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The discrete wavelet transform (DWT) algorithms have a firm position in processing 
of signals in several areas of research and industry. As DWT provides both octave-scale 

frequency and spatial timing of the analyzed signal, it is constantly used to solve and 
treat more and more advanced problems. The present book: Discrete Wavelet Transforms 

- Biomedical Applications reviews the recent progress in discrete wavelet transform 
algorithms and applications. The book reviews the recent progress in DWT algorithms 
for biomedical applications. The book covers a wide range of architectures (e.g. lifting, 
shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are 

organized into four major parts. Part I describes the progress in implementations of the 
DWT algorithms in biomedical signal analysis. Applications include compression and 

filtering of biomedical signals, DWT based selection of salient EEG frequency band, shift 
invariant DWTs for multiscale analysis and DWT assisted heart sound analysis. Part II 

addresses speech analysis, modeling and understanding of speech and speaker recognition. 
Part III focuses biosensor applications such as calibration of enzymatic sensors, multiscale 
analysis of wireless capsule endoscopy recordings, DWT assisted electronic nose analysis 
and optical fibre sensor analyses. Finally, Part IV describes DWT algorithms for tools in 
identification and diagnostics: identification based on hand geometry, identification of 
species groupings, object detection and tracking, DWT signatures and diagnostics for 
assessment of ICU agitation-sedation controllers and DWT based diagnostics of power 

transformers.The chapters of the present book consist of both tutorial and highly advanced 
material. Therefore, the book is intended to be a reference text for graduate students and 

researchers to obtain state-of-the-art knowledge on specific applications.
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Preface 

The discrete wavelet transform (DWT) has an established role in multi-scale 
processing of biomedical signals, such as EMG and EEG. Since DWT algorithms 
provide both octave-scale frequency and spatial timing of the analyzed signal. Hence, 
DWTs are constantly used to solve and treat more and more advanced problems.  The 
DWT algorithms were initially based on the compactly supported conjugate 
quadrature filters (CQFs). However, a drawback in CQFs is due to the nonlinear phase 
effects such as spatial dislocations in multi-scale analysis. This is avoided in 
biorthogonal discrete wavelet transform (BDWT) algorithms, where the scaling and 
wavelet filters are symmetric and linear phase. The biorthogonal filters are usually 
constructed by a ladder-type network called lifting scheme. Efficient lifting BDWT 
structures have been developed for microprocessor and VLSI environment. Only 
integer register shifts and summations are needed for implementation of the analysis 
and synthesis filters. In many systems BDWT-based data and image processing tools 
have outperformed the conventional discrete cosine transform (DCT) -based 
approaches. For example, in JPEG2000 Standard the DCT has been replaced by the 
lifting BDWT. 

A difficulty in multi-scale DWT analyses is the dependency of the total energy of the 
wavelet coefficients in different scales on the fractional shifts of the analysed signal. 
This has led to the development of the complex shift invariant DWT algorithms, the 
real and imaginary parts of the complex wavelet coefficients are approximately a 
Hilbert transform pair. The energy of the wavelet coefficients equals the envelope, 
which provides shift-invariance. In two parallel CQF banks, which are constructed so 
that the impulse responses of the scaling filters have half-sample delayed versions of 
each other, the corresponding wavelet bases are a Hilbert transform pair. However, 
the CQF wavelets do not have coefficient symmetry and the nonlinearity disturbs the 
spatial timing in different scales and prevents accurate statistical analyses. Therefore 
the current developments in theory and applications of shift invariant DWT 
algorithms are concentrated on the dual-tree BDWT structures. The dual-tree BDWTs 
have appeared to outperform the real-valued BDWTs in several applications such as 
denoising, texture analysis, speech recognition, processing of seismic signals and 
multiscale-analysis of neuroelectric signals.  



XII Preface

This book reviews the recent progress in DWT algorithms for biomedical applications. 
The book covers a wide range of architectures (e.g. lifting, shift invariance, multi-scale 
analysis) for constructing DWTs. The book chapters are organized into four major 
parts. Part I describes the progress in implementations of the DWT algorithms in 
biomedical signal analysis. Applications include compression and filtering of 
biomedical signals, DWT based selection of salient EEG frequency band, shift 
invariant DWTs for multiscale analysis and DWT assisted heart sound analysis. Part II 
addresses speech analysis, modeling and understanding of speech and speaker 
recognition. Part III focuses biosensor applications such as calibration of enzymatic 
sensors, multiscale analysis of wireless capsule endoscopy recordings, DWT assisted 
electronic nose analysis and optical fibre sensor analyses. Finally, Part IV describes 
DWT algorithms for tools in identification and diagnostics: identification based on 
hand geometry, identification of species groupings, object detection and tracking, 
DWT signatures and diagnostics for assessment of ICU agitation-sedation controllers 
and DWT based diagnostics of power transformers. 

The chapters of the present book consist of both tutorial and highly advanced material. 
Therefore, the book is intended to be a reference text for graduate students and 
researchers to obtain state-of-the-art knowledge on specific applications. The editor is 
greatly indebted to all co-authors for giving their valuable time and expertise in 
constructing this book. The technical editors are also acknowledged for their tedious 
support and help. 

Hannu Olkkonen, Professor 
 University of Eastern Finland,  

Department of Applied Physics 
Kuopio,  
Finland 
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Biomedical Applications of
the Discrete Wavelet Transform

Raquel Cervigón
Universidad de Castilla-La Mancha

Spain

1. Introduction

In eighties wavelets came up as the time-frequency revolution in signal processing. In 1989
Mallat proposed the fast Discrete Wavelet Transform (DWT) algorithm to decompose a signal
using a set of quadrature mirror decomposition filters, and which have respective band-pass
and low-pass properties specific to each mother wavelet (Mallat, 1999). Since this period
Wavelets have been applied in a variety of fields including fluid dynamics, engineering,
finance geophysics, study of musical tones, image compressionand de-noising just to name
few. In addition, it has been extensively used in medicine because of the irregularities inherent
to biological signals.
In the discrete wavelet analysis the information stored in the wavelets coefficient is not
repeated, it allows the complete regeneration of the original signal without redundancy.
This property has motivated much of the effort for development of wavelet-based signal
compression algorithms, particularly for ECG signals compression techniques are important
to enlarge storage capacity an improve methods of ECG data transmission. DWT
removes redundancy in the signal and provides a high compression ratio and high quality
reconstruction of ECG signal.
The bioelectric signals contain noise originated by devices or interference of the network
that hardly can be eliminated by conventional analogous filters. DWT is a technique to
filtrate signals with low distortion to eliminate noise. This process can be applied to different
physiology signals, where signals with additive noise are decomposed using the DWT
and a threshold is applied to each of the detail coefficient levels. All coefficients with an
absolute value greater than the threshold are thought to be part of information and those
below the threshold are presumably derived from noise. The noise coefficients can be set
to zero and a noise-free signal can then be reconstructed and used for signal detection.
Recently, several wavelet-based methods have been used for unsupervised de-noising and
detection of data with low signal-to-noise ratio. In particular, DWT has been applied in the
quantification of human sympathetic nerve signal activity to discriminate action potentials.
Wavelet decomposition effectively filters the nerve signal into several frequency sub-bands
while preserving its temporal structure. Each sub-band of wavelet processing decorrelates
successive noise-related values and compares progressively more dilated versions of a general
spike shape to each point in the signal. This process can make easier the detection of action
potentials by separating the signal and noise using their distinct time-frequency signatures.

1
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2 Discrete Wavelet Transforms

Discrete Wavelet analysis corresponds to windowing in a new coordinate system, in which
space and frequency are simultaneously localized; this property can be helpful in pattern
extraction. Wavelets as an alternative tool to analyze non-stationary signal have been applied
to ECG delination, to detect accurately the different waves forming the entire cardiac cycle,
especially in areas of limited perfomance of of current techniques like QT and ST intervals, P
and T-wave recognition, and to clasify ECG waves in different cardiopatologies, identifying
ECG waveforms from different arrhythmias, or discriminating between normal and anormal
cardiac pattern. In addition, DWT is able to detect specific detailed time-frequency
components of ECG signal, for instance, the registers which are sensitive to transient ischemia
and eventual restoration of electrohysiological funtion of the myocardial tissue. Moreover,
methods for analysing heart rate variability using wavelet transform can be used to detect
transient changes without losing frequency information. Several authors have successfully
demonstrated the utility of the DWT in time-varying spectral analysis of heart-rate variability
during dynamic cardiovascular stimulation.

2. Discrete Wavelet Transform

DWT is a fast algorithm for machine computation, like the Fast Fourier Transform (FFT), it
is linear operation that operates on a data vector, transforming it into a numerically different
vector of the same length. Also like the FFT, the DWT is invertible and orthonormal. In the
FFT, the basis functions are sines and cosines. In the DWT, they are hierarchical set of “wavelet
functions” that satisfy certain mathematical criteria (Daubechies, 1992; Mallat, 1989b) and are
all translations and scalings of each other.
There is an even faster family of algorithms based on a completely different idea, namely
that of multiresolution analysis, or MRA (Mallat, 1989a), then the whole construction may
be transcripted into a pair of quadrature mirror filters, defined from the underlying wavelet
function, and both are applied to the signal and down-sampled by a factor of two. This process
splits the signal into two component, each of half the original length, with one containing
the low-frequency or “smooth” information and the other the high-frequency or “difference”
information. The process is performed again on the smooth component, breaking it up into
“low-low” and “high-low” components and it is repeated several times.
DWT achieves a multiresolution decomposition of xn on J octaves labelled by j = 1, . . . , J.
It is precisely this requirement for a multresolution-hence hierarchical- structure that makes
fast computation possible. The requirement for a multiresolution computation can be stated
as follows: Given some signal, at scale j, one decomposes it in a sum or details, at scale j + 1
(the true wavelet coefficients), plus some residual, representing the signal at resolution j + 1
(twice as coarse). A further analysis at coarser scales involves only the residual.
Consider two filter impulse responses g(n) (corresponding to some low-pass interpolating
filter-the scaling function) and h(n) (corresponding to some a high-pass filter-the discrete
wavelet) (eq. 1 and 2). The downsampled outputs of first low-pass and high-pass filters
provide the approximation, and the detail, respectively. The first approximation is further
decomposed and this process is continued until all wavelet coefficients are determined.

hj+1(n) = ∑
k

hj(k)g[n − 2k] (1)

gj+1(n) = ∑
k

gj(k)h[n − 2k] (2)

4 Discrete Wavelet Transforms - Biomedical Applications Biomedical Applications of
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The wavelets and scaling sequences are obtained iteratively as i.e., one goes from one octave
j to the next (j + 1) by applying the interpolation operator

f (n) → ∑
k

f (n)g(n − 2k) (3)

Which should be thought of as the discrete equivalent to the dilation f (t) → 2−1/2 f (t/2).
Consider, for example, the computation of wavelet coefficients cj,k, for a fixed j, the coefficient
is the result of filtering the input signal by hj(n) and decimating the output by the suppression
of one every 2jth sample. Now the z-transform of filter hj(n) can be easily deduced from
equation 1, which reads Hj+1(z) = Hj(z2)G(z) in z-transform notation. We obtain:

Hj+1(z) = G(z)G(z2) . . . G(z2 j−1
)H(z2 j

) (4)

and similarly for gj(n),

Gj+1(z) = G(z)G(z2) . . . G(z2 j
) (5)

The computations of a DWT are easily reorganized in form of binary tree, where the
decomposition may also be truncated at any level of the process before an average signal
of length of one sample is reached. In any event, the dyadic DWT consists of the set of detail
signals generated at each level of the transform, together with the average signal generated at
the highest level (shortest length signals) of the transform.
A remarkable feature of many useful wavelet transforms, is that they obey a perfect
reconstruction theorem. That is the dyadic DWT may be inverted to recover the original
signal exactly. The inversion process is carried out first by upsampling (or expanding) the
highest level detail and average signals. Upsampling is carried out by inserting zeros between
samples of the signal to be upsampled. Then, the upsampled average and detail signals are
run through synthesis filters and added together. The sum signal is the average signal for
the next lowest level of the wavelet transform. This process is carried out at each lower level
until the original signal is recovered at the lowest level as the zero level average signal (Kaiser,
1994; Mallat, 1998; Strang & Nguyen, 1997).
The computed wavelet coefficients provide a compact representation that shows the energy
distribution of the signal in time and frequency. We assume that the signals are stationary
within each short segment in time. Thus within the segment, the variance of the wavelet
transform wx(t) and the wavelet function ψ(t) can be considered as a value unrated to t,
written as,

E[xψ(t)]2 = E[(x ∗ ψ)2(t)] = σ2
x (6)

And in the frequency domain,

σ2
x =

1
2π

∫ ∞

−∞
Sx(ω)|ψ(ω)|2dω (7)

Furthermore, the spectral components of interest may be located anywhere in the frequency
axis, even in the neighborhood of the cross-point between two adjacent frequency bands.
At this location, the spectral component is assigned with a small gain signalling, and low
detection sensitivity. This problem can be approached by considering the cross-correlation
between wxj(t) and wxj+1(t), Rwxj, wxj+1 = E[wxj(t + 1)wxj+1(t)] and the autocorrelation
of the signal.

5Biomedical Applications of the Discrete Wavelet Transform
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−∞
Sx(ω)|ψ(ω)|2dω (7)

Furthermore, the spectral components of interest may be located anywhere in the frequency
axis, even in the neighborhood of the cross-point between two adjacent frequency bands.
At this location, the spectral component is assigned with a small gain signalling, and low
detection sensitivity. This problem can be approached by considering the cross-correlation
between wxj(t) and wxj+1(t), Rwxj, wxj+1 = E[wxj(t + 1)wxj+1(t)] and the autocorrelation
of the signal.
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4 Discrete Wavelet Transforms

3. Discrete Wavelet Transform in biomedical research

Wavelet Transform has been proposed as an alternative way to analyze the non-stationary
biomedical signals, which expands the signal onto the basis functions. The wavelet method
act as a mathematical microscope in which we can observe different parts of the signal by just
adjusting the focus.
A conventional application of wavelet methods to processing of a medical waveform uses
a wavelet transform based on the application of a single wavelet, rather than a basis set
constructed from a family of mathematically related wavelets. Again, the choice of a wavelet
with appropriate morphological characteristics relative to the physiological signal under
consideration is crucial to the success of the application. In the following sections will be
introduced different uses of DWT in cardiology research, with interesting applications such
as de-noising and compression of medical signals, electrocardiogram (ECG) segmentation and
feature extraction, analysis of heart rhythm variability, and the analysis of different cardiac
arrhythmias.

4. Signal compression

The compressibility of a sampled signal is the radio of the total area of time-frequency plane
(N, for a signal sampled at N) divides by the total area of the information cells. It is possible
to automatically analyze signals by expanding them in the best basis, then drawing the
corresponding time-frequency plane representation.
The DWT is both “complete” and has “zero redundancy”, which means that all the signal
information is contained in the resulting transform and none is duplicated between transform
coefficients. By converting the signal into its DWT coefficients and then removing all except
those containing the most pertinent signal information, the resulting transform is much
smaller in size, which provides a good way of compressing a signal. Performing an “inverse
transform” on the remaining components recreates a signal that very nearly matches the
original. This is the basis of compression algorithms that can be applied to biomedical images
and signals, such as in the development of effective ECG data compression. Increasing use of
computerized ECG processing systems requires effective ECG data compression techniques
which aim to enlarge storage capacity and improve methods of ECG data transmission over
internet lines. Moreover ECG signals are collected both over long periods of time and at
high resolution. This creates substantial volumes of data for storage and transmission. The
fundamental reason that ECG compression is regarded as a difficult problem is that the
ECG waveform contains clinically significant information on a wide variety of time scales.
Data compression seeks to reduce the number of bits of information required to store or
transmit digitized ECG signals without significant loss of signal quality. Moreover, some ECG
compression algorithms have been used only for strictly limited diagnostic objectives, as in
Holter monitors. Another objective is to develop a high-fidelity compression algorithm that
would not impair later physician diagnoses.
An early paper suggested the wavelet transform as a method for compressing both ECG and
heart rate variability data sets (Crowe et al., 1992). Thakor et al. compared two methods
of data reduction on a dyadic scale for normal and abnormal cardiac rhythms, detailing
the errors associated with increasing data reduction ratios (Thakor et al., 1993). Using
DWT and Daubechies D10 wavelets, Chen et al. compressed ECG data sets resulting in
compression ratios up to 22.9:1 while retaining clinically acceptable signal quality, with an
adaptive quantization strategy which allows a predetermined desired signal quality to be
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achieved (Chen & Itoh, 1998). Miaou et al. (Miaou & Larn, 2000) also propose a quality driven
compression methodology based on Daubechies wavelets and later on biorthogonal wavelets
(Miaou & Lin, 2002), this algorithm adopts the set partitioning of hierarchical tree (SPIHT)
coding strategy.

5. Wavelet Transform based filtering “De-noising”

The noise present in the signal can be removed by applying the wavelet shrinkage de-noising
method while preserving the signal characteristics, regardless of its frequency content.
Wavelets have the added advantage that the resulting expansions are orthogonal or energy
preserving, allowing to compare an adapted expansion to signals in order to minimize
the cost of representation. Such adapted decompositions perform compression and
analysis simultaneously. It is possible to design an idealized graphical presentation of the
time-frequency information obtained by such a best adapted wavelet analysis, and for such
presentation is possible to recognize and extract transient features. The small components
in the analysis may be treated as noise and discarded, where an iterative algorithm always
produces the best decomposition, at the cost of many more iterations plus more work for
each iteration. Mallat’s stopping criterion is to test the amplitude ratio of successive extracted
amplitudes; this is a method of recognizing residuums which have the statistics of random
noise.
Consider the standard univariate regression: yi = f (xi) + �i, where i = 1, ..., n, and �i are
independent N(0, σ2) random variables; and f is the “true” function. We can reformulate
the problem in terms of wavelet coefficients: ŵjk = wjk + �jk , where j is the level (j =

0, ..., j − 1), and k, the displacement (k = 0, ..., 2j). It is often reasonable to assume that
only a few large coefficients contain information about the underlying function, while small
coefficients can be attributed to noise. Shrinkage consists in attenuating or eliminating the
smaller wavelet coefficients and reconstructing the profile using mainly the most significant
wavelet coefficients and all the scaling coefficients. Several shrinkage approaches have been
proposed. For example, the “hard” threshold approach selects coefficients using a keep or
kill policy, nevertheless using “soft” thresholding, if the magnitude of the wavelet coefficient
is greater than (less than, respectively) the threshold, the coefficient is shrunk toward zero
by an amount that depends on how large the magnitude of the coefficient is (set to zero,
respectively). Donoho and Johnstone proposed the “universal” threshold, λ = σ

√
2logn, and

showed that it performs very well in both hard and soft thresholding. Thresholds can also
be chosen based on the data using a hypothesis testing procedure (Alshamali & Al-Fahoum,
2003; Donoho & Johnstone, 1994). Data-adaptive thresholds might become very important in
analyzing molecular biological data because hypothesis testing procedures can be used to test
the appropriateness of various thresholds to the data under different biological assumptions
(Lio, 2003). Finally, it is worth mentioning that several authors have proposed Bayesian
thresholds and have reported interesting results (Abramovich et al., 2009).
This evolution in electrocardiographic start with the algorithms for noise reduction in ECG
signals using the dyadic wavelet transform with wavelet-based and wavelet packet-based
thresholding methods for removing noise from the ECG (Kishimoto et al., 1995; Tikkanen,
1999).
More recently, Nikolaev et al have suppressed electromyogram (EMG) noise in the ECG using
a method incorporating wavelet transform domain Wiener filtering (Nikolaev et al., 2001), this
method resulted in an improvement in signal-to-noise ratio of more than 10 dB.
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In addition, the non-invasive blood pressure artifact removal algorithm makes use of DWT.
The system used in most patient monitors measures the small fluctuations in pressure in a
blood pressure cuff (applied to one of the patient’s limbs) to obtain a determination of the
patient’s systolic and diastolic pressure. Usually the mean arterial pressure and pulse rate
are obtained as well. These pressure fluctuations are usually termed “oscillometric pulses”
(Geddes & Badylak, 1991). The wavelet-based artifact elimination algorithm is based on
the observation that the dyadic DWT puts the physiologic oscillometric waveform in a very
different region of the transform plane than the signal components attributable to artifact. The
modified DWT may then be inverted to yield a reconstruction of the oscillometric signal with
artifact substantially reduced. The reconstructed oscillometric signal may then be used as an
input to a pressure determination algorithm in the usual way for the measurement of desired
patient pressure values.

6. ECG signal parameter extraction

The ECG registers a measure of the electrical activity associated with the heart. The ECG is
measured at the body surface and results from electrical changes associated with activation
first of the two small heart chambers, the atria, and then of the two larger heart chambers,
the ventricles. The contraction of the atria manifests itself as the P wave in the ECG
and contraction of the ventricles produces the feature known as the QRS complex. The
subsequent return of the ventricular mass to a rest state repolarization produces the T wave.
Repolarization of the atria is, however, hidden within the dominant QRS complex. Analysis
of the local morphology of the ECG signal and its time varying properties has produced a
variety of clinical diagnostic tools.
To use ECG signals as identity verification, a real-time detection of the ECG characteristics
is needed. With the real-time extraction of ECG characteristics, we could verify different
individual. The basic objects of the analysis are a P-wave, a QRS-complex, a T-wave, a P-Q
interval, a S-T segment, and a Q-T interval (see Fig. 1).
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Fig. 1. Normal ECG delineation

Producing an algorithm for the detection of the P wave, QRS complex and T wave in an ECG
is a difficult problem due to the time varying morphology of the signal subject to physiological
conditions, moreover the localization of wave onsets and ends is much more difficult, as
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the signal amplitude is low at the wave boundaries and the noise level can be higher than
the signal itself. A number of wavelet-based techniques have been proposed to detect these
features. Senhadji et al (1995) compared the ability of three different wavelets transforms
(Daubechies, spline and Morlet) to recognize and describe isolated cardiac beats (Senhadji &
Wendling, 2002). Sahambi et al. employed a first-order derivative of the Gaussian function as
the wavelet for the characterization of ECG waveforms (Sahambi et al., 1997a;b). Moreover,
wavelet-based QRS detection methods have been suggested by a variety of groups including
Li et al (1995) who proposed a method based on finding the modulus maxima larger than a
threshold obtained from the pre-processing of preselected initial beats, this threshold can be
updated during the analysis to obtain a better performance (Li et al., 1995).
Kadambe et al. have described an algorithm which finds the local maxima of two consecutive
dyadic wavelet scales, and compared them in order to classify local maxima produced by R
waves and by noise. Kadambe et al. report a sensitivity of 96.84% and a positive predictive
value of 95.20% when tested on a limited data set (four 30 min tapes acquired from the
American Heart Association (AHA) database) (Kadambe et al., 1999). Other work has been
undertaken by Park et al (1998) using a wavelet adaptive filter to minimize the distortion
of the ST-segment due to baseline wanderings. In a subsequent paper by Park et al (2001),
a wavelet interpolation filter (WAF) is described for the removal of motion artefacts in the
ST-segment of stress ECGs (Park et al., 2001). Furthermore, Martinez et al (2004) also utilize
the algorithm of Li et al applying a dyadic wavelet transform to a robust ECG delineation
system which identifies the peaks, onsets and offsets of the QRS complexes, and P and T
waves. The QRS detector obtains a sensitivity and a positive predictivity of 99.8% in a very
well-known MIT-BIH Arrhythmia Database (Martinez et al., 2004).

7. Heart rate variability

Rather than consider the local morphology of the whole ECG signal, many researchers have
focused on the longer term temporal variability of the heartbeat, the analysis of which allows
an assessment of autonomous nervous system activity. The analysis of heart rate variability
(HRV) requires the sequence of timing intervals between beats, taken between each R point
on the QRS complex. This RR interval can be plotted against time to give the RR time
series. In normal practice, however, ectopic beats are removed from the RR series leaving
only normal sinus beats: the NN time series. It is this modified time series that is used
in the analysis of HRV. The minute fluctuations present in the NN intervals are used for
assessing the influence of the autonomic nervous system components on the heart rate. Long
range correlations and power law scaling have been found through the analysis of heartbeat
dynamics. The heart rate and rhythm is largely under the control of the autonomic nervous
system. Traditional spectral analysis of HRV has been reported to aid the understanding
of the modulatory effects of neural mechanisms on the sinus node. There are three main
spectral components in a traditional spectral calculation, they are generally classed as: very
low frequency (VLF) ranging from 0.003 to 0.04 Hz, low frequency (LF) ranging from 0.04
to 0.15 Hz and high frequency (HF) ranging from 0.15 to 0.4 Hz components. In addition,
sometimes an ultra low frequency (ULF) is defined as spectral components with frequencies
less than 0.003 Hz. The relative contribution of vagal and sympathetic modulation of the
heart rate is attributed to the distribution of spectral power in these bands. The most common
of the techniques rely on the accurate determination of the temporal location of the R wave
based on signal matched filters or time-frequency decomposition methods. Over recent years,
a number of groups have attempted to use wavelet-based methods to gain additional insight
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heart rate is attributed to the distribution of spectral power in these bands. The most common
of the techniques rely on the accurate determination of the temporal location of the R wave
based on signal matched filters or time-frequency decomposition methods. Over recent years,
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into the mechanisms controlling heart rate variability. The wavelet transform is partitioned
into the HF, LF and VLF regions whereby temporal-spectral characteristics of the surface may
then be investigated. Thurner et al have employed both Daubechies D10 and Haar wavelets
in the analysis of human heartbeat intervals. They found that, at distinct wavelet scales,
corresponding to the interval 16-32 heartbeats, the scale-dependent standard deviations of
the wavelet coefficients could differentiate between normal patients and those with heart
failure. Significantly, they report 100% accuracy for a standard 27 patient data set (Thurner
et al., 1998). Further development of the technique is detailed in subsequent papers (Heniford
et al., 1998; Seidensticker et al., 1998; Wiklund et al., 2011). Ivanov et al investigated the ECG
signals acquired from subjects with sleep apnea, by sampling at an a scale equivalent to 8
heartbeats, they performed a local smoothing of the high-frequency variations in the signal
in order to probe patterns of duration in the interval 30-60 s. The authors used the data to
characterize the nonstationary heartbeat behaviour and elucidate phase interactions (Ivanov
et al., 1996). Furthermore, this type of analysis has been applied to study myocardial ischemia,
where a method for analysing HRV signals using wavelet transform was applied to obtain
a time-scale representation for VLF, LF and HF bands using the orthogonal multiresolution
pyramidal algorithm. Comparing a normality zone against the ischaemic episode, it was
found a statistical significant increase in the LF and HF bands in the ischaemic episode,
this index can be useful for the assessment of dynamic changes and patterns of HRV during
myocardial ischaemia (Gamero et al., 2002).

8. Cardiac arrhythmias

A number of wavelet-based techniques have been proposed for the identification,
classification and analysis of arrhythmic ECG signals. In 1997, Govindan described an
algorithm for classifying bipolar electrograms from the right atrium of sheep into four groups:
normal sinus rhythm, atrial flutter, paroxysmal atrial fibrillation and chronic atrial fibrillation.
In this method, it was used a Daubechies D6 wavelet to preprocess the ECG data prior
to classification using an artificial neural network. They found paroxysmal AF the most
difficult to classify with a 77%± 9% average success rate and normal sinus rhythm the easiest,
achieving 94% ± 8% (Govindan et al., 1997). Using a raised cosine wavelet transform, Khadra
et al undertoke a preliminary investigation of three arrhythmias: ventricular fibrillation (VF),
ventricular tachycardia (VT) and atrial fibrillation (AF) Khadra et al. (1997), they developed
an algorithm based on the scale-dependent energy content of the wavelet decomposition
to classify the arrhythmias, distinguishing them from each other and normal sinus rhythm.
Zhang et al proposed a novel arrhythmia detection method, based on a wavelet network, for
use in implantable defibrillators, their system, originally developed as a model to identify
relationships between concurrent epicardial cell action potentials and bipolar electrogram,
detects the bifurcation point in the ECG where normal sinus rhythm degenerates into a
pathological arrhythmia (ventricular fibrillation) (Zhang et al., 1999). Al-Fahoum and Howitt
proposed a radial basis neural network for the automatic detection and classification of
arrhythmias which employs preprocessing of the ECG using the Daubechies D4 wavelet
transform, they reported 97.5% correct classification of arrhythmia from a dataset of 159
arrhythmia files from three different sources, with 100% correct classification for both
ventricular fibrillation and ventricular tachycardia (al Fahoum & Howitt, 1999). Moreover, it
has been already shown its potential for the detection of ventricular late potentials (Dickhaus
et al., 1994; Khadrea et al., 1993; Meste et al., 1994).
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Morlet et al presented a Morlet wavelet-based method for the discrimination of patients prone
to the onset of ventricular tachycardias (VTs), they found that the detection of strings of local
maxima of the wavelet transform vector at or after 98 ms after the QRS onset point was
a reasonable criterion for VT risk stratification in post-infarction patients. They reported
achieving 85% specificity at 90% sensitivity for their patient group (Morlet et al., 1993).
Englund et al studied the predictive value of wavelet decomposition of the signal averaged
ECG in identifying patients with hypertrophic cardiomyopathy at increased risk of malignant
ventricular arrhythmias or sudden death (Englund et al., 1998), wavelet analysis used in
their study was undertaken subsequent to signal averaging of the beats. Thus intermittent
local or transient aspects of the ECG can be lost to its interrogation. A later study by
this group evaluated a number of wavelet decomposition parameters for their potential for
risk stratification of patients with idiopathic dilated cardiomyopathy (Yi et al., 2000). They
found that wavelet analysis was superior to time domain analysis for identifying patients at
increased risk of clinical deterioration.
In addition, different wavelet analysis have been applied to Atrial fibrillation (AF). It is
the most frequently found sustained cardiac arrhythmia in clinical practice. It is the most
common cause of embolic stroke, and is associated with a doubling of overall mortality
and morbidity from cardiovascular disease (Benjamin et al., 1998; Kannel et al., 1982). AF
is characterized by an abnormal excitation of the atria, where the normal and regular atrial
activation is substituted by several coexisting wavefronts that continuously depolarize the
atrial cells (Allessie et al., 1995; Fuster et al., 2006). As a result, atrial activation is chaotic and
disorganized, and consequently the atria are not able to be contracted in a regular rhythm.
On the surface electrocardiogram (ECG), P waves are no longer visible, being replaced by
rapid oscillations or fibrillatory waves that vary in size, shape, and timing (Allessie et al.,
1995; Bollmann et al., 1999). The ventricular response depends on the electrophysiological
properties of the atrioventricular node, what results in an irregular and rapid ventricular
rhythm. Fig. 2 represents an example of normal sinus rhythm and AF episodes.
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Fig. 2. Examples of normal sinus rhythm and AF episodes.
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an algorithm based on the scale-dependent energy content of the wavelet decomposition
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Morlet et al presented a Morlet wavelet-based method for the discrimination of patients prone
to the onset of ventricular tachycardias (VTs), they found that the detection of strings of local
maxima of the wavelet transform vector at or after 98 ms after the QRS onset point was
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ventricular arrhythmias or sudden death (Englund et al., 1998), wavelet analysis used in
their study was undertaken subsequent to signal averaging of the beats. Thus intermittent
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activation is substituted by several coexisting wavefronts that continuously depolarize the
atrial cells (Allessie et al., 1995; Fuster et al., 2006). As a result, atrial activation is chaotic and
disorganized, and consequently the atria are not able to be contracted in a regular rhythm.
On the surface electrocardiogram (ECG), P waves are no longer visible, being replaced by
rapid oscillations or fibrillatory waves that vary in size, shape, and timing (Allessie et al.,
1995; Bollmann et al., 1999). The ventricular response depends on the electrophysiological
properties of the atrioventricular node, what results in an irregular and rapid ventricular
rhythm. Fig. 2 represents an example of normal sinus rhythm and AF episodes.
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Duverney et al have developed a combined wavelet transform-fractal analysis method for
the automatic detection of AF from heart rate intervals (Roche et al., 2002). After training
their method on healthy sinus rhythm and chronic AF ECGs, they achieved 96.1% sensitivity
and 92.6% specificity for discriminating AF episodes in paroxysmal AF. A technique for the
explanation of AF from within an ECG signal using a modulus maxima de-noising technique
(Addison et al., 2000), where the modulus maxima lines, at this scale with a high proportion
of the total energy within this scale are selected, are followed across scales and subtracted to
leave a residual signal associated with both system noise and, more importantly, atrial activity.
This time-frequency partitioning of the signal results in two components: one (1) containing
combined low and high frequency components that correspond to large scale features in the
signal, and a second (2) containing the remaining high frequency components that correspond
to small scale AF features and noise. In practice, most applications are concerned with signal
de-noising and hence the retention of component (1).
Furthermore, a study was conducted to analyze ECG signals from patients with persistent
AF in order to extract reliable parameters to predict early AF recurrence after successful
electrical cardioversion. The technique employed for ECG analysis was based on the wavelet
transform, which have been successfully employed to solve other ECG problems. DWT
analysis with biorthogonal family was applied, and the energy from different scales of detail
coefficients of the descomposition was evaluated, the wavelet coefficients output at each
subband may provide important information of the ECG signal, and they could be used
in combination with appropriate statistical analysis tools in order to predict the risk of AF
recurrence after successful electrical cardioversion. From this analysis, standard deviations
of the coefficients in each subband were obtained, but its significance was lower than the
cited parameter. The calculus of the ratio of the energy between different scales of the
decomposition resulted statistically significant, however its capacity of prediction resulted
lower than the continuous wavelet transform analysis, and the higher differences were
obtained in the variable energy (eq. 6) in relation to some detail coefficients and the ratio
between some scales of the decomposition (Cervigón et al., 2007). In addition, the effect of
anaesthetic agents in restoration rhythm procedures during AF has not been investigated.
It was evaluated the effects of a widely used anaesthetic agent (propofol) in the fibrillation
patterns. Intra-atrial recordings belong patients diagnosed with AF were analyzed “before”
(baseline) and “during” anaesthetic infusion. The goal of this study is to characterize the
variation in atrial properties along the atria in both states. The wavelet variance of a time
series on a scale by scale basis along the DWT decomposition, hence has considerable appeal
when physical phenomena are analyzed in terms of variations operating over a range of
different scales. As mother wavelet was used the haar wavelet and discrete wavelet transform
partitioned the variance of a signal over 7 scales. The proposed methodology provide an
additional approach to the understanding of the role of the anaesthetic, showing a decrease in
the variance inter-scales during the anaesthetic infusion in the right atrium, with the opposite
effect in the left atrium (i.e. a increase in the organization degree) (Cervigón et al., 2008).

9. Conclusions

Signal processing of the ECG has been already demonstrated its effectiveness to solve some
clinical problems. In that sense, wavelet transform has emerged over recent years as a
key time-frequency analysis and coding tool for the ECG. Indeed, its ability to localize
simultaneously local spectral and temporal information within a signal. In addition, the
fact that the wavelet transform exhibits different window sizes depending on the frequency
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band —broad at low frequencies and narrow at high frequencies— leads to an optimal
time-frequency resolution in all frequency ranges. The coefficients output by the wavelet
transform at each subband may provide important information of the ECG signal, and
they could be used in combination with appropriate statistical analysis tools in order to
predict different arrhythmias. It has been already shown its potential for feature extraction
and discrimination between normal and abnormal cardiac patterns, detection of ventricular
late potentials, characterization of beat-to-beat fluctuations in the heart rate under diverse
physiological conditions, study of cardias arrhytmias, such as he risk of AF recurrence after
successful electrical cardioversion etc.
In addition, its discrete form, the DWT provide the basis of powerful methodologies for
partitioning pertinent signal components which serve as a basis for potent compression
strategies.
The DWT has interesting mathematics and fits in with standard signal filtering and encoding
methodologies. It produces few coefficients, where it is possible to recover the original signal,
during the inverse transform process, without any loosing of energy. However, it exhibits
non-stationarity and coarse time-frequency resolution.
DWT analysis of different signals has made possible the identification of pertinent features
within the transform difficult, if not practically impossible. The non-stationarity of the DWT
can also cause problems in terms of repeatability and robustness of the analysis, unless it
particularly lends itself to an ensemble averaged method.
In conclusion, wavelet transform can be a helpful instrument to know more about the
mechanisms of biological structure, it has been shown that inside biomedical signals, such as
ECG signal contains hidden information that a tool such as wavelet transform could extract.
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1. Introduction  
Biomedical signals are a kind of signals that are measured from a specific part of the body, 
for example from the hearth (electrocardiography: ECG), muscles (electromyography: EMG) 
and brain (electroencephalography: EEG). This kind of signals have a no-stationary 
behavior, it means the behavior through the time is changing every time window.  For this 
reason, the pre-processing, processing, and analysis should be different of the deterministic 
and stationary signals. One of the methods used in the last years to examine biomedical 
signals is the Discrete Wavelet Transform (DWT), it represents both time and frequency the 
signal’s characteristics in a multi-resolution mode. 
In this chapter, we are going to present two applications of the DWT in biomedical signals, it 
known as filtering and compression.  When you have a device that measures the body’s 
signals, it is desired that the information stored or transmitted have high quality and low 
redundancy; this corresponds to apply a filter and compress the signal. These two blocks 
(filtering and compression) are added once the signal is acquired and processed by digital 
signal processing methods.  The goal of using the DWT in an algorithm of filtering and 
compression biomedical signals is the possibility of choosing the signal’s coefficients with a 
significant energy and discards the others that have a very low percentage of all energy. 
This is possible because in every level of decomposition, the energy of different frequencies 
and time position is related to a specific coefficient. 
In the first part, we present one model of filtering of biomedical signals based on Discrete 
Wavelet Transform. We analyze the different parameters in the model and its relation to the 
quality of the new signal.  Every parameter affects in low or high manner the quality of the 
filtered signal and we present the most common test to probe the signal's distortion when 
the coefficients with low energy have been removed.  Additionally, we present some results 
with one real EMG signal with different configuration of the parameters. 
In the second part, we extend the model of filtering to include the stage of compression; we 
explain the encoding block, which is added to the compression model.  Two lossless 
encoding methods are explained and compared.  The compression of some records of ECG  
is presented. 
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Finally, in the third part, the architecture of the Discrete Wavelet Transform on a FPGA is 
shown.  The convolution and sub-sampling processes are modeled using VHDL and its 
performance is simulated using a CAE tool. 

2. Filtering technique for background noise 
The basic idea of filtering technique is to improve the signal to noise ratio, in fact to reduce 
the background noise in the biomedical signal. Because noise can affect the reading and 
interpretation of the signal, a pre-processing step is desirable before the computer analysis. 
Because the external noise does not have a specific band and its frequency is commonly 
superposed to the biomedical frequency, it is necessary to design an intelligent model which 
can be adaptable to different kind of signals. It is possible with the Discrete Wavelet 
Transform. 
The classic technique (Donoho & Johnstone, 1994) includes three important stages:  the 
decomposition of the signal; the identification of low energy coefficients and its rejection 
(thresholding); and finally, the reconstruction of the new coefficients. It is shown below; 
 

 
Fig. 1. The filtering technique. 

The selection of the DWT is due to the simultaneous representation of the signal and noise in 
time and frequency. The technique is applied for the model with additive noise, according to: 

 ns = s + an (1) 

In the expression above ns is the noisy signal, s is the biomedical signal and an is the 
additive noise. Because the model corresponds to a lineal system, the wavelet coefficients of 
the ns are equal to the sum of the wavelet coefficients of s and the wavelet coefficients of an, 
according to: 
If   

NS = DWT{ns};                    S = DWT{s};  AN = DWT{an} 
Then  

 NS = S + AN   (2) 

If the external signal corresponds to white noise, its energy is sparse with low amplitude. 
Then, the wavelet coefficients of ns with low amplitude correspond to the noise of the 
signal. The noise can be eliminated if the coefficients below a threshold are turned to zero 
(thresholding). 
Every stage of the Figure 1 has parameters related to the performance of filtering. 
Specifically, the decomposition and reconstruction involve the base wavelet and the number 
of levels; and the thresholding involves the threshold and the rule.  

2.1 Parameter selection 
The time and frequency characteristics can vary from signal to signal, then it is necessary to 
establish a method to identify the best conditions for each specific type of signal (normal, 
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with pathology, of woman, of man,…). In this section, we present the methodology of 
selection of the main parameters in the filtering model. 
To evaluate in objective form the performance of every combination, there are 
measurements of the quality of the filtered signal. One of the most used is the PRD 
(Percentage of RMS), which is calculated according to: 

  
 

2

2

ns f
PRD

ns


 


 (3) 

f represents the filtered signal. If PRD is high, the filter could have eliminated important 
components of the signal; while, if the PRD is very low, the filter could have not eliminate 
the noise. 

2.1.1 Wavelet family 
In Table 2, the most common families are presented. This list is supported by Matlab ©.  The 
index is related to the length of the filter, for example, for sym4 the length is eight. We 
suggest selecting the base according to the similarity with the biomedical signal. At the most 
it looks like, better is the representation. 
In relation to the length of the filter, it is not recommended to use long filters for short time 
signals, for example, if the time is 10ms, sym10 is better than sym45. 
 
Wavelet Family Wname 
Daubichies db1 or haar, db2, ...  db10, ... db45 
Coifltes coif1,…, coif45 
Symlets sym2,..sym4,..sym45 
Discrete Meyer Dmey 

Biorthogonal 
bior1.1, bior1.3, bior1.5, bior2.2, bior2.4, 
bior2.6, bior2.8, bior3.1, bior3.3, bior3.5, 
bior3.7, bior3.9, bior4.4, bior5.5, bior6.8, 

Table 1. Wavelet Family 

2.1.2 Levels of decomposition 
The number of levels of decomposition (N) depends on the relation between the sampling 
frequency and the bandwidth of the signal. A big N is required if the relation is high; an 
initial rank can be 3 to 10 levels. 

2.1.3 Thresholding rule 
There are two important thresholding rules applied in most of papers of biomedical signal 
denoising: soft and hard threshold. However, other rules have been proposed (Quian, 2000). 
Soft threshold is defined by (Donoho, 1995): 

 g(x)=sgn(x)(|x|-|th|)                     if |x|≥|th|; 

                                                       else    g(x)=0  (4) 
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Where th is the threshold, x is the initial amplitude (input) and g(x) is the result (output). In 
Figure 2 the function is represented. 
 

 
Fig. 2. Soft threshold. 

Hard threshold is defined by (Mallat, 1998): 

                                g(x) =x     if |x|≥|th|; 

 else    g(x) = 0 (5) 

The difference between the soft and hard rules is the output when the input exceeds the 
threshold. In both cases, the output is zero when the input is less than the threshold. The 
function is presented in Figure 3. 
 

 
Fig. 3. Hard threshold. 

2.2 Results: A case of study of filtering SEMG 
The electromyography signal is one of the biomedical signals, which correspond to record of 
the muscle activity.  Because in a typical record, the activity and non-activity regions are 
acquired and transmitted, it is desirable to clean the signal for improvement the contrast 
between the two regions. 
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We analyze the relation of the triangle:  threshold, energy retained and percentage of zeros.  
When the threshold increases the percentage of zero increases too, but, the energy decreases.  
The appropriate point of the triangle corresponds to the maximum percentage of zeros with 
the maximum energy retained.  Experimentally, we found that the 95% of energy retained is 
adequate for a right interpretation of the signal (Ballesteros & Gaona, 2007, 2008). In table 2, 
the results of our study are presented. 
 

Parameter PRD Zeros % Energy Retained % 
sym6 sym8 sym6 sym8 sym6 sym8 

Th1 & hard 0.14 0.16 71.7 72.3 98 96 
Th1& soft 0.25 0.27 71.7 72.3 74 71 

Th2 & hard 0.22 0.25 77.5 81.1 95 92 
Th2 & soft 0.36 0.38 77.5 77.5 83 81 

Table 2. Results of filtering: N=3. 

Figure 4 presents the results with different parameters. In the left side, the sym6 base was 
used in the decomposition, threshold was equal to 0.26 and the hard thresholding was 
applied. It obtained the 95% of the energy retained for the 77.5% of the wavelet coefficients 
set to zero. In the right, the rule was soft.  In this case, the 83% of the energy was conserved 
with the same number of wavelet coefficients set to zero. 
According to table 2 and figure 4, the best combination is th2&hard with the sym6 base. This 
satisfies the balance criteria.  
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Fig. 4. SEMG and its filtered version.   

3. Compression model 
The basic idea of the compression model is to reduce the amount of information. Although 
in some applications the quality in the compressed signal is not important, in the case of 
biomedical signals the difference must to be the minimum. The purpose is to find the 
redundancy in the information and eliminate it.  
In addition to the three stages of filtering model, an encoding block should be used to 
improve the Compression Relation (CR).  The compression model is presented in Figure 5. 
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Where th is the threshold, x is the initial amplitude (input) and g(x) is the result (output). In 
Figure 2 the function is represented. 
 

 
Fig. 2. Soft threshold. 

Hard threshold is defined by (Mallat, 1998): 

                                g(x) =x     if |x|≥|th|; 

 else    g(x) = 0 (5) 

The difference between the soft and hard rules is the output when the input exceeds the 
threshold. In both cases, the output is zero when the input is less than the threshold. The 
function is presented in Figure 3. 
 

 
Fig. 3. Hard threshold. 

2.2 Results: A case of study of filtering SEMG 
The electromyography signal is one of the biomedical signals, which correspond to record of 
the muscle activity.  Because in a typical record, the activity and non-activity regions are 
acquired and transmitted, it is desirable to clean the signal for improvement the contrast 
between the two regions. 
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We analyze the relation of the triangle:  threshold, energy retained and percentage of zeros.  
When the threshold increases the percentage of zero increases too, but, the energy decreases.  
The appropriate point of the triangle corresponds to the maximum percentage of zeros with 
the maximum energy retained.  Experimentally, we found that the 95% of energy retained is 
adequate for a right interpretation of the signal (Ballesteros & Gaona, 2007, 2008). In table 2, 
the results of our study are presented. 
 

Parameter PRD Zeros % Energy Retained % 
sym6 sym8 sym6 sym8 sym6 sym8 

Th1 & hard 0.14 0.16 71.7 72.3 98 96 
Th1& soft 0.25 0.27 71.7 72.3 74 71 

Th2 & hard 0.22 0.25 77.5 81.1 95 92 
Th2 & soft 0.36 0.38 77.5 77.5 83 81 

Table 2. Results of filtering: N=3. 

Figure 4 presents the results with different parameters. In the left side, the sym6 base was 
used in the decomposition, threshold was equal to 0.26 and the hard thresholding was 
applied. It obtained the 95% of the energy retained for the 77.5% of the wavelet coefficients 
set to zero. In the right, the rule was soft.  In this case, the 83% of the energy was conserved 
with the same number of wavelet coefficients set to zero. 
According to table 2 and figure 4, the best combination is th2&hard with the sym6 base. This 
satisfies the balance criteria.  
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Fig. 5. Compression Model: transmission channel and reception channel. 

The encoding can be by lossless or lossy methods (Hankerson et al., 2005). First, the data in 
the receiver are the same that in the transmitter; while in the second, a part of the 
information is lost in the process. Because in biomedical signal compression model is 
appropriate to retain the non-redundant information, we suggest methods without loss of 
information. 

3.1 Lossless methods 
We present two of the lossless methods:  Run-Length and Huffman. Both take advantage of 
the thresholding stage to increase the compression ratio (CR). 

3.1.1 Run-Length encoding (RL) 
This method is used when a number (commonly zero) is repeated many times in a sequence, 
and then the data in the original stream is replaced by the number and its repetition. (Smith, 
2003). The length of the new data decreases when the quantity of zeros increases. 
Suppose you have the following data stream: 

1 5 0 0 0 0 0 0 0 10  

The output stream with run-length encoding is: 

1 5 0 7 10 

And the CR is 10/5=2. 

3.1.2 Huffman encoding 
Huffman encoding defines the codebook according to the repetition of every data. It uses 
more bits in the no-frequent data and fewer bits for the data with higher occurrence 
(Huffman, 1952). An important feature of Huffman code is that no code can be the header of 
another; the decoding of data is unique. 
The steps for creating the code are: 
1. Sort the data from high to low level of repetition. 
2. Grouped in pairs of minor repetition. Reapply the first step. 
3. Repeat second step until all data have been combined. 
4. Draw the Huffman tree with branches of two nodes, where data sets with higher levels 

of repetition are located to the left of the tree and the lowest level on the right. Assign 
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‘1’ to the data of the left and a ‘0’ to the right. Huffman code is read from top to bottom 
of the tree. 

Suppose we have the following list of repetitions into a stream: 
 

Date A B C D 
Repetition 60 15 22 3 

Table 3. Date example Huffman code. 

The tree according to the four previous steps is: 
 

 
Fig. 6. Huffman tree. 

And the codebook is presented in Table 4:  
 

Date A B C D 
Huffman Code 1 001 01 000 

Table 4. Codebook. 

3.2 Results: A case of study in compression of ECG 
The first step to compress a biomedical signal is to analyze its characteristics and determine 
the parameters for decomposition and the thresholding stage (section 2.1) No matter what 
encoding method, the output coefficients of the threshold block must retain much of its 
energy. 

3.2.1 Compression with DWT and Run-length/Huffman encoding 
Wavelet Transform followed by run length encoding has been used in the last decade in 
biomedical signal compression. Chen et al (2006) consider that the Huffman code is less 
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robust against the different statistical characteristics, because it is necessary a prior 
knowledge of its symbol statistics; but we develop a solution with a static unique code 
which can be used in different type of ECG.  
Ballesteros & Gaona (2009, 2010) developed a compression model for ECG. This work had 
the following parameters: 
 Family: Daubichies, Symlets and BiorSplines (db6, sym6, bior5.5)  
 Levels of decomposition: 3 and 4 levels. 
 Amplitude of the threshold: it is calculated by 

 thp=0.0075*max(wp)  (6) 

thp is the threshold of level P, wp is the wavelet coefficients of the detail/coarse of level 
P and max(.) is the maximum function. 

 Rule of thresholding:  hard. 
 Encoding method:  run-length and Huffman. 
 Time: 2, 4, 5 and 10 seconds of the ECG. 
 ECG: records 100, 101, 104, 107, 108 and 200 of the MIT Database. 
Run length encoding: it used the consecutive zeros to form the output sequence.  The 
wavelet coefficients of four levels of decomposition are the input of the encoding algorithm: 
the input (D) is composed of detail coefficients (d4, d3, d2, d1) and coarse coefficients (c4).    
The value of consecutives zero is assigned to the output.  
 

 

Fig. 7. Huffman tree: detail (left) and coarse (right). 

Huffman encoding: two codebooks for the first and second level of decomposition were 
computed. Additionally, in the third level, one codebook was calculated to the coarse 
coefficients and other to the detail coefficients. Every codebook was composed by thirty-two 
codes. Because most of detail coefficients are zero after the output of the threshold block and 
the coarse coefficients are non-zero, two different kind of tree were estimated. For detail 
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codebook, the average of all detail coefficients of the six signals was computed. The average 
signal is divided in thirty-two ranges and the Huffman code was estimated. 
The coarse codebook is calculated according to the distribution. The thirty-two codes are 
assigned according to the coarse amplitude: bigger amplitude has shorter code and smaller 
amplitude has longer code.  
 

Fig. 8. Histograms: 101 (top); 104 (middle) and 107 (bottom). 

The previous picture presents the histograms of the 104 and 107 records, which have 
different characteristics in time and frequency, but, significant similarities in its histograms. 
According to Figure 8, the detail coefficients (d1, d2, d3) have a histogram with a significant 
concentration in one bar; while, the coarse coefficients (c3) have the energy distributed in 
many amplitudes. 
The length of the output stream is theoretically calculated as: 



 
Discrete Wavelet Transforms - Biomedical Applications 

 

24

robust against the different statistical characteristics, because it is necessary a prior 
knowledge of its symbol statistics; but we develop a solution with a static unique code 
which can be used in different type of ECG.  
Ballesteros & Gaona (2009, 2010) developed a compression model for ECG. This work had 
the following parameters: 
 Family: Daubichies, Symlets and BiorSplines (db6, sym6, bior5.5)  
 Levels of decomposition: 3 and 4 levels. 
 Amplitude of the threshold: it is calculated by 

 thp=0.0075*max(wp)  (6) 

thp is the threshold of level P, wp is the wavelet coefficients of the detail/coarse of level 
P and max(.) is the maximum function. 

 Rule of thresholding:  hard. 
 Encoding method:  run-length and Huffman. 
 Time: 2, 4, 5 and 10 seconds of the ECG. 
 ECG: records 100, 101, 104, 107, 108 and 200 of the MIT Database. 
Run length encoding: it used the consecutive zeros to form the output sequence.  The 
wavelet coefficients of four levels of decomposition are the input of the encoding algorithm: 
the input (D) is composed of detail coefficients (d4, d3, d2, d1) and coarse coefficients (c4).    
The value of consecutives zero is assigned to the output.  
 

 

Fig. 7. Huffman tree: detail (left) and coarse (right). 

Huffman encoding: two codebooks for the first and second level of decomposition were 
computed. Additionally, in the third level, one codebook was calculated to the coarse 
coefficients and other to the detail coefficients. Every codebook was composed by thirty-two 
codes. Because most of detail coefficients are zero after the output of the threshold block and 
the coarse coefficients are non-zero, two different kind of tree were estimated. For detail 

 
Discrete Wavelet Transform in Compression and Filtering of Biomedical Signals 

 

25 

codebook, the average of all detail coefficients of the six signals was computed. The average 
signal is divided in thirty-two ranges and the Huffman code was estimated. 
The coarse codebook is calculated according to the distribution. The thirty-two codes are 
assigned according to the coarse amplitude: bigger amplitude has shorter code and smaller 
amplitude has longer code.  
 

Fig. 8. Histograms: 101 (top); 104 (middle) and 107 (bottom). 

The previous picture presents the histograms of the 104 and 107 records, which have 
different characteristics in time and frequency, but, significant similarities in its histograms. 
According to Figure 8, the detail coefficients (d1, d2, d3) have a histogram with a significant 
concentration in one bar; while, the coarse coefficients (c3) have the energy distributed in 
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 Length (Pi*HCLi)   for  i=1,…32 (7) 

Pi is the probability in the range I; HCLi is the Huffman Code Length in the range i. 
The results of the 101 record with the base sym6 are presented in Figure 9. It obtained 
PRD=1.35 and CR=9.24 for run-length encoding and PRD=0.98 and CR=9.32 for Huffman 
encoding. The figure 10 presents the result for the base db6. Run-length encoding obtained 
PRD=1.1 and CR=9.11; while Huffman encoding obtained PRD=0.91 and CR=9.4.  
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Fig. 9. Record 101:  case 1. 
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Fig. 10. Record 101:  case 2. 

Although the record 104 has a pathological behavior opposed to the record 101, it is possible 
to compress the signal with the same codebook. According to the figure 11, the quality in the 
signal with RL encoding is better than Huffman encoding.  But, the CR is better in the 
second method 
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Fig. 11. Record 104. Run length: PRD=0.901 and CR=8.78; Huffman: PRD=1.08 and CR=9.08. 
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Fig. 11. Record 104. Run length: PRD=0.901 and CR=8.78; Huffman: PRD=1.08 and CR=9.08. 
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The review results for the records 101, 104 and 107 are presented in table 5. 
 

Record Method 
CR PRD 

db6 sym6 bior5.5 db6 sym6 bior5.5 

101 
Huffman 9,32 9,28 9,32 0,76 0,93 0.98 

RL 8,98 6,91 9,24 1,25 1,25 1.35 

104 
Huffman 8,98 9,06 9,08 1,41 1,52 1,08 

RL 8,53 8,84 8,78 0,73 0,77 0,90 

107 
Huffman 7,62 7,78 7,88 1,64 1,85 1,38 

RL 8,22 8,42 9,78 0,99 0,94 0,89 

Table 5. Compression results 

4. Hardware implementation 
In previous works, the authors have developed strategies of hardware processing in the 
areas of filtering and compression.  The first approach presented the Wavelet Transform 
architecture in decomposing process for denoising of electroencephalographic (EEG) signals 
(Gaona & Ballesteros, 2005). The second, it presented the comparison in hardware 
implementation between FIR and IIR (Corredor & Pedraza, 2009). The last project organized 
the above results in the architecture for biomedical compression based on Discrete Wavelet 
Transform (DWT) and Run Length encoding (Ballesteros et al., 2010).  

4.1 Model of Discrete Wavelet Transform 
The Discrete Wavelet Transform is composes by two stages:  the convolution of the input 
signal by the wavelet base and the subsampling process. The convolution is performed by 
the equations: 

    1
1

i
i

y n h x n k


  for           k=1,2,.....m-1 (9) 

and 

    2
1

i
i

y n g x n k


  for          k=1,2,.....m-1 (10) 

In the above equations, y1[n] and y2[n] are the outputs of the FIR filters, hi is the impulse 
response of the lowpass filter, gi is the impulse response of the highpass filter and x[n] is the 
input (signal).  The expression [n-k] corresponds to the delay in the input. The value of m 
depends of the length of the wavelet base. For example, if the base is sym6, then m is equal 
to twelve.  
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The subsampling is calculated, according to: 

    3 1 2y n y n  (11) 

    4 2 2y n y n   (12) 

To implement the equations (9) to (12), we propose the following blocks:   
 

 
 
 

 
 
 

 
 

 

Fig. 12. Architecture of Discrete Wavelet Transform. 

 Bank of register: This block stores in a m-position register the samples x[n] in an orderly 
way, depending of its arrival time. At the output is showed the current input value and 
the last m-1 inputs. If the reset signal is active, all the outputs are set to zero. 

 Coefficients Block: Two m-positions memories keep the value of the wavelet filters:  hi 
and gi.   

 Control Unit: it generates the control signal to select hi or gi.  Because the subsampling 
process eliminates the half of operations, it is most efficient to calculate only the half of 
operations, it means every two cycles of clock. 

 Multiplier / Adder: it computes the mathematics operations of the equations (9)-(10) 
and (11)-(12). 

In figure 12, m corresponds to the length of the FIR filter; sel is the bit of selection between 
the low-pass or high-pass filter and res is the number of bits of every input data. 

4.2 Model of thresholding and encoding 
To complete the compression model, two stages are added to the previous one:  the 
thresholding and the encoding. 
 Thresholding block: A comparison between a threshold value and the data from the 

low-pass or high-pass filter is doing. It computes the hard rule and the data with a 
lower value than the threshold are modified to zero. 

 Encoding block: It performs the run-length method. At the output of this block there are 
two signals that go to a memory.  The  first  signal  indicates  the position in the  
memory  where  the  second  signal   ought to be  stored. 

4.3 Results: Compression and filtering on FPGA 
In Figure 13 we present the RTL of the Multiplier/Adder for eight coefficients (m=8).  The 
eight multipliers and seven adders were modelled. 



 
Discrete Wavelet Transforms - Biomedical Applications 

 

28

The review results for the records 101, 104 and 107 are presented in table 5. 
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Fig. 13. RTL: Multiplier/Adder block. 

In Figure 14, the RTL of the thresholding stage is presented. The comparator is the main 
structure of the thresholding block is. Its input is the output of the Multiplier/Adder block. 
 

 
Fig. 14. RTL: Thresholding block. 

The architecture was modeled in a FPGA Spartan 3XC3S200. It obtained the following 
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Maximum Frequency % Slices % IOBs 
142MHz 0.05% 7% 

Table 5. Performance. 

5. Conclusion  
In this chapter we present the basic idea about the filtering and compression of biomedical 
signals with the Discrete Wavelet Transform. Although many works have been develop in 
this theme, we suggest a simple way to select the best parameters and we propose a novel 
static Huffman encoding for the compression of ECG signals. 
For the younger researchers, the methodology in the selection of decomposition-
thresholding parameters has been presented with a real case of SEMG signal. For the 
researchers with more experience in this area, we describe a novel method to generate static 
codebooks that it can be used in signals with different characteristics; this theme could be 
explored further. 
Finally, the real time processing with the Discrete Wavelet Transform in filtering and 
compression of biomedical signals is conceived on FPGAs.  The advantage of hardware 
solutions over software is the time of response which is lower in the first. The easy math of 
the DWT allows very rapid prototyping. 
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1. Introduction 
In recent years, assessment of human emotions from Electroencephalogram (EEG) has one 
of the active research areas in developing intellectual man-machine interfaces. In this work, 
we considered two different frequency ranges of EEG signals such as alpha to gamma (8 Hz 
– 64 Hz) and delta to gamma (0 Hz – 64 Hz) for classifying five emotions (disgust, happy, 
surprise, fear, and neutral). EEG signals are collected using 64 channels from 20 subjects in 
the age group of 21~39 years. The raw EEG signals are preprocessed using Surface Laplacian 
filtering and a set of conventional and proposed statistical features are derived using 
Discrete Wavelet Transform (DWT). Two linear classifiers (K Nearest Neighbor (KNN) and 
Linear Discriminant Analysis (LDA)) are used to map the statistical features into 
corresponding emotions. One of the proposed features derived by using “db8” wavelet 
function under alpha to gamma band gives the maximum average classification rate of 
86.55% using KNN and 82.70% using LDA compared to delta to gamma band. In addition, 
the proposed features gives higher classification rate compared to conventional features. 
Finally we present the average classification accuracy and subsets of discrete emotion 
classification rates for justifying the performance of our emotion recognition system.  
The nonverbal communication through emotions, intentions and affective states are the 
current key areas of research on developing intellectual man-machine systems. Manifestations 
of emotional states are normally straightforward to detect and understand by humans, as these 
are reflected in both voice and body languages (Adler and Rodman 2003; Pease and Pease 
2004). In recent years, the research efforts in Human Computer Interaction (HCI) are focused 
on empowering computers to understand human emotions. Most of the efforts have been 
dedicated to the design of user-friendly and ergonomic systems by means of innovative 
interfaces such as voice, vision, and gestures. Many literature works have been reported on 
emotion recognition using facial expressions and speech modalities (Chen and Huang 2000; 
Daabaj 2002; Hongo et al. 2000; Massaro 2000). These conventional methods of assessing 
emotions thorough the speech and the facial expressions of a subject are purposefully 
expressed and it can be more easily concealed by other subjects (Takahashi 2004). Indeed, it 
cannot be used for those people who have suffered from severe motor disabilities, 
amyotrophic lateral sclerosis, paralysis, and introverted characters.  
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of the active research areas in developing intellectual man-machine interfaces. In this work, 
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86.55% using KNN and 82.70% using LDA compared to delta to gamma band. In addition, 
the proposed features gives higher classification rate compared to conventional features. 
Finally we present the average classification accuracy and subsets of discrete emotion 
classification rates for justifying the performance of our emotion recognition system.  
The nonverbal communication through emotions, intentions and affective states are the 
current key areas of research on developing intellectual man-machine systems. Manifestations 
of emotional states are normally straightforward to detect and understand by humans, as these 
are reflected in both voice and body languages (Adler and Rodman 2003; Pease and Pease 
2004). In recent years, the research efforts in Human Computer Interaction (HCI) are focused 
on empowering computers to understand human emotions. Most of the efforts have been 
dedicated to the design of user-friendly and ergonomic systems by means of innovative 
interfaces such as voice, vision, and gestures. Many literature works have been reported on 
emotion recognition using facial expressions and speech modalities (Chen and Huang 2000; 
Daabaj 2002; Hongo et al. 2000; Massaro 2000). These conventional methods of assessing 
emotions thorough the speech and the facial expressions of a subject are purposefully 
expressed and it can be more easily concealed by other subjects (Takahashi 2004). Indeed, it 
cannot be used for those people who have suffered from severe motor disabilities, 
amyotrophic lateral sclerosis, paralysis, and introverted characters.  
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Another possible approach for emotion recognition is done by using physiological signals 
(EEG (Electroencephalogram), ECG (Electrocardiogram), EMG (Electromyogram), SCR 
(Skin Conductance Resistance), ST (Skin Temperature), HR (Heart Rate) and RR 
(Respiration Rate)). There are many works reported on physiological signals based emotion 
recognitions (Hai-Rong et al. 2008; Takahashi and Tsukaguchi 2003; Wagner et al. 2005; 
Yongjin and Ling 2005). Furthermore, the physiological response of individual subjects will 
not be concealed by the physiological responses of other subjects. Compared to all these 
physiological signals, EEG plays a major role on detecting the emotion directly from the 
brain at higher temporal and spatial resolution. Furthermore, the brain activity is naturally 
expected to precede the muscular and vascular activities. Several approaches have been 
reported by different researchers on assessing the emotional changes from EEG signals 
(Takahashi and Tsukaguchi 2003; Teixera et al. 2009). More details on the automatic emotion 
recognition using physiological signals and EEG as well as more complete list of reference 
can be found in (Murugappan et al. 2010).  

2. Related work 
Rhythmic activity is a fundamental property of neural elements and is organized in complex 
patterns depending on the state of the brain. The oscillatory nature of EEG signals varies 
according to the role in variety of brain operations, including the aspects of emotions, 
perception, cognition and action. The EEG signals are primarily categorized into 5 different 
frequency bands: delta (0-4) Hz, theta (4-8) Hz, alpha (8-16) Hz, beta (16-32) Hz, and gamma 
(32-64) Hz. It is very difficult to find the specific region on skull where the brain activity is 
sufficiently high to detect an emotional state. Tekell, et.al (Min et al. 2005) reports that, most 
of the meaningful information about emotional changes is found in the frequency below 30 
Hz EEG signals.  
Table 1 shows the list of previous works on emotion recognition using different EEG 
frequency bands features. Several studies have yielded results on the alpha frequency band, 
which is more prominent rhythm for determining the emotional states in terms of amplitude 
and frequency characteristics of EEG (Choppin 2000; Robert et al. 2008; Yuan-Pin et al. 2007). 
The first work on classifying discrete emotions (joy, anger, sad, and neutral) using alpha 
band power is reported in (Yuan-Pin et al. 2007). Normally, the high frequency EEG waves 
namely beta and gamma frequency ranges play a vital role on two-way (agree (valence) – 
disagree (arousal)) classification of emotions (Teixeira and Vinhas 2008; Teixera et al. 2009). 
The gamma band of oscillation is used for accessing information about emotional 
consciousness of the person (Mu and Bao-Liang 2009). 
In (Gunsel et al. 2006), they have considered the information of all the five frequency bands 
for classifying emotions in two dimensional (calm-exciting) and three dimensional (calm-
exciting-neutral) emotions and achieved an average classification rate of 60% for two and 50 
% for three dimensions respectively. 
The depression of alpha rhythm on right hemisphere is found on “positive” emotions 
(pleasant) and the frontal electrodes in left hemisphere are responding to “negative” 
emotions (unpleasant) under beta rhythm (Gunsel et al. 2006). Indeed, the investigation on 
theta band also carried out for both positive and negative emotions. On the other hand, four 
frequency bands such as: delta, theta, alpha and beta band powers are used for classifying 
discrete emotions (Khalili and Moradi 2009; Schaaff and Schultz 2009a; Schaaff and Schultz 
2009b). Heraz, et.al., has developed the emomental (emotional & mental) agent for Intelligent 
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Tutoring System and used the energy of four different frequency bands (delta, theta, alpha, 
and beta) in classifying 8 emotional-mental states such as: anger, boredom, confusion, 
contempt, curious, disgust, eureka and frustration (Heraz et al. 2007). Among all the 
previous works, the maximum emotion classification rate of 93.25% is reported on 
classifying two emotions (happy and sad) (Mu and Bao-Liang 2009).  
 

Reference No of 
Subjects

No of 
Electrodes Stimuli 

Two Dimensional Emotions Max    
% CR No’s Types 

Alpha Frequency Band 
(Choppin 
and 2000) 31 4 Visual 2 Valence - Arousal 64 

(Yuan-Pin 
et al. 2007) 5 32 Audio 4 Joy, Anger, Pleasure, Sad 69.69 

(Robert et 
al. 2008) 10 64 Visual 2 Valence – Arousal 71 

Other Frequency Bands 
(Murugap
pan et al. 

2010) 
- - 3 Visual 3 Joy, Sad, Neutral 74 

(Mu and 
Bao-Liang 

2009) 
10 62 Visual 2 Happy, Sad 93.25 

(Khalili 
and 

Moradi 
2009) 

5 10 Visual 3 Calm, Positively excited 
and negatively excited 76.67 

(Schaaff 
and 

Schultz 
2009b) 

5 4 Visual 3 Pleasant, Neutral, and 
Unpleasant 66.7 

(Schaaff 
and 

Schultz 
2009a) 

5 4 Visual 3 Pleasant, Neutral, and 
Unpleasant 47.11 

(Heraz et 
al. 2007) 17 3 Visual 8 4 emotional and 4 

mental states 82.27 

(Petranton
akis and 

Hadjileont
iadis 2009) 

16 4 Visual 6 
Happy, Anger, Fear, 

Disgust, Sad, and 
Surprise 

84.72 

Five Frequency Bands (Delta to Gamma) 
(Jacko et 
al. 2009) 28 3 Visual 2 Valence- Arousal 74.11 

Table 1. List of previous works on emotion recognition using EEG signals with its 
classification rate 
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Determining the rhythmic brain activity for different emotional stimulus is a promising 
area of research for providing an in-depth picture of how the brain frequencies vary for 
different emotions. Most of the previous studies are focused on assessing the two 
dimensional human emotion (valence-arousal) through different frequency ranges of EEG 
signals. Only few works have been proposed on discrete human emotion classification. 
Furthermore, there is no defined range of frequency nominated for improving the 
emotion classification rate. Hence, it is necessary to determine the range of frequency 
which gives the maximum classification accuracy on assessing discrete emotions. The 
maximum mean emotion classification rate of 84.72% is achieved using alpha and beta 
band for classifying six emotions (Petrantonakis and Hadjileontiadis 2009). In addition, 
most of the previous works have considered less number of subjects for developing the 
emotion recognition system. 
In our earlier work, we have considered alpha band features for classifying the discrete 
emotions. The maximum mean emotion classification rate of 78.043% is achieved using 
KNN (Murugappan et al. 2009b). In this work, we consider two different frequency bands 
(alpha to gamma and delta to gamma) of EEG signals for classifying discrete emotions using 
a set of conventional and proposed features.  

3. Research methodology 
3.1 EEG data acquisition  
3.1.1 Emotion elicitation method 
This section describes the acquisition of EEG signals for emotion assessment experiments. 
Emotions can be induced by one of the following ways: (a) visual (images/pictures) 
(Yongjin and Ling 2005) (b) audio-visual (film clips/video clips) (Takahashi 2004) (c) 
recalling of past emotional events (d) audio (songs/sounds) (Wagner et al. 2005). Most of 
researchers are using visual stimuli and audio-visual stimuli for evoking emotions. In our 
previous work, we have used both visual and audio-visual stimuli for evoking discrete 
emotions. The result of this study confirms that, audio-visual stimulus performs superior in 
evoking emotions than visual stimulus (Murugappan et al. 2009a). The main advantage of 
this method resides in the strong correlation between induced emotional states and the 
physiological responses. Hence, we have designed an audio-visual induction based protocol 
for eliciting the discrete emotions in this present work. The structural overview of emotion 
recognition system using EEG signals is shown in Fig 1. The audio-visual stimulus protocol 
for Trail 1 of our experiment and self-assessment questionnaires is shown in Fig. 2 and Fig 3. 
The orders of the emotional video clips are changed in a random manner for other trials 
(Table 2). Time durations of video/film clips for five trials is given in Table 3. X1 to X5 
denote time periods of selected video clips. The time duration of video clips vary from one 
another. All the video clips are short in time duration and with more dynamic emotional 
content. The selection of video clips is based on self assessment questionnaires given in Fig 
3. Between each emotional stimulus (video clips), a blank screen is shown for 10 sec 
duration to bring the subject to their normal state and to experience a calm mind. As a result 
of the self-assessment report of subjects, totally five trials for three emotions (happy, 
surprise and disgust) and four trials for two emotions (fear and neutral) are considered for 
all our future analysis. 
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3.1.2 Subjects 
A pilot panel study is conducted on 25 university students to select any 5 video clips (trials) 
for each emotion from 115 emotional video clips including from the international standard 
emotional clips*. The subjects who have undergone for this panel study does not take part in 
the data collection experiment. Three females and seventeen males in the age group of 21-39 
years were employed as subjects in our experiment. Once the consent forms were filled-up, 
the subjects were given a simple introduction about the research work and the various 
stages of experiment. 
 

 
 

Fig. 1. Emotion Recognition System overview 

 
 

 
Fig. 2. EEG data acquisition protocol using audio-visual stimuli 
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Determining the rhythmic brain activity for different emotional stimulus is a promising 
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Fig. 3. Self-assessment questionnaires used in emotion recognition experiment  

3.1.3 Experimental setup 
The recording of EEG signal is done through Nervus EEG, Iceland with 64 channel 
electrodes at a sampling frequency of 256 Hz and band-pass filtered between 0.05 Hz and 70 
Hz. There are totally 62 active electrodes plus one electrode for ground (Oz) and one for 
reference (AFz). In addition, we collected the recording of eye blink rate by two EOG 
(Electroocculogram) electrodes (EOGL & EOGR), which are placed above the right and left 
eyes of the subjects. 
 

Trials Order of Emotions 
1 Happy Neutral Fear Surprise Disgust 
2 Neutral Surprise Happy Disgust Fear 
3 Disgust Neutral Surprise Happy Fear 
4 Surprise Happy Disgust Fear Neutral 
5 Disgust Happy Fear Neutral Surprise 

Table 2. Order of emotional stimuli used over five trials in emotion recognition experiment 
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Trials Duration of emotional stimuli in Minute (min) 
1 0.13 0.58 0.14 0.10 0.59 
2 0.59 0.14 0.23 0.10 0.22 
3 0.56 0.24 0.12 0.13 0.30 
4 0.20 0.10 0.58 0.25 0.44 
5 0.59 0.09 0.35 0.57 0.15 

Statistical Computations 
 Happy Neutral Fear Surprise Disgust 

Mean 0.136 0.484 0.252 0.142 0.484 
Std. Deviation 0.056 0.149 0.080 0.038 0.215 

Table 3. Time duration of each emotional stimulus used in emotion recognition experiment 

All the electrodes are placed over the entire scalp using International standard 10-10 system 
(Böcker et al. 1994) (Fig 4). The impedance of the electrodes is kept below 5 kΩ. Between 
each emotional video clips, under self assessment section, the subjects were informed to 
answer the emotions they have experienced (Abu Osman et al. 2008). Finally, 5 trials for 
disgust, happy and surprise emotions and 4 trials for fear and neutral emotions are 
considered for further analysis. All the signals are collected without much discomfort to the 
subjects. 
 

 
Fig. 4. Placement of electrodes according to International 10-10 system 
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3.2 Preprocessing and normalization 
The recorded EEG signals are usually contaminated with noises (due to power line 
fluctuations and due to external interferences) and artifacts (due to eye blinks, eye ball 
rotations and muscular movements). The complete removal of artifacts will also remove 
some of the useful information of EEG signals. This is one of the reasons why considerable 
experience is required to interpret EEGs clinically (Gott et al. 1984; Jung et al. 2000). A 
couple of methods are available in the literature to avoid artifacts in EEG recordings. 
However, removing artifacts entirely is impossible in the existing data acquisition process. 
The research methodology of emotion recognition using EEG is shown Fig 5. 
 

 
Fig. 5. Overview of emotion recognition procedure 

In this work, we used Surface Laplacian (SL) filter for removing the noises and artifacts. The 
SL filter is used to emphasize the electric activities that are spatially close to a recording 
electrode, filtering out those that might have an origin outside the skull (Gin-Shin et al. 
2005). In addition, it also attenuates the EEG activity which is common to all involved 
channels in order to improve the spatial resolution of the recorded signal. The neural 
activities generated by the brain, however, contain various spatial frequencies. Potentially 

(5 emotions * 5 or 3 frequency bands * 20 subjects*No. of trials) X 
62 channels
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(Surface Laplacian filtering and Zero 

Mean Unit Variance (ZMUV)) 

Feature extraction by “db4”, “db8”, 
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useful information from the middle frequencies may be filtered out by the analytical 
Laplacian filters (Xinyi et al. 2008). Hence, the signal “pattern” derived from SL filters is 
similar to “spatial distribution of source in the head”.  
The mathematical modeling of Surface Laplacian filter is given as 
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where Xnew : filtered signal ; X(t) : raw signal ; NE: number of neighborhood electrodes  
The preprocessed signals are normalized using Zero Mean Unit Variance (ZMUV) method. 
Normalization is used to reduce the individual difference between the subjects and also 
used to reduce the computational complexity.  

3.3 Feature extraction 
EEG signals are often quantified based on their frequency domain characteristics. Typically 
the spectrum is estimated using Fast Fourier Transform (FFT). A fundamental requirement 
in the FFT based spectral analysis is that the signal is to be stationary. Indeed, the EEG 
signals cannot be considered as stationary even under short time duration, since it can 
exhibit considerable short-term nonstationarities (Anderson and Sijerčić 1996). In the EEG 
based emotion recognition research, the non-parametric method of feature extraction based 
on multi-resolution analysis of Wavelet Transform (WT) is quite new. The joint time-
frequency resolution obtained by WT makes it a good candidate for the extraction of details 
as well as approximations of the signal which cannot be obtained either by Fast Fourier 
Transform (FFT) or by Short Time Fourier Transform (STFT) (Mallat 1989; Merzagora et al. 
2006).  Hence, this method of feature extraction is adopted in this present work. 
The non-stationary nature of EEG signals allow us to expand basis functions created by 
expanding, contracting and shifting a single prototype function (Ψa,b, the mother wavelet), 
specifically selected for the signal under consideration 
The mother wavelet function Ψa, b (t) is given as  
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where a, b   R, a>0, and R is the wavelet space. Parameters 'a' and ‘b’ are the scaling factor 
and the shifting factor respectively. The only limitation for choosing a prototype function as 
mother wavelet is to satisfy the admissibility condition (Eqn. 3), 
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where ψ (ω) is the Fourier transform of ψa, b (t).  
The time-frequency representation is performed by repeatedly filtering the signal with a 
pair of filters that cut the frequency domain in the middle. Specifically, the discrete wavelet 
transform decomposes the signal into an approximation coefficients (CA) and detailed 
coefficients (CD). The approximation coefficient can be subsequently divided into new 
approximation and detailed coefficients. This process can be carried out iteratively 
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producing a set of approximation coefficients and detail coefficients at different levels of 
decomposition (Parameswariah and Cox 2002). 
In this work, four different wavelet functions: “db4”, “db8”, “sym8” and “coif5” are used for 
decomposing the EEG signals into five different frequency bands (delta, theta, alpha, beta, 
and gamma). These wavelet functions are chosen due to their near optimal time-frequency 
localization properties. Moreover, the waveforms of these wavelets are similar to the 
waveforms to be detected in the EEG signal. Therefore, extraction of EEG signals features 
are more likely to be successful (Glassman 2005). In Table 3, A5, D5, D4, D3, and D2 
represent the five EEG frequency bands. Table 4 also presents the bandwidth and the 
frequencies corresponding to different levels of decomposition of EEG signal with a 
sampling frequency fs=256 Hz (Parameswariah and Cox 2002). 
 

Frequency 
Range (Hz) Decomposition Level Frequency 

Bands 

Frequency 
Bandwidth 

(Hz) 
0 - 4 A5 Delta 4 
4 – 8 D5 Theta 4 

8 – 16 D4 Alpha 6 
16 – 32 D3 Beta 18 
32 – 64 D2 Gama 32 
64 - 128 D1 Noises 64 

Table 4. Decomposition of EEG signals into different frequency bands with a sampling 
frequency of 256 Hz 

3.3.1 Frequency band selection 
From the literature study in Section 2, most of the researchers have attempted to classify the 
two dimensional emotions (valence-arousal) by considering the three different frequency 
ranges: alpha band (8 Hz -16 Hz), beta and gamma band (16 Hz – 64 Hz), and delta to 
gamma band (0 Hz – 64 Hz). In this work, a first set of experiments are carried out with four 
conventional features (power, standard deviation, entropy and variance) for classifying 
distinct emotions (Table 5). We have computed the average classification accuracy and 
individual classification rate for each feature over two different frequency bands. The result 
of classification accuracy is reported in Section 4.  
In order to improve the classification rate of emotion assessment, we proposed a new 
feature related to frequency band power ratio called as “Recoursing Power Efficiency” (RPE) 
(Eqn 6) for classifying the emotions. In addition, we also extended the RPE called 
Logarithmic Recoursing Power Efficiency (LRPE) (Eqn 7) and Absolute Logarithmic Recoursing 
Power Efficiency (ALRPE) (Eqn 8) for classifying emotions. Eqn 6 to Eqn 8 show the 
mathematical equation of computing statistical features of RPE of gamma band using five 
frequency bands. Similarly, these equations are extended to remaining frequency bands for 
calculating the statistical features in classifying emotions. One of the major limitations on 
this area of research is the lack of international standard data base. Hence, in this present 
work, we compared the efficacy of proposed features with the efficacy of a set of 
conventional features for estimating the classifiability. Similarly, we can derive the proposed 
features for three frequency bands by replacing Ptotal-5b as Ptotal-3b in Eqn (6) to Eqn (8).  
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Table 5. Conventional statistical features used for emotion recognition and their description 
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where P= frequency band power; Ptotal-5b= total power of 5 frequency bands (delta to 
gamma; Ptotal-3b= total power of 3 frequency bands (alpha to gamma) 
3.3.1.1 Motivation for new statistical feature proposal 
In conventional analysis, researchers have computed the total wavelet energy by 
considering the complete range of EEG signal frequencies irrespective to the selected 
frequency bands. For example, if the researchers considered the alpha to gamma frequency 
(8 Hz – 64 Hz) bands for their analysis means, the total wavelet energy is computed between 
delta to gamma (0 Hz – 64 Hz) compared to the total energy of the selected frequency range 
(8 Hz – 64 Hz).  
According to the literature, the authors certainly believes that, the low frequency details 
(0 Hz – 8 Hz) gives an useful information for some special applications such as sleep stage 
classification (0.5 Hz – 4 Hz) and mental fatigue analysis and driver drowsiness detection 
(0.5 Hz – 8 Hz). Therefore, the consideration of entire frequency range may yield poor 
classification results due to the additional and non-informative details than considering 
the selected frequency ranges. Thus, this present work has adopted the selected frequency 
range for computing the total wavelet energy for deriving the statistical features further 
than entire frequency range. Therefore, the effectiveness of newly proposed statistical 
features on two different combinations of frequency bands is considered for classifying 
the emotions. 

3.4 Emotion classification 
In this work, we have employed two simple classifiers such as Linear Discriminant Analysis 
(LDA) and K Nearest Neighbor (KNN) for classifying the discrete emotions. Classification 
accuracy, representing the percentage of correctly classified instances, has been adopted to 
quantify the performance of KNN and LDA. 

3.4.1 Linear Discriminant Analysis (LDA) 
Among these two classifiers, LDA provides extremely fast evaluations of unknown inputs 
performed by the calculations of distances between a new sample and mean of training data 
samples in each class weighed by their covariance matrices. Indeed, LDA is of very simple 
but elegant approach to classify various emotions. A linear discriminant analysis tries to 
find an optimal hyper plane to separate five classes (here, disgust, happy, surprise, fear and 
neutral emotions). Besides the training and testing samples, LDA does not require any 
external parameters for classifying the discrete emotions.   

3.4.2 K Nearest Neighbour (KNN) 
KNN is also a simple and intuitive method of classifier used by many researchers typically 
for classifying the signals and images. This classifier makes a decision on comparing a new 
labeled sample (testing data) with the baseline data (training data). In general, for a given 
unlabeled time series X, the KNN rule finds the K “closest” (neighborhood) labeled time 
series in the training data set and assigns X to the class that appears most frequently in the 
neighborhood of k time series. There are two main schemes or decision rules in KNN 
algorithm, the similarity voting scheme and majority voting scheme (Chaovalitwongse et al. 
2007).  
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In our work, we used the majority voting for classifying the unlabeled data. It means that, a 
class (category) gets one vote, for each instance, of that class in a set of K neighborhood 
samples. Then, the new data sample is classified to the class with the highest amount of 
votes. This majority voting is more commonly used because it is less sensitive to outliers. 
However, in KNN, we need to specify the value of “K” closest neighbor for emotions 
classification. In this experiment, we try different “K” values ranging from 2 to 6. The use of 
linear classifiers may perform well over the non-linear classifiers on classifying the EEG 
signals. Thus, this work uses aforementioned two linear classifiers for classifying the human 
emotions.  

4. Experimental results and discussions 
The main motivation on this present work is to improve the emotion classification rate by 
selecting the salient EEG frequency bands. Among all twenty subjects, we sample and 
preprocess the total of 460 EEG epochs from five discrete emotions (20 subjects x 5 emotions 
(5 trials for 3 emotions and 4 trials for 2 emotions). The number of data points in each epoch 
depends on the time duration of video clips. In our experiment, the time duration of video 
clips vary from one another. The next stage is to train the KNN classifier with a best value of 
K while LDA classifier directly works for classifying the emotions. The classification ability 
of a statistical feature set can be measured through classification accuracy by averaging five 
times over a 5 fold cross-validation. The basic stages of 5 fold cross-validation include: (a) 
total number of samples are divided into 5 disjoint sets (b) 4 sets are used for training and 1 
set is used for testing (c) repeat stage (b) for five times and each time the data set is 
permuted differently. This method reduces the possibility of deviations in the results due to 
some special distribution of training data and test data. This also ensures that the system is 
tested with different samples that which are not used in training. 
The major limitation of the research on emotion recognition using EEG is the lack of 
international standard database for comparing the efficacy of emotion classification through 
different approaches. Hence, most of the researchers have used the dissimilar conventional 
statistical features for classifying emotions through EEG. Currently, the researchers are 
focusing on determining new statistical features for achieving maximum emotion 
classification rate. For this purpose, we have proposed the feature based on frequency band 
power ratio called Recoursing Power Efficiency (RPE). We also expanded this statistical feature 
into another two forms namely: Logarithmic Recoursing Power Efficiency (LRPE) and Absolute 
Logarithmic Recoursing Power Efficiency (ALRPE). 
In general, these features, measure the ratio of power of selected frequency band to the total 
power of frequency bands. Table 6 to Table 9 shows the average classification accuracy of 
emotions using conventional and proposed features on two different frequency bands using 
KNN and LDA respectively. From Table 6 & Table 8, we found that, the conventional 
feature (entropy) performs better over proposed features on 5 frequency bands. In addition, 
KNN outperforms LDA by giving a maximum average classification accuracy of 83.04% 
than the proposed feature (ALRPE) of 79.39%. 
In this frequency rage, “sym8” wavelet function captures the chaotic nature of EEG signal 
under different emotions. The individual classification accuracy for the conventional and 
proposed feature corresponding to the delta to gamma band feature which gives the 
maximum average classification accuracy on KNN and LDA based classification (Table 6 
and Table 8) are presented in Table 10. Basically, entropy is a non-linear feature and it 
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where P= frequency band power; Ptotal-5b= total power of 5 frequency bands (delta to 
gamma; Ptotal-3b= total power of 3 frequency bands (alpha to gamma) 
3.3.1.1 Motivation for new statistical feature proposal 
In conventional analysis, researchers have computed the total wavelet energy by 
considering the complete range of EEG signal frequencies irrespective to the selected 
frequency bands. For example, if the researchers considered the alpha to gamma frequency 
(8 Hz – 64 Hz) bands for their analysis means, the total wavelet energy is computed between 
delta to gamma (0 Hz – 64 Hz) compared to the total energy of the selected frequency range 
(8 Hz – 64 Hz).  
According to the literature, the authors certainly believes that, the low frequency details 
(0 Hz – 8 Hz) gives an useful information for some special applications such as sleep stage 
classification (0.5 Hz – 4 Hz) and mental fatigue analysis and driver drowsiness detection 
(0.5 Hz – 8 Hz). Therefore, the consideration of entire frequency range may yield poor 
classification results due to the additional and non-informative details than considering 
the selected frequency ranges. Thus, this present work has adopted the selected frequency 
range for computing the total wavelet energy for deriving the statistical features further 
than entire frequency range. Therefore, the effectiveness of newly proposed statistical 
features on two different combinations of frequency bands is considered for classifying 
the emotions. 

3.4 Emotion classification 
In this work, we have employed two simple classifiers such as Linear Discriminant Analysis 
(LDA) and K Nearest Neighbor (KNN) for classifying the discrete emotions. Classification 
accuracy, representing the percentage of correctly classified instances, has been adopted to 
quantify the performance of KNN and LDA. 

3.4.1 Linear Discriminant Analysis (LDA) 
Among these two classifiers, LDA provides extremely fast evaluations of unknown inputs 
performed by the calculations of distances between a new sample and mean of training data 
samples in each class weighed by their covariance matrices. Indeed, LDA is of very simple 
but elegant approach to classify various emotions. A linear discriminant analysis tries to 
find an optimal hyper plane to separate five classes (here, disgust, happy, surprise, fear and 
neutral emotions). Besides the training and testing samples, LDA does not require any 
external parameters for classifying the discrete emotions.   

3.4.2 K Nearest Neighbour (KNN) 
KNN is also a simple and intuitive method of classifier used by many researchers typically 
for classifying the signals and images. This classifier makes a decision on comparing a new 
labeled sample (testing data) with the baseline data (training data). In general, for a given 
unlabeled time series X, the KNN rule finds the K “closest” (neighborhood) labeled time 
series in the training data set and assigns X to the class that appears most frequently in the 
neighborhood of k time series. There are two main schemes or decision rules in KNN 
algorithm, the similarity voting scheme and majority voting scheme (Chaovalitwongse et al. 
2007).  
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In our work, we used the majority voting for classifying the unlabeled data. It means that, a 
class (category) gets one vote, for each instance, of that class in a set of K neighborhood 
samples. Then, the new data sample is classified to the class with the highest amount of 
votes. This majority voting is more commonly used because it is less sensitive to outliers. 
However, in KNN, we need to specify the value of “K” closest neighbor for emotions 
classification. In this experiment, we try different “K” values ranging from 2 to 6. The use of 
linear classifiers may perform well over the non-linear classifiers on classifying the EEG 
signals. Thus, this work uses aforementioned two linear classifiers for classifying the human 
emotions.  

4. Experimental results and discussions 
The main motivation on this present work is to improve the emotion classification rate by 
selecting the salient EEG frequency bands. Among all twenty subjects, we sample and 
preprocess the total of 460 EEG epochs from five discrete emotions (20 subjects x 5 emotions 
(5 trials for 3 emotions and 4 trials for 2 emotions). The number of data points in each epoch 
depends on the time duration of video clips. In our experiment, the time duration of video 
clips vary from one another. The next stage is to train the KNN classifier with a best value of 
K while LDA classifier directly works for classifying the emotions. The classification ability 
of a statistical feature set can be measured through classification accuracy by averaging five 
times over a 5 fold cross-validation. The basic stages of 5 fold cross-validation include: (a) 
total number of samples are divided into 5 disjoint sets (b) 4 sets are used for training and 1 
set is used for testing (c) repeat stage (b) for five times and each time the data set is 
permuted differently. This method reduces the possibility of deviations in the results due to 
some special distribution of training data and test data. This also ensures that the system is 
tested with different samples that which are not used in training. 
The major limitation of the research on emotion recognition using EEG is the lack of 
international standard database for comparing the efficacy of emotion classification through 
different approaches. Hence, most of the researchers have used the dissimilar conventional 
statistical features for classifying emotions through EEG. Currently, the researchers are 
focusing on determining new statistical features for achieving maximum emotion 
classification rate. For this purpose, we have proposed the feature based on frequency band 
power ratio called Recoursing Power Efficiency (RPE). We also expanded this statistical feature 
into another two forms namely: Logarithmic Recoursing Power Efficiency (LRPE) and Absolute 
Logarithmic Recoursing Power Efficiency (ALRPE). 
In general, these features, measure the ratio of power of selected frequency band to the total 
power of frequency bands. Table 6 to Table 9 shows the average classification accuracy of 
emotions using conventional and proposed features on two different frequency bands using 
KNN and LDA respectively. From Table 6 & Table 8, we found that, the conventional 
feature (entropy) performs better over proposed features on 5 frequency bands. In addition, 
KNN outperforms LDA by giving a maximum average classification accuracy of 83.04% 
than the proposed feature (ALRPE) of 79.39%. 
In this frequency rage, “sym8” wavelet function captures the chaotic nature of EEG signal 
under different emotions. The individual classification accuracy for the conventional and 
proposed feature corresponding to the delta to gamma band feature which gives the 
maximum average classification accuracy on KNN and LDA based classification (Table 6 
and Table 8) are presented in Table 10. Basically, entropy is a non-linear feature and it 
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measures the amount of non-linearity present in an EEG signal. The non-linearity is 
probably due to the noise but may also due to the complex dynamics.  
 

Wavelet K 

KNN based Classification of Emotions using Delta to Gamma band (0 Hz 
– 64 Hz) in % 

Conventional Features Proposed Features 

ENT POW STD VAR RPE LRPE ALRPE 

db4 6 82.35± 
1.14 

68.13± 
1.36 

71.91± 
3.08 

68.91± 
1.23 

67.47± 
1.80 

78.91± 
1.30 

78.47± 
1.28 

db8 6 81.96± 
2.09 

68.30± 
1.21 

73.52± 
1.46 

68.04± 
1.13 

68.21± 
1.09 

77.87± 
1.41 

78.60± 
1.46 

sym8 6 83.04± 
1.56 

67.78± 
1.39 

72.65± 
2.46 

68.78± 
2.18 

67.34± 
0.74 

78.00± 
1.48 

79.39± 
0.97 

coif5 6 82.52± 
1.09 

67.61± 
1.51 

76.61± 
1.31 

68.83± 
1.44 

65.91± 
0.77 

76.87± 
2.05 

78.08± 
2.58 

Table 6. KNN based classification of emotions using conventional and proposed features on 
delta to gamma frequency bands 

 

Wavelet K 

KNN based Classification of Emotions using Alpha to Gamma Bands (8 
Hz – 64 Hz) in % 

Conventional Features Proposed Features 

ENT POW STD VAR RPE LRPE ALRPE 

db4 5 69.93± 
2.27 

55.87± 
2.79 

62.46± 
1.76 

56.01± 
3.06 

82.32± 
2.41 

83.04± 
2.13 

82.25± 
1.97 

db8 5 70.15± 
2.11 

55.44± 
2.94 

62.10± 
3.75 

55.58± 
3.31 

82.03± 
1.79 

86.55± 
0.75 

81.23± 
0.87 

sym8 5 71.16± 
3.04 

57.03± 
1.42 

62.17± 
1.60 

56.59± 
2.29 

81.45± 
0.83 

81.30± 
2.89 

81.67± 
1.04 

coif5 5 81.01± 
0.60 

55.07± 
3.17 

65.58± 
3.42 

55.94± 
4.18 

82.97± 
1.10 

82.97± 
1.11 

82.75± 
2.63 

Table 7. KNN based classification of emotions using conventional and proposed features on 
alpha to gamma frequency bands 
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Wavelet 

LDA based Classification of Emotions using Delta to Gamma Bands (0 Hz – 
64 Hz) in % 

Conventional Features Proposed Features 

ENT POW STD VAR RPE LRPE ALRPE 

db4 81.44± 
2.14 

52.17± 
4.91 

65.09± 
2.74 

51.87± 
1.65 

71.00± 
1.95 

78.04± 
0.84 

77.04± 
1.88 

db8 80.52± 
1.61 

53.74± 
4.76 

63.44± 
0.28 

51.87± 
3.04 

71.00± 
1.16 

77.87± 
0.96 

77.48± 
0.11 

sym8 79.74± 
2.04 

51.35± 
2.76 

64.78± 
2.26 

50.04± 
2.89 

70.91± 
1.03 

77.39± 
1.11 

77.57± 
1.97 

coif5 80.30± 
1.29 

51.52± 
1.82 

63.83± 
1.94 

50.35± 
3.30 

71.04± 
1.65 

77.96± 
0.92 

78.26± 
0.61 

Table 8. LDA based classification of emotions using conventional and proposed features on 
delta to gamma frequency bands 

 

Wavelet 

LDA based Classification of Emotions using Alpha to Gamma Bands (8 Hz – 64 
Hz) in % 

Conventional Features Proposed Features 
ENT POW STD VAR RPE LRPE ALRPE 

db4 72.90±1.41 63.41±3.10 71.74±2.15 64.57±1.88 76.88±2.05 75.58±1.92 75.73±2.40 
db8 72.68±2.38 63.91±2.63 71.59±1.50 62.39±2.29 77.03±1.96 76.38±2.11 75.65±2.13 

sym8 73.55±1.51 63.19±3.76 71.67±2.27 64.57±4.22 77.61±2.71 76.81±2.38 76.01±2.14 
coif5 70.51±2.65 63.04±2.03 71.88±1.21 63.70±2.39 82.70±1.96 74.93±0.59 76.74±2.36 

Table 9. LDA based classification of emotions using conventional and proposed features on 
alpha to gamma frequency bands 

 
Classifier Method Feature Wavelet K Disgust Happy Surprise Fear Neutral 

KNN 
Conventional ENT sym8 5 92 85 67 68.75 96.25 

Proposed ALRPE sym8 5 93 84 71 70 78.75 

LDA 
Conventional ENT db4 94 83 61 72.5 86.67 

Proposed ALRPE coif5 92 87 68 68.75 85 

Table 10. Individual classification rate of emotions corresponds to the maximum 
classification rate of conventional and proposed features on delta to gamma frequency 
bands   
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measures the amount of non-linearity present in an EEG signal. The non-linearity is 
probably due to the noise but may also due to the complex dynamics.  
 

Wavelet K 

KNN based Classification of Emotions using Delta to Gamma band (0 Hz 
– 64 Hz) in % 

Conventional Features Proposed Features 

ENT POW STD VAR RPE LRPE ALRPE 

db4 6 82.35± 
1.14 

68.13± 
1.36 

71.91± 
3.08 

68.91± 
1.23 

67.47± 
1.80 

78.91± 
1.30 

78.47± 
1.28 

db8 6 81.96± 
2.09 

68.30± 
1.21 

73.52± 
1.46 

68.04± 
1.13 

68.21± 
1.09 

77.87± 
1.41 

78.60± 
1.46 

sym8 6 83.04± 
1.56 

67.78± 
1.39 

72.65± 
2.46 

68.78± 
2.18 

67.34± 
0.74 

78.00± 
1.48 

79.39± 
0.97 

coif5 6 82.52± 
1.09 

67.61± 
1.51 

76.61± 
1.31 

68.83± 
1.44 

65.91± 
0.77 

76.87± 
2.05 

78.08± 
2.58 

Table 6. KNN based classification of emotions using conventional and proposed features on 
delta to gamma frequency bands 

 

Wavelet K 

KNN based Classification of Emotions using Alpha to Gamma Bands (8 
Hz – 64 Hz) in % 

Conventional Features Proposed Features 

ENT POW STD VAR RPE LRPE ALRPE 

db4 5 69.93± 
2.27 

55.87± 
2.79 

62.46± 
1.76 

56.01± 
3.06 

82.32± 
2.41 

83.04± 
2.13 

82.25± 
1.97 

db8 5 70.15± 
2.11 

55.44± 
2.94 

62.10± 
3.75 

55.58± 
3.31 

82.03± 
1.79 

86.55± 
0.75 

81.23± 
0.87 

sym8 5 71.16± 
3.04 

57.03± 
1.42 

62.17± 
1.60 

56.59± 
2.29 

81.45± 
0.83 

81.30± 
2.89 

81.67± 
1.04 

coif5 5 81.01± 
0.60 

55.07± 
3.17 

65.58± 
3.42 

55.94± 
4.18 

82.97± 
1.10 

82.97± 
1.11 

82.75± 
2.63 

Table 7. KNN based classification of emotions using conventional and proposed features on 
alpha to gamma frequency bands 
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Wavelet 

LDA based Classification of Emotions using Delta to Gamma Bands (0 Hz – 
64 Hz) in % 

Conventional Features Proposed Features 

ENT POW STD VAR RPE LRPE ALRPE 

db4 81.44± 
2.14 

52.17± 
4.91 

65.09± 
2.74 

51.87± 
1.65 

71.00± 
1.95 

78.04± 
0.84 

77.04± 
1.88 

db8 80.52± 
1.61 

53.74± 
4.76 

63.44± 
0.28 

51.87± 
3.04 

71.00± 
1.16 

77.87± 
0.96 

77.48± 
0.11 

sym8 79.74± 
2.04 

51.35± 
2.76 

64.78± 
2.26 

50.04± 
2.89 

70.91± 
1.03 

77.39± 
1.11 

77.57± 
1.97 

coif5 80.30± 
1.29 

51.52± 
1.82 

63.83± 
1.94 

50.35± 
3.30 

71.04± 
1.65 

77.96± 
0.92 

78.26± 
0.61 

Table 8. LDA based classification of emotions using conventional and proposed features on 
delta to gamma frequency bands 

 

Wavelet 

LDA based Classification of Emotions using Alpha to Gamma Bands (8 Hz – 64 
Hz) in % 

Conventional Features Proposed Features 
ENT POW STD VAR RPE LRPE ALRPE 

db4 72.90±1.41 63.41±3.10 71.74±2.15 64.57±1.88 76.88±2.05 75.58±1.92 75.73±2.40 
db8 72.68±2.38 63.91±2.63 71.59±1.50 62.39±2.29 77.03±1.96 76.38±2.11 75.65±2.13 

sym8 73.55±1.51 63.19±3.76 71.67±2.27 64.57±4.22 77.61±2.71 76.81±2.38 76.01±2.14 
coif5 70.51±2.65 63.04±2.03 71.88±1.21 63.70±2.39 82.70±1.96 74.93±0.59 76.74±2.36 

Table 9. LDA based classification of emotions using conventional and proposed features on 
alpha to gamma frequency bands 

 
Classifier Method Feature Wavelet K Disgust Happy Surprise Fear Neutral 

KNN 
Conventional ENT sym8 5 92 85 67 68.75 96.25 

Proposed ALRPE sym8 5 93 84 71 70 78.75 

LDA 
Conventional ENT db4 94 83 61 72.5 86.67 

Proposed ALRPE coif5 92 87 68 68.75 85 

Table 10. Individual classification rate of emotions corresponds to the maximum 
classification rate of conventional and proposed features on delta to gamma frequency 
bands   
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Classifier Method Feature Wavelet K Disgust Happy Surprise Fear Neutral 

KNN 
Conventional ENT coif5 5 90 85 71.67 66.67 95.83 

Proposed LRPE db8 5 91.67 87.67 75 72.92 97.92 

LDA 
Conventional ENT sym8 83.33 61.667 66.67 52.083 85.417 

Proposed RPE coif5 93.33 63.33 81.67 70.83 93.75 

Table 11. Individual classification rate of emotions corresponds to the maximum 
classification rate of conventional and proposed features on alpha to gamma frequency 
bands   

However, the proposed feature, the Logarithmic Recoursing Power Efficiency (LRPE) 
performs better over the conventional features in 3 frequency band analysis on KNN and 
Recoursing Power Efficiency (RPE) on LDA. This statistical parameter achieves a maximum 
of 86.55% classification rate than 81.01% on conventional feature (entropy). Furthermore, 
LDA based classification gives the maximum classification rate of 82.70% on proposed 
feature (RPE) compared to the conventional features. The individual classification accuracy 
for the conventional and proposed feature corresponding to the alpha to gamma band 
feature which gives the maximum average classification accuracy on KNN and LDA based 
classification (Table 7 and Table 9) are presented in Table 11. The classification rate of this 
emotion recognition method shows that, the EEG data collected under audio-visual stimuli 
environment has useful and enough information to assess discrete emotions from it. 
In addition, the proposed statistical feature (LRPE) derived from “db8” wavelet function 
achieve the maximum average classification rate of 86.55% compared to that of all other 
statistical features. Therefore, these results confirm that, the characteristic pattern of EEG 
under different emotional states are seems to be similar to the characteristic pattern of “db8” 
wavelet function. Hence, retrieval of information from the EEG signal from “db8” is highly 
possible than those of other wavelet functions. Though the level of improved classification 
rate of proposed feature is smaller than the conventional features, it confirms that the future 
work on deriving new statistical features based on “power” can improve the emotion 
recognition rate to a remarkable level. All these analysis are performed in offline using 
MATLAB 7 software. 

5. Conclusion 
A discrete emotion recognition system to recognize emotions from selected frequency range 
of EEG signals using new statistical features is presented in this paper. The range of 
frequency selected by the newly proposed feature gives a maximum average and individual 
classification rate compared to other conventional features. Therefore the extracted features 
successfully capture the emotional changes of the subject through their EEG signals 
regardless of the user’s cultural background, race, and age. Thus, the combination of 
wavelet features and non-linear classifier greatly improved the emotion classification rate of 
the proposed system over previous works. In addition, the accuracy of emotion 
classification reported on alpha to gamma band is higher compared to the other frequency 
bands considered by previous researchers with a maximum number of subjects with larger 
category of emotions (Table 1). This study is ongoing to involve different classification 
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algorithms in order to track the emotional status of brain activation during audio-visual 
stimuli environment.  

6. Future work 
This work can be extended to localize a brain region related to different emotional states. 
Thereby, the removal of inactive electrodes can be considered for developing more 
reliable/portable emotion recognition system. If so, the emotion recognition algorithm will 
be implemented into real life human-computer interaction applications. In addition, the 
dimensionality of the feature can be reduced by using the artificial intelligence methods to 
further improve the emotion classification rate.  
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Classifier Method Feature Wavelet K Disgust Happy Surprise Fear Neutral 

KNN 
Conventional ENT coif5 5 90 85 71.67 66.67 95.83 

Proposed LRPE db8 5 91.67 87.67 75 72.92 97.92 

LDA 
Conventional ENT sym8 83.33 61.667 66.67 52.083 85.417 

Proposed RPE coif5 93.33 63.33 81.67 70.83 93.75 

Table 11. Individual classification rate of emotions corresponds to the maximum 
classification rate of conventional and proposed features on alpha to gamma frequency 
bands   

However, the proposed feature, the Logarithmic Recoursing Power Efficiency (LRPE) 
performs better over the conventional features in 3 frequency band analysis on KNN and 
Recoursing Power Efficiency (RPE) on LDA. This statistical parameter achieves a maximum 
of 86.55% classification rate than 81.01% on conventional feature (entropy). Furthermore, 
LDA based classification gives the maximum classification rate of 82.70% on proposed 
feature (RPE) compared to the conventional features. The individual classification accuracy 
for the conventional and proposed feature corresponding to the alpha to gamma band 
feature which gives the maximum average classification accuracy on KNN and LDA based 
classification (Table 7 and Table 9) are presented in Table 11. The classification rate of this 
emotion recognition method shows that, the EEG data collected under audio-visual stimuli 
environment has useful and enough information to assess discrete emotions from it. 
In addition, the proposed statistical feature (LRPE) derived from “db8” wavelet function 
achieve the maximum average classification rate of 86.55% compared to that of all other 
statistical features. Therefore, these results confirm that, the characteristic pattern of EEG 
under different emotional states are seems to be similar to the characteristic pattern of “db8” 
wavelet function. Hence, retrieval of information from the EEG signal from “db8” is highly 
possible than those of other wavelet functions. Though the level of improved classification 
rate of proposed feature is smaller than the conventional features, it confirms that the future 
work on deriving new statistical features based on “power” can improve the emotion 
recognition rate to a remarkable level. All these analysis are performed in offline using 
MATLAB 7 software. 

5. Conclusion 
A discrete emotion recognition system to recognize emotions from selected frequency range 
of EEG signals using new statistical features is presented in this paper. The range of 
frequency selected by the newly proposed feature gives a maximum average and individual 
classification rate compared to other conventional features. Therefore the extracted features 
successfully capture the emotional changes of the subject through their EEG signals 
regardless of the user’s cultural background, race, and age. Thus, the combination of 
wavelet features and non-linear classifier greatly improved the emotion classification rate of 
the proposed system over previous works. In addition, the accuracy of emotion 
classification reported on alpha to gamma band is higher compared to the other frequency 
bands considered by previous researchers with a maximum number of subjects with larger 
category of emotions (Table 1). This study is ongoing to involve different classification 
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algorithms in order to track the emotional status of brain activation during audio-visual 
stimuli environment.  

6. Future work 
This work can be extended to localize a brain region related to different emotional states. 
Thereby, the removal of inactive electrodes can be considered for developing more 
reliable/portable emotion recognition system. If so, the emotion recognition algorithm will 
be implemented into real life human-computer interaction applications. In addition, the 
dimensionality of the feature can be reduced by using the artificial intelligence methods to 
further improve the emotion classification rate.  
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1. Introduction 
The discrete wavelet transform (DWT) algorithms have a firm position in multi-scale 
processing of biomedical signals, such as EMG and EEG.  The DWT algorithms were 
initially based on the compactly supported conjugate quadrature filters (CQFs) (Smith & 
Barnwell, 1986; Daubechies, 1988). However, a drawback in CQFs is due to the nonlinear 
phase effects such as spatial dislocations in multi-scale analysis. This is avoided in 
biorthogonal discrete wavelet transform (BDWT) algorithms, where the scaling and wavelet 
filters are symmetric and linear phase. The biorthogonal filters are usually constructed by a 
ladder-type network called lifting scheme (Sweldens, 1988; ITU-T, 2000). Efficient lifting 
BDWT structures have been developed for microprocessor and VLSI environment 
(Olkkonen et al. 2005; Olkkonen & Olkkonen, 2008). Only integer register shifts and 
summations are needed for implementation of the analysis and synthesis filters. 
A severe obstacle in multi-scale DWT analysis is the dependence of the total energy of the 
wavelet coefficients in different scales on the fractional shifts of the analysed signal. If we 
have a discrete-time signal [ ]x n and the corresponding time shifted signal [ ]x n  , where

[0,1]  , there occurs a notable difference in the energy of the wavelet coefficients as a 
function of the time shift. Kingsbury (2001) proposed a nearly shift invariant method, where 
the real and imaginary parts of the complex wavelet coefficients are approximately a Hilbert 
transform pair. The energy (absolute value) of the wavelet coefficients equals the envelope, 
which provides smoothness and approximate shift-invariance. Selesnick (2002) observed 
that using two parallel CQF banks, which are constructed so that the impulse responses of 
the scaling filters have half-sample delayed versions of each other: [ ]h n  and [ 0.5]h n  , the 
corresponding wavelet bases are a Hilbert transform pair. Selesnick (2002) proposed a 
spectral factorization method based on the half delay all-pass Thiran filters for design of the 
scaling filters. However, the scaling filters do not owe coefficient symmetry and the 
nonlinearity interferes with the spatial timing in different scales and prevents accurate 
statistical correlations.  
In this book chapter we review the shift invariant DWT algorithms for multi-scale analysis 
of biomedical signals. We describe a dual-tree DWT, where two parallel CQF wavelet 
sequences form a Hilbert pair, which warrants the shift invariance. Next we review the 
construction of the shift invariant BDWT, which is based on the novel design of the Hilbert 
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BDWT structures have been developed for microprocessor and VLSI environment 
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summations are needed for implementation of the analysis and synthesis filters. 
A severe obstacle in multi-scale DWT analysis is the dependence of the total energy of the 
wavelet coefficients in different scales on the fractional shifts of the analysed signal. If we 
have a discrete-time signal [ ]x n and the corresponding time shifted signal [ ]x n  , where

[0,1]  , there occurs a notable difference in the energy of the wavelet coefficients as a 
function of the time shift. Kingsbury (2001) proposed a nearly shift invariant method, where 
the real and imaginary parts of the complex wavelet coefficients are approximately a Hilbert 
transform pair. The energy (absolute value) of the wavelet coefficients equals the envelope, 
which provides smoothness and approximate shift-invariance. Selesnick (2002) observed 
that using two parallel CQF banks, which are constructed so that the impulse responses of 
the scaling filters have half-sample delayed versions of each other: [ ]h n  and [ 0.5]h n  , the 
corresponding wavelet bases are a Hilbert transform pair. Selesnick (2002) proposed a 
spectral factorization method based on the half delay all-pass Thiran filters for design of the 
scaling filters. However, the scaling filters do not owe coefficient symmetry and the 
nonlinearity interferes with the spatial timing in different scales and prevents accurate 
statistical correlations.  
In this book chapter we review the shift invariant DWT algorithms for multi-scale analysis 
of biomedical signals. We describe a dual-tree DWT, where two parallel CQF wavelet 
sequences form a Hilbert pair, which warrants the shift invariance. Next we review the 
construction of the shift invariant BDWT, which is based on the novel design of the Hilbert 
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transform filter.  Finally, we describe the FFT based computation of the analytic signal and 
the implementation of the shift invariant quadrature mirror filter (QMF) bank.  

2. Shift invariant CQF bank 
In the following we describe a shift invariant DWT algorithm based on two parallel real- 
valued CQF banks. The conventional CQF DWT bank consists of the 0( )H z  and 1( )H z  
analysis filters and 0( )G z  and 1( )G z  synthesis filters for N odd (Fig. 1) 
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where ( )P z is a polynomial in 1z . The scaling filter 0( )H z has the Kth order zero at   . 
The wavelet filter 1( )H z has the Kth order zero at 0  , correspondingly. The filters are 
related via the perfect reconstruction (PR) condition 
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Fig. 1. The analysis and synthesis parts of the real-valued CQF DWT bank. 

Let us denote the frequency response of the z-transform filter as 
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where * denotes complex conjugation. The tree structured implementation of the two 
parallel real-valued CQF filter banks is described in Fig. 2. In M-stage CQF tree the 
frequency response of the wavelet sequence is  
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Fig. 2. The implementation of two parallel real-valued CQF banks, which yields the wavelet 
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where the phase function 
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transform filter.  Finally, we describe the FFT based computation of the analytic signal and 
the implementation of the shift invariant quadrature mirror filter (QMF) bank.  

2. Shift invariant CQF bank 
In the following we describe a shift invariant DWT algorithm based on two parallel real- 
valued CQF banks. The conventional CQF DWT bank consists of the 0( )H z  and 1( )H z  
analysis filters and 0( )G z  and 1( )G z  synthesis filters for N odd (Fig. 1) 
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where ( )P z is a polynomial in 1z . The scaling filter 0( )H z has the Kth order zero at   . 
The wavelet filter 1( )H z has the Kth order zero at 0  , correspondingly. The filters are 
related via the perfect reconstruction (PR) condition 

                                               0 1 0

0 1 1

( ) ( ) ( ) 2
( ) ( ) ( ) 0

NH z H x G z z
H z H z G z

    
             

                         (2) 

 

 
Fig. 1. The analysis and synthesis parts of the real-valued CQF DWT bank. 

Let us denote the frequency response of the z-transform filter as 

        ( ) ( ) j nn
n n

n n
H z h z H h e                                  (3) 

Then we obtain the relations 

 1

( ) ( )

( ) ( )

H z H

H z H

 

  

  

  
                                           (4) 

where * denotes complex conjugation. The tree structured implementation of the two 
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By selecting the phase function ( )  in (6) as 

  ( )
2
     (11) 

the scaling filters (6) are half-sample delayed versions of each other. By inserting (11) in (10) 
we have 
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
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The wavelet sequences (5,9) yielded by the CQF bank (1) and the phase shifted CQF bank 
(6,8) can be interpreted as real and imaginary parts of the complex wavelet sequence 

  ( ) ( ) ( )MC M MW W jW     (13) 

The requirement for the shift-invariance comes from  

  ( ) ( )M MW      (14) 

where   denotes the Hilbert transform. The frequency response of the Hilbert transform 
operator is defined as ( ) sgn( )j   , where sgn( ) 1 for 0    and sgn( ) 0 for 0   . 
In this work we apply the Hilbert transform operator in the form  

  /2( ) sgn( )je     (15) 

The result (12) indicates that if the scaling filters are the half-sample delayed versions of 
each other, the resulting wavelet sequences are not precisely Hilbert transform pairs. There 
occurs a phase error term 1/2M  , which depends both in frequency and the stage M of the 
wavelet sequence. However, the error term can transferred in front of the CQF tree by using 
the equivalence described in Fig. 3. Then the error term reduces to /2  and the phase error 
term can be simply eliminated by prefiltering the analyzed signal by the half-sample delay 
operator, which has the frequency response /2( ) jD e   . The total phase function is then  

( ) ( ) /2 /2 /2D           , which implies that the M-stage CQF wavelet sequence 
and the phase error corrected sequence are a Hilbert transform pair.  
 

 
Fig. 3. The two equivalents for moving the phase function in front of the phase shifted CQF 
tree. 

The two parallel BDWT trees can be considered to form a complex wavelet sequence by 
defining the Hilbert transform operator  

   ( ) 1 ( )a z j z     (16) 
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By filtering the real-valued signal [ ]x n by the Hilbert transform operator results in an 
analytic signal  

  [ ] [ ] { [ ]}ax n x n j x n                       (17) 

whose magnitude response is zero at negative side of the frequency spectrum 
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Let us consider the complex wavelet sequence at the first stage (Fig. 6).The wavelet sequence 
is obtained by decimation of the high-pass filtered analytic signal  
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    (19) 

The frequency spectrum of the undecimated wavelet sequence ( )aW  contains frequency 
components only in the range 0    , but the frequency spectrum of the decimated 
analytic signal has the frequency band 0 2   .  Hence, the decimation does not produce 
overlapping and leakage (aliasing) to the negative frequency range. 
 A key feature of the dual-tree wavelet transform is the shift invariance of the decimated 
analytic wavelet coefficients. The frequency spectrum of the decimated wavelet sequence of 
the fractionally delayed signal [ ]x n    is /20.5 ( /2)j

ae W  . The energy of the decimated 
wavelet coefficients is 0.5 ( /2)W  , which does not depend on the fractional delay. 

2. Shift invariant BDWT filter bank 
The two-channel BDWT filter bank is of the general form 
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where the scaling filter 0( )H z has the Lth order zero at   . The wavelet filter 1( )H z has 

the Mth order zero at 0  , correspondingly. ( )Q z and ( )R z  are polynomials in 1z . The 
low-pass and high-pass reconstruction filters 0( )G z  and 1( )G z are defined as in the CQF 
bank.  For two-channel BDWT filter bank the PR relation is 
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 (21) 

An essential result is related to the modification of the BDWT bank (Olkkonen & Olkkonen, 
2007a). 
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By selecting the phase function ( )  in (6) as 
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By filtering the real-valued signal [ ]x n by the Hilbert transform operator results in an 
analytic signal  

  [ ] [ ] { [ ]}ax n x n j x n                       (17) 

whose magnitude response is zero at negative side of the frequency spectrum 
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where the scaling filter 0( )H z has the Lth order zero at   . The wavelet filter 1( )H z has 

the Mth order zero at 0  , correspondingly. ( )Q z and ( )R z  are polynomials in 1z . The 
low-pass and high-pass reconstruction filters 0( )G z  and 1( )G z are defined as in the CQF 
bank.  For two-channel BDWT filter bank the PR relation is 
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An essential result is related to the modification of the BDWT bank (Olkkonen & Olkkonen, 
2007a). 
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Lemma 1: If the scaling filter 0( )H z , the wavelet filter 1( )H z and the reconstruction filters 

0( )G z  and 1( )G z in BDWT filter bank (20) have a perfect reconstruction property (21), the 
following modified BDWT filter bank obeys the PR relation 
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where ( )F z is any polynomial in 1z . Proof is yielded by direct insertion (22) to PR condition 
(21). 
 In the following we apply Lemma 1 for constructing the shift invariant BDWT filter bank. 
We describe a novel method for constructing the Hilbert transform filter ( )z based on the 

half-sample delay filter 0.5( )D z z . The classical approach for design of the half-sample 
delay filter ( )D z is based on the Thiran all-pass interpolator 
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            (23) 

where the kc coefficients are optimized so that the  frequency response follows 

approximately /2( ) .jD e   Correspondingly, the quadrature mirror filter ( )D z has the 
frequency response  

 
( )/2( ) jD e        (24) 

The Hilbert transform filter is then obtained as  
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The Hilbert transform filter is inserted in the BDWT bank using the result of Lemma 1 (22). 
The modified prototype BDWT filter bank is 
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  (26) 

A highly simplified  BDWT filter bank can be obtained by noting that in (25) 1( ) ( )z z    . 
We have 
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The modified BDWT filter bank (27) can be realized by the Hilbert transform filter ( )z , 
which works as a prefilter for the analysed signal (Fig. 4). The Hilbert transform filter ( )z
works as a postfilter in the reconstruction stage, respectively.  
 

 
Fig. 4. The realization of the Hilbert transform filter. 

An integer-valued Hilbert transform  filter can be constructed by the B-spline transform (see 
details Olkkonen & Olkkonen, 2011b). The frequency response of the Hilbert transform filter 
shows a maximally flat magnitude spectrum. The phase spectrum corresponds to an ideal 
Hilbert transformer (15). 
The Hilbert transform filter in Fig. 4 can be replaced by the Hilbert transform operator (16), 
which yields an analytic signal. This avoids the need for two parallel filter banks. In the 
following we describe a FFT based method for computation of the analytic signal and the 
implementation of the shift invariant quadrature mirror filter (QMF) bank.  

3. FFT based computation of analytic signal 
The fast Fourier transform of the signal [ ]x n , n = 0, 1, 2, …,N-1 is of the form 
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where 2 /e j N
NW  . The FFT coefficients kY  (k=N/2,…,N-1) represent the values in the 

negative frequency band  ( 0)    . By zeroing those coefficients, the inverse fast Fourier 
transform (IFFT) yields an analytic signal. A more accurate result is obtained by weighting 
the FFT coefficients by a window  
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The analytic signal is then computed using the inverse FFT transform 
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The weighting sequence in (29) can be eliminated by writing  
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Lemma 1: If the scaling filter 0( )H z , the wavelet filter 1( )H z and the reconstruction filters 

0( )G z  and 1( )G z in BDWT filter bank (20) have a perfect reconstruction property (21), the 
following modified BDWT filter bank obeys the PR relation 
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where ( )F z is any polynomial in 1z . Proof is yielded by direct insertion (22) to PR condition 
(21). 
 In the following we apply Lemma 1 for constructing the shift invariant BDWT filter bank. 
We describe a novel method for constructing the Hilbert transform filter ( )z based on the 

half-sample delay filter 0.5( )D z z . The classical approach for design of the half-sample 
delay filter ( )D z is based on the Thiran all-pass interpolator 
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where the kc coefficients are optimized so that the  frequency response follows 

approximately /2( ) .jD e   Correspondingly, the quadrature mirror filter ( )D z has the 
frequency response  
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The Hilbert transform filter is then obtained as  

  
/2 ( )/2 /2( ) ( )( ) ( )

( ) ( )
j j jD D ze e e z

D D z
   

 
      

 
     (25) 

The Hilbert transform filter is inserted in the BDWT bank using the result of Lemma 1 (22). 
The modified prototype BDWT filter bank is 
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A highly simplified  BDWT filter bank can be obtained by noting that in (25) 1( ) ( )z z    . 
We have 
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The modified BDWT filter bank (27) can be realized by the Hilbert transform filter ( )z , 
which works as a prefilter for the analysed signal (Fig. 4). The Hilbert transform filter ( )z
works as a postfilter in the reconstruction stage, respectively.  
 

 
Fig. 4. The realization of the Hilbert transform filter. 

An integer-valued Hilbert transform  filter can be constructed by the B-spline transform (see 
details Olkkonen & Olkkonen, 2011b). The frequency response of the Hilbert transform filter 
shows a maximally flat magnitude spectrum. The phase spectrum corresponds to an ideal 
Hilbert transformer (15). 
The Hilbert transform filter in Fig. 4 can be replaced by the Hilbert transform operator (16), 
which yields an analytic signal. This avoids the need for two parallel filter banks. In the 
following we describe a FFT based method for computation of the analytic signal and the 
implementation of the shift invariant quadrature mirror filter (QMF) bank.  

3. FFT based computation of analytic signal 
The fast Fourier transform of the signal [ ]x n , n = 0, 1, 2, …,N-1 is of the form 
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negative frequency band  ( 0)    . By zeroing those coefficients, the inverse fast Fourier 
transform (IFFT) yields an analytic signal. A more accurate result is obtained by weighting 
the FFT coefficients by a window  
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The analytic signal is then computed using the inverse FFT transform 
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The weighting sequence in (29) can be eliminated by writing  
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Now, for even n we have 
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and for odd n 
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For zero mean signal { [ ]} 0mean x n  , which yields { [2 1]} { [2 ]}mean x n mean x n   .  If the 
even points of the analytic signal are known, the FFT coefficients are solved from (32) 

 /2 { [2 ] { [2 ]}} 0,..., /2 1k N aY FFT x n mean x n k N     (34) 

The odd points of the analytic signal are then computed from (33). We call this as the 
reconstruction property of the zero mean analytic signal. In the following we present a novel 
shift invariant QMF bank, which utilizes the reconstruction property of the analytic signal. 

4. Shift invariant QMF bank 
In QMF bank the scaling and wavelet filters obey the relation 1 0( ) ( )H z H z  , i.e. their 
frequency response is symmetric with respect to /2  . In this work we define the 
scaling and wavelet filters as half band QMFs 
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The shift invariant tree structured QMF DWT is described in Fig. 5. The FFT based Hilbert 
transform operator ( )a z  produces an analytic signal, which is fed to the scaling 0( )H z  and 
wavelet 1( )H z  filters and decimated. If the original zero mean signal is [ ]x n ,  the decimated  
scaling and wavelet coefficients [ ]s n  and [ ]w n  are obtained from 

  0 2

1 2

[ ] { [ ] [ ]}
[ ] { [ ] [ ]}

a

a

s n h n x n
w n h n x n





 
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 (36) 

where   denotes convolution. From (35) we have  

  0 1 0 1( ) ( ) 1 [ ] [ ] nH z H z h n h n       (37) 

The reconstruction consists of the summation of the decimated signals. We obtain 

  0 1 2 2[ ] [ ] {( [ ] [ ]) [ ]} { [ ] [ ]} [2 ]a a as n w n h n h n x n n x n x n         (38) 
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i.e. the summation of the decimated signals produces the even points [2 ]ax n  of the analytic 
signal.  The odd points [2 1]ax n   of the analytic signal are then reconstructed from the even 
points [2 ]ax n  via our results (32)-(34). The original signal is obtained from [ ] ( [ ])ax n real x n .  
 

 
Fig. 5. The shift invariant tree structured QMF DWT. 

5. Conclusion 
The dual-tree DWT algorithms have appeared to outperform the real-valued DWTs in 
several applications such as denoising, texture analysis, speech recognition, processing of 
seismic signals and multiscale-analysis of neuroelectric signal analysis (Olkkonen et al. 2006; 
Olkkonen et al. 2007b, Olkkonen & Olkkonen, 2010, Olkkonen & Olkkonen 2011a).  
Selesnick (2002) noted that a half-sample time-shift between the scaling filters in parallel 
CQF banks yields a nearly shift invariant DWT, where the wavelet bases form a Hilbert 
transform pair. However, the multi-scale analyses of neuroelectric signals have revealed that 
the first stages of wavelet sequences are quite poorly shift invariant. We reanalysed the 
condition and observed a phase-error term 1/2M  (12) compared with the ideal phase 
response ( ) /2    . The phase error attains s highest value at high frequency range and 
small stage M of the wavelet sequence. Fortunately the phase error term can be cancelled by 
adding a half-delay prefilter in front of the CQF chain. For this purpose the half-delay filter 
constructed by the B-spline transform (Olkkonen & Olkkonen, 2011b) is well suited. In 
addition, there exists many other design methods for half-delay filters (see e.g. Laakso et al. 
1996; Johansson & Lowenborg, 2002; Pei & Tseng, 2003; Pei  & Wang, 2004; Tseng, 2006). 
In this book chapter we described a novel shift invariant dual-tree BDWT (27) based on 
Lemma 1 (22) and the Hilbert transform filter (25). In many respects the shift invariant BDWT 
bank outperforms the previous nearly shift invariant DWT approaches. The Hilbert 
transform filter assisted BDWT yields precisely shift invariant wavelet sequences, which 
permits the statistical analyses between scales in multi-scale analyses of biomedical signals 
such as EMG and EEG. 
The Hilbert transform filter in Fig. 4 can be replaced by the Hilbert transform operator (16), 
which yields an analytic signal. This avoids the need for two parallel filter banks. In this 
work we described a FFT based method for computation of the analytic signal and the 
implementation of the shift invariant QMF bank. As a clear advantage of the half-band QMF 
structure is that the frequency responses of the scaling and wavelet filters are mirror 
symmetric with respect to /2  . Hence, they split the energy of the signal precisely to 
the low-pass and high-pass fractions. The energy preservation property is of utmost 
importance in automated statistical signal processing of the multi-scale signals. In tree 
structured multi-scale analysis the linear phase of the QMFs is advantageous since the 
timing information of the wavelet coefficients in different scales is preserved. Without an 
exact timing of the subscale signals the statistical comparison of the wavelet coefficients in 
different scales is not relevant and may lead to misleading results. For example in EEG 
signal the neuroelectric discharge contains fast repetitive transients with related timing and 
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and for odd n 
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For zero mean signal { [ ]} 0mean x n  , which yields { [2 1]} { [2 ]}mean x n mean x n   .  If the 
even points of the analytic signal are known, the FFT coefficients are solved from (32) 
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The odd points of the analytic signal are then computed from (33). We call this as the 
reconstruction property of the zero mean analytic signal. In the following we present a novel 
shift invariant QMF bank, which utilizes the reconstruction property of the analytic signal. 

4. Shift invariant QMF bank 
In QMF bank the scaling and wavelet filters obey the relation 1 0( ) ( )H z H z  , i.e. their 
frequency response is symmetric with respect to /2  . In this work we define the 
scaling and wavelet filters as half band QMFs 
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The shift invariant tree structured QMF DWT is described in Fig. 5. The FFT based Hilbert 
transform operator ( )a z  produces an analytic signal, which is fed to the scaling 0( )H z  and 
wavelet 1( )H z  filters and decimated. If the original zero mean signal is [ ]x n ,  the decimated  
scaling and wavelet coefficients [ ]s n  and [ ]w n  are obtained from 
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where   denotes convolution. From (35) we have  
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i.e. the summation of the decimated signals produces the even points [2 ]ax n  of the analytic 
signal.  The odd points [2 1]ax n   of the analytic signal are then reconstructed from the even 
points [2 ]ax n  via our results (32)-(34). The original signal is obtained from [ ] ( [ ])ax n real x n .  
 

 
Fig. 5. The shift invariant tree structured QMF DWT. 
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several applications such as denoising, texture analysis, speech recognition, processing of 
seismic signals and multiscale-analysis of neuroelectric signal analysis (Olkkonen et al. 2006; 
Olkkonen et al. 2007b, Olkkonen & Olkkonen, 2010, Olkkonen & Olkkonen 2011a).  
Selesnick (2002) noted that a half-sample time-shift between the scaling filters in parallel 
CQF banks yields a nearly shift invariant DWT, where the wavelet bases form a Hilbert 
transform pair. However, the multi-scale analyses of neuroelectric signals have revealed that 
the first stages of wavelet sequences are quite poorly shift invariant. We reanalysed the 
condition and observed a phase-error term 1/2M  (12) compared with the ideal phase 
response ( ) /2    . The phase error attains s highest value at high frequency range and 
small stage M of the wavelet sequence. Fortunately the phase error term can be cancelled by 
adding a half-delay prefilter in front of the CQF chain. For this purpose the half-delay filter 
constructed by the B-spline transform (Olkkonen & Olkkonen, 2011b) is well suited. In 
addition, there exists many other design methods for half-delay filters (see e.g. Laakso et al. 
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which yields an analytic signal. This avoids the need for two parallel filter banks. In this 
work we described a FFT based method for computation of the analytic signal and the 
implementation of the shift invariant QMF bank. As a clear advantage of the half-band QMF 
structure is that the frequency responses of the scaling and wavelet filters are mirror 
symmetric with respect to /2  . Hence, they split the energy of the signal precisely to 
the low-pass and high-pass fractions. The energy preservation property is of utmost 
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timing information of the wavelet coefficients in different scales is preserved. Without an 
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overlapping waveforms. In multi-scale analysis different components can be separated due 
to their different timing and scale related intensification. 
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1. Introduction 
Heartbeat sound analysis by auscultation is still insufficient to diagnose some heart diseases. 
It does not enable the analyst to obtain both qualitative and quantitative characteristics of 
the phonocardiogram signals [1],[2]. Abnormal heartbeat sounds may contain, in addition to 
the first and second sounds, S1 and S2, murmurs and aberrations caused by different 
pathological conditions of the cardiovascular system [2]. Moreover, in studying the physical 
characteristics of heart sounds and human hearing, it is seen that the human ear is poorly 
suited for cardiac auscultation [3]. Therefore, clinic capabilities to diagnose heart sounds are 
limited. 
The sound emitted by a human heart during a single cardiac cycle consist of  two dominant 
events, known as the first heart sound S1 and the second heart sound S2 (Figure1), S1 relates 
to the closing of the mitral and tricuspid valves whilst S2 is generated by the halting of the 
aortic and pulmonary valves leaflets [1].  S1 corresponds in timing to the QRS complex in 
ECG (Electrocardiogram) and S2 follows the systolic pause in the normal cardiac cycle. 
Heartbeat sound analysis by auscultation only is still insufficient to diagnose some heart 
diseases. It does not enable the analyst to obtain both qualitative and quantitative 
characteristics of S1 and S2 of the phonocardiogram [1-2]. Moreover, in studying the 
physical characteristics of heart sounds and human hearing, it is seen that the human ear is 
poorly suited for cardiac auscultation [3]. Therefore, clinic capabilities to diagnose heart 
sounds are limited. In this paper we are interested  in the study of the physical 
characteristics of the second heart sound S2 which consist of two major components in the 
spectrum of the signal . One of these components A2 is due to the closure of the aortic valve 
and the other P2 is due to the closure of the pulmonary valve. 
The aortic component is loudest than the pulmonic component. It is discernible at all the 
auscultation sites.It is best heard at the right base, with the diaphragm of the chest piece 
firmly pressed, whereas the pulmonic on a may only be audible at the left base, with the 
diaphragm of the chest piece firmly pressed. 
The aortic component has higher frequency contents and generally precedes the pulmonary 
component because in normal heart activity the aortic valve closes before the pulmonary 
valve. The difference of time occurrence between these valves activities is known in medical 
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overlapping waveforms. In multi-scale analysis different components can be separated due 
to their different timing and scale related intensification. 
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1. Introduction 
Heartbeat sound analysis by auscultation is still insufficient to diagnose some heart diseases. 
It does not enable the analyst to obtain both qualitative and quantitative characteristics of 
the phonocardiogram signals [1],[2]. Abnormal heartbeat sounds may contain, in addition to 
the first and second sounds, S1 and S2, murmurs and aberrations caused by different 
pathological conditions of the cardiovascular system [2]. Moreover, in studying the physical 
characteristics of heart sounds and human hearing, it is seen that the human ear is poorly 
suited for cardiac auscultation [3]. Therefore, clinic capabilities to diagnose heart sounds are 
limited. 
The sound emitted by a human heart during a single cardiac cycle consist of  two dominant 
events, known as the first heart sound S1 and the second heart sound S2 (Figure1), S1 relates 
to the closing of the mitral and tricuspid valves whilst S2 is generated by the halting of the 
aortic and pulmonary valves leaflets [1].  S1 corresponds in timing to the QRS complex in 
ECG (Electrocardiogram) and S2 follows the systolic pause in the normal cardiac cycle. 
Heartbeat sound analysis by auscultation only is still insufficient to diagnose some heart 
diseases. It does not enable the analyst to obtain both qualitative and quantitative 
characteristics of S1 and S2 of the phonocardiogram [1-2]. Moreover, in studying the 
physical characteristics of heart sounds and human hearing, it is seen that the human ear is 
poorly suited for cardiac auscultation [3]. Therefore, clinic capabilities to diagnose heart 
sounds are limited. In this paper we are interested  in the study of the physical 
characteristics of the second heart sound S2 which consist of two major components in the 
spectrum of the signal . One of these components A2 is due to the closure of the aortic valve 
and the other P2 is due to the closure of the pulmonary valve. 
The aortic component is loudest than the pulmonic component. It is discernible at all the 
auscultation sites.It is best heard at the right base, with the diaphragm of the chest piece 
firmly pressed, whereas the pulmonic on a may only be audible at the left base, with the 
diaphragm of the chest piece firmly pressed. 
The aortic component has higher frequency contents and generally precedes the pulmonary 
component because in normal heart activity the aortic valve closes before the pulmonary 
valve. The difference of time occurrence between these valves activities is known in medical 
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community [4 - 6] as split. However in many diseases [1] this order of time occurrence may 
be reverse and its delay varies.  
 

 
 

Fig. 1. Correlation between the phonocardiogram signal (PCG) and the electrocardiogram 
signal (ECG) 

The characteristics of the PCG signal and other features such as heart sounds S1 and S2 
location; the number of components for each sound; their frequency content; their time 
interval; all can be measured more accurately by digital signal processing techniques. 
The FFT (Fast Fourier Transform) can provide a basic understanding of the frequency 
contents of the heart sounds. However, FFT analysis remains of limited values if the 
stationary assumption of the signal is violated. Since heart sounds exhibit marked changes 
with time and frequency, they are therefore classified as non - stationary signals. To 
understand the exact feature of such signals, it is thus important, to study  their  time – 
frequency characteristics. 
In this paper the wavelet transform is used to analyse both the normal  and abnormal heart 
sound in both time and frequency domains. This  technique has been  shown to have a very 
good time resolution for high-frequency components. In fact the time resolution increases as 
the frequency increases and the  frequency resolution increases as the frequency decreases 
[4],[5]. 
Furthermore, the wavelet transform has demonstrated the ability to analyse the heart  sound 
more accurately than other techniques STFT or Wigner distribution [6] in some pathological 
cases. 
In fact the spectrogram (STFT) cannot  track very sensitive sudden changes in the time 
direction. To deal with these time changes properly it is necessary to keep the length of the 
time window as short as possible. This however, will reduce the frequency resolution in the 
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time-frequency plane. Hence, there is a trade-off between time and frequency resolutions 
[6]. 
However the Wigner distribution (WD) and the corresponding WVD (Wigner Ville 
Distribution) have shown good performances  in the analysis of non-stationary signals. This 
comes from the ability of the WD to separate signals  in both time and frequency directions. 
One advantage of the WD over the STFT is that it does not suffer from the time-frequency 
trade-off problem. On the other hand, the WD has a disadvantage since it shows  cross-
terms in its response. These cross-terms are due to the nonlinear behaviour of the WD, and 
bear no physical meaning. One way to remove these cross-terms is by smoothing the time-
frequency plane, but this will be at the expense of decreased resolution in both time and 
frequency [7].  
The WD  was  applied to  heart sound signal it shows no succes in displaying or separating 
the signal components in both the time and frequency direction [6], although it  provides 
high time-and frequency- resolution  in simple monocomponent signal analysis[8]. 
To overcome these difficulties with the STFT and the WD an alternative way to analyse the 
non-stationary signals is the wavelet transform (WT). It expand the signal some basis 
functions. The basis functions can be constructed by dilation, contractions and shifts of a 
unique function called the “wavelet prototype” or “wavelet mother”. The WT act as 
“mathematical microscope” in which we can observe different parts of the signal by just 
adjusting the focus. 
The wavelet Transform is  a technique in the domain of time-frequency distributions.  The 
main idea of this method is the representation of an arbitrary signal as a superposition of  
basic signals, “atoms”, located in time and frequency. These atoms may be derived by 
means of a special operation on a single parent atom. Parent atoms and derivation operation 
are usually chosen such as to enable the construction of an orthonormal system [9]. 
The study of the decomposition of the signal  in " atoms "  was first carried  out by Gabor  
however, it was quickly abandoned be cause of :  
1. the no simultaneous Representation in time and frequency  
2. grid made up of rectangular cells is not a  flexible device 
3. the mathematical theory of the phenomenon is badly structured. 
The representation time-scale of WT based on a dyadic paving appears more flexible. It a 
mathematical structure governed by a formula of exact inversion [10] making possible the 
existence of orthonormal basis. This makes  the wavelet to be a simultaneous function of 
time and frequency. 
In this paper the continuous wavelet transform (CWT) is applied to analyse pathological 
PCG signals. The CWT is more appropriate than the discrete wavelet transform (DWT) , 
since we are  interested  in the analysis of non-stationary signals and not signal coding 
where DWT is found to be more useful 

2. Theoretical background 
2.1 Fourier Transform (FT) 
In 1882, Joseph Fourier discovered that any periodic function could be represented as an 
infinite sum of periodic complex exponential functions [10]. The inclusive property of only 
periodic functions was later extended to any discrete time function. The Fourier transform 
(FT) [as regular Fourier Transform] converts a signal expressed in the time domain to a 
signal expressed in the frequency domain. The FT is widely used and usually implemented 
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infinite sum of periodic complex exponential functions [10]. The inclusive property of only 
periodic functions was later extended to any discrete time function. The Fourier transform 
(FT) [as regular Fourier Transform] converts a signal expressed in the time domain to a 
signal expressed in the frequency domain. The FT is widely used and usually implemented 
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in the form of FFT algorithm (fast Fourier transform). The mathematical definition of the FT 
is given below. 

 2( ) ( ) j ftX f x t dte    (1) 

Where t and f are respectively the time and frequency parameters. The time domain signal 
( )x t  is multiplied by a complex exponential at a frequency f and integrate over all time. In 

other words, any discrete time signal may be represented by a sum of sines and cosines, 
which are shifted and are multiplied by a coefficient that changes their amplitude. ( )X f are 
the Fourier coefficients which are large when a signal contains a frequency component 
around the frequency f .  
The peaks in a plot of the FT of a signal correspond to dominant frequency components of 
the signal. Fourier analysis is simply not effective when used on non stationary signals 
because it does not provide frequency content information localized in time. Most real 
world signals exhibit non stationary characteristics (such as heart sound signals). Thus, 
Fourier analysis is not adequate. 

2.2 Short-time Fourier Transform (STFT) 
The STFT is obtained by calculating the Fourier transform of a sliding windowed version of 
the time signal s(t). The location of the sliding window adds a time dimension and one gets 
a time-varying frequency analysis.  
The mathematical representation of STFT is : 

 2( , ) ( ) ( ) j ftS t f s w t de   






   (2) 

Where ( )w t  it is the sliding window applied to the signal ( )s t , f  is the frequency and t is 
the time.  
The length of the window is chosen so that to maintain signal stationary in order to calculate 
the Fourier transform. To reduce the effect of leakage (the effect of having finite duration), 
each sub-record is then multiplied by an appropriate window and then the Fourier 
transform is applied to each sub-record. As long as each sub-record does not contain rapid 
changes the spectrogram will give an excellent idea of how the spectral composition of the 
signal has changed during the whole time record. However, there exist many physical 
signals  whose spectral content is so rapidly changing that finding an appropriate short-time 
window is problematic, since there may not  be any time interval for which the signal is 
stationary. To deal with these time changes properly it is necessary to keep the length of the 
time window as short as possible. This, however, will reduce the frequency resolution in the 
time-frequency plane. Hence, there is a trade-off between time and frequency resolutions. 

2.3 Wgner Distribution function (WD) 
In contrast to the STFT, which is resolution limited either in time or in frequency (dictated 
by the window function), and suffers from smearing and side lobe leakage, the WD offers 
excellent resolution in both the frequency and time domains. The WD of two signals, x(t), 
y(t), is defined via, 
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 ( , ) ( ) * ( )
2 2

jW t x t y t de   






    (3)  

The auto WD is obtained when x(t) = y(t)=s(t), it is a bilinear function of the signal s(t). the 
WD, and can also be expressed as 

 ( , ) ( ) * ( )
2 2

jS t s t s t de   






    (4) 

Where t and   are respectively, the time and frequency variables, and * denotes the 
complex conjugate. 
The WD had shown good applications in the analysis of non-stationary signal [7]. This 
comes from the ability of this method to separate signals in both time and frequency 
directions. The WD has a disadvantage that it is limited by the appearance of cross-terms. 
These cross-terms are due to the nonlinear behaviour of the WD, and bear no physical 
meaning. One way to remove these cross-terms is by smoothing the time-frequency plane 
[7], but this will be at the expense of decreased resolution in both time and frequency. 

2.4 Continuous Wavelet Transform (CWT) 
The continuous wavelet transform was developed as  a method to obtain simultaneous, high 
resolution time and frequency information about a signal. The term ‘wavelet’ was first 
mentioned in 1909 in a thesis by Alfred Haar [M.Misiti.Y.Misiti.G.Oppenheim.J.-
M.Poggi.Wavelet Toolbox:For use with MATLAB.The Math Works Inc.1996], although the 
progress in the field  of wavelet has been relatively slow until the 1980’s when scientist and 
engineers from different fields realized they were working on the same concept and began 
collaborating .         
The CWT rather than the STFT  uses a variable sized window region .Because  the wavelet 
may be dilated or compressed, different features of the signal are extracted. While a narrow 
wavelet extracts high frequency components, a stretched wavelet picks up on the lower 
frequency components of the signal. 
The CWT is computed by correlating the signal s(t) with families of time-frequency atoms 
g(t), it produce  a set of coefficients C(a,b) given by :      

 1( , ) ( ) * ( )t bC a b s t g dt
aa






   (5) 

 ( ) ( ) jbwa G aw S w dwe




   (6) 

Where  
 b is the time location  
 a is called  scale factor and it is  inversely  proportional  to the frequency (a > 0)  
 *dénotes a complexe conjugate. 
 g(t) is the analysing wavelet . 
 S(w) and G(w) are, respectively, the Fourier transforms of s(t) and g(t). 
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The analyzing wavelet function g(t) should satisfy some properties. The most important 
ones are continuity, integrability, square integrability, progressivity and it has no d.c 
component. Moreover, the wavelet g(t) has to be concentrated in both time and frequency as 
much as possible. It is well known that the smallest time-bandwidth product is achieved by 
the Gaussian function [3].  Hence the most suitable analyzing wavelet for time-frequency 
analysis is the complex exponential modulated Gaussian function of the form : 

 g(t) = exp(-
2

2
t  +j wo t) (7) 

If we choose the analyzing wavelet that has the following Fourier transform (FT): 

 G( w ) = Aexp[-
2( )w wo /2] +  (8) 

When  is a small correction term, theoretically necessary to satisfy the admissibility 
conditions of wavelets; ow  is chosen large enough so that the correction term is negligible 
and can be ignored. 
This is known as the Gabor wavelet. It was shown [5] that   wo = 5.33, which is enough to 
make the correction term negligible and gives an optimal time-bandwidth product. 
In a continuous wavelet transform, the wavelet corresponding to the scale and the time 
location b is   given by  

 
,a b

g (t) = 1/ a  g( t b
a
 )  (9) 

Where g(t) is the wavelet “prototype” or mother which can be thought of as a band pass 

function. The factor 
1/2/ /a


is used to ensure   energy preservation [5]. 

2.5 Discrete Wavelet Transform (DWT) 
Wavelet series (WS) coefficients are sampled CWT coefficients. Time remains continuous 
but time-scale parameters (b,a) are sampled on a so-called “dyadic” grid in the time-scale 
plane (b,a) [11]. A common definition is : 

 jkC =CWTs(t); a = 2 j , b = k 2 j    with j,k Z (10) 

The wavelets are in this case : 

 jk(t) = /22 j   ( 2 j t - k) (11) 

The discrete wavelet transform (DWT) has been recognized as a natural wavelet transform 
for discrete-time signals. Both the time and time-scale parameters are discrete. 
The discretization process partially depends upon the algorithm chosen to perform the 
transformation. 
The ,C j k  could be well approximated by digital filter banks. By using Mallat’s [12] 

remarkable fast pyramid algorithms which involve use of low-pass and high-pass filters. 
The Mallat algorithm is in fact a classical scheme known in the signal processing community 
as two-channel subband coder. The wavelet analysis permits to decompose the 
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phonocardiogram signal in filter banks. The signal to be analyzed is decomposed in 
approximation an in detail while using two filter h and g.  The h filter is a low - pass filter 
with a band pass [0,/2], it  generates  the approximation signal "A". 
The g filter is a high – pass filter of band pass [0, ], it generates the detail signal "D". The 
filtered signals are under-sampled (decimation)  according to the rule of Nyquist. This leads 
to a considerable reduction in computing time. Every approximation is decomposed all over 
again in approximation and detail. In this case the signal is decomposed into several 
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veritable according to the decomposition level. The wavelet analysis permits to decompose 
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The analyzing wavelet function g(t) should satisfy some properties. The most important 
ones are continuity, integrability, square integrability, progressivity and it has no d.c 
component. Moreover, the wavelet g(t) has to be concentrated in both time and frequency as 
much as possible. It is well known that the smallest time-bandwidth product is achieved by 
the Gaussian function [3].  Hence the most suitable analyzing wavelet for time-frequency 
analysis is the complex exponential modulated Gaussian function of the form : 

 g(t) = exp(-
2

2
t  +j wo t) (7) 

If we choose the analyzing wavelet that has the following Fourier transform (FT): 

 G( w ) = Aexp[-
2( )w wo /2] +  (8) 

When  is a small correction term, theoretically necessary to satisfy the admissibility 
conditions of wavelets; ow  is chosen large enough so that the correction term is negligible 
and can be ignored. 
This is known as the Gabor wavelet. It was shown [5] that   wo = 5.33, which is enough to 
make the correction term negligible and gives an optimal time-bandwidth product. 
In a continuous wavelet transform, the wavelet corresponding to the scale and the time 
location b is   given by  

 
,a b

g (t) = 1/ a  g( t b
a
 )  (9) 

Where g(t) is the wavelet “prototype” or mother which can be thought of as a band pass 

function. The factor 
1/2/ /a


is used to ensure   energy preservation [5]. 

2.5 Discrete Wavelet Transform (DWT) 
Wavelet series (WS) coefficients are sampled CWT coefficients. Time remains continuous 
but time-scale parameters (b,a) are sampled on a so-called “dyadic” grid in the time-scale 
plane (b,a) [11]. A common definition is : 

 jkC =CWTs(t); a = 2 j , b = k 2 j    with j,k Z (10) 

The wavelets are in this case : 

 jk(t) = /22 j   ( 2 j t - k) (11) 

The discrete wavelet transform (DWT) has been recognized as a natural wavelet transform 
for discrete-time signals. Both the time and time-scale parameters are discrete. 
The discretization process partially depends upon the algorithm chosen to perform the 
transformation. 
The ,C j k  could be well approximated by digital filter banks. By using Mallat’s [12] 

remarkable fast pyramid algorithms which involve use of low-pass and high-pass filters. 
The Mallat algorithm is in fact a classical scheme known in the signal processing community 
as two-channel subband coder. The wavelet analysis permits to decompose the 
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phonocardiogram signal in filter banks. The signal to be analyzed is decomposed in 
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filtered signals are under-sampled (decimation)  according to the rule of Nyquist. This leads 
to a considerable reduction in computing time. Every approximation is decomposed all over 
again in approximation and detail. In this case the signal is decomposed into several 
frequency bands instead of two bands. The number of  bands depends on decomposition 
level. 
Figure2 shows the discrete wavelet decomposition on three levels, as well as the note 
associated filter bank for each level. We note that the width of the filter banks band-pass is 
veritable according to the decomposition level. The wavelet analysis permits to decompose 
the phonocardiogram signal in filter banks. The signal to be analyzed is decomposed in 
approximation an in detail while using two filter h and g.  The h filter is a low - pass filter 
with a band pass [0,/2], it  generates  the approximation signal "A". 
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Fig. 3. a) Exemple of the packet  wavelet decompostion for three levels; b) Filter banks of the 
decomposition of each level 

2.6 Wavelet Packet Transform (WPT) 
Wavelet packet analysis is an extension of the discrete wavelet transform (DWT) and it turns 
out that the DWT is only one of the much possible decomposition that could be performed 
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on the signal. Instead of just decomposing the low frequency component, it is therefore 
possible to subdivide the whole time-frequency plane into different time-frequency pieces as 
can be seen from. The advantage of wavelet packet analysis is that it is possible to combine 
the different levels of decomposition in order to achieve the optimum time-frequency 
representation of the original [13]. 
To obtain a uniform filter bank we will use the wavelet packet analysis which is a 
generalization of the discrete wavelet transform analysis. The decomposition is also made of 
the details signal "D". Figure3 shows the wavelet packet decomposition on three levels as 
well as the filter banks associated for each uniform level. 

3. Results and discussion 
3.1 Fast Fourier Transform application 
An FFT algorithm is first applied to the PCG signal given in Figure1.  The frequency 
spectrum illustrated in Figure4a  shows that the normal PCG signal has a frequency content  
varying from around 40Hz up to 200Hz. The FFT can be applied to the first part of this 
signal to analyse the frequency content of S1 as shown in Figure 4b and then to the second 
half to analyse the frequency content of S2 as shown in Figure4c. A 512 points FFT is applied 
to S1 and S2. At this stage the sound S1 or S2 cannot be separated.  
In fact; the application of the FFT on heart sounds S1 and S2 after their separation or 
identification show that the basic frequency components are obviously detected  by the 
Fourier transform .  
The spectrum of S1 has reasonable values in the range 10-180Hz. The spectrum is distinctly 
resolved in  time into two majors components (M1 and T1) while the most of  the energy of 
these sounds appears to be concentrated.  
The two components A2 (due to the closure of the aortic valve) and   P2 due to the closure of 
the pulmonary valve) of the second sound S2 are obvious in Figure4c.  The spectrum of the 
sound S2 has reasonable values in the range 50-250Hz. The spectrum for this sound is 
distinctly resolved in time into two majors components  (A2  and P2) as shown in Figure4c. 
However  the  FFT analysis of S2 cannot tell neither which of A2 and P2 precedes the other, 
nor the value of the time delay  known as the  “split” which separate them. For a normal 
heart activity usually A2 precedes P2 and the value of the split is lower than 30ms. This time 
delay between A2 and P2 is very important to detect some pathological cases. The sound S2 
seem to have higher frequency content than that of S1 as shown in Figure4b and Figure4c. 
The FFT is applied also to analyse fourth PCG signals one normal and three different  
marked  pathological cases  (the aortic-insufficiency, the aortic-stenosis and the mitral-
stenosis). These are illustrated in Figure5 along with the normal PCG signal. The basic 
frequency content is obviously different from that of the normal PCG signal. It is clearly 
shown that there is great  loss of frequency component  in  each of the pathological case with 
respect to normal case.   In addition except the aortic- insufficiency case where we  note the 
apparition of frequency component  higher than  200Hz , the other cases (mitral-stenosis and 
aortic-stenosis) present a frequency spectrum limited to 200Hz. 
The aortic-insufficiency and the aortic-stenosis are two pathological cases resulting from a 
severe organic attack, which generally involves a disappearance of the aortic component A2 
of the sound  S2. This shown in their corresponding PCG frequency responses illustrated in 
Figure5, where we notice a lack  in frequency contents in the range under 100Hz  compared 
to the normal case, where there is much more frequency component in this range.  On the 
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on the signal. Instead of just decomposing the low frequency component, it is therefore 
possible to subdivide the whole time-frequency plane into different time-frequency pieces as 
can be seen from. The advantage of wavelet packet analysis is that it is possible to combine 
the different levels of decomposition in order to achieve the optimum time-frequency 
representation of the original [13]. 
To obtain a uniform filter bank we will use the wavelet packet analysis which is a 
generalization of the discrete wavelet transform analysis. The decomposition is also made of 
the details signal "D". Figure3 shows the wavelet packet decomposition on three levels as 
well as the filter banks associated for each uniform level. 

3. Results and discussion 
3.1 Fast Fourier Transform application 
An FFT algorithm is first applied to the PCG signal given in Figure1.  The frequency 
spectrum illustrated in Figure4a  shows that the normal PCG signal has a frequency content  
varying from around 40Hz up to 200Hz. The FFT can be applied to the first part of this 
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to S1 and S2. At this stage the sound S1 or S2 cannot be separated.  
In fact; the application of the FFT on heart sounds S1 and S2 after their separation or 
identification show that the basic frequency components are obviously detected  by the 
Fourier transform .  
The spectrum of S1 has reasonable values in the range 10-180Hz. The spectrum is distinctly 
resolved in  time into two majors components (M1 and T1) while the most of  the energy of 
these sounds appears to be concentrated.  
The two components A2 (due to the closure of the aortic valve) and   P2 due to the closure of 
the pulmonary valve) of the second sound S2 are obvious in Figure4c.  The spectrum of the 
sound S2 has reasonable values in the range 50-250Hz. The spectrum for this sound is 
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However  the  FFT analysis of S2 cannot tell neither which of A2 and P2 precedes the other, 
nor the value of the time delay  known as the  “split” which separate them. For a normal 
heart activity usually A2 precedes P2 and the value of the split is lower than 30ms. This time 
delay between A2 and P2 is very important to detect some pathological cases. The sound S2 
seem to have higher frequency content than that of S1 as shown in Figure4b and Figure4c. 
The FFT is applied also to analyse fourth PCG signals one normal and three different  
marked  pathological cases  (the aortic-insufficiency, the aortic-stenosis and the mitral-
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frequency content is obviously different from that of the normal PCG signal. It is clearly 
shown that there is great  loss of frequency component  in  each of the pathological case with 
respect to normal case.   In addition except the aortic- insufficiency case where we  note the 
apparition of frequency component  higher than  200Hz , the other cases (mitral-stenosis and 
aortic-stenosis) present a frequency spectrum limited to 200Hz. 
The aortic-insufficiency and the aortic-stenosis are two pathological cases resulting from a 
severe organic attack, which generally involves a disappearance of the aortic component A2 
of the sound  S2. This shown in their corresponding PCG frequency responses illustrated in 
Figure5, where we notice a lack  in frequency contents in the range under 100Hz  compared 
to the normal case, where there is much more frequency component in this range.  On the 



 
Discrete Wavelet Transforms - Biomedical Applications 

 

72

other hand the mitral-stenosi is rather a severe attack of the mitral valves thus involving a 
presystolic  reinforcement as well as a bursting of the sound  S1. 
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Fig. 4. Frequency spectrum for the normal cardiac sounds and the sounds S1 and S2  
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As the frequency extent of the sound S1 is less important than that of the sound S2, the 
spectral response of the PCG signal related to  this pathological case is not  much affected 
comparad to that of the normal case as was the case in the  aortic -insufficiency and aortic-
stenosis  
In conclusion, and by applying the spectral analysis to different PCG signals, we can 
affirm which of the sounds S1 or S2 is directly concerned by the pathology, and more 
precisely which component of these sounds is affected. 
With regard to normal PCG the basic frequency components are obviously detected by the 
FFT but not the time delay between these components. In fact as it was shown for example 
in Figure4c, the components A2 and P2 of the second sound S2 are obvious. However the 
FFT analysis of S2 cannot tell what is the value of the time delay between A2 and P2.  It is 
thus essential to look for a transform which will describe a kind of “time-varying” spectrum.  

3.2 Short-time Fourier Transform application 
The normal phonocardiogram signal (Figure 6a) and the coarctation of the aorta (Figure 6a) 
are analyzed in this section. The coarctation of the aorta has been deliberately chosen here to 
evaluate the performance of the STFT analysis for it is very similar to the normal case. 
Figures 6a illustrate thus such a signal where we can notice that the temporal representation 
is almost similar to that of normal case given in Figure 6a. 
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Fig. 6. The STFT application of the normal PCG (N); a) the normal PCG signal (N); b) the 
spectrogram of the normal signal ( N) 

Figure 6b and Figure 7b provide respectively the STFT application of the normal and the CA 
case. From these Figures we can see the difference of the time-frequency features between 

a) 

b) 

 
Computerized Heart Sounds Analysis 

 

75 

them. For the two cases (N and CA), the second sound (S2) is shown to have higher 
frequency content than of the first sound (S1) [14,15]. This expected since the amount of 
blood present in the cardiac chambers is smaller [16]. 
We consider here two examples of the phonocardiogram signals with murmur: the 
pulmonary stenosis (PS :Figure 8a) with a systolic murmur and the aortic regurgitation (AR : 
Figure 9a)  with a diastolic murmur. 
Figure 8b and Figure 9b shows respectively the STFT application of the PS and AR signals. 
We can notice that the frequency extent of the diastolic murmur of the AR case is highly 
(About 600Hz) than the systolic murmur of the PS case (about 400 Hz).  
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Fig. 7. The STFT application of the Coarctation of the aorta (CA); a) the Coarctation of the 
aorta signal (CA); b) the spectrogram of the signal CA 

In this section we presents the experimental results of the short-time frequency transform 
application of the three followings groups of the PCG signals used. 
- Group 1 : normal (N) or similar morphological signal (CA) ; 
- Group 2 : opening snap (OS) and ejection click (EC); 
- Group 3: PCG signal with width murmur (PS and AR).  
Figure 10 provides a better representation of the results obtained concerning the frequency 
contents of the sounds and murmurs analysed.    If under the normal conditions  (N) or in 
the presence of similar signals (CA) the frequency content of the sound S2  is more 
significant than that of the sound S1.  
We noted that the light murmurs (OS, EC.) can influence the time-frequency content of the 
principal sounds S1 and S2 and have a frequency extent more significant than them. 

a) 

b) 
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them. For the two cases (N and CA), the second sound (S2) is shown to have higher 
frequency content than of the first sound (S1) [14,15]. This expected since the amount of 
blood present in the cardiac chambers is smaller [16]. 
We consider here two examples of the phonocardiogram signals with murmur: the 
pulmonary stenosis (PS :Figure 8a) with a systolic murmur and the aortic regurgitation (AR : 
Figure 9a)  with a diastolic murmur. 
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In this section we presents the experimental results of the short-time frequency transform 
application of the three followings groups of the PCG signals used. 
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Fig. 8. The STFT application of the pulmonary stenosis; a) The pulmonary stenosis signal 
(PS); b) The spectrogram of the signal PS 
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Fig. 9. The STFT application of the aortic of the regurgitation; a)The aortic of the 
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Finally in fact the width murmurs (PS and AR cases) present a frequency extent very 
significant.  Discrimination between the systolic and diastolic murmurs can be made starting 
from this frequency extent, diastolic murmurs thus having a frequency extent more 
significant than the systolic murmurs. In more these murmurs seem not too much not to 
affect the time-frequency content of the sounds S1 and S2 
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Fig. 10. Frequency extent of the three groups of the PCG signals 

3.3 Wigner Distribution application 
Figure11 shows the WD application of the cardiac sound of the normal case (11a), the 
coarctation of the aorta (11b) and the innocent murmur (11c). One can notice here that the 
two principal components (A2 and P2) start to appear in the presence cross-terms.  The WD 
results may be improved by increasing the sampling rate of original signal,, but it still 
suffers from the cross-terms problem because of the nonlinearity of the WD. 
However the Wigner distribution (WD) have shown good performances in the analysis of 
non-stationary signals. This comes from the ability of the WD to separate signals in both 
time and frequency directions. One advantage of the WD over the STFT is that it does not 
suffer from the time-frequency trade-off problem. On the other hand, the WD has a 
disadvantage since it shows  cross-terms in its response. These cross-terms are due to the nonlinear 
behaviour of the WD, and bear no physical meaning. One way to remove these cross-terms is by 
smoothing the time-frequency plane, but this will be at the expense of decreased resolution 
in both time and frequency 
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Fig. 11. The wigner distribution of the second cardiac sound S2 : a) the normal case , b) the 
coarctation of the aorta case (CA), c) the innocent murmur case (IM) 
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3.4 Continuous Wavelet Transform application 
An algorithm under MATLAB environnement  of the  Continuous Wavelet Transform is 
developed then applied to analyse the different PCG signals. First the normal PCG is studied 
as illustrated by Figure12.a. The two heart sounds are clearly shown in dark color. They are 
spaced with 2500  samples  corresponding to 0.312 secondes.  The continuous wavelet 
transforms of S1 and S2 are also displayed separately in Figure12.b and Figure12.c 
respectively. The sound S2 is shown to have higher frequency content than that of the S1. This 
is expected since the amount of blood present in the cardiac chambers is smaller [1],[16].   On   
Figure 12b we can see that S1 is clearly resolved in two major component (M1 and T1). On the 
figure 10c the sound S2 is resolved also   into two major's components (A2 and P2). The time 
delay between A2 and P2 can be easily measured with the use of the wavelet coefficients ( 
Figure12c). This delay is measured to be 13ms. It is smaller than the 30ms [17] as foreseen in 
the normal conditions of the PCG signal. Pathological conditions could cause this time 
difference to narrow or widen. Moreover, the order of occurrence of A2 and P2 may be 
reversed. The wavelet transform allows measurement and determination of this time 
difference, and thus allows a diagnosis process regarding this important parameter to be 
produced. Table I resumes the differences observed between the components A2 and P2. 
 

 Localisation of  the 
Delay “d” 

(ms) 

Minimal 
frequency 
(in scale) 

Maximal 
frequency 
(in scale) 

Frequency 
Extent 

 
A2 13 19 124 105 
P2 13 18 116 98 

Table I. Temporal and frequential measurements related to the componentsA2 and P2. 

It can be concluded for the normal PCG that : 
1. The component A2 precedes in time the component P2. 
2. The component A2 have higher frequency content than P2. 
3. The amplitude of A2 is more important than that of P2. 
These parameters, particularly the frequency, make it possible to see a difference between 
A2 and P2. 
Moreover the ability of the wavelet transform in heart disease diagnosis can be studied by 
applying the CWT algorithm on different  marked cases. The result of this application are 
illustrated in Figure13b (aortic-insufficiency), Figure13c (aortic-stenosis) Figure13d (mitral-
stenosis). The coefficients of the CWT allow us to  clearly discern the frequency  range of 
each signal. It also shows the major components according to the temporary variation ; the 
maximal amplitude is characterised by a darker color than those of the small amplitudes. 

3.5 Discrete Wavelet Transform application 
The multiresolution analysis based on the discrete wavelet transform (DWT) is a powerful 
tool in and filtering, separating and identification of the internal components and murmurs 
of the various analyzed signals (Figure14).  
Figure15a shows the application of the discrete wavelet transform of one cycle of the normal 
PCG. Levels d1 and d2 represent the high frequency variations of the base line of PCG signal. 
Levels d3 and d4 emphasize clearly the side of high frequency content of the sound  S2 
compared to S1The component A2 (the most predominant in sound S2) appears better on 
levels d5 and d6. Level d7 represents the two principal components of the sound S1 (M1, T1). 
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Fig. 12. Continuous wavelet transform analysis (CWT) for the normal cardiac sounds S1 and 
S2 
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Fig. 13. Continuous wavelet analysis (CWT) for the normal PCG and abnormal PCG. 
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Fig. 13. Continuous wavelet analysis (CWT) for the normal PCG and abnormal PCG. 
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The same analysis by using the discrete wavelet transform concerning the coarctation of the 
aorta and the mitral stenosis is also applied (Figures16b and Figure16c). Figure 13b, in level 
d7, provide a well representation of the third component "C" added a the two majors 
components of the sound S2 (A2 and P2). 
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Fig. 14. PCG signals used  a) normùal (N), b) the coarctation of the aorta (CA); c) the mitral 
stenosis (MS), d) the aortic regurgitation (AR), e) the diastolic ruble (DR) , f)  the aortic 
insufficiency (AI)- 

3.6 Packet wavelet transform application  
The used of the wavelet packet transform is exactly the same as those developed in the 
discrete wavelet transform. The only difference is that wavelet packets offer a more complex 
and flexible analysis, because in wavelet packet analysis, the details as well as the 
approximations are split (Figure3). Single wavelet packet decomposition gives a lot of bases 
from which you can look for the best representation with respect to a design objective. The 
wavelet packet method is thus a generalization of wavelet decomposition that offers a richer 
range of possibilities for signal analysis. In wavelet analysis, a signal is split into an 
approximation and a detail. The approximation is then itself split into a second-level 
approximation and detail, and the process is repeated. 
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The wavelet packet transform analysis in this paper give important features of the extent 
frequency of the heart sounds (S1 or S2) and cardiac murmur. These features can be help 
clinician in their diagnosis or recognizing pathological conditions concerning the recording 
PCG signals. 
Figure 16 provide a time frequency (TF) representation of one cardiac cycle of the heart 
sounds concerning the normal PCG signal (Figure 16a), the coarctation of the aorta case 
(Figure 16b) and the mitral stenosis case (Figure 16c). These figures shown the frequency 
range of each component or murmur of the PCG signal studied. Thus we can observe the 
component "C" added of the two majors component for the sound S2 (A2 and P2). The same 
result have been find in the section 3.5 (Figure 14b.detail d7) 
Figure 17 has the advantage of presenting at the same time the frequency extent of the 
various components of the cardiac sound like their frequency site one compared to the 
other. We can shown clearly that the Diastolic ruble (DR) case have high frequency content 
that the aortic insufficiency case (AI) or the aortic regurgitation case (AR). 
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Fig. 15. Discrete wavelet transform  (DWT) analysis for: a) the normal PCG, b) the 
Coarctation of the aorta, c) the mitral stenosis 
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Fig. 16. Wavelet packet transform (WPT) analysis for: a) the normal PCG, b) the coarctation 
of the aorta , c) the mitral stenosis 

 
Aortic insufficiency

time(samples)

sc
al
es

1000 2000 3000 4000 5000 6000 7000 8000

62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31

 
a) 

S2S1+ murmur 



 
Discrete Wavelet Transforms - Biomedical Applications 

 

86

normal PCG

time(samples)

sc
al

es

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31

 
a) 

coarctation of the aorta

time(samples)

sc
al

es

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31

 
b) 

S1 
S2 

S1
S2 

C

 
Computerized Heart Sounds Analysis 

 

87 

mitral stenosis

time(samples)

sc
al

es

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31

 
c) 

Fig. 16. Wavelet packet transform (WPT) analysis for: a) the normal PCG, b) the coarctation 
of the aorta , c) the mitral stenosis 

 
Aortic insufficiency

time(samples)

sc
al
es

1000 2000 3000 4000 5000 6000 7000 8000

62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31

 
a) 

S2S1+ murmur 



 
Discrete Wavelet Transforms - Biomedical Applications 

 

88

aortic regurgitation

time(samples)

sc
al
es

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31

 
b) 

Diastolic Rumble

time(samples)

sc
al
es

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
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Fig. 17. Wavelet packet Transform (WPT) analysis for: a) the aortic Insufficiency (Ai), b) the 
aortic regurgitation (AR), c) the Diastolic Rumble (DR) 
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4. Conclusion 

The cardiac (heartbeat sound) cycle of phonocardiogram (PCG) is characterized by 
transients and fast   changes in frequency as time progresses. It was shown that basic 
frequency content of PCG signal can be easily provided using FFT technique. However, time 
duration and transient variation cannot be resolved; the CWT wavelet transform therefore i 
is a suitable technique to analyse such a signal. It was also shown that the coefficients of the 
continuous wavelet transform give a graphic representation that provides a quantitative 
analysis simultaneously in time and frequency. It is therefore very helpful in extracting 
clinically useful information. 
The measurement of the time difference between the A2 and P2 components in the sound 
S2, the number of major components of the sounds S1 and S2 and the frequency range and 
duration for all these components and sounds can be accurately achieved for the CWT   
simultaneously as was clearly illustrated.  
It is found that the wavelets transform is capable of detecting the four major components of 
the first sound S1 and the two components (the aortic valve component A2 and the 
pulmonary valve component P2) of the second sound S2 of a normal PCG signal. These 
components are not accurately detectable using the STFT or WD.  However the standard 
FFT can display the frequencies of the components A2 and P2 but cannot display the time 
delay between them. 
The application of the STFT in the analysis of the PCG signals made it possible to obtain  
appreciable information on  the  time-frequency content of the sounds  S1, S2  and of the  
added murmurs (OS,EC or width murmurs).  
If under the normal conditions  (N) or in the presence of similar signals (CA) the frequency 
content of the sound S2  is more significant than that of the sound S1. We noted that the 
light murmurs (OS, EC.) can influence the time-frequency content of the principal sounds S1 
and S2 and have a frequency extent more significant than them. 
Finally in fact the width murmurs (PS and AR cases) present a frequency extent very 
significant.  Discrimination between the systolic and diastolic murmurs can be made starting 
from this frequency extent, diastolic murmurs thus having a frequency extent more 
significant than the systolic murmurs. In more these murmurs seem not too much not to 
affect the time-frequency content of the sounds S1 and S2. 
The two version of analysis of the wavelet transform (DWT and PWT) make it possible to 
gather time-frequency information concerning the characteristics of the cardiac sounds. 
It is shown that the FFFT, the STFT, the WD and the WT techniques provides more 
information of the PCG signals with murmurs that will help physicians to obtain qualitative 
and quantitative measurements of the time and the time-frequency PCG signal 
characteristics and consequently aid to diagnosis. 
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1. Introduction  
The main goal of automatic speech and speaker recognition (ASSR) is to transcribe natural 
speech and recognize its speaker. Recognizing a spoken sentence is obviously a knowledge-
intensive process, which must take into account all variable information about the speech 
communication process. Out of several approaches, artificial intelligence approach has been 
observed to give remarkable results by visualizing, analysing and finally making a decision 
on the acoustic patterns. The present chapter deals with two basic processes for ASSR: 
modelling process and understanding process. The modelling process involves three stages: 
enhancement, segmentation and pre-processing. The understanding phase involves the 
recognition of the speech and the speaker through the known knowledge-based model. It 
has been observed from the literature that, in any speech processing system, because of 
channel coupling, many source signals mix together. Thus there may be a chance of 
variability in speech signals affecting the performance of the speech systems due to some 
factors like: background and channel noise, electrical noise from different sources, 
meaningless sounds (a sneeze) or filler words (‘uh’ or ‘um’) between words, different 
speaking rate, mood and styles of speakers. Due to this some signals may not be observed 
and may result to out-of-vocabulary (OOV) word problem during recognition or 
understanding process. Thus speech enhancement has played a vital role in the 
development of a perfect acoustic model or noise – free artificial word model (AWM) and 
vowel diphthong model (VDM). To process for speech enhancement in frequency – domain, 
the speech signal has to be split into frames using blind signal separation (BSS) method 
(Yilmaz and Richard 2004; Yamashita and Hirai 2004; Araki et al 2002; Murata et al 2001; G. 
J. Jang and Lee 2003; F. Bach and Jordan 2005; B. A. Pearl Mutter and Olsson 2006). Further 
the spectrum of the background noise has to be estimated by subtracting the noise spectrum 
from the spectrum of the frame (M. Berouli et al 1979; Yasser Ghanbari and Md. Reza 2004). 
It has been observed that some of the noise remains in the spectrum when the value of noise 
is greater than its mean. At the same time, some of the speech spectrum gets removed when 
noise is greater than the actual value of noise. In the spectrum this produces negative values 
and have to be set to zero. The overall effect puts a noise in the output signal known as 
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residual noise. To reduce the level of residual noise further subtraction has to be carried out 
by adjusting the ‘over-subtraction’ or ‘over-estimation’ factor with respect to signal to noise 
ratio as suggested by Berouli et al (1979). Before processing the speech any further, the 
wavelet (a real valued function of time) in a noisy signal (if any) has to be detected, using 
discrete wavelet transform (DWT) method. Further, analysis has to be done for the speech 
segmentation, which means partitioning an entire speech into isolated sub-words with 
optimal boundaries (Shriberg 2000; Abdulla 2002; Delacourt and Wellekens 2000; Shafron 
and Rose 2003). In segmental modelling, speech parameters are represented by trajectories, 
that is, sequences of points in the parameter space. The speech trajectories have to be 
characterized using the mean, varian and shape of the particular segment. The shape of the 
signal has to be obtained using the wavelet coefficient as estimated earlier. Constructing a 
probability density function and using adaptive vector quantization over the training vector 
data set speech segmentation has to be done. Later on, loss-less compression methods: 
discrete cosine transform (DCT) and principle component analysis (PCA) have to be 
employed. Next the pre-processing (that is extraction of speech features) has to be done 
using hybrid approach of soft-computing techniques. Here the hybrid approach 
resemblances to artificial neural network (ANN) and genetic algorithm (GA). The hybrid 
approach has to be applied in a well-defined way in the present chapter that has been 
illustrated in the subsequent paragraphs.  

2. Modelling of AWM and VDM  
For the formation of AWM and VDM (as shown in figure 1), good distortion-free features 
have to be extracted. If this fails then the recognition process also degrades or suffers.  
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Fig. 1. General outline for framing models (AWM and VDM) 

The most important speech features that have to be extracted are: pitch or fundamental 
frequency, formant frequencies or energy values, speaking rate, speech duration and so on, 
for the formation of models (that is AWM and VDM). Based on these features, twenty-two 
parameters have to be extracted for further analysis. The pitch related parameters that have 
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to be extracted are: mean, median, standard deviation, minimum and maximum range of 
pitch. The energy related parameters that have to be extracted are: mean, median, standard 
deviation, minimum and maximum range of loudness (energy). The duration related 
features that have to be extracted are: the ratio of voiced and unvoiced speech, speech rate. 
The speech rate has to be calculated by taking the ratio of duration of voiced speech to the 
total number of words uttered. All the above features have to be extracted using cepstral 
analysis, particle-filtering (Monte-Carlo) method from the spectrogram. The spectrogram 
based pitch and formant detection, have to be carried out (Hue et al 2001; Gustafson 2002; 
Arulampalam 2002; Vermaak 2002; Welling et al 1998). The formant frequency plays a vital 
role in giving the details about the vocal tract shape and its movements in various 
pronunciations. More illustrations have been done in the next subsequent subsections of this 
chapter.  

2.1 Extraction of speech features 
Before the extraction of speech features and relevant parameters, first, frequency bands 
corresponding to the analysed formants have to be extracted using forward-backward 
dynamic programming (FBDP) method. Next a particle-filtering method has to be applied to 
locate formants in every formant area based on the posterior probability density function 
(pdf) described by a set of support points with associated weights. As per the work done by 
Acero (1999) and Watanabe (2001), it has been found that capturing and tracking formants 
accurately from natural speech are very difficult task because of the variety of speech 
sounds. Typically, formant-tracking algorithms have three phases: pre-emphasis, frame-
dependent formant candidates, and generation-and-tracking. For the first two phases, hypothesis 
testing and cepstral analysis has to be adopted. The third phase has to be carried out using 
the spectrogram-based particle-filtering method, because it is well known that the 
horizontal bands in grey-scale spectrogram with higher energy show the formant positions, 
which can be easily tracked in the spectrum. The mathematical analysis for this has been 
illustrated in the subsequent sections of this chapter. The main idea behind an acoustic 
model, that has been depicted in figure 2, with a trained data set, arranged in word-map, 
has to be categorized to estimate the best parameters that define the distribution (namely the 
mean, variance, shape and so on), and are represented as ‘w%’ where % = 1 to maximum 
size of the vocabulary.  
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Fig. 2. A noise-free artificial word model (AWM) 

The arrows are being designated as directions of constraints. In this model each phrase or 
word has to be linked with eight other corresponding word cell. Each word cell has to be 
trained and stored using forward-backward dynamic programming (FBDP) method. The 
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to be extracted are: mean, median, standard deviation, minimum and maximum range of 
pitch. The energy related parameters that have to be extracted are: mean, median, standard 
deviation, minimum and maximum range of loudness (energy). The duration related 
features that have to be extracted are: the ratio of voiced and unvoiced speech, speech rate. 
The speech rate has to be calculated by taking the ratio of duration of voiced speech to the 
total number of words uttered. All the above features have to be extracted using cepstral 
analysis, particle-filtering (Monte-Carlo) method from the spectrogram. The spectrogram 
based pitch and formant detection, have to be carried out (Hue et al 2001; Gustafson 2002; 
Arulampalam 2002; Vermaak 2002; Welling et al 1998). The formant frequency plays a vital 
role in giving the details about the vocal tract shape and its movements in various 
pronunciations. More illustrations have been done in the next subsequent subsections of this 
chapter.  

2.1 Extraction of speech features 
Before the extraction of speech features and relevant parameters, first, frequency bands 
corresponding to the analysed formants have to be extracted using forward-backward 
dynamic programming (FBDP) method. Next a particle-filtering method has to be applied to 
locate formants in every formant area based on the posterior probability density function 
(pdf) described by a set of support points with associated weights. As per the work done by 
Acero (1999) and Watanabe (2001), it has been found that capturing and tracking formants 
accurately from natural speech are very difficult task because of the variety of speech 
sounds. Typically, formant-tracking algorithms have three phases: pre-emphasis, frame-
dependent formant candidates, and generation-and-tracking. For the first two phases, hypothesis 
testing and cepstral analysis has to be adopted. The third phase has to be carried out using 
the spectrogram-based particle-filtering method, because it is well known that the 
horizontal bands in grey-scale spectrogram with higher energy show the formant positions, 
which can be easily tracked in the spectrum. The mathematical analysis for this has been 
illustrated in the subsequent sections of this chapter. The main idea behind an acoustic 
model, that has been depicted in figure 2, with a trained data set, arranged in word-map, 
has to be categorized to estimate the best parameters that define the distribution (namely the 
mean, variance, shape and so on), and are represented as ‘w%’ where % = 1 to maximum 
size of the vocabulary.  
 

   W 1 7  

    W 1 3  

   W 1 8  

   W 1 4     W 1 2  

   W 1 6  

   W 2 1      W 2 2     W 2 3  

    W 8     W 9     W 7    W 6  

   W 1 1  

   W 1 5  

   W 2 0  

   W 1 0  

   W 1 4  

   W 1 9  

   W 2 4  

   W 1       W 2      W 3    W 4      W 5  

 
Fig. 2. A noise-free artificial word model (AWM) 

The arrows are being designated as directions of constraints. In this model each phrase or 
word has to be linked with eight other corresponding word cell. Each word cell has to be 
trained and stored using forward-backward dynamic programming (FBDP) method. The 



 
Discrete Wavelet Transforms - Biomedical Applications 

 

96

mathematical analysis has been also illustrated for three constraints in the subsequent 
sections of this chapter.  

2.1.1 Formation of AWM and VDM with mathematical analysis 
The speech production process is the initial step in the human speech communication 
system. This process is very complex and involves many components. During normal 
conversation, speaker stops or pauses for a while, because that time his or her brain might 
be busy in searching for an appropriate word from the vocabulary. If the brain has to be 
trained properly, every word cell in the brain gets activated and the speaker speaks 
continuously. If the training has not been done properly then a little amount of word cell 
gets activated and the speaker speaks with some pause. In a similar manner, the present 
experimental set-up has to be done, by forming an intermediate transient speech (ITRANS) 
table or master table.  
To explain this formation of AWM in more illustrative way, initially the speech signal has to 
be captured through the microphone and background noise has to be removed successfully, 
using blind signal separation and spectral subtraction method. Then word boundaries have 
to be computed not only by using traditional zero-crossing measurement (ZCM) but also by 
using discrete cosine transform (DCT), because it has a strong energy compaction property. 
The main property is that it considers real-values and provides better approximation of a 
signal with fewer coefficients. With reference to figure 2, the model is being composed of 
many simple non-linear processors called neurons connected in parallel. Each neuron has an 
input and output characteristics and performs a computation or function of the form: 

 Oi = f (Si) and Si = WT X (1) 

where X = (x1,x2,x3,….,xm) is the input vector to the neuron and W is the weight matrix with 
wij being the weight (connection strength) of the connection between the jth element of the 
input vector and ith neuron. The f (.) is an activation or nonlinear function (usually a 
sigmoid), Oi is the output of the ith neuron and Si is the weighted sum of the inputs. A single 
neuron, as shown in figure 3, by itself is not a very useful tool for AWM formation.  
 

Y

XN 

X3 

X2 

X1 

WN

W3

W2

W1
 
Linear Combiner 

 

Activation 
function, f(.)

Threshold = -1  
Fig. 3. An artificial neuron 

The real power comes when a single neuron is combined into a multi-layer structure called 
neural networks (as shown in figure 4). The neuron has a set of nodes that connect it to the 
inputs, output or other neurons called synapses. A linear combiner is a function that takes 
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all inputs and produces a single value. Let the input sequence be {X1,X2,…,XN} and the 
synaptic weight be {W1,W2,W3,….,WN}, so the output of the linear combiner, Y, yields,  
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Fig. 4. A simple neural network 
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An activation function will take any input from minus infinity to infinity and squeeze it into 
the range –1 to +1 or between 0 to 1 intervals. Usually an activation function being treated as 
a sigmoid function that relates as:   

 f(Y) = 1
1 Ye

 (3) 

The threshold defines the internal activity of the neuron. This has to be kept fixed to –1. In 
general, for the neuron to fire or activate the sum should be greater than the threshold value.  
 The learning capability is a result of the ability of the network to modify the weights 
through usage of a learning rule. Here, feed-forward network has to be used as a topology 
and backpropagation as a learning rule. A simple neural-network has been shown in figure 
4, with inputs as speech feature values and a hidden and output layer.   
The extracted speech feature values of each of the training sets have fed as input to the 
neural network. If ‘  ’ features have to be fed as input nodes then  ‘2  ’ nodes have to be 
used for the hidden layer. Each output neuron represents a word, thus only one output node 
has been treated. Here, twenty-two speech parameters have been extracted, hence twenty-
two nodes in the input layer and forty-four nodes at the hidden layer and a single node at 
the output layer have been used. In order to minimize the error between the inputs and 
outputs of the neural-network, the weights of the threshold input has been adjusted using 
backpropagation algorithm (Wang et al 1999; Cybenko 1989; Hornik et al 1989; Ooyen et al 
1992; Ismail et al 2004), which has also been depicted below (algorithm – 1): 
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Algorithm – 1: Backpropagation algorithm 
Initialization: Initial weights wi set to small random values; 
         Learning rate,  = 0.1 
Repeat  
         For each training data set (x,y) 
         Calculate the outputs using the sigmoid function, 

                   Oj = (Sj) = 1
1 jSe

, where Sj = 
0

d

ij j
i

w O

  

                   Ok = (Sk) = 1
1 kSe

, where Sk = 
0

d

ik k
i

w O

  

         Compute the benefit k at the nodes ‘k’ in the output layer: 
                   k = Ok(1 – Ok) [Yk – Ok]  
         Compute the changes for weights j  k on connections to nodes in the output layer: 
                  w jk =  kOj 
                  w ok =  k  
         Compute the benefit j for the hidden layer ‘j’ with the formula: 
                   j = Oj(1 – Oj) [k k wjk] 
         Compute the changes for the weights I  j on connections to nodes in the hidden layer: 
                 w ij =  jOi 
                 w ok =  j 
         Update the weights by the computed changes: w = w + w ,  
Until termination condition is satisfied 
 
Based on the assumption that the original spectral is additive with noise. To compute the 
approximate shape of the wavelet (i.e., Any real valued function of time possessing some 
structure), in a noisy signal and also to estimate its time of occurrence, two methods are 
available, first one is a simple structural analysis and the second one is the template 
matching technique. For the detection of wavelets in noisy signal, assume a class of 
wavelets, Si(t), I = 0,2,…..N-1, all having some common structure. Based on this assumption, 
consider a speech signal s(n) has to be corrupted by stationary additive noise d(n), to 
produce a noisy speech signal x(n) and has been modeled by the equation 

 x(n) = s(n) + G d(n)  (4) 

where s(n) is the clean speech signal, d(n) is the noise and G is the term for signal-to-noise 
ratio control. Next windowing the signal and assuming G = 1, equation (4) becomes: 

 xw(n) = sw(n) + dw(n)  (5) 

Fourier transform of both sides of equation (5), yields: 

 Xw(ejω) = Sw(ejω) + Dw(ejω)  (6) 

Where Xw(ejω), Sw(ejω) and Dw(ejω) are the Fourier transforms of windowed noisy, speech and 
noise signals respectively. To simply further, the notation the ‘w’ subscript has been 
dropped and multiplying both sides by their complex conjugates, it yields: 

 2 2 2
( ) ( ) ( ) 2 ( ) ( ) cos( )j j j j jX e S e D e S e D e          (7) 
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where   is the phase difference between speech and noise. Thus   =  S -  D. 
The histograms for  S ,  D ,   and cosine (  ) has been shown in figure 5, figure 6, 
figure 7 and figure 8 respectively. For further analysis some assumptions have to be made: 
noise and speech magnitude spectrum values are independent of each other and also the 
phase of noise and speech are independent of each other. Taking the expected value of both 
sides of equation (7), and substituting E{cos(  )} = 0, a power spectrum of the speech has 
been obtained which has been given in equation (8): 
 

 
Fig. 5. Histogram of  S (speech magnitude spectrogram) 

 

Fig. 6.  Histogram of  D (noise magnitude spectrogram) 

Fig. 7. Histogram of   =  S -  D  
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where   is the phase difference between speech and noise. Thus   =  S -  D. 
The histograms for  S ,  D ,   and cosine (  ) has been shown in figure 5, figure 6, 
figure 7 and figure 8 respectively. For further analysis some assumptions have to be made: 
noise and speech magnitude spectrum values are independent of each other and also the 
phase of noise and speech are independent of each other. Taking the expected value of both 
sides of equation (7), and substituting E{cos(  )} = 0, a power spectrum of the speech has 
been obtained which has been given in equation (8): 
 

 
Fig. 5. Histogram of  S (speech magnitude spectrogram) 
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Fig. 8. Histogram of cosine (  ) = cosine (  S -  D) 

  2 2 2
( ) ( ) ( )j j jS e X e E D e     (8) 

Similarly, the magnitude spectrum of the speech, has to be estimated by substituting             
E {cos (  )} = 1, in equation (7) and hence computing the expected value of it. Thus it 
yields: 

  ( ) ( ) ( )j j jS e X e E D e     (9) 

The histogram has been plotted for the equations (8) and (9) and has been depicted in figure 
9. It has been observed from figure 9, that there remains some noise in the spectrum, as 
shown in narrow bands. This occurs due to the presence of negative values in the spectrum 
that are to be removed, hence these negative values has to be set to zero (Berouti et al. 
(1979)). To reduce the level of residual noise further subtraction has to be done. Thus 
equation (9) has been further simplified and it yields: 
 

 
Fig. 9. Fluctuations of noise spectrogram for a speech uttered through microphone 
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  ( ) ( ) ( )j j jR e X e E D e     (10) 

where ‘α’ in the over-subtraction factor whose value should be more than unity. The 
residual noise has to be practically categorized and has been shown in figure 10.  
 

 
Fig. 10. Noise spectrum without negative values 

To de-noise further this noisy speech signal, discrete wavelet transform has to be applied. 
Let the mother wavelet or basic wavelet be (t), which yields: 

 (t)  = exp (j2ft – t2/2)  (11) 

Further as per the definition of Continuous wavelet transform CWT (a,), the relation yields 
to: 

 CWT (a, )=(1/ a ) ( )x t {(t-)/a} dt  (12) 

The parameters obtained in equation (12) has to be discretized, using discrete parameter 
wavelet transform, DPWT (m, n), by substituting a = 0

ma ,    = n 0 0

ma . Thus equation (12) in 
discrete form results to equation (13): 

 DPWT (m, n) = 2-m/2 ( )
k
x k (2-mk – n)  (13) 

where ‘m’ and ‘n’ are the integers, a0 and 0 are the sampling intervals for ‘a’ and ‘’, x(k) is 
the speech signal. The wavelet coefficient has been computed from equation (13) by 
substituting a0 = 2 and 0 = 1.  
Once the residual noise has been lowered, further analysis has to be done for the 
segmentation stage of speech processing. In classification problems with two or more 
classes, it is often required to choose a subset of ‘d’ speech features out of the given ‘n’ 
speech features (d < n). To do this, a measure of class separability has to be done. In the 
present work, scatter matrices have been used to form a separability criterion. A criterion for 
separability can be any criterion which is proportional to the between scatter matrix and 
also proportional to the inverse of the within scatter matrix. Maximization of such a criterion 
will ensure that while maximizing the distance between classes, there is no sufficient 
amplification in the scatter of the classes, thus causing no improvement to the separability.  
This scatter matrix has to be computed by finding the covariance matrix of the speech 
features in a given class. This has to be computed on the application of Fishers linear 
discriminant analysis (FLDA) which is a transformation that reduces the dimensionality of 
the feature vector from ‘n’ into d = M – 1 (where M is the number of classes involved), while 



 
Discrete Wavelet Transforms - Biomedical Applications 

 

100 

 

Fig. 8. Histogram of cosine (  ) = cosine (  S -  D) 
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optimally preserving the separability between classes. The idea behind the Fisher’s linear 
discriminant is the projection of n dimensional feature vectors onto a lower dimensional 
surface. The surface has to be chosen in such a way that the separation between classes must 
be kept at a minimum distance of the regression line. In order to find the optimal surface to 
project onto, a measure of separability must be done. 
Consider a two-class problem with ‘N’ known samples, ‘Xi’. ‘N1’ of which belong to class 
‘w1’ and ‘N2’ of which belong to class ‘w2’. Consider ‘Yi’ be a linear combination of the 
features ‘Xi’ : 

 Yi = T Xi (14) 

The ‘n’ dimensional vector, , can be considered a line in the n dimensional space, then Yi is 
the projection of Xi on this line (scaled by  ). Let ‘I’ be the mean of the ‘Ni’ samples of 
class ‘wi’ in the ‘n’ dimensional space: 

 i  =  1
i

i

X
N   (15) 

and the mean of the projected points Yi on the line ,  i , is the projection of i : 

 i = 1
i

i

Y
N  = 1 T

i
i

X
N

 = Ti (16) 

The separation of the means on  is given by, 

 1 2  = 1 2( )T    (17) 

Since the separation of the two classes must include the variance of three samples. Defining 
the n x n scatter matrix, 

 wi= ( )( )
i

T
i i

w
X X



 


    (18) 

where wi is the estimation of the covariance of the ith class in the n-dimensional feature 
space. It represents a measure of the dispersion of the signals belonging to wi. Thus the total 
matrix is defined as:  

 W = w1 + w2  (19) 

Consider now the variance between the means of the various classes. Denote the matrix, B, 
represents the dispersion between the means of the various classes. 

 B=   1 2 1 2

T
       (20) 

The auto-covariance of the speech signal has also to be computed using the relation: 

 Cxx(g) = E{[x(nT) – x’(nT)][x(nT) – x’(nT)]}  (21) 

Then the power spectrum density has to be calculated from equation (21) and it yields to, 
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where Cxx(m) is the auto-covariance function with ‘m’ sample. The data compression has to 
be performed using discrete cosine transform as shown below, 

 Xc(k)=Re[X(k)]=
1

0

2( )cos
N

n

k nx n
N




 
 
 

 ,k=0,1,..,N-1  (23) 

Further reduction in the dimensionality of the feature vector has to be carried out using 
principal component analysis. For this first discrete fourier transformation (DFT) method 
has to be employed, it yields to the equation of the form: 

 X(k)=FD[x(nT)]= 
1

0
( )exp ( (2 / ) )

N

n
x nT jk N n





   (24) 

where k = 0, 1, 2, ……..,N-1. If WN = exp (-j2/N), then equation (24) becomes, 

  X(k) = FD[x(nT)] = 
1

0
( )

N
kn

N
n

x nT W



    (25) 

Further for the computation of principal components (i.e., eigen values and the 
corresponding eigen vectors), a pattern vector np , which can be represented by another 

vector nq  of lower dimension, has to be formulated using (25) by linear transformation. 
Thus,  

  n np M q  (26) 

where    ( )M X k   for k = 0 to N-1 and nq  =  min([M]), such that nq > 0 
Taking the covariance of equation (26), it yields, the corresponding eigen vector, 

 cov( )nP p  (27) 

And thus, 

 . .i i iP M M  (28) 

where ‘i’ are the corresponding eigen values. 
One of the fundamental problems that arise when computing two patterns is that of time 
scaling. Most of the researchers assume that both pattern and template (reference) to be 
compared share the same time base. This is not always correct, especially in speech analysis. 
It has been found that when a speaker utters the same word several times, generally each 
utterance he / she does so with different time bases. Each word is spoken such that parts of 
it are uttered faster, and parts are uttered slower. The human brain, it seems, can easily 
overcome these differences and recognize the word. But machine finds this a severe 
difficulty for the recognition. Due to this there may be a chance of occurring out-of-
vocabulary (OOV) word problem. In order to sort out such problem, dynamic time warping 
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difficulty for the recognition. Due to this there may be a chance of occurring out-of-
vocabulary (OOV) word problem. In order to sort out such problem, dynamic time warping 
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(DTW) method has to be adopted. Mathematically, this has been analyzed in the subsequent 
paragraphs.  
Assume two speech signals, say x(ti) and x(tj) are defined, each with its own time base, ti and 
tj. Also assume that the beginning and end of the speech signal are known, denoted as (tis, 
tif) and (tjs, tjf) respectively. If both the signals are sampled at the same rate, then both signals 
begin t sample i = j = 1, that occurs without any loss of generality. Thus, the mapping 
function, i = j . (i / j), is linearly related. Since speech signals are non-linear, so non-linear 
time warping functions must be calculated, with several assumptions. Let the warping 
function, w(k), be defined as a sequence of points: c(1), c(2), …..,c(k), where c(k) = (i(k), j(k)) 
is the matching of the point i(k) on the first time-base and the point j(k) on the second time-
base. This has been summarized in figure 11, below. From figure 11, the warping, w(k), only 
allows to compare the appropriate parts of x(ti) with that of x(tj). Setting the monotonic and 
continuity conditions on the warping function, it restricts to the relations between two 
consecutive warping points, c(k) and c(k-1).  
 

 
 

 c(k) = (i, j) c(k-1) = (i-1, j) 

c(k-1) = (i-1, j-1) c(k-1) = (i, j-1) 
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Fig. 11. Constraints on the dynamic time warping (DTW) 

Thus from figure 11, there are three ways to get to the point c(i,j), which is given below, 

 c(k) = c(i,j)  (29) 

and 

 c(k-1) =  
( ( ), ( ) 1)

( ( ) 1, ( ) 1)
( ( ) 1, ( )

i k j k
i k j k

i k j k


  
 

  (30) 

Thus the boundary condition is, 

 c(k) = (i,j)  (31) 
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By the boundary condition, matching of the beginning and end of the speech signal has to 
be done using dynamic programming method. As the measures have not been stored then it 
is difficult to trace the optimal route in an artificial word model (AWM) for the best match of 
the word. To overcome such problem, forward-backward dynamic programming (FBDP) 
method has to be adopted.  
Next for the formation of AWM, the extracted speech feature values have to be fed as input to 
the neural network. Let the input sequences are {x1, x2,…..,xn}, which takes real values within 
the range (-n, n). The weights w1, w2,…..,wn, correspond to the synaptic strengths of the 
neuron. They serve to increase or decrease the effects of the corresponding ‘xi’ input values. 
The sum of the products xi * wi,  i = 1 to n, serve as the total combined input to the node.  
So to perform the computation of the weights, assume the training input vector be ‘Gi’ and 
the testing vector be ‘Hi’ for i = 1 to n. The weights of the network have to be re-calculated 
iteratively comparing both the training and testing data sets so that the error is minimized.  
The weight matrix W = {wij} has to be computed through the relation, 

 wij = 
1

( ) ( )
n

T

r
G r H r


  (32) 

To compute the net input to the output units, the delta rule for pattern association is 
employed, which is given by the relation, 

 y-inj = 
, 1

n

i ij
i j

x w

   (33) 

where ‘y-inj’ is the output pattern for the input pattern ‘xi’ and j = 1 to n. 
Thus the weight matrix for the auto-associative memory neural network has to be calculated 
from equation (33) and the responses have to be checked by the trained input patterns. The 
output vector ‘y’ gives the pattern associated with the input vector ‘x’. An activation 
function (usually a unipolar sigmoid) will take any input from minus infinity to infinity and 
squeeze it into the range –1 to +1 or between 0 to 1 intervals. A unipolar sigmoid function 
relates as:   

 f(y-inj) = 1
1 ye

  (34) 

Thus the neural network model can learn from the input / output training data pairs. Once 
the training has been done, it can be used as a function simulator. Similarly for framing 
vowel-diphthong model (VDM), the same (above discussed) concept for AWM formation, 
has to be followed. The constraint is that only vowel sounds are to be captured through 
microphone from male and female subjects. An algorithm called SCB_AWM_VDM (soft-
computing based artificial word model and vowel – diphthong model) has been developed, 
which has been depicted in algorithm – 2 below. 
 

Algorithm - 2: SCB_AWM_VDM  

1. Record a speech through a microphone and store it in a file with extension wav. 
2. Find the length of the speech signal, say N.  
3. Create the row vectors ‘n’ and ‘k’ such that 0  n, k  N – 1. 
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4. Employ BSS and SS methods   
5. Employ DFT and compute the auto-correlation coefficients. Find the minimum, 
                maximum, mean value of the amplitude and pitch of the analyzed signal, and PSD  
                function and probability distribution function. Compress the data further by   
                employing DCT and also find the principal component values.   
6. Find the length of the compressed speech signal. Apply AVQ technique and create    
                 a token of words 
7. Count the number of frames. Pass it to a file, say atm.dat with the fields of the database

as frame-1, frame-2,…….,frame-N. 
8. Compute the range of parameters using the relation as, 
               UB = upper bound = (((mmax – mmean) / 2)*A) + mmean 
                       LB = lower bound = (((mmean – mmin) / 2)*A) + mmin  
         where ‘A’ is the pre-emphasis coefficient  
9. Using each of the frames extract the parameters and store in a master file as a   
                 template, thus forming a noise-free artificial word model and vowel-diphthong  
                 model. 

2.2 Performance measures of developed algorithm for modelling: A case study 
The number of training samples per word has to be kept sufficient for improving the 
accuracy of pattern matching and hence increases the performance factor. With this small 
condition, the developed algorithm called SCB_AWM_VDM has to be applied for the 
formation of a noise-free artificial word model (AWM) taking into consideration 22 speakers 
of varying age groups. The vocabulary has to be limited to 215 Bengali (Indian Language) 
words. In this work, nine male and six female adults of age group 30 – 40 years, five male 
adults of age group 40 – 50 years and two male adults above 50 years of age have to be 
selected for the testing of developed algorithm. Each phrase has to be uttered five times by 
each speaker leading to a total size of (22 x 215 x 5) 23650 Bengali words. Some of the speech 
samples have to be collected through e-mail through attachments and tested with the 
proposed algorithm for the formation a large Bengali vocabulary. Here, Bengali (an Indian) 
language has to be adopted as a case study. The developed algorithm has to be used as a 
tool for the formation of AWM and can also be used independently with some natural 
language. The worst-case time complexity is Oh (N * log(N)) and the worst-case space 
complexity is Oh (N*P) of the developed algorithm, where ‘N’ means total number of words 
and ‘P’ means the number of speech features (here P = 22). The complexities of the 
developed algorithm have been shown in figure 12. 
From figure 12, it has been observed that accuracy increases almost exponentially. Similarly, 
vowel-diphthong model (VDM) has to be formed using the developed algorithm taking into 
consideration 10 speakers of varying age groups. Here, for VDM formation in Bengali (an 
Indian) language, six male and four female adults of age groups 30 – 40 years have to be 
selected for the testing of developed algorithm.  
More discussions based on the practical implementation of the developed algorithm for the 
formation of a noise-free AWM and VDM can be made. Figure 13a, shows the original 
speech signal uttered /bondo/ /koro/ in Bengali means /close/ /it/ in English, has to be 
segmented using adaptive vector quantization (AVQ) method. The segmented result has 
been shown in figure 13b. After segmenting the words uttered, the features have to be 
extracted, using discrete cosine transform (DCT) and principal component analysis (PCA).  
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Fig. 12. Complexities of developed SCB_AWM_VDM algorithm 

 
 

 
 
 

Fig. 13a. Original speech signal spoken /bondo/ /koro/ 

 
 

 
 
 

Fig. 13b. Segmentation using adaptive vector quantization (AVQ) method 

The vocal tract model frequency response correspond to the position of the formants of the 
speech signal along frequency axis has been shown in figure 14.  
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Fig. 14. Vocal tract model frequency response where + and * correspond to the position of 
the formants of the speech signal along frequency axis. 

In figure 14, + and * shows the positions of the formants of the speech signal. Some patterns 
has been shown related to segmentation of the voiced pitch of the speech signal using AVQ 
method. Figure 15 and figure 16 shows the proper voiced pitch features using AVQ 
technique. It has been observed that segmentation is more accurate using AVQ technique as 
compared to traditional usage of zero-crossing measurement (ZCM).  
 

 
Fig. 15. Voiced pitch of the speech signal segmented using AVQ method 

 

 
Fig. 16. Proper voiced pitch segmentation of the speech signal using AVQ method 
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To track the formats of the speech signal, in the present work, five formants (F1, F2, F3, F4 
and F5) have to be tracked that has been shown in figure 17. 
 

 
Fig. 17. Five formants have to be tracked on uttering /aakashe/ /pakhi/ /oodche/ in 
Bengali by a male speaker means /A/ /bird/ /is/ /flying/ /in/ /the/ /sky/ in English.  

The twenty-two speech features related to pitch, energy or loudness, duration, formants and 
speaking rate have been depicted in table 1 and table 2. 
 

 Features lb  ub m  

F0 or pitch -41.64 -5.71 30.23 -5.69 0.3966 

Energy -0.07 0.03 0.10 0.95 0.3962 

Duration 0.00 1.16 3.19 -- -- 

Formants 0.0164 0.0167 0.0171 0.0128 0.4376 

Speaking 
rate 

0.00 0.91 0.83 0.88 -- 
 

Table 1. Enhanced parameters extracted from a speech signal (sample #1) 
 

 Features lb  ub m  

F0 or pitch -41.64 -5.71 30.23 -5.69 0.3966 

Energy -0.07 0.03 0.10 0.95 0.3962 

Duration 0.00 1.16 3.19 -- -- 

Formants 0.0164 0.0167 0.0171 0.0128 0.4376 

Speaking 
rate 

0.00 0.91 0.83 0.88 -- 
 

Table 2. Enhanced parameters extracted from a speech signal  (sample #2) 

3. Understanding of AWM and VDM  
In this section of the chapter, hybrid approach of soft-computing techniques has to be used 
for the understanding of AWM and VDM for the recognition of speech and speaker. The 
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important speech features Ka = {k1,k2,…, km} extracted from speech signal has to be modeled as 
a function of the super-flame information using a neural network of soft computing 
techniques. This model has to be used then in conjunction with a genetic algorithm to obtain 
optimized super-flame information resulting in low Ka values from the model (AWM). This 
has to be carried out by estimating, the mapping-function between inputs and outputs of the 
model. Such functions are usually highly non-linear and have to be computed using adaptive 
vector quantization (AVQ) (Tolvi (2004); Hongwei et al (2005)) based unidirectional temporary 
associative memory (UTAM) of neural-network, as depicted in figure 18.  
 
 

Inputs Outputs 

Kin   Kout
 

Fig. 18. Unidirectional temporary associative memory (UTAM) 

In figure 18, the inputs Kin and the outputs Kout components have been shown. The term 
unidirectional has to be used because each Kin component is mapped with Kout component 
with one-to-one relationship. Each component has to be designated with a unique 
codeword. The set of codewords is called a codebook. The concept of UTAM has to be 
employed in the present work, as mapping-function for two different cases: 
1. Distortion measure between unknown and known speech signals 
2. Locating codeword between unknown and known speech feature 
To illustrate these cases, Let Kin = {I1,I2,….,In} and Kout = {O1,O2,……,Om} consisting of ‘n’ and 
‘m’ input and output codeword respectively. The values of ‘n’ and ‘m’ are the maximum 
size of the vocabulary set. In the recognition stage, an unknown speech signal, represented 
by a sequence of feature vector, U = {U1,U2,….,Uu}, has to be compared with a known speech 
signal stored in the form of model (AWM), represented by a sequence of feature vector, 
Kdatabase = {K1,K2,….,Kq}. Hence to satisfy the unidirectional associatively condition, i.e., Kout 
= Kin, an artificial word model (AWM) has to be utilized for proper matching of words. The 
matching of words, have to be performed on computing the distortion measure. The word 
with lowest distortion has to be chosen. This yield to, the relation,   

 Cfound =  
1

arg min ( , )u q
q n

S U K
 

  (35) 

The distortion measure has to be computed by taking the average of the Euclidean distance 

 ,
min

1

1( , ) ( , )
Q

i q
i i

i
S U K d u C

Q 

   (36) 
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where ,
min
i qC denotes the nearest word in the template or AWM and d(.) is the Euclidean 

distance. Thus, each feature vector in the sequence ‘U’ has to be compared with the 
codeword in AWM, and the minimum average distance has to be chosen as the best-match 
codeword. If the unknown vector is far from the other vectors, then it is very difficult to find 
the word from the AWM, resulting to out-of-vocabulary (OOV) word problem. Assigning 
weights to all the codewords in the database (called weighting method) has eliminated the 
OOV word problem. So instead of using a distortion measure a similarity measure that 
should be maximized are considered. Thus it yields, 

 ,
min,

1 min

1 1( , ) ( )
( , )

Q
i q

w i i q
i i

S U K w C
Q d u C

   (37) 

Dividing equation (36) by equation (37), it yields, 

  = recognition rate = ( , )
( , )

i

w i

S U K
S U K

 = unweighted
weighted

  (38) 

The procedure for computing the weights, has been depicted in an algorithm – 3 below: 
 

Algorithm – 3: procedure to compute weight (S) 

    for each C_I in S do 
           for each C_J in C_I do 
                          sum = 0 
                          for each C_K and K != I, in S do      
                              d_min = distancetonearest(C_J,C_K); 
         sum = sum + 1 / d_min; 
                           endfor; 
                   w(C_IJ) = 1 / sum;   
         endfor 
endfor 
return weights = w(C_IJ) 
 
Next for locating the codeword, hybrid approach of soft computing has to be applied in the 
well-defined way in the present chapter. The hybrid approach of soft computing techniques 
utilizes some bit of concepts from forward-backward dynamic programming and some bit 
of neural-networks. The work done by Fernando Bacao et al (2005), S. H. Ling et al (2007), H. 
Sakoe et al (1997), R. S. Chang et al (1978), and C. Y. Chang et al (1973), have been extended 
by considering eight constraints for searching the AWM using concepts of genetic algorithm 
(GA), for the best match of the uttered phrase. In general, for an optimal solution, GA is the 
best search algorithm based on the mechanics of natural selection, crossover and mutation. 
It combines survival of the fittest among string structures with a structured yet randomized 
information exchange. In every generation, new sets of artificial strings are created and 
hence tried for a new measure. It efficiently exploits historical information to speculate on 
new search points with expected improved performance. In other words genetic algorithms 
are theoretically and computationally simple and thus provide robust and optimized search 
methods in complex spaces. The selection operation has to be performed by selecting the 
speech signal as chromosomes from the population with respect to some probability 
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where ,
min
i qC denotes the nearest word in the template or AWM and d(.) is the Euclidean 
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The procedure for computing the weights, has been depicted in an algorithm – 3 below: 
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new search points with expected improved performance. In other words genetic algorithms 
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speech signal as chromosomes from the population with respect to some probability 
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distribution based on fitness values. The crossover operation has to be performed by 
combining the information of the selected chromosomes (speech signal) and generates the 
offspring. The mutation operation has to be utilized by modifying the offspring values after 
selection and crossover for the optimal solution. Here in the present chapter, an acoustic 
model signifies the population of genes or speech parameters. Using genetic algorithm 
along with associative memory technique a similar type of work has been done by Tilendra 
Shishir Sinha et al (2006) for the recognition of speech and speaker using proposed 
GSAMTSS (genetic search with associative memory technique for the speech and speaker) 
algorithm. The methodology adopted was different in classification and recognition process 
and the work has been further modified by them and has been highlighted in the present 
part of the book using soft computing techniques of genetic and artificial neural network. 
In many applications, speech signals have been either stored for later use or transmitted 
over some media. In both cases, interest lies in reducing the size of the signal because of 
cost, time and certain other benefits. As an application of the previous work done by 
Tilendra Shishir Sinha et al (2006), it has been discussed properly how the speech 
parameters can be embedded within images for promoting global cyber security through 
steganalysis on a standalone machine. Further some of the results reported by Yuexi Ren et 
al (2004), have described the semantic analysis for proper speech user interface in an 
intelligent tutoring system. In the work carried out earlier by Tilendra Shishir Sinha et al 
(2006), regarding the recognition of the gender of the speaker, the threshold values of the 
genders of the speakers have to be assumed which creates a void and the present work has 
attempted to fill in this void using mathematical analysis and employing known algorithms 
like polar algorithm. For the recognition of a speech and speaker, experimental setup has 
been summarized in figure 19. 
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Fig. 19. General framework for recognition process 

For the recognition of speech, first the speech signals (test signal) have to be made free from 
noise using blind signal separation (BSS) and spectral subtraction (SS) method. Hence 
segmented and features have to be extracted and computed the distance measures between 
trained data set and test data set. Hence searched for the codeword from the Bengali 
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vocabulary (master database or template) depending upon the minimum distance measures. If 
test and trained pattern matches then the decision has to be taken with: acceptance or rejection.    
Generally, gender or speaker recognition is being carried out with prior knowledge of vowel 
uttered by the speakers (Doddington 2001). Using two vowels {o, e} the present work has to 
be carried out, because most of the Bengali sentences end either with ‘o’ or with ‘e’. 
Extracting formant based speech features from the word model has carried this part of 
recognition for the gender. Depending upon the best matches decision has to be taken 
whether the speaker is ‘male’ or ‘female’. The analysis has to be done using a two-class 
(male and female) problem. The above theoretical study has to be implemented 
experimentally and mathematical analysis related to the work has been also discussed.   
For the best match of the words spoken in Bengali language, the developed algorithm called 
RCGSTSS (real-coded genetic search technique for the speech and speaker recognition) has 
been employed (Tilendra Shishir Sinha and Gautam Sanyal 2009).  
 

Algorithm – 4: RCGSTSS algorithm 

1. Capture a test speech signal through microphone and store it in a file with extension
wav. Find the length of the test speech signal, say, M. Create the row vectors ‘n’ and ‘k’
such that 0  n, k  M-1  

2. Assign spch_wer = 0, spch_acc = 0 
3. Randomly generate an initial population X(o) = (X1,X2,…..,XM) 
4. Read the size of the trained model, say, Q, and set the counter, say, q = 0  
5. Do while (q  Q) 
                 Compute the fitness f(Xi) of each individual Xi of the current population.  
                 Generate an intermediate population Xr(t) applying the reproduction operator. 
                 Generate X(t+1) applying other operators to Xr(t). 
                 Increment  t = t + 1 
                 Increment the counter, q = q + 1 
                 If matched then  
                         spch_text = popup_from_UTAM(spch_code_word) 
                         spch_text = concatenate(spch_text)+concatenate(space(2)) 
                 else 
                          spch_wer = spch_wer + 1 
                  End if         
                  If q = Q then  
                          spch_vowel = popup_from_UTAM(spch_code_word)  
                          spch_vowel = max(spch_vowel) 
                          if spch_vowel >= threshold then 
                                 speaker = ‘Female’ 
                          else  
                                 speaker = ‘Male’  
                         End if 
                 else 
                        Display ‘Not matched’ 
                 End if 
           End do 
1.  Display ‘Spoken words in: ’ + spch_text + ‘Word error rate: ’+spch_wer 
2.  Display ‘Gender of Speaker: ’+speaker + ‘Recognition accuracy:’+ spch_acc 
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vocabulary (master database or template) depending upon the minimum distance measures. If 
test and trained pattern matches then the decision has to be taken with: acceptance or rejection.    
Generally, gender or speaker recognition is being carried out with prior knowledge of vowel 
uttered by the speakers (Doddington 2001). Using two vowels {o, e} the present work has to 
be carried out, because most of the Bengali sentences end either with ‘o’ or with ‘e’. 
Extracting formant based speech features from the word model has carried this part of 
recognition for the gender. Depending upon the best matches decision has to be taken 
whether the speaker is ‘male’ or ‘female’. The analysis has to be done using a two-class 
(male and female) problem. The above theoretical study has to be implemented 
experimentally and mathematical analysis related to the work has been also discussed.   
For the best match of the words spoken in Bengali language, the developed algorithm called 
RCGSTSS (real-coded genetic search technique for the speech and speaker recognition) has 
been employed (Tilendra Shishir Sinha and Gautam Sanyal 2009).  
 

Algorithm – 4: RCGSTSS algorithm 

1. Capture a test speech signal through microphone and store it in a file with extension
wav. Find the length of the test speech signal, say, M. Create the row vectors ‘n’ and ‘k’
such that 0  n, k  M-1  

2. Assign spch_wer = 0, spch_acc = 0 
3. Randomly generate an initial population X(o) = (X1,X2,…..,XM) 
4. Read the size of the trained model, say, Q, and set the counter, say, q = 0  
5. Do while (q  Q) 
                 Compute the fitness f(Xi) of each individual Xi of the current population.  
                 Generate an intermediate population Xr(t) applying the reproduction operator. 
                 Generate X(t+1) applying other operators to Xr(t). 
                 Increment  t = t + 1 
                 Increment the counter, q = q + 1 
                 If matched then  
                         spch_text = popup_from_UTAM(spch_code_word) 
                         spch_text = concatenate(spch_text)+concatenate(space(2)) 
                 else 
                          spch_wer = spch_wer + 1 
                  End if         
                  If q = Q then  
                          spch_vowel = popup_from_UTAM(spch_code_word)  
                          spch_vowel = max(spch_vowel) 
                          if spch_vowel >= threshold then 
                                 speaker = ‘Female’ 
                          else  
                                 speaker = ‘Male’  
                         End if 
                 else 
                        Display ‘Not matched’ 
                 End if 
           End do 
1.  Display ‘Spoken words in: ’ + spch_text + ‘Word error rate: ’+spch_wer 
2.  Display ‘Gender of Speaker: ’+speaker + ‘Recognition accuracy:’+ spch_acc 
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4. Conclusion  
In order to recognize certain Bengali phrases spoken in speaker independent environment a 
noise-free artificial word model and vowel diphthong model has to be developed using 
blind signal separation method, spectral subtraction method, and adaptive vector 
quantization. It has been also observed that the residual noise occurs because of the channel 
coupling, which has to be minimized using spectral subtraction method by further adjusting 
the ‘over subtraction’ coefficient ‘α’. Due to channel coupling most of the valuable 
information in speech signals goes un-observed. This problem has to be also rectified using 
blind signal separation method and filtered further using loss-less compression technique 
called discrete cosine transform and also employed principal component analysis for further 
analysis. The developed algorithm called SCB_AWM_VDM (soft computing based artificial 
word model and vowel-diphthong model) has to be implemented to train the system 
considering 22 speakers of varying age groups for AWM formation and 10 speakers of 
varying age groups for VDM formation. The vocabulary has to be limited to 215 Bengali 
words, considering, nine male and six female adults of age group 30 – 40 years, five male 
adults of age group 40 – 50 years and two male adults above 50 years of age. Each phrase 
has to be uttered five times by each speaker leading to a total size of (22 x 215 x 5) 23650 
Bengali words for overcoming the out-of-vocabulary (OOV) word problem during 
recognition process of the speech and the speaker of Bengali language. Hence for 
simultaneous automatic speech and speaker recognition (ASSR) in combination with AWM 
another model called VDM has to be used. These models have to be used properly by 
adopting the methods forward-backward dynamic programming (FBDP) and genetic 
algorithm (GA). The divergence has to be calculated and also comparison has to be made 
with the observation that GA converges with optimal solution, thus improving the 
performance of the complete dialogue system. The developed algorithm (RCGSTSS) has to 
be successfully tested with necessary experimental data. 
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1. Introduction 

In the proposed work, the techniques of wavelet transform (WT) and neural network were 
introduced for speech based text-independent speaker identification and Arabic vowel 
recognition. The linear prediction coding coefficients (LPCC) of discrete wavelet transform 
(DWT) upon level 3 features extraction method was developed. Feature vector fed to 
probabilistic neural networks (PNN) for classification. The functions of features extraction 
and classification are performed using the wavelet transform and neural networks 
(DWTPNN) expert system. The declared results show that the proposed method can make 
an powerful analysis with average identification rates reached 93. Two published methods 
were investigated for comparison. The best recognition rate selection obtained was for 
framed DWT. Discrete wavelet transform was studied to improve the system robustness 
against the noise of 0dB. Our investigation of speaker-independent Arabic vowels classifier 
system performance is performed via several experiments depending on vowel type. The 
declared results show that the proposed method can make an effectual analysis with 
identification rates may reach 93%.  
In general, a speaker identification system can be implemented by observing the 
voiced/unvoiced components or through analyzing the energy distribution of utterances. A 
number of digital signal processing algorithms, such as LPC technique (Adami & Barone, 
2001; Tajima, Port, & Dalby, 1997), Mel frequency cepstral coefficients (MFCCs) (Mashao & 
Skosan, 2006; Sroka & Braida, 2005; Kanedera, Arai, Hermansky & Pavel, 1999; Daqrouq & 
Al-Faouri, 2010), DWT (Fonseca, Guido, Scalassara, Maciel, & Pereira, 2007) and wavelet 
packet transform (WPT) (Lung, 2006; Zhang & Jiao, 2004) are extensively utilized. In the 
beginning of 1990s, Mel frequency cepstral technique became the most widely used 
technique for recognition purposes due to its aptitude to represent the speech spectrum in a 
compacted form (Sarikaya & ansen, 2000). Actually, MFCCs simulate the model of  umans’ 
auditory perception and have been proven to be very effective in automatic speech 
recognition system and modeling the individual frequency components of speech signals. 
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ESI has been under research by a large number of researches for about four decades 
(Reynolds, Quatieri, & Dunn, 2000). From a commercial point of view, ESI is a technology 
with potentially large market due to the applications of frequently ranges from automation 
of operator- helped service to speech-to-text aiding system for hearing impaired individuals 
(Reynolds et al., 2000). 
Artificial neural network performance is depending mainly on the size and quality of 
training samples (Visser, Otsuka, & Lee, 2003). When the number of training data is small, 
not representative of the possibility space, standard neural network results are poor (Kosko 
& Bart, 1992). Incorporation of neural fuzzy or wavelet techniques can improve performance 
in this case, particularly, by input matrix dimensionality decreasing (Nava & Taylor, 1996). 
Artificial neural networks (ANN) are known to be excellent classifiers, but their 
performance can be prevented by the size and quality of the training set. Fuzzy theory has 
been used successfully in many applications (Gowdy & Tufekci, 2000). This applications 
show that fuzzy theory can be used to improve neural network performance. 
 In this study, authors improve effective feature extraction method for text-independent 
system, taking in consideration that the size of ANN input is very crucial issue. This affects 
quality of the training set. For this reason, the presented features extraction method offers a 
reduction of dimensionality of features comparing with conventional methods. LPCC of 
DWT in conjunction is utilized. For classification of features extraction coefficients, PNN is 
proposed. 
In this paper, an expert system for speaker identification was proposed for the investigation 
of the speech signals using pattern identification. The speaker identification performance of 
this method demonstrated on the total 59 individual speakers (39 male speakers and 20 
female speakers). LPCC in conjunction with DWT upon level seven features extraction 
method were developed. For performing the classification process PNN was investigated. 
The function of feature extraction and classification is performed using the DWPN expert 
system. The declared results show that the proposed method can make an effectual 
analysis.. The average identification rates were 94.89, better than other methods published 
before. It was found that the recognition rates enhanced upon increasing the number of 
feature sets (by higher DWT levels). Nevertheless, the improvement implies a tradeoff 
between the recognition rate and extracting time. The proposed method can offer a 
significant computational advantage by reducing the dimensionality of the WT coefficients 
by means of LPCC. DWT approximation Sub-signal via several levels instead of original 
imposter had good performance on real noise facing, particularly upon level 3 and 4. 

2. Discrete Wavelet Transform 
The DWT indicates an arbitrary square integrable function as a superposition of a family of 
basis functions called wavelet functions. A family of wavelet basis functions can be 
produced by translating and dilating the mother wavelet related to the family (Mallat, 1989). 
The DWT coefficients can be generated by taking the inner product between the input signal 
and the wavelet functions. Since the basis functions (wavelet functions) are translated and 
dilated versions of each other, a simpler algorithm, known as Mallat's pyramid tree 
algorithm, has been proposed in (Mallat, 1989).  
The DWT can be treated as the multiresolution decomposition of a sequence. It takes a 
length N  sequence a(n)  as input and produces a length N sequence as the output. The 
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output has   values at the highest resolution (level 1) and N/4 values at the next resolution 
(level 2), and so on. Let mN 2 , and let the number of frequencies, or resolutions, be m, we 
are bearing in mind m log N  octaves [18]. So that, the frequency index k   varies as 1, 2,…, 
m corresponding to the scales 1 2 m2 ,2 ,...,2 . In 
As described by Mallat pyramid algorithm (Fig.1), the DWT coefficients of the previous 
stage are expressed as follows ( Souani et al., 2000): 

 L L
i

W (n,k) W (i,k 1)h(i 2n),    (1a) 

 H L
i

W (n,k) W (i,k 1)g(i 2n),    (1b) 

Where LW (p,q) is pth scaling coefficient at the qth stage, HW (p,q)  is the pth wavelet 
coefficient at the qth stage, and h(n),g(n)  are the dilation coefficients relating to the scaling 
and wavelet functions, respectively. 
For computing the DWT coefficients of the discrete-time data (signal), it is assumed that the 
input data represents the DWT coefficients of a high resolution stage. Equations (1a) and 
(1b) may be used for obtaining DWT coefficients of subsequent stages. In practice, this 
decomposition is used only for a few stages. We note that the dilation coefficients h(n)  
stand for a low-pass filter, where the corresponding g(n)  stands for a high-pass filter. In 
order that, DWT takes out information from the signal at different scales. The first level of 
wavelet decomposition extracts the details of the signal (high frequency parts), while the 
second and all subsequent wavelet decompositions take out progressively coarser 
information (lower frequency parts). Each step of retransforming the low-pass output is 
called dilation. A schematic of three stages DWT decomposition is shown in Fig. 1. H 
presents the High pass filter and 
L denotes the low pass filter. At the output of each filter the result is down sampled 
(decimated) by taking one coefficient and leave other ( Souani et al., 2000). 
So as to reconstruct the original data, the DWT coefficients are up sampled (insertion of a 
zero between two samples) and passed through another set of low- and high-pass filters, 
which are expressed as 

 L L H
p l

W (n,k) W (p,k 1)h (n 2p) W (l,k 1)g (n 2l),         (2) 

where h (n)  and g (n) are the low- and the high-pass synthesis filter , respectively. It is 
observed from Eq. (2) that the kth  level DWT coefficients may be obtained 
from (k 1)th level DWT coefficients. Efficiently supported wavelets are generally used in 
various applications.  
In the last decade, there has been a huge increase in the applications of wavelets in various 
scientific disciplines. Typical applications of wavelets include signal processing, image 
processing, security systems, numerical analysis, statistics, biomedicine, etc. Wavelet 
transform tenders a wide variety of useful features, on the contrary to other transforms, 
such as Fourier transform or cosine transform. Some of these are as follows: 
- Adaptive time-frequency windows, 
- Lower aliasing distortion for signal processing applications, 
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ESI has been under research by a large number of researches for about four decades 
(Reynolds, Quatieri, & Dunn, 2000). From a commercial point of view, ESI is a technology 
with potentially large market due to the applications of frequently ranges from automation 
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(Reynolds et al., 2000). 
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2. Discrete Wavelet Transform 
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and the wavelet functions. Since the basis functions (wavelet functions) are translated and 
dilated versions of each other, a simpler algorithm, known as Mallat's pyramid tree 
algorithm, has been proposed in (Mallat, 1989).  
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presents the High pass filter and 
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observed from Eq. (2) that the kth  level DWT coefficients may be obtained 
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various applications.  
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- Computational complexity of O(N) , where N is the length of data; 
- Inherent scalability; 
- Efficient Very Low Scale Integration implementation 
 

 
(a) 

 

 
(b) 

Fig. 1. a. DWT-tree by Mallat's Algorithm; b. IDWT by Mallat's Algorith 

3. The use of DWT for feature extraction  
Before the stage of features extraction, the speech data are processed by a silence removing 
algorithm followed by the application of a pre-processed by applying the normalization on 
speech signals to make the signals comparable regardless of differences in magnitude. In 
this study three feature extraction methods based on discrete wavelet transform are 
discussed in the following part of the paper.   

3.1 DWT method with LPC  
For an orthogonal wavelet function, a library of DWT bases is generated. Each of these bases 
offers a particular way of coding signals, preserving global energy and reconstructing exact 
features. The DWT is used to extract additional features to guarantee higher recognition 
rate. In this study, DWT is applied at the stage of feature extraction, but these data are not 
proper for classifier due to a great amount of data length. Thus, we have to seek for a better 
representation for the speaker features. Previous studies proposed that the use of LPC of 
DWT as features in recognition tasks is competent. (Adami & Barone, 2001; Tajima, Port, & 
Dalby, 1997) Suggested a method to calculate the LPC orders of wavelet transform for 
speaker recognition. 
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In this method the LPC is obtained from DWT Sub signals. The DWT at level three is 
generated and then 30 LPC orders are obtained for each sub signals to be combined in one 
feature vector. The main advantage of such sophisticated feature method is to extract 
different LPC impact based on multi resolution of DWT capability. LPC orders sequence 
will contain distinguishable information as well as wavelet transform. Fig.3  shows LPC 
orders calculated for DWT at depth 3 for  three different utterances for the same person. We 
may notice that the feature vector extracted by DWT and LPC is appropriate for speaker 
recognition. 
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Fig. 3. LPC orders calculated for DWT at depth 3 for  three different utterances for the same 
person 

3.2 DWT method with entropy 
Turkoglu et al., (2003) Suggested a method to calculate the entropy value of the wavelet 
norm in digital modulation recognition. [16] Proposed features extraction method for 
speaker recognition based on a combination of three entropy types (sure, logarithmic energy 
and norm). Lastly, (Daqrouq, 2011) investigated a speaker identification system using 
adaptive wavelet sure entropy. 
As seen in above studies, the entropy of the specific sub-band signal may be employed as 
features for recognition tasks. This is possible because each Arabic vowel has distinct energy 
(see Fig.3). In this paper, the entropy obtained from the DWT will be employed for speaker 
recognition. The features extraction method can be explained as follows: 
 Decomposing the speech signal by wavelet packet transform at level 7, with Daubechies 

type (db2). 
 Calculating three entropy types for all 256 nodes at depth 7 for wavelet packet using the 

following equations: 
Shannon entropy:  

  2 2
ii i

E1(s) s log(s )    (3) 

Log energy entropy: 
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generated and then 30 LPC orders are obtained for each sub signals to be combined in one 
feature vector. The main advantage of such sophisticated feature method is to extract 
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may notice that the feature vector extracted by DWT and LPC is appropriate for speaker 
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3.2 DWT method with entropy 
Turkoglu et al., (2003) Suggested a method to calculate the entropy value of the wavelet 
norm in digital modulation recognition. [16] Proposed features extraction method for 
speaker recognition based on a combination of three entropy types (sure, logarithmic energy 
and norm). Lastly, (Daqrouq, 2011) investigated a speaker identification system using 
adaptive wavelet sure entropy. 
As seen in above studies, the entropy of the specific sub-band signal may be employed as 
features for recognition tasks. This is possible because each Arabic vowel has distinct energy 
(see Fig.3). In this paper, the entropy obtained from the DWT will be employed for speaker 
recognition. The features extraction method can be explained as follows: 
 Decomposing the speech signal by wavelet packet transform at level 7, with Daubechies 

type (db2). 
 Calculating three entropy types for all 256 nodes at depth 7 for wavelet packet using the 

following equations: 
Shannon entropy:  
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E1(s) s log(s )    (3) 

Log energy entropy: 
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  2
iiE1(s) log(s )  (4) 

Sure entropy: 

     2 2
i i i

s p E(s) min(s ,p )     (5) 

Where s  is the signal, is  are the DWT coefficients and p is a positive threshold. Entropy is 
a common concept in many fields, mainly in signal processing. Classical entropy-based 
criterion describes information-related properties for a precise representation of a given 
signal. Entropy is commonly used in image processing; it posses information about the 
concentration of the image. On the other hand, a method for measuring the entropy appears 
as a supreme tool for quantifying the ordering of non-stationary signals. Fig.3 shows the 
three entropies calculated for DWT at depth 3 for three different utterances for the same 
person. We may notice that the feature vector extracted by DWT and entropy is appropriate 
for speaker recognition. This conclusion has been obtained by interpretation the following 
criterion: the feature vector extracted should possess the following properties Vary widely 
from class to class. 2) Stable over a long period of time. 3) Should not have correlation with 
other features (see Fig.4). 
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Fig. 4. Entropy calculated for DWT at depth 3 for  three different utterances for the same 
person 

4. Proposed probabilistic neural networks algorithm 
We create a probabilistic neural network algorithm for classification problem (see Fig.5 and 
Fig.6): 

Net  PNN(P,T,  SPREAD),  

where P  is q 14x2 x24  matrix of 24 input vowel feature vectors for net training, of q 12   
(minus 2, repeated original node) WP nodes   number; 
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 (6) 

T is the target class vector  

 T=[1,2,3, ...,24],  (5)   

and SPREAD is spread of radial basis functions. We employ a SPREAD value of 1 because 
that is a typical distance between the input vectors. If SPREAD is near zero the network acts 
as a nearest neighbor classifier.  As SPREAD becomes larger the designed, network will take 
into account several nearby design vectors.  
 

 
Fig. 5. Structure of the original probabilistic neural network 
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4. Proposed probabilistic neural networks algorithm 
We create a probabilistic neural network algorithm for classification problem (see Fig.5 and 
Fig.6): 

Net  PNN(P,T,  SPREAD),  
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T is the target class vector  

 T=[1,2,3, ...,24],  (5)   

and SPREAD is spread of radial basis functions. We employ a SPREAD value of 1 because 
that is a typical distance between the input vectors. If SPREAD is near zero the network acts 
as a nearest neighbor classifier.  As SPREAD becomes larger the designed, network will take 
into account several nearby design vectors.  
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Fig. 6. Flow chart for proposed expert system 

5. Results and discussion  
5.1 Speaker identification by DWTLPC 
A testing database was produced from Arabic language. The recording environment is a 
normal office environment through PC-sound card, with frequency 4 KHz and sampling 
frequency 16 KHz.  
These utterances are Arabic spoken words. Total 47 individual speakers (19 to 40 years old) 
who are 31 individual male and 16 individual female spoken these Arabic words for 
training and testing phases. The total number of tokens considered for training and testing 
was 653. 
It were performed experiments using total 653 the Arabic utterances of total 47 individual 
speakers (31 male speakers and 16 female speakers). For each of these speakers, up to 15 
speech signals were used. 6 of these signals were used for training and from 4 to 9 of these 
signals (depends of recordings signals for each speaker) were used for testing the expert 
system (Fig.6). In this experiment, 93.26% correct classification was obtained by means of 
DWTLPC among the 47 different speaker signal classes. Testing results are tabulated in 
Tab.1. It, clearly, indicates the usefulness and the trustworthiness of the proposed approach 
for extracting features from speech signals gender identification system.  

Simulation 
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Recognition Rate 
[%] Recognized Signals Number of Signals Speaker 

100 9 9 Sp.1 
88.88 8 9 Sp.2 
100 9 9 Sp.3 

88.88 8 9 Sp.4 
100 9 9 Sp.5 

66.66 6 9 Sp.6 
100 9 9 Sp.7 
100 9 9 Sp.8 
100 9 9 Sp.9 
100 9 9 Sp.10 

88.88 8 9 Sp.11 
66.66 6 9 Sp.12 
100 9 9 Sp.13 
100 9 9 Sp.14 
100 9 9 Sp.15 
100 9 9 Sp.16 
87.5 7 8 Sp.17 
100 8 8 Sp.18 
87.5 7 8 Sp.19 
100 4 4 Sp.20 
100 4 4 Sp.21 
100 4 4 Sp.22 
100 4 4 Sp.23 
100 4 4 Sp.24 
100 8 8 Sp.25 
100 8 8 Sp.26 
100 8 8 Sp.27 
62.5 5 8 Sp.28 
87.5 7 8 Sp.29 
100 8 8 Sp.30 
100 8 8 Sp.31 
100 8 8 Sp.32 
100 8 8 Sp.33 
87.5 7 8 Sp.34 
87.5 7 8 Sp.35 
100 8 8 Sp.36 
100 8 8 Sp.37 
100 8 8 Sp.38 
100 8 8 Sp.39 
100 8 8 Sp.40 
87.5 7 8 Sp.41 
87.5 7 8 Sp.42 
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system (Fig.6). In this experiment, 93.26% correct classification was obtained by means of 
DWTLPC among the 47 different speaker signal classes. Testing results are tabulated in 
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Recognition Rate 
[%] Recognized Signals Number of Signals Speaker 
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88.88 8 9 Sp.2 
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100 9 9 Sp.8 
100 9 9 Sp.9 
100 9 9 Sp.10 
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100 9 9 Sp.13 
100 9 9 Sp.14 
100 9 9 Sp.15 
100 9 9 Sp.16 
87.5 7 8 Sp.17 
100 8 8 Sp.18 
87.5 7 8 Sp.19 
100 4 4 Sp.20 
100 4 4 Sp.21 
100 4 4 Sp.22 
100 4 4 Sp.23 
100 4 4 Sp.24 
100 8 8 Sp.25 
100 8 8 Sp.26 
100 8 8 Sp.27 
62.5 5 8 Sp.28 
87.5 7 8 Sp.29 
100 8 8 Sp.30 
100 8 8 Sp.31 
100 8 8 Sp.32 
100 8 8 Sp.33 
87.5 7 8 Sp.34 
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Recognition Rate 
[%] Recognized Signals Number of Signals Speaker 

100 8 8 Sp.43 
87.5 7 8 Sp.44 
100 7 7 Sp.45 
75 6 8 Sp.46 

62.5 5 8 Sp.47 
93.26 346 371 Total 

Table 1. DWTLPC Identification Rate results 

Table 2 shows the experimental results of different approaches used in the experimental 
investigation for comparison.  Modified DWT with proposed feature extraction method 
(MDWTLPC), framing DWTLPC (FDWTLPC) illustrated in Fig.8, where LPC orders are 
obtained from six frames of each DWT sub signal and proposed method DWTLPC were 
investigated for comparison. The recognition rate of MDWTLPC reached the lowest value. 
The best recognition rate selection obtained was 93.53% for FDWTLPC. 
 

Identification 
Method 

Identification 
System 

Number of 
Signals 

Identification 
Rate [%] 

DWTLPC Text-independent 653 93.26 
MDWTLPC Text-independent 653 92.66 
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Fig. 8. Feature extraction vectors for  three  signals of same speaker obtained by a. 
FDWTLPC. b.DWTLPC 
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Table 4. DWTLPC Identification Rate results through DWT with SNR= 0dB 
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5.2 Arabic vowel classification by using DWTLPC  
In recent times, Arabic language became one of the most significant and broadly spoken 
languages in the world, with an expected number of 350 millions speakers distributed all 
over the world and mostly covering 22 Arabic countries. Arabic is Semitic language that 
characterizes by the existence of particular consonants like pharyngeal, glottal and emphatic 
consonants. Furthermore, it presents some phonetics and morpho-syntactic particularities. 
The morpho-syntactic structure built, around pattern roots (CVCVCV, CVCCVC, etc.) 
(Zitouni and Sarikaya, 2009). The Arabic alphabet consists of 28 letters that can be expanded 
to a set of 90 by additional shapes, marks, and vowels. The 28 letters represent the 
consonants and long vowels such as  pronounced) ي ,(/:both pronounced as/a) ٱ and ى 
as/i:/), and  The short vowels and certain other phonetic .(/:pronounced as/u )  و
information such as consonant doubling (shadda) are not represented by letters directly, but 
by diacritics. A diacritic is a short stroke located above or below the consonant. Table 1 
shows the complete set of Arabic diacritics. We split the Arabic diacritics into three sets: 
short vowels, doubled case endings, and syllabification marks. Short vowels are written as 
symbols either above or below the letter in text with diacritics, and dropped all together in 
text without diacritics. We get three short vowels: fatha: it represents the /a/ sound and is 
an oblique dash over a letter, damma: it represents the /u/ sound and has shape of a 
comma over a letter and kasra: it represents the /i/ sound and is an oblique dash under a 
letter as reported in Table 1. 
In this work, speech signals were obtained via PC-sound card, with a sampling frequency of 
16000 Hz.  The Arabic vowels were recorded by 27 speakers: 5 females, along with 22 males. 
The recording process was provided in normal university office circumstances. Our study of 
speaker-independent Arabic vowels classifier system performance is performed via several 
experiments depending on vowel type. In the following three experiments the used feature 
extraction method is DWTLPC. 

Experimental-1 
We experimented 200 long Arabic vowels ٱ (pronounced as/a:/) signals, 400  long Arabic 
vowels signals and 90  long Arabic vowels (/:pronounced as/e) ي   (/:pronounced as/u) و 
signals.  The results indicated that 96% were classified correctly for Arabic vowels ٱ   , 90%  of 
the signals were classified correctly for Arabic vowel ي, and 94%  of the signals were 
classified correctly for Arabic vowel و. Tab.5 shows the results of recognition rates. 
                                    

Recognition Rate 
[%] 

Not Recognized 
Signals 

Accepted 
Signals 

Number of 
Signals 

Long 
Vowels 

96 8 192 200 Long A 
 أ

90 40 360 400 Long E 
 ي

94 5 85 90 Long O 
 و

93.33 Avr. Recognition 
Rate 

Table 5. The recognition rate results for long vowels 
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Experimental-2 
In this experiment we study the recognition rates for long vowels connected with other 
consonant such ل (pronounced as/l/) and ر (pronounced as/r/). Tab.6, reported the 
recognition rates.  The results indicated 88.5% average recognition rate.  
 

Recognition Rate 
[%] 

Not Recognized 
Signals 

Recognized 
Signals 

Number of 
Signals 

Long 
Vowels 

95 3 57 60 La 
 لا

100 0 60 60 Le 
 لي

70 18 42 60 Lo 
 لو

90 6 54 60 Ra 
 را

95 3 57 60 Re 
 ري

81 11 49 60 Ro 
 رو

88.5 Avr. Recognition 
Rate 

Table 6. The recognition rate results for long vowels connected with other letters 

Probabilistic neural network based speech recognition system is presented in this work. This 
system was performed using a wavelet feature extraction method. In this work, effective 
feature extraction method for Arabic vowels system is developed, taking in consideration 
that the computational complexity is very crucial issue. The experimental results on a subset 
of recorded database showed that feature extraction method proposed in this work is 
suitable for Arabic recognition system. Our study of speaker-independent Arabic vowels 
classifier system performance is performed via two experiments depending on vowel type. 
The declared results show that the proposed method can make an effective analysis with 
identification rates may reach 93%.  
The proposed future work of this study is to improve the capability of proposed system to 
work in real time. This may be performed by modifying the recording apparatus and a data 
acquisition system (such as NI-6024E), and interfacing online with written Matlab code that 
simulates the expert system. 

6. Conclusion 
In this work, an expert system for speaker identification was investigated for the analyzing 
of the speech signals using pattern identification. The speaker identification performance of 
this method demonstrated on the total 47 individual speakers (31 male speakers and 16 
female speakers). LPC in conjunction with framed DWT upon level three features extraction 
method was developed. For performing the classification process PNN was proposed. The 
stated results show that the proposed method can make an powerful analysis. The 
performance of the intelligent system was given in Table 1 and Table 2. The average 
identification rates were 93.26%, better than other methods. Our investigation of speaker-
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independent Arabic vowels classifier system performance is performed via several 
experiments depending on vowel type. The declared results show that the proposed method 
can make an effectual analysis with identification rates may reach 93%.  
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1. Introduction  
The extensive use of insecticides in modern agriculture has raised serious public concern 
regarding the environment and food safety, and considerable efforts have been devoted to 
the development of highly sensitive detection methods (Bachmann et al., 2000; Istamboulie 
et al., 2007). Biosensors have been described for many years (Andreescu and Marty, 2006a) 
as good candidates to replace or complement conventional analytical methods, as they can 
provide real-time qualitative information about the composition of a sample with minimum 
treatment. In recent years, biosensors have played an important role in the determination of 
pesticides, because the compounds used in its composition have anticholinergic properties 
and therefore strongly inhibit cholinesterase enzymes. Evaluation of cholinesterase activity 
is the crucial factor in the construction of biosensors,  however, in the case of multi-
component samples (more common in reality) is absolutely essential include appropriate 
data processing tools to find relationships between the biosensor responses and the 
measured data. In most cases, it is necessary a first data pretreatment step in order to 
explore and validate these obtained information (Ehrentreich, 2002). 
Many applications related with the use of biosensor responses entail data interpretation 
problem related to: (1) noisy records due to temperature changes; (2) data acquisition noise 
present in records, (3) presence of interference signals in the biosensor response mainly 
contaminated by signals coming for the electrochemical equipment i.e. potentiostats, 
magnetic stirrings and thermostats (Cai and Harrington, 1998; Zanchettin and Ludermir, 
2007): (4) according with the inhibition method the responses can be slow which implies 
signals with information in low frequencies and a large number of samples per essay 
(Arduini et al., 2010). 
In this way, different data processing strategies have been proposed in order to achieve 
better interpretation models and discard irrelevant content coming from original data. 
During the last decade, Wavelet Transform (WT) has been widely employed in signal 
processing analysis were denoising and compression is an important step in the data mining 
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process. WT has been proved to be fast and reliable than traditional methods such as Fourier 
Transform (FT) and Savitzky-Golay (SG) (Alsberg et al., 1997; Cai and Harrington, 1998; 
Gorry, 1990).  
Wavelet transform is a well localized in both the time and frequency domain. Therefore it 
may decompose a signal retaining the information of both domains. Unlike the more 
traditional filtering methodologies, wavelet transforms have the ability to preserve the 
temporal locality of sharp transitions within time domain signals (Alsberg et al., 1997). This 
property makes WT useful to represent different features of the signal, especially non-
linearities or discontinuities. 
Since 90´s decade, WT has attracted interest in fields of chemistry for signal processing.  
Analytical techniques such as chromatography, infrared spectroscopy, mass spectrometry, 
nuclear magnetic resonance spectroscopy, ultraviolet-visible spectroscopy and 
electroanalysis, have also been benefited from the properties of wavelet processing for data 
processing tasks mainly related to compression, noise removal, base-line correction, zero 
crossing, regression and multi-resolution of overlapping signals (Leung et al., 1998a; Leung 
et al., 1998b; Nie et al., 2001). 
The viability of the use of wavelet analysis in electrochemical applications has been reported 
since two decade ago. Bos and Hoogendam proposed the use of WT to minimized the effect 
of noise and base-line drift to determine peak intensities in flow-injection analysis (Bos and 
Hoogendam, 1992). In that work, obtained results indicate that wavelet analysis applied to 
peak shapes (with appropriate signal-to-noise ratio), may improve the detection limit 
obtained with traditional signal processing methods in which the peak heights and peak 
areas are determined. In this sense, Morlet wavelet function was utilized to transform the 
FIA signal into a two dimensional time-frequency form. 
One of the first reports related to the analysis of electrochemical signals was presented by 
Zou and Mo (1997), they employed wavelet multi-frequency channel decomposition 
(WMCD) in records coming from linear scan voltametry, in order to extract useful 
information from voltamograms with high levels of noise. Selecting optimal wavelet basis 
and frequency scales the absolute values of the peak have relative errors less than 2% (Zou 
and Mo, 1997). Other interesting work developed by Aballe et al. (1999), used wavelet 
transform to analyse the electrochemical noise and its fluctuations in order to establish 
either the rate or the mechanism of a corrosion process (Aballe et al., 1999). This kind of 
analysis allowed obtaining complementary information about these parameters where other 
techniques do not work properly.   
Since the wavelet analysis is carried out by a digital system, we assumed that the analysis is 
in time-discrete and depends of discrete parameters, such as rate of acquire analogical 
signal, numbers of operations per second and resolution of the data. These parameters are 
not taken into account when the wavelet transforms are performed by personal computer 
and specialized mathematician software, but when the implementations are oriented 
towards specific applications or/and the necessity to work with out a computer (digital 
robust system) hardware implementation emerges as an interesting alternative. 
With the advancement of the microelectronics, new trends are oriented to develop wavelet 
transforms implemented in portable systems with high accuracy, low-cost, short-time 
response and easy programmed to be a suitable option in electrochemistry calibrations 
(Alonso et al., 2010). 
In the last decade, different works of implementations of discrete wavelet transforms 
(DWTs) based on Digital Signal Processors (DSPs), Field Programmable Gate-Array (FPGA) 
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and CMOS technology were reported such as an alternative of implementation of wavelet 
transforms into dedicated systems. The first dedicated devices used to compute the DWT 
were the DSPs, which have high process-computing power, high speed and normally the 
manufactures proved full support. DSPs provide some special hardware units, such as 
Multiply-Acumulate (MAC) to improve the performance of discrete wavelet transform 
Nevertheless, these devices use to be expensive, not compatible with other hardware and 
with the possibility to use only one processing core; so tasks must be programmed 
sequentially. 
One of the first authors to report the use of these devices were Bahoura et al. (Bahoura M. et 
al.,1997), they develop an algorithm based on wavelet transform suitable for real time 
implementation. This algorithm was implemented in a SPROC-1400 device with a 50 MHz 
frequency clock and was used to detect ECG arrhythmia characteristics (Bahoura et al., 
1997). An application related to DWT and the JPEG2000 image compression standard was 
described by Gnavi et al. (2002). The authors developed wavelet engines on a DSP platform, 
based on the so-called lifting scheme. Using this approach, authors presented a performance 
comparison between traditional convolution and lifting scheme, proving that the later were 
faster and computationally less demanding (Gnavi et al., 2002). After this work, Jichang et al 
(2003), described an algorithm to be implementable in DSP TMS3320C3X using the 
instruction parallel multiply-accumulate with circular addressing programmed in assemble 
language program (Jichang et al., 2003). 
All the works mentioned have been implemented successfully integer discrete wavelet 
transforms but do not develop algorithms that compute the floating point DWT, when 
floating point representation of DWT coefficients is required. In this sense, although it is 
possible to implement floating-point operations on DSP fixed point architectures, the main 
disadvantage of this approach is related to the time-consuming transfer data to and from 
memory (Smith, 1997). 
In order to provide flexibility for the DWT implementation based on wavelet filter length 
and decomposition structure, implementations based on FPGA were proposed. The first 
recorded work, describing a real-time application of discrete wavelet transform for audio 
and video compression is reported by Motra et al. (2004). In this work, the reported 
architecture was programmed in Verilog-HDI in a FPGA and supports higher hardware 
utilization and the latter scheme speed up the clock rate of DWT (Motra et al., 2004). 
Another similar work is presented by Zhang and Hu. Here the authors proposed a DWT 
algorithm based on pyramidal structural data coding and it was programmed in VHDL 
language (Zhang and Hu, 2004). Latest  work related to this topic is presented by Knowles 
who reported approach of simple modular and recursive hardware implementation of DWT 
using  basic units: input delay,  filter, register bank, and control unit. The implementation 
based on VLSI performs both high- and low- pass filter with just one set of multipliers 
(Knowles, 2008). 
This brief overview of works illustrates the recent trends of DWT implementation, carried 
out by different research groups. On the one hand, DSP implementations have been widely 
used because of its easy way to programming and its high precision computing. 
Nevertheless, disadvantages such as non standardized compiler languages and high 
hardware costs have promoted in recent years the use of FPGA devices.On the other hand, 
FPGA implementations have advantages to allow preserving parallel architecture using 
programmable gates on a single chip, and the source code can be modified by the user with 
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relative simplicity. A well known disadvantage of these systems, is the need to coupled with 
other periphericals, becoming difficult to construct a cheap specific system (Shahbahrami et 
al., 2010).  
Recently, the development of low-cost programmable devices has created a new family of 
microcontrollers with high simplicity and flexibility of programming and wide hardware 
compatibility. These devices called dsPIC® (from Microchip®) combines the best features of 
both microcontrollers and DSPs in a single core. These new features combined with high 
process speed promise to be the key to new implementation strategies of the DWT on a 
dedicated device.   
In this chapter, we will attempt to describe the nature of discrete wavelet transform to build 
our implementation model in any low-cost dsPIC chip for denoising and compression 
biosensor responses. The knowledge needed to reach our main goal will be summarized 
along different sections to give the reader comprehensive and specialized information of the 
practical use of implemented discrete wavelet transform such as data pre-treatment tool. 

2. Fundamentals of Wavelet Transform 
In the 80’s decade, Morlet et al. (Morlet et al., 1982) described the concept wavelets which 
used to decomposition signals without the necessity of windowed them as Gabor suggested 
before (Gabor, 1946). In wavelet treatment all basis functions ψs,t(x) can be derived from a 
mother  wavelet Ψ(x) (eq. (1) through the following translation and dilation process. 
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Where s and t, are respectively, the scale and translation parameter expressed in real 
numbers R. 1/√|2| is an energy normalization factor for all sub wavelets functions. The 
basic idea of WT is to represent any arbitrary function f(x) as a superposition of wavelets. 
The continuous wavelet transform is given by eq. (2). 

 ,
1( , ) ( ) ( ), ( )f s t

x tW s t f x dx f x x
ss

 




   
   (3) 

With s > 0 and t having arbitrary values. 
In figure 1, a variety of mother wavelets are shown. The more common wavelets are; Haar 
wavelet, Mexican Hat, Morlet, Daubechies. The main idea of wavelet transform is the 
overlapping of a wavelet mother over any signal see figure 2(b). 

2.1 Discrete Wavelet Transform 
Croisier et al.  (Croisier et al., 1976) created a technique to analyze digital signals by the 
decomposition of them.  In the same year Crochiere et al. (Crochiere et al., 1977) reported a 
similar work to code audio signals. This technique was named sub-band coding. Vetterli 
and Le Gall, improved the analysis of sub-bands decreasing the redundant data from 
pyramidal algorithm (Vetterli and Le Gall, 1989). 
Mallat presented a multi-resolution representation for analyzing images. The decomposition 
was defined as an orthogonal multi-resolution representation called wavelet representation. 
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It was computed by a pyramidal algorithm which was based on convolutions with quadrate 
mirror filters. The analysis was applied to image compression, and texture discrimination 
(Mallat, 1989). 
 

 
Fig. 1. Mother wavelets and positioning, scale concepts. (a) Different wavelets Mexican Hat, 
Harr, Morlet and Daubechies. (b) Positioning of a wavelet trough time. (c) Scale of a 
wavelet.  

According with (Tim, 1991) the discrete wavelet transform is an orthogonal function which 
can be applied to an infinite group of data. Functionally, it is like the discrete Fourier 
Transform, which is based on a orthogonal function to apply the transformation. A signal 
passed twice through the transformation which is unchanged, and the input signal is 
assumed to be a set of discrete-time samples. Both transforms are convolutions. 
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Whereas the transform function of DFT is a sinusoid. The wavelet basis is a set of functions 
which are defined by a recursive function. 
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Eq. (3) is orthogonal to its translations and to its dilations; the range of the summation is 
determined by the specified number of nonzero coefficients N. The number of nonzero 
coefficients is arbitrary, and will be referred to as the order of the wavelet. The value of the 
coefficients is, not arbitrary and it is determined by specific constraints of normalization and 
orthogonality. These parameters are; area under the wavelet curve, normalization. 
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Which means the above sum is zero for all coefficients no equal to zero, and the sum squares 
of all coefficients is two. Another important equation which can be derivated from the above 
conditions is: 
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One way to solve eq. (3) is to construct a matrix of coefficients values. This is a square NxN 
matriz where N is the number of nonzero coefficients. The matrix always has the eigenvalue 
equal to 1, and its corresponding (normalized) eigenvector contains, as its components, the 
value of the φ function at integer values of x. 
This class of wavelet functions is constrained, by definition, to be zero outside of a small 
interval. This is what makes the wavelet transform able to operate on a finite set of 
data.(Addison, 2002) The wavelet functions which are normally used to perform transforms 
consist of sets of a well-chosen coefficients resulting in a function with a discernible shape. 
Two of these functions are Harr and Daubechies wavelets see figure 1(a). 

2.2 Discrete Wavelet Transform DWT algorithm 
The Mallat algorithm also know as pyramid algorithm (Mallat, 1989) is a computational 
efficient method of implementing the wavelet transform, and is used as a basis for hardware 
implementations (Motra et al., 2004; Zhang and Hu, 2004; Zhilu et al., 2002). 
The pyramid algorithm operates on a finite set of input data, where N is not necessary to be 
a power of two as we will explain in section 2.2.1. The value of the number of input points 
will be named as the input block size. The data are passed trough two convolutions functions; 
each creates an output stream that is half the length of the original input. These convolutions 
functions are filters; one half of the output is produced by the low-pass filter function eq.(7). 
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And the other half is produced by the high-pass filter function eq. (8). 
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Where N is the input block size, h0or1 is the wavelet function with well-chosen coefficients 
(filters) x(n) is the input function and ylow-pass, yhigh-pass are respectively the low-pass and the 
high-pass outputs. In many situations, the low-pass output contains most of the information 
content of the original input signal. In general, higher-order wavelets (those with more non-
zero coefficients) tend to put more information into the low-pass output and less into the 
high-pass output. If the average amplitude of the high output is low enough, then the high 
output may be discarded without greatly affecting the quality of the reconstructed signal. 
The high output is named also as detail output and the low output is know as 
approximation output, with this is logical to work with the approximation of the signal than 
with the details of the signal (Addison, 2002; Tim, 1991). A scheme of this decomposition is 
presented in figure 2. 
 

 
Fig. 2. Decomposition of a signal by the pass of the signal trough two filters. 

Since most of information is in the low- pass output, it is easy imaging to continue 
transforming we have to rename the output as input and pass it trough h0 and h1, again to 
get two new sets of data, each one quarter of the size of the original block size, if again less 
information is contained in output filter, we can discarded and take just low-pass output. 
Each step of retransforming the low-pass output is called dilation (Tim, 1991), and the 
maximum of dilations can be performed will result in a single low-pass value and a single 
high-pass value. 
The algorithm developed allows the implementation of a DWT and it is described as 
follows: we suppose that have an input sequence of 10 samples of size, with the values of 
low-pass coefficients we compute the eq (7). The calculation for the first value of the low-
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Whereas the transform function of DFT is a sinusoid. The wavelet basis is a set of functions 
which are defined by a recursive function. 
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pass output in a first level is carried out by the matching the coefficients in the initial input 
sequence sample, after the low-pass coefficients are positioned two index positions and 
matching again with the input sequence, applying the eq. (7) again we will have the second 
value of the low-pass output for the first level. We repeat this until match the last sample of 
the input sequence with the first coefficient of the low-pass filter. At the end we will have a 
half input signal expressed by low-pass output, we need to do the same with high-pass 
coefficients to get the high-pass output. As we have described before, we can keep just the 
low-pass signal which has the most representative information of the total signal. For more 
decomposition levels we have to rename the low-pass output as input signal and repeat the 
complete algorithm. A scheme of this algorithm is presented in figure 3. It is important 
notice that before matching the coefficients and the input signal we have to add some values 
(number of coefficients -1) at the beginning and at the end of the sequence to avoid the 
bound effects. 
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Fig. 3. Low-pass coefficients passing through an input data for a first dilation (first 
decomposition level) (Addison, 2002). 

We can establish that successive dilations represent lower and lower frequency information 
by halves. It also clears that high rates of compression may require large block sizes of the 
input, so that more dilations can  be made, and so that lower frequencies can be represented 
in the decomposition. 
It must be notice that in some applications a pre compression level test can be done to 
establish the best rate of compression-reconstructions level for a specific application 
(Moreno-Baron et al., 2006). 

Implementation of the Discrete Wavelet Transform  
Used in the Calibration of the Enzymatic Biosensors 

 

143 

2.2.1 Boundary effects 
The boundary effect is present when DWT is applying to a set of discrete data, and takes 
place when the wavelet function is positioning at the beginning and/or end of the stream 
data. When the convolution is in process with the first sample of the input data and no 
samples have been defined to avoid boundary effects, the result of the convolution are 
unpredictable due to the operation can be performed with data which are not in memory 
space giving as a result either an over load of memory or the modification of the output 
signal. In this sense, if there is more than one decomposition level, the reconstruction will be 
inaccuracy. 
There are many ways to avoid the boundary effects, these approximations include: (a) make 
the convolution equal to zero at the beginning and the end of the transformation, this solves 
the problem of the load memory errors but makes an inaccuracy transform. (b) another way 
to avoid the boundary effect is adding to the input data N-1 samples, where N is the number 
of coefficients of wavelet function, with non zero values. The main disadvantage is in the 
implementation of DWT the value of these non zeros coefficients must be calculated a priori 
according with the noise of the signals. This technique is no able for signals with different 
noise rates. (c) the most usual technique to avoid the boundary effect is by the reflection of 
the last samples of the input data, due to the added samples are from the same signal the 
accuracy of the reconstruction signal is not compromised. The reflection scheme can be seen 
in figure4. 
 

 
Fig. 4. Reflection of a signal to avoid the boundary effect. 

2.3 Implementing the wavelet transform in a digital system 
The implementation of digital wavelet transform involves some tasks which must be carried 
out before implementation. (1) Identify if the application needs; filtering, decomposition 
and/or reconstruction due to some applications do not need all the previous features of a 
wavelet transform, more features applied involve more hardware resources, memory, 
speed, large number of variable etc. (2) set the decomposition level needed to satisfied pre-
treatment conditions, this can be done by a previous test of decomposition-reconstruction 
analysis. (3) Chose the type and number of filter coefficients. This can be done by the 
simplicity of implementation and/or by the order of filtering. 
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As we describe previously, in many chemical applications the signals from biosensors have 
high frequency noise, and imply a large number of samples, for this, we can use the wavelet 
transform to denoise and compress biosensor signals. 
The design of the implementation of the Discrete Wavelet Transform (DWT) can be carried 
out as follows. 
1. Compute and simulate the filter coefficients, one option can be Matlab® from 

Mathworks® software which includes toolbox with the most known wavelets and some 
practical algorithms to compute them. To denoise and compress, it is necessary 
calculate the coefficients for low-pass filter, the number of coefficients is correlated with 
the value of noise, this value should be measured before by an analysis of rate signal-
noise. The level of the decomposition should be set by the previous compress-
reconstruction analysis. 

2. Confirms the function of the filter and level of decomposition with one real signal by 
simulation software. 

3. Chose the language programming to write the code of DWT that can be after 
implemented in a programmable device, one of the best options is C code which can 
work with the IEEE754 format and it is supported by several dedicated devices. 

4. Define fixed memory for the constants values of wavelet coefficients, level of 
decomposition and reserve data memory for two arrays, the first one has the same size 
of input data plus 2*length filter coefficients, second one has half size of input data plus 
2*length filter coefficients (temporal array). 

5. Develop a normalization function due the some application are based on concentrations 
of compounds which means the value of the data are represented in scientific format, 
for computation tasks is recommended rescale values from 0 to 1 see eq. (8). 

 N= (Data-minimum)/(maximum-minimum) (8) 

6. Reflect the input sequence at the beginning and at the end of the input array. 
7. Compute the convolution based on figure 3 and storage the result in the temporal array. 
8. Rename the temporal array as input data and the input data as temporal array. 
9. Repeat step 6 and compute the convolution again and storage the result in the temporal 

array. 
10. Repeat steps 6,7,8, 9 until reach the level of compression set. 

2.3.1 DsPIC30F6014 microcontroller 
The dsPIC® microcontrollers are 16-bit Digital Signal Controllers (DSC) from Microchip®. 
They preserve the compatibility from classical PIC microcontrollers. They have some special 
characteristics such as 144 Kbytes of program memory; a large size of memory which makes 
possible implemented mathematical tools. The dsPICs can execute more than 30 millions 
instruction per second (30 MIPS) one of the fastest microcontroller from Microchip®. dsPICs 
have an optimized C compiler and 8-K of random access memory (RAM) and 4-K of  read 
only memory (ROM). 

3. Denoising and compression of biosensor based on screen-printed 
electrodes response using DWT  
During years, the large interest in inhibition biosensors has been focused on the kind of 
responses and the quantitative relationships obtained using immobilized enzyme. A variety 
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of linear, non-linear, logarithmic responds between inhibition percentage and either 
inhibition concentration or incubation time were reported (Evtugyn et al., 1999; Fennouh et 
al., 1997; Hart et al., 1997).  Concerning biosensors based on acetylcholinesterase inhibition, 
a theoretical model was reported based on diffusion limited inhibitor transport, taking into 
account the heterogeneous nature of enzyme inhibition that results from immobilization at 
the transducer surface (Zhang et al., 2001) : 

3.1 Biosensor preparation 
The biosensor was constructed as follows: Screen-printed three-electrode system with 
Cobalt-phthalocyanine-modified carbon as working electrode, graphite as counter electrode 
and Ag/AgCl as a reference electrode were fabricated using a DEK248 screen-printing 
system (Weymounth, UK). The biosensor based on the genetically-modified enzyme (B394) 
was mixed with polymer polyvinyl alcohol (PVA) in a rate of percentage of 30/70 (v/v). The 
enzyme was immobilized directly on the working electrode surface by entrapment in PVA-
AWP polymer. For this purpose, the homogeneous mixture of B394, and PVA-AWP 
polymer was prepared and 3µL were carefully applied on the graphite working electrode 
surface. The final enzyme amount deposited on each electrode was 1mIU. The electrodes 
were exposed 5 h under a neon lamp (15 W) at 4°C to carry out photopolymerization and 
were ready to use after drying for 48 h (Andreescu and Marty, 2006b; Andreescu et al., 2002; 
Cortina et al., 2008; Silva Nunes et al., 2004; Valdés-Ramírez et al., 2009). 

3.2 Procedures 
The mechanism of inhibition of AChE by organophosphate compounds is well known, it 
can be summarized by the following reactions (Charpentier et al., 2000): 
 

kd   k2 
E + PX ↔  E*PX  → EP + X 

 
with E = Enzyme, PX = Organophosphate insecticide, X = Leaving group.  
The inhibitor phosphorylates the active-site, and the inhibition can be considered as 
irreversible in the first 30 min. This scheme can be simplified with the bimolecular rate 
constant ki = k2/Kd. However, the immobilization of the enzyme on the electrode surface 
does not allow the calculation by direct equations of all the constant rates involved in an 
enzyme-catalyzed reaction (Walsh et al., 2010).  
The reactions that take place in an acetylcholinesterase-based sensor are described in scheme 
1 (Silva Nunes et al., 2004).  

                                                                   AChE 

Acetytiocholine   → Thiocholine + CH3COOH 

Thiocholine + 2Co-PC(ox) → Thiocholine-oxidized form + 2Co-PC(red) 

Co-PC(red) → Co-PC(ox) +2e- 

The flow of electrons is proportional to the rate of acetylthiocholine hydrolysis, which 
decreases upon phosphorylation by OP of a serine present in the enzyme active site. As can 
be noticed in the previous scheme, the mediator Co-PC transforms the ionic current into 
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The inhibitor phosphorylates the active-site, and the inhibition can be considered as 
irreversible in the first 30 min. This scheme can be simplified with the bimolecular rate 
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                                                                   AChE 

Acetytiocholine   → Thiocholine + CH3COOH 

Thiocholine + 2Co-PC(ox) → Thiocholine-oxidized form + 2Co-PC(red) 

Co-PC(red) → Co-PC(ox) +2e- 

The flow of electrons is proportional to the rate of acetylthiocholine hydrolysis, which 
decreases upon phosphorylation by OP of a serine present in the enzyme active site. As can 
be noticed in the previous scheme, the mediator Co-PC transforms the ionic current into 



 
Discrete Wavelet Transforms - Biomedical Applications 

 

146 

flow of electrons, the main advantage of Co-PC allows the oxidation-reduction using low 
voltages, (100mV) and giving a more stable and higher signal compared with other 
mediators (Shaidarova et al., 2004). The use of Cobalt-phthalocyanine involves higher 
current signals but also high levels of noise. 
Inhibition protocol is described as follows: the biosensor is vertically inserted into an 
analytical cell containing phosphate buffer (10mL) under constant magnetic stirring at 
constant temperature (30°C). ATChCl solution (final concentration in the cell 1 mM) is 
added in the cell and the signal obtained at steady-state current was recorded. This step is 
repeated to ensure the stability of the biosensor. Inhibition is measured after addition at the 
steady-state step a known concentration of pesticide solution, as described in fig. 5. 
 

 
Fig. 5. Protocol of measurement of enzyme inhibition, typical response 

From figure 5 we can see that to detect the pesticide, the part of the signal which has the 
analytical information is the signal generated by the addition of pesticide (the slope) to 
analyze y(t) we have to wait until the previous process (addition of substrate and steady-
state) are completed. When the concentration of pesticides is very low, the time need to 
reach a slope can take several minutes, and to approximate the slope data to the model eq. 
(10) due to the noise and size of the signal sometime is not an easy tasks 

 y(t)= - mit+b (10) 

The analog signal is acquired by the Analog/Digital converter peripheral of the 
dsPIC30F6014 microcontroller which computes the DWT and sends the digital data to a PC 
by RS232 interface to storage the inhibition curves. The protocol of the acquisition is shown 
in figure 6(a). 
The DWT was implemented by Daubechies (Db) coefficients which were used such as banks 
of filters. Daubechies filters are recommended for discrete applications (Addison, 2002; Tim, 
1991). The calculus of the Db coefficients and the level of decomposition were computed a 
priori in Matlab®. 
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Fig. 6. Protocol of (a) Acquisition signals and (b) Computation of the DWT by 
dsPIC30F6014®.  

4. Obtained results 
The recorded signals correspond to inhibitions carried out as follows: the activity of 
biosensors is tested two times to prove the stability, after,  when the activity has reached the 
plateau for second time, a known concentration of pesticide is added into the electrochemical 
cell (batch) and a decreasing of activity  is observed(slope due to inhibition). The slope of 
inhibition is correlated with the concentration of pesticide. This process was repeated three 
times to ensure the reproducibility of the measurement. Three pesticides were used, 
Chlorpyruphos oxon (CPO), Chlorfenvinphos (CFV) and Azynphos methyl-oxon (AZMO) 
which are in the list of  priority substances in the field of water policy of European 
community (Decision, 2001). 
A total of 105 voltamograms (with 800 samples each one) were digitalized sequentially (with 
acquisition rate of 1Hz), sending to PC via rs232 interface and storaged in the dsPIC 
memory (see Figure 7). The input vector was reflected in both sides to avoid the boundary 
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effects, then, the vector was filtered by the Db filter, this was the first decomposition level, 
and the low-pass output was named as input vector for the next decomposition level. The 
algorithm repeats the above mentioned process until gets the decomposition level after the 
compressed signal is also sent it to a PC via rs232-interface.  
 

 
Fig. 7. The matrix of the voltammograms captured by the ADC of dsPIC30F6014. 

A priori test was made to optimize the level of the composition and the order of wavelet 
used in the implementation, the test consisted in the use of different orders of Daubechies 
and different levels of compression to determine the ratio of similarity of the signal 
constructed from low-pass outputs. The Daubechies 4 and a 4th level (see figure 8) of 
compression were used to fixed parameters in the hardware implementation. 
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Fig. 8. Ratios of reconstructed signals using different orders of Daubechies wavelets and 
different levels of decompositions.  
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Daubechies coefficients were computed in Matlab® and saved in the dsPIC mamory as 
constant vector. The values of Daubichies coefficients are shown in table 1. 
 

index 
k 

Daubechies 
coefficients 

0 0.32580343 
1 1.010954572 
2 0.89220014 
3 -0.03957503 
4 -0.26450717 
5 0.0436163 
6 0.0465036 
7 -0.01498699 

Table 1. Coefficients Daubechies used as filter low-pass. 

The time needed to compute the DWT by the dsPIC6014 was 68.87ms. The total time is the 
time to acquire a complete signal (1 sample/second) plus the time to perform the DWT. 
 

 
Fig. 9. The matrix of the voltammograms compressed by the dsPIC30F6010. 

The analysis of the slopes was made in Matlab® by the function polyfit to determine the 
slope and interception point eq (10). 
The values of the slopes (mi) were correlated with the concentration of three different 
pesticides to determine the inhibition calibration curve for CPO, CFV and AZMO 
insecticides. 
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Fig. 10. Single Detections of CPO, CFV and AZMO insecticides by the Biosensor B394. 

The response of the biosensor toward each pesticide was different as it is dependent on the 
sensitivity of the enzyme to the inhibitor. The limit of detection (LOD) was defined 
according to (Armbruster et al., 1994): considering the standard deviation of the slope σ 
observed in absence of inhibitor, the LOD corresponds to the lowest pesticide concentration 
inducing a slope increase equivalent to 3σ. In the same manner, the limit of quantification 
(LOQ) was defined as the pesticide concentration inducing a response equal to 10σ. In this 
case, the response considered for calculating the LOD was 3x10-4 nA/sec. The values of 
LOD and LOQ obtained for the used bio-sensor are summarized in table 2. 
 

B394 

Pesticide Correlation 
coefficient 

LOD (M) LOQ (M) 

CPO 0.9722 1.664x10-10 1.9256x10-10 

CFV 0.9765 6.81x10-10 8.02x10-10 

AZMO 0.9281 3.3464x10-10 3.7749x10-10 

Table 2. Limit of detection and limit of quantification for CPO, CFV and AZMO using the 
three different biosensors.  

5. Conclusions 
In this wok a novel processing tool based on DWT is presented. DWT was implemented in a 
low-cost dedicated system able to analyse voltammeric signals.. The main advantages of this 
implementation are related to the simplicity that can be modified characteristics such as the 
compaction level and the choice of wavelet coefficients for specific applications. The 
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algorithm described in this work, can be implemented in any digital system with out 
disadvantages of fixing the size of input data to power of two, the resolution of the data was 
solved by the supporting of the dsPIC® programming language which supports IEEE754 
format. 
A complete case study of signal treatment in electrochemical analysis has been shown in 
detail. Based on its results, it is possible to observe that the implementation of DWT was 
achieved successfully employing as a pre-treatment tool to denoise and compress 
voltamograms. The use of genetically modified enzyme allow to achieve  low detections 
limits and performing inhibitions in short time without incubation stage. In this sense, the 
proposed methodology is well suited for in-situ applications. 
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1. Introduction

Conventional endoscopic exams do not allow the entire visualization of the gastrointestinal
(GI) tract. Push enteroscopy (PE) is an effective diagnostic and therapeutic procedure,
although it only allows exploration of the proximal small bowel (Pennazio et al., 1995).
Simultaneously, convetional colonoscopy is limited at the terminal ileum. Therefore, prior to
the wireless capsule endoscopy era, the small intestine was the conventional endoscopy’s last
frontier, because it could not be internally visualized directly or in it’s entirely by any method
(Herrerías & Mascarenhas-Saraiva, 2007). The small intestine accounts for 75% of the total
length and 90% of the surface area of the gastrointestinal tract. In adults it measures about 570
cm at post mortem, which is substantially longer than conventional video endoscopes (100-180
cm) (Swain & Fritscher-Ravens, 2004). Intraoperative enteroscopy is the most complete but
also the most invasive means of examining the small bowel (Gay et al., 1998).
Given the technical and medical improvements introduced on the assessment of the
gastrointestinal (GI) tract, Capsule Endoscopy (CE) is considered as the first major
technological innovation in GI diagnostic medicine since the flexible endoscope (Kaffes, 2009).
More recently, a new technique, the double-balloon enteroscopy (DBE), has been introduced
into clinical practice (Yamamoto & Kita, 2006). DBE has the potential to examine the entire
length of the small bowel with biopsy and therapeutic capability. Nevertheless, it is a time
consuming procedure that requires specialist training for the operating physician. We should
note that DBE and CE are complementary tools and not competitive (Chen et al., 2007). Hence,
the diagnostic ease of CE can be complemented with a targeted and often therapeutic DBE
(Kaffes, 2009). Therefore, CE can be used as a first line diagnosis method, while DBE can be
used as a confirmatory or therapeutic modality for lesions first visualized by CE (Pennazio,
2006).
The endoscopic capsule is a pill-like device, with only 11mm x 26 mm, and includes a
miniaturized camera, a light source and circuits for the acquisition and wireless transmission
of signals (Iddan et al., 2000). As the capsule moves through GI tract, propelled exclusively by
peristalsis, it acquires images at a rate of two per second and sends them to a hard disk receiver
that is worn in the belt of the patient, in a wireless communication scheme. The acquisition
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of images is limited by the battery life of the device, usually around eight hours, which imply
that in a single CE exam more than 50000 images are acquired. If no complications arise, the
capsule should be in the patient’s stool, usually within 24-48 h, and not reused (Pennazio,
2006). Capsule endoscopy has evolved in a few short years to become a first-line, noninvasive
diagnostic technique for the small bowel. CE is now being utilized worldwide to assess
patients for obscure gastrointestinal bleeding, possible Crohn’s disease, celiac disease and
small bowel tumors (Lee & Eisen, 2010). It is now available in over 4500 practice sites around
the world (Munoz-Navas, 2009).
The time required to a physician to analyze the resulting video is, on average, 40-60
min (Pennazio, 2006). The reading time and interpretation of CE exams is very time
consuming given that more than 50,000 images have to be reviewed (Delvaux & Gay, 2006;
Mergener et al., 2007), which contributes to the high cost of a CE exam (Westerhof et al.,
2009). Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams
faster and more accurately is an important technical challenge and an excellent economical
opportunity.
After the introduction of CE, it was discovered that the prevalence and malignancy rates
for small bowel tumors are much higher than previously reported and that the early
use of CE can lead to earlier diagnoses, reduced costs and, hopefully, prevent cancer
(Herrerías & Mascarenhas-Saraiva, 2007).
The application of texture analysis techniques to classify capsule endoscopic frames is feasible
and presents promising results. Kodogiannis et al. proposed two different schemes to extract
features from texture spectra in the chromatic and achromatic domains (Kodogiannis et al.,
2007). The first is a structural approach based in the theory of formal languages, while the
second is a statistical approach, where statistical texture descriptors are calculated from the
histograms of the RGB and HSV color spaces of CE video frames. Recently, Mackiewicz
et al. proposed an automatic capsule endoscopy segmentation algorithm based in color
and texture features to determine the topological division of capsule endoscopic videos
(Mackiewicz et al., 2008). Several other CE image processing methodologies were reviewed
recently by Karargyris and Bourbakis (Karargyris & Bourbakis, 2010).
In the present chapter, several multiscale texture descriptors are extracted from both wavelet
and curvelet domains and their classification performance is assessed. In section 2, we present
a brief introduction to multiscale image representation, namely through Discrete Wavelet
Transform and Discrete Curvelet Transform. In section 3, the algorithm used to extract
the multiscale texture descriptors is described, as well as modelling techniques that allow
to extract statistical dependence of textural descriptors taken in different color channels.
In section 4, the implementation details of the method are discussed. In section 5, the
performance of the proposed methods is assessed and discussed. Section 6 resumes the key
findings and presents future research orientation.

2. Multiscale representation of image information

It is known for a long time that human perception of texture is based in a multi-scale
analysis of patterns, which can be modeled by multi-resolution approaches. In fact, the
multi-resolution ability of the Discrete Wavelet Transform (DWT) has been vastly explored
in several fields of image processing such as compression, denoising and classification.
However, the directional information of the DWT is limited, which might not be enough to
capture all the complex texture patterns within an image.
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Introduced in 2000, the Continuous Curvelet Transform (CCT) is based in an anisotropic
notion of scale and high directional sensitivity in multiple directions (Candès & Donoho,
2000). While wavelets are certainly suitable for dealing with objects where the interesting
phenomena, e.g., singularities, are associated with exceptional points, they are ill-suited for
detecting, organizing, or providing a compact representation of intermediate dimensional
structures. Given the significance of such intermediate dimensional phenomena, there has
been a vigorous effort to provide better adapted alternatives by combining ideas from
geometry with ideas from traditional multi-scale analysis (Candès et al., 2006). Therefore,
this tool can be used as a multi-resolution and multi-directional representation of the
information within an image. The Discrete Curvelet Transform (DCT) coefficients are accurate
representations of the original image with different detail, given by the different frequency
content in each scale, but also with different detail in multiple directions, overcoming the
directional limitations of the Discrete Wavelet Transform. This might be well suited for the
analysis of complex spatio-frequency patterns as texture.

2.1 Wavelet Transform
The scientific breaktrough achieved with the introduction of the Wavelet Transform has
inequivocally changed the research direction on the biomedical signal/image processing.
Indeed, since the seminal works of Daubechies (Daubechies, 1988) and Mallat (Mallat, 1989),
more than 9000 papers and 200 books were published between the late eighties and 2003,
with a significant part being focused in biomedical applications (Unser et al., 2003). While not
being exhaustive, and in order to provide to the interested reader an idea of some applications
of wavelets in medical imaging, the DWT has been applied in several problems such as:

• Image denoising

• Compression of medical images

• Feature extraction and image classification

• Tomographic reconstruction

• Image Enhancement

Since the main goal of this section is to provide to the reader the key concepts regarding
the DWT, the mathematical details will be kept to a minimum. The Continuous Wavelet
Transform (CWT) is a signal representation in a scale-time space, and the CWT coefficients
of a time-varying signal x(t) are given through:

XΨ(τ, s) =
∫ +∞

−∞
x(t)Ψ∗

(
t − τ

s

)
dt (1)

where Ψ is the mother wavelet function and ∗ stands for the complex conjugate.
Analogously, signal can be recovered from its wavelet coefficients through the Inverse
Continuous Wavelet Transform (ICWT):

x(t) =
∫ +∞

−∞

∫ +∞

−∞
XΨ(τ, s)Ψ

(
t − τ

s

)
dτds (2)

By varying both the scale and the translation shift parameters, s and τ respectively, we can
obtain a family of daughter wavelets from the mother wavelet function Ψ:

Ψs,τ(t) =
1√

s
Ψ
(

t − τ

s

)
, (3)
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for small bowel tumors are much higher than previously reported and that the early
use of CE can lead to earlier diagnoses, reduced costs and, hopefully, prevent cancer
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The application of texture analysis techniques to classify capsule endoscopic frames is feasible
and presents promising results. Kodogiannis et al. proposed two different schemes to extract
features from texture spectra in the chromatic and achromatic domains (Kodogiannis et al.,
2007). The first is a structural approach based in the theory of formal languages, while the
second is a statistical approach, where statistical texture descriptors are calculated from the
histograms of the RGB and HSV color spaces of CE video frames. Recently, Mackiewicz
et al. proposed an automatic capsule endoscopy segmentation algorithm based in color
and texture features to determine the topological division of capsule endoscopic videos
(Mackiewicz et al., 2008). Several other CE image processing methodologies were reviewed
recently by Karargyris and Bourbakis (Karargyris & Bourbakis, 2010).
In the present chapter, several multiscale texture descriptors are extracted from both wavelet
and curvelet domains and their classification performance is assessed. In section 2, we present
a brief introduction to multiscale image representation, namely through Discrete Wavelet
Transform and Discrete Curvelet Transform. In section 3, the algorithm used to extract
the multiscale texture descriptors is described, as well as modelling techniques that allow
to extract statistical dependence of textural descriptors taken in different color channels.
In section 4, the implementation details of the method are discussed. In section 5, the
performance of the proposed methods is assessed and discussed. Section 6 resumes the key
findings and presents future research orientation.

2. Multiscale representation of image information

It is known for a long time that human perception of texture is based in a multi-scale
analysis of patterns, which can be modeled by multi-resolution approaches. In fact, the
multi-resolution ability of the Discrete Wavelet Transform (DWT) has been vastly explored
in several fields of image processing such as compression, denoising and classification.
However, the directional information of the DWT is limited, which might not be enough to
capture all the complex texture patterns within an image.

156 Discrete Wavelet Transforms - Biomedical Applications Multiscale Texture Descriptors for Automatic Small Bowel Tumors Detection in Capsule Endoscopy 3

Introduced in 2000, the Continuous Curvelet Transform (CCT) is based in an anisotropic
notion of scale and high directional sensitivity in multiple directions (Candès & Donoho,
2000). While wavelets are certainly suitable for dealing with objects where the interesting
phenomena, e.g., singularities, are associated with exceptional points, they are ill-suited for
detecting, organizing, or providing a compact representation of intermediate dimensional
structures. Given the significance of such intermediate dimensional phenomena, there has
been a vigorous effort to provide better adapted alternatives by combining ideas from
geometry with ideas from traditional multi-scale analysis (Candès et al., 2006). Therefore,
this tool can be used as a multi-resolution and multi-directional representation of the
information within an image. The Discrete Curvelet Transform (DCT) coefficients are accurate
representations of the original image with different detail, given by the different frequency
content in each scale, but also with different detail in multiple directions, overcoming the
directional limitations of the Discrete Wavelet Transform. This might be well suited for the
analysis of complex spatio-frequency patterns as texture.

2.1 Wavelet Transform
The scientific breaktrough achieved with the introduction of the Wavelet Transform has
inequivocally changed the research direction on the biomedical signal/image processing.
Indeed, since the seminal works of Daubechies (Daubechies, 1988) and Mallat (Mallat, 1989),
more than 9000 papers and 200 books were published between the late eighties and 2003,
with a significant part being focused in biomedical applications (Unser et al., 2003). While not
being exhaustive, and in order to provide to the interested reader an idea of some applications
of wavelets in medical imaging, the DWT has been applied in several problems such as:

• Image denoising

• Compression of medical images

• Feature extraction and image classification

• Tomographic reconstruction

• Image Enhancement

Since the main goal of this section is to provide to the reader the key concepts regarding
the DWT, the mathematical details will be kept to a minimum. The Continuous Wavelet
Transform (CWT) is a signal representation in a scale-time space, and the CWT coefficients
of a time-varying signal x(t) are given through:

XΨ(τ, s) =
∫ +∞

−∞
x(t)Ψ∗

(
t − τ

s

)
dt (1)

where Ψ is the mother wavelet function and ∗ stands for the complex conjugate.
Analogously, signal can be recovered from its wavelet coefficients through the Inverse
Continuous Wavelet Transform (ICWT):

x(t) =
∫ +∞

−∞

∫ +∞

−∞
XΨ(τ, s)Ψ

(
t − τ

s

)
dτds (2)

By varying both the scale and the translation shift parameters, s and τ respectively, we can
obtain a family of daughter wavelets from the mother wavelet function Ψ:

Ψs,τ(t) =
1√

s
Ψ
(

t − τ

s

)
, (3)

157
Multiscale Texture Descriptors 
for Automatic Small Bowel Tumors Detection in Capsule Endoscopy



4 Will-be-set-by-IN-TECH

Thus, for a fixed value of the scale parameter s, the CWT, which is now a function of the
continuous shift parameter τ, can be written as a convolution equation where the filter
corresponds to a rescaled and time-reversed version of the wavelet as shown by equation
(1) setting t=0. Combining the variation of the scale parameter s and the time shift parameter
τ, the CWT provides a complete scale-time representation of a signal. Furthermore, a given
CWT coefficient can be simply seen as the inner product:

XΨ(τ, s) = �x(t), Ψs,τ�. (4)

Each �x(t), Ψs,τ� can be seen as a quantom of information that is represented as a rectangle
in the time-frequency plane. However, it can be shown through the uncertainty principle
theorem that this rectangle has a minimum surface that limits the joint time-frequency
resolution. The ultimate consequence of this limit is the trade-off between temporal and
frequency resolution. Thus, an increase in the frequency resolution would lead to a decrease
in the temporal resolution. In limit, we could perfectly identify the frequency content of the
signal and simultaneously lose all the localization details of these frequency components,
as in the case of the typical Fourier transform. However, and given the relevance of the
temporal localization of abnormal frequency content phenomena, there is the need of a better
use of the joint time-frequency resolution. A possible solution could be the use of Short Time
Fourier Transform (STFT). However, the constant window size implies a uniform tilling of the
time-frequency plane. The wavelet can tackle this problem very elegantly, as will be shown
ahead.
As can be easily understood, by varying both the scale s and the time shift τ parameters,
the CWT representation of the signal x(t) is highly redundant. Indeed, the CWT maps
the information within a one-dimensional signal to a two-dimensional time-scale joint
representation. This implies a heavy computational burden which reduces its application
potential to daily life problems. Nonetheless, this problem can be tackled by limiting the
continuous scalability and translatability of the daughter wavelets Ψs,τ. Using such scheme,
the mother wavelet function Ψ generates a smaller family of daughter wavelets:

Ψj,k(t) =
1√
sj

0

Ψ

(
t − kτ0sj

0

sj
0

)
(5)

where j and k are integers and s0>1 a fixed dilation step. The discretization of the time-scale
plane is usually achieved using a dyadic sampling, where s0=2 and τ0=1.
A wavelet atom Ψj,k(t) is localized around the point 2jk and has a support size proportional
to the scale 2j. Using this approach, the scale index j corresponds to the level of focus from the
which the signal is viewed, which is related to the frequency range involved. Indeed, a lower
j corresponds to the high frequency contents, which can be easily deducted from the support
size.
In the time-frequency plane, the Heisenberg resolution box of Ψj,k(t) is a dilation by 2j

and translation by 2jk of the Heisenberg box of Ψ. This leads to a perfect tiling of the
time-frequency plane illustrated in Fig. 1. The height and width of the Heisenberg boxes
in the time-frequency plane represents the resolution on the frequency and time domains
respectively. Note that there is an intrinsic trade-off between good temporal localization of
high frequency content and good frequency resolution of low frequency content in the signal,
as in opposition to the homogeneous time-frequency resolution of the STFT. This is the central
advantage of the Wavelet Transform when compared to the Short Time Fourier Transform.
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Fig. 1. Inhomogeneous dyadic tilling of the time-frequency plane with wavelet atoms.

From the previous figure, another property of the wavelet atoms Ψj,k(t) becomes evident:
their frequency spectrum has a band-pass nature. Indeed, from Fourier theory, we know that
the dilatation operation in the time domain corresponds to a compression in the frequency
domain and a shift towards the zero frequency. However, this would imply that an infinite
number of scales would be needed to cover the entire frequency spectrum, as can be seen
in Fig. 2. Since this would not be a plausible solution, Mallat (Mallat, 1989) introduced the
scalling function to cover the spectrum not spanned by the wavelet atoms. Indeed, when
analyzing a signal using a combination of a scalling function and wavelets, the scalling
function will represent the signal information in the spectrum covered by all the wavelet
atoms up to a scale j, while the remaining spectrum is analyzed by wavelets. This can be
observed in Fig. 3.
When regarding the schematic representation of the Wavelet Transform in Fig. 3, one can
easily observe that the tilling of the spectrum with scaling and wavelet functions is similar to
consecutive low-pass and band-pass filter operations. Due to its low-pass nature, the scalling
function will allow to extract coefficients that express an approximate version of the signal
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where j and k are integers and s0>1 a fixed dilation step. The discretization of the time-scale
plane is usually achieved using a dyadic sampling, where s0=2 and τ0=1.
A wavelet atom Ψj,k(t) is localized around the point 2jk and has a support size proportional
to the scale 2j. Using this approach, the scale index j corresponds to the level of focus from the
which the signal is viewed, which is related to the frequency range involved. Indeed, a lower
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size.
In the time-frequency plane, the Heisenberg resolution box of Ψj,k(t) is a dilation by 2j

and translation by 2jk of the Heisenberg box of Ψ. This leads to a perfect tiling of the
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Fig. 1. Inhomogeneous dyadic tilling of the time-frequency plane with wavelet atoms.
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Fig. 2. Wavelet atoms spectrum resulting from dyadic scaling of the mother wavelet Ψ.

Fig. 3. Scaling function (φ) and wavelet atoms (Ψ) spectra. Note how the scaling function (φj)
covers the spectral region spanned by the wavelet atoms until j + 1.

content, whereas the wavelet coefficients correspond to detail information at different levels
of focus. Although this concept, commonly designated as subband coding, is not unique from
the Wavelet Transform, it greatly helps its practical implementation.

2.1.1 Discrete Wavelet Transform
In several practical problems, the signal under analysis is of discrete nature. Thus, there is
the need to discretize the Wavelet Transform in order to use it in sampled discrete signals.
This can be efficiently done using recursive filtering in iterated filter-bank as show in Fig. 4.
Indeed, it can be shown that both scaling and wavelet coeficcients at a given scale can be
calculated from the coefficients at the previous scale using appropriate filters. Furthermore,
half of the samples after applying the filter can be eliminated according to the Nyquist’s rule,
since the signal now has only half of the bandwith.
There is an important relationship between these low and high-pass used recursively in the
iterated filter-bank. Indeed, these filters are not independent from each other and satisfy the
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Fig. 4. Iterated filter-bank for practical implementation of the Discrete Wavelet Transform.

condition of Quadrature Mirror Filters (QMF):

g[L − 1 − n] = (−1)n · h[n], (6)

where g[n] is the high-pass filter, h[n] is the low-pass filter and L is the filter lenght. The
consecutive filter and subsampling operation at each scale can be expressed by:

yapprox = ∑
n

x[k] · h[−n + 2k], (7)

ydetail = ∑
n

x[k] · g[−n + 2k], (8)

Note that, given the finite time resolution of sampled signals, there is an upper limit in the
scale at which the signal is analysed, which is of course dependent on the low-pass filter
length. However, it is common that the DWT analysis is not done until this limit, being
thus the output of the low-pass filtering corresponding to the scalling function coefficients.
However, and for sake of readability, we shall globally denominate the coefficients arising
from the application of these iterated filter-banks simply as DWT coefficients.
As for the continuous case, the original signal can be recovered from its DWT coefficients
applying Inverse Discrete Wavelet Transform (IDWT). In order to reconstruct the signal,
the iterated filter-banks has to be reversed. Thus, at each scale, the DWT coefficients are
upsampled, by simply introducing a zero between every two samples, and then filter the
signal with synthesis filters, closely related with the analysis filters used in the direct DWT.
However, and in order to achieve perfect reconstruction, the analysis and synthesis filters
must fulfill the following conditions (Daubechies & Sweldens, 1998):

h̃(z)h(z−1) + g̃(z)g(z−1) = 2, (9)

h̃(z)h(−z−1) + g̃(z)g(−z−1) = 0, (10)

where g and h are the analysis filters used in the direct DWT and h̃ and g̃ are the synthesis
filters used in the inverse DWT.

161
Multiscale Texture Descriptors 
for Automatic Small Bowel Tumors Detection in Capsule Endoscopy



6 Will-be-set-by-IN-TECH

Fig. 2. Wavelet atoms spectrum resulting from dyadic scaling of the mother wavelet Ψ.

Fig. 3. Scaling function (φ) and wavelet atoms (Ψ) spectra. Note how the scaling function (φj)
covers the spectral region spanned by the wavelet atoms until j + 1.

content, whereas the wavelet coefficients correspond to detail information at different levels
of focus. Although this concept, commonly designated as subband coding, is not unique from
the Wavelet Transform, it greatly helps its practical implementation.

2.1.1 Discrete Wavelet Transform
In several practical problems, the signal under analysis is of discrete nature. Thus, there is
the need to discretize the Wavelet Transform in order to use it in sampled discrete signals.
This can be efficiently done using recursive filtering in iterated filter-bank as show in Fig. 4.
Indeed, it can be shown that both scaling and wavelet coeficcients at a given scale can be
calculated from the coefficients at the previous scale using appropriate filters. Furthermore,
half of the samples after applying the filter can be eliminated according to the Nyquist’s rule,
since the signal now has only half of the bandwith.
There is an important relationship between these low and high-pass used recursively in the
iterated filter-bank. Indeed, these filters are not independent from each other and satisfy the

160 Discrete Wavelet Transforms - Biomedical Applications Multiscale Texture Descriptors for Automatic Small Bowel Tumors Detection in Capsule Endoscopy 7

Fig. 4. Iterated filter-bank for practical implementation of the Discrete Wavelet Transform.

condition of Quadrature Mirror Filters (QMF):

g[L − 1 − n] = (−1)n · h[n], (6)

where g[n] is the high-pass filter, h[n] is the low-pass filter and L is the filter lenght. The
consecutive filter and subsampling operation at each scale can be expressed by:

yapprox = ∑
n

x[k] · h[−n + 2k], (7)

ydetail = ∑
n

x[k] · g[−n + 2k], (8)

Note that, given the finite time resolution of sampled signals, there is an upper limit in the
scale at which the signal is analysed, which is of course dependent on the low-pass filter
length. However, it is common that the DWT analysis is not done until this limit, being
thus the output of the low-pass filtering corresponding to the scalling function coefficients.
However, and for sake of readability, we shall globally denominate the coefficients arising
from the application of these iterated filter-banks simply as DWT coefficients.
As for the continuous case, the original signal can be recovered from its DWT coefficients
applying Inverse Discrete Wavelet Transform (IDWT). In order to reconstruct the signal,
the iterated filter-banks has to be reversed. Thus, at each scale, the DWT coefficients are
upsampled, by simply introducing a zero between every two samples, and then filter the
signal with synthesis filters, closely related with the analysis filters used in the direct DWT.
However, and in order to achieve perfect reconstruction, the analysis and synthesis filters
must fulfill the following conditions (Daubechies & Sweldens, 1998):

h̃(z)h(z−1) + g̃(z)g(z−1) = 2, (9)

h̃(z)h(−z−1) + g̃(z)g(−z−1) = 0, (10)

where g and h are the analysis filters used in the direct DWT and h̃ and g̃ are the synthesis
filters used in the inverse DWT.

161
Multiscale Texture Descriptors 
for Automatic Small Bowel Tumors Detection in Capsule Endoscopy



8 Will-be-set-by-IN-TECH

Fig. 5. Iterated filter-bank for 2D Discrete Wavelet Transform in images. Note that A will
keep an approximation of the original image, whereas D will carry detail information.

2.1.2 2D Discrete Wavelet Transform
Given the one-dimensional nature of the signals under analysis in the Wavelet Transform
framework, the direct application of this mathematical tool to higher dimensional signals
is not directly possible. However, a N-D signal can still be analyzed along each of its N
dimensions. Using this reasoning, Mallat also introduced in his seminal paper a very elegant
extension of the concepts of multi-resolution decomposition in order to use the DWT in image
processing problems. The key idea is to expand the application of 1D filterbanks to the 2D
in a straightforward manner, by simply applying the designed QMF filters to the columns
and rows separately. Thus, the DWT applied to an image can be implemented using an
iterated filter-bank, illustrated in Fig. 5, which can be described as consecutive filtering and
subsampling operations:

An = [hl � [hc � An−1]↓1,2]↓2,1, (11)

Dn1 = [gl � [hc � An−1]↓1,2]↓2,1, (12)

Dn2 = [hl � [gc � An−1]↓1,2]↓2,1, (13)

Dn3 = [gl � [gc � An−1]↓1,2]↓2,1, (14)

where (i, j) ∈ R2, � denotes the convolution operator, ↓ 1, 2 (↓ 2, 1) is the sub-sampling
operation applied to the columns (lines) and A0 is the original image I. The low and high-pass
filter h and g are the QMF filters referred in the previous section. As shown nicely in Fig. 6, An
arises from a low-pass filtering operation, being thus an approximated version of the image at
scale n. On the other hand, Dn1 and Dn2 arise from high-pass filter in a specific direction,
namely horizontal and vertical, while low-pass filtering is applied in the other direction.
Thus, these coefficients held detail information along a specific direction in the image, at
scale n. Lastly, Dn3 arises from high-pass filtering in both horizontal and vertical directions,
possessing thus information regarding details in the diagonal direction. This behaviour can
be easily observed when applying the DWT transform to a square binary image, as shown in
Fig. 6.
From the previous image, another important characteristic of DWT is evident: it provides a
sparse representation of the information present in image. This has been a feature widely used
in compression schemes, being perhaps the JPEG2000 the best know example.
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Fig. 6. Example on the directional sensitivity of the 2D Discrete Wavelet Transform (right:
original image, center: DWT coefficients up to j=4, left: correspondence between the DWT
coefficients and the equations (11))-(14)).

Note that, as for the 1D case, the original image can still be recovered from its DWT
coefficients, trough inverse transform. Therefore, the DWT can be manipulated in order to
enhance features, which can be then synthesized to a new image using IDWT .

2.2 Curvelet transform
The multi-resolution capability of the DWT has been vastly explored in several fields of signal
and image processing, as seen in the last section. The ability of dealing with singularities is
another important advantage of the DWT, since wavelets provide an optimal representation
for one-dimensional piecewise smooth signal (Do & Vetterli, 2005). However, and as seen in
the previous section, the application of DWT to multidimensional data is done in a separate
way along each dimension. As can be easily understood, natural images are not simply stacks
of 1-D piecewise smooth scan-lines, and therefore singularities points are usually located
along smooth curves rather than having an independent location. Indeed, these intermediate
dimensional structures like discontinuities along curves often provided structures of interest
and relevant information within the image. However, and being the DWT directional
sensitivity limited to three directions, there is the need to develop mathematical tools to
overcome this limitation. Thus, the limitations of the DWT triggered the quest for new
concepts capable of overcome these limits. The alternatives proposed until now make use
of a combination between concepts from traditional multi-scale analysis and ideas taken from
geometry.
Given the focus of the present book being the DWT and its applications, the description
of multi-directional and multi-scale transforms will be kept brief and mostly conceptual.
The first attempts to extract multi-scale information at different orientations date from the
beginning of the nineties, with the introduction of steerable pyramids. This was the first
approach to this problem, being a practical, data-friendly strategy to extract information at
different scales and angles. More recently, more advance techniques have been proposed,
such as the Curvelet Transform (Candès & Donoho, 2000) and the Contourlet Transform
(Do & Vetterli, 2005). These new and promising image analysis tools are already starting to
prove its usefulness.
The Continuous Curvelet Transform has been introduced by Candès and Donoho and
has as key concept the anisotropic notion of scale and high directional sensitivity in
multiple directions (Candès & Donoho, 2000). Thus, and contrarily to DWT, the orientational
sensitivity is not limited to the horizontal, vertical and diagonal directions but rather span
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Fig. 7. Tilling of the 2D Fourier polar plane for the Curvelet Transform (a) and the 2D
Discrete Wavelet Transform (b). Note that the radius stands for the frequency, where higher
radius will encode higher frequency information, and the angle for the orientation.

a wider set of orientations, which stems from the anisotropic notion of scale (parabolic
rescaling). In fact, the CCT is based in the tilling of the 2D Fourier space (which has both
scale and orientation information) in different concentric coronae, one of each divided in
a given number of angles, accordingly with a fixed relation shown in Fig. 7. As it can be
observed, there is still a division of the scale information (the center of the 2D Fourier plane
corresponds to low frequencies, while the outer regions to higher frequency components),
being the directional sensitivity dependent on the scale.
Each of these different regions corresponds to a different curvelet. Indeed, these polar wedges
can be defined by the superposition of a radial window and an angular window. To each of
this polar wedges, a tight frequency window or coronae can be associated in the 2D Fourier
space. This frequency window will then correspond to the Fourier transform of a curvelet
function ψj,θ function. In fact, and for a single scale, all ψj,θ may be obtained by rotations and
translations of a mother curvelet ψj. As for the wavelet case, the curvelets coefficients will
then simply arise from the inner product between the image and the rotation/translation of
the mother curvelet.
In the seminal work of Candès and Donoho a discretization scheme was also proposed.
However, its complexity led to further research, from which arose the conceptually simpler,
faster and less redundant second generation of curvelets, proposed in 2006 (Candès et al.,
2006). However, it must be noted that the Curvelet Transform is continuous in its nature and
will always have to be redesigned in order to be applied to discrete image data. Keeping this in
mind, Do and Vetterli have introduced the Contourlet Transform, a discrete mathematical tool
having similar multi-resolution and directional sensitivity characteristics (Do & Vetterli, 2005).
However, the Contourlet Transform is formulated from a double filter bank approach, as
shown in Fig. 8. The first stage corresponds to Laplacian pyramid which separates the image
content into different detail levels. The second step is a a directional filter bank which links
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Fig. 8. Two-stage iterated filter-bank for implementation of Contourlet Transform.

point discontinuities into linear structures. Thus, there is multi-scale and multi-directional
decomposition of the image content.
Although sharing similar fundamental concepts, Curvelet and Contourlet transforms are not
equivalent. Indeed, the theoretical support of Curvelet Transform outranks the Contourlet
Transform, in the sense that the curvelet elements have a sharply defined location in the
frequency plane, materialized as a polar wedge (in contrast to other approaches with discrete
nature). On the practical side, this means that contourlets lack smoothness along the ridge in
the spatial domain and exhibit spurious oscillations which may be the source of numerous
problems, especially if one wants to use these transforms for scientific computing. On
the other hand, the Contourlet Transform is directly designed for discrete applications,
whereas the discretization scheme of the curvelet transform faces some intrinsic challenges
in the sampling of the Fourier plane in the outermost coronae. Furthermore, the Contourlet
Transform presents less redundancy and has a lower computational burden.
As a final note, Curvelet coefficients are, as in the DWT, an accurate representations of the
original image with different detail, given by the different frequency content in each scale,
but also with different detail in multiple directions, overcoming the directional limitations of
the DWT. This might be well suited for the analysis of complex spatio-frequency patterns as
texture.

3. Feature extraction algorithm

3.1 Multiscale image pre-processing
In order to extract different scale information from capsule endoscopic frames, both Discrete
Wavelet Transform and Discrete Curvelet Transform (DCT) were applied to CE data. A two
level DWT and a three scales (including the coarsest) DCT were computed for each color
channel of the CE video frames, leading to coarsest, medium and finest detail coefficients
for both domains. Note that in the coarsest detail level there is no directional information
for both transforms. On the other hand higher detail levels possess directional information.
The DWT has 3 sub-bands of different directional information, while the DCT has a number
of subbands dependent on the parameters used. In the present case, there were 8 and 16
sub-bands of different directional information in the medium and finest detail scales of the
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level DWT and a three scales (including the coarsest) DCT were computed for each color
channel of the CE video frames, leading to coarsest, medium and finest detail coefficients
for both domains. Note that in the coarsest detail level there is no directional information
for both transforms. On the other hand higher detail levels possess directional information.
The DWT has 3 sub-bands of different directional information, while the DCT has a number
of subbands dependent on the parameters used. In the present case, there were 8 and 16
sub-bands of different directional information in the medium and finest detail scales of the
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Fig. 9. Example of a capsule endoscopic frame (center) and its DWT coefficients (left) and
DCT coefficients (right). Note that the number of coefficients in the DCT image is not
equivalent to the other two images.

DCT respectively. Nonetheless, a note should be made regarding the number of coefficients
arising from these two transforms. While the DWT leads to a compact representation, with
a number of coefficients equal to the number of pixels in the image under analysis, the DCT
results in a higher number of coefficients. For illustrative purposes, the DWT and the DCT
coefficients of a CE frame are show in Fig.9. Note that the DCT is far less compact.
Color transformations of the original image I result in three decomposed color channels:

Ii, i = 1, 2, 3, (15)

where i stands for the color channel.
A two level DWT is applied to each color channel, Ii, as shown in Fig. 9. This transformation
results in a new representation of the original image by a low resolution image and the
detail images, possessing higher frequency content in three orientations. Therefore the new
representation is defined as:

γi
DWT = DWT(Ii) = {Ai

n, Di
s,d}, n=2 , s=1, 2 , d=1, 2, 3 (16)

where d stands for the wavelet directional sub-band, s for scale and n is the decomposition
level.
A three scale DCT is applied to each color channel, Ii, as shown in Fig. 9. This transformation
results in a new representation of the original image by a low resolution image and the detail
images, possessing higher frequency content in multiple orientations. Therefore the new
representation is defined as:

γi
DCT = DCT(Ii) = {Ai

n, Di
s,d}, n = 3 , s=1, 2 , d=1, · · · , 8 ∨ d=1, · · · , 16 (17)

where d stands for the curvelet directional sub-band, s for scale and n is the decomposition
level. Note that, contrarily to DWT, the number of directional sub-bands at each scale depends
on the scale itself. Thus, for the first scale there are 16 directions, while for the second there
are 8 directions.
After the application of DWT and DCT transform to the image data, its content is divided
in different multiscale and multi-directional information. It should be stressed that the
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textural information is usually better presented in the middle scale coefficients channels.
Thus, mid scale coefficients should be considered in theory. However, the relatively low
image dimensions (256 × 256) limit the representation of the details, becoming the first
level more adequate, than previously expected, for texture representation Barbosa et al.
(2008). Nevertheless an image resolution normalization might be required for different image
resolutions.

3.2 Statistical texture features
There are several statistical features that can be extracted from the wavelet and curvelet
domains as texture descriptors, being the most common the mean, the standard deviation, the
energy and the entropy of each DWT/DCT sub-band (μ, σ, E, Ent) (Dettori & Semler, 2007).
Nonetheless, in authors’ previous work it was observed that the introduction of energy and
entropy in the feature set did not significantly contributed to an increase in the classification
performance (Barbosa, Correia, Ramos & Lima, 2009; Barbosa, Ramos, Correia & Lima, 2009).
Thus, only the mean and standard deviation in each DWT/DCT sub-band were computed.
The proposed texture descriptors can be calculated as:

μ = E{P(i, j)} =
1
N ∑

i
∑

j
P(i, j) (18)

σ =
√

E{(P(i, j)− μ)2} =

√
1
N ∑

i
∑

j
(P(i, j)− μ)2 (19)

where P(i, j) corresponds to the pixel value at position (i, j). Note that capsule endoscopic
video frames are usually square images of 256x256 but the information is restricted to a
circular area in the middle of the image, as it is observable in Fig.9. Therefore, it is vital
to only consider the pixels inside this area, since the information regarding to the CE exam
is contained in this part. In order to cope with this constraint, the summation limits of the
equations (18)-(19) were set in order to correspond to this area.
In the present work, it was decided to start the comparison between the different DWT and
DCT detail levels only with the mean and variance as statistical descriptors, in order to better
compare the two different multi-resolution domains. Since the low frequency components
of the images do not contain major texture information, the most important scales in the
DWT and DCT will be those in which are present medium and high frequency, texture
encoding, information. Furthermore, the coarsest scale coefficients of the DCT and DWT
are not directional, and consequently do not possess directional sensitivity. Therefore, each
of the afore mentioned statistical features is computed at each sub-band of the DWT/DCT
coefficients, for all the color channels, at medium and finest detail level.
The statistical dependence of textural descriptors taken in different color channels is useful
to distinguish normal from abnormal texture patterns, as stated in authors’ previous
work. Furthermore, the same finding was previously reported in (Karkanis et al., 2003), for
colonoscopy videos. Therefore, the covariance of textural descriptors in the different color
channels will be used as a classification feature. Note that in the present framework, the
high directional sensitivity of the DCT will be likely to lead to more robust descriptors than
a similar scheme used in textural descriptors taken from DWT coefficients. This was recently
suggested by the authors and shown in (Barbosa, Ramos, Correia & Lima, 2009). In the
present chapter, this methodology is followed and the scope of the comparison of this recently
proposed algorithm and other existing features is expanded. In the Color Curvelet Covariance
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Fig. 9. Example of a capsule endoscopic frame (center) and its DWT coefficients (left) and
DCT coefficients (right). Note that the number of coefficients in the DCT image is not
equivalent to the other two images.
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arising from these two transforms. While the DWT leads to a compact representation, with
a number of coefficients equal to the number of pixels in the image under analysis, the DCT
results in a higher number of coefficients. For illustrative purposes, the DWT and the DCT
coefficients of a CE frame are show in Fig.9. Note that the DCT is far less compact.
Color transformations of the original image I result in three decomposed color channels:
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where i stands for the color channel.
A two level DWT is applied to each color channel, Ii, as shown in Fig. 9. This transformation
results in a new representation of the original image by a low resolution image and the
detail images, possessing higher frequency content in three orientations. Therefore the new
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where d stands for the curvelet directional sub-band, s for scale and n is the decomposition
level. Note that, contrarily to DWT, the number of directional sub-bands at each scale depends
on the scale itself. Thus, for the first scale there are 16 directions, while for the second there
are 8 directions.
After the application of DWT and DCT transform to the image data, its content is divided
in different multiscale and multi-directional information. It should be stressed that the
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textural information is usually better presented in the middle scale coefficients channels.
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image dimensions (256 × 256) limit the representation of the details, becoming the first
level more adequate, than previously expected, for texture representation Barbosa et al.
(2008). Nevertheless an image resolution normalization might be required for different image
resolutions.
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where P(i, j) corresponds to the pixel value at position (i, j). Note that capsule endoscopic
video frames are usually square images of 256x256 but the information is restricted to a
circular area in the middle of the image, as it is observable in Fig.9. Therefore, it is vital
to only consider the pixels inside this area, since the information regarding to the CE exam
is contained in this part. In order to cope with this constraint, the summation limits of the
equations (18)-(19) were set in order to correspond to this area.
In the present work, it was decided to start the comparison between the different DWT and
DCT detail levels only with the mean and variance as statistical descriptors, in order to better
compare the two different multi-resolution domains. Since the low frequency components
of the images do not contain major texture information, the most important scales in the
DWT and DCT will be those in which are present medium and high frequency, texture
encoding, information. Furthermore, the coarsest scale coefficients of the DCT and DWT
are not directional, and consequently do not possess directional sensitivity. Therefore, each
of the afore mentioned statistical features is computed at each sub-band of the DWT/DCT
coefficients, for all the color channels, at medium and finest detail level.
The statistical dependence of textural descriptors taken in different color channels is useful
to distinguish normal from abnormal texture patterns, as stated in authors’ previous
work. Furthermore, the same finding was previously reported in (Karkanis et al., 2003), for
colonoscopy videos. Therefore, the covariance of textural descriptors in the different color
channels will be used as a classification feature. Note that in the present framework, the
high directional sensitivity of the DCT will be likely to lead to more robust descriptors than
a similar scheme used in textural descriptors taken from DWT coefficients. This was recently
suggested by the authors and shown in (Barbosa, Ramos, Correia & Lima, 2009). In the
present chapter, this methodology is followed and the scope of the comparison of this recently
proposed algorithm and other existing features is expanded. In the Color Curvelet Covariance

167
Multiscale Texture Descriptors 
for Automatic Small Bowel Tumors Detection in Capsule Endoscopy



14 Will-be-set-by-IN-TECH

framework the covariance of textural descriptors in the different color channels is used as a
classification feature. The Color Wavelet/Curvelet Covariance of a texture descriptor can be
calculated as:

C∗C(a, b, s, m) = ∑
α
((Fm(a, s, α)− E{Fm(a, s, α)})× (Fm(b, s, α)− E{Fm(b, s, α)})) (20)

where a and b represent the different color channels in the covariance calculation, Fm is the
statistic textural descriptor, α is the considered angle of the DWT/DCT coefficients, s the
considered detail scale and E{Fm(a, s, α)} the average of the statistical textural descriptor Fm
over the different angles α, in the color channel a. As it is clear from Fig.9, the Color Wavelet
Covariance features will arise from a covariance of only three different angles, while the Color
Curvelet Covariance features will take more angles into account in this computation. One
should note that if a = b, the C∗C features will enconde the angular variance of the textural
descriptor Fm. On the other hand, for a �= b, the C∗C features will give a measure of the
similarity of the angular covariation of Fm between two color channels.
The proposed C∗C features allow to capture additional information regarding the texture
patterns and can be regarded as second order statistical modelling of the texture descriptors
Fm. However, the texture descriptors Fm already possess information regarding the existing
textures in the image. Thus, it is proposed to add the average value E{Fm} to the feature set.
It should be referred that E{Fm} corresponds to the mathematical expectancy for the value
of Fm and therefore does not possess as much information as the sequence of the different Fm
values taken from the DCT/DWT coefficients at different angles. Nonetheless, the inclusion of
the entire Fm feature set helds dimensionality problems, which can compromise the training
and consequently the performance of the classifier and the speed of the classification step.
Furthermore, if the same texture pattern was rotated, the sequence of the different Fm would
be affected, which could decrease the classification performance.

4. Implementation issues

4.1 General considerations
A 2.8 GHz Intel i7 dual core processor, with 4 GB of RAM, was used with MATLAB to run
the proposed algorithm. The average processing time is between 0.2s (DWT) and 0.75s (DCT)
for each CE frame. Note however that the implementation of the proposed algorithm was not
optimized for speed, so the processing time can still be improved.
The DWT calculation was done using the MATLAB Toolbox Wavelets (made available by G.
Peyré at http://www.ceremade.dauphine.fr/~peyre/matlab/wavelets/content.html). The
basis used was the standard Daubechies wavelet with 4 vanishing moments.
The DCT calculation was done with the routines implemented in the toolbox CurveLab
(available for research purposes at www.curvelet.org). The method chosen for the
discretization of the Curvelet Transform was the wrapping algorithm, for the reasons referred
in (Candès et al., 2006).
For both DWT and DCT, the reader is highly advised to explore the tutorial and demos
offered in the used toolboxes in order to better understand the underlying principles of these
mathematical tools.
The selected color space was the HSV, since it is more similar to the physiological perception
of human eye (Li & Meng, 2009), and therefore more adequate than the standard RGB color
space.
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4.2 Feature sets
In order to assess the impact of the choice of texture descriptors, several feature sets were
generated for the the analyzed data. The feature set A corresponds to a feature set comprising
the mean and standard deviation of each DWT/DCT sub-band. A more advanced feature
set is also formulated by using the covariance of the textural descriptors, as well as their
average value for all the analyzed sub-bands. The covariance+average approach is applied to
the texture descriptors mean and standard deviation and results in the feature set B. These
different feature sets were computed for both the medium and finest detail scales of the
DWT/DCT transforms, since it is known from before hand that low detail coefficients do
not possess relevant texture information.

4.3 Classification scheme
The features were imported into the open source machine learning package WEKA (available
at http://www.cs.waikato.ac.nz/ml/weka/). A stratified 10-fold cross-validation procedure
was chosen to train a standard multilayer perceptron neural network. The default parameters
were kept in the classifier options. The choice of a simple classification scheme, with default
parameters, was done in order to make the results more representative of the choice of the
features. The 10-fold cross-validation method is a standard procedure to validate machine
learning classification outputs and has been found to provide an adequate and accurate
estimate of the true error rate (Alpaydin, 2004). The 10-fold cross-validation algorithm
splits the data into 10 partitions, where the proportion of both normal and abnormal frames
in each partitions is similar to the entire dataset. The training and classification process
is then repeated 10 times, where 9 partitions are used to train and 1 partition is used to
assess the classification process. This way, each frame will be used exactly once as test
data, allowing to efficiently use the available dataset. In order to have an accurate error
estimate, the cross-validation process was repeated 10 times, being this a standard procedure
(Witten & Frank, 2005). Note that the splitting of the training and testing datasets in the 10
repetitions of the 10-fold stratified cross-validation were similar for the different feature sets,
allowing thus a paired comparison.

4.4 Evaluation of classification performance
The ultimate goal of the proposed method is to provide a binary classification of whether a
given CE frame presents patterns of abnormal tissue. Thus, it is vital to understand how such
classification performance is assessed. Confusion matrices offer a simple yet effective way of
visualizing the classification errors:

A false negative, FN corresponds to a CE frame presenting tumor pathology which is
misclassified as normal, while a false positive, FP, corresponds to a normal frame wrongly
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the proposed algorithm. The average processing time is between 0.2s (DWT) and 0.75s (DCT)
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discretization of the Curvelet Transform was the wrapping algorithm, for the reasons referred
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For both DWT and DCT, the reader is highly advised to explore the tutorial and demos
offered in the used toolboxes in order to better understand the underlying principles of these
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The selected color space was the HSV, since it is more similar to the physiological perception
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was chosen to train a standard multilayer perceptron neural network. The default parameters
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learning classification outputs and has been found to provide an adequate and accurate
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The ultimate goal of the proposed method is to provide a binary classification of whether a
given CE frame presents patterns of abnormal tissue. Thus, it is vital to understand how such
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visualizing the classification errors:
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misclassified as normal, while a false positive, FP, corresponds to a normal frame wrongly
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considered as abnormal. While the overall accuracy can be defined as:

Accuracy =
TP + TF

TP + TF + FP + FN
, (21)

it is more frequent to report the performance of a binary classification test using sensitivity
and specificity:

Sensitivity =
TP

TP + FN
, (22)

Speci f icity =
TN

TN + FP
. (23)

There is an intrinsic trade-off between sensitivity and specificity of a classifier, which can
be adapted to each situation in order to penalyze a specific type of error. This can be
nicely visulized through Receiver Operating Characteristic (ROC) curves. Although no
single number is able to capture this trade-off, being thus such 2D representation needed,
the area under the ROC curve is usually used as a measure of the classifier performance
(Witten & Frank, 2005).
Lastly, it was decided to include the Cohen’s kappa coefficient, k, in the set of classification
evaluation measures, since it is a statistical measure of agreement between the classifier output
and theground truth. Furthermore, k takes into account the agreement that may occur simply
by chance, being thus a better performance metric for the classification performance. It can be
simply calculated as:

K =
P(a)− P(e)

1 − P(e)
, (24)

where P(a) is the relative observed agreement and P(e) the probability of agreement due
to random chance. Note that relative agreement is not more than simply the classification
accuracy.
In order to assess the statistical significance of differences in the classification, a standard
paired t-test was employed.

5. Experiments and results

5.1 Dataset
The experimental dataset was constructed with frames from capsule endoscopic video
segments of different patients’ exams, taken at the Hospital dos Capuchos in Lisbon by
Doctor Jaime Ramos. The final dataset consisted in 400 normal frames and 196 abnormal
frames. Examples of the dataset frames can be observed in the Fig.10. These frames have been
manually classified by the expert physician.

5.2 Influence of the scale on the classification Performance
From authors’ previous work, it is highly expectable that the most relevant information for
classification purposes is encoded as high frequency content in the scale correspondent to
the highest detail level. Table 1 shows that the most relevant information for classification
purposes is encoded as high frequency content in both DWT and DCT finest detail coefficients.
Note that M and F stands for medium and finest detail scales. For comparison purposes,
the feature sets A was chosen. The values in Table 1 correspond to the mean and standard
deviation for a ten-fold stratified cross-validation scheme repeated 10 times.
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Fig. 10. Examples of Wireless Capsule Endoscopy video frames (top: normal frames, bottom:
frames containing tumoral tissue).

Transform DWT DCT
Feature Set A A

Detail Level M F M F

Features (#) 18 18 48 96
Accuracy (%) 77.15 ± 1.56 96.34 ± 0.42 87.44 ± 0.96 95.54 ± 0.31

Specificity (%) 84.78 ± 3.23 97.34 ± 0.29 90.61 ± 2.29 96.76 ± 0.37
Sensitivity (%) 61.64 ± 4.60 94.29 ± 1.10 81.01 ± 3.39 93.13 ± 0.62

ROC Area 0.834 ± 0.012 0.990 ± 0.003 0.936 ± 0.008 0.989 ± 0.002
Cohen’s K 0.473 ± 0.032 0.917 ± 0.010 0.716 ± 0.020 0.899 ± 0.007

Table 1. Influence of the Detail Level in the Classification Performance

From the results in the previous table, there is no clear advantage arising from the use of DCT,
although better results are observed for the medium detail coefficients. However, the large
difference between the number of features extracted does not allow a strong conclusion in
this comparison, since it is known that large feature vectors pose difficulties to the training
algorithm. Thus, the key observation from the results presented in Table 1 is that for both
DWT and DCT domains, the features extracted from the sub-band corresponding to the higher
detail yield indeed a better classification performance.
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manually classified by the expert physician.

5.2 Influence of the scale on the classification Performance
From authors’ previous work, it is highly expectable that the most relevant information for
classification purposes is encoded as high frequency content in the scale correspondent to
the highest detail level. Table 1 shows that the most relevant information for classification
purposes is encoded as high frequency content in both DWT and DCT finest detail coefficients.
Note that M and F stands for medium and finest detail scales. For comparison purposes,
the feature sets A was chosen. The values in Table 1 correspond to the mean and standard
deviation for a ten-fold stratified cross-validation scheme repeated 10 times.
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Fig. 10. Examples of Wireless Capsule Endoscopy video frames (top: normal frames, bottom:
frames containing tumoral tissue).
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Specificity (%) 84.78 ± 3.23 97.34 ± 0.29 90.61 ± 2.29 96.76 ± 0.37
Sensitivity (%) 61.64 ± 4.60 94.29 ± 1.10 81.01 ± 3.39 93.13 ± 0.62

ROC Area 0.834 ± 0.012 0.990 ± 0.003 0.936 ± 0.008 0.989 ± 0.002
Cohen’s K 0.473 ± 0.032 0.917 ± 0.010 0.716 ± 0.020 0.899 ± 0.007

Table 1. Influence of the Detail Level in the Classification Performance

From the results in the previous table, there is no clear advantage arising from the use of DCT,
although better results are observed for the medium detail coefficients. However, the large
difference between the number of features extracted does not allow a strong conclusion in
this comparison, since it is known that large feature vectors pose difficulties to the training
algorithm. Thus, the key observation from the results presented in Table 1 is that for both
DWT and DCT domains, the features extracted from the sub-band corresponding to the higher
detail yield indeed a better classification performance.
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Transform (Detail Level) DWT (F) DCT (F)
Feature Set A B A B

Features (#) 18 18 96 18
Accuracy (%) 96.34 ± 0.42 96.30 ± 0.45 95.54 ± 0.31 97.65 ± 0.55

Specificity (%) 97.34 ± 0.29 97.45 ± 0.65 96.76 ± 0.37 98.47 ± 0.58
Sensitivity (%) 94.29 ± 1.10 94.04 ± 1.40 93.13 ± 0.62 96.0 ± 0.61

ROC Area 0.990 ± 0.003 0.990 ± 0.003 0.989 ± 0.002 0.994 ± 0.003
Cohen’s K 0.917 ± 0.010 0.916 ± 0.010 0.899 ± 0.007 0.947 ± 0.012

Table 2. Color Covariance Texture Descriptors Classification Performance

5.3 Color covariance texture descriptors
In the present section, the added value for the color covariance texture descriptors is shown.
Given the results presented in the previous section, this approach was applied only to the
finest detail coefficients of both DWT and DCT transforms, as these possess the most relevant
texture information for classification purposes. The results are shown in the Table 2. The
values correspond to a ten-fold stratified cross-validation scheme repeated 10 times.
Using the Color Covariance approach, a visible increase in the classification performance of
the features extracted from the DCT domain was observed. Nonetheless, in the performance
of DWT features there were no significant changes. These results support the hypothesis
that C∗C features can extract complex texture patterns between color channels, leading
to good texture classificantion performance. The Color Curvelet Covariance approach is
able to significantly reduce the feature set dimensionality, while improving its classification
performance. These results also point that features extracted from the DCT domain possess
more relevant information for classification purposes when compared to the DWT. This can
be intrinsically linked with the higher directional sensitivity of the DCT, which helps to better
handle complex two-dimensional patterns such as texture.

5.4 Statistical analysis of the classification performance
Given the results shown in subsection 5.2, the statistical analysis was limited to the features
extracted from the highes detail coefficients of both DWT and DCT domains. The significance
of the statistical differences found between the different feature sets extracted from both
domains can be observed in the Table 3, for the metrics used to evaluate the classification
performance. For sake of clarity, NS stands for not statistically significantly different, † for
p < 0.05 and ‡ for p < 0.001. Note also that DWT(F, A) stands for the feature set A extracted
from the finest detail level of the DWT transform, while DCT(F, B) corresponds to the feature
set B extracted from the DCT coefficients corresponding to the finest detail level.
From these results, some important highlights appear, confirming statistically some previous
observations. First and foremost, the proposed Color Curvelet Covariance approach presents
significantly higher classification performance for all the metrics used to compare the different
methods. Second, the C∗C approach in the DWT domain does not lead to a significant
difference in the classification performance. Last, the feature vector A extracted from the DCT
scale of finest details helds a much higher dimensionality than the remaining ones. Thus, no
strong conclusions can be taken from the statistical comparison with the remaining feature
sets, since the high dimensionality of this feature set may pose a problem to the performance
of the classifier.
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Accuracy

Transform(Detail Level,Feature Set) DWT(F,A) DWT(F,B) DCT(F,A) DCT(F,B)

DWT(F,A) NS ‡ ‡
DWT(F,B) ‡ ‡
DCT(F,A) ‡
DCT(F,B)

Specificity

Transform(Detail Level,Feature Set) DWT(F,A) DWT(F,B) DCT(F,A) DCT(F,B)

DWT(F,A) NS † ‡
DWT(F,B) † ‡
DCT(F,A) ‡
DCT(F,B)

Sensitivity

Transform(Detail Level,Feature Set) DWT(F,A) DWT(F,B) DCT(F,A) DCT(F,B)

DWT(F,A) NS † ‡
DWT(F,B) † ‡
DCT(F,A) ‡
DCT(F,B)

ROC Area

Transform(Detail Level,Feature Set) DWT(F,A) DWT(F,B) DCT(F,A) DCT(F,B)

DWT(F,A) NS † ‡
DWT(F,B) † ‡
DCT(F,A) ‡
DCT(F,B)

K

Transform(Detail Level,Feature Set) DWT(F,A) DWT(F,B) DCT(F,A) DCT(F,B)

DWT(F,A) NS † ‡
DWT(F,B) † ‡
DCT(F,A) ‡
DCT(F,B)

Table 3. Statistical Significance of the Differences for the Classification Accuracy
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6. Conclusion and future work

The more significant information content for classification purposes is encoded as high
frequency information. Indeed, texture corresponds to medium/high frequency image
content. However, and contrarily to what has been found in (Karkanis et al., 2003) for
colonoscopy videos, the most relevant sub-bands for texture classification correspond to the
highest detail levels, for both DWT and DCT domains.
The proposed color covariance approach achieves an optimal balance between feature vector
size and classification performance, presenting promising results that support the feasibility
of the proposed method. The Color Curvelet Covariance method yielded the higher
classification accuracy, achieving 97.65 ± 0.55% of correctly classified frames.
Future work will include the extraction of different texture descriptors from the DCT and the
use of different classifiers. The enlargement of the available dataset will be equally pursued,
in order to further validate the observed results over a wider range of images and pathologies.

7. References

Alpaydin, E. (2004). Introduction to machine learning, MIT Press.
Barbosa, D., Correia, J. H., Ramos, J. & Lima, C. S. (2009). A multi-scale comparison of texture

descriptors extracted from the wavelet and curvelet domains for small bowel tumor
detection in capsule endoscopy exams, Proc. World Congress on Medical Physics and
Biomedical Engineering 2009, pp. 1546–1549.

Barbosa, D., Ramos, J., Correia, J. H. & Lima, C. (2009). Automatic detection of small
bowel tumors in capsule endoscopy based in color curvelet covariance statistical
texture descriptors, Proc. 31th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC2009), pp. 6683 – 6686.

Barbosa, D., Ramos, J. & Lima, C. S. (2008). Detection of small bowel tumors in capsule
endoscopy frames using texture analysis based on the discrete wavelet transform,
Proc. 30th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC2008), pp. 3012 –3015.

Candès, E., Demanet, L., Donoho, D. & Ying, L. (2006). Fast discrete curvelet transforms,
Multiscale Modeling and Simulation 5(3): 861–899.

Candès, E. & Donoho, D. (2000). Curvelets, multi-resolution representation, and scaling laws,
Wavelet Applications in Signal and Image Processing VIII, SPIE vol. 4119 pp. 1–12.

Chen, X., Ran, Z. & Tong, J. (2007). A meta-analysis of the yield of capsule endoscopy
compared to double-balloon enteroscopy in patients with small bowel diseases,
World Journal of Gastroenterology 13(32): 4372–4378.

Daubechies, I. (1988). Orthogonal bases of compactly supported wavelets, Communications on
Pure and Applied Mathematics 41: 909 – 996.

Daubechies, I. & Sweldens, W. (1998). Factoring wavelet transforms into lifting steps, Journal
of Fourier Analysis and Applications 4(3): 247–269.

Delvaux, M. & Gay, G. (2006). Capsule endoscopy in 2005: Facts and perspectives, Best Practice
& Research Clinical Gastroenterology 20(1): 23 – 39.

Dettori, L. & Semler, L. (2007). A comparison of wavelet, ridgelet, and curvelet-based texture
classification algorithms in computed tomography, Computers in Biology and Medicine,
37(2): 486–498.

174 Discrete Wavelet Transforms - Biomedical Applications Multiscale Texture Descriptors for Automatic Small Bowel Tumors Detection in Capsule Endoscopy 21

Do, M. N. & Vetterli, M. (2005). The contourlet transform: an efficient directional
multiresolution image representation, IEEE Transactions on Image Processing
14(12): 2091–2106.

Gay, G., Pennazio, M., Delmotte, J. & Rossini, F. (1998). Atlas of Enteroscopy, Springer, chapter
Intraoperative enteroscopy, p. 51 – 54.

Herrerías, J. & Mascarenhas-Saraiva, M. (2007). Atlas of Capsule Endoscopy, Sulime Diseño de
Soluciones, Sevilla.

Iddan, G., Meron, G., Glukhovsky, A. & Swain, P. (2000). Wireless capsule endoscopy, Nature
405(6785): 417–417.

Kaffes, A. (2009). Achieving total enteroscopy with capsule endoscopy in all patients: are we
stretching the limits of technology?, Gastrointestinal Endoscopy 69(1): 81 – 83.

Karargyris, A. & Bourbakis, N. (2010). Wireless capsule endoscopy and endoscopic imaging:
A survey on various methodologies presented, IEEE Engineering in Medicine and
Biology Magazine 29(1): 72 –83.

Karkanis, S., Iakovidis, D., Maroulis, D., Karras, D. & Tzivras, M. (2003). Computer-aided
tumor detection in endoscopic video using color wavelet features, IEEE Transactions
on Information Technology in Biomedicine 7(3): 141–152.

Kodogiannis, V., Boulougoura, M., Wadge, E. & Lygouras, J. (2007). The usage
of soft-computing methodologies in interpreting capsule endoscopy, Engineering
Applications of Artificial Intelligence 20(4): 539–553.

Lee, N. & Eisen, G. (2010). 10 years of capsule endoscopy: An update, Expert Reviews
Gastroenteroly and Hepatoly 4(4): 503–512.

Li, B. & Meng, M. (2009). Computer-based detection of bleeding and ulcer in wireless capsule
endoscopy images by chromaticity moments, Computers in Biology and Medicine
39(2): 141–147.

Mackiewicz, M., Berens, J. & Fisher, M. (2008). Wireless capsule endoscopy color video
segmentation, IEEE Transactions on Medical Imaging 27(12): 1769 –1781.

Mallat, S. (1989). A theory for multiresolution signal decomposition: The wavelet
representatio, IEEE Transactions on Pattern Analysis and Machine Intelligence
11(7): 674–693.

Mergener, K., Ponchon, T., Gralnek, I., Pennazio, M., Gay, G., Selby, W., Seidman, E. G., Cellier,
C., Murray, J., de Franchis, R., Rösch, T. & Lewis, B. S. (2007). Literature review and
recommendations for clinical application of small-bowel capsule endoscopy, based
on a panel discussion by international experts, Endoscopy 39(10): 895–909.

Munoz-Navas, M. (2009). Capsule endoscopy, World Journal of Gastroenterology 15: 1584–1586.
Pennazio, M. (2006). Capsule endoscopy: Where are we after 6 years of clinical use?, Digestive

and Liver Disease 38(12): 867 – 878.
Pennazio, M., Arrigoni, A., Risio, M., Spandre, M. & Rossini, F. (1995). Clinical evaluation of

push-type enteroscopy, Endoscopy 27(2): 164–70.
Swain, P. & Fritscher-Ravens, A. (2004). Role of video endoscopy in managing small bowel

disease, Gut 53(12): 1866–1875.
Unser, M., Aldroubi, A. & Laine, A. (2003). Guest editorial: Wavelets in medical imaging,

IEEE Transactions On Medical Imaging 22(3): 285–288.
Westerhof, J., Koornstra, J. & Weersma, R. (2009). Can we reduce capsule endoscopy reading

times?, Gastrointestinal Endoscopy 69(3, Part 1): 497 – 502.
Witten, I. H. & Frank, E. (2005). Data Mining: Practical machine learning tools and techniques,

Morgan Kaufmann.

175
Multiscale Texture Descriptors 
for Automatic Small Bowel Tumors Detection in Capsule Endoscopy



20 Will-be-set-by-IN-TECH

6. Conclusion and future work

The more significant information content for classification purposes is encoded as high
frequency information. Indeed, texture corresponds to medium/high frequency image
content. However, and contrarily to what has been found in (Karkanis et al., 2003) for
colonoscopy videos, the most relevant sub-bands for texture classification correspond to the
highest detail levels, for both DWT and DCT domains.
The proposed color covariance approach achieves an optimal balance between feature vector
size and classification performance, presenting promising results that support the feasibility
of the proposed method. The Color Curvelet Covariance method yielded the higher
classification accuracy, achieving 97.65 ± 0.55% of correctly classified frames.
Future work will include the extraction of different texture descriptors from the DCT and the
use of different classifiers. The enlargement of the available dataset will be equally pursued,
in order to further validate the observed results over a wider range of images and pathologies.

7. References

Alpaydin, E. (2004). Introduction to machine learning, MIT Press.
Barbosa, D., Correia, J. H., Ramos, J. & Lima, C. S. (2009). A multi-scale comparison of texture

descriptors extracted from the wavelet and curvelet domains for small bowel tumor
detection in capsule endoscopy exams, Proc. World Congress on Medical Physics and
Biomedical Engineering 2009, pp. 1546–1549.

Barbosa, D., Ramos, J., Correia, J. H. & Lima, C. (2009). Automatic detection of small
bowel tumors in capsule endoscopy based in color curvelet covariance statistical
texture descriptors, Proc. 31th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC2009), pp. 6683 – 6686.

Barbosa, D., Ramos, J. & Lima, C. S. (2008). Detection of small bowel tumors in capsule
endoscopy frames using texture analysis based on the discrete wavelet transform,
Proc. 30th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC2008), pp. 3012 –3015.

Candès, E., Demanet, L., Donoho, D. & Ying, L. (2006). Fast discrete curvelet transforms,
Multiscale Modeling and Simulation 5(3): 861–899.

Candès, E. & Donoho, D. (2000). Curvelets, multi-resolution representation, and scaling laws,
Wavelet Applications in Signal and Image Processing VIII, SPIE vol. 4119 pp. 1–12.

Chen, X., Ran, Z. & Tong, J. (2007). A meta-analysis of the yield of capsule endoscopy
compared to double-balloon enteroscopy in patients with small bowel diseases,
World Journal of Gastroenterology 13(32): 4372–4378.

Daubechies, I. (1988). Orthogonal bases of compactly supported wavelets, Communications on
Pure and Applied Mathematics 41: 909 – 996.

Daubechies, I. & Sweldens, W. (1998). Factoring wavelet transforms into lifting steps, Journal
of Fourier Analysis and Applications 4(3): 247–269.

Delvaux, M. & Gay, G. (2006). Capsule endoscopy in 2005: Facts and perspectives, Best Practice
& Research Clinical Gastroenterology 20(1): 23 – 39.

Dettori, L. & Semler, L. (2007). A comparison of wavelet, ridgelet, and curvelet-based texture
classification algorithms in computed tomography, Computers in Biology and Medicine,
37(2): 486–498.

174 Discrete Wavelet Transforms - Biomedical Applications Multiscale Texture Descriptors for Automatic Small Bowel Tumors Detection in Capsule Endoscopy 21

Do, M. N. & Vetterli, M. (2005). The contourlet transform: an efficient directional
multiresolution image representation, IEEE Transactions on Image Processing
14(12): 2091–2106.

Gay, G., Pennazio, M., Delmotte, J. & Rossini, F. (1998). Atlas of Enteroscopy, Springer, chapter
Intraoperative enteroscopy, p. 51 – 54.

Herrerías, J. & Mascarenhas-Saraiva, M. (2007). Atlas of Capsule Endoscopy, Sulime Diseño de
Soluciones, Sevilla.

Iddan, G., Meron, G., Glukhovsky, A. & Swain, P. (2000). Wireless capsule endoscopy, Nature
405(6785): 417–417.

Kaffes, A. (2009). Achieving total enteroscopy with capsule endoscopy in all patients: are we
stretching the limits of technology?, Gastrointestinal Endoscopy 69(1): 81 – 83.

Karargyris, A. & Bourbakis, N. (2010). Wireless capsule endoscopy and endoscopic imaging:
A survey on various methodologies presented, IEEE Engineering in Medicine and
Biology Magazine 29(1): 72 –83.

Karkanis, S., Iakovidis, D., Maroulis, D., Karras, D. & Tzivras, M. (2003). Computer-aided
tumor detection in endoscopic video using color wavelet features, IEEE Transactions
on Information Technology in Biomedicine 7(3): 141–152.

Kodogiannis, V., Boulougoura, M., Wadge, E. & Lygouras, J. (2007). The usage
of soft-computing methodologies in interpreting capsule endoscopy, Engineering
Applications of Artificial Intelligence 20(4): 539–553.

Lee, N. & Eisen, G. (2010). 10 years of capsule endoscopy: An update, Expert Reviews
Gastroenteroly and Hepatoly 4(4): 503–512.

Li, B. & Meng, M. (2009). Computer-based detection of bleeding and ulcer in wireless capsule
endoscopy images by chromaticity moments, Computers in Biology and Medicine
39(2): 141–147.

Mackiewicz, M., Berens, J. & Fisher, M. (2008). Wireless capsule endoscopy color video
segmentation, IEEE Transactions on Medical Imaging 27(12): 1769 –1781.

Mallat, S. (1989). A theory for multiresolution signal decomposition: The wavelet
representatio, IEEE Transactions on Pattern Analysis and Machine Intelligence
11(7): 674–693.

Mergener, K., Ponchon, T., Gralnek, I., Pennazio, M., Gay, G., Selby, W., Seidman, E. G., Cellier,
C., Murray, J., de Franchis, R., Rösch, T. & Lewis, B. S. (2007). Literature review and
recommendations for clinical application of small-bowel capsule endoscopy, based
on a panel discussion by international experts, Endoscopy 39(10): 895–909.

Munoz-Navas, M. (2009). Capsule endoscopy, World Journal of Gastroenterology 15: 1584–1586.
Pennazio, M. (2006). Capsule endoscopy: Where are we after 6 years of clinical use?, Digestive

and Liver Disease 38(12): 867 – 878.
Pennazio, M., Arrigoni, A., Risio, M., Spandre, M. & Rossini, F. (1995). Clinical evaluation of

push-type enteroscopy, Endoscopy 27(2): 164–70.
Swain, P. & Fritscher-Ravens, A. (2004). Role of video endoscopy in managing small bowel

disease, Gut 53(12): 1866–1875.
Unser, M., Aldroubi, A. & Laine, A. (2003). Guest editorial: Wavelets in medical imaging,

IEEE Transactions On Medical Imaging 22(3): 285–288.
Westerhof, J., Koornstra, J. & Weersma, R. (2009). Can we reduce capsule endoscopy reading

times?, Gastrointestinal Endoscopy 69(3, Part 1): 497 – 502.
Witten, I. H. & Frank, E. (2005). Data Mining: Practical machine learning tools and techniques,

Morgan Kaufmann.

175
Multiscale Texture Descriptors 
for Automatic Small Bowel Tumors Detection in Capsule Endoscopy



22 Will-be-set-by-IN-TECH

Yamamoto, H. & Kita, H. (2006). Double-balloon endoscopy: From concept to reality,
Gastrointestinal Endoscopy Clinics of North America 16(2): 347 – 361. Small Bowel
Enteroscopy.

176 Discrete Wavelet Transforms - Biomedical Applications

1. Introduction

Semiconductor gas sensors have been studied for many years and they are now used in
many fields of application. Despite this wide trade further research needs mainly to improve
sensitivity, selectivity and stability. In fact, in this sense, improving both, the sensor selectivity
toward specific gaseous substances and discrimination capability, has been the goal of a
great deal of work over the last few years. One strategy consists of using non selective
sensor arrays and an appropriate pattern recognition system capable of recognizing simple
or complex vapors based on the conductance or current at the saturation point of each
transient response. We believe that most useful information (high and low frequencies in
the curve) can be taken from the transient response. One of the most important processing
part of an intelligent system, is its ability to extract useful information less redundant than
the original one to aid fast processing and pattern classification. In other words: any selected
feature (1) must discriminate clearly between two or more classes of objects, (2) must not be
correlated with another feature to any moderate strong extent, and (3) should have meaning
for humans. The first step toward the pre-processing of e-nose data was based on methods
for extracting information of the transient only from the steady-state and baseline response
values. However, these methods takes into account only stationary information about the
transient (i.e. steady-state and baseline) but all the information related to the kinetic of the rise
and recovery time is lost. Each sensor has its own behavior in response to an odor presentation
that is stored along the response. For example, starting from the fact that light molecules
(i.e. alcohol) get more dispersed than heavier one (i.e. acid oils), it is possible to analyse
the recovery time of the response due to the end of the exposure to recognize the odor being
presented. In some cases of long time sensor response (of the order of several minutes), it
is possible to analyse the rise time of the transient response that can be computed in a few
seconds instead of considering the saturation parameters.
The common problem encountered with electronic nose applications is the
non-reproducibility of sensor responses over time due to drift effects. Drift is a slow
change in sensitivity that occur in time due to ageing effects, slow morphological changes in
the sensor material, poising and other long- term effects.
The instability of sensor responses could be connected to morphological evolution of the
sensing material, so that it is needed to age the sensors for several weeks in the laboratory
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bench test before their use. However long term drift is more associated with the contamination
of the sensor material due to presence of atmospheric pollution that irreversibly react on
sensor surface leading to a reduction of sensitivity.
Pijolat et al. (2003) proved that the presence of a very low concentration of SO2 in environment
can be at the origin of the tin dioxide sensor drift. In this case the problem was overcome
by pre-treated the sensors in SO2 before their use. Such a gaseous treatment had been
used in the past to improve the stability of sintered tin dioxide sensor, especially with
respect to effect of humidity. This type of treatment can be used with other gases if there
is a clear view of the mechanism of interaction between the sensing layer and the gases.
Unfortunately all processes concerning drift are not yet well known and the sensor instability
depends upon time-varying parameters such as the historical use of the sensors, interactions
with several volatile compounds present in the environment at various concentrations, the
exposure period to certain substances. Actually a great deal of work has been directed towards
the development of methods to minimize the drift effects Sisk & Lewis (2005). An efficient
approach could be to use a continuous re-calibration for the training phase of the pattern
recognition model, but in the real applications the use of sets of samples for the calibration
is very expensive and time-consuming, which makes it unlikely to re-calibrate the pattern
recognition model very often. Attempts for drift minimizing have been made by using a
reference gas as a reference value and then correcting all subsequent readings accordingly
Haugen et al. (2000). Component correction is a method using one or more reference gases.
This linear method is based on PCA and PLS algorithms and removes the drift direction
calculated from measurements of a reference gas Artursson et al. (2000). The technique
use a linear model and has been used at feature level. Multiple Self-Organizing Maps
(MSOM) has been developed in Distante, Sicilian & Persaud (2002) because new recognized
data that match the stored recognized odors can be continuously used to retrain the classifier.
This technique has the advantage of having self-recalibration mechanisms without the
intervention of a user. However, the drift must be gradual, as a discontinuity in response
between consecutive exposures (regardless of the time interval between the exposures) would
immediately invalidate the classification model and would prevent adaptation Sisk & Lewis
(2005). Others drift counteracting methods focus on the application of signal pre-processing
techniques to filter out portions of the signal containing drift contaminations. Drift is in
general a time scale longer than the duration of a single measurement, thus a selection of
the lowest frequency components of the sensor responses are needed to filter it out.
A moving median filter and Fourier band-pass filters are some examples of filters applied to
removing either high-frequency fluctuations (such as noise, spikes) or low-frequency changes
such as drift. In comparison to these filters, Discrete Wavelet Transform (DWT) technique
provides a flexible analysis of the signal at different resolutions by applying iteratively
high-pass and low-pass filters Bakshi (1999); ?. Therefore the wavelet transform is a powerful
tool to point out drift contamination in the low-frequency behavior of the sensor responses.
As it is shown in this paper, this technique allows to remove the selected low-frequency
components easily and in such a way that the signal is not distorted. The comparison of the
DWT filter and others commonly used have been compared with the relative method feature
extraction technique which is commonly used in this context. Principal component analysis
shows than that DWT approach is superior in terms of cluster dispersion. The DWT is here
also ebmedded into MSOM neural network Distante, Sicilian & Persaud (2002); Zuppa et al.
(2007) as it is able to detect and adapts to clusters trend Zuppa et al. (2004). The use of
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smoothing filters as the Savitzky-Golay and Discrete Wavelet Trasform on this function allows
to cut off the frequency components which do not influence its behaviour.

2. Related works

There has been a lot of work in using discrete wavelet trasform for electronic nose data
since our initial paper in Distante, Leo, Siciliano & Persaud (2002). Since the interesting
information resides in low frequency components as will be shown below, all the referenced
works of DWT for electronic noses make use of the approximation coefficients which are
the results of the low-pass filter with the analysing signal. In this case, approximation
coefficients allows for signal representation, where there should be made distinction when
extracting features for classification or compression tasks. Both tasks demand for signal
simplification Rubinstein et al. (2010), but in Leone et al. (2005) it has been shown that
for classification purposes, the fewer the number of decriptors, the better the accuracy.
In Phaisangittisagul & Nagle (2008) features are extracted from the transient with discrete
wavelet transform (DWT) in order to search for an optimal sensor array to be implemented
in the e-nose system. Two different odor datasets such as coffee and soda are collected
and a genetic algorithm is adapted to tailor a gas sensor array. Two different mother
wavelets were used: Haar and Daubechies of second order (db2). Several decomposition
levels were investigated, Haar third level and db2 at third fourth and fifth. As expected,
Haar provide lower classification performance with respect to db2. The fifth decomposition
level (approximation coefficients) has been selected and given to the k − Nearest − Neighbor
classifier. In Phaisangittisagul & Nagle (2010) a signal decomposition/reconstruction based
on the discrete wavelet transform is proposed, whose coefficients are given to a support
vector regression to predict a sensor’s response to mixtures of odors. Prediction is performed
on different mixing ratios of Regular, Sumatra coffees and Grean tea components. The
idea is to predict sensor response by starting from the mixing ratios. Wavelet coefficients
(both approximationa and details) have been used to train support vector regression (SVR)
machines to predict the respective coefficients at lower level going backward for inverse
discrete wavelet trasform to reconstruct the signal. So far, for each decomposition level, two
SVR’s (one for approximation coefficients and one for details) are trained. SVR parameters
have been found using an optimization technique based on genetic algorithm. The considered
sensor for the response prediction study is a MOSFET 101A sensor of the NST 3320 e-nose.
The highest decomposition level must be manually chosen, where the 5th level has shown
to be the most appropriate for the probelm at hand. Infact, choosing lower scales brings to
the overfitting problem by loosing generalization capabilities, while going to higher scales
increase the predicted error since it accumulates with the number of decomposition levels
along the reconstruction process with IDWT. A study of the number of extracted features
for the classification of several volatiles have been investigated in Acevedo et al. (2007).
They show the number of coefficients needed to reach optimal classification accuracy with
techniques such as: DWT, DCT, PCA and linear discriminant analysis (LDA).
The ability of the DWT to recover sensor signals subjected to drift effects has been addressed in
Huang & Leung (2009); Zuppa et al. (2007). The drift, such as the seasonal fluctuation, resides
in low frequencies. Wavelet analysis is used, in order to decompose the drifting signal at the
greatest scale value to reveal signal trend. The trend is the slowest part of the signal and
as the scale increases a better estimate of the unknown trend is obtained. So far, DWT is an
efficient tool for pre-processing drifting sensor responses as it allows to select and discard
signal components, where drift contamination is present, without distorting the signal by
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excessive cutting off low-frequency components. The results are compared with ones obtained
by applying usual high-pass filters.
The use of DWT for tin dioxide gas sensor has also been investigated on a robotic platform
Trincavelli et al. (2009) in a continuos sampling setup. The plume to be tracked can be
generated by ethanol, acetone or isopropyl. A feature vector composed on a combination
of DWT, curve fitting and discrete Fourier Transform coefficients have been considered and
provided to an SVM classifier. Similarly, in Loutfi et al. (2009) a mobile platform is used to
integrate classification of odours with gas distribution mapping. The resulting odour map is
then correlated with the spatial information collected from a laser range scanner to form a
combined map. Two electronic noses are present onboard based on TGS Figaro technology.
Each e-nose consists of four TGS sensors (TGS 2600 (ÃŮ2), 2620, 2602). A temporal analysing
window of 20-30 seconds of measurements are considered for the classification task. Signals
goes DWT analysis whose coefficients are projected onto the first two proncipal components
(PCA). Then SVM is used to classify between ethanol, acetone and air.

3. Wavelet analysis

Wavelet transform is an extension of Fourier Transform, generalized to any wideband
transient. Let us think to our input as a time-varying signal. To analyze signal structure of
very different sizes, it is necessary to use time-frequency atoms with different time support.
The wavelet transform decomposes signals over dilated and translated wavelets Mallat (1999).
The signal may be sampled at discrete wavelength values yielding a spectrum. In continuous
wavelet transform the input signal is correlated with an analyzing continuous wavelet. The
latter is a function of two parameters such as scale and position. The widely used Fourier
transform (FT) maps the input data into a new space, the basis functions of which are sines
and cosines. Such basis functions are defined in an infinite space and are periodic, this means
that FT is best suited to signal with these same features. The Wavelet transform maps the
input signal int a new space, the basis function that are quite localized in space. They are
usually of compact support. The term wavelet comes from well localized wave-like functions.
Infact, they are well localized in space and frequency i.e. their rate of variations is restricted.
Fourier transform is not local in space but only in frequency. Furthermore, Fourier analysis is
unique, but wavelet not, since there are many possible sets of wavelets which one can choose.
Our trade-off between different wavelet sets is compactness versus smoothness.
Working with fixed windows as in the Short Term Fourier Transform (STFT) may bring to
problems. Infact, if the signal details are much smaller than the width of the window they can
be detected but the transform will not localize them. If the signal details are larger than the
window size, then they will not be detected properly. The scale is defined by the width of a
modulation function. To solve this problem we must define a transform independent from the
scale. This means that the function should not have a fixed scale but should vary. To achieve
this, we start from a function ψ(t) as a candidate of a modulation function and we can obtain
a family starting from it by varying the scale s as follows:

ψs(u) = |s|−pψ(
u
s
) =

1
|s|p ψ

(u
s

)
p ≥ 0 ∀s ∈ � s �= 0. (1)

If ψ has width T then the width of ψ is sT. In term of frequencies, we can state that small scales
s implies ψs has high frequencies and increasing s the frequency of ψs decreases.
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3.1 Continuous wavelet transform
As it is well known, FT uses basis functions consisting of sines and cosines functions. These
functions are time-independent. Hence, the description of a signal provided by Fourier
analysis is purely in the frequency domain. The windowed Fourier transform and the wavelet
transform aims at the analysis of time and frequency. For non-stationary analysis, a windowed
Fourier transform or Short Time FT (STFT) is best suited. The smaller the window size the
more the number of discrete frequencies that will be reduced, leading to a weak discrimination
potential among frequencies. Given a signal f (t), a window g around the time-point τ and
frequency ω is

STFT(τ, ω) =
∫ +∞

−∞
f (t)g(t − τ)e−jωtdt. (2)

Now considering
kτ,ω(t) = g(t − τ)e−jωt (3)

as a new basis and rewriting this with window s inversely proportional to the frequency ω
and the position parameter b that replaces τ gives the following

kb,s(t) =
1√
s

ψ∗
(

t − b
s

)
(4)

that yields to the continuous wavelet transform (CWT).
While in STFT the basis functions are sinusoids, in the CWT they are scaled versions of the
so called mother wavelet ψ (ψ∗ represents the conjugate i.e. ψ∗

s (u) = 1√
s
ψ(− u

s ). A wavelet
mother function can be constructed in several ways, but subjected to admissibility constraints.

Definition The Morlet-Grossman definition of the continuous wavelet transform for a
1-dimensional signal f (t) ∈ L2(�),the space of all square integrable functions, is given
as follows:

f̃ (a, b) =
1√
a

∫ +∞

−∞
f (t)ψ∗

(
t − b

a

)
dt (5)

where:
• W f (a, b) is the wavelet coefficient of the function f (t),
• ψ(t) is the mother wavelet,
• a > 0 is the scale parameter,
• b is the position parameter.

We can also rewrite eq. 5 as a convolution product:

f̃ (a, b) = f � ψs(t). (6)

The continuous wavelet transform is the result of the scalar product of the original signal f
with the shifted and scaled version of a prototype analysing function ψ(t) called mother wavelet
which has the characteristic of a bandpass filter impulse response. The coefficients f̃ of the
transformed signal f represent how closely correlated the mother wavelet is with the section
of the signal being analyzed. The higher the coefficient is, the more the similarity1.
The continuous wavelet transform has the following properties:

1. CWT is a linear transformation,

2. CWT is covariant under translation,
3. CWT is covariant under dilation.
1 Note that the result will depend on the shape of the wavelet you choose.
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3.2 Wavelet functions
As it is know, to analyse signals of very different sizes, it is necessary to use time-frequency
atoms with different time support. A wavelet ψ ∈ L2(�) is a function with a zero average

� +∞

−∞
ψ(t)dt = 0, (7)

and is also normalized �ψ� = 1 and centered in the neighborhood of t = 0. The scaled and
translated versions ψs(u) remain normalized as well.

3.2.1 Haar wavelet
In 1910, Haar realized that one can construct a simple piece-wise constant function as shown
in figure 1a and is defined as follows:

ψ(t) =

⎧
⎨
⎩

1 i f 0 ≤ t < 1/2
−1 i f 1/2 ≤ t < 1

0 otherwise
(8)

whose dilation and translations generate an orthonormal basis of L2(�).
Application of this transform to data smoothing and periodicity detection
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Fig. 1. Mother wavelet functions: (a) Haar, (b) Mexican hat and (c) Morlet.

3.2.2 Mexican hat
The Mexican hat is the second derivative of a Gaussian (see fig. 1b)

g(t) = (1 − t2)e−t2/2 (9)

They were first used in computer vision to detect multiscale edges.

3.2.3 Morlet’s wavelet
This wavelet is defined as follows

g(v) = e2π2(v−v0)2
(10)

which is shown in fig. 1c

3.3 Discrete wavelet transform
Calculating wavelet coefficients at every possible scale is a fair amount of work, and it
generates an awful lot of data. What if we choose only a subset of scales and positions at
which to make our calculations?
It turns out, that if we choose scales and positions based on power of two (called dyadic scales
and positions) then our analysis will be much more efficient. This analysis is called the discrete
wavelet transform.
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In the discrete case, WT is sampled at discrete meshpoints and using smoother basis functions.
But, how to discretize the time-scale domain in order to have a discrete wavelet transform
(DWT)?
In the windowed Fourier transform the time frequency domain was discretized using a
uniform lattice Δ(t0, ω0) = {(mt0, nω0)|m, n ∈ Z} where t0 and ω0 are the time and position
respectively.
It is known that scaling operation acts as a multiplicative way, that is, composing two
consecutive scaling is attained by multiplying each of the scale factor. Thus, starting from
an initial scale s0 > 1 we consider all the discrete scales

sm = sm
0 m ∈ Z (11)

Now, how to discretize the time? It is important to note that we must obtain a lattice in the
time-scale domain in order to sample (with a minimum redundancy reconstruction of the
original signal) the continuous wavelet transform we have seen before from the time-scale
domain f̃m,n.
Changing the scale, results in the increase of the width of the wavelet. Also, when the width
of the wavelet reduces with a scale reduction operation, we must increase the frequency. One
of the most important properties of the WT is the invariance under scale changes. Infact, if we
change the scale in the function f and the scale of the underlying space by the same scaling
factor, the WT does not change. If we take fs0(t) = s−1/2

0 f (t/s0) this implies f̃s0(s0s, s0t) =

f̃ (s, t).
The invariance property of the wavelet transform is very important and should be preserved
even when the WT is discretized. The preservation can be accomplished when we pass from
one scale sm = sm

0 to the other sm+1 = sm+1
0 by incrementing the time by the scaling factor s0.

We can choose an initial time t0 and take the length of the sampling time intervals Δt = t0sm
0 .

The time discretization lattice for each scale sm
0 is given by

tm,n = nsm
0 t0 n ∈ Z (12)

and the time-scale discretization domain in the lattice is

Δs0,t0 = {(sm
0 , nsm

0 t0)|m, n ∈ Z} (13)

the discretization of the WT f̃ (s, t) =< f , ψs,t(u) > in the time scale lattice is given by

f̃m,n =< f , ψm,n(u) > (14)

where

ψm,n(u) = s−m/2
0 ψ(s−m

0 u − nt0). (15)

The discrete WT has the following characteristics:

• the sequence < f , ψm,n > m, n ∈ Z is an exact representation of f ,

• it is possible to reconstruct f from the family of wavelet time-scale atoms ψm,n,

• {ψm,n} constitutes an orthonormal basis for L2(�).
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3.2 Wavelet functions
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� +∞

−∞
ψ(t)dt = 0, (7)
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ψ(t) =

⎧
⎨
⎩
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0 otherwise
(8)

whose dilation and translations generate an orthonormal basis of L2(�).
Application of this transform to data smoothing and periodicity detection
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Fig. 1. Mother wavelet functions: (a) Haar, (b) Mexican hat and (c) Morlet.

3.2.2 Mexican hat
The Mexican hat is the second derivative of a Gaussian (see fig. 1b)

g(t) = (1 − t2)e−t2/2 (9)

They were first used in computer vision to detect multiscale edges.

3.2.3 Morlet’s wavelet
This wavelet is defined as follows

g(v) = e2π2(v−v0)2
(10)

which is shown in fig. 1c

3.3 Discrete wavelet transform
Calculating wavelet coefficients at every possible scale is a fair amount of work, and it
generates an awful lot of data. What if we choose only a subset of scales and positions at
which to make our calculations?
It turns out, that if we choose scales and positions based on power of two (called dyadic scales
and positions) then our analysis will be much more efficient. This analysis is called the discrete
wavelet transform.
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3.4 Multiresolution and subband coding
In the previous sections we have seen the continuous wavelet transform and its discretization
in the time-scale domain.
The idea of the scale is mainly related to the problem of point sampling of the signal. When
we sample a signal, we have to fix the sampling frequency2 and the sampling period3. If we
are sampling the signal at a frequency 2j this means that frequencies (details) outside the scale
magnitude of the samples will be last in the sampling process. All of the details captured in a
certain scale, will be present at higher scales 2k k > m.
The scaling process gives rise to a subspace generation. Infact, sampling with a frequency of 2j

can give rise to the formation f the subspace Vj ∈ L2(�) which is constituted by the functions
in L2(�) whose details are well represented in the scale 2j. Now let us define a representation
operator that will represent the function f ∈ L2(�) in the scale 2j. Let us suppose that there
exist a function φ ∈ L2(�) such that the family of functions

φj,k(u) = 2−j/2φ(2−ju − k) j, k ∈ Z (16)

that represent an orthonormal basis for the subspace VJ .
Defining different scales of φ we have

φs(u) =
1

|s|1/2 φ(
u
s
) (17)

where the width of φ is s-times the width of φs. Thus, as the scale increases or decreases the
width of φs does the same. Now taking s = 2j j ∈ Z we have

φj,k = φ2j (u − k) = 2−j/2φ(2−ju − k) (18)

is an orthonormal basis for Vj.
For each space Vj with scale 2j we can define the operator Rj : L2(�) → Vj. This represent
the representation operator that orthogonally project a function f ∈ L2(�) in the space Vj as
follows

Rj( f ) = ProjVj ( f ) = ∑
k
< f , φj,k > φj,k. (19)

From the previous relationships emerges that we can represent a function f at several scales.
It is important to change the representation from one scale to another without loosing
information. The details of one scale at 2j must appear at a smaller scale 2j−1. Thus Vj ∈ Vj−1

that means: given a function f ∈ L2(�) then f ∈ Vj iff f (2u) ∈ Vj−1 and recursively we can
obtain the following

f ∈ Vj i f f f (2ju) ∈ V0 (20)

Let us now define the multiresolution representation as follows

Definition A multiresolution representation in L2(�) is defined as a sequence of closed
subspaces Vj ∈ L2(�) j ∈ Z that satisfies the following properties:
1. Vj ⊂ Vj−1

2. f ∈ Vj iff f (2u) ∈ Vj−1

2 The number of samples in the time unit.
3 The length of the sample interval.
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3.
⋂

j∈Z Vj = {0}
4.

⋃
j∈Z Vj = L2(�)

5. ∃φ ∈ V0 �� {φ(u − k)|k ∈ Z} is an orthonormal basis of V0.

The function φ is called the scaling function of the multiresolution representation. Each of the
spaces Vj is called scale spaces, or, more precisely, space of scale 2j.
The orthogonal projection of f ∈ L2(�) in the space Vj is obtained by using a filtering process
of f with the different kernels φj,k k ∈ Z which define low-pass filters. Defining the Haar
multiresolution representation as

φ(t) =
{

0 i f t < 0 and t ≥ 1
1 i f t ∈ [0, 1) (21)

whose family represents basis function of the subspace

Vj = { f ∈ L2(�); f [2jk, 2j(k + 1)] = constant, k ∈ Z}. (22)

That is the projection of f on the scale space Vj is given by a function that is constant in
the interval [2jk, 2j(k + 1)]. Thus the orthogonality projection of f ∈ L2(�) in the space Vj
is obtained using a filtering process of f with the different kernels φjk k ∈ Z which define
low-pass filters.
Let us now interpret geometrically the sequence of nested scale spaces in a multiresolution
representation. Indicating the cutting frequency αj of this filters we can say that the space Vj
is constituted of functions whose frequencies are contained in the interval [−αj, αj], αj > 0.
Going to a finer scale Vj−1 we change to the interval [−αj−1, αj−1], where the relation of the
two subspaces Vj and Vj−1 is given by

Vj−1 = Vj � Wj (23)

where Wj is the detail space that comprises all the functions of L2(�) with frequencies in the
band [αj−, αj−1] of the spectrum. Thus Wj is orthogonal to Vj and the above states that
a function represented on a finer scale space Vj−1 is obtained from the representation on
a coarser scale space Vj by adding details Wj. The details can be obtained by projecting
a function f in each subspace Wj using band-pass filtering whose pass-band is exactly
[αj−, αj−1]. In fact, this filtering process can be computed by projecting f on an orthogonal
basis of wavelets. For each j ∈ Z there exists an orthonormal basis of wavelets {ψj,k, k ∈ Z}
of the space Wj. Therefore, if Rj is the representation operator on the scale space Vj, we have,
for all f ∈ L2(�)

Rj−1( f ) = Rj( f ) + ∑
k∈Z

< f , ψj,k > ψj,k. (24)

The second term represent the orthogonal projection of function f on the space Wj and it will
be denoted by ProjWj

( f ). Now rewriting eq. 23 in terms of filters we have

Rj−1( f ) = Rj( f ) + ProjWj
( f )Rj−2( f ) = Rj−1( f ) + ProjWj−1( f )... (25)

iterating this equation for Rj−2, ..., Rj−J0 , summing up both sides and performing the proper
cancellations, we obtain

Rj−J0( f ) = Rj( f ) + ProjWj−1( f ) + ...+ ProjWj− J0
( f ). (26)
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The projection Rj( f ) represents a version of low resolution (approximation) of the
signal obtained using successive low-pass filters φj, φj−1, ..., φj − J0. The terms
ProjWj−1( f ), ..., ProjWj− J0

( f ) represent the details of the signal lost in each low-pass filtering.
This details are obtained by filtering the signal using the wavelets ψj, ψj−1, ..., ψj − J0.
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Fig. 2. Three responses relative to Pentanone, Acetone, and Exanal in 50%RH (from left to
right).

4. Experiments

4.1 DWT analysis
The active layers of the array consist of pure and doped SnO2 thin films prepared by means of
sol-gel technology. Pd, Pt, Os, and Ni were chosen as doping elements starting from different
precursors of the preparation of the modified films. The films, whose thickness was about
100nm, were deposited on alumnia substrates supplied with interdigitated electrodes and
platinum heater, by the spin coating technique at 3000 rpm, dried at 80 ◦C and heat treated in
air at 600 ◦C. After deposition, the sensors were mounted onto a TO8 socket and inserted in
the test chamber.
Samples of different compounds were introduced into a vial kept at room temperature by
a thermostatic tank. Many subsequent measurements were performed, for each sample,
by fixing the exposure time and the purging time at 20 minutes. The responses have been
acquired with a sampling interval of 32 seconds then acquiring 75 points for each response.
Three gases have been taken under consideration (216 measurements in total): Acetone,
Hexanal, and Pentanone in 50% relative humidity (RH) and dry air. For a preliminary analysis
these gases in 50% RH.
Two different kinds of analysis have been carried out by using PCA and neural network. The
first analysis is purely qualitative and for visualization purposes, project data obtained by the
several feature extraction methods previously discussed onto the first two useful principal
components.
Principal Component Analysis is usually carried out as a low pass filter, in order to reduce
noise in the signal, keeping components corresponding to the first few eigenvectors that
capture most of the variance contained in the data set. Usually the transformation is made
into 2D or 3D spaces. Let A be the truncated transformation matrix constituted of the first
useful principal components of the correlation matrix of the data set. In the experiments that
follow in this paper, the first three principal components from the measurements yij have been
extracted, so the matrix A is 3 × n and then the observation becomes the 3D vector xj = A · yj.
The second analysis is more deep because is based on the classification results of a Radial Basis
Function neural network, which is given a pattern composed of the coefficients extracted with
a pre-processing method. The training and validation procedure is performed by using the
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Fig. 3. Power spectra density computed on three different odour responses.

leave-one-out procedure which provides an estimate of the generalization performances of
the final classifier.
The RBF network used, creates neurons one at a time. At each iteration the input vector which
will result in lowering the network sum − squared error, is used to create a new radial basis
neuron. The error of the new network is checked, and if low enough the learning phase is
finished. Otherwise the next neuron is added. This procedure is repeated until the error goal
is met (0.001), or the maximum number of neurons is reached (i.e. the number of training
vectors 215). A spread of 0.8 is used for radial basis functions in order to ensure that more
than one neuron can respond to overlapping regions of the input space.
Analysis in the frequency domain has been carried out and figure 3 shows three curves relative
to one of the three gases under consideration. The electronic nose responses possess the
same frequency domain but different magnitudes for different odors. So an appropriate low
pass filter is suitable for feature extraction since the responses have the useful information
we need lying in low frequencies, as opposed to noise that is present in high frequencies.
Unfortunately, drift also resides in low frequencies and this method carries also this problem
in the transformation, but the reduction of the drift is outside the scope of this paper. As
introduced in the previous sections, at each level (scale) of signal decomposition, wavelet
coefficients are divided by approximation (low frequencies) and details (high frequencies).
Also, the coefficients are obtained by convolving the wavelet function and the response curve,
thus measuring their correlation degree. The mother wavelet used is the Daubechies family
since they guarantee an orthogonal analysis, a necessary condition for feature extraction. After
choosing the mother wavelet to use, the next investigation is the level to stop for getting
the approximation coefficients of the DWT. The higher the scale the more low frequencies
are amplified and high frequencies are cut off. But this is not an infinite process, infact the
decomposition level has a lower limit that is the sampling period and a superior limit that is
the signal support. The maximum decomposition level of the DWT is the 2-base logarithm of
the length of the signal. Since each transient has a length of approximately 80 samples, then
the 6th level is appropriate, where 26 = 64 < 80 (the 7th level requires a signal greater than 80
samples).
The graph of the coefficients for one sensor and 3 exposures of the sensor array to the same
odor (hexanal) is given in fig. 5 where coefficients up to the 6th decomposition level are
shown. The first 13 coefficients on the x-axis shows approximation and the remainings show
details. It is interesting to note that the first coefficients of the three curves fall all in the
same position as shown by the leftmost patterns (they overlap each other). This may bring
to the conclusion that the same order of coefficients related to the same odor are the same.
So in this graph the first three order of coefficients can be taken as features to be successively
classified by an opportune classifier. As a counter-example, fig. 4 shows coefficients related to
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sol-gel technology. Pd, Pt, Os, and Ni were chosen as doping elements starting from different
precursors of the preparation of the modified films. The films, whose thickness was about
100nm, were deposited on alumnia substrates supplied with interdigitated electrodes and
platinum heater, by the spin coating technique at 3000 rpm, dried at 80 ◦C and heat treated in
air at 600 ◦C. After deposition, the sensors were mounted onto a TO8 socket and inserted in
the test chamber.
Samples of different compounds were introduced into a vial kept at room temperature by
a thermostatic tank. Many subsequent measurements were performed, for each sample,
by fixing the exposure time and the purging time at 20 minutes. The responses have been
acquired with a sampling interval of 32 seconds then acquiring 75 points for each response.
Three gases have been taken under consideration (216 measurements in total): Acetone,
Hexanal, and Pentanone in 50% relative humidity (RH) and dry air. For a preliminary analysis
these gases in 50% RH.
Two different kinds of analysis have been carried out by using PCA and neural network. The
first analysis is purely qualitative and for visualization purposes, project data obtained by the
several feature extraction methods previously discussed onto the first two useful principal
components.
Principal Component Analysis is usually carried out as a low pass filter, in order to reduce
noise in the signal, keeping components corresponding to the first few eigenvectors that
capture most of the variance contained in the data set. Usually the transformation is made
into 2D or 3D spaces. Let A be the truncated transformation matrix constituted of the first
useful principal components of the correlation matrix of the data set. In the experiments that
follow in this paper, the first three principal components from the measurements yij have been
extracted, so the matrix A is 3 × n and then the observation becomes the 3D vector xj = A · yj.
The second analysis is more deep because is based on the classification results of a Radial Basis
Function neural network, which is given a pattern composed of the coefficients extracted with
a pre-processing method. The training and validation procedure is performed by using the
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Fig. 3. Power spectra density computed on three different odour responses.

leave-one-out procedure which provides an estimate of the generalization performances of
the final classifier.
The RBF network used, creates neurons one at a time. At each iteration the input vector which
will result in lowering the network sum − squared error, is used to create a new radial basis
neuron. The error of the new network is checked, and if low enough the learning phase is
finished. Otherwise the next neuron is added. This procedure is repeated until the error goal
is met (0.001), or the maximum number of neurons is reached (i.e. the number of training
vectors 215). A spread of 0.8 is used for radial basis functions in order to ensure that more
than one neuron can respond to overlapping regions of the input space.
Analysis in the frequency domain has been carried out and figure 3 shows three curves relative
to one of the three gases under consideration. The electronic nose responses possess the
same frequency domain but different magnitudes for different odors. So an appropriate low
pass filter is suitable for feature extraction since the responses have the useful information
we need lying in low frequencies, as opposed to noise that is present in high frequencies.
Unfortunately, drift also resides in low frequencies and this method carries also this problem
in the transformation, but the reduction of the drift is outside the scope of this paper. As
introduced in the previous sections, at each level (scale) of signal decomposition, wavelet
coefficients are divided by approximation (low frequencies) and details (high frequencies).
Also, the coefficients are obtained by convolving the wavelet function and the response curve,
thus measuring their correlation degree. The mother wavelet used is the Daubechies family
since they guarantee an orthogonal analysis, a necessary condition for feature extraction. After
choosing the mother wavelet to use, the next investigation is the level to stop for getting
the approximation coefficients of the DWT. The higher the scale the more low frequencies
are amplified and high frequencies are cut off. But this is not an infinite process, infact the
decomposition level has a lower limit that is the sampling period and a superior limit that is
the signal support. The maximum decomposition level of the DWT is the 2-base logarithm of
the length of the signal. Since each transient has a length of approximately 80 samples, then
the 6th level is appropriate, where 26 = 64 < 80 (the 7th level requires a signal greater than 80
samples).
The graph of the coefficients for one sensor and 3 exposures of the sensor array to the same
odor (hexanal) is given in fig. 5 where coefficients up to the 6th decomposition level are
shown. The first 13 coefficients on the x-axis shows approximation and the remainings show
details. It is interesting to note that the first coefficients of the three curves fall all in the
same position as shown by the leftmost patterns (they overlap each other). This may bring
to the conclusion that the same order of coefficients related to the same odor are the same.
So in this graph the first three order of coefficients can be taken as features to be successively
classified by an opportune classifier. As a counter-example, fig. 4 shows coefficients related to
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Fig. 4. Coefficients extracted up to the 6-th level of DWT decomposition for three responses
of the three considered odour (pentanone, hexanal, and acetone).
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Fig. 5. Coefficients extracted up to the 6-th level of DWT decomposition for three response of
the same odour (hexanal).

different odors. However, the first coefficients of the approximation of the three odor curves
do not discriminate well since they overlap. The discrimination starts from the third order of
coefficient until the sixth, and the scale is larger than the coefficients shown in the figure 5. This
states that a number of 6 coefficients is suitable as features and that wavelet transform enlarge
the range of the coefficients for different odors while maintaining small the variability of the
range coefficients related to the same odor (compare the two figures for the 5th coefficient).
The transient has been analysed in three time parts response: rise time, recovery time and the
complete curve (i.e. from the rise time to the next when a new odor is presented). Over all this
experiments the extraction of the first 6 coefficients over the complete transient has shown
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Fig. 6. Principal component analysis done in the wavelet space for the three gases measured
in dry and humid air. Each observation has 30 coefficients (features) since for each response
of the five sensors, the first six coefficients are extracted (compare the result with the
traditional method shown in fig. 7)

better results. However it has been shown that the recovery time is more informative than
the rise time, but in general better results are obtained with the complete curve. In fig. 6 is
shown the score plot of the first two principal components computed in the wavelet space for
visualization. Table 1 gives the classification results with RBF for input pattern of 30 wavelet
descriptors.

(1) (2) (3) (4) (5) (6) (7)
(1) 28 0 0 0 0 0 0
(2) 0 21 0 0 0 0 0
(3) 0 0 25 0 0 0 0
(4) 0 0 0 29 0 0 0
(5) 0 0 0 0 35 0 0
(6) 0 0 0 0 0 22 0
(7) 0 0 0 0 0 0 60

Table 1. Confusion matrix of the wavelet analysis. The total recognition percentage is 100%.
(1) Humidity; (2) Acetone; (3) Acetone in 50% RH; (4) Hexanal, (5) Hexanal in 50% RH; (6)
Pentanone; (7) Pentanone in 50% RH.

Traditional methods such as the relative, fractional, difference and log parameter, present
almost the same behavior for the data under consideration in terms of classification results.
Here we report the results of the relative method shown in fig. 7 and the corresponding
confusion matrix in table 2 for input patterns to the RBF classifier of 5 coefficients (the number
of sensors).
As a comparison, also Fourier descriptors have been tested against wavelet descriptors.
Fourier descriptors provide a frequency measure of the curve under consideration without
localizing them in the time domain. The Fast Fourier Transform (FFT) is used which allows
us to compute very quickly the discrete transformation with a good approximation. The
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different odors. However, the first coefficients of the approximation of the three odor curves
do not discriminate well since they overlap. The discrimination starts from the third order of
coefficient until the sixth, and the scale is larger than the coefficients shown in the figure 5. This
states that a number of 6 coefficients is suitable as features and that wavelet transform enlarge
the range of the coefficients for different odors while maintaining small the variability of the
range coefficients related to the same odor (compare the two figures for the 5th coefficient).
The transient has been analysed in three time parts response: rise time, recovery time and the
complete curve (i.e. from the rise time to the next when a new odor is presented). Over all this
experiments the extraction of the first 6 coefficients over the complete transient has shown
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better results. However it has been shown that the recovery time is more informative than
the rise time, but in general better results are obtained with the complete curve. In fig. 6 is
shown the score plot of the first two principal components computed in the wavelet space for
visualization. Table 1 gives the classification results with RBF for input pattern of 30 wavelet
descriptors.

(1) (2) (3) (4) (5) (6) (7)
(1) 28 0 0 0 0 0 0
(2) 0 21 0 0 0 0 0
(3) 0 0 25 0 0 0 0
(4) 0 0 0 29 0 0 0
(5) 0 0 0 0 35 0 0
(6) 0 0 0 0 0 22 0
(7) 0 0 0 0 0 0 60

Table 1. Confusion matrix of the wavelet analysis. The total recognition percentage is 100%.
(1) Humidity; (2) Acetone; (3) Acetone in 50% RH; (4) Hexanal, (5) Hexanal in 50% RH; (6)
Pentanone; (7) Pentanone in 50% RH.

Traditional methods such as the relative, fractional, difference and log parameter, present
almost the same behavior for the data under consideration in terms of classification results.
Here we report the results of the relative method shown in fig. 7 and the corresponding
confusion matrix in table 2 for input patterns to the RBF classifier of 5 coefficients (the number
of sensors).
As a comparison, also Fourier descriptors have been tested against wavelet descriptors.
Fourier descriptors provide a frequency measure of the curve under consideration without
localizing them in the time domain. The Fast Fourier Transform (FFT) is used which allows
us to compute very quickly the discrete transformation with a good approximation. The
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Fig. 7. Result using the traditional method of applying the relative method (Is/I0) for the
extraction of the features from one response of the sensor and then performing the principal
component analysis on the observation space of five elements (one observation from each
sensor as opposed to the six extracted with the wavelet analysis).

(1) (2) (3) (4) (5) (6) (7)
(1) 26 0 2 0 0 0 0
(2) 0 21 0 0 0 0 0
(3) 4 0 16 0 5 0 0
(4) 0 0 0 28 0 1 0
(5) 1 0 1 0 31 0 2
(6) 0 0 0 22 0 0 0
(7) 0 0 0 0 3 0 57

Table 2. Confusion matrix of the relative method feature extraction. The total recognition
percentage is 81.36%. (1) Humidity; (2) Acetone; (3) Acetone in 50% RH; (4) Hexanal, (5)
Hexanal in 50% RH; (6) Pentanone; (7) Pentanone in 50% RH.

first 10 descriptors have been considered for each curve, since they possess the greatest
magnitude and, low frequencies dominate in the response curve. The feature vector pattern
is then composed of 50 descriptors, which have been: projected onto the first two principal
components for visualization as shown in figure 8 and; given to RBF for discrimination
capabilities (table 3).
Integrals and derivatives have also been investigated to benchmark them against the above
discussed feature extraction methods.
The aim is the computation of the integral of the f function in the interval [a, b], where a
represents the time step of the concentration change in the rise time, and b the end of the
recovery time (where ḟ (t) = 0). The applied Newton-Cotes method Chapra & Canale (1988)
is based on the substitution of the function that represents the transient response with a more
simple approximation function:

I =
∫ b

a
f (x)dx ≈

∫ b

a
fn(x)dx (27)
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where fn(x) is a polynomial function of order n defined as follows:

fn(x) = a0 + a1x + . . . + an−1xn−1 + anxn (28)

The order of the polynomial function determines the accuracy of the method, in our
experiments we used the "Simpson’s 1/3 Rule" which uses a second order polynomial
function.
Simpson’s rule finds the area under the parabola which passes through 3 points (the end
points and the midpoint, i.e. x0, x1, x2) on a curve. In essence, the rule approximates the curve
by a series of parabolic arcs and the area under the parabolas is approximately the area under
the curve. The Simpson’s rule as well as the other Newton-cotes methods can be applied only
if the points are equally spaced. The transient response has been split into 25 intervals where
the area is computed as follows:

I = (x2 − x0)
f (x0) + 4 f (x1) + f (x2)

6
. (29)

The observation pattern is composed of five features each one of them describing the area of
the corresponding sensor response. Figure 9 shows the PCA plot of the extracted features. The
five features are given to the RBF for training and classification with leave-one-out procedure,
and the confusion matrix is given in table 4. It is interesting to note that this method produces
very informative features as compared with the results obtained with the wavelet descriptors.
Another applied method is the study of the local gradient over the whole transient response.
Even in this case the study of the local gradient has been carried out by approximation using
the Taylor series. Starting from a first order Taylor series f (xi+1) = f (xi)− f �(xi)(xi+1 − xi)
we can approximate the derivative in the point xi as follows:

f �(xi) =
f (xi)− f (xi+1)

xi+1 − xi
. (30)

The mean derivative has been computed over intervals of 10 point samples so then for the
whole transient response a number of (75/10) ≈ 7 features are obtained, leading to 35 features
for each observation of the array five sensors. Figure 10 shows the result of mean derivative
method by using PCA and in table 5 the confusion matrix of the 7 feature vectors classified by
the RBF is given.

(1) (2) (3) (4) (5) (6) (7)
(1) 28 0 0 0 0 0 0
(2) 0 20 0 0 0 1 0
(3) 0 0 23 0 2 0 0
(4) 0 0 0 28 0 1 0
(5) 1 0 1 0 33 0 0
(6) 0 0 0 0 0 22 0
(7) 0 0 0 0 2 0 58

Table 3. Confusion matrix of the FFT method. The total recognition percentage is 96.36%. (1)
Humidity; (2) Acetone; (3) Acetone in 50% RH; (4) Hexanal, (5) Hexanal in 50% RH; (6)
Pentanone; (7) Pentanone in 50% RH.

All of the compounds in dry air have shown good results. Only the cluster related to humidity
is well defined and separable from others in all the experiments, while hexanal and acetone
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(3) 4 0 16 0 5 0 0
(4) 0 0 0 28 0 1 0
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Table 2. Confusion matrix of the relative method feature extraction. The total recognition
percentage is 81.36%. (1) Humidity; (2) Acetone; (3) Acetone in 50% RH; (4) Hexanal, (5)
Hexanal in 50% RH; (6) Pentanone; (7) Pentanone in 50% RH.

first 10 descriptors have been considered for each curve, since they possess the greatest
magnitude and, low frequencies dominate in the response curve. The feature vector pattern
is then composed of 50 descriptors, which have been: projected onto the first two principal
components for visualization as shown in figure 8 and; given to RBF for discrimination
capabilities (table 3).
Integrals and derivatives have also been investigated to benchmark them against the above
discussed feature extraction methods.
The aim is the computation of the integral of the f function in the interval [a, b], where a
represents the time step of the concentration change in the rise time, and b the end of the
recovery time (where ḟ (t) = 0). The applied Newton-Cotes method Chapra & Canale (1988)
is based on the substitution of the function that represents the transient response with a more
simple approximation function:

I =
∫ b

a
f (x)dx ≈
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a
fn(x)dx (27)
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where fn(x) is a polynomial function of order n defined as follows:

fn(x) = a0 + a1x + . . . + an−1xn−1 + anxn (28)

The order of the polynomial function determines the accuracy of the method, in our
experiments we used the "Simpson’s 1/3 Rule" which uses a second order polynomial
function.
Simpson’s rule finds the area under the parabola which passes through 3 points (the end
points and the midpoint, i.e. x0, x1, x2) on a curve. In essence, the rule approximates the curve
by a series of parabolic arcs and the area under the parabolas is approximately the area under
the curve. The Simpson’s rule as well as the other Newton-cotes methods can be applied only
if the points are equally spaced. The transient response has been split into 25 intervals where
the area is computed as follows:

I = (x2 − x0)
f (x0) + 4 f (x1) + f (x2)

6
. (29)

The observation pattern is composed of five features each one of them describing the area of
the corresponding sensor response. Figure 9 shows the PCA plot of the extracted features. The
five features are given to the RBF for training and classification with leave-one-out procedure,
and the confusion matrix is given in table 4. It is interesting to note that this method produces
very informative features as compared with the results obtained with the wavelet descriptors.
Another applied method is the study of the local gradient over the whole transient response.
Even in this case the study of the local gradient has been carried out by approximation using
the Taylor series. Starting from a first order Taylor series f (xi+1) = f (xi)− f �(xi)(xi+1 − xi)
we can approximate the derivative in the point xi as follows:

f �(xi) =
f (xi)− f (xi+1)

xi+1 − xi
. (30)

The mean derivative has been computed over intervals of 10 point samples so then for the
whole transient response a number of (75/10) ≈ 7 features are obtained, leading to 35 features
for each observation of the array five sensors. Figure 10 shows the result of mean derivative
method by using PCA and in table 5 the confusion matrix of the 7 feature vectors classified by
the RBF is given.

(1) (2) (3) (4) (5) (6) (7)
(1) 28 0 0 0 0 0 0
(2) 0 20 0 0 0 1 0
(3) 0 0 23 0 2 0 0
(4) 0 0 0 28 0 1 0
(5) 1 0 1 0 33 0 0
(6) 0 0 0 0 0 22 0
(7) 0 0 0 0 2 0 58

Table 3. Confusion matrix of the FFT method. The total recognition percentage is 96.36%. (1)
Humidity; (2) Acetone; (3) Acetone in 50% RH; (4) Hexanal, (5) Hexanal in 50% RH; (6)
Pentanone; (7) Pentanone in 50% RH.

All of the compounds in dry air have shown good results. Only the cluster related to humidity
is well defined and separable from others in all the experiments, while hexanal and acetone
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Fig. 8. Principal component analysis done in the Fourier space for the three gases measured
in dry and humid air. Each observation has 50 features since for each response of the five
sensors, the first ten coefficients are extracted.
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Fig. 9. Principal component analysis with the integration method for gases measured in dry
and humid air. Each observation has 5 features corresponding to the areas computed on the
responses starting from the release of the aroma in the test chamber.

are mixing up in dry air. Among all the steady-state methods, the difference method have
shown better results.
However, when analysed in presence of humidity (50% RH) the performance of the classifier
are decreased. It is interesting to note that after inspecting data with PCA, humid compounds
and dry compounds are separate from each other. Traditional methods provides poor results
in the first two principal dimensions, infact, in the two macro-clusters (dry and humid) the
compounds have disordered positions. Hexanal from Pentanone in dry air have correlated
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Fig. 10. PCA plot of the features extracted with the derivative method.

(1) (2) (3) (4) (5) (6) (7)
(1) 28 0 0 0 0 0 0
(2) 0 21 0 0 0 0 0
(3) 0 0 25 0 0 0 0
(4) 0 0 0 29 0 0 0
(5) 0 0 0 0 34 0 1
(6) 0 0 0 0 0 22 0
(7) 0 0 0 0 0 0 60

Table 4. Confusion matrix of the Integration method. The total recognition percentage is
99.54%. (1) Humidity; (2) Acetone; (3) Acetone in 50% RH; (4) Hexanal, (5) Hexanal in 50%
RH; (6) Pentanone; (7) Pentanone in 50% RH.

(1) (2) (3) (4) (5) (6) (7)
(1) 28 0 0 0 0 0 0
(2) 0 20 0 1 0 0 0
(3) 0 0 25 0 0 0 0
(4) 0 0 0 29 0 0 0
(5) 0 0 4 0 29 0 2
(6) 0 1 0 0 0 21 0
(7) 0 0 0 0 2 0 58

Table 5. Confusion matrix of the gradient method. The total recognition percentage is
95.45%. (1) Humidity; (2) Acetone; (3) Acetone in 50% RH; (4) Hexanal, (5) Hexanal in 50%
RH; (6) Pentanone; (7) Pentanone in 50% RH.

features, making RBF difficult to classify them correctly. It has been shown that features made
only of steady-state information, weakly discriminate classes of odors. Features extracted
from the transient response, are more informative but as opposed to traditional steady-state
methods, they inherit sensor long term stabilities problems. These are shown with the
humidity and Pentanone measurements. The derivative method presents better results with
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are mixing up in dry air. Among all the steady-state methods, the difference method have
shown better results.
However, when analysed in presence of humidity (50% RH) the performance of the classifier
are decreased. It is interesting to note that after inspecting data with PCA, humid compounds
and dry compounds are separate from each other. Traditional methods provides poor results
in the first two principal dimensions, infact, in the two macro-clusters (dry and humid) the
compounds have disordered positions. Hexanal from Pentanone in dry air have correlated
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(1) (2) (3) (4) (5) (6) (7)
(1) 28 0 0 0 0 0 0
(2) 0 21 0 0 0 0 0
(3) 0 0 25 0 0 0 0
(4) 0 0 0 29 0 0 0
(5) 0 0 0 0 34 0 1
(6) 0 0 0 0 0 22 0
(7) 0 0 0 0 0 0 60

Table 4. Confusion matrix of the Integration method. The total recognition percentage is
99.54%. (1) Humidity; (2) Acetone; (3) Acetone in 50% RH; (4) Hexanal, (5) Hexanal in 50%
RH; (6) Pentanone; (7) Pentanone in 50% RH.

(1) (2) (3) (4) (5) (6) (7)
(1) 28 0 0 0 0 0 0
(2) 0 20 0 1 0 0 0
(3) 0 0 25 0 0 0 0
(4) 0 0 0 29 0 0 0
(5) 0 0 4 0 29 0 2
(6) 0 1 0 0 0 21 0
(7) 0 0 0 0 2 0 58

Table 5. Confusion matrix of the gradient method. The total recognition percentage is
95.45%. (1) Humidity; (2) Acetone; (3) Acetone in 50% RH; (4) Hexanal, (5) Hexanal in 50%
RH; (6) Pentanone; (7) Pentanone in 50% RH.

features, making RBF difficult to classify them correctly. It has been shown that features made
only of steady-state information, weakly discriminate classes of odors. Features extracted
from the transient response, are more informative but as opposed to traditional steady-state
methods, they inherit sensor long term stabilities problems. These are shown with the
humidity and Pentanone measurements. The derivative method presents better results with
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Pre-processing Recognition
Method rate (% )
Relative 81

Log 81
Difference 83
Fractional 82
Derivative 95.45

Fourier coeff. 96
Integration 99.5

Wavelet coeff. 100

Table 6. Comparison between several feature extraction methods in terms of informative
contents contained in each pattern. The results are based on the leave-one-out procedure
performed with a RBF neural network.

95% classification rate considering the whole curve analysis. Some of the transient analysis
methods have also been investigated for the rise and recovery time. A study of the derivative
method restricted to the rise time and recovery time has produced 95% and 93% recognition
rates respectively. The integration method have shown results better results both in the PCA
space and with RBF classification leading to 99% over the whole response and 96% and
98% for the rise and recovery time respectively. The multiresolution approach with wavelet
analysis conducted for the whole response have shown best performance overall methods
here presented. In this case, both linear separation and better classification results have been
obtained.
Rise time and recovery time parts of the curve gave classification rates of 99% and 100%
accuracy respectively.

4.2 Drift counteraction
The micro-sensor array consisted of seven semiconductor metal oxide sensors whose sensing
thin film material were pure and doped tin- dioxide SnO2. Os, Ni, Pt, Pd elements were used
as doping elements. The films had been prepared starting from tin tetrachloride, as precursor,
with the aim to obtain stabilized SnO2 solutions The films, whose thickness was 100nm, were
deposited on alumina substrates, (3 × 3mm2) supplied with inter-digitated electrodes and
platinum heater, by means of the spin coating technique at 3000 rpm, dried at 80 8C and heat
treated in air at 600 8C. After deposition, the sensors had been mounted onto a TO8 socket and
inserted in the test chamber. The conditioning of the sensors had been performed by using dry
air (flow 100sccm), used also as reference gas for acquiring the baseline current values of the
sensors. The device was exposed to three different gases: acetone, hexanal and pentanone in
50% relative humidity (RH). The measurements were performed by fixing the exposure time
and the purging time at 20 min. The responses have been acquired with sampling interval of
32 sec. then acquiring 75 points for each response. Further long-term stability of the sensors
was tested by performing measurements of baseline current values in dry air over a period
of 76 days. At the same time a morphological study on sensor material was performed to
reveal poising or ageing during their use by means of the Scanning Electron Microscopy
(SEM) images and the X-ray Photoelectron Spectroscopy (XPS) study. As it can be seen in
figure 11, it is evident a drifting behavior of all sensors. In this case a drift contamination
is more evident for SnO2-Os based sensor and the pair of identical sensors (SnO2-Ni and
SnO2-Pd based sensors) show a similar trend in terms of baseline during the whole period
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of measurements. The morphological analysis did not reveal effects of the ageing of sensing
material while it showed a clear degradation of Ti/Au inter-digitated contacts due to high
working temperature Capone et al. (2006). The signal pre-processing method based on
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Fig. 12. Example of simulated metal oxide sensor responses to a same odor without drift
effect (a) and subjected to drift(b).

DWT was tested on drifting sensor responses, which had been artificially generated in
according to the drifting behavior of the sensors previously examined and showed in the
fig 11. The drifting signal was obtained by adding the interpolation of sensor’s baseline
trend to a signal of n repeated cycles of sensor responses (fig. 12). The multilevel wavelet
decomposition of these simulated signals was performed by applying iteratively high-pass
and low-pass filters. The lowest frequencies influence the deepest levels (in this case the level
fixed N), so that the associated approximation coefficients could have drift contamination.
In this case it is needed to discard the N-level approximation coefficients containing drift
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95% classification rate considering the whole curve analysis. Some of the transient analysis
methods have also been investigated for the rise and recovery time. A study of the derivative
method restricted to the rise time and recovery time has produced 95% and 93% recognition
rates respectively. The integration method have shown results better results both in the PCA
space and with RBF classification leading to 99% over the whole response and 96% and
98% for the rise and recovery time respectively. The multiresolution approach with wavelet
analysis conducted for the whole response have shown best performance overall methods
here presented. In this case, both linear separation and better classification results have been
obtained.
Rise time and recovery time parts of the curve gave classification rates of 99% and 100%
accuracy respectively.

4.2 Drift counteraction
The micro-sensor array consisted of seven semiconductor metal oxide sensors whose sensing
thin film material were pure and doped tin- dioxide SnO2. Os, Ni, Pt, Pd elements were used
as doping elements. The films had been prepared starting from tin tetrachloride, as precursor,
with the aim to obtain stabilized SnO2 solutions The films, whose thickness was 100nm, were
deposited on alumina substrates, (3 × 3mm2) supplied with inter-digitated electrodes and
platinum heater, by means of the spin coating technique at 3000 rpm, dried at 80 8C and heat
treated in air at 600 8C. After deposition, the sensors had been mounted onto a TO8 socket and
inserted in the test chamber. The conditioning of the sensors had been performed by using dry
air (flow 100sccm), used also as reference gas for acquiring the baseline current values of the
sensors. The device was exposed to three different gases: acetone, hexanal and pentanone in
50% relative humidity (RH). The measurements were performed by fixing the exposure time
and the purging time at 20 min. The responses have been acquired with sampling interval of
32 sec. then acquiring 75 points for each response. Further long-term stability of the sensors
was tested by performing measurements of baseline current values in dry air over a period
of 76 days. At the same time a morphological study on sensor material was performed to
reveal poising or ageing during their use by means of the Scanning Electron Microscopy
(SEM) images and the X-ray Photoelectron Spectroscopy (XPS) study. As it can be seen in
figure 11, it is evident a drifting behavior of all sensors. In this case a drift contamination
is more evident for SnO2-Os based sensor and the pair of identical sensors (SnO2-Ni and
SnO2-Pd based sensors) show a similar trend in terms of baseline during the whole period
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DWT was tested on drifting sensor responses, which had been artificially generated in
according to the drifting behavior of the sensors previously examined and showed in the
fig 11. The drifting signal was obtained by adding the interpolation of sensor’s baseline
trend to a signal of n repeated cycles of sensor responses (fig. 12). The multilevel wavelet
decomposition of these simulated signals was performed by applying iteratively high-pass
and low-pass filters. The lowest frequencies influence the deepest levels (in this case the level
fixed N), so that the associated approximation coefficients could have drift contamination.
In this case it is needed to discard the N-level approximation coefficients containing drift
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Fig. 13. SnO2-based sensor response (a). Frequency content of signal via periodogram (b).
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Fig. 14. SnO2-based sensor response subjected to drift (a). Frequency content of signal via
periodogram (b).

contamination. More precisely, each approximation coefficient was fixed to the value of the
first approximation coefficient vector element to avoid shifting of the reconstructed signal
with respect to the processed one. The wavelet reconstruction was computed by using these
changed approximation coefficients and remaining wavelet coefficients from level 1 to N-1.
The decomposition level was fixed once analysis in the frequency domain has been carried
out to single out the frequency domain of the drifting trend. The figures 13 and 14 show
two periodogramms of the SnO2-based sensor response and the drifting one respectively. The
drifting trend frequency component predominates at the scale a which has been gauged by
means of the following relationship:

Fa =
Fc

a ∗ Δ

where a is a scale with a = 2N (N is the number of decomposition levels), Fc is the center
frequency associated to wavelet function, Δ is sampling period and Fa is the pseudo-frequency
associated to scale a. The value of Fa must be close to the frequency whose component must
be filtered out. The sixth order Daubechies (db6) was selected as analyzing wavelet, and the
level of wavelet decomposition of the drifting SnO2-based sensor response was fixed at N =
6. The pseudo-frequency Fa associated to scale 26 is 3.5511e − 04Hz, so it could filter out
the frequency components less than Fa discarding the associated approximation coefficients.
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Fig. 16. The drifting signal (a), the Butterworth-filtered one (b), Elliptic-filtered one (c) and
FIR-filtered one (d)

Figure 15 shows the filtered signal and tin comparison with the performance of the usual
high-pass filters (fig. 16). After pre-processing sensor responses, the relative parameters Is/I0
(Is represents the steady-state current value and I0 the relative baseline value) were extracted
from the drifting and filtered signals. These feature sets was subsequently normalized and
analyzed by Principal Component Analysis to visualize the data set. The PCA score plot
regarding to the feature set obtained from drifting signals (fig. 17) shows an overlap of the
clusters relative to the three gases. A better cluster separation was obtained after the signal
pre-processing based on DWT, and in the respective PCA score plot (fig. 18) the three clusters
are distinct.

5. Conclusions

The chapter has shown the use of discete wavelet analysis to characterize electronic nose
responses from array of gas sensors. The addressed problems were related to signal
representation that finds its basis under the signal compression context in order to find
compact ways for classification purposes and for denoising under the sensor drift problem.
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contamination. More precisely, each approximation coefficient was fixed to the value of the
first approximation coefficient vector element to avoid shifting of the reconstructed signal
with respect to the processed one. The wavelet reconstruction was computed by using these
changed approximation coefficients and remaining wavelet coefficients from level 1 to N-1.
The decomposition level was fixed once analysis in the frequency domain has been carried
out to single out the frequency domain of the drifting trend. The figures 13 and 14 show
two periodogramms of the SnO2-based sensor response and the drifting one respectively. The
drifting trend frequency component predominates at the scale a which has been gauged by
means of the following relationship:

Fa =
Fc

a ∗ Δ

where a is a scale with a = 2N (N is the number of decomposition levels), Fc is the center
frequency associated to wavelet function, Δ is sampling period and Fa is the pseudo-frequency
associated to scale a. The value of Fa must be close to the frequency whose component must
be filtered out. The sixth order Daubechies (db6) was selected as analyzing wavelet, and the
level of wavelet decomposition of the drifting SnO2-based sensor response was fixed at N =
6. The pseudo-frequency Fa associated to scale 26 is 3.5511e − 04Hz, so it could filter out
the frequency components less than Fa discarding the associated approximation coefficients.
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Figure 15 shows the filtered signal and tin comparison with the performance of the usual
high-pass filters (fig. 16). After pre-processing sensor responses, the relative parameters Is/I0
(Is represents the steady-state current value and I0 the relative baseline value) were extracted
from the drifting and filtered signals. These feature sets was subsequently normalized and
analyzed by Principal Component Analysis to visualize the data set. The PCA score plot
regarding to the feature set obtained from drifting signals (fig. 17) shows an overlap of the
clusters relative to the three gases. A better cluster separation was obtained after the signal
pre-processing based on DWT, and in the respective PCA score plot (fig. 18) the three clusters
are distinct.

5. Conclusions

The chapter has shown the use of discete wavelet analysis to characterize electronic nose
responses from array of gas sensors. The addressed problems were related to signal
representation that finds its basis under the signal compression context in order to find
compact ways for classification purposes and for denoising under the sensor drift problem.
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Fig. 17. The PCA score plot of feature sets extracted from drifting sensor responses.

−8 −6 −4 −2 0 2 4 6 8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

PC1( 84%)

P
C

2 
(1

2%
)

Acetone

Hexanal

Pentanone

Fig. 18. The PCA score plot of feature sets extracted from DWT-filtered sensor responses.

In the first problem, the study of the transient response in terms of informative content stored
in the curve (rise part, recovery part and both) have been investigated. It has been shown
with this tool, that the recovery part is more informative than the rise one, but, the use of
the whole curve carries better information in terms of discriminability. The feature vector
is obtained from the approximation coefficients of multiresolution analysis with wavelet
transform and is analysed with principal component analysis and Radial basis Function
neural network. Although wavelet transform captures the frequency content of the signal at
each decomposition level, it would have been reasonable to make a feature vector composed
by maximums approximation coefficients in each level. This performed poorer than the
method we used, since a good compression rate and the more discriminative features were
obtained with the coeffifients of the highest decomposition level.
The method is compared with the most common techniques of signal processing in the context
of electronic nose community. The performed measurements have shown that when we
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use the wavelet descriptors the capability of the recognition system to classify three organic
compounds improves notably. Table 6 gives the recognition results by using a RBF neural
network trained with the features extracted with the considered methods.
This work showed a DWT-based method of signal filtering capable to remove drift effects
from the sensor responses and recover the drifting signals to subsequently data analysis. The
PCA analysis, employed on features extracted from pre-processed signals showed a clear
improvement in the discrimination of the gases with an increase of the distance among the
clusters in the principal components space. This signal pre-processing method is enough
simple and not time-consuming and the filtered signals are not distorted in comparison with
ones obtained by using usual high-pass filters, due to a a more flexible analysis of the signal
that wavelet transform allows.
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In the first problem, the study of the transient response in terms of informative content stored
in the curve (rise part, recovery part and both) have been investigated. It has been shown
with this tool, that the recovery part is more informative than the rise one, but, the use of
the whole curve carries better information in terms of discriminability. The feature vector
is obtained from the approximation coefficients of multiresolution analysis with wavelet
transform and is analysed with principal component analysis and Radial basis Function
neural network. Although wavelet transform captures the frequency content of the signal at
each decomposition level, it would have been reasonable to make a feature vector composed
by maximums approximation coefficients in each level. This performed poorer than the
method we used, since a good compression rate and the more discriminative features were
obtained with the coeffifients of the highest decomposition level.
The method is compared with the most common techniques of signal processing in the context
of electronic nose community. The performed measurements have shown that when we
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1. Introduction  
Electrochemical noise (EN) is the term used to describe the spontaneous fluctuations of 
current or potential, which are generated during the corrosion processes. It has been 
investigated extensively since the 1968, and data has shown the use of EN measurements 
offers valuable sources of information about complex electrochemical reactions such as 
those in corrosion systems (Gabrielli et al., 1985; Bertocci & Huet, 1995) .  
Many methods can be used to analyze the data, such as the variance, standard deviation and 
root mean square in the time domain. Alternatively, the signal has been transformed from 
the time domain to the frequency domain using fast Fourier transform or the maximum 
entropy method, giving the power spectrum density (PSD). The technique of wavelet 
analysis may be used instead, where a set of wavelets of varying amplitude, duration, and 
location be constructed such that reproduces the signal of interest.  
Wavelets based methods are modern mathematical tools for multiscale time frequency 
analysis and characterization of in general nonstationary EN signals. This work presents the 
short overview to usability and possibilities of wavelet transformation in comparison with 
classic analysis. 

2. Corrosion processes and electrochemical noise 
Corrosion can be defined as the deterioration of materials due to its interaction with its 
environment and is appearing in various forms: as localized corrosion and as general 
(uniform) corrosion. Localized corrosion results in the accelerated loss of material at discrete 
sites in a passive materials surface, leading to the perforation or other failure. Since the 
majority of the surface is unaffected the difficulty with localized corrosion is its detection 
and prediction. Uniform corrosion results from the sites that are distributed randomly over 
the surface regarding both the space and time. Uniform corrosion damage is manifested in 
dissolving and the progressive thinning of a metal. To prevent corrosion or to predict the 
outcome of a corrosion situation the knowledge of mechanism of various form of corrosion 
is fundamental. Thermodynamic principles can be applied to determine which processes 
can occur and how strong the tendency is for changes to take place. Kinetic laws then 
describe the rates of the reactions.  
Corrosion of metals in aqueous environments is electrochemical in nature. It occurs when 
two or more electrochemical reactions take place on a metal surface, producing dissolved 
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species of metal or solid corrosion products and thus lowering the energy of the system. The 
corrosion process has been written as two separate reactions occurring at two distinct sites 
on the same surface: the anode (metal dissolution site) and the cathode (site of the 
accompanying reduction reaction). At corrosion of iron in an acid solution containing 
dissolved oxygen, iron is oxidized to ferrous ion which passes into solution in the anode 
region  

 Fe  Fe2+ + 2e- (1) 

 and H+ ion is reduced to hydrogen or O2  is reduced to water in the cathode region 

 2 H+ + 2e-    H2 (2) 

 O2  + 4 H+ + 4e-    2 H2O (3) 

The overall corrosion reaction is the sum of the anodic and cathodic partial reactions: 
sum of the reactions (1) and (2) 

 Fe + 2 H+   Fe2+ + H2 (4) 

and sum of the reactions (1) and (3) 

 2 Fe + O2 + 4 H+ + 4e-    2 Fe2+ + 2 H2O (5) 

Electrochemical corrosion processes can be investigated by observation of charge flows 
between the electrolyte and the corroding metal. The measure of the rate at which reducible 
or oxidizable species can gain or lose electrons is the current density, j i.e. the charge flux 
trough a metal/electrolyte interface. The potential dependence of charge transfer rate is 
known as the Butler-Volmer equation: 

   1
0

f fj j e e       (6) 

where 0j  is exchange current density,   is transfer coefficient, η  is overpotential, i.e. 
measure of how far the reaction is from equilibrium, and f  is defined by: 

 nFf
RT

  (7) 

where F is Faraday constant, R is the gas constant and T is the absolute temperature. If the 
Butler-Volmer equation is used to express the current densities in corrosion processes, the 
anodic reaction is the metal dissolution and the cathodic reaction is the accompanying 
reduction of H+ or O2.  The equilibrium is achieved (the overpotential is zero) at the 
corrosion potential where no measurable current j flows: the anodic current density of metal 
dissolution must be equal to the cathodic current density and is equal to the corrosion 
current density, 0j . The overpotential is said to be positive if it is such as to produce a 
positive current, i.e. if it drives the anodic oxidation reaction and suppresses the reduction 
reaction.  
In measurements procedure a potentiostat is often used and the electrochemical cell with 
tree electrodes: working electrode (WE) represents the interface of interest, the reference 
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electrode (RE) acts as standard for potential measurements and the counter electrode acts as 
electron sink or source for reactions that occur on the surface of WE. The potential of the WE 
is controlled with respect to the RE at a constant value, and the current density j under those 
conditions is determined. If the mean current is compensated or subtracted from the data 
and only random fluctuations are remained then electrochemical current noise is obtained. 
Electrochemical current noise thus can be measured as the random fluctuation in current of 
WE that is held at fixed potential or as the galvanic coupling current between two nominally 
identical working electrodes. Electrochemical potential noise is measured as the random 
fluctuation in potential of a WE with respect to a RE or as the fluctuation in potential 
difference between two nominally identical working electrodes.  
In our investigations the current noise was monitored by a low-noise battery-operated 
potentiostat Jaissle IMP88 PC-R at a sampling rate of 10 points per second. The cell assembly 
was put in a Faraday cage. An example of measured time series for two processes (pitting as 
signal I0 and general corrosion as signal I2) is presented in Fig. 1. As is seen, the signal has a 
relatively smooth appearance for general corrosion and occasional sharp increases and 
decreases in the amplitude of current noise data occur for localized corrosion. 
 

 
Fig. 1. Current noise signal corresponding to: a) X5CrNiMo17-13 stainless steel in borate 
buffer solution + 0.1 mol/dm3 NaCl at the passive potential (I0);   b) Low Carbon Steel in 
0.1mol/dm3 H2S04 at the corrosion potential (I2) (Planinšič & Petek, 2008). 

3. Stochastic processes and 1/f noise 
EN-signals are generated from corrosion processes which are stochastic in their nature.  A 
short theoretical overview of stochastic processes follows (Schroeder, 1991;  Flandrin, 1992;   
Gao et al., 2007). 
For understanding the stochastic processes it is essential to understand the concept of 
probability which is associated with random events.  Often random events are presented by 
numbers, called a random variable. Let us denote a random variable by X, whose value 
depends on the outcome of random experiment ω. The probability ( )P X x  is denoted by 
Fx(x) which is called the cumulative distribution function (CDF). When exist, it is usually 
more convenient to use its derivative fx(x), called the probability density function 
(PDF): ( ) ( ) /x xf x dF x dx . Some commonly used distributions are normal or Gaussian 
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distributions, exponential and related distributions, binomial and related distributions and 
heavy tilled distributions. An important class of measures or parameters associated with 
CDF and PDF for a random variable is expected or mean value.  
The mean or average of X can be obtained by relation: 

   X( ) ( )xE X X xdF x xf x dx
 

 
      (8) 

The pth order moment of X around zero is defined as: 

 ( ) ( )p p p
X XE X x dF x x f x dx

 

 

           (9) 

The second moment represents the power of a random variable X. 
The pth order central moment of X around mean value is defined as: 

     ( )
p p

XE x X x X f x dx




          (10) 

Variance of X is denoted as Var(X)=X2 and is the second order (p=2) central moment. The 
square rot of variance X is called the standard deviation. 
For a a given sample space S, a set of events E and a probability measure P, one can define a 
stochastic process as follows:  For each sample point S , we assign a time function X(t,ω). 
The stochastic process consists of the family of these functions. For each allowable 
parameter t, X(t, ω) is a random variable.  For a fixed ω, X(t, ω) is a function of a time t; it is 
one realization of the stochastic process. There are many examples of stochastic processes. 
The well known examples are Markov processes and 1/f processes. We will focus our 
attention to 1/f processes. Stochastic process is also called a random process and for 
simplicity X(t,ω) is denoted as X(t). 
The activity of complex systems can usually be characterized by appearance of 1 / f  noise, 
a form of temporal fluctuations that has power-law power spectral density property over a 
wide range of frequencies.  β is the power spectral exponent. A convenient framework for 
studying 1 / f  stochastic process is the self affine stochastic process  ( ), 0X t t X , which 
is defined by  

 ( ) ( ), 0
d

HX t X t t      0  , 0 1H 
 (11) 

where 
d
  denotes equality in distribution, because of using the concept of statistical self 

similarity of time series.  H is the Hurst parameter which is the measure of self-similarity.  It 
can be derived, that a mean of such process is: 

    ( )
( ) H

E X t
E x t




  (12) 

the variance  
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    
2

( )
( ) H

Var X t
Var X t




  (13) 

and autocorrelation 

 2

( , )( , ) xx
xx H

R t sR t s  


  (14) 

By proving that ( )HX t   and ( )X t  have the same power spectral density, one can also 
prove that the power spectrum density of irregular, self similar processes has 1/f property: 

 
2

( )S 




       
2 2

( )
2

KS f
ff  

 



   (15) 

where ω is radial frequency, 2  is the variance, K constant value, and β the spectral 
exponent, which defines the slope of power spectral density over several decades.  
An example of self-affine stochastic process is fractional Brownian motion process (fBm). It 
is nonstationary zero mean Gaussian process denoted as ( )HB t , characterized by scalar 
parameter H (Hurst parameter). The nonstrationary characteristic of fBm is evident from its 
covariance function structure: 

    
2

2 2 2( ) ( )
2

H H H
H HE B t B s t s t s

      (16) 

where E is the expectation operator. From this covariance function follows that the variance 
is of the type: 

 
22 2( ( ) ( ) H

H HVar B t E B t t     (17) 

Although fBm process is nonstationary, it has stationary increments, which means that the 
probability properties of the difference process ( ) ( )H HB t B s  only depend on the lag t-s. It is 
this increment process which is self similar. The slope is in the range 1 3  . The slope β  
is 2 for the classic example Brownian motion.  
The other example of 1 / f  processes is fractional Gaussian noise (fGn), with 1 1   . 
fGn is stationary process. White Gaussian noise has the slope 0  . It can be shown that 
Brownian motion ( 2  ) is simply the integral of white noise. 
It was reported, that β is related to the Hurst parameter H, which measures statistical self 
similar properties of signals: 

 2 1H     (18) 

This is the reason for studying   1 / f   noise via self-affine stochastic processes. It was also 
shown, that for one dimensional signal, H is related to fractal dimension D by: 

 2D H   (19) 

D is noninteger parameter in the range 1 2D  and H in the range 0 1H  . The fractal 
dimension can also be used for characterizing the complexity of the stochastic signal. 
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By proving that ( )HX t   and ( )X t  have the same power spectral density, one can also 
prove that the power spectrum density of irregular, self similar processes has 1/f property: 
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where ω is radial frequency, 2  is the variance, K constant value, and β the spectral 
exponent, which defines the slope of power spectral density over several decades.  
An example of self-affine stochastic process is fractional Brownian motion process (fBm). It 
is nonstationary zero mean Gaussian process denoted as ( )HB t , characterized by scalar 
parameter H (Hurst parameter). The nonstrationary characteristic of fBm is evident from its 
covariance function structure: 

    
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where E is the expectation operator. From this covariance function follows that the variance 
is of the type: 
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Although fBm process is nonstationary, it has stationary increments, which means that the 
probability properties of the difference process ( ) ( )H HB t B s  only depend on the lag t-s. It is 
this increment process which is self similar. The slope is in the range 1 3  . The slope β  
is 2 for the classic example Brownian motion.  
The other example of 1 / f  processes is fractional Gaussian noise (fGn), with 1 1   . 
fGn is stationary process. White Gaussian noise has the slope 0  . It can be shown that 
Brownian motion ( 2  ) is simply the integral of white noise. 
It was reported, that β is related to the Hurst parameter H, which measures statistical self 
similar properties of signals: 

 2 1H     (18) 

This is the reason for studying   1 / f   noise via self-affine stochastic processes. It was also 
shown, that for one dimensional signal, H is related to fractal dimension D by: 

 2D H   (19) 

D is noninteger parameter in the range 1 2D  and H in the range 0 1H  . The fractal 
dimension can also be used for characterizing the complexity of the stochastic signal. 
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Fractals are mathematical sets, which have a high degree of complex geometrical self 
similarity and can model many kinds of complex time series. The concept of statistical self-
similarity and fractals was extended to time series to describe irregular characteristics of 
signals, from white noise to Brownian motion. The irregularity of a fractal curve or signal 
can be measured by capacity or fractal dimension D, a simplification of Hausdorf 
dimension, which is easier to calculate numerically. The roughness of such curve depends 
on D. The straight line have dimension 1. The more irregular the curve, the closer is its 
dimension to 2. There are many definitions and methods for calculation the fractal 
dimension. We will give a definition on which basis the popular box counting method. 
Let S be a bounded set in n . The minimum number N(s) of balls of radius s is needed to 
cover S; ( ) DN s s . The fractal dimension is then defined as: 
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4. Classical statistical and Fourier analysis methods 
In the past, the most common EN-analysis methods were statistical and Fourier methods. 
These methods assume the stationary or quasi stationary nature of processes and signals 
under consideration. 
An early overview of different EN-data analysis methods was made in the work by R. A. 
Cottis (Cottis, 2001). Follows a little extended theoretical overview of classical methods 
(Orfanidis, 1996). 

4.1 Background of statistical and Fourier methods  
By analyzing random processes the statistical parameters as mean value and moments are 
defined by expectation operators, i.e. by statistical averaging of many realizations of 
stochastic process. In practice this is many times impossible and there is available only one 
block or array of N  time signal samples. The statistical averaging is then replaced by the 
estimation obtained using sample or time average. 
The pth moment of sample x(n); n=0,..N-1 is defined as: 
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The first moment is mean value x . The square root of second moment gives the root mean 
square value xrsm, which measures the amplitude of the signal. The square of xrsm represents 
the signal power. 
The pth central moment of sample is defined as: 
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The second order central moment is the well known signal variance. The square root of 
variance is standard deviation, which is usually used for describing the amplitude of noise 
signals.  
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Classical spectral analysis bases on Fourier transform. The Fourier Transform of the 
deterministic continuous time signal x(t) of duration T1 is defined as : 
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The Discrete Time Fourier Transform (DTFT) of the deterministic sampled signal with N 
samples is defined as: 
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where x(n) =x(nT); n=0,1,…,N-1, is according to sampling theorem sampled analog signal 
x(t), n is time index, and T the sampling period. It can be efficient computed by the Discrete 
Fourier Transform (DFT) and its fast version the Fast Fourier Transform (FFT).  
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where n is time index and k is the frequency index . The corresponding frequency resolution 
is given by: 

 /s N    (26) 

where ωs is radial sampling frequency.  The main shortcoming of classical Fourier transform 
is the averaging the features across the whole time domain.  
EN signals are of stochastic nature; therefore sampled EN signals are random sequences. To 
obtain smooth spectra an ensemble averaging should be introduced and the spectrum 
calculated over autocorrelation function. The autocorrelation function of a zero mean 
random signal is defined as: 

  ( ) ( ) ( )xxR k E x n k x n  
 (27) 

where E is the averaging or expectation operator. For stationary signals, Rxx do not depend 
on time n, but only on the relative time lag k between sequences x(n) and x(n+k). The power 
spectrum of the random signal x(n) is defined as the Discrete Time Fourier Transform 
(DTFT) of its autocorrelation function Rxx(k): 
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where  ω is the frequency in radians per sec. This power spectrum shows how the power is 
spread over frequencies and is also called PSD (Power Spectral Density).  
EN measurements cannot often be repeated to obtain smoothed spectra by ensemble 
averaging. One can compute an estimate of expected or true value by so-called sample 
autocorrelation using time average: 
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Fractals are mathematical sets, which have a high degree of complex geometrical self 
similarity and can model many kinds of complex time series. The concept of statistical self-
similarity and fractals was extended to time series to describe irregular characteristics of 
signals, from white noise to Brownian motion. The irregularity of a fractal curve or signal 
can be measured by capacity or fractal dimension D, a simplification of Hausdorf 
dimension, which is easier to calculate numerically. The roughness of such curve depends 
on D. The straight line have dimension 1. The more irregular the curve, the closer is its 
dimension to 2. There are many definitions and methods for calculation the fractal 
dimension. We will give a definition on which basis the popular box counting method. 
Let S be a bounded set in n . The minimum number N(s) of balls of radius s is needed to 
cover S; ( ) DN s s . The fractal dimension is then defined as: 
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4. Classical statistical and Fourier analysis methods 
In the past, the most common EN-analysis methods were statistical and Fourier methods. 
These methods assume the stationary or quasi stationary nature of processes and signals 
under consideration. 
An early overview of different EN-data analysis methods was made in the work by R. A. 
Cottis (Cottis, 2001). Follows a little extended theoretical overview of classical methods 
(Orfanidis, 1996). 

4.1 Background of statistical and Fourier methods  
By analyzing random processes the statistical parameters as mean value and moments are 
defined by expectation operators, i.e. by statistical averaging of many realizations of 
stochastic process. In practice this is many times impossible and there is available only one 
block or array of N  time signal samples. The statistical averaging is then replaced by the 
estimation obtained using sample or time average. 
The pth moment of sample x(n); n=0,..N-1 is defined as: 
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The first moment is mean value x . The square root of second moment gives the root mean 
square value xrsm, which measures the amplitude of the signal. The square of xrsm represents 
the signal power. 
The pth central moment of sample is defined as: 
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The second order central moment is the well known signal variance. The square root of 
variance is standard deviation, which is usually used for describing the amplitude of noise 
signals.  
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Classical spectral analysis bases on Fourier transform. The Fourier Transform of the 
deterministic continuous time signal x(t) of duration T1 is defined as : 
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The Discrete Time Fourier Transform (DTFT) of the deterministic sampled signal with N 
samples is defined as: 
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where x(n) =x(nT); n=0,1,…,N-1, is according to sampling theorem sampled analog signal 
x(t), n is time index, and T the sampling period. It can be efficient computed by the Discrete 
Fourier Transform (DFT) and its fast version the Fast Fourier Transform (FFT).  
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where n is time index and k is the frequency index . The corresponding frequency resolution 
is given by: 

 /s N    (26) 

where ωs is radial sampling frequency.  The main shortcoming of classical Fourier transform 
is the averaging the features across the whole time domain.  
EN signals are of stochastic nature; therefore sampled EN signals are random sequences. To 
obtain smooth spectra an ensemble averaging should be introduced and the spectrum 
calculated over autocorrelation function. The autocorrelation function of a zero mean 
random signal is defined as: 

  ( ) ( ) ( )xxR k E x n k x n  
 (27) 

where E is the averaging or expectation operator. For stationary signals, Rxx do not depend 
on time n, but only on the relative time lag k between sequences x(n) and x(n+k). The power 
spectrum of the random signal x(n) is defined as the Discrete Time Fourier Transform 
(DTFT) of its autocorrelation function Rxx(k): 
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where  ω is the frequency in radians per sec. This power spectrum shows how the power is 
spread over frequencies and is also called PSD (Power Spectral Density).  
EN measurements cannot often be repeated to obtain smoothed spectra by ensemble 
averaging. One can compute an estimate of expected or true value by so-called sample 
autocorrelation using time average: 
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for k=0,1,…N-1. It is known that ˆ ( )xxR k is an even function of the lag k. It is also well known 
that the results are statistical reliable only for small value of lag (5 to 10 percentages). 
The DTFT of ˆ ( )xxR k is ˆ ( )xxS   and is referred to as periodogram spectrum and can be viewed 
as an estimate of power spectrum: 

 ˆ ˆ( ) ( ) j n T
xx xx

k
S R k e 


   



   (30) 

Using the above equations we can express the periodogram also as: 

 21ˆ ( ) ( )xx NS X
N

    (31) 

where ( )NX   is DFTF of N signal samples. It can be efficient computed using FFT. For wide 
sense stationary random signals the mean of periodogram converges to the true power 
spectrum ( )xxS   in the limit for large N: 
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There are some problems with such classical Fourier spectral analysis method. To achieve 
high statistical reliability, very long signal sequences should be used. But long signal 
sequences can no longer be stationary. However, the main shortcoming is the averaging the 
futures over the whole time domain. 
This have lead researchers to find and develop of an advanced signal analysis methods. 
Recently wavelet based methods for signal analysis found to be useful for nonstacionary 
signals. Therefore in this overview chapter we will consider wavelet-based methods for EN-
signals analysis. 

4.2 Overview of works using classical methods  
In individual systems, the correlations between noise measurements and corrosion 
processes have been reported by many authors but only some can be mentioned here. The 
EN data for a passive system (SS 316L/Ringers solution) and several active systems (mild 
steel/NaCl, brass/NaCl, Al 6061/NaCl and Al 2024/NaCl) have been analyzed in the 
frequency domain using power spectral density (PSD) and spectral plots, obtained from the 
ratio of PSD plots of the potential and current fluctuations. Comparisons of spectral noise 
spectra with traditional impedance spectra have been made and good agreement has been 
observed for all systems after trend removal (Lee & Mansfeld, 1998; Mansfeld et al., 2001). 
Current fluctuation during general corrosion was analyzed upon a simple model, derived 
on the assumption that elementary fluctuation sources are related to the fluxes of electrons 
that are transferred from the metal to electron-acceptor ions in solution. The number of 
successful electron transfers obeyed a Gaussian distribution, from which the corrosion 
current density and transfer coefficients were determined (Petek et al., 1997; Petek & 
Doleček, 2001). The time-series noise patterns of the steel in bicarbonate solution (the 
simulated geological environment) were transformed into frequency domain by fast Fourier 
transformations, and then their power spectral densities at a frequency were determined to 
be compared with the corrosion rate (Haruna et al., 2003). Two new indices (SE and SG) were 
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derived to evaluate pitting corrosion by dimensional analysis of three parameters of PSD, 
the slope of high frequency linear region, the critical frequency and the low-frequency 
plateau level. As shown, the value of SE can be related to the fluctuation velocity, which can 
represent the pitting corrosion rate and SG should contain some information about slow 
corrosion processes (Shi et al., 2008). PSD had been employed to analyze EN data associated 
with corrosion behavior of A291D magnesium alloy in alkaline chloride solution. Three 
corrosion stages, the anodic dissolution process companying with the growth, absorption 
and desorption of hydrogen bubbles, the development of pitting corrosion, and the 
inhibition process by protective MgH2 film could be distinguished. However, the results 
obtained only from PSD was insufficient for better understanding the corrosion mechanism 
of alloy during the immersion and the wavelet transform was carried out (Zhang et al., 
2007).   

4.3 Our applications of classical methods  
EN signal (Fig. 1) is represented as a time series, where one can easily distinguish the 
fluctuations but not the intensity and frequencies of fluctuations. In the paper (Planinšič & 
Petek, 2003) we analyzed EN corrosion signals also with some classical methods, which use 
correlation functions and histograms. Figure 2 shows estimated autocorrelation functions of 
two corrosion signals I0 and I2, respectively. 
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Fig. 2. Estimated autocorrelation functions of EN-signals: a) I0; b) I2 

Noise data were transformed into frequency domain using FFT algorithm and presented as 
PSD in Figure 3. PSD of current noise data for pitting process exhibited two parts: a low-
frequency plateau and high-frequency part, and the roll-off frequency, which is the 
frequency to separate the two parts of PSD. PSD plot of general corrosion can be 
characterized by “white noise” which is independent of frequency.  
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Fig. 3. Estimated power spectral density of signals I0 (left) and I2 (right) 
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for k=0,1,…N-1. It is known that ˆ ( )xxR k is an even function of the lag k. It is also well known 
that the results are statistical reliable only for small value of lag (5 to 10 percentages). 
The DTFT of ˆ ( )xxR k is ˆ ( )xxS   and is referred to as periodogram spectrum and can be viewed 
as an estimate of power spectrum: 
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Using the above equations we can express the periodogram also as: 
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where ( )NX   is DFTF of N signal samples. It can be efficient computed using FFT. For wide 
sense stationary random signals the mean of periodogram converges to the true power 
spectrum ( )xxS   in the limit for large N: 
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There are some problems with such classical Fourier spectral analysis method. To achieve 
high statistical reliability, very long signal sequences should be used. But long signal 
sequences can no longer be stationary. However, the main shortcoming is the averaging the 
futures over the whole time domain. 
This have lead researchers to find and develop of an advanced signal analysis methods. 
Recently wavelet based methods for signal analysis found to be useful for nonstacionary 
signals. Therefore in this overview chapter we will consider wavelet-based methods for EN-
signals analysis. 

4.2 Overview of works using classical methods  
In individual systems, the correlations between noise measurements and corrosion 
processes have been reported by many authors but only some can be mentioned here. The 
EN data for a passive system (SS 316L/Ringers solution) and several active systems (mild 
steel/NaCl, brass/NaCl, Al 6061/NaCl and Al 2024/NaCl) have been analyzed in the 
frequency domain using power spectral density (PSD) and spectral plots, obtained from the 
ratio of PSD plots of the potential and current fluctuations. Comparisons of spectral noise 
spectra with traditional impedance spectra have been made and good agreement has been 
observed for all systems after trend removal (Lee & Mansfeld, 1998; Mansfeld et al., 2001). 
Current fluctuation during general corrosion was analyzed upon a simple model, derived 
on the assumption that elementary fluctuation sources are related to the fluxes of electrons 
that are transferred from the metal to electron-acceptor ions in solution. The number of 
successful electron transfers obeyed a Gaussian distribution, from which the corrosion 
current density and transfer coefficients were determined (Petek et al., 1997; Petek & 
Doleček, 2001). The time-series noise patterns of the steel in bicarbonate solution (the 
simulated geological environment) were transformed into frequency domain by fast Fourier 
transformations, and then their power spectral densities at a frequency were determined to 
be compared with the corrosion rate (Haruna et al., 2003). Two new indices (SE and SG) were 
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derived to evaluate pitting corrosion by dimensional analysis of three parameters of PSD, 
the slope of high frequency linear region, the critical frequency and the low-frequency 
plateau level. As shown, the value of SE can be related to the fluctuation velocity, which can 
represent the pitting corrosion rate and SG should contain some information about slow 
corrosion processes (Shi et al., 2008). PSD had been employed to analyze EN data associated 
with corrosion behavior of A291D magnesium alloy in alkaline chloride solution. Three 
corrosion stages, the anodic dissolution process companying with the growth, absorption 
and desorption of hydrogen bubbles, the development of pitting corrosion, and the 
inhibition process by protective MgH2 film could be distinguished. However, the results 
obtained only from PSD was insufficient for better understanding the corrosion mechanism 
of alloy during the immersion and the wavelet transform was carried out (Zhang et al., 
2007).   

4.3 Our applications of classical methods  
EN signal (Fig. 1) is represented as a time series, where one can easily distinguish the 
fluctuations but not the intensity and frequencies of fluctuations. In the paper (Planinšič & 
Petek, 2003) we analyzed EN corrosion signals also with some classical methods, which use 
correlation functions and histograms. Figure 2 shows estimated autocorrelation functions of 
two corrosion signals I0 and I2, respectively. 
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Fig. 2. Estimated autocorrelation functions of EN-signals: a) I0; b) I2 

Noise data were transformed into frequency domain using FFT algorithm and presented as 
PSD in Figure 3. PSD of current noise data for pitting process exhibited two parts: a low-
frequency plateau and high-frequency part, and the roll-off frequency, which is the 
frequency to separate the two parts of PSD. PSD plot of general corrosion can be 
characterized by “white noise” which is independent of frequency.  
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Fig. 3. Estimated power spectral density of signals I0 (left) and I2 (right) 
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Amplitude distribution was studied using normalized histograms. As demonstrated by 
Figure 4, a current noise amplitude distribution of general corrosion is Gaussian.  
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Fig. 4. Normalized histograms of signals I0 (left) and I2 (right) 

5. Wavelet multiresolution analysis methods 
The assumption of stationary behavior of corrosion processes and random signals is not 
always correct. Corrosion signals are a non stationary in general.  
When we are interested on how signal frequency components vary with time, we should 
use joint time-frequency analysis. For this purpose we can use Window Fourier Transform 
(WTF), also called Short Time Fourier Transform (STFT) or spectrogram.  It is known that 
the STFT can be considered as the filter bank, consists of Finite Impulse Response Filters 
(FIR) with equal bandwidth or equal frequency resolution. Therefore it is difficult to meet 
sharp localization in time and frequency simultaneously. For this reason, this technique is 
not always appropriate for analyzing natural signals or phenomena, where in the signal 
exist long duration low frequency components and short high frequency components at the 
same time. This problem can be elegantly solved using modern multiresolution time 
frequency analysis methods based on wavelets. It was shown that the Discrete Wavelet 
Transform can be viewed and realized as multirate filter bank with octave, also called 
constant Q frequency resolution. 
A short theoretical overview of wavelet methods follows (Daubechies, 1992; Burrus, 1992;  
Fladrin,1992, 1993; Radolphe, 1994; Wornell, 1996; Mallat, 1998; Dai et al., 1994; 
Palawajjhalla et al., 1994). 

5.1 Background of wavelet methods  
Wavelets are waves which construct basis of signal decomposition in wavelet transforms, 
similar as trigonometric functions with different frequencies in Fourier Transform.  
Wavelets are scaled and shifted versions of the so called mother or primary wavelet 
function ( )t . Thus the family of functions is then defined as: 

  , ( )a b t ;    ( 1/2)
, ( )a b

t bt a
a

      
 

 (33) 

where parameters a and b ( , ; 0a b a  ) are called dilation (scaling) and translation 
(shifting) parameters, respectively.  To be a good analyzing function, the mother wavelets 
must fulfill some conditions. The first is the so called ‘’admissibility’’ condition: 
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where ˆ( )   is the Fourier transform of ( )t . Because the mother wavelet is absolutely 
inferable functions, we can show that: 

 ˆ (0) 0 ( ) 0t dt 




     (35) 

Admissibility implies that a wavelet must be an oscillatory decaying function with zero 
mean.  There are also additional other desirable properties for a function to be a useful 
wavelet, as smoothness, good time and frequency localization, number of vanishing 
moments. These properties suggest that wavelets are bandpass filters. ( )t is the impulse 
response of filter ˆ ( )  . 
In the contrast with Fourier analysis where basis functions are trigonometric functions, by 
wavelet-based analysis different kind of mother wavelet function can be used, appropriate 
for particular application. There are many types of wavelet transforms according to input 
signals, time and scaling parameters, used wavelet functions, namely continuous, discrete, 
bi-orthogonal and semi-orthogonal and orthonormal bases version. 
However wavelet transform can be broadly classified into Continuous Wavelet Transform 
(CWT) and Discrete Wavelet Transform (DWT).  CWT of a function 2( ) ( )f t L  involves the 
computation of scalar product. Wavelet coefficients are computed as: 

 , ,( , ) ( ) ( )a b a bC C a b f t t dt




     (36) 

Discrete wavelet transform involves discretization of parameters, a and b, respectively: 

 0
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. 0 0 0( ) ( )m m
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 , , ,( ), ( ) ( ) ( )m n m n m nC f t t f t t dt 
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     (39) 

where  ,m nC  are called discrete wavelet coefficients. Discrete wavelets . ( )m n t that satisfy the 
condition: 

 2 2
,

,
( ) ( ), ( ) ( )m n

m n
A f t f t t B f t     (40) 

are called frames (Daubechies,1992) and form Riesz basis. Discrete wavelets can be further 
classified into orthogonal, semi-orthogonal or non-orthogonal. 
To obtain orthonormal basis, one can chose samples on dyadic grid (base 2): 

 2ma       2mb n      ,m n 
 (41) 
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Amplitude distribution was studied using normalized histograms. As demonstrated by 
Figure 4, a current noise amplitude distribution of general corrosion is Gaussian.  
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Fig. 4. Normalized histograms of signals I0 (left) and I2 (right) 

5. Wavelet multiresolution analysis methods 
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must fulfill some conditions. The first is the so called ‘’admissibility’’ condition: 
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Orthonormal bases and orthonormal wavelet transform, play an important role in theory 
and practice of multiresolution analysis. The DWT can be further classified into Wavelet 
Series Transform (WST), when analyzed signal is continuous (f (t)), and into Discrete Time 
Wavelet Transform (DTWT), if the signal is time discrete (f(n)). One possibility of 
constructing wavelets is using a scaling function ( )t  and multiresolution analysis (Mallat, 
1998). Namely, multiresolution algorithm is a natural way of constructing orthogonal 
wavelets. Multiresolution analysis is decomposition of square integrable functions 

2( ) ( )f t L   into closes subspaces jV  , where coarser subspace jV  is contained in finer 

subspace 1jV  : 1j jV V  . The subspaces also satisfy separation condition (  0mm Z
V


   ) and 

condition for completeness ( 2( ).mm
V L


    Additionally, the functions ( )f t  satisfy the 

scaling property ( 1( ) (2 )m mf t V f t V    ). And, there exist a scaling function in the coarsest 

space 0( )t V  , so that the family of functions ,m n , /2
, 2 (2 )m m

m n t n    ,  form the so 
called Riesz basis of subspace mV .  Since 0 1( )t V V     and the (2 )t is a basis for the 
subspace 1V , we can write scaling function as linear combination with the so called two 
scale difference equation:  

 ( ) ( ) (2 )
k

t h k t k     (42) 

where h(k) is a finite sequence. It can be shown, that the frequency response of scaling 
function is a lowpass filter and h(k) form the lowpass FIR-filter coefficients. Define 1mW   as 
the orthogonal complement of subspace 1mV   in mV , than the direct sum of infinite subspaces 

jV  is the whole space 2( )L  . The subspace 1mW   contains the detail information needed to 
go from approximation of function at coarser to finer resolution level j. The multiresoluton 
analysis allows to approximate the given function f (t) by fj(t) at each coarser subspace or 
resolution level. If ( )t is a Riesz basis of space 0 1W V , we can also write:  

 ( ) ( ) (2 )
k

t g k t k     (43) 

where the finite sequence g(k) form the highpass (bandpass) filter coefficients, as the 
frequency response of wavelet is like that of band-pass filter. 
The multiresolution analysis form the theoretical basis for fast Discrete Wavelet Transform 
(fast DWT), using discrete signals f(n), n , that is sampled version of f(t). It was 
introduced by Mallat by the so called pyramidal multiresolution algorithm, where the signal 
f(n) is decomposed into J decomposition levels. The idea of multiresolution analysis is to 
write a function as a limit of successive approximations, each of which is a smoothed 
version.                
The sequences at scale j can be computed from sequences at scale j-1 by the following 
multirate filter or convolution, followed by subsampling by 2: 
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where 
2

( ) ( , )jc k c j k
 
are wavelet or detailed coefficients and 

2
( ) ( , )ja k a j k  are scaling or 

approximation coefficients. Data sequence 12 ( ) (1, )a k a k at scale j=1 represents 
approximated or smoothed version of the original signal. The sequence 12 ( ) (1, )c k c k  at 
level j = 1 represents difference or detail information. The above equations together describe 
jth level analysis filter bank. This calculation is repeated (iterated) up to scale J forming the 
multiresolution pyramidal algorithm; one stage is shown in Figure 5. As was mentioned, the 
lowpass filter is associated by scaling function and highpass filter by wavelet function. The 
filters for calculating the synthesis are the same by using orthogonal wavelet transform. 
Analysis and synthesis filters can have different length, as by using biorthogonal filter 
banks. However, this algorithm can be used for orthogonal and nonorthogonal wavelets. 
 

 
Fig. 5. One stage of analysis filter bank 

For EN-signal originating from corrosion process, wavelet transform decompose it into 
approximation and detail signal components at different scales and locations. The wavelet 
transform is therefore convenient tool to analyze the self-similarity of 1/f time series. 
The orthonormal wavelet transform based methods were used for estimating slope  , 
parameter H, and fractal dimension D (Akay,1998; Sekine, 2002; Planinšič & Petek, 2008).  
For orthonormal discrete wavelet decomposition the 1/f property can be replaced by the 
relation: 

 
 

2
2

2
j j 
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where  j2 is the variance of detail signal 
2 jd . Then the slope β can be calculated from the 

plot 2
2log j  versus level j, what can be obtained after short calculation: 

 2 2
2 2log logj j       (46) 

5.2 Overview of works using wavelets  
Wavelets have found many applications in different natural scientific disciplines, among 
them also in chemical engineering (Radolphe et al., 1994; Banjanin et al., 2001). The use of 
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wavelets to study electrochemical noise transients was reported by Aballe (Aballe et al., 
1999; 2001). The wavelet analysis of electrochemical noise signals, where the signal was 
decomposed into wavelet-subbands was used for the characterization of pitting corrosion 
intensity (Smulko et al., 2002). Wharton et al. demonstrated how the wavelet variance 
exponent can be used to evaluate corrosion behavior for variety of stainless steels in chloride 
medium, i.e. be able to discriminate between various corrosion processes covering a wide 
range of EN signals (Wharton et al., 2003). Wavelet analysis based on the fractional energy 
contribution of smooth crystals and the lowest frequency detail crystal can provide 
information on the type and onset of corrosion (general corrosion, metastable pitting, stable 
pitting) in performed potentiostatic critical pitting temperature test for a superduplex 
stainless steel (Kim, 2007). In study of the copper anode passivation by electrochemical noise 
analysis using wavelet transforms it has been found that during active dissolution the 
electrode surface is dominated by long time scale process and the change of the position of 
the maximum relative energy from D7 to D8 could be an indication of future passivation 
(Lafront et al., 2010). It was shown, that electrochemical potential noise analysis of Cu-BTA 
system using wavelet transformation can be used to achieve the inhibition efficiency 
(Attarchi et al., 2009). 
Some other authors also reported about the fractal nature of corrosion processes and 
corresponding electrochemical noise signals. The electrochemical potential and current noise 
originating from the corrosion of carbon steel in distilled water was analyzed using 
multifractal analysis. The multifractal spectra are found to be qualitatively different for 
different temporal stages of the corrosion process (Muniandy et al., 2011).  

5.3 Our applications of wavelets methods  
Our applications of wavelets transformation or combination with classical methods for the 
electrochemical current noise analysis were reported for different corrosion processes in 
several publications (Planinšič & Petek, 2003; 2004; 2007; 2008). For little more detailed 
insight the short overview of this research is as follows.   
Daubechies wavelets ‘’db2’’ were used to transform the EN signal from Fig. 1. The discrete 
wavelet transform (DWT) decomposition of signal into on joint time (position) and 
frequency (scale level) depended amplitudes are presented with color lightness in time-
frequency plane in Fig. 6.  
 

 
Fig. 6. Discrete wavelet transforms (DWT) of signals:  a) I0,  b) I2 (Planinšič & Petek, 2008) 
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Next, the DWT multiresolution decomposition of processes on 5 levels are shown in Fig. 7. 
The crystals from D1 to D5 are the details of the signal, and A5 is the approximation of the 
signal. The frequency range which takes into account each series of detail coefficients, can be 
computed from relation / 2 / 2 j

sf  where fs is the sampling frequency and j stands for the 
corresponding scale. 
 

 
Fig. 7. Multiresolution decomposition of discrete signals: a) I0, b) I2 on approximation signal 
Aj and detail signals Dj on five levels (Planinšič & Petek, 2008). 

Events with small time constants are taken into account by the fine scale coefficients, details 
D1, D2. The information dealing with larger time constant events is included in details D4 
and D5. Therefore, these kinds of plot allow the signal to be viewed over the full time range 
and considering different scales, which contains information about corrosion events 
occurring at a determined time – scale. 
Variances of details were calculated to detect the intensity of particular signal components 
on level j.  Fig. 8 shows variances as a function of the decomposition level and also the 
logarithmic plot of details variances versus level j for the slope ß determination. 
 

 
Fig. 8. Variances of details plotted as a function of the decomposition level j for two 
processes: a) I0 (slope ß = 3.0092) and b) I2 (slope ß = 0.7700) (Planinšič & Petek, 2008). 
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logarithmic plot of details variances versus level j for the slope ß determination. 
 

 
Fig. 8. Variances of details plotted as a function of the decomposition level j for two 
processes: a) I0 (slope ß = 3.0092) and b) I2 (slope ß = 0.7700) (Planinšič & Petek, 2008). 
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For the time series I2 and I0 were ß = 0.7700 and ß = 3.0092, respectively. As the value of  ß 
increases, the contributions of high-frequency components in time series are reduced. It is 
suggested that the events in the relatively higher frequency region may be associated with 
uniform corrosion. On the other hand, the events in the relatively lower frequency regions 
are responsible for pitting corrosion. 
After short computation the value for Hurst parameter H, and fractal dimension D can be 
obtained: 

 2,5 0,5i iD         0,5 ( 1)i iH    ;    1,2.i   (47) 

The obtained slope ß is the estimated power spectral exponent ß. It can be associated with 
the strength of persistence within a time series. The persistence defines the correlation 
between adjacent values within time series. If  0 1  , than persistence is weak. For the 
time series with β between 2 and 3, the persistence is strong. Fractional Gaussian noise with 
β between -1 and 1, and fractional Brownian motion, with β between 1 and 3, are considered 
as proper representatives of such processes. The first process is stationary and the second is 
non-stationary. 
The obtained results indicating the presence of fractional Brownian motion in pitting 
corrosion with adjacent values in the time series being strongly correlated and fractional 
Gaussian noise in general corrosion, with adjacent values in the time series being weak 
correlated.  The Hurst parameter in case of pitting is greater than ½, indicating also the 
persistence, i.e. a dependence of new values on old values. A summary of the wavelet – 
based fractal analysis is given in Table 1. 
 

 βi Hi Di process persistence 
I0 – pitting 
corrosion 

3.0092 1.0046 0.9954 non- 
stationary strong 

I2 – general 
corrosion 0.7700 -0.1150 2.1150 stationary weak 

Table 1. The slope β, the Hurst parameter H, and the fractal dimension D, for two corrosion 
signals (Planinšič & Petek, 2008). 

We proposed also a new way for determination of persistence nature of the electrochemical 
noise on the basis of correlation coefficients between original signal and details R(Ii,Dj), 
Table 2. The pitting corrosion is positively correlated with long memory effect.  Increasing 
correlation of signal I2 to the D2 detail and then decreasing to D5, indicates weak persistence 
and short memory effect of general corrosion processes. 
 

 R(I0,Dj) R(I2,Dj) 
D1 0.0188 0.4196 
D2 0.0482 0.5303 
D3 0.1128 0.5097 
D4 0.2048 0.3648 
D5 0.3103 0.3138 

Table 2. Correlation coefficients between original signal and details, R(Ii,Dj), for two 
decomposed corrosion signals (Planinšič & Petek, 2008). 
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Correlation coefficients between successive details R(Dj,Dj+1) for two decomposed corrosion 
signals (Table 3) are all zero on the basis of analysis procedure.  
 

 I0 I2 
R(D1,D2) 0.0006 0.0006 
R(D2,D3) 0.0000 0.0004 
R(D2,D3) 0.0001 0.0004 
R(D4,D5) -0.0012 -0.0120 

Table 3. Correlation coefficients between successive details, R(Dj,Dj+1), for two decomposed 
corrosion signals (Planinšič & Petek, 2008). 

Additionally,  DWT with 3-decomposition levels was made using different kinds of wavelet 
functions, from Daubechie’s fractal-like wavelet “db2” (Massopust, 1994) to smoother 
wavelet functions, as Daubechie’s wavelet function “db5” and symmetrical Coiflet wavelet 
function “coif5”. After decomposition the coding gain (cg) was calculated from variances of 
decomposed sub-bands: 

 2 2

1 1
( ) / ( ) j

JJ

g j j j
j j

c   
 

    (48) 

where 2
j  are variances of sub-bands and j are the relative length of sub-band sequences 

and J the number of sub-bands. The coding gain is a measure of spectral flatness. For 
(uniform) white noise it has the value 1. Also the Shannon’s entropy was calculated and can 
be viewed as a measure of signal complexity. The numerical experimental results are 
collected in Table 4. 
 

 cg, I2 cg, white noise entropy, I2 entropy, white 
noise 

db2 1.3486 1.0090 4.5384 4.9304 
db5 1.3411 1.0076 4.5384 4.9304 
coif5 1.3411 1.0116 4.5384 4.9304 

Table 4. Coding gain and Shannon’s entropy obtained with different wavelet functions 

The chose of different wavelets did not influence on the obtained cg and entropy. We found 
also, that the coding gain and entropy can be used as an additional parameter to distinguish 
the corrosion processes.  
To study the approximation properties of DWT’s using different wavelet basis functions, a 
synthesis (inverse DWT) to different approximation levels was made. We expected better 
results with ‘’db2’’ assuming the fractal–like shapes of EN-signals. However, no significant 
differences were found, a smaller approximation error was obtained even using smoother 
wavelets, what confirms the approximation theory. 

6. Conclusion 
The most attractive prospective benefit of EN measurement is the ability to obtain 
information about the type of corrosion that is occurring, but there is much less agreement 
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information about the type of corrosion that is occurring, but there is much less agreement 
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about the optimum analysis method for obtaining such information (Cottis, 2006). Wavelet 
transform has been developed over a number of years and only recently has been applied to 
electrochemical noise analysis. The main advantage of wavelet analysis of EN is the 
detection of transients which are localized in both the time and frequency domain and 
shows promise to be discriminatory for the intensity as well as the type of corrosion.  
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1. Introduction 
This chapter presents a comprehensive review of recent advances in the applications of 
discrete wavelet transform (DWT) in optical fibre sensing. DWT, like Fourier transform (FT), 
is a versatile and powerful mathematical tool to process, extract and analyse data. In fibre 
sensing, DWT is particularly useful in the demodulation, demultiplexing and denoising of 
sensor data, as well as in the detection, extraction and interpretation of measurand-induced 
change from an acquired sensor signal.  
Both continuous and discrete has found a wide variety of applications in fibre sensing, and 
has been extensively used for fibre Bragg gratings (FBGs) and interferometric sensors. For 
example, Chan et al. (2007, 2010) used wavelet transform (both continuous and discrete) in 
reducing noise and increasing wavelength detection accuracy of FBGs; Jones (2000a, 2000b) 
used in the edge detection and crack detection of FBGs embedded in some structures; 
Staszewski et al. (1997) and Bang & Kim (2010) used for the detection of acoustic wave 
induced by impact and defect in composite plates; Gangopadhyay et al. (2005, 2006) used to 
extract and analyse fibre Fabry-Perot interferometer signals; Lamela-Rivera et al. (2003) used 
in the detection of partial discharges from high-power transformers; Tomic et al. (2010) in 
pressure sensing; and Wang et al. (2001) in the health monitoring of ship hull structure.  
This chapter begins with a brief introduction on the applications of DWT in fibre sensing. 
This follows by the principles and approaches of using DWT. Several important and 
fundamental formulations and concepts, such as the use of DWT in signal demodulation, 
demultiplexing and noise reduction will be presented. Next, four exemplary application 
cases of using DWT in fibre sensing are presented. More specifically, representative topics 
with regard to sensor signal analysis, signal demodulation, noise reduction and 
demultiplexing of multiplexed sensor systems are described in details. Finally, conclusions 
to summarise the chapter is given.  

2. Principles and approaches  
In fibre sensing, there are two areas of signal analysis that DWT has been widely employed, 
namely sensor signal demodulation and noise reduction. The former is accomplished by the 
theory of Multiresolution analysis (MRA) and the latter by the wavelet denoising. This 
section will describe these two DWT techniques qualitatively, and all of the subsequent 
examples are essentially based on them.  
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1. Introduction 
This chapter presents a comprehensive review of recent advances in the applications of 
discrete wavelet transform (DWT) in optical fibre sensing. DWT, like Fourier transform (FT), 
is a versatile and powerful mathematical tool to process, extract and analyse data. In fibre 
sensing, DWT is particularly useful in the demodulation, demultiplexing and denoising of 
sensor data, as well as in the detection, extraction and interpretation of measurand-induced 
change from an acquired sensor signal.  
Both continuous and discrete has found a wide variety of applications in fibre sensing, and 
has been extensively used for fibre Bragg gratings (FBGs) and interferometric sensors. For 
example, Chan et al. (2007, 2010) used wavelet transform (both continuous and discrete) in 
reducing noise and increasing wavelength detection accuracy of FBGs; Jones (2000a, 2000b) 
used in the edge detection and crack detection of FBGs embedded in some structures; 
Staszewski et al. (1997) and Bang & Kim (2010) used for the detection of acoustic wave 
induced by impact and defect in composite plates; Gangopadhyay et al. (2005, 2006) used to 
extract and analyse fibre Fabry-Perot interferometer signals; Lamela-Rivera et al. (2003) used 
in the detection of partial discharges from high-power transformers; Tomic et al. (2010) in 
pressure sensing; and Wang et al. (2001) in the health monitoring of ship hull structure.  
This chapter begins with a brief introduction on the applications of DWT in fibre sensing. 
This follows by the principles and approaches of using DWT. Several important and 
fundamental formulations and concepts, such as the use of DWT in signal demodulation, 
demultiplexing and noise reduction will be presented. Next, four exemplary application 
cases of using DWT in fibre sensing are presented. More specifically, representative topics 
with regard to sensor signal analysis, signal demodulation, noise reduction and 
demultiplexing of multiplexed sensor systems are described in details. Finally, conclusions 
to summarise the chapter is given.  

2. Principles and approaches  
In fibre sensing, there are two areas of signal analysis that DWT has been widely employed, 
namely sensor signal demodulation and noise reduction. The former is accomplished by the 
theory of Multiresolution analysis (MRA) and the latter by the wavelet denoising. This 
section will describe these two DWT techniques qualitatively, and all of the subsequent 
examples are essentially based on them.  
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2.1 Sensor signal demodulation  
The DWT demodulation technique presented here is used to demodulate and demultiplex 
many types of multiplexed sensor signals, and it works best with periodic sinusoidal 
functions, which is often the case for most interferometric signals. Excellent references in the 
theory and properties of wavelets can be found in (Daubechies, 1992; Mallet, 1998; Sidney 
Burrus et al., 1998; Vetterli & Kovacevic, 1995). In this section, only the concepts and results 
that are essential to the understanding of this demodulation technique are included. The 
principle of operation is based on the theory of MRA, a representation of DWT from a 
digital signal processing perspective (Mallet, 1989). In the MRA, the sensor signal can be 
represented as a wavelet series, 
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where ,j m Z , and the integer J sets the highest decomposition level. 
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function. The DWT coefficients can be computed by a multistage two-channel quadrature 
mirror filter bank (QMFB). This is formed by the scaling function acting as a low-pass filter, 
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h m m     , where h(m), m Z , are the low-pass filter coefficients. The 
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where g(m) are the high-pass filter coefficients. The filter coefficients are related by 

( ) ( 1) (1 )mg m h m   . In other words, in the QMFB the scaling and wavelet functions 
simultaneously perform the low-pass and high-pass filtering on the sensor signal. At the jth-
stage of the QMFB, the DWT approximation coefficients are given by, 
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and the DWT detail coefficients are given by, 
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Then, Eq. (2.1) can be expressed in the form, 
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From this representation, the jth-level DWT coefficients can be computed by convolving the 
QMFB with the (j–1)th-level approximation coefficients, i.e., 1j j jA A D   . The schematic 
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diagram of the multistage decomposition operation using the QMFB is shown in Fig. 2.1. By 
repeating this decomposition in cascade using the most recent Aj as inputs, we can compute 
the DWT coefficients to the resolution level of interest. The usefulness of the MRA 
representation is that a signal can be decomposed into different levels of wavelet coefficients 
according to the frequency components that comprised the whole signal. The higher the 
wavelet levels, the lower the frequency components of the signal remain. Fig. 2.2 shows 
graphically the frequency representation of a signal being decomposed into various wavelet 
levels. fc is the centre frequency of the whole spectral bandwidth of the signal. If the 
multiplexed sensor signal is tailored in such a way that each sensor has a different (signal) 
frequency, after this cascaded operation, their original sensor signals will appear on 
different wavelet levels.  
 

 
Fig. 2.1. Multistage decomposition of a signal using QMFB. 

 

Fig. 2.2. Frequency representation of a signal decomposed into various wavelet levels. 

2.2 Wavelet denoising  
Wavelet denoising (Donoho, 1994) is a nonlinear noise reduction technique based on the 
DWT to remove/reduce the noise in the signal while preserving the overall signal features. 
The generic denoising algorithm is depicted in Fig. 2.3. In principle, wavelet denoising 
attempts to decompose a signal using the DWT to obtain the wavelet coefficients, and then 
apply a thresholding method or a shrinkage rule to each wavelet coefficient. The threshold 
can be obtained by using some risk estimators or by empirically finding a value. The 
method then either keeps or shrinks all wavelet coefficients that are above the threshold, 
and suppresses all those below the threshold. Then, the signal is reconstructed by taking the 
inverse DWT with the noisy part being removed. Here, two denoising techniques that are 
frequently employed in fibre sensing are discussed, namely hard thresholding (HT) and 
block-level thresholding (BLT). The former is a simple and effective method, while the latter 
is automatically incorporated with the DWT demodulation technique, making it a very 
attractive and convenient denoising method.  
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2.2 Wavelet denoising  
Wavelet denoising (Donoho, 1994) is a nonlinear noise reduction technique based on the 
DWT to remove/reduce the noise in the signal while preserving the overall signal features. 
The generic denoising algorithm is depicted in Fig. 2.3. In principle, wavelet denoising 
attempts to decompose a signal using the DWT to obtain the wavelet coefficients, and then 
apply a thresholding method or a shrinkage rule to each wavelet coefficient. The threshold 
can be obtained by using some risk estimators or by empirically finding a value. The 
method then either keeps or shrinks all wavelet coefficients that are above the threshold, 
and suppresses all those below the threshold. Then, the signal is reconstructed by taking the 
inverse DWT with the noisy part being removed. Here, two denoising techniques that are 
frequently employed in fibre sensing are discussed, namely hard thresholding (HT) and 
block-level thresholding (BLT). The former is a simple and effective method, while the latter 
is automatically incorporated with the DWT demodulation technique, making it a very 
attractive and convenient denoising method.  
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Fig. 2.3. Generic wavelet denoising algorithm. 

2.2.1 Hard thresholding  
When a sensor signal is acquired from a measurement system, the signal consists of 
broadband noise caused by the quality of the sensor, as well as the quantisation and finite 
resolution errors of the equipment. It is known that broadband noise is difficult to remove 
using conventional filtering without altering the signal. But this can be done by the HT 
wavelet denoising. Let the sensor signal intensity be represented as a wavelet series, 
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functions. By taking the DWT, the wavelet coefficients are,  
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The HT then sets a threshold value, h, to the wavelet coefficients, such that any coefficients 
below the threshold are suppressed, whereas the coefficients above the threshold are 
retained. Since the noise components are usually of low magnitude, the threshold can be set 
to a value high enough to eliminate the noisy coefficients, and low enough to retain useful 
signal coefficients. The HT operation can be represented by (Wong et al., 2005), 
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Since the HT is applied to the entire spectral range of the sensor signal, the broadband noise 
can be effectively removed. Once the noisy coefficients are removed, the signal can be 
reconstructed by taking the inverse DWT, 
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From another perspective, suppose a sensor signal consists of an ideal noise-free part f() 
and a noisy part ) with noise level p, i.e., ( ) ( ) ( )I f p     . If we set h = p, i.e., setting 
the threshold equal to the noise level, then the HT will suppress the noisy coefficients to 
zero while retaining the noise-free coefficients unaffected. The ideal case is to have 

( ) ( ) 0I f   , i.e., the reconstructed signal is as close as practicable to the ideal, noise-

free signal. 
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2.2.2 Block-level thresholding  
The BLT can be considered as a modified version of the block-thresholding method 
(Wong et al., 2006b). In the block-thresholding method, instead of applying a threshold to 
each wavelet coefficient term-by-term (as is for HT), the threshold is applied to a block of 
wavelet coefficients, with the threshold value determined by calculating and minimising 
the risk using the block James-Stein estimator. On the other hand, the BLT method 
attempts to set an entire level of wavelet coefficients as a block, such that the entire level 
is either retained or discarded. There is no need to estimate the risk or to find a value 
empirically in order to obtain the threshold value. For example, if the sensor signal has 
Gaussian white noise associated with it, such that the noise components spanned the 
whole frequency range of the signal. From the theory of MRA, the 1st-level detail 
coefficients account for the upper-half of the whole frequency range of the original signal, 
the 2nd-level account for the upper-half frequency range of the 1st-level approximation 
coefficients, and so on (c.f. Fig. 2.2). Therefore, the first two levels of detail coefficients 
cover 75 % of the whole frequency range of the sensor signal, and the noise components 
within this range will be removed if we discard the detail coefficients at these levels. For 
the signal expressed in the form of Eq. (2.6) with levels 1,2,...,j J , the BLT operation for 
a chosen level of approximation coefficients (j = JA) used to demodulate the sensor signal 
is given by, 
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Similarly, for a chosen level of detail coefficients (j = JD) used to demodulate the sensor 
signal, the BLT operation is given by,  
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In other words, the BLT discards all the levels of detail coefficients that are at (for 
approximation coefficients) or below (for detail coefficients) the desired level chosen to be 
used for sensor signal demodulation. Additionally, the BLT denoising technique can be 
applied as a standalone technique for any type of signal. In a more general form, the BLT for 
a chosen level jBLT, where 1 BLTj J  , is given by (Wong et al., 2007a), 
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An inverse DWT is then applied to the wavelet coefficients to reconstruct the signal with the 
noisy part removed. The choice of jBLT requires the signal to preserve its characteristic 
features for demodulation purposes, while being able to maximally remove the broadband 
noise components associated with it.  
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Fig. 2.3. Generic wavelet denoising algorithm. 
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The HT then sets a threshold value, h, to the wavelet coefficients, such that any coefficients 
below the threshold are suppressed, whereas the coefficients above the threshold are 
retained. Since the noise components are usually of low magnitude, the threshold can be set 
to a value high enough to eliminate the noisy coefficients, and low enough to retain useful 
signal coefficients. The HT operation can be represented by (Wong et al., 2005), 

 , ,
, ,

,

,  
ˆ( )

0,       
m n m n

h m n m n
m n

h
h

 
  



   


. (2.9) 

Since the HT is applied to the entire spectral range of the sensor signal, the broadband noise 
can be effectively removed. Once the noisy coefficients are removed, the signal can be 
reconstructed by taking the inverse DWT, 
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From another perspective, suppose a sensor signal consists of an ideal noise-free part f() 
and a noisy part ) with noise level p, i.e., ( ) ( ) ( )I f p     . If we set h = p, i.e., setting 
the threshold equal to the noise level, then the HT will suppress the noisy coefficients to 
zero while retaining the noise-free coefficients unaffected. The ideal case is to have 

( ) ( ) 0I f   , i.e., the reconstructed signal is as close as practicable to the ideal, noise-

free signal. 
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2.2.2 Block-level thresholding  
The BLT can be considered as a modified version of the block-thresholding method 
(Wong et al., 2006b). In the block-thresholding method, instead of applying a threshold to 
each wavelet coefficient term-by-term (as is for HT), the threshold is applied to a block of 
wavelet coefficients, with the threshold value determined by calculating and minimising 
the risk using the block James-Stein estimator. On the other hand, the BLT method 
attempts to set an entire level of wavelet coefficients as a block, such that the entire level 
is either retained or discarded. There is no need to estimate the risk or to find a value 
empirically in order to obtain the threshold value. For example, if the sensor signal has 
Gaussian white noise associated with it, such that the noise components spanned the 
whole frequency range of the signal. From the theory of MRA, the 1st-level detail 
coefficients account for the upper-half of the whole frequency range of the original signal, 
the 2nd-level account for the upper-half frequency range of the 1st-level approximation 
coefficients, and so on (c.f. Fig. 2.2). Therefore, the first two levels of detail coefficients 
cover 75 % of the whole frequency range of the sensor signal, and the noise components 
within this range will be removed if we discard the detail coefficients at these levels. For 
the signal expressed in the form of Eq. (2.6) with levels 1,2,...,j J , the BLT operation for 
a chosen level of approximation coefficients (j = JA) used to demodulate the sensor signal 
is given by, 
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Similarly, for a chosen level of detail coefficients (j = JD) used to demodulate the sensor 
signal, the BLT operation is given by,  
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In other words, the BLT discards all the levels of detail coefficients that are at (for 
approximation coefficients) or below (for detail coefficients) the desired level chosen to be 
used for sensor signal demodulation. Additionally, the BLT denoising technique can be 
applied as a standalone technique for any type of signal. In a more general form, the BLT for 
a chosen level jBLT, where 1 BLTj J  , is given by (Wong et al., 2007a), 
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An inverse DWT is then applied to the wavelet coefficients to reconstruct the signal with the 
noisy part removed. The choice of jBLT requires the signal to preserve its characteristic 
features for demodulation purposes, while being able to maximally remove the broadband 
noise components associated with it.  
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In the subsequent sections, four exemplary applications, which are the research works 
conducted by the authors, will be presented to demonstrate the power and versatility of the 
DWT. 

3. Application case 1 – simultaneous multi-sensor signal demodulation 
In the first example, a new simultaneous demodulation technique was proposed for a 
multiplexed fibre Fizeau interferometer (FFI) and FBG sensor system, based on the DWT 
technique described in the last section (Wong et al., 2006a, 2006b). In relation to this 
demodulation technique, the BLT denoising technique was applied automatically and 
simultaneously to reduce the noise associated with the sensor signal. It is known that FFIs and 
FBGs are two of the most widely studied types of fibre-optic sensors (Lee, 2003). They have 
distinct measurand-induced responses and dynamic ranges, and hence, when they are 
combined together, they can measure different measurands simultaneously. This 
demodulation technique outperforms currently reported techniques, and the key advantages 
are: (i) it overcomes the disadvantages associated with interferometric methods; (ii) it only 
requires a simple setup to interrogate and multiplex the sensors. All the data acquisition, 
signal processing, and calculations are carried out digitally by a computer program, and no 
complicated demodulating electronics are needed; (iii) it is a completely passive system that 
does not require any mechanical moving parts or active modulation, making it especially 
suited for continuous long-term quasi-static sensing; (iv) and it automatically reduces the 
signal noise through the BLT, without the need of any additional filtering techniques. 
The FFI and FBG sensors are multiplexed using a hybrid of spatial-frequency-division 
multiplexing (SFDM) and wavelength-division multiplexing (WDM). Specifically, SFDM is 
used to multiplex the FFI sensors, in that each sensor produces a sinusoidal interference 
pattern with the spatial frequency specified by the cavity length. The multiplexed FFIs 
signal can then be demodulated using the FT peak detection method, which will be 
described later. For FBG sensors, WDM is employed in order to take the advantage of the 
wavelength-encoded nature. In the wavelength domain, each FBG has a narrowband Bragg 
peak in the reflection spectrum. As a result, the multiplexed signal is of two extremes: the 
FBG signal (i.e., the main peak) is localised with compact support in the original 
(wavelength) domain, but spans across the entire spectral bandwidth in the dual (spatial-
frequency domain). The opposite case applies to the FFI signal. That is, in the original 
domain the signal is spanned along the spectral bandwidth of the light source. But in the 
dual domain, the signal is localised with compact support, and is shown as a sharp peak. In 
this case, the multiplexed signal can be easily separated by the DWT technique and 
individual sensor signals will appear on two distinct wavelet levels.  
Fig. 3.1 (a) shows the experimental setup for the sensor system, An amplified spontaneous 
emission (ASE) light source was connected to a 3-dB fibre coupler to illuminate the FFI and 
FBG sensors that are serially multiplexed. This reflected signal was acquired by an optical 
spectrum analyser (OSA) and transferred to a computer. The multiplexed signal is the 
superposition of the two individual sensor signals. Assuming no insertion loss, for N FFIs 
and M FBGs, the measured spectrum is of the form (Wong et al., 2006b): 
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where A() is the incident light source intensity, ri are the reflection coefficients of the two 
fibre ends that form the FFI cavity, d is the cavity length, V is the fringe visibility, S() is the 
erbium-doped fibre (EDF) amplifier spectral profile, B is the centre Bragg wavelength, RB is 
the peak reflectivity of the FBG, and B is a parameter related to the FBG bandwidth. A 
typical multiplexed signal for N = M = 1 is shown in Fig. 3.1 (b). From the figure, the FBG 
can be identified by the distinct narrowband peak (around 1533 nm), whereas the FFI 
produced a sinusoidal interference pattern that spanned the light source bandwidth, and 
superimposed on its spectral profile.  
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Fig. 3.1. (a) Experimental setup for the multiplexed FFI and FBG sensor system; and (b) a 
typical multiplexed sensor signal. 

 

 
Fig. 3.2. Simultaneous demodulation algorithm with wavelet denoising. 
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In the subsequent sections, four exemplary applications, which are the research works 
conducted by the authors, will be presented to demonstrate the power and versatility of the 
DWT. 

3. Application case 1 – simultaneous multi-sensor signal demodulation 
In the first example, a new simultaneous demodulation technique was proposed for a 
multiplexed fibre Fizeau interferometer (FFI) and FBG sensor system, based on the DWT 
technique described in the last section (Wong et al., 2006a, 2006b). In relation to this 
demodulation technique, the BLT denoising technique was applied automatically and 
simultaneously to reduce the noise associated with the sensor signal. It is known that FFIs and 
FBGs are two of the most widely studied types of fibre-optic sensors (Lee, 2003). They have 
distinct measurand-induced responses and dynamic ranges, and hence, when they are 
combined together, they can measure different measurands simultaneously. This 
demodulation technique outperforms currently reported techniques, and the key advantages 
are: (i) it overcomes the disadvantages associated with interferometric methods; (ii) it only 
requires a simple setup to interrogate and multiplex the sensors. All the data acquisition, 
signal processing, and calculations are carried out digitally by a computer program, and no 
complicated demodulating electronics are needed; (iii) it is a completely passive system that 
does not require any mechanical moving parts or active modulation, making it especially 
suited for continuous long-term quasi-static sensing; (iv) and it automatically reduces the 
signal noise through the BLT, without the need of any additional filtering techniques. 
The FFI and FBG sensors are multiplexed using a hybrid of spatial-frequency-division 
multiplexing (SFDM) and wavelength-division multiplexing (WDM). Specifically, SFDM is 
used to multiplex the FFI sensors, in that each sensor produces a sinusoidal interference 
pattern with the spatial frequency specified by the cavity length. The multiplexed FFIs 
signal can then be demodulated using the FT peak detection method, which will be 
described later. For FBG sensors, WDM is employed in order to take the advantage of the 
wavelength-encoded nature. In the wavelength domain, each FBG has a narrowband Bragg 
peak in the reflection spectrum. As a result, the multiplexed signal is of two extremes: the 
FBG signal (i.e., the main peak) is localised with compact support in the original 
(wavelength) domain, but spans across the entire spectral bandwidth in the dual (spatial-
frequency domain). The opposite case applies to the FFI signal. That is, in the original 
domain the signal is spanned along the spectral bandwidth of the light source. But in the 
dual domain, the signal is localised with compact support, and is shown as a sharp peak. In 
this case, the multiplexed signal can be easily separated by the DWT technique and 
individual sensor signals will appear on two distinct wavelet levels.  
Fig. 3.1 (a) shows the experimental setup for the sensor system, An amplified spontaneous 
emission (ASE) light source was connected to a 3-dB fibre coupler to illuminate the FFI and 
FBG sensors that are serially multiplexed. This reflected signal was acquired by an optical 
spectrum analyser (OSA) and transferred to a computer. The multiplexed signal is the 
superposition of the two individual sensor signals. Assuming no insertion loss, for N FFIs 
and M FBGs, the measured spectrum is of the form (Wong et al., 2006b): 
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where A() is the incident light source intensity, ri are the reflection coefficients of the two 
fibre ends that form the FFI cavity, d is the cavity length, V is the fringe visibility, S() is the 
erbium-doped fibre (EDF) amplifier spectral profile, B is the centre Bragg wavelength, RB is 
the peak reflectivity of the FBG, and B is a parameter related to the FBG bandwidth. A 
typical multiplexed signal for N = M = 1 is shown in Fig. 3.1 (b). From the figure, the FBG 
can be identified by the distinct narrowband peak (around 1533 nm), whereas the FFI 
produced a sinusoidal interference pattern that spanned the light source bandwidth, and 
superimposed on its spectral profile.  
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Fig. 3.1. (a) Experimental setup for the multiplexed FFI and FBG sensor system; and (b) a 
typical multiplexed sensor signal. 
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The simultaneous demodulation algorithm is depicted in Fig. 3.2. For a multiplexed signal 
retrieved from the OSA, the DWT was applied to decompose it into multilevel wavelet 
coefficients. In parallel to the demodulation, the BLT was applied simultaneously such that 
the decomposed signal was denoised. The discrete Meyer wavelet was chosen to be the 
kernel function for DWT because the number of vanishing moments and regularity are 
suitable for analysing this type of multiplexed signal. For the FBG sensor, since the received 
signal from the OSA was a function of wavelength, the Bragg wavelength can be 
determined directly from a level of approximation coefficients, which effectively gave the 
denoised version of the original spectrum. The BLT technique automatically discarded the 
wavelet levels that were below the chosen level of approximation coefficients for the FBG 
signal, and thus reduced the signal noise without explicitly applying any additional filtering 
technique. Then, an interpolation utilising the piecewise-continuous cubic-spline function 
was applied to the Bragg peak to increase the wavelength resolution. Next, the cavity length 
of the FFI was determined. After taking the DWT, the detail coefficients were indeed the 
original interference pattern of the FFI, which was then demodulated using the FT peak 
detection method. First, the signal was Fourier transformed and each sensor had its own 
peak in the magnitude spectrum. The important step was to convert the variables of the 
detail coefficients from wavelength to wavenumber. In doing so, the FT dual-domain 
variable was related to the sensor cavity length. The cavity length can then be obtained 
directly from the location of the amplitude peak in the magnitude spectrum (Wong et al., 
2005). Once the characteristic change of both sensors are known, i.e., Bragg wavelength of 
the FBG and cavity length of the FFI, simultaneous measurement of two measurands can be 
achieved by monitoring the changes of both sensors. In order to do so, the measurands-
induced responses, i.e., the elements in the sensitivity matrix need to be determined. The HT 
denoising technique (described in previous section) can be used to denoise and smooth out 
the measured data. Thus, this demodulation technique provided a complete process for a 
practical sensor system from the acquisition of raw data to human understandable 
measurand outputs, and all steps were performed digitally by a computer program.  
Having described in details the demodulation algorithm, for an acquired multiplexed signal 
[Fig. 3.1 (b)], after taking the DWT, the approximation coefficients that represent the FBG 
signal is shown in Fig. 3.3 (a). The approximation coefficients give a smoothed and noise-
reduced version of the original noisy signal. Fig. 3.3 (b) shows the magnification around the 
Bragg peak, and the Bragg wavelength shift can be found directly by employing a 
wavelength detection method. A resolution of ~1.2 pm after interpolation was achieved. For 
the FFI sensor, after taking the DWT, Fig. 3.4 (a) shows the detail coefficients, which 
effectively represented the mean-removed and windowed version of the original 
interference pattern. Fig. 3.4 (b) shows the Fourier transformed magnitude spectrum of the 
detail coefficients around the amplitude peak. It can be seen that, after conversion of x-
variable, the cavity length can be directly determined from its position in the magnitude 
spectrum. A resolution of ~0.04 m was achieved after interpolation. 
An application of this demodulation technique was demonstrated through the simultaneous 
measurement of strain and temperature of an aluminium (Al) plate. With the setup from 
Fig. 3.1 (a) the FBG was loosely adhered onto the Al-plate, such that it was not affected by 
the strain field. The FFI adhered firmly onto the Al-plate next to the FBG using some 
superglue, and so it was affected by both strain and temperature changes of the plate. Before 
proceeding to the actual experiment, the coefficients in the sensitivity matrix needed to be 
determined. To illustrate this, let the two sensors be represented as, 
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Fig. 3.3. (a) Approximation coefficients for the FBG; (b) around the Bragg peak. 
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Fig. 3.4. (a) Detail coefficients for the FFI; (b) FT magnitude spectrum around the peak. 
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where i are the measurand-induced physical change of the sensors, and Kij are the 
measurand-induced responses (i.e., sensitivity coefficients).  and T are the strain and 
temperature changes, respectively. Eq. (3.2) is a set of two simultaneous linear equations, 
which can be expressed in matrix form as, 
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The simultaneous demodulation algorithm is depicted in Fig. 3.2. For a multiplexed signal 
retrieved from the OSA, the DWT was applied to decompose it into multilevel wavelet 
coefficients. In parallel to the demodulation, the BLT was applied simultaneously such that 
the decomposed signal was denoised. The discrete Meyer wavelet was chosen to be the 
kernel function for DWT because the number of vanishing moments and regularity are 
suitable for analysing this type of multiplexed signal. For the FBG sensor, since the received 
signal from the OSA was a function of wavelength, the Bragg wavelength can be 
determined directly from a level of approximation coefficients, which effectively gave the 
denoised version of the original spectrum. The BLT technique automatically discarded the 
wavelet levels that were below the chosen level of approximation coefficients for the FBG 
signal, and thus reduced the signal noise without explicitly applying any additional filtering 
technique. Then, an interpolation utilising the piecewise-continuous cubic-spline function 
was applied to the Bragg peak to increase the wavelength resolution. Next, the cavity length 
of the FFI was determined. After taking the DWT, the detail coefficients were indeed the 
original interference pattern of the FFI, which was then demodulated using the FT peak 
detection method. First, the signal was Fourier transformed and each sensor had its own 
peak in the magnitude spectrum. The important step was to convert the variables of the 
detail coefficients from wavelength to wavenumber. In doing so, the FT dual-domain 
variable was related to the sensor cavity length. The cavity length can then be obtained 
directly from the location of the amplitude peak in the magnitude spectrum (Wong et al., 
2005). Once the characteristic change of both sensors are known, i.e., Bragg wavelength of 
the FBG and cavity length of the FFI, simultaneous measurement of two measurands can be 
achieved by monitoring the changes of both sensors. In order to do so, the measurands-
induced responses, i.e., the elements in the sensitivity matrix need to be determined. The HT 
denoising technique (described in previous section) can be used to denoise and smooth out 
the measured data. Thus, this demodulation technique provided a complete process for a 
practical sensor system from the acquisition of raw data to human understandable 
measurand outputs, and all steps were performed digitally by a computer program.  
Having described in details the demodulation algorithm, for an acquired multiplexed signal 
[Fig. 3.1 (b)], after taking the DWT, the approximation coefficients that represent the FBG 
signal is shown in Fig. 3.3 (a). The approximation coefficients give a smoothed and noise-
reduced version of the original noisy signal. Fig. 3.3 (b) shows the magnification around the 
Bragg peak, and the Bragg wavelength shift can be found directly by employing a 
wavelength detection method. A resolution of ~1.2 pm after interpolation was achieved. For 
the FFI sensor, after taking the DWT, Fig. 3.4 (a) shows the detail coefficients, which 
effectively represented the mean-removed and windowed version of the original 
interference pattern. Fig. 3.4 (b) shows the Fourier transformed magnitude spectrum of the 
detail coefficients around the amplitude peak. It can be seen that, after conversion of x-
variable, the cavity length can be directly determined from its position in the magnitude 
spectrum. A resolution of ~0.04 m was achieved after interpolation. 
An application of this demodulation technique was demonstrated through the simultaneous 
measurement of strain and temperature of an aluminium (Al) plate. With the setup from 
Fig. 3.1 (a) the FBG was loosely adhered onto the Al-plate, such that it was not affected by 
the strain field. The FFI adhered firmly onto the Al-plate next to the FBG using some 
superglue, and so it was affected by both strain and temperature changes of the plate. Before 
proceeding to the actual experiment, the coefficients in the sensitivity matrix needed to be 
determined. To illustrate this, let the two sensors be represented as, 
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Fig. 3.3. (a) Approximation coefficients for the FBG; (b) around the Bragg peak. 
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Fig. 3.4. (a) Detail coefficients for the FFI; (b) FT magnitude spectrum around the peak. 
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where i are the measurand-induced physical change of the sensors, and Kij are the 
measurand-induced responses (i.e., sensitivity coefficients).  and T are the strain and 
temperature changes, respectively. Eq. (3.2) is a set of two simultaneous linear equations, 
which can be expressed in matrix form as, 

  1 1 1

2 2 2

T

T

K K
K K T





 


     
         

.   (3.3) 



 
Discrete Wavelet Transforms - Biomedical Applications 

 

230 

This equation can be solved for the measurand vector by inverting the K-matrix, i.e.,  
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where 1 2 1 2det( ) 0T TK K K K K    . This shows the strain and temperature can be 
simultaneously separated and measured provided the elements in the square matrix are pre-
determined. This can be done by measuring one measurand (while the other kept constant) 
at a time against the spectral response of each sensor. For this sensor arrangement, with the 
details described in (Wong et al., 2006b), the strain and temperature responses of the FBG 
and FFI sensors are shown in Figs. 3.5 and 3.6, respectively. From the linear regression fits, 
for the FBG sensor the strain and temperature sensitivity coefficients are 1.2 pm/ and 10.4 
pm/°C, respectively; whereas for the FFI sensor, the respective sensitivity coefficients are 
4.06×104 pm/ and 1.12×106 pm/°C. Since the FBG was not affected by strain change, the 
system of linear equations is given by, 
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where d and B are the FFI cavity length change and FBG Bragg wavelength shift, 
respectively. The sensors were left in the laboratory overnight for a period of 14 hours, with 
no external axial strain applied. A LabVIEW program was written to acquire the sensor 
signal in real-time at a rate of ~6 s per reading. The FFI subjected to both the thermal strain 
and temperature change of the Al-plate, while the FBG subjected to temperature change 
only. By using Eq. (3.6), the separated effects of thermal strain and temperature change over 
the measured period are shown in Fig. 3.7. Although both sensors experienced the same 
temperature change, the thermal strain of the Al-plate did not correlate very well with its 
temperature change. This is because the FBG was loosely adhered onto the Al-plate, it was 
influenced by the surrounding environment and temperature change more than the thermal 
response of the Al-plate. 
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Fig. 3.5. (a) Strain and (b) temperature responses of the FBG sensor.  
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Fig. 3.6. (a) Strain and (b) temperature responses of the FFI sensor.  

 

0 2 4 6 8 10 12 14
-30

-20

-10

0

10

20


 

( 
)

0 2 4 6 8 10 12 14
-1.5

-1

-0.5

0

Time (hr)


T 

( C
)

 
Fig. 3.7. Simultaneous measurement of strain and temperature of Al-plate. 

4. Application case 2 – multiplexing and demultiplexing of multi-sensors 
In the second example, a new type of FBG called amplitude-modulated chirped FBGs 
(AMCFBGs) was designed and fabricated, and based on that, a new multiplexing technique 
called spectral overlap multiplexing was proposed and experimentally demonstrated 
(Childs et al., 2010, Wong et al., 2007a, 2007b, 2010). We show that, the DWT played a central 
role in the demultiplexing, demodulation and analysis of these multiplexed novel sensor 
signals. The AMCFBGs are similar to ordinary chirped FBGs, i.e., they have a broad and flat 
reflection spectrum. The subtle difference is the addition of an amplitude-modulation 
function to the refractive index modulation of the fibre core, which is achieved by varying 
the induced DC refractive index during the writing process. With this index modulation, the 
reflection spectrum has a unique signature – a sinusoidal modulation on its flat-top region. 
The amplitude-modulation function for the refractive index modulation is given by 

 2( ) sin /d gf z w dz L  , where w is an apodisation function such as a raised-cosine 

function, d is the number of periods (frequency) of modulation, and Lg is the length of the 



 
Discrete Wavelet Transforms - Biomedical Applications 

 

230 

This equation can be solved for the measurand vector by inverting the K-matrix, i.e.,  
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where d and B are the FFI cavity length change and FBG Bragg wavelength shift, 
respectively. The sensors were left in the laboratory overnight for a period of 14 hours, with 
no external axial strain applied. A LabVIEW program was written to acquire the sensor 
signal in real-time at a rate of ~6 s per reading. The FFI subjected to both the thermal strain 
and temperature change of the Al-plate, while the FBG subjected to temperature change 
only. By using Eq. (3.6), the separated effects of thermal strain and temperature change over 
the measured period are shown in Fig. 3.7. Although both sensors experienced the same 
temperature change, the thermal strain of the Al-plate did not correlate very well with its 
temperature change. This is because the FBG was loosely adhered onto the Al-plate, it was 
influenced by the surrounding environment and temperature change more than the thermal 
response of the Al-plate. 
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Fig. 3.5. (a) Strain and (b) temperature responses of the FBG sensor.  
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Fig. 3.6. (a) Strain and (b) temperature responses of the FFI sensor.  
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Fig. 3.7. Simultaneous measurement of strain and temperature of Al-plate. 

4. Application case 2 – multiplexing and demultiplexing of multi-sensors 
In the second example, a new type of FBG called amplitude-modulated chirped FBGs 
(AMCFBGs) was designed and fabricated, and based on that, a new multiplexing technique 
called spectral overlap multiplexing was proposed and experimentally demonstrated 
(Childs et al., 2010, Wong et al., 2007a, 2007b, 2010). We show that, the DWT played a central 
role in the demultiplexing, demodulation and analysis of these multiplexed novel sensor 
signals. The AMCFBGs are similar to ordinary chirped FBGs, i.e., they have a broad and flat 
reflection spectrum. The subtle difference is the addition of an amplitude-modulation 
function to the refractive index modulation of the fibre core, which is achieved by varying 
the induced DC refractive index during the writing process. With this index modulation, the 
reflection spectrum has a unique signature – a sinusoidal modulation on its flat-top region. 
The amplitude-modulation function for the refractive index modulation is given by 

 2( ) sin /d gf z w dz L  , where w is an apodisation function such as a raised-cosine 

function, d is the number of periods (frequency) of modulation, and Lg is the length of the 
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grating. The reflection spectrum for one AMCFBG can be approximated by the expression 
(Wong et al., 2007a),  

        
min min

min
min max min, L g

dc L
L

R R R R f
c 
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  
    

   
, (4.1) 

where min is the initial wavelength of the grating, Rmin and Rmax are the reflectivities of the 
troughs and peaks of the grating spectrum, respectively, cL is the linear chirp rate of the 
phase mask used for writing the gratings, and I(x) is the characteristic function on the 
interval I which equals 1 when x is an element of I and zero otherwise. The fabrication 
procedure can be found in (Wong et al., 2007b). As an example of an AMCFBG that we 
fabricated, Fig. 4.1 (a) shows the amplitude-modulation function with a raised-cosine 
apodisation, d = 5 and Lg = 10 mm; and Fig. 4.1 (b) shows the corresponding measured 
reflection spectrum.  
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Fig. 4.1. (a) Index modulation function used in the fabrication; (b) measured reflection 
spectrum of the AMCFBG. 

In the wavelength domain, ordinary FBGs cannot be easily distinguished if they are 
spectrally overlapped. Using the amplitude-modulation as a unique signature for each 
grating, the AMCFBGs are able to completely overlap one another having the same spectral 
characteristics, i.e., centre Bragg wavelength, bandwidth and reflectivity, yet still be 
uniquely distinguishable from each other. The uniqueness of each AMCFBG is defined by 
the number of periods (spatial-frequency) of its amplitude-modulation, and for a set of 
spectrally-overlapped gratings, no two gratings can have the same number of periods. With 
such unique signatures for the AMCFBGs, viable methods are needed to demultiplex and 
demodulate the multiplexed signals, and that was accomplished by using the DWT 
technique similar to that applied in the previous section. This is the basis of the new spectral 
overlap multiplexing technique. Since this multiplexing is fully compatible with the WDM, 
the sensor count can potentially be increased by several folds.  
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To demonstrate the spectral overlap multiplexing using AMCFBGs, we performed two 
experiments. In the first experiment, two spectrally overlapped gratings, S1 and S2, were 
employed, and the schematic diagram of the setup is depicted in Fig. 4.2. The individual 
spectra of S1 and S2, as well as the combined spectra are shown in Fig. 4.3 (a) – 4.3 (c), 
respectively. It is clear that, WDM scheme would not allow such overlapping, and without a 
suitable signal processing technique, it is unlikely the multiplexed signal be separated and 
analysed. However, by taking the DWT, the unique signatures, i.e., the  
 

 
Fig. 4.2. Experimental setup of the multiplexed AMCFBG system. 
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Fig. 4.3. Reflection spectrum of (a) S1, (b) S2, and (c) combined signal. 

sinusoidal modulations of the gratings, can be recovered. Fig. 4.4 shows that the detail 
coefficients of the two gratings, and the unique modulated periods are unambiguously 
identified. That is, the multiplexed signal has been successfully demodulated whereby the 
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where min is the initial wavelength of the grating, Rmin and Rmax are the reflectivities of the 
troughs and peaks of the grating spectrum, respectively, cL is the linear chirp rate of the 
phase mask used for writing the gratings, and I(x) is the characteristic function on the 
interval I which equals 1 when x is an element of I and zero otherwise. The fabrication 
procedure can be found in (Wong et al., 2007b). As an example of an AMCFBG that we 
fabricated, Fig. 4.1 (a) shows the amplitude-modulation function with a raised-cosine 
apodisation, d = 5 and Lg = 10 mm; and Fig. 4.1 (b) shows the corresponding measured 
reflection spectrum.  
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Fig. 4.1. (a) Index modulation function used in the fabrication; (b) measured reflection 
spectrum of the AMCFBG. 

In the wavelength domain, ordinary FBGs cannot be easily distinguished if they are 
spectrally overlapped. Using the amplitude-modulation as a unique signature for each 
grating, the AMCFBGs are able to completely overlap one another having the same spectral 
characteristics, i.e., centre Bragg wavelength, bandwidth and reflectivity, yet still be 
uniquely distinguishable from each other. The uniqueness of each AMCFBG is defined by 
the number of periods (spatial-frequency) of its amplitude-modulation, and for a set of 
spectrally-overlapped gratings, no two gratings can have the same number of periods. With 
such unique signatures for the AMCFBGs, viable methods are needed to demultiplex and 
demodulate the multiplexed signals, and that was accomplished by using the DWT 
technique similar to that applied in the previous section. This is the basis of the new spectral 
overlap multiplexing technique. Since this multiplexing is fully compatible with the WDM, 
the sensor count can potentially be increased by several folds.  
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Fig. 4.3. Reflection spectrum of (a) S1, (b) S2, and (c) combined signal. 
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measurand-induced wavelength shifts can be measured individually by tracking the ‘phase-
shift’ of the modulations. The strain response and crosstalk of the multiplexed AMCFBGs 
under this multiplexing scheme were conducted. A total of ten 20-cent coins (each weighs 
11.3 g, which corresponds to a strain of 125 ) were applied to S1, while S2 was left 
unstrained. For each coin applied, ten readings were taken. Fig. 4.5 (a) shows the  
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Fig. 4.4. Detail coefficients for (a) S1 and (b) S2 gratings. 
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Fig. 4.5. (a) Strain measurements and (b) absolute errors of S1 (strained) and S2 (unstrained). 

measured strain responses of S1 and S2 as a function of applied strain. The strain values 
were obtained by using the DWT technique mentioned before. The lines are the ideal 
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strain values. It can be seen that S1 measured the strain very accurately. For strains 
applied up to 1250 , the absolute error is within ±20  as shown in Fig. 4.5 (b). The 
corresponding strain response of S2 showed little crosstalk, with a maximum value of 
about 16  as shown in Fig. 4.5 (b). This small amount of crosstalk implies that adverse 
effects, such as spectral shadowing, did not impose much of a problem on this 
multiplexing technique. 
In the second experiment, simultaneous strain and temperature measurement of an Al-alloy 
plate was carried out. The experiment was similar to that in the previous section. That is, the 
AMCFBG sensors were first characterised to obtain the strain and temperature sensitivity 
coefficients, then simultaneous two-parameter measurement of the material was performed. 
Strain and temperature changes were obtained by measuring the wavelength (i.e., ‘phase’) 
shifts of the sensors and calculating their corresponding values. Two overlapped AMCFBGs 
were used, and to effectively utilise the advantage of having the same Bragg wavelength, 
the reference grating method (Wong et al., 2007b) was used. In such method, the strain 
sensor was firmly attached onto the structure, while the temperature sensor was placed 
under the same environmental conditions but unstrained. As such, the former experienced 
wavelength shifts due to both strain and temperature, while the latter only experienced the 
shift due to temperature change. With reference to Eq. (3.3), the set of simultaneous 
equations is given by, 

     1 1 1 1
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, (4.2) 

where the subscripts 1 and 2 represent strain and temperature sensors, respectively. Some 
approximations are made: (a) as both sensors experience the same temperature change, kT = 
k1T = k2T; (b) the Bragg wavelengths are the same for both sensors and so  By 
setting k = k1 and modifying Eq. (4.2), the expressions for strain and temperature change 
are then given by, 

 
 1 2 21 1;  and  B B B

B T B

T
k k

  
 

   
    . (4.3) 

Eq. (4.3) shows that the strain of a structure under test can be simply obtained from the 
differential wavelength shift between the two sensors, and temperature from the 
temperature sensor alone. Both the strain and temperature coefficients can be determined 
experimentally by measuring their measurand-induced responses. Fig. 4.6 shows the strain 
and temperature responses of an AMCFBG. Based on the slopes of the linear regression fits, 
the strain and temperature sensitivity coefficients were 1.20 pm/ and 10.06 pm/°C, 
respectively. The temperature measurement was carried out when the sensor was free and 
unstrained. However, when it was used to measure the Al-alloy plate, due to the thermal 
expansion mismatch between the plate and the silica fibre, temperature response needed to 
be re-measured with the sensor adhered onto the plate. The measured temperature 
coefficient is found to be 38.12 pm/°C. Now, the strain and temperature can be expressed 
numerically as, 

  1 2 20.8295  ;   and  0.0262B B BT             ,  (4.4) 
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measurand-induced wavelength shifts can be measured individually by tracking the ‘phase-
shift’ of the modulations. The strain response and crosstalk of the multiplexed AMCFBGs 
under this multiplexing scheme were conducted. A total of ten 20-cent coins (each weighs 
11.3 g, which corresponds to a strain of 125 ) were applied to S1, while S2 was left 
unstrained. For each coin applied, ten readings were taken. Fig. 4.5 (a) shows the  
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Fig. 4.4. Detail coefficients for (a) S1 and (b) S2 gratings. 
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Fig. 4.5. (a) Strain measurements and (b) absolute errors of S1 (strained) and S2 (unstrained). 

measured strain responses of S1 and S2 as a function of applied strain. The strain values 
were obtained by using the DWT technique mentioned before. The lines are the ideal 
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strain values. It can be seen that S1 measured the strain very accurately. For strains 
applied up to 1250 , the absolute error is within ±20  as shown in Fig. 4.5 (b). The 
corresponding strain response of S2 showed little crosstalk, with a maximum value of 
about 16  as shown in Fig. 4.5 (b). This small amount of crosstalk implies that adverse 
effects, such as spectral shadowing, did not impose much of a problem on this 
multiplexing technique. 
In the second experiment, simultaneous strain and temperature measurement of an Al-alloy 
plate was carried out. The experiment was similar to that in the previous section. That is, the 
AMCFBG sensors were first characterised to obtain the strain and temperature sensitivity 
coefficients, then simultaneous two-parameter measurement of the material was performed. 
Strain and temperature changes were obtained by measuring the wavelength (i.e., ‘phase’) 
shifts of the sensors and calculating their corresponding values. Two overlapped AMCFBGs 
were used, and to effectively utilise the advantage of having the same Bragg wavelength, 
the reference grating method (Wong et al., 2007b) was used. In such method, the strain 
sensor was firmly attached onto the structure, while the temperature sensor was placed 
under the same environmental conditions but unstrained. As such, the former experienced 
wavelength shifts due to both strain and temperature, while the latter only experienced the 
shift due to temperature change. With reference to Eq. (3.3), the set of simultaneous 
equations is given by, 
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where the subscripts 1 and 2 represent strain and temperature sensors, respectively. Some 
approximations are made: (a) as both sensors experience the same temperature change, kT = 
k1T = k2T; (b) the Bragg wavelengths are the same for both sensors and so  By 
setting k = k1 and modifying Eq. (4.2), the expressions for strain and temperature change 
are then given by, 
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Eq. (4.3) shows that the strain of a structure under test can be simply obtained from the 
differential wavelength shift between the two sensors, and temperature from the 
temperature sensor alone. Both the strain and temperature coefficients can be determined 
experimentally by measuring their measurand-induced responses. Fig. 4.6 shows the strain 
and temperature responses of an AMCFBG. Based on the slopes of the linear regression fits, 
the strain and temperature sensitivity coefficients were 1.20 pm/ and 10.06 pm/°C, 
respectively. The temperature measurement was carried out when the sensor was free and 
unstrained. However, when it was used to measure the Al-alloy plate, due to the thermal 
expansion mismatch between the plate and the silica fibre, temperature response needed to 
be re-measured with the sensor adhered onto the plate. The measured temperature 
coefficient is found to be 38.12 pm/°C. Now, the strain and temperature can be expressed 
numerically as, 

  1 2 20.8295  ;   and  0.0262B B BT             ,  (4.4) 
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where the Bragg wavelength shift, strain and temperature change are in units of pm,  and 
°C, respectively. To practically measure the strain and temperature change of the Al-alloy 
plate, one of the AMCFBG sensors was adhered firmly onto the plate with epoxy resin, 
whereas the other sensor was loosely attached such that it was free and unstrained from any 
strain field of the plate. The plate was placed inside a polyurethane foam box to minimise 
environmental perturbations. With the setup of Fig. 4.2, experiment was performed for a 
period of 18 h. By using Eq. (4.4), the strain and temperature changes are shown in Fig. 4.7. 
From the figure, both the strain and temperature curves changed in a much correlated 
manner, indicating that the strain was mainly thermally-induced. This is obvious as there 
was no external strain applied throughout the experiment, and unlike the previous results in 
Fig. 3.7, the experiment was isolated and so the thermal strain followed well with 
temperature change. The net change in strain and temperature during this 18 h period were 
about 40  and 1.5 °C, respectively. Since the plate was placed inside a foam box that had a 
relatively high heat capacity, the change in temperature was a bit small. By plotting a graph 
of temperature vs. strain, the slope of the linear regression fit gives a thermal strain 
sensitivity of 33 /°C. 
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Fig. 4.6. Strain and temperature responses of the AMCFBG. 
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Fig. 4.7. Simultaneous measurement of strain and temperature of an Al-alloy. 

5. Application case 3 – multiplexing of photonic crystal fibre sensors 
In the third example, DWT was applied to the multiplexing and demultiplexing of a 
relatively new class of fibre – photonic crystal fibres (PCFs) (Fu et al., 2009). PCFs 
distinguish themselves from conventional fibers that they consist of microstructured air 
holes along the fibre, and a wide variety of cross-section air hole arrangements can be 
designed to suit different applications. The particular type of PCF used in the example was 
called polarisation-maintaining PCFs (PM-PCFs) that have the characteristics of high 
birefringence and low temperature sensitivity, and so is suitable for single parameter 
sensing where cross-sensitivity issue can be minimised. However, at present, all reported 
PCF sensors were operated as single sensors, and a main reason was due to the difficulty in 
demultiplexing and demodulating the multiplexed PCF sensor signals, even though the 
multiplexing schemes are simple and easy to implement. To overcome this, we demonstrate 
the use of DWT to separate the multiplexed sensor signal, such that the change from each 
individual sensor can be extracted and measured.  
In our experimental setup, two PM-PCF sensors, PM-PCF1 and PM-PCF2, were multiplexed 
in series, as shown in Fig. 5.1. Each sensor unit was arranged in Sagnac interferoemter 
configuration with a section of PM-PCF as the birefrigent element, and the output signal can 
be represented by the transmission matrix as, [1 cos( )] 2T   . The phase difference  
introduced by the PM-PCF with a length of L to the two light beams is wavelength 
dependent and is given by 2 BL   . The period of the output spectrum, i.e., the spacing 
between two adjacent minima, is S=2/(BL), where B is the birefringence of the PM-PCF. 
The birefringence change due to environmental parameters can then be detected by 
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where the Bragg wavelength shift, strain and temperature change are in units of pm,  and 
°C, respectively. To practically measure the strain and temperature change of the Al-alloy 
plate, one of the AMCFBG sensors was adhered firmly onto the plate with epoxy resin, 
whereas the other sensor was loosely attached such that it was free and unstrained from any 
strain field of the plate. The plate was placed inside a polyurethane foam box to minimise 
environmental perturbations. With the setup of Fig. 4.2, experiment was performed for a 
period of 18 h. By using Eq. (4.4), the strain and temperature changes are shown in Fig. 4.7. 
From the figure, both the strain and temperature curves changed in a much correlated 
manner, indicating that the strain was mainly thermally-induced. This is obvious as there 
was no external strain applied throughout the experiment, and unlike the previous results in 
Fig. 3.7, the experiment was isolated and so the thermal strain followed well with 
temperature change. The net change in strain and temperature during this 18 h period were 
about 40  and 1.5 °C, respectively. Since the plate was placed inside a foam box that had a 
relatively high heat capacity, the change in temperature was a bit small. By plotting a graph 
of temperature vs. strain, the slope of the linear regression fit gives a thermal strain 
sensitivity of 33 /°C. 
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Fig. 4.6. Strain and temperature responses of the AMCFBG. 
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Fig. 4.7. Simultaneous measurement of strain and temperature of an Al-alloy. 

5. Application case 3 – multiplexing of photonic crystal fibre sensors 
In the third example, DWT was applied to the multiplexing and demultiplexing of a 
relatively new class of fibre – photonic crystal fibres (PCFs) (Fu et al., 2009). PCFs 
distinguish themselves from conventional fibers that they consist of microstructured air 
holes along the fibre, and a wide variety of cross-section air hole arrangements can be 
designed to suit different applications. The particular type of PCF used in the example was 
called polarisation-maintaining PCFs (PM-PCFs) that have the characteristics of high 
birefringence and low temperature sensitivity, and so is suitable for single parameter 
sensing where cross-sensitivity issue can be minimised. However, at present, all reported 
PCF sensors were operated as single sensors, and a main reason was due to the difficulty in 
demultiplexing and demodulating the multiplexed PCF sensor signals, even though the 
multiplexing schemes are simple and easy to implement. To overcome this, we demonstrate 
the use of DWT to separate the multiplexed sensor signal, such that the change from each 
individual sensor can be extracted and measured.  
In our experimental setup, two PM-PCF sensors, PM-PCF1 and PM-PCF2, were multiplexed 
in series, as shown in Fig. 5.1. Each sensor unit was arranged in Sagnac interferoemter 
configuration with a section of PM-PCF as the birefrigent element, and the output signal can 
be represented by the transmission matrix as, [1 cos( )] 2T   . The phase difference  
introduced by the PM-PCF with a length of L to the two light beams is wavelength 
dependent and is given by 2 BL   . The period of the output spectrum, i.e., the spacing 
between two adjacent minima, is S=2/(BL), where B is the birefringence of the PM-PCF. 
The birefringence change due to environmental parameters can then be detected by 
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measuring the ‘phase shift’ of minima. The output transmission spectrum of K sensor units 
multiplexed in series is given by (Fu et al., 2009), 
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where Lk , Sk, k are the loss, the period of the output spectrum and the initial phase of the k-
th sensor, respectively. Note that the output spectrum is indeed the multiplication of 
individual sensor signals. PM-PCF1 (length of 20 cm) was placed freely on a table, while 
PM-PCF2 (length of 60 cm) was placed inside a sealed pressure chamber. Pressure was 
 

 
Fig. 5.1. Experimental setup of in series multiplexing technique for PM-PCF based Sagnac 
interferometric sensor. 

applied to PM-PCF2 from 0 – 3 bars in steps of 0.5 bar, and was measured by a pressure 
gauge (COMARK C9557). Fig. 5.2 shows the output spectra of various pressure values 
measured by the OSA. In principle, to obtain the sensing information, the wavelength shift 
 

 
Fig. 5.2. Output transmission spectra of the two multiplexed Sagnac interferometric sensors 
in series with one sensor under applied pressure variations. 
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of the transmission minima of each sensor needs to be determined. However, as can be seen, 
the multiplexed sensor signal is more complex, and so simple tracing of the initial phase 
may not yield accurate results. We applied the DWT to the sensor signal, and the detail 
coefficients at two different levels are shown in Fig. 5.3. These two sets of coefficients are 
indeed the original sensor signal of the two sensors, and from the figure, the spectrum of 
PM-PCF2 shifted linearly with increasing pressure, while PM-PCF1 remained unchanged (at 
least the initial phase). Figs. 5.4(a) and 5.4(b) show the spectral shift of the two sensors as a 
function of applied pressure, and the crosstalk (includes other sources of errors, such as 
measurement error and ambient noise) between them, respectively. Thus, this example 
clearly demonstrated the capability of DWT in demultiplexing and demodulating 
multiplexed PCF sensor signals.  
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Fig. 5.3. Detail coefficients of two PM-PCF sensors at two wavelet levels.  
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Fig. 5.4. (a) Spectral phase shift and (b) crosstalk of the two PM-PCF sensor as a function of 
applied pressure. 



 
Discrete Wavelet Transforms - Biomedical Applications 

 

238 

measuring the ‘phase shift’ of minima. The output transmission spectrum of K sensor units 
multiplexed in series is given by (Fu et al., 2009), 
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th sensor, respectively. Note that the output spectrum is indeed the multiplication of 
individual sensor signals. PM-PCF1 (length of 20 cm) was placed freely on a table, while 
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of the transmission minima of each sensor needs to be determined. However, as can be seen, 
the multiplexed sensor signal is more complex, and so simple tracing of the initial phase 
may not yield accurate results. We applied the DWT to the sensor signal, and the detail 
coefficients at two different levels are shown in Fig. 5.3. These two sets of coefficients are 
indeed the original sensor signal of the two sensors, and from the figure, the spectrum of 
PM-PCF2 shifted linearly with increasing pressure, while PM-PCF1 remained unchanged (at 
least the initial phase). Figs. 5.4(a) and 5.4(b) show the spectral shift of the two sensors as a 
function of applied pressure, and the crosstalk (includes other sources of errors, such as 
measurement error and ambient noise) between them, respectively. Thus, this example 
clearly demonstrated the capability of DWT in demultiplexing and demodulating 
multiplexed PCF sensor signals.  
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6. Application case 4 – measurands analysis of novel fibre sensors  
In the fourth example, DWT is used as a signal analysis tool to demodulate, analyse and 
interpret acquired signals from two novel fibre sensors, namely tilted moiré FBG and tilted 
Bragg reflector fibre laser (TBR-FL). These two sensors were proposed to perform 
simultaneous two-parameter sensing using only single sensing elements. The advantages 
are: (i) the capability of detecting more measurands using fewer sensors; (ii) the ability of 
mitigating the issue of cross-sensitivity (mostly temperature-induced) inherited from the 
sensor property (Rao, 1997); and (iii) sensor structure can be made more compact, which 
simplifies and eases the packaging and installation works for practical applications. It is 
known that, in order to measure two parameters simultaneously, either two distinctive 
sensor types or sensors of two different spectral characteristics are needed. The proposed 
sensors are unique in the sense that they are designed in such a way that, within a single 
sensor structure, their spectral characteristics response differently to different measurands, 
and so permitting them to distinguish individual measurand-induced changes. As a result, 
their spectral profiles are relatively more complex, and can be considered as having two 
parts from two different sensor types. Therefore, the spectra cannot be easily separated and 
analysed. However, with DWT, such complex sensor signals are readily separated without 
losing measurands information.  

6.1 Tilted moiré fibre Bragg gratings  
The tilted moiré FBG was originally proposed as a bandwidth controllable filter for 
telecommunications applications (Wong et al., 2010b). Here, we extended its application to 
fibre sensing, in particular, it was proposed as a single sensor for simultaneous two-
parameter sensing (Wong et al., 2010c). The design criteria and fabrication procedure are 
detailed in (Wong et al., 2010c), and a typical spectrum is shown in Fig. 6.1. It can be seen 
that the sensor signal consists of two separate parts associated with the phase-shifted main 
Bragg mode (with a narrow resonance dip) and discrete cladding modes (including the 
ghost mode). The former is mostly confined in the core of the fibre, while the latter exist in 
the cladding region of the fibre. In that region, light is only loosely confined and its intensity 
decays exponentially along the radial direction and eventually radiates out of the fibre. As 
such, the cladding modes are capable of interacting with the surrounding environment at 
the fibre boundary, and sensing can be carried out via the principle of evanscent wave 
sensing.  
To demonstrate the use of a single sensor for simultaneous two-parameter sensing, we 
performed simultaneous measurement of temperature and refractive index (RI) of an 
aqueous solution. The aim was to obtain the measurand-induced sensitivity coefficients 
independently, such that the wavelength shifts from each measurand can be 
unambigously determined. Thus, we carried out the characterisation experiments 
separately to obtain the temperature and RI sensitivity coefficients. First, temperature was 
varied by putting the sensor into a container filled with hot water, and the value was 
measured by a digital thermometer (Fluke 52II with K-type thermocouple) in the range of 
43°C – 77°C, captured at every 1°C intervals. Next, the sensor was placed in a container 
filled with pre-mixed and saturated glucose solution (Dextrosol D-Glucose powder), and 
RI was varied by adding water to dilute the solution. A digital refractometer (Reichert 
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AR200) was used to obtain the absolute RI and temperature of the samples. The measured 
RI range was between 1.3331 and 1.4117, set by the RI of water and that of saturated 
glucose solution. The temperature (obtained from the refractormer) varied between 21.0°C 
– 21.6°C during the experiment. In both cases, wavelengths of the Bragg and cladding 
modes shifted according to measurands changes. More specifically, temperature changed 
the Bragg wavelength via thermo-optic effect (thermal expansion of glass fibre is very 
small that can be neglected), whereas the RI changed both the wavelength and 
transmission loss of the cladding modes. Thus, by applying the DWT, these two types of 
modes can be separated and their changes due to the two measurands can be extracted 
and analysed. Fig. 6.2 shows the detail wavelet coefficients for the (a) Bragg mode and (b) 
cladding modes at the 7th- and 6th-levels, respectively. Since the detail coefficients are 
mean removed, and so in the Bragg mode, the narrow resonance dip becomes a sharp 
peak, and temperature change can be measured by tracking this peak shift. As for the 
cladding modes, it is known that each individual cladding mode responds differently to 
the same measurand (e.g., RI) change, and taking an average of a number of cladding 
modes shifts will give more accurate readings than tracking just one particular mode. RI is 
thus measured by the averaged wavelength shift of about 10 cladding modes.  
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Fig. 6.1. (a) Transmission and (b) reflection spectra of the TMFBG sensor for simultaneous 
two-parameter sensing.  

After taking the DWT to the measured spectra, Fig. 6.3 (a) shows the wavelength shifts of 
the wavelet coefficients for the Bragg and averaged cladding modes, respectively, as a 
function of temperature. The solid lines are the linear regression fits of the data points. It is 
clear that, in response to temperature change, the averaged cladding modes shifted by 
almost the same amount and in the same direction as the Bragg mode. From the regression 
lines, the temperature-induced sensitivity of the Bragg and averaged cladding modes are 
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6. Application case 4 – measurands analysis of novel fibre sensors  
In the fourth example, DWT is used as a signal analysis tool to demodulate, analyse and 
interpret acquired signals from two novel fibre sensors, namely tilted moiré FBG and tilted 
Bragg reflector fibre laser (TBR-FL). These two sensors were proposed to perform 
simultaneous two-parameter sensing using only single sensing elements. The advantages 
are: (i) the capability of detecting more measurands using fewer sensors; (ii) the ability of 
mitigating the issue of cross-sensitivity (mostly temperature-induced) inherited from the 
sensor property (Rao, 1997); and (iii) sensor structure can be made more compact, which 
simplifies and eases the packaging and installation works for practical applications. It is 
known that, in order to measure two parameters simultaneously, either two distinctive 
sensor types or sensors of two different spectral characteristics are needed. The proposed 
sensors are unique in the sense that they are designed in such a way that, within a single 
sensor structure, their spectral characteristics response differently to different measurands, 
and so permitting them to distinguish individual measurand-induced changes. As a result, 
their spectral profiles are relatively more complex, and can be considered as having two 
parts from two different sensor types. Therefore, the spectra cannot be easily separated and 
analysed. However, with DWT, such complex sensor signals are readily separated without 
losing measurands information.  

6.1 Tilted moiré fibre Bragg gratings  
The tilted moiré FBG was originally proposed as a bandwidth controllable filter for 
telecommunications applications (Wong et al., 2010b). Here, we extended its application to 
fibre sensing, in particular, it was proposed as a single sensor for simultaneous two-
parameter sensing (Wong et al., 2010c). The design criteria and fabrication procedure are 
detailed in (Wong et al., 2010c), and a typical spectrum is shown in Fig. 6.1. It can be seen 
that the sensor signal consists of two separate parts associated with the phase-shifted main 
Bragg mode (with a narrow resonance dip) and discrete cladding modes (including the 
ghost mode). The former is mostly confined in the core of the fibre, while the latter exist in 
the cladding region of the fibre. In that region, light is only loosely confined and its intensity 
decays exponentially along the radial direction and eventually radiates out of the fibre. As 
such, the cladding modes are capable of interacting with the surrounding environment at 
the fibre boundary, and sensing can be carried out via the principle of evanscent wave 
sensing.  
To demonstrate the use of a single sensor for simultaneous two-parameter sensing, we 
performed simultaneous measurement of temperature and refractive index (RI) of an 
aqueous solution. The aim was to obtain the measurand-induced sensitivity coefficients 
independently, such that the wavelength shifts from each measurand can be 
unambigously determined. Thus, we carried out the characterisation experiments 
separately to obtain the temperature and RI sensitivity coefficients. First, temperature was 
varied by putting the sensor into a container filled with hot water, and the value was 
measured by a digital thermometer (Fluke 52II with K-type thermocouple) in the range of 
43°C – 77°C, captured at every 1°C intervals. Next, the sensor was placed in a container 
filled with pre-mixed and saturated glucose solution (Dextrosol D-Glucose powder), and 
RI was varied by adding water to dilute the solution. A digital refractometer (Reichert 

 
Applications of Discrete Wavelet Transform in Optical Fibre Sensing 

 

241 

AR200) was used to obtain the absolute RI and temperature of the samples. The measured 
RI range was between 1.3331 and 1.4117, set by the RI of water and that of saturated 
glucose solution. The temperature (obtained from the refractormer) varied between 21.0°C 
– 21.6°C during the experiment. In both cases, wavelengths of the Bragg and cladding 
modes shifted according to measurands changes. More specifically, temperature changed 
the Bragg wavelength via thermo-optic effect (thermal expansion of glass fibre is very 
small that can be neglected), whereas the RI changed both the wavelength and 
transmission loss of the cladding modes. Thus, by applying the DWT, these two types of 
modes can be separated and their changes due to the two measurands can be extracted 
and analysed. Fig. 6.2 shows the detail wavelet coefficients for the (a) Bragg mode and (b) 
cladding modes at the 7th- and 6th-levels, respectively. Since the detail coefficients are 
mean removed, and so in the Bragg mode, the narrow resonance dip becomes a sharp 
peak, and temperature change can be measured by tracking this peak shift. As for the 
cladding modes, it is known that each individual cladding mode responds differently to 
the same measurand (e.g., RI) change, and taking an average of a number of cladding 
modes shifts will give more accurate readings than tracking just one particular mode. RI is 
thus measured by the averaged wavelength shift of about 10 cladding modes.  
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Fig. 6.1. (a) Transmission and (b) reflection spectra of the TMFBG sensor for simultaneous 
two-parameter sensing.  

After taking the DWT to the measured spectra, Fig. 6.3 (a) shows the wavelength shifts of 
the wavelet coefficients for the Bragg and averaged cladding modes, respectively, as a 
function of temperature. The solid lines are the linear regression fits of the data points. It is 
clear that, in response to temperature change, the averaged cladding modes shifted by 
almost the same amount and in the same direction as the Bragg mode. From the regression 
lines, the temperature-induced sensitivity of the Bragg and averaged cladding modes are 
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10.53 pm/°C (with R2 = 0.9979) and 10.48 pm/°C (with R2 = 0.9925), respectively, which 
correlated very well with each other. Thus, it is sufficient to measure the temperature-only 
change by tracking the wavelength shift of the Bragg mode. Similarly, Fig. 6.3 (b) shows the 
wavelength shifts of the wavelet coefficients for the Bragg and averaged cladding modes, 
respectively, as a function of RI. From the figure, the Bragg mode remained unperturbed 
(within measurement errors), indicated that it is insensitive to RI change. The cladding 
modes, however, varied nonlinearly, with the curve best fitted by a polynomial function 
given empirically by,  

  4 3 2( ) 169.58 655.26 843.59 361.85DWTP n n n n n     (6.1) 

(with R2 = 0.9987) for the specified range 1.3331 ≤ n ≤ 1.4117. Thus, for RI-only change, Eq. 
(6.1) can serve as a lookup table, such that by tracking the wavelength shift of the 
averaged cladding modes, the RI value can be obtained. By combining these two distinct 
measurands-induced responses, simultaneous measurement of temperature and RI is 
realised. Temperature change can be directly obtained from the wavelength shift of the 
Bragg mode, and the RI from the differential wavelength shifts between the Bragg and 
averaged cladding modes, i.e., the residual amount after subtracting the average shifted 
amount of the cladding modes from that of the Bragg mode. Fig. 6.3 (b) (and Eq. (6.1)) can 
then be used to find the RI value by looking-up the corresponding measured differential 
shift.  
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Fig. 6.2. Wavelet coefficients (solid lines) of a measured transmission spectrum: (a) 7th-level 
coefficients for the Bragg mode, and (b) 6th-level coefficients for cladding modes. Dotted 
lines are the original spectra.  
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Fig. 6.3. Wavelength shifts of the wavelet coefficients for the Bragg mode and averaged 
cladding modes as a function of (a) temperature and (b) refractive index. Lines are the 
regression fits. 

6.2 Tilted Bragg reflector fibre lasers  
Up to present, there are mainly two types of grating-based FLs, namely distributed feedback 
and distributed Bragg reflector FLs. When applied in sensing, FLs have the advantage of 
high sensitivity, sensing output power and extinction ratio, and narrow 
linewidth/bandwidth. For simultaneous two-parameter sensing using single sensors, thus 
far, most of the proposed works are of passive type and only very few on using active 
sensors, e.g., fiber Raman lasers (Han et al., 2005, Tran et al., 2005) and distributed feedback 
FLs (Hadeler et al., 1999, 2001). TBR-FL is a new type of FL formed by a pair of wavelength 
and tilt-angle matched tilted FBGs (TFBGs) (Wong et al., 2011). In addition to the lasing 
peak, it possessed a grating tilt-induced cladding modes spectrum, which provided an extra 
sensing mechanism to detect the surrounding environment. We demonstrate that, with a 
simple experimental setup, the use of a single TBR-FL for simultaneous sensing of 
temperature and RI.  
 

 
Fig. 6.4. (a) Structure of the TBR-FL, and (b) experimental setup. OSA = optical spectrum 
analyser, WDM = wavelength division multiplexer, EDF = erbium-doped fibre, ISO = 
isolator, IMG = index matching gel.  

The structure of the TBR-FL comprises a pair of wavelength and tilt-angle matched TFBGs 
forming the resonant cavity and is depicted in Fig. 6.4 (a). The fabrication procedure is 
described in (Wong et al., 2011). The experimental setup depicted schematically in Fig. 6.4 
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10.53 pm/°C (with R2 = 0.9979) and 10.48 pm/°C (with R2 = 0.9925), respectively, which 
correlated very well with each other. Thus, it is sufficient to measure the temperature-only 
change by tracking the wavelength shift of the Bragg mode. Similarly, Fig. 6.3 (b) shows the 
wavelength shifts of the wavelet coefficients for the Bragg and averaged cladding modes, 
respectively, as a function of RI. From the figure, the Bragg mode remained unperturbed 
(within measurement errors), indicated that it is insensitive to RI change. The cladding 
modes, however, varied nonlinearly, with the curve best fitted by a polynomial function 
given empirically by,  

  4 3 2( ) 169.58 655.26 843.59 361.85DWTP n n n n n     (6.1) 

(with R2 = 0.9987) for the specified range 1.3331 ≤ n ≤ 1.4117. Thus, for RI-only change, Eq. 
(6.1) can serve as a lookup table, such that by tracking the wavelength shift of the 
averaged cladding modes, the RI value can be obtained. By combining these two distinct 
measurands-induced responses, simultaneous measurement of temperature and RI is 
realised. Temperature change can be directly obtained from the wavelength shift of the 
Bragg mode, and the RI from the differential wavelength shifts between the Bragg and 
averaged cladding modes, i.e., the residual amount after subtracting the average shifted 
amount of the cladding modes from that of the Bragg mode. Fig. 6.3 (b) (and Eq. (6.1)) can 
then be used to find the RI value by looking-up the corresponding measured differential 
shift.  
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Fig. 6.2. Wavelet coefficients (solid lines) of a measured transmission spectrum: (a) 7th-level 
coefficients for the Bragg mode, and (b) 6th-level coefficients for cladding modes. Dotted 
lines are the original spectra.  
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Fig. 6.3. Wavelength shifts of the wavelet coefficients for the Bragg mode and averaged 
cladding modes as a function of (a) temperature and (b) refractive index. Lines are the 
regression fits. 

6.2 Tilted Bragg reflector fibre lasers  
Up to present, there are mainly two types of grating-based FLs, namely distributed feedback 
and distributed Bragg reflector FLs. When applied in sensing, FLs have the advantage of 
high sensitivity, sensing output power and extinction ratio, and narrow 
linewidth/bandwidth. For simultaneous two-parameter sensing using single sensors, thus 
far, most of the proposed works are of passive type and only very few on using active 
sensors, e.g., fiber Raman lasers (Han et al., 2005, Tran et al., 2005) and distributed feedback 
FLs (Hadeler et al., 1999, 2001). TBR-FL is a new type of FL formed by a pair of wavelength 
and tilt-angle matched tilted FBGs (TFBGs) (Wong et al., 2011). In addition to the lasing 
peak, it possessed a grating tilt-induced cladding modes spectrum, which provided an extra 
sensing mechanism to detect the surrounding environment. We demonstrate that, with a 
simple experimental setup, the use of a single TBR-FL for simultaneous sensing of 
temperature and RI.  
 

 
Fig. 6.4. (a) Structure of the TBR-FL, and (b) experimental setup. OSA = optical spectrum 
analyser, WDM = wavelength division multiplexer, EDF = erbium-doped fibre, ISO = 
isolator, IMG = index matching gel.  

The structure of the TBR-FL comprises a pair of wavelength and tilt-angle matched TFBGs 
forming the resonant cavity and is depicted in Fig. 6.4 (a). The fabrication procedure is 
described in (Wong et al., 2011). The experimental setup depicted schematically in Fig. 6.4 
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(b). A laser diode was pumped to the TBR-FL via a wavelength-division-multiplexer 
(WDM), and the output signal was obtained by the OSA. At the other side of the FL was a 
continuous piece of EDF (~50 cm) looped in a diameter of ~3 cm, and so the sensor head 
comprised both the FL and the short coiled EDF section. Index matching gel (IMG) was 
applied to the far end of the EDF to minimise any reflections that may cause resonant 
feedback. This EDF section acted as an ASE source when excited by the excessive pump 
source. As such, the transmission spectrum of the constituent TFBG pair can be observed. 
With this setup, both the laser output and cladding modes spectra can be obtained 
simultaneously. A typical full spectrum is shown in Fig. 6.5 (a), which consisted of both 
the laser output [Fig. 6.5 (b)] and cladding modes [Fig. 6.5 (c)] spectra. Lasing occurred at 
the Bragg mode bound inside the core, whereas cladding modes were coupled out from 
the core and did not contribute to the laser operation. As mentioned, cladding modes can 
interact with the surrounding environment via evanescent wave, and therefore used to 
perform RI sensing. On the other hand, temperature change affected the FL as a whole 
and altered the entire spectrum (including lasing and cladding modes). Thus, 
simultaneous sensing was achieved by combining these two sensing properties, i.e., 
temperature was measured by tracking the lasing mode shift, and RI by the differential 
wavelength shift between the laser output and cladding modes. Similar to the previous 
case, the main objective was to empirically obtain the temperature and RI induced 
sensitivity coefficients. As such, characterisation experiments similar to that for tilted 
moiré FBGs were conducted [see also (Wong et al., 2011) for details], and the DWT was 
employed to demodulate and analyse the acquired sensor signals. Fig. 6.6 shows the 
wavelet coefficients of a typical measured spectrum. Detail coefficients are extracted for 
cladding modes [Fig. 6.6 (a)], as for the previous case; whereas approximation coefficients 
are extracted for the lasing mode [Fig. 6.6 (b)]. Since we are only interested in the lasing 
wavelength shift, approximation coefficients represent and resemble the original signal 
more accurately. After taking the DWT to the measured spectra, wavelength (i.e., wavelet 
coefficients) shifts of the laser output and averaged cladding modes (~20 modes) as a 
function of temperature are shown in Fig. 6.7 (a). Solid lines are the linear regression fits 
of the data. From the figure, both the laser output and averaged cladding modes yielded a 
very similar temperature-induced sensitivity, having values of 10.75 pm/°C (R2 = 0.9991) 
and 10.88 pm/°C (R2 = 0.9975), respectively. With such a high degree of correlation, it is 
sufficient to measure the temperature change by tracking the lasing wavelength shift 
alone. For RI, Fig. 6.7 (b) shows the wavelength shifts of the laser output and averaged 
cladding modes as a function of RI value. The laser output remained at the zero value 
(within measurement errors) and so have no direct relationship with RI. The averaged 
cladding modes varied nonlinearly with RI, and within the measured range the empirical 
relationship can be described by a polynomial function, 

 4 3 2( ) 358.2 1432.1 1910.1 849.9Cladding n n n n n       (6.2) 

(R2 = 0.9998). Thus, RI-only change can be obtained from the wavelength shift of the 
averaged cladding modes, as the laser output was not sensitive to it. Having established the 
temperature and RI sensitivity coefficients, simultaneous sensing of these two measurands 
using a single TBR-FL can be achieved. Temperature change can be obtained from the 
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wavelength shift of the laser output, whereas RI change from the differential wavelength 
shift between the averaged cladding modes and laser output. That is, the residual amount of 
the wavelength shift of the averaged cladding modes after subtracting from that of the laser 
output. As such, Fig. 6.7 (b) can be used as a look-up table to find the RI from the differential 
wavelength shift. 
 

 
Fig. 6.5. (a) Full spectrum of the TBR-FL sensor; and the magnification around (b) the laser 
output and (c) cladding modes spectrum. 
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Fig. 6.6. Wavelet coefficients of a measured TBR-FL spectrum: (a) 6th-level detail coefficients 
for the cladding modes, and (b) 2nd-level approximation coefficients for the Bragg mode. 
Dotted lines are the original spectra (manually offset) for comparison. 
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(b). A laser diode was pumped to the TBR-FL via a wavelength-division-multiplexer 
(WDM), and the output signal was obtained by the OSA. At the other side of the FL was a 
continuous piece of EDF (~50 cm) looped in a diameter of ~3 cm, and so the sensor head 
comprised both the FL and the short coiled EDF section. Index matching gel (IMG) was 
applied to the far end of the EDF to minimise any reflections that may cause resonant 
feedback. This EDF section acted as an ASE source when excited by the excessive pump 
source. As such, the transmission spectrum of the constituent TFBG pair can be observed. 
With this setup, both the laser output and cladding modes spectra can be obtained 
simultaneously. A typical full spectrum is shown in Fig. 6.5 (a), which consisted of both 
the laser output [Fig. 6.5 (b)] and cladding modes [Fig. 6.5 (c)] spectra. Lasing occurred at 
the Bragg mode bound inside the core, whereas cladding modes were coupled out from 
the core and did not contribute to the laser operation. As mentioned, cladding modes can 
interact with the surrounding environment via evanescent wave, and therefore used to 
perform RI sensing. On the other hand, temperature change affected the FL as a whole 
and altered the entire spectrum (including lasing and cladding modes). Thus, 
simultaneous sensing was achieved by combining these two sensing properties, i.e., 
temperature was measured by tracking the lasing mode shift, and RI by the differential 
wavelength shift between the laser output and cladding modes. Similar to the previous 
case, the main objective was to empirically obtain the temperature and RI induced 
sensitivity coefficients. As such, characterisation experiments similar to that for tilted 
moiré FBGs were conducted [see also (Wong et al., 2011) for details], and the DWT was 
employed to demodulate and analyse the acquired sensor signals. Fig. 6.6 shows the 
wavelet coefficients of a typical measured spectrum. Detail coefficients are extracted for 
cladding modes [Fig. 6.6 (a)], as for the previous case; whereas approximation coefficients 
are extracted for the lasing mode [Fig. 6.6 (b)]. Since we are only interested in the lasing 
wavelength shift, approximation coefficients represent and resemble the original signal 
more accurately. After taking the DWT to the measured spectra, wavelength (i.e., wavelet 
coefficients) shifts of the laser output and averaged cladding modes (~20 modes) as a 
function of temperature are shown in Fig. 6.7 (a). Solid lines are the linear regression fits 
of the data. From the figure, both the laser output and averaged cladding modes yielded a 
very similar temperature-induced sensitivity, having values of 10.75 pm/°C (R2 = 0.9991) 
and 10.88 pm/°C (R2 = 0.9975), respectively. With such a high degree of correlation, it is 
sufficient to measure the temperature change by tracking the lasing wavelength shift 
alone. For RI, Fig. 6.7 (b) shows the wavelength shifts of the laser output and averaged 
cladding modes as a function of RI value. The laser output remained at the zero value 
(within measurement errors) and so have no direct relationship with RI. The averaged 
cladding modes varied nonlinearly with RI, and within the measured range the empirical 
relationship can be described by a polynomial function, 

 4 3 2( ) 358.2 1432.1 1910.1 849.9Cladding n n n n n       (6.2) 

(R2 = 0.9998). Thus, RI-only change can be obtained from the wavelength shift of the 
averaged cladding modes, as the laser output was not sensitive to it. Having established the 
temperature and RI sensitivity coefficients, simultaneous sensing of these two measurands 
using a single TBR-FL can be achieved. Temperature change can be obtained from the 
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wavelength shift of the laser output, whereas RI change from the differential wavelength 
shift between the averaged cladding modes and laser output. That is, the residual amount of 
the wavelength shift of the averaged cladding modes after subtracting from that of the laser 
output. As such, Fig. 6.7 (b) can be used as a look-up table to find the RI from the differential 
wavelength shift. 
 

 
Fig. 6.5. (a) Full spectrum of the TBR-FL sensor; and the magnification around (b) the laser 
output and (c) cladding modes spectrum. 
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Fig. 6.6. Wavelet coefficients of a measured TBR-FL spectrum: (a) 6th-level detail coefficients 
for the cladding modes, and (b) 2nd-level approximation coefficients for the Bragg mode. 
Dotted lines are the original spectra (manually offset) for comparison. 
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Fig. 6.7. Wavelet coefficients shift of the laser output and averaged cladding modes as a 
function of (a) temperature and (b) refractive index. Lines are the regression fits. 

7. Conclusion  
A review of the applications of DWT in optical fibre sensing is presented. Several 
representative application examples proposed by the authors have been discussed; and 
based on the implementation of DWT, novel signal processing techniques and fibre sensors 
have been designed and proposed. The concepts of DWT demodulation technique and the 
BLT wavelet denoising were introduced and applied to various application examples. First, 
we proposed and employed the DWT to demodulate and demultiplex a multiplexed FFI 
and FBG sensor system. Second, we designed a novel type of FBG (the AMCFBGs), and 
based on their unique overlapping properties, a new multiplexing technique called spectral 
overlap multiplexing was proposed and demonstrated. Third, DWT was employed in the 
multiplexing and demultiplexing of PCF-based sensors array, a relatively new class of fibre 
sensors that, up until now, has always been used as single sensors. Fourth, DWT was used 
as a signal analysis tool for two novel fibre sensors, namely the tilted moiré FBG (a passive 
sensor) and the TBR-FL (an active sensor) sensors. Complex sensor signals were separated 
and demodulated to obtain the individual measurands-induced changes, such that single 
sensing elements can perform simultaneous two-parameter sensing. In addition, BLT was 
applied in all the above cases to denoise sensor signals automatically during the use of the 
DWT demodulation technique.  
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Fig. 6.7. Wavelet coefficients shift of the laser output and averaged cladding modes as a 
function of (a) temperature and (b) refractive index. Lines are the regression fits. 

7. Conclusion  
A review of the applications of DWT in optical fibre sensing is presented. Several 
representative application examples proposed by the authors have been discussed; and 
based on the implementation of DWT, novel signal processing techniques and fibre sensors 
have been designed and proposed. The concepts of DWT demodulation technique and the 
BLT wavelet denoising were introduced and applied to various application examples. First, 
we proposed and employed the DWT to demodulate and demultiplex a multiplexed FFI 
and FBG sensor system. Second, we designed a novel type of FBG (the AMCFBGs), and 
based on their unique overlapping properties, a new multiplexing technique called spectral 
overlap multiplexing was proposed and demonstrated. Third, DWT was employed in the 
multiplexing and demultiplexing of PCF-based sensors array, a relatively new class of fibre 
sensors that, up until now, has always been used as single sensors. Fourth, DWT was used 
as a signal analysis tool for two novel fibre sensors, namely the tilted moiré FBG (a passive 
sensor) and the TBR-FL (an active sensor) sensors. Complex sensor signals were separated 
and demodulated to obtain the individual measurands-induced changes, such that single 
sensing elements can perform simultaneous two-parameter sensing. In addition, BLT was 
applied in all the above cases to denoise sensor signals automatically during the use of the 
DWT demodulation technique.  
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1. Introduction

Since the security factor became a basic need for civilization, a lot of systems have been
developed. Those systems, try to ensure the safety in all the things that driving a certain
degree of exclusivity. Historically, keys, cards and passwords were used as security systems;
however, these methods are vulnerable to loss and theft. As a result biometric identification
methods emerge in order to tackle the disadvantages of the non biometric classical methods.
Biometrics, is an emerging technology that addresses the automated identification of
individuals, based on their physiological and behavioral traits. The main advantage of
biometric methods is the ability to recognize, which is made by means of a physical feature or
a unique pattern (Jain et al. (2008)). With these methods and individual can hardly be victim
of plagiarism.
There exist several biometrics cues such as iris (Abhyankara & Schuckersa (2010)), face
(Abatea et al. (2007)), fingerprint (Jimenez et al. (2010)), voice (Andicsa et al. (2010)), but one
of the cheapest is the hand geometry. Hand geometry, as the name suggests, refers to the
geometric structure of the hand (Singh et al. (2009)).
Hand geometry measurement is non intrusive and the verification involves a simple
processing of the resulting features. Usually the hand geometry identification involves a
digital picture acquisition and translation of the nodal points like: space between fingers,
curvature, length and width of the hand into numerical representations used to cross reference
with other hand prints stored in a database for a match.
The schemes which uses geometrical features of the hand, focused on characteristics as widths
of fingers at articulations, finger and palm lengths, finger deviations and the angles of the
inter-finger valleys with respect to the horizontal. The number of features obtained varied in
the range of 20-30, and usually the acquisition stage need pegs to define the accurate finger
position (Yoruk et al. (2006)).
The ability of associating an identity with an individual is called identification. Hand
geometry measurements are easily collectible due to both the dexterity of the hand and due
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2 Will-be-set-by-IN-TECH

to a relatively simple method of sensing which does not impose undue requirements on the
imaging optics (Zunkel (1998)).
In this paper a method which uses 31 wavelet features for human hand geometry
identification is presented. The paper is organized as follows: the related works about hand
geometry identification are shown in section 2, the proposed methodology for identification is
shown in section 3. Section 4 presents the tests and results obtained. Finally, the conclusions
and further works are presented in section 5.

2. Related works

The biometric applied to hand geometry is an important issue which has been part of many
investigations over the years, even when the theme is recent compared with other biometric
models. There exists evidence to believe that since more than 3200 years ago the geometry of
the hand was used to identify humans (Ratha & Govindaraju (1988)).
For example, in the Chauvet cave located in France, the walls were decorated with Palaeolithic
art. Around the paintings of the cave there exist palms used to identify the creator of the
painting. Additionally, reliable data show that in ancient Babylon and Egypt, the merchants
had recognition techniques, by the impressions of the people fingerprint made in clay or by
taking the morphology of the palm print.
The commercialization of hand geometry dates to the early 1970s with one of the first
deployments at Georgia University in 1974. The US Army began testing hand geometry for
use in banking in 1984. These deployments predate the concept of using the geometry of a
hand for identification as patented by (Sidlauskas (1988)).
The first commercial device for hand geometry identification was made in 1994 by the
Hungarian company Recowere Ltd. The hand identification systems are widely implemented
for their ease of use, public acceptance and integration capabilities. In Fig. 1 an image of a
commercial scanner is shown.
In the literature there are several works which tackle the problem of hand geometry
identification, but never using wavelet features.
The paper of (Singh et al. (2009)) presents an overview of biometric hand geometry
recognition. Five different methods were compared and the authors talks about the
advantages and disadvantages of each method. An approach that uses the color of the skin
of the hand as a feature for recognition is recommended. The best classifier proposed was
Gaussian Mixture Models (GMM).
In (Sanchez et al. (2000)) a comparison of four different methods for hand geometry
recognition is presented. 31 features were extracted and the classifiers compared were:
Euclidean distance, Hamming distance, Gaussian Mixture Models (GMM) and Radial Basis
Function Neural Networks. The authors reports a 97 percent of recognition success with the
method of GMM. The False Rejection Rate (FRR) and False Acceptance Rate (FAR) always
remain similar.
A work that uses the coefficients of the Fast Fourier Transform (FFT) and the coefficients of
the Discrete Cosine Transform (DCT) as a features for hand recognition was presented by
(Bolok et al. (2004)). Additionally, a database reduction algorithm is proposed. The classifier
used was Euclidean distance and the percentage of recognition using FFT features was 99 and
using DCT was 98.
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Fig. 1. Example of hand image acquisition device.

The work in (Kumar & Zhang (2007)) presents an algorithm which exploit user-specific
dependencies in the feature-level representation. The system employees a discrimination of
hand geometry features using entropy-based heuristics. Four classifiers were used: K-Nearest
Neighbor (K-NN), Bayes, Support Vector Machine (SVM) and Feedforward Neural Network
(FFN). The results demonstrates the improvement of the classifier performance with feature
discrimination, and the percent of recognition is equal to 95.
The work proposed by (Polat & Yildirim (2008)) presents a method for hand geometry
identification, the system does not required the stages of image preprocessing and feature
extraction before the identification. A general regression neural network is used for hand
classification. The authors reports an FRR and FAR of 15.
In Table 1 a summary of the related works on hand geometry based is shown, the essential
information of the table was collected at (Kanhangad et al. (2009)) and (Lai & Chaw (2009)).
The first column, show the authors name and the year of publication, the second, column
define the features used and in brackets the method used for classification. The third
column, show the overall performance of the system in terms of FAR and FRR. The FAR
is the probability of wrongfully accepting and imposter user. The FRR is the probability of
wrongfully rejecting a genuine user. Finally, the fourth column show the population size.

3. Proposed methodology

The stages of the methodology for the solution of the problem statement are: a) an image of
a hand is acquired, b) the image is preprocessed to enhance it, c) axes reallocation, d) wavelet
transform, e) feature extraction in wavelet domain, f) nearest neighbor classification and g)
the face of the individual of the hand recognized is displayed. In Fig. 2 an example of the
methodology for identification using hand geometry is shown.

3.1 Image acquisition
120 hand images of different individuals were taken using a commercial scanner. The images
were taken with a resolution of 300 dpi and the size of each image was 2550 x 3508 pixels as it
is shown in Fig. 3.
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Authors Methodology Performance Database size
Golfarelli et al. (1997) 17 features including finger

lengths (Mean of a multinomial
pdf)

FAR = N/A
FRR = N/A

100

Jain et al. (1999) Measurements along 16 different
axes (Euclidean distance)

FAR = 2.0%
FRR = 15%

50

Jain & Duta (1999) Alignment of finger shapes and
shape distance measurement
(match score)

FAR = 2.0%
FRR = 3.5%

53

Sanchez et al. (2000) several width, height and angle
measurements (GMM)

FAR = 6.0%
FRR = 6.0%

20

Lay (2000) Distorted pattern of the back of
hand (Quadtree)

FAR = 0.0%
FRR = 3.9%

100

Kumar et al. (2003) 16 geometry measurements
(Normalized correlation)

FAR = 5.3%
FRR = 8.2%

100

Bolok et al. (2004) Coefficients of FFT and DCT
(Euclidean distance)

FAR = N/A
FRR = N/A

40

Bulatov et al. (2004) 30 features (Training vector
bounding box)

FAR = 1.0%
FRR = 3.0%

70

Woodard & Flynn (2005) Shape index (Normalized
correlation coefficient)

FAR = 5.5%
FRR = 5.5%

177

Xiong et al. (2005) Elliptical model and finger
tip/valley information

FAR = 2.4%
FRR = 2.4%

108

Malassiotis et al. (2006) 96 curvature and 3D finger width
measurements (L1)

FAR = 3.6%
FRR = 3.6%

73

Kumar & Zhang (2007) Feature discretization (K-NN,
Bayes, SVM, FFN)

FAR = N/A
FRR = N/A

100

Polat & Yildirim (2008) No features (Regression Neural
Network)

FAR = 15.0%
FRR = 15.0%

140

Adán et al. (2008) 14 Non-landmark features (Time
averaged)

FAR = 0.45%
FRR = 3.4%

470

Kanhangad et al. (2009) Fusion of 3D and 2D hand
geometry features

FAR = 2.6%
FRR = 2.6%

177

This paper 31 Wavelet Features (Nearest
Neighbor)

FAR = 11.4%
FRR = 10.4%

120

Table 1. Summary of related works on hand geometry based identification

Five different pegs were placed on the scanner (since distances computed on the hand vary
substantially with pose and finger configuration), then the user places the hand palm facing
downwards, afterwards the hand image is acquired. Especially attention is placed to the
localization of the center of the medium finger. The pegs are located symmetrically between
the index and ring fingers. Another important point is the position of the thumb finger,
because it defines the X axis inside the image, as it is shown in Fig. 4.
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Fig. 2. Scheme of the proposed methodology.

Fig. 3. Example of hand image acquired.

3.2 Preprocessing
The images were obtained in RGB plane, and then changed to grayscale. After that, the Otsu
algorithm (Otsu (1979)) was used to compute a threshold in order to binarize the grayscale
images. A bidimensional 4 x 4 median filter is applied to eliminate the salt noise. The
next step, is to eliminate the shadows produced by the reflected scanner light against the
fingernails. This is made by a morphological operation of erosion for selecting only the big
objects inside the binary image (the hand). All the results obtained with image preprocessing
are shown in Fig. 5.
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algorithm (Otsu (1979)) was used to compute a threshold in order to binarize the grayscale
images. A bidimensional 4 x 4 median filter is applied to eliminate the salt noise. The
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Fig. 4. Pegs on the scanner for hand positioning.

Fig. 5. Hand image preprocessing. a) Binary image, b) Denoised hand and c) Hand after
shadow elimination.

3.3 Axes reallocation
After image preprocessing, the natural references of the hand are extracted in order to obtain
the X and Y axes using the middle and thumb fingers. The axe Y corresponds to the skeleton
of the middle finger, and the axe X corresponds to the straight skeleton of the thumb finger.
With the axes located and by deduction a new origin O’ is determined.
The translation of the points are computed by an scanning operation. The first pixel of the
axes Y is located in order to detect the top of the middle finger. This pixel determine the new
position of Y’ axe. The same operations is computed to find the position of the thumb finger
in X axe. This pixel determine the new position of X’ axe.
After image axes reallocation, a Canny filter is implemented in order to obtain only the edges
of the hand. The results obtained from axes reallocation and canny edge extraction are shown
in Fig. 6.
The image of hand edges is cropped, only those sections defined by the new axes was
preserved. The cut is made to avoid recognition mistakes if the people wear a bracelet. After
that, all the pixels pertaining to hand contour are extracted and marked in order to obtain a
matrix of xy points. The results obtained are shown in Fig. 7.
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Fig. 6. Axes reallocation. a) Original axes and b) New axes on edge image.

Fig. 7. Image cutting process and positioning of marks on the hand contour.

3.4 The Haar discrete wavelet transform
After axes translation the image is transformed to the wavelet domain. The Discrete Wavelet
Transform (DWT) is a tool that can be applied on the discrete data to obtain a multiscale
representation of the original data. From the digital point of view, the original information
must be represented and delivered in efficient form. The representation efficiency, talks about
the ability to capture significant information of an object of interest in a small description.
From the practical point of view this representation is obtained by means of structured
transformations and fast algorithms (Haar (1910)).
For this paper, the classical one level Haar decomposition is computed. The results obtained
after wavelet transform are shown in Fig. 8.
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Fig. 8. The hand image transformed to Haar wavelet first level.

3.5 Feature extraction
The horizontal information obtained from LH subband is very important, because these
horizontal details corresponds to the top points of the fingers and valleys of the hand. An
scanning process is made on LH subband to detect the coordinates of all these points. An
average is performed to select only eight control points defined as P1 to P8 as it is shown in
Fig. 9.

Fig. 9. Information on LH subband. a) Horizontal information and b) The eight control
points.

The hand top points are defined by Equation 1 and the hand valleys points are defined by
Equation 2.

Top_points = {P1, P3, P5, P7, P8} (1)

Valley_points = {P2, P4, P6} (2)
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After the calculation of control points a vector with 31 W wavelet features is computed, the
vector is called FV. The vector is divided into six sections as it is shown in Equation 3.

FV = { f1, f2, f3, f4, f5, f6} (3)

The first group of eight features f1 is obtained with the Euclidean distance measures between
the eight control points and O’ obtained in Fig. 9. The equation 4 show the computation of
the first group of eight features.

f1 = {w1 = p1O�, w2 = p2O�, ..., w7 = p7O�, w8 = p8O�} (4)

The first group of features f1 is shown in Fig. 10.

Fig. 10. The group of features f1.

The second group of eight features f2 is obtained with the computation of the angle between
the eight control points and O’, the angle is calculated with respect to the horizontal line. The
equation 5 show the computation of the second group of eight features.

f2 = {w9 = ∠p1O�, w10 = ∠p2O�, ..., w15 = ∠p7O�, w16 = ∠p8O�} (5)

The second group of features f2 is shown in Fig. 11.
The third group of features f3 is obtained by means of a triangulation of the Euclidean
distances between the points p1, p2, p6, p7,. The equation 6 show the computation of the third
group of three features.

f3 = {w17 = p2 p7, w18 = p7 p1, w19 = p1 p6} (6)

The third group of features f3 is shown in Fig. 12.
The fourth group of features f4 is obtained by the computation of the Euclidean distances
between the four fingers of the hand excluding the thumb. The equation 7 show the
computation of the fourth group of six features.

f4 = {w20 = p1 p2, w21 = p2 p3, w22 = p3 p4, w23 = p4 p5, w24 = p5 p6, w25 = p6 p7} (7)

The fourth group of features f4 is shown in Fig. 13.
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Fig. 11. The group of features f2.

Fig. 12. The group of features f3.

The fifth group of features f5 is obtained by the computation of the Euclidean distances
between the valleys of the hand which are distinctive features of each individual. The equation
8 show the computation of the fifth group of three features.

f5 = {w26 = p2 p4, w27 = p4 p6, w28 = p6 p4} (8)

The fifth group of features f5 is shown in Fig. 14.
The final group of features f6 is obtained by the computation of the Euclidean distances
between the thumb p8, middle p3 and pinky p7 fingers with respect to O’. The equation 9
show the computation of the sixth group of three features.

f6 = {w29 = O�p3, w30 = p3 p7, w31 = p7O�} (9)

The sixth group of features f6 is shown in Fig. 15.
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Fig. 13. The group of features f4.

Fig. 14. The group of features f5.

3.6 Nearest Neighbor classification
For the identification of hand geometry an algorithm of supervised learning called nearest
neighbor was used. The examples are divided into training and test. A training example is
an ordered pair < x, y > where x is an instance and y is a label provided by a supervisor or
expert. A test example is an instance x with unknown label. Then, the goal is to predict labels
for test examples.
The supervised nearest neighbor algorithm was used for hand classification and works as
follows (Samsudin & Bradleya (1988)): first, a database of sample hands images is created,
the correct classification (label) for each image is already known, this is called the training
phase. Then, when the system is given a query, i.e., a new hand to classify, the system simply
computes its distance (Euclidean) to every training example and keep the k closest image in

261Biometric Human Identification of Hand Geometry Features Using Discrete Wavelet Transform



10 Will-be-set-by-IN-TECH

Fig. 11. The group of features f2.

Fig. 12. The group of features f3.

The fifth group of features f5 is obtained by the computation of the Euclidean distances
between the valleys of the hand which are distinctive features of each individual. The equation
8 show the computation of the fifth group of three features.

f5 = {w26 = p2 p4, w27 = p4 p6, w28 = p6 p4} (8)

The fifth group of features f5 is shown in Fig. 14.
The final group of features f6 is obtained by the computation of the Euclidean distances
between the thumb p8, middle p3 and pinky p7 fingers with respect to O’. The equation 9
show the computation of the sixth group of three features.

f6 = {w29 = O�p3, w30 = p3 p7, w31 = p7O�} (9)

The sixth group of features f6 is shown in Fig. 15.

260 Discrete Wavelet Transforms - Biomedical Applications Biometric Human Identification of Hand Geometry Features Using Discrete Wavelet Transform 11

Fig. 13. The group of features f4.

Fig. 14. The group of features f5.

3.6 Nearest Neighbor classification
For the identification of hand geometry an algorithm of supervised learning called nearest
neighbor was used. The examples are divided into training and test. A training example is
an ordered pair < x, y > where x is an instance and y is a label provided by a supervisor or
expert. A test example is an instance x with unknown label. Then, the goal is to predict labels
for test examples.
The supervised nearest neighbor algorithm was used for hand classification and works as
follows (Samsudin & Bradleya (1988)): first, a database of sample hands images is created,
the correct classification (label) for each image is already known, this is called the training
phase. Then, when the system is given a query, i.e., a new hand to classify, the system simply
computes its distance (Euclidean) to every training example and keep the k closest image in

261Biometric Human Identification of Hand Geometry Features Using Discrete Wavelet Transform



12 Will-be-set-by-IN-TECH

Fig. 15. The group of features f6.

the database, in other words, finds the nearest neighbor of the query in the database. The
system classifies the query as belonging to the same class as its nearest neighbor.
An example of the results obtained for classification with nearest neighbor algorithm with
different wavelet features are shown in Fig. 16.

Fig. 16. Nearest neighbor results for features 5, 10, 15 and 25.
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4. Experimental evaluation and results

The hand geometry identification system was trained and tested using a database of 120 hand
images acquired using a commercial scanner. Additionally, images of the faces of the same
individuals where acquired with a web cam and stored and relationes with the corresponding
hand image. Then, when an input hand is recognized the system returns the face of the
corresponding individual.
Four tests were made in order to observe the performance of the hand identification system
proposed. 70 random individuals were selected for the recognition phase and a total of ten
chances were executed for each person. Three different variables were measured for each of
the four tests: false accept rate (FAR), false reject rate (FRR), and recognition rate (RR).
The first test, was made with natural conditions of hand images acquisition. At the second
test the hands were exposed to noise by adding to the scanner pen litter. Finally, the third and
four test was developed with extreme light conditions, such as high light and darkness. The
results obtained for the tests are shown in Table 2.

Conditions FRR FAR RR
Natural conditions 11.4% 10.4% 78.2 %
Participles of noise 30.56% 3.6% 65.84%

High light conditions 27.88% 7.0% 65.12%
Darkness 22.34% 10.0% 67.66%

Table 2. Tests results

The results showed in Table 2 demonstrated the average performance of the system, even
when a simple classifier is used. Compared with the results showed in the literature our
results are poor but represent a good start in a different new identifications method based on
feature extraction on the wavelet domain.
Sometimes, the mistake in recognition is due to the bad position of the hand, even when the
pegs are located in strategic positions. In Fig. 17 an example of a mistake in wavelet detection
due to bad positioning is shown.

5. Conclusions and further works

A method to solve the old problem of human identification using a biometric cue known
as hand geometry was presented. An input image of a hand was obtained using a scanner;
the image is preprocessed and transformed to the wavelet domain. In the wavelet domain,
31 hand geometry features were obtained, after that, the input image is tested against 120
images of hands stored on a database. The stage of classification is performed using a simple
nearest neighbor algorithm with Euclidean distances, Finally, a total recognition rate of 70.2
was obtained after experimental evaluation.
The proposed methodology can be applied in different environments such: parking lot, cash
vault, interactive kiosk,anti-pass back, point of sale, time and attendance, etc.
In the future, and with the goal of obtaining better results, different more robust classifiers
and different measurements distances will be tested.
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Fig. 15. The group of features f6.
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Fig. 17. A mistake in horizontal information detection in wavelet domain due to bad hand
positioning.
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Fig. 17. A mistake in horizontal information detection in wavelet domain due to bad hand
positioning.
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1. Introduction 
Phenology: the timing of biological events (life stages such as flowering, fruiting, bird 
arrival underpins or influences many different ecological processes (Dunlop and Brown 
2008; Forrest and Miller-Rushing 2010). These processes also have a significant role in 
shaping society’s values (e.g. on human health, biodiversity, forestry, agriculture and 
tourism (Beggs 2004; Fitter and Fitter 2002; van Vliet 2010)). Since the 1990s, primarily 
because of climate change (Keatley & Hudson 2010, Parmesan 2006, Root et al., 2008, 
Schwartz 2003, Sparks 1995, 2002) phenological time series have been used to determine and 
report the impacts of global warming in both natural and managed systems (Menzel et al. 
2006; Rosenzweig et al. 2008; Sparks et al. 2005). Determining trends in relation to long-term 
climate, however, is not easy as trends can be confounded by short-term interannual trends. 
Hence not only are long term records required, but also needed is the development of novel 
statistical methods which can deal with confounding factors (Badeck et al. 2004; Hudson 
2010; Hudson & Keatley 2010a).  
Wavelet methods (Daubechies,  1992) have been extensively applied to many arenas (eg. to 
the  study of change  in European spring temperatures (Paluš et al. 2005) and rainfall (Koch 
and Marković 2007), changes in vegetation cover (Lu et al. 2007), and to brain imaging 
(Bullmore et al. 2003; Sendur  et al. 2007). It is the ability of wavelets to cope with non-
stationary data: to deconstruct a time series into its subcomponents and remove noise; to 
accommodate multi-scale information, and to  minimize correlation and time-dependency in 
data (Cornish et al. 2006; Gencay et al. 2001; Percival and Walden 2000; Vidakovic (1999)) 
that  have added to their popularity. As phenological time series are usually non-stationary 
and noisy, and as  such wavelet methods present as a useful analytic method (Hudson et al., 
2005, Hudson 2010, Hudson et al., 2010a,b) for examining phenological records and for the 
determination of possibly changing climatic impacts on flowering, at an annual and across 
years basis.  
The utility of wavelets in investigating the relationship  of flowering to climate (three 
temperature variants and rainfall) is shown in this chapter by examining the flowering 
intensity time series records of eight Australian eucalypts – namely, E. camaldulensis, 
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and noisy, and as  such wavelet methods present as a useful analytic method (Hudson et al., 
2005, Hudson 2010, Hudson et al., 2010a,b) for examining phenological records and for the 
determination of possibly changing climatic impacts on flowering, at an annual and across 
years basis.  
The utility of wavelets in investigating the relationship  of flowering to climate (three 
temperature variants and rainfall) is shown in this chapter by examining the flowering 
intensity time series records of eight Australian eucalypts – namely, E. camaldulensis, 
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E. goniocalyx, E. leucoxylon, E. macrorhyncha, E. melliodora, E. microcarpa, E. polyanthemos and E. 
tricarpa. This work builds on an initial study by Kang et al. (2004) and on the early premise 
of Hudson et al. (2005) that wavelets per se could add integrity to the use of phenological 
records to detect climate change. This premise was recently confirmed by a study of 4 of the 
8 Eucalypt species studied in this chapter by Hudson et al. (2010a, b) (see also Hudson 
(2010) and Keatley & Hudson, 2010).   
The discrete wavelet transform (DWT), following the development of Percival and Walden 
(2000) and the maximal overlap DWT (MODWT) (Percival and Mofjeld 1997) is applied in 
this chapter. The rationale for this approach is that, given the resultant MODWT coefficients, 
the original (flowering) time series could be reconstructed as an additive decomposition - 
known as a multiresolution analysis (MRA) (Bratteli and Jorgensen 2002) and also that the 
individual detail (sub-component) series could be examined.  
The aim of this research is to demonstrate the utility of wavelet analysis in phenology by 
extending the recent work of Hudson et al., (2010 a,b) from four to eight eucalypt species. 
This chapter contributes significantly to our understanding of the interplay between climate 
and the flowering of Eucalyptus flowering – a major southern hemisphere genus.  

2. Methods 
2.1 Maximal Overlap DWT (MODWT) and Multiresolution Analysis (MRA) 
The discrete wavelet transform (DWT) as applied here, following Percival and Walden 2000, 
requires a discretization of the continuous time variable, Yt. For most practical applications, 
the DWT, which analyzes signals over a discrete set of scales, that are usually sampled at 
dyadic sequences (j = 2j-1, j= 1, 2, 3, . . . ), is sufficiently accurate and can recover signals 
perfectly (Mallat 1989). The maximal overlap DWT (MODWT) is one discretization choice 
which gives N wavelet coefficients for each scale (Percival and Guttorp 1994). The MODWT 
is a non-decimated variation of the DWT (Percival and Mofjeld 1997). It is also equivalent to 
the original time series, in the sense that, given the MODWT coefficients, Y, can be 
constructed as an additive decomposition, which is known as a multiresolution analysis 
(MRA) (Hernández and Weiss 1996, Gencay et al. 2001, Bratteli and Jorgensen 2002). The 
MRA decomposition is as follows: 

         
(1)

 

where  are the “detail series”, ( j= 1, 2,  . . ., J0 ) for a pre-specified J0, and are part of the 
MRA of Y that can be attributed to variations on a scale of λj (Gencay et al. 2001, Percival 
and Walden 2000). Recall that scale 2 = 2. In equation (1) 0js  is a N dimensional vector, 
which depends on the scaling coefficients. The vector, 0js , is called the “smooth series” since 
it is associated with averages over scales and longer. Note that 0js captures the slowly 
varying portion of Y, which is often considered to be the overall trend.  

2.2 Wavelet correlation and cross-correlation 
The above section considers decomposing the original time series into J0+1 subcomponents. 
However, the scale  MODWT coefficients may also be used to examine the wavelet 
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correlation and wavelet cross-correlation of bivariate time series Xt and Yt (Serroukh and 
Walden 2000, Whitcher et al. 2000, Gencay et al. 2001), as described below.   
The wavelet correlation (WCORR) of (Xt, Yt) at scale j=2j-1 is defined as 

  
(2)

 

where  is the wavelet variance with scale .  and are the 

scale  MODWT coefficients for Xt and Yt , respectively (Percival 1995). Note that Equation 
2 is a theoretical quantity that is well-defined under an assumption of stationarity. 
For a time lag , between the two series, Xt and Yt, the wavelet cross-covariance and wavelet 
cross-correlation (denoted by WCCORR) (Gencay et al. 2001), for scale and time lag 
, is  
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By setting = 0,  reduces to the wavelet variance for Xt or Yt denoted by  or

, respectively. The wavelet cross-correlation in equation 3 is thus able to provide the 

lead or lag relationship on a scale-by-scale basis (Gencay et al. 2001), just as is the case for 
conventional cross-correlations. These can determine lead or lag relationships between two 
time series (Percival et al. 2000).  

2.3 Confidence interval determination 
Construction of the 95% two-sided confidence interval (CI) of WCORR and WCCORR 
follows the development of Gencay et al. 2001. To produce CIs for the cross-correlation 
coefficient, the Fisher’s nonlinear z-transformation h() (Percival and Walden 2000), as 

follows, is required. For  which is an unbiased 

estimator of WCORR based on the MODWT, the following asymptotic normal distribution 
holds 

  (4) 
Applying the transformation tanh maps the confidence interval back to [-1, 1] to produce an 
approximate 95% CI for X (j) as follows (Whitcher et al. 2000, Gencay et al. 2001), 
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of Hudson et al. (2005) that wavelets per se could add integrity to the use of phenological 
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correlation and wavelet cross-correlation of bivariate time series Xt and Yt (Serroukh and 
Walden 2000, Whitcher et al. 2000, Gencay et al. 2001), as described below.   
The wavelet correlation (WCORR) of (Xt, Yt) at scale j=2j-1 is defined as 

  
(2)

 

where  is the wavelet variance with scale .  and are the 

scale  MODWT coefficients for Xt and Yt , respectively (Percival 1995). Note that Equation 
2 is a theoretical quantity that is well-defined under an assumption of stationarity. 
For a time lag , between the two series, Xt and Yt, the wavelet cross-covariance and wavelet 
cross-correlation (denoted by WCCORR) (Gencay et al. 2001), for scale and time lag 
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By setting = 0,  reduces to the wavelet variance for Xt or Yt denoted by  or

, respectively. The wavelet cross-correlation in equation 3 is thus able to provide the 

lead or lag relationship on a scale-by-scale basis (Gencay et al. 2001), just as is the case for 
conventional cross-correlations. These can determine lead or lag relationships between two 
time series (Percival et al. 2000).  
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follows, is required. For  which is an unbiased 

estimator of WCORR based on the MODWT, the following asymptotic normal distribution 
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The quantity  in equation (5) is the number of DWT coefficients associated with scale . 

2.4 Data analyses 
DWT, MODWT and MODWT-MRA analyses were performed using code based on the 
wavelet methods developed by Percival and Walden (2000) and Gencay et al. (2001).  

2.5 Phenological data 
The phenological data was collected between 1940 to 1970 and comprises the flowering 
intensity profiles of eight eucalypts species growing in the region of Havelock, Victoria, 
Australia. The eight species examined in this study were: Eucalyptus camaldulensis, 
E. melliodora, E. polyanthemos; E. goniocalyx, E. microcarpa, E. macrorhyncha, E. leucoxylon and E. 
tricarpa (Table 1).  
Observations on the timing, quantity and distribution of flowering of these species were 
collected on a monthly basis (Keatley et al. 1999) (Table 1). Flowering intensity (ranging 
from 0 to 5) of each species was quantified by assigning a rank value (Table 1) (Keatley and 
Hudson, 2007),  thus producing a discrete time series (see Fig. 1 where only the period from 
Jan 1940 to Dec 1955 is shown for visual clarity).  
A score of 0 indicates that no flowering occurred, in the given month, whilst a score of 5 
indicates that flowering was heavy and distributed throughout the observation area. DWT 
methodology (Gencay et al. 2001; Whitcher et al. 2000) was applied to the afore-mentioned 
eight species’ flowering intensity scores (0-5). This data comprises a rare long-term 30 year 
record of flowering (1940-1970) of over 350 monthly time points (Keatley et al., 2002).  
 
 

 
 
Fig. 1. Time series of E. polyanthemos  (red box) and E. tricarpa  (red ironbark) for the period 
between January 1945-January1955(wherein only the period January 1945 to January 1955 is 
shown for visual clarity).  
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Based on actual likelihood/probabilities for Havelock (Keatley and Hudson, 2007) for all species, 
except for E. camaldulensis, E. goniocalyx and E. macrorhyncha.  
# The month with the highest mean intensity within a flowering year. 

Table 1. Eight eucalypt species‘ median flowering duration and months in which the main 
phenophases occur. Terms describing flowering intensity and their assigned value (Keatley 
1999) (Table sourced from Hudson et al., 2011a).  
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The quantity  in equation (5) is the number of DWT coefficients associated with scale . 
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DWT, MODWT and MODWT-MRA analyses were performed using code based on the 
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Australia. The eight species examined in this study were: Eucalyptus camaldulensis, 
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collected on a monthly basis (Keatley et al. 1999) (Table 1). Flowering intensity (ranging 
from 0 to 5) of each species was quantified by assigning a rank value (Table 1) (Keatley and 
Hudson, 2007),  thus producing a discrete time series (see Fig. 1 where only the period from 
Jan 1940 to Dec 1955 is shown for visual clarity).  
A score of 0 indicates that no flowering occurred, in the given month, whilst a score of 5 
indicates that flowering was heavy and distributed throughout the observation area. DWT 
methodology (Gencay et al. 2001; Whitcher et al. 2000) was applied to the afore-mentioned 
eight species’ flowering intensity scores (0-5). This data comprises a rare long-term 30 year 
record of flowering (1940-1970) of over 350 monthly time points (Keatley et al., 2002).  
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Based on actual likelihood/probabilities for Havelock (Keatley and Hudson, 2007) for all species, 
except for E. camaldulensis, E. goniocalyx and E. macrorhyncha.  
# The month with the highest mean intensity within a flowering year. 

Table 1. Eight eucalypt species‘ median flowering duration and months in which the main 
phenophases occur. Terms describing flowering intensity and their assigned value (Keatley 
1999) (Table sourced from Hudson et al., 2011a).  



 
Discrete Wavelet Transforms - Biomedical Applications 272 

Daily minimum and maximum temperature along with daily rainfall were obtained from 
the Bureau of Meteorology, for the closest weather station (approximately 3.5 km away), in  
Maryborough, Victoria (37°03'22"S 143°43'55"E, 249.3 m elevation). The temperature dataset 
had some missing data. When only one day was missing, the average of the temperature 
either side of the missing date was used. If two or more days were not recorded, then the 
mean minimum or maximum temperature for that month was substituted. Daily mean 
temperature was calculated as the average of daily minimum and maximum temperature. 
Monthly means for minimum, maximum, diurnal temperature and rainfall were used in the 
analyses. 

3. Results 
3.1 MODWT-MRA 
Maximal overlap discrete wavelet transform – multi-resolution analysis (MODWT-MRA) 
with J0 = 4 provided the subcomponents of the flowering signal within each species (see 
Figure 2). The raw series is given by X, d1 to d4 are the different subcomponents (detail) of 
the original series X. Traditionally, d1 to d4 are associated with changes in averages over 1, 
2, 4 and 8 months, respectively (Figure 2). Also s4, which is the smoothed series associated 
with averages over 8 months, is also provided by MODWT-MRA (see Figure 2 for E. 
tricarpa). 
The first two sub-components reflect duration and the overall pattern of the original 
flowering data. d1 and d2 appear similar in their profiles (see Figure 3 for E. macrorhyncha), 
however, d1 contains subcycles per year (in a flowering year) but it is unclear as to what 
these cycles are related.  
The annual cycle is delineated by d3, and d4 relates to the annual or biennial cycling of 
intensity of flowering years. S4 is the smoothed series and indicative of the overall trend.  
d3 not only delineates the annual cycle of flowering, but reveals (by its peaks), in the 
majority of cases, the month of peak flowering in a flowering year (or within the month on 
either side) (Figure 4). Note that for E. Goniocalyx, all but one peak is selected (97%), 
however, this does include two years (1965 and 1966) when three months exhibited equal 
flowering intensity and for these years the middle month was nominated as the peak month. 
The selection of the middle month also occurred in E. marcrorhyncha (overall 68% peak 
selection) in five years (1945/46; 1952/52, 1957/58, 1960/61 and 1967/68). Eucalyptus 
marcrorhyncha flowering period usually includes December and January therefore two years 
are given.  For the remaining species, E. melliodora 97%, E. camaldulenis 90%, E. leucoxylon 
73%,  E. microcarpa 72%, for E. polyanthemos 69% and for E. tricarpa 65%.  
Additionally, d3 highlights years when flowering does not occur – this is seen in Figure 4  
for E. goniocalyx when d3 is near zero for the years 1944, 1945, 1948, 1950, 1953, 1955 and 
1956. This occurred in all species except E. leucoxylon which always flowered (Figure 4). For 
the other species, years of non-flowering are given in Table 2. As with E. Macrorhyncha, three 
other species, E. camaldulensis, E. melliodora and E. polyanthemos flowering periods also 
include December and January so two years are also given. The year 1958 or 1958/59 as a 
non-flowering year was common to five species: E. camaldulensis, E. melliodora, E. microcarpa, 
E. polyanthemos  and E. tricarpa. 
d4 outlines the flowering intensity for each species. For all species, except E. leucoxylon the 
cycle is associated with years of low flowering intensity (< 2) and also includes years of no 
flowering (i.e. flowering intensity = 0). The longest average period between peaks was 
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E .goniocalyx with 29.0 months with a range of 12 to 48 months. This is particularly 
influenced by the large number of non-flowering years (Table 2). The species with the 
smallest average number of months between peaks was E. melliodora (18.5 months with a 
range of 11 to 25 months). For the remaining species the average between peaks was E. 
leucoxylon 19.1 months, E. marcrorhyncha 19.5 months, E. polyanthemos 20.3 months, E. 
camaldulensis 20.5 months, E. tricarpa 21.3 months and for E. microcarpa 22.5 months (Figure 
5). All species had at least one year between the period 1952 and 1958 when the number of 
months between peaks was between 11 to 14 months.  For E. camaldulensis this occurred for 
five years between December 1953 and March 1958 (Figure 5).  
 
 
 

 
 

Fig. 2. Example of MODWT-MRA output for E. tricarpa. X = the raw data, d1 to d4 different 
subcomponents (details) of the original series X, and s4 = the smooth series 
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Daily minimum and maximum temperature along with daily rainfall were obtained from 
the Bureau of Meteorology, for the closest weather station (approximately 3.5 km away), in  
Maryborough, Victoria (37°03'22"S 143°43'55"E, 249.3 m elevation). The temperature dataset 
had some missing data. When only one day was missing, the average of the temperature 
either side of the missing date was used. If two or more days were not recorded, then the 
mean minimum or maximum temperature for that month was substituted. Daily mean 
temperature was calculated as the average of daily minimum and maximum temperature. 
Monthly means for minimum, maximum, diurnal temperature and rainfall were used in the 
analyses. 

3. Results 
3.1 MODWT-MRA 
Maximal overlap discrete wavelet transform – multi-resolution analysis (MODWT-MRA) 
with J0 = 4 provided the subcomponents of the flowering signal within each species (see 
Figure 2). The raw series is given by X, d1 to d4 are the different subcomponents (detail) of 
the original series X. Traditionally, d1 to d4 are associated with changes in averages over 1, 
2, 4 and 8 months, respectively (Figure 2). Also s4, which is the smoothed series associated 
with averages over 8 months, is also provided by MODWT-MRA (see Figure 2 for E. 
tricarpa). 
The first two sub-components reflect duration and the overall pattern of the original 
flowering data. d1 and d2 appear similar in their profiles (see Figure 3 for E. macrorhyncha), 
however, d1 contains subcycles per year (in a flowering year) but it is unclear as to what 
these cycles are related.  
The annual cycle is delineated by d3, and d4 relates to the annual or biennial cycling of 
intensity of flowering years. S4 is the smoothed series and indicative of the overall trend.  
d3 not only delineates the annual cycle of flowering, but reveals (by its peaks), in the 
majority of cases, the month of peak flowering in a flowering year (or within the month on 
either side) (Figure 4). Note that for E. Goniocalyx, all but one peak is selected (97%), 
however, this does include two years (1965 and 1966) when three months exhibited equal 
flowering intensity and for these years the middle month was nominated as the peak month. 
The selection of the middle month also occurred in E. marcrorhyncha (overall 68% peak 
selection) in five years (1945/46; 1952/52, 1957/58, 1960/61 and 1967/68). Eucalyptus 
marcrorhyncha flowering period usually includes December and January therefore two years 
are given.  For the remaining species, E. melliodora 97%, E. camaldulenis 90%, E. leucoxylon 
73%,  E. microcarpa 72%, for E. polyanthemos 69% and for E. tricarpa 65%.  
Additionally, d3 highlights years when flowering does not occur – this is seen in Figure 4  
for E. goniocalyx when d3 is near zero for the years 1944, 1945, 1948, 1950, 1953, 1955 and 
1956. This occurred in all species except E. leucoxylon which always flowered (Figure 4). For 
the other species, years of non-flowering are given in Table 2. As with E. Macrorhyncha, three 
other species, E. camaldulensis, E. melliodora and E. polyanthemos flowering periods also 
include December and January so two years are also given. The year 1958 or 1958/59 as a 
non-flowering year was common to five species: E. camaldulensis, E. melliodora, E. microcarpa, 
E. polyanthemos  and E. tricarpa. 
d4 outlines the flowering intensity for each species. For all species, except E. leucoxylon the 
cycle is associated with years of low flowering intensity (< 2) and also includes years of no 
flowering (i.e. flowering intensity = 0). The longest average period between peaks was 

 
Wavelet Signatures of Climate and Flowering: Identification of Species Groupings  273 

E .goniocalyx with 29.0 months with a range of 12 to 48 months. This is particularly 
influenced by the large number of non-flowering years (Table 2). The species with the 
smallest average number of months between peaks was E. melliodora (18.5 months with a 
range of 11 to 25 months). For the remaining species the average between peaks was E. 
leucoxylon 19.1 months, E. marcrorhyncha 19.5 months, E. polyanthemos 20.3 months, E. 
camaldulensis 20.5 months, E. tricarpa 21.3 months and for E. microcarpa 22.5 months (Figure 
5). All species had at least one year between the period 1952 and 1958 when the number of 
months between peaks was between 11 to 14 months.  For E. camaldulensis this occurred for 
five years between December 1953 and March 1958 (Figure 5).  
 
 
 

 
 

Fig. 2. Example of MODWT-MRA output for E. tricarpa. X = the raw data, d1 to d4 different 
subcomponents (details) of the original series X, and s4 = the smooth series 
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Fig. 3. Raw data, d1 and d2 of E. macrorhyncha between January 1940 and January 1946. 

 

 
Fig. 4. d3 subcomponent for E. goniocalyx and E. Leucoxylon between Jan. 1940 and Jan. 1946.  

Although s4 is the smoothed series it is also reflective of the trend and variation in flowering 
intensity. s4 indicates that flowering has become less intense from 1940 to 1970 for all 
species except E. camaldulensis and E. goniocalyx (Figure 6A &B). These two species do not 
change their flowering intensity. Eucalyptus leucoxylon on average (mean intensity 1.63) 
flowers more intensely than the other 7 species except for two brief periods, between June 
1945 and July 1946, when E. tricarpa flowered the most (Figure 6B) and January and August 
1962 during which E. melliodora did. Eucalyptus melliodora is the next most intense flowering 
species (mean intensity = 0.97) (Figure 6A) and E. goniocalyx is the species which has 
flowered with the least intensity (0.37) (Figure 6B).  
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Fig. 5. d4 subcomponent of  E. microcarpa and E. Camaldulensis. 

A trough indicating the non flowering year in all species except E. leucoxylon and 
E. macrorhyncha, where it is indicative of lower flowering intensity, is noticeable between 
March 1958 (E. microcarpa) to July 1959 (E. macroryhncha) (Figure 6A & B)). The most intense 
flowering period for all species (except E. camaldulensis and E. Goniocalyx) occurred prior to 
1958. Hudson et al. 2005 noted wetter years than average in the mid 1940’s to the end of the 
1950’s; and maximum temperature at Maryborough was increasing until late 1967/early 
1968 (also reflected by the Southern Oscillation Index (Trenberth et al., 1996, Ghil et al., 
2002).  
 

Species Non-flowering years 

E. camaldulensis 1951/52, 1958/59, 1960/61, 1962/63 and 1966/67 

E. goniocalyx 1942, 1944, 1945, 1948, 1950, 1953, 1955, 1956, 1959, 1961, 1963, 
1964 and 1967 

E. leucoxylon  Always flowered 

E. macrorhyncha 1940/41, 1953/52, 1954/55, 1963/64 and 1969/70 

E. melliodora 1958/59 

E. microcarpa 1943, 1958, 1962, 1968 and 1969 

E. polyanthemos  1949/50, 1956/57, 1958/59 and 1961/62 

E. tricarpa 1947, 1949, 1958, 1962 and 1966  

Table 2. Species and their years of non-flowering 
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Fig. 3. Raw data, d1 and d2 of E. macrorhyncha between January 1940 and January 1946. 

 

 
Fig. 4. d3 subcomponent for E. goniocalyx and E. Leucoxylon between Jan. 1940 and Jan. 1946.  

Although s4 is the smoothed series it is also reflective of the trend and variation in flowering 
intensity. s4 indicates that flowering has become less intense from 1940 to 1970 for all 
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species (mean intensity = 0.97) (Figure 6A) and E. goniocalyx is the species which has 
flowered with the least intensity (0.37) (Figure 6B).  
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Fig. 5. d4 subcomponent of  E. microcarpa and E. Camaldulensis. 

A trough indicating the non flowering year in all species except E. leucoxylon and 
E. macrorhyncha, where it is indicative of lower flowering intensity, is noticeable between 
March 1958 (E. microcarpa) to July 1959 (E. macroryhncha) (Figure 6A & B)). The most intense 
flowering period for all species (except E. camaldulensis and E. Goniocalyx) occurred prior to 
1958. Hudson et al. 2005 noted wetter years than average in the mid 1940’s to the end of the 
1950’s; and maximum temperature at Maryborough was increasing until late 1967/early 
1968 (also reflected by the Southern Oscillation Index (Trenberth et al., 1996, Ghil et al., 
2002).  
 

Species Non-flowering years 

E. camaldulensis 1951/52, 1958/59, 1960/61, 1962/63 and 1966/67 

E. goniocalyx 1942, 1944, 1945, 1948, 1950, 1953, 1955, 1956, 1959, 1961, 1963, 
1964 and 1967 

E. leucoxylon  Always flowered 

E. macrorhyncha 1940/41, 1953/52, 1954/55, 1963/64 and 1969/70 

E. melliodora 1958/59 

E. microcarpa 1943, 1958, 1962, 1968 and 1969 

E. polyanthemos  1949/50, 1956/57, 1958/59 and 1961/62 

E. tricarpa 1947, 1949, 1958, 1962 and 1966  

Table 2. Species and their years of non-flowering 
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Fig. 6.A & B. s4 subcomponents for each group of four species. 

3.1.1 Wavelet correlation of flowering with temperature and rainfall  
The wavelet correlation between minimum temperature and rainfall with peak flowering 
intensity at different wavelet levels or scales (1, 2, 4, 8, 16 and 32 months) were examined for 
all species. See Figure 7 and Figure 8, where significant (P < 0.05) wavelet correlations are 
those, where the upper (U) and lower (L) confidence limits are on the same side of the zero 
horizontal line. Correlations at 1, 8, 16 and 32 months with respect to minimum temperature 
(Figure 7) and rainfall (Figure 8) were not significant for any species. It can be seen that 
correlations with minimum temperature at either scale 2 (22-1 = 2 months) or 3 (23-1 = 4 
months) are significant for all species, except for E. goniocalyx (Table 3, Figure 7).  
For E. tricarpa minimum, maximum and mean temperatures have a significant negative 
relationship at these scales (Figure 7 and Table 3). Eucalyptus tricarpa was the only species 
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for which rainfall had a significant, positive relationship with flowering at the 4 month 
scale (Figure 8). This indicates that cooler, wetter periods lead to greater flowering 
intensity for E. tricarpa. The relationship for E. leucoxylon and rainfall was positive but was 
not significant, as in E. tricarpa. In contrast two species, E. camaldulensis and E. melliodora 
had a significant negative relationship with rainfall also at the 4 month scale (Table 3). 
Both of the latter species also had a significant positive relationship with all the 
temperature variables.  
 

Species/ 
Period (months) 

Tmean Tmin Tmax Rainfall 

2 4 2 4 2 4 2 4 

E. leucoxylon -0.49* -0.59* -0.52* -0.62* -0.46* -0.56* 0.03 0.28 

E. tricarpa -0.51* -0.75* -0.49* -0.72* -0.51* -0.76* 0.20 0.40* 

E. polyanthemos 0.15 0.48* 0.14 0.43* 0.16 0.50* -0.06 -0.17 

E. camaldulensis 0.34* 0.75* 0.34* 0.74* 0.33* 0.75* -0.01 -0.30* 

E. melliodora 0.54* 0.86* 0.52* 0.84* 0.54* 0.87* -0.09 -0.41* 

E. gonicalyx 0.13* 0.23* 0.14 0.27 0.12 0.21 -0.06 -0.22 

E. microcarpa 0.18 0.27 0.23* 0.31* 0.15 0.25 -0.01 -0.25 

E. macrorhyncha 0.24 0.43 0.25* 0.44* 0.24* 0.42* -0.05 -0.28 

Table 3. Wavelet correlation of peak flowering intensity and climate variables (* P< 0.05) 

For E. camaldulensis both mean temperature and maximum temperature at the 4 month scale 
had equal influence (Table 3), whereas for E. melliodora it was maximum temperature (and 
then mean temperature) at this scale that had the greatest impact. Therefore for these species 
warmer and dryer periods result in greater flowering intensity.  For the remaining species a 
negative correlation (although not significant) with rainfall was indicated.  
All temperature variables (mean, minimum and maximum) at 2 and 4 months  were also 
significant for E. leucoxylon. At peak flowering intensity both E. leucoxylon and E. tricarpa 
have a negative relationship with each of the temperature variables, indicating increased 
intensity of flowering with decreasing temperature. However, there is a slight difference in 
the strength of the relationship of flowering across the temperature variants (Table 3). It is 
noteworthy that for E. leucoxylon the main relationship with flowering intensity is with 
minimum temperature and for E. tricarpa it is with maximum temperature (Table 3), both 
significant at the 4 month scale.  
For each of the remaining six species an inverse relationship between flowering and the 
temperature variants was shown (Table 3 and Figure 7): that is an increase in flowering 
intensity with increasing temperature. However, for the species pair (E. goniocalyx and 
E. microcarpa) there was only one temperature variant which impacts significantly on 
flowering. For E. goniocalyx it is mean temperature and for E. microcarpa minimum 
temperature, indicating that for the individual species these climate predictors may be the 
primary climatic driver of flowering. In contrast, for E. polyanthemos, there was a significant 
positive relationship with all three temperature variables (at 4 months) with maximum 
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Fig. 6.A & B. s4 subcomponents for each group of four species. 
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for which rainfall had a significant, positive relationship with flowering at the 4 month 
scale (Figure 8). This indicates that cooler, wetter periods lead to greater flowering 
intensity for E. tricarpa. The relationship for E. leucoxylon and rainfall was positive but was 
not significant, as in E. tricarpa. In contrast two species, E. camaldulensis and E. melliodora 
had a significant negative relationship with rainfall also at the 4 month scale (Table 3). 
Both of the latter species also had a significant positive relationship with all the 
temperature variables.  
 

Species/ 
Period (months) 

Tmean Tmin Tmax Rainfall 

2 4 2 4 2 4 2 4 

E. leucoxylon -0.49* -0.59* -0.52* -0.62* -0.46* -0.56* 0.03 0.28 

E. tricarpa -0.51* -0.75* -0.49* -0.72* -0.51* -0.76* 0.20 0.40* 

E. polyanthemos 0.15 0.48* 0.14 0.43* 0.16 0.50* -0.06 -0.17 

E. camaldulensis 0.34* 0.75* 0.34* 0.74* 0.33* 0.75* -0.01 -0.30* 

E. melliodora 0.54* 0.86* 0.52* 0.84* 0.54* 0.87* -0.09 -0.41* 

E. gonicalyx 0.13* 0.23* 0.14 0.27 0.12 0.21 -0.06 -0.22 

E. microcarpa 0.18 0.27 0.23* 0.31* 0.15 0.25 -0.01 -0.25 

E. macrorhyncha 0.24 0.43 0.25* 0.44* 0.24* 0.42* -0.05 -0.28 

Table 3. Wavelet correlation of peak flowering intensity and climate variables (* P< 0.05) 

For E. camaldulensis both mean temperature and maximum temperature at the 4 month scale 
had equal influence (Table 3), whereas for E. melliodora it was maximum temperature (and 
then mean temperature) at this scale that had the greatest impact. Therefore for these species 
warmer and dryer periods result in greater flowering intensity.  For the remaining species a 
negative correlation (although not significant) with rainfall was indicated.  
All temperature variables (mean, minimum and maximum) at 2 and 4 months  were also 
significant for E. leucoxylon. At peak flowering intensity both E. leucoxylon and E. tricarpa 
have a negative relationship with each of the temperature variables, indicating increased 
intensity of flowering with decreasing temperature. However, there is a slight difference in 
the strength of the relationship of flowering across the temperature variants (Table 3). It is 
noteworthy that for E. leucoxylon the main relationship with flowering intensity is with 
minimum temperature and for E. tricarpa it is with maximum temperature (Table 3), both 
significant at the 4 month scale.  
For each of the remaining six species an inverse relationship between flowering and the 
temperature variants was shown (Table 3 and Figure 7): that is an increase in flowering 
intensity with increasing temperature. However, for the species pair (E. goniocalyx and 
E. microcarpa) there was only one temperature variant which impacts significantly on 
flowering. For E. goniocalyx it is mean temperature and for E. microcarpa minimum 
temperature, indicating that for the individual species these climate predictors may be the 
primary climatic driver of flowering. In contrast, for E. polyanthemos, there was a significant 
positive relationship with all three temperature variables (at 4 months) with maximum 
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temperature being identified as having a slightly greater influence on flowering (Table 3). 
This is in agreement with a recent Generalised Additive Model for Location, Scale and 
Shape (GAMLSS) analysis of the data studied here (Hudson et al. 2009; 2011b). Flowering 
intensity in Eucalyptus macrorhyncha is influenced positively by both minimum and 
maximum temperatures with minimum temperatures at the 4 month scale being the most 
significant. 
 

 

Fig. 7. Wavelet correlations (WCORR) of the flowering of E. goniocalyx, E. microcarpa, E. 
macrorhyncha and E. tricarpa with minimum temperature (95% confidence interval limits 
indicated by L and U). 
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Broadly speaking, E. leucoxylon and E. tricarpa can be grouped together with respect to their 
relationship with temperature and rainfall. The relationship of the remaining six species 
with climate is similar, however, when the significance of the relationship is taken into 
account two other species clearly grouped together: E. camaldulensis and E. melliodora. As 
already discussed they are the only two species which have a significant negative 
relationship with rainfall (similar WCORR signatures between their flowering and rainfall 
(Figure 8)) and a significant positive relationship with all three climate parameters at both 

 
Fig. 8. Wavelet correlations (WCORR) of the flowering of E. camaldulensis, E. melliodora, 
E. polyanthemos and E. tricarpa with rainfall (95% confidence limits indicated by L and U). 
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temperature being identified as having a slightly greater influence on flowering (Table 3). 
This is in agreement with a recent Generalised Additive Model for Location, Scale and 
Shape (GAMLSS) analysis of the data studied here (Hudson et al. 2009; 2011b). Flowering 
intensity in Eucalyptus macrorhyncha is influenced positively by both minimum and 
maximum temperatures with minimum temperatures at the 4 month scale being the most 
significant. 
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scales. Eucalyptus polyanthemos aligns with this group as it also has a significant positive 
relationship with all three climate parameters, but only at the 4 month scale. Additionally, 
its main influence is maximum temperature as is the case with the other two species (albeit 
that E. camaldulensis is equally influenced by mean temperature).  
Theother three species (E. goniocalyx, E. microcarpa, E.  macrorhyncha) also broadly group, as  
evidenced  by their  similar  climate  signatures as  shown in their WCORR profiles  (Figure 
7). Note that all members of this species triple, have a positive relationship between 
flowering and at least one temperature variant; and a negative (though not significant) 
relationship between flowering and rainfall. 

3.1.2 Wavelet cross-correlation of flowering with temperature and rainfall variables  
Wavelet cross-correlations were examined for all wavelet scales (1 to 32 months). Significant 
relationships (P  0.005) were found only at 4 months (level 3) for rainfall; but at 2, 4 and 8 
months (levels 2, 3 and 4) for the temperature variants (Figure 9 illustrates this for 
E.leucoxylon). The strongest (highest absolute value of the correlation profile) and most 
significant relationship for all species with temperature was at 4 months (level 3) (Figure 9). 
This mirrors the correlation results (Table 3), where level 3 correlations were significant. 
Recall  that correlations are the equivalent of cross-correlations at lag zero. 
 
Mean temperature Positive to negative Negative to positive 
Species Month Season Month Season 
E. leucoxylon August Winter February Summer 
E. tricarpa April Autumn October Spring 
E. polyanthemos December Summer July Winter 
E. camaldulensis April Autumn October Spring 
E. melliodora April Autumn October Spring 
E. microcarpa September Spring March Autumn 
E. goniocalyx October Spring April Autumn 
E. macrorhyncha June Autumn December Summer 
Rainfall Positive to negative Negative to positive 
Species Month Season Month Season 
E. leucoxylon February Summer August Winter 
E. tricarpa October Spring April Autumn 
E. polyanthemos June Winter November Summer 
E. camaldulensis October Spring April Autumn 
E. melliodora October Spring April Autumn 
E. microcarpa February Summer August Winter 
E. goniocalyx August Winter February Summer 
E. macrorhyncha December Summer May Autumn 

Table 4. Species specific change points (month, season) for mean temperature and rainfall. 
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3.1.3 Level 3 wavelet cross-correlations 
Cross-correlations between peak flowering intensity and the temperature variants and 
rainfall were lagged from 1 and 12 months prior to the species specific peak flowering 
month. An illustration of these cross-correlation profiles between mean temperature and 
flowering, and between rainfall and flowering is given in Figure 10 and 11, respectively, for 
each species. These sinusoidal profiles show that there are positive and negative 
relationships of 6 months duration and as a consequence there are clear seasonal change 
points from positive to negative cross-correlation and vice-versa (see Table 4, where the 
season specific to each change point month is given per species). 
The cross-correlation profiles also show there is a maximum positive and negative cross-
correlation, and these occur systematically 6 months apart for each species (Figures 10 -11 
and delta values (∆) in Table 5). These cross-correlations can be viewed as the highest 
absolute value of the wavelet cross-correlations, for lags either in the short term ( 6 months 
to peak flowering intensity), or the long term (> 6 months). The number of months at which 
either lag, occurs prior to peak flowering intensity, differs for each species (Figures 10-11 
and Table 5).  Note that E. polyanthemos’s maximum short term temperature lag is positive 
(0.73) and occurs in September, which is 2 months before peak flowering intensity, whereas 
E. macrorhyncha’s short term lag is negative (-0.52) and occurs in August, this being 5 months 
prior to peak flowering intensity. The long term lag for E. polyanthemos is in March, which is 
8 months before peak flowering intensity and negative (-0.71), compared to the February 
positive (0.52), long term lag for E. macrorhyncha, which occurs 11 months before its peak 
flowering intensity in July (Figure 10 and Table 5). 
According to these wavelet cross-correlations the eight species form two groups based on 
their, similar cross-correlational relationships (or signatures) between flowering with 
temperature and between flowering and rainfall E. leucoxylon, E. polyanthemos, E. 
camaldulensis and E. melliodora are in one group and the remaining species in the other. This 
first group has cross -correlations with temperature which are positive in the short-term ( 6 
months) and negative in the long-term (> 6 months) (Figure 10 and Table 5). With rainfall, 
the short-term cross-correlations are negative and positive in the long-term. The second 
group (comprising E. goniocalyx, E. microcarpa, E. macrorhyncha and E. tricarpa) has cross-
correlations with temperature which are negative in the short-term ( 6 months) and 
positive in the long-term (> 6 months) – and with rainfall, the short-term cross-correlations 
are positive in the short-term and negative in the long-term (Figure 11 and Table 5).  
It is noteworthy that, if one examines the whole 12 month pattern of the wavelet cross-
correlation, so-called WCCORR signatures (sinusoids in Figures 10-11), in relation to 
flowering duration, flowering cessation and 12 months back (note the vertical line in Figures 
10-11 delineate 12 months prior to peak flowering and  the horizontal  line depicts flowering  
duration) - rather than on focusing on primarily the signs of the WCCORR at months of  
maximum positive or negative cross-correlation (Table 5), there are three (3) clear species 
groupings, according  to their similar WCCORR wavelet signatures, namely,  
E. camaldulensis, E. melliodora, E. polyanthemos; E. goniocalyx, E. microcarpa, E. macrorhyncha; 
and E. leucoxylon and E. tricarpa. Indeed the species within each of these groupings were 
recently shown to flower synchronously according to advanced methods for time series 
clustering of the patterns underlying the phenological series (Hudson et al., 2011a). 
The cross-correlations in Figure 10 and Figure 11 also show, as did correlations, that for all 
species the temperature and rainfall variables do not act in concert. That is, within a given 
species, if the cross-correlation with temperature is positive, at a particular time of year, then 
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scales. Eucalyptus polyanthemos aligns with this group as it also has a significant positive 
relationship with all three climate parameters, but only at the 4 month scale. Additionally, 
its main influence is maximum temperature as is the case with the other two species (albeit 
that E. camaldulensis is equally influenced by mean temperature).  
Theother three species (E. goniocalyx, E. microcarpa, E.  macrorhyncha) also broadly group, as  
evidenced  by their  similar  climate  signatures as  shown in their WCORR profiles  (Figure 
7). Note that all members of this species triple, have a positive relationship between 
flowering and at least one temperature variant; and a negative (though not significant) 
relationship between flowering and rainfall. 

3.1.2 Wavelet cross-correlation of flowering with temperature and rainfall variables  
Wavelet cross-correlations were examined for all wavelet scales (1 to 32 months). Significant 
relationships (P  0.005) were found only at 4 months (level 3) for rainfall; but at 2, 4 and 8 
months (levels 2, 3 and 4) for the temperature variants (Figure 9 illustrates this for 
E.leucoxylon). The strongest (highest absolute value of the correlation profile) and most 
significant relationship for all species with temperature was at 4 months (level 3) (Figure 9). 
This mirrors the correlation results (Table 3), where level 3 correlations were significant. 
Recall  that correlations are the equivalent of cross-correlations at lag zero. 
 
Mean temperature Positive to negative Negative to positive 
Species Month Season Month Season 
E. leucoxylon August Winter February Summer 
E. tricarpa April Autumn October Spring 
E. polyanthemos December Summer July Winter 
E. camaldulensis April Autumn October Spring 
E. melliodora April Autumn October Spring 
E. microcarpa September Spring March Autumn 
E. goniocalyx October Spring April Autumn 
E. macrorhyncha June Autumn December Summer 
Rainfall Positive to negative Negative to positive 
Species Month Season Month Season 
E. leucoxylon February Summer August Winter 
E. tricarpa October Spring April Autumn 
E. polyanthemos June Winter November Summer 
E. camaldulensis October Spring April Autumn 
E. melliodora October Spring April Autumn 
E. microcarpa February Summer August Winter 
E. goniocalyx August Winter February Summer 
E. macrorhyncha December Summer May Autumn 

Table 4. Species specific change points (month, season) for mean temperature and rainfall. 
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3.1.3 Level 3 wavelet cross-correlations 
Cross-correlations between peak flowering intensity and the temperature variants and 
rainfall were lagged from 1 and 12 months prior to the species specific peak flowering 
month. An illustration of these cross-correlation profiles between mean temperature and 
flowering, and between rainfall and flowering is given in Figure 10 and 11, respectively, for 
each species. These sinusoidal profiles show that there are positive and negative 
relationships of 6 months duration and as a consequence there are clear seasonal change 
points from positive to negative cross-correlation and vice-versa (see Table 4, where the 
season specific to each change point month is given per species). 
The cross-correlation profiles also show there is a maximum positive and negative cross-
correlation, and these occur systematically 6 months apart for each species (Figures 10 -11 
and delta values (∆) in Table 5). These cross-correlations can be viewed as the highest 
absolute value of the wavelet cross-correlations, for lags either in the short term ( 6 months 
to peak flowering intensity), or the long term (> 6 months). The number of months at which 
either lag, occurs prior to peak flowering intensity, differs for each species (Figures 10-11 
and Table 5).  Note that E. polyanthemos’s maximum short term temperature lag is positive 
(0.73) and occurs in September, which is 2 months before peak flowering intensity, whereas 
E. macrorhyncha’s short term lag is negative (-0.52) and occurs in August, this being 5 months 
prior to peak flowering intensity. The long term lag for E. polyanthemos is in March, which is 
8 months before peak flowering intensity and negative (-0.71), compared to the February 
positive (0.52), long term lag for E. macrorhyncha, which occurs 11 months before its peak 
flowering intensity in July (Figure 10 and Table 5). 
According to these wavelet cross-correlations the eight species form two groups based on 
their, similar cross-correlational relationships (or signatures) between flowering with 
temperature and between flowering and rainfall E. leucoxylon, E. polyanthemos, E. 
camaldulensis and E. melliodora are in one group and the remaining species in the other. This 
first group has cross -correlations with temperature which are positive in the short-term ( 6 
months) and negative in the long-term (> 6 months) (Figure 10 and Table 5). With rainfall, 
the short-term cross-correlations are negative and positive in the long-term. The second 
group (comprising E. goniocalyx, E. microcarpa, E. macrorhyncha and E. tricarpa) has cross-
correlations with temperature which are negative in the short-term ( 6 months) and 
positive in the long-term (> 6 months) – and with rainfall, the short-term cross-correlations 
are positive in the short-term and negative in the long-term (Figure 11 and Table 5).  
It is noteworthy that, if one examines the whole 12 month pattern of the wavelet cross-
correlation, so-called WCCORR signatures (sinusoids in Figures 10-11), in relation to 
flowering duration, flowering cessation and 12 months back (note the vertical line in Figures 
10-11 delineate 12 months prior to peak flowering and  the horizontal  line depicts flowering  
duration) - rather than on focusing on primarily the signs of the WCCORR at months of  
maximum positive or negative cross-correlation (Table 5), there are three (3) clear species 
groupings, according  to their similar WCCORR wavelet signatures, namely,  
E. camaldulensis, E. melliodora, E. polyanthemos; E. goniocalyx, E. microcarpa, E. macrorhyncha; 
and E. leucoxylon and E. tricarpa. Indeed the species within each of these groupings were 
recently shown to flower synchronously according to advanced methods for time series 
clustering of the patterns underlying the phenological series (Hudson et al., 2011a). 
The cross-correlations in Figure 10 and Figure 11 also show, as did correlations, that for all 
species the temperature and rainfall variables do not act in concert. That is, within a given 
species, if the cross-correlation with temperature is positive, at a particular time of year, then 
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Fig. 9. Wavelet cross-correlation (WCCORR) plots of flowering with respect to rainfall, and 
maximum and minimum temperature for E. leucoxylon. 

 
Wavelet Signatures of Climate and Flowering: Identification of Species Groupings  283 

 
Fig. 10. Individual wavelet cross-correlation plots for daily mean temperature with 
flowering intensity for all species. Vertical lines encapsulate the 12 months prior to peak 
flowering. The small horizontal interval indicates the annual flowering period (duration). 
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Fig. 9. Wavelet cross-correlation (WCCORR) plots of flowering with respect to rainfall, and 
maximum and minimum temperature for E. leucoxylon. 
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Fig. 10. Individual wavelet cross-correlation plots for daily mean temperature with 
flowering intensity for all species. Vertical lines encapsulate the 12 months prior to peak 
flowering. The small horizontal interval indicates the annual flowering period (duration). 
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Fig. 11. Individual wavelet cross-correlation plots for daily rainfall with flowering intensity 
for all species. Vertical lines encapsulate the 12 months prior to peak flowering. The small 
horizontal interval indicates the annual flowering period (duration). 
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the relationship with rainfall is negative (Table 5) and vice versa (see opposite  directionality  
between the wavelet WCCORR signatures in Figure 10 versus Figure 11). For example, each 
of E. goniocalyx’s short term lags for temperature is negative and occurs in December. Its 
short term rainfall lag occurs in November, but is positive. Cross-correlations thus provide 
further insight into the dynamic, changing relationship between climate and peak flowering 
intensity for each eucalypt species.  
 
Species Tmean Tmax Tmin Rainfall 
E. leucoxylon 
Peak: September 
Start: May 
End: December 

0.78 [-4] 
May 

0.79 [-4] 
May 

0.78 [-5] 
April 

-0.41 [-5] 
April 

-0.80 [-11] 
October  = 7 

-0.80 [-10] 
Nov   = 6 

-0.81 [-11] 
October  = 6 

0.35 [-11] 
October  = 6 

E. tricarpa 
Peak: July 
Start: April 
End: September 

-0.73 [-1] 
June 

-0.73 [-1] 
June 

-0.73 [-1] 
June 

0.46 [-1] 
June 

0.75 [-7] 
December  = 6 

0.74 [-7] 
December  = 6 

0.75 [-7] 
December  = 6 

-0.45 [-7] 
December  = 6 

E. polyanthemos 
Peak: November 
Start: October 
End: December 

0.73 [-2] 
September  

0.72 [-2] 
September 

0.72 [-2] 
September 

- 0.32 [-2] 
September 

-0.71[-8]  
March  = 6 

- 0.72 [-8] 
March  = 6 

- 0.73[-8] 
March  = 6 

0.39 [-8] 
March  = 6 

E. camaldulensis 
Peak: January 
Start: Nov/Dec 
End: January 

0.73 [0]  
January 

0.71 [-1] 
December 

0.75 [-1] 
December 

-0.31 [-1] 
December 

-0.69 [-6] 
July  = 6 

0.69 [-7] 
June  = 6 

0.70 [-7] 
June  = 6 

0.41 [-7] 
June  = 6 

E. melliodora Peak: 
January 
Start: November 
End: March 

0.86 [0] 
January  

0.82 [-1]  
January 

0.84 [-1] 
December 

-0.44 [-1] 
December 

-0.80 [-6] 
July  = 6 

0.80 [-6] 
July  = 6 

-0.81 [-7] 
June  = 6 

0.43 [-7] 
June  = 6 

E. microcarpa 
Peak: March 
Start: February 
End: May 

-0.77 [-4]  
November 

-0.77 [-4] 
November 

-0.76 [-4] 
November 

0.48 [-4] 
November 

0.78 [-10] 
May  = 6 

0.78 [-10] 
May  = 6 

0.78 [-10] 
May  = 6 

-0.44 [-10] 
May  = 6 

E. gonicalyx 
Peak: March 
Start: February 
End: May 

-0.62 [-4] 
December 

-0.61 [-4] 
December 

-0.63 [-4] 
December 

0.35 [-5] 
November 

0.64 [-10] 
June  = 6 

0.62 [-10] 
June  = 6 

0.63 [-10] 
June  = 6 

-0.36 [-11] 
May  = 6 

E. macrorhyncha 
Peak: January 
Start: January 
End: May 

-0.52 [-5] 
August 

-0.52  
[-5] August 

-0.52  
[-5] August 

0.26 [-5]  
August 

0.52 [-11] 
February  = 6 

0.51 [-11] 
February  = 6 

0.52 [-11] 
February  = 6 

-0.22 [-11] 
February  = 6 

Table 5. Significant (P < 0.0001) wavelet cross correlations (4 months, 3 scale) between peak 
flowering and climate: shorter [ 6 months] and longer lags [> 6 months] prior to peak 
flowering intensity. ( signifies the difference in months between shorter and longer lags). 

Even for species within a similar  grouping, say E. tricarpa and E. leucoxylon, we observe that, 
although at zero lag E. tricarpa and E. leucoxylon have a similar correlational (WCORR) 
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Fig. 11. Individual wavelet cross-correlation plots for daily rainfall with flowering intensity 
for all species. Vertical lines encapsulate the 12 months prior to peak flowering. The small 
horizontal interval indicates the annual flowering period (duration). 
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the relationship with rainfall is negative (Table 5) and vice versa (see opposite  directionality  
between the wavelet WCCORR signatures in Figure 10 versus Figure 11). For example, each 
of E. goniocalyx’s short term lags for temperature is negative and occurs in December. Its 
short term rainfall lag occurs in November, but is positive. Cross-correlations thus provide 
further insight into the dynamic, changing relationship between climate and peak flowering 
intensity for each eucalypt species.  
 
Species Tmean Tmax Tmin Rainfall 
E. leucoxylon 
Peak: September 
Start: May 
End: December 

0.78 [-4] 
May 

0.79 [-4] 
May 

0.78 [-5] 
April 

-0.41 [-5] 
April 

-0.80 [-11] 
October  = 7 

-0.80 [-10] 
Nov   = 6 

-0.81 [-11] 
October  = 6 

0.35 [-11] 
October  = 6 

E. tricarpa 
Peak: July 
Start: April 
End: September 

-0.73 [-1] 
June 

-0.73 [-1] 
June 

-0.73 [-1] 
June 

0.46 [-1] 
June 

0.75 [-7] 
December  = 6 

0.74 [-7] 
December  = 6 

0.75 [-7] 
December  = 6 

-0.45 [-7] 
December  = 6 

E. polyanthemos 
Peak: November 
Start: October 
End: December 

0.73 [-2] 
September  

0.72 [-2] 
September 

0.72 [-2] 
September 

- 0.32 [-2] 
September 

-0.71[-8]  
March  = 6 

- 0.72 [-8] 
March  = 6 

- 0.73[-8] 
March  = 6 

0.39 [-8] 
March  = 6 

E. camaldulensis 
Peak: January 
Start: Nov/Dec 
End: January 

0.73 [0]  
January 

0.71 [-1] 
December 

0.75 [-1] 
December 

-0.31 [-1] 
December 

-0.69 [-6] 
July  = 6 

0.69 [-7] 
June  = 6 

0.70 [-7] 
June  = 6 

0.41 [-7] 
June  = 6 

E. melliodora Peak: 
January 
Start: November 
End: March 

0.86 [0] 
January  

0.82 [-1]  
January 

0.84 [-1] 
December 

-0.44 [-1] 
December 

-0.80 [-6] 
July  = 6 

0.80 [-6] 
July  = 6 

-0.81 [-7] 
June  = 6 

0.43 [-7] 
June  = 6 

E. microcarpa 
Peak: March 
Start: February 
End: May 

-0.77 [-4]  
November 

-0.77 [-4] 
November 

-0.76 [-4] 
November 

0.48 [-4] 
November 

0.78 [-10] 
May  = 6 

0.78 [-10] 
May  = 6 

0.78 [-10] 
May  = 6 

-0.44 [-10] 
May  = 6 

E. gonicalyx 
Peak: March 
Start: February 
End: May 

-0.62 [-4] 
December 

-0.61 [-4] 
December 

-0.63 [-4] 
December 

0.35 [-5] 
November 

0.64 [-10] 
June  = 6 

0.62 [-10] 
June  = 6 

0.63 [-10] 
June  = 6 

-0.36 [-11] 
May  = 6 

E. macrorhyncha 
Peak: January 
Start: January 
End: May 

-0.52 [-5] 
August 

-0.52  
[-5] August 

-0.52  
[-5] August 

0.26 [-5]  
August 

0.52 [-11] 
February  = 6 

0.51 [-11] 
February  = 6 

0.52 [-11] 
February  = 6 

-0.22 [-11] 
February  = 6 

Table 5. Significant (P < 0.0001) wavelet cross correlations (4 months, 3 scale) between peak 
flowering and climate: shorter [ 6 months] and longer lags [> 6 months] prior to peak 
flowering intensity. ( signifies the difference in months between shorter and longer lags). 

Even for species within a similar  grouping, say E. tricarpa and E. leucoxylon, we observe that, 
although at zero lag E. tricarpa and E. leucoxylon have a similar correlational (WCORR) 
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relationship with climate (somewhat intuitive as their flowering overlaps, see Table 1 and 
Table 5), their cross-correlational relationship over the 12 months annual cycle differs, 
having opposite sinusoidal WCCORR profiles for peaks and troughs; with a positive and a 
negative  short term lag  for E. leucoxylon and E. tricarpa,  respectively (Table 5) (see Figure 
10 and Figure 11). 

4. Discussion 
4.1 Subcomponents 
Wavelets Multiresolution analysis (MRA) has identified four subcomponents in each 
flowering series: these are a non-flowering phase, duration, annual cycle, flowering 
intensity, as well as the overall trend for each species. More specifically: 
d1 is the non-flowering phase per species. These so-called “off phases” coincide with other 
reproductive phases (e.g. budding, seeding) in Eucalypts (Ashton 1975, Bassett 1995, 
Murray and Lutze 2004). This phenomenon has also been reported specifically in E. tricarpa 
(Keatley and Murray 2006).  
The second sub-component, d2, reflects both the duration and the pattern of the original 
flowering record, for a given species; as  shown also earlier for  4 of the 8 species studied in 
this chapter  by  Hudson et al. (2010a,b). 
The annual cycle has been clearly delineated by subcomponent d3, with the mean month of 
peak intensity, so identified by peaks in d3 (e.g. E. leucoxylon: September, E. tricarpa: July, 
E. melliodora: January, E. goniocalyx: March). For five of the species (E. leucoxylon, 
E. melliodora, E. microcarpa,  E. tricarpa and E.polyanthemos) this is in agreement with the 
trends identified by other analytic methods (e.g. the mean flowering intensity in a flowering 
year (Keatley & Hudson 2007) and/or by singular spectrum analysis (SSA) (Hudson et al. 
2005; Hudson & Keatley, 2010b).  
d4 relates to the annual or biennial cycling of the intensity of flowering years. In all eight 
species, except E. leucoxylon, the biennial cycle is related to years of low flowering intensity 
(< 2). Note that in these three species low flowering intensity also includes years of no 
flowering (i.e. flowering intensity = 0). In E. leucoxylon flowering generally alternates 
between a quasi-biennial (1950 to 1952, 1955 until 1963) and an annual cycle. It is the only 
species in this study, where the biennial cycle is associated solely with low (< 2) intensity, 
and/or late commencement with short duration (commencing in September or October 
compared to the most probable month of commencement in April (Keatley & Hudson, 
2007).  
Since Chambers (1893) and others, the variability in flowering intensity, in general, as well 
as its cyclic behavior has been long reported in eucalypts. Flowering intensity exhibiting two 
year cycles in these species has also been previously discussed, as based on the judgment 
and  expertise of apiarists (Goodman 1973, Somerville and Campbell 1997, Paton et al. 2004); 
the collection of reproductive components (see Keatley and Murray 2006) and more recently 
confirmed by statistical autocorrelogram analysis (Wells 2000), and by singular spectrum 
analysis (SSA) (Hudson & Keatley, 2010b). A 4 year cycle, previously detected by SSA for 
E. tricarpa (Hudson & Keatley, 2010b), was however, not demonstrated by the wavelet 
analysis reported in this chapter. A four year cycle for this species has, on the other hand, 
been delineated earlier via autocorrelograms (Wells 2000). Wells’s study and also the work 
of Somerville and Campbell (1997) have also identified a four year flowering cycle in 
E. microcarpa. Note that SSA is a global analysis (see Hudson et al. 2005; Hudson & Keatley, 
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2010b) in contrast to wavelets which afford a localized analysis. The reader is referred to 
Yiou et al. (2000) who discussed methods by which SSA can be made more wavelet-like 
specifically via the use of a windowing technique. This nonstandard version of SSA, 
however, was not applied in the analysis of the data of interest here, as reported in the SSA 
research applications of Hudson et al. (2005), and of Hudson & Keatley, 2010b).  
s4 is the smoothed series that illustrates  the slowly varying portion of the flowering signal, 
and is taken to be an estimate of the trend. Again the results of wavelet analysis, namely a 
decreasing trend in flowering intensity over the period of study, agree with the  SSA results 
(Hudson & Keatley, 2010b). Note that the so-called trend is usually the first primary 
reconstructed component in SSA (Elsner and Tsonis 1996) and mirrors the smoothed overall 
trend s4 discussed in this chapter. 

4.1.1 Temperature and rainfall wavelet correlations 
Wavelet correlation analysis of the flowering and climate series found the same 
contemporaneous effects of temperature on the flowering of E. tricarpa and of E. leucoxylon;  
significantly increased  flowering  with  decreased temperature; with the main drivers for 
each species being different, maximum temperature for E. tricarpa and minimum 
temperature for E. leucoxylon as the main species specific temperature influences on 
flowering.  Maximum temperatures are often associated with day temperatures and 
minimum with night temperatures. Additionally, although both these species had a positive 
relationship with rainfall it was only significant in E.tricarpa, in opposition to 
E. camaldulensis and  E. melliodora (which exhibited  significantly increased  flowering with  
increased minimum  temperature and decreased  rainfall).  Hence for E. leucoxylon, it is 
cooler minimum temperatures, and in E. tricarpa cooler maximum temperatures which have 
a greater influence on peak flowering intensity. For E. tricarpa also wetter conditions tend to 
increase flowering intensity.  
E. microcarpa, E. macrorhyncha and E. polyanthemos had a significant positive wavelet 
correlation with minimum temperature (at wavelet scale 4), with a trend (though not 
significant) for increased flowering with decreasing rain.  E. leucoxylon and E. tricarpa were 
the only species of the eight species to exhibit a negative wavelet correlation  with minimum 
temperature (at 2 and 4 months).  Eucalyptus tricarpa was the only species for which rainfall 
had a significant, positive relationship with flowering (at the 4 month scale). This indicates 
that warmer, wetter periods lead to greater flowering intensity for E. tricarpa. The 
relationship for E. leucoxylon and rainfall was positive, but was not significant, as in 
E. tricarpa. E. camaldulensis and E. melliodora, which were the only species for which rainfall 
had a significant, negative relationship with flowering (at the 4 month scale); indicating that 
dryer periods lead to greater flowering intensity for these species. For E. gonicalyx, 
E. microcarpa, E. macrorhyncha and E. polyanthemos a negative correlation (but not significant) 
with rainfall was also indicated. Similar climatic  drivers and  relationships  were  found  for 
4 of the  8  Eucalypt species studied in this chapter by singular spectrum analysis (Hudson & 
Keatley (2010b)); by mixed transition  distribution models (Kim et al. (2009); Hudson et  al. 
(2010d)) and via Generalised Additive Models for Local, Scale and Shape (GAMLSS)  
modelling (Hudson et al., 2009, Hudson et al., 2010c;, Hudson et al., 2011b).  
Eucalyptus microcarpa and E. polyanthemos were shown in this chapter to share a similar 
wavelet correlation relationship with temperature (positive) and rainfall (negative). Their 
flowering durations do not generally overlap (Keatley et al. 2004, Kim et al. 2008) and their 
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relationship with climate (somewhat intuitive as their flowering overlaps, see Table 1 and 
Table 5), their cross-correlational relationship over the 12 months annual cycle differs, 
having opposite sinusoidal WCCORR profiles for peaks and troughs; with a positive and a 
negative  short term lag  for E. leucoxylon and E. tricarpa,  respectively (Table 5) (see Figure 
10 and Figure 11). 

4. Discussion 
4.1 Subcomponents 
Wavelets Multiresolution analysis (MRA) has identified four subcomponents in each 
flowering series: these are a non-flowering phase, duration, annual cycle, flowering 
intensity, as well as the overall trend for each species. More specifically: 
d1 is the non-flowering phase per species. These so-called “off phases” coincide with other 
reproductive phases (e.g. budding, seeding) in Eucalypts (Ashton 1975, Bassett 1995, 
Murray and Lutze 2004). This phenomenon has also been reported specifically in E. tricarpa 
(Keatley and Murray 2006).  
The second sub-component, d2, reflects both the duration and the pattern of the original 
flowering record, for a given species; as  shown also earlier for  4 of the 8 species studied in 
this chapter  by  Hudson et al. (2010a,b). 
The annual cycle has been clearly delineated by subcomponent d3, with the mean month of 
peak intensity, so identified by peaks in d3 (e.g. E. leucoxylon: September, E. tricarpa: July, 
E. melliodora: January, E. goniocalyx: March). For five of the species (E. leucoxylon, 
E. melliodora, E. microcarpa,  E. tricarpa and E.polyanthemos) this is in agreement with the 
trends identified by other analytic methods (e.g. the mean flowering intensity in a flowering 
year (Keatley & Hudson 2007) and/or by singular spectrum analysis (SSA) (Hudson et al. 
2005; Hudson & Keatley, 2010b).  
d4 relates to the annual or biennial cycling of the intensity of flowering years. In all eight 
species, except E. leucoxylon, the biennial cycle is related to years of low flowering intensity 
(< 2). Note that in these three species low flowering intensity also includes years of no 
flowering (i.e. flowering intensity = 0). In E. leucoxylon flowering generally alternates 
between a quasi-biennial (1950 to 1952, 1955 until 1963) and an annual cycle. It is the only 
species in this study, where the biennial cycle is associated solely with low (< 2) intensity, 
and/or late commencement with short duration (commencing in September or October 
compared to the most probable month of commencement in April (Keatley & Hudson, 
2007).  
Since Chambers (1893) and others, the variability in flowering intensity, in general, as well 
as its cyclic behavior has been long reported in eucalypts. Flowering intensity exhibiting two 
year cycles in these species has also been previously discussed, as based on the judgment 
and  expertise of apiarists (Goodman 1973, Somerville and Campbell 1997, Paton et al. 2004); 
the collection of reproductive components (see Keatley and Murray 2006) and more recently 
confirmed by statistical autocorrelogram analysis (Wells 2000), and by singular spectrum 
analysis (SSA) (Hudson & Keatley, 2010b). A 4 year cycle, previously detected by SSA for 
E. tricarpa (Hudson & Keatley, 2010b), was however, not demonstrated by the wavelet 
analysis reported in this chapter. A four year cycle for this species has, on the other hand, 
been delineated earlier via autocorrelograms (Wells 2000). Wells’s study and also the work 
of Somerville and Campbell (1997) have also identified a four year flowering cycle in 
E. microcarpa. Note that SSA is a global analysis (see Hudson et al. 2005; Hudson & Keatley, 
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2010b) in contrast to wavelets which afford a localized analysis. The reader is referred to 
Yiou et al. (2000) who discussed methods by which SSA can be made more wavelet-like 
specifically via the use of a windowing technique. This nonstandard version of SSA, 
however, was not applied in the analysis of the data of interest here, as reported in the SSA 
research applications of Hudson et al. (2005), and of Hudson & Keatley, 2010b).  
s4 is the smoothed series that illustrates  the slowly varying portion of the flowering signal, 
and is taken to be an estimate of the trend. Again the results of wavelet analysis, namely a 
decreasing trend in flowering intensity over the period of study, agree with the  SSA results 
(Hudson & Keatley, 2010b). Note that the so-called trend is usually the first primary 
reconstructed component in SSA (Elsner and Tsonis 1996) and mirrors the smoothed overall 
trend s4 discussed in this chapter. 

4.1.1 Temperature and rainfall wavelet correlations 
Wavelet correlation analysis of the flowering and climate series found the same 
contemporaneous effects of temperature on the flowering of E. tricarpa and of E. leucoxylon;  
significantly increased  flowering  with  decreased temperature; with the main drivers for 
each species being different, maximum temperature for E. tricarpa and minimum 
temperature for E. leucoxylon as the main species specific temperature influences on 
flowering.  Maximum temperatures are often associated with day temperatures and 
minimum with night temperatures. Additionally, although both these species had a positive 
relationship with rainfall it was only significant in E.tricarpa, in opposition to 
E. camaldulensis and  E. melliodora (which exhibited  significantly increased  flowering with  
increased minimum  temperature and decreased  rainfall).  Hence for E. leucoxylon, it is 
cooler minimum temperatures, and in E. tricarpa cooler maximum temperatures which have 
a greater influence on peak flowering intensity. For E. tricarpa also wetter conditions tend to 
increase flowering intensity.  
E. microcarpa, E. macrorhyncha and E. polyanthemos had a significant positive wavelet 
correlation with minimum temperature (at wavelet scale 4), with a trend (though not 
significant) for increased flowering with decreasing rain.  E. leucoxylon and E. tricarpa were 
the only species of the eight species to exhibit a negative wavelet correlation  with minimum 
temperature (at 2 and 4 months).  Eucalyptus tricarpa was the only species for which rainfall 
had a significant, positive relationship with flowering (at the 4 month scale). This indicates 
that warmer, wetter periods lead to greater flowering intensity for E. tricarpa. The 
relationship for E. leucoxylon and rainfall was positive, but was not significant, as in 
E. tricarpa. E. camaldulensis and E. melliodora, which were the only species for which rainfall 
had a significant, negative relationship with flowering (at the 4 month scale); indicating that 
dryer periods lead to greater flowering intensity for these species. For E. gonicalyx, 
E. microcarpa, E. macrorhyncha and E. polyanthemos a negative correlation (but not significant) 
with rainfall was also indicated. Similar climatic  drivers and  relationships  were  found  for 
4 of the  8  Eucalypt species studied in this chapter by singular spectrum analysis (Hudson & 
Keatley (2010b)); by mixed transition  distribution models (Kim et al. (2009); Hudson et  al. 
(2010d)) and via Generalised Additive Models for Local, Scale and Shape (GAMLSS)  
modelling (Hudson et al., 2009, Hudson et al., 2010c;, Hudson et al., 2011b).  
Eucalyptus microcarpa and E. polyanthemos were shown in this chapter to share a similar 
wavelet correlation relationship with temperature (positive) and rainfall (negative). Their 
flowering durations do not generally overlap (Keatley et al. 2004, Kim et al. 2008) and their 
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months of peak flowering intensity are separated by four months. However, mean diurnal 
temperature and mean monthly rainfall over their respective flowering duration is similar, 
16.2ºC and 38.7 mm for E. microcarpa and 16.3ºC and 42.0 mm for E. polyanthemos. Rainfall 
did not have a significant influence in either of the latter species. In E. microcarpa flowering 
intensity is significantly correlated only with one of the three temperature variants, namely 
minimum temperature (at the 2 and 4 month scale), indicating that warmer minimum 
temperatures are associated with more intense flowering. Note that minimum temperature 
has also been previously nominated as the primary driver for E. microcarpa (Hudson et al. 
2011b). Similar relationships between temperature and / or rainfall with flowering 
commencement (or flowering intensity), have also been shown by other studies of these 
species (Porter 1978, Keatley & Hudson 2000, Hudson et al. (2009, 2010a,b,c,d), and Kim et 
al., (2008, 2009)).  

4.1.2 Temperature and rainfall wavelet cross- correlations 
Four species (E. leucoxylon,  E. camaldulensis, E. melliodora and E. polyanthemos) group together 
based on the ‘sinusoidal’ influence of the climate variables (evidenced  by their  wavelet 
WCCORR signatures), but separate themselves out by when that influence occurs -  
E. leucoxylon differentiates as such from the remaining 3 species (namely, E. camaldulensis, E. 
melliodora and E. polyanthemos).   
Many of these species occur together. For example, E. tricarpa may be found with E. 
leucoxylon, E. microcarpa, E. polyanthemos, E. goniocalyx and E. macrorhyncha. Separation of 
flowering times is one mechanism to avoid competition for pollinators and reduce 
hybridization, being in a different sub-genus is another. For example, E. tricarpa’s mean 
overlap with E. polyanthemos and E. microcarpa is low (0.13 and 0.36, respectively), however, 
in some years their flowering period can largely overlap (0.53 and 0.78, respectively) 
(Keatley and Hudson 2007). This higher overlap is probably due the similar temperature 
(influence) signatures (i.e. both species are negatively influenced by temperature at shorter 
lags and positively influenced in the longer term (prior to peak flowering), whereas E. 
polyanthemos has the opposite signature.  
According to the wavelet cross-correlations, a similar relationship between flowering and 
temperature and between flowering and rainfall occurs in E. leucoxylon and E. polyanthemos. 
The reverse relationship between flowering and temperature and with rainfall was observed 
in E. tricarpa and E. microcarpa. In E.camaldulensis, and E.melliodora the rainfall 6 or 7 months 
prior to peak flowering intensity most strongly and positively influences subsequent 
flowering intensity, whilst the shorter term lags of E. leucoxylon, E. polyanthemos, E. 
goniocalyx, E. microcarpa andE. macrorhyncha were associated with negative cross-correlations 
with rainfall. Longer term lags of E. leucoxylon, E. polyanthemos, E. goniocalyx, E. microcarpa 
and E. macrorhyncha were associated with positive cross-correlations with rainfall. 
Wavelet cross-correlation analysis identified the cyclical influence of temperature and 
rainfall on peak flowering intensity. For each species there are 6 months of the annual cycle 
in which any given climate variable positively influences flowering intensity and 6 months 
of negative influence. For all species, rainfall exerts a negative influence when temperature 
is positive. Wavelet cross-correlations between peak flowering intensity and the 
temperature variants and rainfall were lagged from 0 and 12 months prior to the species 
specific peak flowering month. These sinusoidal wavelet WCCORR signatures or profiles 
clearly demonstrated that there are positive and negative relationships of 6 months duration 
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and as a consequence there are seasonal change points from positive to negative cross-
correlation and vice-versa.  
Wavelets clearly demonstrate the cyclical influence of climate (temperature and rainfall) on 
peak flowering intensity for the eight species examined in this chapter. There are 6 months 
of an annual cycle in which any given climate variable positively influences flowering 
intensity and 6 months of negative influence, within a given species. This phenomenon 
results in distinctive seasonal change points. In very broad terms, for  example, more intense 
peak flowering is likely to occur in E. leucoxylon when cool, wet conditions coincide with its 
peak flowering. However, peak flowering would be furthered enhanced if the preceding 
autumn and winter were warm and dry, and the previous spring and summer cool and wet. 
This supports the upper threshold mean temperature of 18.5ºC found for this species by 
Hudson et al. (2003) (see also Hudson et al., 2011b). Eucalyptus tricarpa requires the identical 
conditions at peak flowering intensity (i.e. cool and wet) but more or less the reverse 
conditions to E. leucoxylon in the months leading up to flowering: namely a cool, wet 
autumn and winter, with a warm, dry spring and summer. This supports the upper 
threshold temperature of 21.3ºC recently demonstrated for maximum temperature for this 
species by Hudson et al. (2011b). A warm, dry autumn and winter with a cooler, wet spring, 
and summer with warm, dry conditions at peak flowering, favours more intense flowering 
in E. microcarpa. Flowering is enhanced in E. polyanthemos with warm, dry conditions 
coinciding with peak flowering, preceded by a warm, dry winter and spring and cool, wet 
summer and autumn, in contrast to E. microcarpa. Correspondingly an upper threshold 
temperature of 16.1ºC was demonstrated for mean temperature for this species by Hudson 
et al. (2011b) via GAMLSS modelling. 
There is evidence of this cycling in correlation between flowering and climate in previous 
research -  specifically this 6 month cycling phenomenon can be observed in the reported 
tables and/or figures of the following studies; [1] in an examination of flowering 
commencement between 1954 - 1989 (by multiple linear regression) and the effect of mean 
monthly temperature by Fitter et al. (1995, Figure 4); [2] in an examination  of flowering 
commencement, from 1978 to 2001, with respect to mean daily maximum temperature using 
P-splines by Roberts (2008, Figure 3) – there being an approximately 6 month period in 
which the sign of the smoothed regression coefficients  of Roberts changed from negative to 
positive (see also Roberts 2010, 2011); [3] in Sparks and Carey (1995, see Table 2 of  that 
study) there is evidence of this cycling in correlation between the flowering in wood 
anemone and turnip and monthly temperature in central England, for the months preceding 
mean observed date, over a 212 year period (1736 - 1947). Until now this phenomenon of 6 
monthly cycling has not been commented on, apart from the  recent studies of Hudson et al. 
(2010a,b) , nor formalised quantitatively as is achieved in this present chapter (via wavelets).  
According to Hudson et al. (2010b) the relationships between phenophases and climatic 
variables, may be considered to be physiologically and/or statistically based (Yang et al. 
1995, Spano et al. 1999). In this chapter the relationships between peak flowering intensity 
and the temperature and rainfall variables could partly be reflecting the time of year these 
species flower for each of the species examined. For example, E. tricarpa’s peak flowering 
intensity occurs in winter, and this species has a negative relationship with temperature, 
indicating increased flowering with decreasing temperature. Previously, this scenario has 
been suggested for explaining, at least partially, the relationship between flowering 
commencement and climate in three (E. leucoxylon, E. tricarpa and E. polyanthemos) species 
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months of peak flowering intensity are separated by four months. However, mean diurnal 
temperature and mean monthly rainfall over their respective flowering duration is similar, 
16.2ºC and 38.7 mm for E. microcarpa and 16.3ºC and 42.0 mm for E. polyanthemos. Rainfall 
did not have a significant influence in either of the latter species. In E. microcarpa flowering 
intensity is significantly correlated only with one of the three temperature variants, namely 
minimum temperature (at the 2 and 4 month scale), indicating that warmer minimum 
temperatures are associated with more intense flowering. Note that minimum temperature 
has also been previously nominated as the primary driver for E. microcarpa (Hudson et al. 
2011b). Similar relationships between temperature and / or rainfall with flowering 
commencement (or flowering intensity), have also been shown by other studies of these 
species (Porter 1978, Keatley & Hudson 2000, Hudson et al. (2009, 2010a,b,c,d), and Kim et 
al., (2008, 2009)).  

4.1.2 Temperature and rainfall wavelet cross- correlations 
Four species (E. leucoxylon,  E. camaldulensis, E. melliodora and E. polyanthemos) group together 
based on the ‘sinusoidal’ influence of the climate variables (evidenced  by their  wavelet 
WCCORR signatures), but separate themselves out by when that influence occurs -  
E. leucoxylon differentiates as such from the remaining 3 species (namely, E. camaldulensis, E. 
melliodora and E. polyanthemos).   
Many of these species occur together. For example, E. tricarpa may be found with E. 
leucoxylon, E. microcarpa, E. polyanthemos, E. goniocalyx and E. macrorhyncha. Separation of 
flowering times is one mechanism to avoid competition for pollinators and reduce 
hybridization, being in a different sub-genus is another. For example, E. tricarpa’s mean 
overlap with E. polyanthemos and E. microcarpa is low (0.13 and 0.36, respectively), however, 
in some years their flowering period can largely overlap (0.53 and 0.78, respectively) 
(Keatley and Hudson 2007). This higher overlap is probably due the similar temperature 
(influence) signatures (i.e. both species are negatively influenced by temperature at shorter 
lags and positively influenced in the longer term (prior to peak flowering), whereas E. 
polyanthemos has the opposite signature.  
According to the wavelet cross-correlations, a similar relationship between flowering and 
temperature and between flowering and rainfall occurs in E. leucoxylon and E. polyanthemos. 
The reverse relationship between flowering and temperature and with rainfall was observed 
in E. tricarpa and E. microcarpa. In E.camaldulensis, and E.melliodora the rainfall 6 or 7 months 
prior to peak flowering intensity most strongly and positively influences subsequent 
flowering intensity, whilst the shorter term lags of E. leucoxylon, E. polyanthemos, E. 
goniocalyx, E. microcarpa andE. macrorhyncha were associated with negative cross-correlations 
with rainfall. Longer term lags of E. leucoxylon, E. polyanthemos, E. goniocalyx, E. microcarpa 
and E. macrorhyncha were associated with positive cross-correlations with rainfall. 
Wavelet cross-correlation analysis identified the cyclical influence of temperature and 
rainfall on peak flowering intensity. For each species there are 6 months of the annual cycle 
in which any given climate variable positively influences flowering intensity and 6 months 
of negative influence. For all species, rainfall exerts a negative influence when temperature 
is positive. Wavelet cross-correlations between peak flowering intensity and the 
temperature variants and rainfall were lagged from 0 and 12 months prior to the species 
specific peak flowering month. These sinusoidal wavelet WCCORR signatures or profiles 
clearly demonstrated that there are positive and negative relationships of 6 months duration 
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and as a consequence there are seasonal change points from positive to negative cross-
correlation and vice-versa.  
Wavelets clearly demonstrate the cyclical influence of climate (temperature and rainfall) on 
peak flowering intensity for the eight species examined in this chapter. There are 6 months 
of an annual cycle in which any given climate variable positively influences flowering 
intensity and 6 months of negative influence, within a given species. This phenomenon 
results in distinctive seasonal change points. In very broad terms, for  example, more intense 
peak flowering is likely to occur in E. leucoxylon when cool, wet conditions coincide with its 
peak flowering. However, peak flowering would be furthered enhanced if the preceding 
autumn and winter were warm and dry, and the previous spring and summer cool and wet. 
This supports the upper threshold mean temperature of 18.5ºC found for this species by 
Hudson et al. (2003) (see also Hudson et al., 2011b). Eucalyptus tricarpa requires the identical 
conditions at peak flowering intensity (i.e. cool and wet) but more or less the reverse 
conditions to E. leucoxylon in the months leading up to flowering: namely a cool, wet 
autumn and winter, with a warm, dry spring and summer. This supports the upper 
threshold temperature of 21.3ºC recently demonstrated for maximum temperature for this 
species by Hudson et al. (2011b). A warm, dry autumn and winter with a cooler, wet spring, 
and summer with warm, dry conditions at peak flowering, favours more intense flowering 
in E. microcarpa. Flowering is enhanced in E. polyanthemos with warm, dry conditions 
coinciding with peak flowering, preceded by a warm, dry winter and spring and cool, wet 
summer and autumn, in contrast to E. microcarpa. Correspondingly an upper threshold 
temperature of 16.1ºC was demonstrated for mean temperature for this species by Hudson 
et al. (2011b) via GAMLSS modelling. 
There is evidence of this cycling in correlation between flowering and climate in previous 
research -  specifically this 6 month cycling phenomenon can be observed in the reported 
tables and/or figures of the following studies; [1] in an examination of flowering 
commencement between 1954 - 1989 (by multiple linear regression) and the effect of mean 
monthly temperature by Fitter et al. (1995, Figure 4); [2] in an examination  of flowering 
commencement, from 1978 to 2001, with respect to mean daily maximum temperature using 
P-splines by Roberts (2008, Figure 3) – there being an approximately 6 month period in 
which the sign of the smoothed regression coefficients  of Roberts changed from negative to 
positive (see also Roberts 2010, 2011); [3] in Sparks and Carey (1995, see Table 2 of  that 
study) there is evidence of this cycling in correlation between the flowering in wood 
anemone and turnip and monthly temperature in central England, for the months preceding 
mean observed date, over a 212 year period (1736 - 1947). Until now this phenomenon of 6 
monthly cycling has not been commented on, apart from the  recent studies of Hudson et al. 
(2010a,b) , nor formalised quantitatively as is achieved in this present chapter (via wavelets).  
According to Hudson et al. (2010b) the relationships between phenophases and climatic 
variables, may be considered to be physiologically and/or statistically based (Yang et al. 
1995, Spano et al. 1999). In this chapter the relationships between peak flowering intensity 
and the temperature and rainfall variables could partly be reflecting the time of year these 
species flower for each of the species examined. For example, E. tricarpa’s peak flowering 
intensity occurs in winter, and this species has a negative relationship with temperature, 
indicating increased flowering with decreasing temperature. Previously, this scenario has 
been suggested for explaining, at least partially, the relationship between flowering 
commencement and climate in three (E. leucoxylon, E. tricarpa and E. polyanthemos) species 
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(Keatley and Hudson 2000). Additionally, it has been shown that when rainfall and 
temperature have been accounted for, there is no significant remaining trend in the 
flowering intensity of E. leucoxylon (Hudson et al. 2003), indicating that there is a 
physiological basis to this relationship. Previous work (Porter 1978, Keatley and Hudson 
2000, Keatley et al., 2002, Hudson et al., 2003) examining the influence of temperature and 
rainfall on flowering intensity of these species have found similar results, but have used 
different analytical methods (singular spectrum analysis, generalized additive models 
(GAMs) and Bayesian hierarchical models (BHMs) and regression). As  stated  earlier 
comparable climatic  drivers and  relationships  were  found  for 4 of the  8  Eucalypt species 
studied in this chapter by singular spectrum analysis (Hudson and Keatley, 2010b)); by 
mixed transition  distribution models (Kim et al., 2009; Hudson et  al., 2010d) and via 
Generalised Additive Models for Local, Scale and Shape (GAMLSS)  modelling (Hudson et 
al., 2010c, Hudson et al., 2009, Hudson et al., 2011b).  
In  an earlier study House (1997) suggested that  even though flowering time seems to be 
under the control of climatic conditions, it is  during bud formation and development that 
there may be genetic control of the actual flowering dates in local (sub-) populations. Also 
noted was that the patchy distribution of time of flowering commencment and duration 
between groups of E. tricarpa and E. regnans was  suggestive of  local genetic control of these 
flowering traits (House, 1997). It was advocated that heavy and light flowering seasons 
appear to occur in cycles in many species (also  evidenced in some  species in this chapter) 
and are related to resource availability. House (1997) stated that there are few data available 
to demonstrate any systematic differences in reproductive traits that may help elucidate the 
co-existence of closely related species. Because hybridisation rarely occurs between different 
subgenera, flowering seasons should be more similar between subgenera than within them 
House (1997). In the research presented in this chapter all species are in the same subgenera 
except for E. macrorhyncha.  
Wavelet cross-correlations add additional insight into and more detail on the changing 
relationship between climate and peak flowering intensity (over an annual cycle) for the 
eight eucalypt species (see also the study of Hudson et al., 2011c). They show that whilst the 
pairing of E. leucoxylon and E. tricarpa, and the pairing of E. microcarpa and E. polyanthemos, 
respectively, have similar relationships with the climate variables at zero lag; the 
relationship between peak flowering intensity and climate during the 12 months prior to 
each species’ peak flowering is individual or species specific; and therefore is not just a 
mirroring of the time of year in which the species flower. Note that, four months prior to 
peak flowering intensity, E. leucoxylon is most strongly and positively influenced by 
temperature, whereas the influence on E. tricarpa is not significant. The influence of 
temperature on each of these species likewise switches from negative to positive and back 
again in different seasons pointing to a possible physiological basis for this interplay. 

5. Conclusion 
Broadly speaking, E. leucoxylon and E. tricarpa can be grouped together with respect to their 
relationship with temperature and rainfall. The relationship between flowering and climate 
of the remaining six species is similar, however, when the significance of the relationship is 
taken into account two other species clearly grouped together: E. camaldulensis and E. 
melliodora. As already discussed they are the only two species which have significant 
negative relationship with rainfall (similar WCORR signature between their flowering and 
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rainfall and a significant positive relationship with all three climate parameters at both 
scales. Eucalyptus polyanthemos aligns with this group as it has a significant positive 
relationship with all three climate parameters but only at the 4 month scale. Additionally, its 
main influence is maximum temperature as is the case with the other two species (albeit that 
E. camaldulensis is equally influenced by mean temperature). The other three species 
(namely,  E. goniocalyx, E. microcarpa and E.  macrorhyncha) also broadly group, as  evidenced  
by the  similar  climate  signature  shown in their WCORR profiles. Note that that all 
members of this species triple, have a positive relationship between flowering and at least 
one temperature variant; and a negative (though not significant) relationship between 
flowering and rainfall.  
According to wavelet cross-correlations the eight species form two groups based on their, 
similar cross-correlation relationship between flowering with temperature and between 
flowering and rainfall  - E. leucoxylon, E. polyanthemos, E. camaldulensis and E. melliodora are in 
one group and the remaining species in the other. This first group has cross correlations 
with temperature which are positive in the short-term ( 6 months) and negative in the long-
term (> 6 months). With rainfall, the short-term cross-correlations are negative in the short-
term and positive in the long-term. The second group (comprising E. goniocalyx, 
E. microcarpa, E. macrorhyncha and E. tricarpa) has correlations with temperature which are 
negative in the short-term ( 6 months) and positive in the long-term (> 6 months) – and 
with rainfall the short-term cross-correlations are positive and negative in the long-term.  
It is noteworthy that if one examines the whole 12 month pattern of the wavelet cross-
correlation WCCORR signatures (sinusoids), in relation to flowering duration, cessation and  
12 months  back, rather than focusing on the signs of the WCCORR at months of  maximum 
positive or negative cross-correlation, there are 3 groupings, namely,  E. camaldulensis, 
E. melliodora, E. polyanthemos; E. goniocalyx, E. microcarpa, E. macrorhyncha; and E. leucoxylon 
and E. tricarpa. Indeed the members within each of these  groupings  were recently shown to  
flowering synchronously in a study using self organising map (SOM) methods for time 
series clustering (Hudson et al., 2011a).  The resultant SOM correlations, which were based 
on clustering the patterns underlying the time series records in Hudson et al. (2011a), also 
showed similar trends to the correlations gleaned from Moran based correlations obtained 
from the raw flowering records (see Kim et al., 2008).   
In agreement with the SOM clustering results, the wavelet based findings of this chapter (of 
the same eight species) showed via similarities in the wavelet correlation, wavelet cross-
correlation signatures and in the identification of the main species  specific climatic  drivers 
of flowering: Eucalyptus microcarpa to be asynchronising with E. leucoxylon and 
E. polyanthemos. Eucalyptus tricarpa to be flowering asynchronously to the species triple 
(E. camaldulensis, E. melliodora and E. polyanthemos). Eucalyptus leucoxylon was demonstrated 
to be synchronous with both E. polyanthemos and E. tricarpa, and asynchronous to all 
remaining species. Hudson et al. (2011a) demonstrated that the main influence for grouping 
or clustering (synchronisation of flowering) was the season in which flowering commences, 
however, other flowering characteristics such as the timing of peak flowering and start and 
cessation of flowering were also contributing factors to synchronisation. In the wavelets 
based WCORR and WCCORR analyses in this chapter timing of peak intensity was also 
shown to be an important factor, as reflected by the  common seasonal change points for 
synchronous species groupings (Table  4).  



 
Discrete Wavelet Transforms - Biomedical Applications 290 

(Keatley and Hudson 2000). Additionally, it has been shown that when rainfall and 
temperature have been accounted for, there is no significant remaining trend in the 
flowering intensity of E. leucoxylon (Hudson et al. 2003), indicating that there is a 
physiological basis to this relationship. Previous work (Porter 1978, Keatley and Hudson 
2000, Keatley et al., 2002, Hudson et al., 2003) examining the influence of temperature and 
rainfall on flowering intensity of these species have found similar results, but have used 
different analytical methods (singular spectrum analysis, generalized additive models 
(GAMs) and Bayesian hierarchical models (BHMs) and regression). As  stated  earlier 
comparable climatic  drivers and  relationships  were  found  for 4 of the  8  Eucalypt species 
studied in this chapter by singular spectrum analysis (Hudson and Keatley, 2010b)); by 
mixed transition  distribution models (Kim et al., 2009; Hudson et  al., 2010d) and via 
Generalised Additive Models for Local, Scale and Shape (GAMLSS)  modelling (Hudson et 
al., 2010c, Hudson et al., 2009, Hudson et al., 2011b).  
In  an earlier study House (1997) suggested that  even though flowering time seems to be 
under the control of climatic conditions, it is  during bud formation and development that 
there may be genetic control of the actual flowering dates in local (sub-) populations. Also 
noted was that the patchy distribution of time of flowering commencment and duration 
between groups of E. tricarpa and E. regnans was  suggestive of  local genetic control of these 
flowering traits (House, 1997). It was advocated that heavy and light flowering seasons 
appear to occur in cycles in many species (also  evidenced in some  species in this chapter) 
and are related to resource availability. House (1997) stated that there are few data available 
to demonstrate any systematic differences in reproductive traits that may help elucidate the 
co-existence of closely related species. Because hybridisation rarely occurs between different 
subgenera, flowering seasons should be more similar between subgenera than within them 
House (1997). In the research presented in this chapter all species are in the same subgenera 
except for E. macrorhyncha.  
Wavelet cross-correlations add additional insight into and more detail on the changing 
relationship between climate and peak flowering intensity (over an annual cycle) for the 
eight eucalypt species (see also the study of Hudson et al., 2011c). They show that whilst the 
pairing of E. leucoxylon and E. tricarpa, and the pairing of E. microcarpa and E. polyanthemos, 
respectively, have similar relationships with the climate variables at zero lag; the 
relationship between peak flowering intensity and climate during the 12 months prior to 
each species’ peak flowering is individual or species specific; and therefore is not just a 
mirroring of the time of year in which the species flower. Note that, four months prior to 
peak flowering intensity, E. leucoxylon is most strongly and positively influenced by 
temperature, whereas the influence on E. tricarpa is not significant. The influence of 
temperature on each of these species likewise switches from negative to positive and back 
again in different seasons pointing to a possible physiological basis for this interplay. 

5. Conclusion 
Broadly speaking, E. leucoxylon and E. tricarpa can be grouped together with respect to their 
relationship with temperature and rainfall. The relationship between flowering and climate 
of the remaining six species is similar, however, when the significance of the relationship is 
taken into account two other species clearly grouped together: E. camaldulensis and E. 
melliodora. As already discussed they are the only two species which have significant 
negative relationship with rainfall (similar WCORR signature between their flowering and 
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rainfall and a significant positive relationship with all three climate parameters at both 
scales. Eucalyptus polyanthemos aligns with this group as it has a significant positive 
relationship with all three climate parameters but only at the 4 month scale. Additionally, its 
main influence is maximum temperature as is the case with the other two species (albeit that 
E. camaldulensis is equally influenced by mean temperature). The other three species 
(namely,  E. goniocalyx, E. microcarpa and E.  macrorhyncha) also broadly group, as  evidenced  
by the  similar  climate  signature  shown in their WCORR profiles. Note that that all 
members of this species triple, have a positive relationship between flowering and at least 
one temperature variant; and a negative (though not significant) relationship between 
flowering and rainfall.  
According to wavelet cross-correlations the eight species form two groups based on their, 
similar cross-correlation relationship between flowering with temperature and between 
flowering and rainfall  - E. leucoxylon, E. polyanthemos, E. camaldulensis and E. melliodora are in 
one group and the remaining species in the other. This first group has cross correlations 
with temperature which are positive in the short-term ( 6 months) and negative in the long-
term (> 6 months). With rainfall, the short-term cross-correlations are negative in the short-
term and positive in the long-term. The second group (comprising E. goniocalyx, 
E. microcarpa, E. macrorhyncha and E. tricarpa) has correlations with temperature which are 
negative in the short-term ( 6 months) and positive in the long-term (> 6 months) – and 
with rainfall the short-term cross-correlations are positive and negative in the long-term.  
It is noteworthy that if one examines the whole 12 month pattern of the wavelet cross-
correlation WCCORR signatures (sinusoids), in relation to flowering duration, cessation and  
12 months  back, rather than focusing on the signs of the WCCORR at months of  maximum 
positive or negative cross-correlation, there are 3 groupings, namely,  E. camaldulensis, 
E. melliodora, E. polyanthemos; E. goniocalyx, E. microcarpa, E. macrorhyncha; and E. leucoxylon 
and E. tricarpa. Indeed the members within each of these  groupings  were recently shown to  
flowering synchronously in a study using self organising map (SOM) methods for time 
series clustering (Hudson et al., 2011a).  The resultant SOM correlations, which were based 
on clustering the patterns underlying the time series records in Hudson et al. (2011a), also 
showed similar trends to the correlations gleaned from Moran based correlations obtained 
from the raw flowering records (see Kim et al., 2008).   
In agreement with the SOM clustering results, the wavelet based findings of this chapter (of 
the same eight species) showed via similarities in the wavelet correlation, wavelet cross-
correlation signatures and in the identification of the main species  specific climatic  drivers 
of flowering: Eucalyptus microcarpa to be asynchronising with E. leucoxylon and 
E. polyanthemos. Eucalyptus tricarpa to be flowering asynchronously to the species triple 
(E. camaldulensis, E. melliodora and E. polyanthemos). Eucalyptus leucoxylon was demonstrated 
to be synchronous with both E. polyanthemos and E. tricarpa, and asynchronous to all 
remaining species. Hudson et al. (2011a) demonstrated that the main influence for grouping 
or clustering (synchronisation of flowering) was the season in which flowering commences, 
however, other flowering characteristics such as the timing of peak flowering and start and 
cessation of flowering were also contributing factors to synchronisation. In the wavelets 
based WCORR and WCCORR analyses in this chapter timing of peak intensity was also 
shown to be an important factor, as reflected by the  common seasonal change points for 
synchronous species groupings (Table  4).  



 
Discrete Wavelet Transforms - Biomedical Applications 292 

This study shows that the DWT and the MODWT, with multiresolution analysis (MRA) are 
ideally suitable for investigating the inter-relatedness between climate and phenological 
time series which may exhibit non-stationarity. As such this chapter adds further knowledge 
about the interplay between climate and the flowering of eight Eucalypt species - recognised 
as a major southern hemisphere genus. MODWT-MRA successfully identified the sub-
components (annual cycle duration, non-flowering and trend) within each flowering series. 
Wavelets cross-correlation analysis: (i) determined the strength, directionality and lagged 
nature of the relationship between climate and flowering; (ii) identified the primary climatic 
drivers at peak flowering intensity, and (iii) confirmed the dynamic nature of the 
relationship between peak flowering and climate for each of the 8 species. Our results allude 
to a physiological basis for this interplay. Species specific wavelet correlation and cross-
correlation signatures were established relating flowering intensity with climate; indicating 
climatic impacts and possibly signatures for synchronisation between specific species 
groups, in agreement to those recently identified by Hudson et al., 2010e; Hudson et al., 
2011a). Wavelet methods are demonstrated to be valuable tools for the analysis of 
phenological time series, and in studies which aim to detect and understand local climatic 
impacts on phenological phases and possibly global climate change. 
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1. Introduction 
In recent years, video surveillance systems for the purpose of security have been developed 
rapidly. More and more researches try to develop intelligent video surveillance systems to 
replace the traditional passive video surveillance systems (Hu et al., 2004) and (Jacobs & 
Pless, 2008). The intelligent video surveillance system can detect moving objects in the initial 
stage and subsequently process the functions such as object classification, object tracking, 
and object behaviors description. Detecting moving object is a very important aspect of 
computer vision and has a very wide range of surveillance applications. The accurate 
location of the moving object does not only provide a focus of attention for post-processing 
but also can reduce the redundant computation for the incorrect motion of the moving 
object. The successful moving object detection in a real surrounding environment is a 
difficult task, since there are many kinds of problems such as illumination changes, fake 
motion (Cheng & Chen, 2006), night detection (Huang, 2008), and Gaussian noise in the 
background (Gonzalez & Woods, 2001) that may lead to detect incorrect motion of the 
moving object. There are three typical approaches for motion detection (Hu et al., 2004), 
(Jacobs & Pless, 2008), and (Collins, 2000): background subtraction, temporal differencing, 
and optical flow. The background subtraction method detects moving regions between the 
current frame and the reference background frame. It provides the most complete motion 
mask data, but is susceptible to dynamic scene changes due to lighting and extraneous 
events. Therefore, it has to update the reference background frame frequently. The temporal 
differencing approach extracts the moving region by using consecutive frames of the image 
sequences. It is suitable for dynamic environment, but often extracts incomplete relevant 
motion object pixels. The optical flow method uses characteristics of flow vectors of moving 
objects over time to detect moving regions. However, most optical flow methods are with 
higher complex computation. Generally, the above three moving object detection methods 
are all sensitive to illumination changes, noises, and fake motion such as moving leaves of 
trees. 
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1. Introduction 
In recent years, video surveillance systems for the purpose of security have been developed 
rapidly. More and more researches try to develop intelligent video surveillance systems to 
replace the traditional passive video surveillance systems (Hu et al., 2004) and (Jacobs & 
Pless, 2008). The intelligent video surveillance system can detect moving objects in the initial 
stage and subsequently process the functions such as object classification, object tracking, 
and object behaviors description. Detecting moving object is a very important aspect of 
computer vision and has a very wide range of surveillance applications. The accurate 
location of the moving object does not only provide a focus of attention for post-processing 
but also can reduce the redundant computation for the incorrect motion of the moving 
object. The successful moving object detection in a real surrounding environment is a 
difficult task, since there are many kinds of problems such as illumination changes, fake 
motion (Cheng & Chen, 2006), night detection (Huang, 2008), and Gaussian noise in the 
background (Gonzalez & Woods, 2001) that may lead to detect incorrect motion of the 
moving object. There are three typical approaches for motion detection (Hu et al., 2004), 
(Jacobs & Pless, 2008), and (Collins, 2000): background subtraction, temporal differencing, 
and optical flow. The background subtraction method detects moving regions between the 
current frame and the reference background frame. It provides the most complete motion 
mask data, but is susceptible to dynamic scene changes due to lighting and extraneous 
events. Therefore, it has to update the reference background frame frequently. The temporal 
differencing approach extracts the moving region by using consecutive frames of the image 
sequences. It is suitable for dynamic environment, but often extracts incomplete relevant 
motion object pixels. The optical flow method uses characteristics of flow vectors of moving 
objects over time to detect moving regions. However, most optical flow methods are with 
higher complex computation. Generally, the above three moving object detection methods 
are all sensitive to illumination changes, noises, and fake motion such as moving leaves of 
trees. 
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In order to solve the mentioned problems, several approaches for object detecting and 
tracking were proposed (Ahmed et al., 2005), (Alsaqre & Baozong, 2004), (Cheng & Chen, 
2006), (Chen & Yang, 2007), (Collins, 2000), (Cvetkovic et al., 2006), (Hsieh & Hsu, 2007), (Hu 
et al., 2004), (Hu et al., 2009), (Huang et al., 2008), (Jacobs & Pless, 2008), (Liu et al., 2006), 
(Mckenna, 2000), (Sugandi, 2007), and (Tab, 2007). Video tracking systems have to deal with 
variously shaped and sized input objects, which often result in a massive computing cost of 
the input of images. Cheng et al. (Cheng & Chen, 2006) used discrete wavelet transform 
(DWT) to detect and track moving objects. The 2-D DWT can be used to decompose an 
image into four-subband images (LL, LH, HL, and HH). It only processes the part of LL-
band image due to the consideration of low computing cost and noise reduction issues. 
Although this method provides low computing cost (low resolution) for post-processing 
and noise reduction based on the conventional DWT, the LL-band image produced by the 
original image size via two dimensions (row and column) calculation may cause high 
computing cost in the pre-processing. Especially they use the three-level low-low band 
image (LL3) that does not only bring a great image size transfer computation, but also the 
slow motion of the real moving objects may disappear. After dealing with the background 
subtraction, Alsaqre et al. (Alsaqre & Baozong, 2004) used a local pre-process method to 
smooth the image with reducing noise and other small fluctuations. However, this approach 
is unable to reduce the post-processing computation. Sugandi et al. (Sugandi et al., 2007) 
proposed a method for detecting and tracking objects by using a low resolution image with 
the 2×2 average filter (2×2 AF), which is generated by replacing each pixel value of the 
original image with the average value of its neighbors and itself. They mentioned that the 
low resolution image is insensitive to illumination changes and can reduce the small 
movement like moving leaves of trees in the background. Although this method can deal 
with small movement, these low resolution images become more blurred than the LL-band 
image generated by using DWT. 
To overcome the above-mentioned problems, we propose a method, direct LL-mask band 
scheme (DLLBS), for detecting and tracking moving objects by using SMDWT (Hsia et al., 
2009). In DLLBS, we can select only the LL-mask band of SMDWT. Unlike the conventional 
DWT method to process row and column dimensions separately by low-pass filter and 
down-sampling, the LL-mask band of SMDWT can be used to directly calculate the LL-band 
image. Our proposed method can reduce the image transfer computing cost and remove 
fake motion that is not belonged to the real moving object. For objects occlusion, a new 
approach, characteristic point recognition (CPR), was proposed. Combined with DLLBS and 
CPR, it can have accurate object tracking for various types of occlusions. Furthermore, it can 
retain a better slow motion of objects than that of the low resolution method (Sugandi et al., 
2007) and provide effective and complete moving object regions. 

2. Discrete Wavelet Transform and low resolution technique 
Due to the imperfection of video acquisition systems and transmission channels, images are 
often corrupted by noise. Therefor, this degradation leads to a significant reduction of image 
quality, especially for the task that performs high-level computer vision, such as object 
tracking, recognition, etc. Before dealing with motion object detection, there are several 
methods for removing noises or fake motion and reducing computing cost proposed in the 
past several years. DWT (Cheng & Chen, 2006) and low resolution technique (Andra et al., 
2000) are two important approaches, and are briefly described in the following sub-sections. 
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2.1 Discrete Wavelet Transform method 
Wavelet transform (Mallat, 1989) was proposed in the mid-1980s, and it has been used in 
various fields such as signal processing, image processing, computer vision, image 
compression, biochemistry medicine, etc. For image processing, it provides an extremely 
flexible multi-resolution image and can decompose an original image into different subband 
images including low- and high-frequencies. Therefore people can choose the specific 
resolution data or subband images upon their own demands (Hsia et al., 2009), (Mallat, 
1989) ,  (Ge et al., 2007), (Liu et al., 2006), (Ahmed et al., 2005), and (Tab et al., 2007). 
A 2-D DWT of an image is illustrated in Fig. 1(a). When the original image is decomposed 
into four-subband images, it has to deal with row and column directions separately. First, 
the high-pass filter G and the low-pass filter H are exploited for each row data, and then are 
down-sampled by 2 to get high- and low-frequency components of the row. Next, the high- 
and the low-pass filters are applied again for each high- and low-frequency components of 
the column, and then are down-sampled by 2. By way of the above processing, the four-
subband images are generated: HH, HL, LH, and LL. Each subband image has its own 
feature, such as the low-frequency information is preserved in the LL-band and the high-
frequency information is almost preserved in the HH-, HL-, and LH-bands. The LL-subband 
image can be further decomposed in the same way for the second level subband image. By 
using 2-D DWT, an image can be decomposed into any level subband images, as shown in 
Fig. 1. 
 

   
(a) 

 
(b) 

Fig. 1. Diagrams of DWT image decomposition: (a) the 1-L 2-D analysis DWT image 
decomposition process, (b) the 2-L 2-D analysis DWT subband. 
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(a) 

 
(b) 

Fig. 1. Diagrams of DWT image decomposition: (a) the 1-L 2-D analysis DWT image 
decomposition process, (b) the 2-L 2-D analysis DWT subband. 
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Cheng et al. (Cheng & Chen, 2006) applied the 2-D DWT for detecting and tracking moving 
objects and only the LL3-band image is used for detecting the moving object motion. 
Because noises are preserved in high frequency, it can reduce the computing cost for post-
processing by using the LL3-band image. This method can be used for coping with noise or 
fake motion effectively, however the conventional DWT scheme has the disadvantages of 
complicated calculation when an original image is decomposed into the LL-band image. 
Moreover if it uses an LL3-band image to deal with the fake motion, it may cause incomplete 
moving object detecting regions. 

2.2 Low resolution method 
Sugandi et al. (Sugandi, 2007) proposed a simple method by using the low resolution 
concept to deal with the fake motion such as moving leaves of trees. The low resolution 
image is generated by replacing each pixel value of an original image with the average value 
of its four neighbor pixels and itself as shown in Fig. 2. It also provides a flexible multi-
resolution image like the DWT. Nevertheless, the low resolution images generated by using 
the 2×2 average filter method are more blurred than that by using the DWT method, as 
shown in Fig. 3. The average filtering is a low pass filter which denoises the image and 
performs restoration by the noise reduction spatial domain. It may reduce the preciseness of 
post-processing operation (such as occlusion and object identification), because the post-
processing depends on the correct location of the moving object detecting and accuracy 
moving object data. 
 

 
Fig. 2. Diagram of the 2×2 average filter method. 

3. Direct LL-mask band scheme 
In order to detect and track the moving object more accurately, we propose a new method 
called direct LL-mask band scheme (DLLBS) that is based on the 2-D integer symmetric 
mask-based discrete wavelet transform (SMDWT) (Hsia et al., 2009). It does not only retain 
the features of the flexibilities for multi-resolution, but also does not cause high computing 
cost when using it for finding different subband images. In addition, it preserves more 
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image quality of the low resolution image than that of the low resolution method (Sugandi, 
2007). 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. Comparisons of low resolution images: (a) the original image (320×240), (b) each 
subband image with DWT from left to right as 160×120, 80×60, and 40×30, respectively, (c) 
each resolution image with the 2×2 average filter method from left to right as 160×120, 
80×60, and 40×30, respectively. 

3.1 Symmetric Mask-based Discrete Wavelet Transform (SMDWT) 
In 2-D DWT, the computation needs a large transpose memory requirement and has a long 
critical path. The SMDWT has many advanced features such as short critical path, high 
speed operation, regular signal coding, and independent subband processing (Hsia et al., 
2009). The derivation coefficient of the 2-D SMDWT is based on the 2-D 5/3 integer LDWT. 
For computation speed and simplicity considerations, four-masks, 3×3, 5×3, 3×5, and 5×5, 
are used to perform spatial filtering tasks. Moreover, the four-subband processing can be 
further optimized to speed up and reduce the temporal memory of the DWT coefficients. 



 
Discrete Wavelet Transforms - Biomedical Applications 

 

300 

Cheng et al. (Cheng & Chen, 2006) applied the 2-D DWT for detecting and tracking moving 
objects and only the LL3-band image is used for detecting the moving object motion. 
Because noises are preserved in high frequency, it can reduce the computing cost for post-
processing by using the LL3-band image. This method can be used for coping with noise or 
fake motion effectively, however the conventional DWT scheme has the disadvantages of 
complicated calculation when an original image is decomposed into the LL-band image. 
Moreover if it uses an LL3-band image to deal with the fake motion, it may cause incomplete 
moving object detecting regions. 

2.2 Low resolution method 
Sugandi et al. (Sugandi, 2007) proposed a simple method by using the low resolution 
concept to deal with the fake motion such as moving leaves of trees. The low resolution 
image is generated by replacing each pixel value of an original image with the average value 
of its four neighbor pixels and itself as shown in Fig. 2. It also provides a flexible multi-
resolution image like the DWT. Nevertheless, the low resolution images generated by using 
the 2×2 average filter method are more blurred than that by using the DWT method, as 
shown in Fig. 3. The average filtering is a low pass filter which denoises the image and 
performs restoration by the noise reduction spatial domain. It may reduce the preciseness of 
post-processing operation (such as occlusion and object identification), because the post-
processing depends on the correct location of the moving object detecting and accuracy 
moving object data. 
 

 
Fig. 2. Diagram of the 2×2 average filter method. 

3. Direct LL-mask band scheme 
In order to detect and track the moving object more accurately, we propose a new method 
called direct LL-mask band scheme (DLLBS) that is based on the 2-D integer symmetric 
mask-based discrete wavelet transform (SMDWT) (Hsia et al., 2009). It does not only retain 
the features of the flexibilities for multi-resolution, but also does not cause high computing 
cost when using it for finding different subband images. In addition, it preserves more 

 
Multiple Moving Objects Detection and Tracking Using Discrete Wavelet Transform 

 

301 

image quality of the low resolution image than that of the low resolution method (Sugandi, 
2007). 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. Comparisons of low resolution images: (a) the original image (320×240), (b) each 
subband image with DWT from left to right as 160×120, 80×60, and 40×30, respectively, (c) 
each resolution image with the 2×2 average filter method from left to right as 160×120, 
80×60, and 40×30, respectively. 

3.1 Symmetric Mask-based Discrete Wavelet Transform (SMDWT) 
In 2-D DWT, the computation needs a large transpose memory requirement and has a long 
critical path. The SMDWT has many advanced features such as short critical path, high 
speed operation, regular signal coding, and independent subband processing (Hsia et al., 
2009). The derivation coefficient of the 2-D SMDWT is based on the 2-D 5/3 integer LDWT. 
For computation speed and simplicity considerations, four-masks, 3×3, 5×3, 3×5, and 5×5, 
are used to perform spatial filtering tasks. Moreover, the four-subband processing can be 
further optimized to speed up and reduce the temporal memory of the DWT coefficients. 



 
Discrete Wavelet Transforms - Biomedical Applications 

 

302 

The four-matrix processors consist of four mask filters, and each filter is derived from one 2-
D DWT of 5/3 integer lifting-based coefficients (Hsia et al., 2009). The coefficients of each 
subband mask are shown in Fig. 4, and the block diagram of the 2-D SMDWT is shown in 
Fig. 5. 
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Fig. 4. The subband mask coefficients of (a) HH, (b) HL, (c) LH, and (d) LL. 

 

 
 

Fig. 5. The system block diagram of 2-D SMDWT. 

3.2 Detection and tracking flow 
The pre-processing flowchart of the proposed DLLBS moving object detection and tracking 
system is shown in Fig. 6. Frist, prior to color converting RGB data to YCbCr data (using Y 
data only). Basically we apply the double-change-detection method (Huang et al., 2004) to 
detect the moving objects. In order to decrease the holes left inside the moving entities, three 
continuous frames (Ft-1, Ft, and Ft+1) are used in this system for detecting moving object 
mask. These three continuous frames are decomposed into LL2-band frames (LL2t-1, LL2t, and 
LL2t+1) by using SMDWT. After most of the noises and fake motions are moved into the 
high-frequency subband as shown in Fig. 7, it can proceed with the post-processing by 
employing these three LL2-band frames. Binary masks, Bt-1 and Bt can be obtained by 
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computing the binary values of these three successive LL2-band frames (in between LL2t-1, 
LL2t, and LL2t+1) and a threshold value T in (1). 
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The holes may still exist in the motion masks, because some motion pixels are too tiny such 
that it causes error judgments as non-motion ones. In order to increase the motion mask 
(MMt) robustly, the morphological closing method (Hsieh & Hsu, 2007) is used to fill these 
holes. First, we apply the dilation operator for filling the middle of the isolated pixels that 
become related in the motion masks. It is defined as follows: 
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Then we apply the erosion operator for eliminating redundant pixels in the motion mask 
boundary as follows: 

 
0,  if one or more pixels of the adjacent pixels of motion mask F (i,j) are 0,

MMR (i,j)  
1,  otherwise.
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(a) (b) 

Fig. 7. After most of the noises and fake motions are removed using SMDWT (a) The 
original image, (b) LL2-band image. 

It scans eight neighbors of the motion mask MMRt image pixel by pixel from top left to 
bottom right (raster scan). After extracting the connected component, it obtains several 
moving objects. In this work, we utilize the region-based tracking algorithm (Cheng &. 
Chen, 2006), (Mckenna, 2000), and (Chen & Yang, 2007) to track the moving object motion. 
Labeling is useful when the moving objects in the scene are more than one (The connected 
component labeling is then employed to label each moving object and track each moving 
object individually). The labeling of the components based on pixel connectivity (intensity) 
(Gonzalez & Woods, 2001) is obtained by scanning an image and groups, pixel by pixel from 
top left to bottom right, in order to identify the connected pixel regions by comparing the 
eight neighbors that have already been encountered in the scan. If the pixel has at least one 
neighbor with the same label, we label this pixel as the neighbor. The labeled moving objects 
are thus found, and then we extract the boundary of the moving object using rectangle box 
to track the moving object. For this reason, the bounding box is found according to its 
motion mask from the foregoing work. The bounding box is made by finding the minimum 
and maximum values of row and column coordinates of the motion mask. In order to track 
moving objects in the original image size, we have to transform the coordinate from the LL2 
image size back to the original image size according to the spatial relationship of the DWT 
as follows: 

 O(i,j) = LLn(i×2n,j×2n). (5) 

where n = 0 ~ l and l is the number of level. 
In the block-matching motion estimation, the motion vector is the displacement of a block 
with the minimum distortion from the reference block. The CamShift block-matching 
algorithm determines the motion vector by identifying a block with the minimum distortion 
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from fast search strategies of the diamond-arc-hexagon search patterns in the search area 
(Chiang et al., 2008). 

3.3 Occlusion handling for multiple objects tracking 
In the post-processing, occlusion handling is a major problem in a video surveillance 
system. The most popular color space is the RGB color space (Hu et al., 2009). If the 
multiple objects bounding boxes are occluded, the object bounding boxes are merged into 
the occlusion bounding box. Here we propose a new approach for occlusion in multiple 
objects tracking, called characteristic point recognition (CPR). Fig. 8 shows the operation 
flowchart of CPR. CPR uses bounding boxes during pre-processing of DLLBS. For each 
tracked individual, the system will detect whether it makes occlusion with other object or 
group. It can obtain the RGB information from the video capture device directly to 
calculate the color information of the moving pixels. Owing to the information of moving 
pixels the size of the inter-frame difference image (1/16 of the original image) is with the 
central pixels. 
To recognize every object, it uses the bounding box to find the characteristic point (CP). CP 
represents the central point of the bounding box as shown in the following equation: 

 1 1 2 2Cs [ ] = B {(x ,y ),(x ,y ), ,(x ,y )}q
n q qn  , (6) 

where Csq[n] is an array to store the CP of every object, n the label of the object, q the amount 
of CP, Bn the bounding box of every object, and (x,y) the color information indexed by the 
position of CP. Therefore CP expresses the feature of the object. We would like to focus on 
each object bounding box in order to select one CP or more. 
At first, the CP of every object is stored in the buffer when the first frame is input, and is 
regarded as the initial sample. In latter frames, the CP is matched with the sample. In other 
words, the CP of 1 to n matches with the CP of the sample as shown in the following 
equation: 

 R G BCd [ ] = abs{((Cs [ ]- Cm [ ]) ,(Cs [ ]- Cm [ ]) ,(Cs [ ]- Cm [ ]) ) }q q q q q q q
Nn n N n N n N , (7) 

where Cmq[N] is a sample array to store the CP, N the label of the sample, and Cdq[n] the 
absolute values obtained from the difference between Csq[n] and Cmq[N]. 
After the match step, Cdq[n] stores the sample N which is identical to the object n as shown 
in (8): 

 
L[ ] = n N , (8) 

where L[n] is the label N to label object n. Therefore the object is recognized and labeled as 
sample N. 
However, the objects of a frame may disappear or be occluded in latter frames. In order to 
hold the information of the object, the CP of the object has to be retained. Hence, we must 
know the object which has ever occurred when the object appears again in some frames. 
Because the CP may be changed by the environmental factors, the buffer has to be updated 
whenever a new frame is input in order to obtain the latest CP. If a new object appears, the 
CP of the new object should be added into the buffer to update the CP information. The CPR 
flowchart is shown in Fig. 8. 
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Fig. 8. CPR flowchart. 
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4. Experimental results 
In this work, the experimental results of several different environments including indoor (all 
day) and outdoor (all day) environments with statistic video system are demonstrated. The 
original image frame sizes are 320×240, 640×480, and the format of color image frame is 24-
bit in a RGB system. We use all gray level frames from transferring the RGB system to 
YCbCr system for detecting moving object motion and utilize the LL2 (for 320×240) and the 
LL3 (for 640×480) image size of 80×60 generated by using SMDWT from the original image 
for our proposed moving object detection and tracking system. The experimental 
environment is set using Intel 2.83 GHz Core 2 Quad CPU, 2 GB RAM, Microsoft Windows 
XP SP3, and Borland C++ Builder (BCB) 6.0. BCB is chosen as the software development 
platform. The software includes verifying for algorithms and image process for the moving 
objects detection. 

4.1 Dealing with noise issues 
There are many kinds of difficulties such as illumination changes, fake motion, and 
Gaussian noise in the background. Different LL-band images including one-level, two-
level, three-level, and multi-level LL-band images are used to deal with noises and 
compare their results. We suggest that a successful eliminating noise image has no other 
motion mask besides moving object motion masks, as shown in Figs. 9 and 10. Table 1 
shows the average (Figs. 9 and 10) successful eliminating noise rate of each level LL-band 
image. The first row is in the indoor environment and the second row in the outdoor 
environment. Each level LL-band image has effective results when dealing with indoor 
noises like Gaussian noise produced by random noise and statistical noise. However, 
when dealing with the outdoor noise such as moving leaves of trees, the LL1-band image 
has poor results because these outdoor noises sometimes are large that cannot be 
eliminated completely. 
 
 
 

Resolution 1DLLBS 2LS 32×2 AFS 4DSS 

Level Accuracy rate Accuracy rate Accuracy rate Accuracy rate 

LL1 (160×120) 99.54 % 99.54 % 99.07 % 98.15 % 

LL2 (80×60) 99.07 % 99.07 % 93.07 % 81.94 % 

LL3 (40×30) 95.83 % 95.83 % 86.11 % 63.89 % 

1DLLBS: Direct LL-mask Band Scheme; 2LS: Lifting Scheme; 32×2 AFS: 2×2 Average Filter 
Scheme; 4DSS: Down-Sampled Scheme; 5Accuracy rate: Success Tracking/ Original 
Sequency. 

Table 1. The moving objects detection and tracking results. 
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Fig. 9. Moving object detection in the outdoor environment with fake motion: (a) the original 
image of three consecutive frames, (b) the temporal differencing results of the original 
image, (c) the temporal differencing results of the LL1-band image, (d) the temporal 
differencing results of the LL2-band image, (e) the temporal differencing results of the LL3-
band image. 
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(e) 
Fig. 10. Moving object detection in the indoor environment with Gaussian noise (Gonzalez 
& Woods, 2001): (a) the original image of three consecutive frames, (b) the temporal 
differencing results of the original image, (c) the temporal differencing results of the LL1-
band image, (d) the temporal differencing results of the LL2-band image, (e) the temporal 
differencing results of the LL3-band image. 
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4.2 Moving object tracking 
We consider it to have a complete moving object region if it is a successful work, as shown in 
Fig. 11(a). In Fig. 11(b), the moving object regions have only a part of moving object, and that 
will be treated as a failure tracking. Fig. 12(a) expresses the original frame without detecting 
and tracking moving objects. Without DLLBS technique many noise masks are tracked. 
However, even if the moving objects are tracked, those moving regions are fragmented, as 
shown in Fig. 12(b). By using DLLBS, the noises can be filtered out, as shown in Fig. 12(c). It 
still generates incomplete moving object regions by using LL1-band image, because the 
relevance of these pixels in the LL1-band image is deleted. When using a three-level resolution 
image to detect the moving objects, it generates incompletely moving object regions, owing to 
the LL3-band image causing too many slow motions belonged to the moving object 
disappeared, as shown in Fig. 12(e). Finally, let us look at the results of the LL2-band image in 
Fig. 12(d). Using the two-level band image has a better tracking region and also can cope with 
noises and fake motion effectively, as shown in Table 1. 
 

 
(a) 

 
(b) 

Fig. 11. Examples of (a) successful moving object tracking and (b) failure moving object 
tracking. 
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We use the 2×2 average filter scheme (AFS) in substituting the original DLLBS block system 
to demonstrate the moving object, however it is more blurred than the DLLBS technique. 
The accuracy rate of the successful object tracking with the 2×2 AFS are shown in Tables 1, 4, 
and 5. It is easy to perceive the contrasts between Tables 1 and 4 of any resolution image; the 
LL-band image generated by the DLLBS has a better successful ratio than the low resolution 
image generated by the 2×2 AFS. 
 
 

 
(a) 
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(d) 

 
(e) 

Fig. 12. Results of tracking moving objects in various environments: (a) original frames 
without region-based object tracking, (b) original frames with region-based object tracking, 
(c) LL1-band frames with region-based object tracking, (d) LL2-band frames with region-
based object tracking, (e) LL3-band frames with region-based object tracking. 

Several experiments have been made to prove the feasibility of the proposed approach for 
moving object detection, tracking, and occlusion. We used an entry-level video camera and 
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capture card to capture the test sequences in our campus (Tamkang University), and 
simulated several cases of condition for moving objects, such as signal object in day time 
(indoor/outdoor), signal object at night (outdoor), and multiple objects in day time 
(outdoor) environments. All the test sequences are stored as the Microsoft AVI format with 
raw file of resolution 320×240, 640×480, and frame rate of 30 fps as shown in Fig. 13. 
The choice of the threshold T is important. A too large value may lead to real targets 
missing; on the other hand a too small value may lead to noise binary images with pseudo 
features. The best threshold value also varies with the instantaneous illumination level. 
The threshold values of the best performance in different environments and DLLBS are 
listed in Table 2. According to the experiments, under day and midday time in outdoor 
for LL2, the threshold values of 10, 14, and 16 were applied, some noisy pixels appeared. 
However, when the threshold value of 15 was applied, it outperformed all other threshold 
values. 
 

Resolution Night in the 
outdoor 

Day and Night in the 
indoor 

Day and Midday in the 
outdoor 

LL1(160×120) T = 14 T = 20 T = 25 

LL2 (80×60) T = 4 T = 10 T = 15 

LL3 (40×30) T = 1 T = 6 T = 11 

Table 2. The best threshold values, T, in different environments and DLLBS. 

 

Environments Fake motions Low contrast Reflection 

DLLBS Excellent Excellent Excellent 

2×2 AFS Excellent Poor Good 

DSS Poor Excellent Poor 

Table 3. Features of various methods. 

We established 16 test sequences at Tamkang University in different environments, such 
as day time, night time, rainy day, fast movement, slow movement, and occlusion, as 
shown in Fig. 13. Compared with other approaches (22 AFS and DSS), the DLLBS can 
obtain a good sparsity for spatially localized details, such as edges and singularities, as 
shown in Table 3. Because such details are typically abundant in natural images and 
convey a significant part of the information embedded therein, DWT has found a 
significant application for image denoising. From Tables 4, 5, and 6, we notice that some 
objects are not correctly identified in the test frame of the sequences. The wrong 
identification occurs in two reasons: 
1. The moving object just enters or leaves the scene. 
Because the moving object is detected and tracked at the border of the scene, the extracted 
features of the moving object in the case cannot represent the moving object very well. 
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2. The moving object is slowing down. 
In this issue, the temporal difference image of the object becomes smaller and loses its 
situation. 
 
 
 
 
 
 

Pattern 

DLLBS 2×2 AFS DSS 

Accuracy 
rate 

Detection + 
Tracking 

Accuracy 
rate 

Detection + 
Tracking 

Accuracy 
rate 

Detection + 
Tracking 

Sequence1 98.61 % 53.8 FPS 98.61 % 58.5 FPS 71.76 % 52.1 FPS 

Sequence2 95.90 % 56.5 FPS 96.31 % 57.1 FPS 56.15 % 49.0 FPS 

Sequence3 97.40 % 54.1 FPS 92.36 % 60.7 FPS 96.59 % 63.1 FPS 

Sequence4 93.55 % 54.3 FPS 82.61 % 62.0 FPS 92.65 % 63.2 FPS 

Sequence5 82.97 % 56.7 FPS 80.44 % 60.2 FPS 77.29 % 65.6 FPS 

Sequence6 82.57 % 53.9 FPS 78.90 % 61.5 FPS 46.79 % 63.9 FPS 

Sequence7 90.28 % 54.7 FPS 37.50 % 61.4 FPS 40.28 % 63.5 FPS 

Sequence8 83.33 % 55.1 FPS 73.46 % 62.4 FPS 78.40 % 61.2 FPS 

Sequence9 90.16 % 53.5 FPS 75.13 % 59.0 FPS 83.94 % 58.5 FPS 

Average 90.53 % 54.7 FPS 79.48 % 60.3 FPS 71.53 % 60.1 FPS 

Table 4. Single moving object processing (without occlusion). 
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2. The moving object is slowing down. 
In this issue, the temporal difference image of the object becomes smaller and loses its 
situation. 
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Table 4. Single moving object processing (without occlusion). 
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Pattern 

DLLBS 2×2 AFS DSS 

Accuracy 
rate 

Detection + 
Tracking + 
occlusion 

Accuracy 
rate 

Detection + 
Tracking + 
occlusion 

Accuracy 
rate 

Detection + 
Tracking + 
occlusion 

Sequence10 92.94 % 56.7 FPS 88.61 % 60.6 FPS 82.92 % 57.6 FPS 

Sequence11 89.98 % 54.8 FPS 83.67 % 60.9 FPS 92.60 % 58.7 FPS 

Sequence12 90.43 % 53.9 FPS 79.79 % 60.8 FPS 82.98 % 55.9 FPS 

Sequence13 90.00 % 52.6 FPS 86.67 % 59.7 FPS 75.56 % 63.7 FPS 

Average 90.84 % 54.5 FPS 84.69 % 60.5 FPS 83.52 % 58.9 FPS 

Table 5. Multiple moving objects processing (with occlusion). 

 
 
 

Pattern 

DLLBS 2×2 AFS DSS 

Accuracy 
rate 

Detection + 
Tracking + 
occlusion 

Accuracy 
rate 

Detection + 
Tracking + 
occlusion 

Accuracy 
rate 

Detection + 
Tracking + 
occlusion 

Sequence14 85.60 % 14.1 FPS 73.60 % 16.5 FPS 31.20 % 15.5 FPS 

Sequence15 88.36 % 14.1 FPS 79.45 % 16.6 FPS 63.01 % 15.3 FPS 

Sequence16 81.33 % 14.2 FPS 70.67 % 16.6 FPS 33.33 % 15.2 FPS 

Average 85.10 % 14.1 FPS 74.57 % 16.6 FPS 42.51 % 15.3 FPS 

Table 6. Multiple moving objects processing (with occlusion). 
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Fig. 13. Test sequences at Tamkang University: (a)-(k) are sequences 1-13 (320×240) and 14-
16 (640×480); (a)-(c) show the single moving object in the outdoor; (d) single moving object 
in the indoor; (e) single moving object in the outdoor (fast movement to slow movement); (f) 
single moving object in the outdoor (fast movement); (g) single moving object in the outdoor 
(slow movement); (h) single moving object in the indoor (zoom-out to zoom-in); (i) single 
moving object in the outdoor (rainy day); (j) multiple moving object in the outdoor 
(occlusion); (k) multiple moving object in the outdoor; (l) multiple moving object in the 
outdoor (occlusion); (m) multiple moving object in the outdoor (occlusion); (n) multiple 
moving object in the outdoor (occlusion); (o) multiple moving object in the outdoor 
(occlusion); (p) multiple moving object in the outdoor (occlusion). 
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Fig. 13. Test sequences at Tamkang University: (a)-(k) are sequences 1-13 (320×240) and 14-
16 (640×480); (a)-(c) show the single moving object in the outdoor; (d) single moving object 
in the indoor; (e) single moving object in the outdoor (fast movement to slow movement); (f) 
single moving object in the outdoor (fast movement); (g) single moving object in the outdoor 
(slow movement); (h) single moving object in the indoor (zoom-out to zoom-in); (i) single 
moving object in the outdoor (rainy day); (j) multiple moving object in the outdoor 
(occlusion); (k) multiple moving object in the outdoor; (l) multiple moving object in the 
outdoor (occlusion); (m) multiple moving object in the outdoor (occlusion); (n) multiple 
moving object in the outdoor (occlusion); (o) multiple moving object in the outdoor 
(occlusion); (p) multiple moving object in the outdoor (occlusion). 
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5. Conclusions 
The direct LL-mask band scheme (DLLBS) for moving object detection and tracking is 
proposed in this work. It is able to detect and track moving objects in indoor and outdoor 
environments with statistic video systems. The proposed DLLBS does not only overcome 
the drawbacks of high complex computation and slow speed for the conventional DWT, 
but also preserves the wavelet features of the flexible multi-resolution image and the 
capability for dealing with noises and fake motion such as moving leaves of trees. In the 
real-word application, the experimental results demonstrate that the 2-D LL2-band (for 
320×240) and the 2-D LL3-band (for 640×480) can effectively track moving objects by 
region-based tracking under any environments (day and night), as well as it can cope with 
noise issues. For occlusion considerations, we propose a new approach, characteristic 
point recognition (CPR). Combined with DLLBS and CPR, it can accurately track various 
types of occlusions. The DLLBS system can be extended to the real-time video 
surveillance system applications, such as object classification and descriptive behaviors of 
objects. 
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1. Introduction 
The use of quantitative modelling to enhance understanding of the agitation-sedation (A-S) 
system and the provision of an A-S simulation platform are key tools in this area of patient 
critical care. A suite of wavelet techniques and metrics based on the discrete wavelet 
transform (DWT) are developed in this chapter which are shown to successfully establish 
the validity of deterministic agitation-sedation (A-S) models against empirical (recorded) 
dynamic A-S infusion profiles. The DWT approach is shown to provide robust performance 
metrics of A-S control and also yield excellent visual assessment tools. This approach is 
generalisable to any study which investigates the similarity or closeness of bivariate time 
series of, say, a large number of units (patients, households etc) and of disparate lengths and 
of possibly extremely long length. This work demonstrates the value of the DWT for 
assessing ICU agitation-sedation deterministic models, and suggests new wavelet based 
diagnostics by which to assess the A-S models.  
Typically agitation-sedation cycling in critically ill patients involves oscillations between 
states of agitation and over-sedation, which is detrimental to patient health, and increases 
hospital length of stay (Rudge et al., 2006a; 2006b; Chase et al., 2004; Rudge et al 2005). 
Agitation management via effective sedation management is an important and fundamental 
activity in the intensive care unit (ICU), where in the hospitalized adult agitation is defined 
as excessive verbal behaviour that interferes with patient care, and the patient’s medical 
therapies (Chase et al., 2004).   The main goal of sedation is to control agitation, while also 
preventing over-sedation and over-use of drugs. In clinical practice, however,  a lack of 
understanding of the underlying dynamics of A-S, combined with a lack of subjective 
assessment tools, makes effective and consistent clinical agitation management difficult 
(Chase et al., 2004; Rudge et al., 2005, 2006b). Early agitation management methods 
traditionally relied on subjective agitation assessment, and sedation assessment scales, 
combined with medical staff experience and intuition, to deliver appropriate sedation; and 
an appropriate sedation input response, from recorded at bedside agitation scales (Fraser & 
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combined with medical staff experience and intuition, to deliver appropriate sedation; and 
an appropriate sedation input response, from recorded at bedside agitation scales (Fraser & 
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Riker, 2001b; Jaarsma et al., 2001; Ramsay et al., 1974; Ricker et al., 1999; Sessler et al., 2002). 
The clinical staff at the bedside, usually nurses, then select an appropriate infusion rate 
based upon their evaluation of these scales, experience, and intuition (Kress et al., 2002). 
This approach usually leads to the administration of largely continuous infusions which 
lack a bolus-focused approach, and commonly result in either over sedation, or insufficient 
sedation (Rudge et al., 2006b). Several recent studies have emphasised the cost and 
healthcare advantages of drug delivery protocols based on assessment scales of agitation 
and sedation. A minimal differential equation (DE) model to predict or simulate the 
patients’ agitation-sedation status over time (range [3,001-25,261] time points in minutes) 
was developed and validated statistically for the first time by Chase et al. (2004). This 
process is depicted in Figure 3 (see Chase et al., 2004). The goal of the research was to create 
a physiologically representative pharmacodynamic model that captured the fundamental 
dynamics of the A-S system. The resulting model can serve as a platform to develop and test 
semi-automated sedation management controllers that offer the potential of improved 
agitation management and thus, the clinically relevant outcomes of reduced length of stay in 
the ICU and reduced health care costs as a result. A-S models were later developed by 
Rudge et al. (2005, 2006a, 2006b). All these models used either kernel regression, tracking 
indices, kernel density estimation, a probability band or time within a band as metrics of 
similarity or closeness of the patient’s simulated and recorded A-S profiles. Lee et al. (2005) 
also developed a nonparametric regression approach with an Epanechnikov kernel (Wand 
& Jones 1995) to assess the validity of the deterministic A-S models.   
The work in this chapter develops novel wavelet signatures and wavelet based statistics and 
threshold criterion (to assess closeness between pairs of time series). These are applied to the 
recorded and the simulated infusion rates obtained from the DE models of Chase et al. 
(2004) to test for commonality across patients, in terms of wavelet correlations. A major aim 
of this study is to test the feasibility of wavelet statistics to help distinguish between patients 
whose simulated profiles were “close” to their mean profile a majority of the time profile 
versus those for whom this was not the case - so-called good versus poor trackers. This 
research builds on initial work by Kang et al. (2005), which was a preliminary study to 
assess wavelet signatures for modelling ICU A-S profiles to evaluate “closeness” or 
“discrimination” of simulated versus actual A-S profiles with respect to wavelet scales. 
Another earlier application of some of our methods was the study by Kang et al. (2004) on 
historical, flowering records of 4 Eucalypt species, where it was established that wavelets 
add credibility to the use of phenological records to detect climate change (see also Hudson, 
2010, Hudson 2011, Hudson et al., 2010c and Hudson et al., 2005). This early phenological 
study was recently expanded from 4 to 8 Eucalypt species by Hudson et al. (2011a, 2011b) 
(see also Hudson et al., 2010a, 2010b and Hudson & Keatley, 2010).    

2. Brief review of wavelets and associated mathematics 
Section 2 gives a brief introduction of the basic ideas concerning wavelets. A wave is usually 
defined as an oscillating function that is localized in both time and frequency. A wavelet is a 
“small wave”, which has its energy concentrated in time to give a tool for the analysis of 
transient, nonstationary, or time-varying phenomena (Goupillaud et al., 1984; Morlet, 1983). 
Wavelets have the ability to allow simultaneous time and frequency analysis via a flexible 
mathematical foundation. Wavelets are well suited to the analysis of transient signals in 
particular. The localizing property of wavelets allows a wavelet expansion of a transient 
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component on an orthogonal basis to be modelled using a small number of wavelet 
coefficients using a low pass filter (Barber et al., 2002). This allows application to a wide 
range of fields, such as signal processing, data compression, and image analysis (Mallat, 
1998; Meyer, 2003; Kumar, 1993, 1994; Donoho, 1995; Chang et al., 2000a, 2000b). The 
wavelet decomposition of functions is analogous to Fourier decomposition methods 
(Ogden, 1997; Abramovich & Benjamini, 1995). The wavelet representation is presented first 
in terms of its simplest paradigm, the Haar wavelet (Haar, 1910). The Haar wavelet is used 
here to describe the concepts of multiresolution analysis (MRA). For more details about 
wavelets see, for example, Daubeches (1992), Chui (1992), Donoho & Johnstone (1994), 
Ogden (1997), Vidakovic (1999), Percival & Walden (2000), and Gencay et al. (2001).  

2.1 The Discrete Wavelet Transform (DWT) 
Wavelets may be formed from the mother wavelet function   t  via dyadic dilation and 
integer translation by the following, 

      j / j(t ) ( t - k) j ,k Z,j ,k  22 2  (1) 

where  is the set of all integers and the factor j / 22  maintains a constant norm 

independent of scale j. The entire set of wavelets j ,k(t )  forms an orthonormal basis 
(Daubeches, 1992). The wavelet functions j ,k are ordered according to their dilation 
index j and translation index k. Higher j corresponds to lower frequency wavelets, and 
higher k corresponds to a rightward shift. The wavelet transform is usually considered to 
be a continuous wavelet transform (CWT) (Vidakovic, 1999; Percival & Walden, 2000; 
Gencay et al., 2001) since it is applied to a function f (·) defined over the entire real axis. 
However, we only have a finite number N of sampled values, as is usually the case for 
real data applications. This approach leads to the discrete wavelet transform (DWT). To 
some degree of approximation, we can regard the DWT as being formed by taking slices 
through a corresponding CWT (McCoy et al., 1995). Any wavelet in  2L R then can then 
be written as a set of expansion functions, 

  j / j
j ,k

j ,k
f (t ) a t - k 22 2  (2) 

where the two-dimensional set of coefficients j ,ka  is called the discrete wavelet transform of 
f (t ).  A more specific form indicating how the j ,ka ’s are calculated, can be written using 

inner products (Swelden, 1996) as follows, 

    j ,k j ,k
j ,k

f (t ) f (t ), t t  . (3) 

Let Xt be a dyadic length column vector containing a sequence X ,X , ,X1 2 N  of N=2J 

observations of a real-valued time series. The length N vector of discrete wavelet coefficients 
W is obtained via W= X, where  is an N  N orthonormal matrix defining the DWT. The 
vector of wavelet coefficients may be organised into J + 1 vectors,  
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J

T
JW W , ,W ,V 

 1, 2W =  (4) 

where  W j is a length N/ j2 vector of wavelet coefficients associated with changes on a scale 
of length j

j
 12  and VJ is a length N/2J vector scaling coefficients associated with averages 

on a scale of length  2J = 2J . Wavelet coefficients thus tell us about variations in adjacent 
averages (Percival & Walden, 2000).  
The structure of the N  N dimensional matrix   is visualised through the submatrices 
 1, … ,  J and J (scaling coefficient matrix) via 

 
T

J J, ,..., ,   1 2     . (5) 

Let us now consider implementation of the DWT by using a pyramid algorithm (PA) 
(Mallat, 1989). Let  h = (h0, . . . , hL-1) be the vector of wavelet (high-pass) filter coefficients 
and  g = (g0, . . . , gL-1) be the vector of scaling (low-pass) filter coefficients (Daubechies, 
1992). Graphical representation of the DWT as applied to a dyadic length vector Xt is 
given by Figure 1 and Figure 2. These depict the analysis of tX  into 1, 2 and 2 using 

the pyramid algorithm (PA). The synthesis of tX  from 1, 2 and 2 use the inverse of 
the PA (Figure 2). 
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Fig. 1. Flow diagram illustrating the decomposition of Xt into first and second level wavelet 
coefficients 1,t and 2,t and their scaling coefficients 1,t and 2,t  (k=0,…,N-1). 

The Inverse DWT (IDWT) is achieved through upsampling the final level of wavelet and 
scaling coefficients, convolving them with their respective filters and adding up the two 
filtered vectors. Figure 2 gives a flow diagram for the reconstruction of tX  from the 
second level wavelet and scaling coefficient vectors. Given a dyadic length time series, it 
was not necessary to implement the DWT down to level  J log N 2 . A partial DWT 
(PDWT) may be performed instead that terminates at a level pJ J . The resulting vector 

of wavelet coefficients will then contain pJN N / 2  wavelets (Percival & Walden, 2000; 
Gencay et al., 2001). PDWT’s are more commonly used in practice than the full DWT 
because of the flexibility they offer in specifying a scale beyond which a wavelet analysis 
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into individual large scales is no longer of real interest. A PDWT of level J0  allows us to 

relax the restriction that N satisfy, JN  2  for some J and replace this restriction with the 
condition that N can be an integer multiple of J02 (Percival & Walden, 2000; Gencay et al., 
2001). 
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Fig. 2. Flow diagram illustrating the reconstruction of 
t

X 2 from first and second level wavelet 
coefficients 1,t and 2,t and their scaling coefficients 1,t and 2,t (k=0,…,N-1). 

2.2 The Maximal Overlap Discrete Wavelet (MODWT) 
The DWT is an alternative to the Fourier transform (FT) for time series analysis. The DWT  
provides wavelet coefficients that are local in both time and frequency. In this section the 
maximal overlap DWT (MODWT) which is a modified version of the discrete wavelet 
transform is discussed. Like the DWT, the MODWT is defined in terms of a computationally 
efficient pyramid algorithm (PA). The term MODWT comes from the relationship of the 
MODWT with estimators of the Allan variance (Allan, 1966). The MODWT gives up 
orthogonality in order to gain features the DWT does not possess. A consequence of this is 
that the wavelet and scaling coefficients must be rescaled in order to retain the variance 
preserving property of the DWT (Percival & Guttorp, 1994).  
 

Property DWT MODWT 

Data N=2J Any sample size N 

Detail and Smooth 
Coefficients of MRA Downsampling Associated with zero phase 

filters 

Circularly shifting Does not hold Holds and Invariant 

Wavelet Variance Less efficient Asymptotically Efficient 

Table 1. Properties of the DWT and MODWT 

The properties in Table 1 are important in distinguishing the MODWT from the DWT 
(Percival & Mofjeld, 1997; Percival & Walden, 2000; Gencay et al., 2001). The decomposition 
and reconstruction procedure and inverting of the MODWT is similar to the DWT. A key 
feature to an MRA using the MODWT is that the wavelet details and smooth are associated 
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Fig. 1. Flow diagram illustrating the decomposition of Xt into first and second level wavelet 
coefficients 1,t and 2,t and their scaling coefficients 1,t and 2,t  (k=0,…,N-1). 

The Inverse DWT (IDWT) is achieved through upsampling the final level of wavelet and 
scaling coefficients, convolving them with their respective filters and adding up the two 
filtered vectors. Figure 2 gives a flow diagram for the reconstruction of tX  from the 
second level wavelet and scaling coefficient vectors. Given a dyadic length time series, it 
was not necessary to implement the DWT down to level  J log N 2 . A partial DWT 
(PDWT) may be performed instead that terminates at a level pJ J . The resulting vector 

of wavelet coefficients will then contain pJN N / 2  wavelets (Percival & Walden, 2000; 
Gencay et al., 2001). PDWT’s are more commonly used in practice than the full DWT 
because of the flexibility they offer in specifying a scale beyond which a wavelet analysis 
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into individual large scales is no longer of real interest. A PDWT of level J0  allows us to 

relax the restriction that N satisfy, JN  2  for some J and replace this restriction with the 
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2001). 
 
 

(Upsampling )

t

(Upsampling)

kH ( )
N /

kMerge G
k NG

N / X
kH ( )
N







        
 



2

1 2

2

1 2

2

2















 

 

Fig. 2. Flow diagram illustrating the reconstruction of 
t

X 2 from first and second level wavelet 
coefficients 1,t and 2,t and their scaling coefficients 1,t and 2,t (k=0,…,N-1). 

2.2 The Maximal Overlap Discrete Wavelet (MODWT) 
The DWT is an alternative to the Fourier transform (FT) for time series analysis. The DWT  
provides wavelet coefficients that are local in both time and frequency. In this section the 
maximal overlap DWT (MODWT) which is a modified version of the discrete wavelet 
transform is discussed. Like the DWT, the MODWT is defined in terms of a computationally 
efficient pyramid algorithm (PA). The term MODWT comes from the relationship of the 
MODWT with estimators of the Allan variance (Allan, 1966). The MODWT gives up 
orthogonality in order to gain features the DWT does not possess. A consequence of this is 
that the wavelet and scaling coefficients must be rescaled in order to retain the variance 
preserving property of the DWT (Percival & Guttorp, 1994).  
 

Property DWT MODWT 

Data N=2J Any sample size N 

Detail and Smooth 
Coefficients of MRA Downsampling Associated with zero phase 

filters 

Circularly shifting Does not hold Holds and Invariant 

Wavelet Variance Less efficient Asymptotically Efficient 

Table 1. Properties of the DWT and MODWT 

The properties in Table 1 are important in distinguishing the MODWT from the DWT 
(Percival & Mofjeld, 1997; Percival & Walden, 2000; Gencay et al., 2001). The decomposition 
and reconstruction procedure and inverting of the MODWT is similar to the DWT. A key 
feature to an MRA using the MODWT is that the wavelet details and smooth are associated 
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with zero-phase filters.  Thus, interesting features in the wavelet details and smooth may be 
perfectly aligned with the original time series. This attribute is not available through the 
DWT since it subsamples the output of its filtering operations (Percival & Walden, 2000; 
Gencay et al., 2001). 

2.3 Wavelet-based estimators of correlation 
The length N vector of discrete wavelet coefficients W is obtained via W = X and 

J

T
JW W , ,W ,V 

 1, 2W = where  is an N  N orthonormal matrix defining the DWT, W j is 

a length N/ j2 vector of wavelet coefficients associated with changes on a scale of length 
j

j
 12  and VJ is a length N/2J vector scaling coefficients associated with averages on a 

scale of length 2J = 2J   in Section 2.1. Due to orthonormality, X =  TW, and the squared 

wavelet coefficients of W  the norm,  2W , is the same as X 2  because of the equality 

   TT T T T TX X X   2 2W W W W W   . Then X 2  can be decomposed on a 

scale-by-scale basis via 
J

j J
j

X V


  
2 22 2

1
W W . The wavelet correlation and cross-

correlation between two time series can now be defined.  The wavelet correlation (WCORR) 
is the correlation between the scale  j  wavelet coefficients of bivariate time series. Likewise 

the wavelet covariance is the covariance between the scale  j  wavelet coefficients from 

bivariate time series. We introduce a lag , between the two series, to obtain the wavelet 
cross-covariance (WCCOVA) and wavelet cross-correlation (WCCORR) (Percival & Walden, 
2000; Gencay et al., 2001), as described below.  
Let tX and tY be two time series of interest. The wavelet cross-covariance of  t tX ,Y  for 

scale j
j

 12  and lag  is defined (Percival, 1995; Percival & Guttorp, 1994; Whitcher et al., 
2000; Gencay et al., 2001) as follows, 

    X Y
j ,t j ,t,XY j Cov W ,W     (6) 

where X
j ,tW  and Y

jW  are the scale j MODWT coefficients for tX   and tY . When the width 
of wavelet or scaling filter is equal or greater than two times of the number of differencing 
operations, the MODWT coefficients have mean zero and therefore the covariance reduces 
to an expectation of a product (Percival & Walden, 2000). By setting  = 0 and Xt to Yt, 

 , XY j  reduces to the wavelet variance for Xt or Yt denoted by    2
X j  or   2

Y j . The 

wavelet correlation of (Xt, Yt ) at scale j=2j-1 is then defined  as follows, 

    
   

 
   

X Y
j ,t j ,t XY j

XY j
X j Y j X j Y j

Cov W ,W

. .

 
 

       
  . (7) 
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Rationale for wavelets 
 
Wavelets allow time series data to be 
decomposed on a scale by scale basis, or to 
be discretized, into its so-called underlying 
subcomponents. 
 
Conventional time frequency domain 
methods results may be difficult to 
interpret, whereas the wavelet-correlation 
is able to display how the association 
between two time series change with 
wavelet scale. 
 
Transformation of the data (orthonormal) 
allows correlation, cross-correlational 
analyses of bivariate series to be performed 
- based on the derived wavelet coefficients. 
 
DWT is often less computer intensive than 
other transformations (e.g. fast Fourier 
transform).  
 
DWT offers easier analysis than the CWT 
as most time series are sampled as discrete 
values. DWT allows for the decorrelation 
of time series. 

Qualitative Description of the DWT and 
MODWT 
DWT transforms the original time series X 
into its DWT coefficients W = wY, where w 
is a N × N orthonormal matrix 
  
   − the components, Wj, of W are associated 
with coefficients for each scale λj = 2j−1 
 
Wavelet coefficients Wj inform on the 
variations in adjacent averages over λj. 

There are 
j

N
2

 wavelet coefficients for each 

scale λj ≡ 2j−1,  j = 1, 2 . . , J0   where  λj = 2j−1 
is a so-called standardized scale, whereas 
λjΔt is a physical scale, where Δt is the 
sampling interval.  
 
The MODWT is a non-decimated variation 
of the DWT, which defines the jth level  
MODWT detail subcomponent of the time 

series as W W
T
j, jjD   and defines the jth 

level MODWT smoothed series, T
j j, jS V V , 

which is related to the average (over scale 
N),  and  is normally interpretable as the 
trend. 
 

Cross- Correlation and correlation 
The scale j MODWT coefficients may be 
used to investigate the correlation and 
cross-correlation of two time series, Xt and 
Yt . 
 
The wavelet cross correlation of Xt, Yt at 
scale j=2j-1 for a time lag , is defined as 

 
 
   

 
   

Cov W W
,

W W

X Y
j, t j, t XY , j

jXY ,
X j Y j X j Y j

X Y
j, t j, te  wher  and are

 
         

 
   

scale λj  MODWT coefficients. Correlation 
is the cross-correlation at lag   = 0. 

MODWT-MRA 
The orthonormal matrix, N × N, leads to 
scale-based decompositions.  Given the 
MODWT coefficients, Y can be constructed 
as an additive decomposition, known as a 
multiresolution analysis (MRA). 
 
Specifically the level J0 MODWT-based 

MRA is given by  
J

j j j
j

Y d s , d


 
0

0
1

 are the 

“detail series”, ( j= 1, 2,  . . ., J0 )  
 
for a pre- specified J0, and are part of the 
MRA of Y that can be attributed to 
variations on a scale of λj. . 
 

Table 2. Summary of the wavelet mathematics and rationale.  
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with zero-phase filters.  Thus, interesting features in the wavelet details and smooth may be 
perfectly aligned with the original time series. This attribute is not available through the 
DWT since it subsamples the output of its filtering operations (Percival & Walden, 2000; 
Gencay et al., 2001). 

2.3 Wavelet-based estimators of correlation 
The length N vector of discrete wavelet coefficients W is obtained via W = X and 
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 1, 2W = where  is an N  N orthonormal matrix defining the DWT, W j is 

a length N/ j2 vector of wavelet coefficients associated with changes on a scale of length 
j

j
 12  and VJ is a length N/2J vector scaling coefficients associated with averages on a 

scale of length 2J = 2J   in Section 2.1. Due to orthonormality, X =  TW, and the squared 

wavelet coefficients of W  the norm,  2W , is the same as X 2  because of the equality 

   TT T T T TX X X   2 2W W W W W   . Then X 2  can be decomposed on a 

scale-by-scale basis via 
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W W . The wavelet correlation and cross-

correlation between two time series can now be defined.  The wavelet correlation (WCORR) 
is the correlation between the scale  j  wavelet coefficients of bivariate time series. Likewise 

the wavelet covariance is the covariance between the scale  j  wavelet coefficients from 

bivariate time series. We introduce a lag , between the two series, to obtain the wavelet 
cross-covariance (WCCOVA) and wavelet cross-correlation (WCCORR) (Percival & Walden, 
2000; Gencay et al., 2001), as described below.  
Let tX and tY be two time series of interest. The wavelet cross-covariance of  t tX ,Y  for 

scale j
j

 12  and lag  is defined (Percival, 1995; Percival & Guttorp, 1994; Whitcher et al., 
2000; Gencay et al., 2001) as follows, 

    X Y
j ,t j ,t,XY j Cov W ,W     (6) 

where X
j ,tW  and Y

jW  are the scale j MODWT coefficients for tX   and tY . When the width 
of wavelet or scaling filter is equal or greater than two times of the number of differencing 
operations, the MODWT coefficients have mean zero and therefore the covariance reduces 
to an expectation of a product (Percival & Walden, 2000). By setting  = 0 and Xt to Yt, 

 , XY j  reduces to the wavelet variance for Xt or Yt denoted by    2
X j  or   2

Y j . The 

wavelet correlation of (Xt, Yt ) at scale j=2j-1 is then defined  as follows, 

    
   

 
   

X Y
j ,t j ,t XY j

XY j
X j Y j X j Y j

Cov W ,W

. .

 
 

       
  . (7) 
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Rationale for wavelets 
 
Wavelets allow time series data to be 
decomposed on a scale by scale basis, or to 
be discretized, into its so-called underlying 
subcomponents. 
 
Conventional time frequency domain 
methods results may be difficult to 
interpret, whereas the wavelet-correlation 
is able to display how the association 
between two time series change with 
wavelet scale. 
 
Transformation of the data (orthonormal) 
allows correlation, cross-correlational 
analyses of bivariate series to be performed 
- based on the derived wavelet coefficients. 
 
DWT is often less computer intensive than 
other transformations (e.g. fast Fourier 
transform).  
 
DWT offers easier analysis than the CWT 
as most time series are sampled as discrete 
values. DWT allows for the decorrelation 
of time series. 

Qualitative Description of the DWT and 
MODWT 
DWT transforms the original time series X 
into its DWT coefficients W = wY, where w 
is a N × N orthonormal matrix 
  
   − the components, Wj, of W are associated 
with coefficients for each scale λj = 2j−1 
 
Wavelet coefficients Wj inform on the 
variations in adjacent averages over λj. 

There are 
j

N
2

 wavelet coefficients for each 

scale λj ≡ 2j−1,  j = 1, 2 . . , J0   where  λj = 2j−1 
is a so-called standardized scale, whereas 
λjΔt is a physical scale, where Δt is the 
sampling interval.  
 
The MODWT is a non-decimated variation 
of the DWT, which defines the jth level  
MODWT detail subcomponent of the time 

series as W W
T
j, jjD   and defines the jth 

level MODWT smoothed series, T
j j, jS V V , 

which is related to the average (over scale 
N),  and  is normally interpretable as the 
trend. 
 

Cross- Correlation and correlation 
The scale j MODWT coefficients may be 
used to investigate the correlation and 
cross-correlation of two time series, Xt and 
Yt . 
 
The wavelet cross correlation of Xt, Yt at 
scale j=2j-1 for a time lag , is defined as 

 
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   

 
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X Y
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 
   

scale λj  MODWT coefficients. Correlation 
is the cross-correlation at lag   = 0. 

MODWT-MRA 
The orthonormal matrix, N × N, leads to 
scale-based decompositions.  Given the 
MODWT coefficients, Y can be constructed 
as an additive decomposition, known as a 
multiresolution analysis (MRA). 
 
Specifically the level J0 MODWT-based 

MRA is given by  
J

j j j
j

Y d s , d

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0

0
1

 are the 

“detail series”, ( j= 1, 2,  . . ., J0 )  
 
for a pre- specified J0, and are part of the 
MRA of Y that can be attributed to 
variations on a scale of λj. . 
 

Table 2. Summary of the wavelet mathematics and rationale.  
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where    X
j ,tX j var W  2  is the wavelet variance with scale  j .  X

j ,tW and Y
j ,tW are the 

scale  j  MODWT coefficients for  Xt  and Yt , respectively (Percival & Walden, 2000; Gencay 
et al., 2001). As with the usual correlation coefficient (between two random variables), the 
range of   XY j is the interval –1 to 1 for all j. The typical cross-correlation statistic is 

purely a function of the cross-covariance and standard deviations. Thereby the MODWT 
estimator of the wavelet cross-correlation (WCCORR) of the two processes, which are at 
variance by an integer lag , is defined as 

    
   

 
   

X Y
j ,t j ,t XY , j

XY , j
X j Y j X j Y j

Cov W ,W

. .

 
 

       
  . (8) 

As the usual cross-correlation is used to determine lead or lag relationships between two 
series, the wavelet cross-correlation provides a lead or lag relationship between Xt and Yt on 
a scale-by-scale basis. In terms of confidence intervals (CIs) for the WCORR and WCCORR 
parameters, a nonlinear transformation is required to produce reasonable CIs for the 
correlation coefficient (Gencay et al., 2001). We use the Fisher’s z-transformation (Dépué 
2003) which is defined as follows, 

    h log tanh 


 
   

11 1
2 1

. (9) 

An unbiased estimator of the WCORR based on the MODWT in Equation (7) is  . The given 
estimated correlation coefficient  , based on N independent Gaussian observations, has the 
following limiting distribution (Percival & Walden, 2000; Gencay et al., 2001). 

       N h h ~ N ,    3 0 1 . (10) 

Applying the transformation tanh maps the confidence interval back to [−1, 1] to produce an 
approximate 95% CI for  as follows (Whitcher et al. 2000; Gencay et al. 2001; Hudson et al., 
2010b)  

  
/

XY j
j

tanh h
N̂  

             

1 2

2

1
3

 . (11) 

The quantity jN̂  in Equation (11) is the number of the DWT coefficients associated with 

scale j . Table 2 gives a brief overview of the wavelet mathematics used in this chapter.   

3. Application to Agitation Sedation (A-S) wavelet modelling 
This section presents the application of a wavelets analysis of the agitation-sedation (A-S) 
data of 37 ICU patients’ bivariate time series, sourced from the research of Chase et al. 
(2004). An extensive description of A-S modelling, as well as other references on A-S control; 
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along with details of the development and validation of the A-S model are given in Chase et 
al. (2004). The model by Chase et al. (2004) serves as a platform to develop and test semi-
automated sedation management controllers that offer the potential of improved agitation 
management and reduced length of stay in the ICU. Figure 3 presents a diagram of the 
feedback loop employing nursing staff feedback of subjectively assessed patient agitation 
through the infusion controller (Chase et al., 2004). We refer the reader also to the later 
works of Lee et al.  (2005) and of Rudge et  al. (2005, 2006a, 2006b) who developed further A-
S models and metrics. Table 3 summarises the equations used, mathematical methods 
employed and the aims of the given study, along with the performance indicators derived 
for each of Chase et al. (2004), Rudge et al. (2006a, 2006b, 2005), and Lee et al. (2005). As such 
Table 3 and subsequently Table 8 show how the research presented in this chapter adds 
knowledge and insight into A-S modelling in the context of these earlier works. 

3.1 Using the DWT and MODWT 
The DWT, the maximal overlap (MODWT) and multiresolution analysis (MRA) were 
applied to all pairs of patient specific infusion profiles (recorded (R) and simulated (S)) for 
the 37 ICU patients. The aim of the analysis reported in section 3.1 – 3.3 is to investigate 
 

 
 

Fig. 3. Diagram of the feedback loop employing nursing staff feedback of subjectively 
assessed patient agitation through the infusion controller (diagram is sourced from Chase et  
al. (2004)).  
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where    X
j ,tX j var W  2  is the wavelet variance with scale  j .  X

j ,tW and Y
j ,tW are the 

scale  j  MODWT coefficients for  Xt  and Yt , respectively (Percival & Walden, 2000; Gencay 
et al., 2001). As with the usual correlation coefficient (between two random variables), the 
range of   XY j is the interval –1 to 1 for all j. The typical cross-correlation statistic is 

purely a function of the cross-covariance and standard deviations. Thereby the MODWT 
estimator of the wavelet cross-correlation (WCCORR) of the two processes, which are at 
variance by an integer lag , is defined as 
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As the usual cross-correlation is used to determine lead or lag relationships between two 
series, the wavelet cross-correlation provides a lead or lag relationship between Xt and Yt on 
a scale-by-scale basis. In terms of confidence intervals (CIs) for the WCORR and WCCORR 
parameters, a nonlinear transformation is required to produce reasonable CIs for the 
correlation coefficient (Gencay et al., 2001). We use the Fisher’s z-transformation (Dépué 
2003) which is defined as follows, 
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An unbiased estimator of the WCORR based on the MODWT in Equation (7) is  . The given 
estimated correlation coefficient  , based on N independent Gaussian observations, has the 
following limiting distribution (Percival & Walden, 2000; Gencay et al., 2001). 
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The quantity jN̂  in Equation (11) is the number of the DWT coefficients associated with 

scale j . Table 2 gives a brief overview of the wavelet mathematics used in this chapter.   

3. Application to Agitation Sedation (A-S) wavelet modelling 
This section presents the application of a wavelets analysis of the agitation-sedation (A-S) 
data of 37 ICU patients’ bivariate time series, sourced from the research of Chase et al. 
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along with details of the development and validation of the A-S model are given in Chase et 
al. (2004). The model by Chase et al. (2004) serves as a platform to develop and test semi-
automated sedation management controllers that offer the potential of improved agitation 
management and reduced length of stay in the ICU. Figure 3 presents a diagram of the 
feedback loop employing nursing staff feedback of subjectively assessed patient agitation 
through the infusion controller (Chase et al., 2004). We refer the reader also to the later 
works of Lee et al.  (2005) and of Rudge et  al. (2005, 2006a, 2006b) who developed further A-
S models and metrics. Table 3 summarises the equations used, mathematical methods 
employed and the aims of the given study, along with the performance indicators derived 
for each of Chase et al. (2004), Rudge et al. (2006a, 2006b, 2005), and Lee et al. (2005). As such 
Table 3 and subsequently Table 8 show how the research presented in this chapter adds 
knowledge and insight into A-S modelling in the context of these earlier works. 

3.1 Using the DWT and MODWT 
The DWT, the maximal overlap (MODWT) and multiresolution analysis (MRA) were 
applied to all pairs of patient specific infusion profiles (recorded (R) and simulated (S)) for 
the 37 ICU patients. The aim of the analysis reported in section 3.1 – 3.3 is to investigate 
 

 
 

Fig. 3. Diagram of the feedback loop employing nursing staff feedback of subjectively 
assessed patient agitation through the infusion controller (diagram is sourced from Chase et  
al. (2004)).  
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whether wavelets based diagnostics can reliably assess how well the A-S model (simulation) 
captures the underlying dynamics of the  true  recorded infusion rates at  different horizons 
via the DWT; and to compare these results with the diagnostics of Chase et al. (2004), Rudge 
et al. (2006a, 2006b, 2005) and Lee et al. (2005).  For illustration of these concepts patient 
specific  recorded (R) and simulated ( S) profiles (as the thick line, according to the equation 
of Chase et al. (2004)) are shown in Figure 4. It is noteworthy that simulation of the A-S 
states using the model of Rudge et al. (2005) showed that a reduction in both the magnitude 
of agitation and the severity of agitation sedation cycling is possible. Mean and peak 
agitation levels were reduced by 68.4% and 52.9%, respectively, on average, with some 
patients exhibiting in excess of a 90% reduction in mean agitation level through increased 
control gains. Implementation of automated feedback infusion controllers based on such 
models could thus offer simple and effective drug delivery, without significant increases in 
drug consumption and expenses.  
The lag/lead relationship between the S and R infusion series was investigated on a scale-
by-scale basis via a MODWT-MRA (using the LaDaub (8) filter); thereby each patient’s S 
and R series can be expressed as a new set of series, called details and smooth. Each of these 
series are associated with variations at a particular wavelet scale. The results of a MODWT-
MRA (not detailed here due to space restrictions) reveal that thirteen patients (patients 3, 9, 
11, 17, 20, 22, 26, 30, 33, 34, 35, 36, 37) (Figure 4) have recorded infusion series that lead their 
corresponding simulated infusion series. It is noteworthy that of these 13 patients, which 
exhibit such a lagged dependency, our DWT wavelet diagnostics (and those of Chase et al., 
(2004) and Rudge et al., (2006b)) identify the following as poor performers in common 
(Patients 9, 11, 17, 22, 33, 34 and 35).  Overall it is thought that the simulated profile peaks 
later than the patient’s recorded infusion possibly due to the delay in distribution time for 
the drug. This result implies that, while performing well most of the time, the simulated rate 
is lagging behind the patient’s true infusion rate. These periods indicate times of the 
patient’s hospital length of stay in ICU, where the DE model may not capture the subject’s 
specific A-S dynamics (evidenced by the time lags). These periods may correspond to 
periods of marked distress or physiological alterations due to the patient’s state. A common 
reason for the departure of the simulated profile is this apparent time-lag. Particularly small 
departures indicate rapid increases (or decreases) in the recorded infusion rate, where the 
simulated infusion rate appears to lag behind. These differences may be a result of the 
medical staff’s over or under-assessment of the patient’s agitation status, this hypothesis is 
as yet not proven.  

3.2 Wavelet correlation and other diagnostics 
In section 3.2 an estimate of wavelet correlation (WCORR),  from Equation (7), is derived 
per patient. This WCORR between the scale j wavelet coefficients of each patient’s bivariate 
(S, R) time series is used to assess how the simulated (S) and recorded (R) infusion series 
correlate. Graphical assessment tools and derived wavelet-based metrics are then suggested 
and proven valid for ICU A-S management. The wavelets based performance indices 
developed in this chapter pertain to the modulus of the wavelet correlation at wavelet scale 
(j) (level 1) and also to summary statistics founded on measures of the wavelet correlations 
and wavelet cross-correlations over scales, as defined  below (Table 6).  For the ith patient 
(i=1, 2, …, 37) count the number of its wavelet scales (out of a maximum of 8) for which the 
WCORR value at scale j  is not significant (at the 5% level of significance). This variable is 
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denoted by “Count of NS” and given per patient, with specification of the significance (at 
the 5% level of significance) of WCORR at j  (j=1, 2, …, 8) as either significant (S) or not 
significant (NS) in Table 4. Patient specific AND (average normalized density), RAND 
(relative average normalized density), and TI (tracking index) values, all derived by Rudge 
et al (2006b) and Chase et al. (2004), are also shown in Table 4. Definitions for the AND, 
RAND and TI performance indicators or diagnostics are detailed in Table 3. 
 

 
Fig. 4. Example of the delay between the recorded and simulated (thick line) infusion 
profiles for Patients 8, 9, 34 and 35 (denoted by P8, P9, P34 and P35). P8 is shown to be a 
good tracker, the remainder are poor trackers, according to the indices developed in this 
chapter. 
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specific A-S dynamics (evidenced by the time lags). These periods may correspond to 
periods of marked distress or physiological alterations due to the patient’s state. A common 
reason for the departure of the simulated profile is this apparent time-lag. Particularly small 
departures indicate rapid increases (or decreases) in the recorded infusion rate, where the 
simulated infusion rate appears to lag behind. These differences may be a result of the 
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as yet not proven.  
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per patient. This WCORR between the scale j wavelet coefficients of each patient’s bivariate 
(S, R) time series is used to assess how the simulated (S) and recorded (R) infusion series 
correlate. Graphical assessment tools and derived wavelet-based metrics are then suggested 
and proven valid for ICU A-S management. The wavelets based performance indices 
developed in this chapter pertain to the modulus of the wavelet correlation at wavelet scale 
(j) (level 1) and also to summary statistics founded on measures of the wavelet correlations 
and wavelet cross-correlations over scales, as defined  below (Table 6).  For the ith patient 
(i=1, 2, …, 37) count the number of its wavelet scales (out of a maximum of 8) for which the 
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denoted by “Count of NS” and given per patient, with specification of the significance (at 
the 5% level of significance) of WCORR at j  (j=1, 2, …, 8) as either significant (S) or not 
significant (NS) in Table 4. Patient specific AND (average normalized density), RAND 
(relative average normalized density), and TI (tracking index) values, all derived by Rudge 
et al (2006b) and Chase et al. (2004), are also shown in Table 4. Definitions for the AND, 
RAND and TI performance indicators or diagnostics are detailed in Table 3. 
 

 
Fig. 4. Example of the delay between the recorded and simulated (thick line) infusion 
profiles for Patients 8, 9, 34 and 35 (denoted by P8, P9, P34 and P35). P8 is shown to be a 
good tracker, the remainder are poor trackers, according to the indices developed in this 
chapter. 
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Table 3. Overview of Agitation-Sedation studies of ICU patients. 
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Table 3. Overview of Agitation-Sedation studies of ICU patients. 
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Poor trackers are identified via wavelet diagnostics as follows: Patients with a “Count of 
NS” greater or equal to 2 and a non-significant WCORR value at scale 1  (level 1) are said 
to be a poor tracker; as are patients with a “Count of NS” less or equal to 3 and a significant 
negative WCORR value at scale 1 (level 1) and a significant negative WCORR value at 
scale 6 . Table 4 indicates 15 such  poor trackers (given in bold),  as defined by the wavelet 
based diagnostics (“Count of NS” and WCORR at scales  and 6 ) derived in this chapter. 
Poor tracking implies that the patient’s simulated A-S profiles do not mirror their actual 
(recorded) infusion profile over time (according to their profile of wavelet correlations).  
Note that the threshold values delineating poor tracking for AND and RAND (according to 
Rudge et al. (2006b)) are not taken into account in classifying a patient as either a poor or 
good tracker (Table 4). In this chapter our criterion for tracking classification is based solely 
on the patient’s WCORR values at scales j (j=1, 2, …, 8), their significance or otherwise, 
and  on  their “Count of NS”  wavelet  correlations (Table 4). As mentioned above Table 4 
also indicates patients which are considered to track poorly according to both Rudge et al’s 
(2006b) and Chase et al.’s (2004) diagnostics, the latter are based on completely different 
mathematical methodologies as summarised in Table 3. It is noteworthy that 11 of our 15 
wavelet  based poor trackers are also considered to be poor trackers by either or both of 
Rudge et al.’s (2006b) and Chase et al.’s (2004) performance indices. 
Figure 5 shows the estimated WCORR,   and 95% CI for four patients, P2 and P4 (are poor 
trackers) and P8 and P14 (are good trackers). From Figure 5 WCORR is generally significant 
for wavelet levels 1, 2, 4, 8 and 16 for the good trackers (whether they are a positive or 
negative WCORR value). This is not the case for the poor trackers, who generally exhibit a 
non-significant WCORR at j  for j < 5. Figures 6 and 7 display each patient’s multivariate 
profile of AND, RAND and “Count of NS” (divided by 10 for axis scaling purposes), for 
increasing 1 ,for the poor trackers and  good trackers, respectively. Figures 6-7 clearly 
show that the profile of (“Count of NS”/10) is invariably higher for the poor trackers; and 
RAND, AND and 1  profiles are invariably higher for the good trackers.  
By using the data per patient (from Table 4), we can perform a Kruskal Wallis test to 
statistically compare the medians of the performance indicators between the wavelet based 
good and poor trackers. These results are summarized in Table 5 and Table 6.  Specifically 
Table 6 gives the results of the Kruskal Wallis (k-w) tests for our wavelet based poor versus  
good  tracker  groups for measures of WCORR at scale j (j=1, 2, …, 8), “Count of NS”, 1 , 
in addition to AND, RAND and TI per patient.  From Table 6 we observe that the median 
wavelet correlations for the first 5 wavelet scales are significantly lower for the poor trackers 
(15 of 37 patients), as are the median absolute value of the wavelet correlation at 1 , and of 
AND, RAND and TI (P < 0.006). The median of the number of non significant wavelet 
correlations (“Count of NS”) (an integer out of 8, at j , j=1, 2,…, 8) is 5.0 for the poor 
trackers, significantly higher than the median of 2.0 for the good tracking group (P = 0.001) 
(Table 6). It is noteworthy also that the patient specific WCORR profiles are good visual 
“signatures” of the patient’s tracking status (good or poor tracking) (see Figure 5).   
Recall that 11 of the 15 DWT based poor trackers are also considered to be poor trackers by 
either or both Rudge et al.’s (2006b) and Chase et al.’s (2004) (non wavelet based) 
performance indicators. Indeed kappa tests of agreement show that our DWT WCORR 
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criterion for poor tracking, as developed in this chapter, agrees significantly with that of the 
performance thresholds of Chase et al (2004) (kappa = 0.2127, P=0.01) and with that of Rudge 
et al. (2006b)  (kappa = 0.5856, P=0.001). It is noteworthy also that the threshold criterion for 
poor tracking for RAND by both Rudge et al.’s (2006b) and Chase et al.’s (2004) performance 
indicators is corroborated by our poor trackers, identified by the wavelet metrics derived in 
this chapter, shown to have a median RAND of 0.50 (Table 6), which is exactly the threshold 
used by Rudge et al. (2006b) and Chase et al. (2004).  
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Fig. 5. Wavelet correlation for Patient 2 (Top LHS), Patient 4 (Top RHS), Patient 8 (bottom 
LHS) and Patient 14 (bottom RHS) with the approximate 95% confidence interval. Patients 2 
and 4 are poor trackers in contrast to Patients 8 and 14 who are good trackers with >4 
significant WCORR at wavelet scales (1, 2, 4, 8, 16). 
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RAND, AND and 1  profiles are invariably higher for the good trackers.  
By using the data per patient (from Table 4), we can perform a Kruskal Wallis test to 
statistically compare the medians of the performance indicators between the wavelet based 
good and poor trackers. These results are summarized in Table 5 and Table 6.  Specifically 
Table 6 gives the results of the Kruskal Wallis (k-w) tests for our wavelet based poor versus  
good  tracker  groups for measures of WCORR at scale j (j=1, 2, …, 8), “Count of NS”, 1 , 
in addition to AND, RAND and TI per patient.  From Table 6 we observe that the median 
wavelet correlations for the first 5 wavelet scales are significantly lower for the poor trackers 
(15 of 37 patients), as are the median absolute value of the wavelet correlation at 1 , and of 
AND, RAND and TI (P < 0.006). The median of the number of non significant wavelet 
correlations (“Count of NS”) (an integer out of 8, at j , j=1, 2,…, 8) is 5.0 for the poor 
trackers, significantly higher than the median of 2.0 for the good tracking group (P = 0.001) 
(Table 6). It is noteworthy also that the patient specific WCORR profiles are good visual 
“signatures” of the patient’s tracking status (good or poor tracking) (see Figure 5).   
Recall that 11 of the 15 DWT based poor trackers are also considered to be poor trackers by 
either or both Rudge et al.’s (2006b) and Chase et al.’s (2004) (non wavelet based) 
performance indicators. Indeed kappa tests of agreement show that our DWT WCORR 
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criterion for poor tracking, as developed in this chapter, agrees significantly with that of the 
performance thresholds of Chase et al (2004) (kappa = 0.2127, P=0.01) and with that of Rudge 
et al. (2006b)  (kappa = 0.5856, P=0.001). It is noteworthy also that the threshold criterion for 
poor tracking for RAND by both Rudge et al.’s (2006b) and Chase et al.’s (2004) performance 
indicators is corroborated by our poor trackers, identified by the wavelet metrics derived in 
this chapter, shown to have a median RAND of 0.50 (Table 6), which is exactly the threshold 
used by Rudge et al. (2006b) and Chase et al. (2004).  
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Fig. 5. Wavelet correlation for Patient 2 (Top LHS), Patient 4 (Top RHS), Patient 8 (bottom 
LHS) and Patient 14 (bottom RHS) with the approximate 95% confidence interval. Patients 2 
and 4 are poor trackers in contrast to Patients 8 and 14 who are good trackers with >4 
significant WCORR at wavelet scales (1, 2, 4, 8, 16). 
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Fig. 6. A comparison of RAND (green square), AND (burgundy triangle), the number of 
non-significant j (divided by 10) (pink square), and the modulus of 1 (blue diamond) for 

the poor trackers (P11, P2,…, P29) sorted by increasing 1 . 

 

 
Fig. 7. A comparison of RAND (green square), AND (burgundy triangle), the number of 
non- significant j (divided by 10) (pink square ), and the modulus of 1 (blue diamond) for 

the good trackers (P31, P30,..., P3) sorted by increasing 1 . 
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Patient 
ID 

Wavelet scale j (j= 1, 2, …, 8) 
Count 
of NS* 

Rudge et al. 
(2006b) 

diagnostics 

Chase et 
al. (2004) 

diagnostics 

1 2 4 8 16 32 64 128 AND RAND TI (SE)  

P1 S S S S S NS NS S 2 0.51 0.62 87.0 (0.041) 

P2 NS NS NS NS NS NS NS S 7 0.53 0.66 86.2 (0.037) 

P3 S S S S S S N.S S 1 0.70 0.83 88.8 (0.015) 

P4 NS NS NS NS NS NS NS S 7 0.56 0.62 80.1 (0.095) 

P5 S S NS NS NS NS NS S 5 0.60 0.80 91.1 (0.016) 

P6 S S S S S NS NS S 2 0.70 0.84 87.0 (0.014) 

P7 S S NS NS NS NS NS S 5 0.33 0.43 84.5 (0.068) 

P8 S S S S S NS NS S 2 0.45 0.59 87.4 (0.027) 

P9 NS NS NS NS NS NS NS S 7 0.49 0.62 87.3 (0.024) 

P10 S S S NS NS S NS S 3 0.27 0.34 83.4 (0.041) 

P11 NS NS NS NS NS NS NS S 7 0.31 0.38 83.7 (0.080) 

P12 S S S S S S NS S 1 0.61 0.77 84.1 (0.033) 

P13 S S S S S NS NS S 2 0.37 0.45 86.1 (0.072) 

P14 S S S NS S NS NS S 3 0.48 0.56 93.1 (0.034) 

P15 S S S NS NS NS NS S 4 0.45 0.60 91.1 (0.011) 

P16 S S S S S NS NS S 2 0.44 0.57 87.9 (0.021) 

P17 S S S S S NS NS S 2 0.61 0.72 84.0 (0.037) 

P18 S S S S NS S NS S 2 0.55 0.68 94.6 (0.026) 

P19 S S S S S NS NS S 2 0.50 0.66 91.1 (0.014) 

P20 S S S NS NS NS NS S 4 0.53 0.65 87.3 (0.033) 

P21 NS NS NS NS NS NS NS S 7 0.53 0.72 78.5 (0.095) 

P22 S S NS NS NS NS NS S 5 0.35 0.45 85.2 (0.043) 

P23 S S S S NS NS NS S 3 0.72 0.85 84.8 (0.105) 

P24 S S S S S NS NS S 2 0.43 0.54 88.1 (0.023) 

P25 S S S S S NS NS S 2 0.50 0.66 92.4 (0.025) 

P26 S S S NS NS NS NS S 4 0.68 0.88 87.4 (0.031) 

P27 S S S S NS S S S 1 0.39 0.49 74.9 (0.074) 
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Fig. 6. A comparison of RAND (green square), AND (burgundy triangle), the number of 
non-significant j (divided by 10) (pink square), and the modulus of 1 (blue diamond) for 

the poor trackers (P11, P2,…, P29) sorted by increasing 1 . 

 

 
Fig. 7. A comparison of RAND (green square), AND (burgundy triangle), the number of 
non- significant j (divided by 10) (pink square ), and the modulus of 1 (blue diamond) for 

the good trackers (P31, P30,..., P3) sorted by increasing 1 . 

 
Wavelet Signatures and Diagnostics for the Assessment of ICU Agitation-Sedation Protocols 

 

337 

Patient 
ID 

Wavelet scale j (j= 1, 2, …, 8) 
Count 
of NS* 

Rudge et al. 
(2006b) 

diagnostics 

Chase et 
al. (2004) 

diagnostics 

1 2 4 8 16 32 64 128 AND RAND TI (SE)  

P1 S S S S S NS NS S 2 0.51 0.62 87.0 (0.041) 

P2 NS NS NS NS NS NS NS S 7 0.53 0.66 86.2 (0.037) 

P3 S S S S S S N.S S 1 0.70 0.83 88.8 (0.015) 

P4 NS NS NS NS NS NS NS S 7 0.56 0.62 80.1 (0.095) 

P5 S S NS NS NS NS NS S 5 0.60 0.80 91.1 (0.016) 

P6 S S S S S NS NS S 2 0.70 0.84 87.0 (0.014) 

P7 S S NS NS NS NS NS S 5 0.33 0.43 84.5 (0.068) 

P8 S S S S S NS NS S 2 0.45 0.59 87.4 (0.027) 

P9 NS NS NS NS NS NS NS S 7 0.49 0.62 87.3 (0.024) 

P10 S S S NS NS S NS S 3 0.27 0.34 83.4 (0.041) 

P11 NS NS NS NS NS NS NS S 7 0.31 0.38 83.7 (0.080) 

P12 S S S S S S NS S 1 0.61 0.77 84.1 (0.033) 

P13 S S S S S NS NS S 2 0.37 0.45 86.1 (0.072) 

P14 S S S NS S NS NS S 3 0.48 0.56 93.1 (0.034) 

P15 S S S NS NS NS NS S 4 0.45 0.60 91.1 (0.011) 

P16 S S S S S NS NS S 2 0.44 0.57 87.9 (0.021) 

P17 S S S S S NS NS S 2 0.61 0.72 84.0 (0.037) 

P18 S S S S NS S NS S 2 0.55 0.68 94.6 (0.026) 

P19 S S S S S NS NS S 2 0.50 0.66 91.1 (0.014) 

P20 S S S NS NS NS NS S 4 0.53 0.65 87.3 (0.033) 

P21 NS NS NS NS NS NS NS S 7 0.53 0.72 78.5 (0.095) 

P22 S S NS NS NS NS NS S 5 0.35 0.45 85.2 (0.043) 

P23 S S S S NS NS NS S 3 0.72 0.85 84.8 (0.105) 

P24 S S S S S NS NS S 2 0.43 0.54 88.1 (0.023) 

P25 S S S S S NS NS S 2 0.50 0.66 92.4 (0.025) 

P26 S S S NS NS NS NS S 4 0.68 0.88 87.4 (0.031) 

P27 S S S S NS S S S 1 0.39 0.49 74.9 (0.074) 
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Patient 
ID 

Wavelet scale j (j= 1, 2, …, 8) 
Count 
of NS* 

Rudge et al. 
(2006b) 

diagnostics 

Chase et 
al. (2004) 

diagnostics 

1 2 4 8 16 32 64 128 AND RAND TI (SE)  

P28 S S S S NS S NS S 2 0.34 0.44 89.2 (0.027) 

P29 S S S S S S NS S 1 0.38 0.45 77.6 (0.083) 

P30 NS NS NS NS NS NS S S 6 0.63 0.82 92.2 (0.021) 

P31 S S NS NS NS NS NS S 5 0.40 0.51 89.3 (0.030) 

P32 S S NS NS NS S NS S 4 0.38 0.50 89.3 (0.022) 

P33 S S S NS NS S NS S 3 0.28 0.36 88.7 (0.020) 

P34 NS NS NS NS NS S NS S 6 0.43 0.55 86.5 (0.034) 

P35 S S S S S S NS S 1 0.38 0.46 85.9 (0.044) 

P36 S S NS NS NS NS NS S 5 0.52 0.64 86.4 (0.095) 

P37 S S S S S NS NS S 2 0.53 0.59 79.9 (0.093) 

Table 4. Wavelet correlation analysis of the 37 ICU patients. S-significant, NS-non-significant 
WCORR at given scale j (j= 1, 2, …, 8). Bolded patients indicate poor trackers according to 
the WCORR and “Count NS” values. Patient 30 has NS=6, which is large, but their high 
AND=0.63, RAND=0.82, and TI=92.2% are indicative of good tracking. 
 

Poor 
Patient ID 

Wavelet Correlations (scale j ) 
Rudge et al. 

(2006b) 
diagnostics 

Chase et al. 
(2004) 

diagnostics 
        AND RAND TI(SE) 

P2 0.005 0.005 0.005 0.005 -0.008 -0.186 -0.034 0.649 0.53 0.66 86.2 (0.03) 
P4 0.006 0.006 0.005 0.005 0.036 -0.077 0.023 0.724 0.56 0.62 80.1 (0.09) 
P7 -0.081 -0.081 -0.081 -0.081 -0.037 -0.066 0.034 0.785 0.33 0.43 84.5 (0.06) 
P9 -0.020 -0.021 -0.021 -0.021 0.012 -0.066 0.012 0.793 0.49 0.62 87.3 (0.02) 

P10 0.051 0.051 0.051 0.051 0.052 -0.125 -0.040 0.591 0.27 0.34 83.4 (0.04) 
P11 -0.001 -0.001 -0.001 -0.001 0.019 0.093 0.002 0.654 0.31 0.38 83.7 (0.08) 
P21 0.016 0.017 0.017 0.017 0.026 -0.148 -0.031 0.779 0.53 0.72 78.5 (0.09) 
P22 -0.051 -0.051 -0.051 -0.051 -0.027 -0.115 -0.052 0.739 0.35 0.45 85.2 (0.04) 
P27 -0.108 -0.108 -0.108 -0.108 -0.088 -0.227 -0.201 0.660 0.39 0.49 74.9 (0.07) 
P28 -0.100 -0.101 -0.101 -0.101 -0.090 -0.200 -0.157 0.628 0.34 0.44 89.2 (0.02) 
P29 -0.616 -0.616 -0.616 -0.616 -0.582 -0.497 -0.294 0.627 0.38 0.45 77.6 (0.08) 
P32 0.032 0.034 0.035 0.035 0.042 -0.139 -0.061 0.732 0.38 0.50 89.3 (0.02) 
P33 0.046 0.046 0.046 0.046 0.049 -0.127 -0.012 0.691 0.28 0.36 88.7 (0.02) 
P34 -0.019 -0.019 -0.019 -0.019 -0.029 -0.213 -0.131 0.676 0.43 0.55 86.5 (0.03) 
P35 -0.172 -0.172 -0.172 -0.172 -0.139 -0.155 -0.166 0.576 0.38 0.46 85.9 (0.04) 
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Poor 
Patient ID 

Wavelet Correlations (scale j ) 
Rudge et al. 

(2006b) 
diagnostics 

Chase et al. 
(2004) 

diagnostics 
        AND RAND TI(SE) 

Poor 
Median -0.019 -0.019 -0.019 -0.019 -0.008 -0.139 0.040 0.676 0.390 0.500 85.2 

(95%CI) (-0.092
,0.013)

(-0.094,
0.013)

(-0.094,
0.013)

(-094,
0.013)

(-0.069,
0.032)

(-0.195,
-0.091)

(-0.147,
-0.003)

(0.636,
0.736)

(0.343,
0.515)

(0.444, 
0.620) 

(81.333,  
87.001) 

Good Pt ID            
         AND RAND TI(SE) 

P1 -0.112 -0.134 -0.134 -0.134 -0.107 -0.101 -0.115 0.662 0.51 0.62 87.0 (0.04) 
P3 -0.503 -0.504 -0.504 -0.504 -0.439 -0.221 -0.242 0.675 0.70 0.83 88.8 (0.02) 
P5 0.074 0.073 0.073 0.073 0.078 -0.118 -0.004 0.707 0.60 0.80 91.1 (0.02) 
P6 -0.202 -0.202 -0.202 -0.202 -0.155 -0.090 -0.167 0.666 0.70 0.84 87.0 (0.01) 
P8 0.208 0.206 0.206 0.206 0.211 -0.029 0.081 0.783 0.45 0.59 87.4 (0.03) 

P12 -0.359 -0.359 -0.359 -0.359 -0.316 -0.264 -0.179 0.645 0.61 0.77 84.1 (0.03) 
P13 0.258 0.258 0.258 0.258 0.257 0.007 0.107 0.768 0.37 0.45 86.1 (0.07) 
P14 -0.378 -0.379 -0.380 -0.380 -0.301 -0.074 -0.003 0.785 0.48 0.56 93.1 (0.03) 
P15 0.086 0.092 0.093 0.093 0.084 -0.149 -0.039 -0.697 0.45 0.60 91.1 (0.01) 
P16 0.168 0.169 0.169 0.169 0.173 -0.067 0.035 0.758 0.44 0.57 87.9 (0.02) 
P17 -0.122 -0.122 -0.122 -0.122 -0.069 0.131 -0.161 0.604 0.61 0.72 84.0 (0.04) 
P18 -0.134 -0.134 -0.134 -0.134 -0.130 -0.243 -0.211 0.628 0.55 0.68 94.6 (0.03) 
P19 0.272 0.273 0.273 0.273 0.277 0.066 0.195 0.726 0.50 0.66 91.1 (0.01) 
P20 0.057 0.057 0.057 0.057 0.057 -0.106 -0.051 0.613 0.53 0.65 87.3 (0.03) 
P23 0.149 0.149 0.149 0.149 0.164 -0.019 0.099 0.729 0.72 0.85 84.8 (0.11) 
P24 0.231 0.232 0.232 0.232 0.232 -0.007 0.157 0.793 0.43 0.54 88.1 (0.02) 
P25 -0.211 -0.214 -0.214 -0.214 -0.188 -0.218 -0.185 0.561 0.50 0.66 92.4 (0.03) 
P26 -0.122 -0.123 -0.123 -0.123 -0.073 0.057 -0.011 0.579 0.68 0.88 87.4 (0.03) 
P30 -0.045 -0.044 -0.044 -0.044 -0.049 -0.208 -0.150 0.647 0.63 0.82 92.2 (0.02) 
P31 0.040 0.040 0.040 0.040 0.047 -0.108 0.024 0.701 0.40 0.51 89.3 (0.03) 
P36 0.081 0.081 0.081 0.081 0.055 -0.172 -0.104 0.677 0.52 0.64 86.4 (0.10) 
P37 0.272 0.273 0.273 0.273 0.273 0.066 0.195 0.726 0.53 0.59 79.9 (0.09) 

Good 
Median 0.049 0.049 0.0485 0.0485 0.051 -0.096 -0.025 0.676 0.525 0.655 87.7 

(95%CI) (-0.122,
0.149)

(-0.134,
0.149)

(-0.134,
0.149)

(-0.134,
0.149)

(-0.108,
0.164)

(-0.149,
-0.019)

(0.015,
0.036)

(0.065,
-0.726)

(0.479,  
0.610)

(0.590,  
0.771) 

(86.984, 
91.100) 

Kruskal 
Wallis 
P value 
(Poor vs 
Good) 

P=0.32 0.32 0.32 0.32 0.30 0.16 0.40 0.84 0.004 0.003 0.005 

Table 5. Kruskal Wallis test on the wavelet correlation, and on Rudge et al.’s (2006b) and 
Chase et al.’s (2004) diagnostics – testing for differences between  the DWT based poor 
versus good tracker groups. 
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Patient 
ID 

Wavelet scale j (j= 1, 2, …, 8) 
Count 
of NS* 

Rudge et al. 
(2006b) 

diagnostics 

Chase et 
al. (2004) 

diagnostics 

1 2 4 8 16 32 64 128 AND RAND TI (SE)  

P28 S S S S NS S NS S 2 0.34 0.44 89.2 (0.027) 

P29 S S S S S S NS S 1 0.38 0.45 77.6 (0.083) 

P30 NS NS NS NS NS NS S S 6 0.63 0.82 92.2 (0.021) 

P31 S S NS NS NS NS NS S 5 0.40 0.51 89.3 (0.030) 

P32 S S NS NS NS S NS S 4 0.38 0.50 89.3 (0.022) 

P33 S S S NS NS S NS S 3 0.28 0.36 88.7 (0.020) 

P34 NS NS NS NS NS S NS S 6 0.43 0.55 86.5 (0.034) 

P35 S S S S S S NS S 1 0.38 0.46 85.9 (0.044) 

P36 S S NS NS NS NS NS S 5 0.52 0.64 86.4 (0.095) 

P37 S S S S S NS NS S 2 0.53 0.59 79.9 (0.093) 

Table 4. Wavelet correlation analysis of the 37 ICU patients. S-significant, NS-non-significant 
WCORR at given scale j (j= 1, 2, …, 8). Bolded patients indicate poor trackers according to 
the WCORR and “Count NS” values. Patient 30 has NS=6, which is large, but their high 
AND=0.63, RAND=0.82, and TI=92.2% are indicative of good tracking. 
 

Poor 
Patient ID 

Wavelet Correlations (scale j ) 
Rudge et al. 

(2006b) 
diagnostics 

Chase et al. 
(2004) 

diagnostics 
        AND RAND TI(SE) 

P2 0.005 0.005 0.005 0.005 -0.008 -0.186 -0.034 0.649 0.53 0.66 86.2 (0.03) 
P4 0.006 0.006 0.005 0.005 0.036 -0.077 0.023 0.724 0.56 0.62 80.1 (0.09) 
P7 -0.081 -0.081 -0.081 -0.081 -0.037 -0.066 0.034 0.785 0.33 0.43 84.5 (0.06) 
P9 -0.020 -0.021 -0.021 -0.021 0.012 -0.066 0.012 0.793 0.49 0.62 87.3 (0.02) 

P10 0.051 0.051 0.051 0.051 0.052 -0.125 -0.040 0.591 0.27 0.34 83.4 (0.04) 
P11 -0.001 -0.001 -0.001 -0.001 0.019 0.093 0.002 0.654 0.31 0.38 83.7 (0.08) 
P21 0.016 0.017 0.017 0.017 0.026 -0.148 -0.031 0.779 0.53 0.72 78.5 (0.09) 
P22 -0.051 -0.051 -0.051 -0.051 -0.027 -0.115 -0.052 0.739 0.35 0.45 85.2 (0.04) 
P27 -0.108 -0.108 -0.108 -0.108 -0.088 -0.227 -0.201 0.660 0.39 0.49 74.9 (0.07) 
P28 -0.100 -0.101 -0.101 -0.101 -0.090 -0.200 -0.157 0.628 0.34 0.44 89.2 (0.02) 
P29 -0.616 -0.616 -0.616 -0.616 -0.582 -0.497 -0.294 0.627 0.38 0.45 77.6 (0.08) 
P32 0.032 0.034 0.035 0.035 0.042 -0.139 -0.061 0.732 0.38 0.50 89.3 (0.02) 
P33 0.046 0.046 0.046 0.046 0.049 -0.127 -0.012 0.691 0.28 0.36 88.7 (0.02) 
P34 -0.019 -0.019 -0.019 -0.019 -0.029 -0.213 -0.131 0.676 0.43 0.55 86.5 (0.03) 
P35 -0.172 -0.172 -0.172 -0.172 -0.139 -0.155 -0.166 0.576 0.38 0.46 85.9 (0.04) 
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Poor 
Patient ID 

Wavelet Correlations (scale j ) 
Rudge et al. 

(2006b) 
diagnostics 

Chase et al. 
(2004) 

diagnostics 
        AND RAND TI(SE) 

Poor 
Median -0.019 -0.019 -0.019 -0.019 -0.008 -0.139 0.040 0.676 0.390 0.500 85.2 

(95%CI) (-0.092
,0.013)

(-0.094,
0.013)

(-0.094,
0.013)

(-094,
0.013)

(-0.069,
0.032)

(-0.195,
-0.091)

(-0.147,
-0.003)

(0.636,
0.736)

(0.343,
0.515)

(0.444, 
0.620) 

(81.333,  
87.001) 

Good Pt ID            
         AND RAND TI(SE) 

P1 -0.112 -0.134 -0.134 -0.134 -0.107 -0.101 -0.115 0.662 0.51 0.62 87.0 (0.04) 
P3 -0.503 -0.504 -0.504 -0.504 -0.439 -0.221 -0.242 0.675 0.70 0.83 88.8 (0.02) 
P5 0.074 0.073 0.073 0.073 0.078 -0.118 -0.004 0.707 0.60 0.80 91.1 (0.02) 
P6 -0.202 -0.202 -0.202 -0.202 -0.155 -0.090 -0.167 0.666 0.70 0.84 87.0 (0.01) 
P8 0.208 0.206 0.206 0.206 0.211 -0.029 0.081 0.783 0.45 0.59 87.4 (0.03) 

P12 -0.359 -0.359 -0.359 -0.359 -0.316 -0.264 -0.179 0.645 0.61 0.77 84.1 (0.03) 
P13 0.258 0.258 0.258 0.258 0.257 0.007 0.107 0.768 0.37 0.45 86.1 (0.07) 
P14 -0.378 -0.379 -0.380 -0.380 -0.301 -0.074 -0.003 0.785 0.48 0.56 93.1 (0.03) 
P15 0.086 0.092 0.093 0.093 0.084 -0.149 -0.039 -0.697 0.45 0.60 91.1 (0.01) 
P16 0.168 0.169 0.169 0.169 0.173 -0.067 0.035 0.758 0.44 0.57 87.9 (0.02) 
P17 -0.122 -0.122 -0.122 -0.122 -0.069 0.131 -0.161 0.604 0.61 0.72 84.0 (0.04) 
P18 -0.134 -0.134 -0.134 -0.134 -0.130 -0.243 -0.211 0.628 0.55 0.68 94.6 (0.03) 
P19 0.272 0.273 0.273 0.273 0.277 0.066 0.195 0.726 0.50 0.66 91.1 (0.01) 
P20 0.057 0.057 0.057 0.057 0.057 -0.106 -0.051 0.613 0.53 0.65 87.3 (0.03) 
P23 0.149 0.149 0.149 0.149 0.164 -0.019 0.099 0.729 0.72 0.85 84.8 (0.11) 
P24 0.231 0.232 0.232 0.232 0.232 -0.007 0.157 0.793 0.43 0.54 88.1 (0.02) 
P25 -0.211 -0.214 -0.214 -0.214 -0.188 -0.218 -0.185 0.561 0.50 0.66 92.4 (0.03) 
P26 -0.122 -0.123 -0.123 -0.123 -0.073 0.057 -0.011 0.579 0.68 0.88 87.4 (0.03) 
P30 -0.045 -0.044 -0.044 -0.044 -0.049 -0.208 -0.150 0.647 0.63 0.82 92.2 (0.02) 
P31 0.040 0.040 0.040 0.040 0.047 -0.108 0.024 0.701 0.40 0.51 89.3 (0.03) 
P36 0.081 0.081 0.081 0.081 0.055 -0.172 -0.104 0.677 0.52 0.64 86.4 (0.10) 
P37 0.272 0.273 0.273 0.273 0.273 0.066 0.195 0.726 0.53 0.59 79.9 (0.09) 

Good 
Median 0.049 0.049 0.0485 0.0485 0.051 -0.096 -0.025 0.676 0.525 0.655 87.7 

(95%CI) (-0.122,
0.149)

(-0.134,
0.149)

(-0.134,
0.149)

(-0.134,
0.149)

(-0.108,
0.164)

(-0.149,
-0.019)

(0.015,
0.036)

(0.065,
-0.726)

(0.479,  
0.610)

(0.590,  
0.771) 

(86.984, 
91.100) 

Kruskal 
Wallis 
P value 
(Poor vs 
Good) 

P=0.32 0.32 0.32 0.32 0.30 0.16 0.40 0.84 0.004 0.003 0.005 

Table 5. Kruskal Wallis test on the wavelet correlation, and on Rudge et al.’s (2006b) and 
Chase et al.’s (2004) diagnostics – testing for differences between  the DWT based poor 
versus good tracker groups. 
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Variable Poor group 
median 

Good group 
median k-w#: P value 

Modulus WCORR at 1 0.046 0.159 0.001 

“Count of NS” 5 2 0.001 

AND 0.39 0.53 0.004 

RAND 0.50 0.66 0.003 

TI 85.20 87.7 0.005 

Table 6. K-W tests of all wavelet and other diagnostics by wavelet based tracking group. 

3.3 Using the Wavelet Cross-Correlation (WCCORR) 
We can investigate possible lead or lag relationships between a given patient’s modelled 
(simulated) versus observed (recorded) A-S profile by examining a plot of its MODWT 
based wavelet cross-correlation (WCCORR), according to Equation (8). Figure 8 shows this 
WCCORR plot for Patient 3 (P3: a good tracker) and Patient 4 (P4: a poor tracker). For 
Patient 3 the   values are negative and statistically significant  for all scales  except 8 (Table  
7), and  there is also a large positive peak at a lag of 120 minutes for the first six wavelet 
scales j (j=1, 2, …, 6) (Figure 8). At scale 7 ; a large positive peak occurs at 112 minutes for 
Patient 3; and at scale 8  at a lag of 33 minutes. We conclude that at scale 7  there is a 
period of 170 minutes (see Figure 15) for Patient 3. Likewise an examination of Figure 8 
shows an inverse shaped profile of peaks to troughs for Patient 4 (a poor tracker), with 
generally non-significant positive  values compared to Patient 3 (see also Table 7). It is 
noteworthy from Figure 8 that generally patients who are good trackers show a common 
type of WCCORR signature or pattern, with WCCORR being significant at zero lag (for all 
scales) and their 95% CI do not include zero  (see Table 7), not  so  for the poor  trackers. 
 

 
 

Patient 3 (good tracker) 
Scale Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 
L. CI -0.528 -0.539 -0.554 -0.573 -0.544 -0.398 -0.485 0.382 
  -0.503+ -0.504+ -0.504+ -0.504+ -0.439+ -0.221+ -0.242+ 0.675+ 

U. CI++ -0.477 -0.467 -0.451 -0.428 -0.321 -0.027 0.036 0.845 
 
 

Patient 4 (poor tracker) 
Scale Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 
L. CI -0.034 -0.050 -0.074 -0.107 -0.123 -0.297 -0.299 0.401 
  0.006 0.006 0.005 0.006 0.036 -0.077 0.023 0.724 

U. CI++ 0.045 0.061 0.085 0.117 0.194 0.151 0.339 0.886 

Table 7. The signature of WCORR for the Patient 3 and Patient 4 at zero lag based 
WCCORR.  The positive subscript (+)  indicates significant WCCORR   values. 
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Recall that Table 7 gives the values (signature over wavelet scales) of   and their associated 
95% confidence limits (L.CI, U.CI) for Patient 3 and Patient 4 who are deemed, to be a good 
and poor tracker, respectively (as depicted by Figure 8). The main results of the work in this 
chapter are summarised in Table 8 and discussed in detail in the Conclusion (section 4).  
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Variable Poor group 
median 

Good group 
median k-w#: P value 

Modulus WCORR at 1 0.046 0.159 0.001 

“Count of NS” 5 2 0.001 

AND 0.39 0.53 0.004 

RAND 0.50 0.66 0.003 

TI 85.20 87.7 0.005 

Table 6. K-W tests of all wavelet and other diagnostics by wavelet based tracking group. 

3.3 Using the Wavelet Cross-Correlation (WCCORR) 
We can investigate possible lead or lag relationships between a given patient’s modelled 
(simulated) versus observed (recorded) A-S profile by examining a plot of its MODWT 
based wavelet cross-correlation (WCCORR), according to Equation (8). Figure 8 shows this 
WCCORR plot for Patient 3 (P3: a good tracker) and Patient 4 (P4: a poor tracker). For 
Patient 3 the   values are negative and statistically significant  for all scales  except 8 (Table  
7), and  there is also a large positive peak at a lag of 120 minutes for the first six wavelet 
scales j (j=1, 2, …, 6) (Figure 8). At scale 7 ; a large positive peak occurs at 112 minutes for 
Patient 3; and at scale 8  at a lag of 33 minutes. We conclude that at scale 7  there is a 
period of 170 minutes (see Figure 15) for Patient 3. Likewise an examination of Figure 8 
shows an inverse shaped profile of peaks to troughs for Patient 4 (a poor tracker), with 
generally non-significant positive  values compared to Patient 3 (see also Table 7). It is 
noteworthy from Figure 8 that generally patients who are good trackers show a common 
type of WCCORR signature or pattern, with WCCORR being significant at zero lag (for all 
scales) and their 95% CI do not include zero  (see Table 7), not  so  for the poor  trackers. 
 

 
 

Patient 3 (good tracker) 
Scale Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 
L. CI -0.528 -0.539 -0.554 -0.573 -0.544 -0.398 -0.485 0.382 
  -0.503+ -0.504+ -0.504+ -0.504+ -0.439+ -0.221+ -0.242+ 0.675+ 

U. CI++ -0.477 -0.467 -0.451 -0.428 -0.321 -0.027 0.036 0.845 
 
 

Patient 4 (poor tracker) 
Scale Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 
L. CI -0.034 -0.050 -0.074 -0.107 -0.123 -0.297 -0.299 0.401 
  0.006 0.006 0.005 0.006 0.036 -0.077 0.023 0.724 

U. CI++ 0.045 0.061 0.085 0.117 0.194 0.151 0.339 0.886 

Table 7. The signature of WCORR for the Patient 3 and Patient 4 at zero lag based 
WCCORR.  The positive subscript (+)  indicates significant WCCORR   values. 
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Recall that Table 7 gives the values (signature over wavelet scales) of   and their associated 
95% confidence limits (L.CI, U.CI) for Patient 3 and Patient 4 who are deemed, to be a good 
and poor tracker, respectively (as depicted by Figure 8). The main results of the work in this 
chapter are summarised in Table 8 and discussed in detail in the Conclusion (section 4).  
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Fig. 8. MODWT estimated wavelet Cross-Correlation between the simulated and recorded 
infusion series for lags up to 144 minutes for Patient 3 (a good tracker) and Patient 4 (a 
poor tracker) with approximate 95% CI (red broken lines). 
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Table 8. Overview of  DWT and WCORR results. 
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Fig. 8. MODWT estimated wavelet Cross-Correlation between the simulated and recorded 
infusion series for lags up to 144 minutes for Patient 3 (a good tracker) and Patient 4 (a 
poor tracker) with approximate 95% CI (red broken lines). 
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Table 8. Overview of  DWT and WCORR results. 
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4. Conclusion 
DWT and MODWT-MRA decomposition and reconstruction are shown to provide clear and 
consistent, in regard to good or poor performance, “signatures” of, and values for the 
wavelet correlations and cross-correlations (at all dyadic scales) between an ICU patient’s 
bivariate time series, namely their simulated and their recorded A-S infusion profiles over 
time under sedation. A suite of wavelet techniques are advocated, based on the DWT, and 
applied successfully to assess whether an ICU patient’s mathematically simulated agitation-
sedation (A-S) status reflects their true dynamic profile.   
The wavelet correlation profiles of the good trackers are shown to be invariably 
significant at all scales (except at 32 and 64). Patients who exhibit poor tracking exhibit 
WCORR profiles which are invariably non significant at almost all wavelet scales, 
particularly at 1. Moreover, cross-correlation (WCCORR) signatures also show a common 
pattern for the good trackers, which is distinctly different to the pattern associated with 
poor tracking. It is also shown that the lead or lag relationship between a patient’s 
simulated and recorded agitation-sedation infusion series can be investigated on a scale 
by scale basis via the implementation of the MODWT-MRA. The MRA is shown to 
successfully indicate local features of interest in the simulated and recorded series, with 
the smooth MRA series offering a good visual summary of the overall long-term trends in 
a patient’s A-S status.   
Fifteen poor trackers are identified by the DWT based diagnostics derived in this chapter. 
Specifically it is found that the modulus of WCORR at 1, |1|, is invariably higher (and 
significantly so) for the good compared to the poor trackers.  The profile of (“Count of 
NS”) across all patients is higher for the poor trackers; and the values of RAND, AND and 
|j | invariably higher for the good trackers. Specifically the median absolute value of the 
wavelet correlation at 1, and median value of AND, RAND and TI are highly 
significantly lower for the poor trackers (15 of 37 patients). The median of the number of 
non significant wavelet correlations (the “Count of NS” variable) is 5.0 for the poor 
trackers, significantly higher than the median of 2.0 for the good tracking group (P = 
0.001). It is noteworthy that 11 of the 15 DWT based poor trackers are also found to be 
poor trackers by either or both of Rudge et al.’s (2006b) and Chase et al.’s (2004) (non 
wavelet based) performance indicators, showing significant agreement between the 
wavelet DWT and the earlier kernel based methods - with a kappa test of agreement 
between the WCORR criterion for poor tracking and Chase et al (2004) of 0.2127 (P=0.01); 
and with Rudge et al. (2006b) of 0.5856 (P=0.001).   
Other recent work by Kang et al. (In Prep) has used Bayesian densities and wavelet 
shrinkage methods to create a novel wavelet probability band (WPB). A 90% value for the 
WPB implies that for at least 90% of the time, the estimated mean value of the patient’s 
recorded infusion rate lies within the band. A 90% WPB was constructed by Kang et al. (In 
Prep) for each of the 37 patient profiles, and the time and duration of any deviations from 
the wavelet probability band recorded for each patient. Likewise wavelet analogues of the 
AND and RAND diagnostics of Rudge et al. (2006a; 2006b), namely the average 
normalized wavelet density (ANWD) and the relative average normalized wavelet 
density (RANWD) have been derived by Kang et al. (In Prep); as has a Wavelet Time 
Coverage Index (WTCI) – all by using Bayesian wavelet thresholding. The resultant WTCI 
and 90% WPB provide very strong support for the DWT wavelet diagnostics derived in 
this chapter. Indeed of the  15 DWT based poor trackers identified in this chapter, 10  also 
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exhibit a low WPB (WPB 90% < 70%) and a low wavelet  density based RANWD measure 
(RANWD   0.5) and are likewise deemed to be poor trackers according to these recent 
wavelet  regression methods of  Kang  et al. (In Prep). Statistically speaking the wavelet 
probability band and wavelet density diagnostics mirror the poor versus good 
classification of this chapter’s WCORR DWT based diagnostics (kappa = 0.7701, P = 
0.0001). The main reason for the reduced total time within the WPB (and for the non 
significant WCORRs) for this minority group of 10 (or 15) poor trackers (of a total of 37 
patients), is the consistently poor performance of the DE model throughout their total 
length of the A-S simulation.  
The work in this chapter provides a suite of new wavelet based diagnostics by which to 
achieve statistical model validation of the A-S models. The DWT, wavelet correlation and 
cross-correlation measures derived in this chapter are proved to be valid for assessing 
control, and mirror earlier validation measures; as do the more recent wavelet regression 
diagnostics (namely WTCI, ANWD, RANWD, and WPB 90%) of Kang et al. (In Prep). 
Wavelets are shown to visually and quantitatively discriminate patients for whom the A-S 
model captures their fundamental A-S dynamics, versus those, for whom this is not so. 
Wavelet WCORR and WCCORR signatures thus form a possibly alternative and 
appropriate feedback mechanism for comparison of improved sedation administration 
controllers and gain. The wavelets based visual tools and quantitative measures thus 
contribute to the task of improving and of refining A-S models. This chapter thus 
demonstrates that wavelets provide a new diagnostic tool by which to assess the 
agitation-sedation of ICU patients, and show that it is possible to evaluate A-S models via 
wavelet diagnostics for accurate evaluation of A-S management, where the latter 
represents a trade-off between the benefits of low patient agitation versus the cost of high 
infusion rates and increased total dose requirements (Rudge et al., 2003; 2005; 2006a; 
2006b). Wavelets are thus suitable for clinical implementation in ICU agitation and 
sedation control.  
Overall the various wavelet diagnostics strongly agree and confirm the value of A-S 
modelling in ICU. Wavelet DWT analysis also demonstrates that the models of the A-S 
studies of Chase et al., (2004), Rudge et al., (2005; 2006a; 2000b) and of Lee et al., (2005), 
are suitable for developing more advanced optimal infusion controllers. These offer 
significant clinical potential of improved agitation management and reduced length of 
stay in critical care. The use of quantitative modelling to enhance understanding of the A-
S system and the provision of an A-S simulation platform are critical tools in this area of 
patient critical care.   
The DWT approach gives robust performance metrics of A-S control and also yields 
excellent visual assessment tools - generalisable to any study which investigates the  
similarity or closeness between any bivariate time series of, say, a large number of units 
(patients, households etc) and of disparate lengths and possibly of extremely long 
length.  
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4. Conclusion 
DWT and MODWT-MRA decomposition and reconstruction are shown to provide clear and 
consistent, in regard to good or poor performance, “signatures” of, and values for the 
wavelet correlations and cross-correlations (at all dyadic scales) between an ICU patient’s 
bivariate time series, namely their simulated and their recorded A-S infusion profiles over 
time under sedation. A suite of wavelet techniques are advocated, based on the DWT, and 
applied successfully to assess whether an ICU patient’s mathematically simulated agitation-
sedation (A-S) status reflects their true dynamic profile.   
The wavelet correlation profiles of the good trackers are shown to be invariably 
significant at all scales (except at 32 and 64). Patients who exhibit poor tracking exhibit 
WCORR profiles which are invariably non significant at almost all wavelet scales, 
particularly at 1. Moreover, cross-correlation (WCCORR) signatures also show a common 
pattern for the good trackers, which is distinctly different to the pattern associated with 
poor tracking. It is also shown that the lead or lag relationship between a patient’s 
simulated and recorded agitation-sedation infusion series can be investigated on a scale 
by scale basis via the implementation of the MODWT-MRA. The MRA is shown to 
successfully indicate local features of interest in the simulated and recorded series, with 
the smooth MRA series offering a good visual summary of the overall long-term trends in 
a patient’s A-S status.   
Fifteen poor trackers are identified by the DWT based diagnostics derived in this chapter. 
Specifically it is found that the modulus of WCORR at 1, |1|, is invariably higher (and 
significantly so) for the good compared to the poor trackers.  The profile of (“Count of 
NS”) across all patients is higher for the poor trackers; and the values of RAND, AND and 
|j | invariably higher for the good trackers. Specifically the median absolute value of the 
wavelet correlation at 1, and median value of AND, RAND and TI are highly 
significantly lower for the poor trackers (15 of 37 patients). The median of the number of 
non significant wavelet correlations (the “Count of NS” variable) is 5.0 for the poor 
trackers, significantly higher than the median of 2.0 for the good tracking group (P = 
0.001). It is noteworthy that 11 of the 15 DWT based poor trackers are also found to be 
poor trackers by either or both of Rudge et al.’s (2006b) and Chase et al.’s (2004) (non 
wavelet based) performance indicators, showing significant agreement between the 
wavelet DWT and the earlier kernel based methods - with a kappa test of agreement 
between the WCORR criterion for poor tracking and Chase et al (2004) of 0.2127 (P=0.01); 
and with Rudge et al. (2006b) of 0.5856 (P=0.001).   
Other recent work by Kang et al. (In Prep) has used Bayesian densities and wavelet 
shrinkage methods to create a novel wavelet probability band (WPB). A 90% value for the 
WPB implies that for at least 90% of the time, the estimated mean value of the patient’s 
recorded infusion rate lies within the band. A 90% WPB was constructed by Kang et al. (In 
Prep) for each of the 37 patient profiles, and the time and duration of any deviations from 
the wavelet probability band recorded for each patient. Likewise wavelet analogues of the 
AND and RAND diagnostics of Rudge et al. (2006a; 2006b), namely the average 
normalized wavelet density (ANWD) and the relative average normalized wavelet 
density (RANWD) have been derived by Kang et al. (In Prep); as has a Wavelet Time 
Coverage Index (WTCI) – all by using Bayesian wavelet thresholding. The resultant WTCI 
and 90% WPB provide very strong support for the DWT wavelet diagnostics derived in 
this chapter. Indeed of the  15 DWT based poor trackers identified in this chapter, 10  also 
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exhibit a low WPB (WPB 90% < 70%) and a low wavelet  density based RANWD measure 
(RANWD   0.5) and are likewise deemed to be poor trackers according to these recent 
wavelet  regression methods of  Kang  et al. (In Prep). Statistically speaking the wavelet 
probability band and wavelet density diagnostics mirror the poor versus good 
classification of this chapter’s WCORR DWT based diagnostics (kappa = 0.7701, P = 
0.0001). The main reason for the reduced total time within the WPB (and for the non 
significant WCORRs) for this minority group of 10 (or 15) poor trackers (of a total of 37 
patients), is the consistently poor performance of the DE model throughout their total 
length of the A-S simulation.  
The work in this chapter provides a suite of new wavelet based diagnostics by which to 
achieve statistical model validation of the A-S models. The DWT, wavelet correlation and 
cross-correlation measures derived in this chapter are proved to be valid for assessing 
control, and mirror earlier validation measures; as do the more recent wavelet regression 
diagnostics (namely WTCI, ANWD, RANWD, and WPB 90%) of Kang et al. (In Prep). 
Wavelets are shown to visually and quantitatively discriminate patients for whom the A-S 
model captures their fundamental A-S dynamics, versus those, for whom this is not so. 
Wavelet WCORR and WCCORR signatures thus form a possibly alternative and 
appropriate feedback mechanism for comparison of improved sedation administration 
controllers and gain. The wavelets based visual tools and quantitative measures thus 
contribute to the task of improving and of refining A-S models. This chapter thus 
demonstrates that wavelets provide a new diagnostic tool by which to assess the 
agitation-sedation of ICU patients, and show that it is possible to evaluate A-S models via 
wavelet diagnostics for accurate evaluation of A-S management, where the latter 
represents a trade-off between the benefits of low patient agitation versus the cost of high 
infusion rates and increased total dose requirements (Rudge et al., 2003; 2005; 2006a; 
2006b). Wavelets are thus suitable for clinical implementation in ICU agitation and 
sedation control.  
Overall the various wavelet diagnostics strongly agree and confirm the value of A-S 
modelling in ICU. Wavelet DWT analysis also demonstrates that the models of the A-S 
studies of Chase et al., (2004), Rudge et al., (2005; 2006a; 2000b) and of Lee et al., (2005), 
are suitable for developing more advanced optimal infusion controllers. These offer 
significant clinical potential of improved agitation management and reduced length of 
stay in critical care. The use of quantitative modelling to enhance understanding of the A-
S system and the provision of an A-S simulation platform are critical tools in this area of 
patient critical care.   
The DWT approach gives robust performance metrics of A-S control and also yields 
excellent visual assessment tools - generalisable to any study which investigates the  
similarity or closeness between any bivariate time series of, say, a large number of units 
(patients, households etc) and of disparate lengths and possibly of extremely long 
length.  
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1. Introduction  
Power transformers (PT) play an extremely important role on the reliability and energy 
supply continuity of Electric Power Systems (EPS). The inherent characteristic of power 
transformers introduce a number of unique problems that are not present in the protection 
of transmission lines, generators, motors or other power system apparatus (Horowitz & 
Phadke, 2008). When PT internal faults occur, immediate disconnection of the faulted 
transformer is necessary to avoid extensive damage and/or preserve power system stability 
and power quality (Harlow, 1999). Currently, percentage differential protection is a 
common practice for power transformer protection. However, nonlinearities in the 
transformer core, the current transformer (CT) core or in both, cause a substantial 
differential current to flow when there is no fault. Thus, these false differentials currents can 
cause a percentage differential relay miss trip. To mitigate some of these problems the 
differential relays are equipped with harmonic restraint, where the magnitudes of the 
second and fifth harmonic component are compared with the fundamental frequency 
component to discriminate internal faults from magnetizing inrush currents and 
transformer over-excitation, respectively (Anderson, 1999). However, performance 
limitations are still reported even for such phenomena. In order to overcome such limitation, 
a significant number of relaying formulations have been proposed (Abed & Mohammed, 
2007; Eissa, 2005; Faiz & Lotfi-Fard, 2006; Mao & Aggarwal, 2000; Megahed et al., 2008; 
Morate & Nicoletti, 1999; Ngaopitakkul & Kunakorn, 2006; Saleh & Rahman, 2005. Thomas 
& Ozgönenel, 2007; Wang & Butler, 2001; Wiszniewski & Kasztenny, 1995; Zaman et al., 
1996). These formulations are based on finite elements, artificial neural networks, fuzzy 
systems, dynamical principal components analysis, wavelet transforms (WTs) and hybrid 
systems. However, all mentioned relaying formulations have hard to design parameters, 
which make real life construction difficult. 
In detecting faults in EPS and, specifically PT, frequency analysis is required so that the 
transient signal components can be isolated. This process helps to identify particular 
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1. Introduction  
Power transformers (PT) play an extremely important role on the reliability and energy 
supply continuity of Electric Power Systems (EPS). The inherent characteristic of power 
transformers introduce a number of unique problems that are not present in the protection 
of transmission lines, generators, motors or other power system apparatus (Horowitz & 
Phadke, 2008). When PT internal faults occur, immediate disconnection of the faulted 
transformer is necessary to avoid extensive damage and/or preserve power system stability 
and power quality (Harlow, 1999). Currently, percentage differential protection is a 
common practice for power transformer protection. However, nonlinearities in the 
transformer core, the current transformer (CT) core or in both, cause a substantial 
differential current to flow when there is no fault. Thus, these false differentials currents can 
cause a percentage differential relay miss trip. To mitigate some of these problems the 
differential relays are equipped with harmonic restraint, where the magnitudes of the 
second and fifth harmonic component are compared with the fundamental frequency 
component to discriminate internal faults from magnetizing inrush currents and 
transformer over-excitation, respectively (Anderson, 1999). However, performance 
limitations are still reported even for such phenomena. In order to overcome such limitation, 
a significant number of relaying formulations have been proposed (Abed & Mohammed, 
2007; Eissa, 2005; Faiz & Lotfi-Fard, 2006; Mao & Aggarwal, 2000; Megahed et al., 2008; 
Morate & Nicoletti, 1999; Ngaopitakkul & Kunakorn, 2006; Saleh & Rahman, 2005. Thomas 
& Ozgönenel, 2007; Wang & Butler, 2001; Wiszniewski & Kasztenny, 1995; Zaman et al., 
1996). These formulations are based on finite elements, artificial neural networks, fuzzy 
systems, dynamical principal components analysis, wavelet transforms (WTs) and hybrid 
systems. However, all mentioned relaying formulations have hard to design parameters, 
which make real life construction difficult. 
In detecting faults in EPS and, specifically PT, frequency analysis is required so that the 
transient signal components can be isolated. This process helps to identify particular 
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phenomena that generated the transient signals. It should be noted that the waveforms 
associated with electromagnetic transients are typically non-periodic in nature, containing 
both high-frequency oscillations as short duration pulses superimposed on low frequency 
signals. Still, need to know the fault occurrence instant encourages the application of 
techniques with precise time and frequency resolution. 
In this chapter, a novel percentage differential relaying algorithm for three-phase power 
transformers protection based on Discrete Wavelet Transforms (DWT) is presented. The 
proposed algorithm’s formulation uses logical decision criteria based on wavelets coefficient 
spectral energy variation to identify and discriminate correctly external faults, inrush 
currents and incipient internal transformer faults. In order to analyze the proposed 
algorithms efficiency, it was built in MATLAB platform (Matlab, 2010) and tested with 
simulated fault cases under BPA’s ATP/EMTP software (ATP/EMTP, 2002).  

2. Wavelet Transform (WT) 
The Wavelet Transform (WT) theory is based on signal analysis using varying scales in the 
time and frequency domain. Formalization was carried out in the 80s, based on the 
generalization of familiar concepts. The wavelet term was introduced by French 
geophysicist Jean Morlet. The seismic data analyzed by Morlet exhibit frequency component 
that changed rapidly over time, for which the Fourier Transform was not appropriate as an 
analysis tool. Thus, with the help of theoretical physicist Croatian Alex Grossmann, Morlet 
introduced a new transform which allows the high-frequency events identification with a 
better temporal resolution (Polikar, 1999). 
Faulted EPS signals are associated with fast electromagnetic transients, are typically non-
periodic and with high-frequency oscillations. This characteristic present a problem for 
traditional Fourier analysis because its assumes a periodic signal and a wide-band signal 
requires more dense sampling and longer time periods to maintain good resolution in the 
low frequencies (Robertson et al., 1996). Thus WT is a powerful tool in the power system 
transient phenomena analysis. It has the ability to extract information from the transient 
signals simultaneously in both time and frequency domains and has replaced the Fourier 
analysis in many applications (Phadke & Thorp, 2009). 

2.1 Continuous Wavelet Transform (CWT)  
The Short-Time Fourier Transform (STFT) of the continuous signal x(t), can be seen as the 
Fourier Transform (FT) of the signal with windowed x(t).g(t - ) or also as a signal 
decomposition x(t) into basis functions g(t - ).e-jwt. The function based term refers to a 
complete set of functions that, when combined the sum with specific weight can be used to 
construct the signal (Bentley & McDonnell, 1994). 
In the FT case the base function are complex sinusoid e-jwt with a windows centred on  time. 
The WT is described in terms of its basic functions, called wavelet or mother wavelet, and 
variable frequency w is replaced by an ever-escalating variable factor a (which represents the 
swelling) and generally to variable displacement in time  is represented by b.  
The main characteristic of the WT is that it uses a variable window to scan the frequency 
spectrum, increasing the temporal resolution of the analysis. The wavelets are represented 
by: 
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In the equation (1), the constant 1 / a  is used to normalize the energy and ensure that the 
energy of a,b(t)  is independent of the dilation level (Simpson, 1993). The wavelet is derived 
from operations such as dilating and translating the mother wavelet, , which must satisfy 
the admissibility criterion given by (Daubechies, 1990): 
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where ( )y  is the FT of  (t). This means that if   is a continuous function, then C is finite 
only if  (0) =0, ie (Daubechies, 1990):  
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Thus, it is evident that WT has a zero rating, property that increases the degrees of freedom, 
allowing the introduction of the dilation parameter of the window (Sarkar & Su, 1998). 
The Continuous Wavelet Transform (CWT) of the continuous signal x(t) is defined as: 
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where the scale factor a, and the translation factor b are continuous variables.  
The WT coefficient is an expansion and a particular shift represents how well the original 
signal x(t) corresponds to the translated and dilated mother wavelet. Thus, the coefficient 
group of CWT(a,b) associated with a particular signal is the wavelet representation of the 
original signal x(t) in relation to the mother wavelet (Aggarwal & Kim, 2000). 

2.2 Discrete Wavelet Transform (DWT)  
2.2.1 Why is DWT needed? 
Although the discretized continuous wavelet transform enables the computation of the 
continuous wavelet transform by computers, it is not a true discrete transform. As a matter 
of fact, the wavelet series is simply a sampled version of the CWT, and the information it 
provides is highly redundant as far as the reconstruction of the signal is concerned. This 
redundancy, on the other hand, requires a significant amount of computation time and 
resources. The Discrete Wavelet Transform (DWT), on the other hand, provides sufficient 
information both for analysis and synthesis of the original signal, with a significant 
reduction in the computation time. The DWT is considerably easier to implement when 
compared to the CWT. The basic concepts of the DWT will be introduced in this section 
along with its properties and the algorithms used to compute it (Polikar, 1999).  

2.2.2 DWT definition 
The redundancy of information and the enormous computational effort to calculate all 
possible translations and scales of CWT restricts its use. An alternative to this analysis is the 
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requires more dense sampling and longer time periods to maintain good resolution in the 
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transient phenomena analysis. It has the ability to extract information from the transient 
signals simultaneously in both time and frequency domains and has replaced the Fourier 
analysis in many applications (Phadke & Thorp, 2009). 
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The Short-Time Fourier Transform (STFT) of the continuous signal x(t), can be seen as the 
Fourier Transform (FT) of the signal with windowed x(t).g(t - ) or also as a signal 
decomposition x(t) into basis functions g(t - ).e-jwt. The function based term refers to a 
complete set of functions that, when combined the sum with specific weight can be used to 
construct the signal (Bentley & McDonnell, 1994). 
In the FT case the base function are complex sinusoid e-jwt with a windows centred on  time. 
The WT is described in terms of its basic functions, called wavelet or mother wavelet, and 
variable frequency w is replaced by an ever-escalating variable factor a (which represents the 
swelling) and generally to variable displacement in time  is represented by b.  
The main characteristic of the WT is that it uses a variable window to scan the frequency 
spectrum, increasing the temporal resolution of the analysis. The wavelets are represented 
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where the scale factor a, and the translation factor b are continuous variables.  
The WT coefficient is an expansion and a particular shift represents how well the original 
signal x(t) corresponds to the translated and dilated mother wavelet. Thus, the coefficient 
group of CWT(a,b) associated with a particular signal is the wavelet representation of the 
original signal x(t) in relation to the mother wavelet (Aggarwal & Kim, 2000). 

2.2 Discrete Wavelet Transform (DWT)  
2.2.1 Why is DWT needed? 
Although the discretized continuous wavelet transform enables the computation of the 
continuous wavelet transform by computers, it is not a true discrete transform. As a matter 
of fact, the wavelet series is simply a sampled version of the CWT, and the information it 
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redundancy, on the other hand, requires a significant amount of computation time and 
resources. The Discrete Wavelet Transform (DWT), on the other hand, provides sufficient 
information both for analysis and synthesis of the original signal, with a significant 
reduction in the computation time. The DWT is considerably easier to implement when 
compared to the CWT. The basic concepts of the DWT will be introduced in this section 
along with its properties and the algorithms used to compute it (Polikar, 1999).  

2.2.2 DWT definition 
The redundancy of information and the enormous computational effort to calculate all 
possible translations and scales of CWT restricts its use. An alternative to this analysis is the 
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discretization of the scale and translation factors, which leads to the DWT. There are several 
ways to introduce the concept of DWT, the main are the decomposition bands and the 
decomposition pyramid (or Multi-Resolution Analysis -MRA), developed in the late 70's 
(Rioul & Vetterli, 1991). The DWT of the continuous signal x(t) is given by: 

 ,( )( , ) ( ) m pDWT m p x t dt




   (5) 

where m,p form wavelet function bases, created from a translated and dilated mother 
wavelet using the dilation m and translation p parameters, respectively. 
Thus, m,p is defined as: 
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The DWT of a discrete signal x[n] is derived from CWT and defined as (Aggarwal & Kim, 
2000): 
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where g(*) is the mother wavelet and x[n] is the discretized signal.  
The mother wavelet may be dilated and translated discretely by selecting the scaling and 
translation parameters a=a0m and b=nb0a0m respectively (with fixed constants 0a 1, 0b 1, m 
and n belonging the set of positive integers). 

2.3 Multi-Resolution Analysis (MRA)   
The problems of temporal and frequency resolution found in the analysis of signals with the 
STFT (best resolution in time at the expense of a lower resolution in frequency and vice-
versa) can be reduced through a Multi-Resolution Analysis (MRA) provided by WT. The 
temporal resolutions, t, and frequency, f, indicate the precision time and frequency in the 
analysis of the signal. Both parameters vary in terms of time and frequency, respectively, in 
signal analysis using WT. Unlike the STFT, where a higher temporal resolution could be 
achieved at the expense of frequency resolution. Intuitively, when the analysis is done from 
the point of view of filters series, the temporal resolution should increase increasing the 
center frequency of the filters bank. Thus, f is proportional to f, ie: 

 f c
f


  (8) 

where c is constant.  
The main difference between DWT and STFT is the time-scaling parameter. The result is 
geometric scaling, i.e. 1, 1/a, 1/a2, …; and translation by 0, n, 2n, and so on. This scaling 
gives the DWT logarithmic frequency coverage in contrast to the uniform frequency 
coverage of the STFT, as compared in Fig. 1. 
The CWT follows exactly these concepts and adds the simplification of the scale, where all 
the impulse responses of the filter bank are defined as dilated versions of a mother wavelet  
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(Rioul & Vetterli, 1991). The CWT is a correlation between a wavelet at different scales and 
the signal with the scale (or the frequency) being used as a measure of similarity. The CWT 
is computed by changing the scale of the analysis window, shifting the window in time, 
multiplying by the signal, and integrating over all times. In the discrete case, filters of 
different cut-off frequencies are used to analyze the signal at different scales. The signal is 
passed through a series of high pass filters to analyze the high frequencies, and it is passed 
through a series of low pass filters to analyze the low frequencies. Thus, the DWT can be 
implemented by multistage filter bank named MRA (Mallat, 1999), as illustrated on Fig. 2. 
The Mallat algorithm consists of series of high-pass and the low-pass filters that decompose 
the original signal x[n], into approximation a(n) and detail d(n) coefficient, each one 
corresponding to a frequency bandwidth. 
 

 
Fig. 1. Comparison of (a) the STFT uniform frequency coverage to (b) the logarithmic 
coverage of the DWT. 

 

 
Fig. 2. DWT filter bank framework. 
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The resolution of the signal, which is a measure of the amount of detail information in the 
signal, is changed by the filtering operations, and the scale is changed by up-sampling and 
down-sampling (sub-sampling) operations. Sub-sampling a signal corresponds to reducing 
the sampling rate, or removing some of the samples of the signal. On the other hand, up-
sampling a signal corresponds to increasing the sampling rate of a signal by adding new 
samples to the signal.  
The procedure starts with passing this signal x[n] through a half band digital low-pass filter 
with impulse response h[n]. The filtering process corresponds to the mathematical operation 
of signal convolution with the impulse response of the filter. The convolution operation in 
discrete time is defined as follows (Polikar, 1999): 

 [ ] [ ] [ ] [ ]
k

x n h n x k h n k



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A half band low-pass filter removes all frequencies that are above half of the highest 
frequency in the signal. For example, if a signal has a maximum of 1000 Hz component, then 
half band low-pass filtering removes all the frequencies above 500 Hz. However, it should 
always be remembered that the frequency unit for discrete time signals is radians. 
After passing the signal through a half band low-pass filter, half of the samples can be 
eliminated according to the Nyquist’s rule. Simply discarding every other sample will 
subsample the signal by two, and the signal will then have half the number of points. The 
scale of the signal is now doubled. Note that the low-pass filtering removes the high 
frequency information, but leaves the scale unchanged. Only the sub-sampling process 
changes the scale. Resolution, on the other hand, is related to the amount of information in 
the signal, and therefore, it is affected by the filtering operations. Half band low-pass 
filtering removes half of the frequencies, which can be interpreted as losing half of the 
information. Therefore, the resolution is halved after the filtering operation. Note, however, 
the sub-sampling operation after filtering does not affect the resolution, since removing half 
of the spectral components from the signal makes half the number of samples redundant 
anyway. Half the samples can be discarded without any loss of information.  
This procedure can mathematically be expressed as (Polikar, 1999): 
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The decomposition of the signal into different frequency bands is simply obtained by 
successive highpass and lowpass filtering of the time domain signal. The original signal x[n] 
is first passed through a halfband highpass filter g[n] and a lowpass filter h[n]. After the 
filtering, half of the samples can be eliminated according to the Nyquist’s rule, since the 
signal now has a highest frequency of p/2 radians instead of p. The signal can therefore be 
sub-sampled by 2, simply by discarding every other sample. This constitutes one level of 
decomposition and can mathematically be expressed as follows (Polikar, 1999): 
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where yhigh[k] and ylow[k] are the outputs of the high-pass and low-pass filters, respectively, 
after sub-sampling by 2. 

2.4 Energy and power of discrete signal  
The total energy of a discrete signal x[n] is given for equation (Haykin & Veen, 2001): 
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and the average power is defined as: 
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For a periodic signal of fundamental period N, the average power is given by: 
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3. Differential protection of power transformers using DWT 
3.1 Percentage differential protection 
Differential protection schemes are widely used by electric companies to protect EPS 
equipments. This relaying technique is applied on power transformers protection, buses 
protection, and large motors and generators protection among others (Anderson, 1999). 
Considering power transformers rated above 10 MVA, the percentage differential relay with 
harmonic restraint is the most used protection scheme (Horowitz & Phadke, 2008). The 
percentage differential relay can be implemented with an over-current relay (R) and 
operation (o) and restriction coils (r), as illustrated on Fig. 3, connected between Current 
Transformer (CTs). 
Under normal operating conditions or external faults, the CTs secondary currents, i2P and 
i2S, have close absolute values. The differential protection formulation compares the 
differential current to a fixed threshold value. To include CTs transformation errors, CTs 
mismatch and power transformer variable taps, the differential current (id) can be compared 
to a fixed percentage value of the restraint current (ir). This percentage characteristic of the 
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The relay identifies an internal fault when the differential current exceeds the percentage 
value K of the restraint current, where iop is the operation current of relay: 
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The resolution of the signal, which is a measure of the amount of detail information in the 
signal, is changed by the filtering operations, and the scale is changed by up-sampling and 
down-sampling (sub-sampling) operations. Sub-sampling a signal corresponds to reducing 
the sampling rate, or removing some of the samples of the signal. On the other hand, up-
sampling a signal corresponds to increasing the sampling rate of a signal by adding new 
samples to the signal.  
The procedure starts with passing this signal x[n] through a half band digital low-pass filter 
with impulse response h[n]. The filtering process corresponds to the mathematical operation 
of signal convolution with the impulse response of the filter. The convolution operation in 
discrete time is defined as follows (Polikar, 1999): 
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A half band low-pass filter removes all frequencies that are above half of the highest 
frequency in the signal. For example, if a signal has a maximum of 1000 Hz component, then 
half band low-pass filtering removes all the frequencies above 500 Hz. However, it should 
always be remembered that the frequency unit for discrete time signals is radians. 
After passing the signal through a half band low-pass filter, half of the samples can be 
eliminated according to the Nyquist’s rule. Simply discarding every other sample will 
subsample the signal by two, and the signal will then have half the number of points. The 
scale of the signal is now doubled. Note that the low-pass filtering removes the high 
frequency information, but leaves the scale unchanged. Only the sub-sampling process 
changes the scale. Resolution, on the other hand, is related to the amount of information in 
the signal, and therefore, it is affected by the filtering operations. Half band low-pass 
filtering removes half of the frequencies, which can be interpreted as losing half of the 
information. Therefore, the resolution is halved after the filtering operation. Note, however, 
the sub-sampling operation after filtering does not affect the resolution, since removing half 
of the spectral components from the signal makes half the number of samples redundant 
anyway. Half the samples can be discarded without any loss of information.  
This procedure can mathematically be expressed as (Polikar, 1999): 

 [ ] [ ] [ ]
k

y n h k x n k




    (10) 

The decomposition of the signal into different frequency bands is simply obtained by 
successive highpass and lowpass filtering of the time domain signal. The original signal x[n] 
is first passed through a halfband highpass filter g[n] and a lowpass filter h[n]. After the 
filtering, half of the samples can be eliminated according to the Nyquist’s rule, since the 
signal now has a highest frequency of p/2 radians instead of p. The signal can therefore be 
sub-sampled by 2, simply by discarding every other sample. This constitutes one level of 
decomposition and can mathematically be expressed as follows (Polikar, 1999): 
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where yhigh[k] and ylow[k] are the outputs of the high-pass and low-pass filters, respectively, 
after sub-sampling by 2. 

2.4 Energy and power of discrete signal  
The total energy of a discrete signal x[n] is given for equation (Haykin & Veen, 2001): 
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and the average power is defined as: 
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For a periodic signal of fundamental period N, the average power is given by: 

 
1

2

0

1 [ ]
N

n
P x n

N





   (15) 

3. Differential protection of power transformers using DWT 
3.1 Percentage differential protection 
Differential protection schemes are widely used by electric companies to protect EPS 
equipments. This relaying technique is applied on power transformers protection, buses 
protection, and large motors and generators protection among others (Anderson, 1999). 
Considering power transformers rated above 10 MVA, the percentage differential relay with 
harmonic restraint is the most used protection scheme (Horowitz & Phadke, 2008). The 
percentage differential relay can be implemented with an over-current relay (R) and 
operation (o) and restriction coils (r), as illustrated on Fig. 3, connected between Current 
Transformer (CTs). 
Under normal operating conditions or external faults, the CTs secondary currents, i2P and 
i2S, have close absolute values. The differential protection formulation compares the 
differential current to a fixed threshold value. To include CTs transformation errors, CTs 
mismatch and power transformer variable taps, the differential current (id) can be compared 
to a fixed percentage value of the restraint current (ir). This percentage characteristic of the 
relay, named K, is given by: 
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The relay identifies an internal fault when the differential current exceeds the percentage 
value K of the restraint current, where iop is the operation current of relay: 
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Fig. 3. Differential relay connections. 

3.2 Proposed protection algorithm using DWT 
A change in the spectral energy of the wavelets components of the current differential is 
noted when different electrical events (external faults, internal faults and/or inrush current) 
occur on the power transformers (Megahed et al., 2008). In this sense, the discrimination 
criterion of the proposed protection algorithm in this work is based in the spectral energy 
level generated by the electrical event type. The flow chart of the proposed algorithm is 
presented on Fig. 4.  
In the disturbance detection (BLOCK 1) the activation current is calculated. The activation 
current is calculated for each phase through the percentage characteristic K and the restraint 
currents showed in equation (17). The activation current is given by: 
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where Ia is the activation current, IdA,B,C is the differential current on A, B and C phases, K is 
the percentage differential characteristic and ir is the restraint current. 
In the disturbance identification (BLOCK 2) the three-phase differential currents are initially 
processed through a DWT implemented as filter bank. After, a restraint index Rind, is 
calculated. This index quantifies the relative magnitude characteristic of the differential 
signals in the 1st detail (D1) and is defined as the relation between the maximum detail 
coefficient from D1 and the detail-spectrum-energy (DSE) of the wavelet coefficient. Thus, 
Rind is given by: 
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where dmax,D1 is the maximum detail coefficient from D1, M is the total number of wavelet 
coefficients from D1 and t is the sampling period. 
 

 
Fig. 4. Proposed Algorithm’s Operation Scheme. 

The proposed algorithm was implemented in MATLAB® platform (Matlab, 2010). Fig. 5 
presents the graphical interface developed with three input block: 1) selecting the 
disturbance type; 2) selecting of the wavelet analysis characteristics; 3) analyzed results 
outputs. 
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where dmax,D1 is the maximum detail coefficient from D1, M is the total number of wavelet 
coefficients from D1 and t is the sampling period. 
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Fig. 5. Graphical implementation in MATLAB® environment. 
 

Fig. 6. Simulated electric power system. 

4. Case study 
Fig. 6. illustrates the studied electrical power system. The studied system consists of: 
a.  Generator: 13.8 kV, 30 MVA, 50 Hz; 
b.  Power Transformer (PT): 35 MVA, 13.8/138 kV, Yg–∆; 
c.  Current Transformers (CT) with 1200/5 and 200/5 turns ratio; 

 
Application of Discrete Wavelet Transform for Differential Protection of Power Transformer 

 

359 

d.  Transmission line: with a length of 100 km; 
e.  Variable Load of 3, 10 or 25 MVA all with a 0.92 power factor. 
The switches shown in Fig. 6, S1 and S4, are used to simulate the energization operation of 
the PT. In this phenomenon the transformer is connected without load. The switch S3 
simulates external faults through a fault resistor Rf. The closing of the switch S2 simulates an 
internal faults to the PT in both the primary and secondary windings. 

4.1 Types of analyzed events 
The proposed algorithm operates through three-phase differential currents. The simulations 
performed are presented on Table 1:  
 

N Type Event 

1 Different energization cases, comprising different switching inception angles (0°, 
30°, 60° and 90°) by closing the switch S1 in the Low Voltage (LV) side. 

2 Internal faults in both primary and secondary sides of the transformer. These faults 
were simulated with a fault resistance Rf  values of 0 , 0.01 , 10 , and 100 . 

3 Several cases of external faults with fault resistances Rf values: 0 , 0.01 , 10 , and 
100 . 

4 Faults applied between the PT and the CTs. 

5 Energizing the PT with the presence of internal faults 

6 Energizing the PT with the presence of external faults. 

Table 1. Simulated Events. 

5. Simulation and analysis result 
In order to evaluate the proposed protection algorithm efficiency, internal faults and 
transient inrush currents have been simulated. For each simulation, the proposed 
algorithm used different mother wavelets to evaluate accuracy and speed. The mother 
wavelets tested in this study were: Daubechies (Db), Symlet (Sy), Haar (Hr), Coiflet (Coif) 
and Morlet (Mo). 

5.1 Transient signal and fault current simulation 
The transient signal (inrush current) and fault current simulated are concentrated in the 
following situations: 
 Fig. 7 presents an energization case. Part (a) illustrates the voltages in the secondary 

side of the PT. Part (b) the differential current are presented.  
 Fig. 8 illustrates a case of energization with internal fault (concurrent event). The 

internal fault was simulated in the A phase with fault resistance Rf = 10 .  
 Fig. 9 illustrates a case of external fault removal. The faults occurring at 3 km to the PT 

on the transmission line. 



 
Discrete Wavelet Transforms - Biomedical Applications 

 

358 

 
 
 

 
Fig. 5. Graphical implementation in MATLAB® environment. 
 

Fig. 6. Simulated electric power system. 

4. Case study 
Fig. 6. illustrates the studied electrical power system. The studied system consists of: 
a.  Generator: 13.8 kV, 30 MVA, 50 Hz; 
b.  Power Transformer (PT): 35 MVA, 13.8/138 kV, Yg–∆; 
c.  Current Transformers (CT) with 1200/5 and 200/5 turns ratio; 

 
Application of Discrete Wavelet Transform for Differential Protection of Power Transformer 

 

359 
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Fig. 7. Energization simulation on PT. 
 

 
Fig. 8. Energization and internal faults simulation on PT. 
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Fig. 9. External faults removal simulation. 

5.2 Algorithm proposed analysis 
Depending on the voltage angle in which the transformer is connected to the EPS, its 
residual flux can cause transient inrush currents which are correctly discriminated by the 
proposed protection algorithm.  
Fig. 10 shows the algorithm response to a transient inrush current. Fig. 10(a) presents the 
inrush current in differential circuit of the power transformer. Fig. 10(b) shows the first 
detail of the DWT decomposition where a maximum number of three windows analyses are 
implemented on detail coefficient of the WT.  Three windows analyses (Nw) are necessary to 
guarantee a correct decision by the methodology. The window analysis is moving 1/4 cycle 
for each restraint index (Rind) calculated to avoid false operations of the protection 
algorithm. After calculating and analyzing the ratio index for event discrimination, the 
proposed algorithm sends a restrain signal to the protection relay. Note on Fig. 10(c) the 
adaptive threshold value is proportional to the differential current caused by the internal 
fault. 
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Fig. 10. Logical decision of the proposed algorithm to energization phenomenon. 

5.3 Obtained results 
The magnitude and shape of inrush current changes depending on several factors such as 
energization instant, core remnant flux, saturation of CTs and non-linearities of transformer 
core. However, in this work only the switching instant was evaluated. 12 energization cases 
were simulated for each switching angle and evaluated with the following mother wavelet: 
Daubechies (Db), Harr (Hr), Symlet (Sy), Coiflet (Coif) and Morlet (Mo).  
Table 2 shows the proposed algorithm performance in correct operation number (OC[%]) for 
transformer energization. In test development, the Daubechies mother wavelets presented 
the best performance for all switching angles with 97.11% correct diagnosis. The Harr 
mother wavelet type appeared as the least efficient with 18.75% of correct diagnosis. 
Furthermore, at 90° switching angle presented the worse energization condition because it 
was the least correctly identified (56.66%). However, others switches angles tested did 
presented a significant effect on the inrush current identification. 
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Switch 
Angle 

Mother Wavelet Type 
OC [%] 

Db Hr Sy Coif Mo 
0° 12 7 12 12 12 91.66 

30° 12 2 12 12 12 83.33 
60° 12 0 10 12 10 73.33 
90° 11 0 9 8 6 56.66 

OC [%] 97.11 18.75 89.58 91.66 85.41  

Table 2. Performance of the proposed algorithm in percentage of correct operation (OC) [%] 
to different switching instants. 

Table 3 summarizes the methodology efficiency in percentage of correct operation of the 
proposed algorithm for different internal faults types and different fault resistances (RF). 
The performance was evaluated considering a constant load of 10 MVA on the end of the 
transmission line. There was an important drop in accuracy of the protection algorithm to 
internal fault cases in faults type A-B and A-B-C. However, the discrimination of faults type 
A-G (phase-ground) and A-B-G showed little sensitivity to Rf variation.  
It was noted that the mother wavelet Daubechies showed an excellent performance and high 
efficiency in discrimination of simulated disturbances. This is because the decomposition 
solutions using Daubechies wavelet function are orthogonal and no marginal overlaps will 
happen during the signal reconstruction. The mother wavelet Symlet and Coiflet presented 
a satisfactory performance with a greater efficiency than the Morlet type. On the other hand, 
the wavelet Haar type did not achieved a good performance, presenting many inaccuracies 
in the discrimination of all simulated disturbances. 
 

 
Fig. 11. Comparison between type wavelets functions and Fourier analysis (FTT). 

To verify the wavelet function type effect on the proposed formulation, 3 wavelets function 
were compared with conventional protection methodology based in Fourier Analysis (FTT). 
The wavelet type used in the comparison study were: Daubechies, Haar and Symlet. The 
Fig. 11 shows the test results and the comparison between the proposed algorithm, a 
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conventional percentage differential protection relay. It can be observed that the 
conventional technique based on FTT obtained a lower efficiency than the proposed 
algorithm. 
 

Mother 
Wavelet Rf [] 

Internal Fault Type 
A-G A-B A-B-G A-B-C 

Db 

0.01 100.0 100.0 100.0 100.0 
10 100.0 100.0 100.0 100.0 
50 99.22 98.28 100.0 100.0 
100 98.90 97.66 98.44 100.0 

Hr 

0.01 82.36 81.65 83.15 84.15 
10 76.32 76.54 75.18 75.36 
50 72.65 71.54 73.21 73.26 
100 70.18 69.32 70.15 70.15 

Sy 

0.01 99.38 100.0 100.0 100.0 
10 98.75 98.75 99.68 100.0 
50 97.81 97.65 98.75 98.75 
100 97.18 97.03 98.12 95.75 

Coif 

0.01 100.0 100.0 100.0 100.0 
10 99.38 98.75 100.0 97.34 
50 98.75 91.25 97.50 92.81 
100 97.65 87.66 96.87 88.28 

Mo 

0.01 97.21 96.54 94.65 94.36 
10 96.24 95.64 95.63 94.62 
50 95.12 96.35 94.32 93.12 
100 90.15 84.71 85.63 89.34 

Table 3. Performance of the proposed algorithm to internal fault cases. 

6. Conclusions 
In this chapter a novel formulation for differential protection of three-phase transformers, 
based on the differential current transient analysis is proposed. The algorithms performance 
is evaluated using fault simulations in a typical electrical system under BPA’s ATP/EMTP 
software. The algorithm considers the different magnitudes assumed by the DWT 
coefficients, induced by internal faults and inrush currents. The wavelet decomposition 
allows good time and frequency precision to characterize the transient events. 
The proposed algorithm is comprehensible and feasible for implementation showing a 
correct operation with the adaptive threshold value. The obtained results through various 
simulated fault cases and non-fault disturbances showed that the proposed algorithm is 
robust and accurate.  
Based on these tests and after critical evaluation of the proposed protection algorithm 
important conclusions could be observed: 
 The use of Wavelet Transforms to analyze differential signals produced by transient 

phenomenon proved to be an effective and robust tool. 
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 The variation of wavelets spectral energy coefficients proved to be an effective measure 
of discrimination. 

 The proposed algorithm presents a perspective of practical application given the 
simplicity under which the methodology is based.  

 The performance comparison made between the wavelet types: Daubechies (Db), Harr 
(Hr), Symlet (Sy), Coiflet (Coif) and Morlet (Mo), showed that the use of the Daubechies 
wavelet is the most appropriated.  

 The comparative study with the conventional differential protection algorithm showed 
that the proposed formulation presents greater performance. 
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conventional percentage differential protection relay. It can be observed that the 
conventional technique based on FTT obtained a lower efficiency than the proposed 
algorithm. 
 

Mother 
Wavelet Rf [] 

Internal Fault Type 
A-G A-B A-B-G A-B-C 

Db 

0.01 100.0 100.0 100.0 100.0 
10 100.0 100.0 100.0 100.0 
50 99.22 98.28 100.0 100.0 
100 98.90 97.66 98.44 100.0 

Hr 

0.01 82.36 81.65 83.15 84.15 
10 76.32 76.54 75.18 75.36 
50 72.65 71.54 73.21 73.26 
100 70.18 69.32 70.15 70.15 

Sy 

0.01 99.38 100.0 100.0 100.0 
10 98.75 98.75 99.68 100.0 
50 97.81 97.65 98.75 98.75 
100 97.18 97.03 98.12 95.75 

Coif 

0.01 100.0 100.0 100.0 100.0 
10 99.38 98.75 100.0 97.34 
50 98.75 91.25 97.50 92.81 
100 97.65 87.66 96.87 88.28 

Mo 

0.01 97.21 96.54 94.65 94.36 
10 96.24 95.64 95.63 94.62 
50 95.12 96.35 94.32 93.12 
100 90.15 84.71 85.63 89.34 

Table 3. Performance of the proposed algorithm to internal fault cases. 

6. Conclusions 
In this chapter a novel formulation for differential protection of three-phase transformers, 
based on the differential current transient analysis is proposed. The algorithms performance 
is evaluated using fault simulations in a typical electrical system under BPA’s ATP/EMTP 
software. The algorithm considers the different magnitudes assumed by the DWT 
coefficients, induced by internal faults and inrush currents. The wavelet decomposition 
allows good time and frequency precision to characterize the transient events. 
The proposed algorithm is comprehensible and feasible for implementation showing a 
correct operation with the adaptive threshold value. The obtained results through various 
simulated fault cases and non-fault disturbances showed that the proposed algorithm is 
robust and accurate.  
Based on these tests and after critical evaluation of the proposed protection algorithm 
important conclusions could be observed: 
 The use of Wavelet Transforms to analyze differential signals produced by transient 

phenomenon proved to be an effective and robust tool. 
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 The variation of wavelets spectral energy coefficients proved to be an effective measure 
of discrimination. 

 The proposed algorithm presents a perspective of practical application given the 
simplicity under which the methodology is based.  

 The performance comparison made between the wavelet types: Daubechies (Db), Harr 
(Hr), Symlet (Sy), Coiflet (Coif) and Morlet (Mo), showed that the use of the Daubechies 
wavelet is the most appropriated.  

 The comparative study with the conventional differential protection algorithm showed 
that the proposed formulation presents greater performance. 
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