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Preface

The discrete wavelet transform (DWT) has an established role in multi-scale
processing of biomedical signals, such as EMG and EEG. Since DWT algorithms
provide both octave-scale frequency and spatial timing of the analyzed signal. Hence,
DWTs are constantly used to solve and treat more and more advanced problems. The
DWT algorithms were initially based on the compactly supported conjugate
quadrature filters (CQFs). However, a drawback in CQFs is due to the nonlinear phase
effects such as spatial dislocations in multi-scale analysis. This is avoided in
biorthogonal discrete wavelet transform (BDWT) algorithms, where the scaling and
wavelet filters are symmetric and linear phase. The biorthogonal filters are usually
constructed by a ladder-type network called lifting scheme. Efficient lifting BDWT
structures have been developed for microprocessor and VLSI environment. Only
integer register shifts and summations are needed for implementation of the analysis
and synthesis filters. In many systems BDWT-based data and image processing tools
have outperformed the conventional discrete cosine transform (DCT) -based
approaches. For example, in JPEG2000 Standard the DCT has been replaced by the
lifting BDWT.

A difficulty in multi-scale DWT analyses is the dependency of the total energy of the
wavelet coefficients in different scales on the fractional shifts of the analysed signal.
This has led to the development of the complex shift invariant DWT algorithms, the
real and imaginary parts of the complex wavelet coefficients are approximately a
Hilbert transform pair. The energy of the wavelet coefficients equals the envelope,
which provides shift-invariance. In two parallel CQF banks, which are constructed so
that the impulse responses of the scaling filters have half-sample delayed versions of
each other, the corresponding wavelet bases are a Hilbert transform pair. However,
the CQF wavelets do not have coefficient symmetry and the nonlinearity disturbs the
spatial timing in different scales and prevents accurate statistical analyses. Therefore
the current developments in theory and applications of shift invariant DWT
algorithms are concentrated on the dual-tree BDWT structures. The dual-tree BDWTs
have appeared to outperform the real-valued BDWTs in several applications such as
denoising, texture analysis, speech recognition, processing of seismic signals and
multiscale-analysis of neuroelectric signals.
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Preface

This book reviews the recent progress in DWT algorithms for biomedical applications.
The book covers a wide range of architectures (e.g. lifting, shift invariance, multi-scale
analysis) for constructing DWTs. The book chapters are organized into four major
parts. Part I describes the progress in implementations of the DWT algorithms in
biomedical signal analysis. Applications include compression and filtering of
biomedical signals, DWT based selection of salient EEG frequency band, shift
invariant DWTs for multiscale analysis and DWT assisted heart sound analysis. Part II
addresses speech analysis, modeling and understanding of speech and speaker
recognition. Part III focuses biosensor applications such as calibration of enzymatic
sensors, multiscale analysis of wireless capsule endoscopy recordings, DWT assisted
electronic nose analysis and optical fibre sensor analyses. Finally, Part IV describes
DWT algorithms for tools in identification and diagnostics: identification based on
hand geometry, identification of species groupings, object detection and tracking,
DWT signatures and diagnostics for assessment of ICU agitation-sedation controllers
and DWT based diagnostics of power transformers.

The chapters of the present book consist of both tutorial and highly advanced material.
Therefore, the book is intended to be a reference text for graduate students and
researchers to obtain state-of-the-art knowledge on specific applications. The editor is
greatly indebted to all co-authors for giving their valuable time and expertise in
constructing this book. The technical editors are also acknowledged for their tedious
support and help.

Hannu Olkkonen, Professor
University of Eastern Finland,
Department of Applied Physics
Kuopio,

Finland
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Biomedical Signal Analysis






Biomedical Applications of
the Discrete Wavelet Transform

Raquel Cervigén
Universidad de Castilla-La Mancha
Spain

1. Introduction

In eighties wavelets came up as the time-frequency revolution in signal processing. In 1989
Mallat proposed the fast Discrete Wavelet Transform (DWT) algorithm to decompose a signal
using a set of quadrature mirror decomposition filters, and which have respective band-pass
and low-pass properties specific to each mother wavelet (Mallat, 1999). Since this period
Wavelets have been applied in a variety of fields including fluid dynamics, engineering,
finance geophysics, study of musical tones, image compressionand de-noising just to name
few. In addition, it has been extensively used in medicine because of the irregularities inherent
to biological signals.

In the discrete wavelet analysis the information stored in the wavelets coefficient is not
repeated, it allows the complete regeneration of the original signal without redundancy.
This property has motivated much of the effort for development of wavelet-based signal
compression algorithms, particularly for ECG signals compression techniques are important
to enlarge storage capacity an improve methods of ECG data transmission. DWT
removes redundancy in the signal and provides a high compression ratio and high quality
reconstruction of ECG signal.

The bioelectric signals contain noise originated by devices or interference of the network
that hardly can be eliminated by conventional analogous filters. DWT is a technique to
filtrate signals with low distortion to eliminate noise. This process can be applied to different
physiology signals, where signals with additive noise are decomposed using the DWT
and a threshold is applied to each of the detail coefficient levels. All coefficients with an
absolute value greater than the threshold are thought to be part of information and those
below the threshold are presumably derived from noise. The noise coefficients can be set
to zero and a noise-free signal can then be reconstructed and used for signal detection.
Recently, several wavelet-based methods have been used for unsupervised de-noising and
detection of data with low signal-to-noise ratio. In particular, DWT has been applied in the
quantification of human sympathetic nerve signal activity to discriminate action potentials.
Wavelet decomposition effectively filters the nerve signal into several frequency sub-bands
while preserving its temporal structure. Each sub-band of wavelet processing decorrelates
successive noise-related values and compares progressively more dilated versions of a general
spike shape to each point in the signal. This process can make easier the detection of action
potentials by separating the signal and noise using their distinct time-frequency signatures.
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Discrete Wavelet analysis corresponds to windowing in a new coordinate system, in which
space and frequency are simultaneously localized; this property can be helpful in pattern
extraction. Wavelets as an alternative tool to analyze non-stationary signal have been applied
to ECG delination, to detect accurately the different waves forming the entire cardiac cycle,
especially in areas of limited perfomance of of current techniques like QT and ST intervals, P
and T-wave recognition, and to clasify ECG waves in different cardiopatologies, identifying
ECG waveforms from different arrhythmias, or discriminating between normal and anormal
cardiac pattern. In addition, DWT is able to detect specific detailed time-frequency
components of ECG signal, for instance, the registers which are sensitive to transient ischemia
and eventual restoration of electrohysiological funtion of the myocardial tissue. Moreover,
methods for analysing heart rate variability using wavelet transform can be used to detect
transient changes without losing frequency information. Several authors have successfully
demonstrated the utility of the DWT in time-varying spectral analysis of heart-rate variability
during dynamic cardiovascular stimulation.

2. Discrete Wavelet Transform

DWT is a fast algorithm for machine computation, like the Fast Fourier Transform (FFT), it
is linear operation that operates on a data vector, transforming it into a numerically different
vector of the same length. Also like the FFT, the DWT is invertible and orthonormal. In the
FFT, the basis functions are sines and cosines. In the DWT, they are hierarchical set of “wavelet
functions” that satisfy certain mathematical criteria (Daubechies, 1992; Mallat, 1989b) and are
all translations and scalings of each other.

There is an even faster family of algorithms based on a completely different idea, namely
that of multiresolution analysis, or MRA (Mallat, 1989a), then the whole construction may
be transcripted into a pair of quadrature mirror filters, defined from the underlying wavelet
function, and both are applied to the signal and down-sampled by a factor of two. This process
splits the signal into two component, each of half the original length, with one containing
the low-frequency or “smooth” information and the other the high-frequency or “difference”
information. The process is performed again on the smooth component, breaking it up into
“low-low” and “high-low” components and it is repeated several times.

DWT achieves a multiresolution decomposition of x, on | octaves labelled by j = 1,...,].
It is precisely this requirement for a multresolution-hence hierarchical- structure that makes
fast computation possible. The requirement for a multiresolution computation can be stated
as follows: Given some signal, at scale j, one decomposes it in a sum or details, at scale j + 1
(the true wavelet coefficients), plus some residual, representing the signal at resolution j + 1
(twice as coarse). A further analysis at coarser scales involves only the residual.

Consider two filter impulse responses g(1) (corresponding to some low-pass interpolating
filter-the scaling function) and h(n) (corresponding to some a high-pass filter-the discrete
wavelet) (eq. 1 and 2). The downsampled outputs of first low-pass and high-pass filters
provide the approximation, and the detail, respectively. The first approximation is further
decomposed and this process is continued until all wavelet coefficients are determined.

hjt1(n) = ;hj(k)g[n — 2k] M

gjr1(n) = ;gj(k)h[” — 2] )
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The wavelets and scaling sequences are obtained iteratively as i.e., one goes from one octave
j to the next (j + 1) by applying the interpolation operator

fln) = ;f(n)g(” —2k) ®)

Which should be thought of as the discrete equivalent to the dilation f(t) — 271/2f(t/2).
Consider, for example, the computation of wavelet coefficients c;, for a fixed j, the coefficient
is the result of filtering the input signal by /;(1) and decimating the output by the suppression

of one every 2/th sample. Now the z-transform of filter hj(n) can be easily deduced from
equation 1, which reads H;,1(z) = H]-(zz)G(z) in z-transform notation. We obtain:

Hi1(2) = G(2)G(z) ... Gz ) H() @
and similarly for g;(n),

Gj41(2) = G(2)G(22) ... G(z?) 5)

The computations of a DWT are easily reorganized in form of binary tree, where the
decomposition may also be truncated at any level of the process before an average signal
of length of one sample is reached. In any event, the dyadic DWT consists of the set of detail
signals generated at each level of the transform, together with the average signal generated at
the highest level (shortest length signals) of the transform.

A remarkable feature of many useful wavelet transforms, is that they obey a perfect
reconstruction theorem. That is the dyadic DWT may be inverted to recover the original
signal exactly. The inversion process is carried out first by upsampling (or expanding) the
highest level detail and average signals. Upsampling is carried out by inserting zeros between
samples of the signal to be upsampled. Then, the upsampled average and detail signals are
run through synthesis filters and added together. The sum signal is the average signal for
the next lowest level of the wavelet transform. This process is carried out at each lower level
until the original signal is recovered at the lowest level as the zero level average signal (Kaiser,
1994; Mallat, 1998; Strang & Nguyen, 1997).

The computed wavelet coefficients provide a compact representation that shows the energy
distribution of the signal in time and frequency. We assume that the signals are stationary
within each short segment in time. Thus within the segment, the variance of the wavelet
transform wx(t) and the wavelet function ¢(¢) can be considered as a value unrated to ¢,
written as,

Elxp())* = E[(xx )2 ()] = 0 (6)
And in the frequency domain,
1 (o]
= [ Su@lp(w)Pdw @)

Furthermore, the spectral components of interest may be located anywhere in the frequency
axis, even in the neighborhood of the cross-point between two adjacent frequency bands.
At this location, the spectral component is assigned with a small gain signalling, and low
detection sensitivity. This problem can be approached by considering the cross-correlation
between wx;(t) and wx;j1(t), Rwxj, wxj;1 = Elwx;(t + 1)wx;;1(t)] and the autocorrelation
of the signal.
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3. Discrete Wavelet Transform in biomedical research

Wavelet Transform has been proposed as an alternative way to analyze the non-stationary
biomedical signals, which expands the signal onto the basis functions. The wavelet method
act as a mathematical microscope in which we can observe different parts of the signal by just
adjusting the focus.

A conventional application of wavelet methods to processing of a medical waveform uses
a wavelet transform based on the application of a single wavelet, rather than a basis set
constructed from a family of mathematically related wavelets. Again, the choice of a wavelet
with appropriate morphological characteristics relative to the physiological signal under
consideration is crucial to the success of the application. In the following sections will be
introduced different uses of DWT in cardiology research, with interesting applications such
as de-noising and compression of medical signals, electrocardiogram (ECG) segmentation and
feature extraction, analysis of heart rhythm variability, and the analysis of different cardiac
arrhythmias.

4. Signal compression

The compressibility of a sampled signal is the radio of the total area of time-frequency plane
(N, for a signal sampled at N) divides by the total area of the information cells. It is possible
to automatically analyze signals by expanding them in the best basis, then drawing the
corresponding time-frequency plane representation.

The DWT is both “complete” and has “zero redundancy”, which means that all the signal
information is contained in the resulting transform and none is duplicated between transform
coefficients. By converting the signal into its DWT coefficients and then removing all except
those containing the most pertinent signal information, the resulting transform is much
smaller in size, which provides a good way of compressing a signal. Performing an “inverse
transform” on the remaining components recreates a signal that very nearly matches the
original. This is the basis of compression algorithms that can be applied to biomedical images
and signals, such as in the development of effective ECG data compression. Increasing use of
computerized ECG processing systems requires effective ECG data compression techniques
which aim to enlarge storage capacity and improve methods of ECG data transmission over
internet lines. Moreover ECG signals are collected both over long periods of time and at
high resolution. This creates substantial volumes of data for storage and transmission. The
fundamental reason that ECG compression is regarded as a difficult problem is that the
ECG waveform contains clinically significant information on a wide variety of time scales.
Data compression seeks to reduce the number of bits of information required to store or
transmit digitized ECG signals without significant loss of signal quality. Moreover, some ECG
compression algorithms have been used only for strictly limited diagnostic objectives, as in
Holter monitors. Another objective is to develop a high-fidelity compression algorithm that
would not impair later physician diagnoses.

An early paper suggested the wavelet transform as a method for compressing both ECG and
heart rate variability data sets (Crowe et al., 1992). Thakor et al. compared two methods
of data reduction on a dyadic scale for normal and abnormal cardiac rhythms, detailing
the errors associated with increasing data reduction ratios (Thakor et al., 1993). Using
DWT and Daubechies D10 wavelets, Chen et al. compressed ECG data sets resulting in
compression ratios up to 22.9:1 while retaining clinically acceptable signal quality, with an
adaptive quantization strategy which allows a predetermined desired signal quality to be
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achieved (Chen & Itoh, 1998). Miaou et al. (Miaou & Larn, 2000) also propose a quality driven
compression methodology based on Daubechies wavelets and later on biorthogonal wavelets
(Miaou & Lin, 2002), this algorithm adopts the set partitioning of hierarchical tree (SPIHT)
coding strategy.

5. Wavelet Transform based filtering “De-noising”

The noise present in the signal can be removed by applying the wavelet shrinkage de-noising
method while preserving the signal characteristics, regardless of its frequency content.
Wavelets have the added advantage that the resulting expansions are orthogonal or energy
preserving, allowing to compare an adapted expansion to signals in order to minimize
the cost of representation. Such adapted decompositions perform compression and
analysis simultaneously. It is possible to design an idealized graphical presentation of the
time-frequency information obtained by such a best adapted wavelet analysis, and for such
presentation is possible to recognize and extract transient features. The small components
in the analysis may be treated as noise and discarded, where an iterative algorithm always
produces the best decomposition, at the cost of many more iterations plus more work for
each iteration. Mallat’s stopping criterion is to test the amplitude ratio of successive extracted
amplitudes; this is a method of recognizing residuums which have the statistics of random
noise.

Consider the standard univariate regression: y; = f(x;) + €;, where i = 1,...,n, and ¢; are
independent N(0,¢?) random variables; and f is the “true” function. We can reformulate
the problem in terms of wavelet coefficients: @y = wj + €j , where j is the level (j =

0,..,j —1), and k, the displacement (k = O,...,2j). It is often reasonable to assume that
only a few large coefficients contain information about the underlying function, while small
coefficients can be attributed to noise. Shrinkage consists in attenuating or eliminating the
smaller wavelet coefficients and reconstructing the profile using mainly the most significant
wavelet coefficients and all the scaling coefficients. Several shrinkage approaches have been
proposed. For example, the “hard” threshold approach selects coefficients using a keep or
kill policy, nevertheless using “soft” thresholding, if the magnitude of the wavelet coefficient
is greater than (less than, respectively) the threshold, the coefficient is shrunk toward zero
by an amount that depends on how large the magnitude of the coefficient is (set to zero,
respectively). Donoho and Johnstone proposed the “universal” threshold, A = ¢/2logn, and
showed that it performs very well in both hard and soft thresholding. Thresholds can also
be chosen based on the data using a hypothesis testing procedure (Alshamali & Al-Fahoum,
2003; Donoho & Johnstone, 1994). Data-adaptive thresholds might become very important in
analyzing molecular biological data because hypothesis testing procedures can be used to test
the appropriateness of various thresholds to the data under different biological assumptions
(Lio, 2003). Finally, it is worth mentioning that several authors have proposed Bayesian
thresholds and have reported interesting results (Abramovich et al., 2009).

This evolution in electrocardiographic start with the algorithms for noise reduction in ECG
signals using the dyadic wavelet transform with wavelet-based and wavelet packet-based
thresholding methods for removing noise from the ECG (Kishimoto et al., 1995; Tikkanen,
1999).

More recently, Nikolaev et al have suppressed electromyogram (EMG) noise in the ECG using
a method incorporating wavelet transform domain Wiener filtering (Nikolaev et al., 2001), this
method resulted in an improvement in signal-to-noise ratio of more than 10 dB.
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In addition, the non-invasive blood pressure artifact removal algorithm makes use of DWT.
The system used in most patient monitors measures the small fluctuations in pressure in a
blood pressure cuff (applied to one of the patient’s limbs) to obtain a determination of the
patient’s systolic and diastolic pressure. Usually the mean arterial pressure and pulse rate
are obtained as well. These pressure fluctuations are usually termed “oscillometric pulses”
(Geddes & Badylak, 1991). The wavelet-based artifact elimination algorithm is based on
the observation that the dyadic DWT puts the physiologic oscillometric waveform in a very
different region of the transform plane than the signal components attributable to artifact. The
modified DWT may then be inverted to yield a reconstruction of the oscillometric signal with
artifact substantially reduced. The reconstructed oscillometric signal may then be used as an
input to a pressure determination algorithm in the usual way for the measurement of desired
patient pressure values.

6. ECG signal parameter extraction

The ECG registers a measure of the electrical activity associated with the heart. The ECG is
measured at the body surface and results from electrical changes associated with activation
first of the two small heart chambers, the atria, and then of the two larger heart chambers,
the ventricles. The contraction of the atria manifests itself as the P wave in the ECG
and contraction of the ventricles produces the feature known as the QRS complex. The
subsequent return of the ventricular mass to a rest state repolarization produces the T wave.
Repolarization of the atria is, however, hidden within the dominant QRS complex. Analysis
of the local morphology of the ECG signal and its time varying properties has produced a
variety of clinical diagnostic tools.

To use ECG signals as identity verification, a real-time detection of the ECG characteristics
is needed. With the real-time extraction of ECG characteristics, we could verify different
individual. The basic objects of the analysis are a P-wave, a QRS-complex, a T-wave, a P-Q
interval, a S-T segment, and a Q-T interval (see Fig. 1).

Isoelectric
Segment ;
PR Interval QRS. g Line
Duration
< -
QT Interval

Fig. 1. Normal ECG delineation

Producing an algorithm for the detection of the P wave, QRS complex and T wave in an ECG
is a difficult problem due to the time varying morphology of the signal subject to physiological
conditions, moreover the localization of wave onsets and ends is much more difficult, as
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the signal amplitude is low at the wave boundaries and the noise level can be higher than
the signal itself. A number of wavelet-based techniques have been proposed to detect these
features. Senhadji et al (1995) compared the ability of three different wavelets transforms
(Daubechies, spline and Morlet) to recognize and describe isolated cardiac beats (Senhadji &
Wendling, 2002). Sahambi et al. employed a first-order derivative of the Gaussian function as
the wavelet for the characterization of ECG waveforms (Sahambi et al., 1997a;b). Moreover,
wavelet-based QRS detection methods have been suggested by a variety of groups including
Li et al (1995) who proposed a method based on finding the modulus maxima larger than a
threshold obtained from the pre-processing of preselected initial beats, this threshold can be
updated during the analysis to obtain a better performance (Li et al., 1995).

Kadambe et al. have described an algorithm which finds the local maxima of two consecutive
dyadic wavelet scales, and compared them in order to classify local maxima produced by R
waves and by noise. Kadambe et al. report a sensitivity of 96.84% and a positive predictive
value of 95.20% when tested on a limited data set (four 30 min tapes acquired from the
American Heart Association (AHA) database) (Kadambe et al., 1999). Other work has been
undertaken by Park et al (1998) using a wavelet adaptive filter to minimize the distortion
of the ST-segment due to baseline wanderings. In a subsequent paper by Park et al (2001),
a wavelet interpolation filter (WAF) is described for the removal of motion artefacts in the
ST-segment of stress ECGs (Park et al., 2001). Furthermore, Martinez et al (2004) also utilize
the algorithm of Li et al applying a dyadic wavelet transform to a robust ECG delineation
system which identifies the peaks, onsets and of