang et al. (2009) argued,

it is possible that λ2 f (λ) �= 0 and dλ
dN �= 0 when λ = 0. Thus the necessary condition for the

existence of the fixed points with x �= 0 is λ2 f (λ) = 0. Taking into account these factors, we
can easily obtain all the fixed points of the autonomous system described by Eqs. (87)-(89)
and (96), and they are shown in Tab. (1).
The properties of each fixed points are determined by the eigenvalues of the Jacobi matrix

M =

⎛
⎜⎜⎜⎜⎝

∂F1
∂x

∂F1
∂y

∂F1
∂z

∂F1
∂λ

∂F2
∂x

∂F2
∂y

∂F2
∂z

∂F2
∂λ

∂F3
∂x

∂F3
∂y

∂F3
∂z

∂F3
∂λ

∂F4
∂x

∂F4
∂y

∂F4
∂z

∂F4
∂λ

⎞
⎟⎟⎟⎟⎠

����������
(xc,yc,zc,λc)

. (97)

According to Lyapunov’s linearization method, the stability of a linearized system is
determined by the eigenvalues of the matrix M (see Chapter 3 of Slotine & Li (1991)). If all
of the eigenvalues are strictly in the left-half complex plane, then the autonomous system is
stable. If at least one eigenvalue is strictly in the right-half complex plane, then the system is
unstable. If all of the eigenvalues are in the left-half complex plane, but at least one of them is
on the iω axis, then one cannot conclude anything definite about the stability from the linear
approximation. By examining the eigenvalues of the matrix M for each fixed point shown
in Tab. (1), we find that points P1,2,4−8,10 are unstable and point P9 is stable only under some
conditions. We cannot determine the stability properties of P3 from the eigenvalues, and we
have gave the full analysis of P3 in the appendix of Xiao & Zhu (2010).
Some remarks on Tab.(1):

1. Apparently, points P2 and P6 have the same eigenvalues, and the difference between these
two points is just on the value of λ. As noted in the caption of Tab. (1), λ∗ means that λ can
be any value, and λa is just the value that makes f (λ) = 0. Obviously, λa is just a special
value of λ∗, and point P6 is a special case of point P2. P6 is connected with f (λ), but P2 is
not. From now on, we do not consider separately the special case of P6 when we discuss
the property of P2. Hence the value of λa is contained in our discussion ofλ∗.

2. It is straightforward to check that, if xc = λc = 0, yc can be any value y∗ when it is greater
than or equal 1. But, if y∗ > 1, then zc = 1 − 1/y2∗ < 1, and this means that the fixed
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where N = ln a and

Γ ≡ VV ��

V �2 . (91)

Note that the potential V(φ) is positive in this section, but one can also discuss a negative
potential. Just as Heard & Wands (2002) shown, the negative scalar potential could slow
down the growth of the scale factor and cause the Universe to be in a collapsing phase. The
dynamical behavior of scalar field with positive and negative potential in brane cosmology
has been discussed by Copeland et al. (2009). In this section we are concerned only with an
expanding universe, and both the Hubble parameter and the potential are positive.
Differentiating λ w.r.t. the scalar field φ, we obtain the relationship between λ and Γ,

dλ−1

dφ
= 1 − Γ. (92)

If we only consider a special case of the potential, like exponential potential Billyard & Coley
(2000); Copeland et al. (1998); Ferreira & Joyce (1998); Hao & Li (2003; 2004); Hoogen et al.
(1999); Li & Hao (2004); Samart & Gumjudpai (2007); Yu & Wu (2008), then λ and Γ are both
constants. In this case, the 4-dimensional dynamical system, Eqs. (87)-(90), reduces to a
3-dimensional one, since λ is a constant. (In the classical dynamical system, the z term does
not exist, and then the dynamical system is reduced from 3-dimensional to 2-dimensional.)
The cost of this simplification is that the potential of the field is restricted. Recently, Zhou
et al Fang et al. (2009); Zhou (2008) considered the potential parameter Γ as a function of
another potential parameter λ, which enables one to study the fixed points for a large number
of potentials. We will follow this method in this and the next subsections to discuss the
dynamical behavior of scalar field in the LQC scenario, and we have

Γ(λ) = f (λ) + 1. (93)

In this case, Eq. (93) can cover many scalar potentials.
For completeness’ sake, we briefly review the discussion of Fang et al. (2009) in the following.
From Eq. (92), one can obtain

dλ

λ f (λ)
=

dV

V
. (94)

Integrating out λ = λ(V), one has the following differential equation of potential

dV

Vλ(V)
= dφ. (95)

Then, Eqs. (94) and (95) give a route for obtaining the potential V = V(φ). If we consider
a concrete form of the potential (e.g., an exponential potential), the dynamical system is
specialized (e.g., the dynamical system is reduced to 3-dimensional if one considers the
exponential potential for dλ/dN = 0). These specialized dynamical systems are too special if
one hopes to distinguish the fixed points that are the common properties of scalar field from
those that are just related to the special potentials Fang et al. (2009). If we consider a more
general λ, then we can get the more general stability properties of scalar field in the LQC
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scenario. We will continue the discussion of this topic in Subsection 3.3. In this case, Eq. (90)
becomes

dλ

dN
=

√
6λ2x f (λ). (96)

Hereafter, Eqs. (87)-(89) along with Eq. (96) are definitely describing a dynamical system. We
will discuss the stability of this system in the following subsection.

3.2 Properties of the autonomous system
Obviously, the terms on the right-hand side of Eqs. (87)-(89) and (96) only depend on x, y, z, λ,
but not on N or other variables. Such a dynamical system is usually called an autonomous

system. For simplicity, we define dx
dN = F1(x, y, z, λ) ≡ F1,

dy
dN = F2(x, y, z, λ) ≡ F2, dz

dN =

F3(x, y, z, λ) ≡ F3, and dλ
dN = F4(x, y, z, λ) ≡ F4. The fixed points (xc, yc, zc, λc) satisfy Fi =

0, i = 1, 2, 3, 4. From Eq. (96), it is straightforward to see that x = 0, λ = 0 or f (λ) = 0 can
make F4(x, y, z, λ) = 0. Also, we must consider λ2 f (λ) = 0. Just as Fang et al. (2009) argued,

it is possible that λ2 f (λ) �= 0 and dλ
dN �= 0 when λ = 0. Thus the necessary condition for the

existence of the fixed points with x �= 0 is λ2 f (λ) = 0. Taking into account these factors, we
can easily obtain all the fixed points of the autonomous system described by Eqs. (87)-(89)
and (96), and they are shown in Tab. (1).
The properties of each fixed points are determined by the eigenvalues of the Jacobi matrix

M =

⎛
⎜⎜⎜⎜⎝

∂F1
∂x

∂F1
∂y

∂F1
∂z

∂F1
∂λ

∂F2
∂x

∂F2
∂y

∂F2
∂z

∂F2
∂λ

∂F3
∂x

∂F3
∂y

∂F3
∂z

∂F3
∂λ

∂F4
∂x

∂F4
∂y

∂F4
∂z

∂F4
∂λ

⎞
⎟⎟⎟⎟⎠

����������
(xc,yc,zc,λc)

. (97)

According to Lyapunov’s linearization method, the stability of a linearized system is
determined by the eigenvalues of the matrix M (see Chapter 3 of Slotine & Li (1991)). If all
of the eigenvalues are strictly in the left-half complex plane, then the autonomous system is
stable. If at least one eigenvalue is strictly in the right-half complex plane, then the system is
unstable. If all of the eigenvalues are in the left-half complex plane, but at least one of them is
on the iω axis, then one cannot conclude anything definite about the stability from the linear
approximation. By examining the eigenvalues of the matrix M for each fixed point shown
in Tab. (1), we find that points P1,2,4−8,10 are unstable and point P9 is stable only under some
conditions. We cannot determine the stability properties of P3 from the eigenvalues, and we
have gave the full analysis of P3 in the appendix of Xiao & Zhu (2010).
Some remarks on Tab.(1):

1. Apparently, points P2 and P6 have the same eigenvalues, and the difference between these
two points is just on the value of λ. As noted in the caption of Tab. (1), λ∗ means that λ can
be any value, and λa is just the value that makes f (λ) = 0. Obviously, λa is just a special
value of λ∗, and point P6 is a special case of point P2. P6 is connected with f (λ), but P2 is
not. From now on, we do not consider separately the special case of P6 when we discuss
the property of P2. Hence the value of λa is contained in our discussion ofλ∗.

2. It is straightforward to check that, if xc = λc = 0, yc can be any value y∗ when it is greater
than or equal 1. But, if y∗ > 1, then zc = 1 − 1/y2∗ < 1, and this means that the fixed
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point is located in the quantum-dominated regions. Although the stability of this point
in the quantum regions may depend on f (λ), it is not necessary to analyze its dynamical
properties, since it does not have any physical meanings. The reason is the following. If
the universe is stable, it will not evolve to today’s pictures. If the Universe is unstable,
it will always be unstable. We will just focus on point P3 staying in the classical regions.
Then yc = y∗ = 1, zc = 1 − 1/y2∗ = 0, i.e., for the classical cosmology region, ρ � ρc.

3. Since the adiabatic index γ satisfies 0 < γ < 2 (in particular, for radiation γ = 4
3 and for

dust γ = 1), all the terms that contain γ should not change sign. A more general situation
of γ is 0 ≤ γ ≤ 2 Billyard et al. (1998). If γ = 0 or γ = 2, the eigenvalues corresponding
to points P1,2,4,5,9 will have some zero elements and some negative ones. To analyze the
stability of these points, we need to resort to other more complex methods, just as we did
in the appendix of Xiao & Zhu (2010) for the dynamical properties of point P3. In this
subsection, we just consider the barotropic fluid which includes radiation and dust, and
γ �= 0, 2. Notice that if one considers γ = 0, the barotropic fluid describes the dark energy.
This is an interesting topic, but will not be considered here for the sake of simplicity.

4. −√
6 < λa <

√
6, λa �= 0 should hold for point P9, hence −3 + 1

2 λ2
a < 0.

5. λa > 0 should hold, since yc > 0 for point P10. The eigenvalue of this point is

M =

⎛
⎜⎜⎜⎜⎝

−3γ
−3λaγ f1(λa)

− 3
2 + 3

4 γ + 3
4λa

�
(2 − γ)(λ2

a(2 − γ) + 8γ + 24γ2)

− 3
2 + 3

4 γ − 3
4λa

�
(2 − γ)(λ2

a(2 − γ) + 8γ + 24γ2)

⎞
⎟⎟⎟⎟⎠

.

(98)

Since we just consider 0 < γ < 2 in this subsection, it is easy to check that
(2 − γ)(λ2

a(2 − γ) + 8γ + 24γ2) > 0 is always satisfied. And this point is unstable

with f1(λa) =
d f (λ)

dλ

���
λ=λa

being either negative or positive, since − 3
2 + 3

4 γ +

3
4λa

�
(2 − γ)(λ2

a(2 − γ) + 8γ + 24γ2) is always positive.

Based on Tab. (1) and the related remarks above, we have the following conclusions.

1. Points P1,2: The related critical values, eigenvalues and stability properties do not depend
on the specific form of the potential, since λc = 0 or λ can be any value λ∗.

2. Point P3: The related stability properties depend on f1(0) =
d f (λ)

dλ

���
λ=0

.

3. Points P4,5: The related eigenvalues and stability properties do not depend on the form of
the potential, but the critical values of these points should satisfy λ2 f (λ) = 0 since xc �= 0.

4. Point P6: It is a special case of P2, but f (λa) = 0 should be satisfied.

5. Points P7,8: Same as P6, they would not exist if f (λa) �= 0.

6. Point P9,10: f (λa) = 0 should hold. The fixed values and the eigenvalues of these two

points depend on f1(λa) =
d f (λ)

dλ

���
λ=λa

.

Thus, only points P1,2 are independent of f (λ).
Comparing the fixed points in LQC and the ones in the classical cosmology (see the Table I of
Fang et al. (2009)), we can see that, even though the values of the coordinates (xc, yc, λc) are
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point is located in the quantum-dominated regions. Although the stability of this point
in the quantum regions may depend on f (λ), it is not necessary to analyze its dynamical
properties, since it does not have any physical meanings. The reason is the following. If
the universe is stable, it will not evolve to today’s pictures. If the Universe is unstable,
it will always be unstable. We will just focus on point P3 staying in the classical regions.
Then yc = y∗ = 1, zc = 1 − 1/y2∗ = 0, i.e., for the classical cosmology region, ρ � ρc.

3. Since the adiabatic index γ satisfies 0 < γ < 2 (in particular, for radiation γ = 4
3 and for

dust γ = 1), all the terms that contain γ should not change sign. A more general situation
of γ is 0 ≤ γ ≤ 2 Billyard et al. (1998). If γ = 0 or γ = 2, the eigenvalues corresponding
to points P1,2,4,5,9 will have some zero elements and some negative ones. To analyze the
stability of these points, we need to resort to other more complex methods, just as we did
in the appendix of Xiao & Zhu (2010) for the dynamical properties of point P3. In this
subsection, we just consider the barotropic fluid which includes radiation and dust, and
γ �= 0, 2. Notice that if one considers γ = 0, the barotropic fluid describes the dark energy.
This is an interesting topic, but will not be considered here for the sake of simplicity.

4. −√
6 < λa <

√
6, λa �= 0 should hold for point P9, hence −3 + 1

2 λ2
a < 0.

5. λa > 0 should hold, since yc > 0 for point P10. The eigenvalue of this point is

M =

⎛
⎜⎜⎜⎜⎝

−3γ
−3λaγ f1(λa)

− 3
2 + 3

4 γ + 3
4λa

�
(2 − γ)(λ2

a(2 − γ) + 8γ + 24γ2)

− 3
2 + 3

4 γ − 3
4λa

�
(2 − γ)(λ2

a(2 − γ) + 8γ + 24γ2)

⎞
⎟⎟⎟⎟⎠

.

(98)

Since we just consider 0 < γ < 2 in this subsection, it is easy to check that
(2 − γ)(λ2

a(2 − γ) + 8γ + 24γ2) > 0 is always satisfied. And this point is unstable

with f1(λa) =
d f (λ)

dλ

���
λ=λa

being either negative or positive, since − 3
2 + 3

4 γ +

3
4λa

�
(2 − γ)(λ2

a(2 − γ) + 8γ + 24γ2) is always positive.

Based on Tab. (1) and the related remarks above, we have the following conclusions.

1. Points P1,2: The related critical values, eigenvalues and stability properties do not depend
on the specific form of the potential, since λc = 0 or λ can be any value λ∗.

2. Point P3: The related stability properties depend on f1(0) =
d f (λ)

dλ

���
λ=0

.

3. Points P4,5: The related eigenvalues and stability properties do not depend on the form of
the potential, but the critical values of these points should satisfy λ2 f (λ) = 0 since xc �= 0.

4. Point P6: It is a special case of P2, but f (λa) = 0 should be satisfied.

5. Points P7,8: Same as P6, they would not exist if f (λa) �= 0.

6. Point P9,10: f (λa) = 0 should hold. The fixed values and the eigenvalues of these two

points depend on f1(λa) =
d f (λ)

dλ

���
λ=λa

.

Thus, only points P1,2 are independent of f (λ).
Comparing the fixed points in LQC and the ones in the classical cosmology (see the Table I of
Fang et al. (2009)), we can see that, even though the values of the coordinates (xc, yc, λc) are
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the same, the stability properties are very different. This is reasonable, because the quantum
modification is considered, and the autonomous system in the LQC scenario is very different
from the one in the classical scenario, e.g., the autonomous system is 4-dimensional in LQC
but 3-dimensional in the classical scenario. Notice that all of the fixed points lie in the classical
regions, and therefore the coordinates of fixed points remain the same from classical to LQC,
which we also pointed out in Xiao & Zhu (2010).
Now we focus on the later time attractors: point P3 under the conditions of γ = 1, f1(0) ≥ 0
and γ = 4/3, f1(0) = 0, and point P9 under the conditions of λ2

a < 6, f1(λa) > λa, λa < 3γ.
Obviously, these points are scalar-field dominated, since ργ = H2(1/(1 − zc)− x2

c − y2
c ) = 0.

For point P3, the effective adiabatic index γφ = (ρφ + pφ)/ρφ = 0, which means that the

scalar field is an effective cosmological constant. For point P9, γφ = λ2
a/2. This describes a

scaling solution that, as the universe evolves, the kinetic energy and the potential energy of the
scalar field scale together. And we can see that there is not any barotropic fluid coupled with
the scalar field dominated scaling solution. This is different from the dynamical behavior
of scalar field with exponential potential V = V0 exp(−λκφ) in the classical cosmology
Billyard & Coley (2000); Copeland et al. (1998); Ferreira & Joyce (1998); Hao & Li (2003; 2004);
Hoogen et al. (1999); Li & Hao (2004); Samart & Gumjudpai (2007); Yu & Wu (2008), and also
is different from the properties of the scalar field in brane cosmology Copeland et al. (2009), in
which λ = const. (notice that the definition of λ in Copeland et al. (2009) is different from the
one in this section) and Γ is a function of L(ρ(a)) and |V|. In these models, the universe may
enter a stage dominated by scalar field coupled with fluid when λ, γ satisfy some conditions
Copeland et al. (1998; 2009).
We discuss the dynamical behavior of the scalar field by considering Γ as a function of λ in this
and the preceding subsections. But Γ can not always be treated as a function of λ. We need to
consider a more general autonomous system, which we will introduce in the next subsection.

3.3 More discussions on the autonomous system
The dynamical behavior of scalar field has been discussed by many authors (e.g., see
Billyard & Coley (2000); Copeland et al. (1998; 2006); Coley (2003); Ferreira & Joyce (1998);
Hao & Li (2003; 2004); Hoogen et al. (1999); Li & Hao (2004); Samart & Gumjudpai (2007);
Yu & Wu (2008)). If one wants to get the potentials that yield the cosmological scaling

solutions beyond the exponential potential, one can add a
dφ
dN term into the autonomous

system Nunes & Mimoso (2000). All of these methods deal with special cases of the dynamical
behavior of scalar fields in backgrounds of some specific forms. By considering Γ as a function
of λ, one can treat potentials of more general forms and get the common fixed points of
the general potential, as shown in Fang et al. (2009); Zhou (2008) and in the two preceding
subsections. However, as is discussed in Fang et al. (2009), sometimes Γ is not a function of λ,
and then the dynamical behaviors of scalar fields discussed above are still not general in the
strict sense. For a more general discussion, we must consider the higher order derivatives of
the potential. We define

(1)Γ =
VV3

V �2 , (2)Γ =
VV4

V �2 , (3)Γ =
VV5

V �2 ,

· · · (n)Γ =
VVn+2

V �2 , · · · (99)
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in which Vn = dnV
dφn , n = 3, 4, 5, · · · . Then we can get

dΓ
dN

=
√

6x
[
Γλ + (1)Γ − 2λΓ2

]
, (100)

d
(
(1)Γ

)

dN
=

√
6x

[
(1)Γλ + (2)Γ − 2λΓ

(
(1)Γ

)]
, (101)

d
(
(2)Γ

)

dN
=

√
6x

[
(2)Γλ + (3)Γ − 2λΓ

(
(2)Γ

)]
, (102)

d
(
(3)Γ

)

dN
=

√
6x

[
(3)Γλ + (4)Γ − 2λΓ

(
(3)Γ

)]
, (103)

· · · · · ·
d
(
(n)Γ

)

dN
=

√
6x

[
(n)Γλ + (n+1)Γ − 2λΓ

(
(n)Γ

)]
, (104)

· · · · · ·
To discuss the dynamical behavior of scalar field with more general potential, e.g., when
neither λ nor Γ is constant, we need to consider a dynamical system described by Eqs.
(87)-(90) coupled with Eqs. (100)-(104). It is easy to see that this dynamical system is also
an autonomous one. We can discuss the values of the fixed points of this autonomous system.
Considering Eq. (90), we can see that the values of fixed points should satisfy xc = 0, λc = 0,
or Γc = 1. Then, we can get the fixed points of this infinite-dimensional autonomous system.

1. If xc = 0, considering Eqs. (87)-(89), one can get (yc, zc, λc) = (0, 0, 0) or (yc, zc, λc) =

(0, 0, λ∗), and Γc, (n)Γc can be any values.

2. If λc = 0, considering Eqs. (87)-(89), one can see that the fixed points of (x, y, z) are

(xc, yc, zc) = (0, y∗, 1 − 1/y2∗)and (xc, yc, zc) = (±1, 0, 0). If xc = 0, Γc and (n)Γc can be

any values, and if xc = ±1, (n)Γc = 0.

3. If Γc = 1, considering Eqs. (87)-(89), one can get that the fixed points of (x, y, z, λ) are

(xc, yc, zc, λc) = (0, 0, 0, λ∗) and (xc, yc, zc, λc) = (±1, 0, 0, λ∗). And (n)Γc should satisfy
(n)Γc = λn∗ . There are other fixed points, which will be discussed below.

Based on the above analysis and Tab. (1), one can find that points P1−10 are just special cases
of the fixed points of an infinite-dimensional autonomous systems. Considering the definition
of Γ (see Eq. (91)), the simplest potential is an exponential potential when Γc = 1. The
properties of these fixed points have been discussed by many authors Billyard & Coley (2000);
Copeland et al. (1998); Ferreira & Joyce (1998); Hao & Li (2003; 2004); Hoogen et al. (1999);
Li & Hao (2004); Samart & Gumjudpai (2007); Yu & Wu (2008). If xc = 0 and yc = 0, this
corresponds to a fluid-dominated universe, which we do not consider here. If xc = ±1,

Γc = 0 and (n)Γc = 0, we do not need to consider the Γ and the (n)Γ terms. Then the
stability properties of these points are the same as points P4,5 in Tab. (1), and there are

unstable points. The last case is (xc, yc, zc, λc) = (0, y∗, 1 − 1/y2∗, 0) and Γ, (n)Γ can be any
value. To analyze the dynamical properties of this autonomous system, we need to consider

the (n)Γc terms. We will get an infinite series. In order to solve this infinite series, we

must truncate it by setting a sufficiently high-order (M)Γ to be a constant, for a positive

integer M, so that d
(
(M)Γ

)
/dN = 0. Thus we can get an (M + 4)-dimensional autonomous
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the same, the stability properties are very different. This is reasonable, because the quantum
modification is considered, and the autonomous system in the LQC scenario is very different
from the one in the classical scenario, e.g., the autonomous system is 4-dimensional in LQC
but 3-dimensional in the classical scenario. Notice that all of the fixed points lie in the classical
regions, and therefore the coordinates of fixed points remain the same from classical to LQC,
which we also pointed out in Xiao & Zhu (2010).
Now we focus on the later time attractors: point P3 under the conditions of γ = 1, f1(0) ≥ 0
and γ = 4/3, f1(0) = 0, and point P9 under the conditions of λ2

a < 6, f1(λa) > λa, λa < 3γ.
Obviously, these points are scalar-field dominated, since ργ = H2(1/(1 − zc)− x2

c − y2
c ) = 0.

For point P3, the effective adiabatic index γφ = (ρφ + pφ)/ρφ = 0, which means that the

scalar field is an effective cosmological constant. For point P9, γφ = λ2
a/2. This describes a

scaling solution that, as the universe evolves, the kinetic energy and the potential energy of the
scalar field scale together. And we can see that there is not any barotropic fluid coupled with
the scalar field dominated scaling solution. This is different from the dynamical behavior
of scalar field with exponential potential V = V0 exp(−λκφ) in the classical cosmology
Billyard & Coley (2000); Copeland et al. (1998); Ferreira & Joyce (1998); Hao & Li (2003; 2004);
Hoogen et al. (1999); Li & Hao (2004); Samart & Gumjudpai (2007); Yu & Wu (2008), and also
is different from the properties of the scalar field in brane cosmology Copeland et al. (2009), in
which λ = const. (notice that the definition of λ in Copeland et al. (2009) is different from the
one in this section) and Γ is a function of L(ρ(a)) and |V|. In these models, the universe may
enter a stage dominated by scalar field coupled with fluid when λ, γ satisfy some conditions
Copeland et al. (1998; 2009).
We discuss the dynamical behavior of the scalar field by considering Γ as a function of λ in this
and the preceding subsections. But Γ can not always be treated as a function of λ. We need to
consider a more general autonomous system, which we will introduce in the next subsection.

3.3 More discussions on the autonomous system
The dynamical behavior of scalar field has been discussed by many authors (e.g., see
Billyard & Coley (2000); Copeland et al. (1998; 2006); Coley (2003); Ferreira & Joyce (1998);
Hao & Li (2003; 2004); Hoogen et al. (1999); Li & Hao (2004); Samart & Gumjudpai (2007);
Yu & Wu (2008)). If one wants to get the potentials that yield the cosmological scaling

solutions beyond the exponential potential, one can add a
dφ
dN term into the autonomous

system Nunes & Mimoso (2000). All of these methods deal with special cases of the dynamical
behavior of scalar fields in backgrounds of some specific forms. By considering Γ as a function
of λ, one can treat potentials of more general forms and get the common fixed points of
the general potential, as shown in Fang et al. (2009); Zhou (2008) and in the two preceding
subsections. However, as is discussed in Fang et al. (2009), sometimes Γ is not a function of λ,
and then the dynamical behaviors of scalar fields discussed above are still not general in the
strict sense. For a more general discussion, we must consider the higher order derivatives of
the potential. We define

(1)Γ =
VV3

V �2 , (2)Γ =
VV4

V �2 , (3)Γ =
VV5

V �2 ,

· · · (n)Γ =
VVn+2

V �2 , · · · (99)
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in which Vn = dnV
dφn , n = 3, 4, 5, · · · . Then we can get
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d
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(n)Γ

)

dN
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√
6x

[
(n)Γλ + (n+1)Γ − 2λΓ

(
(n)Γ
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, (104)

· · · · · ·
To discuss the dynamical behavior of scalar field with more general potential, e.g., when
neither λ nor Γ is constant, we need to consider a dynamical system described by Eqs.
(87)-(90) coupled with Eqs. (100)-(104). It is easy to see that this dynamical system is also
an autonomous one. We can discuss the values of the fixed points of this autonomous system.
Considering Eq. (90), we can see that the values of fixed points should satisfy xc = 0, λc = 0,
or Γc = 1. Then, we can get the fixed points of this infinite-dimensional autonomous system.

1. If xc = 0, considering Eqs. (87)-(89), one can get (yc, zc, λc) = (0, 0, 0) or (yc, zc, λc) =

(0, 0, λ∗), and Γc, (n)Γc can be any values.

2. If λc = 0, considering Eqs. (87)-(89), one can see that the fixed points of (x, y, z) are

(xc, yc, zc) = (0, y∗, 1 − 1/y2∗)and (xc, yc, zc) = (±1, 0, 0). If xc = 0, Γc and (n)Γc can be

any values, and if xc = ±1, (n)Γc = 0.

3. If Γc = 1, considering Eqs. (87)-(89), one can get that the fixed points of (x, y, z, λ) are

(xc, yc, zc, λc) = (0, 0, 0, λ∗) and (xc, yc, zc, λc) = (±1, 0, 0, λ∗). And (n)Γc should satisfy
(n)Γc = λn∗ . There are other fixed points, which will be discussed below.

Based on the above analysis and Tab. (1), one can find that points P1−10 are just special cases
of the fixed points of an infinite-dimensional autonomous systems. Considering the definition
of Γ (see Eq. (91)), the simplest potential is an exponential potential when Γc = 1. The
properties of these fixed points have been discussed by many authors Billyard & Coley (2000);
Copeland et al. (1998); Ferreira & Joyce (1998); Hao & Li (2003; 2004); Hoogen et al. (1999);
Li & Hao (2004); Samart & Gumjudpai (2007); Yu & Wu (2008). If xc = 0 and yc = 0, this
corresponds to a fluid-dominated universe, which we do not consider here. If xc = ±1,

Γc = 0 and (n)Γc = 0, we do not need to consider the Γ and the (n)Γ terms. Then the
stability properties of these points are the same as points P4,5 in Tab. (1), and there are

unstable points. The last case is (xc, yc, zc, λc) = (0, y∗, 1 − 1/y2∗, 0) and Γ, (n)Γ can be any
value. To analyze the dynamical properties of this autonomous system, we need to consider

the (n)Γc terms. We will get an infinite series. In order to solve this infinite series, we

must truncate it by setting a sufficiently high-order (M)Γ to be a constant, for a positive

integer M, so that d
(
(M)Γ

)
/dN = 0. Thus we can get an (M + 4)-dimensional autonomous
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system. One example is the quadratic potential V = 1
2 m2φ2 with some positive constant

m that gives a 5-dimensional autonomous system, and another example is the Polynomial
(concave) potential V = M4−nφn Kallosh et al. (1991); Linde et al. (1991; 1994) that gives an
(n+ 3)-dimensional autonomous system. Following the method we used in the two preceding
subsections, we can get the dynamical behavior of such finite-dimensional systems.
In the rest of this subsection, we discuss whether this autonomous system has scaling solution.

If xc = 0, then Γc �= 0, (n)Γc �= 0, and the stability of the fixed points may depend on

the truncation. As an example, if we choose (2)Γ = 0, then we can get a 6-dimensional

autonomous system. The eigenvalues for the fixed point (xc, yc, zc, λc, Γc, (1)Γc) =

(0, 0, 0, λb, Γ∗, (1)Γ∗), where λb = 0 or λb = λ∗, is

M
T = (0, 0, 0,

3

2
γ,−3γ,−3 +

3

2
γ).

Obviously, this is an unstable point, and it has no scaling solution. The eigenvalues for the

fixed point (xc, yc, zc, λc, Γc, (1)Γc) = (0, 1, 0, 0, Γ∗, (1)Γ∗) is

M
T = (0, 0, 0, 0,−3γ,−3 − 3γ).

According to the center manifold theorem (see Chapter 8 of Khalil (1996), there are two
non-zero eigenvalues, and we need to reduce the dynamical system to 2-dimensional to get
the stability properties of the autonomous system. This point may have scaling solution, but
we need more complex mathematical method. But it is easy to find that this point is scalar
field dominated if it has a scaling solution.
We discuss the last case. If Γc = 1, we can consider an exponential potential. Then
the autonomous system is reduced to 3-dimensional. It is easy to check that the values
(xec, yec, zec) of the fixed points are just the values (xc, yc, zc) of points P6−10 in Tab. (1). We
focus on the two special fixed points:

F1 : (xec, yec, zec) = (−λ/
√

6,
√

1 − λ2/6, 0),

F2 : (xec, yec, zec) = (−√
3/2γ/λ,

√
3γ(2 − γ)/(2λ2), 0).

Using Lyapunov’s linearization method, we can find that F2 is unstable and F1 is stable
if λ < 3γ. It is easy to check that ργ = H2[1/(1 − zec) − x2

ec − y2
ec] = 0 when

(xec, yec, zec) = (−λ/
√

6,
√

1 − λ2/6, 0). From the above analysis, we find that there is just
the scalar-field-dominated scaling solution when we consider the autonomous system to be
described by a self-interacting scalar field coupled with a barotropic fluid in the LQC scenario.

3.4 Conclusions
To discuss the dynamical properties of scalar field in the LQC scenario, we take Γ as a function
of λ, and extend the autonomous system from 3-dimensional to 4-dimensional. We find
this extended autonomous system has more fixed points than the 3-dimensional one does.
And we find that for some fixed points, the function f (λ) affects either their values, e.g., for
points P4−10, or their stability properties, e.g., for points P3,9. In other words, the dynamical
properties of these points depend on the specific form of the potential. But some other fixed
points, e.g., points P1,2,are independent of the potential. The properties of these fixed points
are satisfied by all scalar fields. We also find that there are two later time attractors, but the
universe is scalar-field-dominated since ργ = 0 at these later time attractors.
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The method developed by Fang et al. (2009); Zhou (2008) can describe the dynamical behavior
of the scalar field with potential of a more general form than, for example, an exponential
potential Billyard & Coley (2000); Copeland et al. (1998); Ferreira & Joyce (1998); Hao & Li
(2003; 2004); Hoogen et al. (1999); Li & Hao (2004); Samart & Gumjudpai (2007); Yu & Wu
(2008). But it is not all-encompassing. If one wants to discuss the dynamical properties of
a scalar field with an arbitrary potential, one needs to consider the higher-order derivatives
of the potential V(φ). Hence the dynamical system will extend from 4-dimensional to
infinite-dimensional. This infinite-dimensional dynamical system is still autonomic, but it
is impossible to get all of its dynamical behavior unless one considers Γc = 1 which just
gives an exponential potential. If one wants to study as much as possible the dynamical
properties of this infinite-dimensional autonomous system, one has to consider a truncation

that sets (M)Γ = Const., with M above a certain positive integer. Then the infinite-dimensional
system can be reduced to (M + 4)-dimensional. And we find that there is just the
scalar-field-dominated scaling solution for this autonomous system.
We only get the scalar-field-dominated scaling solutions, whether we consider Γ as a function
of λ or consider the higher order derivatives of the potential. This conclusion is very different
from the autonomous system which is just described by a scalar field with an exponential
potential Samart & Gumjudpai (2007).

4. Averaged null energy condition
Wormholes and time machines are attractive objects in general relativity, always among top
reasons that draw young minds to the study of this subject Morris & Thorn (1988), and they
continue to be active research fields in general relativity Lobo (2007). The stress-energy tensor
components of these exotic spacetime violate all known pointwise energy conditions, which
is forbidden in classical general relativity. In contrast, the energy condition violation can
be easily met in the semiclassical case because of quantum fluctuations Epstein et al. (1965);
Klinkhanmmer (1991); Pitaevsky & Zeldovich (1971). For example, the Casimir vacuum
for the electromagnetic field between two perfectly conducting plates has a negative local
energy density Casimir (1948); squeezed states of light can result in negative energy densities.
Based on semiclassical gravitational analysis, many self-consistent wormhole solutions have
been found Barcelo & Visser (1999); Garattini (2005); Garattini & Lobo (2007); Hochberg et al.
(1997); Khusnutdinov (2003); Sushkov (1992). On the other hand, the topological censorship
theorem proved by Friedman, Schleich, and Witt Friedman et al. (1993) implies that the
existence of macroscopic traversable wormholes requires the violation of the averaged null
energy condition (ANEC). ANEC can be stated as

∫

γ
Tμνkμkνdl ≥ 0, (105)

where the integral is along any complete, achronal null geodesic γ , kμ denotes the geodesic
tangent, and l is an affine parameter. Unfortunately the quantum effects in semiclassical
gravitational analysis are always confined to an extremely thin band Roman (2004). So
it seems impossible to find a macroscopic traversable wormhole based on semiclassical
gravitational analysis.
As a quantum gravitational theory, loop quantum gravity (LQG) Ashtekar & Lewandowski
(2004); Rovelli (1998); Smolin (2004); Thiemann (2007) is a non-perturbative and
background-independent quantization of gravity. Physically, the Einstein equation in LQG
is modified, while the stress-energy tensor Tμν is unchanged. But mathematically, we can

329Loop Quantum Cosmology: Effective Theory and Related Applications



24 Will-be-set-by-IN-TECH

system. One example is the quadratic potential V = 1
2 m2φ2 with some positive constant

m that gives a 5-dimensional autonomous system, and another example is the Polynomial
(concave) potential V = M4−nφn Kallosh et al. (1991); Linde et al. (1991; 1994) that gives an
(n+ 3)-dimensional autonomous system. Following the method we used in the two preceding
subsections, we can get the dynamical behavior of such finite-dimensional systems.
In the rest of this subsection, we discuss whether this autonomous system has scaling solution.

If xc = 0, then Γc �= 0, (n)Γc �= 0, and the stability of the fixed points may depend on

the truncation. As an example, if we choose (2)Γ = 0, then we can get a 6-dimensional

autonomous system. The eigenvalues for the fixed point (xc, yc, zc, λc, Γc, (1)Γc) =

(0, 0, 0, λb, Γ∗, (1)Γ∗), where λb = 0 or λb = λ∗, is

M
T = (0, 0, 0,

3

2
γ,−3γ,−3 +

3

2
γ).

Obviously, this is an unstable point, and it has no scaling solution. The eigenvalues for the

fixed point (xc, yc, zc, λc, Γc, (1)Γc) = (0, 1, 0, 0, Γ∗, (1)Γ∗) is

M
T = (0, 0, 0, 0,−3γ,−3 − 3γ).

According to the center manifold theorem (see Chapter 8 of Khalil (1996), there are two
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the autonomous system is reduced to 3-dimensional. It is easy to check that the values
(xec, yec, zec) of the fixed points are just the values (xc, yc, zc) of points P6−10 in Tab. (1). We
focus on the two special fixed points:

F1 : (xec, yec, zec) = (−λ/
√

6,
√

1 − λ2/6, 0),

F2 : (xec, yec, zec) = (−√
3/2γ/λ,

√
3γ(2 − γ)/(2λ2), 0).
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ec − y2
ec] = 0 when

(xec, yec, zec) = (−λ/
√

6,
√

1 − λ2/6, 0). From the above analysis, we find that there is just
the scalar-field-dominated scaling solution when we consider the autonomous system to be
described by a self-interacting scalar field coupled with a barotropic fluid in the LQC scenario.

3.4 Conclusions
To discuss the dynamical properties of scalar field in the LQC scenario, we take Γ as a function
of λ, and extend the autonomous system from 3-dimensional to 4-dimensional. We find
this extended autonomous system has more fixed points than the 3-dimensional one does.
And we find that for some fixed points, the function f (λ) affects either their values, e.g., for
points P4−10, or their stability properties, e.g., for points P3,9. In other words, the dynamical
properties of these points depend on the specific form of the potential. But some other fixed
points, e.g., points P1,2,are independent of the potential. The properties of these fixed points
are satisfied by all scalar fields. We also find that there are two later time attractors, but the
universe is scalar-field-dominated since ργ = 0 at these later time attractors.

328 Aspects of Today´s Cosmology Loop Quantum Cosmology: Effective Theory
and Related Applications 25

The method developed by Fang et al. (2009); Zhou (2008) can describe the dynamical behavior
of the scalar field with potential of a more general form than, for example, an exponential
potential Billyard & Coley (2000); Copeland et al. (1998); Ferreira & Joyce (1998); Hao & Li
(2003; 2004); Hoogen et al. (1999); Li & Hao (2004); Samart & Gumjudpai (2007); Yu & Wu
(2008). But it is not all-encompassing. If one wants to discuss the dynamical properties of
a scalar field with an arbitrary potential, one needs to consider the higher-order derivatives
of the potential V(φ). Hence the dynamical system will extend from 4-dimensional to
infinite-dimensional. This infinite-dimensional dynamical system is still autonomic, but it
is impossible to get all of its dynamical behavior unless one considers Γc = 1 which just
gives an exponential potential. If one wants to study as much as possible the dynamical
properties of this infinite-dimensional autonomous system, one has to consider a truncation

that sets (M)Γ = Const., with M above a certain positive integer. Then the infinite-dimensional
system can be reduced to (M + 4)-dimensional. And we find that there is just the
scalar-field-dominated scaling solution for this autonomous system.
We only get the scalar-field-dominated scaling solutions, whether we consider Γ as a function
of λ or consider the higher order derivatives of the potential. This conclusion is very different
from the autonomous system which is just described by a scalar field with an exponential
potential Samart & Gumjudpai (2007).

4. Averaged null energy condition
Wormholes and time machines are attractive objects in general relativity, always among top
reasons that draw young minds to the study of this subject Morris & Thorn (1988), and they
continue to be active research fields in general relativity Lobo (2007). The stress-energy tensor
components of these exotic spacetime violate all known pointwise energy conditions, which
is forbidden in classical general relativity. In contrast, the energy condition violation can
be easily met in the semiclassical case because of quantum fluctuations Epstein et al. (1965);
Klinkhanmmer (1991); Pitaevsky & Zeldovich (1971). For example, the Casimir vacuum
for the electromagnetic field between two perfectly conducting plates has a negative local
energy density Casimir (1948); squeezed states of light can result in negative energy densities.
Based on semiclassical gravitational analysis, many self-consistent wormhole solutions have
been found Barcelo & Visser (1999); Garattini (2005); Garattini & Lobo (2007); Hochberg et al.
(1997); Khusnutdinov (2003); Sushkov (1992). On the other hand, the topological censorship
theorem proved by Friedman, Schleich, and Witt Friedman et al. (1993) implies that the
existence of macroscopic traversable wormholes requires the violation of the averaged null
energy condition (ANEC). ANEC can be stated as

∫

γ
Tμνkμkνdl ≥ 0, (105)

where the integral is along any complete, achronal null geodesic γ , kμ denotes the geodesic
tangent, and l is an affine parameter. Unfortunately the quantum effects in semiclassical
gravitational analysis are always confined to an extremely thin band Roman (2004). So
it seems impossible to find a macroscopic traversable wormhole based on semiclassical
gravitational analysis.
As a quantum gravitational theory, loop quantum gravity (LQG) Ashtekar & Lewandowski
(2004); Rovelli (1998); Smolin (2004); Thiemann (2007) is a non-perturbative and
background-independent quantization of gravity. Physically, the Einstein equation in LQG
is modified, while the stress-energy tensor Tμν is unchanged. But mathematically, we can
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move the terms modified by LQG to the side of the stress-energy tensor, and combine them
with the stress-energy tensor to get an effective stress-energy tensor. This viewpoint allows
to directly apply some previous analysis results in the considered situation. For instance, that
proof of censorship theorem in Friedman et al. (1993) uses the Einstein equation extensively.
But the proof places no restrictions on the form of matter. Instead, the geometric quantities are
of paramount importance in the proof. Therefore with the concept of effective stress-energy
tensor, the proof in Ref. Friedman et al. (1993) can be directly applied in the LQG-corrected
spacetime.
The application of the techniques of LQG to the cosmological sector is known as loop
quantum cosmology (LQC). Some of the main features of LQG such as discreteness of spatial
geometry are inherited in LQC. A major success of LQC is that it resolves the problem of
classical singularities both in an isotropic model Bojowald (2001) and in a less symmetric
model Bojowald (2003), replacing the big bang spacetime singularity of cosmology with a
big bounce. This bouncing scenario depends crucially on the discreteness of the theory. It
has also been shown that non-perturbative modification of the matter Hamiltonian leads to
a generic phase of inflation Bojowald (2002c); Date & Hossain (2005); Xiong & Zhu (2007a).
These inflation models are built by taking only certain modification terms which affect the
stress-energy tensor while ignoring the discretized geometry effect. But these modifications
are also negligible for semiclassical gravitational theory. The effective stress-energy tensor
in the inflation models has already been found to violate several kinds of energy conditions.
For example, in loop quantum cosmology, non-perturbative modification to a scalar matter
field at short scales induces a violation of the strong energy condition Xiong & Zhu (2007b).
The ANEC is different from the other energy conditions such as the strong energy condition
mentioned above in that the ANEC is an integral along any complete null-like geodesic,
instead of being confined to the neighborhood of a certain point of the space-time. For a
system without symmetry, it is a very complicated issue, making it almost impossible to
calculate. But in the context of isotropic LQC, we can get an exact result, which can provide
a hint for studying the wormholes in LQG and testing the validity of LQG. In this paper, we
adopt effective method to study the quantum effect of effective stress-energy in loop quantum
cosmology. From our calculation, we find that LQC does violate the averaged null energy
condition in the massless scalar field coupled model.
This section is organized as follows. We introduce an exactly solvable model containing a
massless scalar field in Subsec. 4.1. Then in Subsec. 4.2, we investigate the averaged null
energy condition in this exactly solvable model. Finally, Subsec. 4.3 contains the discussion of
our results and their implications. In this section we adopt c = h̄ = G = 1.

4.1 An exactly solvable model
The effective dynamics of LQC was formulated in Refs. Ashtekar et al. (2006a;b);
Singh & Vandersloot (2005); Taveras (2008). Here we follow closely Mielczarek et al. (2008)
to consider a universe containing a massless scalar field. Then the matter Hamiltonian in
equation (58) can be written as

HM(p, φ) =
1

2

p2
φ

p3/2
,
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where pφ is the conjugate momentum for the scalar field φ. The complete equations of motion
for the universe containing a massless scalar field are

⎧
⎪⎨
⎪⎩

ċ = − 1
γ

∂
∂p

�√
p
�

sin(μ̄c)
μ̄

�2
�
− κγ

4

p2
φ

p5/2 ,

ṗ = 2
γ

√
p

μ sin (μ̄c) cos (μ̄c) ,
(106)

and �
φ̇ = p− 3

2 pφ ,
ṗφ = 0,

(107)

where κ = 8π. In addition, the Hamiltonian constraint He f f = 0 becomes

3

8πγ2μ̄2

√
p sin2 (μ̄c) =

1

2

p2
φ

p3/2
. (108)

Combining equations (106) with (108), we obtain

�
dp

dt

�2

= Ω1 p−1 − Ω3 p−4, (109)

with Ω1 = 2
3 κp2

φ and Ω3 = 1
9 κ2γ2ξ2 p4

φ. Equation (107) implies that pφ is a constant which

characterizes the scalar field in the system. To solve equation (109) we introduce a new
dependent variable u in the form

u = p3. (110)

With this new variable u, Eq.(109) becomes

�
du

dt

�2

= 9Ω1u − 9Ω3, (111)

and has a solution

u =
Ω3

Ω1
+

9

4
Ω1t2 − 9

2
Ω1C1t +

9

4
Ω1C2

1, (112)

where C1 is an integral constant. We can choose C1 = 0 through coordinate freedom. Then
the solution for p is

p =

�
Ω3

Ω1
+

9

4
Ω1t2

�1/3

. (113)

4.2 The averaged null energy condition in LQC
Based on the above discussion, we calculate the averaged null energy condition in the context
of LQC in this section. Because of the homogeneity of the universe, the null geodesic curves
through different spatial points are the same. To investigate the ANEC, we only need to
consider one of the null geodesic lines through any point in space. Due to the isotropy of the
FRW metric, the null geodesic curves through the same point in different directions are also
the same. Therefore, our problem is reduced to test any but one null geodesic line. Specifically,
we consider a null geodesic line generated by vectors

�
∂

∂t

�μ

+
1

a

�
∂

∂x

�μ

.
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has also been shown that non-perturbative modification of the matter Hamiltonian leads to
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These inflation models are built by taking only certain modification terms which affect the
stress-energy tensor while ignoring the discretized geometry effect. But these modifications
are also negligible for semiclassical gravitational theory. The effective stress-energy tensor
in the inflation models has already been found to violate several kinds of energy conditions.
For example, in loop quantum cosmology, non-perturbative modification to a scalar matter
field at short scales induces a violation of the strong energy condition Xiong & Zhu (2007b).
The ANEC is different from the other energy conditions such as the strong energy condition
mentioned above in that the ANEC is an integral along any complete null-like geodesic,
instead of being confined to the neighborhood of a certain point of the space-time. For a
system without symmetry, it is a very complicated issue, making it almost impossible to
calculate. But in the context of isotropic LQC, we can get an exact result, which can provide
a hint for studying the wormholes in LQG and testing the validity of LQG. In this paper, we
adopt effective method to study the quantum effect of effective stress-energy in loop quantum
cosmology. From our calculation, we find that LQC does violate the averaged null energy
condition in the massless scalar field coupled model.
This section is organized as follows. We introduce an exactly solvable model containing a
massless scalar field in Subsec. 4.1. Then in Subsec. 4.2, we investigate the averaged null
energy condition in this exactly solvable model. Finally, Subsec. 4.3 contains the discussion of
our results and their implications. In this section we adopt c = h̄ = G = 1.

4.1 An exactly solvable model
The effective dynamics of LQC was formulated in Refs. Ashtekar et al. (2006a;b);
Singh & Vandersloot (2005); Taveras (2008). Here we follow closely Mielczarek et al. (2008)
to consider a universe containing a massless scalar field. Then the matter Hamiltonian in
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where pφ is the conjugate momentum for the scalar field φ. The complete equations of motion
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4.2 The averaged null energy condition in LQC
Based on the above discussion, we calculate the averaged null energy condition in the context
of LQC in this section. Because of the homogeneity of the universe, the null geodesic curves
through different spatial points are the same. To investigate the ANEC, we only need to
consider one of the null geodesic lines through any point in space. Due to the isotropy of the
FRW metric, the null geodesic curves through the same point in different directions are also
the same. Therefore, our problem is reduced to test any but one null geodesic line. Specifically,
we consider a null geodesic line generated by vectors

�
∂

∂t

�μ

+
1

a

�
∂

∂x

�μ

.

331Loop Quantum Cosmology: Effective Theory and Related Applications



28 Will-be-set-by-IN-TECH

According to the definition of affine parameter, ( ∂
∂l )

μ∇μ(
∂
∂l )

ν = 0, we can reparameterize it
with l to get

kμ =

(
∂

∂l

)μ

=
1

a

(
∂

∂t

)μ

+
1

a2

(
∂

∂x

)μ

.

Then we can get the relationship between t and the affine parameter l,

t =
l

a
.

For the considered universe containing a massless scalar field, the energy density and the
pressure of matter can be expressed as

ρ =
1

2
φ̇2, (114)

P =
1

2
φ̇2, (115)

according to the definition of the density and pressure. The effective energy density and
pressure of matter take the forms

ρe f f =
1

2
φ̇2

(
1 − 1

2

φ̇2

ρc

)
, (116)

Pe f f =
1

2
φ̇2

(
1 − φ̇2

ρc

)
− 1

4

φ̇4

ρc
. (117)

Since the effective stress-energy tensor takes an ideal fluid form,

T
e f f
μν = ρe f f (dt)μ (dt)ν + a2Pe f f

×
[
(dx)μ (dx)ν + (dy)μ (dy)ν + (dz)μ (dz)ν

]
,

(118)

the average null energy condition (105) for the effective stress-energy tensor becomes

∫

γ
T

e f f
μν kμkνdl =

∫ ∞

−∞

1

a

(
ρe f f + Pe f f

)
dt

=
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−∞

1
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)
dt

= p2
φ
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−∞
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p2
φ

ρc
)dt.
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In the last line we have used equation (107) and the relationship between p and a. Substituting
the exact solution (113) into the above equation, we get

∫

γ
T

e f f
μν kμkνdl = − Γ(5/6)Γ(2/3)

7ρcΩI(
ΩI I I
ΩI

)13/6
√

π
ΩI I I

p4
φ, (119)

where Γ is the gamma function. From the above result it is obvious that

∫

γ
T

e f f
μν kμkνdl < 0. (120)

The above result shows that, in addition to the violation of some local energy conditions,
the effective stress-energy tensor of loop quantum cosmology also violates the averaged null
energy condition.

4.3 Conclusions and discussion
Given some kinds of local energy condition violation in loop quantum cosmology and
motivated by the topological censorship theorem which rules out traversable wormholes in
spacetime where the averaged null energy condition is satisfied, we investigate this kind of
nonlocal energy condition in the context of LQC. Our analysis is based on a flat universe
containing a massless scalar field. This model can be solved analytically. With the help of the
analytical solution and taking advantage of the homogeneity and isotropy of the universe, we
calculate the average of energy directly. Although the quantum correction is focused on the
early universe around the Planck scale, the correction is so strong that it makes the universe
violate the null averaged energy condition. Mathematically we have written the modified
Einstein equation in LQC in the standard form but with effective stress-energy tensor. This
form of equations allows to directly apply the original proof of Ref. Friedman et al. (1993) in
the effective LQC. So the ANEC (for the original stress-energy tensor instead of the effective
one) argument cannot forbid the existence of traversable wormhole once the Loop Quantum
Gravity effects are taken into account. But we do not expect the existence of wormhole in
LQC, because it is too symmetric to support wormholes. For less symmetric situations, the
traversable wormholes might exist if quantum gravity effects make the effective stress-energy
tensor violate the ANCE. On the other hand, LQC adopts the essence of LQG, so our result
can shed some light on the ANEC of LQG. And we hope this result can give some hints on
looking for wormhole solutions in the LQG theory. These interesting objects will provide
some gedanken-experiments to test our quantum gravity theory.

5. Dynamical horizon entropy bound conjecture
The thermodynamical property of spacetime is an important hint for the quantization of
gravity. Starting from Hawking’s discovery of black hole’s radiation Hawking (1975), a theory
of thermodynamics of spacetime is being constructed gradually. Recently, the second law
of this thermodynamics was generalized to the covariant entropy bound conjecture Bousso
(1999). It states that the entropy flux S through any null hypersurface generated by geodesics
with non-positive expansion, emanating orthogonally from a two-dimensional (2D) spacelike
surface of area A, must satisfy

S

A
≤ 1

4l2
p

, (121)
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where lp =
√

h̄ is the Planck length. Here and in what follows, we adopt the units c = G =
kB = 1. Soon, Flanagan, Marolf and Wald Flanagan et al. (2000) proposed a new version of
the entropy bound conjecture. If one allows the geodesics generating the null hypersurface
from a 2D spacelike surface of area A to terminate at another 2D spacelike surface of area A�
before coming to a caustic, boundary or singularity of spacetime, one can replace the above
conjecture with

S

A� − A
≤ 1

4l2
p

. (122)

More recently, He and Zhang related these conjectures to dynamical horizon and proposed
a covariant entropy bound conjecture on the cosmological dynamical horizon He & Zhang
(2007): Let A(t) be the area of the cosmological dynamical horizon at cosmological time t,
then the entropy flux S through the cosmological dynamical horizon between time t and t�
(t� > t) must satisfy

S

A(t�)− A(t)
≤ 1

4l2
p

, (123)

if the dominant energy condition holds for matter.
Since it has been suggested that the holographic principle is a powerful hint and should
be used as an essential building block for any quantum gravity theory Bousso (2002), it
is important and tempting to investigate the covariant entropy bound conjecture in the
framework of the LQC, which is a successful application of the non-perturbative quantum
gravity scheme—the LQG. The authors of Ashtekar & Wilson-Ewing (2008) investigated the
Bousso’s covariant entropy bound Bousso (1999; 2002) with a cosmology filled with photon
gas and found that the conjecture is violated near the big bang in the classical scenario.
But they found the LQC can protect this conjecture even in the deep quantum region. In
Zhang & Ling (2007), He and Zhang proposed a new version of the entropy bound conjecture
for the dynamical horizon in cosmology and validated it through a cosmology filled with
adiabatic perfect fluid, governed by the classical Einstein equation when the universe is
far away from the big bang singularity. But when the universe approaches the big bang
singularity, the strong quantum fluctuation does break down their conjecture. In analogy
to Ashtekar and Wilson-Ewing’s result Ashtekar & Wilson-Ewing (2008), one may wonder if
He and Zhang’s conjecture can also be protected by the quantum geometry effect of the LQG.
Following Ashtekar & Wilson-Ewing (2008), we use photon gas as an example to investigate
this problem. As expected, we find that the loop quantum effects can indeed protect
the conjecture. Besides the result of Ashtekar & Wilson-Ewing (2008), our result presents
one more evidence for the consistence between the loop gravity and the covariant entropy
conjecture.
This section is organized as follows. In Subsec. 5.1, we describe the covariant entropy bound
conjecture proposed by He and Zhang He & Zhang (2007). Then in Subsec. 5.2, we test this
conjecture with cosmology filled with photon gas, and show that the LQC is able to protect
the conjecture in all. We conclude the paper in Subsec. 5.3 and discuss the implications.

5.1 The covariant entropy bound conjecture
According to Zhang & Ling (2007), the cosmological dynamical horizon Bousso (2002) is
defined geometrically as a three-dimensional hypersurface foliated by spheres, where at least
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one orthogonal null congruence with vanishing expansion exists. For a sphere characterized
by any value of (t, r), there are two future directed null directions

ka± =
1

a

(
∂

∂t

)a

± 1

a2

(
∂

∂r

)a

, (124)

satisfying geodesic equation kb∇bka = 0. The expansion of these null directions is

θ := �aka± =
2

a2

(
ȧ ± 1

r

)
, (125)

where the dot denotes differential with respect to t, and the sign +(−) represents the null
direction pointing to larger (smaller) values of r. For an expanding universe, i.e. ȧ > 0, θ = 0
determines the location of the dynamical horizon, rH = 1/ȧ, by the definition of dynamical
horizon given above. The LQC replaces the big bang with the big bounce, so the universe
is symmetric with respect to the point of the bounce, expanding on one side of the bounce
and contracting on the other side. The dynamical horizon in the contracting stage of the LQC
corresponds to rH = −1/ȧ, and all of the relations are similar to the ones given here. In this
paper we only consider the expanding stage for the LQC, but note that the contracting stage
is the same.
Since the area of the dynamical horizon is A = 4πa2r2

H = 4πH−2, the covariant entropy
bound conjecture in our question becomes

l2
pS ≤ π

[
H−2(t�)− H−2(t)

]
, (126)

where S is the entropy flux through the dynamical horizon between cosmological time t and

t� (t� > t), and H is the Hubble parameter. Considering that the cosmology model discussed
here is isotropic and homogeneous, we can write the entropy current vector as

sa =
s

a3

(
∂

∂t

)a

, (127)

where s is the ordinary comoving entropy density, independent of space. If the entropy

current of the perfect fluid is conserved, i.e., ∇asa = 0, s will be independent of t as well. For
simplicity we restrict ourselves to this special case. The entropy flux through the dynamical
horizon (shown in Fig.1) is given by

S =
∫

CDH
sa�abcd =

4πs

3

(
r3

H(t�)− r3
H(t)

)
(128)

where �abcd = a3r2 sin θ (dt ∧ dr ∧ dθ ∧ dφ)abcd is the spacetime volume 4-form. So the

conjecture is reduced to

H−2(t�)− 4

3
l2
psȧ−3(t�) ≥ H−2(t)− 4

3
l2
psȧ−3(t), t� > t.

(129)
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where lp =
√
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psȧ−3(t�) ≥ H−2(t)− 4

3
l2
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Fig. 1. A schematic of the entropy current flowing across the cosmological dynamical
horizon. The thick solid line marked by “CDH” is the cosmological dynamical horizon. The
thin solid line is the region enclosed by the CDH at time t and t� respectively. The dashed
lines are the entropy current.

5.2 Conjecture test for a cosmology lled with perfect uid
Given that the FRW universe is filled with photon gas, the energy momentum tensor can be
expressed as

Tab = ρ(t)(dt)a(dt)b + P(t)a2(t) {(dr)a(dr)b

+r2[(dθ)a(dθ)b + sin2 θ(dφ)a(dφ)b]
}

. (130)

The pressure P and the energy density ρ satisfy a fixed equation of state

P = ωρ, (131)

where the constant ω = 1
3 . From ∇aTab = 0, we have the conservation equation

ρ̇ + 3H(ρ + P) = 0. (132)

The comoving entropy density s is given by

s = a3 ρ + P

T
= a3(1 + ω)

ρ

T
, (133)

and ρ depends only on the temperature T,

ρ = Kol
−2− 1+ω

ω
p T

1+ω
ω , (134)

where Ko is a dimensionless constant depending on the density of energy state of the perfect

fluid. For photon gas Ko = π2

15 . Plugging above thermodynamics relation into equation (133)

we get s = (1 + ω)K
ω

1+ω
o l

−1− 2ω
1+ω

p ρ
1

1+ω a3. Written the above conservation equation as

ρ̇ + 3(1 + ω)ρ
ȧ

a
= 0, (135)
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we have an integration constant C = ρ
1

1+ω a3. Then s = (1 + ω)K
ω

1+ω
o l

−1− 2ω
1+ω

p C. Combining
our equation of state Eq. (131) with the above conservation equation, we get the relationship
between ρ and the Hubble parameter,

H = − 1

3(1 + ω)

ρ̇

ρ
. (136)

Substituting the above relation (136) into the modified Friedmann equation (67), we can get

ρ =
1

6π(t + C1)2(1 + ω)2 + 1
ρc

(137)

where C1 is an integration constant without direct physical significance, and we can always
drop it by resetting the time coordinate. Setting C1 = 0 gives

H =
4πt (1 + ω)

6πt2 (1 + ω)2 + 1
ρc

. (138)

With the definition of the Hubble parameter, we can integrate once again to get

a(t) = C1/3

[
6πt2(1 + ω)2 +

1

ρc

] 1
3(1+ω)

. (139)

When ρc goes to infinity, all of the above solutions become the same as the classical ones 2

presented in Zhang & Ling (2007). In the classical scenario,

H−2 − 4

3
l2
psȧ−3

=
9

4
t2(1 + ω)2 − 9K

ω
1+ω
o l

1− 2ω
1+ω

p

2(6π)1/(1+ω)
t3− 2

1+ω (1 + ω)4− 2
1+ω .

(140)

When t � 1, H−2 − 4
3 l2

psȧ−3 ∼ −t3− 2
1+ω = −t3/2 which is a decreasing function of t, so the

conjecture breaks down when the universe approaches the big bang singularity.
We introduce a new variable τ =

√
2πρc(1 + ω)t for the LQC to simplify the above

expressions to

H =
√

2πρc
2τ

3τ2 + 1
, (141)

a = C1/3ρ
− 1

3(1+ω)
c

(
3τ2 + 1

) 1
3(1+ω)

, (142)

ȧ = aH = 2τC1/3ρ
− 1

3(1+ω)
c

√
2πρc

(
3τ2 + 1

) 1
3(1+ω)−1

.

(143)

2 Note that the original result in Zhang & Ling (2007) used conformal time η, while we use universe time
t in this paper. η can be negative which divides the discussion into two cases. t is always positive and
makes the discussion simpler.

337Loop Quantum Cosmology: Effective Theory and Related Applications



32 Will-be-set-by-IN-TECH

Fig. 1. A schematic of the entropy current flowing across the cosmological dynamical
horizon. The thick solid line marked by “CDH” is the cosmological dynamical horizon. The
thin solid line is the region enclosed by the CDH at time t and t� respectively. The dashed
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Fig. 2. Function H−2 − 4
3 l2

psȧ−3 and its derivative respect to τ for photon gas.
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It is obvious that the necessary and sufficient condition for meeting the covariant entropy
bound conjecture is that the above expression increases with τ. In order to investigate the
monotone property of above function, we plot H−2 − 4

3 l2
psȧ−3 itself and its derivative respect

to τ in Fig.2. The minimal value of the derivative is about 1.16 > 0. The covariant entropy
bound conjecture for dynamical horizon in cosmology is fully protected by loop quantum
effect.

5.3 Conclusions and discussion
The covariant entropy bound conjecture comes from the holographic principle and is an
important hint for the quantum gravity theory. In the recent years we have witnessed
more and more success of the loop quantum gravity, especially for the problem of the big
bang singularity in cosmology. The entropy bound conjecture usually breaks down in the
strong gravity region of spacetime where the quantum fluctuation is strong, and one would
expect the loop quantum correction to protect the conjecture from the quantum fluctuation.
And Ashtekar and Wilson-Ewing do find a result in Ashtekar & Wilson-Ewing (2008) which
is consistent with above expectation. In this paper, we generalized the covariant entropy
conjecture for the cosmological dynamical horizon proposed in Zhang & Ling (2007) to the
loop quantum cosmology scenario. We found that the quantum geometry effects of the loop
quantum gravity can also protect the conjecture. Our result gives out one more evidence for
the consistence of covariant entropy conjecture and loop quantum gravity theory. This adds
one more encouraging result of loop quantum gravity theory besides previous ones.
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6. Summary
Based on quantum geometry, the mathematical structure of LQC has been strictly defined.
LQC inherits the non-perturbative and background-independent quantization schemes of
LQG. In the framework of LQC, the evolution of the universe is described by the difference
equation. In the past years, LQC achieved great successes. The most outstanding result
is replacing the big bang space singularity of cosmology with a big bounce. LQC also
gives a quantum suppression of classical chaotic behavior near singularities in the Bianchi-IX
models. Furthermore, it has been shown that the non-perturbative modification of the matter
Hamiltonian leads to a generic phase of inflation. LQC gives some possible answers to
cosmological riddles due to the discreteness of the quantum geometry.
With the geometric quantum mechanics and the shadow state framework, we can get the
effective theory of LQC. In this effective theory, the classical Hamiltonian gets a quantum
correction, and the classical Einstein equation is replaced by the equations of motion induced
by the effective Hamiltonian. Our works are based on this effective theory.
Due to the space limitations, this Chapter includes only our recently following three works:
(1) We discussed the dynamical behavior of a scalar field with a general potential coupled with
a barotropic fluid in LQC. (2) We found that the averaged null energy condition is violated in
LQC which provides the possibility for the traversable time machine. (3) We found that the
dynamical horizon entropy bound conjecture breaks down in classical general relativity near
the big bang region but is protected by the quantum geometry effects in LQC.
It is undeniable that LQC is developing rapidly and showing its power in solving
cosmological riddles. However, it still faces two major challenges:

• So far, we have not proven that LQC is truly derived from the full theory;

• At the time of writing, the predictions made by LQC are yet to be compared with
cosmological observations.

Here involved is only a big branch of LQC. There are other issues worth studying, such as the
perturbation theory, the cosmological spin foam theory, and so on. There is still a long way to
go before the arrival of the victory.
Acknowledgments: This work was supported by the National Natural Science Foundation
of China under Grant No. 10875012 and the Fundamental Research Funds for the Central
Universities.
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1. Introduction

In this chapter, we study the singularity of the geodesic surface congruence for time-like and
null strings using the expansion of the universe in the string theory. We have Raychaudhuri
type equation for the expansion. Assuming the stringy strong energy condition and initial
convergence, we induce the existence of a Hawking-Penrose type singularity and obtain the
same inequality equation of the stringy strong energy condition for timelike and null stringy
congruences.
We consider the variation of the surface spanned by closed strings in a space-time manifold.
Using the Nambu-Goto string action, we induce the geodesic surface equation and the
geodesic surface deviation equation which yields a Jacobi field, and we define the index
form of a geodesic surface as in the case of point particles to discuss conjugate strings on
the geodesic surface.
Using the Nambu-Goto string action in the space of the surfaces spanned by closed strings in
a spacetime manifold, we investigated the geodesic surface equation in the space of surfaces
joining two given strings and the geodesic surface deviation equation in geodesic surface
congruence which yields a Jacobi field along a given geodesic surface, and singularities
in geodesic surface congruences. Assuming that the singularity exists in geodesic surface
congruences in a conformally symmetric manifold, we compute the Jacobi fields.
In the standard cosmology, the universe expanded from a single point, namely Big Bang, and
then a radiation dominated phase occurred followed by a matter dominated one, together
with a phase transition between these two phases. Stringy cosmology displays features that
are different from standard cosmology. One may be surprised in that in the stringy scenario
there is no phase transition between the radiation and matter dominated phases, and the
universe repeats a cyclic pattern in its evolution similar to brane cyclic cosmology. The Large
Hadron Collider at CERN is expected to be able to determine which cosmology among several
scenarios including the stringy cosmology is viable through detecting the quark-gluon plasma
state and its ensuing evolution of the tiny universe. This chapter is mainly based on the
articles Cho & Hong (2007; 2008); Cho (2010); Cho & Hong (2010).

2. Morse theory in the space of surfaces

2.1 Stringy geodesic surfaces in Morse theory
In analogy of the relativistic action of a point particle, the Nambu-Goto action Goto (1971);
Nambu (1970) for a closed string is proportional to the area of the surface spanned in

17



42 Will-be-set-by-IN-TECH

Zhou, S.Y. (2008). A new approach to quintessence and a solution of multiple attractors, Phys.
Lett. B Vol.660(1-2): 7-12.

346 Aspects of Today´s Cosmology

0

Singularities and Thermodynamics of Geodesic
Surface Congruences

Yong Seung Cho and Soon-Tae Hong
Ewha Womans University

Korea

1. Introduction

In this chapter, we study the singularity of the geodesic surface congruence for time-like and
null strings using the expansion of the universe in the string theory. We have Raychaudhuri
type equation for the expansion. Assuming the stringy strong energy condition and initial
convergence, we induce the existence of a Hawking-Penrose type singularity and obtain the
same inequality equation of the stringy strong energy condition for timelike and null stringy
congruences.
We consider the variation of the surface spanned by closed strings in a space-time manifold.
Using the Nambu-Goto string action, we induce the geodesic surface equation and the
geodesic surface deviation equation which yields a Jacobi field, and we define the index
form of a geodesic surface as in the case of point particles to discuss conjugate strings on
the geodesic surface.
Using the Nambu-Goto string action in the space of the surfaces spanned by closed strings in
a spacetime manifold, we investigated the geodesic surface equation in the space of surfaces
joining two given strings and the geodesic surface deviation equation in geodesic surface
congruence which yields a Jacobi field along a given geodesic surface, and singularities
in geodesic surface congruences. Assuming that the singularity exists in geodesic surface
congruences in a conformally symmetric manifold, we compute the Jacobi fields.
In the standard cosmology, the universe expanded from a single point, namely Big Bang, and
then a radiation dominated phase occurred followed by a matter dominated one, together
with a phase transition between these two phases. Stringy cosmology displays features that
are different from standard cosmology. One may be surprised in that in the stringy scenario
there is no phase transition between the radiation and matter dominated phases, and the
universe repeats a cyclic pattern in its evolution similar to brane cyclic cosmology. The Large
Hadron Collider at CERN is expected to be able to determine which cosmology among several
scenarios including the stringy cosmology is viable through detecting the quark-gluon plasma
state and its ensuing evolution of the tiny universe. This chapter is mainly based on the
articles Cho & Hong (2007; 2008); Cho (2010); Cho & Hong (2010).

2. Morse theory in the space of surfaces

2.1 Stringy geodesic surfaces in Morse theory
In analogy of the relativistic action of a point particle, the Nambu-Goto action Goto (1971);
Nambu (1970) for a closed string is proportional to the area of the surface spanned in

17



2 Will-be-set-by-IN-TECH

spacetime manifold M by the evolution of the string. In order to define the action on the
curved manifold, let (M, gab) be an n-dimensional manifold associated with the metric gab.
Given gab, we can have a unique covariant derivative ∇a satisfying Wald (1984) ∇agbc = 0,
∇aωb = ∂aωb + Γb

ac ωc and

(∇a∇b −∇b∇a)ωc = R d
abc ωd. (1)

We parameterize the surface γ(τ, σ) spanned by a closed string by two internal coordinates σ
and τ, and then we have the corresponding vector fields ξa = (∂/∂τ)a and ζa = (∂/∂σ)a . The
Nambu-Goto string action is then given by Goto (1971); Nambu (1970)

S = −
∫ T

0

∫ 2π

0
dτdσ f (τ, σ) (2)

where
f (τ, σ) = [(ξ · ζ)2 − (ξ · ξ)(ζ · ζ)]1/2. (3)

We now perform an infinitesimal variation of the tubes γα(τ, σ) traced by the closed string
during its evolution in order to find the geodesic surface equation from the least action
principle. Here we impose the restriction that the length of the string circumference is
τ independent for simplicity. Let the vector field ηa = (∂/∂α)a be the deviation vector
which represents the displacement to an infinitesimally nearby tube, and let Σ denote the
three-dimensional submanifold spanned by the tubes γα(τ, σ). We then may choose τ, σ and
α as coordinates of Σ to yield the commutator relations,

£ξηa = ξb∇bηa − ηb∇bξa = 0, (4)

£ζηa = ζb∇bηa − ηb∇bζa = 0, (5)

£ξζa = ξb∇bζa − ζb∇bξa = 0. (6)

Now we find the first variation as follows

dS
dα

= −
∫ ∫

dτdσ ηa∇a f

= −
∫ ∫

dτdσ (Pb
τ ξa∇aηb + Pb

σζa∇aηb)

=
∫ ∫

dτdσ ηb(ξ
a∇aPb

τ + ζa∇aPb
σ)

−
∫

dσ Pb
τ ηb|τ=T

τ=0 −
∫

dτ Pb
σηb|σ=2π

σ=0 , (7)

where

Pa
τ =

1
f
[(ξ · ζ)ζa − (ζ · ζ)ξa],

Pa
σ =

1
f
[(ξ · ζ)ξa − (ξ · ξ)ζa] (8)
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are the energy-momentum currents. Using the endpoint conditions ηa(0) = ηa(T) = 0 and
periodic condition ηa(σ + 2π) = ηa(σ), we have the geodesic surface equation

ξa∇aPb
τ + ζa∇aPb

σ = 0, (9)

and the constraint identities

Pτ · ζ = 0, Pτ · Pτ + ζ · ζ = 0,
Pσ · ξ = 0, Pσ · Pσ + ξ · ξ = 0.

(10)

Let γα(τ, σ) denote a smooth one-parameter family of geodesic surfaces: for each α ∈ R,
the tube γα is a geodesic surface parameterized by affine parameters τ and σ. For an
infinitesimally nearby geodesic surface in the family, we then have the following geodesic
surface deviation equation

ξb∇b(η
c∇cPa

τ) + ζb∇b(η
c∇cPa

σ) + R a
bcd(ξ

bPd
τ + ζbPd

σ)η
c ≡ (Λη)a = 0. (11)

For an infinitesimal α, our goal is to investigate the variation vector field ηa by comparing
S(0) with S(α) with S(0) along the time direction τ. The second variation d2S/dα2(0) is then
needed only when dS/dα(0) = 0. Explicitly, the second variation is given by

d2S
dα2 |α=0 = −

∫ ∫
dτdσ ηb∇b(η

a∇a f )

= −
∫ ∫

dτdσ
[
(ηc∇cPb

τ )(ξ
a∇aηb) + (ηc∇cPb

σ)(ζ
a∇aηb)

−R d
acb(ξ

aPb
τ + ζaPb

σ)η
cηd

]

−
∫

dσ Pb
τ ηa∇aηb|τ=T

τ=0 −
∫

dτ Pb
σηa∇aηb|σ=2π

σ=0 . (12)

Here the boundary terms vanish for the fixed endpoint and the periodic conditions, even
though on the geodesic surface we have breaks which we will explain later. After some algebra
using the geodesic surface deviation equation, we have

d2S
dα2 |α=0 =

∫ ∫
dτdσ ηa(Λη)a. (13)

2.2 Jacobi fields in orthonormal gauge
The string action and the corresponding equations of motion are invariant under
reparameterization σ̃ = σ̃(τ, σ) and τ̃ = τ̃(τ, σ). We have then gauge degrees of freedom
so that we can choose the orthonormal gauge as follows

ξ · ζ = 0, ξ · ξ + ζ · ζ = 0, (14)

where the plus sign in the second equation is due to the fact that ξ · ξ is timelike and
ζ · ζ is spacelike. In this parameterization the energy-momentum currents (8) satisfying the
constraints (10) are

Pa
τ = −ξa, Pa

σ = ζa. (15)
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dτ Pb
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1
f
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1
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348 Aspects of Today´s Cosmology Singularities and Thermodynamics of Geodesic Surface Congruences 3

are the energy-momentum currents. Using the endpoint conditions ηa(0) = ηa(T) = 0 and
periodic condition ηa(σ + 2π) = ηa(σ), we have the geodesic surface equation

ξa∇aPb
τ + ζa∇aPb

σ = 0, (9)

and the constraint identities

Pτ · ζ = 0, Pτ · Pτ + ζ · ζ = 0,
Pσ · ξ = 0, Pσ · Pσ + ξ · ξ = 0.

(10)

Let γα(τ, σ) denote a smooth one-parameter family of geodesic surfaces: for each α ∈ R,
the tube γα is a geodesic surface parameterized by affine parameters τ and σ. For an
infinitesimally nearby geodesic surface in the family, we then have the following geodesic
surface deviation equation

ξb∇b(η
c∇cPa

τ) + ζb∇b(η
c∇cPa

σ) + R a
bcd(ξ

bPd
τ + ζbPd
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The geodesic surface equation and the geodesic surface deviation equation read

−ξa∇aξb + ζa∇aζb = 0,

−ξb∇b(ξ
c∇cηa) + ζb∇b(ζ

c∇cηa)− R a
bcd(ξ

bξd − ζbζd)ηc = (Λη)a = 0.

(16)

We now restrict ourselves to strings on constant scalar curvature manifold such as Sn. We
take an ansatz that on this manifold the string shape on the geodesic surface γ0 is the same
as that on a nearby geodesic surface γα at a given time τ. We can thus construct the variation
vectors ηa(τ) as vectors associated with the centers of the string of the two nearby geodesic
surfaces at the given time τ. We then introduce an orthonormal basis of spatial vectors ea

i (i =
1, 2, ..., n − 2) orthogonal to ξa and ζa and parallelly propagated along the geodesic surface.
The geodesic surface deviation equation then yields for (i, j = 1, 2, ..., n − 2)

d2ηi

dτ2 + (R i
τjτ − R i

σ jσ)η
j = 0. (17)

The value of ηi at time τ must depend linearly on the initial data ηi(0) and dηi

dτ (0) at τ = 0.
Since by construction ηi(0) = 0 for the family of geodesic surfaces we must have

ηi(τ) = Ai
j(τ)

dη j

dτ
(0). (18)

Inserting (18) into (17) we have the differential equation for Ai
j(τ)

d2 Ai
j

dτ2 + (R i
τkτ − R i

σkσ)Ak
j = 0, (19)

with the initial conditions

Ai
j(0) = 0,

dAi
j

dτ
(0) = δi

j. (20)

Note that in (19) we have the last term from the contribution of string property.
Next we consider the second variation equation (12) under the above restrictions

d2S
dα2 |α=0 =

∫ ∫
dτdσ

(
dηi

dτ

ηi

dτ
− (R i

τjτ − R i
σ jσ)η

jηi

)
. (21)

Define the index form Iγ of a geodesic surface γ as the unique symmetric bilinear form Iγ :
Tγ × Tγ → R such that

Iγ(V, V) =
d2S
dα2 |α=0(V, V) (22)

for V ∈ Tγ. From (21) we can easily find

Iγ(V, W) =
∫ ∫

dτdσ

(
dWm

dτ

dVm

dτ
− (R m

τjτ − R m
σ jσ )W

jVm

)
. (23)
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If we have breaks 0 = τ0 < · · · < τk+1 = T, and the restriction of γ to each set [τi−1, τi]
is smooth, then the tube γ is piecewise smooth. The variation vector field V of γ is always
piecewise smooth. However dV/dτ will generally have a discontinuity at each break τi (1 ≤
i ≤ k). This continuity is measured by

Δ
dV
dτ

(τi) =
dV
dτ

(τ+
i )− dV

dτ
(τ−

i ), (24)

where the first term is derived from the restrictions γ|[τi, τi+1] and the second from γ|[τi−1, τi].

If γ and V ∈ Tγ have the breaks τ1 < · · · < τk then except at breaks, we have

dWm

dτ

dVm

dτ
=

d
dτ

(
Vm

dWm

dτ

)
− Vm

d2Wm

dτ2 , (25)

and
k

∑
i=0

∫ τi+1

τi

d
dτ

(
Vm

dWm

dτ

)
dτ =

k

∑
i=0

Vm
dWm

dτ
|τi+1
τi

= −
k

∑
i=0

VmΔ
dWm

dτ
(τi), (26)

to yield

Iγ(V, W) = −
∫ ∫

dτdσ Vm
(

d2Wm

dτ2 + (R m
τjτ − R m

σ jσ )W
j
)

−
k

∑
i=0

∫
dσ VmΔ

dWm

dτ
(τi). (27)

Here note that if we do not have the breaks, (21) yields

d2S
dα2 |α=0 = −

∫ ∫
dτdσ ηi

(
d2ηi

dτ2 + (R i
τjτ − R i

σ jσ)η
j

)
. (28)

A solution ηa of the geodesic surface deviation equation (17) is called a Jacobi field on the

geodesic surface γ. A pair of points p, q ∈ γ defined by the centers of the closed strings on the
geodesic surface is then conjugate if there exists a Jacobi field ηa which is not identically zero
but vanishes at both p and q. Roughly speaking, p and q are conjugate if an infinitesimally
nearby geodesic surface intersects γ at both p and q. From (18), q will be conjugate to p if and
only if there exists nontrivial initial data: dηi/dτ(0) �= 0, for which ηi = 0 at q. This occurs if
and only if det Ai

j = 0 at q, and thus det Ai
j = 0 is the necessary and sufficient condition for

a conjugate point to p. Note that between conjugate points, we have det Ai
j �= 0 and thus the

inverse of Ai
j exists. Using (19) we can easily see that

d
dτ

(
dAij

dτ
Ai

k − Aij
dAi

k
dτ

)
= 0. (29)
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In addition, the quantity in parenthesis of (29) vanishes at p, since Ai
j(0) = 0. Along a

geodesic surface γ, we thus find

dAij

dτ
Ai

k − Aij
dAi

k
dτ

= 0. (30)

If γ is a geodesic surface with no point conjugate to p between p and q, then Ai
j defined above

will be nonsingular between p and q. We can then define Yi = (A−1)i
jη

j or ηi = Ai
jY

j. From
(28) and (30), we can easily verify

d2S
dα2 |α=0 =

∫ ∫
dτdσ

(
Aij

dYj

dτ

)2

≥ 0. (31)

Locally γ minimizes the surface of the string, if γ is a geodesic surface with no point conjugate

to p between p and q.
On the other hand, if γ is a geodesic surface but has a conjugate point r between p and q, then
we have the Jacobi field Ji along γ which vanishes at p and r. Extend Ji to q by putting it zero
in [r, q]. Then dJi/dτ(r−) �= 0, since Ji is nonzero. But dJi/dτ(r+) = 0 to yield

Δ
dJi

dτ
(r) = − dJi

dτ
(r−) �= 0. (32)

Choose any ki ∈ Tγ such that

kiΔ
dJi

dτ
(r) = c, (33)

with positive constant c. Let ηi be ηi = �ki + �−1 Ji where � is some constant, then we have

Iγ(η, η) = �2 Iγ(k, k) + 2Iγ(k, J) + �−2 Iγ(J, J). (34)

By taking � small enough, the first term in (34) vanishes and the third term also vanishes due

to the definition of the Jacobi field. Using (33) we have Iγ(k, J) = −2πc and thus

d2S
dα2 |α=0 = −4πc, (35)

which is negative definite. From the above arguments, we conclude that given a smooth

timelike curve γ connecting two points p, q ∈ M, the necessary and sufficient condition that γ

locally minimizes the surface of the closed string between p and q over smooth one parameter
variations is that γ is a geodesic surface with no point conjugate to p between p and q. It is
also interesting to see that on Sn we have n − 1 conjugate points as in the case of point particle.
Moreover, on the manifold with the constant scalar curvature R, the geodesic surfaces have
no conjugate points for R < 0 or R = 0, while conjugate points occur for R > 0.
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3. Singularities in geodesic surface congruence for the time-like direction

3.1 Introduction
The Hawking-Penrose singularity Hawking & Penrose (1970) is assumed to exist at the
beginning of the universe. In the standard inflationary cosmology based on the
Hawking-Penrose singularity theorem and inflationary scenario, the universe is believed
to expand from the Big Bang. Assuming that the early universe was filled with a perfect
fluid consisting of massive particles and/or massless particles and using the strong energy
condition which was used to show the Hawking-Penrose singularity theorem, one could find
equations of state for each particle.
In the inflationary standard cosmology, it is believed that, after the Big Bang explosion,
radiation dominated phase occurred followed by matter dominated one, even though there
was a hot thermalization period of radiation and matter immediately after the Big Bang.
Moreover, a phase transition exists between massive particle and massless particle phases in
the universe. The equation of state of the massive particle is different from that of the massless
particle, and thus the massive particle phase is not the same as the massless particle one.
Applying the string theory Green et al. (1987); Polchinski (1999) to cosmology, we might
investigate the expansion of the universe in terms of the Hawking-Penrose singularity
in geodesic surface congruences for the time-like and null strings Cho & Hong (2008;
2010). Taking an ansatz that the expansion of the stringy congruence is constant along
the string coordinate direction, we derive the Raychaudhuri type equation, which is an
evolution equation for the expansion, possessing correction terms associated with the
stringy configurations. Assuming the stringy strong energy condition, we induce the
Hawking-Penrose type inequality equation which produces the same inequality equation for
both the time-like and null stringy congruences.

3.2 Congruence of strings
The action for a string is proportional to the area of the surface spanned in spacetime manifold
M by the evolution of the string. In order to define the action on the curved manifold, we let
(M, gab) be a D-dimensional manifold associated with the metric gab. Given gab, we can have
a unique covariant derivative ∇a satisfying (1).
Parameterize the surface generated by the evolution of a string by two world sheet coordinates
τ and σ, and then we have the corresponding vector fields ξa = (∂/∂τ)a and ζa =
(∂/∂σ)a . Since we have gauge degrees of freedom, we can choose the orthonormal gauge
as follows Scherk (1975)

ξ · ζ = 0, ξ · ξ + ζ · ζ = 0, (36)

where the plus sign in the second equation is due to the fact that ξ · ξ = −1 is timelike and
ζ · ζ = 1 is spacelike. In the orthonormal gauge, we introduce tensor fields Bab and B̄ab defined
as

Bab = ∇bξa, B̄ab = ∇bζa, (37)

which satisfy the following identities

Babξa = 0, B̄abζa = 0,

−Babξb + B̄abζb = 0. (38)
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(M, gab) be a D-dimensional manifold associated with the metric gab. Given gab, we can have
a unique covariant derivative ∇a satisfying (1).
Parameterize the surface generated by the evolution of a string by two world sheet coordinates
τ and σ, and then we have the corresponding vector fields ξa = (∂/∂τ)a and ζa =
(∂/∂σ)a . Since we have gauge degrees of freedom, we can choose the orthonormal gauge
as follows Scherk (1975)

ξ · ζ = 0, ξ · ξ + ζ · ζ = 0, (36)

where the plus sign in the second equation is due to the fact that ξ · ξ = −1 is timelike and
ζ · ζ = 1 is spacelike. In the orthonormal gauge, we introduce tensor fields Bab and B̄ab defined
as

Bab = ∇bξa, B̄ab = ∇bζa, (37)

which satisfy the following identities

Babξa = 0, B̄abζa = 0,

−Babξb + B̄abζb = 0. (38)
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Here in the last equation, we have used the geodesic surface equation

− ξa∇aξb + ζa∇aζb = 0. (39)

In particular, the timelike curves of the strings are geodesic, then the geodesic surface equation
holds.
Let the vector field ηa = (∂/∂α)a be the deviation vector which represents the displacement to
an infinitesimally nearby world sheet, and we let Σ denote the three-dimensional submanifold
spanned by the world sheets γα(τ, σ). We then may choose τ, σ and α as coordinates of Σ to
yield the commutator relations (4)-(6). Using the above relations, we have

ξa∇aηb − ζa∇aηb = (Bb
a − B̄b

a)η
a. (40)

Next introduce the metrics hab and h̄ab,

hab = gab + ξaξb, h̄ab = gab − ζaζb, (41)

which satisfy
habξa = 0, habξb = 0, habgbchcd = had,
h̄abζa = 0, h̄abζb = 0, h̄abgbch̄cd = h̄ad,
habhab = D − 1, h̄abh̄ab = D − 1, habh̄ab = D − 2.

(42)

Here note that hab and h̄ab are the metrics on the hypersurfaces orthogonal to ξa and ζa,
respectively. Moreover, we can define projection operators ha

b and h̄a
b as follows

ha
b = gachcb, h̄a

b = gach̄cb. (43)

These operators fulfil

ha
bhb

c = habhbc = ha
c, h̄a

bh̄b
c = h̄abh̄bc = h̄a

c,
habhbchcd = had, h̄abh̄bch̄cd = h̄ad.

(44)

Now, decompose Bab into three pieces

Bab =
1

D − 1
θhab + σab + ωab, (45)

where the expansion θ, the shear σab and the twist ωab of the stringy congruence are given by

θ = Babhab, σab = B(ab) −
1

D − 1
θhab, ωab = B[ab]. (46)

Similarly, B̄ab is also decomposed into three parts

B̄ab =
1

D − 1
θ̄h̄ab + σ̄ab + ω̄ab, (47)

where
θ̄ = B̄abh̄ab, σ̄ab = B̄(ab) −

1
D − 1

θ̄h̄ab, ω̄ab = B̄[ab]. (48)
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We then find
σabhab = 0, ωabhab = 0,
σ̄abh̄ab = 0, ω̄abh̄ab = 0,

−σabξb + σ̄abζb = 0, −ωabξb + ω̄abζb = 0,
(49)

and
− ξc∇cBab + ζc∇cB̄ab = Bc

bBac − B̄c
bB̄ac − Rcbad(ξ

cξd − ζcζd). (50)

Exploiting (50) one arrives at

− ξa∇aθ + ζa∇a θ̄ =
1

D − 1
(θ2 − θ̄2) + σabσab − σ̄abσ̄ab − ωabωab + ω̄abω̄ab

+Rab(ξ
aξb − ζaζb). (51)

3.3 Expansion of timelike stringy congruence
The motion types of stringy congruence can be described in terms of expansion, twist and
shear. In this section, we will pedagogically summarize the previous results Cho & Hong
(2008; 2010) on the expansion rate of stringy congruence in the early universe for the sake of
completeness. We will consider the twist and shear motions in the next section.
Taking an ansatz that the expansion θ̄ is constant along the σ-direction, from (51) one obtains
a Raychaudhuri type equation

dθ

dτ
= − 1

D − 1
(θ2 − θ̄2)− σabσab + σ̄abσ̄ab + ωabωab − ω̄abω̄ab − Rab(ξ

aξb − ζaζb). (52)

Assume that ωab = ω̄ab, σab = σ̄ab and a stringy strong energy condition

Rab(ξ
aξb − ζaζb) = 8π

(
Tab(ξ

aξb − ζaζb) +
2

D − 2
T
)

≥ 0, (53)

where Tab and T are the energy-momentum tensor and its trace, respectively. The
Raychaudhuri type equation (52) then has a solution of the form

1
θ(τ)

≥ 1
θ(0)

+
1

D − 1

(
τ −

∫ τ

0
dτ

(
θ̄

θ

)2
)

. (54)

Assume that θ(0) is negative so that the congruence is initially converging as in the point
particle case. The inequality (54) implies that θ(τ) must pass through the singularity within a
proper time

τ ≤ D − 1
|θ(0)| +

∫ τ

0
dτ

(
θ̄

θ

)2

. (55)

For a perfect fluid, the energy-momentum tensor given by

Tab = ρ uaua + P (gab + uaub) (56)

where ρ and P are the mass-energy density and pressure of the fluid as measured in its rest
frame, respectively, and ua is the time-like D-velocity in its rest frame Misner et al. (1972);
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Here in the last equation, we have used the geodesic surface equation
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In particular, the timelike curves of the strings are geodesic, then the geodesic surface equation
holds.
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ξa∇aηb − ζa∇aηb = (Bb
a − B̄b

a)η
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respectively. Moreover, we can define projection operators ha
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b as follows
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b = gach̄cb. (43)

These operators fulfil
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c = habhbc = ha
c, h̄a

bh̄b
c = h̄abh̄bc = h̄a

c,
habhbchcd = had, h̄abh̄bch̄cd = h̄ad.

(44)

Now, decompose Bab into three pieces

Bab =
1

D − 1
θhab + σab + ωab, (45)

where the expansion θ, the shear σab and the twist ωab of the stringy congruence are given by

θ = Babhab, σab = B(ab) −
1

D − 1
θhab, ωab = B[ab]. (46)

Similarly, B̄ab is also decomposed into three parts

B̄ab =
1

D − 1
θ̄h̄ab + σ̄ab + ω̄ab, (47)

where
θ̄ = B̄abh̄ab, σ̄ab = B̄(ab) −

1
D − 1

θ̄h̄ab, ω̄ab = B̄[ab]. (48)
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We then find
σabhab = 0, ωabhab = 0,
σ̄abh̄ab = 0, ω̄abh̄ab = 0,

−σabξb + σ̄abζb = 0, −ωabξb + ω̄abζb = 0,
(49)

and
− ξc∇cBab + ζc∇cB̄ab = Bc

bBac − B̄c
bB̄ac − Rcbad(ξ

cξd − ζcζd). (50)

Exploiting (50) one arrives at

− ξa∇aθ + ζa∇a θ̄ =
1

D − 1
(θ2 − θ̄2) + σabσab − σ̄abσ̄ab − ωabωab + ω̄abω̄ab

+Rab(ξ
aξb − ζaζb). (51)

3.3 Expansion of timelike stringy congruence
The motion types of stringy congruence can be described in terms of expansion, twist and
shear. In this section, we will pedagogically summarize the previous results Cho & Hong
(2008; 2010) on the expansion rate of stringy congruence in the early universe for the sake of
completeness. We will consider the twist and shear motions in the next section.
Taking an ansatz that the expansion θ̄ is constant along the σ-direction, from (51) one obtains
a Raychaudhuri type equation

dθ

dτ
= − 1

D − 1
(θ2 − θ̄2)− σabσab + σ̄abσ̄ab + ωabωab − ω̄abω̄ab − Rab(ξ

aξb − ζaζb). (52)

Assume that ωab = ω̄ab, σab = σ̄ab and a stringy strong energy condition

Rab(ξ
aξb − ζaζb) = 8π

(
Tab(ξ

aξb − ζaζb) +
2

D − 2
T
)

≥ 0, (53)

where Tab and T are the energy-momentum tensor and its trace, respectively. The
Raychaudhuri type equation (52) then has a solution of the form

1
θ(τ)

≥ 1
θ(0)

+
1

D − 1

(
τ −

∫ τ

0
dτ

(
θ̄

θ

)2
)

. (54)

Assume that θ(0) is negative so that the congruence is initially converging as in the point
particle case. The inequality (54) implies that θ(τ) must pass through the singularity within a
proper time

τ ≤ D − 1
|θ(0)| +

∫ τ

0
dτ

(
θ̄

θ

)2

. (55)

For a perfect fluid, the energy-momentum tensor given by

Tab = ρ uaua + P (gab + uaub) (56)

where ρ and P are the mass-energy density and pressure of the fluid as measured in its rest
frame, respectively, and ua is the time-like D-velocity in its rest frame Misner et al. (1972);
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Wald (1984), the stringy strong energy condition (53) yields only one inequality equation

D − 4
D − 2

ρ +
D

D − 2
P ≥ 0. (57)

Now, we consider the point particle limit of the timelike stringy congruence. If the fiber
space F in the fibration π : M → N4 is a point, then the total space M is the same as the
base spacetime four manifold N4. In this case, the geodesic surfaces are geodesic in N4,
the congruence of time-like geodesic surfaces is a congruence of time-like geodesics, and so
B̄ab = θ̄ = σ̄ab = ω̄ab = 0. If the congruence is hypersurface orthogonal, then we have
ωab = 0. Suppose that the strong energy condition Rabξaξb ≥ 0 is satisfied to yield two
inequalities Carroll (2004); Hawking & Penrose (1970); Wald (1984)

ρ + 3P ≥ 0, ρ + P ≥ 0. (58)

We then have the differential inequality equation

dθ

dτ
+

1
3

θ2 ≤ 0 (59)

which has a solution in the following form

1
θ(τ)

≥ 1
θ(0)

+
1
3

τ. (60)

If we assume that θ(0) is negative, the expansion θ(τ) must go to the negative infinity along
that geodesic within a proper time

τ ≤ 3
|θ(0)| , (61)

whose consequence coincides with that of Hawking and Penrose Hawking & Penrose (1970).

4. Singularities in geodesic surface congruence for the null direction

4.1 Formalism of null stringy congruence
Next, we investigate the congruence of the null strings, where the tangent vector of a null
curve is normal to itself. See Karlhede & Lindström (1986); Roshchupkin & Zheltukhin (1995;
1999); Schild (1977) for the proper definition and propagation of the classical null strings. We
consider the evolution of vectors in a (D − 2)-dimensional subspace of spatial vectors normal
to the null tangent vector field ka = (∂/∂λ)a, where λ is the affine parameter, and to an
auxiliary null vector la which points in the opposite spatial direction to ka, normalized by
laka = −1 Carroll (2004) and is parallel transported, namely, ka∇alb = 0. The spatial vectors
in the (D − 2)-dimensional subspace are then orthogonal to both ka and la.
We now introduce the metrics nab defined below and h̄ab defined in (41),

nab = gab + kalb + lakb. (62)

Similarly to the time-like case, we introduce tensor fields Bab = ∇bka and B̄ab in (37) satisfying
the identities Babka = B̄abζa = 0 and −Babkb + B̄abζb = 0. We also define the deviation vector
ηa = (∂/∂α)a representing the displacement to an infinitesimally nearby world sheet so that
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we can choose λ, σ, and α as coordinates of the three-dimensional submanifold spanned by
the world sheets. We then have the commutator relations £kηa = £ζ ηa = £kζa = 0 and
ka∇aηb − ζa∇aηb = (Bb

a − B̄b
a)η

a.
We decompose Bab into three pieces

Bab =
1

D − 2
θnab + σab + ωab, (63)

where the expansion, shear, and twist of the stringy congruence along the affine direction are
defined as θ = Babnab, σab = B(ab) − 1

D−2 θnab and ωab = B[ab]. It is noteworthy that even
though we have the same notations for Bab, θ, σab and ωab in (45) and (63), the differences of
these notations among the time-like sting cases and null string cases are understood in the
context. Similarly, we decompose B̄ab into three parts as in the time-like case.

4.2 Expansion of null stringy congruence
Taking the ansatz that the expansion θ̄ is constant along the σ-direction as in the time-like case,
we have another Raychaudhuri type equation

dθ

dλ
= − 1

D − 2
θ2 +

1
D − 1

θ̄2 − σabσab + σ̄abσ̄ab

+ωabωab − ω̄abω̄ab − Rab(k
akb − ζaζb). (64)

Assuming ωab = ω̄ab, σab = σ̄ab and a stringy strong energy condition for null case Rab(kakb −
ζaζb) ≥ 0 and exploiting the energy-momentum tensor of the perfect fluid, we reproduce the
inequality (57) in the time-like congruence of strings. The Raychaudhuri type equation (64)
for the null strings then has a solution in the following form:

1
θ
≥ 1

θ0
+

1
D − 2

(
λ − D − 2

D − 1

∫ λ

0
dλ

(
θ̄

θ

)2
)

, (65)

where θ0 is the initial value of θ at λ = 0. We assume again that θ0 is negative. The inequality
(65) then implies that θ must pass through the singularity within an affine length

λ ≤ D − 2
|θ0| +

D − 2
D − 1

∫ λ

0
dλ

(
θ̄

θ

)2

. (66)

In the point particle limit with B̄ab = θ̄ = σ̄ab = ω̄ab = 0 and ωab = 0, we assume that the
strong energy condition Rabkakb ≥ 0 is satisfied to yield the second inequality of (58) Carroll
(2004); Hawking & Penrose (1970); Wald (1984). If we assume that the initial value is negative,
the expansion θ must go to the negative infinity along that geodesic within a finite affine
length Hawking & Penrose (1970).

5. Jacobi fields in geodesic surface congruence

5.1 Geodesic surface deviation equation
In this subsection, we consider a fiber bundle π : M → X over a spacetime four-manifold X
with a Calabi-Yau manifold as a fiber space. Let M be a n-dimensional manifold with a metric
gab. The action for a string is proportional to the area of the surface spanned in the total space

357Singularities and Thermodynamics of Geodesic Surface Congruences



10 Will-be-set-by-IN-TECH

Wald (1984), the stringy strong energy condition (53) yields only one inequality equation

D − 4
D − 2

ρ +
D

D − 2
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We then have the differential inequality equation

dθ
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+

1
3
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which has a solution in the following form

1
θ(τ)

≥ 1
θ(0)

+
1
3

τ. (60)

If we assume that θ(0) is negative, the expansion θ(τ) must go to the negative infinity along
that geodesic within a proper time

τ ≤ 3
|θ(0)| , (61)

whose consequence coincides with that of Hawking and Penrose Hawking & Penrose (1970).
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Next, we investigate the congruence of the null strings, where the tangent vector of a null
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1999); Schild (1977) for the proper definition and propagation of the classical null strings. We
consider the evolution of vectors in a (D − 2)-dimensional subspace of spatial vectors normal
to the null tangent vector field ka = (∂/∂λ)a, where λ is the affine parameter, and to an
auxiliary null vector la which points in the opposite spatial direction to ka, normalized by
laka = −1 Carroll (2004) and is parallel transported, namely, ka∇alb = 0. The spatial vectors
in the (D − 2)-dimensional subspace are then orthogonal to both ka and la.
We now introduce the metrics nab defined below and h̄ab defined in (41),

nab = gab + kalb + lakb. (62)

Similarly to the time-like case, we introduce tensor fields Bab = ∇bka and B̄ab in (37) satisfying
the identities Babka = B̄abζa = 0 and −Babkb + B̄abζb = 0. We also define the deviation vector
ηa = (∂/∂α)a representing the displacement to an infinitesimally nearby world sheet so that
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we can choose λ, σ, and α as coordinates of the three-dimensional submanifold spanned by
the world sheets. We then have the commutator relations £kηa = £ζ ηa = £kζa = 0 and
ka∇aηb − ζa∇aηb = (Bb

a − B̄b
a)η

a.
We decompose Bab into three pieces

Bab =
1

D − 2
θnab + σab + ωab, (63)

where the expansion, shear, and twist of the stringy congruence along the affine direction are
defined as θ = Babnab, σab = B(ab) − 1

D−2 θnab and ωab = B[ab]. It is noteworthy that even
though we have the same notations for Bab, θ, σab and ωab in (45) and (63), the differences of
these notations among the time-like sting cases and null string cases are understood in the
context. Similarly, we decompose B̄ab into three parts as in the time-like case.

4.2 Expansion of null stringy congruence
Taking the ansatz that the expansion θ̄ is constant along the σ-direction as in the time-like case,
we have another Raychaudhuri type equation

dθ

dλ
= − 1

D − 2
θ2 +

1
D − 1

θ̄2 − σabσab + σ̄abσ̄ab

+ωabωab − ω̄abω̄ab − Rab(k
akb − ζaζb). (64)

Assuming ωab = ω̄ab, σab = σ̄ab and a stringy strong energy condition for null case Rab(kakb −
ζaζb) ≥ 0 and exploiting the energy-momentum tensor of the perfect fluid, we reproduce the
inequality (57) in the time-like congruence of strings. The Raychaudhuri type equation (64)
for the null strings then has a solution in the following form:

1
θ
≥ 1

θ0
+

1
D − 2

(
λ − D − 2

D − 1

∫ λ

0
dλ

(
θ̄

θ

)2
)

, (65)

where θ0 is the initial value of θ at λ = 0. We assume again that θ0 is negative. The inequality
(65) then implies that θ must pass through the singularity within an affine length

λ ≤ D − 2
|θ0| +

D − 2
D − 1

∫ λ

0
dλ

(
θ̄

θ

)2

. (66)

In the point particle limit with B̄ab = θ̄ = σ̄ab = ω̄ab = 0 and ωab = 0, we assume that the
strong energy condition Rabkakb ≥ 0 is satisfied to yield the second inequality of (58) Carroll
(2004); Hawking & Penrose (1970); Wald (1984). If we assume that the initial value is negative,
the expansion θ must go to the negative infinity along that geodesic within a finite affine
length Hawking & Penrose (1970).

5. Jacobi fields in geodesic surface congruence

5.1 Geodesic surface deviation equation
In this subsection, we consider a fiber bundle π : M → X over a spacetime four-manifold X
with a Calabi-Yau manifold as a fiber space. Let M be a n-dimensional manifold with a metric
gab. The action for a string is proportional to the area of the surface spanned in the total space
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M by the evolution along the time direction of the string in F. We parametrize the surface
generated by a closed string by two world sheet coordinates τ and σ, and then we have the
corresponding vector fields ξa = ( ∂

∂τ )
a and ζa = ( ∂

∂σ )
a. The Nambu-Goto string action is

given by Goto (1971); Nambu (1970)

S = −
∫ ∫

dτdσ f (τ, σ) (67)

where 0 ≤ τ ≤ T and 0 ≤ σ ≤ 2π, and f (τ, σ) = [(ξ, ξ)2 − (ξ, ξ)(ζ, ζ)]1/2.

We perform a variation of the surfaces γa(τ, σ) traced by the closed string during its
evaluation to find the geodesic surface equation by the least action principle. Let the vector
field ηa = ( ∂

∂α )
a

be the deviation vector field. Since we have gauge degrees of freedom, we
can choose the orthonormal gauge ξ · ζ = 0 and ξ · ξ + ζ · ζ = 0. The first variation is

ds
dα

=
∫ ∫

dτdσ ηb(−ξa∇aξb + ζa∇aζb), (68)

where we use the endpoint condition ηa(0) = ηa(τ) = 0 and periodic condition ηa(σ+ 2π) =

ηa(σ). In Cho & Hong (2007) we have the geodesic surface equation.

− ξa∇aξb + ζa∇aζb = 0 (69)

When ds
dα |α=0 = 0, then the second variation is given by

d2S
dα2

∣∣∣∣
α=0

= −
∫ ∫

dτdσ[
d2ηi

dτ2 + (Rτjτ
i − Rσ jσ

i)]ηi. (70)

We have the geodesic surface deviation equation in Cho & Hong (2007)

d2ηi

dτ2 + (Rτjτ
i − Rσ jσ

i)ηi = 0. (71)

In Cho & Hong (2007), locally γ minimizes the Nambu-Goto string action if and only if γ is a

geodesic surface with no string conjugate to p = γ(0, σ) between γ(0, σ) = p and q = γ(τ, σ).

5.2 Singularity in geodesic surface congruence
In the orthogonal gauge, we introduce two tensor fields :

Bab = ∇bξa, B̄ab = ∇bζa. (72)

Define the metrics hab = gab + ξaξb and h̄ab = gab − ζaζb. Let Bab split Bab into three

pieces Hawking & Penrose (1970); Wald (1984)

Bab =
1

n − 1
θhab + σab + ωab, (73)
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where the expansion, shear, and twist of the stringy congruence along the time direction are
defined as θ = Babhab, σab = B(ab) − 1

n−1 θhab and ωab = B[a,b]. Similarly, we split

B̄ab =
1

n − 1
θ̄, h̄ab + σ̄ab + ω̄ab, (74)

where θ̄ = B̄ab h̄ab, σ̄ab = B̄(ab) − 1
n−1 θ̄ h̄ab and ω̄ab = B̄[a,b].

Taking an ansatz that the expansion θ̄ is constant along the σ-direction, we have a
Raychaudhuri-type equation

dθ

dτ
=

1
n − 1

(θ2 − θ̄2)− σabσab + σ̄abσ̄ab + ωabωab − ω̄abω̄ab − Rab(ξ
aξb − ζaζb). (75)

In Cho & Hong (2008), assuming that ωab = ω̄ab, σab = σ̄ab and a stringy strong energy
condition Rab(ξ

aξb − ζaζb) ≥ 0, we have

1
θ
≥ 1

θ0
+

1
n − 1

(
τ −

∫ τ

0
dτ

(
θ̄

θ

)2
)

, (76)

where θ0 = θ(0) is the initial value. If θ0 < 0 so that the congruence is initially converging,
then θ must be pass through the singular point within a proper time

τ ≤ n − 1
|θ0| +

∫ τ

0
dτ

(
θ̄

θ

)2

. (77)

5.3 Jacobi fields along geodesic surfaces
An n-dimensional manifold M is said to be conformally symmetric if there is a smooth map
λ : M → R and for parallel vector fields U, V and W along a curve γ is M there is a parallel
vector field X along γ such that the curvature tensor

R(U, V)W = λX. (78)

For instance, locally symmetric manifolds or symmetric manifolds are conformally
symmetric Green et al. (1987); Milnor (1963). From now on we assume that M is conformally
symmetric. Let γα(τ, σ) be a variation of geodesic surfaces with the corresponding vector
fields ξ = ∂

∂τ , ζ = ∂
∂σ and the deviation vector field η = ∂

∂α . Then the geodesic surface
deviation equation for the Nambu-Goto string action yields

d2η

dτ2 + [R(ξ, η)ξ − R(ζ, η)ζ] = 0 (79)

where we can construct the variation vectors η(τ) as vectors associated with the centers of
the string of the two nearby geodesic surfaces at the time τ. The solution η of the geodesic
surface deviation equation is called a Jacobi field on the geodesic surface γ0. Let ξ0 be the
time direction velocity vector at the string P = γ0(0, 0), and ζ0 be the string direction velocity
vector at the string γ0(0, 0). We have that the linear transformation

R(ξ, ·)ξ − R(ζ, ·)ζ : Tp M → Tp M (80)

359Singularities and Thermodynamics of Geodesic Surface Congruences



12 Will-be-set-by-IN-TECH
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∫ ∫
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∂α )
a
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dα

=
∫ ∫
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d2S
dα2

∣∣∣∣
α=0

= −
∫ ∫

dτdσ[
d2ηi

dτ2 + (Rτjτ
i − Rσ jσ

i)]ηi. (70)
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dτ2 + (Rτjτ
i − Rσ jσ

i)ηi = 0. (71)
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Bab =
1

n − 1
θhab + σab + ωab, (73)
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1
n − 1
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1
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1
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(
τ −

∫ τ

0
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θ

)2
)
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is self-adjoint. Indeed, for any velocity vectors X and X� in TpX

�R(ξ, X)ξ − R(ζ, X)ζ, X�� = �X, R(ξ, X�)ξ − R(ζ, X�)ζ�. (81)

Let vectors U1, · · · , Un ∈ TpM be an orthonormal basis such that

R(ξ, Ui)ξ − R(ζ, Ui)ζ = λiUi (82)

where λ1, · · · , λn are the eigenvalues of the self-adjoint operator R(ξ, ·)ξ − R(ζ, ·)ζ. Extend
the Ui to vector fields along γ0 by parallel translation. Since M is conformally symmetric,
there are eigenfunctions λi : M → R such that

R(ξ, Ui)ξ − R(ζ, Ui)ζ = λiUi (83)

along the geodesic surface γ0. The Jacobi field along the geodesic surface γ0 may be expressed
uniquely as

η(τ) = η1(τ)U1(τ) + · · · ηn(τ)Un(τ). (84)

Then the geodesic surface deviation equation takes the form

n

∑
i=1

[
d2ηi(τ)

dτ2 + λi(τ)ηi(τ)

]
Ui(τ) = 0. (85)

Since the Ui are every where linearly independent, the equation is equivalent to the system of
n equations

d2ηi(τ)

dτ2 + λi(τ)ηi(τ) = 0, i = 1, · · · , n. (86)

Suppose that τ = 0 is the singular point of the expansion θ so that the congruence of geodesic
surfaces is converging, and that the expansion is constant along the σ-direction. Assume
that λi(τ) = 1

τ , and ηi(τ) := ci0 + ci1τ + ci2τ2 + · · · . Then the system of n geodesic surface
deviation equations

d2ηi(τ)

dτ2 + λi(τ)ηi(τ) = 0. (87)

By the initial condition η(0) = 0, ηi(0) = 0 = ci0 for all i. By the differentiation of ηi(τ) with
respect to τ, we have

dηi(τ)

dτ
= ci1 + 2ci2τ + 3ci3τ2 + · · ·+ ncinτn−1 + · · · . (88)

d2ηi(τ)

dτ
= (2 · 1)ci2 + (3 · 2)ci3τ1 + · · ·+ (n · (n − 1))cinτn−2 + · · · . (89)

By multiplying λi(τ) to ηi(τ),

λi(τ)ηi(τ) = ci1 + ci2τ1 + · · ·+ ci(n−1)τ
n−2 + · · · . (90)

Thus,

(2 · 1) ci2 = −ci1, (3 · 2) ci3 = −ci2, · · · , (n · (n − 1)) cin = −ci(n−1). (91)
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Then by induction we have

cin = − 1
n(n − 1)

ci(n−1) = (−1)n−1 1
n!(n − 1)!

ci1. (92)

Let ci1 = ci. Then the solution

ηi(τ) = ci

∞

∑
n=1

(−1)n−1 1
n!(n − 1)!

τn, i = 1, · · · , n, (93)

where ci is a constant, i = 1, · · · , n.
Suppose that the singularity exists in geodesic surface congruences of the locally symmetric,
spacetime manifold. Then the Jacobi field along geodesic surface γ0 in the geodesic surface
congruence is given by

η(τ) =
n

∑
i=1

ηi(τ)Ui(τ), (94)

where ηi(τ) = ci ∑∞
k=1(−1)k−1 τk

k!(k−1)! , and ci is constant, i = 1, · · · , n.

5.4 Observations
If M is a symmetric manifold and if ξ and ζ are parallel, the Jacobi equation becomes

d2ηi(τ)

dτ2 + λi(τ)ηi(τ) = 0, (95)

where the eigenfunctions λi(τ) of the operator R(ξ, ·)ξ − R(ζ, ·)ζ are independent of τ.

If λi > 0, then ηi(τ) = ci sin(
√

λiτ).

If λi = 0, then ηi(τ) = ciτ.

If λi < 0, then ηi(τ) = ci sinh(
√
|λi|τ). (96)

Thus if λi ≤ 0, ηi(τ) does not vanish except τ = 0.
In our assumption, the eigenfunction λi(τ) = 1

τ is a kind of curvature at time τ. If τ → ∞
then λi(τ) → 0, since the universe is expanding by observation. If τ → 0, then λi(τ) → ∞,
since the point τ = 0 is the singular point which the universe comes into being by Big Bang.
The sum

ηi(τ) = ci

∞

∑
k=1

(−1)k−1 1
k!(k − 1)!

τk (97)

converges absolutely for all τ. Indeed, by the ratio test

lim
k→∞

∣∣∣∣
(−1)k 1

(k+1)!k!τ
k+1

(−1)k−1 1
k!(k−1)!τ

k

∣∣∣∣ = lim
k→∞

|τ|
(k + 1)k

= 0 < 1, for all ø. (98)

We may think topologically our manifold M � [0, τ]× D3(τ)× X � D4(τ)× X where τ is the
time and X is the CY-manifold which is hidden. M is compact and we live in ∂D4(τ) = S3(τ)
which is our visible universe at time τ.
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If λi(τ) =
ai
τ for some constant ai along Ui direction, then the solutions of the Jacobi equations

are

ηi(τ) = ci ∑
n≥1

(−1)n−1 ai
n−1

n!(n − 1)!
τn, i = 1, · · · , n. (99)

The series of the right hand have the radius of convergence ∞.

6. Conclusions

We consider phase transition which is assumed to have happened in the evolution of the
universe around 75,000 years after the Big Bang. Assuming that the early universe was filled
with a perfect fluid consisting of massive particles and/or massless particles and using the
strong energy condition, one could find equations of state for each particle.
Specifically, the equation of state of the massive particle is different from that of the massless
particle, which indicates that the massive particle phase is not the same as the massless particle
one. In the standard cosmology based on the Hawking-Penrose singularity theorem and
inflationary scenario, it is believed that, after the Big Bang explosion, a massless particle (or
radiation) dominated phase occurred followed by a massive particle (or matter) dominated
one, even though there was a hot thermalization period of radiation and matter immediately
after the Big Bang. Moreover, as in the phase transition in water, a phase transition exists
between massive particle and massless particle phases in the universe.
In the above explanations of the Hawking-Penrose singularity theorem and the ensuing
standard cosmology, they assumed that massive and massless particles are point-like. Now
let us discuss stringy cosmology which has been developed recently Cho & Hong (2007)
and is based on the string theory Polchinski (1999). The string theory has given us a
better understanding of the universe and has provided an analytical tool for studying the
nature of the universe. It was proposed in the string theory that massive and massless
particles in the universe can be described by vibrating strings instead of point particles.
As in the standard (point particle) cosmology, using the strong energy condition modified
by stringy corrections, one can find the stringy singularity theorem, which is similar to the
Hawking-Penrose singularity theorem except for the fact that evolution to a singularity occurs
at different spacetime Cho & Hong (2007).
Exploiting the stringy strong energy condition together with the assumption that the early
universe was occupied with a perfect fluid of massive stringy particles and/or massless
stringy particles, one obtains equations of state for each stringy particle. Surprisingly, the
massive stringy particles and massless stringy particles produce the same equation of state.
This implies that both massive stringy particles and massless stringy particles are in the same
phase and thus there is no phase transition in the stringy universe Cho & Hong (2007). Here,
we emphasize that the equations of state obtained from the standard and stringy cosmologies
govern the evolution of the universe, since these equations originate from the initial conditions
of the (stringy) singularity theorems. Immediately after the Big Bang explosion, in the stringy
cosmology, the massless stringy particle dominated phase and the massive stringy particle
dominated phase took place simultaneously. In the stringy universe, a massless-massive
stringy particle mixture state without any phase transitions exists. These features in the
stringy universe are drastically different from those in the standard point particle cosmology.
In fact, these differences originate from the lone fact that the particles are composed of strings
instead of points.
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In the standard cosmology, after the radiation and matter dominated phases a dark energy
dominated phase exists. In this inflationary scenario, a sequence of epoches occurred: Big
Bang, radiation dominated phase, matter dominated phase, and dark energy dominated
phase. In brane cyclic cosmology, which is also based on the string (or D brane)
theory, the universe is assumed to be cyclic in evolution: Big Bang, radiation dominated
phase, matter dominated phase, dark energy dominated phase, Big Crunch, and again Big
Bang Steinhardt & Turok (2002). Moreover, both in the standard and stringy cosmologies
exploiting the (stringy) singularity theorems, there exists an initial state with a negative
expansion rate and the ensuing evolution to the singularity. One can thus claim that the
stringy cosmology is also cyclic, similar to the brane cyclic cosmology, but modified: Big
Bang, radiation-matter mixture phase, dark energy dominated phase, Big Crunch, and again
Big Bang, which is consistent with the fact that both the stringy and brane cyclic cosmologies
share the same characteristics that these scenarios use the string features.
We want to detect the so-called quark-gluon plasma state, which is assumed to exist in an
extremely hot soup of quarks and gluons. Both in the standard and stringy cosmologies, this
quark-gluon plasma state is supposed to occur immediately after the Big Bang of the tiny
early universe manufactured in the Large Hadron Collider. However, there are drastically
different ensuing processes in these two scenarios. Namely, in the standard cosmology, the
quark-gluon plasma state can exist shortly and disappear eventually to enter the radiation
dominated phase, while in the stringy cosmology the quark-gluon plasma state can develop
into particles such as protons and neutrons and sustain the radiation and matter mixture
phase. We recall that as far as radiation and matter are concerned, the mixture of these two
coexists in the present universe. It is expected that the Large Hadron Collider will be able to
detect the procedure of particle states along with the evolution of the tiny universe planned to
occur at the Large Hadron Collider and it will be able to determine which cosmology is viable.
More details are reported in Cho & Hong (2010).
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More details are reported in Cho & Hong (2010).
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1. Introduction

During the early days of quantum mechanics and quantum field theory, continuous
space-time and Lorentz symmetry was considered inappropriate to describe the small scale
structure of the universe. It was also argued that one should introduce a fundamental length
scale, limiting the precision of position measurements. The introduction of fundamental
length is suggested to cure the ultraviolet divergencies occurring in quantum field theory. H.
Snyder was the first to formulate these ideas mathematically (1), introducing noncommutative
coordinates brings an uncertainty in the position. The success of the renormalisation made
people forget about these ideas for some time. But when the quantization of gravity was
considered thoroughly, it became clear that the usual concepts of space-time are inadequate
and that spacetime has to be quantised or noncommutative, in some way. Quantum
cosmology, is a simplified approach to the study of the very early universe, which means
that the gravitational and matter variables have been reduced to a finite number of degrees of
freedom (these models were extensively studied by means of Hamiltonian methods in the
1970’s, (for reviews see (2; 3)); for homogenous cosmological models the metric depends
only on time, this permits to integrate the space dependence and obtain a model with a
finite dimensional configuration space, minisuperspace, whose variables are the 3-metric
components. One way to extract useful dynamical information is through a WKB type
method. The semiclassical or WKB approximations are usually discussed in text books on
nonrelativistic quantum mechanics in the context of stationary states, i.e., determination of
the energy eigenvalues and eigenfunctions (4). This approximation can also be used to
obtain approximate and in some cases exact solutions of the dynamical problem, i.e., full
Schroedinger equation, so the utility of the semiclassical approximation in obtaining exact
solutions of the Schroedinger equation has not yet fully explored.
The same seems to be the case for the relativistic quantum mechanics. The importance
of the semiclassical approximation in the relativistic case is probably best appreciated in
quantum cosmology (5), specifically, in the analysis of the Wheeler-DeWitt equation, which
is essentially a Klein-Gordon equation on the minisuperspace (6). In the last few years
there have been several attempts to study the possible effects of noncommutativity in the
classical cosmological scenario (7–9). The proposal of authors in Ref 9 introduces the effects
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there have been several attempts to study the possible effects of noncommutativity in the
classical cosmological scenario (7–9). The proposal of authors in Ref 9 introduces the effects
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of noncommutativity at the quantum level, namely quantum cosmology, by deforming
the minisuperspace through a Moyal deformation of the Wheeler-DeWitt (WDW) equation,
similar to noncommutative quantum mechanics (10). The aim of this chapter is to introduce
a deformation in the minisuperscpace variables through the Moyal product of the Wheeler
DeWitt equation and apply a WKB type method to noncommutative quantum cosmology,
and find the noncommutative classical solutions, avoiding in this way the difficult task to
solve this cosmological models in the complicated framework of noncommutative gravity
(11). We know how to introduce noncommutativity at a quantum level, by taking into account
the changes that the Moyal product of functions induces on the quantum equation, and
from there calculate the effects of noncommutativity at the classical level. This also has the
advantage that for some noncommutative models for which the quantum solutions can not
be found, the noncommutative classical solutions arise very easily from this formulation. This
procedure is presented through many examples: first the Kanstowski-Sachs (KS) cosmological
model is presented and the formalism developed in this model, is the applied to the
Friedmann-Robertson-Walker (FRW) universe coupled to a scalar field and cosmological
constant, besides we show the noncommutative proposal applied to a stringy model and the
Bianchi I with Baratropic perfect fluid and Λ cosmological.

2. Cosmology

We start by reviewing the quantum cosmological models in which we are interested, and find
the classical evolution through the WKB-type approximation.

2.1 Kantowski-Sachs (KS) Cosmology
The first example that we are interested because the simplest anisotropic, is the KS universe,
part of the interest in this universe model is due to the wide set of analitycal solutions it
admits, even if particular types of matter are coupled to gravity.
The Kanstowski-Sachs line element (12) is

ds2 = −N2dt2 + e2
√

3βdr2 + e−2
√

3βe−2
√

3Ω (
dθ2 + sin2 θdϕ2) . (1)

from the general relativity lagrangian we can construct the canonical momenta,

ΠΩ = − 12
N

e−
√

3β−2
√

3ΩΩ̇

Πβ =
12
N

e−
√

3β−2
√

3Ω β̇, (2)

and the corresponding Hamiltonian

H =
N
24

e−
√

3β−2
√

3Ω
[
−Π2

Ω + Π2
β + 48e−2

√
3Ω

]
, (3)

for this model we can use canonical quantization and obtain the Wheeler-DeWitt (WDW)
equation. Using the usual identifications ΠΩ = −i ∂

∂Ω and Πβ = −i ∂
∂β we get

[
∂2

∂Ω2 − ∂2

∂β2 − 48e−2
√

3Ω
]

ψ(Ω, β) = 0, (4)
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in this parametrization the WDW equation has very simple form; the solutions to this equation
are given by

ψ = e±iν
√

3βKiν

�
4e−

√
3Ω

�
, (5)

where ν is the separation constant and Kiv are the modified Bessel functions. We now proceed
to apply the WKB method. For this we propose the wave function

Ψ(β, Ω) = ei(S1(β)+S2(Ω)), (6)

the WKB approximation is reached in the limit
�����
∂S2

1(β)

∂β2

����� <<

�
∂S1(β)

∂β

�2
�����
∂S2

2(Ω)

∂Ω2

����� <<

�
∂S2(Ω)

∂Ω

�2
(7)

this gives the Einstein-Hamilton-Jacobi (EHJ) equation

−
�

∂S2(Ω)

∂Ω

�2
+

�
∂S1(β)

∂β

�2
− 48e−2

√
3Ω = 0, (8)

solving (equation 8) gives the functions S1, S2 and using the definition for the momenta

Πβ =
dS1(β)

dβ
, ΠΩ =

dS2(Ω)

dΩ
, (9)

which combined with (equation 2) and fixing the value of N(t) = 24e−
√

3β−2
√

3Ω we find

S1(β) = Pβ0 β,

S2(ω) = − 1√
3

�
P2

β0
− 48e−2

√
3Ω +

Pβ0√
3

arctanh

⎡
⎣
�

P2
β0

− 48e−2
√

3Ω

Pβ0

⎤
⎦ , (10)

from this solutions and using (equation 2) and (equation 9) we obtain the classical solutions

Ω(t) =
1

2
√

3
ln

�
48
P2

β0

cosh2
�

2
√

3Pβ0 (t − t0)
��

,

β(t) = β0 + 2Pβ0 (t − t0), (11)

this solutions are the same that solving the field equations of General Relativity.

2.2 Friedmann-Robertson-Walker (FRW) Cosmology with scalar field and Λ
The next set of examples correspond to homogeneous and isotropic Universes, the so called
Friedmann-Robertson-Walker (FRW) universe coupled to a scalar field and cosmological
constant. The FRW metric is given by

ds2 = −N2(t)dt2 + e2α(t)
�

dr2

1 − kr2 + r2(dϑ2 + sin2ϑdϕ2)

�
, (12)

where a(t) = eα(t) is the scale factor, N(t) is the lapse function, and k is the curvature
constant that takes the values 0,+1,−1, which correspond to a flat, closed and open universes,
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respectively. The Lagrangian we are to work on, is composed by the gravity sector and the
matter sector, which for the FRW universe endowed with a scalar field and cosmological
constant Λ is

Ltot = Lg + Lφ = e3α

[
6

α̇2

N
− 1

2
φ̇2

N
− N

(
2Λ + 6ke−2α

)]
, (13)

the corresponding canonical momenta are

Πα =
∂L
∂α̇

= 12e3α α̇

N
, Πφ =

∂L
∂φ̇

− e3α φ̇

N
, (14)

proceeding as before the WDW equation is obtained from the classical Hamiltonian. By the
variation of (equation 13) with respect to N, ∂L/∂N = 0, implies the well-known resultH = 0.

e−3α N
[
− 1

24
∂2

∂α2 +
1
2

∂2

∂φ2 + e6α
(

2Λ + 6ke−2α
)]

Ψ(α, φ) = 0. (15)

Now that we have the complete framework and the corresponding WDW equation, we can
proceed to study different cases.
In table 1 we can see the different cases that we solved1, all of them are calculated by using the
WKB type procedure, the classical solutions are the same we would get by solving Einstein’s
field equations. We can expect that this approximation includes all the gravitational degrees
of freedom of the particular cosmological model under study. This almost trivial observation
is central to the ideas we are presenting in the next section.

2.3 Stringy Quantum Cosmology
In the case of strings, this example is related to the graceful exit of pre-big bang cosmology
(13), this model is based on the gravi-dilaton effective action in 3+1 dimensions

S = −λs

2

∫
d4x

√−ge−φ(R + ∂μφ∂νφ + V), (16)

in this expression λs is the fundamental string length, φ is the dilaton field with V the possible
dilaton potential. Working with an isotropic background, and setting a(t) = eβ(t)/

√
3, after

integrating by parts, we get

S = −λs

2

∫
dτ

(
φ̄�2 − β�2 + Ve−2φ̄

)
, (17)

we have used the time parametrization2 dt = e−φ̄dτ, the gauge g00 = 1, and defined φ̄ =

φ − ln
∫ (

d3 x
λ3

s

)
−√

3β. From this action we calculate the canonical momenta, Πβ = λsβ� and

Πφ̄ = −λsφ̄�. From the classical hamiltonian we find the WDW equation

[
∂2

∂φ̄2 − ∂2

∂β2 + λ2
s V(φ̄, β)e−2φ̄

]
Ψ(φ̄, β) = 0, (18)

1 The case k �= 0, Λ �= 0 does not have a closed analytical solution to the WDW equation.
2 The prime denotes differentiation respect to τ.
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case Quantum Solution Classical Solution

k=0, Λ �= 0 ψ = e±iν
√

3
2 φKiν

(
4
√

Λ
3 e3α

)
φ(t) = φ0 − Pφ0 t,

and Jν for Λ < 0 α(t) = 1
6 ln

(
P2

φ0
4Λ

)

+ 1
3 ln

(
sech

[√
3

2 Pφ0(t − t0)
])

,

k �=0, Λ = 0 ψ(1) = e±i ν√
3

φKiν
(
6e2α

)
φ(t) = φ0 − Pφ0(t − t0),

for k = 1,

ψ(2) = e±i ν√
3

φ Jν
(
6e2α

)
α(t) = 1

4 ln
[

P2
φ0

12k

]

for k = −1 + 1
2 ln

(
sech

[
1√
3

Pφ0(t − t0)
])

,

k �=0, Λ �= 0 Unknown φ(t) = φ0 − Pφ0(t − t0),

∫ dα(t)√
Pφ0−2e6α(2Λ+6ke−2α)

= 1√
12
(t − t0),

Table 1. Classical and quantum solutions for the FRW universe coupled to a scalar field φ.
For the case Λ �= 0 k �= 0, the classical solution for the scale factor is given in an implicit
expression. We have fixed the lapse function to N(t) = e3α.

in particular for a potential of the form V(φ̄) = −V0emφ̄, the quantum solution is

Ψ(φ̄, β) = e±−i m−2
2 νβKiν

[
2λs

√
V0

m − 2
e(

m−2
2 )φ̄

]
. (19)

The classical solutions for the scale factor and the dilaton are

φ̄(τ) =
1

m − 2
ln

[
P2

β0

V0λ2
s

sech2
( Pβ0

2λs
(m − 2)(τ − τ0)

)]
,

β(τ) = β0 +
Pβ

λs
(τ − τ0), (20)

for m = 0 and m = 4, the solutions have been obtained in (13), and are used in connection to
the graceful exit from pre-big bang cosmology in quantum string.

2.4 Isotropization in Bianchi I with barotropic perfect fluid and Λ Cosmological
In our final example let us begin by recalling canonical formulation of the ADM formalism to
the diagonal Bianchi Class A cosmological models. The metrics have the form

ds2 = −(N2 − Nj Nj)dt2 + e2Ω(t)e2βij(t) ωiω j, (21)

where N and Ni are the lapse and shift functions, respectively, Ω(t) is a scalar and βij(t)
a 3x3 diagonal matrix, βij = diag(β+ +

√
3β−, β+ − √

3β−,−2β+), ωi are one-forms that
characterize each cosmological Bianchi type model, and that obey dωi = 1

2 Ci
jkω j ∧ ωk, Ci

jk the
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, (14)

proceeding as before the WDW equation is obtained from the classical Hamiltonian. By the
variation of (equation 13) with respect to N, ∂L/∂N = 0, implies the well-known resultH = 0.

e−3α N
[
− 1

24
∂2

∂α2 +
1
2

∂2

∂φ2 + e6α
(

2Λ + 6ke−2α
)]

Ψ(α, φ) = 0. (15)

Now that we have the complete framework and the corresponding WDW equation, we can
proceed to study different cases.
In table 1 we can see the different cases that we solved1, all of them are calculated by using the
WKB type procedure, the classical solutions are the same we would get by solving Einstein’s
field equations. We can expect that this approximation includes all the gravitational degrees
of freedom of the particular cosmological model under study. This almost trivial observation
is central to the ideas we are presenting in the next section.

2.3 Stringy Quantum Cosmology
In the case of strings, this example is related to the graceful exit of pre-big bang cosmology
(13), this model is based on the gravi-dilaton effective action in 3+1 dimensions

S = −λs

2

∫
d4x

√−ge−φ(R + ∂μφ∂νφ + V), (16)

in this expression λs is the fundamental string length, φ is the dilaton field with V the possible
dilaton potential. Working with an isotropic background, and setting a(t) = eβ(t)/

√
3, after

integrating by parts, we get

S = −λs

2

∫
dτ

(
φ̄�2 − β�2 + Ve−2φ̄

)
, (17)

we have used the time parametrization2 dt = e−φ̄dτ, the gauge g00 = 1, and defined φ̄ =

φ − ln
∫ (

d3 x
λ3

s

)
−√

3β. From this action we calculate the canonical momenta, Πβ = λsβ� and

Πφ̄ = −λsφ̄�. From the classical hamiltonian we find the WDW equation

[
∂2

∂φ̄2 − ∂2

∂β2 + λ2
s V(φ̄, β)e−2φ̄

]
Ψ(φ̄, β) = 0, (18)

1 The case k �= 0, Λ �= 0 does not have a closed analytical solution to the WDW equation.
2 The prime denotes differentiation respect to τ.
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case Quantum Solution Classical Solution

k=0, Λ �= 0 ψ = e±iν
√

3
2 φKiν

(
4
√

Λ
3 e3α

)
φ(t) = φ0 − Pφ0 t,

and Jν for Λ < 0 α(t) = 1
6 ln

(
P2

φ0
4Λ

)

+ 1
3 ln

(
sech

[√
3

2 Pφ0(t − t0)
])

,

k �=0, Λ = 0 ψ(1) = e±i ν√
3

φKiν
(
6e2α

)
φ(t) = φ0 − Pφ0(t − t0),

for k = 1,

ψ(2) = e±i ν√
3

φ Jν
(
6e2α

)
α(t) = 1

4 ln
[

P2
φ0

12k

]

for k = −1 + 1
2 ln

(
sech

[
1√
3

Pφ0(t − t0)
])

,

k �=0, Λ �= 0 Unknown φ(t) = φ0 − Pφ0(t − t0),

∫ dα(t)√
Pφ0−2e6α(2Λ+6ke−2α)

= 1√
12
(t − t0),

Table 1. Classical and quantum solutions for the FRW universe coupled to a scalar field φ.
For the case Λ �= 0 k �= 0, the classical solution for the scale factor is given in an implicit
expression. We have fixed the lapse function to N(t) = e3α.

in particular for a potential of the form V(φ̄) = −V0emφ̄, the quantum solution is

Ψ(φ̄, β) = e±−i m−2
2 νβKiν

[
2λs

√
V0

m − 2
e(

m−2
2 )φ̄

]
. (19)

The classical solutions for the scale factor and the dilaton are

φ̄(τ) =
1

m − 2
ln

[
P2

β0

V0λ2
s

sech2
( Pβ0

2λs
(m − 2)(τ − τ0)

)]
,

β(τ) = β0 +
Pβ

λs
(τ − τ0), (20)

for m = 0 and m = 4, the solutions have been obtained in (13), and are used in connection to
the graceful exit from pre-big bang cosmology in quantum string.

2.4 Isotropization in Bianchi I with barotropic perfect fluid and Λ Cosmological
In our final example let us begin by recalling canonical formulation of the ADM formalism to
the diagonal Bianchi Class A cosmological models. The metrics have the form

ds2 = −(N2 − Nj Nj)dt2 + e2Ω(t)e2βij(t) ωiω j, (21)

where N and Ni are the lapse and shift functions, respectively, Ω(t) is a scalar and βij(t)
a 3x3 diagonal matrix, βij = diag(β+ +

√
3β−, β+ − √

3β−,−2β+), ωi are one-forms that
characterize each cosmological Bianchi type model, and that obey dωi = 1

2 Ci
jkω j ∧ ωk, Ci

jk the
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structure constants of the corresponding invariance group (8). The metric for the Bianchi type
I, takes the form

ds2
I = −N2dt2 + e2Ωe2β++2

√
3β−dx2 + e2Ωe2β+−2

√
3β− dy2 + e2Ωe−4β+dz2, (22)

The corresponding lagrangian density is

LTotal =
√−g (R − 2Λ) + Lmatter, (23)

and using (equation 22), this have the following form

L = 6e3Ω

[
− Ω̇2

N
+

β̇2
+

N
+

β̇2−
N

− Λ
3

N +
8
3

πGNρ

]
. (24)

where the overdot denotes time derivatives. The canonical momentas to coordinate fields are
defined in the usual way

PΩ =
∂L
∂Ω̇

= −12e3Ω Ω̇
N

, P+ =
∂L

∂β̇+
= 12e3Ω β̇+

N
, P− =

∂L
∂β̇−

= 12e3Ω β̇−
N

, (25)

and the correspondent Hamiltonian function is

H =
Ne−3Ω

24

[
−P2

Ω + P2
+ + P2− − 48Λe6Ω + 384πGMγe−3(γ−1)Ω

]
= 0, (26)

together with barotropic state equation p = γρ, the Hamilton-Jacobi equation is obtained
when we substitute Pqμ → dSi

dqμ into (equation 26). In what follows, we should consider the
gauge N = 1.

2.4.1 Classical Solutions á la WKB
The quantum Wheeler-DeWitt (WDW) equation for these models is obtained by making the
canonical quantization Pqμ by −i∂qμ in (equation 26) with qμ = (Ω, β+ , β−) is

e−3Ω

24

[
∂2

∂Ω2 − ∂2

∂β2
+

− ∂2

∂β2−
− λe6Ω + bγe−3(γ−1)Ω

]
Ψ = 0. (27)

where λ = 48Λ, bγ = 384πGMγ. We now proceed to apply the WKB semiclassical
approximation using the ansatz

Ψ (Ω, β±) = ei[S1(Ω)+S2(β+)+S3(β−)], (28)

into (equation 27), and without any loss of generality, one can consider the condition d2Si
dq2

i
be

small i.e.,

( dS1
dΩ

)2
>>

d2S1

dΩ2 ,
( dS2

dβ2
+

)2
>>

d2S2

dβ2
+

,
( dS2

dβ2−

)2
>>

d2S2

dβ2−
, (29)

to get the classical Einstein-Hamilton-Jacobi equation

−
( dS1

dΩ

)2
+

( dS2
dβ+

)2
+

( dS3
dβ−

)2 − λe6Ω + be−3(γ−1)Ω = 0, (30)
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which can be separate in a set of differential equations

−
( dS1

dΩ

)2
+ a2

1 − λe6Ω + be−3(γ−1)Ω = 0, (31)
( dS2

dβ+

)2
= n2

1, (32)

( dS3
dβ−

)2
= p2

1, (33)

where a2
1, n2

1 and p2
1 are the separation constants and their relations is a2

1 = n2
1 + p2

1. Therefore
using the relations between (equation 25), (equation 31), (equation 32) and (equation 33) we
have the following equations of motion

±
√

a2
1 − λe6Ω + bγe−3(γ−1)Ω ≡ −12e3Ω Ω̇

N
, (34)

±n1 ≡ 12e3Ω β̇+

N
, (35)

±p1 ≡ 12e3Ω β̇−
N

. (36)

The main master equation to solved in the gauge N = 1, is

dt
12

=
dΩ√

a2
1e−6Ω + bγe−3(γ+1)Ω − λ

, (37)

the other two equations (equation 35) and (equation 36) are trivially integrable. For particular
stadium of the universe evolution, given by the γ parameter, we present these classical
solutions in table 2.

2.4.2 Classical solutions via Hamiltonian formalism
In order to find the commutative equation of motion, we use the classical phase space
variables (Ω, β±), where the Poisson algebra for these minisuperspace variables are

{Ω, β±} = {β+ , β−} = {PΩ, P±} = {P+, P−} = 0,
{

qμ, Pqμ

}
= 1, (38)

and recalling the Hamiltonian (equation 26), we obtain the classical solutions with the
following procedure.
The classical equations of motion for the phase variables Ω, β± , P±, and PΩ are

Ω̇ = {Ω, H} = − 1
12

e−3ΩPΩ, (39)

˙β− = {β−, H} =
1
12

e−3ΩP−, (40)

˙β+ = {β+, H} =
1
12

e−3ΩP+, (41)

ṖΩ = {PΩ, H} =
1
8

e−3Ω
[
−P2

Ω + P2− + P2
+ + λe6Ω + γbγe−3(γ−1)Ω

]
, (42)

Ṗ− = {P−, H} = 0, → P− = ±p1 = const. (43)

Ṗ+ = {P+, H} = 0, → P+ = ±n1 = const. (44)
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=
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, (37)
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In order to find the commutative equation of motion, we use the classical phase space
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ṖΩ = {PΩ, H} =
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Case Commutative solutions

γ = −1, Λ �= 0, ρ−1 = M−1 Ω = 1
3 Ln

[
e2qt−4a2

1
16qeqt

]
, q2 = 24πGM−1 − 3Λ,

β+ = ± 2
3

n1
a1

arctanh
[

eqt

2a1

]
, a2

1 = n2
1 + p2

1,

β− = ± 2
3

p1
a1

arctanh
[

eqt

2a1

]
.

γ = 1, Λ < 0, ρ1 = M1e−6Ω Ω = 1
3 Ln

[
e2qt−4a2

1
16qeqt

]
, q =

√
3|Λ|,

β+ = ± 2
3

n1
a1

arctanh
[

eqt

2a1

]
, a2

1 = n2
1 + p2

1 + 384πGM1,

β− = ± 2
3

p1
a1

arctanh
[

eqt

2a1

]
.

γ = 1, Λ = 0, ρ1 = M1e−6Ω Ω = 1
3 Ln [ a1

4 t], a2
1 = n2

1 + p2
1 + 384πGM1,

β+ = ±Ln [t−
n1
3a1 ],

β− = ±Ln [t−
p1

3a1 ].

γ = 0, Λ = 0, ρ0 = M0e−3Ω Ω = 1
3 Ln

[
b0t2

64 + a1t
4

]
, b0 = 384πGM0,

β+ = ± n1
3a1

Ln
[

16a1+b0t
t

]
, a2

1 = n2
1 + p2

1,

β− = ± p1
3a1

Ln
[

16a1+b0t
t

]
.

Table 2. Classical Solutions for γ = −1, 1, 0, and constraints q, a1 and b0.

Introducing (equation 26) into (equation 42), we have

8e−3ΩṖΩ = 2λ + (γ − 1)bγe−3(γ+1)Ω, (45)

which can be integrate to obtain the relation for PΩ

PΩ = ±
√

a2
1 − λe6Ω + bγe−3(γ−1)Ω, (46)

where a2
1 = n2

1 + p2
1.

The set of equations (equation 39), (equation 40) and (equation 41) are equivalents to the set of
equations (equation 34), (equation 35) and (equation 36), equations used to obtain the classical
solutions.
Just to remark, the solutions obtained with the Hamiltonian formalism and the WKB-like
procedure are equivalent to solving GR field equations.

3. Noncommutative Quantum Cosmology

There is a huge interest to noncommutative theories to explain the appropriate modification
of Classical General Relativity, and hence of spacetime symmetries at short-distance scales,
that implies modifications at large scales. General Quantum Mechanics arguments indicate
that, it is not possible to measure a classical background spacetime at the Planck scale, due
to the effects of gravitational backreaction (14). It is therefore tempting to incorporate the
dynamical features of spacetime at deeper kinematical level using the standard techniques of
noncommutative classical field theory based in the so called Moyal product in which for all
calculations purposes (differentiation, integration, etc.) the space time coordinates are treated
as ordinary (commutative) variables and noncommutativity enters into play in the way in
which fields are multiplied (16). Using a deformation in the minisuperspace of this space
variables in the Hamilton approach, as we are trying with the idea of noncommutative space
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time, we propose that the minisuperspace variables do not commute, for that purpose we will
modified the Poisson structure, this approach does not modify the hamiltonian structure in
the noncommutative fields.
Finding the classical cosmological solutions for any cosmological model in noncommutative
gravity (5) is a very difficult task, this is a consequence of the highly nonlinear character of the
theory. To avoid these difficulties, we will follow the original proposals of noncommutative
quantum cosmology that was developed in (12). We start by presenting, in quite a general
form the construction of noncommutative quantum cosmology and the WKB type method to
calculate the classical evolution.
Let us start with a generic form for the commutative WDW equation, this is defined in the
minisuperspace variables x, y. As mentioned in (12) a noncommutative deformation of the
minisuperspace variables is assumed

[x, y] = iθ, (47)

this noncommutativity can be formulated in terms of noncommutative minisuperspace
functions with the Moyal product of functions

f (x, y) � g(x, y) = f (x, y)e
i θ

2

(←−
∂x

−→
∂y −←−

∂y
−→
∂x

)
g(x, y). (48)

Then the noncommutative WDW equation can be written as
(
−Π2

x + Π2
y − V(x, y)

)
� Ψ(x, y) = 0, (49)

we know from noncommutative quantum mechanics, that the symplectic structure is
modified changing the commutator algebra. It is possible to return to the original
commutative variables and usual commutation relations if we introduce the following change
of variables

x → x +
θ

2
Πy and y → y − θ

2
Πx, (50)

the efects of the Moyal star product are reflected in the WDW equation, only through the
potential

V(x, y) � Ψ(x, y) = V(x +
θ

2
Πy, y − θ

2
Πx), (51)

taking this into account and using the usual substitutions Πqμ=−i∂qμ we arrive to

[
∂2

∂x2 − ∂2

∂y2 − V
(

x − i
θ

2
∂

∂y
, y + i

θ

2
∂

∂x

)]
Ψ(x, y) = 0, (52)

this is the Noncommutative WDW equation (NCWDW) and its solutions give the quantum
description of the noncommutative universe. We can use the NCWDW to find the temporal
evolution of our noncommutative cosmology by a WKB type procedure.

3.1 Noncommutative Kantowski-Sachs Cosmology
Using the method outlined and using (equation 4) we find the NCWDW equation

[
∂2

∂Ω2 − ∂2

∂β2 − 48e
−2

√
3
(

Ω−i θ
2

∂
∂β

)]
ψ(Ω, β) = 0, (53)
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variables in the Hamilton approach, as we are trying with the idea of noncommutative space
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time, we propose that the minisuperspace variables do not commute, for that purpose we will
modified the Poisson structure, this approach does not modify the hamiltonian structure in
the noncommutative fields.
Finding the classical cosmological solutions for any cosmological model in noncommutative
gravity (5) is a very difficult task, this is a consequence of the highly nonlinear character of the
theory. To avoid these difficulties, we will follow the original proposals of noncommutative
quantum cosmology that was developed in (12). We start by presenting, in quite a general
form the construction of noncommutative quantum cosmology and the WKB type method to
calculate the classical evolution.
Let us start with a generic form for the commutative WDW equation, this is defined in the
minisuperspace variables x, y. As mentioned in (12) a noncommutative deformation of the
minisuperspace variables is assumed

[x, y] = iθ, (47)

this noncommutativity can be formulated in terms of noncommutative minisuperspace
functions with the Moyal product of functions

f (x, y) � g(x, y) = f (x, y)e
i θ

2

(←−
∂x

−→
∂y −←−

∂y
−→
∂x

)
g(x, y). (48)

Then the noncommutative WDW equation can be written as
(
−Π2

x + Π2
y − V(x, y)

)
� Ψ(x, y) = 0, (49)

we know from noncommutative quantum mechanics, that the symplectic structure is
modified changing the commutator algebra. It is possible to return to the original
commutative variables and usual commutation relations if we introduce the following change
of variables

x → x +
θ

2
Πy and y → y − θ

2
Πx, (50)

the efects of the Moyal star product are reflected in the WDW equation, only through the
potential

V(x, y) � Ψ(x, y) = V(x +
θ

2
Πy, y − θ

2
Πx), (51)

taking this into account and using the usual substitutions Πqμ=−i∂qμ we arrive to

[
∂2

∂x2 − ∂2

∂y2 − V
(

x − i
θ

2
∂

∂y
, y + i

θ

2
∂

∂x

)]
Ψ(x, y) = 0, (52)

this is the Noncommutative WDW equation (NCWDW) and its solutions give the quantum
description of the noncommutative universe. We can use the NCWDW to find the temporal
evolution of our noncommutative cosmology by a WKB type procedure.

3.1 Noncommutative Kantowski-Sachs Cosmology
Using the method outlined and using (equation 4) we find the NCWDW equation

[
∂2

∂Ω2 − ∂2

∂β2 − 48e
−2

√
3
(

Ω−i θ
2

∂
∂β

)]
ψ(Ω, β) = 0, (53)
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assuming that we can write Ψ(Ω, β) = e
√

3νβX(Ω) the equation for X(Ω) is
�
− d2

dΩ2 + 48e−3iνθe−2
√

3Ω + 3ν2
�

X(Ω) = 0, (54)

then the solutions of the NCWDW equation are

Ψ(Ω, β) = e±i
√

3νβKiν

�
4e−

√
3± 3

2 νθ
�

, (55)

as already mentioned the NCWDW equation has the same problems as its commutative
counterpart, it has no time dependence and unfortunately it can not be normalized. Usually
the next step is to construct a ” Gaussian" wave packet that can be normalized and do the
physics with the new wave function. This is not needed for our purposes, as we will be
applying the WKB method as in the previous section. Using equations (equation 6) and
(equation 7) we arrive at

S1(β) = Pβ0 β,

S2(β) = − 1√
3

�
P2

β0
− 48e−

√
3θPβ0 e−2

√
3Ω

+
Pβ0√

3
arctanh

⎡
⎢⎢⎣

�
P2

β0
− 48e−

√
3θPβ0 e−2

√
3Ω

Pβ0

⎤
⎥⎥⎦ , (56)

using (equation 50) we get

β̇C =
1
2

β − 1
2

ṖΩ, Ω̇C =
1
2

Ω +
1
2

Ṗβ (57)

and the fact that the momenta are not modified we arrive to

Ω(t) =
1

2
√

3
ln

�
48
P2

β0

cosh2
�

2
√

3Pβ0 (t − t0)
��

− 1
2

θPβ0 ,

β(t) = β0 + 2Pβ0 (t − t0)

− θ

2
Pβ0 tanh2

�
2
√

3Pβ0 (t − t0)
�

, (58)

this solutions have already been obtained in (15), in that paper they do a deformation
of the simplectic structure at a classical level, modifying the Poisson brackets, to include
noncommutativity.

3.2 Noncommutative FRW Cosmology with scalar field and Λ
We can use the NCWKB type method to FRW universe coupled to a scalar field. Proceeding
as before the corresponding NCWDW equation is

�
− 1

24
∂2

∂α2 +
1
2

∂2

∂φ2 + e6(α−i θ
2

∂
∂φ )

�
2Λ + 6ke−2(α−i θ

2
∂

∂φ )
��

Ψ = 0. (59)

From the NCWDW equation, we use the method developed in the previous sections and
calculate the classical evolution by appliying the NCWKB type method. These results are
presented in the next table
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case NC Quantum Solution NC Classical Solution

k=0, Λ �= 0 ψ = e±iν
√

3
2 φKiν

[
4
√

Λ
3 e3(α− 3

2 νθ)
]

φ(t) = φ0 − Pφ0 t

−√
3θPφ0 tanh

(√
3

2 Pφ0(t − t0)
)

,

and Jν for Λ < 0 α(t) = θ
2 Pφ0 +

1
6 ln

(
P2

φ0
4Λ

)

+ 1
3 ln

(
sech

[√
3

2 Pφ0(t − t0)
])

,

k �=0, Λ = 0 ψ(1) = e±i ν√
3

φKiν

[
6e2(α− θ

2 ν)
]

for k = 1 φ(t) = φ0 − Pφ0(t − t0)

−√
3θPφ0 tanh

(
Pφ0√

3
(t − t0)

)
,

ψ(2) = e±iν/
√

3φ Jν

[
6e2(α− θ

2 ν)
]
, for k = −1 α(t) = θ

2 Pφ0 +
1
4 ln

[
P2

φ0
12k

]

+ 1
2 ln

(
sech

[
1√
3

Pφ0(t − t0)
])

k �=0, Λ �= 0 Unknown φ(t) = φ0 − Pφ0(t − t0)
+6θ

∫
e6α

(
Λ + 2e−2α

)
dt,∫ dα(t)√

Pφ0−2e6α+3θPφ0
(

2Λ+6ke−2α−θPφ0
)

= 1√
12
(t − t0),

Table 3. Classical and quantum solutions for noncommutative FRW universe coupled to a
scalar field. For these models noncommutativity is introduced in the gravitational and matter
sectors. As in the commutative scenario, for Λ �= 0 and k �= 0 the noncommutative classical
solution is given in an implicit form, and there is not a closed analytical quantum solutions.
As in the commutative case we have fixed the value of the lapse function N(t) = e3α.

3.3 Stringy Noncommutative Quantum Cosmology
As in the previous examples we introduce the noncommutative relation [φ̄, β] = iθ, and from
the classical hamiltonian we find the NCWDW equation

[
∂2

∂φ̄2 − ∂2

∂β2 − λ2
s V(φ̄, β)e(m−2)(φ̄−i θ

2
∂

∂β
)
]

Ψ(φ̄, β) = 0. (60)

The noncommutative wave function is

Ψ(φ̄, β) = e±−i m−2
2 νβKiν

[
2λs

√
V0

m − 2
e(m−2)(φ̄∓ m−2

4 θν)
]

, (61)

using the NCWKB type method the classical solutions for the noncommutative stringy
cosmology are

φ̄(τ) =
1

m − 2
ln

[
P2

β0

V0λ2
s

sech2
(

Pβ0

2λs
(m − 2)(τ − τ0)

)]

− θ

2
Pβ0 ,

β(τ) = β0 +
Pβ

λs
(τ − τ0)

+ θ
Pβ0

2
tanh

[ Pβ0

2λs
(m − 2)(τ − τ0)

]
, (62)
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We can use the NCWKB type method to FRW universe coupled to a scalar field. Proceeding
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2
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From the NCWDW equation, we use the method developed in the previous sections and
calculate the classical evolution by appliying the NCWKB type method. These results are
presented in the next table
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(
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)
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Table 3. Classical and quantum solutions for noncommutative FRW universe coupled to a
scalar field. For these models noncommutativity is introduced in the gravitational and matter
sectors. As in the commutative scenario, for Λ �= 0 and k �= 0 the noncommutative classical
solution is given in an implicit form, and there is not a closed analytical quantum solutions.
As in the commutative case we have fixed the value of the lapse function N(t) = e3α.

3.3 Stringy Noncommutative Quantum Cosmology
As in the previous examples we introduce the noncommutative relation [φ̄, β] = iθ, and from
the classical hamiltonian we find the NCWDW equation

[
∂2

∂φ̄2 − ∂2

∂β2 − λ2
s V(φ̄, β)e(m−2)(φ̄−i θ

2
∂

∂β
)
]

Ψ(φ̄, β) = 0. (60)

The noncommutative wave function is

Ψ(φ̄, β) = e±−i m−2
2 νβKiν

[
2λs

√
V0

m − 2
e(m−2)(φ̄∓ m−2

4 θν)
]

, (61)

using the NCWKB type method the classical solutions for the noncommutative stringy
cosmology are

φ̄(τ) =
1

m − 2
ln

[
P2

β0

V0λ2
s

sech2
(

Pβ0

2λs
(m − 2)(τ − τ0)

)]

− θ

2
Pβ0 ,
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Pβ
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+ θ
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[ Pβ0

2λs
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the classical evolution for string cosmology can be calculated for m = 0 and m = 4. An
interesting issue concerns the B field that is turned off in the string cosmology model (13) and
does not contribute to the effective action. In open string theory, however noncommutativity
arises precisely in the low energy limit of string theory in the presence of a constant B field.
The θ parameter we have introduced in the minisuperspace could then be understood as a
kind of B-field related with the Neveu-Schwarz B-field.

3.4 Noncommutative solutions of the isotropization in Bianchi I with barotropic perfect fluid
and Λ cosmological

Let us begin introducing the noncommutative deformation of the minisuperspace in the
WDW equation, this time, between all the variables of the minisuperspace, assuming that
Ωnc and β±nc obey the commutation relation

[Ωnc, β−nc] = iθ1, [Ωnc, β+nc] = iθ2, [β−nc, β+nc] = iθ3. (63)

Instead of working directly with the physical variables Ω and β± we may achieve all the

above solutions by making use of the auxiliary canonical variables Ωnc and β±nc defined as

Ωnc ≡ Ω − θ1
2

P− − θ2

2
P+, (64)

β−nc ≡ β− +
θ1
2

PΩ − θ3

2
P+, (65)

β+nc ≡ β+ +
θ2

2
PΩ +

θ3

2
P−. (66)

maintaining the usual commutation relations between the fields, i.e., [qμ, qν] = 0 and the
identifications PΩ = PΩnc and P± = P±nc. With this shift and the usual canonical quantization
Pqμ → −i∂qμ , we arrive to the noncommutative WDW equation

[
∂2

∂Ω2
nc

− ∂2

∂β2
+nc

− ∂2

∂β2−nc
− λe6Ωnc + bγe−3(γ−1)Ωnc

]
Ψ(Ω, β±) = 0, (67)

where λ = 48Λ, bγ = 384πGMγ. At this point we have a noncommutative WDW equation
and noncommutative hamiltonian. In what follows, we shall consider a wave function and
apply the WKB procedure to obtain classical solutions.

3.4.1 Noncommutative classical solutions á la WKB
In order to find noncommutative classical solutions through the WKB approximation, we
use the fact that eiθ ∂

∂x eηx ≡ eiηθeηx , and the ansatz for the wavefunction Ψ(Ωnc, β±nc) =

ei[S1(Ωnc)±n1β+nc±p1β−nc], where we use explicitly S2(β+nc) = ±n1β+nc and S3(β−nc) =
±p1β−nc to get the classical noncommutative Einstein-Hamilton-Jacobi (EHJ) equation

−
( dS1

dΩnc

)2
+

( dS2

dβ+nc

)2
+

( dS3

dβ−nc

)2 − λe6Ωnc + be−3(γ−1)Ωnc = 0, (68)

which can be separate in a set of differential equations with m2
1 = n2

1 + p2
1. We have the

376 Aspects of Today´s Cosmology Cosmology: The Noncommutative Quantum
and Classical Cosmology 13

Case Noncommutative Solutions

γ = −1, Λ �= 0, ρ−1 = M−1 Ωnc =
1
3 Ln

[
e2qt−4a2

1
16qeqt

]
− θ1

2 p1 − θ2
2 n1,

a2
1 = n2

1 + p2
1 , β+nc = ± 2

3
n1
a1

arctanh
[

eqt

2a1

]
+ θ2

8

(
eqt

4 + a2
1e−qt

)
− θ3

2 p1,

q2 = 24πGM−1 − 3Λ, β−nc = ± 2
3

p1
a1

arctanh
[

eqt

2a1

]
+ θ1

8

(
eqt

4 + a2
1e−qt

)
+ θ3

2 n1,

γ = 1, Λ < 0, ρ1 = M1e−6Ω Ωnc =
1
3 Ln

[
e2qt−4a2

1
16qeqt

]
− θ1

2 p1 − θ2
2 n1, q =

√
3|Λ|,

a2
1 = n2

1 + p2
1 + 384πGM1, β+nc = ± 2

3
n1
a1

arctanh
[

eqt

2a1

]
+ θ2

8

(
eqt

4 + a2
1e−qt

)
− θ3

2 p1,

β−nc = ± 2
3

p1
a1

arctanh
[

eqt

2a1

]
+ θ1

8

(
eqt

4 + a2
1e−qt

)
+ θ3

2 n1,

γ = 1, Λ = 0, ρ1 = M1e−6Ω Ωnc =
1
3 Ln [ a1

4 t]− θ1
2 p1 − θ2

2 n1,

a2
1 = n2

1 + p2
1 + 384πGM1, β+nc = ±Ln [t−

n1
3a1 ] + θ2

2 a1 − θ3
2 p1,

β−nc = ±Ln [t−
p1

3a1 ] + θ1
2 a1 +

θ3
2 n1,

γ = 0, Λ = 0, ρ0 = M0e−3Ω Ωnc =
1
3 Ln

[
b0t2

64 + a1t
4

]
− θ1

2 p1 − θ2
2 n1,

b0 = 384πGM0, β+nc = ± n1
3a1

Ln
[

16a1+b0t
t

]
+ θ2

2

√
a2

1 +
b0t2

64 + a1t
4 − θ3

2 p1,

a2
1 = n2

1 + p2
1, β−nc = ± p1

3a1
Ln

[
16a1+b0t

t

]
+ θ1

2

√
a2

1 +
b0t2

64 + a1t
4 + θ3

2 n1.

Table 4. Noncommutative solutions for, γ = −1, 1, 0, and constraints q, a1 and b0.

following noncommutative equations of motion

±
√

a2
1 − λe6Ωnc + bγe−3(γ−1)Ωnc ≡ −12e3Ωnc

Ω̇nc

N
, (69)

±n1 ≡ 12e3Ωnc
β̇+nc

N
, (70)

±p1 ≡ 12e3Ωnc
β̇−nc

N
. (71)

One just need to be careful in (equation 69), (equation 70) and (equation 71), and apply the
chain rule to the variables (equation 64), (equation 65) and (equation 66), in order to get the
right solution, β̇−nc =

∂β−
∂t +

∂β−nc
∂PΩ

∂pΩ
∂t +

∂β−nc
∂P+

∂p+

∂t +
∂β−nc
∂P−

∂p−
∂t = β̇− + θ1

2 ṖΩ. In this sense,
all solutions to find in the commutative case, remain for the noncommutative case with the
corresponding shift, as we show in the table 4.

3.4.2 Noncommutative classical solutions á la Hamilton
In the commutative model we know that the solutions to hamiltons equations are the same as
in General Relativity. Now the natural extension is to consider the noncommutative version
of our model, with the idea of noncommutative between the three variables (Ωnc, β±nc), so
we apply a deformation of the Poisson algebra. For this we start with the usual hamiltonian
(equation 26), but the symplectic structure is modify as follow

{PΩ, P±}� = {P+, P−}� = 0,
{

qμ, Pqμ

}
�
= 1, (72)

{Ω, β−}� = θ1, {Ω, β+}� = θ2, {β−, β+}� = θ3. (73)
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the classical evolution for string cosmology can be calculated for m = 0 and m = 4. An
interesting issue concerns the B field that is turned off in the string cosmology model (13) and
does not contribute to the effective action. In open string theory, however noncommutativity
arises precisely in the low energy limit of string theory in the presence of a constant B field.
The θ parameter we have introduced in the minisuperspace could then be understood as a
kind of B-field related with the Neveu-Schwarz B-field.

3.4 Noncommutative solutions of the isotropization in Bianchi I with barotropic perfect fluid
and Λ cosmological

Let us begin introducing the noncommutative deformation of the minisuperspace in the
WDW equation, this time, between all the variables of the minisuperspace, assuming that
Ωnc and β±nc obey the commutation relation

[Ωnc, β−nc] = iθ1, [Ωnc, β+nc] = iθ2, [β−nc, β+nc] = iθ3. (63)

Instead of working directly with the physical variables Ω and β± we may achieve all the

above solutions by making use of the auxiliary canonical variables Ωnc and β±nc defined as

Ωnc ≡ Ω − θ1
2

P− − θ2

2
P+, (64)

β−nc ≡ β− +
θ1
2

PΩ − θ3

2
P+, (65)

β+nc ≡ β+ +
θ2

2
PΩ +

θ3

2
P−. (66)

maintaining the usual commutation relations between the fields, i.e., [qμ, qν] = 0 and the
identifications PΩ = PΩnc and P± = P±nc. With this shift and the usual canonical quantization
Pqμ → −i∂qμ , we arrive to the noncommutative WDW equation

[
∂2

∂Ω2
nc

− ∂2

∂β2
+nc

− ∂2

∂β2−nc
− λe6Ωnc + bγe−3(γ−1)Ωnc

]
Ψ(Ω, β±) = 0, (67)

where λ = 48Λ, bγ = 384πGMγ. At this point we have a noncommutative WDW equation
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In order to find noncommutative classical solutions through the WKB approximation, we
use the fact that eiθ ∂
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1 + p2
1. We have the
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Case Noncommutative Solutions
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1
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2 n1,

a2
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3
n1
a1

arctanh
[

eqt

2a1

]
+ θ2

8

(
eqt
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1e−qt

)
− θ3

2 p1,
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3

p1
a1

arctanh
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eqt

2a1

]
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8

(
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1e−qt

)
+ θ3

2 n1,
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1
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√
3|Λ|,

a2
1 = n2
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3
n1
a1

arctanh
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eqt

2a1

]
+ θ2

8

(
eqt

4 + a2
1e−qt

)
− θ3

2 p1,

β−nc = ± 2
3

p1
a1

arctanh
[

eqt

2a1

]
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8

(
eqt

4 + a2
1e−qt

)
+ θ3

2 n1,
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1
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2 n1,
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3a1 ] + θ2
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2 p1,
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2 n1,
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[
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4

]
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2 n1,
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3a1

Ln
[
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t

]
+ θ2

2

√
a2

1 +
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4 − θ3

2 p1,

a2
1 = n2

1 + p2
1, β−nc = ± p1

3a1
Ln

[
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t

]
+ θ1

2

√
a2

1 +
b0t2

64 + a1t
4 + θ3

2 n1.

Table 4. Noncommutative solutions for, γ = −1, 1, 0, and constraints q, a1 and b0.

following noncommutative equations of motion

±
√

a2
1 − λe6Ωnc + bγe−3(γ−1)Ωnc ≡ −12e3Ωnc

Ω̇nc

N
, (69)

±n1 ≡ 12e3Ωnc
β̇+nc

N
, (70)

±p1 ≡ 12e3Ωnc
β̇−nc

N
. (71)

One just need to be careful in (equation 69), (equation 70) and (equation 71), and apply the
chain rule to the variables (equation 64), (equation 65) and (equation 66), in order to get the
right solution, β̇−nc =

∂β−
∂t +

∂β−nc
∂PΩ

∂pΩ
∂t +

∂β−nc
∂P+

∂p+

∂t +
∂β−nc
∂P−

∂p−
∂t = β̇− + θ1

2 ṖΩ. In this sense,
all solutions to find in the commutative case, remain for the noncommutative case with the
corresponding shift, as we show in the table 4.

3.4.2 Noncommutative classical solutions á la Hamilton
In the commutative model we know that the solutions to hamiltons equations are the same as
in General Relativity. Now the natural extension is to consider the noncommutative version
of our model, with the idea of noncommutative between the three variables (Ωnc, β±nc), so
we apply a deformation of the Poisson algebra. For this we start with the usual hamiltonian
(equation 26), but the symplectic structure is modify as follow

{PΩ, P±}� = {P+, P−}� = 0,
{

qμ, Pqμ

}
�
= 1, (72)

{Ω, β−}� = θ1, {Ω, β+}� = θ2, {β−, β+}� = θ3. (73)
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where the � is the Moyal product. In the second case, the hamiltonian is modify by the shift
(equation 64),(equation 65) and (equation 66) resulting

Hnc =
Ne−3Ωnc

24

[
−P2

Ω + P2
+ + P2− − λe6Ωnc + bγe−3(γ−1)Ωnc

]
= 0, (74)

but the symplectic structure is the one that we know, the commutative one (equation 38).
The noncommutative equations of motion, for the first formalism that we exposed have the
original variables, but with the variables modified,

˙qμ
nc = {qμ, H}�,
˙Pμ
nc = {Pμ, H}�, (75)

and for the second formalism we use the shifted variables but with the original (commutative)
symplectic structure

˙qμ
nc = {qμ

nc, Hnc},
˙Pμ
nc = {Pμ

nc, Hnc}, (76)

in both approaches we have the same result. Therefore the equations of motion take the form

Ω̇nc = {Ω, H}� = {Ωnc, Hnc} = − e−3Ωnc

12
PΩ, (77)

β̇−nc = {β−, H}� = {β−nc, Hnc} =
e−3Ωnc

12
P− +

θ1
2

ṖΩ, (78)

β̇+nc = {β+, H}� = {β+nc, Hnc} =
e−3Ωnc

12
P+ +

θ2

2
ṖΩ, (79)

ṖΩ = {PΩ, H}� = {PΩ, Hnc} =
e−3Ωnc

8

[
6λe6Ωnc + 3(γ − 1)bγe−3(γ−1)Ωnc

]
, (80)

Ṗ− = {P−, H}� = {P−, Hnc} = 0, → P− = p1, (81)

Ṗ+ = {P+, H}� = {P+, Hnc} = 0, → P+ = n1. (82)

if we proceed as in the commutative case we get the solutions showed in the table IVA.

4. Conclusions and outlook

In this chapter we have presented the NCWKB type method for noncommutative quantum
cosmology and with this procedure, found the noncommutative classical solutions for several
noncommutative quantum cosmological models.
Noncommutativity is incorporated in the minisuperspace variables, in a similar manner as it is
a proposal that originally emerged at the quantum level, by this reason we considered it as in
standard quantum mechanics. By means of the WKB approximation on the corresponding
NCWDW equation, one gets the noncommutative generalized Einstein-Hamilton-Jacobi
equation (NCEHJ), from which the classical evolution of the noncommutative model is
obtained. The examples we studied were the Kantowski-Sachs cosmological model, the
FRW universe with cosmological constant and coupled to a scalar field, a string quantum
cosmological model and Bianchi I with Barotropic perfect fluid and Λ Cosmological.
In the commutative scenario, that the classical solutions found from the WKB-type method
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are solutions to the corresponding Einsteins field equations. Due to the complexity of
the noncommutative theories of gravity(5), classical solutions to the noncommutative field
equations are almost impossible to find, but in the approach of noncommutative quantum
cosmology and by means of the WKB-type procedure, they can be easily constructed. Also the
quantum evolution of the system is not needed to find the classical behavior, from table 2 we
can see that for the case Λ �= 0 and k �= 0 the wave function can not be analitacally calculated,
but still the noncommutative effects can be incorporated and the classical evolution is found
implicitly. This procedure gives a straightforward algorithm to incorporate noncommutative
effects to cosmological models. In this approach the effects of noncommutativity are encoded
in the potential through the Moyal product of functions (equation 51). We only need the
NCWDW equation and the approximations (equation 7), to get the NCEHJ and from it,
the noncommutative classical behavior can easily be constructed. As already mentioned,
in(11) the effects of noncommutativity were studied in connection with inflation, but the
noncommutative deformation was only done in the matter sector neglecting the gravity sector.
For completeness to the section 2.4 and 3.4 we present the solutions in the gauge N = 24e3Ω

(see appendix A and B), one of the advantages of this gauge is that the solutions are very9
simple, this is something to take into account when we introduce a more complex form of
matter, where in the gauge N(t) = 1 analytical solutions can not be found. The procedure
developed here has the advantage that we can implement noncommutativity in both sectors
in a straightforward way and find the classical solutions (i.e. inflationary models). The
study on deformed phase space for all of this cosmologies should be constructed with this
noncommutative proposal. These ideas are being explored and will be reported elsewhere.
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6. Appendix

A Commutative classical solutions in the Gauge N = 24e3Ω

In this appendix we present the classical solutions in the gauge N = 24e3Ω, the equations are
much more simpler to solve in this guage.

A.1 Commutative Classical Solutions á la WKB
The master equation becomes

2dt =
dΩ√

a2
1 − λe6Ω + bγe−3(γ−1)Ω

, (83)

and the other two equations are immediately integrable. Again for particular cases in the γ
parameter, we present the classical solutions, table 5

A.2 Classical solutions via Hamiltonian formalism
With the gauge fixed to N = 24e3Ω we can see that the hamiltonian takes the form

H = −P2
Ω + P2

+ + P2− − λe6Ω + bγe−3(γ−1)Ω = 0. (84)
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Ṗ− = {P−, H}� = {P−, Hnc} = 0, → P− = p1, (81)
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and the other two equations are immediately integrable. Again for particular cases in the γ
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A.2 Classical solutions via Hamiltonian formalism
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Case Commutative solutions

γ = −1, Λ �= 0, ρ−1 = M−1 Ω = 1
6 Ln

[
− a2

1
384πGM−1−48Λ Sech2 (6a1t)

]
, a2

1 = n2
1 + p2

1,
β+ = ±2n1t,
β− = ±2p1t.

γ = 1, Λ �= 0, ρ1 = M1e−6Ω Ω = 1
6 Ln

[
a2

1
48Λ Sech2(6a1t)

]
, a2

1 = n2
1 + p2

1 + 384πGM1,
β+ = ±2n1t,
β− = ±2p1t.

γ = 1, Λ = 0, ρ1 = M1e−6Ω Ω = 2
√

a2
1 + b1t, a2

1 = n2
1 + p2

1 + 384πGM1,
β+ = −2n1t,
β− = −2p1t.

γ = 0, Λ = 0, ρ0 = M0e−3Ω Ω = 1
3 Ln

[
− a2

1
b0

sech2(3a1t)
]

, b0 = 384πGM0,

β+ = ±2n1t, a2
1 = n2

1 + p2
1,

β− = ±2p1t.

γ = 1
3 , Λ = 0, ρ0 = M 1

3
e−4Ω Ω = 1

2 Ln
[
− a2

1
b 1

3

sech2(2a1t)
]

, a2
1 = n2

1 + p2
1,

β+ = ±2n1t, b 1
3
= 384πGM 1

3
,

β− = ±2p1t.

Table 5. Classical Solutions for γ = −1, 1
3 , 1, 0, and constraints a1, b0 and b1.

The Poisson brackets structure yields to equations of motion

Ω̇ = {Ω, H} = −2PΩ, (85)
˙β− = {β−, H} = 2P−, → β− = ±2p1t, (86)
˙β+ = {β+, H} = 2P+, → β+ = ±2n1t, (87)

ṖΩ = {PΩ, H} =
[
+6λe6Ω + 3(γ − 1)bγe−3(γ−1)Ω

]
, (88)

Ṗ− = {P−, H} = 0, → P− = ±p1 = const. (89)

Ṗ+ = {P+, H} = 0, → P+ = ±n1 = const. (90)

Using (equation 84), introducing (equation 89) and (equation 90), we obtain the expression for
PΩ

PΩ =
√

m2
1 − λe6Ω + bγe−3(γ−1)Ω, (91)

being self-consistent with equation (equation 88), where a2
1 = n2

1 + p2
1. Introducing this

equation into (equation 85) we get the master equation found to solve the Einstein field
equation in this gauge, where the classical solutions are presented in table IIIA.

B Noncommutative classical solutions

B.1 Noncommutative classical solutions in the Gauge N = 24e3Ω á la WKB and via
Hamiltonian formalism
The noncommutative solutions in the space qμ become
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Case Noncommutative Solutions

γ = −1, Λ �= 0, ρ−1 = M−1 Ωnc =
1
6 Ln

[
− a2

1
384πGM−1−48Λ Sech2 (6a1t)

]
− θ1

2 p1 − θ2
2 n1,

a2
1 = n2

1 + p2
1, β+nc = ±2n1t + θ2a1

2 tanh(6a1t)− θ3
2 p1,

β−nc = ±2p1t + θ1a1
2 tanh(6a1t) + θ3

2 n1,

γ = 1, Λ �= 0, ρ1 = M1e−6Ω Ωnc =
1
6 Ln

[
a2

1
48Λ Sech2(6a1t)

]
− θ1

2 p1 − θ2
2 n1,

a2
1 = n2

1 + p2
1 + 384πGM1, β+nc = ±2n1t + θ2a1

2 tanh(6a1t)− θ3
2 p1,

β−nc = ±2p1t + θ1a1
2 tanh(6a1t) + θ3

2 n1,
γ = 1, Λ = 0, ρ1 = M1e−6Ω Ωnc = 2a1t − θ1

2 p1 − θ2
2 n1,

a2
1 = n2

1 + p2
1 + 384πGM1, β+nc = −2n1t + θ2

2 a1 − θ3
2 p1,

β−nc = −2p1t + θ1
2 a1 +

θ3
2 n1,

γ = 0, Λ = 0, ρ0 = M0e−3Ω Ωnc =
1
3 Ln

[
− a2

1
b0

sech2(3a1t)
]
− θ1

2 p1 − θ2
2 n1,

b0 = 384πGM0, β+nc = ±2n1t + θ2a1
2 tanh(3a1t)− θ3

2 p1,
a2

1 = n2
1 + p2

1, βnc− = ±2p1t + θ1a1
2 tanh(3a1t) + θ3

2 n1.

γ = 1
3 , Λ = 0, ρ0 = M 1

3
e−4Ω Ωnc =

1
2 Ln

[
− a2

1
b 1

3

sech2(2a1t)
]
− θ1

2 p1 − θ2
2 n1,

a2
1 = n2

1 + p2
1, β+nc = ±2n1t + θ2a1

2 tanh(2a1t)− θ3
2 p1

β−nc = ±2p1t + θ1a1
2 tanh(2a1t) + θ3

2 n1.

Table 6. Noncommutative solutions for γ = −1, 1
3 , 1, 0, and constraints a1, b0 and b1.
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equation in this gauge, where the classical solutions are presented in table IIIA.

B Noncommutative classical solutions

B.1 Noncommutative classical solutions in the Gauge N = 24e3Ω á la WKB and via
Hamiltonian formalism
The noncommutative solutions in the space qμ become
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Case Noncommutative Solutions

γ = −1, Λ �= 0, ρ−1 = M−1 Ωnc =
1
6 Ln

[
− a2

1
384πGM−1−48Λ Sech2 (6a1t)

]
− θ1

2 p1 − θ2
2 n1,

a2
1 = n2

1 + p2
1, β+nc = ±2n1t + θ2a1

2 tanh(6a1t)− θ3
2 p1,

β−nc = ±2p1t + θ1a1
2 tanh(6a1t) + θ3

2 n1,

γ = 1, Λ �= 0, ρ1 = M1e−6Ω Ωnc =
1
6 Ln

[
a2

1
48Λ Sech2(6a1t)

]
− θ1

2 p1 − θ2
2 n1,

a2
1 = n2

1 + p2
1 + 384πGM1, β+nc = ±2n1t + θ2a1

2 tanh(6a1t)− θ3
2 p1,

β−nc = ±2p1t + θ1a1
2 tanh(6a1t) + θ3

2 n1,
γ = 1, Λ = 0, ρ1 = M1e−6Ω Ωnc = 2a1t − θ1

2 p1 − θ2
2 n1,

a2
1 = n2

1 + p2
1 + 384πGM1, β+nc = −2n1t + θ2

2 a1 − θ3
2 p1,

β−nc = −2p1t + θ1
2 a1 +

θ3
2 n1,

γ = 0, Λ = 0, ρ0 = M0e−3Ω Ωnc =
1
3 Ln

[
− a2

1
b0

sech2(3a1t)
]
− θ1

2 p1 − θ2
2 n1,

b0 = 384πGM0, β+nc = ±2n1t + θ2a1
2 tanh(3a1t)− θ3

2 p1,
a2

1 = n2
1 + p2

1, βnc− = ±2p1t + θ1a1
2 tanh(3a1t) + θ3

2 n1.

γ = 1
3 , Λ = 0, ρ0 = M 1

3
e−4Ω Ωnc =

1
2 Ln

[
− a2

1
b 1

3

sech2(2a1t)
]
− θ1

2 p1 − θ2
2 n1,

a2
1 = n2

1 + p2
1, β+nc = ±2n1t + θ2a1

2 tanh(2a1t)− θ3
2 p1

β−nc = ±2p1t + θ1a1
2 tanh(2a1t) + θ3

2 n1.

Table 6. Noncommutative solutions for γ = −1, 1
3 , 1, 0, and constraints a1, b0 and b1.
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1. Introduction 
During the 1920´s the U.S. astronomer Hubble observed that the red shifts, from distant 
galaxies, were increasing with distance. The similarity with the well known Doppler Effect 
gave the way to a rapidly spreading idea: that the universe was expanding. Galaxies were 
thought to be receding from us at a speed proportional to their distance. Considering the 
universe as a “gas” of galaxies, each galaxy similar to one molecule in a gas, the expansion 
clearly implied that the universe was getting cooler and thinner with age. We know today 
that this cooling and thinning is correct: the universe is very old and its known temperature 
and density for today are very low: 2.7ºK (the cosmic microwave background radiation) of 
temperature and about ∼10-29 grams/cc average density. 
Now, if we imagine a thought experiment and reverse the time, going backwards, we get 
the idea of a very hot and very dense universe at its initial stages. Going to the limit, getting 
closer and closer to a theoretically zero time, we have a mathematical singularity: infinite 
temperature and infinite density. As a result of this initial picture, we can imagine that these 
infinites were the result of a very big and sudden explosion: and that it expanded rapidly to 
a lower and lower temperature and density. Today we observe a cool temperature and a 
thin “gas”. The British astronomer and cosmologist Fred Hoyle ironically called this a “Big-
Bang”. But if we take the imagination of a  Big-Bang explosion as a fact, as many people 
have done, we are entitled to take as a fact too that a gas after an explosion decelerates to a 
lower and lower speed of expansion. Today we should observe a decelerating universe. And 
this is not the case. 
Initial expansion (according to a hypothetical Big-Bang), and present acceleration of the 
universe, as observed thanks to the astrophysics of the supernovae Type Ia, are two very 
different things. While the expansion is very well based on observation, following the 
Hubble´s red shift findings, an initial explosion at a space-time point, the Big-Bang, is the 
result of a mathematical extrapolation, and therefore so far it is only speculation. On the 
other hand, the accelerated expansion of the universe is based on observation [1]. It is the 
result of the successful application of the scientific method, like the case of the expansion of 
the universe. Accelerated expansion is a very well based observation on scientific grounds, 
and in a direct way. This is not so for the assumed Big-Bang initial explosion.  
It is very interesting to note that the cosmological model of a Big-Bang, as a frame of work, 
has been and still is the underpinning of the majority of the research work done in 
cosmology. It had, and still has, many drawbacks. One of them, a very serious one, was 
related to the fact that it could not explain the present size of the universe. Following the 
initial developments of this model the present size of the universe would be very small: may 
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be of the order of meters. Obviously this is not the case, and one had to look for an 
explanation. Instead of looking for an alternative model, something that the many 
drawbacks of the model has demanded many times, the main stream of the scientific 
community in cosmology has always decided to add more and more “ad hoc” explanations 
to keep this frame of work alive. And it appears that this is going to go on for a long time. 
There is so much work, interests, beliefs, efforts, etc, behind the Big-Bang idea that the 
overall worldwide inertia created by this cosmological model is very big indeed. 
At any rate, some of the “ad hoc” explanations to sustain the main stream ideas could be 
good ones. I mean good ones when one considers them isolated, independent of the reason 
that made them come into existence. For example: INFLATION. A very fast exponential 
expansion at the very early stages of the universe would bring it close to a reasonable size to 
avoid discrepancies. It has some predictions, flat universe, critical density, cosmic 
microwave background radiation properties (CMBR) etc. that have been observed. Then, it 
seems to be a good idea, a good scientific approach supported by the confirmation of some 
of its predictions. 
Again, if one accepts INFLATION as a beginning of the universe, a fast exponential 
expansion during a very short time, one immediately imagines that after inflation a period 
of deceleration should follow. This is the case, but there is more to it. As mentioned above, 
during the last half of the age of the universe there is an observed accelerated expansion. 
And of course this must have a reason, a physical push to expand the universe. This 
physical mechanism must be of universal significance, because it has been accelerating the 
whole universe during the last half of its age. And during the first half it counteracted the 
inertial deceleration after inflation due to the gravitational universal attraction. And it 
reversed the deceleration giving the accelerated expansion we observe today. About half 
way in time the deceleration-acceleration transition implied zero acceleration. We see no 
need of an initial point like explosion. Inflation does the job. 
History has already gone through this state of affairs. Almost one hundred years ago, when 
Einstein developed his cosmological equations, the general belief was to imagine the 
universe in a static state. Since gravitation was well known, as an attractive force, soon it 
was realized that a collapse was inevitable due to the pull of gravity. But no collapsing 
universe was observed. Then a pushing mechanism should be balancing gravitation to get a 
static universe. And Einstein introduced his well known cosmological constant, the lambda 
constant. Today we observe the universe in an accelerated expansion during the last half of 
its age. Then a kind of pushing mechanism is again required to explain this observation. 
And it could be a question of strength: the pushing force due to the Λ “constant” seems to 
be growing as the universe expands. On the contrary, the overall gravitational force is 
constant. This is enough to explain by itself the present acceleration of the expansion of the 
universe. And it may arrive at a disaggregation of everything in a finite time: expansion to 
infinity.  Since the lambda constant is a very well known physical construct, the attention of 
most cosmologists is again in favor of such solution. The point is that such a Λ constant 
implies energy, and the immediate and easy way out is to imagine the existence of a kind of 
dark energy to explain Λ, so dark that no one has seen it yet. We do not know of any 
interaction between this postulated dark energy and any other well known energy we are 
used to observe and identify. So far, the dark energy is just a theoretical construct. But we 
have more choices to explain this pushing force. Aside from believing in dark energy one 
can believe in an equivalent mechanism to explain the push: creation of matter, as we will see 
[2]. Then the sequence of events to explain the dynamics of the universe would be: fast 
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exponential inflation, and then a slow deceleration followed by a slow acceleration as of 
today. And our prediction is that this late acceleration is increasing and that it will disperse 
the whole universe to infinity in a finite time. Like a kind of second inflation at the end of 
the time of the universe as we know it. We may be now at about one half of the total age of 
our universe. The creation pressure [2] is always present, growing, and its effects are 
permanently present till the final stage. 
Following the arguments given above, we can make now a straight forward proposal: there 
was no big bang at all. Instead we can say that we are the result of an initial small bang, just 
after inflation of an initial fluctuation, an initial quantum black hole whose inflation a little 
later decelerated. But this deceleration was overcome by the push of the creation pressure, 
the continuous creation of matter [2], [3], [4] and [5]. As we will see, most physicals 
properties of the universe are subject to this increase with time. 
The above considerations are in agreement with the idea that the universe is a kind of black 
hole [6]. Black holes have a characteristic mass-size relation. Taking the gravitational 
constant G and the speed of light c as units, G = c = 1, the black hole mass M is equal to his 
size L, within a factor of 2. Then, dividing the size L by the speed of light c one gets a 
characteristic time t for the black hole. In these units 1 second equals 3x1010 cm, and this 
equals ∼ 1040 grams. We then have: 

 (∼2) M = L = t                (1) 

For the universe M = L = t ∼ 1056 grams ∼ 1028 cm ∼ 1010 years. For the Planck scale, a 
quantum black hole, one has to divide (1) by ∼ 1061 to get the Planck´s units m = l = t ∼ 10-5 
grams ∼ 10-33 cms ∼ 10-44 seconds. Possibly this may be the first quantum of everything in 
our universe. All the basic physical properties at the Planck scale (the so called natural units) 
differ by the factor ∼ 10-61 from the scale of the universe.  

2. Scale cosmology 
It looks like the universe can be considered to be structured in different scales. Each scale is 
a quantum black hole, as we will see, and is in itself a universe too. A black hole has its mass 
M and its size L connected by the simple relation 

 (∼2) GM/c2 = L             (2) 

 On the other hand, a quantum black hole is characterized by its size L being equal to its the 
de Broglie wavelength (with a generalized Planck´s constant H) 

 L = H/Mc                           (3) 

Now, combining (2) and (3) we get (for a general quantum black hole) the mass M, length L 
and time t as follows   

M = (Hc/G)1/2     

 L = (GH/c3)1/2                            (4) 

t = (GH/c5)1/2   

If we use the natural Planck´s constant ђ in (4) we get the Planck´s units 
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of its predictions. 
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exponential inflation, and then a slow deceleration followed by a slow acceleration as of 
today. And our prediction is that this late acceleration is increasing and that it will disperse 
the whole universe to infinity in a finite time. Like a kind of second inflation at the end of 
the time of the universe as we know it. We may be now at about one half of the total age of 
our universe. The creation pressure [2] is always present, growing, and its effects are 
permanently present till the final stage. 
Following the arguments given above, we can make now a straight forward proposal: there 
was no big bang at all. Instead we can say that we are the result of an initial small bang, just 
after inflation of an initial fluctuation, an initial quantum black hole whose inflation a little 
later decelerated. But this deceleration was overcome by the push of the creation pressure, 
the continuous creation of matter [2], [3], [4] and [5]. As we will see, most physicals 
properties of the universe are subject to this increase with time. 
The above considerations are in agreement with the idea that the universe is a kind of black 
hole [6]. Black holes have a characteristic mass-size relation. Taking the gravitational 
constant G and the speed of light c as units, G = c = 1, the black hole mass M is equal to his 
size L, within a factor of 2. Then, dividing the size L by the speed of light c one gets a 
characteristic time t for the black hole. In these units 1 second equals 3x1010 cm, and this 
equals ∼ 1040 grams. We then have: 

 (∼2) M = L = t                (1) 

For the universe M = L = t ∼ 1056 grams ∼ 1028 cm ∼ 1010 years. For the Planck scale, a 
quantum black hole, one has to divide (1) by ∼ 1061 to get the Planck´s units m = l = t ∼ 10-5 
grams ∼ 10-33 cms ∼ 10-44 seconds. Possibly this may be the first quantum of everything in 
our universe. All the basic physical properties at the Planck scale (the so called natural units) 
differ by the factor ∼ 10-61 from the scale of the universe.  

2. Scale cosmology 
It looks like the universe can be considered to be structured in different scales. Each scale is 
a quantum black hole, as we will see, and is in itself a universe too. A black hole has its mass 
M and its size L connected by the simple relation 

 (∼2) GM/c2 = L             (2) 

 On the other hand, a quantum black hole is characterized by its size L being equal to its the 
de Broglie wavelength (with a generalized Planck´s constant H) 

 L = H/Mc                           (3) 

Now, combining (2) and (3) we get (for a general quantum black hole) the mass M, length L 
and time t as follows   

M = (Hc/G)1/2     

 L = (GH/c3)1/2                            (4) 

t = (GH/c5)1/2   

If we use the natural Planck´s constant ђ in (4) we get the Planck´s units 
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mp = (ђc/G)1/2    ≈ 2.177  10-5 grams 

 lp =  (Gђ/c3)1/2   ≈ 1.616 10-33  cms              (5) 

tp =  (Gђ/c5)1/2   ≈ 5.39 10-44 sec 

The scale of our universe is found to be the Planck´s scale (5) multiplied by the factor ∼ 
1061or, equivalently, by using a universal Planck´s constant H ≈ 10122 ђ giving 

Mu = (Hc/G)1/2  ≈   1056 grams  

 Lu = (GH/c3)1/2  ≈  1028 cms             (6)       

tu = (GH/c5)1/2  ≈  5 1017 sec   

There is a new scale that can be defined below the Planck´s scale. The point is that the 
quantum of gravity [7] has a mass mg given by 

 mg = ђ/c2tu  ≈  2 10-66 grams               (7) 

and it defines a scale like Planck´s scale multiplied by, once again, the factor 10-61 . This is 
equivalent to obtain this new scale by using an equivalent generalized Planck´s constant H ≈ 
10-122 ђ giving the sub-Planck scale  

msp = 10-61 (ђc/G)1/2     ≈  2  10-66 grams   

 lsp = 10-61  (Gђ/c3)1/2    ≈     10-94  cms           (8)  

tsp = 10-61  (Gђ/c5)1/2    ≈    10-104 sec 

The physical meaning of the sub-Planckian scale (8) is not yet very well known, except for 
the concept of the quantum of gravity mg that we have introduced [7] in the past. It may also 
have a meaning related to information [8]: in a parallel way it can be given a sense as the 
unit of information, the bit, with the physical properties in (8). We can also give some sense 
for a quantum of time, defined as the minimum interval of time obtained using the mass of 
the universe 

 tsp = ђ/Muc2 ≈  10-104 sec               (9) 

This is a very suggestive relation: it means that the sub-Planckian scale (8) gives us the 
minimum quantum of mass, length and time. The three quantum black hole scales, (5), (6) 
and (8) are then the minimum scale (8), sub-Planckian, the “natural” scale (5), Planckian, 
and the scale of the universe (6) where we live. 
There is a new physical parallel that gives a meaning to the  sub-Planckian “quantum”. It 
may be regarded as the unit of information, the bit [8]     

3. Gravity as an emerging entropic force 
Verlinde [9] has introduced the concept of the force of gravity as due to a gradient of 
entropy S, i.e. gravity as an emergent entropic force. Though the change in entropy S may be 
due to internal redistribution of masses in the system, it may also be due to a cosmological 
increase of mass with time, as we will see here. The basic idea can be expressed as the 
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relation between temperature T, entropy S and energy Mc2, according to the thermodynamic 
relation 

 T ΔS = ΔMc2  = Δt/2              (10) 

We have used the Machian  black hole relation 2GM/c2 = ct to obtain the last term in (10) 
Dealing with a “quantum” black hole universe with H ≈ 10122  ђ, we have equations (1), and 
(2), and using the Hawking [10] and Bekenstein [11] black hole relation for the entropy S 

 S = 4π k/ђc GM2                     (11) 

we get from (11), with G = c = ђ = k =1 

 ΔS = 4π 2M ΔM                      (12) 

And using (10) and (12) we have 

 T ΔS = 2π Tt Δt = Δt/2          (13) 

i.e. 

 4π Tt = k/  = 1                (14) 

Then temperature varies inversely proportional to cosmological time. This is a well known 
relation in our universe. But here we have a surprising possibility: since the temperature T is 
a statistical parameter, then the time t may have this character too. 
The mass of the universe must be time varying [14], so that the gradient of M in (12) is 
responsible for the increase in entropy ΔS, and therefore for the force of gravity. Verlinde´s 
ideas [9] may be extended to a distribution of mass in the whole universe varying with 
cosmological time. 

4. The cosmological constant versus the pressure of creation 
The cosmological constant Λ has been related to the vacuum energy, and therefore to a 
negative pressure, to explain the accelerated expansion of the universe. Recently we have an 
interesting suggestion [1]: it implies that there is no cosmological constant. Its theoretical 
need can also be fulfilled by a creation pressure pc. At any rate, either Λ or a creation 
pressure implies (with c = 1), from Einstein cosmological equations: 

 Λ ≈ 1/t2                  (15) 

And from (1) and (11) we get 

 S ≈ t2    i.e.        ΛS ≈ 1                (16) 

The creation pressure pc [1] has been presented as equivalent to the effect of a cosmological 
constant Λ. A creation pressure expressed as Ωcp, a dimensionless parameter i.e.  

 Ωcp = (8π/3) Gpc /(c2H2)         (17) 

as usually done in cosmology,  is equivalent to the effect of a cosmological constant Λ, with 
omega parameter  ΩΛ, if and only if the following relation holds: 

 - Ω cp ≡ 3Ω Λ                   (18) 
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mp = (ђc/G)1/2    ≈ 2.177  10-5 grams 

 lp =  (Gђ/c3)1/2   ≈ 1.616 10-33  cms              (5) 
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 Lu = (GH/c3)1/2  ≈  1028 cms             (6)       

tu = (GH/c5)1/2  ≈  5 1017 sec   

There is a new scale that can be defined below the Planck´s scale. The point is that the 
quantum of gravity [7] has a mass mg given by 

 mg = ђ/c2tu  ≈  2 10-66 grams               (7) 

and it defines a scale like Planck´s scale multiplied by, once again, the factor 10-61 . This is 
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 lsp = 10-61  (Gђ/c3)1/2    ≈     10-94  cms           (8)  

tsp = 10-61  (Gђ/c5)1/2    ≈    10-104 sec 

The physical meaning of the sub-Planckian scale (8) is not yet very well known, except for 
the concept of the quantum of gravity mg that we have introduced [7] in the past. It may also 
have a meaning related to information [8]: in a parallel way it can be given a sense as the 
unit of information, the bit, with the physical properties in (8). We can also give some sense 
for a quantum of time, defined as the minimum interval of time obtained using the mass of 
the universe 

 tsp = ђ/Muc2 ≈  10-104 sec               (9) 

This is a very suggestive relation: it means that the sub-Planckian scale (8) gives us the 
minimum quantum of mass, length and time. The three quantum black hole scales, (5), (6) 
and (8) are then the minimum scale (8), sub-Planckian, the “natural” scale (5), Planckian, 
and the scale of the universe (6) where we live. 
There is a new physical parallel that gives a meaning to the  sub-Planckian “quantum”. It 
may be regarded as the unit of information, the bit [8]     

3. Gravity as an emerging entropic force 
Verlinde [9] has introduced the concept of the force of gravity as due to a gradient of 
entropy S, i.e. gravity as an emergent entropic force. Though the change in entropy S may be 
due to internal redistribution of masses in the system, it may also be due to a cosmological 
increase of mass with time, as we will see here. The basic idea can be expressed as the 
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relation between temperature T, entropy S and energy Mc2, according to the thermodynamic 
relation 

 T ΔS = ΔMc2  = Δt/2              (10) 

We have used the Machian  black hole relation 2GM/c2 = ct to obtain the last term in (10) 
Dealing with a “quantum” black hole universe with H ≈ 10122  ђ, we have equations (1), and 
(2), and using the Hawking [10] and Bekenstein [11] black hole relation for the entropy S 

 S = 4π k/ђc GM2                     (11) 

we get from (11), with G = c = ђ = k =1 

 ΔS = 4π 2M ΔM                      (12) 

And using (10) and (12) we have 

 T ΔS = 2π Tt Δt = Δt/2          (13) 

i.e. 

 4π Tt = k/  = 1                (14) 

Then temperature varies inversely proportional to cosmological time. This is a well known 
relation in our universe. But here we have a surprising possibility: since the temperature T is 
a statistical parameter, then the time t may have this character too. 
The mass of the universe must be time varying [14], so that the gradient of M in (12) is 
responsible for the increase in entropy ΔS, and therefore for the force of gravity. Verlinde´s 
ideas [9] may be extended to a distribution of mass in the whole universe varying with 
cosmological time. 

4. The cosmological constant versus the pressure of creation 
The cosmological constant Λ has been related to the vacuum energy, and therefore to a 
negative pressure, to explain the accelerated expansion of the universe. Recently we have an 
interesting suggestion [1]: it implies that there is no cosmological constant. Its theoretical 
need can also be fulfilled by a creation pressure pc. At any rate, either Λ or a creation 
pressure implies (with c = 1), from Einstein cosmological equations: 

 Λ ≈ 1/t2                  (15) 

And from (1) and (11) we get 

 S ≈ t2    i.e.        ΛS ≈ 1                (16) 

The creation pressure pc [1] has been presented as equivalent to the effect of a cosmological 
constant Λ. A creation pressure expressed as Ωcp, a dimensionless parameter i.e.  

 Ωcp = (8π/3) Gpc /(c2H2)         (17) 

as usually done in cosmology,  is equivalent to the effect of a cosmological constant Λ, with 
omega parameter  ΩΛ, if and only if the following relation holds: 

 - Ω cp ≡ 3Ω Λ                   (18) 
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This follows from the first of the cosmological equations of Einstein, i.e. 

 1 – 2q + Ωp + Ωk = 3 ΩΛ         (19) 

Here q is the deceleration parameter and Ωk the curvature. If we consider a creation pressure 
instead of a cosmological constant, usually taken as the dark energy constituent of the 
universe, we get from (18) and (19) 

 1 – 2q + Ωk = - Ωcp                (20) 

And using the present observations that give Ωk  << 1 we finally get for the creation 
pressure, instead of a cosmological constant 

 Ωcp = 2q – 1              (21) 

The present estimates [15] of the numerical values of the deceleration parameter q are: for 
very high red shift, close to the initial stages of the universe, q ≈ 0.5  which implies Ωcp ≈ 0. 
The initial creation pressure is very small, corresponding to a small dark energy component, 
if any. At this stage we should expect a small acceleration of the initial expansion that 
balances the gravitational attraction (may be after inflation has finished in a very short time). 
At the present time [15] we have the approximate value q ≈ - 0.5, which implies Ω cp≈ - 2. 
The present creation pressure is then pretty high. From (18) it would correspond to a value 
of Ω Λ ≈ 2/3, in complete agreement with the very well known value of this parameter for 
today. There is no known reason for this negative increase in the creation pressure (positive 
increase in Λ and therefore in accelerating the expansion of the universe) to stop in the near 
future. We can extrapolate and consider the rather strong possibility that the universe will 
spread to infinity, in a finite time, due to an ever increasing accelerated expansion [8]. 
The creation pressure is related to the creation rate Г of the mass M [1] by the following 
expression  

 Г = ρ�  / ρ + 3 R�/R = d (ln ρ  R3)/dt = d (ln M)/dt = M� /M       (22) 

The creation pressure pcp is defined in terms of the creation rate Г and other physical 
quantities [1] and is 

 Pcp = - ρ c2 (Г/3H)          (23) 

If we consider the universe as a black hole [6] then we have 

 2 GM/c2 = R      i.e.   M� /M = R�/R = H = Г          (24) 

where H is the Hubble parameter. The creation pressure in (23) becomes 

 pcp  = - (1/3) ρ c2            (25) 

5. The cosmological constant versus the energy of the information 
We can think of our universe as a kind of “quantum” black hole [6] and apply the Hawking-
Bekenstein [10] and [11] formulation for its entropy S. Using the black hole relation (2) 
between its mass M and its size a(t)  

 2GM/c2 = a(t)           (26) 
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and combining (11) and (26) we get (with the linear relation a(t) ≈ ct) 

 S = 4π k/ђc G(c3t/2G)2 = π k/ђ (c5/G) t2    (27) 

And in natural units G = c = ђ = k = 1 we finally get 

 S  ≈ t2               (28) 

Going on using natural units, in Planck´s units of time we have then from (28) 

 S  ≈ 10122                  (29) 

The entropy of the universe increases with time and will arrive at a maximum at x = 2, its 
lifetime, and has a value of the order of  ∼ 10122.                                
The quantum of gravity with mass mg has been presented [7] as 

 mg = ђ/(c2t)   ≈  10-65 grams            (7) 

Since the mass of the universe M is about 1056 grams, one has the number of gravity quanta 
Ng  in the universe as  

 Ng ≈ M/mg ≈ 10122       (30) 

The two very large numbers in (29) and (30), being of the same order of magnitude, give us 
a very strong reason to believe that the entropy S of the universe is the number of gravity 
quanta, as proposed 10 years ago [7], and this is the number of bits I  that it contains:   

 I ≈ S ≈ Ng ≈ M/mg ≈ 10122                (31) 

Then, the unit of information, the bit, can be interpreted as having a mass mg and an energy 
mgc 2 ≈ ђ/t, i.e.the quantum of gravitational energy ђω ≈ 10-45 ergs.  
Now we can check the holographic principle, [12] and [13], for the universe: the amount of 
information (31) inside the whole universe is equal to the area of the event horizon in 
Planck´s units (28) and (29).   

6. The accelerated expansion of the universe 
The deceleration parameter q was defined in terms of the scale factor a(t) and its derivatives 
as follows: 

 q = -a´´a/(a´)2   (32) 

We see that a�  being a deceleration one has a�  < 0 and then the parameter q should be q > 0 for 
deceleration and q<0 for acceleration. We can take into account the definition of the Hubble 
parameter H  

 H = a�/a                                     (33) 

So that equation (32) transforms to 

 �� � �� � ����� � ��       (34) 



 
Aspects of Today´s Cosmology  390 

This follows from the first of the cosmological equations of Einstein, i.e. 
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Here q is the deceleration parameter and Ωk the curvature. If we consider a creation pressure 
instead of a cosmological constant, usually taken as the dark energy constituent of the 
universe, we get from (18) and (19) 
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And using the present observations that give Ωk  << 1 we finally get for the creation 
pressure, instead of a cosmological constant 
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The present estimates [15] of the numerical values of the deceleration parameter q are: for 
very high red shift, close to the initial stages of the universe, q ≈ 0.5  which implies Ωcp ≈ 0. 
The initial creation pressure is very small, corresponding to a small dark energy component, 
if any. At this stage we should expect a small acceleration of the initial expansion that 
balances the gravitational attraction (may be after inflation has finished in a very short time). 
At the present time [15] we have the approximate value q ≈ - 0.5, which implies Ω cp≈ - 2. 
The present creation pressure is then pretty high. From (18) it would correspond to a value 
of Ω Λ ≈ 2/3, in complete agreement with the very well known value of this parameter for 
today. There is no known reason for this negative increase in the creation pressure (positive 
increase in Λ and therefore in accelerating the expansion of the universe) to stop in the near 
future. We can extrapolate and consider the rather strong possibility that the universe will 
spread to infinity, in a finite time, due to an ever increasing accelerated expansion [8]. 
The creation pressure is related to the creation rate Г of the mass M [1] by the following 
expression  

 Г = ρ�  / ρ + 3 R�/R = d (ln ρ  R3)/dt = d (ln M)/dt = M� /M       (22) 

The creation pressure pcp is defined in terms of the creation rate Г and other physical 
quantities [1] and is 
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If we consider the universe as a black hole [6] then we have 
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where H is the Hubble parameter. The creation pressure in (23) becomes 
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5. The cosmological constant versus the energy of the information 
We can think of our universe as a kind of “quantum” black hole [6] and apply the Hawking-
Bekenstein [10] and [11] formulation for its entropy S. Using the black hole relation (2) 
between its mass M and its size a(t)  
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and combining (11) and (26) we get (with the linear relation a(t) ≈ ct) 

 S = 4π k/ђc G(c3t/2G)2 = π k/ђ (c5/G) t2    (27) 

And in natural units G = c = ђ = k = 1 we finally get 
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Going on using natural units, in Planck´s units of time we have then from (28) 

 S  ≈ 10122                  (29) 

The entropy of the universe increases with time and will arrive at a maximum at x = 2, its 
lifetime, and has a value of the order of  ∼ 10122.                                
The quantum of gravity with mass mg has been presented [7] as 

 mg = ђ/(c2t)   ≈  10-65 grams            (7) 

Since the mass of the universe M is about 1056 grams, one has the number of gravity quanta 
Ng  in the universe as  
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The two very large numbers in (29) and (30), being of the same order of magnitude, give us 
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Then, the unit of information, the bit, can be interpreted as having a mass mg and an energy 
mgc 2 ≈ ђ/t, i.e.the quantum of gravitational energy ђω ≈ 10-45 ergs.  
Now we can check the holographic principle, [12] and [13], for the universe: the amount of 
information (31) inside the whole universe is equal to the area of the event horizon in 
Planck´s units (28) and (29).   

6. The accelerated expansion of the universe 
The deceleration parameter q was defined in terms of the scale factor a(t) and its derivatives 
as follows: 

 q = -a´´a/(a´)2   (32) 

We see that a�  being a deceleration one has a�  < 0 and then the parameter q should be q > 0 for 
deceleration and q<0 for acceleration. We can take into account the definition of the Hubble 
parameter H  

 H = a�/a                                     (33) 

So that equation (32) transforms to 

 �� � �� � ����� � ��       (34) 
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The importance of this equation cannot be overestimated. It means that given the measured 
values of q [15] one can approach its time variation by the linear relationship: 

 q(x) = - x  + ½                    (35) 

where we have defined x = t/t0 the ratio of any age of the universe t to the present age of the 
universe t0 ≈ 1.37 1010 years. Then close to the beginning of the universe we have q ≈ ½ (i.e. x = 
ε << 1) and today q ≈ - ½ (x 0 ≈ 1). Rearranging equation (34) with the change dt = t0 dx we get 

 H�  /H2 = - d (1/H)/ (t0 dx) = - [ 1 + q(x) ]                 (36) 

And integrating we have 

 1/H t0 =  [ 1 + q(x) ] dx   + constant        (37) 

Using (35) we get 

 1/H t0 = 1.5 x – 0.5 x2 + constant            (38) 

Choosing the limits of integration from 0 to x and taking into account that the present value 
of H is H0 ≈ 1/t0, for x = 1, the constant in (38) has the value zero. With (33) equation (38) is 
then equivalent to 

 t0 a�/a = [ 1.5 x – 0.5 x2]-1  = d ln a / dx         (39) 

Integrating once more we get 

 ln a =  [ 1.5 x – 0.5 x2]-1 dx   + ln a0             (40) 

where a0 is the present value of the cosmological scale parameter a(t0) 

 a/a0 = exp {  [ 1.5 x – 0.5 x2]-1 dx  }      (41) 

integrating (41) we have 

 a/a0 = exp{(2/3) ln [2x/(3-x)]} = [2x/(3-x)]2/3                 (42) 

The plot of this expression is shown below in Fig. 1. 
 

 
Fig. 1. In this figure 1 we have the plot of the scale factor of the universe (vertical axis), 
relative to its present value a0. in terms of time t (horizontal axis), relative to the present age 
of the universe t0. An infinite expansion appears at t = 3t0. 
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7. The final inflation 
Having used only the relations (32), (33), (34) and (35), without using the field equations 
of general relativity (only the observed values of the deceleration parameter q), the 
predicted final “inflation” at tf = 3t0 is a result of an extrapolation towards the future. The 
present day observations of q cover 1/3 of this time interval and strongly support the 
final expansion, the finite lifetime of the universe in a surprisingly rather short time from 
now (only 2 aeons). 
We speculate that the initial inflation may have started from the Planck´s quantum black 
hole, bringing the universe close to its present size. After that, an almost linear expansion 
goes on due to the creation pressure, thus bringing the universe to its present size. The final 
inflation follows at about 4x1010 years of age, giving a finite lifetime for our universe. This is 
clearly an unexpected result that comes from the present observations of the values of the 
deceleration parameter q. 

8. Conclusions 
The generalization of the concept of a quantum black hole (giving the sub-Planckian scale, 
the Planckian scale and the scale of our universe) shows that there is a numerical factor, 
∼1061, that is equivalent to the total age of the universe in Planck´s units. It looks like this is 
the characteristic lifetime of a universe, in terms of the successive factors for the different 
scales, 10-61 , 1, 1061 , (or in terms of the generalized Planck´s constant, 10-122 , 1, 10122 . The 
age of a universe is intimately related to the choice of the unit of time interval. For the sub-
Planckian scale we have 10-104 seconds, for the Planck scale 5 10 -44 seconds and for our 
universe about 5 1017 seconds.  
The picture that arises for the evolution of the universe is: no big-bang, an initial inflation 
(an exponential expansion) of a quantum black hole, Planck´s type, a slow deceleration 
followed by a slow acceleration. Then we have an almost linear expansion at the present 
time. And a final disaggregation to infinity at about 4 1010 years of age, the lifetime of our 
universe. 
The cosmological constant Λ can be substituted by a creation pressure. This is in line with 
the idea of gravitation being an emerging entropic force. For the existence of this force an 
increase in mass with time (a Mass-Boom, [14) is necessary, giving a positive gradient of 
entropy for the universe and therefore the emergent gravitation. 

9. Appendix 
We are going to calculate now the following important cosmological parameters, in terms of 
the dimensionless age, x = t/t0, and relative to the present size of the universe a0 = 1: 
1. The speed of expansion of the universe a´(t) 
2. The Hubble parameter a´(t)/a(t) 
3. The acceleration of the expansion a´´(t)  
4. The deceleration parameter q= - a´´(t) a(t)/ a´(t)2 

1. The speed of expansion of the universe a´(t). We find the derivative of the scale 
factor a(t) in (42) as 

 a`(t)/a(1) = 4 (2x)-1/3 (3-x)-5/3      (43) 
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The importance of this equation cannot be overestimated. It means that given the measured 
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integrating (41) we have 
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7. The final inflation 
Having used only the relations (32), (33), (34) and (35), without using the field equations 
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predicted final “inflation” at tf = 3t0 is a result of an extrapolation towards the future. The 
present day observations of q cover 1/3 of this time interval and strongly support the 
final expansion, the finite lifetime of the universe in a surprisingly rather short time from 
now (only 2 aeons). 
We speculate that the initial inflation may have started from the Planck´s quantum black 
hole, bringing the universe close to its present size. After that, an almost linear expansion 
goes on due to the creation pressure, thus bringing the universe to its present size. The final 
inflation follows at about 4x1010 years of age, giving a finite lifetime for our universe. This is 
clearly an unexpected result that comes from the present observations of the values of the 
deceleration parameter q. 
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The generalization of the concept of a quantum black hole (giving the sub-Planckian scale, 
the Planckian scale and the scale of our universe) shows that there is a numerical factor, 
∼1061, that is equivalent to the total age of the universe in Planck´s units. It looks like this is 
the characteristic lifetime of a universe, in terms of the successive factors for the different 
scales, 10-61 , 1, 1061 , (or in terms of the generalized Planck´s constant, 10-122 , 1, 10122 . The 
age of a universe is intimately related to the choice of the unit of time interval. For the sub-
Planckian scale we have 10-104 seconds, for the Planck scale 5 10 -44 seconds and for our 
universe about 5 1017 seconds.  
The picture that arises for the evolution of the universe is: no big-bang, an initial inflation 
(an exponential expansion) of a quantum black hole, Planck´s type, a slow deceleration 
followed by a slow acceleration. Then we have an almost linear expansion at the present 
time. And a final disaggregation to infinity at about 4 1010 years of age, the lifetime of our 
universe. 
The cosmological constant Λ can be substituted by a creation pressure. This is in line with 
the idea of gravitation being an emerging entropic force. For the existence of this force an 
increase in mass with time (a Mass-Boom, [14) is necessary, giving a positive gradient of 
entropy for the universe and therefore the emergent gravitation. 

9. Appendix 
We are going to calculate now the following important cosmological parameters, in terms of 
the dimensionless age, x = t/t0, and relative to the present size of the universe a0 = 1: 
1. The speed of expansion of the universe a´(t) 
2. The Hubble parameter a´(t)/a(t) 
3. The acceleration of the expansion a´´(t)  
4. The deceleration parameter q= - a´´(t) a(t)/ a´(t)2 

1. The speed of expansion of the universe a´(t). We find the derivative of the scale 
factor a(t) in (42) as 

 a`(t)/a(1) = 4 (2x)-1/3 (3-x)-5/3      (43) 
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Fig. 2. The speed of expansion of the universe as in (43). There are two vertical asymptotes at 
x = 0 and at x = 3. They imply the initial inflation (x = 0) and the final disaggregation to 
infinity (x = 3) at about 4 1010 years. 

2. The Hubble parameter H = a´(t)/a(t). If we divide the expression (43) by the 
expression (42) we get for H   

 H = 2/x(3-x)   (44) 

The following figure 3 gives the graph of this expression: 
 

 
Fig. 3. The Hubble parameter H in terms of age x. We see again the initial inflation (x=0) and 
the final (x=3) disaggregation given by the two vertical asymptotes. 

3. The acceleration of the expansion a´´(t). Differentiating once more the expression 
(43) we get for the acceleration of the expansion of the universe 

 a´´ = - 8/3 (1/2x)4/3 (1/(3-x))5/3 + 20/3 (1/2x)1/3 (1/(3-x))8/3      (45) 

 
Small-Bang versus Big-Bang Cosmology 395 

 
Fig. 4. The acceleration of the expansion of the universe  is seen here again with two vertical 
asymptotes. Close to the origin the negative acceleration suggests the action of gravitation 
balancing the inflation phase. After half of the present age of the universe we see a positive 
acceleration, growing, and due to the pushing force that grows with the increasing size of 
the universe.  

4. The deceleration parameter  

 q= - a´´(t) a(t)/ a´(t)2 = 0.5 – x     (46) 

 

 

 q = 0.5 – x                                          (46) 

Fig. 5. The deceleration parameter. Using the expressions (42, (43) and (45) that define q 
gives back the original function assumed for q in (35).  
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